WorldWideScience

Sample records for point unknown boiling

  1. High boiling point hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Pier, M

    1929-04-29

    A process is given for the production of hydrocarbons of high boiling point, such as lubricating oils, from bituminous substances, such as varieties of coal, shale, or other solid distillable carbonaceous materials. The process consists of treating the initial materials with organic solvents and then subjecting the products extracted from the initial materials, preferably directly, to a reducing treatment in respect to temperature, pressure, and time. The reduction treatment is performed by means of hydrogen under pressure.

  2. The myth of the boiling point.

    Science.gov (United States)

    Chang, Hasok

    2008-01-01

    Around 1800, many reputable scientists reported significant variations in the temperature of pure water boiling under normal atmospheric pressure. The reported variations included a difference of over 1 degree C between boiling in metallic and glass vessels (Gay-Lussac), and "superheating" up to 112 degrees C on extracting dissolved air out of water (De Luc). I have confirmed most of these observations in my own experiments, many of which are described in this paper. Water boils at the "boiling point" only under very particular circumstances. Our common-sense intuition about the fixedness of the boiling point is only sustained by our limited experience.

  3. When water does not boil at the boiling point.

    Science.gov (United States)

    Chang, Hasok

    2007-03-01

    Every schoolchild learns that, under standard pressure, pure water always boils at 100 degrees C. Except that it does not. By the late 18th century, pioneering scientists had already discovered great variations in the boiling temperature of water under fixed pressure. So, why have most of us been taught that the boiling point of water is constant? And, if it is not constant, how can it be used as a 'fixed point' for the calibration of thermometers? History of science has the answers.

  4. Boiling point measurements on liquid UO2

    International Nuclear Information System (INIS)

    Bober, M.; Singer, J.; Trapp, M.

    1986-01-01

    In analogy to the classic boiling point method, a quasi-stationary millisecond laser-heating technique was applied to measure the saturated-vapour pressure curve of liquid UO 2 in the temperature range of 3500 to 4500 K. The result is represented by log p(MPa) 5.049 -23042/T(K) according to an average heat of vaporization of 441 kJ/mol and a normal boiling point of 3808 K. Besides, spectral emissivities of liquid UO 2 were measured at the pyrometer wavelengths of 752 and 1064 nm. (author)

  5. The boiling point of stratospheric aerosols.

    Science.gov (United States)

    Rosen, J. M.

    1971-01-01

    A photoelectric particle counter was used for the measurement of aerosol boiling points. The operational principle involves raising the temperature of the aerosol by vigorously heating a portion of the intake tube. At or above the boiling point, the particles disintegrate rather quickly, and a noticeable effect on the size distribution and concentration is observed. Stratospheric aerosols appear to have the same volatility as a solution of 75% sulfuric acid. Chemical analysis of the aerosols indicates that there are other substances present, but that the sulfate radical is apparently the major constituent.

  6. Making Sense of Boiling Points and Melting Points

    Indian Academy of Sciences (India)

    GENERAL | ARTICLE. The boiling and melting points of a pure substance are char- ... bonds, which involves high energy and hence high temperatures. Among the .... with zero intermolecular force at all temperatures and pressures, which ...

  7. CONTINUOUS ANALYZER UTILIZING BOILING POINT DETERMINATION

    Science.gov (United States)

    Pappas, W.S.

    1963-03-19

    A device is designed for continuously determining the boiling point of a mixture of liquids. The device comprises a distillation chamber for boiling a liquid; outlet conduit means for maintaining the liquid contents of said chamber at a constant level; a reflux condenser mounted above said distillation chamber; means for continuously introducing an incoming liquid sample into said reflux condenser and into intimate contact with vapors refluxing within said condenser; and means for measuring the temperature of the liquid flowing through said distillation chamber. (AEC)

  8. Estimation of boiling point of radon by radiogas chromatography

    International Nuclear Information System (INIS)

    Takahashi, N.; Otozai, K.

    1986-01-01

    The retention volume of radon was measured by means of radiogas chromatography. The boiling point of radon was estimated from the retention volume by the use of the semi-empirical formula relating the boiling point to the retention volume. The obtained boiling point (198+-2)K was lower by 13 K than that measured by Gray and Ramsay. (author)

  9. Boiling point of volatile liquids at various pressures

    Directory of Open Access Journals (Sweden)

    Luisa Maria Valencia

    2017-07-01

    Full Text Available Water, under normal conditions, tends to boil at a “normal boiling temperature” at which the atmospheric pressure fixes the average amount of kinetic energy needed to reach its boiling point. Yet, the normal boiling temperature of different substances varies depending on their nature, for which substances like alcohols, known as volatile, boil faster than water under same conditions. In response to this phenomenon, an investigation on the coexistence of both gas and liquid phases of a volatile substance in a closed system was made, establishing vapor pressure as the determining tendency of a substance to vaporize, which increases exponentially with temperature until a critical point is reached. Since atmospheric pressure is fixed, the internal pressure of the system was varied to determine its relationship with vapor pressure and thus with the boiling point of the substance, concluding that the internal pressure and boiling point of a volatile liquid in a closed system are negatively proportional.

  10. QSPR using MOLGEN-QSPR: the challenge of fluoroalkane boiling points.

    Science.gov (United States)

    Rücker, Christoph; Meringer, Markus; Kerber, Adalbert

    2005-01-01

    By means of the new software MOLGEN-QSPR, a multilinear regression model for the boiling points of lower fluoroalkanes is established. The model is based exclusively on simple descriptors derived directly from molecular structure and nevertheless describes a broader set of data more precisely than previous attempts that used either more demanding (quantum chemical) descriptors or more demanding (nonlinear) statistical methods such as neural networks. The model's internal consistency was confirmed by leave-one-out cross-validation. The model was used to predict all unknown boiling points of fluorobutanes, and the quality of predictions was estimated by means of comparison with boiling point predictions for fluoropentanes.

  11. Correlations between boiling points and relative retention data for hydrocarbons

    NARCIS (Netherlands)

    Sojak, L.; Krupcik, J.; Rijks, J.A.

    1974-01-01

    An equation correlating retention indices, boiling points and activity coefficients is proposed. The equation can be applied not only to homologous series, but also to different classes of hydrocarbons.

  12. An Analytical Approach for Relating Boiling Points of Monofunctional Organic Compounds to Intermolecular Forces

    Science.gov (United States)

    Struyf, Jef

    2011-01-01

    The boiling point of a monofunctional organic compound is expressed as the sum of two parts: a contribution to the boiling point due to the R group and a contribution due to the functional group. The boiling point in absolute temperature of the corresponding RH hydrocarbon is chosen for the contribution to the boiling point of the R group and is a…

  13. Boiling points of the superheavy elements 117 and 118

    International Nuclear Information System (INIS)

    Takahashi, N.

    2001-01-01

    It has been shown that the relativistic effect on the electrons reveal in the heavy element region. What kind of changes will appear in the heavy elements because of the relativistic effects? Can we observe the changes? We observed that the boiling points of astatine and radon are lower than that extrapolated values from lighter elements in the same groups. Systematic behavior of the elements on the boiling point was examined and a new method for the estimation of the boiling points of the superheavy elements in the halogen and rare gases has been found. The estimated values of the elements 117 and 118 are 618 and 247 K, respectively which are considerably lower than those obtained until now. If these values are correct the production of the superheavy elements with heavy ions reaction may be affected. Further, the chemical properties may be fairly different from the lighter elements. (author)

  14. Study on onset of nucleate boiling and net vapor generation point in subcooled flow boiling

    International Nuclear Information System (INIS)

    Ohtake, Hiroyasu; Wada, Noriyoshi; Koizumi, Yasuo

    2002-01-01

    The onset of nucleate boiling (ONB) and the point of net vapor generation on subcooled flow boiling, focusing on liquid subcooling and liquid velocity were investigated experimentally and analytically. Experiments were conducted using a copper thin-film (35μm) and subcooled water in a range of the liquid velocity from 0.27 to 4.6 m/s at 0.10MPa. The liquid subcoolings were 20, 30 and 40K, respectively. Temperatures at the onset of nucleate boiling obtained in the experiments increased with the liquid subcoolings and the liquid velocities. The increases in the temperature of ONB were represented with the classical stability theory of preexisting nuclei. The measured results of the net vapor generation agreed well with the results of correlation by Saha and Zuber in the range of the present experiments. (J.P.N.)

  15. Void fraction and incipient point of boiling during the subcooled nucleate flow boiling of water

    International Nuclear Information System (INIS)

    Unal, H.C.

    1977-01-01

    Void fraction has been determined with high-speed photography for subcooled nucleate flow boiling of water. The data obtained and the data of various investigators for adiabatic flow of stream-water mixtures and saturated bulk boiling of water have yielded a correlation which covers the following conditions: geometry: vertically orientated circular tubes, rectangular channels and annuli; pressure: 2 to 15.9 MN/m 2 ; mass velocity: 388 to 3500 kg/m 2 s; void fraction: 0 to 99%; hydraulic diameter: 0.0047 to 0.0343 m; heat flux: adiabatic and 0.01 to 2.0 MW/m 2 . The accuracy of the correlation is estimated to be 12.5%. The value of the so-called distribution (or flow) parameter has been experimentally determined and found to be equal to 1 for a vertical small-diameter circular tube. The incipient point of boiling for subcooled nucleate flow boiling of water has been determined with high-speed photography. The data obtained and the data available in the literature have yielded a correlation which covers the following conditions: geometry: plate, circular tube and inner tube-heated, outer tube-heated and inner - and outer tube heated annulus; pressure: 0.15 to 15.9 MN/m 2 ; mass velocity: 470 to 17355 kg/m 2 s; hydraulic diameter: 0.00239 to 0.032 m; heat flux: 0.13 to 9.8 MW/m 2 ; subcooling: 2.6 to 108 K; material of heating surface: stainless steel and nickel. The accuracy of the correlation is estimated to be 27.5%. Maximum bubble diameters have been measured at the incipient point of boiling. These data and the data from literature have been correlated for the pressure range of 0.1 to 15.9 MN/m 2 . (author)

  16. Modeling molecular boiling points using computed interaction energies.

    Science.gov (United States)

    Peterangelo, Stephen C; Seybold, Paul G

    2017-12-20

    The noncovalent van der Waals interactions between molecules in liquids are typically described in textbooks as occurring between the total molecular dipoles (permanent, induced, or transient) of the molecules. This notion was tested by examining the boiling points of 67 halogenated hydrocarbon liquids using quantum chemically calculated molecular dipole moments, ionization potentials, and polarizabilities obtained from semi-empirical (AM1 and PM3) and ab initio Hartree-Fock [HF 6-31G(d), HF 6-311G(d,p)], and density functional theory [B3LYP/6-311G(d,p)] methods. The calculated interaction energies and an empirical measure of hydrogen bonding were employed to model the boiling points of the halocarbons. It was found that only terms related to London dispersion energies and hydrogen bonding proved significant in the regression analyses, and the performances of the models generally improved at higher levels of quantum chemical computation. An empirical estimate for the molecular polarizabilities was also tested, and the best models for the boiling points were obtained using either this empirical polarizability itself or the polarizabilities calculated at the B3LYP/6-311G(d,p) level, along with the hydrogen-bonding parameter. The results suggest that the cohesive forces are more appropriately described as resulting from highly localized interactions rather than interactions between the global molecular dipoles.

  17. Prediction of boiling points of organic compounds by QSPR tools.

    Science.gov (United States)

    Dai, Yi-min; Zhu, Zhi-ping; Cao, Zhong; Zhang, Yue-fei; Zeng, Ju-lan; Li, Xun

    2013-07-01

    The novel electro-negativity topological descriptors of YC, WC were derived from molecular structure by equilibrium electro-negativity of atom and relative bond length of molecule. The quantitative structure-property relationships (QSPR) between descriptors of YC, WC as well as path number parameter P3 and the normal boiling points of 80 alkanes, 65 unsaturated hydrocarbons and 70 alcohols were obtained separately. The high-quality prediction models were evidenced by coefficient of determination (R(2)), the standard error (S), average absolute errors (AAE) and predictive parameters (Qext(2),RCV(2),Rm(2)). According to the regression equations, the influences of the length of carbon backbone, the size, the degree of branching of a molecule and the role of functional groups on the normal boiling point were analyzed. Comparison results with reference models demonstrated that novel topological descriptors based on the equilibrium electro-negativity of atom and the relative bond length were useful molecular descriptors for predicting the normal boiling points of organic compounds. Copyright © 2013 Elsevier Inc. All rights reserved.

  18. MRI monitoring of lesions created at temperature below the boiling point and of lesions created above the boiling point using high intensity focused ultrasound

    OpenAIRE

    Damianou, C.; Ioannides, K.; Hadjisavvas, V.; Mylonas, N.; Couppis, A.; Iosif, D.; Kyriacou, P. A.

    2010-01-01

    Magnetic Resonance Imaging (MRI) was utilized to monitor lesions created at temperature below the boiling point and lesions created at temperature above the boiling point using High Intensity Focused Ultrasound (HIFU) in freshly excised kidney, liver and brain and in vivo rabbit kidney and brain. T2-weighted fast spin echo (FSE) was proven as an excellent MRI sequence that can detect lesions with temperature above the boiling point in kidney. This advantage is attributed to the significant di...

  19. Size-exclusion chromatography for the determination of the boiling point distribution of high-boiling petroleum fractions.

    Science.gov (United States)

    Boczkaj, Grzegorz; Przyjazny, Andrzej; Kamiński, Marian

    2015-03-01

    The paper describes a new procedure for the determination of boiling point distribution of high-boiling petroleum fractions using size-exclusion chromatography with refractive index detection. Thus far, the determination of boiling range distribution by chromatography has been accomplished using simulated distillation with gas chromatography with flame ionization detection. This study revealed that in spite of substantial differences in the separation mechanism and the detection mode, the size-exclusion chromatography technique yields similar results for the determination of boiling point distribution compared with simulated distillation and novel empty column gas chromatography. The developed procedure using size-exclusion chromatography has a substantial applicability, especially for the determination of exact final boiling point values for high-boiling mixtures, for which a standard high-temperature simulated distillation would have to be used. In this case, the precision of final boiling point determination is low due to the high final temperatures of the gas chromatograph oven and an insufficient thermal stability of both the gas chromatography stationary phase and the sample. Additionally, the use of high-performance liquid chromatography detectors more sensitive than refractive index detection allows a lower detection limit for high-molar-mass aromatic compounds, and thus increases the sensitivity of final boiling point determination. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Quantitative structure-property relationships for prediction of boiling point, vapor pressure, and melting point.

    Science.gov (United States)

    Dearden, John C

    2003-08-01

    Boiling point, vapor pressure, and melting point are important physicochemical properties in the modeling of the distribution and fate of chemicals in the environment. However, such data often are not available, and therefore must be estimated. Over the years, many attempts have been made to calculate boiling points, vapor pressures, and melting points by using quantitative structure-property relationships, and this review examines and discusses the work published in this area, and concentrates particularly on recent studies. A number of software programs are commercially available for the calculation of boiling point, vapor pressure, and melting point, and these have been tested for their predictive ability with a test set of 100 organic chemicals.

  1. Prediction model for initial point of net vapor generation for low-flow boiling

    International Nuclear Information System (INIS)

    Sun Qi; Zhao Hua; Yang Ruichang

    2003-01-01

    The prediction of the initial point of net vapor generation is significant for the calculation of phase distribution in sub-cooled boiling. However, most of the investigations were developed in high-flow boiling, and there is no common model that could be successfully applied for the low-flow boiling. A predictive model for the initial point of net vapor generation for low-flow forced convection and natural circulation is established here, by the analysis of evaporation and condensation heat transfer. The comparison between experimental data and calculated results shows that this model can predict the net vapor generation point successfully in low-flow sub-cooled boiling

  2. The Gibbs Energy Basis and Construction of Boiling Point Diagrams in Binary Systems

    Science.gov (United States)

    Smith, Norman O.

    2004-01-01

    An illustration of how excess Gibbs energies of the components in binary systems can be used to construct boiling point diagrams is given. The underlying causes of the various types of behavior of the systems in terms of intermolecular forces and the method of calculating the coexisting liquid and vapor compositions in boiling point diagrams with…

  3. Teaching Structure-Property Relationships: Investigating Molecular Structure and Boiling Point

    Science.gov (United States)

    Murphy, Peter M.

    2007-01-01

    A concise, well-organized table of the boiling points of 392 organic compounds has facilitated inquiry-based instruction in multiple scientific principles. Many individual or group learning activities can be derived from the tabulated data of molecular structure and boiling point based on the instructor's education objectives and the students'…

  4. Surface roughness effects on onset of nucleate boiling and net vapor generation point in subcooled flow boiling

    International Nuclear Information System (INIS)

    Ohtake, Hiroyasu; Wada, Noriyoshi; Koizumi, Yasuo

    2003-01-01

    The ability to predict void formation and void fraction in subcooled flow boiling is of importance to the nuclear reactor technology because the presence of voids affects the steady state and transient response of a reactor. The onset of nucleate boiling and the point of net vapor generation on subcooled flow boiling, focusing on surface roughness, liquid subcooling and liquid velocity were investigated experimentally and analytically. Experiments were conducted using a copper thin-film and subcooled water in a range of the liquid velocity from 0.27 to 4.6 m/s at 0.10MPa; the liquid subcoolings were 20, 30 and 40K, respectively. The surface roughness on the test heater was observed by SEM. Experimental results showed that temperatures at the onset nucleate boiling increased with increasing the liquid subcoolings or the liquid velocities. The trend of increase in the temperature at the ONB was in good agreement with the present analytical result based on the stability theory of preexisting nuclei. The measured results for the net vapor generation point agreed well with the results of correlation by Saha and Zuber in the range of the present experiments. The temperature at the ONB decreased with an increasing size of surface roughness, while the NVG-point was independent on the surface roughness. The dependence on the ONB temperature of the roughness size was also represented well by the present analytical model

  5. Relationship between potency and boiling point of general anesthetics: a thermodynamic consideration.

    Science.gov (United States)

    Dastmalchi, S; Barzegar-Jalali, M

    2000-07-20

    The most important group of nonspecific drugs is that of the general anesthetics. These nonspecific compounds vary greatly in structure, from noble gases such as Ar or Xe to complex steroids. Since the development of clinical anesthesia over a century ago, there has been a vast amount of research and speculation concerning the mechanism of action of general anesthetics. Despite these efforts, the exact mechanism remains unknown. Many theories of narcosis do not explain how unconsciousness is produced at a molecular level, but instead relate some physicochemical property of anesthetic agents to their anesthetic potencies. In this paper, we address some of those physicochemical properties, with more emphasis on correlating the anesthetic potency of volatile anesthetics to their boiling points based on thermodynamic principles.

  6. Study on minimum heat-flux point during boiling heat transfer on horizontal plates

    International Nuclear Information System (INIS)

    Nishio, Shigefumi

    1985-01-01

    The characteristics of boiling heat transfer are usually shown by the boiling curve of N-shape having the maximum and minimum points. As for the limiting heat flux point, that is, the maximum point, there have been many reports so far, as it is related to the physical burn of heat flux-controlling type heating surfaces. But though the minimum heat flux point is related to the quench point as the problems in steel heat treatment, the core safety of LWRs, the operational stability of superconducting magnets, the start-up characteristics of low temperature machinery, the condition of vapor explosion occurrence and so on, the systematic information has been limited. In this study, the effects of transient property and the heat conductivity of heating surfaces on the minimum heat flux condition in the pool boiling on horizontal planes were experimentally examined by using liquid nitrogen. The experimental apparatuses for steady boiling, for unsteady boiling with a copper heating surface, and for unsteady boiling with a heating surface other than copper were employed. The boiling curves obtained with these apparatuses and the minimum heat flux point condition are discussed. (Kako, I.)

  7. Estimation of the chemical form and the boiling point of elementary astatine by radiogas-chromatography

    International Nuclear Information System (INIS)

    Otozai, K.; Takahashi, N.

    1982-01-01

    After astatine (0) was mixed with 131 I 2 containing carrier I 2 , the sample was analyzed by means of radiogaschromatography and the peaks due to I 2 , AtI and At 2 were observed. Further, the boiling points were estimated from the retention volume in terms of the semi-empirical theory on gas chromatography. The boiling points of I 2 , AtI and At 2 were 457 +- 2,486 +- 2 and 503 +- 3K, respectively. The boiling point of At 2 obtained in the present work is far smaller than that expected by the extrapolation of lighter halogens. (orig.)

  8. Minimum heat flux (MHF) point in pool and external-flow boiling

    International Nuclear Information System (INIS)

    Nishio, Shigefumi

    1983-01-01

    As for the boiling phenomena near a minimum heat flux (MHF) point to which attention has been paid recently concerning the safety analysis of LWR cores, the results of research have not been put in order sufficiently. Therefore in this explanation, the object is limited to pool boiling and external flow boiling, and it is attempted to rearrange the present knowledge on the phenomena near a MHF point from the viewpoint of the relation to the state of solid-liquid contact, the effect of various factors on a MHF point and the modeling of a MHF point. The heat transfer characteristics in boiling phenomena are represented by a curve with one maximum and one minimum points. The MHF point is called also minimum film boiling point. In a heat flux-controlled heating surface, temperature jump arises when heat flux is decreased at a MHF point. The phenomena near a MHF point and the technological background when a MHF point becomes a problem are explained. Near a MHF point, only partial, intermittent solid-liquid contact is maintained. The effects of solid-liquid contact mode, the geometry of a heating surface, pressure and others on a MHF point are discussed. (Kako, I.)

  9. Boiling point measurement of a small amount of brake fluid by thermocouple and its application.

    Science.gov (United States)

    Mogami, Kazunari

    2002-09-01

    This study describes a new method for measuring the boiling point of a small amount of brake fluid using a thermocouple and a pear shaped flask. The boiling point of brake fluid was directly measured with an accuracy that was within approximately 3 C of that determined by the Japanese Industrial Standards method, even though the sample volume was only a few milliliters. The method was applied to measure the boiling points of brake fluid samples from automobiles. It was clear that the boiling points of brake fluid from some automobiles dropped to approximately 140 C from about 230 C, and that one of the samples from the wheel cylinder was approximately 45 C lower than brake fluid from the reserve tank. It is essential to take samples from the wheel cylinder, as this is most easily subjected to heating.

  10. An assessment of the melting, boiling, and critical point data of the alkali metals

    International Nuclear Information System (INIS)

    Ohse, R.W.; Babelot, J.-F.; Magill, J.

    1985-01-01

    The paper reviews the measured melting, boiling and critical point data of alkali metals. A survey of the static heat generation methods for density and pressure-volume-temperature measurements is given. Measured data on the melting and boiling temperatures of lithium, sodium, potassium, rubidium and caesium are summarised. Also measured critical point data for the same five alkali metals are presented, and discussed. (U.K.)

  11. Boiling points of halogenated ethanes: an explanatory model implicating weak intermolecular hydrogen-halogen bonding.

    Science.gov (United States)

    Beauchamp, Guy

    2008-10-23

    This study explores via structural clues the influence of weak intermolecular hydrogen-halogen bonds on the boiling point of halogenated ethanes. The plot of boiling points of 86 halogenated ethanes versus the molar refraction (linked to polarizability) reveals a series of straight lines, each corresponding to one of nine possible arrangements of hydrogen and halogen atoms on the two-carbon skeleton. A multiple linear regression model of the boiling points could be designed based on molar refraction and subgroup structure as independent variables (R(2) = 0.995, standard error of boiling point 4.2 degrees C). The model is discussed in view of the fact that molar refraction can account for approximately 83.0% of the observed variation in boiling point, while 16.5% could be ascribed to weak C-X...H-C intermolecular interactions. The difference in the observed boiling point of molecules having similar molar refraction values but differing in hydrogen-halogen intermolecular bonds can reach as much as 90 degrees C.

  12. Study on characteristic points of boiling curve by using wavelet analysis and genetic algorithm

    International Nuclear Information System (INIS)

    Wei Huiming; Su Guanghui; Qiu Suizheng; Yang Xingbo

    2009-01-01

    Based on the wavelet analysis theory of signal singularity detection,the critical heat flux (CHF) and minimum film boiling starting point (q min ) of boiling curves can be detected and analyzed by using the wavelet multi-resolution analysis. To predict the CHF in engineering, empirical relations were obtained based on genetic algorithm. The results of wavelet detection and genetic algorithm prediction are consistent with experimental data very well. (authors)

  13. Nutrition content of brisket point end of part Simental Ongole Crossbred meat in boiled various temperature

    Science.gov (United States)

    Riyanto, J.; Sudibya; Cahyadi, M.; Aji, A. P.

    2018-01-01

    This aim of this study was to determine the quality of nutritional contents of beef brisket point end of Simental Ongole Crossbred meat in various boiling temperatures. Simental Ongole Crossbred had been fattened for 9 months. Furthermore, they were slaughtered at slaughterhouse and brisket point end part of meat had been prepared to analyse its nutritional contents using Food Scan. These samples were then boiled at 100°C for 0 (TR), 15 (R15), and 30 (R30) minutes, respectively. The data was analysed using Randomized Complete Design (CRD) and Duncan’s multiple range test (DMRT) had been conducted to differentiate among three treatments. The results showed that boiling temperatures significantly affected moisture, and cholesterol contents of beef (P<0.05) while fat content was not significantly affected by boiling temperatures. The boiling temperature decreased beef water contents from 72.77 to 70.84%, on the other hand, the treatment increased beef protein and cholesterol contents from 20.77 to 25.14% and 47.55 to 50.45 mg/100g samples, respectively. The conclusion of this study was boiling of beef at 100°C for 15 minutes and 30 minutes decreasing water content and increasing protein and cholesterol contents of brisket point end of Simental Ongole Crossbred beef.

  14. CADASTER QSPR Models for Predictions of Melting and Boiling Points of Perfluorinated Chemicals.

    Science.gov (United States)

    Bhhatarai, Barun; Teetz, Wolfram; Liu, Tao; Öberg, Tomas; Jeliazkova, Nina; Kochev, Nikolay; Pukalov, Ognyan; Tetko, Igor V; Kovarich, Simona; Papa, Ester; Gramatica, Paola

    2011-03-14

    Quantitative structure property relationship (QSPR) studies on per- and polyfluorinated chemicals (PFCs) on melting point (MP) and boiling point (BP) are presented. The training and prediction chemicals used for developing and validating the models were selected from Syracuse PhysProp database and literatures. The available experimental data sets were split in two different ways: a) random selection on response value, and b) structural similarity verified by self-organizing-map (SOM), in order to propose reliable predictive models, developed only on the training sets and externally verified on the prediction sets. Individual linear and non-linear approaches based models developed by different CADASTER partners on 0D-2D Dragon descriptors, E-state descriptors and fragment based descriptors as well as consensus model and their predictions are presented. In addition, the predictive performance of the developed models was verified on a blind external validation set (EV-set) prepared using PERFORCE database on 15 MP and 25 BP data respectively. This database contains only long chain perfluoro-alkylated chemicals, particularly monitored by regulatory agencies like US-EPA and EU-REACH. QSPR models with internal and external validation on two different external prediction/validation sets and study of applicability-domain highlighting the robustness and high accuracy of the models are discussed. Finally, MPs for additional 303 PFCs and BPs for 271 PFCs were predicted for which experimental measurements are unknown. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. An assessment of the melting, boiling, and critical point data of the alkali metals

    International Nuclear Information System (INIS)

    Ohse, R.W.; Babelot, J.F.; Magill, J.

    1985-01-01

    The measured melting, boiling and critical point data of the alkali metals are reviewed. Emphasis has been given to the assessment of the critical point data. The main experimental techniques for measurements in the critical region are described. The selected data are given. Best estimates of the critical constants of lithium are given. (author)

  16. What Is the Boiling Point and Heat of Vaporization of Sulfuric Acid?

    Science.gov (United States)

    Myers, R. Thomas

    1983-01-01

    Discusses the values presented in various handbooks for the boiling point and heat of vaporization of sulfuric acid, noting discrepencies. Analyzes various approaches to data presentation, discussing the data on sulfuric acid in light of the Trouton constant. Points out the need for a more critical use of tables. (JM)

  17. Modeling and measurement of boiling point elevation during water vaporization from aqueous urea for SCR applications

    International Nuclear Information System (INIS)

    Dan, Ho Jin; Lee, Joon Sik

    2016-01-01

    Understanding of water vaporization is the first step to anticipate the conversion process of urea into ammonia in the exhaust stream. As aqueous urea is a mixture and the urea in the mixture acts as a non-volatile solute, its colligative properties should be considered during water vaporization. The elevation of boiling point for urea water solution is measured with respect to urea mole fraction. With the boiling-point elevation relation, a model for water vaporization is proposed underlining the correction of the heat of vaporization of water in the urea water mixture due to the enthalpy of urea dissolution in water. The model is verified by the experiments of water vaporization as well. Finally, the water vaporization model is applied to the water vaporization of aqueous urea droplets. It is shown that urea decomposition can begin before water evaporation finishes due to the boiling-point elevation

  18. Modeling and measurement of boiling point elevation during water vaporization from aqueous urea for SCR applications

    Energy Technology Data Exchange (ETDEWEB)

    Dan, Ho Jin; Lee, Joon Sik [Seoul National University, Seoul (Korea, Republic of)

    2016-03-15

    Understanding of water vaporization is the first step to anticipate the conversion process of urea into ammonia in the exhaust stream. As aqueous urea is a mixture and the urea in the mixture acts as a non-volatile solute, its colligative properties should be considered during water vaporization. The elevation of boiling point for urea water solution is measured with respect to urea mole fraction. With the boiling-point elevation relation, a model for water vaporization is proposed underlining the correction of the heat of vaporization of water in the urea water mixture due to the enthalpy of urea dissolution in water. The model is verified by the experiments of water vaporization as well. Finally, the water vaporization model is applied to the water vaporization of aqueous urea droplets. It is shown that urea decomposition can begin before water evaporation finishes due to the boiling-point elevation.

  19. The effect of vapor polarity and boiling point on breakthrough for binary mixtures on respirator carbon.

    Science.gov (United States)

    Robbins, C A; Breysse, P N

    1996-08-01

    This research evaluated the effect of the polarity of a second vapor on the adsorption of a polar and a nonpolar vapor using the Wheeler model. To examine the effect of polarity, it was also necessary to observe the effect of component boiling point. The 1% breakthrough time (1% tb), kinetic adsorption capacity (W(e)), and rate constant (kv) of the Wheeler model were determined for vapor challenges on carbon beds for both p-xylene and pyrrole (referred to as test vapors) individually, and in equimolar binary mixtures with the polar and nonpolar vapors toluene, p-fluorotoluene, o-dichlorobenzene, and p-dichlorobenzene (referred to as probe vapors). Probe vapor polarity (0 to 2.5 Debye) did not systematically alter the 1% tb, W(e), or kv of the test vapors. The 1% tb and W(e) for test vapors in binary mixtures can be estimated reasonably well, using the Wheeler model, from single-vapor data (1% tb +/- 30%, W(e) +/- 20%). The test vapor 1% tb depended mainly on total vapor concentration in both single and binary systems. W(e) was proportional to test vapor fractional molar concentration (mole fraction) in mixtures. The kv for p-xylene was significantly different (p boiling point; however, these differences were apparently of limited importance in estimating 1% tb for the range of boiling points tested (111 to 180 degrees C). Although the polarity and boiling point of chemicals in the range tested are not practically important in predicting 1% tb with the Wheeler model, an effect due to probe boiling point is suggested, and tests with chemicals of more widely ranging boiling point are warranted. Since the 1% tb, and thus, respirator service life, depends mainly on total vapor concentration, these data underscore the importance of taking into account the presence of other vapors when estimating respirator service life for a vapor in a mixture.

  20. Vapor pressure determination of liquid UO/sub 2/ using a boiling point technique

    International Nuclear Information System (INIS)

    Bober, M.; Singer, J.

    1987-01-01

    By analogy with the classic boiling point method, a quasi-stationary millisecond laser-heating technique was applied to measure the saturated vapor pressure curve of liquid UO/sub 2/ in the temperature range of 3500 to 4500 K. The results are represented by log rho (MPa)=5.049 - 23 042/T (K), which gives an average heat of vaporization of 441 kJ/mol and a normal boiling point of 3808 K. In addition, spectral emissivities of liquid UO/sub 2/ were determined as a function of the temperature at the pyrometer wavelengths of 752 and 1064 nm

  1. Students' Understanding of Boiling Points and Intermolecular Forces

    Science.gov (United States)

    Schmidt, Hans-Jurgen; Kaufmann, Birgit; Treagust, David F.

    2009-01-01

    In introductory chemistry courses students are presented with the model that matter is composed of particles, and that weak forces of attraction exist between them. This model is used to interpret phenomena such as solubility and melting points, and aids in understanding the changes in states of matter as opposed to chemical reactions. We…

  2. Studying Intermolecular Forces with a Dual Gas Chromatography and Boiling Point Investigation

    Science.gov (United States)

    Cunningham, William Patrick; Xia, Ian; Wickline, Kaitlyn; Huitron, Eric Ivan Garcia; Heo, Jun

    2018-01-01

    A procedure for the study of structural differences and intermolecular attraction between ethanol and 1-butanol based in laboratory work is described. This study provides comparisons of data retrieved from both a determination of boiling point and gas chromatography traces for the mixture. The methodology reported here should provide instructors…

  3. Explaining Melting and Evaporation below Boiling Point. Can Software Help with Particle Ideas?

    Science.gov (United States)

    Papageorgiou, George; Johnson, Philip; Fotiades, Fotis

    2008-01-01

    This paper reports the findings of a study exploring the use of a software package to help pupils understand particulate explanations for melting and evaporation below boiling point. Two matched classes in a primary school in Greece (ages 11-12, n = 16 and 19) were involved in a short intervention of six one hour lessons. Covering the same…

  4. Fragmentation of molten metal drop with instantaneous contact temperature below the boiling point of Na

    Energy Technology Data Exchange (ETDEWEB)

    Inukai, S.; Sugiyama, K. [Hokkaido Univ., Dept. of Nuclear Engineering, Sapporo (Japan); Nishimura, S.; Kinoshita, I. [Central Research Institute of Electric Power Industry, Tokyo (Japan)

    2001-07-01

    The consequence of the core disruptive accidents in metallic-fueled Na-cooled reactors is strongly affected by the feedback reactivity originating in the boiling of Na and the dispersion of molten fuel due to fuel-coolant interactions. The design of the core configuration to promote the dispersion of molten fuel is therefore very important for social acceptance. It has been recognized in this context that metallic fuel has a potentiality to make liquefied fuel with fuel pin tube even in the temperature range below the boiling point of Na. If the liquefied fuel solidified without fuel-coolant interactions in the core region, this event leads the core condition to a pessimistic scenario of re-criticality. As a basic study related to this problem, the present experimental study investigates the possibility of fragmentation of metal drop with instantaneous contact temperature below the boiling point of Na (883 C). The molten Al drop, which has a melting point of 660 C above the operational temperature range of core, was selected as a simulant of liquefied fuel in the present study. Al particles of 5 g or 0.56 g were heated up to the initial temperature ranging from 850 C to 1113 C in a crucible by using an electric heater. The molten Al drop was dropped into a sodium pool adjusted the temperature from 280 C to 499 C. The Al drop at initial temperature sufficiently higher that the boiling point of Na was observed to fragment into pieces under the condition of instantaneous contact temperature below the boiling point of Na. It is confirmed that the fragmentation is caused due to the thermal interactions between the molten Al and the Na entrapped into the drop. (author)

  5. Fragmentation of molten metal drop with instantaneous contact temperature below the boiling point of Na

    International Nuclear Information System (INIS)

    Inukai, S.; Sugiyama, K.; Nishimura, S.; Kinoshita, I.

    2001-01-01

    The consequence of the core disruptive accidents in metallic-fueled Na-cooled reactors is strongly affected by the feedback reactivity originating in the boiling of Na and the dispersion of molten fuel due to fuel-coolant interactions. The design of the core configuration to promote the dispersion of molten fuel is therefore very important for social acceptance. It has been recognized in this context that metallic fuel has a potentiality to make liquefied fuel with fuel pin tube even in the temperature range below the boiling point of Na. If the liquefied fuel solidified without fuel-coolant interactions in the core region, this event leads the core condition to a pessimistic scenario of re-criticality. As a basic study related to this problem, the present experimental study investigates the possibility of fragmentation of metal drop with instantaneous contact temperature below the boiling point of Na (883 C). The molten Al drop, which has a melting point of 660 C above the operational temperature range of core, was selected as a simulant of liquefied fuel in the present study. Al particles of 5 g or 0.56 g were heated up to the initial temperature ranging from 850 C to 1113 C in a crucible by using an electric heater. The molten Al drop was dropped into a sodium pool adjusted the temperature from 280 C to 499 C. The Al drop at initial temperature sufficiently higher that the boiling point of Na was observed to fragment into pieces under the condition of instantaneous contact temperature below the boiling point of Na. It is confirmed that the fragmentation is caused due to the thermal interactions between the molten Al and the Na entrapped into the drop. (author)

  6. Enhanced mobility of poly(3-hexylthiophene) transistors by spin-coating from high-boiling-point solvents

    DEFF Research Database (Denmark)

    Chang, J.F.; Sun, B.Q.; Breiby, Dag Werner

    2004-01-01

    chloroform are typically on the order of 0.01 cm(2)/(V s). Here we investigate a range of solvents with higher boiling points. We find that 1,2,4-trichlorobenzene with good solubility and a high boiling point significantly improves the field-effect mobilities up to 0.12 cm(2)/(V s) with on:off ratios of 10...

  7. Correlation between the solubility of aromatic hydrocarbons in water and micellar solutions, with their normal boiling points

    International Nuclear Information System (INIS)

    Almgren, M.; Grieser, F.; Powell, J.R.; Thomas, J.K.

    1979-01-01

    A linear correlation between the logarithm of the solubility in water of aromatic hydrocarbons and their normal boiling points is shown. Similarly, the logarithm of the distribution ratio of aromatic hydrocarbons in aqueous micellar solution is shown to be linearly related to the boiling points of the hydrocarbons. 2 figures, 2 tables

  8. The determination of the initial point of net vapor generation in flow subcooled boiling

    International Nuclear Information System (INIS)

    Yan Changqi; Sun Zhongning

    2000-01-01

    The experimental results for the initial point of net vapor generation in up-flow subcooled boiling in an internally-heated annulus are given. The characteristics of the initial point of net vapor generation and the problem on gamma ray attenuation measurement are discussed. The comparison between the data and a calculation model is given, it is showed that the data agree well with the model

  9. Estimating the physicochemical properties of polyhalogenated aromatic and aliphatic compounds using UPPER: part 1. Boiling point and melting point.

    Science.gov (United States)

    Admire, Brittany; Lian, Bo; Yalkowsky, Samuel H

    2015-01-01

    The UPPER (Unified Physicochemical Property Estimation Relationships) model uses enthalpic and entropic parameters to estimate 20 biologically relevant properties of organic compounds. The model has been validated by Lian and Yalkowsky on a data set of 700 hydrocarbons. The aim of this work is to expand the UPPER model to estimate the boiling and melting points of polyhalogenated compounds. In this work, 19 new group descriptors are defined and used to predict the transition temperatures of an additional 1288 compounds. The boiling points of 808 and the melting points of 742 polyhalogenated compounds are predicted with average absolute errors of 13.56 K and 25.85 K, respectively. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Prediction technique for minimum-heat-flux (MHF)- point condition of saturated pool boiling

    International Nuclear Information System (INIS)

    Nishio, Shigefumi

    1987-01-01

    The temperature-controlled hypothesis for the minimum-heat-flux (MHF)-point condition, in which the MHF-point temperature is regarded as the controlling factor and is expected to be independent of surface configuration and dimensions, is inductively investigated for saturated pool-boiling. In this paper such features of the MHF-point condition are experimentally proved first. Secondly, a correlation of the MHF-point temperature is developed for the effect of system pressure. Finally, a simple technique based on this correlation is presented to estimate the effects of surface configuration, dimensions and system pressure on the minimum heat flux. (author)

  11. Boiling Point

    Science.gov (United States)

    Jansen, Michael C.

    2002-01-01

    The author recounts his experiences he helped to investigate the accident which destroyed the Space Shuttle Challenger. The focus was on how he used novel approaches to investigate heat transfer in the shuttle's hydrogen tank, after an expert he sought for advice proved unhelpful.

  12. Visualization study for forced convection heat transfer of supercritical carbon dioxide near pseudo-boiling point

    International Nuclear Information System (INIS)

    Sakurai, K.; Ko, H.S.; Okamoto, K.; Madarame, H.

    2001-01-01

    For development of new reactor, supercritical water is expected to be used as coolant to improve thermal efficiency. However, the thermal characteristics of supercritical fluid is not revealed completely because its difficulty for experiment. Specific phenomena tend to occur near the pseudo-boiling point which is characterised by temperature corresponding to the saturation point in ordinary fluid. Around this point, the physic properties such as density, specific heat and thermal conductivity are drastically varying. Although there is no difference between gas and liquid phases in supercritical fluids, phenomena similar to boiling (with heat transfer deterioration) can be observed round the pseudo-boiling point. Experiments of heat transfer have been done for supercritical fluid in forced convective condition. However, these experiments were mainly realised inside stainless steel cylinder pipes, for which flow visualisation is difficult. Consequently, this work has been devoted to the development of method allowing the visualisation of supercritical flows. The experiment setup is composed of main loop and test section for the visualisation. Carbon dioxide is used as test fluid. Supercritical carbon dioxide flows upward in rectangular channel and heated by one-side wall to generate forced convection heat transfer. Through window at mid-height of the test section, shadowgraphy was applied to visualize density gradient distribution. The behavior of the density wave in the channel is visualized and examined through the variation of the heat transfer coefficient. (author)

  13. Forced convective boiling of water inside helically coiled tube. Characteristics of oscillation of dryout point

    International Nuclear Information System (INIS)

    Nagai, Niro; Sugiyama, Kenta; Takeuchi, Masanori; Yoshikawa, Shinji; Yamamoto, Fujio

    2006-01-01

    The helically coiled tube of heat exchanger is used for the evaporator of prototype fast breeder reactor 'Monju'. This paper aims at the grasp of two-phase flow phenomena of forced convective boiling of water inside helical coiled tube, especially focusing on oscillation phenomena of dryout point. A glass-made helically coiled tube was used to observe the inside water boiling behavior flowing upward, which was heated by high temperature oil outside the tube. This oil was also circulated through a glass made tank to provide the heat source for water evaporation. The criterion for oscillation of dryout point was found to be a function of inlet liquid velocity and hot oil temperature. The observation results suggest the mechanism of dryout point oscillation mainly consists of intensive nucleate boiling near the dryout point and evaporation of thin liquid film flowing along the helical tube. In addition, the oscillation characteristics were experimentally confirmed. As inlet liquid velocity increases, oscillation amplitude also increases but oscillation cycle does not change so much. As hot oil temperature increases, oscillation amplitude and cycle gradually decreases. (author)

  14. Point of net vapor generation and vapor void fraction in subcooled boiling

    International Nuclear Information System (INIS)

    Saha, P.; Zuber, N.

    1974-01-01

    An analysis is presented directed at predicting the point of net vapor generation and vapor void fraction in subcooled boiling. It is shown that the point of net vapor generation depends upon local conditions--thermal and fluid dynamic. Thus, at low mass flow rates the net vapor generation is determined by thermal conditions, whereas at high mass flow rates the phenomenon is hydrodynamically controlled. Simple criteria are derived which can be used to predict these local conditions for net vapor generation. These criteria are used to determine the vapor void fraction is subcooled boiling. Comparison between the results predicted by this analysis and experimental data presently available shows good agreement for wide range of operating conditions, fluids and geometries. (U.S.)

  15. On the critical temperature, normal boiling point, and vapor pressure of ionic liquids.

    Science.gov (United States)

    Rebelo, Luis P N; Canongia Lopes, José N; Esperança, José M S S; Filipe, Eduardo

    2005-04-07

    One-stage, reduced-pressure distillations at moderate temperature of 1-decyl- and 1-dodecyl-3-methylimidazolium bistriflilamide ([Ntf(2)](-)) ionic liquids (ILs) have been performed. These liquid-vapor equilibria can be understood in light of predictions for normal boiling points of ILs. The predictions are based on experimental surface tension and density data, which are used to estimate the critical points of several ILs and their corresponding normal boiling temperatures. In contrast to the situation found for relatively unstable ILs at high-temperature such as those containing [BF(4)](-) or [PF(6)](-) anions, [Ntf(2)](-)-based ILs constitute a promising class in which reliable, accurate vapor pressure measurements can in principle be performed. This property is paramount for assisting in the development and testing of accurate molecular models.

  16. Boiling points of halogenated aliphatic compounds: a quantitative structure-property relationship for prediction and validation.

    Science.gov (United States)

    Oberg, Tomas

    2004-01-01

    Halogenated aliphatic compounds have many technical uses, but substances within this group are also ubiquitous environmental pollutants that can affect the ozone layer and contribute to global warming. The establishment of quantitative structure-property relationships is of interest not only to fill in gaps in the available database but also to validate experimental data already acquired. The three-dimensional structures of 240 compounds were modeled with molecular mechanics prior to the generation of empirical descriptors. Two bilinear projection methods, principal component analysis (PCA) and partial-least-squares regression (PLSR), were used to identify outliers. PLSR was subsequently used to build a multivariate calibration model by extracting the latent variables that describe most of the covariation between the molecular structure and the boiling point. Boiling points were also estimated with an extension of the group contribution method of Stein and Brown.

  17. Application of the QSPR approach to the boiling points of azeotropes.

    Science.gov (United States)

    Katritzky, Alan R; Stoyanova-Slavova, Iva B; Tämm, Kaido; Tamm, Tarmo; Karelson, Mati

    2011-04-21

    CODESSA Pro derivative descriptors were calculated for a data set of 426 azeotropic mixtures by the centroid approximation and the weighted-contribution-factor approximation. The two approximations produced almost identical four-descriptor QSPR models relating the structural characteristic of the individual components of azeotropes to the azeotropic boiling points. These models were supported by internal and external validations. The descriptors contributing to the QSPR models are directly related to the three components of the enthalpy (heat) of vaporization.

  18. Synthesis of PVP-stabilized ruthenium colloids with low boiling point alcohols.

    Science.gov (United States)

    Zhang, Yuqing; Yu, Jiulong; Niu, Haijun; Liu, Hanfan

    2007-09-15

    A route to the preparation of poly(N-vinyl-2-pyrrolidone) (PVP)-stabilized ruthenium colloids by refluxing ruthenium(III) chloride in low boiling point alcohols was developed. Deep purple colloids with shuttle-like ruthenium particles were also synthesized. XPS measurement verified the nanoparticles were in the metallic state. The morphology of metal nanoparticles was characterized by UV-visible absorption spectrophotometry, TEM and XRD.

  19. Design of ultrasonically-activatable nanoparticles using low boiling point perfluorocarbons.

    Science.gov (United States)

    Sheeran, Paul S; Luois, Samantha H; Mullin, Lee B; Matsunaga, Terry O; Dayton, Paul A

    2012-04-01

    Recently, an interest has developed in designing biomaterials for medical ultrasonics that can provide the acoustic activity of microbubbles, but with improved stability in vivo and a smaller size distribution for extravascular interrogation. One proposed alternative is the phase-change contrast agent. Phase-change contrast agents (PCCAs) consist of perfluorocarbons (PFCs) that are initially in liquid form, but can then be vaporized with acoustic energy. Crucial parameters for PCCAs include their sensitivity to acoustic energy, their size distribution, and their stability, and this manuscript provides insight into the custom design of PCCAs for balancing these parameters. Specifically, the relationship between size, thermal stability and sensitivity to ultrasound as a function of PFC boiling point and ambient temperature is illustrated. Emulsion stability and sensitivity can be 'tuned' by mixing PFCs in the gaseous state prior to condensation. Novel observations illustrate that stable droplets can be generated from PFCs with extremely low boiling points, such as octafluoropropane (b.p. -36.7 °C), which can be vaporized with acoustic parameters lower than previously observed. Results demonstrate the potential for low boiling point PFCs as a useful new class of compounds for activatable agents, which can be tailored to the desired application. Copyright © 2012 Elsevier Ltd. All rights reserved.

  20. Prediction on dielectric strength and boiling point of gaseous molecules for replacement of SF6.

    Science.gov (United States)

    Yu, Xiaojuan; Hou, Hua; Wang, Baoshan

    2017-04-15

    Developing the environment-friendly insulation gases to replace sulfur hexafluoride (SF 6 ) has attracted considerable experimental and theoretical attentions but without success. A computational methodology was presented herein for prediction on dielectric strength and boiling point of arbitrary gaseous molecules in the purpose of molecular design and screening. New structure-activity relationship (SAR) models have been established by combining the density-dependent properties of the electrostatic potential surface, including surface area and the statistical variance of the surface potentials, with the molecular properties including polarizability, electronegativity, and hardness. All the descriptors in the SAR models were calculated using density functional theory. The substitution effect of SF 6 by various functional groups was studied systematically. It was found that CF 3 is the most effective functional group to improve the dielectric strength due to the large surface area and polarizability. However, all the substitutes exhibit higher boiling points than SF 6 because the molecular hardness decreases. The balance between E r and T b could be achieved by minimizing the local polarity of the molecules. SF 5 CN and SF 5 CFO were found to be the potent candidates to replace SF 6 in view of their large dielectric strengths and low boiling points. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  1. Onset of a nucleate boiling and incipient point of net vapor generation in narrow channel

    International Nuclear Information System (INIS)

    Hong, G.

    2014-01-01

    An experimental study on onset of nucleate boiling (ONB) and incipient point of net vapor generation (IPNVG) in narrow rectangular channel was presented. Flow direction in the channel was vertical upward. The experimental results indicate that the classical correlations of ONB for conventional channels were not suitable for the present narrow rectangular channel. The wall superheat needed to initiate boiling is found to be higher for the same given values of heat and mass flux. The experimental results of IPNVG indicate that the heat flux, triggering net vapor generation in narrow rectangular channel, is litter lower than that calculated by correlations for conventional channels. The relative prediction error of qIPNVG by Griffith model, Saha model and Sun model ranges from -17.9% to +9.6%. A new correlation was developed to predict the ONB in narrow rectangular channel. The proposed correlation predictions agreed well with the experimental data. (author)

  2. Net vapor generation point in boiling flow of trichlorotrifluoroethane at high pressures

    Science.gov (United States)

    Dougall, R. S.; Lippert, T. E.

    1973-01-01

    The conditions at which the void in subcooled boiling starts to undergo a rapid increase were studied experimentally. The experiments were performed in a 12.7 x 9.5 mm rectangular channel. Heating was from a 3.2 mm wide strip embedded in one wall. The pressure ranged from 9.45 to 20.7 bar, mass velocity from 600 to 7000 kg/sq m sec, and subcooling from 16 to 67 C. Photographs were used to determine when detached bubbles first appeared in the bulk flow. Measurements of bubble layer thickness along the wall were also made. Results showed that the point of net vapor generation is close to the occurrence of fully-developed boiling.

  3. Experimental study on dryout point of flow boiling in bilaterally heated narrow annular channel

    International Nuclear Information System (INIS)

    Wu Geping; Wu Aimin; Tian Wenxi; Li Hao; Jia Dounan; Su Guanghui; Qiu Suizheng

    2003-01-01

    This paper presents and experimental study of the dryout point of flow boiling in bilaterally heated narrow annular channel with 1.5 mm and 2 mm annular gap, respectively. The range of pressure is 2.0-4.0 MPa and that of mass flux is 40-80 kg/m 2 ·s. Kutajilagi equation which is adaptable to tubes is used to deal with the experimental data and an empirical equation is obtained. Again this empirical equation is amended, then an empirical equation of the dryout point suitable for narrow annular channel is obtained

  4. Morphological control in polymer solar cells using low-boiling-point solvent additives

    Science.gov (United States)

    Mahadevapuram, Rakesh C.

    In the global search for clean, renewable energy sources, organic photovoltaics (OPVs) have recently been given much attention. Popular modern-day OPVs are made from solution-processible, carbon-based polymers (e.g. the model poly(3-hexylthiophene) that are intimately blended with fullerene derivatives (e.g. [6,6]-phenyl-C71-butyric acid methyl ester) to form what is known as the dispersed bulk-heterojunction (BHJ). This BHJ architecture has produced some of the most efficient OPVs to date, with reports closing in on 10% power conversion efficiency. To push efficiencies further into double digits, many groups have identified the BHJ nanomorphology---that is, the phase separations and grain sizes within the polymer: fullerene composite---as a key aspect in need of control and improvement. As a result, many methods, including thermal annealing, slow-drying (solvent) annealing, vapor annealing, and solvent additives, have been developed and studied to promote BHJ self-organization. Processing organic photovoltaic (OPV) blend solutions with high-boiling-point solvent additives has recently been used for morphological control in BHJ OPV cells. Here we show that even low-boiling-point solvents can be effective additives. When P3HT:PCBM OPV cells were processed with a low-boiling-point solvent tetrahydrafuran as an additive in parent solvent o-dichlorobenzene, charge extraction increased leading to fill factors as high as 69.5%, without low work-function cathodes, electrode buffer layers or thermal treatment. This was attributed to PCBM demixing from P3HT domains and better vertical phase separation, as indicated by photoluminescence lifetimes, hole mobilities, and shunt leakage currents. Dependence on solvent parameters and applicability beyond P3HT system was also investigated.

  5. A QSPR STUDY OF NORMAL BOILING POINT OF ORGANIC COMPOUNDS (ALIPHATIC ALKANES USING MOLECULAR DESCRIPTORS

    Directory of Open Access Journals (Sweden)

    B. Souyei

    2013-12-01

    Full Text Available A quantitative structure–property relationship (QSPR study is carried out to develop correlations that relate the molecular structures of organic compounds (Aliphatic Alkanes to their normal boiling point (NBP and two correlations were proposed for constitutionals and connectivity indices Models. The correlations are simple in application with good accuracy, which provide an easy, direct and relatively accurate way to calculate NBP. Such calculation gives us a model that gives results in remarkable correlations with the descriptors of blokes constitutionals (CON, and connectivity indices (CI (R2 = 0.950, δ = 0.766 (R2 = 0.969, δ = 0.782 respectively.

  6. Liquid infiltration through the boiling-point isotherm in a desiccating fractured rock matrix

    International Nuclear Information System (INIS)

    Phillips, O.M.

    1994-01-01

    Over a long time interval, the integrity of the radioactive waste repository proposed at Yucca Mountain may be compromised by corrosion accelerated by intermittent wetting which could occur by episodic infiltration of meteoric water from above through the fracture network. A simple two-dimensional model is constructed for the infiltration of liquid water down a fracture in a permeable rock matrix, beyond the boiling-point isotherm. The water may derive from episodic infiltration or from the condensation of steam above a desiccating region. Boiling of the water in the fracture is maintained by heat transfer from a surrounding superheated matrix blocks. There are two intrinsic length scales in this situation, (1): l s = ρ l q o L/(k m β) which is such that the total heat flow over this lateral distance balances that needed for evaporation of the liquid water infiltration, and (2): The thermal diffusion distance l θ = (k m t) 1/2 which increases with time after the onset of infiltration. The primary results are: (a) for two-dimensional infiltration down an isolated fracture or fault, the depth of penetration below the (undisturbed) boiling point isotherm is given by 1/2 π 1/2 (l s l θ ) 1/2 , and so increases as t 1/4 . Immediately following the onset of infiltration, penetration is rapid, but quickly slows. This behavior continues until l θ (and D) become comparable with l s . (b) With continuing infiltration down an isolated fracture or cluster of fractures, when l θ >> l s the temperature distribution becomes steady and the penetration distance stabilizes at a value proportional to l s . (c) Effects such as three-dimensionality of the liquid flow paths and flow rates, matrix infiltration, etc., appear to reduce the penetration distance

  7. Generalized syntheses of nanocrystal-graphene hybrids in high-boiling-point organic solvents.

    Science.gov (United States)

    Pang, Danny Wei-Ping; Yuan, Fang-Wei; Chang, Yan-Cheng; Li, Guo-An; Tuan, Hsing-Yu

    2012-08-07

    Nanocrystal-graphene have been proposed as a new kind of promising hybrid for a wide range of application areas including catalysts, electronics, sensors, biomedicine, and energy storage, etc. Although a variety of methods have been developed for the preparation of hybrids, a facile and general synthetic approach is still highly required. In this study, nanocrystal-graphene hybrids were successfully synthesized in high-boiling-point organic solvents. Graphene oxide (GO) nanosheets were modified by oleylamine (OLA) to form a OLA-GO complex in order to be readily incorporated into hydrophobic synthesis. A rich library of highly crystalline nanocrystals, with types including noble metal, metal oxide, magnetic material and semiconductor were successfully grown on chemically converted graphene (CCG), which is simultaneously reduced from GO during the synthesis. High boiling-point solvents afford sufficient thermal energy to assure the high-quality crystalline nature of NCs, therefore the post-annealing process is obviated. Controlled experiments revealed that OLA-GO triggers heterogeneous nucleation and serves as excellent nuclei anchorage media. The protocol developed here brings one step closer to achieve "unity in diversity" on the preparation of nanocrystal-graphene hybrids.

  8. Third-order optical susceptibility in polythiophene thin films prepared by spin-coating from high-boiling-point solvents

    International Nuclear Information System (INIS)

    Kobayashi, Takashi; Shinke, Wataru; Nagase, Takashi; Murakami, Shuichi; Naito, Hiroyoshi

    2014-01-01

    We examined the enhancements in the third-order optical susceptibility (χ (3) ) of spin-coated thin films of poly(3-hexylthiophene) using an anhydrous solvent with a high boiling point. The χ (3) value was found to be enhanced as the boiling point of the solvent increased. In this study, the largest value of χ (3) was obtained for thin films that were spin-coated in an inert atmosphere using anhydrous dichlorobenzene and then was subsequently exposed to its vapor for 1 h. The maximum value of the imaginary part of χ (3) was determined to be 1.8 × 10 -9 esu, which is more than three times greater than that of thin films spin-coated in an ambient atmosphere using a solvent with a low boiling point, such as chloroform. - Highlights: • Enhancements in nonlinear optical properties of a conjugated polymer were examined. • Thin films were fabricated by spin-coating using a solvent with a high boiling point. • The third-order optical susceptibility increased with increasing boiling point. • An additional enhancement was obtained by the vapor-treatment technique. • These thin films were sufficiently homogeneous for use in nonlinear optical devices

  9. Full evaporation headspace gas chromatography for sensitive determination of high boiling point volatile organic compounds in low boiling matrices.

    Science.gov (United States)

    Mana Kialengila, Didi; Wolfs, Kris; Bugalama, John; Van Schepdael, Ann; Adams, Erwin

    2013-11-08

    Determination of volatile organic components (VOC's) is often done by static headspace gas chromatography as this technique is very robust and combines easy sample preparation with good selectivity and low detection limits. This technique is used nowadays in different applications which have in common that they have a dirty matrix which would be problematic in direct injection approaches. Headspace by nature favors the most volatile compounds, avoiding the less volatile to reach the injector and column. As a consequence, determination of a high boiling solvent in a lower boiling matrix becomes challenging. Determination of VOCs like: xylenes, cumene, N,N-dimethylformamide (DMF), dimethyl sulfoxide (DMSO), N,N-dimethylacetamide (DMA), N-methyl-2-pyrrolidone (NMP), 1,3-dimethyl-2-imidazolidinone (DMI), benzyl alcohol (BA) and anisole in water or water soluble products are an interesting example of the arising problems. In this work, a headspace variant called full evaporation technique is worked out and validated for the mentioned solvents. Detection limits below 0.1 μg/vial are reached with RSD values below 10%. Mean recovery values ranged from 92.5 to 110%. The optimized method was applied to determine residual DMSO in a water based cell culture and DMSO and DMA in tetracycline hydrochloride (a water soluble sample). Copyright © 2013 Elsevier B.V. All rights reserved.

  10. Investigation on Minimum Film Boiling Point of Highly Heated Vertical Metal Rod in Aqueous Surfactant Solution

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Chi Young; Kim, Jae Han [Pukyong Nat’l Univ., Busan (Korea, Republic of)

    2017-09-15

    In this study, experiments were conducted on the MFB(minimum film boiling) point of highly heated vertical metal rod quenched in aqueous surfactant solution at various temperature conditions. The aqueous Triton X-100 solution(100 wppm) and pure water were used as the liquid pool. Their temperatures ranged from 77 °C to 100 °C. A stainless steel vertical rod of initial center temperature of 500 °C was used as a test specimen. In both liquid pools, as the liquid temperature decreased, the time to reach the MFB point decreased with a parallel increase in the temperature and heat flux of the MFB point. However, over the whole present temperature range, in the aqueous Triton X-100 solution, the time to reach the MFB point was longer, while the temperature and heat flux of the MFB point were reduced when compared with pure water. Based on the present experimental data, this study proposed the empirical correlations to predict the MFB temperature of a high temperature vertical metal rod in pure water and in aqueous Triton X-100 solution.

