WorldWideScience

Sample records for point shoreline erosion

  1. Buhne Point Shoreline Erosion Demonstration Project. Volume 1. Appendices A-D.

    Science.gov (United States)

    1987-08-01

    Preliminary Dune Restoration Plan, ..? Draft Basis of Design Report. Monterey Regional Water Poluttion Control Agency, Monterey County, CA. U.b -lt- , m - P...had disappeared, and the shoreline had eroded back to the roadway, threatening the road and underground water , gas and sanitary sewer lines. Storm...S C Cth Y arE t b e s c:’ : • [ r i ]en i-t c: : .- . -- . : -- . -. little as, but no less tharn, 7% water content is best for Ioapis a storage

  2. Regional shoreline change and coastal erosion hazards in Arctic Alaska

    Science.gov (United States)

    Gibbs, Ann E.; Richmond, Bruce M.; Erikson, Li H.; Harden, E. Lynne; Wallendorf, Louise

    2011-01-01

    Historical shoreline positions along the mainland Beaufort Sea coast of Alaska were digitized and analyzed to determine the long-term rate of change. Average shoreline change rates and ranges from 1947 to the mid-2000s were determined every 50 meters between Barrow and Demarcation Point, at the U.S.-Canadian border. Results show that shoreline change rates are highly variable along the coast, with an average regional shoreline change rate of-2.0 m/yr and localized rates of up to -19 m/yr. The highest erosion rates were observed at headlands, points, and associated with breached thermokarst lakes. Areas of accretion were limited, and generally associated with spit extension and minor beach accretion. In general, erosion rates increase from east to west, with overall higher rates east of Harrison Bay.

  3. 15 CFR 923.25 - Shoreline erosion/mitigation planning.

    Science.gov (United States)

    2010-01-01

    ... effects of, and studying and evaluating ways to control, or lessen the impact of, shoreline erosion... techniques and other techniques that will be used to manage the effects of erosion, including potential...

  4. Soil erosion and deposition in the new shorelines of the Three Gorges Reservoir.

    Science.gov (United States)

    Su, Xiaolei; Nilsson, Christer; Pilotto, Francesca; Liu, Songping; Shi, Shaohua; Zeng, Bo

    2017-12-01

    During the last few decades, the construction of storage reservoirs worldwide has led to the formation of many new shorelines in former upland areas. After the formation of such shorelines, a dynamic phase of soil erosion and deposition follows. We explored the factors regulating soil dynamics in the shorelines of the Three Gorges Reservoir (TGR) on the Yangtze River in China. We selected four study sites on the main stem and three on the tributaries in the upstream parts of the reservoir, and evaluated whether the sites close to the backwater tail (the point at which the river meets the reservoir) had more soil deposition than the sites far from the backwater tail. We also tested whether soil erosion differed between the main stem and the tributaries and across shorelines. We found that soil deposition in the new shorelines was higher close to the backwater tail and decreased downstream. Soil erosion was higher in the main stem than in the tributaries and higher at lower compared to higher shoreline altitudes. In the tributaries, erosion did not differ between higher and lower shoreline levels. Erosion increased with increasing fetch length, inundation duration and distance from the backwater tail, and decreased with increasing soil particle fineness. Our results provide a basis for identifying shorelines in need of restorative or protective measures. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Impacts of shoreline erosion on coastal ecosystems in Songkhla Province

    Directory of Open Access Journals (Sweden)

    Nipaporn Chusrinuan

    2009-07-01

    Full Text Available Songkhla Province is located on the eastern coast of the southern Thai Peninsula, bordering the Gulf of Thailand for approximately 107 km. Most of the basin’s foreshores have been extensively developed for housing, tourism and shrimp farming. The beaches are under deteriorating impacts, often causing sediment transport which leads to an unnaturally high erosion rate. This natural phenomenon is considered to be a critical problem in the coastal areas affected by the hazard of coastal infrastructure and reduced beach esthetics for recreation. In this study, shoreline changes were compared between 1975 and 2006 using aerial photographs and Landsat imageries using Geographic Information System (GIS. The results revealed that 18.5 km2 of the coastal areas were altered during the period. Of this, 17.3 km2 suffered erosion and 1.2 km2were subjected to accretion. The most significant changes occurred between 1975-2006. Shoreline erosion was found at Ban Paktrae, Ranot District, with an average erosion rate of 5.3 m/year, while accretion occurred at Laem Samila, MuangSongkhla District with an average accretion rate of 2.04 m/year. The occurrences of shoreline erosion have contributed to the degradation of coastal soil and water quality, destruction of beach and mangrove forests, loss of human settlements and livelihood.These processes have led to deterioration of the quality of life of the residents. Prevention and mitigation measures to lessen economic and social impacts due to shoreline erosion are discussed.

  6. Development of Biotechnical Methods to Control Shoreline Erosion

    National Research Council Canada - National Science Library

    Mays, D

    1999-01-01

    .... Coconut fiber logs, straw bales wrapped in poultry netting, large round hay bales, and bundled logs anchored to the shoreline were all evaluated for their potential to control wave damage to the shoreline...

  7. Sedimentation and erosion in Lake Diefenbaker, Canada: solutions for shoreline retreat monitoring.

    Science.gov (United States)

    Sadeghian, Amir; de Boer, Dirk; Lindenschmidt, Karl-Erich

    2017-09-15

    This study looks into sedimentation and erosion rates in Lake Diefenbaker, a prairie reservoir, in Saskatchewan, Canada, which has been in operation since 1968. First, we looked at the historical data in all different formats over the last 70 years, which includes data from more than 20 years before the formation of the lake. The field observations indicate high rates of shoreline erosion, especially in the upstream portion as a potential region for shoreline retreat. Because of the great importance of this waterbody to the province, monitoring sedimentation and erosion rates is necessary for maintaining the quality of water especially after severe floods which are more common due to climate change effects. Second, we used Google Maps Elevation API, a new tool from Google that provides elevation data for cross sections drawn between two points, by drawing 24 cross sections in the upstream area extending 250 m from each bank. This feature from Google can be used as an easy and fast monitoring tool, is free of charge, and provides excellent control capabilities for monitoring changes in cross-sectional profiles.

  8. Effects of shoreline erosion on infrastructure development along the ...

    African Journals Online (AJOL)

    ... coastal environment and affected the socio-economic life of local populations, threatened cultural heritage and hindered coastal tourism development. This paper assessed the extent of shoreline recession and its effects on buildings and infrastructure along Ghana's coastline through a study of the Nkontompo Community ...

  9. Effects of oil on the rate and trajectory of Louisiana marsh shoreline erosion

    International Nuclear Information System (INIS)

    McClenachan, Giovanna; Eugene Turner, R; Tweel, Andrew W

    2013-01-01

    Oil can have long-term detrimental effects on marsh plant health, both above- and belowground. However, there are few data available that quantify the accelerated rate of erosion that oil may cause to marshes and the trajectory of change. Between November 2010 and August 2012, we collected data on shoreline erosion, soil strength, per cent cover of Spartina alterniflora, and marsh edge overhang at 30 closely spaced low oil and high oil sites in Bay Batiste, Louisiana. Surface oil samples were taken one meter into the marsh in February 2011. All high oiled sites in Bay Batiste were contaminated with Macondo 252 oil (oil from the Deepwater Horizon oil spill, 20 April–15 July 2010). The results suggest that there is a threshold where soil parameters change dramatically with a relatively small increase in oil concentration in the soil. Heavy oiling weakens the soil, creating a deeper undercut of the upper 50 cm of the marsh edge, and causing an accelerated rate of erosion that cascades along the shoreline. Our results demonstrate that it could take at least 2 yr to document the effects heavy oiling has had on the marsh shoreline. The presence of aboveground vegetation alone may not be an appropriate indicator of recovery. (letter)

  10. Archaeological Site Vulnerability Modelling: The Influence of High Impact Storm Events on Models of Shoreline Erosion in the Western Canadian Arctic

    Directory of Open Access Journals (Sweden)

    O’Rourke Michael J. E.

    2017-01-01

    Full Text Available Much of the Inuvialuit archaeological record is situated along shorelines of the western Canadian Arctic. These coastal sites are at substantial risk of damage due to a number of geomorphological processes at work in the region. The identification of threatened heritage remains is critical in the Mackenzie Delta, where landscape changes are taking place at an increasingly rapid pace. This paper outlines some preliminary observations from a research program directed toward identifying vulnerable archaeological remains within the Inuvialuit Settlement Region. Coastal erosion rates have been calculated for over 280 km of the Kugmallit Bay shoreline, extending along the eastern extent of Richards Island and neighbouring areas of the Tuktoyaktuk Peninsula. Helicopter surveys conducted during the 2014 field season confirmed that areas exposed to heavy erosive forces in the past continue to erode at alarming rates. Some of the calculated rates, however, have proven far too conservative. An extreme period of erosion at Toker Point in the autumn of 2013 has yielded a prime example of how increasingly volatile weather patterns can influence shoreline erosion models. It has also provided a case with which to demonstrate the value of using more recent, shorter time-interval imagery in assessing impacts to cultural landscapes.

  11. Influence of Oceanic and Estuarine Drivers on Wetland Shoreline Change: Moving Towards a Framework for Assessment of Coastal Erosion Hazards Along Sheltered Coasts

    Science.gov (United States)

    Plant, N. G.; Smith, K. E. L.; Doran, K. S.; Smith, C. G.; Stockdon, H. F.

    2015-12-01

    Barrier island and estuarine habitats act as natural buffers to wave energy and reduce erosion of mainland coasts; however, estuarine wetlands are under increasing threat from shoreline destabilization and erosion due to rising sea level and storms. Currently, the USGS National Assessment of Coastal Change Hazards estimates the vulnerability of shorelines to hurricane erosion hazards by combining physical parameters of dune, beach, and shoreline morphology with storm hydrodynamic predictions. These hazard assessments are limited to ocean-side sandy beaches. However, with the increasing availability of water-penetrating lidar and vegetation filtering algorithms, as well as estuarine wave and hydrodynamic modeling, extending physical process analyses and risk assessments to estuarine and back-barrier shorelines is possible. In this study, we investigate the relationship between shoreline type, sediment supply rate, long-term erosion rates, and shoreline geophysical features. We focus on long-term changes, such as those associated with barrier island landward migration, which is dominated by the processes of storm overwash and sea-level rise. This migration means that the long-term changes in estuarine and ocean-facing shorelines can be correlated. We focus on understanding these correlations with estuarine drivers of wetland shoreline erosion and accretion, such as waves, sediment supply, and shoreline features. Quantitatively assessing the variance of estuarine shoreline behavior relative to oceanic shorelines will improve knowledge of estuarine shoreline susceptibility to storm-induced erosion, help fine-tune estimates of future forecasts of coastal change, and provide an initial framework for estimating erosion hazards along sheltered coasts.

  12. Buhne Point Shoreline Erosion Demonstration Project. Volume 2. Appendices E.

    Science.gov (United States)

    1987-08-01

    Federal Highway Administration to undertake a demonstration project to apply "state-of-the- art methods for repairing damage to highways and preventing...15.00 28.00 Filter cioth 84,000 sq.ft. .25 21,000 $.1 18,0O00 2. 400 LF Rock grek %,ater 6 ton rock 4,280 ton 20.00 $ 85,000 Bedding stone, 504 avg...cltcslvso !! - .-- + + +- :i DZPARMENT 2 0F-,. APAY WASHINGf0O.. D.C. 20314 1-D Art , dloM OF. Ns. Marty Mercado Department of BoatinZ and Waterways State of

  13. Shoreline erosion and decadal sediment accumulation in the Tar-Pamlico estuary, North Carolina, USA: A source-to-sink analysis

    Science.gov (United States)

    Eulie, Devon O.; Corbett, D. Reide; Walsh, J. P.

    2018-03-01

    Estuaries contain vital habitats and it is important to understand how these areas respond to human activities and natural processes such as sea-level rise and wave attack. As estuarine shorelines erode or become modified with hard structures, there is potential for significantly altering the availability of sediment and the filling of coastal systems. This study used a source-to-sink approach and quantified rates of shoreline erosion in the Tar-Pamlico sub-estuary, a tributary of the larger Albemarle-Pamlico Estuarine System (APES). The average shoreline change rate (SCR) determined using an end-point method was -0.5 ± 0.9 m yr-1 for the Tar-Pamlico. Incorporating bulk density estimates, this contributes 0.6 × 105 tons of fine sediment to the system annually, or after accounting for fluvial input, about 40% of the total sediment supply to the sub-estuary. The role of the Tar-Pamlico as a sink for these sediments was addressed using the radionuclide tracers 210Pb and 137Cs. Radionuclide activities and sediment accumulation rates identified several depositional regions, in particular in the middle of the estuary. Linear sediment accumulation rates ranged from 0.10 ± 0.02 to 0.38 ± 0.02 g cm-2 yr-1, and total storage of fine sediment in the system was 1.6 × 105 t yr-1. It was not possible to confidently discern a change in the rate of shoreline erosion or seabed accumulation. A preliminary budget for fine sediments (grain-size <63 μm) was then calculated to compare erosional sources with sedimentary sinks. Almost all (∼93.0%) of the fine sediment entering the system was accumulated and stored, while only about 7.0% was exported to Pamlico Sound.

  14. Rapid shoreline erosion induced by human impacts in a tropical muddy coast context, an example from western French Guiana.

    Science.gov (United States)

    Brunier, Guillaume; Anthony, Edward; Gardel, Antoine

    2015-04-01

    The Guyanas coast (French Guiana, Surinam and Guiana) is the longest muddy coast in the world (1500 km). It is under the influence of mud banks in transit from the Amazon delta in Brazil to the Orinoco delta in Venezuela. This westward mud bank migration induces a strong geomorphic control on the shoreline which can be summarized in terms of "bank" (shoreline advance and wave energy dissipation) and "inter-bank" phases (erosion of shoreline by waves). Our study site, rice polders close to Mana city (western French Guiana), is a fine example of the exacerbation, by human activities, of the erosional dynamics on this muddy coast during an "inter-bank" phase. The polders cover 50,000 ha, in 200 x 600 m compartments flanked by earth dikes and canals. They were built in the muddy Holocene coastal plain in the 1980s and are rapidly eroding. Waves (mean significant height = 1.5 m height) comprise Atlantic swell and local trade wind-waves, and the tidal context is semi-diurnal and meso-tidal. We determined historical shoreline evolution from satellite (Landsat & SPOT) and orthophotography images, and conducted four field campaigns between October 2013 and October 2014, comprising topographic (RTK-DGPS) and hydrodynamic (pressure sensors) measurements. The results show intense erosion of 150 m/year affecting the polders since 2001, and lesser retreat (30 to 100 m/year) of the adjacent sectors colonized by mangrove forests. The erosive shoreface shows the same structure in each polder compartment: a chenier beach which freely retreats backwards under the influence of wave overwash. The chenier retreat rate is 100 m/year and it appears to be more intense (net retreat of 45 m) during the high wave-energy season (December to March), which generates more overwashing. In front of the chenier, we observed a large (50 m) inter-tidal mud bed showing different levels of induration and bioturbation by mangrove roots. The mud shorefaces exhibit an erosion rate of 100 m/year on average

  15. Shoreline Erosion and Proposed Control at Experimental Facility 15-Spesutie Island

    Science.gov (United States)

    2017-09-01

    action, abrasion, impact, and corrosion .1 The tidal shorelines of the Chesapeake Bay Estuary system are an important resource. The interface between...management and conservation of marine resources. Because of natural occurrences such as ground-water seepage, the rise and fall of the tide, wave action

  16. Low - Cost Shore Protection. Final Report on the Shoreline Erosion Control Demonstration Program (Section 54) 1981

    Science.gov (United States)

    1981-08-01

    primary influence on the activity of the SEAP until his death in December 1980. This report is dedicated to the memory of his outstanding guidance and...reached by going north along the barrier island about 6 miles from the east end of Wright Memorial Bridge. The shoreline is generally straight, with a north...there are native shrubs and herbs which include hazel, bearberry, blueberry , sweet fern, dogbane, columbine, sarsaparilla, : strawberry, and bunchberry

  17. Assessing shoreline exposure and oyster habitat suitability maximizes potential success for sustainable shoreline protection using restored oyster reefs.

    Science.gov (United States)

    La Peyre, Megan K; Serra, Kayla; Joyner, T Andrew; Humphries, Austin

    2015-01-01

    Oyster reefs provide valuable ecosystem services that contribute to coastal resilience. Unfortunately, many reefs have been degraded or removed completely, and there are increased efforts to restore oysters in many coastal areas. In particular, much attention has recently been given to the restoration of shellfish reefs along eroding shorelines to reduce erosion. Such fringing reef approaches, however, often lack empirical data to identify locations where reefs are most effective in reducing marsh erosion, or fully take into account habitat suitability. Using monitoring data from 5 separate fringing reef projects across coastal Louisiana, we quantify shoreline exposure (fetch + wind direction + wind speed) and reef impacts on shoreline retreat. Our results indicate that fringing oyster reefs have a higher impact on shoreline retreat at higher exposure shorelines. At higher exposures, fringing reefs reduced marsh edge erosion an average of 1.0 m y(-1). Using these data, we identify ranges of shoreline exposure values where oyster reefs are most effective at reducing marsh edge erosion and apply this knowledge to a case study within one Louisiana estuary. In Breton Sound estuary, we calculate shoreline exposure at 500 random points and then overlay a habitat suitability index for oysters. This method and the resulting visualization show areas most likely to support sustainable oyster populations as well as significantly reduce shoreline erosion. Our results demonstrate how site selection criteria, which include shoreline exposure and habitat suitability, are critical to ensuring greater positive impacts and longevity of oyster reef restoration projects.

  18. Assessing shoreline exposure and oyster habitat suitability maximizes potential success for sustainable shoreline protection using restored oyster reefs

    Directory of Open Access Journals (Sweden)

    Megan K. La Peyre

    2015-10-01

    Full Text Available Oyster reefs provide valuable ecosystem services that contribute to coastal resilience. Unfortunately, many reefs have been degraded or removed completely, and there are increased efforts to restore oysters in many coastal areas. In particular, much attention has recently been given to the restoration of shellfish reefs along eroding shorelines to reduce erosion. Such fringing reef approaches, however, often lack empirical data to identify locations where reefs are most effective in reducing marsh erosion, or fully take into account habitat suitability. Using monitoring data from 5 separate fringing reef projects across coastal Louisiana, we quantify shoreline exposure (fetch + wind direction + wind speed and reef impacts on shoreline retreat. Our results indicate that fringing oyster reefs have a higher impact on shoreline retreat at higher exposure shorelines. At higher exposures, fringing reefs reduced marsh edge erosion an average of 1.0 m y−1. Using these data, we identify ranges of shoreline exposure values where oyster reefs are most effective at reducing marsh edge erosion and apply this knowledge to a case study within one Louisiana estuary. In Breton Sound estuary, we calculate shoreline exposure at 500 random points and then overlay a habitat suitability index for oysters. This method and the resulting visualization show areas most likely to support sustainable oyster populations as well as significantly reduce shoreline erosion. Our results demonstrate how site selection criteria, which include shoreline exposure and habitat suitability, are critical to ensuring greater positive impacts and longevity of oyster reef restoration projects.

  19. Shoreline Erosion and Slope Failure Detection over Southwest Lakeshore Michigan using Temporal Radar and Digital Elevation Model

    Science.gov (United States)

    Sataer, G.; Sultan, M.; Yellich, J. A.; Becker, R.; Emil, M. K.; Palaseanu, M.

    2017-12-01

    Throughout the 20th century and into the 21st century, significant losses of residential, commercial and governmental property were reported along the shores of the Great Lakes region due to one or more of the following factors: high lake levels, wave actions, groundwater discharge. A collaborative effort (Western Michigan University, University of Toledo, Michigan Geological Survey [MGS], United States Geological Survey [USGS], National Oceanographic and Atmospheric Administration [NOAA]) is underway to examine the temporal topographic variations along the shoreline and the adjacent bluff extending from the City of South Haven in the south to the City of Saugatuck in the north within the Allegan County. Our objectives include two main tasks: (1) identification of the timing of, and the areas, witnessing slope failure and shoreline erosion, and (2) investigating the factors causing the observed failures and erosion. This is being accomplished over the study area by: (1) detecting and measuring slope subsidence rates (velocities along line of site) and failures using radar interferometric persistent scatter (PS) techniques applied to ESA's European Remote Sensing (ERS) satellites, ERS-1 and -2 (spatial resolution: 25 m) that were acquired in 1995 to 2007, (2) extracting temporal high resolution (20 cm) digital elevation models (DEM) for the study area from temporal imagery acquired by Unmanned Aerial Vehicles (UAVs), and applying change detection techniques to the extracted DEMs, (3) detecting change in elevation and slope profiles extracted from two LIDAR Coastal National Elevation Database (CoNED) DEMs (spatial resolution: 0.5m), acquired on 2008 and 2012, and (4) spatial and temporal correlation of the detected changes in elevation with relevant data sets (e.g., lake levels, precipitation, groundwater levels) in search of causal effects.

  20. River delta shoreline reworking and erosion in the Mediterranean and Black Seas: the potential roles of fluvial sediment starvation and other factors

    Directory of Open Access Journals (Sweden)

    Manon Besset

    2017-09-01

    Full Text Available The Mediterranean basin (including the Black Sea is characterized by a plethora of deltas that have developed in a wave-influenced setting. Many of these deltas are sourced in sediments by river catchments that have been variably dammed. The vulnerability status of a selection of ten deltas subject to different levels of reduction in fluvial sediment supply following damming was analysed by quantifying changes in delta protrusion area and protrusion angle over the last 30 years. The rationale for choosing these two metrics, which do not require tricky calculations of longshore bedload transport volumes and river ‘influence’, is that as sediment supply wanes, increasing relative efficiency of waves leads to longshore redistribution of reworked sediments and progressive ‘flattening’ of the delta protrusion. The results show that eight of the ten deltas (Nile, Rhône, Ebro, Ceyhan, Arno, Ombrone, Moulouya, Medjerda are in erosion, whereas two (Danube, Po show stability, but the statistical relationship between change in delta protrusion area and sediment flux reduction is poor, thus suggesting that the role of dams in causing delta shoreline erosion may have been over-estimated. But this poor relationship could also be due to a long temporal lag between dam construction and bedload removal and transport to the coast downstream of dams, and, where the delta protrusion is being eroded, to bedload trapping by shoreline engineering structures and by elongating delta-flank spits. Other potential influential factors in shoreline change include subsidence, sea-level rise, storminess, exceptional river floods, and managed sediment releases downstream of dams. A longer observation period and high-resolution sediment-budget studies will be necessary to determine more definitively to which extent continued trapping of sediment behind dams will impact overall delta stability in the Mediterranean and Black Seas. Mitigation of delta erosion is likely to

  1. Multidecadal shoreline changes in Denmark

    DEFF Research Database (Denmark)

    Kabuth, Alina Kristin; Kroon, Aart; Pedersen, Jørn Bjarke Torp

    2014-01-01

    Multidecadal shoreline changes along ca. 7000 km coastline around Denmark were computed for the time interval between 1862 AD and 2005 AD and were connected with a geomorphological coastal classification. The shoreline data set was based on shoreline positions from historical and modern topographic...... shoreline changes around Denmark, the mapping can contribute to enhanced adaptation and mitigation strategies in response to increased risks of erosion and flooding under a changing climate....

  2. The National Assessment of Shoreline Change: a GIS compilation of vector shorelines and associated shoreline change data for the U.S. southeast Atlantic coast

    Science.gov (United States)

    Miller, Tara L.; Morton, Robert A.; Sallenger, Asbury H.

    2006-01-01

    The Coastal and Marine Geology Program of the U.S. Geological Survey has generated a comprehensive database of digital vector shorelines and shoreline change rates for the U.S. Southeast Atlantic Coast (Florida, Georgia, South Carolina, North Carolina). These data, which are presented herein, were compiled as part of the U.S. Geological Survey's National Assessment of Shoreline Change Project. Beach erosion is a chronic problem along most open-ocean shores of the United States. As coastal populations continue to grow and community infrastructures are threatened by erosion, there is increased demand for accurate information including rates and trends of shoreline migration. There is also a critical need for shoreline change data that is consistent from one coastal region to another. One purpose of this work is to develop standard repeatable methods for mapping and analyzing shoreline movement so that periodic updates of shorelines and shoreline change rates can be made nationally that are systematic and internally consistent. This data compilation for open-ocean, sandy shorelines of the U.S. Southeast Atlantic Coast is the second in a series that already includes the Gulf of Mexico, and will eventually include the Pacific Coast, and parts of Hawaii and Alaska. Short- and long-term shoreline change evaluations are based on merging three historical shorelines with a modern shoreline derived from lidar (light detection and ranging) topographic surveys. Historical shorelines generally represent the following time periods: 1800s, 1920s-1930s, and 1970s. The most recent shoreline is derived from data collected over the period of 1997-2002. Long-term rates of change are calculated by linear regression using all four shorelines. Short-term rates of change are simple end-point rate calculations using the two most recent shorelines. Please refer to our full report on shoreline change for the U.S. Southeast Atlantic Coast at http://pubs.usgs.gov/of/2005/1401/ to get additional

  3. Response of salt marshes to oiling from the Deepwater Horizon spill: Implications for plant growth, soil surface-erosion, and shoreline stability.

    Science.gov (United States)

    Lin, Qianxin; Mendelssohn, Irving A; Graham, Sean A; Hou, Aixin; Fleeger, John W; Deis, Donald R

    2016-07-01

    We investigated the initial impacts and post spill recovery of salt marshes over a 3.5-year period along northern Barataria Bay, LA, USA exposed to varying degrees of Deepwater Horizon oiling to determine the effects on shoreline-stabilizing vegetation and soil processes. In moderately oiled marshes, surface soil total petroleum hydrocarbon concentrations were ~70mgg(-1) nine months after the spill. Though initial impacts of moderate oiling were evident, Spartina alterniflora and Juncus roemerianus aboveground biomass and total live belowground biomass were equivalent to reference marshes within 24-30months post spill. In contrast, heavily oiled marsh plants did not fully recover from oiling with surface soil total petroleum hydrocarbon concentrations that exceeded 500mgg(-1) nine months after oiling. Initially, heavy oiling resulted in near complete plant mortality, and subsequent recovery of live aboveground biomass was only 50% of reference marshes 42months after the spill. Heavy oiling also changed the vegetation structure of shoreline marshes from a mixed Spartina-Juncus community to predominantly Spartina; live Spartina aboveground biomass recovered within 2-3years, however, Juncus showed no recovery. In addition, live belowground biomass (0-12cm) in heavily oiled marshes was reduced by 76% three and a half years after the spill. Detrimental effects of heavy oiling on marsh plants also corresponded with significantly lower soil shear strength, lower sedimentation rates, and higher vertical soil-surface erosion rates, thus potentially affecting shoreline salt marsh stability. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. The National Assessment of Shoreline Change:A GIS Compilation of Vector Shorelines and Associated Shoreline Change Data for the Sandy Shorelines of the California Coast

    Science.gov (United States)

    Hapke, Cheryl J.; Reid, David

    2006-01-01

    Introduction The Coastal and Marine Geology Program of the U.S. Geological Survey has generated a comprehensive data clearinghouse of digital vector shorelines and shoreline change rates for the sandy shoreline along the California open coast. These data, which are presented herein, were compiled as part of the U.S. Geological Survey's National Assessment of Shoreline Change Project. Beach erosion is a chronic problem along many open-ocean shores of the United States. As coastal populations continue to grow and community infrastructures are threatened by erosion, there is increased demand for accurate information including rates and trends of shoreline migration. There is also a critical need for shoreline change data that is consistent from one coastal region to another. One purpose of this work is to develop standard, repeatable methods for mapping and analyzing shoreline movement so that periodic, systematic, and internally consistent updates of shorelines and shoreline change rates can be made at a National Scale. This data compilation for open-ocean, sandy shorelines of the California coast is one in a series that already includes the Gulf of Mexico and the Southeast Atlantic Coast (Morton et al., 2004; Morton et al., 2005) and will eventually cover Washington, Oregon, and parts of Hawaii and Alaska. Short- and long-term shoreline change evaluations are determined by comparing the positions of three historical shorelines digitized from maps, with a modern shoreline derived from LIDAR (light detection and ranging) topographic surveys. Historical shorelines generally represent the following time-periods: 1850s-1880s, 1920s-1930s, and late 1940s-1970s. The most recent shoreline is from data collected between 1997 and 2002. Long-term rates of change are calculated by linear regression using all four shorelines. Short-term rates of change are end-point rate calculations using the two most recent shorelines. Please refer to our full report on shoreline change of the

  5. Fast shoreline erosion induced by ship wakes in a coastal lagoon: Field evidence and remote sensing analysis.

    Directory of Open Access Journals (Sweden)

    Luca Zaggia

    Full Text Available An investigation based on in-situ surveys combined with remote sensing and GIS analysis revealed fast shoreline retreat on the side of a major waterway, the Malamocco Marghera Channel, in the Lagoon of Venice, Italy. Monthly and long-term regression rates caused by ship wakes in a reclaimed industrial area were considered. The short-term analysis, based on field surveys carried out between April 2014 and January 2015, revealed that the speed of shoreline regression was insignificantly dependent on the distance from the navigation channel, but was not constant through time. Periods of high water levels due to tidal forcing or storm surges, more common in the winter season, are characterized by faster regression rates. The retreat is a discontinuous process in time and space depending on the morpho-stratigraphy and the vegetation cover of the artificial deposits. A GIS analysis performed with the available imagery shows an average retreat of 3-4 m/yr in the period between 1974 and 2015. Digitization of historical maps and bathymetric surveys made in April 2015 enabled the construction of two digital terrain models for both past and present situations. The two models have been used to calculate the total volume of sediment lost during the period 1968-2015 (1.19×106 m3. The results show that in the presence of heavy ship traffic, ship-channel interactions can dominate the morphodynamics of a waterway and its margins. The analysis enables a better understanding of how shallow-water systems react to the human activities in the post-industrial period. An adequate evaluation of the temporal and spatial variation of shoreline position is also crucial for the development of future scenarios and for the sustainable management port traffic worldwide.

  6. Fast shoreline erosion induced by ship wakes in a coastal lagoon: Field evidence and remote sensing analysis.

    Science.gov (United States)

    Zaggia, Luca; Lorenzetti, Giuliano; Manfé, Giorgia; Scarpa, Gian Marco; Molinaroli, Emanuela; Parnell, Kevin Ellis; Rapaglia, John Paul; Gionta, Maria; Soomere, Tarmo

    2017-01-01

    An investigation based on in-situ surveys combined with remote sensing and GIS analysis revealed fast shoreline retreat on the side of a major waterway, the Malamocco Marghera Channel, in the Lagoon of Venice, Italy. Monthly and long-term regression rates caused by ship wakes in a reclaimed industrial area were considered. The short-term analysis, based on field surveys carried out between April 2014 and January 2015, revealed that the speed of shoreline regression was insignificantly dependent on the distance from the navigation channel, but was not constant through time. Periods of high water levels due to tidal forcing or storm surges, more common in the winter season, are characterized by faster regression rates. The retreat is a discontinuous process in time and space depending on the morpho-stratigraphy and the vegetation cover of the artificial deposits. A GIS analysis performed with the available imagery shows an average retreat of 3-4 m/yr in the period between 1974 and 2015. Digitization of historical maps and bathymetric surveys made in April 2015 enabled the construction of two digital terrain models for both past and present situations. The two models have been used to calculate the total volume of sediment lost during the period 1968-2015 (1.19×106 m3). The results show that in the presence of heavy ship traffic, ship-channel interactions can dominate the morphodynamics of a waterway and its margins. The analysis enables a better understanding of how shallow-water systems react to the human activities in the post-industrial period. An adequate evaluation of the temporal and spatial variation of shoreline position is also crucial for the development of future scenarios and for the sustainable management port traffic worldwide.

  7. Periodic Shoreline Morphology, Fire Island, New York

    National Research Council Canada - National Science Library

    Gravens, Mark B

    1999-01-01

    The presence of shoreline undulations along the Atlantic coast of Fire Island, NY requires careful consideration in developing erosion control and hurricane protection plans and design alternatives...

  8. Shoreline change analysis of Vedaranyam coast, Tamil Nadu, India.

    Science.gov (United States)

    Natesan, Usha; Thulasiraman, N; Deepthi, K; Kathiravan, K

    2013-06-01

    The coastal zone is one of the nation's greatest environmental and economic assets. The present research aims at studying the shoreline changes along Vedaranyam coast using conventional and modern techniques including field sampling, remote sensing, and geographical information system (GIS). The study area was divided into three zones. Dynamic Land/Sea polygon analysis was performed to obtain the shore line changes at different time periods between 1930 and 2005. From the multidate shoreline maps, the rate of shoreline change was computed using linear regression rate and end point rate. Further, the shoreline was classified into eroding, accreting, and stable regions through GIS analysis. The eroding, accreting, and stable coastal stretch along Vedaranyam is observed as 18 %, 80.5 %, and 1.5 %, respectively. Net shoreline movement is seaward, i.e., the coast is progressive with an average rate of 5 m/year. A maximum shoreline displacement of 1.3 km towards the sea is observed near Point Calimere. During the Asian Tsunami 2004, the eastern part of the study area showed high erosion. Sediment transport paths derived from the grain size analysis of beach sediments collected during different seasons help to identify the major sediment source and sinks. Point Calimere acts as the major sink for sediments whereas Agastiyampalli and Kodiakkarai are found to be the major sources for the sediment supply along the Vedaranyam coast. Shoreline change study from field and satellite data using GIS analysis confirms that Vedaranyam coast is accreting in nature.