  11. Prediction of boiling points of some organic compounds to be used in volume reduction of liquid radioactive wastes

    International Nuclear Information System (INIS)

    Helal, N.L.; Ezz el-Din, M.R.

    2004-01-01

    Boiling points determination may help in the evaporation process used to solidify high-level liquid wastes and to reduce the volume of wastes that require disposal. The problem that always encountered is how to choose an appropriate method to determine the boiling points of the liquid wastes which will be able to solve. We introduce this work with the aim to use mathematical descriptors and their applications in predicting boiling points essential for the evaporation process. This work was applied for diverse database of two sets of chemicals that may exist in radioactive wastes. The first set was 59 alcohols and amines (group a) and the second was 11 aniline compounds (group b). The results show that the used mathematical descriptors give a reasonable predictive model for the diverse sets of molecules

  12. Experimental study of vapor explosion of molten salt and low boiling point liquid

    International Nuclear Information System (INIS)

    Iida, Yoshihiro; Takashima, Takeo

    1987-01-01

    Fundamental study of vapor explosion using small drops of high temperature liquid and low boiling point liquid and a series of small-scale vapor explosion tests are carried out. A single or plural drops of molten LiNO 3 are dropped into ethyl alcohol and the temperature range of two liquids wherein the fragmentation occurs is examined. The propagation phenomenon of vapor explosion between two drops is photographed and the pressure trace is proved to be well consistent with the behavior of the vapor bubble regions. A small amount of molten Flinak and tin which are enclosed in a test tube is dropped into tapped water. The temperature effect of two liquids onto the occurrence of vapor explosion is investigated. Some considerations are made with respect to the upper and lower temperature limits of vapor explosion to occur. A qualitative modeling of vapor explosion mechanism is proposed and discussed. (author)

  13. Publicly available models to predict normal boiling point of organic compounds

    International Nuclear Information System (INIS)

    Oprisiu, Ioana; Marcou, Gilles; Horvath, Dragos; Brunel, Damien Bernard; Rivollet, Fabien; Varnek, Alexandre

    2013-01-01

    Quantitative structure–property models to predict the normal boiling point (T b ) of organic compounds were developed using non-linear ASNNs (associative neural networks) as well as multiple linear regression – ISIDA-MLR and SQS (stochastic QSAR sampler). Models were built on a diverse set of 2098 organic compounds with T b varying in the range of 185–491 K. In ISIDA-MLR and ASNN calculations, fragment descriptors were used, whereas fragment, FPTs (fuzzy pharmacophore triplets), and ChemAxon descriptors were employed in SQS models. Prediction quality of the models has been assessed in 5-fold cross validation. Obtained models were implemented in the on-line ISIDA predictor at (http://infochim.u-strasbg.fr/webserv/VSEngine.html)

  14. Prior-knowledge-based feedforward network simulation of true boiling point curve of crude oil.

    Science.gov (United States)

    Chen, C W; Chen, D Z

    2001-11-01

    Theoretical results and practical experience indicate that feedforward networks can approximate a wide class of functional relationships very well. This property is exploited in modeling chemical processes. Given finite and noisy training data, it is important to encode the prior knowledge in neural networks to improve the fit precision and the prediction ability of the model. In this paper, as to the three-layer feedforward networks and the monotonic constraint, the unconstrained method, Joerding's penalty function method, the interpolation method, and the constrained optimization method are analyzed first. Then two novel methods, the exponential weight method and the adaptive method, are proposed. These methods are applied in simulating the true boiling point curve of a crude oil with the condition of increasing monotonicity. The simulation experimental results show that the network models trained by the novel methods are good at approximating the actual process. Finally, all these methods are discussed and compared with each other.

  15. Thermoplastic fusion bonding using a pressure-assisted boiling point control system.

    Science.gov (United States)

    Park, Taehyun; Song, In-Hyouk; Park, Daniel S; You, Byoung Hee; Murphy, Michael C

    2012-08-21

    A novel thermoplastic fusion bonding method using a pressure-assisted boiling point (PABP) control system was developed to apply precise temperatures and pressures during bonding. Hot embossed polymethyl methacrylate (PMMA) components containing microchannels were sealed using the PABP system. Very low aspect ratio structures (AR = 1/100, 10 μm in depth and 1000 μm in width) were successfully sealed without collapse or deformation. The integrity and strength of the bonds on the sealed PMMA devices were evaluated using leakage and rupture tests; no leaks were detected and failure during the rupture tests occurred at pressures greater than 496 kPa. The PABP system was used to seal 3D shaped flexible PMMA devices successfully.

  16. A method for the solvent extraction of low-boiling-point plant volatiles.

    Science.gov (United States)

    Xu, Ning; Gruber, Margaret; Westcott, Neil; Soroka, Julie; Parkin, Isobel; Hegedus, Dwayne

    2005-01-01

    A new method has been developed for the extraction of volatiles from plant materials and tested on seedling tissue and mature leaves of Arabidopsis thaliana, pine needles and commercial mixtures of plant volatiles. Volatiles were extracted with n-pentane and then subjected to quick distillation at a moderate temperature. Under these conditions, compounds such as pigments, waxes and non-volatile compounds remained undistilled, while short-chain volatile compounds were distilled into a receiving flask using a high-efficiency condenser. Removal of the n-pentane and concentration of the volatiles in the receiving flask was carried out using a Vigreux column condenser prior to GC-MS. The method is ideal for the rapid extraction of low-boiling-point volatiles from small amounts of plant material, such as is required when conducting metabolic profiling or defining biological properties of volatile components from large numbers of mutant lines.

  17. Characterization of the TIP4P-Ew water model: vapor pressure and boiling point.

    Science.gov (United States)

    Horn, Hans W; Swope, William C; Pitera, Jed W

    2005-11-15

    The liquid-vapor-phase equilibrium properties of the previously developed TIP4P-Ew water model have been studied using thermodynamic integration free-energy simulation techniques in the temperature range of 274-400 K. We stress that free-energy results from simulations need to be corrected in order to be compared to the experiment. This is due to the fact that the thermodynamic end states accessible through simulations correspond to fictitious substances (classical rigid liquids and classical rigid ideal gases) while experiments operate on real substances (liquids and real gases, with quantum effects). After applying analytical corrections the vapor pressure curve obtained from simulated free-energy changes is in excellent agreement with the experimental vapor pressure curve. The boiling point of TIP4P-Ew water under ambient pressure is found to be at 370.3+/-1.9 K, about 7 K higher than the boiling point of TIP4P water (363.7+/-5.1 K; from simulations that employ finite range treatment of electrostatic and Lennard-Jones interactions). This is in contrast to the approximately +15 K by which the temperature of the density maximum and the melting temperature of TIP4P-Ew are shifted relative to TIP4P, indicating that the temperature range over which the liquid phase of TIP4P-Ew is stable is narrower than that of TIP4P and resembles more that of real water. The quality of the vapor pressure results highlights the success of TIP4P-Ew in describing the energetic and entropic aspects of intermolecular interactions in liquid water.

  18. Group vector space method for estimating enthalpy of vaporization of organic compounds at the normal boiling point.

    Science.gov (United States)

    Wenying, Wei; Jinyu, Han; Wen, Xu

    2004-01-01

    The specific position of a group in the molecule has been considered, and a group vector space method for estimating enthalpy of vaporization at the normal boiling point of organic compounds has been developed. Expression for enthalpy of vaporization Delta(vap)H(T(b)) has been established and numerical values of relative group parameters obtained. The average percent deviation of estimation of Delta(vap)H(T(b)) is 1.16, which show that the present method demonstrates significant improvement in applicability to predict the enthalpy of vaporization at the normal boiling point, compared the conventional group methods.

  19. Effect of feedstock end boiling point on product sulphur during ultra deep diesel hydrodesulphurization

    Energy Technology Data Exchange (ETDEWEB)

    Stratiev, D.; Ivanov, A.; Jelyaskova, M. [Lukoil Neftochim Bourgas AD, Bourgas (Bulgaria)

    2004-12-01

    An investigation was carried out to test the feasibility of producing 50 and 10 ppm sulphur diesel in a conventional hydrotreating unit operating at low pressure conditions by varying the feedstock end boiling point. Middle distillate fractions distilled from a mixture of Ural crude oil, reduced crude, vacuum gas oil, naphtha and low sulphur crude oils with 95% vol. points of 274, 359, 343, 333, and 322 C (ASTM D-86 method) and sulphur contents of 0.36, 0.63, 0.99, 0.57, and 0.47%, respectively, were hydrotreated using the Akzo Nobel Stars family Co-Mo KF-757 catalyst in a trickle bed pilot plant at following conditions: reactor inlet temperature range of 320-360 C; liquid hourly space velocity (LHSV) range of 1-2 h{sup -1}; total reactor pressure of 3.5 MPa; treating gas: feedstock ratio of 250 Nm{sup 3}/m{sup 3}. It was found that the determinant factor for the attainment of ultra low sulphur levels during middle distillate hydrodesulphurization was not the total sulphur content in the feed but the content of the material boiling above 340 C (according to TBP). For all LHSVs and reactor inlet temperatures studied the product sulphur dependence on the feed 340 C+ fraction content was approximated by second order power law. The specification of 50 ppm sulphur was achieved with all studied feedstocks. However the 10ppm sulphur limit could be met only by feedstocks with 95% vol. points below 333 C, which is accompanied by about 10% reduction of the diesel potential. The hydrotreatment tests on a blend 80% straight run gas oil (ASTM D-86 95% vol. of 274 C)/20%FCC LCO (ASTM D-86 95% vol. of 284 C) showed product sulphur levels which were not higher than those obtained by hydrotreatment of the straight run gas oil, indicating that undercutting the FCC LCO gives the refiner the opportunity to increase the potential for the production of 10 ppm sulphur diesel at the conditions of the conventional hydrotreating unit operating at low pressure. The product cetane index was

  20. Process of extracting oil from stones and sands. [heating below cracking temperature and above boiling point of oil

    Energy Technology Data Exchange (ETDEWEB)

    Bergfeld, K

    1935-03-09

    A process of extracting oil from stones or sands bearing oils is characterized by the stones and sands being heated in a suitable furnace to a temperature below that of cracking and preferably slightly higher than the boiling-point of the oils. The oily vapors are removed from the treating chamber by means of flushing gas.

  1. Use of high-boiling point organic solvents for pulping oil palm empty fruit bunches.

    Science.gov (United States)

    Rodríguez, Alejandro; Serrano, Luis; Moral, Ana; Pérez, Antonio; Jiménez, Luis

    2008-04-01

    Oil palm empty fruit bunches were used as an alternative raw material to obtain cellulosic pulp. Pulping was done by using high-boiling point organic solvents of decreased polluting power relative to classical (Kraft, sulphite) solvents but affording operation at similar pressure levels. The holocellulose, alpha-cellulose and lignin contents of oil palm empty fruit bunches (viz. 66.97%, 47.91% and 24.45%, respectively) are similar to those of some woody raw materials such as pine and eucalyptus, and various non-wood materials including olive tree prunings, wheat straw and sunflower stalks. Pulping tests were conducted by using ethyleneglycol, diethyleneglycol, ethanolamine and diethanolamine under two different sets of operating conditions, namely: (a) a 70% solvent concentration, 170 degrees C and 90 min; and (b) 80% solvent, 180 degrees C and 150 min. The solid/liquid ratio was six in both cases. The amine solvents were found to provide pulp with better properties than did the glycol solvents. Ethanolamine pulp exhibited the best viscosity and drainage index (viz. 636 mL/g and 17 degrees SR, respectively), and paper made from it the best breaking length (1709 m), stretch (1.95%), burst index (0.98 kN/g) and tear index (0.33 mNm(2)/g). Operating costs can be reduced by using milder conditions, which provide similar results. In any case, the amines are to be preferred to the glycols as solvents for this purpose.

  2. Improving a variation of the DSC technique for measuring the boiling points of pure compounds at low pressures

    International Nuclear Information System (INIS)

    Troni, Kelly L.; Damaceno, Daniela S.; Ceriani, Roberta

    2016-01-01

    Highlights: • Improvement of a variation of the DSC technique for boiling points at low pressures. • Use of a ballpoint pen ball over the pinhole of the DSC crucible. • Effects of configuration variables of the DSC technique accounted by factorial design. • An optimized region was obtained and tested for selected compounds. - Abstract: This study aims to improve a variation of the differential scanning calorimetry (DSC) technique for measuring boiling points of pure compounds at low pressures. Using a well-known n-paraffin (n-hexadecane), experimental boiling points at a pressure of 3.47 kPa with u(P) = 0.07 kPa were obtained by using a variation of the DSC technique, which consists of placing samples inside hermetically sealed aluminum crucibles, with a pinhole (diameter of 0.8 mm) made on the lid and a tungsten carbide ball with a diameter of 1.0 mm over it. Experiments were configured at nine different combinations of heating rates (K·min"−"1) and sample sizes (mg) following a full factorial design (2"2 trials plus a star configuration and three central points). Individual and combined effects of these two independent variables on the difference between experimental and estimated boiling points (NIST Thermo Data Engine v. 5.0 – Aspen Plus v. 8.4) were investigated. The results obtained in this work reveal that although both factors affect individually the accuracy of this variation of the DSC technique, the effect of heating rate is the most important. An optimized region of combinations of heating rate and sample size for determining boiling points of pure compounds at low pressures was obtained using the response-surface methodology (RSM). Within this optimized region, a selected condition, combining a heating rate of 24.52 K·min"−"1 and a sample size of (4.6 ± 0.5) mg, was tested for six different compounds (92.094–302.37 g mol"−"1) comprising four fatty compounds (tributyrin, monocaprylin, octanoic acid and 1-octadecanol), glycerol and n

  3. THE DEVELOPMENT OF THE CALCULATION MODEL FOR THE ESTIMATION OF THE BOILING POINT OF THE ­POLYMER-SOLVENT MIXTURES

    Directory of Open Access Journals (Sweden)

    Matseevich Andrey Vyacheslavovich

    2018-03-01

    Full Text Available Subject of the study: one of the most promising areas in the field of polymer physics is the development of the calculation models allowing to quantify the properties of polymers. This work provides the calculation model for the quantitative assessment of the boiling point of solutions of polymer in the organic solvent. The model is based on the chemical structure of polymer and solvent. For the components the Hildebrand solubility parameter, the latent heat of vaporization and the boiling point of the solvent are calculated. Objectives: to generate the equation connecting the boiling point of polymer solution in the chosen solvent with the boiling point of the pure solvent, the molecular weights of the repeating unit of polymer and the molecule of solvent, the weight fraction of polymer in solution, the Hildebrand solubility parameter and the molar volume of the repeating unit of polymer. Materials and methods: the Hildebrand solubility parameter of solutions and polymers and also the van der Waals volume were calculated using the method of A.A. Askadsky; the enthalpy of vaporization of the solvent at the boiling point was expressed through the Hildebrand solubility parameter. The dependence of the enthalpy of vaporization from the temperature was taken into consideration. The computerization of the method was implemented, according to which all calculations are performed automatically after entering the information on the chemical structure of polymer and solvent into the computer. Results: the equation connecting the ebulliometric constant of the low concentration polymer solution with the boiling point of the solvent, the molar volume of the solvent and the Hildebrand parameter was generated. The results of the analysis were checked with regard to the system of polystyrene/toluene; the possibility of practical application of the offered method was shown. Conclusions: the method presented in this article allows to predict the ebulliometric

  4. Boiling point determination using adiabatic Gibbs ensemble Monte Carlo simulations: application to metals described by embedded-atom potentials.

    Science.gov (United States)

    Gelb, Lev D; Chakraborty, Somendra Nath

    2011-12-14

    The normal boiling points are obtained for a series of metals as described by the "quantum-corrected Sutton Chen" (qSC) potentials [S.-N. Luo, T. J. Ahrens, T. Çağın, A. Strachan, W. A. Goddard III, and D. C. Swift, Phys. Rev. B 68, 134206 (2003)]. Instead of conventional Monte Carlo simulations in an isothermal or expanded ensemble, simulations were done in the constant-NPH adabatic variant of the Gibbs ensemble technique as proposed by Kristóf and Liszi [Chem. Phys. Lett. 261, 620 (1996)]. This simulation technique is shown to be a precise tool for direct calculation of boiling temperatures in high-boiling fluids, with results that are almost completely insensitive to system size or other arbitrary parameters as long as the potential truncation is handled correctly. Results obtained were validated using conventional NVT-Gibbs ensemble Monte Carlo simulations. The qSC predictions for boiling temperatures are found to be reasonably accurate, but substantially underestimate the enthalpies of vaporization in all cases. This appears to be largely due to the systematic overestimation of dimer binding energies by this family of potentials, which leads to an unsatisfactory description of the vapor phase. © 2011 American Institute of Physics

  5. Development of septum-free injector for gas chromatography and its application to the samples with a high boiling point.

    Science.gov (United States)

    Ito, Hiroshi; Hayakawa, Kazuichi; Yamamoto, Atsushi; Murase, Atsushi; Hayakawa, Kazumi; Kuno, Minoru; Inoue, Yoshinori

    2006-11-03

    A novel apparatus with a simple structure has been developed for introducing samples into the vaporizing chamber of a gas chromatograph. It requires no septum due to the gas sealing structure over the carrier gas supply line. The septum-free injector made it possible to use injection port temperatures as high as 450 degrees C. Repetitive injection of samples with boiling points below 300 degrees C resulted in peak areas with relative standard deviations between 1.25 and 3.28% (n=5) and good linearity (r(2)>0.9942) for the calibration curve. In the analysis of polycyclic aromatic hydrocarbons and a base oil, the peak areas of components with high boiling points increased as the injection port temperature was increased to 450 degrees C.

  6. Measurement of total acid number (TAN) and TAN boiling point distribution in petroleum products by electrospray ionization mass spectrometry.

    Science.gov (United States)

    Qian, Kuangnan; Edwards, Kathleen E; Dechert, Gary J; Jaffe, Stephen B; Green, Larry A; Olmstead, William N

    2008-02-01

    We report a new method for rapid measurement of total acid number (TAN) and TAN boiling point (BP) distribution for petroleum crude and products. The technology is based on negative ion electrospray ionization mass spectrometry (ESI-MS) for selective ionization of petroleum acid and quantification of acid structures and molecular weight distributions. A chip-based nanoelectrospray system enables microscale (boiling point distributions of TAN values can be calculated from the composition. The rapid measurement of TAN BP distributions by ESI is demonstrated for a series of high-TAN crudes and distillation cuts. TAN values determined by the technique agree well with those by the titration method. The distributed properties compare favorably with those measured by distillation and measurement of TAN of corresponding cuts.

  7. Comparison of carbon monoxide levels during heating of ice and water to boiling point with a camping stove.

    Science.gov (United States)

    Leigh-Smith, Simon; Watt, Ian; McFadyen, Angus; Grant, Stan

    2004-01-01

    To determine whether using a camping stove to bring a pan of ice to boiling point produces higher carbon monoxide (CO) concentration than would bringing a pan of water to boiling point. The hypothesis was that ice would cause greater CO concentration because of its greater flame-cooling effect and, consequently, more incomplete combustion. This was a randomized, prospective observational study. After an initial pilot study, CO concentration was monitored during 10 trials for each of ice and water. A partially ventilated 200-L cardboard box model was developed and then used inside a chamber at -6 degrees C. Ice temperature and volume, water temperature and volume, pan size, and flame characteristics were all standardized. Temperature of the heated medium was monitored to determine time to boiling point. Carbon monoxide concentration was monitored every 30 seconds for the first 3 minutes, then every minute until the end of each 10-minute trial. There was no significant difference (P > .05) in CO production levels between ice and water. Each achieved a similar mean plateau level of approximately 400 ppm CO concentration with a similar rate of rise. However, significantly higher (P = .014) CO concentration occurred at 4 and 5 minutes when the flame underwent a yellow flare; this occurred only on 3 occasions when ice was the medium. There were no significant differences for CO production between bringing a pan of ice or water to boiling point. In a small number of ice trials, the presence of a yellow flame resulted in high CO concentration. Yellow flares might occur more often with ice or snow melting, but this has not been proven.

  8. Determination of the boiling-point distribution by simulated distillation from n-pentane through n-tetratetracontane in 70 to 80 seconds.

    Science.gov (United States)

    Lubkowitz, Joaquin A; Meneghini, Roberto I

    2002-01-01

    This work presents the carrying out of boiling-point distributions by simulated distillation with direct-column heating rather than oven-column heating. Column-heating rates of 300 degrees C/min are obtained yielding retention times of 73 s for n-tetratetracontane. The calibration curves of the retention time versus the boiling point, in the range of n-pentane to n-tetratetracontane, are identical to those obtained by slower oven-heating rates. The boiling-point distribution of the reference gas oil is compared with that obtained with column oven heating at rates of 15 to 40 degrees C/min. The results show boiling-point distribution values nearly the same (1-2 degrees F) as those obtained with oven column heating from the initial boiling point to 80% distilled off. Slightly higher differences are obtained (3-4 degrees F) for the 80% distillation to final boiling-point interval. Nonetheless, allowed consensus differences are never exceeded. Precision of the boiling-point distributions (expressed as standard deviations) are 0.1-0.3% for the data obtained in the direct column-heating mode.

  9. A Closer Look at Trends in Boiling Points of Hydrides: Using an Inquiry-Based Approach to Teach Intermolecular Forces of Attraction

    Science.gov (United States)

    Glazier, Samantha; Marano, Nadia; Eisen, Laura

    2010-01-01

    We describe how we use boiling-point trends of group IV-VII hydrides to introduce intermolecular forces in our first-year general chemistry classes. Starting with the idea that molecules in the liquid state are held together by some kind of force that must be overcome for boiling to take place, students use data analysis and critical reasoning to…

  10. Does pan diameter influence carbon monoxide levels during heating of water to boiling point with a camping stove?

    Science.gov (United States)

    Leigh-Smith, Simon; Stevenson, Richard; Watt, Martin; Watt, Ian; McFadyen, Angus; Grant, Stan

    2004-01-01

    To determine whether pan diameter influences carbon monoxide (CO) concentration during heating of water to boiling point with a camping stove. The hypothesis was that increasing pan diameter increases CO concentration because of greater flame dispersal and a larger flame. This was a randomized, prospective study. A Coleman Dual Fuel 533 stove was used to heat pans of water to boiling point, with CO concentration monitored every 30 seconds for 5 minutes. The stove was inside a partially ventilated 200-L cardboard box model that was inside an environmental chamber at -6 degrees C. Water temperature, water volume, and flame characteristics were all standardized. Ten trials were performed for each of 2 pan diameters (base diameters of 165 mm [small] and 220 mm [large]). There was a significant difference (P = .002) between the pans for CO levels at each measurement interval from 60 seconds onward. These differences were markedly larger after 90 seconds, with a mean difference of 185 ppm (95% CI 115, 276 ppm) for all the results from 120 seconds onwards. This study has shown that there is significantly higher CO production with a large-diameter pan compared with a small-diameter pan. These findings were evident by using a camping stove to heat water to boiling point when a maximum blue flame was present throughout. Thus, in enclosed environments it is recommended that small-diameter pans be used in an attempt to prevent high CO levels.

  11. Gas chromatographic simulated distillation-mass spectrometry for the determination of the boiling point distributions of crude oils

    Science.gov (United States)

    Roussis; Fitzgerald

    2000-04-01

    The coupling of gas chromatographic simulated distillation with mass spectrometry for the determination of the distillation profiles of crude oils is reported. The method provides the boiling point distributions of both weight and volume percent amounts. The weight percent distribution is obtained from the measured total ion current signal. The total ion current signal is converted to weight percent amount by calibration with a reference crude oil of a known distillation profile. Knowledge of the chemical composition of the crude oil across the boiling range permits the determination of the volume percent distribution. The long-term repeatability is equivalent to or better than the short-term repeatability of the currently available American Society for Testing and Materials (ASTM) gas chromatographic method for simulated distillation. Results obtained by the mass spectrometric method are in very good agreement with results obtained by conventional methods of physical distillation. The compositional information supplied by the method can be used to extensively characterize crude oils.

  12. [Intersection point rule for the retention value with mobile phase composition and boiling point of the homologues and chlorobenzenes in soil leaching column chromatography].

    Science.gov (United States)

    Xu, F; Liang, X; Lin, B; Su, F

    1999-03-01

    Based on the linear retention equation of the logarithm of the capacity factor (logk') vs. the methanol volume fraction (psi) of aqueous binary mobile phase in soil leaching column chromatography, the intersection point rule for the logk' of homologues and weak polar chlorobenzenes, with psi, as well as with boiling point, has been derived due to existence of the similar interactions among solutes of the same series, stationary phase (soil) and eluent (methanol-water). These rules were testified by experimental data of homologues (n-alkylbenzenes, methylbenzenes) and weak polar chlorobenzenes.

  13. Dynamic analysis of multiple nuclear-coupled boiling channels based on a multi-point reactor model

    International Nuclear Information System (INIS)

    Lee, J.D.; Pan Chin

    2005-01-01

    This work investigates the non-linear dynamics and stabilities of a multiple nuclear-coupled boiling channel system based on a multi-point reactor model using the Galerkin nodal approximation method. The nodal approximation method for the multiple boiling channels developed by Lee and Pan [Lee, J.D., Pan, C., 1999. Dynamics of multiple parallel boiling channel systems with forced flows. Nucl. Eng. Des. 192, 31-44] is extended to address the two-phase flow dynamics in the present study. The multi-point reactor model, modified from Uehiro et al. [Uehiro, M., Rao, Y.F., Fukuda, K., 1996. Linear stability analysis on instabilities of in-phase and out-of-phase modes in boiling water reactors. J. Nucl. Sci. Technol. 33, 628-635], is employed to study a multiple-channel system with unequal steady-state neutron density distribution. Stability maps, non-linear dynamics and effects of major parameters on the multiple nuclear-coupled boiling channel system subject to a constant total flow rate are examined. This study finds that the void-reactivity feedback and neutron interactions among subcores are coupled and their competing effects may influence the system stability under different operating conditions. For those cases with strong neutron interaction conditions, by strengthening the void-reactivity feedback, the nuclear-coupled effect on the non-linear dynamics may induce two unstable oscillation modes, the supercritical Hopf bifurcation and the subcritical Hopf bifurcation. Moreover, for those cases with weak neutron interactions, by quadrupling the void-reactivity feedback coefficient, period-doubling and complex chaotic oscillations may appear in a three-channel system under some specific operating conditions. A unique type of complex chaotic attractor may evolve from the Rossler attractor because of the coupled channel-to-channel thermal-hydraulic and subcore-to-subcore neutron interactions. Such a complex chaotic attractor has the imbedding dimension of 5 and the

  14. Atom-type-based AI topological descriptors: application in structure-boiling point correlations of oxo organic compounds.

    Science.gov (United States)

    Ren, Biye

    2003-01-01

    Structure-boiling point relationships are studied for a series of oxo organic compounds by means of multiple linear regression (MLR) analysis. Excellent MLR models based on the recently introduced Xu index and the atom-type-based AI indices are obtained for the two subsets containing respectively 77 ethers and 107 carbonyl compounds and a combined set of 184 oxo compounds. The best models are tested using the leave-one-out cross-validation and an external test set, respectively. The MLR model produces a correlation coefficient of r = 0.9977 and a standard error of s = 3.99 degrees C for the training set of 184 compounds, and r(cv) = 0.9974 and s(cv) = 4.16 degrees C for the cross-validation set, and r(pred) = 0.9949 and s(pred) = 4.38 degrees C for the prediction set of 21 compounds. For the two subsets containing respectively 77 ethers and 107 carbonyl compounds, the quality of the models is further improved. The standard errors are reduced to 3.30 and 3.02 degrees C, respectively. Furthermore, the results obtained from this study indicate that the boiling points of the studied oxo compound dominantly depend on molecular size and also depend on individual atom types, especially oxygen heteroatoms in molecules due to strong polar interactions between molecules. These excellent structure-boiling point models not only provide profound insights into the role of structural features in a molecule but also illustrate the usefulness of these indices in QSPR/QSAR modeling of complex compounds.

  15. Annealing-free P3HT:PCBM-based organic solar cells via two halohydrocarbons additives with similar boiling points

    International Nuclear Information System (INIS)

    Bao, Xichang; Wang, Ting; Yang, Ailing; Yang, Chunpeng; Dou, Xiaowei; Chen, Weichao; Wang, Ning; Yang, Renqiang

    2014-01-01

    Highlights: • Two halohydrocarbons were selected as additives for polymer solar cells. • The additives can improve the photocurrent of photovoltaic devices. • Extensive characterization of the blends was done to explore the mechanism. -- Abstract: Efficient annealing-free inverted bulk heterojunction (BHJ) organic solar cells based on poly(3-hexylthiophene) (P3HT) and [6,6]-phenyl C 61 -butyric acid methyl ester (PCBM) (1:1, w/w) have been obtained using two easily accessible halohydrocarbons (1,6-dibromohexane (DBH) and 1-bromodecane (BD)) with the same boiling points as solvent additives. The devices treated with 2.5 wt% additives removed the grain boundary of the large PCBM-rich phase, resulting in more-uniform film morphology on the nanoscale. The more-uniform film morphology greatly improved the short circuit current density of the devices. Finally, PCEs of the devices processed with DBH and BD reached 3.81% and 3.68%, respectively. Both additives with almost the same boiling points had a similar impact on device performance, despite of different chemical structures with different polarities and other physical properties

  16. Highly diverse, massive organic data as explored by a composite QSPR strategy: an advanced study of boiling point.

    Science.gov (United States)

    Ivanova, A A; Ivanov, A A; Oliferenko, A A; Palyulin, V A; Zefirov, N S

    2005-06-01

    An improved strategy of quantitative structure-property relationship (QSPR) studies of diverse and inhomogeneous organic datasets has been proposed. A molecular connectivity term was successively corrected for different structural features encoded in fragmental descriptors. The so-called solvation index 1chis (a weighted Randic index) was used as a "leading" variable and standardized molecular fragments were employed as "corrective" class-specific variables. Performance of the new approach was illustrated by modelling a dataset of experimental normal boiling points of 833 organic compounds belonging to 20 structural classes. Firstly, separate QSPR models were derived for each class and for eight groups of structurally similar classes. Finally, a general model formed by combining all the classes together was derived (r2=0.957, s=12.9degreesC). The strategy outlined can find application in QSPR analyses of massive, highly diverse databases of organic compounds.

  17. High-yield exfoliation of tungsten disulphide nanosheets by rational mixing of low-boiling-point solvents

    Science.gov (United States)

    Sajedi-Moghaddam, Ali; Saievar-Iranizad, Esmaiel

    2018-01-01

    Developing high-throughput, reliable, and facile approaches for producing atomically thin sheets of transition metal dichalcogenides is of great importance to pave the way for their use in real applications. Here, we report a highly promising route for exfoliating two-dimensional tungsten disulphide sheets by using binary combination of low-boiling-point solvents. Experimental results show significant dependence of exfoliation yield on the type of solvents as well as relative volume fraction of each solvent. The highest yield was found for appropriate combination of isopropanol/water (20 vol% isopropanol and 80 vol% water) which is approximately 7 times higher than that in pure isopropanol and 4 times higher than that in pure water. The dramatic increase in exfoliation yield can be attributed to perfect match between the surface tension of tungsten disulphide and binary solvent system. Furthermore, solvent molecular size also has a profound impact on the exfoliation efficiency, due to the steric repulsion.

  18. New molecular descriptors based on local properties at the molecular surface and a boiling-point model derived from them.

    Science.gov (United States)

    Ehresmann, Bernd; de Groot, Marcel J; Alex, Alexander; Clark, Timothy

    2004-01-01

    New molecular descriptors based on statistical descriptions of the local ionization potential, local electron affinity, and the local polarizability at the surface of the molecule are proposed. The significance of these descriptors has been tested by calculating them for the Maybridge database in addition to our set of 26 descriptors reported previously. The new descriptors show little correlation with those already in use. Furthermore, the principal components of the extended set of descriptors for the Maybridge data show that especially the descriptors based on the local electron affinity extend the variance in our set of descriptors, which we have previously shown to be relevant to physical properties. The first nine principal components are shown to be most significant. As an example of the usefulness of the new descriptors, we have set up a QSPR model for boiling points using both the old and new descriptors.

  19. Feedwater line break accident analysis for SMART in the view point of minimum departure from nucleate boiling ratio

    International Nuclear Information System (INIS)

    Kim Soo Hyoung; Bae, Kyoo Hwan; Chung, Young Jong; Kim, Keung Koo

    2012-01-01

    KAERI and KEPCO consortium had performed standard design of SMART(System integrated Modular Advanced ReacTor) from 2009 to 2011 and obtained standard design approval in July 2012. To confirm the safety of SMART design, all of the safety related design basis events were analyzed. A feedwater line break (FLB) is a postulated accident and is a limiting accident for a decrease in the heat removal by the secondary system in the view point of the peak RCS pressure. It is well known that departure from nucleate boiling ratio (DNBR) increases with the increase of the system pressure for conventional nuclear power plants. But SMART has comparatively lower RCS flow rate, and there is a possibility to show different DNBR behavior depending on the system pressure. To confirm that SMART is safe in case of FLB accident, the Korean nuclear regulatory body required to perform the safety analysis in the view point of minimum DNBR (MDNBR) during the licensing review process for standard design approval (SDA) of SMART design. In this paper, the safety analysis results of the FLB accident for SMART in the view point of MDNBR is described

  20. Feedwater line break accident analysis for SMART in the view point of minimum departure from nucleate boiling ratio

    Energy Technology Data Exchange (ETDEWEB)

    Kim Soo Hyoung; Bae, Kyoo Hwan; Chung, Young Jong; Kim, Keung Koo [KAERI, Daejeon (Korea, Republic of)

    2012-10-15

    KAERI and KEPCO consortium had performed standard design of SMART(System integrated Modular Advanced ReacTor) from 2009 to 2011 and obtained standard design approval in July 2012. To confirm the safety of SMART design, all of the safety related design basis events were analyzed. A feedwater line break (FLB) is a postulated accident and is a limiting accident for a decrease in the heat removal by the secondary system in the view point of the peak RCS pressure. It is well known that departure from nucleate boiling ratio (DNBR) increases with the increase of the system pressure for conventional nuclear power plants. But SMART has comparatively lower RCS flow rate, and there is a possibility to show different DNBR behavior depending on the system pressure. To confirm that SMART is safe in case of FLB accident, the Korean nuclear regulatory body required to perform the safety analysis in the view point of minimum DNBR (MDNBR) during the licensing review process for standard design approval (SDA) of SMART design. In this paper, the safety analysis results of the FLB accident for SMART in the view point of MDNBR is described.

  1. RETRAN operational transient analysis of the Big Rock Point plant boiling water reactor

    International Nuclear Information System (INIS)

    Sawtelle, G.R.; Atchison, J.D.; Farman, R.F.; VandeWalle, D.J.; Bazydlo, H.G.

    1983-01-01

    Energy Incorporated used the RETRAN computer code to model and calculate nine Consumers Power Company Big Rock Point Nuclear Power Plant transients. RETRAN, a best-estimate, one-dimensional, homogeneous-flow thermal-equilibrium code, is applicable to FSAR Chapter 15 transients for Conditions 1 through IV. The BWR analyses were performed in accordance with USNRC Standard Review Plan criteria and in response to the USNRC Systematic Evaluation Program. The RETRAN Big Rock Point model was verified by comparison to plant startup test data. This paper discusses the unique modeling techniques used in RETRAN to model this steam-drum-type BWR. Transient analyses results are also presented

  2. Further Analysis of Boiling Points of Small Molecules, CH[subscript w]F[subscript x]Cl[subscript y]Br[subscript z

    Science.gov (United States)

    Beauchamp, Guy

    2005-01-01

    A study to present specific hypothesis that satisfactorily explain the boiling point of a number of molecules, CH[subscript w]F[subscript x]Cl[subscript y]Br[subscript z] having similar structure, and then analyze the model with the help of multiple linear regression (MLR), a data analysis tool. The MLR analysis was useful in selecting the…

  3. A low viscosity, low boiling point, clean solvent system for the rapid crystallisation of highly specular perovskite films

    Energy Technology Data Exchange (ETDEWEB)

    Noel, Nakita K.; Habisreutinger, Severin N.; Wenger, Bernard; Klug, Matthew T.; Hörantner, Maximilian T.; Johnston, Michael B.; Nicholas, Robin J.; Moore, David T.; Snaith, Henry J.

    2017-01-01

    Perovskite-based photovoltaics have, in recent years, become poised to revolutionise the solar industry. While there have been many approaches taken to the deposition of this material, one-step spin-coating remains the simplest and most widely used method in research laboratories. Although spin-coating is not recognised as the ideal manufacturing methodology, it represents a starting point from which more scalable deposition methods, such as slot-dye coating or ink-jet printing can be developed. Here, we introduce a new, low-boiling point, low viscosity solvent system that enables rapid, room temperature crystallisation of methylammonium lead triiodide perovskite films, without the use of strongly coordinating aprotic solvents. Through the use of this solvent, we produce dense, pinhole free films with uniform coverage, high specularity, and enhanced optoelectronic properties. We fabricate devices and achieve stabilised power conversion efficiencies of over 18% for films which have been annealed at 100 degrees C, and over 17% for films which have been dried under vacuum and have undergone no thermal processing. This deposition technique allows uniform coating on substrate areas of up to 125 cm2, showing tremendous promise for the fabrication of large area, high efficiency, solution processed devices, and represents a critical step towards industrial upscaling and large area printing of perovskite solar cells.

  4. Determination of boiling point of petrochemicals by gas chromatography-mass spectrometry and multivariate regression analysis of structural activity relationship.

    Science.gov (United States)

    Fakayode, Sayo O; Mitchell, Breanna S; Pollard, David A

    2014-08-01

    Accurate understanding of analyte boiling points (BP) is of critical importance in gas chromatographic (GC) separation and crude oil refinery operation in petrochemical industries. This study reported the first combined use of GC separation and partial-least-square (PLS1) multivariate regression analysis of petrochemical structural activity relationship (SAR) for accurate BP determination of two commercially available (D3710 and MA VHP) calibration gas mix samples. The results of the BP determination using PLS1 multivariate regression were further compared with the results of traditional simulated distillation method of BP determination. The developed PLS1 regression was able to correctly predict analytes BP in D3710 and MA VHP calibration gas mix samples, with a root-mean-square-%-relative-error (RMS%RE) of 6.4%, and 10.8% respectively. In contrast, the overall RMS%RE of 32.9% and 40.4%, respectively obtained for BP determination in D3710 and MA VHP using a traditional simulated distillation method were approximately four times larger than the corresponding RMS%RE of BP prediction using MRA, demonstrating the better predictive ability of MRA. The reported method is rapid, robust, and promising, and can be potentially used routinely for fast analysis, pattern recognition, and analyte BP determination in petrochemical industries. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. On Use of the Variable Zagreb vM2 Index in QSPR: Boiling Points of Benzenoid Hydrocarbons

    Directory of Open Access Journals (Sweden)

    Albin Jurić

    2004-12-01

    Full Text Available The variable Zagreb vM2 index is introduced and applied to the structure-boiling point modeling of benzenoid hydrocarbons. The linear model obtained (thestandard error of estimate for the fit model Sfit=6.8 oC is much better than thecorresponding model based on the original Zagreb M2 index (Sfit=16.4 oC. Surprisingly,the model based on the variable vertex-connectivity index (Sfit=6.8 oC is comparable tothe model based on vM2 index. A comparative study with models based on the vertex-connectivity index, edge-connectivity index and several distance indices favours modelsbased on the variable Zagreb vM2 index and variable vertex-connectivity index.However, the multivariate regression with two-, three- and four-descriptors givesimproved models, the best being the model with four-descriptors (but vM2 index is notamong them with Sfit=5 oC, though the four-descriptor model contaning vM2 index isonly slightly inferior (Sfit=5.3 oC.

  6. An evaluation of the sonoporation potential of low-boiling point phase-change ultrasound contrast agents in vitro.

    Science.gov (United States)

    Fix, Samantha M; Novell, Anthony; Yun, Yeoheung; Dayton, Paul A; Arena, Christopher B

    2017-01-01

    Phase-change ultrasound contrast agents (PCCAs) offer a solution to the inherent limitations associated with using microbubbles for sonoporation; they are characterized by prolonged circulation lifetimes, and their nanometer-scale sizes may allow for passive accumulation in solid tumors. As a first step towards the goal of extravascular cell permeabilization, we aim to characterize the sonoporation potential of a low-boiling point formulation of PCCAs in vitro. Parameters to induce acoustic droplet vaporization and subsequent microbubble cavitation were optimized in vitro using high-speed optical microscopy. Sonoporation of pancreatic cancer cells in suspension was then characterized at a range of pressures (125-600 kPa) and pulse lengths (5-50 cycles) using propidium iodide as an indicator molecule. We achieved sonoporation efficiencies ranging from 8 ± 1% to 36 ± 4% (percent of viable cells), as evidenced by flow cytometry. Increasing sonoporation efficiency trended with increasing pulse length and peak negative pressure. We conclude that PCCAs can be used to induce the sonoporation of cells in vitro, and our results warrant further investigation into the use of PCCAs as extravascular sonoporation agents in vivo.

  7. Map generation in unknown environments by AUKF-SLAM using line segment-type and point-type landmarks

    Science.gov (United States)

    Nishihta, Sho; Maeyama, Shoichi; Watanebe, Keigo

    2018-02-01

    Recently, autonomous mobile robots that collect information at disaster sites are being developed. Since it is difficult to obtain maps in advance in disaster sites, the robots being capable of autonomous movement under unknown environments are required. For this objective, the robots have to build maps, as well as the estimation of self-location. This is called a SLAM problem. In particular, AUKF-SLAM which uses corners in the environment as point-type landmarks has been developed as a solution method so far. However, when the robots move in an environment like a corridor consisting of few point-type features, the accuracy of self-location estimated by the landmark is decreased and it causes some distortions in the map. In this research, we propose AUKF-SLAM which uses walls in the environment as a line segment-type landmark. We demonstrate that the robot can generate maps in unknown environment by AUKF-SLAM, using line segment-type and point-type landmarks.

  8. Reorientational dynamics in molecular liquids as revealed by dynamic light scattering: from boiling point to glass transition temperature.

    Science.gov (United States)

    Schmidtke, B; Petzold, N; Kahlau, R; Rössler, E A

    2013-08-28

    We determine the reorientational correlation time τ of a series of molecular liquids by performing depolarized light scattering experiments (double monochromator, Fabry-Perot interferometry, and photon correlation spectroscopy). Correlation times in the range 10(-12) s-100 s are compiled, i.e., the full temperature interval between the boiling point and the glass transition temperature T(g) is covered. We focus on low-T(g) liquids for which the high-temperature limit τ ≅ 10(-12) s is easily accessed by standard spectroscopic equipment (up to 440 K). Regarding the temperature dependence three interpolation formulae of τ(T) with three parameters each are tested: (i) Vogel-Fulcher-Tammann equation, (ii) the approach recently discussed by Mauro et al. [Proc. Natl. Acad. Sci. U.S.A. 106, 19780 (2009)], and (iii) our approach decomposing the activation energy E(T) in a constant high temperature value E∞ and a "cooperative part" E(coop)(T) depending exponentially on temperature [Schmidtke et al., Phys. Rev. E 86, 041507 (2012)]. On the basis of the present data, approaches (i) and (ii) are insufficient as they do not provide the correct crossover to the high-temperature Arrhenius law clearly identified in the experimental data while approach (iii) reproduces the salient features of τ(T). It allows to discuss the temperature dependence of the liquid's dynamics in terms of a E(coop)(T)/E∞ vs. T/E∞ plot and suggests that E∞ controls the energy scale of the glass transition phenomenon.

  9. Boiling curve in high quality flow boiling

    International Nuclear Information System (INIS)

    Shiralkar, B.S.; Hein, R.A.; Yadigaroglu, G.

    1980-01-01

    The post dry-out heat transfer regime of the flow boiling curve was investigated experimentally for high pressure water at high qualities. The test section was a short round tube located downstream of a hot patch created by a temperature controlled segment of tubing. Results from the experiment showed that the distance from the dryout point has a significant effect on the downstream temperatures and there was no unique boiling curve. The heat transfer coefficients measured sufficiently downstream of the dryout point could be correlated using the Heineman correlation for superheated steam, indicating that the droplet deposition effects could be neglected in this region

  10. Study of thermal behavior of vitamin D3 by pyrolysis-GC-MS in combination with boiling point-retention time correlation.

    Science.gov (United States)

    Sun, Yu'an; Liu, Baoxia; Wang, Guoqing; Zhang, Rongjie; Xie, Bing

    2005-01-01

    The thermal behavior of vitamin D3 was studied based on pyrolysis-GC-MS technique. It was pyrolyzed at 600 degrees C, 750 degrees C, 900 degrees C, respectively. The pyrolysis product were separated With an HP-5 column and identified by the NIST mass spectral search program in combination with the correlation of boiling point and retention time (BP-RT). There are totally 50 components, including mono aromatics and polycyclic aromatic hydrocarbons (PAHs), were determined. It is shown that the contents of the PAHs are increasing with the increasing of the pyrolysis temperature. The contents of the determined components vary from 0.04% to 37.08%.

  11. Peak capacity, peak-capacity production rate, and boiling point resolution for temperature-programmed GC with very high programming rates

    Science.gov (United States)

    Grall; Leonard; Sacks

    2000-02-01

    Recent advances in column heating technology have made possible very fast linear temperature programming for high-speed gas chromatography. A fused-silica capillary column is contained in a tubular metal jacket, which is resistively heated by a precision power supply. With very rapid column heating, the rate of peak-capacity production is significantly enhanced, but the total peak capacity and the boiling-point resolution (minimum boiling-point difference required for the separation of two nonpolar compounds on a nonpolar column) are reduced relative to more conventional heating rates used with convection-oven instruments. As temperature-programming rates increase, elution temperatures also increase with the result that retention may become insignificant prior to elution. This results in inefficient utilization of the down-stream end of the column and causes a loss in the rate of peak-capacity production. The rate of peak-capacity production is increased by the use of shorter columns and higher carrier gas velocities. With high programming rates (100-600 degrees C/min), column lengths of 6-12 m and average linear carrier gas velocities in the 100-150 cm/s range are satisfactory. In this study, the rate of peak-capacity production, the total peak capacity, and the boiling point resolution are determined for C10-C28 n-alkanes using 6-18 m long columns, 50-200 cm/s average carrier gas velocities, and 60-600 degrees C/min programming rates. It was found that with a 6-meter-long, 0.25-mm i.d. column programmed at a rate of 600 degrees C/min, a maximum peak-capacity production rate of 6.1 peaks/s was obtained. A total peak capacity of about 75 peaks was produced in a 37-s long separation spanning a boiling-point range from n-C10 (174 degrees C) to n-C28 (432 degrees C).

  12. Micro distillation of crude oil to obtain TBP (True Boiling Points) curve; Micro destilacao de petroleo para obtencao da curva PEV (Ponto de Ebulicao Verdadeiro)

    Energy Technology Data Exchange (ETDEWEB)

    Marques, Maria de Lourdes S.P.; Mendes, Luana de Jesus [Fundacao Gorceix, Ouro Preto, MG (Brazil); Medina, Lilian Carmen [PETROBRAS S.A., Rio de Janeiro, RJ (Brazil)

    2008-07-01

    PETROBRAS and others petroleum companies adopt the ASTM norms as reference method for oil distillation, ASTM D2892 (2005) that uses columns with 14 to 18 theoretical plates and the ASTM D 5236 (2003) , that distills mixture of heavy hydrocarbons with boiling point over 150 deg C. The result of these two distillations is the TBP (True Boiling Point) curve that is the main tool to define the yield of oil derivatives, the 'royalties' payment, the oil price for commercialization and the logistic support of oil location or in new plants projects of distillation and optimization studies. This procedure has some limitations as the volume sample, at least 1L, and the time of distillation, 2 to 4 days. The objective of this work is to propose a new alternative to attain de PEV curve, developing a new methodology using micro scale distillation that uses a more efficient column than the conventional method. Graphics of both methods were created and the results between the conventional and the micro distillation received statistical treatment to prove the equivalence between them. (author)

  13. Improving efficiency and color purity of poly(9,9-dioctylfluorene) through addition of a high boiling-point solvent of 1-chloronaphthalene.

    Science.gov (United States)

    Liang, Junfei; Yu, Lei; Sen Zhao; Ying, Lei; Liu, Feng; Yang, Wei; Peng, Junbiao; Cao, Yong

    2016-07-15

    In this work, the β-phase of poly(9,9-dioctylfluorene) (PFO) was used as a probe to study the effects of the addition of a high boiling-point solvent of 1-chloronaphthalene on the nanostructures and electroluminescence of PFO films. Both absorption and photoluminescence spectra showed that the content of the β-phase in PFO film was obviously enhanced as a result of the addition of a small amount of 1-chloronaphthalene into the processing solvent of p-xylenes. Apparently rougher morphology associated with the effectively enhanced ordering of polymer chains across the entire film was observed for films processed from p-xylene solutions consisting of a certain amount of 1-chloronaphthalene, as revealed by atomic force microscopy and grazing incidence x-ray diffraction measurements. In addition to the effects on the nanostructures of films, of particular interest is that the performance and color purity of polymer light-emitting devices can be noticeably enhanced upon the addition of 1-chloronaphthalene. These observations highlight the importance of controlling the nanostructures of the emissive layer, and demonstrate that the addition of a low volume ratio of high boiling-point additive can be a promising strategy to attain high-performance polymer light-emitting diodes.

  14. Exfoliating and Dispersing Few-Layered Graphene in Low-Boiling-Point Organic Solvents towards Solution-Processed Optoelectronic Device Applications.

    Science.gov (United States)

    Zhang, Lu; Miao, Zhongshuo; Hao, Zhen; Liu, Jun

    2016-05-06

    With normal organic surfactants, graphene can only be dispersed in water and cannot be dispersed in low-boiling-point organic solvents, which hampers its application in solution-processed organic optoelectronic devices. Herein, we report the exfoliation of graphite into graphene in low-boiling-point organic solvents, for example, methanol and acetone, by using edge-carboxylated graphene quantum dots (ECGQD) as the surfactant. The great capability of ECGQD for graphene dispersion is due to its ultralarge π-conjugated unit that allows tight adhesion on the graphene surface through strong π-π interactions, its edge-carboxylated structure that diminishes the steric effects of the oxygen-containing functional groups on the basal plane of ECGQD, and its abundance of carboxylic acid groups for solubility. The graphene dispersion in methanol enables the application of graphene:ECGQD as a cathode interlayer in polymer solar cells (PSCs). Moreover, the PSC device performance of graphene:ECGQD is better than that of Ca, the state-of-the-art cathode interlayer material. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Revision of nucleated boiling mechanisms

    International Nuclear Information System (INIS)

    Converti, J.; Balino, J.L.

    1987-01-01

    The boiling occurrence plays an important role in the power reactors energy transfer. But still, there is not a final theory on the boiling mechanisms. This paper presents a critical analysis of the most important nucleated boiling models that appear in literature. The conflicting points are identified and experiments are proposed to clear them up. Some of these experiments have been performed at the Thermohydraulics laboratory (Bariloche Atomic Center). (Author)

  16. Below and above boiling point comparison of microwave irradiation and conductive heating for municipal sludge digestion under identical heating/cooling profiles.

    Science.gov (United States)

    Hosseini Koupaie, E; Eskicioglu, C

    2015-01-01

    This research provides a comprehensive comparison between microwave (MW) and conductive heating (CH) sludge pretreatments under identical heating/cooling profiles at below and above boiling point temperatures. Previous comparison studies were constrained to an uncontrolled or a single heating rate due to lack of a CH equipment simulating MW under identical thermal profiles. In this research, a novel custom-built pressure-sealed vessel which could simulate MW pretreatment under identical heating/cooling profiles was used for CH pretreatment. No statistically significant difference was proven between MW and CH pretreatments in terms of sludge solubilization, anaerobic biogas yield and organics biodegradation rate (p-value>0.05), while statistically significant effects of temperature and heating rate were observed (p-value<0.05). These results explain the contradictory results of previous studies in which only the final temperature (not heating/cooling rates) was controlled. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. The use of linear expressions of solute boiling point versus retention to indicate special interactions with the molecular rings of modified cyclodextrin phases in gas chromatography

    Science.gov (United States)

    Betts

    2000-08-01

    The boiling points (degrees C, 1 x 10) of diverse C10 polar solutes from volatile oils are set against their relative retention times versus n-undecane to calculate linear equations for 12 commercial modified cyclodextrin (CD) capillary phases. Ten data points are considered for each CD, then solutes are rejected until 5 or more remain that give an expression with a correlation coefficient of at least 0.990 and a standard deviation of less than 5.5. Three phases give almost perfect correlation, and 3 other CDs have difficulty complying. Solutes involved in the equations (most frequently cuminal, linalol, and carvone) are presumed to have a 'standard' polar transient interaction with the molecular rings of the CDs concerned. Several remaining solutes (mostly citral, fenchone, and menthol) exhibit extra retention over the calculated standard (up to 772%), which is believed to indicate a firm 'host' CD or 'guest' solute molecular fit in some cases. Other solutes show less retention than calculated (mostly citronellal, citronellol, estragole, and pulegone). This suggests rejection by the CD, which behaves merely as a conventional stationary phase to them. The intercept constant in the equation for each phase is suggested to be a numerical relative polarity indicator. These b values indicate that 3 hydroxypropyl CDs show the most polarity with values from 28 to 43; and CDs that are fully substituted with inert groups fall in the range of 15 to 20.

  18. Inverse identification of unknown finite-duration air pollutant release from a point source in urban environment

    Science.gov (United States)

    Kovalets, Ivan V.; Efthimiou, George C.; Andronopoulos, Spyros; Venetsanos, Alexander G.; Argyropoulos, Christos D.; Kakosimos, Konstantinos E.

    2018-05-01

    In this work, we present an inverse computational method for the identification of the location, start time, duration and quantity of emitted substance of an unknown air pollution source of finite time duration in an urban environment. We considered a problem of transient pollutant dispersion under stationary meteorological fields, which is a reasonable assumption for the assimilation of available concentration measurements within 1 h from the start of an incident. We optimized the calculation of the source-receptor function by developing a method which requires integrating as many backward adjoint equations as the available measurement stations. This resulted in high numerical efficiency of the method. The source parameters are computed by maximizing the correlation function of the simulated and observed concentrations. The method has been integrated into the CFD code ADREA-HF and it has been tested successfully by performing a series of source inversion runs using the data of 200 individual realizations of puff releases, previously generated in a wind tunnel experiment.

  19. Contrast-enhanced ultrasound imaging and in vivo circulatory kinetics with low-boiling-point nanoscale phase-change perfluorocarbon agents.

    Science.gov (United States)

    Sheeran, Paul S; Rojas, Juan D; Puett, Connor; Hjelmquist, Jordan; Arena, Christopher B; Dayton, Paul A

    2015-03-01

    Many studies have explored phase-change contrast agents (PCCAs) that can be vaporized by an ultrasonic pulse to form microbubbles for ultrasound imaging and therapy. However, few investigations have been published on the utility and characteristics of PCCAs as contrast agents in vivo. In this study, we examine the properties of low-boiling-point nanoscale PCCAs evaluated in vivo and compare data with those for conventional microbubbles with respect to contrast generation and circulation properties. To do this, we develop a custom pulse sequence to vaporize and image PCCAs using the Verasonics research platform and a clinical array transducer. Results indicate that droplets can produce contrast enhancement similar to that of microbubbles (7.29 to 18.24 dB over baseline, depending on formulation) and can be designed to circulate for as much as 3.3 times longer than microbubbles. This study also reports for the first time the ability to capture contrast washout kinetics of the target organ as a measure of vascular perfusion. Copyright © 2015 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  20. PREDICTING THE BOILING POINT OF PCDD/Fs BY THE QSPR METHOD BASED ON THE MOLECULAR DISTANCE-EDGE VECTOR INDEX

    Directory of Open Access Journals (Sweden)

    Long Jiao

    2015-05-01

    Full Text Available The quantitative structure property relationship (QSPR for the boiling point (Tb of polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans (PCDD/Fs was investigated. The molecular distance-edge vector (MDEV index was used as the structural descriptor. The quantitative relationship between the MDEV index and Tb was modeled by using multivariate linear regression (MLR and artificial neural network (ANN, respectively. Leave-one-out cross validation and external validation were carried out to assess the prediction performance of the models developed. For the MLR method, the prediction root mean square relative error (RMSRE of leave-one-out cross validation and external validation was 1.77 and 1.23, respectively. For the ANN method, the prediction RMSRE of leave-one-out cross validation and external validation was 1.65 and 1.16, respectively. A quantitative relationship between the MDEV index and Tb of PCDD/Fs was demonstrated. Both MLR and ANN are practicable for modeling this relationship. The MLR model and ANN model developed can be used to predict the Tb of PCDD/Fs. Thus, the Tb of each PCDD/F was predicted by the developed models.

  1. Generation of standard gas mixtures of halogenated, aliphatic, and aromatic compounds and prediction of the individual output rates based on molecular formula and boiling point.

    Science.gov (United States)

    Thorenz, Ute R; Kundel, Michael; Müller, Lars; Hoffmann, Thorsten

    2012-11-01

    In this work, we describe a simple diffusion capillary device for the generation of various organic test gases. Using a set of basic equations the output rate of the test gas devices can easily be predicted only based on the molecular formula and the boiling point of the compounds of interest. Since these parameters are easily accessible for a large number of potential analytes, even for those compounds which are typically not listed in physico-chemical handbooks or internet databases, the adjustment of the test gas source to the concentration range required for the individual analytical application is straightforward. The agreement of the predicted and measured values is shown to be valid for different groups of chemicals, such as halocarbons, alkanes, alkenes, and aromatic compounds and for different dimensions of the diffusion capillaries. The limits of the predictability of the output rates are explored and observed to result in an underprediction of the output rates when very thin capillaries are used. It is demonstrated that pressure variations are responsible for the observed deviation of the output rates. To overcome the influence of pressure variations and at the same time to establish a suitable test gas source for highly volatile compounds, also the usability of permeation sources is explored, for example for the generation of molecular bromine test gases.

  2. THE RESULTS OF THE STUDY BOILING POINT OUT OZONE-SAFE REFRIGERANT R410A IN THE EVAPORATORS OF REFRIGERATING MACHINES

    Directory of Open Access Journals (Sweden)

    V. G. Bukin

    2012-01-01

    Full Text Available The results of experimental research boiling heat transfer of ozone-friendly R410A refrigerant in evaporators machines and the possibility of its use in place of the prohibited refrigerant R22.

  3. Liquid paraffin as new dilution medium for the analysis of high boiling point residual solvents with static headspace-gas chromatography.

    Science.gov (United States)

    D'Autry, Ward; Zheng, Chao; Bugalama, John; Wolfs, Kris; Hoogmartens, Jos; Adams, Erwin; Wang, Bochu; Van Schepdael, Ann

    2011-07-15

    Residual solvents are volatile organic compounds which can be present in pharmaceutical substances. A generic static headspace-gas chromatography analysis method for the identification and control of residual solvents is described in the European Pharmacopoeia. Although this method is proved to be suitable for the majority of samples and residual solvents, the method may lack sensitivity for high boiling point residual solvents such as N,N-dimethylformamide, N,N-dimethylacetamide, dimethyl sulfoxide and benzyl alcohol. In this study, liquid paraffin was investigated as new dilution medium for the analysis of these residual solvents. The headspace-gas chromatography method was developed and optimized taking the official Pharmacopoeia method as a starting point. The optimized method was validated according to ICH criteria. It was found that the detection limits were below 1μg/vial for each compound, indicating a drastically increased sensitivity compared to the Pharmacopoeia method, which failed to detect the compounds at their respective limit concentrations. Linearity was evaluated based on the R(2) values, which were above 0.997 for all compounds, and inspection of residual plots. Instrument and method precision were examined by calculating the relative standard deviations (RSD) of repeated analyses within the linearity and accuracy experiments, respectively. It was found that all RSD values were below 10%. Accuracy was checked by a recovery experiment at three different levels. Mean recovery values were all in the range 95-105%. Finally, the optimized method was applied to residual DMSO analysis in four different Kollicoat(®) sample batches. Copyright © 2011 Elsevier B.V. All rights reserved.

  4. Boiling of the Interface between Two Immiscible Liquids below the Bulk Boiling Temperatures of Both Components

    OpenAIRE

    Pimenova, Anastasiya V.; Goldobin, Denis S.

    2014-01-01

    We consider the problem of boiling of the direct contact of two immiscible liquids. An intense vapour formation at such a direct contact is possible below the bulk boiling points of both components, meaning an effective decrease of the boiling temperature of the system. Although the phenomenon is known in science and widely employed in technology, the direct contact boiling process was thoroughly studied (both experimentally and theoretically) only for the case where one of liquids is becomin...

  5. Experimental investigation of the effect of an electric field on heat transfers at boiling point for a high-resistivity water in forced convection

    International Nuclear Information System (INIS)

    Morin, Henri; Verdier, Jacques

    1964-10-01

    The enhancement of heat exchanges with boiling water in forced convection in an annular duct is studied when applying an electric field between the two walls of the duct. At the local boiling and at saturation temperature, for a water resistivity comprised between 0.5 and 1 M Ω cm, with fields on the cylindrical interior surface of the canal comprised between 4 and 8 kV/cm, significant enhancements of the exchanged heat fluxes are noticed, 2.5 to 10 time superior to exchanges without electric field. When heating, heat fluxes may be increased from two to three times [fr

  6. Film boiling heat transfer in liquid helium

    International Nuclear Information System (INIS)

    Inai, Nobuhiko

    1979-01-01

    The experimental data on the film boiling heat transfer in liquid helium are required for investigating the stability of superconducting wires. On the other hand, liquid helium has the extremely different physical properties as compared with the liquids at normal temperature such as water. In this study, the experiments on pool boiling were carried out, using the horizontal top surface of a 20 mm diameter copper cylinder in liquid helium. For observing individual bubbles, the experiments on film boiling from a horizontal platinum wire were performed separately in liquid nitrogen and liquid helium, and photographs of floating-away bubbles were taken. The author pointed out the considerable upward shift of the boiling curve near the least heat flux point in film boiling from the one given by the Berenson's equation which has been said to agree comparatively well with the data on the film boiling of the liquids at normal temperature, and the reason was investigated. Consequently, a model for film boiling heat transfer was presented. Also one equation expressing the film boiling at low heat flux for low temperature liquids was proposed. It represents well the tendency to shift from Berenson's equation of the experimental data on film boiling at the least heat flux point for liquid helium, liquid nitrogen and water having extremely different physical properties. Some discussions are added at the end of the paper. (Wakatsuki, Y.)

  7. Direct synthesis of Pt-free catalyst on gas diffusion layer of fuel cell and usage of high boiling point fuels for efficient utilization of waste heat

    International Nuclear Information System (INIS)

    Nandan, Ravi; Goswami, Gopal Krishna; Nanda, Karuna Kar

    2017-01-01

    Graphical abstract: Direct-grown boron-doped carbon nanotubes on gas-diffusion layer as efficient Pt-free cathode catalyst for alcohol fuel cells, high boiling point fuels used to obtain hot fuels for the enhancement of cell performance that paves the way for the utilization of waste heat. Display Omitted -- Highlights: •One-step direct synthesis of boron-doped carbon nanotubes (BCNTs) on gas diffusion layer (GDL). •Home built fuel-cell testing using BCNTs on GDL as Pt-free cathode catalyst. •BCNTs exhibit concentration dependent oxygen reduction reaction and the cell performance. •Effective utilization of waste heat to raise the fuel temperature. •Fuel selectivity to raise the fuel temperature and the overall performance of the fuel cells. -- Abstract: Gas diffusion layers (GDL) and electrocatalysts are integral parts of fuel cells. It is, however, a challenging task to grow Pt-free robust electrocatalyst directly on GDL for oxygen reduction reaction (ORR) – a key reaction in fuel cells. Here, we demonstrate that boron-doped carbon nanotubes (BCNTs) grown directly on gas-diffusion layer (which avoid the need of ionomer solution used for catalyst loading) can be used as efficient Pt-free catalyst in alcohol fuel cells. Increase in boron concentration improves the electrochemical ORR activity in terms of onset and ORR peak positions, half-wave potentials and diffusion-limited current density that ensure the optimization of the device performance. The preferential 4e − pathway, excellent cell performance, superior tolerance to fuel crossover and long-term stability makes directly grown BCNTs as an efficient Pt-free cathode catalyst for cost-effective fuel cells. The maximum power density of the fuel cell is found to increase monotonically with boron concentration. In addition to the application of BCNTs in fuel cell, we have introduced the concept of hot fuels so that waste heat can effectively be used and external power sources can be avoided. The fuel

  8. QSPR Calculation of Normal Boiling Points of Organic Molecules Based on the Use of Correlation Weighting of Atomic Orbitals with Extended Connectivity of Zero- and First-Order Graphs of Atomic Orbitals

    Directory of Open Access Journals (Sweden)

    Eduardo A. Castro

    2004-12-01

    Full Text Available We report the results of a calculation of the normal boiling points of a representative set of 200 organic molecules through the application of QSPR theory. For this purpose we have used a particular set of flexible molecular descriptors, the so called Correlation Weighting of Atomic Orbitals with Extended Connectivity of Zero- and First-Order Graphs of Atomic Orbitals. Although in general the results show suitable behavior to predict this physical chemistry property, the existence of some deviant behaviors points to a need to complement this index with some other sort of molecular descriptors. Some possible extensions of this study are discussed.

  9. Contribution to the boiling curve of sodium

    International Nuclear Information System (INIS)

    Schins, H.E.J.

    1975-01-01

    Sodium in a pool was preheated to saturation temperatures at system pressures of 200, 350 and 500 torr. A test section of normal stainless steel was then extra heated by means of the conical fitting condenser zone of a heat pipe. Measurements were made of heat transfer fluxes, q in W/cm 2 , as a function of wall excess temperature above saturation, THETA = Tsub(w) - Tsub(s) in 0 C, both, in natural convection and in boiling regimes. These measurements make it possible to select the Subbotin natural convection and nucleate boiling curves among other variants proposed in literature. Further it is empirically demonstrated on water that the minimum film boiling point corresponds to the homogeneous nucleation temperature calculated by the Doering formula. Assuming that the minimum film boiling point of sodium can be obtained in the same manner, it is then possible to give an appoximate boiling curve of sodium for the use in thermal interaction studies. At 1 atm the heat transfer fluxes q versus wall temperatures THETA are for a point on the natural convection curve 0.3 W/cm 2 and 2 0 C; for start of boiling 1.6 W/cm 2 and 6 0 C; for peak heat flux 360 W/cm 2 and 37 0 C; for minimum film boiling 30 W/cm 2 and 905 0 C and for a point on the film boiling curve 160 W/cm 2 and 2,000 0 C. (orig.) [de

  10. Cavitational boiling of liquids

    International Nuclear Information System (INIS)

    Kostyuk, V.V.; Berlin, I.I.; Borisov, N.N.; Karpyshev, A.V.

    1986-01-01

    Transition boiling is a term usually denoting the segment of boiling curve 1-2, where the heat flux, q, decreases as the temperature head, ΔT/sub w/=T/sub w/-T/sub s/, increases. Transition boiling is the subject of numerous papers. Whereas most researchers have studied transition boiling of saturated liquids the authors studied for many years transition boiling of liquids subcooled to the saturation temperature. At high values of subcooling, ΔT/sub sub/=T/sub s/-T/sub 1/, an anomalous dependence of the heat flux density on the temperature head was detected. Unlike a conventional boiling curve, where a single heat flux maximum occurs, another maximum is seen in the transition boiling segment, the boiling being accompanied by strong noise. The authors refer to this kind of boiling as cavitational. This process is largely similar to noisy boiling of helium-II. This article reports experimental findings for cavitational boiling of water, ethanol, freon-113 and noisy boiling of helium-II

  11. Converting high boiling hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Terrisse, H; DuFour, L

    1929-02-12

    A process is given for converting high boiling hydrocarbons into low boiling hydrocarbons, characterized in that the high boiling hydrocarbons are heated to 200 to 500/sup 0/C in the presence of ferrous chloride and of such gases as hydrogen, water gas, and the like gases under a pressure of from 5 to 40 kilograms per square centimeter. The desulfurization of the hydrocarbons occurs simultaneously.

  12. Water Boiling inside Carbon Nanotubes: Towards Efficient Drug Release

    OpenAIRE

    Chaban, Vitaly V.; Prezhdo, Oleg V.

    2012-01-01

    We show using molecular dynamics simulation that spatial confinement of water inside carbon nanotubes (CNT) substantially increases its boiling temperature and that a small temperature growth above the boiling point dramatically raises the inside pressure. Capillary theory successfully predicts the boiling point elevation down to 2 nm, below which large deviations between the theory and atomistic simulation take place. Water behaves qualitatively different inside narrow CNTs, exhibiting trans...

  13. The mechanism of heat transfer in transition boiling

    International Nuclear Information System (INIS)

    Chin Pan; Hwang, J.Y.; Lin, T.L.

    1989-01-01

    Liquid-solid contact in transition boiling is modelled by involving transient conduction, boiling incipience, macrolayer evaporation and vapour film boiling. The prediction of liquid contact duration and time fraction agrees reasonably well with experimental data, and the model is able to predict both of the boiling curve transitions - the critical and minimum heat fluxes. The study concludes that the liquid turbulence due to buoyancy forces and bubble agitation is an important parameter for transition boiling. It is found that surface coating (oxidation or deposition) tends to improve the transition boiling heat transfer and elevate the wall superheats at both the critical heat flux and the minimum film boiling points, which agrees with the experimental observations. (author)

  14. Known knowns, known unknowns and unknown unknowns in prokaryotic transposition.

    Science.gov (United States)

    Siguier, Patricia; Gourbeyre, Edith; Chandler, Michael

    2017-08-01

    Although the phenomenon of transposition has been known for over 60 years, its overarching importance in modifying and streamlining genomes took some time to recognize. In spite of a robust understanding of transposition of some TE, there remain a number of important TE groups with potential high genome impact and unknown transposition mechanisms and yet others, only recently identified by bioinformatics, yet to be formally confirmed as mobile. Here, we point to some areas of limited understanding concerning well established important TE groups with DDE Tpases, to address central gaps in our knowledge of characterised Tn with other types of Tpases and finally, to highlight new potentially mobile DNA species. It is not exhaustive. Examples have been chosen to provide encouragement in the continued exploration of the considerable prokaryotic mobilome especially in light of the current threat to public health posed by the spread of multiple Ab R . Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Evaporation, Boiling and Bubbles

    Science.gov (United States)

    Goodwin, Alan

    2012-01-01

    Evaporation and boiling are both terms applied to the change of a liquid to the vapour/gaseous state. This article argues that it is the formation of bubbles of vapour within the liquid that most clearly differentiates boiling from evaporation although only a minority of chemistry textbooks seems to mention bubble formation in this context. The…

  16. Boiling in porous media

    International Nuclear Information System (INIS)

    1998-01-01

    This conference day of the French society of thermal engineers was devoted to the analysis of heat transfers and fluid flows during boiling phenomena in porous media. This book of proceedings comprises 8 communications entitled: 'boiling in porous medium: effect of natural convection in the liquid zone'; 'numerical modeling of boiling in porous media using a 'dual-fluid' approach: asymmetrical characteristic of the phenomenon'; 'boiling during fluid flow in an induction heated porous column'; 'cooling of corium fragment beds during a severe accident. State of the art and the SILFIDE experimental project'; 'state of knowledge about the cooling of a particulates bed during a reactor accident'; 'mass transfer analysis inside a concrete slab during fire resistance tests'; 'heat transfers and boiling in porous media. Experimental analysis and modeling'; 'concrete in accidental situation - influence of boundary conditions (thermal, hydric) - case studies'. (J.S.)

  17. An investigation of transition boiling mechanisms of subcooled water under forced convective conditions

    Energy Technology Data Exchange (ETDEWEB)

    Kwang-Won, Lee; Sang-Yong, Lee

    1995-09-01

    A mechanistic model for forced convective transition boiling has been developed to investigate transition boiling mechanisms and to predict transition boiling heat flux realistically. This model is based on a postulated multi-stage boiling process occurring during the passage time of the elongated vapor blanket specified at a critical heat flux (CHF) condition. Between the departure from nucleate boiling (DNB) and the departure from film boiling (DFB) points, the boiling heat transfer is established through three boiling stages, namely, the macrolayer evaporation and dryout governed by nucleate boiling in a thin liquid film and the unstable film boiling characterized by the frequent touches of the interface and the heated wall. The total heat transfer rates after the DNB is weighted by the time fractions of each stage, which are defined as the ratio of each stage duration to the vapor blanket passage time. The model predictions are compared with some available experimental transition boiling data. The parametric effects of pressure, mass flux, inlet subcooling on the transition boiling heat transfer are also investigated. From these comparisons, it can be seen that this model can identify the crucial mechanisms of forced convective transition boiling, and that the transition boiling heat fluxes including the maximum heat flux and the minimum film boiling heat flux are well predicted at low qualities/high pressures near 10 bar. In future, this model will be improved in the unstable film boiling stage and generalized for high quality and low pressure situations.

  18. Acoustic phenomena during boiling

    International Nuclear Information System (INIS)

    Dorofeev, B.M.

    1985-01-01

    Applied and theoretical significance of investigation into acoustic phenomena on boiling is discussed. Effect of spatial and time conditions on pressure vapour bubble has been elucidated. Collective effects were considered: acoustic interaction of bubbles, noise formation ion developed boiling, resonance and hydrodynamic autooscillations. Different methods for predicting heat transfer crisis using changes of accompanying noise characteristics were analysed. Principle peculiarities of generation mechanism of thermoacoustic autooscillations were analysed as well: formation of standing waves; change of two-phase medium contraction in a channel; relation of alternating pressure with boiling process as well as with instantaneous and local temperatures of heat transfer surface and liquid in a boundary layer

  19. ETBP (Extended True Boiling Point) curve extension of extra heavy crudes; Extensao da curva PEV (Ponto de Ebulicao Verdadeiro) de petroleos extrapesados por destilacao molecular e ampliacao da caracterizacao

    Energy Technology Data Exchange (ETDEWEB)

    Rocha, Rodrigo S.; Batistella, Cesar B.; Maciel, Maria Regina W.; Maciel Filho, Rubens [Universidade Estadual de Campinas (UNICAMP), SP (Brazil). Faculdade de Engenharia Quimica; Medina, Lilian C. [PETROBRAS S.A., Rio de Janeiro, RJ (Brazil). Centro de Pesquisas (CENPES)

    2008-07-01

    For the determination of the TBP (True Boiling Point) Curve, which defines the yield of petroleum products, the ASTM D2892 method for petroleum distillation and ASTM D5236 method for vacuum distillation of heavy hydrocarbons were applied. Furthermore, from these distillations, cuts that are submitted to several analyses to determine its physical-chemical properties are obtained, and all this information generates the evaluation of petroleum. For heavy petroleum, these conventional methods have been limited, since the total distilled percentage determined for temperatures up to 565 deg C (maximum reached with ASTM D5236 method) is lower for these oils, reducing the points of the curve, limiting its information. To improve this data set for heavy oils, a methodology for the extension of TBP curve through molecular distillation was established. It was possible to reach values up to 700 deg C, representing a considerable progress for the extension of TBP curve. The objective of this work is to present the results of Extended TBP curve for a heavy petroleum and characterization carried out through the cuts and residues obtained in molecular distillation of the residue 'Zeta' 400 deg C+ (fancy name), made by ASTM D2892 method. (author)

  20. Boiling experiments in DFR and PFR

    International Nuclear Information System (INIS)

    Judd, A.M.

    1994-01-01

    At the end of its life, in 1975-1977, a series of Special Experiments was conducted in the Dounreay Fast Reactor. Fuel pins were deliberately subjected to overheating, up to the coolant boiling point, for periods of several hours at a time. The boiling was monitored by acoustic sensors and thermocouples, and after the tests the fuel pins were examined to determine the extent of damage. The results of these experiments have been widely reported. The present paper summarises the results as a reminder of their significance. The outstanding conclusion was that coolant boiling had no severe consequences. In some, but not all, cases the pins failed, but little fuel was released, no local blockages were formed, and there was no fuel melting. At around the same time PFR was being commissioned, and for a time the primary coolant circuit was operated with a dummy core, containing no nuclear fuel. An electrically-heated boiling rig was deployed in the dummy core, and observed by acoustic monitors. The data gathered enabled the noise of boiling to be compared with the background noise, and provided valuable support for the design of acoustic boiling noise detection systems. (author)

  1. Odd-Boiled Eggs

    Science.gov (United States)

    Kaminsky, Kenneth; Scheman, Naomi

    2010-01-01

    At a Shabbat lunch in Madrid not long ago, the conversation turned to the question of boiling eggs. One of the guests mentioned that a Dutch rabbi he knew had heard that in order to make it more likely that boiled eggs be kosher, you should add an egg to the pot if the number you began with was even. According to the laws of Kashruth, Jews may not…

  2. Nucleate boiling heat transfer

    Energy Technology Data Exchange (ETDEWEB)

    Saiz Jabardo, J.M. [Universidade da Coruna (Spain). Escola Politecnica Superior], e-mail: mjabardo@cdf.udc.es

    2009-07-01

    Nucleate boiling heat transfer has been intensely studied during the last 70 years. However boiling remains a science to be understood and equated. In other words, using the definition given by Boulding, it is an 'insecure science'. It would be pretentious of the part of the author to explore all the nuances that the title of the paper suggests in a single conference paper. Instead the paper will focus on one interesting aspect such as the effect of the surface microstructure on nucleate boiling heat transfer. A summary of a chronological literature survey is done followed by an analysis of the results of an experimental investigation of boiling on tubes of different materials and surface roughness. The effect of the surface roughness is performed through data from the boiling of refrigerants R-134a and R-123, medium and low pressure refrigerants, respectively. In order to investigate the extent to which the surface roughness affects boiling heat transfer, very rough surfaces (4.6 {mu}m and 10.5 {mu}m ) have been tested. Though most of the data confirm previous literature trends, the very rough surfaces present a peculiar behaviour with respect to that of the smoother surfaces (Ra<3.0 {mu}m). (author)

  3. Nucleate boiling heat transfer

    International Nuclear Information System (INIS)

    Saiz Jabardo, J.M.

    2009-01-01

    Nucleate boiling heat transfer has been intensely studied during the last 70 years. However boiling remains a science to be understood and equated. In other words, using the definition given by Boulding, it is an 'insecure science'. It would be pretentious of the part of the author to explore all the nuances that the title of the paper suggests in a single conference paper. Instead the paper will focus on one interesting aspect such as the effect of the surface microstructure on nucleate boiling heat transfer. A summary of a chronological literature survey is done followed by an analysis of the results of an experimental investigation of boiling on tubes of different materials and surface roughness. The effect of the surface roughness is performed through data from the boiling of refrigerants R-134a and R-123, medium and low pressure refrigerants, respectively. In order to investigate the extent to which the surface roughness affects boiling heat transfer, very rough surfaces (4.6 μm and 10.5 μm ) have been tested. Though most of the data confirm previous literature trends, the very rough surfaces present a peculiar behaviour with respect to that of the smoother surfaces (Ra<3.0 μm). (author)

  4. Nucleate pool-boiling heat transfer - I. Review of parametric effects of boiling surface

    International Nuclear Information System (INIS)

    Pioro, I.L.; Rohsenow, W.; Doerffer, S.S.

    2004-01-01

    The objective of this paper is to assess the state-of-the-art of heat transfer in nucleate pool-boiling. Therefore, the paper consists of two parts: part I reviews and examines the effects of major boiling surface parameters affecting nucleate-boiling heat transfer, and part II reviews and examines the existing prediction methods to calculate the nucleate pool-boiling heat transfer coefficient (HTC). A literature review of the parametric trends points out that the major parameters affecting the HTC under nucleate pool-boiling conditions are heat flux, saturation pressure, and thermophysical properties of a working fluid. Therefore, these effects on the HTC under nucleate pool-boiling conditions have been the most investigated and are quite well established. On the other hand, the effects of surface characteristics such as thermophysical properties of the material, dimensions, thickness, surface finish, microstructure, etc., still cannot be quantified, and further investigations are needed. Particular attention has to be paid to the characteristics of boiling surfaces. (author)

  5. A dry-spot model of critical heat flux and transition boiling in pool and subcooled forced convection boiling

    International Nuclear Information System (INIS)

    Ha, Sang Jun

    1998-02-01

    boiling from given boiling conditions with the pool CHF data measured by Dhir and Liaw and Paul and Abdel-Khalik and the subcooled flow CHF data measured by Del Valle M. and Kenning and with the heat flux data in transition boiling measured by Dhir and Liaw. The predictions show good agreement with the existing data. To use the present phenomenological model as a prediction tool, a study has been performed to predict CHF in pool and subcooled forced convection boiling using existing correlations for active site density, maximum bubble diameter, and heat transfer coefficients in nucleate boiling. Comparison of the model predictions with experimental data for pool boiling of water and upward flow boiling of water in vertical, uniformly-heated round tubes is performed. The data set (2438 data points) for CHF in subcooled forced convection boiling covers wide ranges of operating conditions (0.1≤P≤14.0 MPa, 0.00033≤D≤0.0375 m: 0.002≤L≤2 m: 660 ≤G≤90000 kg/m 2 s: 70≤Δh,≤1456 kJ/kg). Without any tuning factor, 1492 data points out of 2438 (61.2%) are calculated with a r.m.s. error of 41.3% and about 80% of the calculated data points are predicted within ±50%. It is also shown that by a modification of suppression factor in subcooled boiling, the predictive capability of the present model can be improved, i.e., 2421 data points (99.3%) are calculated with a r.m.s. error of 20.5% and 82.3% of the calculated data points are predicted within ±25%. In addition, the parametric trends of CHF in subcooled forced convection boiling have been investigated under local conditions hypothesis

  6. Return to nucleate boiling

    International Nuclear Information System (INIS)

    Shumway, R.W.

    1985-01-01

    This paper presents a collection of TMIN (temperature of return to nucleate boiling) correlations, evaluates them under several conditions, and compares them with a wide range of data. Purpose is to obtain the best one for use in a water reactor safety computer simulator known as TRAC-B. Return to nucleate boiling can occur in a reactor accident at either high or low pressure and flow rates. Most of the correlations yield unrealistic results under some conditions. A new correlation is proposed which overcomes many of the deficiencies

  7. Characteristic of onset of nucleate boiling in natural circulation

    International Nuclear Information System (INIS)

    Zhou Tao; Yang Ruichang; Liu Ruolei

    2006-01-01

    Two kinds of thermodynamics quality at onset of nucleate boiling with sub-cooled boiling were calculated for force circulation by using Bergles and Rohesenow method or Davis and Anderson method, and natural circulation by using Tsinghua University project group's empirical equations suggested in our natural circulation experiment at same condition. The characteristic of onset of nucleate boiling with subcooled boiling in natural circulation were pointed out. The research result indicates that the thermodynamics quality at onset of nucleate boiling with subcooled boiling in natural circulation is more sensitive for heat and inlet temperature and system pressure. Producing of onset of nucleate boiling with subcooled boiling is early at same condition. The research result also indicates more from microcosmic angle of statistical physics that the phenomena are caused by the effects of characteristic of dissipative structure of natural circulation in self organization, fluctuation force and momentum force of dynamics on thermodynamics equilibrium. these can lay good basis for study and application on sub-cooled boiling in natural circulation in future. (authors)

  8. Experimental study on transient boiling heat transfer

    International Nuclear Information System (INIS)

    Visentini, R.

    2012-01-01

    well. A flexible power supply that can generate a free-shape signal, allows to get to a wall-temperature increase rate up to 2500 K/s but also to obtain lower rates, which permits to study weaker transients and steady state conditions. The thermal measurements are realised by means of an infra-red camera and a high-speed camera is employed in order to see the boiling phenomena at the same time. From the voltage and current measurements the heat flux that is passed to the fluid is known. It is possible to underline some of the main results of this work. We found that, even when the boiling onset occurs soon because of the high power, transient conduction is always coupled with transient convection. The boiling onset occurs when the wall superheat is between 10 K et 30 K. This value corresponds to the activation of the smallest nucleation sites at the wall. The literature correlations well fit the nucleate boiling data in steady-state conditions. When the wall-temperature increase rate leads to transient boiling, the heat flux is higher than in steady state. This is consistent with what was found in previous studies. The nucleate boiling phase may last only a few milliseconds when the power is really high and the wall temperature increases really rapidly (500-2000 K/s). The experiments in transient boiling also point out that the heat flux is larger than in steady state conditions for the other regimes: Critical heat flux and also film boiling. The experimental set-up allows to investigate a large range of parameters (wall-temperature increase rate, flow rate, fluid temperature) by means of accurate temperature measurements and visualisations. Some modeling of the heat transfer are also proposed. (author)

  9. Dry patch formed boiling and burnout in potassium pool boiling

    International Nuclear Information System (INIS)

    Michiyoshi, I.; Takenaka, N.; Takahashi, O.

    1986-01-01

    Experimental results are presented on dry patch formed boiling and burnout in saturated potassium pool boiling on a horizontal plane heater for system pressures from 30 to 760 torr and liquid levels from 5 to 50 mm. The dry patch formation occurs in the intermittent boiling which is often encountered when liquid alkali metals are used under relatively low pressure conditions. Burnout is caused from both continuous nucleate and dry patch formed boiling. The burnout heat flux together with nucleate boiling heat transfer coefficients are empirically correlated with system pressures. A model is also proposed to predict the minimum heat flux to form the dry patch. (author)

  10. A new correlation for nucleate pool boiling of aqueous mixtures

    International Nuclear Information System (INIS)

    Thome, J.R.; Shakir, S.

    1987-01-01

    A new mixture boiling correlation was developed for nucleate pool boiling of aqueous mixtures on plain, smooth tubes. The semi-empirical correlation models the rise in the local bubble point temperature in a mixture caused by the preferential evaporation of the more volatile component during bubble growth. This rise varies from zero at low heat fluxes (where only single-phase natural convection is present) up to nearly the entire boiling range at the peak heat flux (where latent heat transport is dominant). The boiling range, which is the temperature difference between the dew point and bubble point of a mixture, is used to characterize phase equilibrium effects. An exponential term models the rise in the local bubble point temperature as a function of heat flux. The correlation was compared against binary mixture boiling data for ethanol-water, methanol-water, n-propanol-water, and acetone-water. The majority of the data was predicted to within 20%. Further experimental research is currently underway to obtain multicomponent boiling data for aqueous mixtures with up to five components and for wider boiling ranges

  11. Transition from boiling to two-phase forced convection

    International Nuclear Information System (INIS)

    Maroti, L.

    1985-01-01

    The paper presents a method for the prediction of the boundary points of the transition region between fully developed boiling and two-phase forced convection. It is shown that the concept for the determination of the onset of fully developed boiling can also be applied for the calculation of the point where the heat transfer is effected again by the forced convection. Similarly, the criterion for the onset of nucleate boiling can be used for the definition of the point where boiling is completely suppressed and pure two-phase forced convection starts. To calculate the heat transfer coefficient for the transition region, an equation is proposed that applies the boundary points and a relaxation function ensuring the smooth transition of the heat transfer coefficient at the boundaries

  12. Analysis of boiling

    International Nuclear Information System (INIS)

    Kolev, N.I.

    2011-01-01

    This paper summarizes the author's results in boiling analysis obtained in the last 17 years. It demonstrates that more information can be extracted from the analysis by incorporating even of gross turbulence characteristics consistently in the analysis and appropriate local volume and time averaging. The main findings are: Even in large scale analysis (no direct numerical simulation) the steady and transient averaged turbulence characteristics are necessary to increase the quality of predicting heat and mass transfer. It allows simulating the heat transfer change behind spacer grids analytically which is not the practice up to now. This allows also to simulate the change of the deposition behind the spacer grid and therefore this bring us closer to the mechanistic prediction of dry out. Accurate boiling heat transfer predictions require knowledge on the nucleation characteristics of each particular surface. The pulsation characteristics at the wall controlling the heat transfer are associated with the bubble departure frequencies but not identical with them. Considering the mutual interactions of the bubbles leads to the surprising analytical prediction of the departure from nucleate boiling just by using the mechanisms acting during flow boiling only. The performance of the author's analytical two-phase convection model combined with its analytical nuclide boiling model is proven to have the accuracy of the empirical Chen's model by having the advantage of predicting analytically the internal characteristics of the flow each of it validated by experiment. This is also important for the future use in multiphase CFD where details about the flow field generation have to be also predicted by constitutive relation as summarized in this paper. (author)

  13. Analysis of boiling

    International Nuclear Information System (INIS)

    Kolev, Nikolay Ivanov

    2011-01-01

    This paper summarizes the author's results in boiling analysis obtained in the last 17 years. It demonstrates that more information can be extracted from the analysis by incorporating even of gross turbulence characteristics consistently in the analysis and appropriate local volume and time averaging. The main findings are: Even in large scale analysis (no direct numerical simulation) the steady and transient averaged turbulence characteristics are necessary to increase the quality of predicting heat and mass transfer. It allows to simulate the heat transfer change behind spacer grids analytically which is not the practice up to now. This allows also to simulate the change of the deposition behind the spacer grid and therefore this bring us closer to the mechanistic prediction of dry out. Accurate boiling heat transfer predictions require knowledge on the nucleation characteristics of each particular surface. The pulsation characteristics at the wall controlling the heat transfer are associated with the bubble departure frequencies but not identical with them. Considering the mutual interactions of the bubbles leads to the surprising analytical prediction of the departure from nucleate boiling just by using the mechanisms acting during flow boiling only. The performance of the author's analytical two-phase convection model combined with its analytical nuclide boiling model is proven to have the accuracy of the empirical Chen's model by having the advantage of predicting analytically the internal characteristics of the flow each of it validated by experiment. This is also important for the future use in multiphase CFD where details about the flow field generation have to be also predicted by constitutive relation as summarized in this paper. (author)

  14. Method for estimating boiling temperatures of crude oils

    International Nuclear Information System (INIS)

    Jones, R.K.

    1996-01-01

    Evaporation is often the dominant mechanism for mass loss during the first few days following an oil spill. The initial boiling point of the oil and the rate at which the boiling point changes as the oil evaporates are needed to initialize some computer models used in spill response. The lack of available boiling point data often limits the usefulness of these models in actual emergency situations. A new computational method was developed to estimate the temperature at which a crude oil boils as a function of the fraction evaporated using only standard distillation data, which are commonly available. This method employs established thermodynamic rules and approximations, and was designed to be used with automated spill-response models. Comparisons with measurements show a strong correlation between results obtained with this method and measured values

  15. Geysering in boiling channels

    Energy Technology Data Exchange (ETDEWEB)

    Aritomi, Masanori; Takemoto, Takatoshi [Tokyo Institute of Technology, Tokyo (Japan); Chiang, Jing-Hsien [Japan NUS Corp. Ltd., Toyko (Japan)] [and others

    1995-09-01

    A concept of natural circulation BWRs such as the SBWR has been proposed and seems to be promising in that the primary cooling system can be simplified. The authors have been investigating thermo-hydraulic instabilities which may appear during the start-up in natural circulation BWRs. In our previous works, geysering was investigated in parallel boiling channels for both natural and forced circulations, and its driving mechanism and the effect of system pressure on geysering occurrence were made clear. In this paper, geysering is investigated in a vertical column and a U-shaped vertical column heated in the lower parts. It is clarified from the results that the occurrence mechanism of geysering and the dependence of system pressure on geysering occurrence coincide between parallel boiling channels in circulation systems and vertical columns in non-circulation systems.

  16. Correlations for developing film boiling effect in tubes

    International Nuclear Information System (INIS)

    Guo, Y.; Leung, L.K.H.

    2005-01-01

    Full text of publication follows: Reducing uncertainties in predicting film-boiling heat transfer can provide improved margins in reactor safety analysis, hence improved operating margins in nuclear power plants. Most reactor safety codes employed the tube-based prediction method for the fully developed film-boiling heat transfer coefficient. This approach tends to underpredict the heat-transfer coefficient and over-predict the sheath temperature at post-dryout conditions close to the CHF point. The under-prediction is due mainly to the droplet impingement on the heated surface and vapour superheating. This heat-transfer regime is referred to as the developing film boiling, which is associated with an enhancement in heat transfer compared to the fully developed film boiling. An improvement in the prediction accuracy is achievable by accounting for the effect of vapour-film development on film boiling heat transfer. In addition to system safety analyses, the prediction of developing film boiling heat transfer is required in subchannel analyses for fuel bundles. A tube-data-based prediction method is particularly relevant for subchannel applications. The objective of this study is to derive a correlation for the developing film boiling effect in tubes. The current CANDU R . system safety and subchannel analyses codes apply the look-up table approach to predict the film boiling heat transfer. The post-dryout look-up table provides the fully developed film boiling heat transfer in an 8-mm vertical tube, and has been extended to other tube sizes using a diameter modification factor. In this study, a modification factor has been developed to account for the developing film-boiling effect, and is expressed in the following non-dimensional form: K = (h FB - h FD )/(h NB - h FD ) = f ((T W - T sat )/T CHF - T sat )) where h FB is the film boiling heat transfer coefficient, h FD is the fully developed film-boiling heat transfer coefficient, which is evaluated using the film-boiling

  17. Natural Circulation with Boiling

    Energy Technology Data Exchange (ETDEWEB)

    Mathisen, R P

    1967-09-15

    A number of parameters with dominant influence on the power level at hydrodynamic instability in natural circulation, two-phase flow, have been studied experimentally. The geometrical dependent quantities were: the system driving head, the boiling channel and riser dimensions, the single-phase as well as the two phase flow restrictions. The parameters influencing the liquid properties were the system pressure and the test section inlet subcooling. The threshold of instability was determined by plotting the noise characteristics in the mass flow records against power. The flow responses to artificially obtained power disturbances at instability conditions were also measured in order to study the nature of hydrodynamic instability. The results presented give a review over relatively wide ranges of the main parameters, mainly concerning the coolant performance in both single and parallel boiling channel flow. With regard to the power limits the experimental results verified that the single boiling channel performance was intimately related to that of the parallel channels. In the latter case the additional inter-channel factors with attenuating effects were studied. Some optimum values of the parameters were observed.

  18. Boiling hysteresis of impinging circular submerged jets with highly wetting liquids

    International Nuclear Information System (INIS)

    Zhou, D.W.; Ma, C.F.; Yu, J.

    2004-01-01

    An experimental study was carried out to characterize the boiling hysteresis of impinging circular submerged jets with highly wetting liquids. The effects of noncondensable gases and surface aging on boiling curves were considered. The present study focused on the effects of jet parameters (jet exit velocity, radial distance from the stagnation point and nozzle diameter) and fluid subcooling on incipient boiling superheat and superheat excursion, as well as the physical mechanism of boiling hysteresis. Results show that the incipient boiling superheat decreases only with fluid subcooling regardless of jet parameters, and that the superheat excursion increases with nozzle diameter and radial distance from the stagnation point and decreasing jet exit velocity and fluid subcooling. Boiling hysteresis occurs due to deactivation of vapor embryos within larger cavities. Three anomalous phenomena at boiling inception are recorded and discussed in terms of irregular activation of vapor embryos

  19. Mechanisms of convective and boiling heat transfer enhancement via ultrasonic vibration

    International Nuclear Information System (INIS)

    Kim, Yi Gu; Kim, Ho Young; Kang, Seoung Min; Kang, Byung Ha; Lee, Jin Ho

    2003-01-01

    This work experimentally studies the fundamental mechanisms by which the ultrasonic vibration enhances convection and pool boiling heat transfer. A thin platinum wire is used as both a heat source and a temperature sensor. A high speed video imaging system is employed to observe the behavior of cavitation and thermal bubbles. It is found that when the liquid temperature is below its boiling point, cavitation takes place due to ultrasonic vibration while cavitation disappears when the liquid reaches the boiling point. Moreover, when the gas dissolved in liquid is removed by pre-degassing, the cavitation arises only locally. Depending on the liquid temperature, heat transfer rates in convection, subcooled boiling and saturated boiling regimes are examined. In convection heat transfer regime, fully agitated cavitation is the most efficient heat transfer enhancement mechanism. Subcooled boiling is most enhanced when the local cavitation is induced after degassing. In saturated boiling regime, acoustic pressure is shown to be a dominant heat transfer enhancement mechanism

  20. Applications of artificial neutral network for the prediction of flow boiling curves

    International Nuclear Information System (INIS)

    Su Guanghui; Jia Dounan; Fukuda, Kenji; Morita, Koji; Pidduck, Mark; Matsumoto, Tatsuya; Akasaka, Ryo

    2002-01-01

    An artificial neural network (ANN) was applied successfully to predict flow boiling curves. The databases used in the analysis are from the 1960's, including 1,305 data points which cover these parameter ranges: pressure P=100-1,000 kPa, mass flow rate G=40-500 kg/m 2 ·s, inlet subcooling ΔT sub =0-35degC, wall superheat ΔT w =10-300degC and heat flux Q=20-8,000 kW/m 2 . The proposed methodology allows us to achieve accurate results, thus it is suitable for the processing of the boiling curve data. The effects of the main parameters on flow boiling curves were analyzed using the ANN. The heat flux increases with increasing inlet subcooling for all heat transfer modes. Mass flow rate has no significant effects on nucleate boiling curves. The transition boiling and film boiling heat fluxes will increase with an increase in the mass flow rate. Pressure plays a predominant role and improves heat transfer in all boiling regions except the film boiling region. There are slight differences between the steady and the transient boiling curves in all boiling regions except the nucleate region. The transient boiling curve lies below the corresponding steady boiling curve. (author)

  1. Dual-zone boiling process

    International Nuclear Information System (INIS)

    Bennett, D.L.; Schwarz, A.; Thorogood, R.M.

    1987-01-01

    This patent describes a process for boiling flowing liquids in a heat exchanger wherein the flowing liquids is heated in a single heat exchanger to vaporize the liquid. The improvement described here comprises: (a) passing the boiling flowing liquid through a first heat transfer zone of the heat exchanger comprising a surface with a high-convective-heat-transfer characteristic and a higher pressure drop characteristic; and then (b) passing the boiling flowing liquid through a second heat transfer zone of the heat exchanger comprising an essentially open channel with only minor obstructions by secondary surfaces, with an enhanced nucleate boiling heat transfer surface and a lower pressure drop characteristic

  2. Study on boiling heat transfer of high temperature liquid sodium

    International Nuclear Information System (INIS)

    Sakurai, Akira

    1978-01-01

    In the Intitute of Atomic Energy, Kyoto University, fundamental studies on steady state and non-steady state heat flow are underway in connection with reactor design and the safety in a critical accident in a sodium-cooled fast breeder reactor. First, the experimental apparatus for sodium heat transfer and the testing system are described in detail. The apparatus is composed of sodium-purifying section including the plugging meter for measuring purity and cold trap, the pool boiling test section for experimenting natural convection boiling heat transfer, the forced convection boiling test section for experimenting forced convection boiling heat transfer, and gas system. Next, the experimental results by the author and the data obtained so far are compared regarding heat transfer in sodium natural convection and stable nucleating boiling and critical heat flux. The effect of liquid head on a heater on boiling heat transfer coefficient and critical heat flux under the condition of low system pressure in most fundamental pool boiling was elucidated quantitatively, which has been overlooked in previous studies. It was clarified that this is the essentially important problem that can not be overlooked. From this point of view, expressions on heat transfer were also re-investigated. (Wakatsuki, Y.)

  3. Dispersed flow film boiling

    International Nuclear Information System (INIS)

    Andreani, M.; Yadigaroglu, G.

    1989-12-01

    Dispersed flow film boiling is the heat transfer regime that occurs at high void fractions in a heated channel. The way this transfer mode is modelled in the NRC computer codes (RELAP5 and TRAC) and the validity of the assumption and empirical correlations used is discussed. An extensive review of the theoretical and experimental work related with heat transfer to highly dispersed mixtures reveals the basic deficiencies of these models: the investigation refers mostly to the typical conditions of low rate bottom reflooding, since the simulation of this physical situation by the computer codes has often showed poor results. The alternative models that are available in the literature are reviewed, and their merits and limits are highlighted. The modification that could improve the physics of the models implemented in the codes are identified. (author) 13 figs., 123 refs

  4. Advanced boiling water reactor

    International Nuclear Information System (INIS)

    Nishimura, N.; Nakai, H.; Ross, M.A.

    1999-01-01

    In the Boiling Water Reactor (BWR) system, steam generated within the nuclear boiler is sent directly to the main turbine. This direct cycle steam delivery system enables the BWR to have a compact power generation building design. Another feature of the BWR is the inherent safety that results from the negative reactivity coefficient of the steam void in the core. Based on the significant construction and operation experience accumulated on the BWR throughout the world, the ABWR was developed to further improve the BWR characteristics and to achieve higher performance goals. The ABWR adopted 'First of a Kind' type technologies to achieve the desired performance improvements. The Reactor Internal Pump (RIP), Fine Motion Control Rod Drive (FMCRD), Reinforced Concrete Containment Vessel (RCCV), three full divisions of Emergency Core Cooling System (ECCS), integrated digital Instrumentation and Control (I and C), and a high thermal efficiency main steam turbine system were developed and introduced into the ABWR. (author)

  5. Influence of short heat pulses on the helium boiling heat transfer rate

    International Nuclear Information System (INIS)

    Andreev, V.K.; Deev, V.I.; Savin, A.N.; Kutsenko, K.V.

    1987-01-01

    Investigation results on heat transfer in the process of helium boiling on a heated wall under conditions of pulsed heat effect are described. Results of the given study point to one of possible ways of heat exchange intensification in boiling helium by supplying short heat pulse to the heater. Even short-time noncontrolled or incidental increase in the heater capacity during experiment with boiling helium can result in a considerable disagreement of experimental data on heat transfer

  6. Prediction of incipient flow boiling from a uniformly heated surface

    International Nuclear Information System (INIS)

    Yin, S.T.; Abdelmessih, A.H.

    1977-01-01

    This study was undertaken to investigate the phenomenon of liquid superheat during incipient boiling in a uniformly heated forced convection channel. Experimental data were obtained using Freon 11 as the test medium. Based on existing theories, an analytical method was developed for predicting the point of termination of nucleate boiling, observed during a decreasing heat flux process with a nucleation activated surface. The method may also be used to predict the point of boiling incipience, observed during an increasing heat flux process with a non-activated surface; this point does not appear to have been treated analytically in previous work. It can be shown that some of the existing models are special cases of the present formulation

  7. Financial Development and Economic Growth: Known Knowns, Known Unknowns, and Unknown Unknowns

    OpenAIRE

    Ugo Panizza

    2014-01-01

    This paper summarizes the main findings of the literature on the relationship between financial and economic development (the known knowns), points to directions for future research (the known unknowns), and then speculates on the third Rumsfeldian category. The known knowns section organizes the empirical literature on finance and growth into three strands: (i) the traditional literature which established the link between finance and growth; (ii) the new literature which qualified some of th...

  8. Pressure drops in low pressure local boiling

    International Nuclear Information System (INIS)

    Courtaud, Michel; Schleisiek, Karl

    1969-01-01

    For prediction of flow reduction in nuclear research reactors, it was necessary to establish a correlation giving the pressure drop in subcooled boiling for rectangular channels. Measurements of pressure drop on rectangular channel 60 and 90 cm long and with a coolant gap of 1,8 and 3,6 mm were performed in the following range of parameters. -) 3 < pressure at the outlet < 11 bars abs; -) 25 < inlet temperature < 70 deg. C; -) 200 < heat flux < 700 W/cm 2 . It appeared that the usual parameter, relative length in subcooled boiling, was not sufficient to correlate experimental pressure losses on the subcooled boiling length and that there was a supplementary influence of pressure, heat flux and subcooling. With an a dimensional parameter including these terms a correlation was established with an error band of ±10%. With a computer code it was possible to derive the relation giving the overall pressure drop along the channel and to determine the local gradients of pressure drop. These local gradients were then correlated with the above parameter calculated in local conditions. 95 % of the experimental points were computed with an accuracy of ±10% with this correlation of gradients which can be used for non-uniform heated channels. (authors) [fr

  9. Micro transport phenomena during boiling

    CERN Document Server

    Peng, Xiaofeng

    2011-01-01

    "Micro Transport Phenomena During Boiling" reviews the new achievements and contributions in recent investigations at microscale. It presents some original research results and discusses topics at the frontier of thermal and fluid sciences.

  10. Designing towards the unknown

    DEFF Research Database (Denmark)

    Wilde, Danielle; Underwood, Jenny

    2018-01-01

    the research potential to far-ranging possibilities. In this article we unpack the motivations driving the PKI project. We present our mixed-methodology, which entangles textile crafts, design interactions and materiality to shape an embodied enquiry. Our research outcomes are procedural and methodological......New materials with new capabilities demand new ways of approaching design. Destabilising existing methods is crucial to develop new methods. Yet, radical destabilisation—where outcomes remain unknown long enough that new discoveries become possible—is not easy in technology design where complex......, to design towards unknown outcomes, using unknown materials. The impossibility of this task is proving as useful as it is disruptive. At its most potent, it is destabilising expectations, aesthetics and processes. Keeping the researchers, collaborators and participants in a state of unknowing, is opening...

  11. Boiling Suppression in Convective Flow

    International Nuclear Information System (INIS)

    Aounallah, Y.

    2004-01-01

    The development of convective boiling heat transfer correlations and analytical models has almost exclusively been based on measurements of the total heat flux, and therefore on the overall two-phase heat transfer coefficient, when the well-known heat transfer correlations have often assumed additive mechanisms, one for each mode of heat transfer, convection and boiling. While the global performance of such correlations can readily be assessed, the predictive capability of the individual components of the correlation has usually remained elusive. This becomes important when, for example, developing mechanistic models for subcooled void formation based on the partitioning of the wall heat flux into a boiling and a convective component, or when extending a correlation beyond its original range of applications where the preponderance of the heat transfer mechanisms involved can be significantly different. A new examination of existing experimental heat transfer data obtained under fixed hydrodynamic conditions, whereby the local flow conditions are decoupled from the local heat flux, has allowed the unequivocal isolation of the boiling contribution over a broad range of thermodynamic qualities (0 to 0.8) for water at 7 MPa. Boiling suppression, as the quality increases, has consequently been quantified, thus providing valuable new insights on the functionality and contribution of boiling in convective flows. (author)

  12. Experiments of Pool Boiling Performance (Boiling Heat Transfer and Critical Heat Flux) on Designed Micro-Structures

    International Nuclear Information System (INIS)

    Kim, Seol Ha; Kang, Jun Young; Lee, Gi Chol; Kiyofumia, Moriyama; Kim, Moo Hwan; Park, Hyun Sun

    2015-01-01

    In general, the evaluation of the boiling performance mainly focuses on two physical parameters: boiling heat transfer (BHT) and critical heat flux (CHF). In the nuclear power plants, both BHT and CHF contribute the nuclear system efficiency and safety, respectively. In this study, BHT and CHF of the pool boiling on well-organized fabricated structured (micro scaled) surface has been evaluated. As a results, BHT change on microstructured surface shows strongly dependent on Pin-fin effect analysis. In terms of CHF, critical size of micro structure for CHF enhancement has been observed and analyzed based on the capillary wicking effect. In this study, BHT and CHF of the pool boiling on well-organized fabricated structured (micro scaled) surface has been evaluated. As a results, BHT change on microstructured surface shows strongly dependent on the roughness ratio. The extended heat transfer area contributes the boiling heat transfer increase on the structured surface, and its quantitative analysis has been performed. In terms of CHF, the critical size of micro structure for CHF enhancement has been observed and analyzed based on the capillary wicking effect. We suggested a capillary limit to CHF delay for modeling capillary induced liquid inflow through microstructured surfaces. The critical size of the capillary limit on the prepared structured surface, determined by a model, could be reasonable explanation points for the experimental results (optimal size for CHF delay). The present experimental results also showed clearly the critical size (10 - 20 μm) for CHF delay, predicted by capillary limit analysis. This study provides fundamental insight into BHT and CHF enhancement of structured surfaces, and an optimal design guide for the required CHF and boiling heat-transfer performance. Finally, this study can contribute the basic understanding of the boiling on designed microstructure surface, and it also suggest the optimal micro scaled structured surface of boiling

  13. A numerical investigation of the effect of surface wettability on the boiling curve.

    Directory of Open Access Journals (Sweden)

    Hua-Yi Hsu

    Full Text Available Surface wettability is recognized as playing an important role in pool boiling and the corresponding heat transfer curve. In this work, a systematic study of pool boiling heat transfer on smooth surfaces of varying wettability (contact angle range of 5° - 180° has been conducted and reported. Based on numerical simulations, boiling curves are calculated and boiling dynamics in each regime are studied using a volume-of-fluid method with contact angle model. The calculated trends in critical heat flux and Leidenfrost point as functions of surface wettability are obtained and compared with prior experimental and theoretical predictions, giving good agreement. For the first time, the effect of contact angle on the complete boiling curve is shown. It is demonstrated that the simulation methodology can be used for studying pool boiling and related dynamics and providing more physical insights.

  14. The analogy between the bubbling of air into water and nucleate boiling at saturation temperature

    International Nuclear Information System (INIS)

    Wallis, G.B.

    1960-01-01

    This paper presents a case for the separate consideration of the hydrodynamic and thermal aspects of nucleate boiling. It is shown how boiling phenomena may be simulated in detail by the use of porous media to introduce air bubbles into water. Points of similarity and equivalence are described and analysed. (author)

  15. Thermodynamic and Gasdynamic Aspects of a Boiling Liquid Expanding Vapour Explosion

    NARCIS (Netherlands)

    Xie, M.

    2013-01-01

    The risk of explosion due to rupture of a tank filled with pressurized liquefied gas (PLG) is one of the risks to be considered in the context of studies on tunnel safety. When a vessel containing liquid well above its boiling point at normal atmospheric pressure fails catastrophically a Boiling

  16. Recent developments in the modeling of boiling heat transfer mechanisms

    International Nuclear Information System (INIS)

    Podowski, M.Z.

    2009-01-01

    Due to the importance of boiling for the analysis of operation and safety of nuclear reactors, extensive efforts have been made in the past to develop a variety of methods and tools to study boiling heat transfer for various geometries and operating conditions. Recent progress in the computational multiphase fluid dynamics (CMFD) methods of two- and multiphase flows has already started opening up new exciting possibilities for using complete multidimensional models to predict the operation of boiling systems under both steady-state and transient conditions. However, such models still require closure laws and boundary conditions, the accuracy of which determines the predictive capabilities of the overall models and the associated CMFD simulations. Because of the complexity of the underlying physical phenomena, boiling heat transfer has traditionally been quantified using phenomenological models and correlations obtained by curve-fitting extensive experimental data. Since simple heuristic formulae are not capable of capturing the effect of various specific experimental conditions and the associated wide scattering of data points, most existing correlations are characterized by large uncertainties which are typically hidden behind the 'logarithmic scale' format of plots. Furthermore, such an approach provides only limited insight into the local phenomena of: nucleation, heated surface material properties, temperature fluctuations, and others. The objectives of this paper are two-fold. First, the state of the art is reviewed in the area of modeling concepts for both pool boiling and forced-convection (bulk and subcooled) boiling. Then, new results are shown concerning the development of new mechanistic models and their validation against experimental data. It is shown that a combination of the proposed theoretical approach with advanced computational methods leads to a dramatic improvement in both our understanding of the physics of boiling and the predictive

  17. Flow boiling in expanding microchannels

    CERN Document Server

    Alam, Tamanna

    2017-01-01

    This Brief presents an up to date summary of details of the flow boiling heat transfer, pressure drop and instability characteristics; two phase flow patterns of expanding microchannels. Results obtained from the different expanding microscale geometries are presented for comparison and addition to that, comparison with literatures is also performed. Finally, parametric studies are performed and presented in the brief. The findings from this study could help in understanding the complex microscale flow boiling behavior and aid in the design and implementation of reliable compact heat sinks for practical applications.

  18. LMFBR safety and sodium boiling

    Energy Technology Data Exchange (ETDEWEB)

    Hinkle, W.D.; Tschamper, P.M.; Fontana, M.H.; Henry, R.E.; Padilla, A. Jr.

    1978-01-01

    Within the U.S. Fast Breeder Reactor Safety R and D Work Breakdown Structure for Line of Assurance 2, Limit Core Damage, the influence of sodium boiling upon the progression and termination of accidents is being studied in loss of flow, transient overpower, loss of piping integrity, loss of shutdown heat removal system and local fault situations. The pertinent analytical and experimental results of this research to date are surveyed and compared with the requirements for demonstrating the effectiveness of this line of assurance. A discussion of specific technical issues concerned with sodium boiling and the need for future development work is also presented.

  19. Fever of unknown origin

    International Nuclear Information System (INIS)

    Misaki, Takashi; Matsui, Akira; Tanaka, Fumiko; Okuno, Yoshishige; Mitsumori, Michihide; Torizuka, Tatsurou; Dokoh, Shigeharu; Hayakawa, Katsumi; Shimbo, Shin-ichirou

    1990-01-01

    Gallium-67 scintigraphy is a commonly performed imaging modality in deteting pyrogenic lesions in cases of long-standing inexplainable fever. To re-evaluate the significance of gallium imaging in such cases, a retrospective review was made of 56 scans performed in febrile patients in whom sufficient clinical and laboratory findings were obtained. Gallium scans were true positive in 30 patients, false positive in 3, true negative in 19, and false negative in 4. In the group of true positive, local inflammatory lesions were detected in 23 patients with a final diagnosis of lung tuberculosis, urinary tract infection, and inflammatory joint disease. Abnormal gallium accumulation, as shown in the other 7 patients, provided clues to the diagnosis of generalized disorders, such as hematological malignancies (n=3), systemic autoimmune diseases (n=3), and severe infectious mononucleosis (n=one). In the group of false positive, gallium imaging revealed intestinal excretion of gallium in 2 patients and physiological pulmonary hilar accumulation in one. In the true negative group of 19 patients, fever of unknown origin was resolved spontaneously in 12 patients, and with antibiotics and corticosteroids in 2 and 5 patients, respectively. Four patients having false negative scans were finally diagnosed as having urinary tract infection (n=2), bacterial meningitis (n=one), and polyarteritis (n=one). Gallium imaging would remain the technique of choice in searching for origin of unknown fever. It may also be useful for early diagnosis of systemic disease, as well as focal inflammation. (N.K.)

  20. Bubble behaviour and mean diameter in subcooled flow boiling

    Energy Technology Data Exchange (ETDEWEB)

    Zeitoun, O.; Shoukri, M. [McMaster Univ., Hamilton, Ontario (Canada)

    1995-09-01

    Bubble behaviour and mean bubble diameter in subcooled upward flow boiling in a vertical annular channel were investigated under low pressure and mass flux conditions. A high speed video system was used to visualize the subcooled flow boiling phenomenon. The high speed photographic results indicated that, contrary to the common understanding, bubbles tend to detach from the heating surface upstream of the net vapour generation point. Digital image processing technique was used to measure the mean bubble diameter along the subcooled flow boiling region. Data on the axial area-averaged void fraction distributions were also obtained using a single beam gamma densitometer. Effects of the liquid subcooling, applied heat flux and mass flux on the mean bubble size were investigated. A correlation for the mean bubble diameter as a function of the local subcooling, heat flux and mass flux was obtained.

  1. Acceleration of a two-phase flow by boiling, (3)

    International Nuclear Information System (INIS)

    Mori, Yasuo; Hijikata, Kunio; Iwata, Shoichiro

    1976-01-01

    Acceleration of two-component, two-phase flow has been studied, and a method using the volume expansion by boiling for accelerating fluid has been investigated. In this study, the phenomena of atomizing and boiling were separated, and the liquid with low boiling point was injected into water at lower than the saturation temperature, and was atomized. Then, this was mixed with high temperature liquid and was boiled. The uniform buffle flow was produced, and the phenomena were observed with a high speed camera. The process of acceleration and the acceleration performance were compared with the results of theoretical analysis described in the second report. The experiment was carried out with liquid R113, and at first, the mechanism of atomizing was studied. The atomizing was caused when the relative velocity between R113 and water was more than 4 m/s irrespective of water velocity. The distribution of the diameter of fine liquid drops was almost normal distribution. When the fine drops of R113 were mixed with the high temperature water, bubbles were produced, and the production rate showed definite dependence on the degree of overheating. The flow of bubbles was uniform. However, some of R113 did not become bubbles. The efficiency of acceleration was 1.0 which was independent of the degree of overheating. A further problem is to reduce the quantity of the liquid which does not boil. (Kato, T.)

  2. [Badminton--unknown sport].

    Science.gov (United States)

    Zekan-Petrinović, Lidija

    2007-01-01

    For a long time, badminton was considered to be only a slow and light game for children, a game that is played outdoors and is structurally undemanding.Today, it is not an unknown and unrecognised sport, especially after it was included into the Olympics Games in 1992. Badminton is one of the oldest sports in the world. It is suitable for all ages (for children and elderly equally), women and men and even handicapped persons. Beginners can start playing badminton matches early because the basics are learned quickly. As a recreational activity, badminton is very popular in Zagreb. In the last 10 years, a number of halls specialized for badminton or offering badminton as one of available sports activities have been opened in Zagreb. At present, there are over 70 professional playgrounds for training of top contestants but also for the citizens who can play recreational badminton.

  3. Onset of nucleate boiling and onset of fully developed subcooled boiling detection using pressure transducers signals spectral analysis

    International Nuclear Information System (INIS)

    Maprelian, Eduardo; Castro, Alvaro Alvim de; Ting, Daniel Kao Sun

    1999-01-01

    The experimental technique used for detection of subcooled boiling through analysis of the fluctuation contained in pressure transducers signals is presented. The experimental part of this work was conducted at the Institut fuer Kerntechnik und zertoerungsfreie Pruefverfahren von Hannover (IKPH, Germany) in a thermal-hydraulic circuit with one electrically heated rod with annular geometry test section. Piezo resistive pressure sensors are used for onset of nucleate boiling (ONB) and onset of fully developed boiling (OFDB) detection using spectral analysis/signal correlation techniques. Experimental results are interpreted by phenomenological analysis of these two points and compared with existing correlation. The results allows us to conclude that this technique is adequate for the detection and monitoring of the ONB and OFDB. (author)

  4. Research progress on microgravity boiling heat transfer

    International Nuclear Information System (INIS)

    Xiao Zejun; Chen Bingde

    2003-01-01

    Microgravity boiling heat transfer is one of the most basic research topics in aerospace technology, which is important for both scientific research and engineering application. Research progress on microgravity boiling heat transfer is presented, including terrestrial simulation technique, terrestrial simulation experiment, microgravity experiment, and flow boiling heat transfer

  5. Theoretical analysis and experimental research on dispersed-flow boiling heat transfer

    International Nuclear Information System (INIS)

    Yu Zhenwan; Jia Dounan; Li Linjiao; Mu Quanhou

    1989-01-01

    Experiment on dispersed-flow boiling heat transfer at low pressure has been done. The hot patch technique has been used to establish post-dryout conditions. The position of the hot patch can be varied along the test section. The superheated vapor temperatures at different elevations after dryout point are obtained. The experimental data are generally in agreement with the models of predictions of existing nonequilibrium film boiling. A heat transfer model for dispersed-flow boiling heat transfer has been developed. And the model can explain the phenomena of heat transfer near the dryout point. (orig./DG)

  6. Burnout in boiling heat transfer. part I: pool boiling systems

    International Nuclear Information System (INIS)

    Bergles, A.E.

    1977-01-01

    Recent experimental and analytical developments in pool-boiling burnout are reviewed, and results are summarized that clarify the dependence of critical heat flux on heater geometry and fluid properties. New analytical interpretations of burnout are discussed, and the effects of surface condition, aging, acceleration, and transient heating (or cooling) are described. The relation of sound to burnout and new techniques for stabilizing electric heaters at burnout are also considered

  7. Evaluation of correlations of flow boiling heat transfer of R22 in horizontal channels.

    Science.gov (United States)

    Zhou, Zhanru; Fang, Xiande; Li, Dingkun

    2013-01-01

    The calculation of two-phase flow boiling heat transfer of R22 in channels is required in a variety of applications, such as chemical process cooling systems, refrigeration, and air conditioning. A number of correlations for flow boiling heat transfer in channels have been proposed. This work evaluates the existing correlations for flow boiling heat transfer coefficient with 1669 experimental data points of flow boiling heat transfer of R22 collected from 18 published papers. The top two correlations for R22 are those of Liu and Winterton (1991) and Fang (2013), with the mean absolute deviation of 32.7% and 32.8%, respectively. More studies should be carried out to develop better ones. Effects of channel dimension and vapor quality on heat transfer are analyzed, and the results provide valuable information for further research in the correlation of two-phase flow boiling heat transfer of R22 in channels.