  9. The National Assessment of Shoreline Change: A GIS Compilation of Vector Shorelines and Associated Shoreline Change Data for the U.S. Gulf of Mexico

    Science.gov (United States)

    Miller, Tara L.; Morton, Robert A.; Sallenger, Asbury H.; Moore, Laura J.

    2004-01-01

    Introduction The Coastal and Marine Geology Program of the U.S. Geological Survey has generated a comprehensive database of digital vector shorelines and shoreline change rates for the U.S. Gulf of Mexico. These data, which are presented herein, were compiled as part of the U.S. Geological Survey's National Assessment of Shoreline Change Project. Beach erosion is a chronic problem along most open-ocean shores of the United States. As coastal populations continue to grow and community infrastructures are threatened by erosion, there is increased demand for accurate information including rates and trends of shoreline migration. There is also a critical need for shoreline change data that is consistent from one coastal region to another. One purpose of this work is to develop standard repeatable methods for mapping and analyzing shoreline movement so that periodic updates regarding coastal erosion and land loss can be made nationally that are systematic and internally consistent. This data compilation for open-ocean, sandy shorelines of the Gulf of Mexico is the first in a series that will eventually include the Atlantic Coast, Pacific Coast, and parts of Hawaii and Alaska. Short- and long-term shoreline change evaluations are based on merging three historical shorelines with a modern shoreline derived from lidar (light detection and ranging) topographic surveys. Historical shorelines generally represent the following time periods: 1800s, 1920s-1930s, and 1970s. The most recent shoreline is derived from data collected over the period of 1998-2002. Long-term rates of change are calculated by linear regression using all four shorelines. Short-term rates of change are simple end-point rate calculations using the two most recent shorelines. Please refer to our full report on shoreline change in the Gulf of Mexico, National Assessment of Shoreline Change: Part 1, Historical Shoreline Changes and Associated Coastal Land Loss Along the U.S. Gulf of Mexico (USGS Open File

  10. Natural Dams as Tipping Points in Himalayan Erosion (Invited)

    Science.gov (United States)

    Korup, O.

    2010-12-01

    Natural dams result from hillslope, glacial, volcanic, and other sediment inputs that temporarily overwhelm the transport capacity along a given river reach. Such blockages are tipping points in which fluvial erosion and sediment transport rapidly switch to aggradation and vice versa even in the most powerful of rivers, thus eventually modulating both rates and duration of river incision into bedrock. Conspicuous clusters of hundreds of large natural dams occur in several major watersheds draining the Himalayan syntaxes and the southern Himalayan front, including the Indus, Yarlung Tsangpo, Sutlej, Kali Gandaki, and Arun. The Indus features the largest concentration of giant landslide dams known worldwide, whereas the Yarlung Tsangpo seems largely devoid of comparable landslide dams. Glacial dams such as river-blocking moraines are limited to headwaters where topography intersects the regional snowline. By forming dams and protective alluvial fill, glaciers and landslides help retard headward fluvial bedrock incision into parts of the Tibetan Plateau interior, limiting its dissection in addition to effects of upstream aridity and localized rock uplift. A growing number of radiometric age constraints on widely exposed lake sediments and backwater terraces support the notion that large tracts of these rivers had been repeatedly ponded for as long as several tens of thousands of years during the Late Quaternary. High local topographic relief in buffers along these rivers characterizes conspicuous knickzones, and helps pinpoint first-order differences in the type and potential longevity of these natural dams. Patterns of low-temperature thermochronometric data corroborate that peaks in mean local relief, spatially coinciding with peaks in long-term exhumation rates, act as a regionally consistent downstream limit to the preservation potential of natural dams. If indeed glacier and landslide dams act as a negative feedback in response to fluvial dissection of parts of

  11. High and low frequency erosive and constructive cycles in estuarine beaches: an example from Garcez Point, Bahia/Brazil

    Directory of Open Access Journals (Sweden)

    ABÍLIO C.S.P. BITTENCOURT

    2001-12-01

    Full Text Available Monitoring of the morphodynamic variations of the beaches associated with an estuary contiguous with Garcez Point, Bahia, Brazil, and the superposition of aerial photographs from the region, show the presence of distinctive erosive and constructive cycles of low and high frequencies. Between 1959 and 1989, one event of shoreline erosion and progradation was recognized on the oceanic beaches just outside the estuary. Inside the estuary, an erosion phase at the southern margin coincides with a constructive phase at the other side, and vice-versa. On the southern estuarine beach, low-frequency cycles of erosion and progradation are also perceived, but with the inverse trend when compared to the contiguous oceanic beach. During the beach monitoring period (February/1991 to July/1992, the oceanic beach showed retreat rates varying from 23.7m/year, at the channel entrance, to 1.0m/year, three kilometers away from it. During the same period, the estuarine beach advanced at a rate of 60.3m/year. The long-term dynamics of the shoreline position in both sides of the estuarine entrance appears to be related to the position of the channel in the ebb-tidal delta.O monitoramento das variações morfodinâmicas das praias associadas com um estuário contíguo à Ponta dos Garvez, Bahia, Brasil, e a superposição de fotos aéreas da região, mostram a presença de distintos ciclos erosivos e construtivos, de baixa e alta freqüências. Entre 1959 e 1989, um evento de erosão e progradação da linha de costa foi reconhecido nas praias oceânicas fora do estuário. Dentro do estuário, uma fase erosiva na margem sul, coincide com uma fase construtiva no outro lado, e vice-versa. Na margem estuarina sul, são também percebidos ciclos de erosão e progradação de baixa freqüência, porém com um sentido inverso quando comparados aos da praia oceânica contígua. Durante o período de monitoramento das praias (fevereiro de 1991 a julho de 1992, a praia oce

  12. Proceedings of the U.S. Army Corps of Engineers Workshop on Reservoir Shoreline Erosion: A National Problem, Held in McAlester, Oklahoma on 26-30 October 1992

    Science.gov (United States)

    1993-08-01

    of Shoreline Erosion from Various Perspectives (continues) 1:30-1:50 U.S. Forest Service Mr. Jim Golden, Watersheds and Air Staff 1:50-2:10 Soil...5 th Site vii 1:45-2:30 Site 5, Gabion Site Mr. Brigham Brooken Cove, Public Use Area 2:30-3:00 En route to 6th Site 3:00-4:00 Site 6, Oak Ridge...archaeologists, etc. Group D -Fixes: Working group focuses on innovative fixes that include environmentally compatible methods, i.e., tiered gabions , groins in

  13. Effects of Shoreline Dynamics on Saltmarsh Vegetation.

    Science.gov (United States)

    Sharma, Shailesh; Goff, Joshua; Moody, Ryan M; McDonald, Ashley; Byron, Dorothy; Heck, Kenneth L; Powers, Sean P; Ferraro, Carl; Cebrian, Just

    2016-01-01

    We evaluated the impact of shoreline dynamics on fringing vegetation density at mid- and low-marsh elevations at a high-energy site in the northern Gulf of Mexico. Particularly, we selected eight unprotected shoreline stretches (75 m each) at a historically eroding site and measured their inter-annual lateral movement rate using the DSAS method for three consecutive years. We observed high inter-annual variability of shoreline movement within the selected stretches. Specifically, shorelines retrograded (eroded) in year 1 and year 3, whereas, in year 2, shorelines advanced seaward. Despite shoreline advancement in year 2, an overall net erosion was recorded during the survey period. Additionally, vegetation density generally declined at both elevations during the survey period; however, probably due to their immediate proximity with lateral erosion agents (e.g., waves, currents), marsh grasses at low-elevation exhibited abrupt reduction in density, more so than grasses at mid elevation. Finally, contrary to our hypothesis, despite shoreline advancement, vegetation density did not increase correspondingly in year 2 probably due to a lag in response from biota. More studies in other coastal systems may advance our knowledge of marsh edge systems; however, we consider our results could be beneficial to resource managers in preparing protection plans for coastal wetlands against chronic stressors such as lateral erosion.

  14. Section 227-National Shoreline Erosion Control Development and Demonstration Program. Coastal Processes Analysis. Dade County and 63rd Street Hot Spot

    National Research Council Canada - National Science Library

    2001-01-01

    .... The Phase I investigations consisted of an analysis of beach erosion and sand transport, both cross-shore and longshore, for most of Miami-Dade County and in the vicinity of the 63rd Street Hot Spot...

  15. Sand spit and shoreline dynamics near Terekhol river mouth, Goa, India

    Digital Repository Service at National Institute of Oceanography (India)

    Rajasekaran, C.; Jayakumar, S.; Gowthaman, R.; Jishad, M.; Yadhunath, E.M.; Pednekar, P.S.

    Evolution of shoreline and sand spit at the mouth of the Terekhol River, near Keri beach, located in the Indian state of Goa has been investigated From the analysis of the data collected, the shoreline oscillation (accretion & erosion) is seasonal...

  16. Upscaling Bedrock Erosion Laws from the Point to the Patch and from the Event to the Year

    Science.gov (United States)

    Beer, A. R.; Turowski, J. M.

    2017-12-01

    Bedrock erosion depends on the interactions between the bedload tools and cover effects. However, it is unclear (i) how well long-term calibrations of existing erosion models can predict individual erosion events, and (ii) whether at-a-point event calibrations can be spatio-temporally upscaled. Here, we evaluate the performance of at-a-point calibrated erosion models by scaling their erosional efficiency coefficients (k-factors). We use continuous measurements of water discharge and bedload transport at 1- minute resolution, supplemented by repeated sub-millimeter-resolution spatial erosion surveys of a concrete slab in a small Swiss pre-alpine stream. Our results confirm the linear dependency of bedrock abrasion on sediment flux under sediment-starved conditions integrated over space (the 0.2m2 slab surface) and time (20 months). The predictive quality of the commonly applied unit stream power (USP) model is strongly susceptible to bedload transport distribution, whereas the bedload-dependent tools-only model yields more reasonable results. Applying the fitted mean model k-factors to a 16-year, 1-minute-resolution time series of discharge and bedload transport shows that the excess USP model EUSP (which includes a discharge threshold for bedload transport) generally predicts cumulative erosion reasonably well. For exceptional events, however, the EUSP model fails to predict the resulting large erosion rates. Hence, for sediment-starved conditions, event-based erosion model calibration can be applied over larger spatio-temporal scales with stationary k-factors, if a discharge threshold for sediment transport is taken into account. The EUSP model is a surrogate to predict long-term erosion given average erosive events, but fails to capture large event erosion rates. Consequently, the erosion tendency during average erosive events is generally matched by overall EUSP modelling, but large and highly erosive events are underpredicted. In such, water discharge does not

  17. Shoreline change due to coastal structures of power plants

    International Nuclear Information System (INIS)

    Kang, K. S.; Lee, T. S.; Kim, Y. I.

    2001-01-01

    Characteristics of shoreline change at the coastal area near power plant were analyzed. For a nuclear power plant located in the east coast of Korean peninsula, remote-sensing data, i.e.airborne images and satellite images are acquired and shoreline data were extracted. Recession and davance of shoreline due to coastal structures of powder plant and land reclamation was showed. 1-line numerical shoreline change model was established for simulating the response of shoreline to construction of coastal structures. The model uses curvilinear coordinates that follow the shoreline and is capable of handling the formation of tombolos as well as the growth of salients in the vicinity of coastal structures. The model predicted significant erosion of beach in case breakwaters were extended. Offshore breakwaters were suggested as a countermeasure to shoreline change

  18. High and Increasing Shoreline Erosion Rates of Thermokarst Lakes Set in Ice-Rich Permafrost Terrain of the Arctic Coastal Plain of Alaska

    Science.gov (United States)

    Bondurant, A. C.; Arp, C. D.; Jones, B. M.; Shur, Y.; Daanen, R. P.

    2017-12-01

    Thermokarst lakes are a dominant landform shaping landscapes and impacting permafrost on the Arctic Coastal Plain (ACP) of northern Alaska, a region of continuous permafrost. Here lakes cover greater than 20% of the landscape and drained lake basins cover an additional 50 to 60% of the landscape. The formation, expansion, and drainage of thaw lakes has been described by some researchers as part of a natural cycle that has reworked the ACP landscape during the Holocene. Yet the factors and processes controlling contemporary thermokarst lake expansion remain poorly described. This study focuses on the factors controlling expansion rates of thermokarst lakes in three ACP regions that vary in landscape history, ground-ice content, and lake morphology (i.e. size and depth), as well as evaluating changes through time. Through the use of historical aerial imagery, satellite imagery, and field observations, this study identifies the controlling factors at multiple spatial and temporal scales to better understand the processes relating to thermokarst lake expansion. Studies of 35 lakes across the ACP shows regional differences in expansion rate related to permafrost ice content ranging from an average expansion rate of 0.62 m/yr where ice content is highest ( 86%) to 0.16 m/yr where ice content is lowest (45%-71%). A subset of these lakes analyzed over multiple time periods show increasing rates of erosion, with average rates being 37% higher over the period 1979-2002 (0.73 m/yr) compared to 1948-1979 (0.53 m/yr). These increased rates of erosion have important implications for the regional hydrologic cycle and localized permafrost degradation. Predicting how thermokarst lakes will behave locally and on a landscape scale is increasingly important for managing habitat and water resources and informing models of land-climate interactions in the Arctic.

  19. National assessment of shoreline change: A GIS compilation of vector shorelines and associated shoreline change data for the sandy shorelines of Kauai, Oahu, and Maui, Hawaii

    Science.gov (United States)

    Romine, Bradley M.; Fletcher, Charles H.; Genz, Ayesha S.; Barbee, Matthew M.; Dyer, Matthew; Anderson, Tiffany R.; Lim, S. Chyn; Vitousek, Sean; Bochicchio, Christopher; Richmond, Bruce M.

    2012-01-01

    Sandy ocean beaches are a popular recreational destination, and often are surrounded by communities that consist of valuable real estate. Development is increasing despite the fact that coastal infrastructure may be repeatedly subjected to flooding and erosion. As a result, the demand for accurate information regarding past and present shoreline changes is increasing. Working with researchers from the University of Hawaii, investigators with the U.S. Geological Survey's National Assessment of Shoreline Change Project have compiled a comprehensive database of digital vector shorelines and shoreline-change rates for the islands of Kauai, Oahu, and Maui, Hawaii. No widely accepted standard for analyzing shoreline change currently exists. Current measurement and rate-calculation methods vary from study to study, precluding the combination of study results into statewide or regional assessments. The impetus behind the National Assessment was to develop a standardized method for measuring changes in shoreline position that is consistent from coast to coast. The goal was to facilitate the process of periodically and systematically updating the measurements in an internally consistent manner. A detailed report on shoreline change for Kauai, Maui, and Oahu that contains a discussion of the data presented here is available and cited in the Geospatial Data section of this report.

  20. Automatic Detection of Decadal Shoreline Change on Northern Coastal of Gresik, East Java - Indonesia

    Science.gov (United States)

    Fuad, M. A. Z.; A, M. Fais D.

    2017-12-01

    The Coastal zone is a dynamic region that has high environmental and economic values. This present research focuses on the analyzing the rate of shoreline change using multi-temporal Landsat Imagery and Digital Shoreline Analysis Systems (DSAS) along the northern part of Gresik coastal area, East Java Indonesia. Five village were selected for analysis; Campurejo, Dalegan, Prupuh, Ngemboh, and Banyuurip. Erosion and Accretion were observed and detected on Multi-temporal satellite Images along the area of interest from 1972 - 2016. Landsat Images were radiometrically and geometrically corrected before using for analysis. Coastline delineation for each Landsat image was performed by MNDWI method before digitized for quantitative shoreline change analysis. DSAS was performed for quantitative analysis of Net Shoreline Movement (NSM) and End Point Rate (EPR). The results indicate that in the study area accretion and abrasion was occurred, but overall abrasion was dominated than accretion. The remarkable shoreline changes were observed in the entire region. The highest abrasion area was occurred in Ngemboh village. From 1972 to 2016, coastline was retreat 242.56 meter to the land and the rate of movement was -5.54m/yr. In contrast, Campurejo area was relatively stable due to the introduction of manmade structure, i.e. Jetty and Groin. The Shoreline movement and the rate of movement in this area were -6.11m and -0.12 m/yr respectively. The research represents an important step in understanding the dynamics of coastal area in this area. By identification and analysis of coastline evolution, the stake holder could perform a scenario for reducing the risk of coastal erosion and minimize the social and economic lost.

  1. Living Shorelines: Coastal Resilience with a Blue Carbon Benefit.

    Science.gov (United States)

    Davis, Jenny L; Currin, Carolyn A; O'Brien, Colleen; Raffenburg, Craig; Davis, Amanda

    2015-01-01

    Living shorelines are a type of estuarine shoreline erosion control that incorporates native vegetation and preserves native habitats. Because they provide the ecosystem services associated with natural coastal wetlands while also increasing shoreline resilience, living shorelines are part of the natural and hybrid infrastructure approach to coastal resiliency. Marshes created as living shorelines are typically narrow (erosion control and habitat for estuarine organisms has been documented but their capacity for carbon sequestration has not. We measured carbon sequestration rates in living shorelines and sandy transplanted Spartina alterniflora marshes in the Newport River Estuary, North Carolina. The marshes sampled here range in age from 12 to 38 years and represent a continuum of soil development. Carbon sequestration rates ranged from 58 to 283 g C m-2 yr-1 and decreased with marsh age. The pattern of lower sequestration rates in older marshes is hypothesized to be the result of a relative enrichment of labile organic matter in younger sites and illustrates the importance of choosing mature marshes for determination of long-term carbon sequestration potential. The data presented here are within the range of published carbon sequestration rates for S. alterniflora marshes and suggest that wide-scale use of the living shoreline approach to shoreline management may come with a substantial carbon benefit.

  2. UAV survey of a Thyrrenian micro-tidal beach for shoreline evolution update

    Science.gov (United States)

    Benassai, Guido; Pugliano, Giovanni; Di Paola, Gianluigi; Mucerino, Luigi

    2015-04-01

    Coastal geomorphology requires increasingly accurate topographic information of the beach systems to perform reliable simulation of coastal erosion, flooding phenomena, and coastal vulnerability assessment. Among the range of terrestrial and aerial methods available to produce such a dataset, this study tests the utility of low-altitude aerial imageries collected by Unmanned Aerial Vehicle (UAV). The image-based approach was selected whilst searching for a rapid, inexpensive, and highly automated method, able to produce 3D information from unstructured aerial images. In particular, it was used to generate a high-resolution Digital Surface Model (DSM) of the micro-tidal beach of Serapo - Gaeta (LT) in order to obtain recent update of erosional/accretional trends already established through historical shoreline evolution. A UAV exacopter (fig. 1a) was used, weighing about 2500g, carrying on board a GPS and multi-directional accelerometer to ensure a recovery of the beach features (fig. 1b) through a sweep with constant speed, direction and altitude. The on-board camera was a Canon 16M pixels, with fixed and constant focal takeoff in order to perform the 3D cloud points. Six adjacent strips were performed for the survey realization with pictures taken every second in sequence, in order to allow a minimum 80% overlap. A direct on site survey was also carried out with a DGPS for the placement of GPS markers and the geo-referencing of the final product (fig. 1c). Each flight with constant speed, direction and altitude recorded from 500 to 800 shots. The height of flight was dictated by the scale of the final report, an altitude of 100m was used for the beach survey. The topographic survey on the ground for the placement of the control points was performed with the Trimble R6 DGPS in RTK mode. The long-term shoreline evolution was obtained by a sixty-year historical shoreline time-series, through the analysis of a number of aerial photographs dating from 1954 to 2013. The

  3. Living Shorelines: Assessing Geomorphic Change and Water Quality in an Urban Waterway

    Science.gov (United States)

    Huggins, A.; Schwartz, M. C.; Schmutz, P. P.

    2017-12-01

    In recent years, alternative strategies for shoreline armoring have become increasingly popular with coastal property owners. In Northwest Florida, local agencies implemented plans to attenuate wave action and reduce landward shore recession in an urban bayou by installing living shorelines. Living shorelines are constructed in the inter-tidal zones and incorporate both hard and soft structured stabilization. Generally, the hard component is fossilized oyster shells and the soft component is planted intertidal vegetation, such as Spartina alterniflora (Smooth cordgrass) and Juncus roemererianus (Black needlerush). Living shorelines were intended to comprise both ecological and societal implications by significantly slowing erosion processes for property owners, by utilizing oyster beds to improve water quality, and by fostering new ecological habitats in the marsh grasses. The issue presented with living shoreline management is long-term studies have not been carried out on these engineered systems. For this study, geospatial technology was utilized to create 3D images of terrain by interpolation of data points using a TotalStation to compute geomorphic change. Additionally, water samples were analyzed using traditional wet chemistry laboratory methods to determine total oxidized nitrogen (TON), ammonium, and orthophosphate content in water. Over a short three-month preliminary study, sediment accretion was observed primarily within the vegetation with the bulk of the erosion occurring around the oyster beds. TON was detected at levels between 10 µM and 30 µM, ammonium up to 5 µM, and orthophosphate was only detected in very low levels, consistently project is in its infancy, as the topographic profiles and water quality data will be used to establish baseline data for future research to determine volumetric geomorphic change,and to set a standard for water quality trends, surrounding oyster beds and vegetation in response to climatic events.

  4. National Assessment of Shoreline Change Part 3: Historical Shoreline Change and Associated Coastal Land Loss Along Sandy Shorelines of the California Coast

    Science.gov (United States)

    Hapke, Cheryl J.; Reid, David; Richmond, Bruce M.; Ruggiero, Peter; List, Jeff

    2006-01-01

    Beach erosion is a chronic problem along many open-ocean shores of the United States. As coastal populations continue to grow and community infrastructures are threatened by erosion, there is increased demand for accurate information regarding past and present trends and rates of shoreline movement. There is also a need for a comprehensive analysis of shoreline movement that is consistent from one coastal region to another. To meet these national needs, the U.S. Geological Survey is conducting an analysis of historical shoreline changes along open-ocean sandy shores of the conterminous United States and parts of Hawaii and Alaska. One purpose of this work is to develop standard repeatable methods for mapping and analyzing shoreline movement so that periodic updates regarding coastal erosion and land loss can be made nationally that are systematic and internally consistent. In the case of this study, the shoreline being measured is the boundary between the ocean water surface and the sandy beach. This report on the California Coast represents the first of two reports on long-term sandy shoreline change for the western U.S., the second of which will include the coast of the Pacific NW, including Oregon and Washington. A report for the Gulf of Mexico shoreline was completed in 2004 and is available at: http://pubs.usgs.gov/of/2004/1043/. This report summarizes the methods of analysis, interprets the results, provides explanations regarding long-term and short-term trends and rates of change, and describes how different coastal communities are responding to coastal erosion. Shoreline change evaluations are based on comparing three historical shorelines digitized from maps, with a recent shoreline derived from lidar (Light Detection and Ranging) topographic surveys. The historical shorelines generally represent the following periods: 1800s, 1920s-1930s, and 1950s-1970s, whereas the lidar shoreline is from 1998-2002. Long-term rates of change are calculated using all

  5. National assessment of shoreline change: historical shoreline change along the Pacific Northwest coast

    Science.gov (United States)

    Ruggerio, Peter; Kratzmann, Meredith G.; Himmelstoss, Emily A.; Reid, David; Allan, Jonathan; Kaminsky, George

    2013-01-01

    Beach erosion is a chronic problem along most open ocean shores of the United States. As coastal populations continue to increase and infrastructure is threatened by erosion, there is increased demand for accurate information regarding past and present trends and rates of shoreline movement. There is also a need for a comprehensive analysis of shoreline movement that is consistent from one coastal region to another. To meet these national needs, the U.S. Geological Survey (USGS) is conducting an analysis of historical shoreline changes along the open-ocean sandy shores of the conterminous United States and parts of Hawaii, Alaska, and the Great Lakes. One purpose of this work is to develop standard, repeatable methods for mapping and analyzing shoreline movement so that periodic, systematic, and internally consistent updates regarding coastal erosion and land loss can be made nationally. In the case of the analysis of shoreline change in the Pacific Northwest (PNW), the shoreline is the interpreted boundary between the ocean water surface and the sandy beach. This report on the PNW coasts of Oregon and Washington is the seventh in a series of regionally focused reports on historical shoreline change. Previous investigations include analyses and descriptive reports of the U.S. Gulf of Mexico (Morton and others, 2004), the southeastern Atlantic (Morton and Miller, 2005), the sandy shorelines (Hapke and others, 2006) and coastal cliffs (Hapke and Reid, 2007) of California, the New England and mid-Atlantic coasts (Hapke and others, 2011), and parts of the Hawaii coast (Fletcher and others, 2012). Like the earlier reports in this series, this report summarizes the methods of analysis, interprets the results of the analysis, provides explanations regarding long- and short-term trends and rates of shoreline change, and describes how different coastal communities are responding to coastal erosion. This report differs from the early USGS reports in the series in that those

  6. Historical shoreline changes along the US Gulf of Mexico: A summary of recent shoreline comparisons and analyses

    Science.gov (United States)

    Morton, R.A.; Miller, T.; Moore, L.

    2005-01-01

    The US Geological Survey is systematically analyzing historical shoreline changes along open-ocean sandy shores of the United States. This National Assessment of Shoreline Change Project is developing standard repeatable methods for mapping and analyzing shoreline movement so that internally consistent updates can periodically be made to record coastal erosion and land loss along US shores. Recently, shoreline change maps and a report were published for states bordering the Gulf of Mexico. Long-term and short-term average rates of change were calculated by comparing three historical shorelines (1800s, 1930s, 1970s) with an operational mean high water shoreline derived from lidar (light detection and ranging) surveys (post-1998). The rates of change, statistical uncertainties, original shorelines, and complementary geographic information system layers, such as areas of beach nourishment, are available on an Internet Map Server (IMS). For the Gulf of Mexico region, rates of erosion are generally highest in Louisiana along barrier island and headland shores associated with the Mississippi delta. Erosion also is rapid along some barrier islands and headlands in Texas, whereas barrier islands in Mississippi are migrating laterally. Highest rates of erosion in Florida are generally localized around tidal inlets. The most stable Gulf beaches generally are along the west coast of Florida, where low wave energy and frequent beach nourishment minimize erosion. Some long beach segments in Texas have accreted as a result of net longshore drift convergence and around tidal inlets that have been stabilized by long jetties. Individuals and some communities have attempted to mitigate the effects of erosion by emplacement of coastal structures, but those efforts largely have been abandoned in favor of periodic beach nourishment.

  7. National assessment of shoreline change: Historical shoreline change in the Hawaiian Islands

    Science.gov (United States)

    Fletcher, Charles H.; Romine, Bradley M.; Genz, Ayesha S.; Barbee, Matthew M.; Dyer, Matthew; Anderson, Tiffany R.; Lim, S. Chyn; Vitousek, Sean; Bochicchio, Christopher; Richmond, Bruce M.

    2012-01-01

    Sandy beaches of the United States are some of the most popular tourist and recreational destinations. Coastal property constitutes some of the most valuable real estate in the country. Beaches are an ephemeral environment between water and land with unique and fragile natural ecosystems that have evolved in equilibrium with the ever-changing winds, waves, and water levels. Beachfront lands are the site of intense residential and commercial development even though they are highly vulnerable to several natural hazards, including marine inundation, flooding and drainage problems, effects of storms, sea-level rise, and coastal erosion. Because the U.S. population continues to shift toward the coast where valuable coastal property is vulnerable to erosion, the U.S. Geological Survey (USGS) is conducting a national assessment of coastal change. One aspect of this effort, the National Assessment of Shoreline Change, uses shoreline position as a proxy for coastal change because shoreline position is one of the most commonly monitored indicators of environmental change (for example, Fletcher, 1992; Dolan and others, 1991; Douglas and others, 1998; Galgano and others, 1998). Additionally, the National Research Council (1990) recommended the use of historical shoreline analysis in the absence of a widely accepted model of shoreline change.

  8. Living Shorelines: Coastal Resilience with a Blue Carbon Benefit.

    Directory of Open Access Journals (Sweden)

    Jenny L Davis

    Full Text Available Living shorelines are a type of estuarine shoreline erosion control that incorporates native vegetation and preserves native habitats. Because they provide the ecosystem services associated with natural coastal wetlands while also increasing shoreline resilience, living shorelines are part of the natural and hybrid infrastructure approach to coastal resiliency. Marshes created as living shorelines are typically narrow (< 30 m fringing marshes with sandy substrates that are well flushed by tides. These characteristics distinguish living shorelines from the larger meadow marshes in which most of the current knowledge about created marshes was developed. The value of living shorelines for providing both erosion control and habitat for estuarine organisms has been documented but their capacity for carbon sequestration has not. We measured carbon sequestration rates in living shorelines and sandy transplanted Spartina alterniflora marshes in the Newport River Estuary, North Carolina. The marshes sampled here range in age from 12 to 38 years and represent a continuum of soil development. Carbon sequestration rates ranged from 58 to 283 g C m-2 yr-1 and decreased with marsh age. The pattern of lower sequestration rates in older marshes is hypothesized to be the result of a relative enrichment of labile organic matter in younger sites and illustrates the importance of choosing mature marshes for determination of long-term carbon sequestration potential. The data presented here are within the range of published carbon sequestration rates for S. alterniflora marshes and suggest that wide-scale use of the living shoreline approach to shoreline management may come with a substantial carbon benefit.

  9. Living Shorelines: Coastal Resilience with a Blue Carbon Benefit

    Science.gov (United States)

    Davis, Jenny L.; Currin, Carolyn A.; O’Brien, Colleen; Raffenburg, Craig; Davis, Amanda

    2015-01-01

    Living shorelines are a type of estuarine shoreline erosion control that incorporates native vegetation and preserves native habitats. Because they provide the ecosystem services associated with natural coastal wetlands while also increasing shoreline resilience, living shorelines are part of the natural and hybrid infrastructure approach to coastal resiliency. Marshes created as living shorelines are typically narrow (marshes with sandy substrates that are well flushed by tides. These characteristics distinguish living shorelines from the larger meadow marshes in which most of the current knowledge about created marshes was developed. The value of living shorelines for providing both erosion control and habitat for estuarine organisms has been documented but their capacity for carbon sequestration has not. We measured carbon sequestration rates in living shorelines and sandy transplanted Spartina alterniflora marshes in the Newport River Estuary, North Carolina. The marshes sampled here range in age from 12 to 38 years and represent a continuum of soil development. Carbon sequestration rates ranged from 58 to 283 g C m-2 yr-1 and decreased with marsh age. The pattern of lower sequestration rates in older marshes is hypothesized to be the result of a relative enrichment of labile organic matter in younger sites and illustrates the importance of choosing mature marshes for determination of long-term carbon sequestration potential. The data presented here are within the range of published carbon sequestration rates for S. alterniflora marshes and suggest that wide-scale use of the living shoreline approach to shoreline management may come with a substantial carbon benefit. PMID:26569503

  10. Numerical Modeling of Shoreline Undulations

    DEFF Research Database (Denmark)

    Kærgaard, Kasper Hauberg

    on the wave conditions and the coastal profile: undulations with no spits, undulations with flying spits and undulations with reconnecting spits. It is further shown that the evolution of the shoreline undulations is governed mainly by the angle between the shoreline and the incoming waves and the curvature...... that this shoreline is right at the limit between a stable and an unstable shoreline....

  11. Cuspate Shoreline Morphology

    National Research Council Canada - National Science Library

    McWilliams, Brandon

    2005-01-01

    Large beach cusps with wavelengths O(200m), sometimes termed mega-cusps, were measured along 18km of the Southern Monterey Bay coastline from October 2004 to April 2005 to investigate the cuspate shoreline response to rip current systems...

  12. Decoupling processes and scales of shoreline morphodynamics

    Science.gov (United States)

    Hapke, Cheryl J.; Plant, Nathaniel G.; Henderson, Rachel E.; Schwab, William C.; Nelson, Timothy R.

    2016-01-01

    Behavior of coastal systems on time scales ranging from single storm events to years and decades is controlled by both small-scale sediment transport processes and large-scale geologic, oceanographic, and morphologic processes. Improved understanding of coastal behavior at multiple time scales is required for refining models that predict potential erosion hazards and for coastal management planning and decision-making. Here we investigate the primary controls on shoreline response along a geologically-variable barrier island on time scales resolving extreme storms and decadal variations over a period of nearly one century. An empirical orthogonal function analysis is applied to a time series of shoreline positions at Fire Island, NY to identify patterns of shoreline variance along the length of the island. We establish that there are separable patterns of shoreline behavior that represent response to oceanographic forcing as well as patterns that are not explained by this forcing. The dominant shoreline behavior occurs over large length scales in the form of alternating episodes of shoreline retreat and advance, presumably in response to storms cycles. Two secondary responses include long-term response that is correlated to known geologic variations of the island and the other reflects geomorphic patterns with medium length scale. Our study also includes the response to Hurricane Sandy and a period of post-storm recovery. It was expected that the impacts from Hurricane Sandy would disrupt long-term trends and spatial patterns. We found that the response to Sandy at Fire Island is not notable or distinguishable from several other large storms of the prior decade.

  13. Multidecadal shoreline changes of atoll islands in the Marshall Islands

    Science.gov (United States)

    Ford, M.