  8. Improvement of boiling heat transfer by radiation induced boiling enhancement

    International Nuclear Information System (INIS)

    Imai, Yasuyuki; Okamoto, Koji; Madarame, Haruki; Takamasa, Tomoji

    2003-01-01

    For nuclear reactor systems, the critical heat flux (CHF) data is very important because it limits reactor efficiency. Improvement of CHF requires that the cooling liquid can contact the heating surface, or a high-wettability, highly hydrophilic heating surface, even if a vapor bubble layer is generated on the surface. In our previous study, we confirmed that the surface wettability changed significantly or that highly hydrophilic conditions were achieved, after irradiation of 60 Co gamma ray, by the Radiation Induced Surface Activation (RISA) phenomenon. To delineate the effect of RISA on boiling phenomena, surface wettability in a high-temperature environment and critical heat flux (CHF) of metal oxides irradiated by gamma rays were investigated. A CHF experiment in the pool boiling condition was carried out under atmospheric pressure. The heating test section made of titanium was 0.2 mm in thickness, 3 mm in height, and 60 mm in length. Oxidation of the surface was carried out by plasma jetting for 40 seconds. The test section was irradiated by 60 Co gamma ray with predetermined radiation intensity and period. The CHF of oxidized titanium was improved up to 100 percent after 800 kGy 60 Co gamma ray irradiation. We call this effect Radiation Induced Boiling Enhancement (RIBE). Before we conducted the CHF experiment, contact angles of the test pieces were measured to show the relationship between wettability and CHF. The CHF in the present experiment increases will surface wettability in the same manner as shown by Liaw and Dhir's results. (author)

  9. Experimental Study on Boiling Crisis in Pool Boiling

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Satbyoul; Kim, Hyungdae [Kyung Hee University, Yongin (Korea, Republic of)

    2016-10-15

    They postulated that failure in re-wetting of a dry patch by a cooling liquid is governed by microhydrodynamics near the wall. Chu et al. commonly observed that active coalescence of newly generated bubbles with preexisting bubbles results in a residual dry patch and prevents the complete rewetting of the dry patch, leading to CHF. In this work, to reveal the key physical mechanism of CHF during the rewetting process of a dry patch, dynamics of dry patches and thermal pattern of a boiling surface are simultaneously observed using TR and IR thermometry techniques. Local dynamics of dry patch and thermal pattern on a boiling surface in synchronized manner for both space and time using TR and IR thermometry were measured during pool boiling of water. Observation and quantitative examination of CHF was performed. - The hydrodynamic and thermal behaviors of irreversible dry patch were observed. The dry patches coalesce into a large dry patch and it locally dried out. Due to the failure of liquid rewetting, the dry patch is not completely rewetted, resulting in the burn out at which temperature is -140°C. - When temperature of a dry patch rises beyond the instantaneous nucleation temperature, several bubbles nucleate at the head of the advancing liquid meniscus and prevents the liquid front, and eventually the overheated dry patch remains alive after the departure of the massive bubble.

  10. Improvement of boiling heat transfer by radiation induced boiling enhancement

    International Nuclear Information System (INIS)

    Imai, Y.; Okamoto, K.; Madarame, H.; Takamasa, T.

    2003-01-01

    For nuclear reactor systems, the Critical Heat Flux (CHF) data is very important because it limits reactor efficiency. Improvement of CHF requires that the cooling liquid can contact the heating surface, or a high-wettability, highly hydrophilic heating surface, even if a vapor bubble layer is generated on the surface. In our previous study, we confirmed that the surface wettability changed significantly or that highly hydrophilic conditions were achieved, after irradiation of 60Co gamma ray, by the Radiation Induced Surface Activation (RISA) phenomenon. To delineate the effect of RISA on boiling phenomena, surface wettability in a high-temperature environment and Critical Heat Flux (CHF) of metal oxides irradiated by gamma rays were investigated. A CHF experiment in the pool boiling condition was carried out under atmospheric pressure. The heating test section made of titanium was 0.2mm in thickness, 3mm in height, and 60mm in length. Oxidation of the surfaces was carried out by plasma jetting for 40 seconds. The test section was irradiated by 60Co gamma ray with predetermined radiation intensity and period. The CHF of oxidized titanium was improved up to 100 percent after 800kGy 60Co gamma ray irradiation. We call this effect Radiation Induced Boiling Enhancement (RIBE). Before we conducted the CHF experiment, contact angles of the test pieces were measured to show the relationship between wettability and CHF. The CHF in the present experiment increases with surface wettability in the same manner as shown by Liaw and Dhir's results

  11. Theory of boiling-up jump

    International Nuclear Information System (INIS)

    Labuntsov, D.A.; Avdeev, A.A.

    1981-01-01

    Concept of boiling-up jump representing a zone of intense volume boiling-up separating overtaking flow of overheated metastable liquid from an area of equilibrium flow located below along the flow is introduced. It is shown that boiling-up jump is a shock wave of rarefaction. It is concluded that entropy increment occurs on the jump. Characteristics of adiabatic shock wave curve of boiling- up in ''pressure-specific volume'' coordinates have been found and its form has been investigated. Stability of boiling-up jump has been analyzed as well. On the basis of approach developed analysis is carried out on the shock adiobatic curve of condensation. Concept of boiling-up jump may be applied to the analysis of boiling-up processes when flowing liquid through packings during emergency pressure drop etc [ru

  12. Experimental Investigation of Pool Boiling for Single and Double Heaters Using Printed Circuit Board

    International Nuclear Information System (INIS)

    Han, Won Seok; Lee, Jae Young

    2012-01-01

    Over the past several decades, a considerable number of studies have been conducted on boiling heat transfer in pool boiling. Boiling heat transfer is used in a variety of cooling applications, such as heat exchangers, high powered electronics, and nuclear reactors. Nucleate boiling is one of the most efficient heat transfer mechanisms in boiling regime, but it is imperative that the critical heat flux(CHF) should not be exceeded. CHF phenomenon leads to a dramatic rise in wall temperature, decreased heat transfer, and material failure. Although numerous attempts have been made by researchers to demonstrate the CHF, there is little agreement with the CHF mechanism. In recent years, many researchers have been focusing on surface condition using nanoparticles and surface enhancements, such as a micro structure and artificial cavities, due to enhancement of the CHF point. Cooke and Kandlikar used chips etched with microchannels to prove that these structure has the most enhancement effect. They found that the most efficient boiling surface is with a larger channel size and deep etch. The purpose of this paper is to evaluate the heat transfer and CHF of double heaters on printed circuit board(PCB) in pool boiling. In addition, bubble dynamics of nucleate boiling were observed with high speed observation on single and double heaters using PCB heater

  13. Recension: Mao - The Unknown Story

    DEFF Research Database (Denmark)

    Clausen, Søren

    2005-01-01

    Anmeldelse - kritisk! - til Sveriges førende Kinatidsskrift af Jung Chang & Jon Halliday's sensationelle "Mao - the Unknown Story".......Anmeldelse - kritisk! - til Sveriges førende Kinatidsskrift af Jung Chang & Jon Halliday's sensationelle "Mao - the Unknown Story"....

  14. A look-up table for fully developed film-boiling heat transfer

    International Nuclear Information System (INIS)

    Groeneveld, D.C.; Leung, L.K.H.; Vasic, A.Z.; Guo, Y.J.; Cheng, S.C.

    2003-01-01

    An improved look-up table for film-boiling heat-transfer coefficients has been derived for steam-water flow inside vertical tubes. Compared to earlier versions of the look-up table, the following improvements were made: - The database has been expanded significantly. The present database contains 77,234 film-boiling data points obtained from 36 sources. - The upper limit of the thermodynamic quality range was increased from 1.2 to 2.0. The wider range was needed as non-equilibrium effects at low flows can extend well beyond the point where the thermodynamic quality equals unity. - The surface heat flux has been replaced by the surface temperature as an independent parameter. - The new look-up table is based only on fully developed film-boiling data. - The table entries at flow conditions for which no data are available is based on the best of five different film-boiling prediction methods. The new film-boiling look-up table predicts the database for fully developed film-boiling data with an overall rms error in heat-transfer coefficient of 10.56% and an average error of 1.71%. A comparison of the prediction accuracy of the look-up table with other leading film-boiling prediction methods shows that the look-up table results in a significant improvement in prediction accuracy

  15. Boiling transition and the possibility of spontaneous nucleation under high subcooling and high mass flux density flow in a tube

    International Nuclear Information System (INIS)

    Fukuyama, Y.; Kuriyama, T.; Hirata, M.

    1986-01-01

    Boiling transition and inverted annular heat transfer for R-113 have been investigated experimentally in a horizontal tube of 1.2 X 10/sup -3/ meter inner diameter with heating length over inner diameter ratio of 50. Experiments cover a high mass flux density range, a high local subcooling range and a wide local pressure range. Heat transfer characteristics were obtained by using heat flux control steady-state apparatus. Film boiling treated here is limited to the case of inverted annular heat transfer with very thin vapor film, on the order of 10/sup -6/ meter. Moreover, film boiling region is always limited to a certain downstream part, since the system has a pressure gradient along the flow direction. Discussions are presented on the parametric trends of boiling heat transfer characteristic curves and characteristic points. The possible existence is suggested of a spontaneous nucleation control surface boiling phenomena. And boiling transition heat flux and inverted annular heat transfer were correlated

  16. Boiling Patterns of Iso-asymmetric Nuclear Matter

    International Nuclear Information System (INIS)

    Tõke, Jan

    2013-01-01

    Limits of thermodynamic metastability of self-bound neutron-rich nuclear matter are explored within the framework of microcanonical thermodynamics of interacting Fermi Gas model in Thomas-Fermi approximation. It is found that as the excitation energy per nucleon of the system is increased beyond a certain limiting value, the system loses metastability and becomes unstable with respect to joint fluctuations in excitation energy per nucleon and in isospin per nucleon. As a result, part of the system is forced to boil off in a form of iso-rich non-equilibrated vapors. Left behind in such a process, identifiable with distillation, is a more iso-symmetric metastable residue at a temperature characteristic of its residual isospin content. With a progressing increase in the initial excitation energy per nucleon, more neutron-rich matter is boiled off and a more iso-symmetric residue is left behind with progressively increasing characteristic temperature. Eventually, when all excess neutrons are shed, the system boils uniformly with a further supply of excitation energy, leaving behind a smaller and smaller residue at a characteristic boiling-point temperature of iso-symmetric matter.

  17. Acceleration of two-phase flow by boiling, 1

    International Nuclear Information System (INIS)

    Hara, Toshitsugu; Uchida, Motokazu; Mitani, Akio; Mori, Yasuo; Hijikata, Kunio.

    1975-01-01

    This paper reports on the experimental results concerning the acceleration mechanism of the liquid used for liquid metal magnetohydrodynamic power generation. The experiment simulated two-component flow by injecting low boiling point liquid (R113) which is not soluble in main high temperature flow (hot water). From the boiling of this two component flow, the relations among the acceleration performance of the liquid, the number and frequency of bubbles generated from liquid drops, and the growth velocity of the bubbles have been investigated. All the injected liquid drops did not necessarily boil even if they were heated above the saturation temperature. The probability of boiling of the liquid drops becomes larger as the temperature difference between two liquids becomes larger. The bubble generation frequency distributed around the mean elapsed time of the liquid drops. The larger temperature difference between two liquids presents sharper distribution. The radius of bubbles increased proportionally to the two-thirds power of the elapsed time and also to two-thirds power of the temperature difference. The liquid acceleration performance by bubbles increased as the bubble generation frequency distribution becomes sharpe. (Tai, I.)

  18. Gamma heated subassembly for sodium boiling experiments

    International Nuclear Information System (INIS)

    Artus, S.C.

    1975-01-01

    The design of a system to boil sodium in an LMFBR is examined. This design should be regarded as a first step in a series of boiling experiments. The reactor chosen for the design of the boiling apparatus is the Experimental Breeder Reactor-II (EBR-II), located at the National Reactor Testing Station in Idaho. Criteria broadly classified as design objectives and design requirements are discussed

  19. Gamma heated subassembly for sodium boiling experiments

    Energy Technology Data Exchange (ETDEWEB)

    Artus, S.C.

    1975-01-01

    The design of a system to boil sodium in an LMFBR is examined. This design should be regarded as a first step in a series of boiling experiments. The reactor chosen for the design of the boiling apparatus is the Experimental Breeder Reactor-II (EBR-II), located at the National Reactor Testing Station in Idaho. Criteria broadly classified as design objectives and design requirements are discussed.

  20. Instability in flow boiling in microchannels

    CERN Document Server

    Saha, Sujoy Kumar

    2016-01-01

    This Brief addresses the phenomena of instability in flow boiling in microchannels occurring in high heat flux electronic cooling. A companion edition in the SpringerBrief Subseries on Thermal Engineering and Applied Science to “Critical Heat Flux in Flow Boiling in Microchannels,” and "Heat Transfer and Pressure Drop in Flow Boiling in Microchannels,"by the same author team, this volume is idea for professionals, researchers, and graduate students concerned with electronic cooling.

  1. Preliminary results from film boiling destabilisation experiments

    International Nuclear Information System (INIS)

    Naylor, P.

    1984-05-01

    A series of experiments to investigate the triggered destabilisation of film boiling has been undertaken. Film boiling was established on a polished brass rod immersed in water and the effects of various triggers were investigated. Preliminary results are presented and two thresholds have been observed: an impulse threshold below which triggered destabilisation will not occur and a thermal threshold above which film boiling will re-establish following triggered destabilisation. (author)

  2. Calculation of limit cycle amplitudes in commercial boiling water reactors

    International Nuclear Information System (INIS)

    March-Leuba, J.; Perez, R.B.; Cacuci, D.G.

    1984-01-01

    This paper describes an investigation of the dynamic behavior of a boiling water reactor (BWR) in the nonlinear region corresponding to linearly unstable conditions. A nonlinear model of a typical BWR was developed. The equations underlying this model represent a one-dimensional void reactivity feedback, point kinetics with a single delayed neutron group, fuel behavior, and recirculation loop dynamics (described by a single-node integral momentum equation)

  3. Enabling Highly Effective Boiling from Superhydrophobic Surfaces

    Science.gov (United States)

    Allred, Taylor P.; Weibel, Justin A.; Garimella, Suresh V.

    2018-04-01

    A variety of industrial applications such as power generation, water distillation, and high-density cooling rely on heat transfer processes involving boiling. Enhancements to the boiling process can improve the energy efficiency and performance across multiple industries. Highly wetting textured surfaces have shown promise in boiling applications since capillary wicking increases the maximum heat flux that can be dissipated. Conversely, highly nonwetting textured (superhydrophobic) surfaces have been largely dismissed for these applications as they have been shown to promote formation of an insulating vapor film that greatly diminishes heat transfer efficiency. The current Letter shows that boiling from a superhydrophobic surface in an initial Wenzel state, in which the surface texture is infiltrated with liquid, results in remarkably low surface superheat with nucleate boiling sustained up to a critical heat flux typical of hydrophilic wetting surfaces, and thus upends this conventional wisdom. Two distinct boiling behaviors are demonstrated on both micro- and nanostructured superhydrophobic surfaces based on the initial wetting state. For an initial surface condition in which vapor occupies the interstices of the surface texture (Cassie-Baxter state), premature film boiling occurs, as has been commonly observed in the literature. However, if the surface texture is infiltrated with liquid (Wenzel state) prior to boiling, drastically improved thermal performance is observed; in this wetting state, the three-phase contact line is pinned during vapor bubble growth, which prevents the development of a vapor film over the surface and maintains efficient nucleate boiling behavior.

  4. Pool Boiling of Hydrocarbon Mixtures on Water

    Energy Technology Data Exchange (ETDEWEB)

    Boee, R.

    1996-09-01

    In maritime transport of liquefied natural gas (LNG) there is a risk of spilling cryogenic liquid onto water. The present doctoral thesis discusses transient boiling experiments in which liquid hydrocarbons were poured onto water and left to boil off. Composition changes during boiling are believed to be connected with the initiation of rapid phase transition in LNG spilled on water. 64 experimental runs were carried out, 14 using pure liquid methane, 36 using methane-ethane, and 14 using methane-propane binary mixtures of different composition. The water surface was open to the atmosphere and covered an area of 200 cm{sup 2} at 25 - 40{sup o}C. The heat flux was obtained by monitoring the change of mass vs time. The void fraction in the boiling layer was measured with a gamma densitometer, and a method for adapting this measurement concept to the case of a boiling cryogenic liquid mixture is suggested. Significant differences in the boil-off characteristics between pure methane and binary mixtures revealed by previous studies are confirmed. Pure methane is in film boiling, whereas the mixtures appear to enter the transitional boiling regime with only small amounts of the second component added. The results indicate that the common assumption that LNG will be in film boiling on water because of the high temperature difference, may be questioned. Comparison with previous work shows that at this small scale the results are influenced by the experimental apparatus and procedures. 66 refs., 76 figs., 28 tabs.

  5. Development and testing of high-performance fuel pin simulators for boiling experiments in liquid metal flow

    International Nuclear Information System (INIS)

    Casal, V.

    1976-01-01

    There are unknown phenomena, about local and integral boiling events in the core of sodium cooled fast breeder reactors. Therefore at GfK depend out-of-pile boiling experiments have been performed using electrically heated dummies of fuel element bundles. The success of these tests and the amount of information derived from them depend exclusively on the successful simulation of the fuel pins by electrically heated rods as regards the essential physical properties. The report deals with the development and testing of heater rods for sodium boiling experiments in bundles including up to 91 heated pins

  6. Boils

    Science.gov (United States)

    ... of Giving Governance By-Laws Committees Committee Service Conflict of Interest Policy Meeting Minutes Archive History Mission ... the normal, harmless bacteria we all carry. The source may be a family member, a pet or ...

  7. Experiment study of the onset of nucleate boiling in narrow annular channel

    International Nuclear Information System (INIS)

    Wang Jiaqiang; Jia Dounan; Guo Yun

    2004-01-01

    The onset of nucleate boiling (ONB) was investigated for water flowing in the annular duct which clearance is 1.2 mm at the pressure range from 1.0 to 4.5 MPa. The effect on ONB of some thermodynamics parameters was also analyzed. The available data dealing with sub-cooled boiling initial point of water in narrow annular clearance duct are analyzed by using regression method. The new developed correlation was obtained by considering the bilateral heating factor

  8. Experimental study and modelling of transient boiling

    International Nuclear Information System (INIS)

    Baudin, Nicolas

    2015-01-01

    A failure in the control system of the power of a nuclear reactor can lead to a Reactivity Initiated Accident in a nuclear power plant. Then, a power peak occurs in some fuel rods, high enough to lead to the coolant film boiling. It leads to an important increase of the temperature of the rod. The possible risk of the clad failure is a matter of interest for the Institut de Radioprotection et de Securite Nucleaire. The transient boiling heat transfer is not yet understood and modelled. An experimental set-up has been built at the Institut de Mecanique des Fluides de Toulouse (IMFT). Subcooled HFE-7000 flows vertically upward in a semi annulus test section. The inner half cylinder simulates the clad and is made of a stainless steel foil, heated by Joule effect. Its temperature is measured by an infrared camera, coupled with a high speed camera for the visualization of the flow topology. The whole boiling curve is studied in steady state and transient regimes: convection, onset of boiling, nucleate boiling, critical heat flux, film boiling and rewetting. The steady state heat transfers are well modelled by literature correlations. Models are suggested for the transient heat flux: the convection and nucleate boiling evolutions are self-similar during a power step. This observation allows to model more complex evolutions, as temperature ramps. The transient Hsu model well represents the onset of nucleate boiling. When the intensity of the power step increases, the film boiling begins at the same temperature but with an increasing heat flux. For power ramps, the critical heat flux decreases while the corresponding temperature increases with the heating rate. When the wall is heated, the film boiling heat transfer is higher than in steady state but it is not understood. A two-fluid model well simulates the cooling film boiling and the rewetting. (author)

  9. Status of the advanced boiling water reactor and simplified boiling water reactor

    International Nuclear Information System (INIS)

    Smith, P.F.

    1992-01-01

    This paper reports that the excess of U.S. electrical generating capacity which has existed for the past 15 years is coming to an end as we enter the 1990s. Environmental and energy security issues associated with fossil fuels are kindling renewed interest in the nuclear option. The importance of these issues are underscored by the National Energy Strategy (NES) which calls for actions which are designed to ensure that the nuclear power option is available to utilities. Utilities, utility associations, and nuclear suppliers, under the leadership of the Nuclear Power Oversight Committee (NPOC), have jointly developed a 14 point strategic plan aimed at establishing a predictable regulatory environment, standardized and pre-licensed Advanced Light Water Reactor (ALWR) nuclear plants, resolving the long-term waste management issue, and other enabling conditions. GE is participating in this national effort and GE's family of advanced nuclear power plants feature two new reactor designs, developed on a common technology base, aimed at providing a new generation of nuclear plants to provide safe, clean, economical electricity to the world's utilities in the 1990s and beyond. Together, the large-size (1300 MWe) Advanced Boiling Water Reactor (ABWR) and the small-size (600 MWe) Simplified Boiling Water Reactor (SBWR) are innovative, near-term candidates for expanding electrical generating capacity in the U.S. and worldwide. Both possess the features necessary to do so safely, reliably, and economically

  10. CHF enhancement in pool boiling of nanofluid : effect of nanoparticle-coating on heating surface

    International Nuclear Information System (INIS)

    Kim, Hyung Dae; Kim, Moo Hwan

    2005-01-01

    Recently researches to enhance CHF using the nanofluid, a new kind of heat transfer fluid in which nano-particles are uniformly and stably dispersed, were attempted. You showed that nanofluid, containing only 0.005 g/l of alumina nanoparticle, make the dramatic increase (∼200%) in CHF in pool boiling at the pressure of 2.89 psia (Tsat=60 .deg. C). They concluded that the abnormal CHF enhancement of nanofluid cannot be explained with any existing models of CHF. Vassallo performed the experimental studies on pool boiling heat transfer in water-SiO 2 nanofluid under atmospheric pressure. They showed a remarkable increase in CHF for nanofluid and also found that the stable film boiling at temperatures close to the melting point of the boiling surface are achievable with the nanofluid. After the experiments, they observed that the formation of the thin silica coating on the wire heater was occurred. This paper focuses on the experimental study of the effect of nanoparticle-coating on CHF enhancement in pool boiling of nanofluid. In this regard, pool boiling CHF values are measured and compared (a) from bare heater immersed in nanofluid and (b) from nanoparticle-coated heater, which is generated by deposition of suspended nanoparticles during pool boiling of nanofluid, immersed in pure water, and (c) from nanoparticle-coated heater immersed in nanofluid. And the microstructure of each heating surface is investigated from photography taken using SEM

  11. Turbulent subcooled boiling flow visualization experiments through a rectangular channel

    International Nuclear Information System (INIS)

    Estrada-Perez, Carlos E.; Dominguez-Ontiveros, Elvis E.; Hassan, Yassin A.

    2008-01-01

    Full text of publication follows: Proper characterization of subcooled boiling flow is of importance in many applications. It is of exceptional significance in the development of empirical models for the design of nuclear reactors, steam generators, and refrigeration systems. Most of these models are based on experimental studies that share the characteristics of utilizing point measurement probes with high temporal resolution, e.g. Hot Film Anemometry (HFA), Laser Doppler Velocimetry (LDV), and Fiber Optic Probes (FOP). However there appears to be a scarcity of experimental studies that can capture instantaneous whole-field measurements with a fast time response. Particle Tracking Velocimetry (PTV) may be used to overcome the limitations associated with point measurement techniques. PTV is a whole-flow-field technique providing instantaneous velocity vectors capable of high spatial and temporal resolution. PTV is also an exceptional tool for the analysis of boiling flow due to its ability to differentiate between the gas and liquid phases and subsequently deliver independent velocity fields associated with each phase. In this work, using PTV, liquid velocity fields of a turbulent subcooled boiling flow in a rectangular channel were successfully obtained. The present results agree with similar studies that used point measurement probes. However, the present study provides additional information; not only averaged profiles of the velocity components were obtained, instantaneous 2-D velocity fields were also readily available with a high temporal and spatial resolution. Analysis of fluctuating velocities, Reynolds stresses, and higher order statistics of the flow are presented. This work is an attempt to enrich the database already collected on turbulent subcooled boiling flow, with the hope that it will be useful in turbulence modeling efforts. (authors)

  12. A study on boiling heat transfer with mixture boiling from vertical rod fin

    International Nuclear Information System (INIS)

    Kim, M.C.

    1981-01-01

    The purpose of the present study is concerned with the boiling characteristic of variations of the length-diameter ratio on the heat transfer rate where the nucleate boiling and natural convection occurred simultaneously. Circular fins were made with copper rod 32 mm in diameter, and those surfaces were mirror finished. The length-diameter ratio was varied 1 to 6. As a boiling liquid, the distilled water was used in this experiment. The results of this experiment were obtained as below. 1) From the observations, it was confirmed that nucleate boiling and natural convection occurred simultaneously. 2) As the length-diameter ratio increased, the boiling heat transfer rate also augmented. (author)

  13. Signal processing for boiling noise detection

    International Nuclear Information System (INIS)

    Ledwidge, T.J.; Black, J.L.

    1989-01-01

    The present paper deals with investigations of acoustic signals from a boiling experiment performed on the KNS I loop at KfK Karlsruhe. Signals have been analysed in frequency as well as in time domain. Signal characteristics successfully used to detect the boiling process have been found in time domain. (author). 6 refs, figs

  14. Feedback stabilization of transition boiling states

    NARCIS (Netherlands)

    Gils, van R.W.; Speetjens, M.F.M.; Nijmeijer, H.

    2010-01-01

    A nonlinear one-dimensional heat-transfer model for pool boiling systems is considered. The model involves only the temperature distribution within the heater and models the heat exchange with the boiling medium via a nonlinear boundary condition imposed at the fluid-heater interface. This compact

  15. Study on calculation model of onset of nucleate boiling in narrow channels

    International Nuclear Information System (INIS)

    Zhang Ming; Zhou Tao; Sheng Cheng; Fu Tao; Xiao Zejun

    2011-01-01

    In the reactor engineering, narrow channels was used widely for its high power density, exceptional heat transfer and actual engineering requirements. The point of Onset of Nucleate Boiling (ONB) is the key point of boiling heat transfer in narrow channels. The point of ONB can directly influence the following flow and heat transfer characteristics in the reactor. Due to the special structure and complexity flow, the point of ONB in narrow channels are effected by many factors, which characteristics are not understood completely yet. Using B and R model, Su Shun-yu model, Pan Liang-ming model and Yang Rui-chang model, the heat flux of onset of nucleate boiling is compared and analyzed by taking water as the medium . And then the relationships of the heat flux with pressure, mass flow and wall temperature are obtained. Based on the differences of each model, the mechanisms for the main influence factors are suggested. (authors)

  16. Heat-transfer correlations for natural convection boiling

    International Nuclear Information System (INIS)

    Stephan, K.; Abdelsalam, M.

    1980-01-01

    To-date there exists no comprehensive theory allowing the prediction of heat-transfer coefficients in natural convection boiling, in spite of the many efforts made in this field. In order to establish correlations with wide application, the methods of regression analysis were applied to the nearly 500 existing experimental data points for natural convection boiling heat transfer. As demonstrated by the analysis, these data can best be represented by subdividing the substances into four groups (water, hydrocarbons, cryogenic fluids and refrigerants) and employing a different set of dimensionless numbers for each group of substances, because certain dimensionless numbers important for one group of substances are unimportant to another. One equation valid for all substances could be built up, but its accuracy would be less than that obtained for the individual correlations without adding undesirable complexity. (author)

  17. Overview and Computational Approach for Studying the Physicochemical Characterization of High-Boiling-Point Petroleum Fractions (350°C+ Approche informatique pour l’étude des propriétés physico-chimiques de fraction pétrolière lourde (350°C+

    Directory of Open Access Journals (Sweden)

    Plazas Tovar L.

    2012-06-01

    Full Text Available The processing and upgrading of high-boilingpoint petroleum fractions, containing a large number of components from different groups (paraffins, olefins, naphthenes, aromatics require an in-depth evaluation. In order to characterize them, their thermodynamic and thermophysical properties must be determined. This work presents a computational approach based on the breakdown of the petroleum fraction into pseudocomponents defined by a trial-and-error exercise in which the mass- and molar-balance errors were minimized. Cases studies are illustrated to three heavy residues 400°C+ from “W, Y and Z” crude oil. This procedure requires the boiling point distillation curve and the density of the whole fraction as the input bulk properties. The methods proposed according to available correlations in the literature and standard industrial methods were mainly used to estimate properties that include the basic properties (normal boiling point, density and Watson factor characterization, the thermodynamic properties (molar mass and critical properties and the thermophysical and transport properties (kinematic viscosity, thermal conductivity, specific heat capacity and vapor pressure. The methodology developed has shown to be a useful tool for calculating a remarkably broad range of physicochemical properties of high-boiling-point petroleum fractions with good accuracy when the bulk properties are available, since computational approach gave an overall absolute deviation lower than 10% when compared with the experimental results obtained in the research laboratories LDPS/LOPCA/UNICAMP. Le traitement et la valorisation des fractions pétrolières lourdes nécessitent une étude très détaillée dans la mesure où le pétrole contient un très grand nombre de composants différents (paraffines, oléfines, naphtènes, arômes. Afin de caractériser les fractions, il est indispensable de déterminer les propriétés thermodynamiques et thermophysiques des

  18. Boiling crisis as inhibition of bubble detachment by the vapor recoil force

    International Nuclear Information System (INIS)

    Nikolayev, V.S.; Beysens, D.; Garrabos, Y.

    2004-01-01

    Boiling crisis is a transition between nucleate and film boiling. In this communication we present a physical model of the boiling crisis based on the vapor recoil effect. Our numerical simulations of the thermally controlled bubble growth at high heat fluxes show how the bubble begins to spread over the heater thus forming a germ for the vapor film. The vapor recoil force not only causes the vapor spreading, it also creates a strong adhesion to the heater that prevents the bubble departure, thus favoring the further bubble spreading. Near the liquid-gas critical point, the bubble growth is very slow and allows the kinetics of the bubble spreading to be observed. Since the surface tension is very small in this regime, only microgravity conditions can preserve a convex bubble shape. Under such conditions, we observed an increase of the apparent contact angle and spreading of the dry spot under the bubble, thus confirming our model of the boiling crisis. (authors)

  19. Mechanism of flow choking at shock boiling-up of a liquid

    International Nuclear Information System (INIS)

    Labuntsov, D.A.; Avdeev, A.A.

    1982-01-01

    The theory of the outflow of a saturated or non-heated liquid with thermodynamic parameters reaching the critical point from diaphragms and short nozzles has been developed basing on the concept of the boiling-up jump. Three characteristic flow conditions have been revealed: hydraulic, conditions when boiling-up jump is formed, and conditions of radial expansion of the flow. If the initial flow's parameters are low, the hydraulic conditions are realized. The expansion of the flow-passage cross-section of flow small jets by the final value takes place when the spinoidal overheating is reached near the exit cut-off at a small distance equal to the thickness of the boiling-up zone; and that causes the intensive jet dispersion in the radial direction. In case of overheatings close to the thermodynamic critical point, a boiling-up jump is formed inside the channel. The mechanism of flow choking has been analyzed; recommendations on calculation of the critical flow rate of a boiling-up liquid are given. The studied mechanism of flow choking at shock boiling-up of the flow permits to draw a rather detailed physical picture of the phenomenon and to give an explanation of the majority of experimentally-observed effects

  20. Boiling water reactor fuel bundle

    International Nuclear Information System (INIS)

    Weitzberg, A.

    1986-01-01

    A method is described of compensating, without the use of control rods or burnable poisons for power shaping, for reduced moderation of neutrons in an uppermost section of the active core of a boiling water nuclear reactor containing a plurality of elongated fuel rods vertically oriented therein, the fuel rods having nuclear fuel therein, the fuel rods being cooled by water pressurized such that boiling thereof occurs. The method consists of: replacing all of the nuclear fuel in a portion of only the upper half of first predetermined ones of the fuel rods with a solid moderator material of zirconium hydride so that the fuel and the moderator material are axially distributed in the predetermined ones of the fuel rods in an asymmetrical manner relative to a plane through the axial midpoint of each rod and perpendicular to the axis of the rod; placing the moderator material in the first predetermined ones of the fuel rods in respective sealed internal cladding tubes, which are separate from respective external cladding tubes of the first predetermined ones of the fuel rods, to prevent interaction between the moderator material and the external cladding tube of each of the first predetermined ones of the fuel rods; and wherein the number of the first predetermined ones of the fuel rods is at least thirty, and further comprising the steps of: replacing with the moderator material all of the fuel in the upper quarter of each of the at least thirty rods; and also replacing with the moderator material all of the fuel in the adjacent lower quarter of at least sixteen of the at least thirty rods

  1. Our Educational Melting Pot: Have We Reached the Boiling Point?

    Science.gov (United States)

    Lauderdale, Katherine Lynn, Ed.; Bonilla, Carlos A., Ed.

    The articles and excerpts in this collection illustrate the complexity of the melting pot concept. Multiculturalism has become a watchword in American life and education, but it may be that in trying to atone for past transgressions educators and others are simply going too far. These essays illustrate some of the problems of a multicultural…

  2. On the Boiling Points of the Alkyl Halides.

    Science.gov (United States)

    Correia, John

    1988-01-01

    Discusses the variety of explanations in organic chemistry textbooks of a physical property of organic compounds. Focuses on those concepts explaining attractive forces between molecules. Concludes that induction interactions play a major role in alkyl halides and other polar organic molecules and should be given wider exposure in chemistry texts.…

  3. Apparatus for pumping liquids at or below the boiling point

    Science.gov (United States)

    Bingham, Dennis N.

    2002-01-01

    A pump comprises a housing having an inlet and an outlet. An impeller assembly mounted for rotation within the housing includes a first impeller piece having a first mating surface thereon and a second impeller piece having a second mating surface therein. The second mating surface of the second impeller piece includes at least one groove therein so that at least one flow channel is defined between the groove and the first mating surface of the first impeller piece. A drive system operatively associated with the impeller assembly rotates the impeller assembly within the housing.

  4. Predictions of void fraction in convective subcooled boiling channels using a one-dimensional two-fluid model

    International Nuclear Information System (INIS)

    Hu, Lin-Wen; Pan, Chin

    1995-01-01

    Subcooled nucleate boiling under forced convective conditions is of considerable interest for many disciplines, such as nuclear reactor technology and other energy conversion systems, due to its high heat transfer capability. For such applications, the liquid entering the heating channel is usually in a subcooled state and nucleate boiling is initiated at some distance from the entrance. Further downstream from the boiling incipient point, the bubbles may depart from the heating wall. The point of first bubble departure is called the net vapor generation (NVG) point, because after this point, significant void is present in the subcooled liquid and the void fraction rises very rapidly even though the bulk liquid may still be in a highly subcooled state. The presence of vapor bubbles, which are at a temperature near the saturation temperature, in a subcooled liquid shows the existence of thermal nonequilibrium, which complicates the analysis of this boiling regime. 13 refs., 4 figs

  5. Unknown foundation determination for scour.

    Science.gov (United States)

    2012-04-01

    Unknown foundations affect about 9,000 bridges in Texas. For bridges over rivers, this creates a problem : regarding scour decisions as the calculated scour depth cannot be compared to the foundation depth, and a : very conservative costly approach m...

  6. Heat transfer enhancement on nucleate boiling

    International Nuclear Information System (INIS)

    Zhuang, M.; Guibai, L.

    1990-01-01

    This paper reports on enhancement of nucleate boiling heat transfer with additives that was investigated experimentally. More than fifteen kinds of additives were chosen and tested. Eight kinds of effective additives which can enhance nucleate boiling heat transfer were selected. Experimental results showed that boiling heat transfer coefficient of water was increased by 1 to 5 times and that of R-113 was increased by 1 to 4 times when trace amount additives were put in the two boiling liquids. There exist optimum concentrations for the additives, respectively, which can enhance nucleate boiling heat transfer rate best. In order to analyze the mechanism of the enhancement of boiling heat transfer with additives, the surface tension and the bubble departure diameter were measured. The nucleation sites were investigated by use of high-speed photograph. Experimental results showed that nucleation sites increase with additive amount increasing and get maximum. Increasing nucleation sites is one of the most important reason why nucleate boiling heat transfer can be enhanced with additives

  7. Boiling Heat Transfer to Halogenated Hydrocarbon Refrigerants

    Science.gov (United States)

    Yoshida, Suguru; Fujita, Yasunobu

    The current state of knowledge on heat transfer to boiling refrigerants (halogenated hydrocarbons) in a pool and flowing inside a horizontal tube is reviewed with an emphasis on information relevant to the design of refrigerant evaporators, and some recommendations are made for future research. The review covers two-phase flow pattern, heat transfer characteristics, correlation of heat transfer coefficient, influence of oil, heat transfer augmentation, boiling from tube-bundle, influence of return bend, burnout heat flux, film boiling, dryout and post-dryout heat transfer.

  8. Experimental investigations of heat transfer during sodium boiling in fuel assembly model in justification of advanced fast reactor safety

    International Nuclear Information System (INIS)

    Khafizov, R.R.; Poplavskij, V.M.; Rachkov, V.I.; Sorokin, A.P.; Ashurko, Yu.M.; Volkov, A.V.; Ivanov, E.F.; Privezentsev, V.V.

    2015-01-01

    The experimental facility is built up and investigation of heat exchange during sodium boiling in simulated fast reactor core assembly in conditions of natural and forced circulation with sodium plenum and upper end shield model are conducted. It is shown that in the presence of sodium plenum there is possibility to provide long-term cooling of fuel assembly when heat flux density on the surface of fuel element simulator up to 140 and 170 kW/m 2 in conditions of natural and forced circulation, respectively. The obtained data is used for improving calculational model of sodium boiling process in fuel assembly and calculational code COREMELT verification. It is pointed out that heat transfer coefficients in the case of liquid metal boiling in fuel assemblies are slightly over the ones in the case of liquid metals boiling in pipes and pool boiling [ru

  9. Stability of film boiling on inclined plates and spheres

    Science.gov (United States)

    Aursand, Eskil; Hammer, Morten; Munkejord, Svend Tollak; Müller, Bernhard; Ytrehus, Tor

    2017-11-01

    In film boiling, a continuous sub-millimeter vapor film forms between a liquid and a heated surface, insulating the two from each other. While quite accurate steady state solutions are readily obtained, the intermediate Reynolds numbers can make transient analysis challenging. The present work is a theoretical study of film boiling instabilities. We study the formation of travelling waves that are a combination of Kelvin-Helmholtz and the Rayleigh-Taylor instabilities. In particular, we study how the nature of this process depends on the Reynolds number, the Bond number, and the inclination of the submerged heated plate. In addition we extend the analysis to the case of a submerged heated sphere. Modelling of the transient dynamics of such films is important for answering practical questions such as how instabilities affect the overall heat transfer, and whether they can lead to complete film boiling collapse (Leidenfrost point). This work has been financed under the MAROFF program. We acknowledge the Research Council of Norway (244076/O80) and The Gas Technology Centre NTNU-SINTEF (GTS) for support.

  10. Boiling and quenching heat transfer advancement by nanoscale surface modification.

    Science.gov (United States)

    Hu, Hong; Xu, Cheng; Zhao, Yang; Ziegler, Kirk J; Chung, J N

    2017-07-21

    All power production, refrigeration, and advanced electronic systems depend on efficient heat transfer mechanisms for achieving high power density and best system efficiency. Breakthrough advancement in boiling and quenching phase-change heat transfer processes by nanoscale surface texturing can lead to higher energy transfer efficiencies, substantial energy savings, and global reduction in greenhouse gas emissions. This paper reports breakthrough advancements on both fronts of boiling and quenching. The critical heat flux (CHF) in boiling and the Leidenfrost point temperature (LPT) in quenching are the bottlenecks to the heat transfer advancements. As compared to a conventional aluminum surface, the current research reports a substantial enhancement of the CHF by 112% and an increase of the LPT by 40 K using an aluminum surface with anodized aluminum oxide (AAO) nanoporous texture finish. These heat transfer enhancements imply that the power density would increase by more than 100% and the quenching efficiency would be raised by 33%. A theory that links the nucleation potential of the surface to heat transfer rates has been developed and it successfully explains the current finding by revealing that the heat transfer modification and enhancement are mainly attributed to the superhydrophilic surface property and excessive nanoscale nucleation sites created by the nanoporous surface.

  11. Velocity field measurement in micro-bubble emission boiling

    International Nuclear Information System (INIS)

    Ito, Daisuke; Saito, Yasushi; Natazuka, Jun

    2017-01-01

    Liquid inlet behavior to a heat surface in micro-bubble emission boiling (MEB) was investigated by flow measurement using particle image velocimetry (PIV). Subcooled pool boiling experiments under atmospheric pressure were carried out using a heat surface with a diameter of 10 mm. An upper end of a heater block made of copper was used as the heat surface. Working fluid was the deionized water and the subcooling was varied from 40 K to 70 K. Three K-type thermocouples were installed in the copper block to measure the temperature gradient, and the heat flux and wall superheat were estimated from these temperature data to make a boiling curve. The flow visualization around the heat surface was carried out using a high-speed video camera and a light sheet. The microbubbles generated in the MEB were used as tracer particles and the velocity field was obtained by PIV analysis of the acquired image sequence. As a result, the higher heat fluxes than the critical heat flux could be obtained in the MEB region. In addition, the distribution characteristics of the velocity in MEB region were studied using the PIV results and the location of the stagnation point in the velocity fields was discussed. (author)

  12. Physical modeling of the boiling crisis: theory and experiment

    International Nuclear Information System (INIS)

    Nikolayev, Vadim; Beysens, Daniel; Chatain, Denis

    2008-01-01

    Full text of publication follows: In this presentation we describe a physical approach to the boiling crisis called also the critical heat flux (CHF) phenomenon. This approach is based on the hypothesis that the boiling crisis is triggered by spreading of individual vapor bubbles over the heater or equivalently by the growth of individual dry spots under the bubbles. The role of bubble coalescence is assumed to be secondary. The spreading is due to forces acting at the microscopic scale, in the neighborhood of the line of triple contact of liquid, vapor and heater where the local heat fluxes are the strongest. This picture is supposed to be independent on boiling conditions. It is confirmed by the pool boiling experiments carried out at extremely high pressures close to the gas-liquid critical point. Such unusual conditions are chosen to slow down the bubble growth sufficiently to be able to observe the dryout dynamics. In the above experiments it lasted during about a minute. To keep the usual bubble geometry, it is necessary to perform such experiments under reduced gravity. The numerical simulations are carried out for high pressures. They show two regimes of bubble growth. When the heat flux is smaller than a threshold value associated with the CHF, a vapor bubble grows and then leaves the heater by buoyancy. When the heat flux is larger than the CHF, the bubble spreads over the heater without leaving it in agreement with the experimental data. This occurs because the vapor recoil force causes both bubble spreading and strong adhesion to the heater. The CHF variation with system parameters predicted by simulations is briefly discussed. (authors) [fr

  13. Cork boiling wastewater treatment and reuse through combination of advanced oxidation technologies.

    Science.gov (United States)

    Ponce-Robles, L; Miralles-Cuevas, S; Oller, I; Agüera, A; Trinidad-Lozano, M J; Yuste, F J; Malato, S

    2017-03-01

    Industrial preparation of cork consists of its immersion for approximately 1 hour in boiling water. The use of herbicides and pesticides in oak tree forests leads to absorption of these compounds by cork; thus, after boiling process, they are present in wastewater. Cork boiling wastewater shows low biodegradability and high acute toxicity involving partial inhibition of their biodegradation when conventional biological treatment is applied. In this work, a treatment line strategy based on the combination of advanced physicochemical technologies is proposed. The final objective is the reuse of wastewater in the cork boiling process; thus, reducing consumption of fresh water in the industrial process itself. Coagulation pre-treatment with 0.5 g/L of FeCl 3 attained the highest turbidity elimination (86 %) and 29 % of DOC elimination. Similar DOC removal was attained when using 1 g/L of ECOTAN BIO (selected for ozonation tests), accompanied of 64 % of turbidity removal. Ozonation treatments showed less efficiency in the complete oxidation of cork boiling wastewater, compared to solar photo-Fenton process, under the studied conditions. Nanofiltration system was successfully employed as a final purification step with the aim of obtaining a high-quality reusable permeate stream. Monitoring of unknown compounds by LC-QTOF-MS allowed the qualitative evaluation of the whole process. Acute and chronic toxicity as well as biodegradability assays were performed throughout the whole proposed treatment line.

  14. Nuclear fuel performance in boiling water reactors

    International Nuclear Information System (INIS)

    Elkins, R.B.; Baily, W.E.; Proebstle, R.A.; Armijo, J.S.; Klepfer, H.H.

    1981-01-01

    A major development program is described to improve the performance of Boiling Water Reactor fuel. This sustained program is described in four parts: 1) performance monitoring, 2) fuel design changes, 3) plant operating recommendations, and 4) advanced fuel programs

  15. Recovering low-boiling hydrocarbons, etc

    Energy Technology Data Exchange (ETDEWEB)

    Pier, M

    1934-10-03

    A process is described for the recovery of low-boiling hydrocarbons of the nature of benzine through treatment of liquid carbonaceous materials with hydrogen under pressure at raised temperature, suitably in the presence of catalysts. Middle oils (practically saturated with hydrogen) or higher boiling oils at a temperature above 500/sup 0/ (with or without the addition of hydrogen) containing cyclic hydrocarbons not saturated with hydrogen are changed into low boiling hydrocarbons of the nature of benzine. The cracking takes place under strongly hydrogenating conditions (with the use of a strongly active hydrogenating catalyst or high pressure) at temperatures below 500/sup 0/. If necessary, the constituents boiling below 200/sup 0/ can be reconverted into cyclic hydrocarbons partially saturated with hydrogen. (BLM)

  16. Burnout in subcooled flow boiling of water. A visual experimental study

    Energy Technology Data Exchange (ETDEWEB)

    Celata, G.P.; Mariani, A.; Zummo, G. [ENEA, Engineering Div., National Institute of Thermal Fluid-Dynamics, Rome (Italy); Cumo, M. [University of Rome la Sapienza, Rome (Italy)

    2000-12-01

    The objective of the present work is to perform a photographic study of the burnout in highly subcooled flow boiling, in order to provide a qualitative description of the flow pattern under different conditions of boiling regime: ONB (onset of nucleate boiling), subcooled flow boiling and thermal crisis. In particular, the flow visualisation is focused on the phenomena occurring on the heated wall during the thermal crisis up to the physical burnout of the heater. Vapour bubble parameters are measured from flow images recorded, while the wall temperature is measured with an indirect method, by recording the heater elongation during all flow regimes studied. The combination of bubble parameters and wall temperature measurements as well as direct observations of the flow pattern, for all flow regimes, are collected in graphs which provide a useful global point of view of boiling phenomena, especially during boiling crisis. Under these conditions, a detailed analysis of the mechanisms leading to the critical heat flux is reported, and the so called events sequence, from thermal crisis occurrence up to heater burnout, is illustrated. (authors)

  17. Burnout in subcooled flow boiling of water. A visual experimental study

    International Nuclear Information System (INIS)

    Celata, G.P.; Mariani, A.; Zummo, G.; Cumo, M.

    2000-01-01

    The objective of the present work is to perform a photographic study of the burnout in highly subcooled flow boiling, in order to provide a qualitative description of the flow pattern under different conditions of boiling regime: ONB (onset of nucleate boiling), subcooled flow boiling and thermal crisis. In particular, the flow visualisation is focused on the phenomena occurring on the heated wall during the thermal crisis up to the physical burnout of the heater. Vapour bubble parameters are measured from flow images recorded, while the wall temperature is measured with an indirect method, by recording the heater elongation during all flow regimes studied. The combination of bubble parameters and wall temperature measurements as well as direct observations of the flow pattern, for all flow regimes, are collected in graphs which provide a useful global point of view of boiling phenomena, especially during boiling crisis. Under these conditions, a detailed analysis of the mechanisms leading to the critical heat flux is reported, and the so called events sequence, from thermal crisis occurrence up to heater burnout, is illustrated. (authors)

  18. Influence of subcooled boiling on out-of-phase oscillations in boiling water reactors

    International Nuclear Information System (INIS)

    Munoz-Cobo, J.L.; Chiva, S.; Escriva, A.

    2005-01-01

    In this paper, we develop a reduced order model with modal kinetics for the study of the dynamic behavior of boiling water reactors. This model includes the subcooled boiling in the lower part of the reactor channels. New additional equations have been obtained for the following dynamics magnitudes: the effective inception length for subcooled boiling, the average void fraction in the subcooled boiling region, the average void fraction in the bulk-boiling region, the mass fluxes at the boiling boundary and the channel exit, respectively, and so on. Each channel has three nodes, one of liquid, one with subcooled boiling, and one with bulk boiling. The reduced order model includes also a modal kinetics with the fundamental mode and the first subcritical one, and two channels representing both halves of the reactor core. Also, in this paper, we perform a detailed study of the way to calculate the feedback reactivity parameters. The model displays out-of-phase oscillations when enough feedback gain is provided. The feedback gain that is necessary to self-sustain these oscillations is approximately one-half the gain that is needed when the subcooled boiling node is not included

  19. Visualization and void fraction measurement of decompressed boiling flow in a capillary tube

    International Nuclear Information System (INIS)

    Asano, H.; Murakawa, H.; Takenaka, N.; Takiguchi, K.; Okamoto, M.; Tsuchiya, T.; Kitaide, Y.; Maruyama, N.

    2011-01-01

    A capillary tube is often used as a throttle for a refrigerating cycle. Subcooled refrigerant usually flows from a condenser into the capillary tube. Then, the refrigerant is decompressed along the capillary tube. When the static pressure falls below the saturation pressure for the liquid temperature, spontaneous boiling occurs. A vapor-liquid two-phase mixture is discharged from the tube. In designing a capillary tube, it is necessary to calculate the flow rate for given boundary conditions on pressure and temperature at the inlet and exit. Since total pressure loss is dominated by frictional and acceleration losses during two-phase flow, it is first necessary to specify the boiling inception point. However, there will be a delay in boiling inception during decompressed flow. This study aimed to clarify the boiling inception point and two-phase flow characteristics of refrigerant in a capillary tube. Refrigerant flows in a coiled copper capillary tube were visualized by neutron radiography. The one-dimensional distribution of volumetric average void fraction was measured from radiographs through image processing. From the void fraction distribution, the boiling inception point was determined. Moreover, a simplified CT method was successfully applied to a radiograph for cross-sectional measurements. The experimental results show the flow pattern transition from intermittent flow to annular flow that occurred at a void fraction of about 0.45.

  20. Dynamic model for a boiling water reactor

    International Nuclear Information System (INIS)

    Muscettola, M.

    1963-07-01

    A theoretical formulation is derived for the dynamics of a boiling water reactor of the pressure tube and forced circulation type. Attention is concentrated on neutron kinetics, fuel element heat transfer dynamics, and the primary circuit - that is the boiling channel, riser, steam drum, downcomer and recirculating pump of a conventional La Mont loop. Models for the steam and feedwater plant are not derived. (author)

  1. Numerical simulation of single bubble boiling behavior

    Directory of Open Access Journals (Sweden)

    Junjie Liu

    2017-06-01

    Full Text Available The phenomena of a single bubble boiling process are studied with numerical modeling. The mass, momentum, energy and level set equations are solved using COMSOL multi-physics software. The bubble boiling dynamics, the transient pressure field, velocity field and temperature field in time are analyzed, and reasonable results are obtained. The numeral model is validated by the empirical equation of Fritz and could be used for various applications.

  2. Study on model of onset of nucleate boiling in natural circulation with subcooled boiling using unascertained mathematics

    Energy Technology Data Exchange (ETDEWEB)

    Zhou Tao [Department of Thermal Engineering, Tsinghua University, Beijing 100084 (China)]. E-mail: zhoutao@mail.tsinghua.edu.cn; Wang Zenghui [Department of Engineering Mechanics, Tsinghua University, Beijing 100084 (China); Yang Ruichang [Department of Thermal Engineering, Tsinghua University, Beijing 100084 (China)

    2005-10-01

    Experiment data got from onset of nucleate boiling (ONB) in natural circulation is analyzed using unascertained mathematics. Unitary mathematics model of the relation between the temperature and onset of nucleate boiling is built up to analysis ONB. Multiple unascertained mathematics models are also built up with the onset of natural circulation boiling equation based on the experiment. Unascertained mathematics makes that affirmative results are a range of numbers that reflect the fluctuation of experiment data more truly. The fluctuating value with the distribution function F(x) is the feature of unascertained mathematics model and can express fluctuating experimental data. Real status can be actually described through using unascertained mathematics. Thus, for calculation of ONB point, the description of unascertained mathematics model is more precise than common mathematics model. Based on the unascertained mathematics, a new ONB model is developed, which is important for advanced reactor safety analysis. It is conceivable that the unascertained mathematics could be applied to many other two-phase measurements as well.

  3. Study on model of onset of nucleate boiling in natural circulation with subcooled boiling using unascertained mathematics

    International Nuclear Information System (INIS)

    Zhou Tao; Wang Zenghui; Yang Ruichang

    2005-01-01

    Experiment data got from onset of nucleate boiling (ONB) in natural circulation is analyzed using unascertained mathematics. Unitary mathematics model of the relation between the temperature and onset of nucleate boiling is built up to analysis ONB. Multiple unascertained mathematics models are also built up with the onset of natural circulation boiling equation based on the experiment. Unascertained mathematics makes that affirmative results are a range of numbers that reflect the fluctuation of experiment data more truly. The fluctuating value with the distribution function F(x) is the feature of unascertained mathematics model and can express fluctuating experimental data. Real status can be actually described through using unascertained mathematics. Thus, for calculation of ONB point, the description of unascertained mathematics model is more precise than common mathematics model. Based on the unascertained mathematics, a new ONB model is developed, which is important for advanced reactor safety analysis. It is conceivable that the unascertained mathematics could be applied to many other two-phase measurements as well

  4. Boiling of subcooled water in forced convection

    International Nuclear Information System (INIS)

    Ricque, R.; Siboul, R.

    1970-01-01

    As a part of a research about water cooled high magnetic field coils, an experimental study of heat transfer and pressure drop is made with the following conditions: local boiling in tubes of small diameters (2 and 4 mm), high heat fluxes (about 1000 W/cm 2 ), high coolant velocities (up to 25 meters/s), low outlet absolute pressures (below a few atmospheres). Wall temperatures are determined with a good accuracy, because very thin tubes are used and heat losses are prevented. Two regimes of boiling are observed: the establishment regime and the established boiling regime and the inception of each regime is correlated. Important delays on boiling inception are also observed. The pressure drop is measured; provided the axial temperature distribution of the fluid and the axial distributions of the wall temperatures, in other words the axial distribution of the heat transfer coefficients under boiling and non boiling conditions, at the same heat flux or the same wall temperatures, are taken in account, then total pressure drop can be correlated, but probably under certain limits of void fraction only. Using the same parameters, it seems possible to correlate the experimental values on critical heat flux obtained previously, which show very important effect of length and hydraulic diameter of the test sections. (authors) [fr

  5. Nucleate pool boiling, film boiling and single-phase free convection at pressures up to the critical state. Part I: Integral heat transfer for horizontal copper cylinders

    Energy Technology Data Exchange (ETDEWEB)

    Gorenflo, Dieter; Baumhoegger, Elmar; Windmann, Thorsten; Herres, Gerhard [Institut fuer Energie- und Verfahrenstechnik, Universitaet Paderborn, Warburger Str. 100, D-33098 Paderborn (Germany)

    2010-11-15

    Transcritical working cycles for refrigerants have led to increased interest in heat transfer near the Critical State. In general, experimental results for this region differ significantly from those far from it because some fluid properties vary much more there than at a greater distance. In this paper, measurements for two-phase and single-phase free convective heat transfer from an electrically heated copper tube with 25 mm O.D. to refrigerant R125 are discussed for fluid states very close to the Critical Point and far from it. It is shown that heat transfer for film boiling slightly below and for free convection slightly above the critical pressure is very similar. The new - and also previous - experimental data for nucleate boiling, film boiling, and single-phase free convection are compared with calculated results between atmospheric and critical pressure. It can be concluded that the Principle of Corresponding States in its simplest form is very well suited to transfer the results to other refrigerants. In Part II, particular attention will be given to a minimum superheat for nucleate boiling and a maximum superheat for film boiling and single-phase free convection within the circumferential variation of the isobaric wall superheat on the lower parts of the tube. (author)

  6. The mechanisms of transitions from natural convection and nucleate boiling to nucleate boiling or film boiling caused by rapid depressurization in highly subcooled water

    International Nuclear Information System (INIS)

    Sakurai, Akira; Shiotsu, Masahiro; Hata, Koichi; Fukuda, Katsuya

    1999-01-01

    The mechanisms of transient boiling process including the transitions to nucleate boiling or film boiling from initial heat fluxes, q in , in natural convection and nucleate boiling regimes caused by exponentially decreasing system pressure with various decreasing periods, τ p on a horizontal cylinder in a pool of highly subcooled water were clarified. The transient boiling processes with different characteristics were divided into three groups for low and intermediate q in in natural convection regime, and for high q in in nucleate boiling regime. The transitions at maximum heat fluxes from low q in in natural convection regime to stable nucleate boiling regime occurred independently of the τ p values. The transitions from intermediate and high q in values in natural convection and nucleate boiling to stable film boiling occurred for short τ p values, although those to stable nucleate boiling occurred for tong τ p values. The CHF and corresponding surface superheat values at which the transition to film boiling occurred were considerably lower and higher than the steady-state values at the corresponding pressure during the depressurization respectively. It was suggested that the transitions to stable film boiling at transient critical heat fluxes from intermediate q in in natural convection and from high q in in nucleate boiling for short τ p occur due to explosive-like heterogeneous spontaneous nucleation (HSN). The photographs of typical vapor behavior due to the HSN during depressurization from natural convection regime for short τ p were shown. (author)

  7. The verification of subcooled boiling models in CFX-4.2 at low pressure in annulus channel flow

    International Nuclear Information System (INIS)

    Kim, Seong-Jin; Kim, Moon-Oh; Park, Goon-Cherl

    2003-01-01

    Heat transfer in subcooled boiling is an important issue to increase the effectiveness of design and safety in operation of engineering system such as nuclear plant. The subcooled boiling, which may occur in the hot channel of reactor in normal state and in decreased pressure condition in transient state, can cause multi-dimensional and complicated respects. The variation of local heat transfer phenomena is created by changing of liquid and vapor velocity, by simultaneous bubble break-ups and coalescences, and by corresponding to bubble evaporation and condensation, and that can affect the stability of the system. The established researches have carried out not a point of local distributions of two-phase variables, but a point of systematical distributions, mostly. Although the subcooled boiling models have been used to numerical analysis using CFX-4.2, there are few verification of subcooled boiling models. This paper demonstrated locally and systematically the validation of subcooled boiling model in numerical calculations using CFX-4.2 especially, in annulus channel flow condition in subcooled boiling at low pressure with respect to subcooled boiling models such as mean bubble diameter model, bubble departure diameter model or wall heat flux model and models related with phase interface. (author)

  8. Allocating monitoring effort in the face of unknown unknowns

    Science.gov (United States)

    Wintle, B.A.; Runge, M.C.; Bekessy, S.A.

    2010-01-01

    There is a growing view that to make efficient use of resources, ecological monitoring should be hypothesis-driven and targeted to address specific management questions. 'Targeted' monitoring has been contrasted with other approaches in which a range of quantities are monitored in case they exhibit an alarming trend or provide ad hoc ecological insights. The second form of monitoring, described as surveillance, has been criticized because it does not usually aim to discern between competing hypotheses, and its benefits are harder to identify a priori. The alternative view is that the existence of surveillance data may enable rapid corroboration of emerging hypotheses or help to detect important 'unknown unknowns' that, if undetected, could lead to catastrophic outcomes or missed opportunities. We derive a model to evaluate and compare the efficiency of investments in surveillance and targeted monitoring. We find that a decision to invest in surveillance monitoring may be defensible if: (1) the surveillance design is more likely to discover or corroborate previously unknown phenomena than a targeted design and (2) the expected benefits (or avoided costs) arising from discovery are substantially higher than those arising from a well-planned targeted design. Our examination highlights the importance of being explicit about the objectives, costs and expected benefits of monitoring in a decision analytic framework. ?? 2010 Blackwell Publishing Ltd/CNRS.

  9. The determination of superheated layer thickness for boiling incipience in a vertical thermosiphon reboiler

    International Nuclear Information System (INIS)

    Shamsuzzoha, M.; Kamil, M.; Alam, S.S.

    2003-01-01

    The characteristics of the incipient boiling for vertical thermosiphon reboiler were examined in detail. At the onset of boiling, liquid film adjacent to the heating surface, the super-heated layers thickness δ * , must attain a threshold value so that the critical bubble nuclei with radius r c can further grow to the point of detachment. Thus, the value of δ * /r c is of primary importance for the superheat calculation. In the present study a semi-empirical equation was proposed for the incipient point of boiling including the effect of submergence. The results predicted from theoretical analysis are consistent with the experimental data available in the literature. All the data for fluids namely, distilled water, toluene and ethylene glycol having different thermophysical properties were correlated with a unified correlation having mean absolute deviation 12.73%. (author)

  10. Surface boiling of superheated liquid

    Energy Technology Data Exchange (ETDEWEB)

    Reinke, P. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1997-01-01

    A basic vaporization mechanism that possibly affects the qualitative and quantitative prediction of the consequences of accidental releases of hazardous superheated liquids was experimentally and analytically investigated. The studies are of relevance for the instantaneous failure of a containment vessel filled with liquefied gas. Even though catastrophical vessel failure is a rare event, it is considered to be a major technological hazard. Modeling the initial phase of depressurisation and vaporization of the contents is an essential step for the subsequent analysis of the spread and dispersion of the materials liberated. There is only limited understanding of this inertial expansion stage of the superheated liquid, before gravity and atmospheric turbulence begin to dominate the expansion. This work aims at a better understanding of the vaporization process and to supply more precise source-term data. It is also intended to provide knowledge for the prediction of the behavior of large-scale releases by the investigation of boiling on a small scale. Release experiments with butane, propane, R-134a and water were conducted. The vaporization of liquids that became superheated by sudden depressurisation was studied in nucleation-site-free glass receptacles. Several novel techniques for preventing undesired nucleation and for opening the test-section were developed. Releases from pipes and from a cylindrical geometry allowed both linear one-dimensional, and radial-front two-dimensional propagation to be investigated. Releases were made to atmospheric pressure over a range of superheats. It was found that, above a certain superheat temperature, the free surface of the metastable liquid rapidly broke up and ejected a high-velocity vapor/liquid stream. The zone of intense vaporization and liquid fragmentation proceeded as a front that advanced into the test fluids. No nucleation of bubbles in the bulk of the superheated liquid was observed. (author) figs., tabs., refs.

  11. Surface boiling of superheated liquid

    International Nuclear Information System (INIS)

    Reinke, P.

    1997-01-01

    A basic vaporization mechanism that possibly affects the qualitative and quantitative prediction of the consequences of accidental releases of hazardous superheated liquids was experimentally and analytically investigated. The studies are of relevance for the instantaneous failure of a containment vessel filled with liquefied gas. Even though catastrophical vessel failure is a rare event, it is considered to be a major technological hazard. Modeling the initial phase of depressurisation and vaporization of the contents is an essential step for the subsequent analysis of the spread and dispersion of the materials liberated. There is only limited understanding of this inertial expansion stage of the superheated liquid, before gravity and atmospheric turbulence begin to dominate the expansion. This work aims at a better understanding of the vaporization process and to supply more precise source-term data. It is also intended to provide knowledge for the prediction of the behavior of large-scale releases by the investigation of boiling on a small scale. Release experiments with butane, propane, R-134a and water were conducted. The vaporization of liquids that became superheated by sudden depressurisation was studied in nucleation-site-free glass receptacles. Several novel techniques for preventing undesired nucleation and for opening the test-section were developed. Releases from pipes and from a cylindrical geometry allowed both linear one-dimensional, and radial-front two-dimensional propagation to be investigated. Releases were made to atmospheric pressure over a range of superheats. It was found that, above a certain superheat temperature, the free surface of the metastable liquid rapidly broke up and ejected a high-velocity vapor/liquid stream. The zone of intense vaporization and liquid fragmentation proceeded as a front that advanced into the test fluids. No nucleation of bubbles in the bulk of the superheated liquid was observed. (author) figs., tabs., refs

  12. Function analysis of unknown genes

    DEFF Research Database (Denmark)

    Rogowska-Wrzesinska, A.

    2002-01-01

      This thesis entitled "Function analysis of unknown genes" presents the use of proteome analysis for the characterisation of yeast (Saccharomyces cerevisiae) genes and their products (proteins especially those of unknown function). This study illustrates that proteome analysis can be used...... to describe different aspects of molecular biology of the cell, to study changes that occur in the cell due to overexpression or deletion of a gene and to identify various protein modifications. The biological questions and the results of the described studies show the diversity of the information that can...... genes and proteins. It reports the first global proteome database collecting 36 yeast single gene deletion mutants and selecting over 650 differences between analysed mutants and the wild type strain. The obtained results show that two-dimensional gel electrophoresis and mass spectrometry based proteome...

  13. Prediction of flow boiling curves based on artificial neural network

    International Nuclear Information System (INIS)

    Wu Junmei; Xi'an Jiaotong Univ., Xi'an; Su Guanghui

    2007-01-01

    The effects of the main system parameters on flow boiling curves were analyzed by using an artificial neural network (ANN) based on the database selected from the 1960s. The input parameters of the ANN are system pressure, mass flow rate, inlet subcooling, wall superheat and steady/transition boiling, and the output parameter is heat flux. The results obtained by the ANN show that the heat flux increases with increasing inlet sub cooling for all heat transfer modes. Mass flow rate has no significant effects on nucleate boiling curves. The transition boiling and film boiling heat fluxes will increase with an increase of mass flow rate. The pressure plays a predominant role and improves heat transfer in whole boiling regions except film boiling. There are slight differences between the steady and the transient boiling curves in all boiling regions except the nucleate one. (authors)

  14. Boiling water reactor liquid radioactive waste processing system

    International Nuclear Information System (INIS)

    Anon.

    1977-01-01

    The standard sets forth minimum design, construction and performance requirements with due consideration for operation of the liquid radioactive waste processing system for boiling water reactor plants for routine operation including design basis fuel leakage and design basis occurrences. For the purpose of this standard, the liquid radioactive waste processing system begins at the interfaces with the reactor coolant pressure boundary, at the interface valve(s) in lines from other systems and at those sumps and floor drains provided for liquid waste with the potential of containing radioactive material. The system terminates at the point of controlled discharge to the environment, at the point of interface with the waste solidification system and at the point of recycle back to storage for reuse. The standard does not include the reactor coolant clean-up system, fuel pool clean-up system, sanitary waste system, any nonaqueous liquid system or controlled area storm drains

  15. Did the big bang boil?

    CERN Multimedia

    Wilczek, Frank

    2006-01-01

    "Standard theories tell us that, at some point in the Universe's evolution, free quarks and gluons must have become bound together into the hadronic matter we see today. But was this transition abrupt or smooth?

  16. A Review of Wettability Effect on Boiling Heat Transfer Enhancement

    International Nuclear Information System (INIS)

    Seo, Gwang Hyeok; Jeun, Gyoo Dong; Kim, Sung Joong

    2012-01-01

    Critical heat flux (CHF) and nucleate boiling heat transfer coefficient (NBHTC) are the key parameters characterizing pool boiling heat transfer. These variables are complicatedly related to thermal-hydraulic parameters of surface wettability, nucleation site density, bubble departure diameter and frequency, to mention a few. In essence, wettability effect on pool boiling heat transfer has been a major fuel to enhance the CHF. Often, however, the improved wettability effect hinders the nucleate boiling. Thus a comprehensive review of such wettability effect may enlighten a further study in this boiling heat transfer area. Phan et al. described surface wettability effects on boiling heat transfer

  17. Pool Boiling CHF in Inclined Narrow Annuli

    International Nuclear Information System (INIS)

    Kang, Myeong Gie

    2010-01-01

    Pool boiling heat transfer has been studied extensively since it is frequently encountered in various heat transfer equipment. Recently, it has been widely investigated in nuclear power plants for application to the advanced light water reactors designs. Through the review on the published results it can be concluded that knowledge on the combined effects of the surface orientation and a confined space on pool boiling heat transfer is of great practical importance and also of great academic interest. Fujita et al. investigated pool boiling heat transfer, from boiling inception to the critical heat flux (CHF, q' CHF ), in a confined narrow space between heated and unheated parallel rectangular plates. They identified that both the confined space and the surface orientation changed heat transfer much. Kim and Suh changed the surface orientation angles of a downward heating rectangular channel having a narrow gap from the downward-facing position (180 .deg.) to the vertical position (90 .deg.). They observed that the CHF generally decreased as the inclination angle (θ ) increased. Yao and Chang studied pool boiling heat transfer in a confined heat transfer for vertical narrow annuli with closed bottoms. They observed that when the gap size ( s ) of the annulus was decreased the effect of space confinement to boiling heat transfer increased. The CHF was occurred at much lower value for the confined space comparing to the unconfined pool boiling. Pool boiling heat transfer in narrow horizontal annular crevices was studied by Hung and Yao. They concluded that the CHF decreased with decreasing gap size of the annuli and described the importance of the thin film evaporation to explain the lower CHF of narrow crevices. The effect of the inclination angle on the CHF on countercurrent boiling in an inclined uniformly heated tube with closed bottoms was also studied by Liu et al. They concluded that the CHF reduced with the inclination angle decrease. A study was carried out

  18. A stability analysis of ventilated boiling channels

    International Nuclear Information System (INIS)

    Taleyarkhan, R.P.; Podowski, M.Z.; Lahey, R.T. Jr.

    1986-01-01

    A mathematical model has been developed for the linear stability analysis of a system of ventilated parallel boiling channels. This model accounts for subcooled boiling, an arbitrary heat flux distribution, distributed and local hydraulic losses, heated wall dynamics, slip flow, turbulent mixing and arbitrary flow paths for transverse ventilation. The digital computer program MAZDA-NF was written for numerical evaluation of the mathematical model. Comparison of MAZDA-NF results with those obtained form both a closed form analytical solution and experiment, showed good agreement. A parametric study revealed that such phenomena as subcooled boiling, the transverse coupling between channels (due to cross-flow and mixing) and power skewing can have a significant impact on predicted stability margins. An analysis of an advanced BWR fuel, of the ASEA-ATOM SVEA design, has indicated that transverse ventilation may considerably improve channel stability. (orig.)

  19. Critical superheats upon boiling of dissociating liquids

    International Nuclear Information System (INIS)

    Kolykhan, L.I.; Solov'ev, V.N.

    1985-01-01

    The experimental data on critical superheats of dissociating liquids, i.e. nitrogen tetroxide and nitrine are presented (nitrine is the solution of nitrogen oxide in nitrogen tetroxide). The experiments with boiling N 2 O 4 have been carried out in the pressure range 0.1-3.0 MPa and with boiling nitrine within the pressure range 0.2-9.0 MPa. The experiments have revealed an anomalous dependence of critical superheats on pressure P, thus at P>=2.5 MPa the critical superheat values exceed the limiting ones, and at P=4.5 MPa this excess amounts to more than 16 K, essentially exceeding the errors of the experiments. The results for N 2 O 4 critical superheats agree with experimental data of other authors. Complex phenomena observed upon boiling of dissociating liquids require further theoretical and experimental studies

  20. A study of forced convective subcooled flow boiling

    International Nuclear Information System (INIS)

    Serizawa, Akimi; Kenning, D.B.R.

    1979-01-01

    Based on a simple nucleation model, parameter survey technique is used to derive a predictive correlation for boiling initiation under forced convection. Results are expressed by a semi-empirical equation which considers effects of the flow turbulence on interfacial heat transfer coefficient for evaporation and condensation of vapour bubbles during their growth. This correlation agrees within +-25% with a variety of experimental water data presently available. The bubble departure diameter and the subcooling-dependence of active nucleation sites were examined, using experimental data available. Results are expressed by empirical equations. Finally, an analytical model is presented to predict conditions for the point of net vapour generation. The model is based on the formation and growth of a bubble boundary layer adjacent to the heated wall. It is shown that the point of net vapour generation is determined by the liquid subcooling at the boiling initiation and the subcooling-dependences of bubble departure diameter and bubble flux. The result implies that the bubble ejection from bubble layer is a possible mechanism for the significant void increase even at high velocities. (author)

  1. Boiling and fragmentation behaviour during fuel-sodium interactions

    International Nuclear Information System (INIS)

    Schins, H.; Gunnerson, F.S.

    1986-01-01

    A selection of the results and subsequent analysis of molten fuel-sodium interaction experiments conducted within the JRC BETULLA I and II facilities are reported. The fuels were copper and stainless steel, at initial temperatures far above their melting points; or urania and alumina, initially at their melting points. For each test, the molten fuel masses were in lower kilogram range and the subcooled pool mass was either 160 or 4 kg. The sodium pool was instrumented continually monitor the system temperature and pressure. Post-test examination results of the fragmented fuel debris sizes, shape and crystalline structure are given. The results of this study suggest the following: Transition boiling is the dominant boiling mode for the tested fuels in subcooled sodium. Two fragmentation mechanisms, vapour bubble formation/collapse and thermal stress shrinkage cracking prevailed for the oxide fuels. This was evidenced by the presence of both smooth and fractured particulate. In contrast, all metal fuel debris was smooth, suggesting fragmentation by the vapour bubble formation/collapse mechanism only during the molten state and for each test, there was no evidence of an energetic fuel-coolant interaction. (orig.)

  2. ASTRID: A 3D Eulerian software for subcooled boiling modelling - comparison with experimental results in tubes and annuli

    International Nuclear Information System (INIS)

    Briere, E.; Larrauri, D.; Olive, J.

    1995-01-01

    For about four years, Electricite de France has been developing a 3-D computer code for the Eulerian simulation of two-phase flows. This code, named ASTRID, is based on the six-equation two-fluid model. Boiling water flows, such as those encountered in nuclear reactors, are among the main applications of ASTRID. In order to provide ASTRID with closure laws and boundary conditions suitable for boiling flows, a boiling model has been developed by EDF and the Institut de Mecanique des Fluides de Toulouse. In the fluid, the heat and mass transfer between a bubble and the liquid is being modelled. At the heating wall, the incipient boiling point is determined according to Hsu's criterion and the boiling heat flux is split into three additive terms: a convective term, a quenching term and a vaporisation term. This model uses several correlations. EDF's program in boiling two-phase flows also includes experimental studies, some of which are performed in collaboration with other laboratories. Refrigerant subcooled boiling both in tubular (DEBORA experiment, CEN Grenoble) and in annular geometry (Arizona State University Experiment) have been computed with ASTRID. The simulations show the satisfactory results already obtained on void fraction and liquid temperature. Ways of improvement of the model are drawn especially on the dynamical part

  3. ASTRID: A 3D Eulerian software for subcooled boiling modelling - comparison with experimental results in tubes and annuli

    Energy Technology Data Exchange (ETDEWEB)

    Briere, E.; Larrauri, D.; Olive, J. [Electricite de France, Chatou (France)

    1995-09-01

    For about four years, Electricite de France has been developing a 3-D computer code for the Eulerian simulation of two-phase flows. This code, named ASTRID, is based on the six-equation two-fluid model. Boiling water flows, such as those encountered in nuclear reactors, are among the main applications of ASTRID. In order to provide ASTRID with closure laws and boundary conditions suitable for boiling flows, a boiling model has been developed by EDF and the Institut de Mecanique des Fluides de Toulouse. In the fluid, the heat and mass transfer between a bubble and the liquid is being modelled. At the heating wall, the incipient boiling point is determined according to Hsu`s criterion and the boiling heat flux is split into three additive terms: a convective term, a quenching term and a vaporisation term. This model uses several correlations. EDF`s program in boiling two-phase flows also includes experimental studies, some of which are performed in collaboration with other laboratories. Refrigerant subcooled boiling both in tubular (DEBORA experiment, CEN Grenoble) and in annular geometry (Arizona State University Experiment) have been computed with ASTRID. The simulations show the satisfactory results already obtained on void fraction and liquid temperature. Ways of improvement of the model are drawn especially on the dynamical part.

  4. Development of a new simulation code for evaluation of criticality transients involving fissile solution boiling

    International Nuclear Information System (INIS)

    Basoglu, Benan; Yamamoto, Toshihiro; Okuno, Hiroshi; Nomura, Yasushi

    1998-03-01

    In this work, we report on the development of a new computer code named TRACE for predicting the excursion characteristics of criticality excursions involving fissile solutions. TRACE employs point neutronics coupled with simple thermal-hydraulics. The temperature, the radiolytic gas effects, and the boiling phenomena are estimated using the transient heat conduction equation, a lumped-parameter energy model, and a simple boiling model, respectively. To evaluate the model, we compared our results with the results of CRAC experiments. The agreement in these comparisons is quite satisfactory. (author)

  5. Process and apparatus to analyze high-boiling products by distillation

    Energy Technology Data Exchange (ETDEWEB)

    Goupil, J.; Mouton, M.; Fischer, W.

    1982-05-19

    In the described process to analyze high-boiling petroleum products by distillation, contents of these products with atmospheric boiling points above 500/sup 0/C can be isolated as distillates. For this purpose the continuous shortway distillation process is employed and at least a part of the components of the apparatus which serve to introduce the raw product are heated seperately and held at different temperatures. The raw product is distributed on the combustion surface of the shortway distiller by a roller wiping system.

  6. Pool film boiling heat transfer, 5

    International Nuclear Information System (INIS)

    Sakurai, A.; Shiotsu, M.; Hata, K.

    1981-01-01

    Steady minimum film boiling heat flux and temperature were experimentally studied for a horizontal cylinder test heater in a pool of saturated water under pressures ranging from 0.1 to 2 MPa. Minimum temperature of film boiling may be determined by hydrodynamic Taylor instability for the pressures lower than around 1.0 MPa and by homogeneous nucleation temperature for the higher pressures. However, conventional correlations of minimum heat flux based on the hydrodynamic Taylor instability cannot at all predict the pressure dependency of the experimental data in the lower pressure region. Semi-empirical equation of the minimum heat flux based on the hydrodynamic Taylor instability was given. (author)

  7. Intraabdominal abscessus of unknown etiology

    Directory of Open Access Journals (Sweden)

    Čolović Radoje

    2012-01-01

    Full Text Available Introduction. Intraabdominal abscesses are in 98-99% cases the result of secondary and only in 1-2% of primary peritonitis. They are easy and successfully diagnosed. Abdominal abscesses of unknown cause are extremely rare. Case Outline. The authors present a 68-year-old man, without significant data in past history, who suddenly developed epigastric pain, nausea, vomiting and leukocytosis which was treated with antibiotics resulting in the alleviation of complaints and reduction of white blood cells count. After five days ultrasonography showed incapsulated collection of dense fluid in the epigastrium confirmed by CT scan two days later. Upper endoscopy excluded ulcer and/or perforation of the stomach and duodenum. Under local anesthesia, through the upper part of the left rectal muscle, puncture followed by incision was done, and about 50 ml of dense pus was removed. Finger exploration of the cavity showed no foreign body within the cavity. Using drainage, the recovery was quick and uneventful. By preoperative and postoperative abdominal investigations no cause of the abscess was found. Two and a half years after surgery the patient remained symptom-free with normal clinical, laboratory and ultrasonographic findings. Conclusion. The authors presented an intraabdominal abscess of unknown cause that was successfully treated with antibiotics, percutaneous puncture and drainage under local anaesthesia. In spite of all diagnostic methods the cause of the abscess could not be found. Thus, such a possibility, although being rare, should be taken into account.

  8. Fluid inclusion from drill hole DW-5, Hohi geothermal area, Japan: Evidence of boiling and procedure for estimating CO2 content

    Science.gov (United States)

    Sasada, M.; Roedder, E.; Belkin, H.E.

    1986-01-01

    Fluid inclusion studies have been used to derive a model for fluid evolution in the Hohi geothermal area, Japan. Six types of fluid inclusions are found in quartz obtained from the drill core of DW-5 hole. They are: (I) primary liquid-rich with evidence of boiling; (II) primary liquid-rich without evidence of boiling; (III) primary vapor-rich (assumed to have been formed by boiling); (IV) secondary liquid-rich with evidence of boiling; (V) secondary liquid-rich without evidence of boiling; (VI) secondary vapor-rich (assumed to have been formed by boiling). Homogenization temperatures (Th) range between 196 and 347??C and the final melting point of ice (Tm) between -0.2 and -4.3??C. The CO2 content was estimated semiquantitatively to be between 0 and 0.39 wt. % based on the bubble behavior on crushing. NaCl equivalent solid solute salinity of fluid inclusions was determined as being between 0 and 6.8 wt. % after minor correction for CO2 content. Fluid inclusions in quartz provide a record of geothermal activity of early boiling and later cooling. The CO2 contents and homogenization temperatures of fluid inclusions with evidence of boiling generally increase with depth; these changes, and NaCl equivalent solid solute salinity of the fluid can be explained by an adiabatic boiling model for a CO2-bearing low-salinity fluid. Some high-salinity inclusions without CO2 are presumed to have formed by a local boiling process due to a temperature increase or a pressure decrease. The liquid-rich primary and secondary inclusions without evidence of boiling formed during the cooling process. The salinity and CO2 content of these inclusions are lower than those in the boiling fluid at the early stage, probably as a result of admixture with groundwater. ?? 1986.

  9. SAS3A analysis of natural convection boiling behavior in the Sodium Boiling Test Facility

    International Nuclear Information System (INIS)

    Klein, G.A.

    1979-01-01

    An analysis of natural convection boiling behavior in the Sodium Boiling Test (SBT) Facility has been performed using the SAS3A computer code. The predictions from this analysis indicate that stable boiling can be achieved for extensive periods of time for channel powers less than 1.4 kW and indicate intermittent dryout at higher powers up to at least 1.7 kW. The results of this anaysis are in reasonable agreement with the SBT Facility test results

  10. [Focal myositis: An unknown disease].

    Science.gov (United States)

    Gallay, L; Streichenberger, N; Benveniste, O; Allenbach, Y

    2017-10-01

    Focal myositis are inflammatory muscle diseases of unknown origin. At the opposite from the other idiopathic inflammatory myopathies, they are restricted to a single muscle or to a muscle group. They are not associated with extramuscular manifestations, and they have a good prognosis without any treatment. They are characterized by a localized swelling affecting mostly lower limbs. The pseudo-tumor can be painful, but is not associated with a muscle weakness. Creatine kinase level is normal. Muscle MRI shows an inflammation restricted to a muscle or a muscle group. Muscle biopsy and pathological analysis remain necessary for the diagnosis, showing inflammatory infiltrates composed by macrophages and lymphocytes without any specific distribution within the muscle. Focal overexpression of HLA-1 by the muscle fibers is frequently observed. The muscle biopsy permits to rule out differential diagnosis such a malignancy (sarcoma). Spontaneous remission occurs within weeks or months after the first symptoms, relapse is unusual. Copyright © 2017. Published by Elsevier SAS.

  11. Impurity concentration behaviors in a boiling tubesheet crevice Part II. Packed crevice

    International Nuclear Information System (INIS)

    Bahn, Chi Bum; Oh, Si Hyoung; Park, Byung Gi; Hwang, Il Soon; Rhee, In Hyoung; Kim, Uh Chul; Na, Jung Won

    2003-01-01

    The impurity concentration behavior of a boiling crevice packed with magnetite particles was investigated with thermocouples and electrodes for the measurement of temperature and electrochemical corrosion potential (ECP), respectively, in order to understand chemical change in a pressurized water reactor (PWR) steam generator (SG) crevice. A secondary solution composed of 50 ppm Na and 200 ppb hydrogen was supplied at a flow rate of about 4 l/h. Sodium hydroxide (NaOH) concentration process in the crevice and the resultant boiling point elevation behavior were characterized with temperature and ECP data. The temperature in the packed crevice was about 2-3 deg. C higher than that for the open crevice. In the same conditions, the magnetite-packed crevice showed a greater amount of boiling point elevation with a longer time to reach a steady state compared with the case of an open crevice. It was found that the bottom region of the crevice was initially filled with steam, and then the concentrated liquid region initially located at the middle of crevice expanded to both the crevice bottom and the upper region. To analytically estimate the wetted length, a closed form model was introduced. The model results estimated the initial wetted length shorter as compared with the measurement results. Measured ECP results of packed crevice showed similar behaviors as compared with calculated results by using Nernst equation. ECP results reasonably coincided with the boiling point elevation estimated from the temperature data except one unusual case

  12. A sensitivity analysis of the mass balance equation terms in subcooled flow boiling

    International Nuclear Information System (INIS)

    Braz Filho, Francisco A.; Caldeira, Alexandre D.; Borges, Eduardo M.

    2013-01-01

    In a heated vertical channel, the subcooled flow boiling occurs when the fluid temperature reaches the saturation point, actually a small overheating, near the channel wall while the bulk fluid temperature is below this point. In this case, vapor bubbles are generated along the channel resulting in a significant increase in the heat flux between the wall and the fluid. This study is particularly important to the thermal-hydraulics analysis of Pressurized Water Reactors (PWRs). The computational fluid dynamics software FLUENT uses the Eulerian multiphase model to analyze the subcooled flow boiling. In a previous paper, the comparison of the FLUENT results with experimental data for the void fraction presented a good agreement, both at the beginning of boiling as in nucleate boiling at the end of the channel. In the region between these two points the comparison with experimental data was not so good. Thus, a sensitivity analysis of the mass balance equation terms, steam production and condensation, was performed. Factors applied to the terms mentioned above can improve the agreement of the FLUENT results to the experimental data. Void fraction calculations show satisfactory results in relation to the experimental data in pressures values of 15, 30 and 45 bars. (author)

  13. Previously unknown species of Aspergillus.

    Science.gov (United States)

    Gautier, M; Normand, A-C; Ranque, S

    2016-08-01

    The use of multi-locus DNA sequence analysis has led to the description of previously unknown 'cryptic' Aspergillus species, whereas classical morphology-based identification of Aspergillus remains limited to the section or species-complex level. The current literature highlights two main features concerning these 'cryptic' Aspergillus species. First, the prevalence of such species in clinical samples is relatively high compared with emergent filamentous fungal taxa such as Mucorales, Scedosporium or Fusarium. Second, it is clearly important to identify these species in the clinical laboratory because of the high frequency of antifungal drug-resistant isolates of such Aspergillus species. Matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF MS) has recently been shown to enable the identification of filamentous fungi with an accuracy similar to that of DNA sequence-based methods. As MALDI-TOF MS is well suited to the routine clinical laboratory workflow, it facilitates the identification of these 'cryptic' Aspergillus species at the routine mycology bench. The rapid establishment of enhanced filamentous fungi identification facilities will lead to a better understanding of the epidemiology and clinical importance of these emerging Aspergillus species. Based on routine MALDI-TOF MS-based identification results, we provide original insights into the key interpretation issues of a positive Aspergillus culture from a clinical sample. Which ubiquitous species that are frequently isolated from air samples are rarely involved in human invasive disease? Can both the species and the type of biological sample indicate Aspergillus carriage, colonization or infection in a patient? Highly accurate routine filamentous fungi identification is central to enhance the understanding of these previously unknown Aspergillus species, with a vital impact on further improved patient care. Copyright © 2016 European Society of Clinical Microbiology and

  14. Parametric investigation on transient boiling heat transfer of metal rod cooled rapidly in water pool

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Chi Young [Department of Fire Protection Engineering, Pukyong National University, 45, Yongso-ro, Nam-gu, Busan 48513 (Korea, Republic of); Kim, Sunwoo, E-mail: swkim@alaska.edu [Mechanical Engineering Department, University of Alaska Fairbanks, P. O. Box 755905, Fairbanks, AK 99775-5905 (United States)

    2017-03-15

    Highlights: • Effects of liquid subcooling, surface coating, material property, and surface oxidation are examined. • Liquid subcooling affects remarkably the quenching phenomena. • Cr-coated surfaces for ATF might extend the quenching duration. • Solids with low heat capacity shorten the quenching duration. • Surface oxidation can affect strongly the film boiling heat transfer and MFB point. - Abstract: In this work, the effects of liquid subcooling, surface coating, material property, and surface oxidation on transient pool boiling heat transfer were investigated experimentally using the vertical metal rod and quenching method. The change in rod temperature was measured with time during quenching, and the visualization of boiling around the test specimen was performed using the high-speed video camera. As the test materials, the zircaloy (Zry), stainless steel (SS), niobium (Nb), and copper (Cu) were tested. In addition, the chromium-coated niobium (Cr-Nb) and chromium-coated stainless steel (Cr-SS) were prepared for accident tolerant fuel (ATF) application. Low liquid subcooling and Cr-coating shifted the quenching curve to the right, which indicates a prolongation of quenching duration. On the other hand, the material with small heat capacity and surface oxidation caused the quenching curve to move to the left. To examine the influence of the material property and surface oxidation on the film boiling heat transfer performance and minimum film boiling (MFB) point in more detail, the wall temperature and heat flux were calculated from the present transient temperature profile using the inverse heat transfer analysis, and then the curves of wall temperature and heat flux in the film boiling regime were obtained. In the present experimental conditions, the effect of material property on the film boiling heat transfer performance and MFB point seemed to be minor. On the other hand, based on the experimental results of the Cu test specimen, the surface

  15. Tube temperature rise limits: Boiling considerations

    Energy Technology Data Exchange (ETDEWEB)

    Vanderwater, R.G.

    1952-03-26

    A revision of tube power limits based on boiling considerations was presented earlier. The limits were given on a basis of tube power versus header pressure. However, for convenience of operation, the limits have been converted from tube power to permissible water temperature rise. The permissible {triangle}t`s water are given in this document.

  16. Boiling Heat Transfer in Battery Electric vehicles

    NARCIS (Netherlands)

    Gils, van R.W.; Speetjens, M.F.M.; Nijmeijer, H.

    2011-01-01

    In this paper the feedback stabilisation of a boiling-based cooling scheme is discussed. Application of such cooling schemes in practical setups is greatly limited by the formation of a thermally insulating vapour film on the to-be-cooled device, called burn-out. In this study a first step is made,

  17. The CEA program on boiling noise detection

    International Nuclear Information System (INIS)

    Le Guillou, G.; Brunet, M.; Girard, J.P.; Flory, D.

    1982-01-01

    The research program on the application of noise analysis on boiling detection in a fast subassembly began 10 years ago at the CEA, mainly in the Nuclear Center of Cadarache. Referring exclusively to the aspects of premature detection of the boiling phenomenon it can be said that this program is organized around the following three detection techniques: acoustic noise analysis; neutron noise analysis; temperature noise analysis. Its development is in conjunction with in-pile experiments in Phenix or Rapsodie as well as 'ex-pile' (boiling experiments through electric heating). Three detection techniques were developed independent of each other, but that they were regrouped during the execution of the most important experiments and with the 'Super Phenix' project. The noise analysis system ANABEL with which Superphenix will be equipped with shows the industrial interest in detection methods based on noises. One of the results of the CEA program today is the possibility to evaluate the potential capacity for boiling detection in the subassembly. But in order to obtain the necessary funds from the commercial nuclear plant operators it is mandatory to have successful demonstrations which will be the objective of the future program

  18. An experimental investigation of untriggered film boiling collapse

    International Nuclear Information System (INIS)

    Naylor, P.

    1985-03-01

    Film boiling has been investigated in a stagnant pool, using polished brass or anodised aluminium alloy rods in water. Experimental boiling curves were obtained, and pronounced ripples on the vapour/liquid interface were photographed. A criterion for untriggered film boiling collapse is proposed, consistent with experimental results. Application of the results to molten fuel coolant interaction studies is discussed. (U.K.)

  19. Study of sodium film-boiling heat transfer from a high-temperature sphere

    International Nuclear Information System (INIS)

    Le-Belguet, A.

    2013-01-01

    During a severe accident in a sodium-cooled fast reactor, molten fuel may come into contact with the surrounding liquid sodium, resulting in a so-called Fuel-Coolant Interaction. This work aims at providing a better understanding and knowledge of the associated heat transfer, likely to be in the film-boiling regime and required to study the risks related to a vapor explosion. Scarce literature has been found on sodium film boiling, both from an experimental and a theoretical point of view. Only one experiment has been conducted to investigate sodium pool film-boiling heat transfer. In our analysis of the experiment, two film-boiling regimes have been identified: a stable film boiling regime, without liquid-solid contact, and an unstable film-boiling regime, with contacts. Besides, the only theoretical model dedicated to sodium film boiling has shown some weaknesses. First, a scaling analysis of the problem has been proposed for free and forced convection, considering the two extreme cases of saturated and highly subcooled liquid. This simplified approach, which shows a good agreement with the experimental data, provides the dimensionless numbers which should be used to build correlations. A theoretical model has been developed to describe sodium film-boiling heat transfer from a hot sphere in free and forced convection, whatever the liquid subcooling. It is based on a two-phase laminar boundary layer integral method and includes the inertial and convective terms in the vapor momentum and energy equations, usually neglected. The radiation has been taken into account in the interfacial energy balance and contributes directly to produce vapor. This model enables to predict the heat lost from a hot body within an acceptable error compared to the tests results especially when the experimental uncertainties are considered. The heat partition between liquid heating and vaporization, essential to study the vapor explosion phenomenon, is also estimated. The influence of

  20. The decrease of cylindrical pempek quality during boiling

    Science.gov (United States)

    Karneta, R.; Gultom, N. F.

    2017-09-01

    The research objective was to study the effects of temperature and formulation on quality of pempek lenjer during boiling. Treatments in this study were four levels of pempek formulation and five levels of temperature. Data was processed by using analysis of variance (Anova). If test results showed that samples were significantly different or highly significantly different, then further test was conducted by using Honestly Significant Different. The results showed that chemical analysis showed that fish dominant formula of cylindrical pempek had higher water content, protein content, lipid content and ash content than that of tapioca starch dominant formula, but it had lower carbohydrate content and fibre content than that of tapioca starch dominant formula.The higher the temperature at center point of cylindrical pempek, the lower the chemical quality of cylindrical pempek. The effect of formula on physical quality of cylindrical pempek showed that tapioca starch dominant formula had more rubbery texture, more neutral pH and brighter color than that of fish dominant formula.The temperature change had no significant effect on texture and pH of cylindrical pempek, but it had significant effect on lightness, intensity and chromatic color especially after exceeding optimum time of boiling.

  1. The film boiling look-up table: an improvement in predicting post-chf temperatures

    International Nuclear Information System (INIS)

    Groeneveld, D.C.; Leung, L.K.H.; Vasic, A.Z.; Guo, Y.J.; El Nakla, M.; Cheng, S.C.

    2002-01-01

    for areas where data are unavailable. The look-up table is based on 20,785 film-boiling data points, which were carefully selected from a data bank compiled by the University of Ottawa. These data were all believed to be obtained in the fully developed film-boiling region. A comparison of the fully developed film-boiling look-up table with the fully developed film-boiling database shows an overall rms error in heat-transfer coefficient of 10.58% and an average error of 1.71% (the corresponding errors of the previous heat-flux controlled look-up table with the updated data base are: 20.65% rms and 6.87 % average error). A comparison of the prediction accuracy of the look-up table with other leading film-boiling prediction methods clearly demonstrates the superiority of the present look-up table. (author)

  2. Flow boiling in microgap channels experiment, visualization and analysis

    CERN Document Server

    Alam, Tamanna; Jin, Li-Wen

    2013-01-01

    Flow Boiling in Microgap Channels: Experiment, Visualization and Analysis presents an up-to-date summary of the details of the confined to unconfined flow boiling transition criteria, flow boiling heat transfer and pressure drop characteristics, instability characteristics, two phase flow pattern and flow regime map and the parametric study of microgap dimension. Advantages of flow boiling in microgaps over microchannels are also highlighted. The objective of this Brief is to obtain a better fundamental understanding of the flow boiling processes, compare the performance between microgap and c

  3. Models and Stability Analysis of Boiling Water Reactors

    International Nuclear Information System (INIS)

    Dorning, John

    2002-01-01

    We have studied the nuclear-coupled thermal-hydraulic stability of boiling water reactors (BWRs) using a model that includes: space-time modal neutron kinetics based on spatial w-modes; single- and two-phase flow in parallel boiling channels; fuel rod heat conduction dynamics; and a simple model of the recirculation loop. The BR model is represented by a set of time-dependent nonlinear ordinary differential equations, and is studied as a dynamical system using the modern bifurcation theory and nonlinear dynamical systems analysis. We first determine the stability boundary (SB) - or Hopf bifurcation set- in the most relevant parameter plane, the inlet-subcooling-number/external-pressure-drop plane, for a fixed control rod induced external reactivity equal to the 100% rod line value; then we transform the SB to the practical power-flow map used by BWR operating engineers and regulatory agencies. Using this SB, we show that the normal operating point at 100% power is very stable, that stability of points on the 100% rod line decreases as the flow rate is reduced, and that operating points in the low-flow/high-power region are least stable. We also determine the SB that results when the modal kinetics is replaced by simple point reactor kinetics, and we thereby show that the first harmonic mode does not have a significant effect on the SB. However, we later show that it nevertheless has a significant effect on stability because it affects the basin of attraction of stable operating points. Using numerical simulations we show that, in the important low-flow/high-power region, the Hopf bifurcation that occurs as the SB is crossed is subcritical; hence, growing oscillations can result following small finite perturbations of stable steady-states on the 100% rod line at points in the low-flow/high-power region. Numerical simulations are also performed to calculate the decay ratios (DRs) and frequencies of oscillations for various points on the 100% rod line. It is

  4. Models and Stability Analysis of Boiling Water Reactors

    Energy Technology Data Exchange (ETDEWEB)

    John Dorning

    2002-04-15

    We have studied the nuclear-coupled thermal-hydraulic stability of boiling water reactors (BWRs) using a model that includes: space-time modal neutron kinetics based on spatial w-modes; single- and two-phase flow in parallel boiling channels; fuel rod heat conduction dynamics; and a simple model of the recirculation loop. The BR model is represented by a set of time-dependent nonlinear ordinary differential equations, and is studied as a dynamical system using the modern bifurcation theory and nonlinear dynamical systems analysis. We first determine the stability boundary (SB) - or Hopf bifurcation set- in the most relevant parameter plane, the inlet-subcooling-number/external-pressure-drop plane, for a fixed control rod induced external reactivity equal to the 100% rod line value; then we transform the SB to the practical power-flow map used by BWR operating engineers and regulatory agencies. Using this SB, we show that the normal operating point at 100% power is very stable, that stability of points on the 100% rod line decreases as the flow rate is reduced, and that operating points in the low-flow/high-power region are least stable. We also determine the SB that results when the modal kinetics is replaced by simple point reactor kinetics, and we thereby show that the first harmonic mode does not have a significant effect on the SB. However, we later show that it nevertheless has a significant effect on stability because it affects the basin of attraction of stable operating points. Using numerical simulations we show that, in the important low-flow/high-power region, the Hopf bifurcation that occurs as the SB is crossed is subcritical; hence, growing oscillations can result following small finite perturbations of stable steady-states on the 100% rod line at points in the low-flow/high-power region. Numerical simulations are also performed to calculate the decay ratios (DRs) and frequencies of oscillations for various points on the 100% rod line. It is

  5. Leidenfrost boiling of water droplet

    Directory of Open Access Journals (Sweden)

    Orzechowski Tadeusz

    2017-01-01

    Full Text Available The investigations concerned a large water droplet at the heating surface temperature above the Leidenfrost point. The heating cylinder was the main component of experimental stand on which investigations were performed. The measurement system was placed on the high-sensitivity scales. Data transmission was performed through RS232 interface. The author-designed program, with extended functions to control the system, was applied. The present paper examines the behaviour of a large single drop levitating over a hot surface, unsteady mass of the drop, and heat transfer. In computations, the dependence, available in the literature, for the orthogonal droplet projection on the heating surface as a function of time was employed. It was confirmed that the local value of the heat transfer coefficient is a power function of the area of the droplet surface projection. Also, a linear relationship between the flux of mass evaporated from the droplet and the droplet orthogonal projection was observed.

  6. Leidenfrost boiling of water droplet

    Science.gov (United States)

    Orzechowski, Tadeusz

    The investigations concerned a large water droplet at the heating surface temperature above the Leidenfrost point. The heating cylinder was the main component of experimental stand on which investigations were performed. The measurement system was placed on the high-sensitivity scales. Data transmission was performed through RS232 interface. The author-designed program, with extended functions to control the system, was applied. The present paper examines the behaviour of a large single drop levitating over a hot surface, unsteady mass of the drop, and heat transfer. In computations, the dependence, available in the literature, for the orthogonal droplet projection on the heating surface as a function of time was employed. It was confirmed that the local value of the heat transfer coefficient is a power function of the area of the droplet surface projection. Also, a linear relationship between the flux of mass evaporated from the droplet and the droplet orthogonal projection was observed.

  7. Applications of Artificial Neural Network for the Prediction of Pool Boiling Curves

    International Nuclear Information System (INIS)

    Su, Guanghui; Fukuda, K.; Morita, K.

    2002-01-01

    Artificial neural network (ANN) has the advantage that the best-fit correlations of experimental data will no longer be necessary for predicting unknowns from the known parameters. The ANN was applied to predict the pool boiling curves in this paper. The database of experimental data presented by Berenson, Dhuga et al., and Bui and Dhir etc. were used in the analysis. The database is subdivided in two subsets. The first subset is used to train the network and the second one is used to test the network after the training process. The input parameters of the ANN are: wall superheat ΔT w , surface roughness, steady/transient heating/transient cooling, subcooling, Surface inclination and pressure. The output parameter is heat flux q. The proposed methodology allows us to achieve the accuracy that satisfies the user's convergence criterion and it is suitable for pool boiling curve data processing. (authors)

  8. Suppression of saturated nucleate boiling by forced convective flow

    International Nuclear Information System (INIS)

    Bennett, D.L.; Davis, M.W.; Hertzler, B.L.

    1980-01-01

    Tube-side forced convective boiling nitrogen and oxygen and thin film shell-side forced convective boiling R-11 data demonstrate a reduction in the heat transfer coefficient associated with nucleate boiling as the two-phase friction pressure drop increases. Techniques proposed in the literature to account for nucleate boiling during forced convective boiling are discussed. The observed suppression of nucleate boiling for the tube-side data is compared against the Chen correlation. Although general agreement is exhibited, supporting the interactive heat transfer mechanism theory, better agreement is obtained by defining a bubble growth region within the thermal boundary layer. The data suggests that the size of the bubble growth region is independent of the friction drop, but is only a function of the physical properties of the boiling liquid. 15 refs

  9. Prospective Chemistry Teachers' Misconceptions about Colligative Properties: Boiling Point Elevation and Freezing Point Depression

    Science.gov (United States)

    Pinarbasi, Tacettin; Sozbilir, Mustafa; Canpolat, Nurtac

    2009-01-01

    This study aimed at identifying prospective chemistry teachers' misconceptions of colligative properties. In order to fulfill this aim, a diagnostic test composed of four open-ended questions was used. The test was administered to seventy-eight prospective chemistry teachers just before qualifying to teaching in secondary schools. Nine different…

  10. Microchannel boiling mechanisms leading to burnout

    International Nuclear Information System (INIS)

    Landram, C.S.; Riddle, R.A.

    1994-01-01

    The authors are analyzing the thermal performance of microchannel heat sinks to extend their applied heat loads beyond coolant single-phase limits. This is the first investigation of boiling in the narrow (50-μm) microchannels having typically high-aspect-ratio (of order 10/1) flow cross-sections. The prescription of local, wall-coolant, interfacial, two-phase correlations first required development of a validated, approximate, thermal-model accounting for conjugate heat transfer. The strongest mechanism for heat transfer in two-phase microchannel flow was found to be saturated boiling in a channel region near the heated base. When this region dried out, burnout occurred, both in the computations and in the experiment

  11. Compatibility of refractory materials with boiling sodium

    International Nuclear Information System (INIS)

    Meacham, S.A.

    1976-01-01

    The program employed to determine the compatibility of commercially available refractories with boiling sodium is described. The effects of impurities contained within the refractory material, and their relations with the refractory's physical stability are discussed. Also, since consideration of refractories for use as an insulating material within Liquid Metal Fast Breeder Reactor Plants (LMFBR's) is currently under investigation; recommendations, based upon this program, are presented

  12. The fluid similarity of the boiling crisis

    International Nuclear Information System (INIS)

    Katsaounis, A.

    1986-01-01

    Most of the measurements related to the boiling crisis have, until now, been undertaken for a wide parameter variation in the water, and were mainly related to the water-cooled reactor. This article investigates, whether or how the measuring results can be transferred to other fluids. Derived dimensionless similarity figures and those taken from literature are verified by measurements from complex geometries in water and freon 12. (orig.) [de

  13. The fluid similarity of the boiling crisis

    International Nuclear Information System (INIS)

    Katsaounis, A.

    1987-01-01

    Most of the measurements related to the boiling crisis have, until now, been undertaken for a wide parameter variation in the water, and were mainly related to the water-cooled reactor. This article investigates, whether or how the measuring results can be transferred to other fluids. Derived dimensionless similarity figures and those taken from literature are verified by measurements from complex geometries in water and freon 12. (orig./GL) [de

  14. Flow boiling test of GDP replacement coolants

    International Nuclear Information System (INIS)

    Park, S.H.

    1995-01-01

    The tests were part of the CFC replacement program to identify and test alternate coolants to replace CFC-114 being used in the uranium enrichment plants at Paducah and Portsmouth. The coolants tested, C 4 F 10 and C 4 F 8 , were selected based on their compatibility with the uranium hexafluoride process gas and how well the boiling temperature and vapor pressure matched that of CFC-114. However, the heat of vaporization of both coolants is lower than that of CFC-114 requiring larger coolant mass flow than CFC-114 to remove the same amount of heat. The vapor pressure of these coolants is higher than CFC-114 within the cascade operational range, and each coolant can be used as a replacement coolant with some limitation at 3,300 hp operation. The results of the CFC-114/C 4 F 10 mixture tests show boiling heat transfer coefficient degraded to a minimum value with about 25% C 4 F 10 weight mixture in CFC-114 and the degree of degradation is about 20% from that of CFC-114 boiling heat transfer coefficient. This report consists of the final reports from Cudo Technologies, Ltd

  15. Evaluation of onset of nucleate boiling models

    Energy Technology Data Exchange (ETDEWEB)

    Huang, LiDong [Heat Transfer Research, Inc., College Station, TX (United States)], e-mail: lh@htri.net

    2009-07-01

    This article discusses available models and correlations for predicting the required heat flux or wall superheat for the Onset of Nucleate Boiling (ONB) on plain surfaces. It reviews ONB data in the open literature and discusses the continuing efforts of Heat Transfer Research, Inc. in this area. Our ONB database contains ten individual sources for ten test fluids and a wide range of operating conditions for different geometries, e.g., tube side and shell side flow boiling and falling film evaporation. The article also evaluates literature models and correlations based on the data: no single model in the open literature predicts all data well. The prediction uncertainty is especially higher in vacuum conditions. Surface roughness is another critical criterion in determining which model should be used. However, most models do not directly account for surface roughness, and most investigators do not provide surface roughness information in their published findings. Additional experimental research is needed to improve confidence in predicting the required wall superheats for nucleation boiling for engineering design purposes. (author)

  16. Evaluation of onset of nucleate boiling models

    International Nuclear Information System (INIS)

    Huang, LiDong

    2009-01-01

    This article discusses available models and correlations for predicting the required heat flux or wall superheat for the Onset of Nucleate Boiling (ONB) on plain surfaces. It reviews ONB data in the open literature and discusses the continuing efforts of Heat Transfer Research, Inc. in this area. Our ONB database contains ten individual sources for ten test fluids and a wide range of operating conditions for different geometries, e.g., tube side and shell side flow boiling and falling film evaporation. The article also evaluates literature models and correlations based on the data: no single model in the open literature predicts all data well. The prediction uncertainty is especially higher in vacuum conditions. Surface roughness is another critical criterion in determining which model should be used. However, most models do not directly account for surface roughness, and most investigators do not provide surface roughness information in their published findings. Additional experimental research is needed to improve confidence in predicting the required wall superheats for nucleation boiling for engineering design purposes. (author)

  17. Subcooled boiling effect on dissolved gases behaviour

    International Nuclear Information System (INIS)

    Zmitko, M.; Sinkule, J.; Linek, V.

    1999-01-01

    A model describing dissolved gasses (hydrogen, nitrogen) and ammonia behaviour in subcooled boiling conditions of WWERs was developed. Main objective of the study was to analyse conditions and mechanisms leading to formation of a zone with different concentration of dissolved gases, eg. a zone depleted in dissolved hydrogen in relation to the bulk of coolant. Both, an equilibrium and dynamic approaches were used to describe a depletion of the liquid surrounding a steam bubble in the gas components. The obtained results show that locally different water chemistry conditions can be met in the subcooled boiling conditions, especially, in the developed subcooled boiling regime. For example, a 70% hydrogen depletion in relation to the bulk of coolant takes about 1 ms and concerns a liquid layer of 1 μn surrounding the steam bubble. The locally different concentration of dissolved gases can influence physic-chemical and radiolytic processes in the reactor system, eg. Zr cladding corrosion, radioactivity transport and determination of the critical hydrogen concentration. (author)

  18. Expert system for control rod programming of boiling water reactors

    International Nuclear Information System (INIS)

    Fukuzaki, T.; Yoshida, K.; Kobayashi, Y.; Matsuura, H.; Hoshi, K.

    1986-01-01

    Control rod programming, one of the main tasks in reactor core management of boiling water reactors (BWRs), can be successfully accomplished by well-experienced engineers. By use of core performance evaluation codes, their knowledge plays the main role in searching through optimal control rod patterns and exposure points for adjusting notch positions and exchanging rod patterns. An expert system has been developed, based on a method of knowledge engineering, to lighten the engineer's load in control rod programming. This system utilizes an inference engine suited for planning/designing problems, and stores the knowledge of well-experienced engineers in its knowledge base. In this report, the inference engine, developed considering the characteristics of the control rod programming, is introduced. Then the constitution and function of the expert system are discussed

  19. Boiling water reactor modeling capabilities of MMS-02

    International Nuclear Information System (INIS)

    May, R.S.; Abdollahian, D.A.; Elias, E.; Shak, D.P.

    1987-01-01

    During the development period for the Modular Modeling System (MMS) library modules, the Boiling Water Reactor (BWR) has been the last major component to be addressed. The BWRX module includes models of the reactor core, reactor vessel, and recirculation loop. A pre-release version was made available for utility use in September 1983. Since that time a number of changes have been incorporated in BWRX to (1) improve running time for most transient events of interest, (2) extend its capability to include certain events of interest in reactor safety analysis, and (3) incorporate a variety of improvements to the module interfaces and user input formats. The purposes of this study were to briefly review the module structure and physical models, to point the differences between the MMS-02 BWRX module and the BWRX version previously available in the TESTREV1 library, to provide guidelines for choosing among the various user options, and to present some representative results

  20. Technical and QA plan: Boiling behavior during flow instability

    International Nuclear Information System (INIS)

    Coutts, D.A.

    1991-01-01

    The coolant flow in a nuclear reactor core under normal operating conditions is kept as a subcooled liquid. This coolant is evenly distributed throughout the multiple flow channels with a uniform pressure profile across each coolant flow channel. If the coolant flow is reduced, the flow through individual channels will also decrease. A decrease in coolant flow will result in higher coolant temperatures if the heat flux is not reduced. When flow is significantly decreased, localized boiling may occur. This localized boiling can restrict coolant flow and the ability to transfer heat out of the reactor system. The maximum operating power for the reactor may be limited by how the coolant system reacts to a flow instability. One of the methods to assure safe operation during a reducing flow transient, is to operate at a power level below that necessary to initiate a flow excursion. Several correlations have been used to predict the conditions which will proceed a flow excursion. These correlations rely on the steady state behavior of the coolant and are based on steady-state testing. There are two significant points which this project will try to identify. The first is when vapor first forms on the channel surface. This might be designated as the Nucleate Vapor Transition. (Steady state equivalent is ONB). The second is when the vapor formation rate is large enough to lead to flow instability and thermal excursion. This point might be designated as the Significant Vapor Transition. (Steady state equivalent is OSV). A correlation will be developed to relate established steady state relations with the behavior of transient systems

  1. Iterative Selection of Unknown Weights in Direct Weight Optimization Identification

    Directory of Open Access Journals (Sweden)

    Xiao Xuan

    2014-01-01

    Full Text Available To the direct weight optimization identification of the nonlinear system, we add some linear terms about input sequences in the former linear affine function so as to approximate the nonlinear property. To choose the two classes of unknown weights in the more linear terms, this paper derives the detailed process on how to choose these unknown weights from theoretical analysis and engineering practice, respectively, and makes sure of their key roles between the unknown weights. From the theoretical analysis, the added unknown weights’ auxiliary role can be known in the whole process of approximating the nonlinear system. From the practical analysis, we learn how to transform one complex optimization problem to its corresponding common quadratic program problem. Then, the common quadratic program problem can be solved by the basic interior point method. Finally, the efficiency and possibility of the proposed strategies can be confirmed by the simulation results.

  2. ELEVATION ON BOINLING POINT OF COFFE EXTRACT

    Directory of Open Access Journals (Sweden)

    Telis-Romero J.

    2002-01-01

    Full Text Available The rise in boiling point of coffee extract was experimentally measured at soluble solids concentrations in the range of 9.2 to 52.4ºBrix and pressures between 5.8 × 10³ and 9.4 × 10(4 Pa (abs.. Different approaches to representing experimental data, including the Dühring's rule, the Antoine equation and empirical models proposed in the literature were tested. In the range of 9.2 to 16.2ºBrix, the rise in boiling point was nearly independent of pressure, varying only with extract concentration. Considerable deviations of this behavior began to occur at concentrations higher than 16.2ºBrix. Experimental data could best be predicted by adjusting an empirical model which consists of a single equation that takes into account the dependence of rise in boiling point on pressure and concentration.

  3. Greenhouse effect: doubts and unknowns

    International Nuclear Information System (INIS)

    Tabarelli, D.

    1992-01-01

    There are few doubts today in the scientific world that atmospheric carbon dioxide traps in heat and therefore contributes to global warming; however, it is yet uncertain as to whether the presence of this gas in the upper atmosphere is the only cause of the greenhouse effect, and the scientific theories defining the effect and its causes present a few obvious and significant gaps. This paper cites the fact that most greenhouse effect models only marginally, if at all, consider the mechanisms governing the formation and absorption of carbon dioxide by the earth's oceans; yet oceanic CO 2 concentration levels are about 60 times greater than those found in the atmosphere, and they depend on complex interactions, in seawater, among such factors as currents, carbon oxygenation, and vegetative activity. Another area of weakness in greenhouse effect modelling stems from the complexity and uncertainty introduced by the fact that, in addition to trapping heat, clouds reflect it, thus giving rise to an opposite cooling effect. In addition, it is pointed out that the current models are limited to predicting global and not regional or local effects

  4. Flow boiling heat transfer at low liquid Reynolds number

    International Nuclear Information System (INIS)

    Weizhong Zhang; Takashi Hibiki; Kaichiro Mishima

    2005-01-01

    Full text of publication follows: In view of the significance of a heat transfer correlation of flow boiling at conditions of low liquid Reynolds number or liquid laminar flow, and very few existing correlations in principle suitable for such flow conditions, this study is aiming at developing a heat transfer correlation of flow boiling at low liquid Reynolds number conditions. The obtained results are as follows: 1. A new heat transfer correlation has been developed for saturated flow boiling at low liquid Reynolds number conditions based on superimposition of two boiling mechanisms, namely convective boiling and nucleate boiling. In the new correlation, two terms corresponding to the mechanisms of nucleate boiling and convective boiling are obtained from the pool boiling correlation by Forster and Zuber and the analytical annular flow model by Hewitt and Hall-Taylor, respectively. 2. An extensive database was collected for saturated flow boiling heat transfer at low liquid Reynolds number conditions, including data for different channels geometries (circular and rectangular), flow orientations (vertical and horizontal), and working fluids (water, R11, R12, R113). 3. An extensive comparison of the new correlation with the collected database shows that the new correlation works satisfactorily with the mean deviation of 16.6% for saturated flow boiling at low liquid Reynolds number conditions. 4. The detailed discussion reveals the similarity of the newly developed correlation for flow boiling at low liquid Reynolds number to the Chen correlation for flow boiling at high liquid Reynolds number. The Reynolds number factor F can be analytically deduced in this study. (authors)

  5. Modelling of subcooled boiling and DNB-type boiling crisis in forced convection

    International Nuclear Information System (INIS)

    Bricard, Patrick

    1995-01-01

    This research thesis aims at being a contribution to the modelling of two phenomena occurring during a forced convection: the axial evolution of the vacuum rate, and the boiling crisis. Thus, the first part of this thesis addresses the prediction of the vacuum rate, and reports the development of a modelling of under-saturated convection in forced convection. The author reports the development and assessment of two-fluid one-dimensional model, the development of a finer analysis based on an averaging of local equations of right cross-sections in different areas. The second part of this thesis addresses the prediction of initiation of a boiling crisis. The author presents generalities and motivations for this study, reports a bibliographical study and a detailed analysis of mechanistic models present in this literature. A mechanism of boiling crisis is retained, and then further developed in a numerical modelling which is used to assess some underlying hypotheses [fr

  6. Forced convective boiling heat transfer of water in vertical rectangular narrow channel

    International Nuclear Information System (INIS)

    Chen, Chong; Gao, Pu-zhen; Tan, Si-chao; Chen, Han-ying; Chen, Xian-bing

    2015-01-01

    Highlights: • Chen correlation cannot well predict the coefficient of rectangular channel. • Kim and Mudawar correlation is the best one among the Chen type correlations. • Lazarek and Black correlation predicted 7.0% of data within the ±30% error band. • The new correlation can well predict the coefficient with a small MAE of 14.4%. - Abstract: In order to research the characteristics of boiling flows in a vertical rectangular narrow channel, a series of convective boiling heat transfer experiments are performed. The test section is made of stainless steel with an inner diameter of 2 × 40 mm and heated length of 1100 mm. The 3194 experimental data points are obtained for a heat flux range of 10–700 kW/m 2 , a mass flux range of 200–2400 kg/m 2 s, a system pressure range of 0.1–2.5 MPa, and a quality range of 0–0.8. Eighteen prediction models are used to predict the flow boiling heat transfer coefficient of the rectangular narrow channel and the predicted value is compared against the database including 3194 data points, the results show that Chen type correlations and Lazarek and Black type correlations are not suitable for the rectangular channel very much. The Kim and Mudawar correlation is the best one among the 18 models. A new correlation is developed based on the superposition concept of nucleate boiling and convective boiling. the new correlation is shown to provide a good prediction against the database, evidenced by an overall MAE of 14.4%, with 95.2% and 98.6% of the data falling within ±30% and ±35% error bands, respectively

  7. PSI-BOIL, a building block towards the multi-scale modeling of flow boiling phenomena

    International Nuclear Information System (INIS)

    Niceno, Bojan; Andreani, Michele; Prasser, Horst-Michael

    2008-01-01

    Full text of publication follows: In these work we report the current status of the Swiss project Multi-scale Modeling Analysis (MSMA), jointly financed by PSI and Swissnuclear. The project aims at addressing the multi-scale (down to nano-scale) modelling of convective boiling phenomena, and the development of physically-based closure laws for the physical scales appropriate to the problem considered, to be used within Computational Fluid Dynamics (CFD) codes. The final goal is to construct a new computational tool, called Parallel Simulator of Boiling phenomena (PSI-BOIL) for the direct simulation of processes all the way down to the small-scales of interest and an improved CFD code for the mechanistic prediction of two-phase flow and heat transfer in the fuel rod bundle of a nuclear reactor. An improved understanding of the physics of boiling will be gained from the theoretical work as well as from novel small- and medium scale experiments targeted to assist the development of closure laws. PSI-BOIL is a computer program designed for efficient simulation of turbulent fluid flow and heat transfer phenomena in simple geometries. Turbulence is simulated directly (DNS) and its efficiency plays a vital role in a successful simulation. Having high performance as one of the main prerequisites, PSIBOIL is tailored in such a way to be as efficient a tool as possible, relying on well-established numerical techniques and sacrificing all the features which are not essential for the success of this project and which might slow down the solution procedure. The governing equations are discretized in space with orthogonal staggered finite volume method. Time discretization is performed with projection method, the most obvious a the most widely used choice for DNS. Systems of linearized equation, stemming from the discretization of governing equations, are solved with the Additive Correction Multigrid (ACM). methods. Two distinguished features of PSI-BOIL are the possibility to

  8. Study on Fins' Effect of Boiling Flow in Millimeter Channel Heat Exchanger

    Science.gov (United States)

    Watanabe, Satoshi

    2005-11-01

    Recently, a lot of researches about compact heat exchangers with mini-channels have been carried out with the hope of obtaining a high-efficiency heat transfer, due to the higher ratio of surface area than existing heat exchangers. However, there are many uncertain phenomena in fields such as boiling flow in mini-channels. Thus, in order to understand the boiling flow in mini-channels to design high-efficiency heat exchangers, this work focused on the visualization measurement of boiling flow in a millimeter channel. A transparent acrylic channel (heat exchanger form), high-speed camera (2000 fps at 1024 x 1024 pixels), and halogen lamp (backup light) were used as the visualization system. The channel's depth is 2 mm, width is 30 mm, and length is 400 mm. In preparation for commercial use, two types of channels were experimented on: a fins type and a normal slit type (without fins). The fins are circular cylindrical obstacles (diameter is 5 mm) to promote heat transfer, set in a triangular array (distance between each center point is 10 mm). Especially in this work, boiling flow and heat transfer promotion in the millimeter channel heat exchanger with fins was evaluated using a high-speed camera.