    2012-12-01

    Atoll islands are considered highly vulnerable to the impacts of continued sea level rise. One of the most commonly predicted outcomes of continued sea level rise is widespread and chronic shoreline erosion. Despite the widespread implications of predicted erosion, the decadal scale changes of atoll island shorelines are poorly resolved. The Marshall Islands is one of only four countries where the majority of inhabited land is comprised of reef and atoll islands. Consisting of 29 atolls and 5 mid-ocean reef islands, the Marshall Islands are considered highly vulnerable to the impacts of sea level rise. A detailed analysis of shoreline change on over 300 islands on 10 atolls was undertaken using historic aerial photos (1945-1978) and modern high resolution satellite imagery (2004-2012). Results highlight the complex and dynamic nature of atoll islands, with significant shifts in shoreline position observed over the period of analysis. Results suggest shoreline accretion is the dominant mode of change on the islands studied, often associated with a net increase in vegetated island area. However, considerable inter- and intra-atoll variability exists with regards to shoreline stability. Findings are discussed with respect to island morphodynamics and potential hazard mitigation and planning responses within atoll settings.

  14. Regulated Environmental Activity Sites - CriticalErosion

    Data.gov (United States)

    NSGIC Local Govt | GIS Inventory — Created based on the Critical Erosion Report for 2005. Indicates the condition of shoreline, determined by our staff of Coastal Engineers, for the year 2005. This...

  15. A numerical shoreline model for shorelines with large curvature

    DEFF Research Database (Denmark)

    Kærgaard, Kasper Hauberg; Fredsøe, Jørgen

    2013-01-01

    This paper presents a new numerical model for shoreline change which can be used to model the evolution of shorelines with large curvature. The model is based on a one-line formulation in terms of coordinates which follow the shape of the shoreline, instead of the more common approach where the two...... orthogonal horizontal directions are used. The volume error in the sediment continuity equation which is thereby introduced is removed through an iterative procedure. The model treats the shoreline changes by computing the sediment transport in a 2D coastal area model, and then integrating the sediment...... transport field across the coastal profile to obtain the longshore sediment transport variation along the shoreline. The model is used to compute the evolution of a shoreline with a 90° change in shoreline orientation; due to this drastic change in orientation a migrating shoreline spit develops...

  16. Extraction of shoreline changes in Selangor coastal area using GIS and remote sensing techniques

    Science.gov (United States)

    Selamat, S. N.; Maulud, K. N. Abdul; Jaafar, O.; Ahmad, H.

    2017-05-01

    Nowadays, coastal zones are facing shoreline changes that stemming from natural and anthropogenic effect. The process of erosion and accretion will affect the physical environment of the shoreline. Therefore, the study of shoreline changes is important to identify the patterns of changes over time. The rapid growth of technology nowadays has facilitated the study of shoreline changes. Geographical Information System (GIS) alongside Remote Sensing (RS) technology is a useful tool to study these changes due to its ability to generate information, monitoring, analysis and prediction of the shoreline changes. Hence, the future projection of the trend for a specific coastal area can be done effectively. This study investigates the impact of shoreline changes to the community in Selangor area which mainly focus on the physical aspects. This study presents preliminary result using satellite image from SPOT 5 to identify the shoreline changes from the year 1984 to 2013 at Selangor coastal area. Extraction of shoreline from satellite image is vital to analyze the erosion and accretion along the shoreline area. This study shows that a shoreline change for the whole area is a categorized as a medium case. The total eroded and accretion of Selangor area from 1984 to 2013 is 2558 hectares and 2583 hectares respectively. As a result, Kapar, Jugra, Telok Panglima Garang and Kelanang are categorized as high risk erosion area. Shoreline changes analysis provides essential information to determine on the shoreline changes trends. Therefore, the results of this study can be used as essential information for conservation and preservation of coastal zone management.

  17. Coastal erosion management in Accra: Combining local knowledge and empirical research

    Directory of Open Access Journals (Sweden)

    Kwasi Appeaning Addo

    2016-11-01

    Full Text Available Coastal erosion along the Accra coast has become a chronic phenomenon that threatens both life and property. The issue has assumed a centre stage of national debate in recent times because of its impact on the coastal communities. Lack of reliable geospatial data hinders effective scientific investigations into the changing trends in the shoreline position. However, knowledge about coastal erosion, by the local people, and how far the shoreline has migrated inland over time is high in the coastal communities in Accra. This opens a new chapter in coastal erosion research to include local knowledge of the local settlers in developing sustainable coastal management. This article adopted a scientific approach to estimate rate of erosion and tested the results against perceived erosion trend by the local settlers. The study used a 1974 digital topographic map and 1996 aerial photographs. The end point rate statistical method in DSAS was used to compute the rates of change. The short-term rate of change for the 22-year period under study was estimated as -0.91 m/annum ± 0.49 m/annum. It was revealed that about 79% of the shoreline is eroding, while the remaining 21% is either stabilised or accreting. It emerged, from semi-structured interviews with inhabitants in the Accra coastal communities, that an average of about 30 m of coastal lands are perceived to have been lost to erosion for a period of about 20 years. This translates to a historic rate of change of about 1.5 m/year, which corroborates the results of the scientific study. Again this study has established that the local knowledge of the inhabitants, about coastal erosion, can serve as reliable information under scarcity of scientific data for coastal erosion analyses in developing countries.

  18. Fractal properties of shoreline changes on a storm-exposed island.

    Science.gov (United States)

    Zhong, Xiaojing; Yu, Peng; Chen, Shenliang

    2017-08-15

    Extreme storm events and their consequent shoreline changes are of great importance for understanding coastal evolution and assessing storm hazards. This work investigates the fractal properties of the spatial distributions of shoreline changes caused by storms. Wavelet analysis and upper-truncated power law (UTPL) fitting are used to study the power spectra of shoreline changes and to evaluate the upper limits of the cross-shore erosion and accretion. During a period affected by storms, the alongshore shoreline change patterns are strong on the 15 km scale but are weak with lower spectral power on the 20 km scale. The areas adjacent to the eroded shoreline are usually accrete, and the cross-shore extent of erosion is larger than that of accretion when the coast is affected by storms. The fractal properties of shoreline changes due to storms are found to be temporally continuous: the effects of later storms build on the preceding shoreline conditions, including both the effects of previous storms and the subsequent shoreline recoveries. This work provides a new perspective on the various scales of the spatial variations of the morphodynamics of storm-affected shorelines.

  19. ERO and PIC simulations of gross and net erosion of tungsten in the outer strike-point region of ASDEX Upgrade

    Directory of Open Access Journals (Sweden)

    A. Hakola

    2017-08-01

    Full Text Available We have modelled net and gross erosion of W in low-density l-mode plasmas in the low-field side strike point region of ASDEX Upgrade by ERO and Particle-in-Cell (PIC simulations. The observed net-erosion peak at the strike point was mainly due to the light impurities present in the plasma while the noticeable net-deposition regions surrounding the erosion maximum could be attributed to the strong E ×B drift and the magnetic field bringing eroded particles from a distance of several meters towards the private flux region. Our results also imply that the role of cross-field diffusion is very small in the studied plasmas. The simulations indicate net/gross erosion ratio of 0.2–0.6, which is in line with the literature data and what was determined spectroscopically. The deviations from the estimates extracted from post-exposure ion-beam-analysis data (∼0.6–0.7 are most likely due to the measured re-deposition patterns showing the outcomes of multiple erosion-deposition cycles.

  20. Drivers of coastal shoreline change: case study of hon dat coast, Kien Giang, Vietnam.

    Science.gov (United States)

    Nguyen, Hai-Hoa; McAlpine, Clive; Pullar, David; Leisz, Stephen Joseph; Galina, Gramotnev

    2015-05-01

    Coastal shorelines are naturally dynamic, shifting in response to coastal geomorphological processes. Globally, land use change associated with coastal urban development and growing human population pressures is accelerating coastal shoreline change. In southern Vietnam, coastal erosion currently is posing considerable risks to shoreline land use and coastal inhabitants. The aim of this paper is to quantify historical shoreline changes along the Hon Dat coast between 1995 and 2009, and to document the relationships between coastal mangrove composition, width and density, and rates of shoreline change. The generalized linear mixed-effects models were used to quantify the major biophysical and land-use factors influencing shoreline change rates. Most significant drivers of the rates of change are cutting of mangroves, the dominant mangrove genus, changes in adjacent shoreline land use, changes of shoreline land cover, and width of fringing mangroves. We suggest that a possible and inexpensive strategy for robust mangrove shoreline defense is direct mangrove planting to promote mangrove density with the presence of breakwater structures. In the shorter term, construction of coastal barriers such as fence-structured melaleuca poles in combination with mangrove restoration schemes could help retain coastal sediments and increase the elevation of the accretion zone, thereby helping to stabilize eroding fringe shorelines. It also is recommended that implementation of a system of payments for mangrove ecosystem services and the stronger regulation of mangrove cutting and unsustainable land-use change to strengthen the effectiveness of mangrove conservation programs and coastal land-use management.

  1. Drivers of Coastal Shoreline Change: Case Study of Hon Dat Coast, Kien Giang, Vietnam

    Science.gov (United States)

    Nguyen, Hai-Hoa; McAlpine, Clive; Pullar, David; Leisz, Stephen Joseph; Galina, Gramotnev

    2015-05-01

    Coastal shorelines are naturally dynamic, shifting in response to coastal geomorphological processes. Globally, land use change associated with coastal urban development and growing human population pressures is accelerating coastal shoreline change. In southern Vietnam, coastal erosion currently is posing considerable risks to shoreline land use and coastal inhabitants. The aim of this paper is to quantify historical shoreline changes along the Hon Dat coast between 1995 and 2009, and to document the relationships between coastal mangrove composition, width and density, and rates of shoreline change. The generalized linear mixed-effects models were used to quantify the major biophysical and land-use factors influencing shoreline change rates. Most significant drivers of the rates of change are cutting of mangroves, the dominant mangrove genus, changes in adjacent shoreline land use, changes of shoreline land cover, and width of fringing mangroves. We suggest that a possible and inexpensive strategy for robust mangrove shoreline defense is direct mangrove planting to promote mangrove density with the presence of breakwater structures. In the shorter term, construction of coastal barriers such as fence-structured melaleuca poles in combination with mangrove restoration schemes could help retain coastal sediments and increase the elevation of the accretion zone, thereby helping to stabilize eroding fringe shorelines. It also is recommended that implementation of a system of payments for mangrove ecosystem services and the stronger regulation of mangrove cutting and unsustainable land-use change to strengthen the effectiveness of mangrove conservation programs and coastal land-use management.

  2. National Assessment of Shoreline Change: Part 1, Historical Shoreline Changes and Associated Coastal Land Loss Along the U.S. Gulf of Mexico

    Science.gov (United States)

    Morton, Robert A.; Miller, Tara L.; Moore, Laura J.

    2004-01-01

    EXECUTIVE SUMMARY Beach erosion is a chronic problem along most open-ocean shores of the United States. As coastal populations continue to grow and community infrastructures are threatened by erosion, there is increased demand for accurate information regarding past and present trends and rates of shoreline movement. There is also a need for a comprehensive analysis of shoreline movement that is consistent from one coastal region to another. To meet these national needs, the U.S. Geological Survey is conducting an analysis of historical shoreline changes along open-ocean sandy shores of the conterminous United States and parts of Hawaii and Alaska. One purpose of this work is to develop standard repeatable methods for mapping and analyzing shoreline movement so that periodic updates regarding coastal erosion and land loss can be made nationally that are systematic and internally consistent. This report on states bordering the Gulf of Mexico (Florida, Alabama, Mississippi, Louisiana, and Texas) represents the first in a series that will eventually include the Atlantic Coast, Pacific Coast, and parts of Hawaii and Alaska. The report summarizes the methods of analysis, interprets the results, provides explanations regarding the historical and present trends and rates of change, and describes how different coastal communities are responding to coastal erosion. Shoreline change evaluations are based on comparing three historical shorelines with a recent shoreline derived from lidar (Light Detection and Ranging) topographic surveys. The historical shorelines generally represent the following periods: 1800s, 1920s-1930s, and 1970s, whereas the lidar shoreline is 1998-2002. Long-term rates of change are calculated using all four shorelines (1800s to lidar shoreline), whereas short-term rates of change are calculated for the most recent period (1970s to lidar shoreline). The historical rates of change presented in this report represent past conditions and therefore are not

  3. National Assessment Of Shoreline Change: Part 2, Historical Shoreline Changes And Associated Coastal Land Loss Along The U.S. Southeast Atlantic Coast

    Science.gov (United States)

    Morton, Robert A.; Miller, Tara L.

    2005-01-01

    EXECUTIVE SUMMARY Beach erosion is a chronic problem along most open-ocean shores of the United States. As coastal populations continue to grow and community infrastructures are threatened by erosion, there is increased demand for accurate information regarding past and present trends and rates of shoreline movement. There is also a need for a comprehensive analysis of shoreline movement that is consistent from one coastal region to another. To meet these national needs, the U.S. Geological Survey is conducting an analysis of historical shoreline changes along open-ocean sandy shores of the conterminous United States and parts of Hawaii and Alaska. One purpose of this work is to develop standard repeatable methods for mapping and analyzing shoreline movement so that periodic updates regarding coastal erosion and land loss can be made nationally that are systematic and internally consistent. This report on states comprising the Southeast Atlantic Coast (east Florida, Georgia, South Carolina, North Carolina) represents the second in a series that already includes the Gulf of Mexico and will eventually include the Northeast Atlantic Coast, Pacific Coast, and parts of Hawaii and Alaska. The report summarizes the methods of analysis, interprets the results, provides explanations regarding the historical and present trends and rates of change, and describes how different coastal communities are responding to coastal erosion. Shoreline change evaluations are based on comparing three historical shorelines with a recent shoreline derived from lidar (Light Detection and Ranging) topographic surveys. The historical shorelines generally represent the following periods: 1800s, 1920s-1930s, and 1970s, whereas the lidar shoreline is 1998-2002. Long-term rates of change are calculated using four shorelines (1800s to lidar shoreline), whereas short-term rates of change are calculated for the most recent period (1970s to lidar shoreline). The historical rates of change presented in

  4. 2002 Upper Texas Coast Lidar Point Data, Gulf of Mexico Shoreline in the Northeast 3.75-Minute Quadrant of the Lake Como 7.5-Minute Quadrangle: Post Fay Survey

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains elevation data derived from a lidar survey approximately 300m wide of the Gulf of Mexico shoreline in the Northeast Lake Como...

  5. Overview of shoreline cleaning agents

    International Nuclear Information System (INIS)

    Clayton, J.

    1992-01-01

    Chemical cleaning agents may be used to promote release of stranded oil from shorelines for reasons including biological sensitivity of indigenous fauna and flora to the oil, amenity considerations of the shoreline, or concern about refloating of the oil and subsequent stranding on adjacent shorelines. While use of chemical cleaning agents may be appropriate under proper toxic responses in circumstances, certain limitations should be recognized. The potential for toxic responses in indigenous fauna and flora to the cleaning agents must be considered. Enhanced penetration of oil into permeable shorelines following treatment with chemical cleaning agents also is not desirable. However, if conditions related to toxicity and substrate permeability are determined to be acceptable, the use of chemical cleaning agents for treatment of stranded oil can be considered. Chemical agents for cleaning oiled shorelines can be grouped into three categories: (1) non-surfactant-based solvents, (2) chemical dispersants, and (3) formulations especially designed to release stranded oil from shoreline substrates (i.e., shoreline-cleaning-agents). Depending on the specific circumstances present on an oiled shoreline, it is generally desirable that chemical agents used for cleaning will release oil from shoreline substrate(s) to surface waters. Recovery of the oil can then be accomplished by mechanical procedures such as booming and skimming operations

  6. Shoreline change and potential sea level rise impacts in a climate hazardous location in southeast coast of India.

    Science.gov (United States)

    Jayanthi, Marappan; Thirumurthy, Selvasekar; Samynathan, Muthusamy; Duraisamy, Muthusamy; Muralidhar, Moturi; Ashokkumar, Jangam; Vijayan, Koyadan Kizhakkedath

    2017-12-28

    Climate change impact on the environment makes the coastal areas vulnerable and demands the evaluation of such susceptibility. Historical changes in the shoreline positions and inundation based on projected sea-level scenarios of 0.5 and 1 m were assessed for Nagapattinam District, a low-lying coastal area in the southeast coast of India, using high-resolution Shuttle Radar Topography Mission data; multi-dated Landsat satellite images of 1978, 1991, 2003, and 2015; and census data of 2011. Image processing, geographical information system, and digital shoreline analysis system methods were used in the study. The shoreline variation indicated that erosion rate varied at different time scales. The end point rate indicated the highest mean erosion of - 3.12 m/year, occurred in 73% of coast between 1978 and 1991. Weighted linear regression analysis revealed that the coast length of 83% was under erosion at a mean rate of - 2.11 m/year from 1978 to 2015. Sea level rise (SLR) impact indicated that the coastal area of about 14,122 ha from 225 villages and 31,318 ha from 272 villages would be permanently inundated for the SLR of 0.5 and 1 m, respectively, which includes agriculture, mangroves, wetlands, aquaculture, and forest lands. The loss of coastal wetlands and its associated productivity will severely threaten more than half the coastal population. Adaptation measures in people participatory mode, integrated into coastal zone management with a focus on sub-regional coastal activities, are needed to respond to the consequences of climate change.

  7. National Assessment of Shoreline Change; historical shoreline change along the New England and Mid-Atlantic coasts

    Science.gov (United States)

    Hapke, Cheryl J.; Himmelstoss, Emily A.; Kratzmann, Meredith G.; List, Jeffrey H.; Thieler, E. Robert

    2011-01-01

    Beach erosion is a chronic problem along many open-ocean shores of the United States. As coastal populations continue to grow and community infrastructures are threatened by erosion, there is increased demand for accurate information regarding past and present trends and rates of shoreline movement. There is also a need for a comprehensive analysis of shoreline movement that is consistent from one coastal region to another. To meet these national needs, the U.S. Geological Survey (USGS) is conducting an analysis of historical shoreline changes along open-ocean sandy shores of the conterminous United States and parts of Hawaii, Alaska, and the Great Lakes. One purpose of this work is to develop standard, repeatable methods for mapping and analyzing shoreline movement so that periodic, systematic, internally consistent updates regarding coastal erosion and land loss can be made nationally. In the case of this study, the shoreline is the interpreted boundary between the ocean water surface and the sandy beach. This report on the New England and Mid-Atlantic coasts is the fifth in a series of reports on historical shoreline change. Previous investigations include analyses and descriptive reports of the Gulf of Mexico, the Southeast Atlantic, and, for California, the sandy shoreline and the coastal cliffs. The rates of change presented in this report represent conditions up to the date of the most recent shoreline data and therefore are not intended for predicting future shoreline positions or rates of change. Because of the geomorphology of the New England and Mid-Atlantic (rocky coastlines, large embayments and beaches) as well as data gaps in some areas, this report presents beach erosion rates for 78 percent of the 1,360 kilometers of the New England and Mid-Atlantic coasts. The New England and Mid-Atlantic shores were subdivided into a total of 10 analysis regions for the purpose of reporting regional trends in shoreline change rates. The average rate of long

  8. Timing of oceans on Mars from shoreline deformation.

    Science.gov (United States)

    Citron, Robert I; Manga, Michael; Hemingway, Douglas J

    2018-03-29

    Widespread evidence points to the existence of an ancient Martian ocean. Most compelling are the putative ancient shorelines in the northern plains. However, these shorelines fail to follow an equipotential surface, and this has been used to challenge the notion that they formed via an early ocean and hence to question the existence of such an ocean. The shorelines' deviation from a constant elevation can be explained by true polar wander occurring after the formation of Tharsis, a volcanic province that dominates the gravity and topography of Mars. However, surface loading from the oceans can drive polar wander only if Tharsis formed far from the equator, and most evidence indicates that Tharsis formed near the equator, meaning that there is no current explanation for the shorelines' deviation from an equipotential that is consistent with our geophysical understanding of Mars. Here we show that variations in shoreline topography can be explained by deformation caused by the emplacement of Tharsis. We find that the shorelines must have formed before and during the emplacement of Tharsis, instead of afterwards, as previously assumed. Our results imply that oceans on Mars formed early, concurrent with the valley networks, and point to a close relationship between the evolution of oceans on Mars and the initiation and decline of Tharsis volcanism, with broad implications for the geology, hydrological cycle and climate of early Mars.

  9. Digital shoreline analysis system-based change detection along the highly eroding Krishna-Godavari delta front

    Science.gov (United States)

    Kallepalli, Akhil; Kakani, Nageswara Rao; James, David B.; Richardson, Mark A.

    2017-07-01

    Coastal regions are highly vulnerable to rising sea levels due to global warming. Previous Intergovernmental Panel on Climate Change (2013) predictions of 26 to 82 cm global sea level rise are now considered conservative. Subsequent investigations predict much higher levels which would displace 10% of the world's population living less than 10 m above sea level. Remote sensing and GIS technologies form the mainstay of models on coastal retreat and inundation to future sea-level rise. This study estimates the varying trends along the Krishna-Godavari (K-G) delta region. The rate of shoreline shift along the 330-km long K-G delta coast was estimated using satellite images between 1977 and 2008. With reference to a selected baseline from along an inland position, end point rate and net shoreline movement were calculated using a GIS-based digital shoreline analysis system. The results indicated a net loss of about 42.1 km2 area during this 31-year period, which is in agreement with previous literature. Considering the nature of landforms and EPR, the future hazard line (or coastline) is predicted for the area; the predication indicates a net erosion of about 57.6 km2 along the K-G delta coast by 2050 AD.

  10. Wetland shoreline recession in the Mississippi River Delta from petroleum oiling and cyclonic storms

    Science.gov (United States)

    Rangoonwala, Amina; Jones, Cathleen E.; Ramsey, Elijah W.

    2016-01-01

    We evaluate the relative impact of petroleum spill and storm surge on near-shore wetland loss by quantifying the lateral movement of coastal shores in upper Barataria Bay, Louisiana (USA), between June 2009 and October 2012, a study period that extends from the year prior to the Deepwater Horizon spill to 2.5 years following the spill. We document a distinctly different pattern of shoreline loss in the 2 years following the spill, both from that observed in the year prior to the spill, during which there was no major cyclonic storm, and from change related to Hurricane Isaac, which made landfall in August 2012. Shoreline erosion following oiling was far more spatially extensive and included loss in areas protected from wave-induced erosion. We conclude that petroleum exposure can substantially increase shoreline recession particularly in areas protected from storm-induced degradation and disproportionally alters small oil-exposed barrier islands relative to natural erosion.

  11. National assessment of shoreline change: a GIS compilation of vector shorelines and associated shoreline change data for the north coast of Alaska, U.S.-Canadian border to Icy Cape

    Science.gov (United States)

    Gibbs, Ann E.; Karen A. Ohman,; Richmond, Bruce M.

    2015-01-01

    The Arctic Coastal Plain of northern Alaska is an area of strategic economic importance to the United States, is home to remote Native communities, and encompasses unique habitats of global significance. Coastal erosion along the Arctic coast is chronic, widespread, and may be accelerating, which threatens defense- and energy-related infrastructure, natural shoreline habitats, and Native communities. There is an increased demand for accurate information regarding past and present shoreline changes across the United States. To meet these national needs, the Coastal and Marine Geology Program of the U.S. Geological Survey is compiling existing reliable historical shoreline data along sandy shores of the conterminous United States and parts of Alaska and Hawaii under the National Assessment of Shoreline Change Project (hereafter referred to as the "National Assessment project";http://coastal.er.usgs.gov/shoreline-change/). A comprehensive database of digital vector shorelines and rates of shoreline change for Alaska, from the U.S.-Canadian border to Icy Cape, is presented in this report as part of the National Assessment project.

  12. Interactions between Point Bar Growth and Bank Erosion on a Low Sinuosity Meander Bend in an Ephemeral Channel: Insights from Repeat Topographic Surveys and Numerical Modeling

    Science.gov (United States)

    Ursic, M.; Langendoen, E. J.

    2017-12-01

    Interactions between point bar growth, bank migration, and hydraulics on meandering rivers are complicated and not well understood. For ephemeral streams, rapid fluctuations in flow further complicate studying and understanding these interactions. This study seeks to answer the following `cause-and-effect' question: Does point bar morphologic adjustment determine where bank erosion occurs (for example, through topographic steering of the flow), or does local bank retreat determine where accretion/erosion occurs on the point bar, or do bank erosion and point bar morphologic adjustment co-evolve? Further, is there a response time between the `cause-and-effect' processes and what variables determine its magnitude and duration? In an effort to answer these questions for an ephemeral stream, a dataset of forty-eight repeat topographic surveys over a ten-year period (1996-2006) of a low sinuosity bend within the Goodwin Creek Experimental Watershed, located near Batesville, MS, were utilized in conjunction with continuous discharge measurements to correlate flow variability and erosional and depositional zones, spatially and temporally. Hydraulically, the bend is located immediately downstream of a confluence with a major tributary. Supercritical flumes on both the primary and tributary channels just upstream of the confluence provide continuous measured discharges to the bend over the survey period. In addition, water surface elevations were continuously measured at the upstream and downstream ends of the bend. No spatial correlation trends could be discerned between reach-scale bank retreat, point bar morphologic adjustment, and flow discharge. Because detailed flow patterns were not available, the two-dimensional computer model Telemac2D was used to provide these details. The model was calibrated and validated for a set of runoff events for which more detailed flow data were available. Telemac2D simulations were created for each topographic survey period. Flows

  13. USGS science for the Nation's changing coasts; shoreline change assessment

    Science.gov (United States)

    Thieler, E. Robert; Hapke, Cheryl J.

    2011-01-01

    The coastline of the United States features some of the most popular tourist and recreational destinations in the world and is the site of intense residential, commercial, and industrial development. The coastal zone also has extensive and pristine natural areas, with diverse ecosystems providing essential habitat and resources that support wildlife, fish, and human use. Coastal erosion is a widespread process along most open-ocean shores of the United States that affects both developed and natural coastlines. As the coast changes, there are a wide range of ways that change can affect coastal communities, habitats, and the physical characteristics of the coast?including beach erosion, shoreline retreat, land loss, and damage to infrastructure. Global climate change will likely increase the rate of coastal change. A recent study of the U.S. Mid-Atlantic coast, for example, found that it is virtually certain that sandy beaches will erode faster in the future as sea level rises because of climate change. The U.S. Geological Survey (USGS) is responsible for conducting research on coastal change hazards, understanding the processes that cause coastal change, and developing models to predict future change. To understand and adapt to shoreline change, accurate information regarding the past and present configurations of the shoreline is essential. A comprehensive, nationally consistent analysis of shoreline movement is needed. To meet this national need, the USGS is conducting an analysis of historical shoreline changes along open-ocean coasts of the conterminous United States and parts of Alaska and Hawaii, as well as the coasts of the Great Lakes.

  14. County Boundaries with Shorelines (National)

    Data.gov (United States)

    Department of Transportation — County boundaries with shorelines cut in (NTAD). The TIGER/Line Files are shapefiles and related database files (.dbf) that are an extract of selected geographic and...

  15. NOAA Coastal Mapping Shoreline Products

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The NOAA Coastal Mapping Shoreline Products from the Remote Sensing Division are primarily for application to the nautical charts produced by NOAA's Office of Coast...

  16. COMPARISON OF TWO SIMPLIFICATION METHODS FOR SHORELINE EXTRACTION FROM DIGITAL ORTHOPHOTO IMAGES

    Directory of Open Access Journals (Sweden)

    B. Bayram

    2017-11-01

    Full Text Available The coastal ecosystems are very sensitive to external influences. Coastal resources such as sand dunes, coral reefs and mangroves has vital importance to prevent coastal erosion. Human based effects also threats the coastal areas. Therefore, the change of coastal areas should be monitored. Up-to-date, accurate shoreline information is indispensable for coastal managers and decision makers. Remote sensing and image processing techniques give a big opportunity to obtain reliable shoreline information. In the presented study, NIR bands of seven 1:5000 scaled digital orthophoto images of Riga Bay-Latvia have been used. The Object-oriented Simple Linear Clustering method has been utilized to extract shoreline of Riga Bay. Bend and Douglas-Peucker methods have been used to simplify the extracted shoreline to test the effect of both methods. Photogrammetrically digitized shoreline has been taken as reference data to compare obtained results. The accuracy assessment has been realised by Digital Shoreline Analysis tool. As a result, the achieved shoreline by the Bend method has been found closer to the extracted shoreline with Simple Linear Clustering method.

  17. Comparison of Two Simplification Methods for Shoreline Extraction from Digital Orthophoto Images

    Science.gov (United States)

    Bayram, B.; Sen, A.; Selbesoglu, M. O.; Vārna, I.; Petersons, P.; Aykut, N. O.; Seker, D. Z.

    2017-11-01

    The coastal ecosystems are very sensitive to external influences. Coastal resources such as sand dunes, coral reefs and mangroves has vital importance to prevent coastal erosion. Human based effects also threats the coastal areas. Therefore, the change of coastal areas should be monitored. Up-to-date, accurate shoreline information is indispensable for coastal managers and decision makers. Remote sensing and image processing techniques give a big opportunity to obtain reliable shoreline information. In the presented study, NIR bands of seven 1:5000 scaled digital orthophoto images of Riga Bay-Latvia have been used. The Object-oriented Simple Linear Clustering method has been utilized to extract shoreline of Riga Bay. Bend and Douglas-Peucker methods have been used to simplify the extracted shoreline to test the effect of both methods. Photogrammetrically digitized shoreline has been taken as reference data to compare obtained results. The accuracy assessment has been realised by Digital Shoreline Analysis tool. As a result, the achieved shoreline by the Bend method has been found closer to the extracted shoreline with Simple Linear Clustering method.

  18. Integrated Shoreline Extraction Approach with Use of Rasat MS and SENTINEL-1A SAR Images

    Science.gov (United States)

    Demir, N.; Oy, S.; Erdem, F.; Şeker, D. Z.; Bayram, B.

    2017-09-01

    Shorelines are complex ecosystems and highly important socio-economic environments. They may change rapidly due to both natural and human-induced effects. Determination of movements along the shoreline and monitoring of the changes are essential for coastline management, modeling of sediment transportation and decision support systems. Remote sensing provides an opportunity to obtain rapid, up-to-date and reliable information for monitoring of shoreline. In this study, approximately 120 km of Antalya-Kemer shoreline which is under the threat of erosion, deposition, increasing of inhabitants and urbanization and touristic hotels, has been selected as the study area. In the study, RASAT pansharpened and SENTINEL-1A SAR images have been used to implement proposed shoreline extraction methods. The main motivation of this study is to combine the land/water body segmentation results of both RASAT MS and SENTINEL-1A SAR images to improve the quality of the results. The initial land/water body segmentation has been obtained using RASAT image by means of Random Forest classification method. This result has been used as training data set to define fuzzy parameters for shoreline extraction from SENTINEL-1A SAR image. Obtained results have been compared with the manually digitized shoreline. The accuracy assessment has been performed by calculating perpendicular distances between reference data and extracted shoreline by proposed method. As a result, the mean difference has been calculated around 1 pixel.

  19. Enhanced sediment loading facilitates point bar growth and accelerates bank erosion along a modelled meander bend on the Sacramento River, USA

    Science.gov (United States)

    Ahmed, J.; Constantine, J. A.; Hales, T. C.

    2017-12-01

    Meandering channels provide a conduit through which sediment and water is routed from the uplands to the sea. Alluvial material is periodically stored and transported through the channel network as permitted by the prevailing hydrologic conditions. The lowlands are typically characterised by accumulations of sediment attached to the inner banks of meander bends (point bars). These bedforms have been identified as important for facilitating a link between in-stream sediment supplies and channel dynamism. A 2D curvilinear hydrodynamic model (MIKE 21C) was used to perform a number of experiments in which the sediment load was adjusted to investigate how changes in alluvial material fluxes affect the development of point bars and the resultant patterns of bank erosion. A doubling of the sediment load caused a longitudinal increase in the bar in the upstream direction and caused a coeval doubling of the transverse channel slope at the meander apex. The upstream growth of the point bar was accompanied by an increase in length over which lateral migration took place at the outer bank. The magnitude of outer bank erosion was 9-times greater for the high-sediment simulation. These results suggest that enhanced sediment loads (potentially the result of changes in land use or climate) can trigger greater rates of bank erosion and channel change through the sequestration of alluvial material on point bars, which encourage high-velocity fluid deflection towards the outer bank of the meander. This controls riparian habitat development and exchanges of sediment and nutrients across the channel-floodplain interface.

  20. Power Scaling of the Mainland Shoreline of the Atlantic Coast of the United States

    Science.gov (United States)

    Vasko, E.; Barton, C. C.; Geise, G. R.; Rizki, M. M.

    2017-12-01

    The fractal dimension of the mainland shoreline of the Atlantic coast of the United Stated from Maine to Homestead, FL has been measured in 1000 km increments using the box-counting method. The shoreline analyzed is the NOAA Medium Resolution Shoreline (https://shoreline.noaa.gov/data/datasheets/medres.html). The shoreline was reconstituted into sequentially numbered X-Y coordinate points in UTM Zone 18N which are spaced 50 meters apart, as measured continuously along the shoreline. We created a MATLAB computer code to measure the fractal dimension by box counting while "walking" along the shoreline. The range of box sizes is 0.7 to 450 km. The fractal dimension ranges from 1.0 to1.5 along the mainland shoreline of the Atlantic coast. The fractal dimension is compared with beach particle sizes (bedrock outcrop, cobbles, pebbles, sand, clay), tidal range, rate of sea level rise, rate and direction of vertical crustal movement, and wave energy, looking for correlation with the measured fractal dimensions. The results show a correlation between high fractal dimensions (1.3 - 1.4) and tectonically emergent coasts, and low fractal dimensions (1.0 - 1.2) along submergent and stable coastal regions. Fractal dimension averages 1.3 along shorelines with shoreline protection structures such as seawalls, jetties, and groins.

  1. Shoreline Extraction and Change Detection using 1:5000 Scale Orthophoto Maps: A Case Study of Latvia-Riga

    Directory of Open Access Journals (Sweden)

    Bülent Bayram

    2015-12-01

    Full Text Available Coastal management requires rapid, up-to-date, and correct information. Thus, the determination of coastal movements and its directions has primary importance for coastal managers. For monitoring the change of shorelines, remote sensing data, very high resolution aerial images and orthophoto maps are utilized for detections of change on shorelines. It is possible to monitor coastal changes by extracting the coastline from orthophoto maps. Along the Baltic Sea and Riga Gulf, Latvian coastline length is 496 km. It is rich of coastal resources and natural biodiversity. Around 120 km of coastline are affected by significant coastal changes caused by climate change, storms, erosion, human activities and other reasons and they must be monitored. In this study, an object-oriented approach has been proposed to detect shoreline and detect the changes by using 1:5000 scaled orthophoto maps of Riga-Latvia (3bands, R, G, and NIR in the years of 2007 and 2013. As many of the authors have mentioned, object-oriented classification method can be more successful than the pixel-based methods especially for high resolution images to avoid mix-classification. In the presented study the eCognition object-oriented fuzzy image processing software has been used. The results were compared to the results derived from manual digitizing. Extracted and manually digitized shorelines have been divided in 5 m segments in x axis. The y coordinates of the new nodes were taken from the original “.dxf” file or computed by interpolation. Thus, the RMS errors of selected points were calculated.

  2. Runoff experiment and adapted SfM photogrammetry to assess rill erosion in Mediterranean agricultural fields from a holistic point of view

    Science.gov (United States)

    Gronz, Oliver; Rodrigo-Comino, Jesús; Seeger, Manuel

    2017-04-01

    In Mediterranean agricultural fields, more research is needed to quantify soil loss and to assess runoff generation caused by unsuitable land management strategies (García-Díaz et al., 2017; Keesstra et al., 2016). Nowadays, farmers are increasing the generation of rills and, consequently, enhancing several sub-processes related to soil erosion by water such as headcut retreats, piping or cracks joint to mass movements (Marzolff and Poesen, 2009; Poesen et al., 2003; Rodrigo Comino et al., 2015). This complex problem under different spatiotemporal scales hinders a reliable forecasting of its final consequences (Prasuhn, 2011; Salome et al., 2014). Several researchers pay more attention to point observations, but no to general and connected overviews of processes related to forms and the quantitative functioning of all elements. Therefore, the main goal of this study is to characterize and quantify the rill erosion generated by these degradation processes. To achieve this goal, two runoff experiments were carried out with two repetitions (dry and wet conditions) under extreme conditions (Wirtz et al., 2013, 2012, 2010): a motor driven pump discharged a water inflow up to ˜4.2 l s-1 maintained during between 4 and 6 minutes (≈1000 litres). Additionally, a 3D-captation of the rill by an adapted SfM photogrammetry was performed to assess: i) clear visible zonation of geomorphological (structural) connectivity features; ii) runoff and sediment productions close to the catchment outlet under actual conditions; iii) topsoil-subsoil interaction and crusting crucial for runoff generation; and, iv) the area with evidence of (former) high erosion intensity now stable, but with remnant. García-Díaz, A., Bienes, R., Sastre, B., Novara, A., Gristina, L., Cerdà, A., 2017. Nitrogen losses in vineyards under different types of soil groundcover. A field runoff simulator approach in central Spain. Agric. Ecosyst. Environ. 236, 256-267. doi:10.1016/j.agee.2016.12.013 Keesstra

  3. NOAA Composite Shoreline - Vectorized Shoreline Derived From NOAA-NOS Coastal Survey Maps and Aerial Photographs

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The NOAA Composite Shoreline is primarily intended for high-resolution cartographic representation of the shoreline. It is a high-resolution vector shoreline based...

  4. The Cosmic Shoreline

    Science.gov (United States)

    Zahnle, Kevin J.; Catling, D. C.

    2013-01-01

    in 2004 when there were just two transiting exoplanets to consider. The trend was well-defined by late 2007. Figure 1 shows how matters stood in Dec 2012 with approx.240 exoplanets. The figure shows that the boundary between planets with and without active volatiles - the cosmic shoreline, as it were - is both well-defined and follows a power law.

  5. Enhanced sediment loading facilitates point bar growth and accelerates bank erosion along a modelled meander bend on the Sacramento River, USA

    Science.gov (United States)

    Ahmed, Joshua; Constantine, José A.; Hales, Tristram C.

    2017-04-01

    Meandering channels provide a conduit through which sediment and water is routed from the uplands to the sea. Alluvial material is periodically stored and transported through the channel network as permitted by the prevailing hydrologic conditions. In the lowlands, this sediment often accumulates as point bar deposits attached to the inner banks of meander bends; previous research has highlighted the importance of these bedforms in facilitating the link between in-stream sediment supplies and channel dynamism. We use a 2D curvilinear hydrodynamic model (MIKE 21C) to perform a number of experiments in which we alter the sediment load to investigate how changes in alluvial material fluxes affect the development of point bars and the resultant patterns of bank erosion. We reveal that increasing the sediment load by up to two times the normal causes the point bar to grow both longitudinally and transversely; concurrently, near-bank shear stresses are elevated resulting in accelerated rates of bank retreat compared to normal sediment loads. Our results suggest that enhanced sediment loads (potentially the result of changes in land use or climate) can trigger enhanced rates of bank erosion and channel change through the sequestration of alluvial material on point bars, which then deflect high-velocity fluid towards the outer bank of the meander. These results have implications for the development of morphodynamic meander models which should consider the role of topographic flow accelerations induced by the presence of point bars more explicitly. Moreover, increased boundary shear stresses accelerate rates of bank retreat and therefore control rates of riparian habitat development as well as exchanges of sediment and nutrients between the channel and floodplain.

  6. A Collaborative Geospatial Shoreline Inventory Tool to Guide Coastal Development and Habitat Conservation

    Directory of Open Access Journals (Sweden)

    Peter Gies

    2013-05-01

    Full Text Available We are developing a geospatial inventory tool that will guide habitat conservation, restoration and coastal development and benefit several stakeholders who seek mitigation and adaptation strategies to shoreline changes resulting from erosion and sea level rise. The ESRI Geoportal Server, which is a type of web portal used to find and access geospatial information in a central repository, is customized by adding a Geoinventory tool capability that allows any shoreline related data to be searched, displayed and analyzed on a map viewer. Users will be able to select sections of the shoreline and generate statistical reports in the map viewer to allow for comparisons. The tool will also facilitate map-based discussion forums and creation of user groups to encourage citizen participation in decisions regarding shoreline stabilization and restoration, thereby promoting sustainable coastal development.

  7. Effects of shoreline sensitivity on oil spill trajectory modeling of the Lower Mississippi River.

    Science.gov (United States)

    Danchuk, Samantha; Willson, Clinton S

    2010-02-01

    The Lower Mississippi River is a major transportation route for commercial goods and petroleum products produced and refined locally. Oil spills caused by vessel accidents and equipment failure at refineries are a serious threat to the drinking water supply of Southern Louisiana, as well as to the many natural, economic, and social resources supported by the river. Providing accurate trajectory modeling to contingency planners is critical to protecting the local environment. The majority of trajectory model results, assuming a uniform shoreline, show 60-70% of spilled oil can be retained. This study examines the impact of detailed shoreline mapping that captures spatial and temporal changes in shoreline type on oil spill trajectory modeling. Detailed shoreline maps based on recent remote sensing imagery were generated to identify spatial changes in shoreline. A hydrodynamic model of the 78 mile reach from Convent, Louisiana to West Pointe a la Hache was developed to obtain the stage levels and velocity fields of four river discharges. Based on river stage level, another layer was added to the shoreline maps, so that shoreline type was accurately represented at each river discharge, a feature not included in previous mapping. An oil spill trajectory model was then used to investigate the effect of implementing different re-floatation half-lives that correlate to the shoreline maps developed for this study at four river discharges. Detailed shoreline mapping showed the Lower Mississippi River has four major shoreline types each with different oil re-floatation half-lives: muddy clay, sand, low vegetation, and high vegetation. As flow rate changed, the shoreline spatial variability also changed, from 84% mud/sand and 16% vegetation at low flow rates to 4% mud and 96% vegetation at higher flow rates. At flow rates with large variability in shoreline type, the distribution of oil attached to the shore was significantly different from results of simulations that used a

  8. The use of video imagery to analyse groundwater and shoreline dynamics on a dissipative beach

    NARCIS (Netherlands)

    Huisman, C.E.; Bryan, K.R.; Coco, G.; Ruessink, B.G.

    2011-01-01

    Groundwater seepage is known to influence beach erosion and accretion processes. However, field measurements of the variation of the groundwater seepage line (GWSL) and the vertical elevation difference between the GWSL and the shoreline are limited. We developed a methodology to extract the

  9. Projected atoll shoreline and run-up changes in response to sea-level rise and varying large wave conditions at Wake and Midway Atolls, Northwestern Hawaiian Islands

    Science.gov (United States)

    Shope, James B.; Storlazzi, Curt; Hoeke, Ron

    2017-01-01

    Atoll islands are dynamic features that respond to seasonal alterations in wave conditions and sea level. It is unclear how shoreline wave run-up and erosion patterns along these low elevation islands will respond to projected sea-level rise (SLR) and changes in wave climate over the next century, hindering communities' preparation for the future. To elucidate how these processes may respond to climate change, extreme boreal winter and summer wave conditions under future sea-level rise (SLR) and wave climate scenarios were simulated at two atolls, Wake and Midway, using a shallow-water hydrodynamic model. Nearshore wave conditions were used to compute the potential longshore sediment flux along island shorelines via the CERC empirical formula and wave-driven erosion was calculated as the divergence of the longshore drift; run-up and the locations where the run-up exceed the berm elevation were also determined. SLR is projected to predominantly drive future island morphological change and flooding. Seaward shorelines (i.e., ocean fronted shorelines directly facing incident wave energy) were projected to experience greater erosion and flooding with SLR and in hypothetical scenarios where changes to deep water wave directions were altered, as informed by previous climate change forced Pacific wave modeling efforts. These changes caused nearshore waves to become more shore-normal, increasing wave attack along previously protected shorelines. With SLR, leeward shorelines (i.e., an ocean facing shoreline but sheltered from incident wave energy) became more accretive on windward islands and marginally more erosive along leeward islands. These shorelines became more accretionary and subject to more flooding with nearshore waves becoming more shore-normal. Lagoon shorelines demonstrated the greatest SLR-driven increase in erosion and run-up. They exhibited the greatest relative change with increasing wave heights where both erosion and run-up magnitudes increased. Wider

  10. Developing alternative shoreline armoring strategies: the living shoreline approach in North Carolina

    OpenAIRE

    Currin, C.A.; Chappell, W.S.; Deaton, A.

    2010-01-01

    This paper reviews the scientific data on the ecosystem services provided by shoreline habitats, the evidence for adverse impacts from bulkheading on those habitats and services, and describes alternative approaches to shoreline stabilization, which minimize adverse impacts to the shoreline ecosystem. Alternative shoreline stabilization structures that incorporate natural habitats, also known as living shorelines, have been popularized by environmental groups and state regulatory agencies in ...

  11. Oyster reefs as natural breakwaters mitigate shoreline loss and facilitate fisheries.

    Science.gov (United States)

    Scyphers, Steven B; Powers, Sean P; Heck, Kenneth L; Byron, Dorothy

    2011-01-01

    Shorelines at the interface of marine, estuarine and terrestrial biomes are among the most degraded and threatened habitats in the coastal zone because of their sensitivity to sea level rise, storms and increased human utilization. Previous efforts to protect shorelines have largely involved constructing bulkheads and seawalls which can detrimentally affect nearshore habitats. Recently, efforts have shifted towards "living shoreline" approaches that include biogenic breakwater reefs. Our study experimentally tested the efficacy of breakwater reefs constructed of oyster shell for protecting eroding coastal shorelines and their effect on nearshore fish and shellfish communities. Along two different stretches of eroding shoreline, we created replicated pairs of subtidal breakwater reefs and established unaltered reference areas as controls. At both sites we measured shoreline and bathymetric change and quantified oyster recruitment, fish and mobile macro-invertebrate abundances. Breakwater reef treatments mitigated shoreline retreat by more than 40% at one site, but overall vegetation retreat and erosion rates were high across all treatments and at both sites. Oyster settlement and subsequent survival were observed at both sites, with mean adult densities reaching more than eighty oysters m(-2) at one site. We found the corridor between intertidal marsh and oyster reef breakwaters supported higher abundances and different communities of fishes than control plots without oyster reef habitat. Among the fishes and mobile invertebrates that appeared to be strongly enhanced were several economically-important species. Blue crabs (Callinectes sapidus) were the most clearly enhanced (+297%) by the presence of breakwater reefs, while red drum (Sciaenops ocellatus) (+108%), spotted seatrout (Cynoscion nebulosus) (+88%) and flounder (Paralichthys sp.) (+79%) also benefited. Although the vertical relief of the breakwater reefs was reduced over the course of our study and this

  12. Short-term shoreline evolution trend assessment: A case study in Glefe, Ghana

    Directory of Open Access Journals (Sweden)

    Kwadwo Y. Amoani

    2012-07-01

    Full Text Available The growing economic, social and ecological importance of coastal areas in Ghana has increased the challenges associated with sustainably managing the coastal resources. The coastal areas have become more prone and vulnerable to natural and human-made hazards such as coastal erosion. Shoreline retreat is recognised as a burgeoning threat because of global climate change and other anthropogenic activities that alter the natural processes sustaining beaches and coasts. This article describes an application of Real-time Kinematic-Global Positioning System (RTK-GPS technology and digitising of shorelines from orthophotos to detect and analyse the spatial changes as well as quantify the result of shoreline change at Glefe, a suburb of Accra in Ghana. Shoreline positions from a 2005 orthophoto and a 2011 RTK-GPS survey were overlaid in MATLAB (Matrix Laboratory and the average rate of change determined using the endpoint rate (EPR method. The shoreline change rate determined for Glefe between 2005 and 2011 was 1.2 m/a ± 1.3 m/a, indicating a relatively high rate of erosion. Outcomes of the case study can be used as a basis for a sustainable integrated management plan for the coastal area.

  13. Patches structure succession based on spatial point pattern features in semi-arid ecosystems of the water-wind erosion crisscross region

    Directory of Open Access Journals (Sweden)

    Hong-Min Hao

    2017-10-01

    Full Text Available Spatial point-pattern analysis can give insights to the underlying processes of patch succession and restoration. It is unclear whether inter-shrub competition determines patch succession. In this paper, we assessed the spatial patterns along patch succession using spatial statistics such as univariate and bivariate O-ring statistics, in the water-wind erosion crisscross region in semi-arid ecosystems of the Loess Plateau. Point pattern analysis results showed that there were no significant difference in three positions of the slope. The small and middle shrub patches were aggregatedly distributed in small spatial scale, meanwhile the large shrub patches were regularly distributed and dead shrub patches were randomly distributed. The small shrub patches were respectively aggregated to the middle and large patches at fine scales. Competition-induced regular distribution or negative relationship becomes obvious when analyzing the shift towards less aggregated perceptible effect of competition, a time component should always be included in spatial pattern-based inference of competition. Our results revealed that regular, clumped and random shrub patch patterns could occur, pending on size of shrub patches, and the shrub patches are distributed in different ways and they can present variant spatial point pattern features along patch size succession.

  14. Timing of oceans on Mars from shoreline deformation

    Science.gov (United States)

    Citron, Robert I.; Manga, Michael; Hemingway, Douglas J.

    2018-03-01

    Widespread evidence points to the existence of an ancient Martian ocean. Most compelling are the putative ancient shorelines in the northern plains. However, these shorelines fail to follow an equipotential surface, and this has been used to challenge the notion that they formed via an early ocean and hence to question the existence of such an ocean. The shorelines’ deviation from a constant elevation can be explained by true polar wander occurring after the formation of Tharsis, a volcanic province that dominates the gravity and topography of Mars. However, surface loading from the oceans can drive polar wander only if Tharsis formed far from the equator, and most evidence indicates that Tharsis formed near the equator, meaning that there is no current explanation for the shorelines’ deviation from an equipotential that is consistent with our geophysical understanding of Mars. Here we show that variations in shoreline topography can be explained by deformation caused by the emplacement of Tharsis. We find that the shorelines must have formed before and during the emplacement of Tharsis, instead of afterwards, as previously assumed. Our results imply that oceans on Mars formed early, concurrent with the valley networks, and point to a close relationship between the evolution of oceans on Mars and the initiation and decline of Tharsis volcanism, with broad implications for the geology, hydrological cycle and climate of early Mars.

  15. THE EFFICIENCY OF RANDOM FOREST METHOD FOR SHORELINE EXTRACTION FROM LANDSAT-8 AND GOKTURK-2 IMAGERIES

    Directory of Open Access Journals (Sweden)

    B. Bayram

    2017-11-01

    Full Text Available Coastal monitoring plays a vital role in environmental planning and hazard management related issues. Since shorelines are fundamental data for environment management, disaster management, coastal erosion studies, modelling of sediment transport and coastal morphodynamics, various techniques have been developed to extract shorelines. Random Forest is one of these techniques which is used in this study for shoreline extraction.. This algorithm is a machine learning method based on decision trees. Decision trees analyse classes of training data creates rules for classification. In this study, Terkos region has been chosen for the proposed method within the scope of "TUBITAK Project (Project No: 115Y718 titled "Integration of Unmanned Aerial Vehicles for Sustainable Coastal Zone Monitoring Model – Three-Dimensional Automatic Coastline Extraction and Analysis: Istanbul-Terkos Example". Random Forest algorithm has been implemented to extract the shoreline of the Black Sea where near the lake from LANDSAT-8 and GOKTURK-2 satellite imageries taken in 2015. The MATLAB environment was used for classification. To obtain land and water-body classes, the Random Forest method has been applied to NIR bands of LANDSAT-8 (5th band and GOKTURK-2 (4th band imageries. Each image has been digitized manually and shorelines obtained for accuracy assessment. According to accuracy assessment results, Random Forest method is efficient for both medium and high resolution images for shoreline extraction studies.

  16. The Efficiency of Random Forest Method for Shoreline Extraction from LANDSAT-8 and GOKTURK-2 Imageries

    Science.gov (United States)

    Bayram, B.; Erdem, F.; Akpinar, B.; Ince, A. K.; Bozkurt, S.; Catal Reis, H.; Seker, D. Z.

    2017-11-01

    Coastal monitoring plays a vital role in environmental planning and hazard management related issues. Since shorelines are fundamental data for environment management, disaster management, coastal erosion studies, modelling of sediment transport and coastal morphodynamics, various techniques have been developed to extract shorelines. Random Forest is one of these techniques which is used in this study for shoreline extraction.. This algorithm is a machine learning method based on decision trees. Decision trees analyse classes of training data creates rules for classification. In this study, Terkos region has been chosen for the proposed method within the scope of "TUBITAK Project (Project No: 115Y718) titled "Integration of Unmanned Aerial Vehicles for Sustainable Coastal Zone Monitoring Model - Three-Dimensional Automatic Coastline Extraction and Analysis: Istanbul-Terkos Example". Random Forest algorithm has been implemented to extract the shoreline of the Black Sea where near the lake from LANDSAT-8 and GOKTURK-2 satellite imageries taken in 2015. The MATLAB environment was used for classification. To obtain land and water-body classes, the Random Forest method has been applied to NIR bands of LANDSAT-8 (5th band) and GOKTURK-2 (4th band) imageries. Each image has been digitized manually and shorelines obtained for accuracy assessment. According to accuracy assessment results, Random Forest method is efficient for both medium and high resolution images for shoreline extraction studies.

  17. The Shoreline Video Assessment Method (S-VAM): Using dynamic hyperlapse image acquisition to evaluate shoreline mangrove forest structure, values, degradation and threats.

    Science.gov (United States)

    Mackenzie, Jock R; Duke, Norman C; Wood, Apanie L

    2016-08-30

    Climate change with human direct pressures represent significant threats to the resilience of shoreline habitats like mangroves. A rapid, whole-of-system assessment strategy is needed to evaluate such threats, better linking innovative remote sensing with essential on-ground evaluations. Using the Shoreline Video Assessment Method, we surveyed around 190km of the mostly mangrove-fringed (78%) coastline of Kien Giang Province, Vietnam. The aim was to identify anthropogenic drivers of degradation, establishing baseline for specific rehabilitation and protection strategies. Fish traps occupy at least 87% of shoreline mangroves, around which there were abundant human activities - like fishing, crabbing, farming, plus collecting firewood and foliage. Such livelihoods were associated with remnant, fringing mangrove that were largely degraded and threatened by erosion retreat, herbivory, and excessive cutting. Our assessment quantified associated threats to shoreline stability, along with previous rehabilitation intervention measures. The method offers key opportunities for effective conservation and management of vulnerable shoreline habitats. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. The present and future role of coastal wetland vegetation in protecting shorelines: Answering recent challenges to the paradigm

    Science.gov (United States)

    Gedan, Keryn B.; Kirwan, Matthew L.; Wolanski, Eric; Barbier, Edward B.; Silliman, Brian R.

    2011-01-01

    For more than a century, coastal wetlands have been recognized for their ability to stabilize shorelines and protect coastal communities. However, this paradigm has recently been called into question by small-scale experimental evidence. Here, we conduct a literature review and a small meta-analysis of wave attenuation data, and we find overwhelming evidence in support of established theory. Our review suggests that mangrove and salt marsh vegetation afford context-dependent protection from erosion, storm surge, and potentially small tsunami waves. In biophysical models, field tests, and natural experiments, the presence of wetlands reduces wave heights, property damage, and human deaths. Meta-analysis of wave attenuation by vegetated and unvegetated wetland sites highlights the critical role of vegetation in attenuating waves. Although we find coastal wetland vegetation to be an effective shoreline buffer, wetlands cannot protect shorelines in all locations or scenarios; indeed large-scale regional erosion, river meandering, and large tsunami waves and storm surges can overwhelm the attenuation effect of vegetation. However, due to a nonlinear relationship between wave attenuation and wetland size, even small wetlands afford substantial protection from waves. Combining man-made structures with wetlands in ways that mimic nature is likely to increase coastal protection. Oyster domes, for example, can be used in combination with natural wetlands to protect shorelines and restore critical fishery habitat. Finally, coastal wetland vegetation modifies shorelines in ways (e.g. peat accretion) that increase shoreline integrity over long timescales and thus provides a lasting coastal adaptation measure that can protect shorelines against accelerated sea level rise and more frequent storm inundation. We conclude that the shoreline protection paradigm still stands, but that gaps remain in our knowledge about the mechanistic and context-dependent aspects of shoreline

  19. Shore erosion as a sediment source to the tidal Potomac River, Maryland and Virginia

    Science.gov (United States)

    Miller, Andrew J.

    1987-01-01

    The shoreline of the tidal Potomac River attained its present form as a result of the Holocene episode of sea-level rise; the drowned margins of the system are modified by wave activity in the shore zone and by slope processes on banks steepened by basal-wave erosion. Shore erosion leaves residual sand and gravel in shallow water and transports silt and clay offshore to form a measurable component of the suspended-sediment load of the tidal Potomac River. Erosion rates were measured by comparing digitized historical shoreline maps and modern maps, and by comparing stereopairs of aerial photographs taken at different points in time, with the aid of an interactive computer-graphics system and a digitizing stereoplotter. Cartographic comparisons encompassed 90 percent of the study reach and spanned periods of 38 to 109 years, with most measurements spanning at least 84 years. Photogrammetric comparisons encompassed 49 percent of the study reach and spanned 16 to 40 years. Field monitoring of erosion rates and processes at two sites, Swan Point Neck, Maryland, and Mason Neck, Virginia, spanned periods of 10 to 18 months. Estimated average recession rates of shoreline in the estuary, based on cartographic and photogrammetric measurements, were 0.42 to 0.52 meter per annum (Virginia shore) and 0.31 to 0.41 meter per annum (Maryland shore). Average recession rates of shoreline in the tidal river and transition zone were close to 0.15 meter per annum. Estimated average volume-erosion rates along the estuary were 1.20 to 1.87 cubic meters per meter of shoreline per annum (Virginia shore) and 0.56 to 0.73 cubic meter per meter of shoreline per annum (Maryland shore); estimated average volume-erosion rates along the shores of the tidal river and transition zone were 0.55 to 0.74 cubic meter per meter of shoreline per annum. Estimated total sediment contributed to the tidal Potomac River by shore erosion was 0.375 x 10 6 to 0.565 x 10 6 metric tons per annum; of this, the

  20. Quantifying Shoreline Change on Oahu, Hawaii using Aerial Orthophotogrammetry in a Regime of Rising Sea-level

    Science.gov (United States)

    Over, J. S. R.; Fletcher, C. H., II; Barbee, M.; Anderson, T. R.

    2016-12-01

    Shoreline change data has become a significant coastal management tool in the effort to protect beaches for recreation, tourism, and environmental conservation. The Hawaii Shoreline Study uses historical aerial photographs (1928-2006) to delineate long-term trends of coastal accretion and erosion. Data are provided to public and government partners to assist with coastal zone management. In a preliminary effort to update the database for Oahu, aerial images taken in 2015 along the coasts at Makalii, Waikiki, and Sunset Beach, were orthorectified and mosaicked at 0.5 m resolution in PCI Geomatica Orthoengine. Changes in the position of the shoreline were mapped across 478 shore-perpendicular transects (spaced 20 m alongshore) using the low water mark as a shoreline proxy. Analysis of shoreline movement reveals localized variation in rates of change controlled by, but not limited to, differences in wave regimes, armoring, sea level rise, and fluctuations in sediment availability. Updated rates have a mean of -0.073 ± 0.07 m/yr, an indication that they are roughly stable. However, distinct patterns emerge locally. Erosion dominated the period between 2006 and 2015, where 53% of transects lost beach width, 37% showed accretion, and 10% did not change. Sunset Beach and Makalii saw (resp.) 12% and 24% increases in new construction on beachfront parcels in areas with known erosion regimes. These results warrant continued assessment of shoreline change to (1) monitor vulnerability to erosion; likely a result of long-term sea level rise, and (2) improve understanding of localized processes driving erosion and accretion.

  1. Mapping shorelines to subpixel accuracy using Landsat imagery

    Science.gov (United States)

    Abileah, Ron; Vignudelli, Stefano; Scozzari, Andrea

    2013-04-01

    A promising method to accurately map the shoreline of oceans, lakes, reservoirs, and rivers is proposed and verified in this work. The method is applied to multispectral satellite imagery in two stages. The first stage is a classification of each image pixel into land/water categories using the conventional 'dark pixel' method. The approach presented here, makes use of a single shortwave IR image band (SWIR), if available. It is well known that SWIR has the least water leaving radiance and relatively little sensitivity to water pollutants and suspended sediments. It is generally the darkest (over water) and most reliable single band for land-water discrimination. The boundary of the water cover map determined in stage 1 underestimates the water cover and often misses the true shoreline by a quantity up to one pixel. A more accurate shoreline would be obtained by connecting the center point of pixels with exactly 50-50 mix of water and land. Then, stage 2 finds the 50-50 mix points. According to the method proposed, image data is interpolated and up-sampled to ten times the original resolution. The local gradient in radiance is used to find the direction to the shore, thus searching along that path for the interpolated pixel closest to a 50-50 mix. Landsat images with 30m resolution, processed by this method, may thus provide the shoreline accurate to 3m. Compared to similar approaches available in the literature, the method proposed discriminates sub-pixels crossed by the shoreline by using a criteria based on the absolute value of radiance, rather than its gradient. Preliminary experimentation of the algorithm shows that 10m resolution accuracy is easily achieved and in some cases is often better than 5m. The proposed method can be used to study long term shoreline changes by exploiting the 30 years of archived world-wide coverage Landsat imagery. Landsat imagery is free and easily accessible for downloading. Some applications that exploit the Landsat dataset and

  2. Eroding Kenyan Shorelines: the Need for Geological Input Into Shoreline Management, Decisions and Strategy.

    OpenAIRE

    Odada, E.

    1991-01-01

    This paper examines the consequences of responding to rising sea level by stabilization (halting of shoreline retreat by engineering means). Totally new ideas and approaches to shoreline management that incorporate the very significant advances in geological understanding of shoreline processes are also explored. Most of stabilization along the Kenya shores has been done and is being carried out without consideration or understanding of fundamental principles of shoreline processes. Failure t...

  3. Positional Accuracy Assessment for Effective Shoreline Change ...

    African Journals Online (AJOL)

    Ghana Mining Journal ... Data quality may be expressed in terms of several indicators such as attributes, temporal or positional accuracies. ... It is concluded that for the purpose of shoreline change analysis, such as shoreline change trends, large scale data sources should be used where possible for accurate ...

  4. Shoreline response to detached breakwaters in prototype

    NARCIS (Netherlands)

    Khuong, T.C.

    2016-01-01

    An accurate prediction of shoreline changes behind detached breakwaters is, in regard to the adjustment to the environmental impact, still a challenge for designers and coastal managers. This research is expected to fill the gaps in the estimation of shoreline changes by developing new and

  5. Spatio-temporal evolution of shoreline changes along the coast between sousse- Monastir (Eastearn of Tunisia)

    Science.gov (United States)

    Fathallah, S.; Ben Amor, R.; Gueddari, M.

    2009-04-01

    Spatio-temporal evolution of shoreline Changes along the coast between Sousse-Monastir (Eastern of Tunisia). Safa Fathallah*, Rim Ben Amor and Moncef Gueddari Unit of Research of Geochemistry and Environmental Geology. Faculty of Science of Tunis, University of Tunis El Manar, 2092. (*) Corresponding author: safa_fathallah@yahoo.fr The coast of Sousse-Monastir in eastern of Tunisia, has undergone great changes, due to natural and anthropic factors. Increasing human use, the construction of two ports and coastal urbanization (hotels and industries) has accelerated the erosion process. The coastal defense structures (breakwaters and enrockment), built to protect the most eroded zone are efficient, but eroded zones appeared in the southern part of breakwaters. Recent and historic aerial photography was used to estimate, observe, and analyze past shoreline and bathymetric positions and trends involving shore evolution for Sousse-Monastir coast. All of the photographs were calibrated and mosaicked by Arc Map Gis 9.1, the years used are 1925, 1962, 1988, 1996, and 2001 for shoreline change analysis and 1884 and 2001 for bathymetric changes. The analyze of this photographs show that the zone located at the south of breakwater are mostly eroded with high speed process (2m/year). Another zone appears as eroded at the south part of Hamdoun River, with 1,5m/year erosion speed . Keywords: Shoreline evolution, defense structures, Sousse-Monastir coast, Tunisia.

  6. Uncertainties in sandy shorelines evolution under the Bruun rule assumption

    Directory of Open Access Journals (Sweden)

    Gonéri eLe Cozannet

    2016-04-01

    Full Text Available In the current practice of sandy shoreline change assessments, the local sedimentary budget is evaluated using the sediment balance equation, that is, by summing the contributions of longshore and cross-shore processes. The contribution of future sea-level-rise induced by climate change is usually obtained using the Bruun rule, which assumes that the shoreline retreat is equal to the change of sea-level divided by the slope of the upper shoreface. However, it remains unsure that this approach is appropriate to account for the impacts of future sea-level rise. This is due to the lack of relevant observations to validate the Bruun rule under the expected sea-level rise rates. To address this issue, this article estimates the coastal settings and period of time under which the use of the Bruun rule could be (invalidated, in the case of wave-exposed gently-sloping sandy beaches. Using the sedimentary budgets of Stive (2004 and probabilistic sea-level rise scenarios based on IPCC, we provide shoreline change projections that account for all uncertain hydrosedimentary processes affecting idealized coasts (impacts of sea-level rise, storms and other cross-shore and longshore processes. We evaluate the relative importance of each source of uncertainties in the sediment balance equation using a global sensitivity analysis. For scenario RCP 6.0 and 8.5 and in the absence of coastal defences, the model predicts a perceivable shift toward generalized beach erosion by the middle of the 21st century. In contrast, the model predictions are unlikely to differ from the current situation in case of scenario RCP 2.6. Finally, the contribution of sea-level rise and climate change scenarios to sandy shoreline change projections uncertainties increases with time during the 21st century. Our results have three primary implications for coastal settings similar to those provided described in Stive (2004 : first, the validation of the Bruun rule will not necessarily be

  7. Quantifying the effectiveness of shoreline armoring removal on coastal biota of Puget Sound

    Directory of Open Access Journals (Sweden)

    Timothy S. Lee

    2018-02-01

    Full Text Available Shoreline armoring is prevalent around the world with unprecedented human population growth and urbanization along coastal habitats. Armoring structures, such as riprap and bulkheads, that are built to prevent beach erosion and protect coastal infrastructure from storms and flooding can cause deterioration of habitats for migratory fish species, disrupt aquatic–terrestrial connectivity, and reduce overall coastal ecosystem health. Relative to armored shorelines, natural shorelines retain valuable habitats for macroinvertebrates and other coastal biota. One question is whether the impacts of armoring are reversible, allowing restoration via armoring removal and related actions of sediment nourishment and replanting of native riparian vegetation. Armoring removal is targeted as a viable option for restoring some habitat functions, but few assessments of coastal biota response exist. Here, we use opportunistic sampling of pre- and post-restoration data for five biotic measures (wrack % cover, saltmarsh % cover, number of logs, and macroinvertebrate abundance and richness from a set of six restored sites in Puget Sound, WA, USA. This broad suite of ecosystem metrics responded strongly and positively to armor removal, and these results were evident after less than one year. Restoration responses remained positive and statistically significant across different shoreline elevations and temporal trajectories. This analysis shows that removing shoreline armoring is effective for restoration projects aimed at improving the health and productivity of coastal ecosystems, and these results may be widely applicable.