  9. Consumers' perception and acceptance of boiled and fermented sausages from strongly boar tainted meat.

    Science.gov (United States)

    Meier-Dinkel, Lisa; Gertheiss, Jan; Schnäckel, Wolfram; Mörlein, Daniel

    2016-08-01

    Characteristic off-flavours may occur in uncastrated male pigs depending on the accumulation of androstenone and skatole. Feasible processing of strongly tainted carcasses is challenging but gains in importance due to the European ban on piglet castration in 2018. This paper investigates consumers' acceptability of two sausage types: (a) emulsion-type (BOILED) and (b) smoked raw-fermented (FERM). Liking (9 point scales) and flavour perception (check-all-that-apply with both, typical and negatively connoted sensory terms) were evaluated by 120 consumers (within-subject design). Proportion of tainted boar meat (0, 50, 100%) affected overall liking of BOILED, F (2, 238)=23.22, P<.001, but not of FERM sausages, F (2, 238)=0.89, P=.414. Consumers described the flavour of BOILED-100 as strong and sweaty. In conclusion, FERM products seem promising for processing of tainted carcasses whereas formulations must be optimized for BOILED in order to eliminate perceptible off-flavours. Boar taint rejection thresholds may be higher for processed than those suggested for unprocessed meat cuts. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Experimental study on boiling heat transfer to an impinging jet on a hot block

    International Nuclear Information System (INIS)

    Kamata, Choko

    1997-01-01

    Previous studies on boiling heat transfer by impinging jets are mainly concerned with the impinging point by using small heat transfer surfaces of about 20 mm. An experimental study of the boiling heat transfer to an impinging water jet on a massive hot block is made. The upward heating surface is made of copper. Its diameter and nozzle diameter are 80 mm and 2.2 mm, respectively. The velocity of the impinging jet was varied from 0.6 to 2.1 m/s. Saturated water normally impinged on the heating surface, flowed radially, and subsequently dispersed into the atmosphere. The present study clarifies that heat transfer characteristics vary with the temperature of heat transfer surface, and also with the distance from the impinging point. (author)

  11. Research progresses and future directions on pool boiling heat transfer

    OpenAIRE

    M. Kumar; V. Bhutani; P. Khatak

    2015-01-01

    This paper reviews the previous work carried on pool boiling heat transfer during heating of various liquids and commodities categorized as refrigerants and dielectric fluids, pure liquids, nanofluids, hydrocarbons and additive mixtures, as well as natural and synthetic colloidal solutions. Nucleate pool boiling is an efficient and effective method of boiling because high heat fluxes are possible with moderate temperature differences. It is characterized by the growth of bubbles on a heated s...

  12. Downflow film boiling in a rod bundle at low pressure

    International Nuclear Information System (INIS)

    Hochreiter, L.E.; Rosal, E.R.; Fayfich, R.R.

    1978-01-01

    A series of low pressure downflow film boiling heat transfer experiments were conducted in a 14-foot (4.27 m) long electrically heater rod bundle containing 336 heater rods. The resulting data was compared with the Dougall-Rohsenow dispersed flow film boiling correlation. The data was found to lie below this correlation as the quality was increased. It is believed that buoyancy effects decreased the heat transfer in downflow film boiling. (author)

  13. Development of an experimental apparatus for boiling analysis

    International Nuclear Information System (INIS)

    Castro, A.J.A. de.

    1984-04-01

    The nucleate boiling is the most interesting boiling regime for practical appliccations, including nuclear reactor engineering. such regime is characterized by very high heat transfer rates with only small surface superheating. An experimental apparatus is developed for studying parameters which affect nucleate boiling. The following parameters are analysed: pressure, fluid velocity and the fluid temperature at the test section entrance. The performance of experimental apparatus is analysed by results and by problems raised by the oeration of setup. (Author) [pt

  14. Fouling of Structured Surfaces during Pool Boiling of Aqueous Solutions

    International Nuclear Information System (INIS)

    Esawy, M.

    2011-01-01

    Bubble characteristics in terms of density, size, frequency and motion are key factors that contribute to the superiority of nucleate pool boiling over the other modes of heat transfer. Nevertheless, if heat transfer occurs in an environment which is prone to fouling, the very same parameters may lead to accelerated deposit formation due to concentration effects beneath the growing bubbles. This has led heat exchanger designers frequently to maintain the surface temperature below the boiling point if fouling occurs, e.g. in thermal seawater desalination plants. The present study investigates the crystallization fouling of various structured surfaces during nucleate pool boiling of CaSO 4 solutions to shed light into their fouling behaviour compared with that of plain surfaces for the same operating conditions. As for the experimental part, a comprehensive set of clean and fouling experiments was performed rigorously. The structured tubes included low finned tubes of different fin densities, heights and materials and re-entrant cavity Turbo-B tube types.The fouling experiments were carried out at atmospheric pressure for different heat fluxes ranging from 100 to 300 k W/m 2 and CaSO 4 concentrations of 1.2 and 1.6 g/L. For the sake of comparison, similar runs were performed on plain stainless steel and copper tubes.Overall for the finned tubes, the experimental results showed a significant reduction of fouling resistances of up to 95% compared to those of the stainless steel and copper plain tubes. In addition, the scale formation that occurred on finned tubes was primarily a scattered and thin crystalline layer which differs significantly from those of plain tubes which suffered from a thick and homogenous layer of deposit with strong adhesion. Higher fin densities and lower fin heights always led to better antifouling performance for all investigated finned tubes. It was also shown that the surface material strongly affects the scale formation of finned tubes i

  15. Flow dynamics of volume-heated boiling pools

    International Nuclear Information System (INIS)

    Ginsberg, T.; Jones, O.C.; Chen, J.C.

    1979-01-01

    Safety analyses of fast breeder reactors require understanding of the two-phase fluid dynamic and heat transfer characteristics of volume-heated boiling pool systems. Design of direct contact three-phase boilers, of practical interest in the chemical industries also requires understanding of the fundamental two-phase flow and heat transfer behavior of volume boiling systems. Several experiments have been recently reported relevant to the boundary heat-loss mechanisms of boiling pool systems. Considerably less is known about the two-phase fluid dynamic behavior of such systems. This paper describes an experimental investigation of the steady-state flow dynamics of volume-heated boiling pool systems

  16. Some observations on boiling heat transfer with surface oscillation

    International Nuclear Information System (INIS)

    Miyashita, H.

    1992-01-01

    The effects of surface oscillation on pool boiling heat transfer are experimentally studied. Experiments were performed in saturated ethanol and distilled water, covering the range from nucleate to film boiling except in the transition region. Two different geometries were employed as the heating surface with the same wetting area, stainless steel pipe and molybdenum ribbon. The results confirm earlier work on the effect of surface oscillation especially in lower heat flux region of nucleate boiling. Interesting boiling behavior during surface oscillation is observed, which was not referred to in previous work. (2 figures) (Author)

  17. Boiling heat transfer modern developments and advances

    CERN Document Server

    Lahey, Jr, RT

    2013-01-01

    This volume covers the modern developments in boiling heat transfer and two-phase flow, and is intended to provide industrial, government and academic researchers with state-of-the-art research findings in the area of multiphase flow and heat transfer technology. Special attention is given to technology transfer, indicating how recent significant results may be used for practical applications. The chapters give detailed technical material that will be useful to engineers and scientists who work in the field of multiphase flow and heat transfer. The authors of all chapters are members of the

  18. Heat transfer coefficient for boiling carbon dioxide

    DEFF Research Database (Denmark)

    Knudsen, Hans Jørgen Høgaard; Jensen, Per Henrik

    1998-01-01

    Heat transfer coefficient and pressure drop for boiling carbon dioxide (R744) flowing in a horizontal pipe has been measured. The calculated heat transfer coeeficient has been compared with the Chart correlation of Shah. The Chart Correlation predits too low heat transfer coefficient but the ratio...... between the measured and the calculated heat transfer coefficient is nearly constant and equal 1.9. With this factor the correlation predicts the measured data within 14% (RMS). The pressure drop is of the same order as the measuring uncertainty and the pressure drop has not been compared with correlation's....

  19. Boiling, condensation, and gas-liquid flow

    International Nuclear Information System (INIS)

    Whalley, P.B.

    1987-01-01

    Heat transfer phenomena involving boiling and condensation are an important aspect of engineering in the power and process industries. This book, aimed at advanced first-degree and graduate students in mechanical and chemical engineering, deals with these phenomena in detail. The first part of the book describes gas-liquid two-phase flow, as a necessary preliminary to the later discussion of heat transfer and change of phase. A detailed section on calculation methods shows how theory can be put to practical use, and there are also descriptions of some of the equipment and plant used in the process and power industries

  20. Nonlinear dynamics of boiling water reactors

    International Nuclear Information System (INIS)

    March-Leuba, J.; Cacuci, D.G.; Perez, R.B.

    1983-01-01

    Recent stability tests in Boiling Water Reactors (BWRs) have indicated that these reactors can exhibit the special nonlinear behavior of following a closed trajectory called limit cycle. The existence of a limit cycle corresponds to an oscillation of fixed amplitude and period. During these tests, such oscillations had their amplitudes limited to about +- 15% of the operating power. Since limit cycles are fairly insensitive to parameter variations, it is possible to operate a BWR under conditions that sustain a limit cycle (of fixed amplitude and period) over a finite range of reactor parameters

  1. Sampling system for a boiling reactor NPP

    International Nuclear Information System (INIS)

    Zabelin, A.I.; Yakovleva, E.D.; Solov'ev, Yu.A.

    1976-01-01

    Investigations and pilot running of the nuclear power plant with a VK-50 boiling reactor reveal the necessity of normalizing the design system of water sampling and of mandatory replacement of the needle-type throttle device by a helical one. A method for designing a helical throttle device has been worked out. The quantitative characteristics of depositions of corrosion products along the line of reactor water sampling are presented. Recommendations are given on the organizaton of the sampling system of a nuclear power plant with BWR type reactors

  2. Pool boiling visualization on open microchannel surfaces

    Directory of Open Access Journals (Sweden)

    Kaniowski Robert

    2017-01-01

    Full Text Available The paper presents visualization investigations into pool boiling heat transfer for open minichannel surfaces. The experiments were carried out wih saturated water at atmospheric pressure. Parallel microchannels fabricated by machining were about 0.3 mm wide and 0.2 to 0.4 mm deep. High-speed videos were used as an aid to understanding the heat transfer mechanism. The visualization study aimed at identifying nucleation sites of the departing bubbles and determining their diameters and frequency at various superheats.

  3. Outline of advanced boiling water reactor

    International Nuclear Information System (INIS)

    Yoshio Matsuo

    1987-01-01

    The ABWR (Advanced Boiling Water Reactor) is based on construction and operational experience in Japan, USA and Europe. It was developed jointly by the BWR supplieres, General Electric, Hitachi, and Toshiba, as the next generation BWR for Japan. The Tokyo Electric Power Co. provided leadership and guidance in developing the ABWR, and in combination with five other Japanese electric power companies. The major objectives in developing the ABWR are: 1. Enhanced plant operability, maneuverability and daily load-following capability; 2. Increased plant safety and operating margins; 3. Improved plant availability and capacity factor; 4. Reduced occupational radiation exposure; 5. Reduced radwaste volume, and 6. Reduced plant capital and operating costs. (Liu)

  4. One component, volume heated, boiling pool thermohydraulics

    International Nuclear Information System (INIS)

    Bede, M.; Perret, C.; Pretrel, H.; Seiler, J.M.

    1993-01-01

    Prior work on boiling pools provided heat exchange correlations valid for bubbly flow with laminar or turbulent boundary layers. New experiments performed with water (SEBULON) and UO 2 (SCARABEE BF2) in a churn-turbulent flow configuration show unexpected heat flux distributions for which the maximum heat flux may be situated well below the pool surface. The origin of this behaviour is attributed to condensation effects, very unstable boundary layer flow and surface oscillation. A calculation model is discussed which permits to approach the experimental heat flux distribution with reasonable accuracy. (authors). 7 figs., 2 appendix., 14 refs

  5. Explosive Boiling of Superheated Cryogenic Liquids

    CERN Document Server

    Baidakov, V G

    2007-01-01

    The monograph is devoted to the description of the kinetics of spontaneous boiling of superheated liquefied gases and their solutions. Experimental results are given on the temperature of accessible superheating, the limits of tensile strength of liquids due to processes of cavitation and the rates of nucleation of classical and quantum liquids. The kinetics of evolution of the gas phase is studied in detail for solutions of cryogenic liquids and gas-saturated fluids. The properties of the critical clusters (bubbles of critical sizes) of the newly evolving gas phase are analyzed for initial st

  6. Numerical modeling of flow boiling instabilities using TRACE

    International Nuclear Information System (INIS)

    Kommer, Eric M.

    2015-01-01

    Highlights: • TRACE was used to realistically model boiling instabilities in single and parallel channel configurations. • Model parameters were chosen to exactly mimic other author’s work in order to provide for direct comparison of results. • Flow stability maps generated by the model show unstable flow at operating points similar to other authors. • The method of adjudicating when a flow is “unstable” is critical in this type of numerical study. - Abstract: Dynamic flow instabilities in two-phase systems are a vitally important area of study due to their effects on a great number of industrial applications, including heat exchangers in nuclear power plants. Several next generation nuclear reactor designs incorporate once through steam generators which will exhibit boiling flow instabilities if not properly designed or when operated outside design limits. A number of numerical thermal hydraulic codes attempt to model instabilities for initial design and for use in accident analysis. TRACE, the Nuclear Regulatory Commission’s newest thermal hydraulic code is used in this study to investigate flow instabilities in both single and dual parallel channel configurations. The model parameters are selected as to replicate other investigators’ experimental and numerical work in order to provide easy comparison. Particular attention is paid to the similarities between analysis using TRACE Version 5.0 and RELAP5/MOD3.3. Comparison of results is accomplished via flow stability maps non-dimensionalized via the phase change and subcooling numbers. Results of this study show that TRACE does indeed model two phase flow instabilities, with the transient response closely mimicking that seen in experimental studies. When compared to flow stability maps generated using RELAP, TRACE shows similar results with differences likely due to the somewhat qualitative criteria used by various authors to determine when the flow is truly unstable

  7. Fast grasping of unknown objects using principal component analysis

    Science.gov (United States)

    Lei, Qujiang; Chen, Guangming; Wisse, Martijn

    2017-09-01

    Fast grasping of unknown objects has crucial impact on the efficiency of robot manipulation especially subjected to unfamiliar environments. In order to accelerate grasping speed of unknown objects, principal component analysis is utilized to direct the grasping process. In particular, a single-view partial point cloud is constructed and grasp candidates are allocated along the principal axis. Force balance optimization is employed to analyze possible graspable areas. The obtained graspable area with the minimal resultant force is the best zone for the final grasping execution. It is shown that an unknown object can be more quickly grasped provided that the component analysis principle axis is determined using single-view partial point cloud. To cope with the grasp uncertainty, robot motion is assisted to obtain a new viewpoint. Virtual exploration and experimental tests are carried out to verify this fast gasping algorithm. Both simulation and experimental tests demonstrated excellent performances based on the results of grasping a series of unknown objects. To minimize the grasping uncertainty, the merits of the robot hardware with two 3D cameras can be utilized to suffice the partial point cloud. As a result of utilizing the robot hardware, the grasping reliance is highly enhanced. Therefore, this research demonstrates practical significance for increasing grasping speed and thus increasing robot efficiency under unpredictable environments.

  8. Interaction of centres on nucleate boiling

    International Nuclear Information System (INIS)

    Chekanov, V.V.

    1977-01-01

    An experimental set-up is described which enables to analyse the growth of a bubble on a heater, the frequency of succession of the bubbles, etc., by the change in the electric signal from a photomultiplier, onto whose photocathode the bubble is projected. The change in the first moments of the statistical distribution of the corresponding parameters (growth time, frequency of succession, and so on) is adopted as the measure of the external effect on the vapour formation centre. It is shown that for single-bubble boiling the greatest effect is exerted by the acoustic waves produced by the bubble in the growth period; during developed boiling one observes mutual suppression of centres spaced at a distance of the order of the detachment diameter. As the heat flux increases, the correlation of the motion of the interface over the heater surface increases as well. When the correlation radius becomes equal to the centre-to-centre distance, the first crisis sets in. It is suggested that heaters with a variable coefficient of temperature conductance along the heat-releasing surface must withstand high subcritical heat fluxes

  9. Gravity Effects in Microgap Flow Boiling

    Science.gov (United States)

    Robinson, Franklin; Bar-Cohen, Avram

    2017-01-01

    Increasing integration density of electronic components has exacerbated the thermal management challenges facing electronic system developers. The high power, heat flux, and volumetric heat generation of emerging devices are driving the transition from remote cooling, which relies on conduction and spreading, to embedded cooling, which facilitates direct contact between the heat-generating device and coolant flow. Microgap coolers employ the forced flow of dielectric fluids undergoing phase change in a heated channel between devices. While two phase microcoolers are used routinely in ground-based systems, the lack of acceptable models and correlations for microgravity operation has limited their use for spacecraft thermal management. Previous research has revealed that gravitational acceleration plays a diminishing role as the channel diameter shrinks, but there is considerable variation among the proposed gravity-insensitive channel dimensions and minimal research on rectangular ducts. Reliable criteria for achieving gravity-insensitive flow boiling performance would enable spaceflight systems to exploit this powerful thermal management technique and reduce development time and costs through reliance on ground-based testing. In the present effort, the authors have studied the effect of evaporator orientation on flow boiling performance of HFE7100 in a 218 m tall by 13.0 mm wide microgap cooler. Similar heat transfer coefficients and critical heat flux were achieved across five evaporator orientations, indicating that the effect of gravity was negligible.

  10. Boiling heat transfer on horizontal tube bundles

    International Nuclear Information System (INIS)

    Anon.

    1987-01-01

    Nucleate boiling heat transfer characteristics for a tube in a bundle differ from that for a single tube in a pool and this difference is known as 'tube bundle effect.' There exist two bundle effects, positive and negative. The positive bundle effect enhances heat transfer due to convective flow induced by rising bubbles generated from the lower tubes, while the negative bundle effect deteriorates heat transfer due to vapor blanketing caused by accumulation of bubbles. Staggered tube bundles tested and found that the upper tubes in bundles have higher heat transfer coefficients than the lower tubes. The effects of various parameters such as pressure, tube geometry and oil contamination on heat transfer have been examined. Some workers attempted to clarify the mechanism of occurrence of 'bundle effect' by testing tube arrangements of small scale. All reported only enhancement in heat transfer but results showed the symptom of heat transfer deterioration at higher heat fluxes. As mentioned above, it has not been clarified so far even whether the 'tube bundle effect' should serve as enhancement or deterioration of heat transfer in nucleate boiling. In this study, experiments are performed in detail by using bundles of small scale, and effects of heat flux distribution, pressure and tube location are clarified. Furthermore, some consideration on the mechanisms of occurrence of 'tube bundle effect' is made and a method for prediction of heat transfer rate is proposed

  11. Identification of dynamic basins in boiling fluxes

    International Nuclear Information System (INIS)

    Juanico, L.E.

    1997-01-01

    A theoretical and experimental study of the dynamic behavior of a boiling channel is presented. In particular, the existence of different basins of attraction during instabilities was established. A fully analytical treatment of boiling channel dynamics were performed using a algebraic delay model. Subcritical and supercritical Hopf bifurcations could be identified and analyzed using perturbation methods. The derivation of a fully analytical criterion for Hopf bifurcation transcription was applied to determine the amplitude of the limit cycles and the maximum allowed perturbations necessary to break the system stability. A lumped parameters model which allows the representation of flow reversal is presented. The dynamic of very large amplitude oscillations, out of the Hopf bifurcation domain, was studied. The analysis revealed the existence of new dynamical basins of attraction, where the system may evolve to and return from with hysteresis. Finally, an experimental study was conducted, in a water loop at atmospheric pressure, designed to reproduce the operating conditions analyzed in the theory. Different dynamic phase previously predicted in the theory were found and their nonlinear characteristics were studied. In particular, subcritical and supercritical Hopf bifurcations and very large amplitude oscillations with flow reversal were identified. (author). 53 refs., figs

  12. Boiling induced mixed convection in cooling loops

    International Nuclear Information System (INIS)

    Knebel, J.U.; Janssens-Maenhout, G.; Mueller, U.

    2000-01-01

    This article describes the SUCO program performed at the Forschungszentrum Karlsruhe. The SUCO program is a three-step series of scaled model experiments investigating the possibility of a sump cooling concept for future light water reactors. In case of a core melt accident, the sump cooling concept realises a decay heat removal system that is based on passive safety features within the containment. The article gives, first, results of the experiments in the 1:20 linearly scaled SUCOS-2D test facility. The experimental results are scaled-up to the conditions in the prototype, allowing a statement with regard to the feasibility of the sump cooling concept. Second, the real height SUCOT test facility with a volume and power scale of 1:356 that is aimed at investigating the mixed single-phase and two-phase natural circulation flow in the reactor sump, together with first measurement results, are discussed. Finally, a numerical approach to model the subcooled nucleate boiling phenomena in the test facility SUCOT is presented. Physical models describing interfacial mass, momentum and-heat transfer are developed and implemented in the commercial software package CFX4.1. The models are validated for an isothermal air-water bubbly flow experiment and a subcooled boiling experiment in vertical annular water flow. (author)

  13. Boiling water reactor life extension monitoring

    International Nuclear Information System (INIS)

    Stancavage, P.

    1991-01-01

    In 1991 the average age of GE-supplied Boiling Water Reactors (BWRs) reached 15 years. The distribution of BWR ages range from three years to 31 years. Several of these plants have active life extension programmes, the most notable of which is the Monticello plant in Minnesota which is the leading BWR plant for license renewal in the United States. The reactor pressure vessel and its internals form the heart of the boiling water reactor (BWR) power plant. Monitoring the condition of the vessel as it operates provides a continuous report on the structural integrity of the vessel and internals. Monitors for fatigue, stress corrosion and neutron effects can confirm safety margins and predict residual life. Every BWR already incorporates facilities to track the key aging mechanisms of fatigue, stress corrosion and neutron embrittlement. Fatigue is measured by counting the cycles experienced by the pressure vessel. Stress corrosion is gauged by periodic measurements of primary water conductivity and neutron embrittlement is tracked by testing surveillance samples. The drawbacks of these historical procedures are that they are time consuming, they lag the current operation, and they give no overall picture of structural integrity. GE has developed an integrated vessel fitness monitoring system to fill the gaps in the historical, piecemetal monitoring of the BWR vessel and internals and to support plant life extension. (author)

  14. Studies in boiling heat transfer in two phase flow through tube arrays: nucleate boiling heat transfer coefficient and maximum heat flux as a function of velocity and quality of Freon-113

    International Nuclear Information System (INIS)

    Rahmani, R.

    1983-01-01

    The nucleate boiling heat-transfer coefficient and the maximum heat flux were studied experimentally as functions of velocity, quality and heater diameter for single-phase flow, and two-phase flow of Freon-113 (trichlorotrifluorethane). Results show: (1) peak heat flux: over 300 measured peak heat flux data from two 0.875-in. and four 0.625-in.-diameter heaters indicated that: (a) for pool boiling, single-phase and two-phase forced convection boiling the only parameter (among hysteresis, rate of power increase, aging, presence and proximity of unheated rods) that has a statistically significant effect on the peak heat flux is the velocity. (b) In the velocity range (0 0 position or the point of impact of the incident fluid) and the top (180 0 position) of the test element, respectively

  15. Direct Numerical Simulation and Visualization of Subcooled Pool Boiling

    Directory of Open Access Journals (Sweden)

    Tomoaki Kunugi

    2014-01-01

    Full Text Available A direct numerical simulation of the boiling phenomena is one of the promising approaches in order to clarify their heat transfer characteristics and discuss the mechanism. During these decades, many DNS procedures have been developed according to the recent high performance computers and computational technologies. In this paper, the state of the art of direct numerical simulation of the pool boiling phenomena during mostly two decades is briefly summarized at first, and then the nonempirical boiling and condensation model proposed by the authors is introduced into the MARS (MultiInterface Advection and Reconstruction Solver developed by the authors. On the other hand, in order to clarify the boiling bubble behaviors under the subcooled conditions, the subcooled pool boiling experiments are also performed by using a high speed and high spatial resolution camera with a highly magnified telescope. Resulting from the numerical simulations of the subcooled pool boiling phenomena, the numerical results obtained by the MARS are validated by being compared to the experimental ones and the existing analytical solutions. The numerical results regarding the time evolution of the boiling bubble departure process under the subcooled conditions show a very good agreement with the experimental results. In conclusion, it can be said that the proposed nonempirical boiling and condensation model combined with the MARS has been validated.

  16. Effect of boiling on the physicochemical properties of Roselle seeds ...

    African Journals Online (AJOL)

    Effect of boiling on the physicochemical composition of Roselle seeds (Hibiscus sabdariffa) grown in Mali was shown. Proximate analysis indicated that boiled whole Roselle seeds (BWRS) are potential high protein source. Moreover, the results of lipid analysis indicated that the seeds were good source of unsaturated fatty ...

  17. Results of KNS-1 acoustic boiling noise benchmark test

    International Nuclear Information System (INIS)

    Foerster, K.; Arnaoutis, N.; Voss, J.

    1989-01-01

    The present paper deals with investigations of acoustic signals from a boiling experiment performed on the KNS I loop at KfK Karlsruhe. Signals have been analysed in frequency as well as in time domain. Signal characteristics successfully used to detect the boiling process have been found in time domain. (author). 13 figs, 1 tab

  18. Low-Flow Film Boiling Heat Transfer on Vertical Surfaces

    DEFF Research Database (Denmark)

    Munthe Andersen, J. G.; Dix, G. E.; Leonard, J. E.

    1976-01-01

    The phenomenon of film boiling heat transfer for high wall temperatures has been investigated. Based on the assumption of laminar flow for the film, the continuity, momentum, and energy equations for the vapor film are solved and a Bromley-type analytical expression for the heat transfer...... length, an average film boiling heat transfer coefficient is obtained....

  19. An experimental investigation of triggered film boiling destabilisation

    International Nuclear Information System (INIS)

    Naylor, P.

    1985-03-01

    Film boiling was established on a polished brass rod in water, collapse being initiated by either a pressure pulse or a transient bulk water flow. This work is relevant to the triggering stage of a molten fuel-coolant interaction, and a criterion is proposed for triggered film boiling collapse with pressure pulse. (U.K.)

  20. Critical heat flux in flow boiling in microchannels

    CERN Document Server

    Saha, Sujoy Kumar

    2015-01-01

    This Brief concerns the important problem of critical heat flux in flow boiling in microchannels. A companion edition in the SpringerBrief Subseries on Thermal Engineering and Applied Science to “Heat Transfer and Pressure Drop in Flow Boiling in Microchannels,” by the same author team, this volume is idea for professionals, researchers, and graduate students concerned with electronic cooling.

  1. Thermal-hydraulic performance of convective boiling jet array impingement

    International Nuclear Information System (INIS)

    Jenkins, R; De Brún, C; Kempers, R; Lupoi, R; Robinson, A J

    2016-01-01

    Jet impingement boiling is investigated with regard to heat transfer and pressure drop performance using a novel laser sintered 3D printed jet impingement manifold design. Water was the working fluid at atmospheric pressure with inlet subcooling of 7 o C. The convective boiling performance of the impinging jet system was investigated for a flat copper target surface for 2700≤Re≤5400. The results indicate that the heat transfer performance of the impinging jet is independent of Reynolds number for fully developed boiling. Also, the investigation of nozzle to plate spacing shows that low spacing delays the onset of nucleate boiling causing a superheat overshoot that is not observed with larger gaps. However, no sensitivity to the gap spacing was measured once boiling was fully developed. The assessment of the pressure drop performance showed that the design effectively transfers heat with low pumping power requirements. In particular, owing to the insensitivity of the heat transfer to flow rate during fully developed boiling, the coefficient of performance of jet impingement boiling in the fully developed boiling regime deteriorates with increased flow rate due to the increase in pumping power flux. (paper)

  2. Chemical composition and nutritional value of boiled Christmas ...

    African Journals Online (AJOL)

    A study was conducted to determine the chemical composition and the nutritive value of boiled Christmas bush (Alchornea cordifolia) for starter broiler chickens. Dried Christmas bush fruits (Capsules + seed) were boiled for 30 minutes, sundried and ground into meal. The meal was analyzed for proximate composition and ...

  3. Changes provoked by boiling, steaming and sous-vide cooking in the lipid and volatile profile of European sea bass.

    Science.gov (United States)

    Nieva-Echevarría, Bárbara; Manzanos, María J; Goicoechea, Encarnación; Guillén, María D

    2017-09-01

    This study aims to shed light on the changes provoked by boiling, steaming and sous-vide cooking on the lipids and volatile profile of farmed and wild European sea bass meat. None of the cooking techniques provoked changes due to hydrolytic or oxidation processes detectable by 1 H NMR on sea bass lipids. The lipid profile of main and minor lipidic components was maintained after cooking. However, study by SPME-GC/MS evidenced that steaming and sous-vide cooking modified the volatile profile of sea bass meat, especially in farmed specimens. The compounds generated came from the occurrence, to a very small extent, of lipid and protein degradation. By contrast, boiling scarcely modified the initial characteristics of raw sea bass. Thus, from a sensory point of view and considering the odour-active compounds generated, steaming and sous-vide cooking provoked more noticeable changes than boiling, especially in farmed sea bass meat. Copyright © 2017. Published by Elsevier Ltd.

  4. Assessment of RANS at low Prandtl number and simulation of sodium boiling flows with a CMFD code

    Energy Technology Data Exchange (ETDEWEB)

    Mimouni, S., E-mail: stephane.mimouni@edf.fr; Guingo, M.; Lavieville, J.

    2017-02-15

    Highlights: • Modelling of boiling sodium flows in a multiphase flow solver. • Rod heated with a constant heat flux in a pipe liquid metal flow. • Sodium boiling flow around a rod heated with a constant heat. • Computations in progress in an assembly constituted of 19 pins equipped with a wrapped wire. - Abstract: In France, Sodium-cooled Fast Reactors (SFR) have recently received a renewed interest. In 2006, the decision was taken by the French Government to initiate research in order to build a first Generation IV prototype (called ASTRID) by 2020. The improvement in the safety of SFR is one of the key points in their conception. Accidental sequences may lead to a significant increase of reactivity. This is for instance the case when the sodium coolant is boiling within the fissile zone. As a consequence, incipient boiling superheat of sodium is an important parameter, as it can influence boiling process which may appear during some postulated accidents as the unexpected loss of flow (ULOF). The problem is that despite the reduction in core power, when boiling conditions are reached, the flow decreases progressively and vapour expands into the heating zone. A crucial investigating way is to optimize the design of the fissile assemblies of the core in order to lead to stable boiling during a ULOF accident, without voiding of the fissile zone. Moreover, in order to evaluate nuclear plant design and safety, a CFD tool has been developed at EDF in the framework of the nuclear industry. Advanced models dedicated to boiling flows have been implemented and validated against experimental data for ten years now including a wall law for boiling flows, wall transfer for nucleate boiling, turbulence and polydispersion model. This paper aims at evaluating the generalization of these models to SFR. At least two main issues are encountered. Firstly, at low Prandtl numbers such as those of liquid metal, classical approaches derived for unity or close to unity fail to

  5. Little low-power boiling never hurt anybody

    International Nuclear Information System (INIS)

    Dunn, F.E.

    1985-01-01

    Failures in the shutdown heat removal system of an LMFBR might lead to flow stagnation and coolant boiling in the reactor core. At normal operating power, the onset of sodium boiling will lead to film dryout and melting of the cladding and fuel within a few seconds. On the other hand, both calculations and currently available experimental data indicate that at heat fluxes corresponding to decay heat power levels, boiling leads to improved heat removal; and it limits the temperature rise in the fuel pins. Therefore, when setting safety criteria for decay heat removal systems, there is no reason to preclude sodium boiling per se because of heat removal considerations. As an example that illustrates the beneficial impact of coolant boiling, a case involving temporary loss of feedwater and staggered pump failures in a hypothetical, 1000-MWe loop-type reactor was run in the SASSYS-1 code

  6. Nucleate boiling of halogenated coolants - correlation analysis; Ebulicao nucleada de refrigerantes halogenados: analise de correlacoes

    Energy Technology Data Exchange (ETDEWEB)

    Ribatski, Gherhardt; Jabardo, Jose M. Saiz [Sao Paulo Univ., Sao Carlos, SP (Brazil). Escola de Engenharia. Dept. de Engenharia Mecanica

    1998-07-01

    Present study has been focused on a literature of heat transfer under nucleate boiling conditions of halocarbon refrigerants and their mixtures with lubricating oil. Two kind of correlations regarding the heat transfer mechanism have been found: strictly empirical, based on a straight curve fitting of experimental data, and semi-empirical, based on the particular point of view of the author regarding the physical mechanism but still fitted with experimental data. As a general rule, it has been noted that correlations present significant discrepancies among each other, a result which mostly reflects the wide range of experimental conditions used as a reference. A similar trend has been observed with refrigerant/oil mixtures. Given the current status of halocarbon refrigerants for refrigeration applications, there is clearly a need for further research regarding the nucleate boiling phenomenon related to those compounds. (author)

  7. Contribution to the study of natural convection in a boiling medium with power density transfer

    International Nuclear Information System (INIS)

    Bede, M.

    1987-01-01

    This study has been carried out in the framework of fast reactor safety studies and deals with the fuel boiling problem in case of flow blockage at the bottom of a fuel assembly. The experimental part of this study bringss new informations characteristic of a boiling fluid bath (water) simulating in a transient and in a steady regime (pressure, temperature, void fraction, heat flux at the walls). It points out a relation between heat losses through the walls and the importance of the monophase zone of the bath. A model has been developed from the analysis of experimental results. It is based on a quasi-stationary state and allows to find the evolution of the characteristic values in confined transient regime [fr

  8. Validation of a multidimensional computational fluid dynamics model for subcooled flow boiling analysis

    Energy Technology Data Exchange (ETDEWEB)

    Braz Filho, Francisco A.; Caldeira, Alexandre D.; Borges, Eduardo M., E-mail: fbraz@ieav.cta.b, E-mail: alexdc@ieav.cta.b, E-mail: eduardo@ieav.cta.b [Instituto de Estudos Avancados (IEAv/CTA), Sao Jose dos Campos, SP (Brazil). Div. de Energia Nuclear

    2011-07-01

    In a heated vertical channel, the subcooled flow boiling regime occurs when the bulk fluid temperature is lower than the saturation temperature, but the fluid temperature reaches the saturation point near the channel wall. This phenomenon produces a significant increase in heat flux, limited by the critical heat flux. This study is particularly important to the thermal-hydraulics analysis of pressurized water reactors. The purpose of this work is the validation of a multidimensional model to analyze the subcooled flow boiling comparing the results with experimental data found in literature. The computational fluid dynamics code FLUENT was used with Eulerian multiphase model option. The calculated values of wall temperature in the liquid-solid interface presented an excellent agreement when compared to the experimental data. Void fraction calculations presented satisfactory results in relation to the experimental data in pressures of 15, 30 and 45 bars. (author)

  9. Preliminary results of the US pool-boiling coils from the IFSMTF full-array tests

    International Nuclear Information System (INIS)

    Lue, J.W.; Dresner, L.; Lubell, M.S.; Luton, J.N.; McManamy, T.J.; Shen, S.S.

    1986-01-01

    The Large Coil Task to develop superconducting magnets for fusion reactors, is now in the midst of full-array tests in the International Fusion Superconducting Magnet Test Facility at Oak Ridge National Laboratory. Included in the test array are two pool-boiling coils designed and fabricated by US manufacturers, General Dynamics/Convair Division and General Electric/Union Carbide Corporation. So far, both coils have been energized to full design currents in the single-coil tests, and the General Dynamics coil has reached the design point in the first Standard-I full-array test. Both coils performed well in the charging experiments. Extensive heating tests and the heavy instrumentation of these coils have, however, revealed some generic limitations of large pool-boiling superconducting coils. Details of these results and their analyses are reported

  10. Using largest Lyapunov exponent to confirm the intrinsic stability of boiling water reactors

    International Nuclear Information System (INIS)

    Gavilian-Moreno, Carlos; Espinosa-Paredes, Gilberto

    2016-01-01

    The aim of this paper is the study of instability state of boiling water reactors with a method based in largest Lyapunov exponents (LLEs). Detecting the presence of chaos in a dynamical system is an important problem that is solved by measuring the LLE. Lyapunov exponents quantify the exponential divergence of initially close state-space trajectories and estimate the amount of chaos in a system. This method was applied to a set of signals from several nuclear power plant (NPP) reactors under commercial operating conditions that experienced instabilities events, apparently each of a different nature. Laguna Verde and Forsmark NPPs with in-phase instabilities, and Cofrentes NPP with out-of-phases instability. This study presents the results of intrinsic instability in the boiling water reactors of three NPPs. In the analyzed cases the limit cycle was not reached, which implies that the point of equilibrium exerts influence and attraction on system evolution

  11. Using largest Lyapunov exponent to confirm the intrinsic stability of boiling water reactors

    Energy Technology Data Exchange (ETDEWEB)

    Gavilian-Moreno, Carlos [Iberdrola Generacion, S.A., Cofrentes Nuclear Power Plant, Project Engineering Department, Paraje le Plano S/N, Valencia (Spain); Espinosa-Paredes, Gilberto [Area de ingeniera en Recursos Energeticos, Universidad Autonoma Metropolitana-Iztapalapa, Mexico city (Mexico)

    2016-04-15

    The aim of this paper is the study of instability state of boiling water reactors with a method based in largest Lyapunov exponents (LLEs). Detecting the presence of chaos in a dynamical system is an important problem that is solved by measuring the LLE. Lyapunov exponents quantify the exponential divergence of initially close state-space trajectories and estimate the amount of chaos in a system. This method was applied to a set of signals from several nuclear power plant (NPP) reactors under commercial operating conditions that experienced instabilities events, apparently each of a different nature. Laguna Verde and Forsmark NPPs with in-phase instabilities, and Cofrentes NPP with out-of-phases instability. This study presents the results of intrinsic instability in the boiling water reactors of three NPPs. In the analyzed cases the limit cycle was not reached, which implies that the point of equilibrium exerts influence and attraction on system evolution.

  12. Validation of a multidimensional computational fluid dynamics model for subcooled flow boiling analysis

    International Nuclear Information System (INIS)

    Braz Filho, Francisco A.; Caldeira, Alexandre D.; Borges, Eduardo M.

    2011-01-01

    In a heated vertical channel, the subcooled flow boiling regime occurs when the bulk fluid temperature is lower than the saturation temperature, but the fluid temperature reaches the saturation point near the channel wall. This phenomenon produces a significant increase in heat flux, limited by the critical heat flux. This study is particularly important to the thermal-hydraulics analysis of pressurized water reactors. The purpose of this work is the validation of a multidimensional model to analyze the subcooled flow boiling comparing the results with experimental data found in literature. The computational fluid dynamics code FLUENT was used with Eulerian multiphase model option. The calculated values of wall temperature in the liquid-solid interface presented an excellent agreement when compared to the experimental data. Void fraction calculations presented satisfactory results in relation to the experimental data in pressures of 15, 30 and 45 bars. (author)

  13. Using Largest Lyapunov Exponent to Confirm the Intrinsic Stability of Boiling Water Reactors

    Directory of Open Access Journals (Sweden)

    Carlos J. Gavilán-Moreno

    2016-04-01

    Full Text Available The aim of this paper is the study of instability state of boiling water reactors with a method based in largest Lyapunov exponents (LLEs. Detecting the presence of chaos in a dynamical system is an important problem that is solved by measuring the LLE. Lyapunov exponents quantify the exponential divergence of initially close state-space trajectories and estimate the amount of chaos in a system. This method was applied to a set of signals from several nuclear power plant (NPP reactors under commercial operating conditions that experienced instabilities events, apparently each of a different nature. Laguna Verde and Forsmark NPPs with in-phase instabilities, and Cofrentes NPP with out-of-phases instability. This study presents the results of intrinsic instability in the boiling water reactors of three NPPs. In the analyzed cases the limit cycle was not reached, which implies that the point of equilibrium exerts influence and attraction on system evolution.

  14. Analytical modeling of inverted annular film boiling

    International Nuclear Information System (INIS)

    Analytis, G.T.; Yadigaroglu, G.

    1987-01-01

    By employing a two-fluid formulation similar to the one used in the most recent LWR accident analysis codes, a model for the Inverted Annular Film Boiling region is developed. The conservation equations, together with appropriate closure relations are solved numerically. Successful comparisons are made between model predictions and heat transfer coefficient distributions measured in a series of single-tube reflooding experiments. Generally, the model predicts correctly the dependence of the heat transfer coefficient on liquid subcooling and flow rate; for some cases, however, heat transfer is still under-predicted, and an enhancement of the heat exchange from the liquid-vapour interface to the bulk of the liquid is required. The importance of the initial conditions at the quench front is also discussed. (orig.)

  15. Analytical modeling of inverted annular film boiling

    International Nuclear Information System (INIS)

    Analytis, G.T.; Yadigaroglu, G.

    1985-01-01

    By employing a two-fluid formulation similar to the one used in the most recent LWR accident analysis codes, a model for the Inverted Annular Film Boiling region is developed. The conservation equations, together with appropriate constitutive relations are solved numerically and successful comparisons are made between model predictions and heat transfer coefficient distributions measured in a series of single-tube reflooding experiments. The model predicts generally correctly the dependence of the heat transfer coefficient on liquid subcooling and flow rate, through, for some cases, heat transfer is still under-predicted, and an enhancement of the heat exchange from the liquid-vapour interface to the bulk of the liquid is required

  16. An improved nucleate boiling design equation

    International Nuclear Information System (INIS)

    Basu, D.K.; Pinder, K.L.

    1976-01-01

    The effect of varying ΔT, the primary variable, on the value of heat transfer coefficient (h) in nucleate boiling is discussed. The three-parameter quadratic equation, h=P 1 + P 2 (ΔT) + P 3 (ΔT) 2 (where the constants, P 1 ,P 2 ,P 3 are functions of pressure, liquid properties and surface properties of the heater) is suggested. Ten sets of data at atmospheric pressure from six different workers and two more sets for pressure variation have been tested. The above quadratic equation fits the experimental data better than the existing two-parameter power relation, h=C(ΔT)sup(n) (where C is constant). The values of the three coeffcients in the quadratic equations are dependent on pressure, liquid properties and surface properties. A generalized empirical equation has been derived, which fits the selected pressure data well. (author)

  17. Heat transfer coeffcient for boiling carbon dioxide

    DEFF Research Database (Denmark)

    Knudsen, Hans Jørgen Høgaard; Jensen, Per Henrik

    1997-01-01

    Heat transfer coefficient and pressure drop for boiling carbon dioxide (R744) flowing in a horizontal pipe has been measured. The pipe is heated by condensing R22 outside the pipe. The heat input is supplied by an electrical heater wich evaporates the R22. With the heat flux assumed constant over...... the whole surface and with measured temperature difference between the inner surface and the evaporation temperature a mean heat transfer coefficient is calculated. The calculated heat transfer coefficient has been compared with the Chart Correlation of Shah. The Chart Correlation predicts too low heat...... transfer coefficient but the ratio between the measured and the calculated heat transfer coefficient is nearly constant and equal 1.9. With this factor the correlation predicts the measured data within 14% (RMS). The pressure drop is of the same order as the measuring uncertainty and the pressure drop has...

  18. Hydrogen water chemistry for boiling water reactors

    International Nuclear Information System (INIS)

    Cowan, R.L.; Cowan, R.L.; Kass, J.N.; Law, R.J.

    1985-01-01

    Hydrogen Water Chemistry (HWC) is now a practical countermeasure for intergranular stress corrosion cracking (IGSCC) susceptibility of reactor structural materials in Boiling Water Reactors (BWRs). The concept, which involves adding hydrogen to the feedwater to suppress the formation of oxidizing species in the reactor, has been extensively studied in both the laboratory and in several operating plants. The Dresden-2 Unit of Commonwealth Edison Company has completed operation for one full 18-month fuel cycle under HWC conditions. The specifications, procedures, equipment, instrumentation and surveillance programs needed for commercial application of the technology are available now. This paper provides a review of the benefits to be obtained, the side affects, and the special operational considerations needed for commercial implementation of HWC. Technological and management ''Lessons Learned'' from work conducted to date are also described

  19. Research on boiling liquid expanding vapour explosions

    Energy Technology Data Exchange (ETDEWEB)

    McDevitt, C.A.; Steward, F.R.; Venart, J.E.S.

    A boiling liquid expanding vapor explosion (BLEVE) is due to rapid boiling and expansion, with no ignition or chemical reaction involved. Research is being conducted to examine such questions as under what conditions tanks and their contents undergo BLEVE, what are the characteristics of tanks affected by BLEVE, and what alterations in tank design can be made to minimize the likelihood of BLEVEs. Experiments have been done with both propane and freon, using commercially available one-liter propane cylinders. Outdoor tests were conducted and designed to have the tank fail at a particular set of internal conditions. High speed photography was used to record the explosion, and computerized monitoring equipment to record temperature and pressure data. Tests were run to attempt to determine the relationship between temperature and BLEVEs, and to test the possibility that the occurrence of a BLEVE depends on the amount of vapor that could be produced when the tank was ruptured. Discussion is made of the role of pressure waves and rarefaction waves in the explosion. It is concluded that the superheat temperature limit, theorized as the minimum temperature below which no BLEVE can occur, cannot be used to predict BLEVEs. It has been shown that BLEVEs can occur below this temperature. There appears to be a relationship between liquid temperature, liquid volume, and the energy required to drive the BLEVE. Fireballs may occur after a BLEVE of flammable material, but are not part of the tank destruction. Rupture location (vapor vs liquid space) appears to have no effect on whether a container will undergo a BLEVE. 7 refs., 7 figs., 1 tab.

  20. New Departure from Nucleate Boiling model relying on first principle energy balance at the boiling surface

    Science.gov (United States)

    Demarly, Etienne; Baglietto, Emilio

    2017-11-01

    Predictions of Departure from Nucleate Boiling have been a longstanding challenge when designing heat exchangers such as boilers or nuclear reactors. Many mechanistic models have been postulated over more than 50 years in order to explain this phenomenon but none is able to predict accurately the conditions which trigger the sudden change of heat transfer mode. This work aims at demonstrating the pertinence of a new approach for detecting DNB by leveraging recent experimental insights. The new model proposed departs from all the previous models by making the DNB inception come from an energy balance instability at the heating surface rather than a hydrodynamic instability of the bubbly layer above the surface (Zuber, 1959). The main idea is to modulate the amount of heat flux being exchanged via the nucleate boiling mechanism by the wetted area fraction on the surface, thus allowing a completely automatic trigger of DNB that doesn't require any parameter prescription. This approach is implemented as a surrogate model in MATLAB in order to validate the principles of the model in a simple and controlled geometry. Good agreement is found with the experimental data leveraged from the MIT Flow Boiling at various flow regimes. Consortium for Advanced Simulation of Light Water Reactors (CASL).

  1. Quantum circuits cannot control unknown operations

    International Nuclear Information System (INIS)

    Araújo, Mateus; Feix, Adrien; Costa, Fabio; Brukner, Časlav

    2014-01-01

    One of the essential building blocks of classical computer programs is the ‘if’ clause, which executes a subroutine depending on the value of a control variable. Similarly, several quantum algorithms rely on applying a unitary operation conditioned on the state of a control system. Here we show that this control cannot be performed by a quantum circuit if the unitary is completely unknown. The task remains impossible even if we allow the control to be done modulo a global phase. However, this no-go theorem does not prevent implementing quantum control of unknown unitaries in practice, as any physical implementation of an unknown unitary provides additional information that makes the control possible. We then argue that one should extend the quantum circuit formalism to capture this possibility in a straightforward way. This is done by allowing unknown unitaries to be applied to subspaces and not only to subsystems. (paper)

  2. Multifocal, chronic osteomyelitis of unknown etiology

    International Nuclear Information System (INIS)

    Kozlowski, K.; Beluffi, G.; Feltham, C.; James, M.; Nespoli, L.; Tamaela, L.; Pavia Univ.; Municipal Hospital, Nelson; Medical School, Jakarta

    1985-01-01

    Four cases of multifocal osteomyelitis of unknown origin in childhood are reported. The variable clinical and radiographic appearances of the disease are illustrated and the diagnostic difficulties in the early stages of the disease are stressed. (orig.) [de

  3. Known Unknowns in Judgment and Choice

    OpenAIRE

    Walters, Daniel

    2017-01-01

    This dissertation investigates how people make inferences about missing information. Whereas most prior literature focuses on how people process known information, I show that the extent to which people make inferences about missing information impacts judgments and choices. Specifically, I investigate how (1) awareness of known unknowns affects overconfidence in judgment in Chapter 1, (2) beliefs about the knowability of unknowns impacts investment strategies in Chapter 2, and (3) inferences...

  4. Mobile assistant for unknown caller identification

    OpenAIRE

    Hribernik, Andraž

    2012-01-01

    The main motivation of this diploma thesis is a development of Android application, which helps user of application to find out who is the owner of unknown phone number. Data source for finding unknown phone number are free available web sources. Through the development of prototype, data from different web sources were integrated. Result of this integration is shown in Android application. Data integration includes access to semi-structured data on web portal of Phone Directory of Slovenia, ...

  5. Research progresses and future directions on pool boiling heat transfer

    Directory of Open Access Journals (Sweden)

    M. Kumar

    2015-12-01

    Full Text Available This paper reviews the previous work carried on pool boiling heat transfer during heating of various liquids and commodities categorized as refrigerants and dielectric fluids, pure liquids, nanofluids, hydrocarbons and additive mixtures, as well as natural and synthetic colloidal solutions. Nucleate pool boiling is an efficient and effective method of boiling because high heat fluxes are possible with moderate temperature differences. It is characterized by the growth of bubbles on a heated surface. It occurs during boiling of liquids for excess temperature ranging from 5 to 30 °C in various processes related to high vaporization of liquid for specific purposes like sugarcane juice heating for jaggery making, milk heating for khoa making, steam generation, cooling of electronic equipments, refrigeration and etcetera. In this review paper, pool boiling method during heating of liquids for specific purpose is depicted. It is inferred that enhancement in pool boiling heat transfer is a challenging and complex task. Also, recent research and use of various correlations for natural convection pool boiling is reviewed.

  6. Study of the initiation of subcooled boiling during power transients

    International Nuclear Information System (INIS)

    VanVleet, R.J.

    1985-01-01

    An experimental investigation of boiling initiation during power transients has been conducted for horizontal-cylinder heating elements in degassed distilled water. Platinum elements, 0.127 and 0.250 mm in diameter, were internally heated electrically at a controlled superficial heat flux (power applied divided by surface area) increasing linearly with time at rates of 0.035 and 0.35 MW/m 2 s and corresponding test durations of 20 and 2 seconds. Tests were carried out at saturation temperatures from 100 to 195 0 C with bulk fluid subcooling from 0 to 30 K. During the course of a power transient, element temperature and superficial heat flux were measured electrically and the boiling initiation time was determined optically. It was found that the conditions for boiling initiation depended strongly on the pressure-temperature history of the heating element and surround fluid prior to the transient. Boiling initiation times were found to agree qualitatively with predictions of a model based on the contact-angle hysteresis concept. Brief prepressurization prior to a transient was found to increase dramatically the temperature and heat flux required for boiling initiation because of deactivation of boiling initiation sites. However, sites were re-activated during the transient and, in subsequent tests without prepressurization, no elevation in boiling initiation conditions was observed and results were in quantitative agreement with predictions of the model

  7. Numerical and Experimental Study of Mechanisms Involved in Boiling Histotripsy.

    Science.gov (United States)

    Pahk, Ki Joo; Gélat, Pierre; Sinden, David; Dhar, Dipok Kumar; Saffari, Nader

    2017-12-01

    The aim of boiling histotripsy is to mechanically fractionate tissue as an alternative to thermal ablation for therapeutic applications. In general, the shape of a lesion produced by boiling histotripsy is tadpole like, consisting of a head and a tail. Although many studies have demonstrated the efficacy of boiling histotripsy for fractionating solid tumors, the exact mechanisms underpinning this phenomenon are not yet well understood, particularly the interaction of a boiling vapor bubble with incoming incident shockwaves. To investigate the mechanisms involved in boiling histotripsy, a high-speed camera with a passive cavitation detection system was used to observe the dynamics of bubbles produced in optically transparent tissue-mimicking gel phantoms exposed to the field of a 2.0-MHz high-intensity focused ultrasound (HIFU) transducer. We observed that boiling bubbles were generated in a localized heated region and cavitation clouds were subsequently induced ahead of the expanding bubble. This process was repeated with HIFU pulses and eventually resulted in a tadpole-shaped lesion. A simplified numerical model describing the scattering of the incident ultrasound wave by a vapor bubble was developed to help interpret the experimental observations. Together with the numerical results, these observations suggest that the overall size of a lesion induced by boiling histotripsy is dependent on the sizes of (i) the heated region at the HIFU focus and (ii) the backscattered acoustic field by the original vapor bubble. Copyright © 2017 World Federation for Ultrasound in Medicine and Biology. Published by Elsevier Inc. All rights reserved.

  8. Signal processing techniques for sodium boiling noise detection

    International Nuclear Information System (INIS)

    1989-05-01

    At the Specialists' Meeting on Sodium Boiling Detection organized by the International Working Group on Fast Reactors (IWGFR) of the International Atomic Energy Agency at Chester in the United Kingdom in 1981 various methods of detecting sodium boiling were reported. But, it was not possible to make a comparative assessment of these methods because the signal condition in each experiment was different from others. That is why participants of this meeting recommended that a benchmark test should be carried out in order to evaluate and compare signal processing methods for boiling detection. Organization of the Co-ordinated Research Programme (CRP) on signal processing techniques for sodium boiling noise detection was also recommended at the 16th meeting of the IWGFR. The CRP on Signal Processing Techniques for Sodium Boiling Noise Detection was set up in 1984. Eight laboratories from six countries have agreed to participate in this CRP. The overall objective of the programme was the development of reliable on-line signal processing techniques which could be used for the detection of sodium boiling in an LMFBR core. During the first stage of the programme a number of existing processing techniques used by different countries have been compared and evaluated. In the course of further work, an algorithm for implementation of this sodium boiling detection system in the nuclear reactor will be developed. It was also considered that the acoustic signal processing techniques developed for boiling detection could well make a useful contribution to other acoustic applications in the reactor. This publication consists of two parts. Part I is the final report of the co-ordinated research programme on signal processing techniques for sodium boiling noise detection. Part II contains two introductory papers and 20 papers presented at four research co-ordination meetings since 1985. A separate abstract was prepared for each of these 22 papers. Refs, figs and tabs

  9. Boiling in microchannels: a review of experiment and theory

    International Nuclear Information System (INIS)

    Thome, John R.

    2004-01-01

    A summary of recent research on boiling in microchannels is presented. The review addresses the topics of macroscale versus microscale heat transfer, two-phase flow regimes, flow boiling heat transfer results for microchannels, heat transfer mechanisms in microchannels and flow boiling models for microchannels. In microchannels, the most dominant flow regime appears to be the elongated bubble mode that can persist up to vapor qualities as high as 60-70% in microchannels, followed by annular flow. Flow boiling heat transfer coefficients have been shown experimentally to be dependent on heat flux and saturation pressure while only slightly dependent on mass velocity and vapor quality. Hence, these studies have concluded that nucleate boiling controls evaporation in microchannels. Instead, a recent analytical study has shown that transient evaporation of the thin liquid films surrounding elongated bubbles is the dominant heat transfer mechanism as opposed to nucleate boiling and is able to predict these trends in the experimental data. Newer experimental studies have further shown that there is in fact a significant effect of mass velocity and vapor quality on heat transfer when covering a broader range of conditions, including a sharp peak at low vapor qualities at high heat fluxes. Furthermore, it is concluded that macroscale models are not realistic for predicting flowing boiling coefficients in microchannels as the controlling mechanism is not nucleate boiling nor turbulent convection but is transient thin film evaporation (also, microchannel flows are typically laminar and not turbulent as assumed by macroscopic models). A more advanced three-zone flow boiling model for evaporation of elongated bubbles in microchannels is currently under development that so far qualitatively describes all these trends. Numerous fundamental aspects of two-phase flow and evaporation remain to be better understood and some of these aspects are also discussed

  10. Development of a novel infrared-based visualization technique to detect liquid-gas phase dynamics on boiling surfaces

    International Nuclear Information System (INIS)

    Kim, Hyung Dae

    2011-01-01

    Complex two-phase heat transfer phenomena such as nucleate boiling, critical heat flux, quenching and condensation govern the thermal performance of Light Water Reactors (LWRs) under normal operation and during transients/accidents. These phenomena are typically characterized by the presence of a liquid vapor- solid contact line on the surface from/to which the heat is transferred. For example, in nucleate boiling, a significant fraction of the energy needed for bubble growth comes from evaporation of a liquid meniscus, or microlayer, underneath the bubble itself. As the liquid vapor- solid line at the edge of the meniscus retreats, a circular dry patch in the middle of the bubble is exposed; the speed of the triple line retreat is a measure of the ability of the surface to transfer heat to the bubble. At very high heat fluxes, near the upper limit of the nucleate boiling regime, also known as Critical Heat Flux (CHF), the situation is characterized by larger dry areas on the surface, dispersed within an interconnected network of liquid menisci. In quenching heat transfer, which refers to the rapid cooling of a very hot object by immersion in a cooler liquid, the process is initially dominated by film boiling. In film boiling a continuous vapor film completely separates the liquid phase from the solid surface: however, as the temperature gets closer to the Leidenfrost point, intermittent and short-lived liquid-solid contacts occur at discrete locations on the surface, thus creating liquid vapor- solid interfaces once again. Ultimately, if bubble nucleation ensues at such contact points, the vapor film is disrupted and the heat transfer regime transitions from film boiling to transition boiling. Finally, in dropwise condensation, the phase transition from vapor to liquid occurs via formation of discrete droplets on the surface, and the resulting liquid-vapor-solid triple line is where heat transfer is most intense. To gain insight into and enable mechanistic

  11. Numerical issues for liquid-metal boiling transient analysis

    International Nuclear Information System (INIS)

    Rowe, D.S.

    1986-01-01

    The large liquid-to-vapor density ratio of a boiling liquid-metal leads to a very abrupt change of the two-phase mixture density at the inception of boiling. Unfortunately, the strong dependence of mixture density on pressure leads to a key numerical issue that adversely affects the behavior of numerical solutions. The difficulties can be reduced by using techniques that acknowledge this functional behavior at the start of boiling. Some of the methods used include a spatially averaged density function, mathematical smoothing, and under relaxation. Nonequilibrium two-fluid models also seem to offer aid in obtaining reliable numerical solutions. (author)

  12. Knowledge-Based operation planning system for boiling water reactors

    International Nuclear Information System (INIS)

    Tatsuya Iwamoto; Shungo Sakurai; Hitoshi Uematsu; Makoto Tsuiki

    1987-01-01

    A knowledge-Based Boiling Water Reactor operation planning system was developed to support core operators or core management engineers in making core operation plans, by automatically generating suboptimum core operation procedures. The procedures are obtained by searching a branching tree of the possible core status (nodes) and the elementary operations to change the core status (branches). A path that ends at the target node, and contains only operationally feasible nodes can be a candidate of the solution. The core eigenvalue, the power distribution and the thermal limit parameters at key points are calculated by running a three-dimensional (3-D) BWR core physics simulator to examine the feasibility of the nodes and the performance of candidates. To obtain a practically acceptable solution within a reasonable time rather than making a time-consuming effort to get the optimum one, the Depth-First-Search method, together with the heuristic branch-bounding, was used to search the branching tree. The system was applied to actual operation plannings with real plant data, and gave satisfactory results. It can be concluded that the system can be applied to generate core operation procedures as a substitute for core management experts

  13. Anomalous boiling of liquid helium under it lighting

    International Nuclear Information System (INIS)

    Kadyrzhanov, K.K.; Lazarev, S.D.; Lutskij, O.N.

    1975-01-01

    Optical transparency of liquid helium in light channels is investigated. The channel in the form of a horizontally oriented cylindrical tube is dipped in a helium cryostat provided with windows for passing the light. The intensity of light is measured by a gauged photodiode. The dependence of transparency on the intensity of the incident light has been studied. The curves of the dependence of Jsub(pas)/J 0 =f(J 0 ) obtained on increasing and decreasing intensity J 0 within the limits from 0 to 0.8W/cm 2 do not coincide and form a loop of 'optical' hysteresis which may be characterized by the ratio: (Jsub(pas)sup((1)) - Jsub(pas)sup((2)))/Jsub(pas)sup((1))=m(J 0 ) in which the coefficient m is called optical memory. The investigations show that the optical memory is connected with absorption of light 6y the inner surface of tube. If the diameter of the light spot is less than that of the tube and the light beam does not 'touch' the walls, the phenomenon of hysteresis is not observed. Experiments are carried out on studying transparency at the boiling point of helium at different pressures of saturating vapours. The optical memory value is shown to reach maximum at the pressure of 910 mm of mercury and to decrease gradually down to zero at an increase of pressure up to 1600 mm of mercury

  14. Calculation system for physical analysis of boiling water reactors

    International Nuclear Information System (INIS)

    Bouveret, F.