  8. Quantifying the effectiveness of shoreline armoring removal on coastal biota of Puget Sound.

    Science.gov (United States)

    Lee, Timothy S; Toft, Jason D; Cordell, Jeffery R; Dethier, Megan N; Adams, Jeffrey W; Kelly, Ryan P

    2018-01-01

    Shoreline armoring is prevalent around the world with unprecedented human population growth and urbanization along coastal habitats. Armoring structures, such as riprap and bulkheads, that are built to prevent beach erosion and protect coastal infrastructure from storms and flooding can cause deterioration of habitats for migratory fish species, disrupt aquatic-terrestrial connectivity, and reduce overall coastal ecosystem health. Relative to armored shorelines, natural shorelines retain valuable habitats for macroinvertebrates and other coastal biota. One question is whether the impacts of armoring are reversible, allowing restoration via armoring removal and related actions of sediment nourishment and replanting of native riparian vegetation. Armoring removal is targeted as a viable option for restoring some habitat functions, but few assessments of coastal biota response exist. Here, we use opportunistic sampling of pre- and post-restoration data for five biotic measures (wrack % cover, saltmarsh % cover, number of logs, and macroinvertebrate abundance and richness) from a set of six restored sites in Puget Sound, WA, USA. This broad suite of ecosystem metrics responded strongly and positively to armor removal, and these results were evident after less than one year. Restoration responses remained positive and statistically significant across different shoreline elevations and temporal trajectories. This analysis shows that removing shoreline armoring is effective for restoration projects aimed at improving the health and productivity of coastal ecosystems, and these results may be widely applicable.

  9. Role of grounded ship 'MV River Princess' in triggering erosion: A case study from Candolim Sinquerim Coast, Goa.

    Digital Repository Service at National Institute of Oceanography (India)

    ManiMurali, R.; Babu, M.T.; Sudhesh, K.; Mascarenhas, A.; Vethamony, P.

    Multi-temporal satellite imageries of 1997, 2001 and 2006, wave model results and field observations were used to evaluate effect of the grounded vessel MV River Princess. Erosion was triggered along the Candolim-Sinquerim shoreline due...

  10. Erosive gastritis

    International Nuclear Information System (INIS)

    Mohammed, S.H.; Conrad, C.; Kjoergaad, J.

    1982-01-01

    Erosive gastritis is a well-defined radiologic and endoscopic entity. It is one of the common causes of upper gastrointestinal bleeding, yet it is seldom diagnosed and often confused with a number of other diseases. This communication re-emphasizes the characteristic endoscopic and radiologic features of erosive gastritis and its differential diagnosis. Two representative cases are reported. (orig.)

  11. Long-term and storm-related shoreline change trends in the Florida Gulf Islands National Seashore

    Science.gov (United States)

    Hapke, C.J.; Christiano, M.

    2007-01-01

    Coastal erosion on Northern Gulf of Mexico barrier islands is an ongoing issue that was exacerbated by the storm seasons of 2004 and 2005 when several hurricanes made landfall in the Gulf of Mexico. Two units of the Gulf Islands National Seashore (GUIS), located on Santa Rosa Island, a barrier island off the Panhandle coast of Florida, were highly impacted during the hurricanes of 2004 (Ivan) and 2005 (Cindy, Dennis, Katrina and Rita). In addition to the loss of or damage to natural and cultural resources within the park, damage to park infrastructure, including park access roads and utilities, occurred in areas experiencing rapid shoreline retreat. The main park road was located as close as 50 m to the pre-storm (2001) shoreline and was still under repair from damage incurred during Hurricane Ivan when the 2005 hurricanes struck. A new General Management Plan is under development for the Gulf Islands National Seashore. This plan, like the existing General Management Plan, strives to incorporate natural barrier island processes, and will guide future efforts to provide access to units of Gulf Islands National Seashore on Santa Rosa Island. To assess changes in island geomorphology and provide data for park management, the National Park Service and the U.S. Geological Survey are currently analyzing shoreline change to better understand long-term (100+ years) shoreline change trends as well as short-term shoreline impact and recovery to severe storm events. Results show that over an ~140-year period from the late 1800s to May 2004, the average shoreline erosion rates in the Fort Pickens and Santa Rosa units of GUIS were -0.7m/yr and -0.1 m/yr, respectively. Areas of historic erosion, reaching a maximum rate of -1.3 m/yr, correspond to areas that experienced overwash and road damage during the 2004 hurricane season. The shoreline eroded as much as ~60 m during Hurricane Ivan, and as much as ~88 m over the course of the 2005 storm season. The shoreline erosion rates in

  12. Sea Spray Generation at a Rocky Shoreline

    Science.gov (United States)

    2015-07-01

    Report 3. DATES COVERED (From - To) 6/15/2012 – 9/15/2015 4. TITLE AND SUBTITLE “Sea Spray Generation at a Rocky Shoreline ” 5a. CONTRACT...this project. The paper, “Sea Spray Generation at Rocky Shoreline ” by Ed Andreas was accepted for publication and as of July 2016 was being...13 Sea Spray Generation at a Rocky Shoreline 14 15 16 17 Edgar L Andreas 18 19 NorthWest Research Associates, Inc. 20 Lebanon, New

  13. Medium-term shoreline evolution of the mediterranean coast of Andalusia (SW Spain)

    Science.gov (United States)

    Liguori, Vincenzo; Manno, Giorgio; Messina, Enrica; Anfuso, Giorgio; Suffo, Miguel

    2015-04-01

    Coastal environment is a dynamic system in which numerous natural processes are continuously actuating and interacting among them. As a result, geomorphologic, physical and biological characteristics of coastal environments are constantly changing. Such dynamic balance is nowadays seriously threatened by the strong and increasing anthropic pressure that favors erosion processes, and the associated loss of environmental, ecologic and economic aspects. Sandy beaches are the most vulnerable environments in coastal areas. The aim of this work was to reconstruct the historical evolution of the Mediterranean coastline of Andalusia, Spain. The investigated area is about 500 km in length and includes the provinces of Cadiz, Malaga, Granada and Almeria. It is essentially composed by cliffed sectors with sand and gravel pocket beaches constituting independent morphological cells of different dimensions. This study was based on the analysis of aerial photos and satellite images covering a period of 55 years, between 1956 and 2011. Aerial photos were scanned and geo-referenced in order to solve scale and distortion problems. The shoreline was considered and mapped through the identification of the wet / dry sand limit which coincides with the line of maximum run-up; this indicator - representing the shoreline at the moment of the photo - is the most easily identifiable and representative one in microtidal coastal environments. Since shoreline position is linked to beach profile characteristics and to waves, tide and wind conditions at the moment of the photo, such parameters were taken into account in the calculation of shoreline position and changes. Specifically, retreat/accretion changes were reconstructed applying the DSAS method (Digital Shoreline Analysis System) proposed by the US Geological Survey. Significant beach accretion was observed at Playa La Mamola (Granada), with +1 m/y, because the construction of five breakwaters, and at Playa El Cantal (Almeria) and close

  14. Soil erosion and sediment delivery in a mountain catchment under land use change: using point fallout 137Cs for calibrating a spatially distributed numerical model

    Science.gov (United States)

    Alatorre, L. C.; Beguería, S.; Lana-Renault, N.; Navas, A.; García-Ruiz, J. M.

    2011-12-01

    Soil erosion and sediment yield are strongly affected by land use/land cover (LULC). Spatially distributed erosion models are useful tools for comparing erosion resulting from current LULC with a number of alternative scenarios, being of great interest to assess the expected effect of LULC changes. In this study the soil erosion and sediment delivery model WATEM/SEDEM was applied to a small experimental catchment in the Central Spanish Pyrenees. Model calibration was carried out based on a dataset of soil redistribution rates derived from 137Cs inventories along three representative transects, allowing capture differences per land use in the main model parameters. Model calibration showed a good convergence to a global optimum in the parameter space. Validation of the model results against seven years of recorded sediment yield at the catchment outlet was satisfactory. Two LULC scenarios where then modeled to reproduce the land use at the beginning of the twentieth Century and a hypothetic future scenario, and to compare the simulation results to the current LULC situation. The results show a reduction of about one order of magnitude in gross erosion (3180 to 350 Mg yr-1) and sediment delivery (11.2 to 1.2 Mg yr-1 ha-1) during the last decades as a result of the abandonment of traditional land uses (mostly agriculture) and subsequent vegetation re-colonization. The simulation also allowed assessing differences in the sediment sources and sinks within the catchment.

  15. Decadal changes in the land use/land cover and shoreline along the coastal districts of southern Gujarat, India.

    Science.gov (United States)

    Misra, A; Balaji, R

    2015-07-01

    The coastal zone along the districts of Surat, Navsari, and Valsad in southern Gujarat, India, is reported to be facing serious environmental challenges in the form of shoreline erosion, wetland loss, and man-made encroachments. This study assesses the decadal land use/ land cover (LULC) changes in these three districts for the years 1990, 2001, and 2014 using satellite datasets of Landsat TM, ETM, and OLI. The LULC changes are identified by using band ratios as a pre-classification step, followed by implementation of hybrid classification (a combination of supervised and unsupervised classification). An accuracy assessment is carried out for each dataset, and the overall accuracy ranges from 90 to 95%. It is observed that the spatial extents of aquaculture, urban built-up, and barren classes have appreciated over time, whereas the coverage of mudflats has depreciated due to rapid urbanization. The changes in the shoreline of these districts have also been analyzed for the same years, and significant changes are found in the form of shoreline erosion. The LULC maps prepared as well as the shoreline change analysis done for this study area will enable the local decision makers to adopt better land-use planning and shoreline protection measures, which will further aid in sustainable future developments in this region.

  16. Shoreline changes and Coastal Flooding impacts: South Gujarat coast (India)

    Science.gov (United States)

    Parihar, S. B.

    2016-12-01

    South Gujarat coast (India) is experiencing increased coastal inundation and erosion caused by sea-level rise affecting the population, infrastructure, and environment. The area falls under low elevation coastal zone (LEZ) and its topography of the area is also making coast highly susceptible to flooding, especially at high tides and during the rainy season. As part of studies on shoreline changes field trip carried on the coastal taluka's of South Gujarat coast i.e. Surat, Navsari and Valsad shows various temporal changes is taking place at coastal belt. There are ample of studies on coastal dynamics and impacts. The study focus on spatial temporal analysis shows the vulnerable zones covering various physical elements at risk. These coastal areas are attractive in nature for all kind of economic development and growth because of availability of the water & fertile land for house hold use, fishing and transportation. On the contrary, South Gujarat coast being tectonically active; makes this region high vulnerable for any kind of infrastructure development. The region had also witnessed loss of life and property, disruptions to transport & power and incidences of epidemics during the floods of 2006 in Surat. Coastal flooding would, under these scenarios, threaten region that are home of 370,000 approx (Census, 2011) people in seven coastal taluka's of Surat, Navsari and Valsad district. Among the people residing in the region, the most vulnerable communities are fishermen, farmer and industrial labours. The wide range of infrastructure such as roads, hospitals, schools, power plants, industries and port will also be at risk. Shoreline changes are inevitably changing the characteristics of south Gujarat coast; practices and policies should be put in place to mitigate the potentially adverse impacts on environment and human settlements. Key words: sea level rise, LEZ, vulnerable, erosion, inundation, spatial temporal analysis, landuse changes.

  17. Remote sensing and gis applications in determining shoreline and ...

    African Journals Online (AJOL)

    The study of shoreline changes is essential for updating the changes in shoreline maps and management of natural resources as the shoreline is one of the most important features on the earth's surface. Shorelines are the key element in coastal GIS that provide information on coastal landform dynamics. The purpose of ...

  18. 36 CFR 327.31 - Shoreline management fee schedule.

    Science.gov (United States)

    2010-07-01

    ... 36 Parks, Forests, and Public Property 3 2010-07-01 2010-07-01 false Shoreline management fee... THE CHIEF OF ENGINEERS § 327.31 Shoreline management fee schedule. A charge will be made for Shoreline... permits for vegetative modification on Shoreline areas. In all cases the total administrative charge will...

  19. Shoreline Stabilization Design and Wetland Restoration

    National Research Council Canada - National Science Library

    Hill, Carlton

    2001-01-01

    ...) and the Commonwealth of Virginia, Department of Conservation and Recreation (DCR). The project was for the design of shoreline stabilization and potential wetland restoration at five sites within LAFB...

  20. Numerical prediction of shoreline adjacent to breakwater

    Digital Repository Service at National Institute of Oceanography (India)

    Mahadevan, R.; Chandramohan, P.; Nayak, B.U.

    Existing mathematical models for prediction of shoreline changes in the vicinity of a breakwater were reviewed The analytical and numerical results obtained from these models have been compared Under the numerical approach, two different implicit...

  1. Shoreline changes along the Poompuhar Tranquebar region

    Digital Repository Service at National Institute of Oceanography (India)

    Sundaresh; Jayakumar, S.; SanilKumar, V.

    of terracotta ring wells, brick structures, storage jars in the inter tidal zone and brick structures, stone structures, pottery from offshore explorations strongly support the habitation sites. There are several references suggesting the shift of shoreline...

  2. Historical Shoreline for Louisiana, Geographic NAD83, NOAA (2001) [shoreline_la_NOAA_1986

    Data.gov (United States)

    Louisiana Geographic Information Center — These data were automated to provide a suitable geographic information system (GIS) data layer depicting the historical shoreline for Louisiana. These data are...

  3. On the significance of incorporating shoreline changes for evaluating coastal hydrodynamics under sea level rise scenarios

    Science.gov (United States)

    Passeri, D.; Hagen, S. C.; Medeiros, S. C.

    2013-12-01

    Sea level rise (SLR) threatens coastal environments with loss of land, inundation of coastal wetlands, and increased flooding during extreme storm events. Research has shown that SLR is a major factor in the long-term, gradual retreat of shorelines (Fitzgerald et al., 2008). Along sandy shorelines, retreat has a more dynamic effect than just inundation due to rising water levels, including the physical process of erosion in which sand is removed from the shoreface and deposited offshore. This has the potential to affect ecological habitats as well as coastal communities. Although SLR induces seaward retreat of shorelines, many shorelines especially within the vicinity of inlets may experience accretion due to sediment trapping or beach replenishment (Aubrey and Giese, 1993, Browder and R.G., 1999). This study examines the influence of including projected shoreline changes under future sea states into hydrodynamic modeling within the Northern Gulf of Mexico (NGOM). The NGOM coastline is an economically and ecologically significant area, comprised of various bays, barrier islands and mainland beaches. Projected shorelines and nearshore morphology for the year 2050 are derived from the Coastal Vulnerability Index (CVI) shoreline change rates (Thieler and Hammer-Klose, 1999) and used in conjunction with the 'Bruun Rule effect'(Bruun, 1962). A large scale hydrodynamic model forced by astronomic tides and hurricane winds and pressures is used to simulate present conditions, a high projection of the 2050 sea state (18 in of SLR in accordance with Parris et al. (2012)) and the 2050 high sea state with 2050 shorelines to test the sensitivity of the system to the projected shoreline changes. Results show that shoreline changes coupled with sea level rise increases tidal inundation along shorelines, amplifies overtopping of barrier islands during storm surge events, and heightens inland storm surge inundation. It is critical to include estimates of shoreline and barrier

  4. Utilizing topobathy LIDAR datasets to identify shoreline variations and to direct charting updates in the northern Gulf of Mexico

    Science.gov (United States)

    Gremillion, S. L.; Wright, S. L.

    2017-12-01

    Topographic and bathymetric light detection and ranging (LIDAR), remote sensing tools used to measure vertical elevations, are commonly employed to monitor shoreline fluctuations. Many of these publicly available datasets provide wide-swath, nearshore topobathy which can be used to extract shoreline positions and analyze coastlines experiencing the greatest temporal and spatial variability. This study focused on the shorelines of Mississippi's Jackson County to determine the minimum time for significant positional changes to occur, relative to currently published NOAA navigational charts. Many of these dynamic shorelines are vulnerable to relative sea level rise, storm surge, and coastal erosion. Utilizing LIDAR datasets from 1998-2015, shoreline positions were derived and analyzed against NOAA's Continually Updated Shoreline Product (CUSP) to recommend the frequency at which future surveys should be conducted. Advisement of charting updates were based upon the resolution of published charts, and the magnitude of observed variances. Jackson County shorelines were divided into four areas for analysis; the mainland, Horn Island, Petit Bois Island (PBI), and a dredge spoil area west of PBI. The mainland shoreline experienced an average change rate of +0.57 m/yr during the study period. This stability was due to engineering structures implemented in the early 1920's to protect against tropical storms. Horn Island, the most stable barrier island, changed an average of -1.34 m/yr, while PBI had an average change of -2.70 m/yr throughout. Lastly, the dredge spoil area changed by +9.06 m/yr. Based on these results, it is recommended that LIDAR surveys for Jackson County's mainland be conducted at least every two years, while surveys of the offshore barrier islands be conducted annually. Furthermore, insufficient LIDAR data for Round Island and the Round Island Marsh Restoration Project highlight these two areas as priority targets for future surveys.

  5. Spatial variability in shoreline change along the Atlantic coast of Delaware: Influence of the geologic framework

    Science.gov (United States)

    Honeycutt, Maria Grace

    The oceanographic and sediment-transport processes governing shoreline change are rarely resolvable from the spatially and temporally limited datasets available. Until more comprehensive data become available, the complex interactions of the myriad processes controlling long-term shoreline change are assumed to be reflected in the migration of the high-water line or comparable shoreline feature. Given the limitations of this approach, other data that can provide context for interpreting historical changes or constraining erosion forecasts become critical. The antecedent geologic framework, including the land surface that is being inundated and eroded during transgression, can provide such a context. The geomorphology and spatial and temporal patterns of shoreline change are, to varying degrees, dependent upon antecedent topography and sediment variations across that surface. Comprehensive geophysical field-data collection and analysis were conducted along the Delaware Atlantic Coast to refine the geologic framework and explore the ways in which the framework influences modern geomorphology and the long-term retreat of the beach system. Ground-penetrating radar profiles collected on the uplands northwest of Bethany Beach revealed the internal structure of and the spatial relationships among the early Stage 5 paleoshorelines preserved on the emergent Coastal Plain. As documented in high-resolution, Chirp (2--10 kHz) seismic-reflection profiles collected in the nearshore zone, the Holocene sand sheet is generally only a 1--2 meter-thick veneer overlying Pleistocene units, which are the submerged, eastern portions of the Rehoboth and Bethany headlands. The locations of Pleistocene and Holocene fluvially and tidally incised valleys, some of which flank the headlands, were mapped in the shoreface and across the inner shelf. Spatial and temporal anomalies in historical shoreline-change data were observed coincident with the major sedimentologic and age discontinuities

  6. Coastal dynamic and shoreline mapping: multi-sources spatial data analysis in Semarang Indonesia.

    Science.gov (United States)

    Marfai, Muh Aris; Almohammad, Hussein; Dey, Sudip; Susanto, Budi; King, Lorenz

    2008-07-01

    Semarang coastal area has geomorphologically complex processes, such as erosion-sedimentation, land subsidence, and tidal inundation hazard. Multi-years shoreline mapping is considered a valuable task for coastal monitoring and assessment. This paper presents maps illustrating the shoreline dynamic in a coastal area of Semarang-Indonesia using multi-sources spatial data. The segment data has been obtained by visual delineation of the topographic maps Year 1908, 1937, 1992 and Ikonos image Year 2003 as well as digital number (DN) value analysis and masking operation of Landsat MSS Year 1972 and Landsat ETM Year 2001. For the long period of almost 100 year, the shoreline dynamic in Semarang coastal area is dominated by sedimentation process. Shoreline extended to the sea as a result of man-made infrastructure and natural processes. The research's result was satisfactory and the method has proven to be effective considering lack of homogeneous data-series. However, some further improvement regarding geo-processing can be made and the accuracy can be tested in future version.

  7. Preliminary study of soil liquefaction hazard at Terengganu shoreline, Peninsular Malaysia

    Science.gov (United States)

    Hashim, H.; Suhatril, M.; Hashim, R.

    2017-06-01

    Terengganu is a shoreline state located in Peninsular Malaysia which is a growing hub for port industries and tourism centre. The northern part offers pristine settings of a relax beach areas whereas the southern part are observed to be a growing centre for development. The serious erosion on soil deposit along the beach line presents vulnerable soil condition to soil liquefaction consists of sandy with low plasticity and shallow ground water. Moreover, local earthquake from nearby fault have present significant tremors over the past few years which need to be considered in the land usage or future development in catering the seismic loading. Liquefaction analysis based on field standard penetration of soil is applied on 546 boreholes scattered along the shoreline areas ranging 244 km of shoreline stretch. Based on simplified approach, it is found that more than 70% of the studied areas pose high liquefaction potential since there are saturated loose sand and silt deposits layer ranges at depth 3 m and up to 20 m. The presence of clay deposits and hard stratum at the remaining 30% of the studied areas shows good resistance to soil liquefaction hence making the area less significant to liquefaction hazard. Result indicates that liquefaction improving technique is advisable in future development of shoreline areas of Terengganu state.

  8. Quantifying Sea-Ice Loss as a Driver of Arctic Coastal Erosion

    Science.gov (United States)

    Overeem, I.; Wobus, C. W.; Anderson, R. S.; Clow, G. D.; Urban, F. E.; Stanton, T. P.

    2009-12-01

    Rapid erosion along the Arctic coast has highlighted the susceptibility of northern shorelines to changes in climate. Recent studies suggest a correlation between rapid coastline retreat and warming temperatures. Rapid coastal change coincides with declines in sea ice extent, which allows increase of sea surface temperature (SST), and inevitably exposes Arctic coastlines to increasing wave attack. Observations over a ~3 km transect of frozen, silty bluffs along the Beaufort Sea Coast at Drew Point, Alaska show an average annual loss of 12-15 m of coastline over 2007-2009. Locally, rates are as high as 25 m/yr. The lack of significant inflections across transitions to more sandy stretches of coastline suggests that sandy spits regress landward at similar rates during storm events. We quantify the impact of sea ice loss on the Arctic coast by using ‘open water season duration’ and ‘open water distance’ normal to the coast as first order proxies for erosion potential. Sea ice concentrations have been analyzed using Nimbus 7-SMMR /SSM/I and DMSP SSMI Passive Microwave data, which runs from 1978 to the present at daily or two-daily time resolution. The data cover the entire Arctic region at 25 by 25 km. Locally at Drew Point, the open water time window increases progressively over time and the high erosion years of 2004 and 2007 stand out as having large open water distances. Observed local temperature, solar radiation and wind records drive approximations of SST warming and wave energy. Our hypothesis is that areas of the coastal zone that experience significant changes in open water season and open water distance will be more vulnerable to changes due to ocean storm erosion and thermal notching by waves. Actual erosion is also importantly influenced by dominant wind directions, local bathymetry and specific time series of storm tracks.

  9. Shoreline clean-up methods : biological treatments

    Energy Technology Data Exchange (ETDEWEB)

    Massoura, S.T. [Oil Spill Response Limited, Southampton (United Kingdom)

    2009-07-01

    The cleanup of oil spills in shoreline environments is a challenging issue worldwide. Oil spills receive public and media attention, particularly in the event of a coastal impact. It is important to evaluate the efficiency and effectiveness of cleanup methods when defining the level of effort and consequences that are appropriate to remove or treat different types of oil on different shoreline substrates. Of the many studies that have compared different mechanical, chemical and biological treatments for their effectiveness on various types of oil, biological techniques have received the most attention. For that reason, this paper evaluated the effectiveness and effects of shoreline cleanup methods using biological techniques. It summarized data from field experiments and oil spill incidents, including the Exxon Valdez, Sea Empress, Prestige, Grand Eagle, Nakhodka, Guanabara Bay and various Gulf war oil spills. Five major shoreline types were examined, notably rocky intertidal, cobble/pebble/gravel, sand/mud, saltmarsh, and mangrove/sea-grass. The biological techniques that were addressed were nutrient enrichment, hydrocarbon-utilizing bacteria, vegetable oil biosolvents, plants, surf washing, oil-particle interactions and natural attenuation. The study considered the oil type, volume and fate of stranded oil, location of coastal materials, extent of pollution and the impact of biological techniques. The main factors that affect biodegradation of hydrocarbons are the volume, chemical composition and weathering state of the petroleum product as well as the temperature, oxygen availability of nutrients, water salinity, pH level, water content, and microorganisms in the shoreline environment. The interaction of these factors also affect the biodegradation of oil. It was concluded that understanding the fate of stranded oil can help in the development of techniques that improve the weathering and degradation of oil on complex shoreline substrates. 39 refs.

  10. National assessment of shoreline change—Summary statistics for updated vector shorelines and associated shoreline change data for the Gulf of Mexico and Southeast Atlantic coasts

    Science.gov (United States)

    Himmelstoss, Emily A.; Kratzmann, Meredith G.; Thieler, E. Robert

    2017-07-18

    Long-term rates of shoreline change for the Gulf of Mexico and Southeast Atlantic regions of the United States have been updated as part of the U.S. Geological Survey’s National Assessment of Shoreline Change project. Additional shoreline position data were used to compute rates where the previous rate-of-change assessment only included four shoreline positions at a given location. The long-term shoreline change rates also incorporate the proxy-datum bias correction to account for the unidirectional onshore bias of the proxy-based high water line shorelines relative to the datum-based mean high water shorelines. The calculation of uncertainty associated with the long-term average rates has also been updated to match refined methods used in other study regions of the National Assessment project. The average rates reported here have a reduced amount of uncertainty relative to those presented in the previous assessments for these two regions.

  11. Bank erosion of navigation canals in the western and central Gulf of Mexico

    Science.gov (United States)

    Thatcher, Cindy A.; Hartley, Stephen B.; Wilson, Scott A.

    2011-01-01

    Erosion of navigation canal banks is a direct cause of land loss, but there has been little quantitative analysis to determine why certain major canals exhibit faster widening rates (indicative of erosion) than others in the coastal zones of Texas, Louisiana, Mississippi, and Alabama. We hypothesize that navigation canals exhibit varying rates of erosion based on soil properties of the embankment substrate, vegetation type, geologic region (derived from digital versions of state geologic maps), and the presence or absence of canal bank armaments (that is, rock rip-rap, concrete bulkheads, or other shoreline protection structures). The first objective of this project was to map the shoreline position and substrate along both banks of the navigation canals, which were digitized from 3 different time periods of aerial photography spanning the years of 1978/79 to 2005/06. The second objective was to quantify the erosion rates of the navigation canals in the study area and to determine whether differences in erosion rates are related to embankment substrate, vegetation type, geologic region, or soil type. To measure changes in shoreline position over time, transects spaced at 50-m (164-ft) intervals were intersected with shorelines from all three time periods, and an annual rate of change was calculated for each transect. Mean annual rates of shoreline change ranged from 1.75 m/year (5.74 ft/year) on the west side of the Atchafalaya River, La., where there was shoreline advancement or canal narrowing, to -3.29 m/year (-10.79 ft/year) on the south side of the Theodore Ship Channel, Ala., where there was shoreline retreat or erosion. Statistical analysis indicated that there were significant differences in shoreline retreat rates according to geologic region and marsh vegetation type, and a weak relationship with soil organic content. This information can be used to better estimate future land loss rates associated with navigation canals and to prioritize the location of

  12. National assessment of shoreline change: historical change along the north coast of Alaska, U.S.-Canadian border to Icy Cape

    Science.gov (United States)

    Gibbs, Ann E.; Richmond, Bruce M.

    2015-01-01

    Beach erosion is a persistent problem along most open-ocean shores of the United States. Along the Arctic coast of Alaska, coastal erosion is widespread, may be accelerating, and is threatening defense and energy-related infrastructure, coastal habitats, and Native communities. As coastal populations continue to expand and infrastructure and habitat are increasingly threatened by erosion, there is increased demand for accurate information regarding past and present trends and rates of shoreline movement. There also is a need for a comprehensive analysis of shoreline change with metrics that are consistent from one coastal region to another. To meet these national needs, the U.S. Geological Survey is conducting an analysis of historical shoreline changes along the open-ocean sandy shores of the conterminous United States and parts of Hawaii, Alaska, and the Great Lakes. One purpose of this work is to develop standard, repeatable methods for mapping and analyzing shoreline change so that periodic, systematic, and internally consistent updates regarding coastal erosion and land loss can be made nationally.

  13. Coastal erosion and accretion in Pak Phanang, Thailand by GIS analysis of maps and satellite imagery

    Directory of Open Access Journals (Sweden)

    Sayedur Rahman Chowdhury

    2013-12-01

    Full Text Available Coastal erosion and accretion in Pak Phanang of southern Thailand between 1973 and 2003 was measured using multi-temporal topographic maps and Landsat satellite imageries. Within a GIS environment landward and seaward movements of shoreline was estimated by a transect-based analysis, and amounts of land accretion and erosion were estimated by a parcel-based geoprocessing. The whole longitudinal extent of the 58 kilometer coast was classified based on the erosion and accretion trends during this period using agglomerative hierarchical clustering approach. Erosion and accretion were found variable over time and space, and periodic reversal of status was also noticed in many places. Estimates of erosion were evaluated against field-survey based data, and found reasonably accurate where the rates were relatively great. Smoothing of shoreline datasets was found desirable as its impacts on the estimates remained within tolerable limits.

  14. Eureka Littoral Cell CRSMP Humboldt Bay Shoreline Types 2011

    Data.gov (United States)

    California Department of Resources — In 2011 Aldaron Laird walked and kayaked the entire shoreline of Humboldt Bay mapping the shoreline conditions onto 11x17 laminated fieldmaps at a scale of 1' = 200'...

  15. Changes in the shoreline at Paradip Port, India in response to climate change

    Science.gov (United States)

    Gopikrishna, B.; Deo, M. C.

    2018-02-01

    One of the popular methods to predict shoreline shifts into the future involves use of a shoreline evolution model driven by the historical wave climate. It is however understood by now that historical wave conditions might substantially change in future in response to climate change induced by the global warming. The future shoreline changes as well as sediment transport therefore need to be determined with the help of future projections of wave climate. In this work this is done at the port of Paradip situated along the east coast of India. The high resolution wind resulting from a climate modelling experiment called: CORDEX, South Asia, was used to simulate waves over two time-slices of 25 years each in past and future. The wave simulations were carried out with the help of a numerical wave model. Thereafter, rates of longshore sediment transport as well as shoreline shifts were determined over past and future using a numerical shoreline model. It was found that at Paradip Port the net littoral drift per metre width of cross-shore might go up by 37% and so also the net accumulated drift over the entire cross-shore width by 71%. This could be caused by an increase in the mean significant wave height of around 32% and also by changes in the frequency and direction of waves. The intensification of waves in turn might result from an increase in the mean wind speed of around 19%. Similarly, the horizontal extent of the beach accretion and erosion at the port's southern breakwater might go up by 4 m and 8 m, respectively, from the current level in another 25 years. This study should be useful in framing future port management strategies.

  16. Freshman Orientation Evaluation, Shoreline Community College.

    Science.gov (United States)

    Hartley, Gordon

    Evaluation of the freshman orientation program at Shoreline Community College (Washington) was approached through the use of several criteria: (l) results of the Brown-Holtzman Survey of Study Habits and Attitudes (SSHA), (2) comparison of first-quarter grade averages with orientation program attendance records, (3) the completion of a…

  17. Variability of shore and shoreline evolution

    NARCIS (Netherlands)

    Stive, Marcel J.F.; Aarninkhof, Stefan G.J.; Hamm, Luc; Hanson, Hans; Larson, Magnus; Wijnberg, Kathelijne Mariken; Nicholls, Robert J.; Capobianco, Michele; Capobianco, Michele

    2002-01-01

    Shore and shoreline evolution both due to natural and human-induced causes or factors can be variable over a wide range of different temporal and/or spatial scales. Our capability to understand and especially predict this variability is still limited. This can lead to misinterpretation of coastal

  18. Erhversbetinget erosion?

    DEFF Research Database (Denmark)

    Dige, Irene; Gjørup, Hans; Nyvad, Bente

    2012-01-01

    Baggrund – I forbindelse med dental erosion er en grundig udredning af patienten vigtig, således at årsagen til erosionernes opståen findes, og der kan iværksættes adækvat forebyggende indsats. En sådan udredning er ikke mindst vigtig, når arbejdsmiljøet mistænkes. Patienttilfælde – En 30-årig...... arbejdsskade, men ikke anerkendt, da erosioner ikke er optaget på Arbejdsskadestyrelsens liste over erhvervssygdomme. En systematisk registrering af lignende tilfælde kunne imidlertid på sigt ændre retspraksis for fremtidige patienter med arbejdsbetinget erosion....

  19. Observations of shoreline-sandbar coupling on an embayed beach

    NARCIS (Netherlands)

    van de Lageweg, W.I.; Bryan, K.R.; Coco, G.; Ruessink, B.G.

    2013-01-01

    We analyse a seven-year dataset (1999–2005) of shoreline and sandbar variations derived from video observations at the embayed Tairua Beach, New Zealand, to explore sandbar–shoreline coupling and to determine how this coupling is related to alongshore-averaged sandbar–shoreline separation and beach

  20. Monitoring Shoreline Change using Remote Sensing and GIS: A ...

    African Journals Online (AJOL)

    Key words: remote sensing, geographic information system (GIS), aerial photographs, shoreline change. Data from aerial photographs taken in 1981, 1992 and 2002 of the Kunduchi shoreline off the Dar es Salaam coast were integrated in a geographic information system (GIS) to determine shoreline change in that locality.

  1. Oblique Aerial Photography of the Arctic Coast of Alaska, Cape Sabine to Milne Point, July 16-19, 2009

    Science.gov (United States)

    Gibbs, Ann E.; Richmond, Bruce M.

    2010-01-01

    The Arctic Coastal Plain of northern Alaska, an area of strategic economic importance to the United States, is home to remote Native American communities and encompasses unique habitats of global significance. Coastal erosion along the Arctic coast is chronic and widespread; recent evidence suggests that erosion rates are among the highest in the world (as high as ~16 m/yr) and may be accelerating. Coastal erosion adversely impacts energy-related infrastructure, natural shoreline habitats, and Native American communities. Climate change is thought to be a key component of recent environmental changes in the Arctic. Reduced sea-ice cover in the Arctic Ocean is one of the probable mechanisms responsible for increasing coastal exposure to wave attack and the resulting increase in erosion. Extended periods of permafrost melting and associated decreases in bluff cohesion and stability are another possible source of the increase in erosion. Several studies of selected areas on the Alaska coast document past shoreline positions and coastal change, but none have examined the entire North coast systematically. Results from these studies indicate high rates of coastal retreat that vary spatially along the coast. To address the need for a comprehensive and regionally consistent evaluation of shoreline change along the North coast of Alaska, the U.S. Geological Survey (USGS), as part of their Coastal and Marine Geology Program's (CMGP) National Assessment of Shoreline Change Study, is evaluating shoreline change from Peard Bay to the United States/Canadian border, using historical maps and photography and a standardized methodology that is consistent with other shoreline-change studies along the Nation's coastlines (see, for example, http://coastal.er.usgs.gov/shoreline-change/, last accessed February 12, 2010). This is the second in a series of publications containing photographs collected during reconnaissance surveys conducted in support of the National Assessment of

  2. Response of Living Shorelines to Wave Energy and Sea Level rise: Short-term Resilience and Long-term Vulnerability in North Carolina

    Science.gov (United States)

    Currin, C.; Davis, J.

    2017-12-01

    A decade of research and monitoring of Living Shoreline sites in North Carolina identifies both resilient and vulnerable features of this approach to estuarine shoreline stabilization. We used a wave energy model to calculate representative wave energy along 1500 miles of estuarine shoreline, and observed a linear, negative relationship between wind-wave energy and the width of fringing salt marshes. Proximity to navigation channels (boat wakes) further reduced fringing marsh width. These results provide guidance for Living Shoreline design alternatives. Surface elevation tables (SETs) deployed at the lower edge of both natural fringing marshes and `Living Shoreline' marsh-sill sites demonstrated that while natural marshes were losing surface elevation at an average rate of 6 mm y-1, marsh surface elevation at Living Shoreline sites increased at an average of 3 mm y-1. Marsh vegetation at the lower edge of natural sites exhibited a decline in biomass, while Living Shoreline sites exhibited an increase in upper marsh species and an extension of lower marsh into previous mudflat habitat. These changes provide Living Shoreline (marsh-sill) sites with added resilience to sea level rise, though decreased inundation alters the delivery of other ecosystem services (fish habitat, nutrient cycling). North Carolina lagoonal estuaries have low suspended sediment supply and low topography, and modeling predicts that landward transgression is the primary means by which salt marsh acreage can be maintained under moderate to high sea level rise scenarios. In this region, bank erosion can be important source of sediment to wetland habitats. Further, the association of built infrastructure with Living Shoreline sites portends a future scenario of coastal squeeze, as marsh migration landward will be inhibited.

  3. The Arctic Coastal Erosion Problem

    Energy Technology Data Exchange (ETDEWEB)

    Frederick, Jennifer M. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Thomas, Matthew Anthony [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Bull, Diana L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Jones, Craig A. [Integral Consulting Inc., San Francisco, CA (United States); Roberts, Jesse D. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2016-09-01

    Permafrost-dominated coastlines in the Arctic are rapidly disappearing. Arctic coastal erosion rates in the United States have doubled since the middle of the twentieth century and appear to be accelerating. Positive erosion trends have been observed for highly-variable geomorphic conditions across the entire Arctic, suggesting a major (human-timescale) shift in coastal landscape evolution. Unfortunately, irreversible coastal land loss in this region poses a threat to native, industrial, scientific, and military communities. The Arctic coastline is vast, spanning more than 100,000 km across eight nations, ten percent of which is overseen by the United States. Much of area is inaccessible by all-season roads. People and infrastructure, therefore, are commonly located near the coast. The impact of the Arctic coastal erosion problem is widespread. Homes are being lost. Residents are being dispersed and their villages relocated. Shoreline fuel storage and delivery systems are at greater risk. The U.S. Department of Energy (DOE) and Sandia National Laboratories (SNL) operate research facilities along some of the most rapidly eroding sections of coast in the world. The U.S. Department of Defense (DOD) is struggling to fortify coastal radar sites, operated to ensure national sovereignty in the air, against the erosion problem. Rapid alterations to the Arctic coastline are facilitated by oceanographic and geomorphic perturbations associated with climate change. Sea ice extent is declining, sea level is rising, sea water temperature is increasing, and permafrost state is changing. The polar orientation of the Arctic exacerbates the magnitude and rate of the environmental forcings that facilitate coastal land area loss. The fundamental mechanics of these processes are understood; their non-linear combination poses an extreme hazard. Tools to accurately predict Arctic coastal erosion do not exist. To obtain an accurate predictive model, a coupling of the influences of

  4. Mangrove Rehabilitation on Highly Eroded Coastal Shorelines at Samut Sakhon, Thailand

    Directory of Open Access Journals (Sweden)

    Matsui Naohiro

    2012-01-01

    Full Text Available The study site is currently retreating at a rate of 20 m y−1 due to severe coastal erosion and found to be highly polluted as revealed from the water, sediment and biological analysis. In an attempt to prevent coastal erosion, 14,000 Rhizophora mucronata (RM trees were planted across a heavily eroded shoreline at Samut Sakhon, Thailand. The survival rate of RM was high at the landward area and decreased at the offshore area. The most landward plot showed the highest survival rate when measured 4 years after planting (63.5%, while only 26.7% of trees survived at the most offshore plot. NPK and coconut fiber were shown to be significantly effective to enhance initial tree growths in heavily eroded area.

  5. Erosion Control of Scour during Construction. Report 8. Summary Report.

    Science.gov (United States)

    1985-01-01

    gulf regions. The shoreline is largely cliffed coasts with rocky promontories, and cliff erosion which was practically unknown in other localities...Mississippi River deltaic formations on the Louisiana coast . 3. Over the years, those responsible for the integrity of major engi- neering works of...Maryland, and Virginia coasts . The inlets along the south shore of Long Island that are exposed to the full forces of the north Atlantic storms have

  6. Heavily Oiled Salt Marsh following the Deepwater Horizon Oil Spill, Ecological Comparisons of Shoreline Cleanup Treatments and Recovery.

    Directory of Open Access Journals (Sweden)

    Scott Zengel

    Full Text Available The Deepwater Horizon oil spill affected hundreds of kilometers of coastal wetland shorelines, including salt marshes with persistent heavy oiling that required intensive shoreline "cleanup" treatment. Oiled marsh treatment involves a delicate balance among: removing oil, speeding the degradation of remaining oil, protecting wildlife, fostering habitat recovery, and not causing further ecological damage with treatment. To examine the effectiveness and ecological effects of treatment during the emergency response, oiling characteristics and ecological parameters were compared over two years among heavily oiled test plots subject to: manual treatment, mechanical treatment, natural recovery (no treatment, oiled control, as well as adjacent reference conditions. An additional experiment compared areas with and without vegetation planting following treatment. Negative effects of persistent heavy oiling on marsh vegetation, intertidal invertebrates, and shoreline erosion were observed. In areas without treatment, oiling conditions and negative effects for most marsh parameters did not considerably improve over two years. Both manual and mechanical treatment were effective at improving oiling conditions and vegetation characteristics, beginning the recovery process, though recovery was not complete by two years. Mechanical treatment had additional negative effects of mixing oil into the marsh soils and further accelerating erosion. Manual treatment appeared to strike the right balance between improving oiling and habitat conditions while not causing additional detrimental effects. However, even with these improvements, marsh periwinkle snails showed minimal signs of recovery through two years, suggesting that some ecosystem components may lag vegetation recovery. Planting following treatment quickened vegetation recovery and reduced shoreline erosion. Faced with comparable marsh oiling in the future, we would recommend manual treatment followed by

  7. Heavily Oiled Salt Marsh following the Deepwater Horizon Oil Spill, Ecological Comparisons of Shoreline Cleanup Treatments and Recovery.

    Science.gov (United States)

    Zengel, Scott; Bernik, Brittany M; Rutherford, Nicolle; Nixon, Zachary; Michel, Jacqueline

    2015-01-01

    The Deepwater Horizon oil spill affected hundreds of kilometers of coastal wetland shorelines, including salt marshes with persistent heavy oiling that required intensive shoreline "cleanup" treatment. Oiled marsh treatment involves a delicate balance among: removing oil, speeding the degradation of remaining oil, protecting wildlife, fostering habitat recovery, and not causing further ecological damage with treatment. To examine the effectiveness and ecological effects of treatment during the emergency response, oiling characteristics and ecological parameters were compared over two years among heavily oiled test plots subject to: manual treatment, mechanical treatment, natural recovery (no treatment, oiled control), as well as adjacent reference conditions. An additional experiment compared areas with and without vegetation planting following treatment. Negative effects of persistent heavy oiling on marsh vegetation, intertidal invertebrates, and shoreline erosion were observed. In areas without treatment, oiling conditions and negative effects for most marsh parameters did not considerably improve over two years. Both manual and mechanical treatment were effective at improving oiling conditions and vegetation characteristics, beginning the recovery process, though recovery was not complete by two years. Mechanical treatment had additional negative effects of mixing oil into the marsh soils and further accelerating erosion. Manual treatment appeared to strike the right balance between improving oiling and habitat conditions while not causing additional detrimental effects. However, even with these improvements, marsh periwinkle snails showed minimal signs of recovery through two years, suggesting that some ecosystem components may lag vegetation recovery. Planting following treatment quickened vegetation recovery and reduced shoreline erosion. Faced with comparable marsh oiling in the future, we would recommend manual treatment followed by planting. We caution

  8. Shoreline oiling from the Deepwater Horizon oil spill.

    Science.gov (United States)

    Nixon, Zachary; Zengel, Scott; Baker, Mary; Steinhoff, Marla; Fricano, Gail; Rouhani, Shahrokh; Michel, Jacqueline

    2016-06-15

    We build on previous work to construct a comprehensive database of shoreline oiling exposure from the Deepwater Horizon (DWH) spill by compiling field and remotely-sensed datasets to support oil exposure and injury quantification. We compiled a spatial database of shoreline segments with attributes summarizing habitat, oiling category and timeline. We present new simplified oil exposure classes for both beaches and coastal wetland habitats derived from this database integrating both intensity and persistence of oiling on the shoreline over time. We document oiling along 2113km out of 9545km of surveyed shoreline, an increase of 19% from previously published estimates and representing the largest marine oil spill in history by length of shoreline oiled. These data may be used to generate maps and calculate summary statistics to assist in quantifying and understanding the scope, extent, and spatial distribution of shoreline oil exposure as a result of the DWH incident. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  9. Extended Kalman Filter framework for forecasting shoreline evolution

    Science.gov (United States)

    Long, Joseph; Plant, Nathaniel G.

    2012-01-01

    A shoreline change model incorporating both long- and short-term evolution is integrated into a data assimilation framework that uses sparse observations to generate an updated forecast of shoreline position and to estimate unobserved geophysical variables and model parameters. Application of the assimilation algorithm provides quantitative statistical estimates of combined model-data forecast uncertainty which is crucial for developing hazard vulnerability assessments, evaluation of prediction skill, and identifying future data collection needs. Significant attention is given to the estimation of four non-observable parameter values and separating two scales of shoreline evolution using only one observable morphological quantity (i.e. shoreline position).

  10. Combining pre-spill shoreline segmentation data and shoreline assessment tools to support early response management and planning

    International Nuclear Information System (INIS)

    Lamarche, A.; Owens, E.H.; Martin, V.; Laforest, S.

    2003-01-01

    Several organizations, such as Environment Canada and the Alyeska Pipeline Service Company, are developing or refining pre-spill databases containing information about physical shoreline characteristics. Automated links between these pre-spill shoreline characteristic databases and computerized shoreline assessment tools were recently created by Environment Canada (Quebec and Ontario regions). The tools, which use Geographical Information System (GIS) technology, can be used for planning and documenting support needed for shoreline cleanup operations. A training exercise, designed to evaluate a spill management system integrating the Quebec region pre-spill shoreline database and the ShoreAssess R shoreline assessment system, was conducted at Vercheres, Quebec in October 2002 by Eastern Canada Response Corporation. The testing took place during the planning stage of the early phases of a spill, namely after the first over-flight. The computerized shoreline assessment tools made it possible to evaluate the length and type of shoreline that would potentially be impacted by oil. The tools also made it possible to assess the shoreline treatment methods most likely to be used, and evaluate the probable duration of the cleanup operation. The information would have to be available in time to be considered during the planning activities. The training exercise demonstrated that the integration of the databases is a valuable tool during the early phases of an oil spill response. 9 refs., 2 tabs., 6 figs

  11. Preliminary assessment of bioengineered fringing shoreline reefs in Grand Isle and Breton Sound, Louisiana

    Science.gov (United States)

    La Peyre, Megan K.; Schwarting, Lindsay; Miller, Shea

    2013-01-01

    Restoration of three-dimensional shell habitats in coastal Louisiana presents a valuable and potentially self-sustaining approach to providing shoreline protection and critical nekton habitat and may contribute to water quality maintenance. The use of what has been called “living shorelines” is particularly promising because in addition to the hypothesized shoreline protection services, it is predicted that, if built and located in viable sites, these living shorelines may ultimately contribute to water quality maintenance through filtration of bivalves and may enhance nekton habitat. This approach, however, has not been tested extensively in different shallow water estuarine settings; understanding under what conditions a living shoreline must have to support a sustainable oyster population, and where these reefs may provide valuable shoreline protection, is key to ensuring that this approach provides an effective tool for coastal restoration. This project gathered preliminary data on the sustainability and shoreline stabilization of three large bioengineered fringing reefs located in Grand Isle, Lake Eloi, and Lake Fortuna, Louisiana. We collected preconstruction and postconstruction physiochemical and biological data by using a before-after-control-impact approach to evaluate the effectiveness of these living shoreline structures on reducing marsh erosion, enabling reef sustainability, and providing other ecosystem benefits. Although this project was originally designed to compare reef performance and impacts across three different locations over 2 years, delays in construction because of the Deepwater Horizon oil spill resulted in reefs being built from 12 to 18 months later than anticipated. As a result, monitoring postconstruction was severely limited. One reef, Grand Isle, was completed in March 2011 and monitored up to 18 months postcreation, whereas Lake Eloi and Lake Fortuna reefs were not completed until January 2012, and only 8 months of

  12. 75 FR 66800 - National Environmental Policy Act; Wallops Flight Facility Shoreline Restoration and...

    Science.gov (United States)

    2010-10-29

    ... SPACE ADMINISTRATION National Environmental Policy Act; Wallops Flight Facility Shoreline Restoration... Wallops Flight Facility (WFF) Shoreline Restoration and Infrastructure Protection Program (SRIPP). SUMMARY... shoreline and the infrastructure behind it. Alternative One, NASA's preferred alternative, would include...

  13. 75 FR 8997 - National Environmental Policy Act; Wallops Flight Facility Shoreline Restoration and...

    Science.gov (United States)

    2010-02-26

    ... SPACE ADMINISTRATION National Environmental Policy Act; Wallops Flight Facility Shoreline Restoration... Wallops Flight Facility (WFF) Shoreline Restoration and Infrastructure Protection Program (SRIPP). SUMMARY... from the Wallops Island shoreline and the infrastructure behind it. Alternative One, NASA's preferred...

  14. Observations and 3D hydrodynamics-based modeling of decadal-scale shoreline change along the Outer Banks, North Carolina

    Science.gov (United States)

    Safak, Ilgar; List, Jeffrey; Warner, John C.; Kumar, Nirnimesh

    2017-01-01

    erosion (∼−1 m/yr) averaged over the northern half of the section as compared to the southern half where the observed and modeled averaged net shoreline changes are smaller (model indicates accretion in some shallow embayments, whereas observations indicate erosion in these locations. Further analysis identifies that the magnitude of net alongshore sediment transport is strongly dominated by events associated with high wave energy. However, both big- and small- wave events cause shoreline change of the same order of magnitude because it is the gradients in transport, not the magnitude, that are controlling shoreline change. Results also indicate that alongshore momentum is not a simple balance between wave breaking and bottom stress, but also includes processes of horizontal vortex force, horizontal advection and pressure gradient that contribute to long-term alongshore sediment transport. As a comparison to a more simple approach, an empirical formulation for alongshore sediment transport is used. The empirical estimates capture the effect of the breaking term in the hydrodynamics-based model, however, other processes that are accounted for in the hydrodynamics-based model improve the agreement with the observed alongshore sediment transport.

  15. Numerical modeling of shoreline undulations part 1: Constant wave climate

    DEFF Research Database (Denmark)

    Kærgaard, Kasper Hauberg; Fredsøe, Jørgen

    2013-01-01

    This paper presents a numerical study of the non-linear development of alongshore undulations up to fully developed quasi-steady equilibrium. A numerical model which describes the longshore sediment transport along arbitrarily shaped shorelines is applied, based on a spectral wave model, a depth...... integrated flow model, a wave-phase resolving sediment transport description and a one-line shoreline model.First the length of the shoreline undulations is determined in the linear regime using a stability analysis. Next the further evolution from the linear to the fully non-linear regime is described....... In the fully non-linear regime down-drift spits and migrating shoreline undulations are described.Three different shoreline shapes are found depending on the wave conditions: undulations with no spits, undulations with shore parallel spit and undulations with reconnecting spits. © 2012 Published by Elsevier B.V....

  16. NOAA's Shoreline Survey Maps - Raster NOAA-NOS Shoreline Survey Manuscripts that define the shoreline and alongshore natural and man-made features

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOS coastal survey maps (often called t-sheet or tp-sheet maps) are special use planimetric or topographic maps that precisely define the shoreline and alongshore...

  17. An equilibrium profile model for retreating marsh shorelines in southeast Louisiana

    Science.gov (United States)

    Wilson, Carol A.; Allison, Mead A.

    2008-12-01

    Louisiana's coastal marshes are experiencing the highest wetland loss rates in the U.S., in part due to subsidence-driven relative sea-level rise. These marshes are also vulnerable to the erosive power of wave attack: 1) on the marsh edge adjacent to open-water bodies, and 2) after the marsh platform is submerged. Marsh shorelines in Barataria Bay, Breton Sound, and the active Balize delta of southeastern Louisiana were examined in areas where the subaerial marsh platform had disappeared since 1932. Vibracore transects of marsh and adjacent bay surface sediments (to ˜2 m depth) were analyzed using geotechnical, stratigraphic, and radiochemical (137-Cs and 210-Pb) methods, and the subaerial-to-subaqueous transition of the marsh was mapped for elevation using standard stadia rod transit and fathometer measurements. Results indicate that marsh edge erosion of the platform takes place subaqueously until water depths of ˜1.5 m are reached. This is observed even in interior pond regions, but the shoreface elevation profiles are a function of fetch: exposed open bay sites display greater incision (depth and rate) of the marsh platform than protected interior bay or pond sites. Core stratigraphy reveals that the outer part of the subaqueous platform switches from erosional to depositional as retreat proceeds, covering the incised marsh deposits unconformably with estuarine shelly muds. 137-Cs and excess 210-Pb activity indicates that these muds are deposited within a few decades of subaerial marsh loss. The consistency of the cross-shore profile results suggests that a single profile of equilibrium can approximate the morphology of eroding marsh edges in southeast Louisiana: platform stratigraphy and resistance to erosion have a limited effect on profile shape. This equilibrium profile and remote sensing images of shoreline change are used to estimate the sediment yield to adjacent estuarine areas by this process. On average, 1.5 m 3 of sediment are yielded per m

  18. Sand resources, regional geology, and coastal processes for shoreline restoration: case study of Barataria shoreline, Louisiana

    Science.gov (United States)

    Kindinger, Jack G.; Flocks, James G.; Kulp, Mark; Penland, Shea; Britsch, Louis D.

    2002-01-01

    The Louisiana barrier shoreline of Barataria Basin, which lies within the western Mississippi River delta, has undergone significant retreat during the past 100 years. The most practical restoration method to rebuild these shorelines is sand nourishment. Seismic and sonar interpretations verified with geologic samples (vibracores and borings) indicate that there are nine sand targets within the Barataria study area that meet or exceed the minimum criteria for potential resource sites. However, the near surface lithology in the basin is typically silts and clays. Locating suitable sand resources for shoreline restoration is challenging. The sand units are associated with geologic depositional systems such as ebb-tidal deltas, distributary mouth bars, and channel fill (undifferentiated fluvial or tidal inlet channels). The nine potential sand targets consist primarily of fine sand and can be delineated into three surficial and six buried features. The surficial features contain approximately 10% of the total sand resources identified. At least 90% of the sand resources need overburden sediment removed prior to use; almost 570 million yd3 (438.5 mil m3) of overburden will need to be removed if the entire resource is mined. In this study, we identified 396 to 532 mil yd3 (305.8 to 410.8 mil m3) of potential sand deposits for shoreline restoration. Previous studies using less dense survey methods greatly over-estimated sand resources available in this area. Many fluvial channels reported previously as sand-filled are mud-filled. Contrary to these previous studies, few fluvial subsystems in this region have abundant sand resources.

  19. Positional Accuracy Assessment for Effective Shoreline Change ...

    African Journals Online (AJOL)

    Michael

    2016-06-01

    Jun 1, 2016 ... Erosion of the coast is a worldwide challenge attributed mainly to sea-level rise, change in storm climate ... processes and human induced climate change, averting the trend is often difficult. An alternate ..... and lectures in Coastal Geomorphology, Physical Oceanography and Coastal Processes. He offers ...

  20. Shoreline dynamics of the Lakshadweep Islands

    Digital Repository Service at National Institute of Oceanography (India)

    Chandramohan, P.; Anand, N.M.; Nayak, B.U.

    . The main reason for erosion at these islands seems to be the removal of coral reef for construction and other purposes, and to some extent the dredging of navigational channel in the lagoons. While the wave induced currents govern the sediment processes...

  1. Monitoring and modeling shoreline response due to shoreface nourishment on a high-energy coast

    Science.gov (United States)

    Barnard, P. L.; Erikson, Li H.; Hansen, J. E.

    2009-01-01

    Shoreface nourishment can be an efficient technique to feed sediment into the littoral zone without the order of magnitude cost increase incurred by directly nourishing the beach. An erosion hot spot at Ocean Beach in San Francisco, California, USA, threatens valuable public infrastructure as well as safe recreational use of the beach. In an effort to reduce the erosion at this location, a new beneficial reuse plan was implemented in May 2005 for the sediment dredged annually from the main shipping channel at the mouth of San Francisco Bay. From 2005 to 2007, approximately 230,000 m of sand was placed annually at depths between 9 and 14 m, in a location where strong tidal currents and open-ocean waves could potentially feed sediment onto the section of beach experiencing critical erosion. The evolution of the disposal mound and adjacent beach were monitored with 12 multibeam bathymetric surveys, and over 40 high-resolution beach topographic surveys. In addition, sediment transport processes were investigated using sediment grab samples, acoustic Doppler profilers, and two separate models: a cross-shore profile model (UNIBEST-TC) and a coastal area model (Delft3D). The results of the monitoring and modeling demonstrate that the disposal mound may be effective in dissipating wave energy striking this vulnerable stretch of coast with negligible shadowing effects, but a positive shoreline response can only be achieved by placing the sediment in water depths less than 5 m. 

  2. Geographic information system for the study of coastal erosion in the Department of Cordoba, Colombia: design tools, and use

    International Nuclear Information System (INIS)

    Hoyos, Natalia; Acosta, Susana; Correa, Ivan D

    2006-01-01

    The study and monitoring of factors that cause shoreline erosion processes require the use of geographic information systems (GIS) to integrate and analyze data on different topics and with various formats. The scope of this project was to design and build a GIS for the study of erosion processes along the coastline of Cordoba Department, Colombia. In this article, we present some of the tools used for the SIG design and implementation, as well as a specific application for shoreline erosion analysis. The Geo database diagrammed tool (ArcGISa) was used to document the geo database structure. The process is semiautomatic and delivers a comprehensive and friendly format for the end users. Linear referencing and dynamic segmentation tools (ArcGISa) were used to characterize the coastline according to several criteria, without subdividing or duplicating it. Shoreline retreat between 1938 and 2004 was analyzed with OSAS (Digital shoreline analysis system, USGS). Maximum distance between both shorelines was recorded by a Punta Arboletes transect (972 m). Real (on the ground) maximum distance however, was larger (around 1.5 km). Nevertheless it was not recorded by any of the OSAS generated transect

  3. Sandbar Migration and Shoreline Change on the Chirihama Coast, Japan

    Directory of Open Access Journals (Sweden)

    Masatoshi Yuhi

    2016-06-01

    Full Text Available Sandy beaches play a key role in regional tourism. It is important to understand the principal morphological processes behind preserving attractive beaches. In this study, morphological variation on the Chirihama Coast, Japan, an important local tourism resource, was investigated using two sets of field surveys. The objective was to analyze and document the multi-scale behaviors of the beach. First, long-term shoreline changes were examined based on shoreline surveys over the last two decades. Then, the middle-term behavior of multiple bar systems was analyzed based on the cross-shore profile surveys from 1998 to 2010. An empirical orthogonal function (EOF analysis was conducted to capture the principal modes of the systematic bar migration. The shoreline analysis indicated a long-term eroding trend and showed that the seasonal variation has recently tended to increase. The profile analysis demonstrated that net offshore migrations of bars have been repeated with a return period of approximately four years. This general behavior of the bar system is similar to the net offshore migration phenomena observed at other sites in the world. EOF analysis revealed a relationship between bar configuration and middle-term variations in shoreline location; when a new bar is generated near the shoreline and a triple bar configuration is established, the shoreline tends to temporarily retreat, whereas the shoreline experiences an advance when the outer bar has most evolved.

  4. Ecologically informed engineering reduces loss of intertidal biodiversity on artificial shorelines.

    Science.gov (United States)

    Browne, Mark A; Chapman, M Gee

    2011-10-01

    Worldwide responses to urbanization, expanding populations and climatic change mean biodiverse habitats are replaced with expensive, but necessary infrastructure. Coastal cities support vast expanses of buildings and roads along the coast or on "reclaimed" land, leading to "armouring" of shorelines with walls, revetments and offshore structures to reduce erosion and flooding. Currently infrastructure is designed to meet engineering and financial criteria, without considering its value as habitat, despite artificial shorelines causing loss of intertidal species and altering ecological natural processes that sustain natural biodiversity. Most research on ameliorating these impacts focus on soft-sediment habitats and larger flora (e.g., restoring marshes, encouraging plants to grow on walls). In response to needs for greater collaboration between ecologists and engineers to create infrastructure to better support biodiversity, we show how such collaborations lead to small-scale and inexpensive ecologically informed engineering which reduces loss of species of algae and animals from rocky shores replaced by walls. Adding experimental novel habitats to walls mimicking rock-pools (e.g., cavities, attaching flowerpots) increased numbers of species by 110% within months, in particular mobile animals most affected by replacing natural shores with walls. These advances provide new insights about melding engineering and ecological knowledge to sustain biodiversity in cities.

  5. Rainfall erosivity in Central Chile

    Science.gov (United States)

    Bonilla, Carlos A.; Vidal, Karim L.

    2011-11-01

    SummaryOne of the most widely used indicators of potential water erosion risk is the rainfall-runoff erosivity factor ( R) of the Revised Universal Soil Loss Equation (RUSLE). R is traditionally determined by calculating a long-term average of the annual sum of the product of a storm's kinetic energy ( E) and its maximum 30-min intensity ( I30), known as the EI30. The original method used to calculate EI30 requires pluviograph records for at most 30-min time intervals. Such high resolution data is difficult to obtain in many parts of the world, and processing it is laborious and time-consuming. In Chile, even though there is a well-distributed rain gauge network, there is no systematic characterization of the territory in terms of rainfall erosivity. This study presents a rainfall erosivity map for most of the cultivated land in the country. R values were calculated by the prescribed method for 16 stations with continuous graphical record rain gauges in Central Chile. The stations were distributed along 800 km (north-south), and spanned a precipitation gradient of 140-2200 mm yr -1. More than 270 years of data were used, and 5400 storms were analyzed. Additionally, 241 spatially distributed R values were generated by using an empirical procedure based on annual rainfall. Point estimates generated by both methods were interpolated by using kriging to create a map of rainfall erosivity for Central Chile. The results show that the empirical procedure used in this study predicted the annual rainfall erosivity well (model efficiency = 0.88). Also, an increment in the rainfall erosivities was found as a result of the rainfall depths, a regional feature determined by elevation and increasing with latitude from north to south. R values in the study area range from 90 MJ mm ha -1 h -1 yr -1 in the north up to 7375 MJ mm ha -1 h -1 yr -1 in the southern area, at the foothills of the Andes Mountains. Although the map and the estimates could be improved in the future by

  6. Erosion and Errors

    NARCIS (Netherlands)

    Huisman, H.; Heeres, Glenn; Os, van Bertil; Derickx, Willem; Schoorl, J.M.

    2016-01-01

    Slope soil erosion is one of the main threats to archaeological sites. Several methods were applied to establish the erosion rates at archaeological sites. Digital elevation models (DEMs) from three different dates were used. We compared the elevations from these three models to estimate erosion. We

  7. Assessing storm erosion hazards

    NARCIS (Netherlands)

    Ranasinghe, Ranasinghe W M R J B; Callaghan, D.; Ciavola, Paolo; Coco, Giovanni

    2017-01-01

    The storm erosion hazard on coasts is usually expressed as an erosion volume and/or associated episodic coastline retreat. The accurate assessment of present-day and future storm erosion volumes is a key task for coastal zone managers, planners and engineers. There are four main approaches that can

  8. Mapping erosion from space

    NARCIS (Netherlands)

    Vrieling, A.

    2007-01-01

    Soil erosion by water is the most important land degradation problem worldwide. Spatial information on erosion is required for defining effective soil and water conservation strategies. Satellite remote sensing can provide relevant input to regional erosion assessment. This thesis comprises a review

  9. The Digital Shoreline Analysis System (DSAS) Version 4.0 - An ArcGIS extension for calculating shoreline change

    Science.gov (United States)

    Thieler, E. Robert; Himmelstoss, Emily A.; Zichichi, Jessica L.; Ergul, Ayhan

    2009-01-01

    The Digital Shoreline Analysis System (DSAS) version 4.0 is a software extension to ESRI ArcGIS v.9.2 and above that enables a user to calculate shoreline rate-of-change statistics from multiple historic shoreline positions. A user-friendly interface of simple buttons and menus guides the user through the major steps of shoreline change analysis. Components of the extension and user guide include (1) instruction on the proper way to define a reference baseline for measurements, (2) automated and manual generation of measurement transects and metadata based on user-specified parameters, and (3) output of calculated rates of shoreline change and other statistical information. DSAS computes shoreline rates of change using four different methods: (1) endpoint rate, (2) simple linear regression, (3) weighted linear regression, and (4) least median of squares. The standard error, correlation coefficient, and confidence interval are also computed for the simple and weighted linear-regression methods. The results of all rate calculations are output to a table that can be linked to the transect file by a common attribute field. DSAS is intended to facilitate the shoreline change-calculation process and to provide rate-of-change information and the statistical data necessary to establish the reliability of the calculated results. The software is also suitable for any generic application that calculates positional change over time, such as assessing rates of change of glacier limits in sequential aerial photos, river edge boundaries, land-cover changes, and so on.

  10. 78 FR 23289 - Public Review of Draft National Shoreline Data Content Standard

    Science.gov (United States)

    2013-04-18

    ... Geological Survey Public Review of Draft National Shoreline Data Content Standard AGENCY: Department of the Interior, U.S. Geological Survey. ACTION: Notice; request for comments on draft National Shoreline Data... the draft National Shoreline Data Content Standard. The FGDC has developed a draft National Shoreline...