    2001-01-01

    Although Boiling Water Reactors generate a quarter of worldwide nuclear electricity, they have been only little studied in France. A certain interest now shows up for these reactors. So, the aim of the work presented here is to contribute to determine a core calculation methodology with CEA (Commissariat a l'Energie Atomique) codes. Vapour production in the reactor core involves great differences in technological options from pressurised water reactor. We analyse main physical phenomena for BWR and offer solutions taking them into account. BWR fuel assembly heterogeneity causes steep thermal flux gradients. The two dimensional collision probability method with exact boundary conditions makes possible to calculate accurately the flux in BWR fuel assemblies using the APOLLO-2 lattice code but induces a very long calculation time. So, we determine a new methodology based on a two-level flux calculation. Void fraction variations in assemblies involve big spectrum changes that we have to consider in core calculation. We suggest to use a void history parameter to generate cross-sections libraries for core calculation. The core calculation code has also to calculate the depletion of main isotopes concentrations. A core calculation associating neutronics and thermal-hydraulic codes lays stress on points we still have to study out. The most important of them is to take into account the control blade in the different calculation stages. (author)

  15. Estimation of original reservoir fluid composition prior to aquifer boiling induced by well discharge. Kieki niso ryunyu ni okeru choryu sonai futto izen no chinetsu ryutai no kagaku soshiki no suiteiho

    Energy Technology Data Exchange (ETDEWEB)

    Seki, Y [Geological Survey of Japan, Tsukuba (Japan)

    1991-07-29

    A method for estimating chemical composition of original fluid before boiling from the composition of whole fluid flowing into a well is described for the case where an aquifer boiling has begun in a reservoir bed associated with discharge of geothermal fluid from the well (the enthalpy of fluid flowing into the well is larger than an enthalpy possessed by a hot fluid-phase saturated by steam at measured temperatures at flowing point). In this case, it is especially pointed out that the gas-liquid ratio at the well flow-in point becomes larger than the one at boiling. The boiling in the reservoir bed is modelled into two types. One is for larger coefficient of permeation in the reservoir bed where the discharge flow at the well is large, the temperature drop around the well is small, and the boiling is in single stage. The other is for smaller coefficient of permeation in the reservoir bed where the discharge flow and temperature drop are contrastive to the former case, and the boiling is in multi-stage. Calculation processes based on this boiling model are explained with calculation examples. 8 refs.,7 figs.

  16. A Ghost Fluid/Level Set Method for boiling flows and liquid evaporation: Application to the Leidenfrost effect

    International Nuclear Information System (INIS)

    Rueda Villegas, Lucia; Alis, Romain; Lepilliez, Mathieu; Tanguy, Sébastien

    2016-01-01

    The development of numerical methods for the direct numerical simulation of two-phase flows with phase change, in the framework of interface capturing or interface tracking methods, is the main topic of this study. We propose a novel numerical method, which allows dealing with both evaporation and boiling at the interface between a liquid and a gas. Indeed, in some specific situations involving very heterogeneous thermodynamic conditions at the interface, the distinction between boiling and evaporation is not always possible. For instance, it can occur for a Leidenfrost droplet; a water drop levitating above a hot plate whose temperature is much higher than the boiling temperature. In this case, boiling occurs in the film of saturated vapor which is entrapped between the bottom of the drop and the plate, whereas the top of the water droplet evaporates in contact of ambient air. The situation can also be ambiguous for a superheated droplet or at the contact line between a liquid and a hot wall whose temperature is higher than the saturation temperature of the liquid. In these situations, the interface temperature can locally reach the saturation temperature (boiling point), for instance near a contact line, and be cooler in other places. Thus, boiling and evaporation can occur simultaneously on different regions of the same liquid interface or occur successively at different times of the history of an evaporating droplet. Standard numerical methods are not able to perform computations in these transient regimes, therefore, we propose in this paper a novel numerical method to achieve this challenging task. Finally, we present several accuracy validations against theoretical solutions and experimental results to strengthen the relevance of this new method.

  17. Experimental investigation on lithium-ion battery thermal management based on flow boiling in mini-channel

    International Nuclear Information System (INIS)

    An, Zhoujian; Jia, Li; Li, Xuejiao; Ding, Yong

    2017-01-01

    Highlights: • A new type of BTM system based on flow boiling in mini-channel are presented. • Uniform temperature and volume distribution of battery module are obtained. • The temperatures of battery cell are maintained around 40 °C. • There exists an appropriate Re number range for boiling heat transfer in mini-channel. - Abstract: In order to guarantee the safety and prolong the lifetime of lithium-ion power battery within electric vehicles, thermal management system is essential. A new type of thermal management system based on flow boiling in mini-channel utilizing dielectric hydrofluoroether liquid which boiling point is 34 °C is proposed. The cooling experiments for battery module are carried out at different discharge rates and flow Re number. The cooling effect and the influence of battery cooling on the electrochemical characteristics are concerned. The experimental results show that the thermal management can efficiently reduce maximum temperature of battery module and surface maximum temperature difference. A relatively uniform temperature and voltage distributions are provided within the battery module at higher discharge rate benefit from the advantage of boiling heat transfer with uniform temperature distribution on cold plate. It is shown that the voltage decreases with the increase of Re number of fluid due to the reducing of temperature. There exist slight fluctuations of voltage distribution because of the non-uniformity of temperature distribution within the battery module at higher discharge rates. For different discharge rate, there also exists an appropriate Re number range during which the mode of heat transfer is mainly in boiling heat transfer mode and the cooling result can be greatly improved.

  18. Void fraction prediction in saturated flow boiling

    International Nuclear Information System (INIS)

    Francisco J Collado

    2005-01-01

    Full text of publication follows: An essential element in thermal-hydraulics is the accurate prediction of the vapor void fraction, or fraction of the flow cross-sectional area occupied by steam. Recently, the author has suggested to calculate void fraction working exclusively with thermodynamic properties. It is well known that the usual 'flow' quality, merely a mass flow rate ratio, is not at all a thermodynamic property because its expression in function of thermodynamic properties includes the slip ratio, which is a parameter of the process not a function of state. By the other hand, in the classic and well known expression of the void fraction - in function of the true mass fraction of vapor (also called 'static' quality), and the vapor and liquid densities - does not appear the slip ratio. Of course, this would suggest a direct procedure for calculating the void fraction, provided we had an accurate value of the true mass fraction of vapor, clearly from the heat balance. However the classic heat balance is usually stated in function of the 'flow' quality, what sounds really contradictory because this parameter, as we have noted above, is not at all a thermodynamic property. Then we should check against real data the actual relationship between the thermodynamic properties and the applied heat. For saturated flow boiling just from the inlet of the heated tube, and not having into account the kinetic and potential terms, the uniform applied heat per unit mass of inlet water and per unit length (in short, specific linear heat) should be closely related to a (constant) slope of the mixture enthalpy. In this work, we have checked the relation between the specific linear heat and the thermodynamic enthalpy of the liquid-vapor mixture using the actual mass fraction. This true mass fraction is calculated using the accurate measurements of the outlet void fraction taken during the Cambridge project by Knights and Thom in the sixties for vertical and horizontal

  19. Detection of the departure from nucleate boiling (DNB) in nuclear fuel rod simulators

    Energy Technology Data Exchange (ETDEWEB)

    Mesquita, Amir Z.; Rezende, Hugo C.; Santos, Andre Augusto C.; Silva, Vitor Vasconcelos A.; Campolina, Daniel de Almeida M., E-mail: amir@cdtn.br, E-mail: hcr@cdtn.br, E-mail: aacs@cdtn.br, E-mail: vitors@cdtn.br, E-mail: campolina@cdtn.br [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/UFMG), Belo Horizonte, MG (Brazil). Servico de Tecnologia de Reatores; Palma, Daniel Artur P., E-mail: dapalma@cnen.gov.br [Comissao Nacional de Energia Nuclear (CNEN), Rio de Janeiro, RJ (Brazil)

    2013-07-01

    In the thermal hydraulic experiments to determinate parameters of heat transfer, where fuel rod simulators are heated by electric current, the preservation of the simulators are essential when the heat flux goes to the critical point. One of the most important limits in the design of cooling water reactors is the condition in which the heat transfer coefficient by boiling in the core deteriorates itself. The departure from nucleate boiling (DNB) happens in the area of low steam quality when there is nucleus formation of bubbles. This result in a departure from nucleate boiling in which steam bubbles no longer break away from the solid surface of the channel, bubbles dominate the channel or surface, and the heat flux dramatically decreases. Vapor essentially insulates the bulk liquid from the hot surface. At this time, the small increase in the heat flux or in the inlet temperature of the cooler in the core, or the small decrease in the inlet flux of cooling, results in changes in the heat transfer mechanism. This causes increases in the surface temperature of the fuel elements causing failures at the fuel (burnout). This paper describes the experiments conducted to detection of critical heat flux in nuclear fuel element simulators carried out in the thermal-hydraulic laboratory of Nuclear Technology Development Centre (CDTN). It is concluded that the use of displacement transducer is the most efficient technique for detecting of critical heat flux in nuclear simulators heated by electric current in open pool. (author)

  20. Detection of the departure from nucleate boiling (DNB) in nuclear fuel rod simulators

    International Nuclear Information System (INIS)

    Mesquita, Amir Z.; Rezende, Hugo C.; Santos, Andre Augusto C.; Silva, Vitor Vasconcelos A.; Campolina, Daniel de Almeida M.

    2013-01-01

    In the thermal hydraulic experiments to determinate parameters of heat transfer, where fuel rod simulators are heated by electric current, the preservation of the simulators are essential when the heat flux goes to the critical point. One of the most important limits in the design of cooling water reactors is the condition in which the heat transfer coefficient by boiling in the core deteriorates itself. The departure from nucleate boiling (DNB) happens in the area of low steam quality when there is nucleus formation of bubbles. This result in a departure from nucleate boiling in which steam bubbles no longer break away from the solid surface of the channel, bubbles dominate the channel or surface, and the heat flux dramatically decreases. Vapor essentially insulates the bulk liquid from the hot surface. At this time, the small increase in the heat flux or in the inlet temperature of the cooler in the core, or the small decrease in the inlet flux of cooling, results in changes in the heat transfer mechanism. This causes increases in the surface temperature of the fuel elements causing failures at the fuel (burnout). This paper describes the experiments conducted to detection of critical heat flux in nuclear fuel element simulators carried out in the thermal-hydraulic laboratory of Nuclear Technology Development Centre (CDTN). It is concluded that the use of displacement transducer is the most efficient technique for detecting of critical heat flux in nuclear simulators heated by electric current in open pool. (author)

  1. R134a Flow Boiling Analysis with Modified Thermodynamic Property File of MARS Code

    Energy Technology Data Exchange (ETDEWEB)

    Son, Gyumin; Bang, In Cheol [UNIST, Ulsan (Korea, Republic of)

    2016-10-15

    Previous study showed application of RELAP5 code to solar energy facility with molten salt (60% NaNO3 and 40% KNO3) as working fluid. Based on external experimental correlations, thermodynamic properties of molten salt were evaluated as a function of pressure and temperature and those equations were used to generate tpf. To validate external tpf, experimental values were compared with RELAP5 analysis. In nuclear field, utilization of other fluid is also important since many thermal-hydraulic experiments used various fluids such as FC-72, R123, and R134a. Theses refrigerants have been used to simulate the high pressure environment of nuclear power plants due to their low boiling point, and density ratio between vapor and liquid. Thus, this study aims for tpf generation of R134a and verification by analyzing real case. R134a is selected as a fluid to be implemented and analyzed because it is currently used in refrigerator and frequently used in flow boiling experiment related with heat transfer coefficient and CHF measurement. R134a property file were generated with fitted equation using temperature and pressure as variables, originated from external data source. For validation, flow boiling experiment case were made into simplified input. Analysis with tpfr134a showed that application of Gnielinksi correlation could enhance single phase flow accuracy. Large error of HTC from two phase analysis requires parameter study. Future work aims for more specified experimental case comparison and correlation enhancement for two phase analysis.

  2. Study on boiling heat transfer of subcooled flow under oscillatory flow condition

    International Nuclear Information System (INIS)

    Ohtake, Hiroyasu; Yamazaki, Satoshi; Koizumi, Yasuo

    2004-01-01

    The Onset of Nucleate Boiling, the point of Net Vapor Generation and Critical Heat Flux on subcooled flow boiling under oscillatory flow, focusing on liquid velocity, amplitude and frequency of oscillatory flow were investigated experimentally and analytically. Experiments were conducted using a copper thin-film and subcooled water in a range of the liquid velocity from 0.27 to 4.07 m/s at 0.10MPa. The liquid subcooling was 20K. Frequency of oscillatory flow was 2 and 4 Hz, respectively; amplitude of oscillatory flow was 25 and 50% in a ratio of main flow rate, respectively. Temperatures at Onset of Nuclear Boiling and Critical Heat Flux obtained in the experiments decreased with the oscillatory flow. The decrease of liquid velocity by oscillatory flow caused the ONB and the CHF to decrease. On the other hand, heat flux at Net Vapor Generation decreased with oscillatory flow; the increase of liquid velocity by oscillatory flow caused the NVG to decrease. (author)

  3. Feedback stabilisation of pool-boiling systems : for application in thermal management schemes

    NARCIS (Netherlands)

    Gils, van R.W.

    2012-01-01

    The research scope of this thesis is the stabilisation of unstable states in a pool-boiling system. Thereto, a compact mathematical model is employed. Pool-boiling systems serve as physical model for practical applications of boiling heat transfer in industry. Boiling has advantages over

  4. Three-dimensional cinematography with control object of unknown shape.

    Science.gov (United States)

    Dapena, J; Harman, E A; Miller, J A

    1982-01-01

    A technique for reconstruction of three-dimensional (3D) motion which involves a simple filming procedure but allows the deduction of coordinates in large object volumes was developed. Internal camera parameters are calculated from measurements of the film images of two calibrated crosses while external camera parameters are calculated from the film images of points in a control object of unknown shape but at least one known length. The control object, which includes the volume in which the activity is to take place, is formed by a series of poles placed at unknown locations, each carrying two targets. From the internal and external camera parameters, and from locations of the images of point in the films of the two cameras, 3D coordinates of the point can be calculated. Root mean square errors of the three coordinates of points in a large object volume (5m x 5m x 1.5m) were 15 mm, 13 mm, 13 mm and 6 mm, and relative errors in lengths averaged 0.5%, 0.7% and 0.5%, respectively.

  5. Superheating in nucleate boiling calculated by the heterogeneous nucleation theory

    International Nuclear Information System (INIS)

    Gerum, E.; Straub, J.; Grigull, U.

    1979-01-01

    With the heterogeneous nucleation theory the superheating of the liquid boundary layer in nucleate boiling is described not only for the onset of nuclear boiling but also for the boiling crisis. The rate of superheat depends on the thermodynamic stability of the metastable liquid, which is influenced by the statistical fluctuations in the liquid and the nucleation at the solid surface. Because of the fact that the cavities acting as nuclei are too small for microscopic observation, the size and distribution function of the nuclei on the surface necessary for the determination of the probability of bubble formation cannot be detected by measuring techniques. The work of bubble formation reduced by the nuclei can be represented by a simple empirical function whose coefficients are determined from boiling experiments. Using this the heterogeneous nucleation theory describes the superheating of the liquid. Several fluids including refrigerants, liquid gases, organic liquids and water were used to check the theory. (author)

  6. DYNAM, Once Through Boiling Flow with Steam Superheat, Laplace Transformation

    International Nuclear Information System (INIS)

    Schlueter, G.; Efferding, L.E.

    1973-01-01

    1 - Description of problem or function: DYNAM performs a dynamic analysis of once-through boiling flow oscillations with steam superheat. The model describing the superheat regime (single- phase, variable density fluid) for subcritical pressure operation is also applicable to the study of once-through operation using supercritical pressure water. 2 - Method of solution: Linearized partial differential conservation equations are solved using Laplace transformation of the temporal terms and integration of the spatial variations. DYNAM is written in complex variable notation. 3 - Restrictions on the complexity of the problem - Maxima of: 30 intervals used to describe the power distribution in the non-boiling and boiling regions, 29 boiling nodes, 7 intervals and corresponding friction multipliers read in per case, 14 exit qualities read in per case, 40 superheat nodes, 10 coefficients read in for the phi 2 vs, x-polynomial fit, 48 frequencies at which open-loop frequency response is desired, 48 frequencies at which signal output is desired

  7. Heat transfer phenomena related to the boiling crisis

    International Nuclear Information System (INIS)

    Groenveld, D.C.

    1981-03-01

    This report contains a state-of-the-art review of critical heat flux (CHF) and post-CHF heat transfer. Part I reviews the mechanisms controlling the boiling crisis. The observed parametric trends of the CHF in a heat flux controlled system are discussed in detail, paying special attention to parameters pertaining to nuclear fuel. The various methods of predicting the critical power are described. Part II reviews the published information on transition boiling and film boiling heat transfer under forced convective conditions. Transition boiling data were found to be available only within limited ranges of conditions. The data did not permit the derivation of a correlation; however, the parametric trends were isolated from these data. (author)

  8. Comparative analysis of heat transfer correlations for forced convection boiling

    International Nuclear Information System (INIS)

    Guglielmini, G.; Nannei, E.; Pisoni, C.

    1978-01-01

    A critical survey was conducted of the most relevant correlations of boiling heat transfer in forced convection flow. Most of the investigations carried out on partial nucleate boiling and fully developed nucleate boiling have led to the formulation of correlations that are not able to cover a wide range of operating conditions, due to the empirical approach of the problem. A comparative analysis is therefore required in order to delineate the relative accuracy of the proposed correlations, on the basis of the experimental data presently available. The survey performed allows the evaluation of the accuracy of the different calculating procedure; the results obtained, moreover, indicate the most reliable heat transfer correlations for the different operating conditions investigated. This survey was developed for five pressure range (up to 180bar) and for both saturation and subcooled boiling condition

  9. Zero Boil Off System for Cryogen Storage, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This work proposes to develop a zero boil off (ZBO) dewar using a two-stage pulse-tube cooler together with two innovative, continuous-flow cooling loops and an...

  10. Optical studies of boiling heat transfer: insights and limitations

    International Nuclear Information System (INIS)

    Kenning, David B.R.

    2004-01-01

    Optical studies provide valuable insights into the complex mechanisms of boiling heat transfer but the large gradients of temperature (and therefore of refractive index) deflect light and multiple reflections at interfaces limit the distance over which observations can be made. Optical measurements are thought of as non-intrusive but this is rarely true. Because they are difficult and time consuming, they constrain the design of boiling experiments and are applied to limited ranges of conditions. There is a risk that deductions from the observations will be applied (not necessarily by the authors) more generally than is justified. These characteristics of optical studies are illustrated by examples from forced convective film boiling on spheres and pool nucleate boiling

  11. Film Boiling on Downward Quenching Hemisphere of Varying Sizes

    Energy Technology Data Exchange (ETDEWEB)

    Chan S. Kim; Kune Y. Suh; Joy L. Rempe; Fan-Bill Cheung; Sang B. Kim

    2004-04-01

    Film boiling heat transfer coefficients for a downward-facing hemispherical surface are measured from the quenching tests in DELTA (Downward-boiling Experimental Laminar Transition Apparatus). Two test sections are made of copper to maintain low Biot numbers. The outer diameters of the hemispheres are 120 mm and 294 mm, respectively. The thickness of all the test sections is 30 mm. The effect of diameter on film boiling heat transfer is quantified utilizing results obtained from the test sections. The measured data are compared with the numerical predictions from laminar film boiling analysis. The measured heat transfer coefficients are found to be greater than those predicted by the conventional laminar flow theory on account of the interfacial wavy motion incurred by the Helmholtz instability. Incorporation of the wavy motion model considerably improves the agreement between the experimental and numerical results in terms of heat transfer coefficient. In addition, the interfacial wavy motion and the quenching process are visualized through a digital camera.

  12. Boiling and burnout phenomena under transient heat input, 1

    International Nuclear Information System (INIS)

    Aoki, Shigebumi; Kozawa, Yoshiyuki; Iwasaki, Hideaki.

    1976-01-01

    In order to simulate the thermo-hydrodynamic conditions at reactor power excursions, a test piece was placed in a forced convective channel and heated with exponential power inputs. The boiling heat transfer and the burnout heat flux under the transient heat input were measured, and pressure and water temperature changes in the test section were recorded at the same time. Following experimental results were obtained; (1) Transient boiling heat transfer characteristics at high heat flux stayed on the stationary nucleate boiling curve of each flow condition, or extrapolated line of the curves. (2) Transient burnout heat flux increased remarkably with decreasing heating-time-constant, when the flow rate was lower and the subcooling was higher. (3) Transient burnout phenomena were expressed with the relation of (q sub(max) - q sub(sBO)) tau = constant at several flow conditions. This relation was derived from the stationary burnout mechanism of pool boiling. (auth.)

  13. Critical heat flux in subcooled and low quality boiling

    International Nuclear Information System (INIS)

    Maroti, L.

    1976-06-01

    A semi-empirical relationship for critical heat flux prediction in a light water cooled power reactor core is developed. The method of developing this relationship is the extension of the analysis of pool boiling crisis for forced convective boiling. In the calculations the energy conservation equation is used together with additional condition for the crisis. Assuming that in the vicinity of the crisis the heat is transported only by the latent heat of the vapour this condition for the crisis can be characterized by the maximum departure velocity of the vapour. Because only flow boiling crisis associating with bubbling at the heating surface is considered the model could be applied only for low quality boiling crisis. The calculated results are compared to the available experimental ones. (Sz.N.Z.)

  14. A microgravity boiling and convective condensation experiment

    Science.gov (United States)

    Kachnik, Leo; Lee, Doojeong; Best, Frederick; Faget, Nanette

    1987-12-01

    A boiling and condensing test article consisting of two straight tube boilers, one quartz and one stainless steel, and two 1.5 m long glass-in-glass heat exchangers, on 6 mm ID and one 10 mm ID, was flown on the NASA KC-135 0-G aircraft. Using water as the working fluid, the 5 kw boiler produces two phase mixtures of varying quality for mass flow rates between 0.005 and 0.1 kg/sec. The test section is instrumented at eight locations with absolute and differential pressure transducers and thermocouples. A gamma densitometer is used to measure void fraction, and high speed photography records the flow regimes. A three axis accelerometer provides aircraft acceleration data (+ or - 0.01G). Data are collected via an analog-to-digital conversion and data acquisition system. Bubbly, annular, and slug flow regimes were observed in the test section under microgravity conditions. Flow oscillations were observed for some operating conditions and the effect of the 2-G pullout prior to the 0-G period was observed by continuously recording data throughout the parabolas. A total fo 300 parabolas was flown.

  15. SBWR: A simplified boiling water reactor

    International Nuclear Information System (INIS)

    Duncan, J.D.; Sawyer, C.D.; Lagache, M.P.

    1987-01-01

    An advanced light water reactor concept is being developed for possible application in the 1990's. The concept, known as SBWR is a boiling water reactor which uses natural circulation to provide flow to the reactor core. In an emergency, a gravity driven core cooling system is used. The reactor is depressurized and water from an elevated suppression pool flows by gravity to the reactor vessel to keep the reactor core covered. The concept also features a passive containment cooling system in which water flows by gravity to cool the suppression pool wall. No operator action is required for a period of at least three days. Use of these and other passive systems allows the elimination of emergency diesel generators, core cooling pumps and heat removal pumps which is expected to simplify the plant design, reduce costs and simplify licensing. The concept is being developed by General Electric, Bechtel and the Massachusetts Institute of Technology supported by the Electric Power Research Institute and the United States Department of Energy in the United States. In Japan, The Japan Atomic Power Company has a great interest in this concept

  16. Fundamentals of boiling water reactor (BWR)

    International Nuclear Information System (INIS)

    Bozzola, S.

    1982-01-01

    These lectures on fundamentals of BWR reactor physics are a synthesis of known and established concepts. These lectures are intended to be a comprehensive (even though descriptive in nature) presentation, which would give the basis for a fair understanding of power operation, fuel cycle and safety aspects of the boiling water reactor. The fundamentals of BWR reactor physics are oriented to design and operation. In the first lecture general description of BWR is presented, with emphasis on the reactor physics aspects. A survey of methods applied in fuel and core design and operation is presented in the second lecture in order to indicate the main features of the calculational tools. The third and fourth lectures are devoted to review of BWR design bases, reactivity requirements, reactivity and power control, fuel loading patterns. Moreover, operating limits are reviewed, as the actual limits during power operation and constraints for reactor physics analyses (design and operation). The basic elements of core management are also presented. The constraints on control rod movements during the achieving of criticality and low power operation are illustrated in the fifth lecture. Some considerations on plant transient analyses are also presented in the fifth lecture, in order to show the impact between core and fuel performance and plant/system performance. The last (sixth) lecture is devoted to the open vessel testing during the startup of a commercial BWR. A control rod calibration is also illustrated. (author)

  17. Boiling water reactor turbine trip (TT) benchmark

    International Nuclear Information System (INIS)

    2005-01-01

    In the field of coupled neutronics/thermal-hydraulics computation there is a need to enhance scientific knowledge in order to develop advanced modelling techniques for new nuclear technologies and concepts as well as for current applications. Recently developed 'best-estimate' computer code systems for modelling 3-D coupled neutronics/thermal-hydraulics transients in nuclear cores and for coupling core phenomena and system dynamics (PWR, BWR, VVER) need to be compared against each other and validated against results from experiments. International benchmark studies have been set up for this purpose. The present report is the second in a series of four and summarises the results of the first benchmark exercise, which identifies the key parameters and important issues concerning the thermalhydraulic system modelling of the transient, with specified core average axial power distribution and fission power time transient history. The transient addressed is a turbine trip in a boiling water reactor, involving pressurization events in which the coupling between core phenomena and system dynamics plays an important role. In addition, the data made available from experiments carried out at the Peach Bottom 2 reactor (a GE-designed BWR/4) make the present benchmark particularly valuable. (author)

  18. Self-Sustaining Thorium Boiling Water Reactors

    Directory of Open Access Journals (Sweden)

    Ehud Greenspan

    2012-10-01

    Full Text Available A thorium-fueled water-cooled reactor core design approach that features a radially uniform composition of fuel rods in stationary fuel assembly and is fuel-self-sustaining is described. This core design concept is similar to the Reduced moderation Boiling Water Reactor (RBWR proposed by Hitachi to fit within an ABWR pressure vessel, with the following exceptions: use of thorium instead of depleted uranium for the fertile fuel; elimination of the internal blanket; and elimination of absorbers from the axial reflectors, while increasing the length of the fissile zone. The preliminary analysis indicates that it is feasible to design such cores to be fuel-self-sustaining and to have a comfortably low peak linear heat generation rate when operating at the nominal ABWR power level of nearly 4000 MWth. However, the void reactivity feedback tends to be too negative, making it difficult to have sufficient shutdown reactivity margin at cold zero power condition. An addition of a small amount of plutonium from LWR used nuclear fuel was found effective in reducing the magnitude of the negative void reactivity effect and enables attaining adequate shutdown reactivity margin; it also flattens the axial power distribution. The resulting design concept offers an efficient incineration of the LWR generated plutonium in addition to effective utilization of thorium. Additional R&D is required in order to arrive at a reliable practical and safe design.

  19. Burnout heat flux in natural flow boiling

    International Nuclear Information System (INIS)

    Helal, M.M.; Darwish, M.A.; Mahmoud, S.I.

    1978-01-01

    Twenty runs of experiments were conducted to determine the critical heat flux for natural flow boiling with water flowing upwards through annuli of centrally heated stainless steel tube. The test section has concentric heated tube of 14mm diameter and heated lengthes of 15 and 25 cm. The outside surface of the annulus was formed by various glass tubes of 17.25, 20 and 25.9mm diameter. System pressure is atmospheric. Inlet subcooling varied from 18 to 5 0 C. Obtained critical heat flux varied from 24.46 to 62.9 watts/cm 2 . A number of parameters having dominant influence on the critical heat flux and hydrodynamic instability (flow and pressure oscillations) preceeding the burnout have been studied. These parameters are mass flow rate, mass velocity, throttling, channel geometry (diameters ratio, length to diameter ratio, and test section length), and inlet subcooling. Flow regimes before and at the moments of burnout were observed, discussed, and compared with the existing physical model of burnout

  20. Boiling water reactor simulator. Workshop material

    International Nuclear Information System (INIS)

    2003-01-01

    The International Atomic Energy Agency (IAEA) has established an activity in nuclear reactor simulation computer programs to assist its Member States in education. The objective is to provide, for a variety of advanced reactor types, insight and practice in their operational characteristics and their response to perturbations and accident situations. To achieve this, the IAEA arranges for the development and distribution of simulation programs and workshop material and sponsors workshops. The workshops are in two parts: techniques and tools for reactor simulator development; and the use of reactor simulators in education. Workshop material for the first part is covered in the IAEA publication: Training Course Series No. 12, 'Reactor Simulator Development' (2001). Course material for workshops using a WWER- 1000 simulator from the Moscow Engineering and Physics Institute, Russian Federation is presented in the IAEA publication: Training Course Series No. 21 'WWER-1000 Reactor Simulator' (2002). Course material for workshops using a pressurized water reactor (PWR) simulator developed by Cassiopeia Technologies Incorporated, Canada, is presented in the IAEA publication: Training Course Series No. 22 'Pressurized Water Reactor Simulator' (2003). This report consists of course material for workshops using a boiling water reactor (BWR) simulator. Cassiopeia Technologies Incorporated, developed the simulator and prepared this report for the IAEA

  1. Experiments on nucleate boiling heat transfer with a highly-wetting dielectric fluid

    International Nuclear Information System (INIS)

    You, S.M.; Simon, T.W.; Bar-Cohen, A.

    1990-01-01

    This paper reports on experiments on pool boiling heat transfer in an electronic cooling fluid (Fluorinert, FC-72) that were conducted using a 0.51 mm diameter cylindrical heater. The effects of pressure, subcooling and dissolved gas content on nucleate boiling heat transfer are investigated. When boiling with dissolved gas in the bulk fluid, the fluid in the vicinity of the heating element appears to be liberated of dissolved gas by boiling. Thus, boiling under these conditions appears to be similar to subcooled boiling without dissolved gas. Nucleate boiling hysteresis is observed for subcooled and gassy-subcooled situations

  2. Protocol for counterfactually transporting an unknown qubit

    Directory of Open Access Journals (Sweden)

    Hatim eSalih

    2016-01-01

    Full Text Available Quantum teleportation circumvents the uncertainty principle using dual channels: a quantum one consisting of previously-shared entanglement, and a classical one, together allowing the disembodied transport of an unknown quantum state over distance. It has recently been shown that a classical bit can be counterfactually communicated between two parties in empty space, Alice and Bob. Here, by using our dual version of the chained quantum Zeno effect to achieve a counterfactual CNOT gate, we propose a protocol for transporting an unknown qubit counterfactually, that is without any physical particles travelling between Alice and Bob—no classical channel and no previously-shared entanglement.

  3. Nucleate Boiling Heat Transfer Studied Under Reduced-Gravity Conditions

    Science.gov (United States)

    Chao, David F.; Hasan, Mohammad M.

    2000-01-01

    Boiling is known to be a very efficient mode of heat transfer, and as such, it is employed in component cooling and in various energy-conversion systems. In space, boiling heat transfer may be used in thermal management, fluid handling and control, power systems, and on-orbit storage and supply systems for cryogenic propellants and life-support fluids. Recent interest in the exploration of Mars and other planets and in the concept of in situ resource utilization on the Martian and Lunar surfaces highlights the need to understand how gravity levels varying from the Earth's gravity to microgravity (1g = or > g/g(sub e) = or > 10(exp -6)g) affect boiling heat transfer. Because of the complex nature of the boiling process, no generalized prediction or procedure has been developed to describe the boiling heat transfer coefficient, particularly at reduced gravity levels. Recently, Professor Vijay K. Dhir of the University of California at Los Angeles proposed a novel building-block approach to investigate the boiling phenomena in low-gravity to microgravity environments. This approach experimentally investigates the complete process of bubble inception, growth, and departure for single bubbles formed at a well-defined and controllable nucleation site. Principal investigator Professor Vijay K. Dhir, with support from researchers from the NASA Glenn Research Center at Lewis Field, is performing a series of pool boiling experiments in the low-gravity environments of the KC 135 microgravity aircraft s parabolic flight to investigate the inception, growth, departure, and merger of bubbles from single- and multiple-nucleation sites as a function of the wall superheat and the liquid subcooling. Silicon wafers with single and multiple cavities of known characteristics are being used as test surfaces. Water and PF5060 (an inert liquid) were chosen as test liquids so that the role of surface wettability and the magnitude of the effect of interfacial tension on boiling in reduced

  4. Characteristics of phenomenon and sound in microbubble emission boiling

    International Nuclear Information System (INIS)

    Zhu Guangyu; Sun Licheng; Tang Jiguo

    2014-01-01

    Background: Nowadays, the efficient heat transfer technology is required in nuclear energy. Therefore, micro-bubble emission boiling (MEB) is getting more attentions from many researchers due to its extremely high heat-transfer dissipation capability. Purpose: An experimental setup was built up to study the correspondences between the characteristics on the amplitude spectrum of boiling sound in different boiling modes. Methods: The heat element was a copper block heated by four Si-C heaters. The upper of the copper block was a cylinder with the diameter of 10 mm and height of 10 mm. Temperature data were measured by three T-type sheathed thermocouples fitted on the upper of the copper block and recorded by NI acquisition system. The temperature of the heating surface was estimated by extrapolating the temperature distribution. Boiling sound data were acquired by hydrophone and processed by Fourier transform. Bubble behaviors were captured by high-speed video camera with light system. Results: In nucleate boiling region, the boiling was not intensive and as a result, the spectra didn't present any peak. While the MEB fully developed on the heating surface, an obvious peak came into being around the frequency of 300 Hz. This could be explained by analyzing the video data. The periodic expansion and collapse into many extremely small bubbles of the vapor film lead to MEB presenting an obvious characteristic peak in its amplitude spectrum. Conclusion: The boiling mode can be distinguished by its amplitude spectrum. When the MEB fully developed, it presented a characteristic peak in its amplitude spectrum around the frequency between 300-400 Hz. This proved that boiling sound of MEB has a close relation with the behavior of vapor film. (authors)

  5. Development of an experimental apparatus for nucleate boiling analysis

    International Nuclear Information System (INIS)

    Castro, A.J.A. de.

    1984-01-01

    An experimental apparatus is developed for the study of the parameters that affect nucleate boiling. The experimental set up is tested for nucleate boiling in an annular test section with subcooled water flow. The following parameters are analysed: pressure, fluid velocity and the fluid temperature at the test section entrance. The performance of the experimental apparatus is analysed by the results and by the problems raised by the operation of the setup. (Author) [pt

  6. Sodium boiling studies at the CEA state of the art

    International Nuclear Information System (INIS)

    Girard, C.; Grand, D.; Papin, J.; Seiler, J.M.

    1979-08-01

    A description of the general approach used by the CEA to solve sodium boiling problems provides an understanding of our philosophy for code development. From the review of the main results obtained in the out-of-pile experiments, CFNa and CESAR, we deduce the main hypothesis of our basic model of sodium boiling. Our best estimate and simplified codes are briefly described and their results are compared with the experiments

  7. Heat transfer and pressure drop in flow boiling in microchannels

    CERN Document Server

    Saha, Sujoy Kumar

    2016-01-01

    This Brief addresses the phenomena of heat transfer and pressure drop in flow boiling in micro channels occurring in high heat flux electronic cooling. A companion edition in the Springer Brief Subseries on Thermal Engineering and Applied Science to “Critical Heat Flux in Flow Boiling in Micro channels,” by the same author team, this volume is idea for professionals, researchers and graduate students concerned with electronic cooling.

  8. Study on water boiling noises in a large volume

    International Nuclear Information System (INIS)

    Masagutov, R.F.; Krivtsov, V.A.

    1977-01-01

    Presented are the results of measurement of the noise spectra during boiling of water in a large volume at the pressure of 1 at. Boiling of the distilled water has been accomplished with the use of the heaters made of the Kh18N10T steel, 50 mm in length, 2 mm in the outside diameter, with the wall thickness of 0.1 mm. The degree of water under heating changed during the experiments from 0 to 80 deg C, and the magnitude of the specific heat flux varied from o to 0.7 - 0.9 qsup(x), where qsup(x) was the specific heat flux of the tube burn-out. The noise spectrum of the boiling water was analyzed at frequencies of 0.5 to 200 kHz. The submerge-type pressure-electric transmitters were used for measurements. At underheating boiling during the experiment the standing waves have formed which determine the structure of the measured spectra. During saturated boiling of water no standing waves were revealed. At underheating over 15 - 20 deg C the water boiling process is accompanied by the noises within the ultrasonic frequency range. The maximum upper boundary of the noise in the experiments amounts to 90 - 100 kHz

  9. Flow film boiling heat transfer in water and Freon-113

    International Nuclear Information System (INIS)

    Liu, Qiusheng; Shiotsu, Masahiro; Sakurai, Akira

    2002-01-01

    Experimental apparatus and method for film boiling heat transfer measurement on a horizontal cylinder in forced flow of water and Freon-113 under pressurized and subcooled conditions were developed. The experiments of film boiling heat transfer from single horizontal cylinders with diameters ranging from 0.7 to 5 mm in saturated and subcooled water and Freon-113 flowing upward perpendicular to the cylinders were carried out for the flow velocities ranging from 0 to 1 m/s under system pressures ranging from 100 to 500 kPa. Liquid subcoolings ranged from 0 to 50 K, and the cylinder surface superheats were raised up to 800 K for water and 400 K for Freon-113. The film boiling heat transfer coefficients obtained were depended on surface superheats, flow velocities, liquid subcoolings, system pressures and cylinder diameters. The effects of these parameters were systematically investigated under wider ranges of experimental conditions. It was found that the heat transfer coefficients are higher for higher flow velocities, subcoolings, system pressures, and for smaller cylinder diameters. The observation results of film boiling phenomena were obtained by a high-speed video camera. A new correlation for subcooled flow film boiling heat transfer was derived by modifying authors' correlation for saturated flow film boiling heat transfer with authors' experimental data under wide subcooled conditions. (author)

  10. A comprehensive review on pool boiling of nanofluids

    International Nuclear Information System (INIS)

    Ciloglu, Dogan; Bolukbasi, Abdurrahim

    2015-01-01

    Nanofluids are nanoparticle suspensions of small particle size and low concentration dispersed in base fluids such as water, oil and ethylene glycol. These fluids have been considered by researchers as a unique heat transfer carrier because of their thermophysical properties and a great number of potential benefits in traditional thermal engineering applications, including power generation, transportation, air conditioning, electronics devices and cooling systems. Many attempts have been made in the literature on nanofluid boiling; however, data on the boiling heat transfer coefficient (HTC) and the critical heat flux (CHF) have been inconsistent. This paper presents a review of recent researches on the pool boiling heat transfer behaviour of nanofluid. First, the development of nanofluids and their potential applications are briefly given. Then, the effects of various parameters on nanofluids pool boiling are discussed in detail. - Highlights: • A review on the pool boiling heat transfer of nanofluid is presented and discussed. • Nanoparticle deposition considerably affects the boiling heat transfer. • The HTC decreases due to the low contact angle and the high adhesion energy. • The HTC increases due to the formation of the new cavities and liquid suction. • The CHF increases due to the increase in roughness, wettability and capillarity

  11. Mechanism of subcooled water flow boiling critical heat flux in a circular tube at high liquid Reynolds number

    International Nuclear Information System (INIS)

    Hata, K.; Fukuda, K.; Masuzaki, S.

    2014-01-01

    The subcooled boiling heat transfer and the steady state critical heat flux (CHF) in a vertical circular tube for the flow velocities (u=3.95 to 30.80 m/s) are systematically measured by the experimental water loop comprised of a multistage canned-type circulation pump with high pump head. The SUS304 test tube of inner diameter (d=6 mm) and heated length (L=59.5 mm) is used in this work. The outer surface temperatures of the SUS304 test tube with heating are observed by an infrared thermal imaging camera and a video camera. The subcooled boiling heat transfers for SUS304 test tube are compared with the values calculated by other workers' correlations for the subcooled boiling heat transfer. The influence of flow velocity on the subcooled boiling heat transfer and the CHF is investigated into details based on the experimental data. Nucleate boiling surface superheats at the CHF are close to the lower limit of the heterogeneous spontaneous nucleation temperature and the homogeneous spontaneous nucleation temperature. The dominant mechanism of the subcooled flow boiling CHF on the SUS304 circular tube is discussed at high liquid Reynolds number. On the other hand, theoretical equations for k-ε turbulence model in a circular tube of a 3 mm in diameter and a 526 mm long are numerically solved for heating of water on heated section of a 3 mm in diameter and a 67 mm long with various thicknesses of conductive sub-layer by using PHOENICS code under the same conditions as the experimental ones previously obtained considering the temperature dependence of thermo-physical properties concerned. The Platinum (Pt) test tube of inner diameter (d=3 mm) and heated length (L=66.5 mm) was used in this experiment. The thicknesses of conductive sub-layer from non-boiling regime to CHF are clarified. The thicknesses of conductive sub-layer at the CHF point are evaluated for various flow velocities. The experimental values of the CHF are also compared with the corresponding

  12. Multifocal chronic osteomyelitis of unknown etiology

    International Nuclear Information System (INIS)

    Kozlowski, K.; Masel, J.; Harbison, S.; Yu, J.; Royal Brisbane Children Hospital; Regional Hospital Bowral

    1983-01-01

    Five cases of chronic, inflammatory, multifocal bone lesions of unknown etiology are reported. Although bone biopsy confirmed osteomyelitis in each case in none of them were organisms found inspite of an extensive work up. Different clinical course of the disease reflects different aetiology in respective cases. These cases present changing aspects of osteomyelitis emerging since introduction of antibiotics. (orig.)

  13. Advanced Wall Boiling Model with Wide Range Applicability for the Subcooled Boiling Flow and its Application into the CFD Code

    International Nuclear Information System (INIS)

    Yun, B. J.; Song, C. H.; Splawski, A.; Lo, S.

    2010-01-01

    Subcooled boiling is one of the crucial phenomena for the design, operation and safety analysis of a nuclear power plant. It occurs due to the thermally nonequilibrium state in the two-phase heat transfer system. Many complicated phenomena such as a bubble generation, a bubble departure, a bubble growth, and a bubble condensation are created by this thermally nonequilibrium condition in the subcooled boiling flow. However, it has been revealed that most of the existing best estimate safety analysis codes have a weakness in the prediction of the subcooled boiling phenomena in which multi-dimensional flow behavior is dominant. In recent years, many investigators are trying to apply CFD (Computational Fluid Dynamics) codes for an accurate prediction of the subcooled boiling flow. In the CFD codes, evaporation heat flux from heated wall is one of the key parameters to be modeled for an accurate prediction of the subcooled boiling flow. The evaporate heat flux for the CFD codes is expressed typically as follows, q' e = πD 3 d /6 ρ g h fg fN' where, D d , f ,N' are bubble departure size, bubble departure frequency and active nucleation site density, respectively. In the most of the commercial CFD codes, Tolubinsky bubble departure size model, Kurul and Podowski active nucleation site density model and Ceumem-Lindenstjerna bubble departure frequency model are adopted as a basic wall boiling model. However, these models do not consider their dependency on the flow, pressure and fluid type. In this paper, an advanced wall boiling model was proposed in order to improve subcooled boiling model for the CFD codes

  14. A phenomenological model of the thermal hydraulics of convective boiling during the quenching of hot rod bundles

    International Nuclear Information System (INIS)

    Nelson, R.A.; Unal, C.

    1991-01-01

    In this paper, a phenomenological model of the thermal hydraulics of convective boiling in the post-critical-heat-flux (post-CHF) regime is developed and discussed. The model was implemented in the TRAC-PF1/MOD2 computer code (an advanced best-estimate computer program written for the analysis of pressurized water reactor systems). The model was built around the determination of flow regimes downstream of the quench front. The regimes were determined from the flow-regime map suggested by Ishii and his coworkers. Heat transfer in the transition boiling region was formulated as a position-dependent model. The propagation of the CHF point was strongly dependent on the length of the transition boiling region. Wall-to-fluid film boiling heat transfer was considered to consist of two components: first, a wall-to-vapor convective heat-transfer portion and, second, a wall-to-liquid heat transfer representing near-wall effects. Each contribution was considered separately in each of the inverted annular flow (IAF) regimes. The interfacial heat transfer was also formulated as flow-regime dependent. The interfacial drag coefficient model upstream of the CHF point was considered to be similar to flow through a roughened pipe. A free-stream contribution was calculated using Ishii's bubbly flow model for either fully developed subcooled or saturated nucleate boiling. For the drag in the smooth IAF region, a simple smooth-tube correlation for the interfacial friction factor was used. The drag coefficient for the rough-wavy IAF was formulated in the same way as for the smooth IAF model except that the roughness parameter was assumed to be proportional to liquid droplet diameter entrained from the wavy interface. The drag coefficient in the highly dispersed flow regime considered the combined effects of the liquid droplets within the channel and a liquid film on wet unheated walls. 431 refs., 6 figs., 4 tabs

  15. Influence of the Particle Length of Carbon Nanotube for Pool Boiling Critical Heat Flux Enhancement of Nanofluids

    International Nuclear Information System (INIS)

    Park, Sung Seek; Kim, Yong Hwan; Kim, Nam Jin

    2013-01-01

    The results of this experiment were that the CHF of the two nanofluids increased along with the volumetric fraction until 0.001 vol%, and the two types of nanofluids are the highest CHF at 0.001 vol%. Also, the results show clearly that the rate of CHF increase of the CM-100 MWCNT nanofluid with longer-length nanoparticles is higher than that of the CM-95 MWNCT nanofluid. These results indicate that the length of carbon nanotube influences the pool boiling CHF of carbon nanotube nanofluid and that long-length MWCNT, as above-noted, offers a superior effect in this regard. Boiling heat transfer is used in a variety of industrial processes and applications, such as refrigeration, power generation, heat exchangers, cooling of high-power electronics components and cooling of nuclear reactors. The critical heat flux (CHF) phenomenon is the thermal limit during a boiling heat transfer phase change; at the CHF point the heat transfer is maximised, followed by a drastic degradation after the CHF point. The consequence is a substantial increase in wall temperature which may result in physical failure phenomenon of heat transfer systems. Therefore, the CHF is important being considered in the cooling device design, such as nuclear reactor and nuclear fuels, steam generators, high-density electronic component, etc. And, CHF enhancement is essential for safety of heat transfer system. Recently, CHF reported increased when applied to the nanofluids, with its high (higher-than-base-fluid) thermal characteristic in the nuclear power plant system. Therefore, in this study, carried out the pool boiling CHF experiments by the particle length using carbon nanotube nanofluids, and the results are compared and analyzed for the CHF enhancement. The pool boiling CHF of experiments of carbon nanotube nanofluids carried out by the length of particles and the various concentrations

  16. Direct numerical simulations of nucleate boiling flows of binary mixtures

    International Nuclear Information System (INIS)

    Didier Jamet; Celia Fouillet

    2005-01-01

    Full text of publication follows: Better understand the origin and characteristics of boiling crisis is still a scientific challenge despite many years of valuable studies. One of the reasons why boiling crisis is so difficult to understand is that local and coupled physical phenomena are believed to play a key role in the trigger of instabilities which lead to the dry out of large portions of the heated solid phase. Nucleate boiling of a single bubble is fairly well understood compared to boiling crisis. Therefore, the numerical simulation of a single bubble growth during nucleate boiling is a good candidate to evaluate the capabilities of a numerical method to deal with complex liquid-vapor phenomena with phase-change and eventually to tackle the boiling crisis problem. In this paper, we present results of direct numerical simulations of nucleate boiling. The numerical method used is the second gradient method, which is a diffuse interface method dedicated to liquid vapor flows with phase-change. This study is not intended to provide quantitative results, partly because all the simulations are two-dimensional. However, particular attention is paid to the influence of some parameters on the main features of nucleate boiling, i.e. the radius of departure and the frequency of detachment of bubbles. In particular, we show that, as the contact angle increases, the radius of departure increases whereas the frequency of detachment decreases. Moreover, the influence of the existence of quasi non-condensable gas is studied. Numerical results show an important decrease of the heat exchange coefficient when a small amount of a quasi non-condensable gas is added to the pure liquid-vapor water system. This result is in agreement with experimental observations. Beyond these qualitative results, this numerical study allows to get insight into some important physical phenomena and to confirm that during nucleate boiling, large scale quantities are influenced by small scale

  17. Investigation of boiling water reactor stability and limit-cycle amplitude

    International Nuclear Information System (INIS)

    Damiano, B.; March-Leuba, J.A.; Euler, J.A.

    1991-01-01

    Galerkin's method has been applied to a boiling water reactor (BWR) dynamics model consisting of the point kinetics equations, which describe the neutronics, and a feedback transfer function, which describes the thermal hydraulics. The result is a low-order approximate solution describing BWR behavior during small-amplitude limit-cycle oscillations. The approximate solution has been used to obtain a stability condition, show that the average reactor power must increase during limit-cycle oscillations, and qualitatively determine how changes in transfer function values affect the limit-cycle amplitude. 6 refs., 2 figs., 2 tabs

  18. Noise analysis of the Dodewaard boiling water reactor: characteristics and time history

    International Nuclear Information System (INIS)

    Veer, J.H.C. v.d.; Kema, N.V.

    1982-01-01

    Reactor noise measurements have been performed in the Dodewaard BWR since the eighth fuel cycle (1978). Analysis of the noise characteristics of the ex-core neutron detectors are reported. As a result characteristics of the global component of the boiling noise and the influence of oscillatory effects in reactor pressure control and steam flow rate are described. The influence of power feedback effects on the detection of global noise at low frequencies is given using point kinetic reactor theory. Results are reported on the behaviour of the neutron noise characteristics during one fuel cycle and on the behaviour from fuel cycle 8 to 11. (author)

  19. Heat transfer with water in forced convection without boiling in small diameter tubes

    International Nuclear Information System (INIS)

    Ricque, Roger; Siboul, Roger

    1969-01-01

    This note presents the measurements performed for the establishment of an empirical heat transfer law for water in forced convection without boiling in small diameter tubes (2 and 4 mm), with high flow velocity and strong heat flux, and for relatively low fluid temperatures. A correlation of experimental points is obtained with a very small maximum dispersion: Nu fl = 0,0092 Re fl 0,88 Pr 0,5 (μ fl /μ p ) 0,14 . A correlation for the fiction coefficient is also presented [fr

  20. The accommodation coefficient of the liquid at temperatures below the boiling

    Directory of Open Access Journals (Sweden)

    Bulba Elena E.

    2015-01-01

    Full Text Available Are carried out experimental investigation of the laws of vaporization at temperatures below the boiling point. Is determined the mass rate of evaporation of distilled water in large intervals of time at different temperatures in order to sound conclusions about the stationarity of the process of evaporation of the liquid in the conditions of the experiments performed, and also studied the effect of temperature on the rate of evaporation. Accommodation coefficient is defined in the mathematical expression of the law of Hertz-Knudsen for standart substance used in the experiments.

  1. Future directions in boiling water reactor design

    International Nuclear Information System (INIS)

    Wilkins, D.R.; Hucik, S.A.; Duncan, J.D.; Sweeney, J.I.

    1987-01-01

    The Advanced Boiling Water Reactor (ABWR) is being developed by an international team of BWR manufacturers to respond to worldwide utility needs in the 1990's. Major objectives of the ABWR program are design simplification; improved safety and reliability; reduced construction, fuel and operating costs; improved maneuver-ability; and reduced occupational exposure and radwaste. The ABWR incorporates the best proven features from BWR designs in Europe, Japan and the United States and application of leading edge technology. Key features of the ABWR are internal recirculation pumps; fine-motion, electrohydraulic control rod drives; digital control and instrumentation; multiplexed, fiber optic cabling netwoek; pressure suppression containment with horizontal vents; cylindrical reinforced concrete containment; structural integration of the containment and reactor building; severe accident capability; state-of-the-art fuel; advanced trubine/generator with 52'' last stage buckets; and advanced radwaste technology. The ABWR is ready for lead plant application in Japan, where it is being developed as the next generation Japan standard BWR under the guidance and leadership of The Tokyo Electric Power Company, Inc. and a group of Japanese BWR utilities. In the United States it is being adapted to the needs of US utilities through the Electric Power Research Institute's Advanced LWR Requirements Program, and is being reviewed by the US Nuclear Regulatory Commission for certification as a preapproved US standard BWR under the US Department of Energy's ALWR Design Verification Program. These cooperative Japanese and US programs are expected to establish the ABWR as a world class BWR for the 1990's...... (author)

  2. Characteristics of a single bubble in subcooled boiling region of a narrow rectangular channel under natural circulation

    International Nuclear Information System (INIS)

    Zhou, Tao; Duan, Jun; Hong, Dexun; Liu, Ping; Sheng, Cheng; Huang, Yanping

    2013-01-01

    Highlights: ► We observe the behavior of single bubbles in a narrow vertical rectangular channel. ► We analyze the force characteristics of the single bubble. ► Small bubbles in highly subcooled boiling region stick on the wall or slip slowly. ► The bubbles jumping from the wall are affected by drag force. ► The thermophoretic force makes bubbles jump from the wall strongly. - Abstract: The behavior of bubbles has an important influence on heat transfer during subcooled boiling. By observing the behavior of a single bubble in a narrow vertical rectangular channel, and analyzing the force characteristics of the single bubble, it turns out that small bubbles in the highly subcooled boiling region stick on the wall or slip slowly. The bubbles jumping from the wall are affected by drag force, and move with high speed. Maintaining a certain heating power, at the onset of boiling (ONB) point, the bubbles remain in a stable state. Furthermore, the thermophoretic force is considered in this paper. With increasing the temperature gradient in the fluid, the thermophoretic force causes the bubbles to jump from the wall easier

  3. Study of film boiling collapse behavior during vapor explosion

    International Nuclear Information System (INIS)

    Yagi, Masahiro; Yamano, Norihiro; Sugimoto, Jun; Abe, Yutaka; Adachi, Hiromichi; Kobayashi, Tomoyoshi.

    1996-06-01

    Possible large scale vapor explosions are safety concern in nuclear power plants during severe accident. In order to identify the occurrence of the vapor explosion and to estimate the magnitude of the induced pressure pulse, it is necessary to investigate the triggering condition for the vapor explosion. As a first step of this study, scooping analysis was conducted with a simulation code based on thermal detonation model. It was found that the pressure at the collapse of film boiling much affects the trigger condition of vapor explosion. Based on this analytical results, basic experiments were conducted to clarify the collapse conditions of film boiling on a high temperature solid ball surface. Film boiling condition was established by flooding water onto a high temperature stainless steel ball heated by a high frequency induction heater. After the film boiling was established, the pressure pulse generated by a shock tube was applied to collapse the steam film on the ball surface. As the experimental boundary conditions, materials and size of the balls, magnitude of pressure pulse and initial temperature of the carbon and stainless steel balls were varied. The transients of pressure and surface temperature were measured. It was found that the surface temperature on the balls sharply decreased when the pressure wave passed through the film on balls. Based on the surface temperature behavior, the film boiling collapse pattern was found to be categorized into several types. Especially, the pattern for stainless steel ball was categorized into three types; no collapse, collapse and reestablishment after collapse. It was thus clarified that the film boiling collapse behavior was identified by initial conditions and that the pressure required to collapse film boiling strongly depended on the initial surface temperature. The present results will provide a useful information for the analysis of vapor explosions based on the thermal detonation model. (J.P.N.)

  4. Melanoma of unknown origin: a case series.

    LENUS (Irish Health Repository)

    Kelly, J

    2010-12-01

    The natural history of metastatic melanoma involving lymph nodes, in the absence of a known primary site (cutaneous, ocular or mucosal) has, to date, been poorly defined; and the optimal management of this rare subtype of disease is therefore unclear. Melanomas of unknown primary site (MUP) are estimated to comprise between 3.7 and 6% of all melanomas (Anbari et al. in Cancer 79:1861-1821, 1997).

  5. Autonomous Flight in Unknown Indoor Environments

    OpenAIRE

    Bachrach, Abraham Galton; He, Ruijie; Roy, Nicholas

    2009-01-01

    This paper presents our solution for enabling a quadrotor helicopter, equipped with a laser rangefinder sensor, to autonomously explore and map unstructured and unknown indoor environments. While these capabilities are already commodities on ground vehicles, air vehicles seeking the same performance face unique challenges. In this paper, we describe the difficulties in achieving fully autonomous helicopter flight, highlighting the differences between ground and helicopter robots that make it ...

  6. Multidimensional procurement auctions with unknown weights

    DEFF Research Database (Denmark)

    Greve, Thomas

    This paper studies the consequences of holding a procurement auction when the principal chooses not to show its preferences. My paper extends the procurement auction model of Che (1993) to a situation where both the principal and the agents have private information. Thus, unknown parameters of bo...... gives rise to an analysis of a principal that can not fully commit to the outcome induced by the scoring rule. Therefore, my result apply to contract theory and it’s problems with imperfect commitment....

  7. Navigation through unknown and dynamic open spaces using topological notions

    Science.gov (United States)

    Miguel-Tomé, Sergio

    2018-04-01

    Until now, most algorithms used for navigation have had the purpose of directing system towards one point in space. However, humans communicate tasks by specifying spatial relations among elements or places. In addition, the environments in which humans develop their activities are extremely dynamic. The only option that allows for successful navigation in dynamic and unknown environments is making real-time decisions. Therefore, robots capable of collaborating closely with human beings must be able to make decisions based on the local information registered by the sensors and interpret and express spatial relations. Furthermore, when one person is asked to perform a task in an environment, this task is communicated given a category of goals so the person does not need to be supervised. Thus, two problems appear when one wants to create multifunctional robots: how to navigate in dynamic and unknown environments using spatial relations and how to accomplish this without supervision. In this article, a new architecture to address the two cited problems is presented, called the topological qualitative navigation architecture. In previous works, a qualitative heuristic called the heuristic of topological qualitative semantics (HTQS) has been developed to establish and identify spatial relations. However, that heuristic only allows for establishing one spatial relation with a specific object. In contrast, navigation requires a temporal sequence of goals with different objects. The new architecture attains continuous generation of goals and resolves them using HTQS. Thus, the new architecture achieves autonomous navigation in dynamic or unknown open environments.

  8. Two-phase flow boiling pressure drop in small channels

    International Nuclear Information System (INIS)

    Sardeshpande, Madhavi V.; Shastri, Parikshit; Ranade, Vivek V.

    2016-01-01

    Highlights: • Study of typical 19 mm steam generator tube has been undertaken in detail. • Study of two phase flow boiling pressure drop, flow instability and identification of flow regimes using pressure fluctuations is the main focus of present work. • Effect of heat and mass flux on pressure drop and void fraction was studied. • Flow regimes identified from pressure fluctuations data using FFT plots. • Homogeneous model predicted pressure drop well in agreement. - Abstract: Two-phase flow boiling in small channels finds a variety of applications in power and process industries. Heat transfer, boiling flow regimes, flow instabilities, pressure drop and dry out are some of the key issues related to two-phase flow boiling in channels. In this work, the focus is on pressure drop in two-phase flow boiling in tubes of 19 mm diameter. These tubes are typically used in steam generators. Relatively limited experimental database is available on 19 mm ID tube. Therefore, in the present work, the experimental set-up is designed for studying flow boiling in 19 mm ID tube in such a way that any of the different flow regimes occurring in a steam generator tube (from pre-heating of sub-cooled water to dry-out) can be investigated by varying inlet conditions. The reported results cover a reasonable range of heat and mass flux conditions such as 9–27 kW/m 2 and 2.9–5.9 kg/m 2 s respectively. In this paper, various existing correlations are assessed against experimental data for the pressure drop in a single, vertical channel during flow boiling of water at near-atmospheric pressure. A special feature of these experiments is that time-dependent pressures are measured at four locations along the channel. The steady-state pressure drop is estimated and the identification of boiling flow regimes is done with transient characteristics using time series analysis. Experimental data and corresponding results are compared with the reported correlations. The results will be

  9. Gravity and Heater Size Effects on Pool Boiling Heat Transfer

    Science.gov (United States)

    Kim, Jungho; Raj, Rishi

    2014-01-01

    The current work is based on observations of boiling heat transfer over a continuous range of gravity levels between 0g to 1.8g and varying heater sizes with a fluorinert as the test liquid (FC-72/n-perfluorohexane). Variable gravity pool boiling heat transfer measurements over a wide range of gravity levels were made during parabolic flight campaigns as well as onboard the International Space Station. For large heaters and-or higher gravity conditions, buoyancy dominated boiling and heat transfer results were heater size independent. The power law coefficient for gravity in the heat transfer equation was found to be a function of wall temperature under these conditions. Under low gravity conditions and-or for smaller heaters, surface tension forces dominated and heat transfer results were heater size dependent. A pool boiling regime map differentiating buoyancy and surface tension dominated regimes was developed along with a unified framework that allowed for scaling of pool boiling over a wide range of gravity levels and heater sizes. The scaling laws developed in this study are expected to allow performance quantification of phase change based technologies under variable gravity environments eventually leading to their implementation in space based applications.

  10. Numerical investigation of nucleate pool boiling heat transfer

    Directory of Open Access Journals (Sweden)

    Stojanović Andrijana D.