  11. Uncertainties in shoreline position analysis: the role of run-up and tide in a gentle slope beach

    Science.gov (United States)

    Manno, Giorgio; Lo Re, Carlo; Ciraolo, Giuseppe

    2017-09-01

    In recent decades in the Mediterranean Sea, high anthropic pressure from increasing economic and touristic development has affected several coastal areas. Today the erosion phenomena threaten human activities and existing structures, and interdisciplinary studies are needed to better understand actual coastal dynamics. Beach evolution analysis can be conducted using GIS methodologies, such as the well-known Digital Shoreline Analysis System (DSAS), in which error assessment based on shoreline positioning plays a significant role. In this study, a new approach is proposed to estimate the positioning errors due to tide and wave run-up influence. To improve the assessment of the wave run-up uncertainty, a spectral numerical model was used to propagate waves from deep to intermediate water and a Boussinesq-type model for intermediate water up to the swash zone. Tide effects on the uncertainty of shoreline position were evaluated using data collected by a nearby tide gauge. The proposed methodology was applied to an unprotected, dissipative Sicilian beach far from harbors and subjected to intense human activities over the last 20 years. The results show wave run-up and tide errors ranging from 0.12 to 4.5 m and from 1.20 to 1.39 m, respectively.

  12. Rebuilding Habitat and Shoreline Resilience through Improved Flood Control Project

    Science.gov (United States)

    Information about the SFBWQP Rebuilding Habitat and Shoreline Resilience through Improved Flood Control Project, part of an EPA competitive grant program to improve SF Bay water quality focused on restoring impaired waters and enhancing aquatic resources.

  13. Alabama ESI: ESI (Shoreline Types - Lines and Polygons)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains vector lines and polygons representing the shoreline and coastal habitats for Alabama, classified according to the Environmental Sensitivity...

  14. Linking rapid erosion of the Mekong River delta to human activities.

    Science.gov (United States)

    Anthony, Edward J; Brunier, Guillaume; Besset, Manon; Goichot, Marc; Dussouillez, Philippe; Nguyen, Van Lap

    2015-10-08

    As international concern for the survival of deltas grows, the Mekong River delta, the world's third largest delta, densely populated, considered as Southeast Asia's most important food basket, and rich in biodiversity at the world scale, is also increasingly affected by human activities and exposed to subsidence and coastal erosion. Several dams have been constructed upstream of the delta and many more are now planned. We quantify from high-resolution SPOT 5 satellite images large-scale shoreline erosion and land loss between 2003 and 2012 that now affect over 50% of the once strongly advancing >600 km-long delta shoreline. Erosion, with no identified change in the river's discharge and in wave and wind conditions over this recent period, is consistent with: (1) a reported significant decrease in coastal surface suspended sediment from the Mekong that may be linked to dam retention of its sediment, (2) large-scale commercial sand mining in the river and delta channels, and (3) subsidence due to groundwater extraction. Shoreline erosion is already responsible for displacement of coastal populations. It is an additional hazard to the integrity of this Asian mega delta now considered particularly vulnerable to accelerated subsidence and sea-level rise, and will be exacerbated by future hydropower dams.

  15. A post-Calumet shoreline along southern Lake Michigan

    Science.gov (United States)

    Capps, D.K.; Thompson, T.A.; Booth, R.K.

    2007-01-01

    The southern shore of Lake Michigan is the type area for many of ancestral Lake Michigan's late Pleistocene lake phases, but coastal deposits and features of the Algonquin phase of northern Lake Michigan, Lake Huron, and Lake Superior are not recognized in the area. Isostatic rebound models suggest that Algonquin phase deposits should be 100 m or more below modern lake level. A relict shoreline, however, exists along the lakeward margin of the Calumet Beach that was erosional west of Deep River and depositional east of the river. For this post-Calumet shoreline, the elevation of basal foreshore deposits east of Deep River and the base of the scarp west of Deep River indicate a slightly westward dipping water plane that is centered at ???184 m above mean sea level. Basal foreshore elevations also indicate that lake level fell ???2 m during the development of the shoreline. The pooled mean of radiocarbon dates from the surface of the peat below post-Calumet shoreline foreshore deposits indicate that the lake transgressed over the peat at 10,560 ?? 70 years B.P. Pollen assemblages from the peat are consistent with this age. The elevation and age of the post-Calumet shoreline are similar to the Main Algonquin phase of Lake Huron. Recent isostatic rebound models do not adequately address a high-elevation Algonquin-age shoreline along the southern shore of Lake Michigan, but the Goldthwait (1908) hinge-line model does. ?? 2006 Springer Science+Business Media B.V.

  16. Spatial and temporal patterns of shoreline change of a 280-km high-energy disrupted sandy coast from 1950 to 2014: SW France

    Science.gov (United States)

    Castelle, Bruno; Guillot, Benoit; Marieu, Vincent; Chaumillon, Eric; Hanquiez, Vincent; Bujan, Stéphane; Poppeschi, Coline

    2018-01-01

    A dataset of 15 geo-referenced orthomosaics photos was generated to address long-term shoreline change along approximately 270 km of high-energy sandy coast in SW France between 1950 and 2014. The coast consists of sandy beaches backed by coastal dunes, which are only disrupted by two wide tidal inlets (Arcachon and Maumusson), a wide estuary mouth (Gironde) and a few small wave-dominated inlets and coastal towns. A time and spatially averaged erosion trend of 1.12 m/year is found over 1950-2014, with a local maximum of approximately 11 m/year and a maximum local accretion of approximately 6 m/year, respectively. Maximum shoreline evolutions are observed along coasts adjacent to the inlets and to the estuary mouth, with erosion and accretion alternating over time on the timescale of decades. The two inlet-sandspit systems of Arcachon and Maumusson show a quasi-synchronous behaviour with the two updrift coasts accreting until the 1970s and subsequently eroding since then, which suggests that shoreline change at these locations is controlled by allocyclic mechanisms. Despite sea level rise and the well-established increase in winter wave height over the last decades, there is no capture of significant increase in mean erosion rate. This is hypothesized to be partly the result of relevant coastal dune management works from the 1960s to the 1980s after a long period of coastal dune disrepair during and after the Second World War. This study suggests that long-term shoreline change of high-energy sandy coasts disrupted by inlets and/or estuaries is complex and needs to consider a wide range of parameters including, non-extensively, waves, tides, inlet dynamics, sea level rise, coastal dune management and coastal defences, which challenges the development of reliable long-term coastal evolution numerical models.

  17. Analisis Laju Perubahan Garis Pantai Pulau Karimun Besar Menggunakan DSAS (Digital Shoreline Analysis System)

    OpenAIRE

    Dewi, Dian Kharisma; Sutikno, Sigit; Rinaldi, Rinaldi

    2017-01-01

    Shoreline changes could occurred because of hydrodinamically nature in coastal zone. The purpose of this study is to identify and approximating rate of shoreline changes which occurred in Karimun Besar Island. This study used to analyzed shoreline changesbased on remote sensing (satellite) data that processed by GIS (Geographic Information System). Then, to analyze the rate of its shoreline changes using DSAS (Digital ShorelineAnalysis System) with LRR (Linear Regression Rate) statistic metho...

  18. Shoreline dynamics of the active Yellow River delta since the implementation of Water-Sediment Regulation Scheme: A remote-sensing and statistics-based approach

    Science.gov (United States)

    Fan, Yaoshen; Chen, Shenliang; Zhao, Bo; Pan, Shunqi; Jiang, Chao; Ji, Hongyu

    2018-01-01

    The Active Yellow River (Huanghe) Delta (AYRD) is a complex landform in which rapid deposition takes place due to its geologic formation and evolution. Continuous monitoring of shoreline dynamics at high-temporal frequency is crucial for understanding the processes and the driving factors behind this rapidly changing coast. Great efforts have been devoted to map the changing shoreline of the Yellow River delta and explain such changes through remote sensing data. However, the temporal frequency of shoreline in the obtained datasets are generally not fine enough to reflect the detailed or subtly variable processes of shoreline retreat and advance. To overcome these limitations, we continuously monitored the dynamics of this shoreline using time series of Landsat data based on tidal-level calibration model and orthogonal-transect method. The Abrupt Change Value (ACV) results indicated that the retreat-advance patterns had a significant impact regardless of season or year. The Water-Sediment Regulation Scheme (WSRS) plays a dominant role in delivering river sediment discharge to the sea and has an impact on the annual average maximum ACV, especially at the mouth of the river. The positive relationship among the average ACV, runoff and sediment load are relatively obvious; however, we found that the Relative Exposure Index (REI) that measures wave energy was able to explain only approximately 20% of the variation in the data. Based on the abrupt change at the shoreline of the AYRD, river flow and time, we developed a binary regression model to calculate the critical sediment load and water discharge for maintaining the equilibrium of the active delta from 2002 to 2015. These values were approximately 0.48 × 108 t/yr and 144.37 × 108 m3/yr. If the current water and sediment proportions released from the Xiaolangdi Reservoir during the WSRS remain stable, the erosion-accretion patterns of the active delta will shift from rapid accretion to a dynamic balance.

  19. Detailed Project Report. Liza Jackson Park. Shoreline Erosion Control at Fort Walton Beach, Florida.

    Science.gov (United States)

    1984-06-01

    Nt (,;’own goby (Microgobius gulus F, R, Nu, P Co’jia3 (Rachycentron canadum) F Code jzoby (Gobiosoma robustum) F, R, Nu, P Cowaose ray ( Rhinoptera ... bonasus ) F C:rcvalle jack (Caranx hipos F 1.)rida !LIennv (Chasmodes saburrae) F, R, Nu, P riorida pompano (Trachinotus carolinus) F, R, Nu, P Vringed

  20. Wave and Beach Processes Modeling for Sabine Pass to Galveston Bay, Texas, Shoreline Erosion Feasibility Study

    Science.gov (United States)

    2007-08-01

    J. van Overeem, and J. van de Graaff , ed. (Special issue of) Coastal Engineering 16: 83-114. Larson, M., and N. C. Kraus. 1995. Representation of...71 Figure 43. Locations of beach profiles used to generate SBEACH representative profiles. .............73...Jeffery Waters. Barbara Tracey, CPB, prepared Appendix C. The study was conducted under the general supervision of William Curtis, CHL, Principal

  1. National assessment of shoreline change part 4: historical coastal cliff retreat along the California coast

    Science.gov (United States)

    Hapke, Cheryl J.; Reid, David

    2007-01-01

    Coastal cliff retreat, the landward migration of the cliff face, is a chronic problem along many rocky coastlines in the United States. As coastal populations continue to grow and community infrastructures are threatened by erosion, there is increased demand for accurate information regarding trends and rates of coastal cliff retreat. There is also a need for a comprehensive analysis of cliff retreat that is consistent from one coastal region to another. To meet these national needs, the U.S. Geological Survey is conducting an analysis of historical coastal cliff retreat along open-ocean rocky coastlines of the conterminous United States and parts of Hawaii, Alaska, and the Great Lakes. One purpose of this work is to develop standard repeatable methods for mapping and analyzing coastal cliff retreat so that periodic updates of coastal erosion can be made nationally that are systematic and internally consistent. This report on the California Coast is an accompaniment to a report on long-term sandy shoreline change for California. This report summarizes the methods of analysis, interprets the results, and provides explanations regarding long-term rates of cliff retreat. Neither detailed background information on the National Assessment of Shoreline Change Project nor detailed descriptions of the geology and geomorphology of the California coastline are presented in this report. The reader is referred to the shoreline change report (Hapke et al., 2006) for this type of background information. Cliff retreat evaluations are based on comparing one historical cliff edge digitized from maps, with a recent cliff edge interpreted from lidar (Light Detection and Ranging) topographic surveys. The historical cliff edges are from a period ranging from 1920-1930, whereas the lidar cliff edges are from either 1998 or 2002. Long-term (~70-year) rates of retreat are calculated using the two cliff edges. The rates of retreat presented in this report represent conditions from the 1930

  2. Divertor erosion in DIII-D

    Energy Technology Data Exchange (ETDEWEB)

    Whyte, D.G. [Univ. of California, San Diego, CA (United States); Bastasz, R.; Wampler, W.R. [Sandia National Labs., Albuquerque, NM (United States); Brooks, J.N. [Argonne National Lab., IL (United States); West, W.P.; Wong, C.P.C.; Buzhinskij, O.I. [General Atomics, San Diego, CA (United States); Opimach, I.V. [TRINITI Lab. (United States)

    1998-08-01

    Net erosion rates of carbon target plates have been measured in situ for the DIII-D lower divertor. The principal method of obtaining this data is the DiMES sample probe. Recent experiments have focused on erosion at the outer strike-point (OSP) of two divertor plasma conditions: attached (T{sub e} > 40 eV) ELMing plasmas, and detached (T{sub e} < 2 eV) ELMing plasmas. For the attached cases, the erosion rates exceed 10 cm/exposure-year, even with incident heat flux < 1 MW/m{sup 2}. In this case, measurements and modeling agree for both gross and net carbon erosion, showing the near-surface transport and redeposition of the carbon is well understood. In the attached cases, physical sputtering (with enhancement from self-sputtering and oblique incidence) is dominant, and the effective sputtering yield, Y, is greater than 10%. In ELM-free discharges, the total OSP net erosion rate is equal to the rate of carbon accumulation in the core plasma. For the detached divertor cases, the cold incident plasma eliminates physical sputtering. Attempts to measure chemically eroded hydrocarbon molecules spectroscopically indicate an upper limit of Y {le} 0.1% for the chemical sputtering yield. Net erosion is suppressed at the outer strike-point, which becomes a region of net redeposition ({approximately} 4 cm/exposure-year). The private flux wall is measured to be a region of net redeposition with dense, high neutral pressure, attached divertor plasmas. Leading edges intercepting parallel heat flux ({approximately} 50 MW/m{sup 2}) have very high net erosion rates at the OSP of an attached plasma ({approximately} 10 {micro}m/s > 1,000x erosion rate of aligned surfaces). Leading edge erosion, and subsequent carbon redeposition, caused by tile gaps can account for half of the deuterium codeposition in the DIII-D divertor.

  3. Catalytic interface erosion

    International Nuclear Information System (INIS)

    Meng, H.; Cohen, E.G.D.

    1995-01-01

    We study interface erosion processes: catalytic erosions. We present two cases. (1) The erosion of a completely occupied lattice by one single moving particle starting from somewhere inside the lattice, considering deterministic as well as probabilistic erosion rules. In the latter case, the eroded regions appear to have interfaces with continuously tunable fractal dimensions. (2) The kinetic roughening of an initially flat surface, where ballistic or diffusion-limited particles, which remain intact themselves, erode the surface coming from the outside, using the same erosion rules as in (1). Many features resembling realistic interfaces, for example, islands and inlets, are generated. The dependence of the surface width on the system size is due to both the erosion mechanism and the way particles move before reaching the surface

  4. Biological conditions of shorelines following the Exxon Valdez spill

    International Nuclear Information System (INIS)

    Stoker, S.W.; Neff, J.M.; Schroeder, T.R.; McCormick, D.M.

    1993-01-01

    This report is based primarily on survey results from Prince William Sound, where most of the heavy shoreline oiling occurred. Although not strictly quantitative, the shoreline surveys provide an unprecedented, broad base of professional observations covering the entire spill-affected area from 1989 through 1992 by which to evaluate spill impacts and recovery. Shoreline surveys documented that the extent of shoreline oiling declined substantially from 1989 to 1992. In 1989, oil was found on about 16 percent of the 3,000 miles of shoreline in Prince William Sound; by the spring of 1991, oil was found on only about 2 percent of the shoreline; and by May of 1992, on only 0.2 percent. In all years, most of this oil was located in the biologically least productive upper intertidal and supratidal zones. In both 1991 and 1992, small, isolated pockets of subsurface oil were found on some boulder/cobble beaches. Most of these deposits were also located in the upper intertidal and were usually buried beneath clean sediments. In almost all cases, the condition of intertidal biological communities improved correspondingly from 1989 to 1992. By the spring of 1991, recovery appeared to be well under way on virtually all previously oiled shores, with species composition, abundance, and diversity levels usually comparable to those of nearby shores that were not oiled in 1989. Recruitment of intertidal plants and animals was observed as early as the summer of 1989, and increasingly through 1991 and 1992. Recruitment was evident even in areas with remnant deposits of surface and subsurface oil, indicating that toxicity levels of the oil had declined substantially and that, in most cases, the residual oil no longer interfered with biological recovery. Observations of birds and marine mammals on or near shorelines surveyed during 1991 and 1992 confirmed that species present before the spill were still present and were feeding and reproducing in areas affected by oil in 1989

  5. Quantitative analysis of shoreline changes at the Mediterranean Coast in Turkey.

    Science.gov (United States)

    Kuleli, Tuncay

    2010-08-01

    This research is focused on the coastline evolution monitoring and its potential change estimation by remote sensing techniques using multi-temporal Landsat images at the southeast coasts of the Mediterranean Sea in Turkey. The study area includes the coastal zone located in the Cukurova Delta coasts. The Cukurova Delta has accreted toward the Mediterranean Sea as a result of sediment discharge and transport from Seyhan and Ceyhan rivers. These processes have caused the morphological changes (accretion or erosion) of coastline along some parts of the southeast coasts of the Mediterranean Sea. In this study, coastline changes were researched by using radiometrically and geometrically corrected multi-temporal and multi-spectral data from Landsat Multispectral Scanner dated 1972, Thematic Mapper dated 1987, and Enhanced Thematic Mapper dated 2002. In the image processing steps, mosaicing, subset, Iterative Self-Organizing Data Analysis Technique classification, band ratioing (B5/B2), edge detection, and overlay techniques were used to carry out coastline extraction and the Digital Shoreline Analysis System was used to calculate rate of coastline changes. As a result of the analysis, in some parts of the research area, remarkable coastline changes (more than 2,900 m withdrawal and -24.50 m/year erosion) were observed for a 30-year period.

  6. Numerical modeling of shoreline undulations part 2: Varying wave climate and comparison with observations

    DEFF Research Database (Denmark)

    Kærgaard, Kasper Hauberg; Fredsøe, Jørgen

    2013-01-01

    The present work applies the shoreline model from part 1 to a real environment. In part 1, a numerical shoreline model which could handle the development of arbitrarily shaped shorelines was applied to consider the development of shoreline undulations on an unstable shoreline exposed to incoming...... waves with a directional spreading. In this paper, these findings are extended to firstly include the effect of a varying wave climate on the shoreline morphology and secondly, to tune the model to two naturally occurring shorelines. It is found that the effect of a variable wave climate is to slow down...... the development of the morphology and in some cases to inhibit the formation of shore-parallel spits at the crest of the undulations. On one of the natural shorelines, the west coast of Namibia, the shore is exposed to very obliquely waves from one main direction. Here, the shoreline model is able to describe...

  7. Ancient shoreline reconstruction at a Maritime Maya Port in Yucatan, Mexico

    Science.gov (United States)

    Jaijel, Roy; Goodman, Beverly; Glover, Jeffrey; Rissolo, Dominique; Beddows, Patricia; Carter, Alice; Smith, Derek; Ben Avraham, Zvi

    2017-04-01

    Throughout history, worldwide, a major part of the human experience has been to adapt to changing landscapes, and environments. These adaptations can take many forms, sometimes as innovation, manipulation of the conditions, behavioral or technological changes; and in some cases the decision to abandon the area. The northeastern Yucatan peninsula, home of the Maritime maya port site Vista-Alegre, shows signs of such human changes, though little is known about the corresponding landscape and environment. Vista Alegre is located on the meeting point of the Caribbean Sea and the Gulf of Mexico, at the north-eastern tip of the Yucatan peninsula, in the back of the Holbox lagoon. The site was inhabited from the 9th century B.C until the mid 16th century A.D., with an apparent two century abandonment phase from the mid 7th to 9th century A.D. A multidisciplinary effort ("Costa Escondida project") has been investigating the life of past Mayan inhabitants and the broader connections of the site to the Maritime Maya trade network. One of the questions that has arisen is what were the mutual influences between the inhabitants to their surrounding environment. In order to answer that question the site's shoreline geomorphology and climate history is being reconstructed for the past 2-3000 years. The reconstruction is based on multiproxy analysis of marine sediment cores and surface samples, combined with archaeological data. The study presented focuses on the shoreline shifts at the site, revealing the complexity, and significant affect of sea level rise on the marine environment of Vista Alegre. This study contributes to our understanding of the site's possible functions, the environmental challenges the local inhabits contended with, and the identification of ancient harboring locations. The results show five depositional phases over the past 2-3000 years. The ancient shoreline maps show a general trend of sea level rise, though with varying rates over time that relates well

  8. Quantifying the stratigraphic completeness of delta shoreline trajectories

    Science.gov (United States)

    Mahon, Robert C.; Shaw, John B.; Barnhart, Katherine R.; Hobley, Daniel E. J.; McElroy, Brandon

    2015-05-01

    Understanding the incomplete nature of the stratigraphic record is fundamental for interpreting stratigraphic sequences. Methods for quantifying stratigraphic completeness for one-dimensional stratigraphic columns, defined as the proportion of time intervals of some length that contain stratigraphy, are commonplace; however, quantitative assessments of completeness in higher dimensions are lacking. Here we present a metric for defining stratigraphic completeness of two-dimensional shoreline trajectories using topset-foreset rollover positions in dip-parallel sections and describe the preservation potential of a shoreline trajectory derived from the geometry of the delta surface profile and the kinematics of the geomorphic shoreline trajectory. Two end-member forward models are required to fully constrain the preservation potential of the shoreline dependent on whether or not a topset is eroded during base level fall. A laboratory fan-delta was constructed under nonsteady boundary conditions, and one-dimensional stratigraphic column and two-dimensional shoreline completeness curves were calculated. Results are consistent with the hypothesis derived from conservation of sediment mass that completeness over all timescales should increase given increasing dimensions of analysis. Stratigraphic trajectories and completeness curves determined from forward models using experimental geomorphic trajectories compare well to values from transects when subsampled to the equivalent stratigraphic resolution as observed in the actual preserved sequence. The concept of stratigraphic completeness applied to two-dimensional trajectory analysis and the end-member forward models presented here provide novel tools for a conceptual understanding of the nature of stratigraphic preservation at basin scales.

  9. Protection from erosion following wildfire

    Science.gov (United States)

    Peter R. Robichaud; William J. Elliot

    2006-01-01

    Erosion in the first year after a wildfire can be up to three orders of magnitude greater than the erosion from undisturbed forests. To mitigate potential postfire erosion, various erosion control treatments are applied on highly erodible areas with downstream resources in need of protection. Because postfire erosion rates generally decline by an order of magnitude for...

  10. Erosion Control of Scour during Construction. Report 1. Present Design and Construction Practice.

    Science.gov (United States)

    1980-03-01

    those that dominate the Atlantic and gulf regions. The shoreline is largely cliffed coasts with rocky promontories, and cliff erosion which was...characteristics of the Mississippi River deltaic formations on the Louisiana coast . One area of the south Atlantic has historically been required to...the coast of Lake Superior. At that time timber was plentiful and relatively inexpensive, and it was not uncommon to find this and other readily

  11. Saliva and dental erosion

    Directory of Open Access Journals (Sweden)

    Marília Afonso Rabelo Buzalaf

    2012-10-01

    Full Text Available Dental erosion is a multifactorial condition. The consideration of chemical, biological and behavioral factors is fundamental for its prevention and therapy. Among the biological factors, saliva is one of the most important parameters in the protection against erosive wear. Objective: This review discusses the role of salivary factors on the development of dental erosion. Material and Methods: A search was undertaken on MeDLINe website for papers from 1969 to 2010. The keywords used in the research were "saliva", "acquired pellicle", "salivary flow", "salivary buffering capacity" and "dental erosion". Inclusion of studies, data extraction and quality assessment were undertaken independently and in duplicate by two members of the review team. Disagreements were solved by discussion and consensus or by a third party. Results: Several characteristics and properties of saliva play an important role in dental erosion. Salivary clearance gradually eliminates the acids through swallowing and saliva presents buffering capacity causing neutralization and buffering of dietary acids. Salivary flow allows dilution of the acids. In addition, saliva is supersaturated with respect to tooth mineral, providing calcium, phosphate and fluoride necessary for remineralization after an erosive challenge. Furthermore, many proteins present in saliva and acquired pellicle play an important role in dental erosion. Conclusions: Saliva is the most important biological factor affecting the progression of dental erosion. Knowledge of its components and properties involved in this protective role can drive the development of preventive measures targeting to enhance its known beneficial effects.

  12. Saliva and dental erosion

    Science.gov (United States)

    BUZALAF, Marília Afonso Rabelo; HANNAS, Angélicas Reis; KATO, Melissa Thiemi

    2012-01-01

    Dental erosion is a multifactorial condition. The consideration of chemical, biological and behavioral factors is fundamental for its prevention and therapy. Among the biological factors, saliva is one of the most important parameters in the protection against erosive wear. Objective This review discusses the role of salivary factors on the development of dental erosion. Material and Methods A search was undertaken on MEDLINE website for papers from 1969 to 2010. The keywords used in the research were "saliva", "acquired pellicle", "salivary flow", "salivary buffering capacity" and "dental erosion". Inclusion of studies, data extraction and quality assessment were undertaken independently and in duplicate by two members of the review team. Disagreements were solved by discussion and consensus or by a third party. Results Several characteristics and properties of saliva play an important role in dental erosion. Salivary clearance gradually eliminates the acids through swallowing and saliva presents buffering capacity causing neutralization and buffering of dietary acids. Salivary flow allows dilution of the acids. In addition, saliva is supersaturated with respect to tooth mineral, providing calcium, phosphate and fluoride necessary for remineralization after an erosive challenge. Furthermore, many proteins present in saliva and acquired pellicle play an important role in dental erosion. Conclusions Saliva is the most important biological factor affecting the progression of dental erosion. Knowledge of its components and properties involved in this protective role can drive the development of preventive measures targeting to enhance its known beneficial effects. PMID:23138733

  13. Elastic source model of the North Mono eruption (1325-1368 A.D.) based on shoreline deformation

    Science.gov (United States)

    Shaffer, Wil; Bursik, Marcus; Renshaw, Carl

    2010-12-01

    Topographic data from the Shuttle Radar Topography Mission (SRTM) captures the permanent deformation of a prominent highstand of Mono Lake, California USA. Deformation of the Dechambeau Ranch highstand shoreline was measured using the elevation of the beach berm—shoreline bluff break-in-slope. Point source models and a boundary element dike model were used to approximate the source of deformation underneath the northern end of the Mono Craters. The point source model could not adequately explain the observed deformation. The dike model yielded the best results for a NW trending dike dipping 60° NE and inflated to widths greater than 60 m. The results suggest that the geometry of the source is more complex than a simple vertical dike and that the deformation is better explained with a dipping dike following a normal fault, or an elongated cryptodome.

  14. Extracting 5m Shorelines From Multi-Temporal Images

    Science.gov (United States)

    Kapadia, A.; Jordahl, K. A.; Kington, J. D., IV

    2016-12-01

    Planet operates the largest Earth observing constellation of satellites, collecting imagery at an unprecedented temporal resolution. While daily cadence is expected in early 2017, Planet has already imaged the majority of landmass several dozen times over the past year. The current dataset provides enough value to build and test algorithms to automatically extract information. Here we demonstrate the extraction of shorelines across California using image stacks. The method implemented uses as input an uncalibrated RGB data product and limited NIR combined with the National Land Cover Database 2011 (NLCD2011) and Shuttle Radar Topography Mission (SRTM) to extract shorelines at 5 meter resolution. In the near future these methods along with daily cadence of imagery will allow for temporal monitoring of shorelines on a global scale.

  15. An integrated approach to shoreline mapping for spill response planning

    International Nuclear Information System (INIS)

    Owens, E.H.; LeBlanc, S.R.; Percy, R.J.

    1996-01-01

    A desktop mapping package was introduced which has the capability to provide consistent and standardized application of mapping and data collection/generation techniques. Its application in oil spill cleanup was discussed. The data base can be updated easily as new information becomes available. This provides a response team with access to a wide range of information that would otherwise be difficult to obtain. Standard terms and definitions and shoreline segmentation procedures are part of the system to describe the shore-zone character and shore-zone oiling conditions. The program that is in place for Atlantic Canada involves the integration of (1) Environment Canada's SCAT methodology in pre-spill data generation, (2) shoreline segmentation, (3) response management by objectives, (4) Environment Canada's national sensitivity mapping program, and (5) Environment Canada's field guide for the protection and treatment of oiled shorelines. 7 refs., 6 figs

  16. Shoreline changes and its impact on archaeological sites in West Greenland

    Science.gov (United States)

    Fenger-Nielsen, R.; Kroon, A.; Elberling, B.; Hollesen, J.

    2017-12-01

    Coastal erosion is regarded as a major threat to archaeological sites in the Arctic region. The problem arises because the predominantly marine-focused lifeways of Arctic people means that the majority of archaeological sites are found near the coast. On a Pan-Arctic scale, coastal erosion is often explained by long-term processes such as sea level rise, lengthening of open water periods due to a decline in sea ice, and a predicted increase in the frequency of major storms. However, on a local scale other short-term processes may be important parameters determining the coastal development. In this study, we focus on the Nuuk fjord system in West Greenland, which has been inhabited over the past 4000 years by different cultures and holds around 260 registered archaeological settlements. The fjord is characterized by its large branching of narrow deep-water and well-shaded water bodies, where tidal processes and local sources of sediment supply by rivers are observed to be the dominant factors determining the coastal development. We present a regional model showing the vulnerability of the shoreline and archeological sites due to coastal processes. The model is based on a) levelling surveys and historical aerial photographs of nine specific sites distributed in the region, b) water level measurements at three sites representing the inner-, middle- and outer fjord system, c) aerial photographs, satellite images and meteorological data of the entire region used to up-scale our local information at a specific settlement scale towards a regional scale. This deals with spatial and temporal variability in erosion and accumulation patterns along the shores in fjords and open seas.

  17. National evaluation of Chinese coastal erosion to sea level rise using a Bayesian approach

    International Nuclear Information System (INIS)

    Zhan, Q; Fan, X; Du, X; Zhu, J

    2014-01-01

    In this paper a Causal Bayesian network is developed to predict decadal-scale shoreline evolution of China to sea-level rise. The Bayesian model defines relationships between 6 factors of Chinese coastal system such as coastal geomorphology, mean tide range, mean wave height, coastal slope, relative sea-level rise rate and shoreline erosion rate. Using the Bayesian probabilistic model, we make quantitative assessment of china's shoreline evolution in response to different future sea level rise rates. Results indicate that the probability of coastal erosion with high and very high rates increases from 28% to 32.3% when relative sea-level rise rates is 4∼6mm/a, and to 44.9% when relative sea-level rise rates is more than 6mm/a. A hindcast evaluation of the Bayesian model shows that the model correctly predicts 79.3% of the cases. Model test indicates that the Bayesian model shows higher predictive capabilities for stable coasts and very highly eroding coasts than moderately and highly eroding coasts. This study demonstrates that the Bayesian model is adapted to predicting decadal-scale Chinese coastal erosion associated with sea-level rise

  18. Divertor erosion in DIII-D

    International Nuclear Information System (INIS)

    Whyte, D.G.; Bastasz, R.; Wampler, W.R.; Brooks, J.N.; West, W.P.; Wong, C.P.C.

    1998-05-01

    Net erosion rates of carbon target plates have been measured in situ for the DIII-D lower divertor. The principal method of obtaining this data is the DiMES sample probe. Recent experiments have focused on erosion at the outer strike-point of two divertor plasma conditions: (1) attached (Te > 40 eV) ELMing plasmas and (2) detached (Te 10 cm/year, even with incident heat flux 2 . In this case, measurements and modeling agree for both gross and net carbon erosion, showing the near-surface transport and redeposition of the carbon is well understood and that effective sputtering yields are > 10%. In ELM-free discharges, this erosion rate can account for the rate of carbon accumulation in the core plasma. Divertor plasma detachment eliminates physical sputtering, while spectroscopically measured chemical erosion yields are also found to be low (Y(C/D + ) ≤ 2.0 x 10 -3 ). This leads to suppression of net erosion at the outer strike-point, which becomes a region of net redeposition (∼ 4 cm/year). The private flux wall is measured to be a region of net redeposition with dense, high neutral pressure, attached divertor plasmas. Leading edges intercepting parallel heat flux (∼ 50 MW/m 2 ) have very high net erosion rates (∼ 10 microm/s) at the OSP of an attached plasma. Leading edge erosion, and subsequent carbon redeposition, caused by tile gaps can account for half of the deuterium codeposition in the DIII-D divertor

  19. Divertor erosion in DIII-D

    International Nuclear Information System (INIS)

    Whyte, D.G.; Bastasz, R.; Wampler, W.R.; Brooks, J.N.; West, W.P.; Wong, C.P.C.; Buzhinskij, O.I.; Opimach, I.V.