    2016-01-01

    Full Text Available Multidimensional numerical simulation of the atmospheric saturated pool boiling is performed. The applied modelling and numerical methods enable a full representation of the liquid and vapour two-phase mixture behaviour on the heated surface, with included prediction of the swell level and heated wall temperature field. In this way the integral behaviour of nucleate pool boiling is simulated. The micro conditions of bubble generation at the heated wall surface are modelled by the bubble nucleation site density, the liquid wetting contact angle and the bubble grow time. The bubble nucleation sites are randomly located within zones of equal size, where the number of zones equals the nucleation site density. The conjugate heat transfer from the heated wall to the liquid is taken into account in wetted heated wall areas around bubble nucleation sites. The boiling curve relation between the heat flux and the heated wall surface temperature in excess of the saturation temperature is predicted for the pool boiling conditions reported in the literature and a good agreement is achieved with experimentally measured data. The influence of the nucleation site density on the boiling curve characteristic is confirmed. In addition, the influence of the heat flux intensity on the spatial effects of vapour generation and two-phase flow are shown, such as the increase of the swell level position and the reduced wetting of the heated wall surface by the heat flux increase. [Projekat Ministarstva nauke Republike Srbije, br. TR-33018 i br. OI-174014

  11. Converting higher to lower boiling hydrocarbons. [Australian patent

    Energy Technology Data Exchange (ETDEWEB)

    1937-06-16

    To transform or convert higher boiling hydrocarbons into lower boiling hydrocarbons for the production of motor fuel, the hydrocarbons are maintained in vapor phase until the desired conversion has been effected and the separation of the high from low boiling hydrocarbons is carried out by utilization of porous contact material with a preferential absorption for the former. The vapor is passed by supply line to a separator containing the porous material and heated to 750 to 950/sup 0/F for a few seconds, the higher boiling parts being retained by the porous material and the lower passing to a vent line. The latter is closed and the vapor supply cut off and an ejecting medium is passed through a line to carry the higher boiling parts to an outlet line from which it may be recycled through the apparatus. The porous mass may be regenerated by introducing medium from a line that carries off impurities to another line. A modified arrangement shows catalytic cracking apparatus through which the vaporized material is passed on the way to the separators.

  12. Single-bubble boiling under Earth's and low gravity

    Science.gov (United States)

    Khusid, Boris; Elele, Ezinwa; Lei, Qian; Tang, John; Shen, Yueyang

    2017-11-01

    Miniaturization of electronic systems in terrestrial and space applications is challenged by a dramatic increase in the power dissipation per unit volume with the occurrence of localized hot spots where the heat flux is much higher than the average. Cooling by forced gas or liquid flow appears insufficient to remove high local heat fluxes. Boiling that involves evaporation of liquid in a hot spot and condensation of vapor in a cold region can remove a significantly larger amount of heat through the latent heat of vaporization than force-flow cooling can carry out. Traditional methods for enhancing boiling heat transfer in terrestrial and space applications focus on removal of bubbles from the heating surface. In contrast, we unexpectedly observed a new boiling regime of water under Earth's gravity and low gravity in which a bubble was pinned on a small heater up to 270°C and delivered a heat flux up to 1.2 MW/m2 that was as high as the critical heat flux in the classical boiling regime on Earth .Low gravity measurements conducted in parabolic flights in NASA Boeing 727. The heat flux in flight and Earth's experiments was found to rise linearly with increasing the heater temperature. We will discuss physical mechanisms underlying heat transfer in single-bubble boiling. The work supported by NASA Grants NNX12AM26G and NNX09AK06G.

  13. Heat transfer properties of organic coolants containing high boiling residues

    International Nuclear Information System (INIS)

    Debbage, A.G.; Driver, M.; Waller, P.R.

    1964-01-01

    Heat transfer measurements were made in forced convection with Santowax R, mixtures of Santowax R and pyrolytic high boiling residue, mixtures of Santowax R and CMRE Radiolytic high boiling residue, and OMRE coolant, in the range of Reynolds number 10 4 to 10 5 . The data was correlated with the equation Nu = 0.015 Re b 0.85 Pr b 0.4 with an r.m.s. error of ± 8.5%. The total maximum error arising from the experimental method and inherent errors in the physical property data has been estimated to be less than ± 8.5%. From the correlation and physical property data, the decrease in heat transfer coefficient with increasing high boiling residue concentration has been determined. It has been shown that subcooled boiling in organic coolants containing high boiling residues is a complex phenomenon and the advantages to be gained by operating a reactor in this region may be marginal. Gas bearing pumps used initially in these experiments were found to be unsuitable; a re-designed ball bearing system lubricated with a terphenyl mixture was found to operate successfully. (author)

  14. Numerical simulation of pool boiling of a Lennard-Jones liquid

    KAUST Repository

    Inaoka, Hajime

    2013-09-01

    We performed a numerical simulation of pool boiling by a molecular dynamics model. In the simulation, a liquid composed of Lennard-Jones particles in a uniform gravitational field is heated by a heat source at the bottom of the system. The model successfully reproduces the change in regimes of boiling from nucleate boiling to film boiling with the increase of the heat source temperature. We present the pool boiling curve by the model, whose general behavior is consistent with those observed in experiments of pool boiling. © 2013 Elsevier B.V. All rights reserved.

  15. Numerical simulation of pool boiling of a Lennard-Jones liquid

    KAUST Repository

    Inaoka, Hajime; Ito, Nobuyasu

    2013-01-01

    We performed a numerical simulation of pool boiling by a molecular dynamics model. In the simulation, a liquid composed of Lennard-Jones particles in a uniform gravitational field is heated by a heat source at the bottom of the system. The model successfully reproduces the change in regimes of boiling from nucleate boiling to film boiling with the increase of the heat source temperature. We present the pool boiling curve by the model, whose general behavior is consistent with those observed in experiments of pool boiling. © 2013 Elsevier B.V. All rights reserved.

  16. Measurement and analysis of bubble behavior in subcooled nucleate boiling flow field with high fidelity imaging system

    International Nuclear Information System (INIS)

    Wu, W.; Jones, B.G.; Newell, T.A.

    2004-01-01

    Axial offset anomaly (AOA) is an unexpected deviation in the core axial power distribution from the predicted curve. AOA is a current major consideration for reactors operating at increased power levels and is becoming immediate threat to nuclear power's competitiveness in the market. Despite much effort focusing on this topic, a comprehensive understanding is far from being developed. However, previous research indicates first, that a close connection exists between subcooled nucleate boiling occurring in core region and the formation of crud, which directly results in AOA phenomena, secondly, that deposition is greater, and sometimes much greater, on heated than on unheated surfaces. A number of researchers have suggested that boiling promotes deposition, and several observed increased deposition in the subcooled boiling region. Limited detailed information is available on the interaction between heat and mass transfer in subcooled nucleate boiling (SNB) flow. Bubbles formed in SNB region play an important role in helping the formation of crud. This research examines bubble behavior under SNB condition from the dynamic point of view, using a high fidelity digital imaging apparatus. Freon R-134a is chosen as a simulant fluid due to its merit of having smaller surface tension and lower boiling temperature. The apparatus is operated at reduced pressure. Series of images at frame rates up to 4000 frames/s were obtained, showing different characteristics of bubble behavior with varying experimental parameters e.g. flow velocity, fluid subcooled level, etc. Analyses that combine the experimental results with analytical result on flow field in velocity boundary layer are considered. A tentative suggestion is that a rolling movement of a bubble accompanies its sliding along the heating surface in the flow channel. Numerical computations using FLUENT v5.5 have been performed to support this conclusion

  17. Hydrodynamic instability induced liquid--solid contacts in film boiling

    International Nuclear Information System (INIS)

    Yao, S.; Henry, R.E.

    1976-01-01

    The film boiling liquid-solid contacts of saturated ethanol and water to horizontal flat gold plated copper are examined by using electric conductance probe. It is observed that the liquid-solid contacts occur over a wide temperature range, and generally, induced by hydrodynamic instabilities. The area of contact decreases exponentially with interface temperature and is liquid depth dependent. The averaged duration of contacts is strongly influenced by the dominant nucleation process, and thus, depends on the interface temperature and the wettability of the solid during the contact. The frequency of major contacts is about 1.5 times the bubble detaching frequency. It is found that the liquid-solid contacts may account for a large percentage of the film boiling heat transfer near the low temperature end of film boiling and decreases as the interface temperature increases

  18. Study on Boiling Heat Transfer Phenomenon in Micro-channels

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Namgyun [Inha Technical College, Incheon (Korea, Republic of)

    2017-09-15

    Recently, efficient heat dissipation has become necessary because of the miniaturization of devices, and research on boiling on micro-channels has attracted attention. However, in the case of micro-channels, the friction coefficient and heat transfer characteristics are different from those in macro-channels. This leads to large errors in the micro scale results, when compared to correlations derived from the macro scale. In addition, due to the complexity of the mechanism, the boiling phenomenon in micro-channels cannot be approached only by experimental and theoretical methods. Therefore, numerical methods should be utilized as well, to supplement these methods. However, most numerical studies have been conducted on macro-channels. In this study, we applied the lattice Boltzmann method, proposed as an alternative numerical tool to simulate the boiling phenomenon in the micro-channel, and predicted the bubble growth process in the channel.

  19. Boiling heat transfer on fins – experimental and numerical procedure

    Directory of Open Access Journals (Sweden)

    Orzechowski T.

    2014-03-01

    Full Text Available The paper presents the research methodology, the test facility and the results of investigations into non-isothermal surfaces in water boiling at atmospheric pressure, together with a discussion of errors. The investigations were conducted for two aluminium samples with technically smooth surfaces and thickness of 4 mm and 10 mm, respectively. For the sample of lower thickness, on the basis of the surface temperature distribution measured with an infrared camera, the local heat flux and the heat transfer coefficient were determined and shown in the form of a boiling curve. For the thicker sample, for which 1-D model cannot be used, numerical calculations were conducted. They resulted in obtaining the values of the local heat flux on the surface the invisible to the infrared, camera i.e. on the side on which the boiling of the medium proceeds.

  20. CFD simulation of subcooled flow boiling at low pressure

    International Nuclear Information System (INIS)

    Koncar, B.; Mavko, B.

    2001-01-01

    An increased interest to numerically simulate the subcooled flow boiling at low pressures (1 to 10 bar) has been aroused in recent years, pursued by the need to perform safety analyses of research nuclear reactors and to investigate the sump cooling concept for future light water reactors. In this paper the subcooled flow boiling has been simulated with a multidimensional two-fluid model used in a CFX-4.3 computational fluid dynamics (CFD) code. The existing model was adequately modified for low pressure conditions. It was shown that interfacial forces, which are usually used for adiabatic flows, need to be modeled to simulate subcooled boiling at low pressure conditions. Simulation results are compared against published experimental data [1] and agree well with experiments.(author)

  1. The concept and application of miniaturization boiling in cooling system

    International Nuclear Information System (INIS)

    Suhaimi Illias; Muhammad Asri Idris

    2009-01-01

    The purpose of this research is to study and examine the phenomena of miniaturization-boiling, which intensely scatters with a large number of minute liquid particles from a water droplet surface to the atmosphere, when the droplet collided with a heating surface. As the material of the heating surface, the following were used: stainless steel (SUS 303 A Cr=17%,Ni=8%), sapphire (Al 3 O 2 ), brass, copper and carbon plane. The material was heated in order to study the miniaturization-boiling and droplet bounding phenomena at a very high temperature (160 degree C- 420 degree C). The phenomenon was photographed by a high-speed camera (10,000 fps) from the horizontal direction. The nuclear fusion reactor needs a very severe cooling, heat removal cooling method by special boiling is lead to this research. (Author)

  2. Boiling process modelling peculiarities analysis of the vacuum boiler

    Science.gov (United States)

    Slobodina, E. N.; Mikhailov, A. G.

    2017-06-01

    The analysis of the low and medium powered boiler equipment development was carried out, boiler units possible development directions with the purpose of energy efficiency improvement were identified. Engineering studies for the vacuum boilers applying are represented. Vacuum boiler heat-exchange processes where boiling water is the working body are considered. Heat-exchange intensification method under boiling at the maximum heat- transfer coefficient is examined. As a result of the conducted calculation studies, heat-transfer coefficients variation curves depending on the pressure, calculated through the analytical and numerical methodologies were obtained. The conclusion about the possibility of numerical computing method application through RPI ANSYS CFX for the boiling process description in boiler vacuum volume was given.

  3. Modeling of subcooled boiling in the vertical flow

    International Nuclear Information System (INIS)

    Koncar, B.; Mavko, B.

    1999-01-01

    A two-dimensional model of subcooled boiling in a vertical channel was developed. Its basic idea is that the vapor phase generation has a similar effect on the flow field as a hypothetical liquid phase generation. The bubble volume, generated due to evaporation process, was filled with liquid and included as a source term in the continuity equation for the liquid phase. Thus, the single-phase from of transport equations was preserved and bubbles were retained in the boundary layer near the heated surface. Time development of subcooled boiling was simulated and effects of governing physical mechanisms (evaporation, condensation, vapor-phase convection, vapor-phase diffusion) on the flow field and pressure drop were analyzed. The Results of the proposed two-dimensional model were compared with experimental data and RELAP5/MOD3.2 calculations. The presented model represents a contribution to the two-dimensional simulation of the subcooled boiling phenomenon.(author)

  4. Changes of enthalpy slope in subcooled flow boiling

    Energy Technology Data Exchange (ETDEWEB)

    Collado, Francisco J.; Monne, Carlos [Universidad de Zaragoza-CPS, Departamento de Ingenieria Mecanica-Motores Termicos, Zaragoza (Spain); Pascau, Antonio [Universidad de Zaragoza-CPS, Departamento de Ciencia de los Materiales y Fluidos-Mecanica de Fluidos, Zaragoza (Spain)

    2006-03-01

    Void fraction data in subcooled flow boiling of water at low pressure measured by General Electric in the 1960s are analyzed following the classical model of Griffith et al. (in Proceedings of ASME-AIChE heat transfer conference, 58-HT-19, 1958). In addition, a new proposal for analyzing one-dimensional steady flow boiling is used. This is based on the physical fact that if the two phases have different velocities, they cannot cover the same distance - the control volume length - in the same time. So a slight modification of the heat balance is suggested, i.e., the explicit inclusion of the vapor-liquid velocity ratio or slip ratio as scaling time factor between the phases, which is successfully checked against the data. Finally, the prediction of void fraction using correlations of the net rate of change of vapor enthalpy in the fully developed regime of subcooled flow boiling is explored. (orig.)

  5. TOURISM PROMOTION FOR UNKNOWN AREAS IN ROMANIA

    Directory of Open Access Journals (Sweden)

    Fotache Lacramioara

    2013-12-01

    Full Text Available The paper is an effort to unknown areas identity affirmation, through collaborative development of advertising mix, with an emphasis on virtual platforms as admissible solution for increasing visibility. Based upon comparative effective analysis of categories of communication particularities, it is suggested a positioning strategic solution, via virtual advertising platform as unique, integrated, complex and very attractive tourism product promotion, fitted for the internal and international tourism circuit. The active promotion of the specified territorial identity will launch a brand with an impact among tourists by using marketing techniques and innovating technical means and prioritizing tourism as a principal vector of local and regional development.

  6. Metastasis to neck from unknown primary tumor

    International Nuclear Information System (INIS)

    Jose, B.; Bosch, A.; Caldwell, W.L.; Frias, Z.

    1979-01-01

    The records of 54 consecutive patients who were irradiated for metastatic disease in the neck from an unknown primary tumor were reviewed. The overall survival results are comparable to those of other reported series. Patients with high or posterior cervical lymph node involvement were irradiated with fields including the nasopharynx and oropharynx. Patients with high neck nodes had a better survival rate than those with low neck nodes. The size of the neck tumors and the local control after treatment also have prognostic significance. (Auth.)

  7. Analysis of subcooled boiling with the two-fluid particle interaction method

    International Nuclear Information System (INIS)

    Shirakawa, Noriyuki; Horie, Hideki; Yamamoto, Yuichi; Tsunoyama, Shigeaki

    2003-01-01

    A particle interaction method called MPS (the Moving Particle Semi-implicit method), which formulates the differential operators in Navier-Stokes' equation as interactions between particles characterized by a kernel function, has been developed in recent years. We have extended this method to a two-fluid system with a potential-type surface tension in order to analyze the two-phase flow without experimental correlation. This extended method (Two-Fluid MPS: TF-MPS) was successfully applied to a subcooled boiling experiment. The most important element in any effective subcooled boiling model is to be able to accurately calculate where significant void fraction appears, that is, the location of the void departure point. The location of the initial void ejection into the subcooled liquid core can be determined fairly well experimentally and conventionally is given in terms of a critical subcooling. We investigated the relation between Stanton and Peclet numbers at the void departure point in the calculated results with TF-MPS method, varying the inlet water velocity to change Peclet number. (author)

  8. A high-fidelity approach towards simulation of pool boiling

    Energy Technology Data Exchange (ETDEWEB)

    Yazdani, Miad; Radcliff, Thomas; Soteriou, Marios; Alahyari, Abbas A. [United Technologies Research Center, East Hartford, Connecticut 06108 (United States)

    2016-01-15

    A novel numerical approach is developed to simulate the multiscale problem of pool-boiling phase change. The particular focus is to develop a simulation technique that is capable of predicting the heat transfer and hydrodynamic characteristics of nucleate boiling and the transition to critical heat flux on surfaces of arbitrary shape and roughness distribution addressing a critical need to design enhanced boiling heat transfer surfaces. The macro-scale of the phase change and bubble dynamics is addressed through employing off-the-shelf Computational Fluid Dynamics (CFD) methods for interface tracking and interphase mass and energy transfer. The micro-scale of the microlayer, which forms at early stage of bubble nucleation near the wall, is resolved through asymptotic approximation of the thin-film theory which provides a closed-form solution for the distribution of the micro-layer and its influence on the evaporation process. In addition, the sub-grid surface roughness is represented stochastically through probabilistic density functions and its role in bubble nucleation and growth is then represented based on the thermodynamics of nucleation process. This combination of deterministic CFD, local approximation, and stochastic representation allows the simulation of pool boiling on any surface with known roughness and enhancement characteristics. The numerical model is validated for dynamics and hydrothermal characteristics of a single nucleated bubble on a flat surface against available literature data. In addition, the prediction of pool-boiling heat transfer coefficient is verified against experimental measurements as well as reputable correlations for various roughness distributions and different surface orientations. Finally, the model is employed to demonstrate pool-boiling phenomenon on enhanced structures with reentrance cavities and to explore the effect of enhancement feature design on thermal and hydrodynamic characteristics of these surfaces.

  9. Saturated Pool Boiling in Vertical Annulus with Reduced Outflow Area

    International Nuclear Information System (INIS)

    Kang, Myeong Gie

    2012-01-01

    The mechanisms of pool boiling heat transfer have been studied extensively to design efficient heat transfer devices or to assure the integrity of safety related systems. However, knowledge on pool boiling heat transfer in a confined space is still quite limited. The confined nucleate boiling is an effective technique to enhance heat transfer. Improved heat transfer might be attributed to an increase in the heat transfer coefficient due to vaporization from the thin liquid film on the heating surface or increased bubble activity. According to Cornwell and Houston, the bubbles sliding on the heated surface agitate environmental liquid. In a confined space a kind of pulsating flow due to the bubbles is created and, as a result very active liquid agitation is generated. The increase in the intensity of liquid agitation results in heat transfer enhancement. Sometimes a deterioration of heat transfer appears at high heat fluxes for confined boiling. The cause of the deterioration is suggested as active bubble coalescence. Recently, Kang published inflow effects on pool boiling heat transfer in a vertical annulus with closed bottoms. Kang regulated the gap size at the upper regions of the annulus and identified that effects of the reduced gaps on heat transfer become evident as the heat flux increases. This kind of geometry is found in an in-pile test section. Since more detailed analysis is necessary, effects of the outflow area on nucleate pool boiling heat transfer are investigated in this study. Up to the author's knowledge, no previous results concerning to this effect have been published yet

  10. Experimental study of mass boiling in a porous medium model

    International Nuclear Information System (INIS)

    Sapin, Paul

    2014-01-01

    This manuscript presents a pore-scale experimental study of convective boiling heat transfer in a two-dimensional porous medium. The purpose is to deepen the understanding of thermohydraulics of porous media saturated with multiple fluid phases, in order to enhance management of severe accidents in nuclear reactors. Indeed, following a long-lasting failure in the cooling system of a pressurized water reactor (PWR) or a boiling water reactor (BWR) and despite the lowering of the control rods that stops the fission reaction, residual power due to radioactive decay keeps heating up the core. This induces water evaporation, which leads to the drying and degradation of the fuel rods. The resulting hot debris bed, comparable to a porous heat-generating medium, can be cooled down by reflooding, provided a water source is available. This process involves intense boiling mechanisms that must be modelled properly. The experimental study of boiling in porous media presented in this thesis focuses on the influence of different pore-scale boiling regimes on local heat transfer. The experimental setup is a model porous medium made of a bundle of heating cylinders randomly placed between two ceramic plates, one of which is transparent. Each cylinder is a resistance temperature detector (RTD) used to give temperature measurements as well as heat generation. Thermal measurements and high-speed image acquisition allow the effective heat exchanges to be characterized according to the observed local boiling regimes. This provides precious indications precious indications for the type of correlations used in the non-equilibrium macroscopic model used to model reflooding process. (author) [fr

  11. A high-fidelity approach towards simulation of pool boiling

    International Nuclear Information System (INIS)

    Yazdani, Miad; Radcliff, Thomas; Soteriou, Marios; Alahyari, Abbas A.

    2016-01-01

    A novel numerical approach is developed to simulate the multiscale problem of pool-boiling phase change. The particular focus is to develop a simulation technique that is capable of predicting the heat transfer and hydrodynamic characteristics of nucleate boiling and the transition to critical heat flux on surfaces of arbitrary shape and roughness distribution addressing a critical need to design enhanced boiling heat transfer surfaces. The macro-scale of the phase change and bubble dynamics is addressed through employing off-the-shelf Computational Fluid Dynamics (CFD) methods for interface tracking and interphase mass and energy transfer. The micro-scale of the microlayer, which forms at early stage of bubble nucleation near the wall, is resolved through asymptotic approximation of the thin-film theory which provides a closed-form solution for the distribution of the micro-layer and its influence on the evaporation process. In addition, the sub-grid surface roughness is represented stochastically through probabilistic density functions and its role in bubble nucleation and growth is then represented based on the thermodynamics of nucleation process. This combination of deterministic CFD, local approximation, and stochastic representation allows the simulation of pool boiling on any surface with known roughness and enhancement characteristics. The numerical model is validated for dynamics and hydrothermal characteristics of a single nucleated bubble on a flat surface against available literature data. In addition, the prediction of pool-boiling heat transfer coefficient is verified against experimental measurements as well as reputable correlations for various roughness distributions and different surface orientations. Finally, the model is employed to demonstrate pool-boiling phenomenon on enhanced structures with reentrance cavities and to explore the effect of enhancement feature design on thermal and hydrodynamic characteristics of these surfaces

  12. Interface tracking computations of bubble dynamics in nucleate flow boiling

    International Nuclear Information System (INIS)

    Giustini, G.

    2015-01-01

    The boiling process is of utter importance for the design and operation of water-cooled nuclear reactors. Despite continuous effort over the past decades, a fully mechanistic model of boiling in the presence of a solid surface has not yet been achieved. Uncertainties exist at fundamental level, since the microscopic phenomena governing nucleate boiling are still not understood, and as regards 'component scale' modelling, which relies heavily on empirical representations of wall boiling. Accurate models of these phenomena at sub-milli-metric scale are capable of elucidating the various processes and to produce quantitative data needed for up-scaling. Within this context, Direct Numerical Simulation (DNS) represents a powerful tool for CFD analysis of boiling flows. In this contribution, DNS coupled with an Interface Tracking method (Y. Sato, B. Niceno, Journal of Computational Physics, Volume 249, 15 September 2013, Pages 127-161) are used to analyse the hydrodynamics and heat transfer associated with heat diffusion controlled bubble growth at a solid substrate during nucleate flow boiling. The growth of successive bubbles from a single nucleation site is simulated with a computational model that includes heat conduction in the solid substrate and evaporation from the liquid film (micro-layer) present beneath the bubble. Bubble evolution is investigated and the additional (with respect to single phase convection) heat transfer mechanisms due to the ebullition cycle are quantified. The simulations show that latent heat exchange due to evaporation in the micro-layer and sensible heat exchange during the waiting time after bubble departure are the main heat transfer mechanisms. It is found that the presence of an imposed flow normal to the bubble rising path determines a complex velocity and temperature distribution near the nucleation site. This conditions can result in bubble sliding, and influence bubble shape, departure diameter and departure frequency

  13. Dimensional analysis of boiling heat transfer burnout conditions

    International Nuclear Information System (INIS)

    El-Mitwally, E.S.; Raafat, N.M.; Darwish, M.A.

    1979-01-01

    The first criteria in boiling water systems design, such as boiling water reactors, is that no burnout in the core is allowed to exist under any conditions of the reactor operation either during steady state operation or during any of the several postulated accidental transients, such as sudden interruption of coolant flow in the reactor core (due to pump failure or blockage of fuel channel). The aim of the present work is to obtain a correlation for the critical heat flux based on a theoretical study where the mechanism of burn out and the related hydrodynamic and heat transfer equations are considered. 8 refs

  14. Hysteresis of boiling for different tunnel-pore surfaces

    Directory of Open Access Journals (Sweden)

    Pastuszko Robert

    2015-01-01

    Full Text Available Analysis of boiling hysteresis on structured surfaces covered with perforated foil is proposed. Hysteresis is an adverse phenomenon, preventing high heat flux systems from thermal stabilization, characterized by a boiling curve variation at an increase and decrease of heat flux density. Experimental data were discussed for three kinds of enhanced surfaces: tunnel structures (TS, narrow tunnel structures (NTS and mini-fins covered with the copper wire net (NTS-L. The experiments were carried out with water, R-123 and FC-72 at atmospheric pressure. A detailed analysis of the measurement results identified several cases of type I, II and III for TS, NTS and NTS-L surfaces.

  15. Prediction of void fraction in subcooled flow boiling

    International Nuclear Information System (INIS)

    Petelin, S.; Koncar, B.

    1998-01-01

    The information on heat transfer and especially on the void fraction in the reactor core under subcooled conditions is very important for the water-cooled nuclear reactors, because of its influence upon the reactivity of the systems. This paper gives a short overview of subcooled boiling phenomenon and indicates the simplifications made by the RELAP5 model of subcooled boiling. RELAP5/MOD3.2 calculations were compared with simple one-dimensional models and with high-pressure Bartolomey experiments.(author)

  16. Simultaneous neutron radiography and infrared thermography measurement of boiling processes

    International Nuclear Information System (INIS)

    Murphy, J.H.; Glickstein, S.S.

    1997-01-01

    Boiling of water at 1 to 15 bar flowing upward within a narrow duct and a round test section was observed using both neutron radiography and infrared (IR) thermography. The IR readings of the test section outer wall temperatures show the effects of both fluid temperature and wall heat transfer coefficient variations, producing a difference between liquid and two phase regions. The IR images, in fact, appear very similar to the neutron images; both show clear indications of spatial and temporal variations in the internal fluid conditions during the boiling process

  17. The sudden coalescene model of the boiling crisis

    International Nuclear Information System (INIS)

    Carrica, P.M.; Clausse, A.

    1995-01-01

    A local two-phase flow integral model of nucleate boiling and crisis is presented. The model is based on average balances on a control volume, yielding to a set of three nonlinear differential equations for the local void fraction, bubble number density and velocity. Boiling crisis as critical heat flux is interpreted as a dynamic transition caused by the coalescence of bubbles near the heater. The theoretical dynamic model is compared with experimental results obtained for linear power ramps in a horizontal plate heater in R-113, showing an excellent qualitative agreement

  18. On Boiling of Crude Oil under Elevated Pressure

    Science.gov (United States)

    Pimenova, Anastasiya V.; Goldobin, Denis S.

    2016-02-01

    We construct a thermodynamic model for theoretical calculation of the boiling process of multicomponent mixtures of hydrocarbons (e.g., crude oil). The model governs kinetics of the mixture composition in the course of the distillation process along with the boiling temperature increase. The model heavily relies on the theory of dilute solutions of gases in liquids. Importantly, our results are applicable for modelling the process under elevated pressure (while the empiric models for oil cracking are not scalable to the case of extreme pressure), such as in an oil field heated by lava intrusions.

  19. A stability identification system for boiling water nuclear reactors

    International Nuclear Information System (INIS)

    Belblidia, L.A.; Chevrier, A.

    1994-01-01

    Boiling water reactors are subject to instabilities under low-flow, high-power operating conditions. These instabilities are a safety concern and it is therefore important to determine stability margins. This paper describes a method to estimate a measure of stability margin, called the decay ratio, from autoregressive modelling of time series data. A phenomenological model of a boiling water reactor with known stability characteristics is used to generate time series to validate the program. The program is then applied to signals from local power range monitors from the cycle 7 stability tests at the Leibstadt plant. (author) 7 figs., 2 tabs., 12 refs

  20. Mechanistic modeling of CHF in forced-convection subcooled boiling

    International Nuclear Information System (INIS)

    Podowski, M.Z.; Alajbegovic, A.; Kurul, N.; Drew, D.A.; Lahey, R.T. Jr.

    1997-05-01

    Because of the complexity of phenomena governing boiling heat transfer, the approach to solve practical problems has traditionally been based on experimental correlations rather than mechanistic models. The recent progress in computational fluid dynamics (CFD), combined with improved experimental techniques in two-phase flow and heat transfer, makes the use of rigorous physically-based models a realistic alternative to the current simplistic phenomenological approach. The objective of this paper is to present a new CFD model for critical heat flux (CHF) in low quality (in particular, in subcooled boiling) forced-convection flows in heated channels

  1. The sudden coalescene model of the boiling crisis

    Energy Technology Data Exchange (ETDEWEB)

    Carrica, P.M.; Clausse, A. [Centro Atomico Bariloche and Instituto Balseiro, Bariloche (Argentina)

    1995-09-01

    A local two-phase flow integral model of nucleate boiling and crisis is presented. The model is based on average balances on a control volume, yielding to a set of three nonlinear differential equations for the local void fraction, bubble number density and velocity. Boiling crisis as critical heat flux is interpreted as a dynamic transition caused by the coalescence of bubbles near the heater. The theoretical dynamic model is compared with experimental results obtained for linear power ramps in a horizontal plate heater in R-113, showing an excellent qualitative agreement.

  2. Subcooled boiling heat transfer on a finned surface

    International Nuclear Information System (INIS)

    Kowalski, J.E.; Tran, V.T.; Mills, P.J.

    1992-01-01

    Experimental and numerical studies have been performed to determine the heat transfer coefficients from a finned cylindrical surface to subcooled boiling water. The heat transfer rates were measured in an annular test section consisting of an electrically heated fuel element simulator (FES) with eight longitudinal, rectangular fins enclosed in a glass tube. A two-dimensional finite-element heat transfer model using the Galerkin method was employed to determine the heat transfer coefficients along the periphery of the FES surface. An empirical correlation was developed to predict the heat transfer coefficients during subcooled boiling. The correlation agrees well with the measured data. (6 figures) (Author)

  3. Heat Transfer in Boiling Dilute Emulsion with Strong Buoyancy

    Science.gov (United States)

    Freeburg, Eric Thomas

    Little attention has been given to the boiling of emulsions compared to that of boiling in pure liquids. The advantages of using emulsions as a heat transfer agent were first discovered in the 1970s and several interesting features have since been studied by few researchers. Early research focuses primarily on pool and flow boiling and looks to determine a mechanism by which the boiling process occurs. This thesis looks at the boiling of dilute emulsions in fluids with strong buoyant forces. The boiling of dilute emulsions presents many favorable characteristics that make it an ideal agent for heat transfer. High heat flux electronics, such as those seen in avionics equipment, produce high heat fluxes of 100 W/cm2 or more, but must be maintained at low temperatures. So far, research on single phase convection and flow boiling in small diameter channels have yet to provide an adequate solution. Emulsions allow the engineer to tailor the solution to the specific problem. The fluid can be customized to retain the high thermal conductivity and specific heat capacity of the continuous phase while enhancing the heat transfer coefficient through boiling of the dispersed phase component. Heat transfer experiments were carried out with FC-72 in water emulsions. FC-72 has a saturation temperature of 56 °C, far below that of water. The parameters were varied as follows: 0% ≤ epsilon ≤ 1% and 1.82 x 1012 ≤ RaH ≤ 4.42 x 1012. Surface temperatures along the heated surface reached temperature that were 20 °C in excess of the dispersed phase saturation temperature. An increase of ˜20% was seen in the average Nusselt numbers at the highest Rayleigh numbers. Holography was used to obtain images of individual and multiple FC-72 droplets in the boundary layer next to the heated surface. The droplet diameters ranged from 0.5 mm to 1.3 mm. The Magnus effect was observed when larger individual droplets were injected into the boundary layer, causing the droplets to be pushed

  4. Calculation of Steam Volume Fraction in Subcooled Boiling

    Energy Technology Data Exchange (ETDEWEB)

    Rouhani, S Z

    1967-06-15

    An analysis of subcooled boiling is presented. It is assumed that heat is removed by vapor generation, heating of the liquid that replaces the detached bubbles, and to some extent by single phase heat transfer. Two regions of subcooled boiling are considered and a criterion is provided for obtaining the limiting value of subcooling between the two regions. Condensation of vapor in the subcooled liquid is analysed and the relative velocity of vapor with respect to the liquid is neglected in these regions. The theoretical arguments result in some equations for the calculation of steam volume fraction and true liquid subcooling.

  5. CAPRICORN subchannel code for sodium boiling in LMFBR fuel bundles

    International Nuclear Information System (INIS)

    Padilla, A. Jr.; Smith, D.E.; O'Dell, L.D.

    1983-01-01

    The CAPRICORN computer code analyzes steady-state and transient, single-phase and boiling problems in LMFBR fuel bundles. CAPRICORN uses the same type of subchannel geometry as the COBRA family of codes and solves a similar system of conservation equations for mass, momentum, and energy. However, CAPRICORN uses a different numerical solution method which allows it to handle the full liquid-to-vapor density change for sodium boiling. Results of the initial comparison with data (the W-1 SLSF pipe rupture experiment) are very promising and provide an optimistic basis for proceeding with further development

  6. Some fundamental aspects of boiling in nuclear reactors

    International Nuclear Information System (INIS)

    Mondin, H.; Lavigne, P.; Semeria, R.

    1964-01-01

    The main results obtained at Grenoble during the last four years in the field of boiling mechanisms and related phenomena in nuclear reactors are reported. 1 - Observation Of Boiling: By the use of photography and ultrafast cinematography (8000 frames per second maximum), boiling in a vessel or a tube was observed up to 140 kg/cm 2 . The populations of bubble-generating seeds (sites) were counted, and a correlation established giving their number per unit of surface area as a function of the thermal flux and the pressure. The diameter of the bubbles breaking of from the wall was studied up to 140 kg/cm 2 : three types of bubble have been shown to exist: - those in equilibrium, their diameter following the formula of Fritz and Ende, - bubbles found by boiling, the diameters of which decrease rapidly with the pressure (1/100 mm to 140 kg/cm 2 ), - the coalescences which appear in saturated liquid above 15 W/cm 2 , their proportion being independent of the pressure. Strioscopic observations were made of the movements of the thermal film associated with the generation of the seeds, at the initiation and condensation of the bubbles, the mechanisms responsible for the highly efficient heat transfer could thus be defined. 2 - Pressure Losses In Two-Phase Flow: A physical model of the continuous variation of the free space content in a boiling channel has been proposed by means of which the pressure losses can be calculated without invoking a break in the coefficient of friction when free boiling begins. Agreement between theory and experiment is satisfactory. The various forms which total pressure loss in a boiling tube may present as a function of flow rate have been studied. Special features are observed at very low and very high speeds. 3 - Burn-Out: Under steady operating conditions, it is shown that in a uniformly heated channel the burn-out flux as a function of output rate is generally independent of the length. When burn-out is a result of output oscillation, the

  7. Reynolds analogy for subcooled surface boiling under forced convection

    International Nuclear Information System (INIS)

    Avdeev, A.A.

    1982-01-01

    For the case of subcooled surface boiling under forced convection the analytic expression of analogy between the heat transfer and carry pulse (Reynolds analogy) is derived. It is concluded that the obtained dependence creates the basis for solution of a series of problems of surface boiling physics. On the basis of the performed analysis the method of coordinate calculation of the origin of intensive vapour generation is developed and the formula for calculation of the broken-off-bubble radius under forced convection is derived [ru

  8. Development of nuclear thermal hydraulic verification test and evaluation technology; study on 3-dimension measurement of two-phase flow parameters in subcooled boiling flow

    Energy Technology Data Exchange (ETDEWEB)

    Park, Goon Cherl; Kim, Moon Oh; Cho, Hyung Kyoo; Kim, Seong Jin [Seoul National University, Seoul (Korea)

    2002-04-01

    In this study, the experiments were conducted at different levels of inlet subcooling, flow rate and heat flux in a vertical concentric annulus channel located heater at the center with subcooled boiling conditions of atmosphere pressure and superficial velocity under 1.5m/s. The profiles of void fraction, vapor size, vapor frequency, vapor velocity and IAC were measured by 2 sensor conductivity probe in axially 3 points (L/D{sub h}=90.5,80.1,71.4) and those of liquid velocity by pitot tube. Based on the experiment data subcooled boiling models in MARS and multidimensional code, CFX-4.2 were evaluated was verified for analysis ability of these codes in subcooled boiling. 61 refs., 41 figs., 11 tabs. (Author)

  9. A one-dimensional semi-empirical model considering transition boiling effect for dispersed flow film boiling

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yu-Jou [Institute of Nuclear Engineering and Science, National Tsing Hua University, Hsinchu 30013, Taiwan, ROC (China); Pan, Chin, E-mail: cpan@ess.nthu.edu.tw [Institute of Nuclear Engineering and Science, National Tsing Hua University, Hsinchu 30013, Taiwan, ROC (China); Department of Engineering and System Science, National Tsing Hua University, Hsinchu 30013, Taiwan, ROC (China); Low Carbon Energy Research Center, National Tsing Hua University, Hsinchu 30013, Taiwan, ROC (China)

    2017-05-15

    Highlights: • Seven heat transfer mechanisms are studied numerically by the model. • A semi-empirical method is proposed to account for the transition boiling effect. • The parametric effects on the heat transfer mechanisms are investigated. • The thermal non-equilibrium phenomenon between vapor and droplets is investigated. - Abstract: The objective of this paper is to develop a one-dimensional semi-empirical model for the dispersed flow film boiling considering transition boiling effects. The proposed model consists of conservation equations, i.e., vapor mass, vapor energy, droplet mass and droplet momentum conservation, and a set of closure relations to address the interactions among wall, vapor and droplets. The results show that the transition boiling effect is of vital importance in the dispersed flow film boiling regime, since the flowing situation in the downstream would be influenced by the conditions in the upstream. In addition, the present paper, through evaluating the vapor temperature and the amount of heat transferred to droplets, investigates the thermal non-equilibrium phenomenon under different flowing conditions. Comparison of the wall temperature predictions with the 1394 experimental data in the literature, the present model ranging from system pressure of 30–140 bar, heat flux of 204–1837 kW/m{sup 2} and mass flux of 380–5180 kg/m{sup 2} s, shows very good agreement with RMS of 8.80% and standard deviation of 8.81%. Moreover, the model well depicts the thermal non-equilibrium phenomenon for the dispersed flow film boiling.

  10. Boiling detection using signals of self-powered neutron detectors and thermocouples

    International Nuclear Information System (INIS)

    Kozma, R.

    1989-01-01

    A specially-equipped simulated fuel assembly has been placed into the core of the 2 MW research reactor of the IRI, Delft. In this paper the recent results concerning the detection of coolant boiling in the simulated fuel assembly are introduced. Applying the theory of boiling temperature noise, different stages of boiling, i.e. one-phase flow, subcooled boiling, volume boiling, were identified in the measurements using the low-frequency noise components of the thermocouple signals. It has been ascertained that neutron noise spectra remained unchanged when subcooled boiling appeared, and that they changed reasonably only when developed volume boiling took place in the channels. At certain neutron detector positions neutron spectra did not vary at all, although developed volume boiling occurred at a distance of 3-4 cm from these neutron detectors. This phenomenon was applied in studying the field-of-view of neutron detectors

  11. Science 101: Why Does It Take Longer to Boil Potatoes at High Altitudes?

    Science.gov (United States)

    Robertson, Bill

    2017-01-01

    Why Does It Take Longer to Boil Potatoes at High Altitudes? This column provides background science information for elementary teachers. This month's issue looks at why water boils at different temperatures at different altitudes.

  12. Adresse inconnue / Address unknown / Suchwiin Bulmyeong

    Directory of Open Access Journals (Sweden)

    Serge Gruzinski

    2005-03-01

    Full Text Available Tous les films asiatiques parlent de métissage, même ceux qui se présentent comme de vastes fresques historiques perdues dans le temps. Les emprunts aux traditions hollywoodiennes et européennes n'ont cessé d'enrichir une cinématographie aussi ancienne que celle du monde occidental. Dans Adresse inconnue (Address unknown le cinéaste coréen Kim Ki-duk explore l'expérience du métissage et le corps du métis à la frontière entre Corée du Nord et Corée du sud. Fils d'un GI américain et noir et d...

  13. Adresse inconnue / Address unknown / Suchwiin Bulmyeong

    OpenAIRE

    Serge Gruzinski

    2005-01-01

    Tous les films asiatiques parlent de métissage, même ceux qui se présentent comme de vastes fresques historiques perdues dans le temps. Les emprunts aux traditions hollywoodiennes et européennes n'ont cessé d'enrichir une cinématographie aussi ancienne que celle du monde occidental. Dans Adresse inconnue (Address unknown) le cinéaste coréen Kim Ki-duk explore l'expérience du métissage et le corps du métis à la frontière entre Corée du Nord et Corée du sud. Fils d'un GI américain et noir et d'...

  14. The Unknown Component Problem Theory and Applications

    CERN Document Server

    Villa, Tiziano; Brayton, Robert K; Mishchenko, Alan; Petrenko, Alexandre; Sangiovanni-Vincentelli, Alberto

    2012-01-01

    The Problem of the Unknown Component: Theory and Applications addresses the issue of designing a component that, combined with a known part of a system, conforms to an overall specification. The authors tackle this problem by solving abstract equations over a language. The most general solutions are studied when both synchronous and parallel composition operators are used. The abstract equations are specialized to languages associated with important classes of automata used for modeling systems. The book is a blend of theory and practice, which includes a description of a software package with applications to sequential synthesis of finite state machines. Specific topologies interconnecting the components, exact and heuristic techniques, and optimization scenarios are studied. Finally the scope is enlarged to domains like testing, supervisory control, game theory and synthesis for special omega languages. The authors present original results of the authors along with an overview of existing ones.

  15. Carcinomatous Meningitis from Unknown Primary Carcinoma

    Directory of Open Access Journals (Sweden)

    L. Favier

    2009-10-01

    Full Text Available Carcinomatous meningitis (CM occurs in 3 to 8% of cancer patients. Patients present with a focal symptom, and multifocal signs are often found following neurological examination. The gold standard for diagnosis remains the demonstration of carcinomatous cells in the cerebrospinal fluid on cytopathological examination. Despite the poor prognosis, palliative treatment could improve quality of life and, in some cases, overall survival. We report on a patient who presented with vertigo, tinnitus and left-sided hearing loss followed by progressive diffuse facial nerve paralysis. Lumbar cerebrospinal fluid confirmed the diagnosis of CM. However, no primary tumor was discovered, even after multiple invasive investigations. This is the first reported case in the English-language medical literature of CM resulting from a carcinoma of unknown primary origin.

  16. Education Through Exploration: Evaluating the Unknown

    Science.gov (United States)

    Anbar, A. D.

    2015-12-01

    Mastery of the peculiar and powerful practices of science is increasingly important for the average citizen. With the rise of the Internet, most of human knowledge is at our fingertips. As content becomes a commodity, success and survival aren't about who knows the most, but who is better able to explore the unknown, actively applying and extending knowledge through critical thinking and hypothesis-driven problem-solving. This applies to the economic livelihoods of individuals and to society at large as we grapple with climate change and other science-infused challenges. Unfortunately, science is too often taught as an encyclopedic collection of settled facts to be mastered rather than as a process of exploration that embraces curiosity, inquiry, testing, and communication to reduce uncertainty about the unknown. This problem is exacerbated by the continued prevalence of teacher-centric pedagogy, which promotes learning-from-authority and passive learning. The initial wave of massively open online courses (MOOCs) generally mimic this teaching style in virtual form. It is hypothesized that emerging digital teaching technologies can help address this challenge at Internet scale in "next generation" MOOCs and flipped classroom experiences. Interactive simulations, immersive virtual field trips, gamified elements, rapid adaptive feedback, intelligent tutoring systems, and personalized pathways, should motivate and enhance learning. Through lab-like projects and tutorials, students should be able to construct knowledge from interactive experiences, modeling the authentic practice of science while mastering complex concepts. Freed from lecturing, teaching staff should be available for direct and intense student-teacher interactions. These claims are difficult to evaluate with traditional assessment instruments, but digital technologies provide powerful new ways to evaluate student learning and learn from student behaviors. We will describe ongoing experiences with such

  17. Some specific features of subcooled boiling heat transfer and crisis at extremely high heat flux densities

    International Nuclear Information System (INIS)

    Gotovsky, M.A.

    2001-01-01

    Forced convection boiling is the process used widely in a lot of industry branches including NPP. Heat transfer intensity under forced convection boiling is considered in different way in dependence on conditions. One of main problems for the process considered is an influence of interaction between forced flow and boiling on heat transfer character. For saturated water case a transition from ''pure'' forced convection to nucleate boiling can be realized in smooth form. (author)

  18. Gravity influence on heat transfer rate in flow boiling

    NARCIS (Netherlands)

    Baltis, C.H.M.; Celata, G.P.; Cumo, M.; Saraceno, L.; Zummo, G.

    2012-01-01

    The aim of the present paper is to describe the results of flow boiling heat transfer at low gravity and compare them with those obtained at earth gravity, evaluating possible differences. The experimental campaigns at low gravity have been performed with parabolic flights. The paper will show the

  19. Boiling on fins with wire screen of variable effective conductivity

    Directory of Open Access Journals (Sweden)

    Orzechowski Tadeusz

    2017-01-01

    Full Text Available The high scale of integration of modern equipment used for medical, military and other purposes puts heavy demands as regards the removal of great heat fluxes. This can be achieved only in exchangers that apply the phase change phenomena. Among many methods to improve boiling heat transfer, the wire mesh covering demonstrates some advantages due to the possibilities of designing the desired microstructure parameters, availability on the market, and low cost. The wire mesh microstucture with specified geometrical parameters produces anisotropy in conductivity. The different arrangement of the mesh layers relative to the direction of the heat flux is a cause of the change of temperature distribution within the layer. The consequence is a respective change in the discharge conditions of the gas phase and liquid feed. The experiments were conducted on fins covered with a single layer of copper mesh with lumen of 38 % and boiling FC-72 at ambient pressure. Compared with the smooth surface, the wire mesh structures yield an increase in the heat transfer rate at boiling. It is also shown that nucleate boiling is initiated at lower wall superheat. Formulas for longitudinal and perpendicular thermal conductivity are given for different mesh structure arrangements.

  20. THE PREDICTION OF VOID VOLUME IN SUBCOOLED NUCLEATE POOL BOILING

    Energy Technology Data Exchange (ETDEWEB)

    Duke, E. E. [General Dynamics, San Diego, CA (United States)

    1963-11-15

    A three- step equation was developed that adequately describes the average volume of vapor occurring on a horizontal surface due to nucleate pool boiling of subcooled water. Since extensive bubble frequency data are lacking, the data of others were combined with experimental observations to make predictions of void volume at ambient pressure with various degrees of subcooling. (auth)

  1. Delays due to gas diffusion in flash boiling nucleation

    International Nuclear Information System (INIS)

    Hanbury, W.T.; McCartney, W.S.

    1976-01-01

    A theoretical model to account for the time delay between decompression and nucleation in flash boiling is presented and analyzed. It shows that gas diffusion can be responsible for delayed nucleation when the critical radius for nucleation and the suspended particle size are of the same order of magnitude

  2. A highly stable microchannel heat sink for convective boiling

    International Nuclear Information System (INIS)

    Lu, Chun Ting; Pan Chin

    2009-01-01

    To develop a highly stable two-phase microchannel heat sink, we experimented with convective boiling in diverging, parallel microchannels with different distributions of laser-etched artificial nucleation sites. Each microchannel had a mean hydraulic diameter of 120 µm. The two-phase flow visualization and the magnitudes of pressure drop and inlet temperature oscillations under boiling conditions demonstrated clearly the merits of using artificial nucleation sites to further stabilize the flow boiling in diverging, parallel microchannels. The stability map showed the plane of subcooling number versus phase change number. It illustrated that diverging, parallel microchannels with artificial nucleation cavities have a much wider stable region than parallel microchannels with uniform cross-sections or diverging, parallel microchannels without artificial nucleation cavities. In addition, the results revealed that the design with cavities distributed uniformly along the downstream half of the channel presented the best stability performance among the three distributions of nucleation sites. This particular design can be regarded as a highly stable microchannel heat sink for convective boiling

  3. Onset of nuclear boiling in forced convection (Method of detection)

    International Nuclear Information System (INIS)

    Rachedi, M.

    1986-01-01

    Local onset of boiling in any pressure water cooling systems, as a PWR for instance, can mean a possible dangerous mismatch between the produced heat and the cooling capabilities. Its consequences can lead to serious accidental conditions and a reliable technique to detect such a phenomenon is therefore of particular need. Most techniques used up to now rely basically on local measurements and assume therefore usually the previous knowledge of the actual hot or boiling spot. The method proposed here based on externally located accelerometers appears to be sensitive to the global behaviour of the mechanical structure and is therefore not particularly bound to any exact localization of the sensors. The vibrations produced in the mechanical structure of the heated assembly are measured by accelerometers placed on the external surfaces that are easily accessible. The onset of the boiling, the growth and condensation of the bubbles on the heated wall, induces a resonance in the structure and an excitation at its particular eigen frequencies. Distinctive peaks are clearly observed in the spectral density function calculated from the accelerometer signal as soon as bubbles are produced. The technique is shown to be very sensitive even at the earliest phase of boiling and quite independent on sensor position. A complete hydrodynamic analysis of the experimental channels have been performed in order to assess the validity of the method both in steady conditions and during rapid power transients

  4. How long does it take to boil an egg? Revisited

    International Nuclear Information System (INIS)

    Buay, D; Foong, S K; Kiang, D; Kuppan, L; Liew, V H

    2006-01-01

    How long does it take to boil an egg? Theoretical prediction, based on a simple adaptation of the solution to the exact thermal diffusion equation for a sphere, is consistent with experiments. The experimental data are also used to estimate an average value for the thermal diffusivity of an egg

  5. Radioactive waste management practices with KWU-boiling water reactors

    International Nuclear Information System (INIS)

    Queiser, H.

    1976-01-01

    A Kraftwerk Union boiling water reactor is used to demonstrate the reactor auxiliary systems which are applied to minimize the radioactive discharge. Based on the most important design criteria the philosophy and function of the various systems for handling the off-gas, ventilation air, waste water and concentrated waste are described. (orig.) [de

  6. Geologic Controls of Sand Boil Formation at Buck Chute, Mississippi

    Science.gov (United States)

    2017-06-30

    26 5.1 Electrical resistivity tomography ...construction at Buck Chute in preparation to the 2011 Flood. ERDC/GSL TR-17-12 21 4 Methods 4.1 Electrical resistivity tomography The resistivity ...could contribute to sand boil formation is missed. Electrical Resistivity Tomography (ERT) is a subsurface investigation method that combines the

  7. Flow Boiling Critical Heat Flux in Reduced Gravity

    Science.gov (United States)

    Mudawar, Issam; Zhang, Hui; Hasan, Mohammad M.

    2004-01-01

    This study provides systematic method for reducing power consumption in reduced gravity systems by adopting minimum velocity required to provide adequate CHF and preclude detrimental effects of reduced gravity . This study proves it is possible to use existing 1 ge flow boiling and CHF correlations and models to design reduced gravity systems provided minimum velocity criteria are met

  8. Glycaemic Index Of Boiled Cocoyam And Stew | Alegbejo | Sahel ...

    African Journals Online (AJOL)

    Cocoyam can be processed in several ways. It contains digestible starch, protein and other valuable nutrients. Consumption of cocoyam is very high all over Nigeria. This study was undertaken to determine the glycaemic response of diabetic and healthy subjects to equal amounts of carbohydrate in the form of boiled ...

  9. How long does it take to boil an egg? Revisited

    Energy Technology Data Exchange (ETDEWEB)

    Buay, D [Natural Sciences and Science Education, National Institute of Education, Nanyang Technological University, 1, Nanyang Walk, Singapore 637616 (Singapore); Foong, S K [Natural Sciences and Science Education, National Institute of Education, Nanyang Technological University, 1, Nanyang Walk, Singapore 637616 (Singapore); Kiang, D [Department of Physics, Chinese University of Hong Kong, Shatin, New Territories, Hong Kong (China); Kuppan, L [Natural Sciences and Science Education, National Institute of Education, Nanyang Technological University, 1, Nanyang Walk, Singapore 637616 (Singapore); Centre for Research in Pedagogy and Practice, National Institute of Education, Nanyang Technological University, 1, Nanyang Walk, Singapore 637616 (Singapore); Liew, V H [Natural Sciences and Science Education, National Institute of Education, Nanyang Technological University, 1, Nanyang Walk, Singapore 637616 (Singapore)

    2006-01-01

    How long does it take to boil an egg? Theoretical prediction, based on a simple adaptation of the solution to the exact thermal diffusion equation for a sphere, is consistent with experiments. The experimental data are also used to estimate an average value for the thermal diffusivity of an egg.

  10. Statistical analysis of the BOIL program in RSYST-III

    International Nuclear Information System (INIS)

    Beck, W.; Hausch, H.J.

    1978-11-01

    The paper describes a statistical analysis in the RSYST-III program system. Using the example of the BOIL program, it is shown how the effects of inaccurate input data on the output data can be discovered. The existing possibilities of data generation, data handling, and data evaluation are outlined. (orig.) [de

  11. Investigation Status of Heat Exchange while Boiling Hydrocarbon Fuel

    Directory of Open Access Journals (Sweden)

    D. S. Obukhov

    2006-01-01

    Full Text Available The paper contains analysis of heat exchange investigations while boiling hydrocarbon fuel. The obtained data are within the limits of the S.S. Kutateladze dependence proposed in 1939. Heat exchange at non-stationary heat release has not been investigated. The data for hydrocarbon fuel with respect to critical density of heat flow are not available even for stationary conditions.

  12. Effects of Fermentation, Boiling and Roasting on Some ...

    African Journals Online (AJOL)

    The effects of processing methods such as fermentation, boiling and roasting on some micronutrients and antinutrient composition of jackfruit seed flour were evaluated. The mineral, vitamin and antinutrient composition of raw and processed jackfruit seed flours were determined using standard methods. Iron, calcium and ...

  13. Effect of boiling and roasting on the proximate properties of ...

    African Journals Online (AJOL)

    Administrator

    2011-09-19

    Sep 19, 2011 ... Boiling is a common food processing method. As a thermal process .... Mean ± SEM for duplicate analysis; *the mean difference is significant at the 0.05 level. ... suggesting similar processing influence on the protein content of ...

  14. Cavitation, subcooled boiling and a measuring method developed at ENEA

    International Nuclear Information System (INIS)

    Tirelli, D.

    1988-01-01

    A brief description of cavitation and subcooled boiling is reported; their effects, measuring methods, operating limits and prescribed standards are described. The whole, to better clarify the usefulness and the importance of a measuring instrument developed at ENEA, to study the above phenomena

  15. Boiling process in oil coolers on porous elements

    Directory of Open Access Journals (Sweden)

    Genbach Alexander A.

    2016-01-01

    Full Text Available Holography and high-speed filming were used to reveal movements and deformations of the capillary and porous material, allowing to calculate thermo-hydraulic characteristics of boiling liquid in the porous structures. These porous structures work at the joint action of capillary and mass forces, which are generalised in the form of dependences used in the calculation for oil coolers in thermal power plants (TPP. Furthermore, the mechanism of the boiling process in porous structures in the field of mass forces is explained. The development process of water steam formation in the mesh porous structures working at joint action of gravitational and capillary forces is investigated. Certain regularities pertained to the internal characteristics of boiling in cells of porous structure are revealed, by means of a holographic interferometry and high-speed filming. Formulas for calculation of specific thermal streams through thermo-hydraulic characteristics of water steam formation in mesh structures are obtained, in relation to heat engineering of thermal power plants. This is the first calculation of heat flow through the thermal-hydraulic characteristics of the boiling process in a reticulated porous structure obtained by a photo film and holographic observations.

  16. Why Companies Fail? The Boiling Frog Syndrome

    OpenAIRE

    Ozcan, Rasim

    2018-01-01

    Why nations fail? An answer is given by Acemoglu and Robinson (2012) by pointing out the importance of institutions for an economy that leads to innovations for economic growth. Christensen (2012) asks a similar question for a firm and diagnoses why companies fail. In this study, I relate Acemoglu and Robinson (2012) with Christensen (2012) in order to better understand how to make companies more prosperous, more powerful, healthier, and live longer via innovations.

  17. Drift flux formulation of a boiling water reactor channel with subcooled boiling

    International Nuclear Information System (INIS)

    Elias, E.E.; Shak, D.P.; May, R.S.

    1987-01-01

    The channel formulation used in the BWR module of the Modular Modeling System MMS-02 is presented. The purpose of channel model is to accurately predict the transient response of the enthalpy void and flow rate. Accurate prediction of the two-phase enthalpy, and void fraction distributions along the channel is important since they are key input parameters to the neutronic model, and have direct effect on the core and overall reactor response. In order to model the channel response correctly, the physical phenomena had to be realistically represented. The model accounts for subcooled boiling and slip through the use of an empirical subcooled void-quality model. Simplifying assumptions are made so that only one differential equation, the energy equation, is integrated along the channel. A consistent use of semi-empirical correlations enables a complete representation of the channel flow and void fraction with the bulk enthalpy as the only state variable. The differential equation and the constitutive relations of this two-phase flow model are presented. Several numerical examples are given, and finally, come conclusions are presented

  18. Development of surface wettability characteristics for enhancing pool boiling heat transfer

    International Nuclear Information System (INIS)

    Kim, Moo Hwan; Jo, Hang Jin

    2010-05-01

    For several centuries, many boiling experiments have been conducted. Based on literature survey, the characteristic of heating surface in boiling condition played as an important role which mainly influenced to boiling performance. Among many surface factor, the fact that wettability effect is significant to not only the enhancement of critical heat flux(CHF) but also the nucleate boiling heat transfer is also supported by other kinds of boiling experiments. In this regard, the excellent boiling performance (a high CHF and heat transfer performance) in pool boiling could be achieved through some favorable surface modification which satisfies the optimized wettability condition. To find the optimized boiling condition, we design the special heaters to examine how two materials, which have different wettability (e.g. hydrophilic and hydrophobic), affect the boiling phenomena. The special heaters have hydrophobic dots on hydrophilic surface. The contact angle of hydrophobic surface is 120 .deg. to water at the room temperature. The contact angle of hydrophilic surface is 60 .deg. at same conditions. To conduct the experiment with new surface condition, we developed new fabrication method and design the pool boiling experimental apparatus. Through this facility, we can the higher CHF on pattern surface than that on hydrophobic surface, and the higher boiling heat transfer performance on pattern surface than that on hydrophilic surface. Based on this experimental results, we concluded that we proposed new heating surface condition and surface fabrication method to realize the best boiling condition by modified heating surface condition

  19. Bubble point pressures of some petroleum fractions in the presence of methane or carbon dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Shariati, A.; Moshfeghian, M. [Delft Univ. of Technology (Netherlands); Peters, C.J. [Shiraz Univ. (Iran, Islamic Republic of)

    1998-09-01

    In this work, the bubble point pressures of a number of petroleum fractions were measured in the presence of carbon dioxide or methane. These petroleum fractions had a maximum boiling range of 40 K. The most volatile fraction has a boiling range of 353.15 K to 373.15 K, while the least volatile boils within the temperature range of 453.15 K to 493.15 K. The densities of these petroleum fractions varied from 690 kg/m{sup 3} to 790 kg/m{sup 3}. Measurements were carried out in the Cailletet apparatus within a temperature range of 312 K to 470 K.

  20. Problems of determination of principle of psychological profile of unknown criminal person in investigational activity

    Directory of Open Access Journals (Sweden)

    Galina Getman

    2017-03-01

    By the author of the article of analysis different determinations of «psychological profile of unknown criminal person» were subjected. They are set positive lines and separate positions that in opinion of author are not expedient and important are subjected to criticism. That is why, the author points in conclusions the argued positions in relation to the necessity of the use of psychological profile of  unknown criminal person during investigation of criminal realizations in activity of investigator.