    1998-08-01

    Net erosion rates of carbon target plates have been measured in situ for the DIII-D lower divertor. The principal method of obtaining this data is the DiMES sample probe. Recent experiments have focused on erosion at the outer strike-point (OSP) of two divertor plasma conditions: attached (T e > 40 eV) ELMing plasmas, and detached (T e 2 . In this case, measurements and modeling agree for both gross and net carbon erosion, showing the near-surface transport and redeposition of the carbon is well understood. In the attached cases, physical sputtering (with enhancement from self-sputtering and oblique incidence) is dominant, and the effective sputtering yield, Y, is greater than 10%. In ELM-free discharges, the total OSP net erosion rate is equal to the rate of carbon accumulation in the core plasma. For the detached divertor cases, the cold incident plasma eliminates physical sputtering. Attempts to measure chemically eroded hydrocarbon molecules spectroscopically indicate an upper limit of Y ≤ 0.1% for the chemical sputtering yield. Net erosion is suppressed at the outer strike-point, which becomes a region of net redeposition (∼ 4 cm/exposure-year). The private flux wall is measured to be a region of net redeposition with dense, high neutral pressure, attached divertor plasmas. Leading edges intercepting parallel heat flux (∼ 50 MW/m 2 ) have very high net erosion rates at the OSP of an attached plasma (∼ 10 microm/s > 1,000x erosion rate of aligned surfaces). Leading edge erosion, and subsequent carbon redeposition, caused by tile gaps can account for half of the deuterium codeposition in the DIII-D divertor

  20. National assessment of shoreline change—Summary statistics for updated vector shorelines and associated shoreline change data for the north coast of Alaska, U.S.-Canadian Border to Icy Cape

    Science.gov (United States)

    Gibbs, Ann E.; Richmond, Bruce M.

    2017-09-25

    Long-term rates of shoreline change for the north coast of Alaska, from the U.S.-Canadian border to the Icy Cape region of northern Alaska, have been updated as part of the U.S. Geological Survey’s National Assessment of Shoreline Change Project. Short-term shoreline change rates are reported for the first time. Additional shoreline position data were used to compute rates where the previous rate-of-change assessment only included two shoreline positions at a given location. The calculation of uncertainty associated with the long-term average rates has also been updated to match refined methods used in other study regions of the National Assessment of Shoreline Change Project. The average rates of this report have a reduced amount of uncertainty compared to those presented in the first assessment for this region.

  1. Shoreline changes in and around the Thubon River mouth, Central Vietnam

    Digital Repository Service at National Institute of Oceanography (India)

    Mau, L.D.; Nayak, G.N.; SanilKumar, V.

    Application of GENESIS model (GENEralized model for Simulating Shoreline change) for studying the shoreline change in and around the Thubon River Mouth, Central Vietnam is presented in this paper The input parameters used are the near shore wave...

  2. Erosion in America

    Energy Technology Data Exchange (ETDEWEB)

    1984-03-23

    The US loses about five billion tons of soil a year from erosion, and scientists estimate that from 20 to 50% of world cropland suffers from excessive erosion. The effect of erosion is a loss in both land and water productivity. When combined with the problems of overpopulation, overgrazing, and deforestation, the environmental impacts are very serious. There are some signs that countries are beginning to adopt conservation tilling techniques, but even cooperative government programs in the US such as the 1983 Payment-in-Kind (PIK) program have had only partial success because of expanded production on marginal farmlands. 20 reference 5 figures.

  3. Shoreline development and degradation of coastal fish reproduction habitats.

    Science.gov (United States)

    Sundblad, Göran; Bergström, Ulf

    2014-12-01

    Coastal development has severely affected habitats and biodiversity during the last century, but quantitative estimates of the impacts are usually lacking. We utilize predictive habitat modeling and mapping of human pressures to estimate the cumulative long-term effects of coastal development in relation to fish habitats. Based on aerial photographs since the 1960s, shoreline development rates were estimated in the Stockholm archipelago in the Baltic Sea. By combining shoreline development rates with spatial predictions of fish reproduction habitats, we estimated annual habitat degradation rates for three of the most common coastal fish species, northern pike (Esox lucius), Eurasian perch (Perca fluviatilis) and roach (Rutilus rutilus). The results showed that shoreline constructions were concentrated to the reproduction habitats of these species. The estimated degradation rates, where a degraded habitat was defined as having ≥3 constructions per 100 m shoreline, were on average 0.5 % of available habitats per year and about 1 % in areas close to larger population centers. Approximately 40 % of available habitats were already degraded in 2005. These results provide an example of how many small construction projects over time may have a vast impact on coastal fish populations.

  4. Teachers' Curriculum Guide to the Hayward Shoreline, K-12.

    Science.gov (United States)

    Bachle, Leo; And Others

    This teaching guide gives environmental education ideas for grades K-12. The field trips and activities all relate to the Hayward shoreline of the San Francisco, California, Bay. Included in the guide are 44 science activities, 15 social science activities, and 18 humanities activities. Each activity description gives the experience level, site…

  5. Chromian spinel-rich black sands from eastern shoreline of ...

    Indian Academy of Sciences (India)

    Black sands rich in chromian spinel commonly occur in pockets along the eastern shoreline of Andaman. Island where various types of peridotites and volcanics belonging to the Andaman ophiolite suite are exposed in close vicinity. The chemistry of these detrital chromian spinels has been extensively used here.

  6. Spatio-Temporal Analysis of Shoreline Changes in Bonny Island ...

    African Journals Online (AJOL)

    The study examined the shoreline changes over time in Bonny Island of Rivers State, Nigeria. Satellite images comprising of Landsat TM of 30m by 30m of 1986, 2001, 2003 and 2006; and Nigersat image of 30m by 30m of 2004 were used as the sources of data. The satellite images underwent series of geo-processing.

  7. Chromian spinel-rich black sands from eastern shoreline of ...

    Indian Academy of Sciences (India)

    Black sands rich in chromian spinel commonly occur in pockets along the eastern shoreline of Andaman Island where various types of peridotites and volcanics belonging to the Andaman ophiolite suite are exposed in close vicinity. The chemistry of these detrital chromian spinels has been extensively used here in ...

  8. Impact of an offshore wind farm on wave conditions and shoreline development

    DEFF Research Database (Denmark)

    Christensen, Erik Damgaard; Kristensen, Sten Esbjørn; Deigaard, Rolf

    2014-01-01

    The influence of offshore wind farms on the wave conditions and impact on shoreline development is studied in a generic set-up of a coast and a shoreline. The objective was to estimate the impact of a typical sized offshore wind farm on a shoreline in a high wave energetic environment. Especially...

  9. 77 FR 56671 - Draft Shoreline Restoration Management Plan and Environmental Impact Statement for Indiana Dunes...

    Science.gov (United States)

    2012-09-13

    ...; 6065-4000-409] Draft Shoreline Restoration Management Plan and Environmental Impact Statement for...., Section 4332(2)(c), the National Park Service announces the availability of the Draft Shoreline.... DATES: The Draft Shoreline Restoration Management Plan and Environmental Impact Statement (SRMP) will be...

  10. Monitoring shoreline change using remote sensing and GIS: a case study of Kunduchi area, Tanzania

    OpenAIRE

    Makota, V.; Sallema, R.; Mahika, C.

    2004-01-01

    Data from aerial photographs taken in 1981, 1992 and 2002 of the Kunduchi shoreline off the Dar es Salaam coast were integrated in a geographic information system (GIS) to determine shoreline change in that locality. It was found that considerable changes have taken place, and that the two techniques are effective for shoreline monitoring.

  11. 75 FR 10865 - Shoreline Management Initiative, Reservoirs in Alabama, Georgia, Kentucky, Mississippi, North...

    Science.gov (United States)

    2010-03-09

    ... Compliance, Environment and Technology, Tennessee Valley Authority, 400 West Summit Hill Drive, WT 11D... linear feet of shoreline for private water use access rights and opening 6,036 linear feet of shoreline access rights to private landowners has yielded a net gain of 1,077 linear feet of shoreline closed to...

  12. Interactions of Estuarine Shoreline Infrastructure With Multiscale Sea Level Variability

    Science.gov (United States)

    Wang, Ruo-Qian; Herdman, Liv M.; Erikson, Li; Barnard, Patrick; Hummel, Michelle; Stacey, Mark T.

    2017-12-01

    Sea level rise increases the risk of storms and other short-term water-rise events, because it sets a higher water level such that coastal surges become more likely to overtop protections and cause floods. To protect coastal communities, it is necessary to understand the interaction among multiday and tidal sea level variabilities, coastal infrastructure, and sea level rise. We performed a series of numerical simulations for San Francisco Bay to examine two shoreline scenarios and a series of short-term and long-term sea level variations. The two shoreline configurations include the existing topography and a coherent full-bay containment that follows the existing land boundary with an impermeable wall. The sea level variability consists of a half-meter perturbation, with duration ranging from 2 days to permanent (i.e., sea level rise). The extent of coastal flooding was found to increase with the duration of the high-water-level event. The nonlinear interaction between these intermediate scale events and astronomical tidal forcing only contributes ˜1% of the tidal heights; at the same time, the tides are found to be a dominant factor in establishing the evolution and diffusion of multiday high water events. Establishing containment at existing shorelines can change the tidal height spectrum up to 5%, and the impact of this shoreline structure appears stronger in the low-frequency range. To interpret the spatial and temporal variability at a wide range of frequencies, Optimal Dynamic Mode Decomposition is introduced to analyze the coastal processes and an inverse method is applied to determine the coefficients of a 1-D diffusion wave model that quantify the impact of bottom roughness, tidal basin geometry, and shoreline configuration on the high water events.

  13. Behavior and persistence of spilled oil on shoreline

    International Nuclear Information System (INIS)

    Michel, J.

    1991-01-01

    Recent oil spills have re-demonstrated the range of shoreline impacts that are possible from medium to large spills in the United States, i.e., the Exxon Valdez spill which significantly contaminated over 1000 km of shoreline in Alaska and the Mega Borg, which resulted in widely scattered tar balls over a small area. Immediate and total removal of stranded oil should not always be the primary objective. Instead, shoreline cleanup strategies developed for oil spills need to consider the persistence and short- to long-term persistence of stranded oil. There are several general guidelines on the persistence of stranded oil. High-energy shorelines are rapidly and effectively cleaned by natural processes, although there are micro-environments where oil tends to persist (wave shadows, supratidal zone, rock crevices, etc.). On sand and mixed sand and gravel beaches, oil tends to be buried below clean layers of sediment, but erosional/depositional cycles will result in oil removal, usually within one year. In sheltered environments (wetlands, tidal flats) oil will persist for long periods; therefore, oil removal is frequently required, though it is usually poorly implemented. Cobble/boulder beaches, while usually very complex, present a special problem. They can be found in a range of energy settings, with years between periods of storm activity. These beaches can hold large volumes of oil; they can be a source of long-term (> one year) leaching and sheening; subsurface oil is very difficult to remove by surface treatment methods; and they have poorly understood sedimentation patterns, so it is difficult to predict rates of sediment reworking. Studies of recent oil spills have shown a need for shoreline-specific technologies for these types of beaches

  14. Measurement of erosion: Is it possible?

    NARCIS (Netherlands)

    Stroosnijder, L.

    2005-01-01

    Reasons for erosion measurements are: (1) to determine the environmental impact of erosion and conservation practices, (2) scientific erosion research; (3) development and evaluation of erosion control technology; (4) development of erosion prediction technology and (5) allocation of conservation

  15. IN SITU MEASUREMENT OF BEDROCK EROSION

    Directory of Open Access Journals (Sweden)

    D. H. Rieke-Zapp

    2012-07-01

    Full Text Available While long term erosion rates of bedrock material may be estimated by dating methods, current day erosion rates are – if at all available – based on rough estimates or on point measurements. Precise quantification of short term erosion rates are required to improve our understanding of short term processes, for input in landscape evolution models, as well as for studying the mechanics and efficiency of different erosion processes in varying geomorphological settings. Typical current day erosion rates in the European Alps range from sub-millimetre to several millimetres per year depending on the dominant erosion processes. The level of surveying accuracy required for recurring sub-millimetre to millimetre measurements in the field is demanding. A novel surveying setup for in-situ measurement of bedrock erosion was tested recently in three different locations in Switzerland. Natural bedrock was investigated in the Gornera gorge close to Zermatt. Further on, bedrock samples were installed in exposed locations in the Erlenbach research watershed close to Einsiedeln, and in the Illgraben debris flow channel, located in the Canton Schwyz and Valais, respectively. A twofold measurement approach was chosen for all locations. For the first setup control points providing an absolute reference frame for recurrent measurements were embedded close to the area of interest. Close range photogrammetry was applied to measure surface changes on the bedrock samples. The precision for surface measurements in the field was 0.1 mm (1 σ and thus suitable for the application. The equipment needed for the surveys can easily be carried to the field. At one field site a structured light scanner was used along with the photogrammetric setup. Although the current generation of structured light scanners appeared less suitable for field application, data acquisition was much faster and checking the data for completeness in the field was straight forward. The latest

  16. In Situ Measurement of Bedrock Erosion

    Science.gov (United States)

    Rieke-Zapp, D. H.; Beer, A.; Turowski, J. M.; Campana, L.

    2012-07-01

    While long term erosion rates of bedrock material may be estimated by dating methods, current day erosion rates are - if at all available - based on rough estimates or on point measurements. Precise quantification of short term erosion rates are required to improve our understanding of short term processes, for input in landscape evolution models, as well as for studying the mechanics and efficiency of different erosion processes in varying geomorphological settings. Typical current day erosion rates in the European Alps range from sub-millimetre to several millimetres per year depending on the dominant erosion processes. The level of surveying accuracy required for recurring sub-millimetre to millimetre measurements in the field is demanding. A novel surveying setup for in-situ measurement of bedrock erosion was tested recently in three different locations in Switzerland. Natural bedrock was investigated in the Gornera gorge close to Zermatt. Further on, bedrock samples were installed in exposed locations in the Erlenbach research watershed close to Einsiedeln, and in the Illgraben debris flow channel, located in the Canton Schwyz and Valais, respectively. A twofold measurement approach was chosen for all locations. For the first setup control points providing an absolute reference frame for recurrent measurements were embedded close to the area of interest. Close range photogrammetry was applied to measure surface changes on the bedrock samples. The precision for surface measurements in the field was 0.1 mm (1 σ) and thus suitable for the application. The equipment needed for the surveys can easily be carried to the field. At one field site a structured light scanner was used along with the photogrammetric setup. Although the current generation of structured light scanners appeared less suitable for field application, data acquisition was much faster and checking the data for completeness in the field was straight forward. The latest generation of compact

  17. Does Canoeing Increase Streambank Erosion?

    Science.gov (United States)

    Edward A. Hansen

    1975-01-01

    Describes research on the Pine River in Michigan to determine if large increases in canoeing accelerated streambank erosion. Most erosion was natural, but people sliding and camping on streambanks created some erosion. Heavy canoe traffic was not a cause of erosion.

  18. Spatial bedrock erosion distribution in a natural gorge

    Science.gov (United States)

    Beer, A. R.; Turowski, J. M.; Kirchner, J. W.

    2015-12-01

    Quantitative analysis of morphological evolution both in terrestrial and planetary landscapes is of increasing interest in the geosciences. In mountainous regions, bedrock channel formation as a consequence of the interaction of uplift and erosion processes is fundamental for the entire surface evolution. Hence, the accurate description of bedrock channel development is important for landscape modelling. To verify existing concepts developed in the lab and to analyse how in situ channel erosion rates depend on the interrelations of discharge, sediment transport and topography, there is a need of highly resolved topographic field data. We analyse bedrock erosion over two years in a bedrock gorge downstream of the Gorner glacier above the town of Zermatt, Switzerland. At the study site, the Gornera stream cuts through a roche moutonnée in serpentine rock of 25m length, 5m width and 8m depth. We surveyed bedrock erosion rates using repeat terrestrial laser scanning (TLS) with an average point spacing of 5mm. Bedrock erosion rates in direction of the individual surface normals were studied directly on the scanned point clouds applying the M3C2 algorithm (Lague et al., 2013, ISPRS). The surveyed erosion patterns were compared to a simple stream erosivity visualisation obtained from painted bedrock sections at the study location. Spatially distributed erosion rates on bedrock surfaces based on millions of scan points allow deduction of millimeter-scale mean annual values of lateral erosion, incision and downstream erosion on protruding streambed surfaces. The erosion rate on a specific surface point is shown to depend on the position of this surface point in the channel's cross section, its height above the streambed and its spatial orientation to the streamflow. Abrasion by impacting bedload was likely the spatially dominant erosion process, as confirmed by the observed patterns along the painted bedrock sections. However, a single plucking event accounted for the half

  19. Rainfall erosivity in Europe.

    Science.gov (United States)

    Panagos, Panos; Ballabio, Cristiano; Borrelli, Pasquale; Meusburger, Katrin; Klik, Andreas; Rousseva, Svetla; Tadić, Melita Perčec; Michaelides, Silas; Hrabalíková, Michaela; Olsen, Preben; Aalto, Juha; Lakatos, Mónika; Rymszewicz, Anna; Dumitrescu, Alexandru; Beguería, Santiago; Alewell, Christine

    2015-04-01

    Rainfall is one the main drivers of soil erosion. The erosive force of rainfall is expressed as rainfall erosivity. Rainfall erosivity considers the rainfall amount and intensity, and is most commonly expressed as the R-factor in the USLE model and its revised version, RUSLE. At national and continental levels, the scarce availability of data obliges soil erosion modellers to estimate this factor based on rainfall data with only low temporal resolution (daily, monthly, annual averages). The purpose of this study is to assess rainfall erosivity in Europe in the form of the RUSLE R-factor, based on the best available datasets. Data have been collected from 1541 precipitation stations in all European Union (EU) Member States and Switzerland, with temporal resolutions of 5 to 60 min. The R-factor values calculated from precipitation data of different temporal resolutions were normalised to R-factor values with temporal resolutions of 30 min using linear regression functions. Precipitation time series ranged from a minimum of 5 years to a maximum of 40 years. The average time series per precipitation station is around 17.1 years, the most datasets including the first decade of the 21st century. Gaussian Process Regression (GPR) has been used to interpolate the R-factor station values to a European rainfall erosivity map at 1 km resolution. The covariates used for the R-factor interpolation were climatic data (total precipitation, seasonal precipitation, precipitation of driest/wettest months, average temperature), elevation and latitude/longitude. The mean R-factor for the EU plus Switzerland is 722 MJ mm ha(-1) h(-1) yr(-1), with the highest values (>1000 MJ mm ha(-1) h(-1) yr(-1)) in the Mediterranean and alpine regions and the lowest (<500 MJ mm ha(-1) h(-1) yr(-1)) in the Nordic countries. The erosivity density (erosivity normalised to annual precipitation amounts) was also the highest in Mediterranean regions which implies high risk for erosive events and floods

  20. Impact of an offshore wind farm on wave conditions and shoreline development

    DEFF Research Database (Denmark)

    Christensen, Erik Damgaard; Kristensen, Sten Esbjørn; Deigaard, Rolf

    2014-01-01

    The influence of offshore wind farms on the wave conditions and impact on shoreline development is studied in a generic set-up of a coast and a shoreline. The objective was to estimate the impact of a typical sized offshore wind farm on a shoreline in a high wave energetic environment. Especially...... the shoreline’s sensitivity to the distance from the OWF to the shoreline was studied. The effect of the reduced wind speed inside and on the lee side of the offshore wind farm was incorporated in a parameterized way in a spectral wind wave model. The shoreline impact was studied with a one-line model....

  1. Extent and degree of shoreline oiling: Deepwater Horizon oil spill, Gulf of Mexico, USA.

    Science.gov (United States)

    Michel, Jacqueline; Owens, Edward H; Zengel, Scott; Graham, Andrew; Nixon, Zachary; Allard, Teresa; Holton, William; Reimer, P Doug; Lamarche, Alain; White, Mark; Rutherford, Nicolle; Childs, Carl; Mauseth, Gary; Challenger, Greg; Taylor, Elliott

    2013-01-01

    The oil from the 2010 Deepwater Horizon spill in the Gulf of Mexico was documented by shoreline assessment teams as stranding on 1,773 km of shoreline. Beaches comprised 50.8%, marshes 44.9%, and other shoreline types 4.3% of the oiled shoreline. Shoreline cleanup activities were authorized on 660 km, or 73.3% of oiled beaches and up to 71 km, or 8.9% of oiled marshes and associated habitats. One year after the spill began, oil remained on 847 km; two years later, oil remained on 687 km, though at much lesser degrees of oiling. For example, shorelines characterized as heavily oiled went from a maximum of 360 km, to 22.4 km one year later, and to 6.4 km two years later. Shoreline cleanup has been conducted to meet habitat-specific cleanup endpoints and will continue until all oiled shoreline segments meet endpoints. The entire shoreline cleanup program has been managed under the Shoreline Cleanup Assessment Technique (SCAT) Program, which is a systematic, objective, and inclusive process to collect data on shoreline oiling conditions and support decision making on appropriate cleanup methods and endpoints. It was a particularly valuable and effective process during such a complex spill.

  2. Coastal Hazard Vulnerability Assessment: A Case Study of Erosion and Flooding on Herschel Island, Yukon Territory, Canada

    Science.gov (United States)

    Radosavljevic, B.; Lantuit, H.; Overduin, P. P.; Fritz, M.

    2015-12-01

    Coastal infrastructure, cultural, and archeological sites are increasingly vulnerable to erosion and flooding along permafrost coasts. Amplified warming of the Arctic, sea level rise, lengthening of the open water period, and a predicted increase in frequency of major storms compound these threats. Mitigation necessitates decision-making tools at an appropriate scale. We present a study of coastal erosion combining it with a flooding risk assessment for the culturally important historic settlement on Herschel Island, a UNESCO World Heritage candidate site. The resulting map may help local stakeholders devise management strategies to cope with rapidly changing environmental conditions. We analyzed shoreline movement using the Digital Shoreline Analysis System (DSAS) after digitizing shorelines from 1952, 1970, and 2011. Using these data, forecasts of shoreline positions were made for 20 and 50 years into the future. Flooding risk was assessed using a cost-distance map based on a high-resolution Light Detection and Ranging (LiDAR) dataset and current Intergovernmental Panel on Climate Change sea level estimates. Widespread erosion characterizes the study area. The rate of shoreline movement for different periods of the study ranges from -5.5 to 2.7 m·a-1 (mean -0.6 m·a-1). Mean coastal retreat decreased from -0.6 m·a-1 to -0.5 m·a-1, for 1952-1970 and 1970-2000, respectively, and increased to -1.3 m·a-1 in the period 2000-2011. Ice-rich coastal sections, and coastal sections most exposed to wave attack exhibited the highest rates of coastal retreat. The geohazard map resulting from shoreline projections and flood risk analysis indicates that most of the area occupied by the historic settlement is at extreme or very high risk of flooding, and some buildings are vulnerable to coastal erosion. The results of this study indicate a greater threat by coastal flooding than erosion. Our assessment may be applied in other locations where limited data are available.

  3. Wave energy fluxes and multi-decadal shoreline changes

    DEFF Research Database (Denmark)

    Kabuth, Alina Kristin; Kroon, Aart

    2014-01-01

    Spatial patterns of multidecadal shoreline changes in two microtidal, low-energetic embayments of southern Zealand, Denmark, were investigated by using the directional distribution of wave energy fluxes. The sites include a barrier island system attached to moraine bluffs, and a recurved spit...... variability of directional distributions of wave energy fluxes furthermore outlined potential sediment sources and sinks for the evolution of the barrier island system and for the evolution of the recurved spit....

  4. Controls of sedimentary supply and gravity driven deformation on the eastern Niger delta (Plio-Pleistocene) from the shoreline to the deep sea plain

    Science.gov (United States)

    Robin, Cécile; Guillocheau, François; Rouby, Delphine; Nalpas, Thierry; Jermannaud, Paul; Raillard, Stéphane

    2013-04-01

    We studied the evolution of the gravity flow sedimentary within a large shelf-edge delta (Eastern Niger delta) over the last 2,5Myr taking into account the influence of the contemporaneous gravity driven deformation and sedimentary supply. To do this, we mapped (i) the shoreline geometry and (ii) the associated turbiditic systems for 9 intervals using a classification based on three morphological end-members: erosive, constructive and depositional modes. We characterized the depositional profile of the passive margin delta from the littoral domain to the abyssal plain and its spatial and temporal variability. We showed that, at the scale of the delta, the depositional profile varied from (i) a shelf edge delta profile with a slope break at the location of the shoreline during progradation to (ii) a ramp profile characteristic of a mid-shelf delta during retrogradation. Thus, during a stratigraphic cycle, the delta front evolved from a prograding slope break during the development of the HST, to steepening clinoforms during the development of the LST that progressively flattened out during the TST to reach a ramp profile at the MFS. The turbiditic systems (including MTC) initiate near the shoreline, at the toe of the delta front. Also, they form preferentially down slope synthetic faults or within antithetic fault relays. They are initially erosive, becoming constructive further down slope and eventually depositional. They may become erosive again as they cut through the compressional structures. We showed that the stratigraphic state (progradation/retrogradation) controls the amount of sediment reaching the platform and strongly impacts the density of gravity flow sedimentary systems (low density during progradation and high density during progradation). On the other hand, the gravity driven deformation controls the slope of the sea-floor and, in doing so, their morphology (erosive/constructive/depositional). Within this framework, lateral migrations of the delta

  5. Erosive Lichen Planus.

    Science.gov (United States)

    Mauskar, Melissa

    2017-09-01

    Lichen planus is an inflammatory mucocutaneous condition with a myriad of clinical manifestations. There are 3 forms of lichen planus that effect the vulva: papulosquamous, hypertrophic, and erosive. Erosive lichen planus can progress to vulvar scaring, vaginal stenosis, and squamous cell carcinoma; these long-term sequelae cause sexual distress, depression, and decreased quality of life for patients. Diagnosis is often delayed because of patient embarrassment or clinician misdiagnosis. Early recognition and treatment is essential to decreasing the morbidity of this condition. Multimodal treatment, along with a multidisciplinary approach, will improve outcomes and further clinical advances in studying this condition. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Anthropogenic currents and shoreline water quality in Avalon Bay, California.

    Science.gov (United States)

    Ho, Lin C; Litton, Rachel M; Grant, Stanley B

    2011-03-15

    Shoreline concentrations of fecal indicator bacteria (FIB) and fecal indicator viruses (FIV) in Avalon Bay (Catalina Island, California) display a marked diurnal pattern (higher at night and lower during the day) previously attributed to the tidal flux of sewage-contaminated groundwater and the tidal washing of contaminated sediments, coupled with light and dark die-off of FIB and FIV (Boehm, et al., Environ. Sci. Technol. 2009, 43, 8046-8052). In this paper we document the existence of strong (peak velocities between 20 to 40 cm/s) transient currents in the nearshore waters of Avalon Bay that occur between 07:00 and 20:00 each day. These currents, which have a significant onshore component, are generated by anthropogenic activities in the Bay, including prop wash from local boat traffic and the docking practices of large passenger ferries. A budget analysis carried out on simultaneous measurements of FIB at two cross-shore locations indicates that anthropogenic currents contribute to the diurnal cycling of FIB concentrations along the shoreline, by transporting relatively unpolluted water from offshore toward the beach. The data and analysis presented in this paper support the idea that anthropogenic currents represent a significant, and previously overlooked, source of variability in shoreline water quality.

  7. Canadian coastal environments, shoreline processes, and oil spill cleanup

    International Nuclear Information System (INIS)

    Owens, E.H.

    1994-03-01

    The coastal zone is a dynamic environment, so that in developing practical and effective oil spill response strategies it is necessary to understand the forces that contribute to shore-zone processs. The coasts of Canada encompass a wide range of environments and are characterized by a variety of shoreline types that include the exposed, resistant cliffs of eastern Newfoundland and the sheltered marshes of the Beaufort Sea. A report is presented to provide an understanding of the dynamics and physical processes as they vary on the different coasts of Canada, including the Great Lakes. An outline of the general character and processes on a regional basis describes the coastal environments and introduces the literature that can be consulted for more specific information. The likely fate and persistence of oil that reaches the shoreline is discussed to provide the framework for development of spill response strategies and for the selection of appropriate shoreline cleanup or treatment countermeasures. Lessons learned from recent experience with major oil spills and field experiments are integrated into the discussion. Separate abstracts have been prepared for each of the four sections of this report. 502 refs., 5 figs

  8. Illuminating wildfire erosion and deposition patterns with repeat terrestrial lidar

    Science.gov (United States)

    Rengers, Francis K.; Tucker, G.E.; Moody, J.A.; Ebel, Brian

    2016-01-01

    Erosion following a wildfire is much greater than background erosion in forests because of wildfire-induced changes to soil erodibility and water infiltration. While many previous studies have documented post-wildfire erosion with point and small plot-scale measurements, the spatial distribution of post-fire erosion patterns at the watershed scale remains largely unexplored. In this study lidar surveys were collected periodically in a small, first-order drainage basin over a period of 2 years following a wildfire. The study site was relatively steep with slopes ranging from 17° to > 30°. During the study period, several different types of rain storms occurred on the site including low-intensity frontal storms (2.4 mm h−1) and high-intensity convective thunderstorms (79 mm h−1). These storms were the dominant drivers of erosion. Erosion resulting from dry ravel and debris flows was notably absent at the site. Successive lidar surveys were subtracted from one another to obtain digital maps of topographic change between surveys. The results show an evolution in geomorphic response, such that the erosional response after rain storms was strongly influenced by the previous erosional events and pre-fire site morphology. Hillslope and channel roughness increased over time, and the watershed armored as coarse cobbles and boulders were exposed. The erosional response was spatially nonuniform; shallow erosion from hillslopes (87% of the study area) contributed 3 times more sediment volume than erosion from convergent areas (13% of the study area). However, the total normalized erosion depth (volume/area) was highest in convergent areas. From a detailed understanding of the spatial locations of erosion, we made inferences regarding the processes driving erosion. It appears that hillslope erosion is controlled by rain splash (for detachment) and overland flow (for transport and quasi-channelized erosion), with the sites of highest erosion corresponding to locations

  9. Validation of a short-term shoreline evolution model and coastal risk management implications. The case of the NW Portuguese coast (Ovar-Marinha Grande)

    Science.gov (United States)

    Cenci, Luca; Giuseppina Persichillo, Maria; Disperati, Leonardo; Oliveira, Eduardo R.; de Fátima Lopes Alves, Maria; Boni, Giorgio; Pulvirenti, Luca; Phillips, Mike

    2015-04-01

    Coastal zones are fragile and dynamic environments where environmental, economic and social aspects are interconnected. While these areas are often highly urbanised, they are especially vulnerable to natural hazards (e.g. storms, floods, erosion, storm surges). Hence, high risk affects people and goods in several coastal zones throughout the world. The recent storms that hit the European coasts (Hercules, Christian and Stephanie, among others) showed the high vulnerability of these territories. Integrated Coastal Management (ICM) deals with the sustainable development of coastal zones by taking into account the different aspects that affect them, including risks adaptation and mitigation. Accurate mapping of shoreline position through time and models to predict shoreline evolution play a fundamental role for coastal zone risk management. In this context, spaceborne remote sensing is fundamental because it provides synoptic and multitemporal information that allow the extraction of shorelines' proxies. These are stable coastal features (e.g. the vegetation lines, the foredune toe, etc.) that can be mapped instead of the proper shoreline, which is an extremely dynamic boundary. The use of different proxies may provide different evolutionary patterns for the same study area; therefore it is important to assess which is the most suitable, given the environmental characteristics of a specific area. In Portugal, the coastal stretch between Ovar and Marinha Grande is one of the greatest national challenges in terms of integrated management of resources and risks. This area is characterised by intense erosive processes that largely exceed the shoreline's retreat predictions made in the first Coastal Zone Management Plan, developed in 2000. The aim of this work was to assess the accuracy of a new model of shoreline evolution implemented in 2013 in order to check its robustness for short-term predictions. The method exploited the potentialities of the Landsat archive

  10. Monitoring oiled shorelines in Prince William Sound Alaska, following the Exxon Valdez oil spill

    International Nuclear Information System (INIS)

    Gilfillan, E.S.; Page, D.S.; Harner, E.J.; Boehm, P.D.; Stoker, S.W.

    1993-01-01

    Three types of shoreline monitoring programs were employed to evaluate the recovery of the ecological communities of Prince William Sound (PWS) shorelines after the oil spill: (a) Extensive shoreline surveys conducted (1989--1992) over much of the oiled shoreline to define extent of shoreline oiling and to assess biological conditions; (b) Detailed sampling in 1989 at nonrandomly chosen locations representing a range of oiling conditions (c) Comprehensive shoreline ecology program initiated in 1990 to assess shoreline recovery in Prince William Sound using (1) a rigorous stratified random sampling study design with 64 sites representing 4 shoreline habitats and 4 oiling levels (unoiled, light, moderate, heavy); (2) periodic sampling at 12 nonrandomly chosen sites of particular concern. Biological communities were analyzed to detect differences due to oiling in each of 16 habitat/tide zone combinations. Following the spill, populations of all major species survived as sources for recolonization. Recruitment to oiled shores began in summer 1989. By 1990, shoreline biota in PWS had largely recovered. Estimates of shoreline recovery (biological community indistinguishable from reference) ranged from 91% based on univariate analysis of standard community parameters to 73% based on multivariate correspondence analysis

  11. Bentonite erosion. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Birgersson, Martin; Boergesson, Lennart; Hedstroem, Magnus; Karnland, Ola; Nilsson, Ulf (Clay Technology AB, Lund (Sweden))

    2009-12-15

    Low saline water may reach KBS-3 repository depth, e.g. during periods of glaciation. Under such aqueous conditions, the montmorillonite part of the bentonite buffer might transform into a sol and thereby be transported away with flowing water in fractures. The primary aim with this report is to improve the understanding of the basic principles for this possible montmorillonite particle release. The report includes experimental and theoretical work performed at Clay Technology. Natural bentonite and ion-exchanged purified montmorillonite from three different geographical origins, Wyoming (U.S.), Milos (Greece) and Kutch (India) have been studied. Experimental and/or theoretical investigations have been performed with respect to: - Free swelling ability; - Rheological properties; - Rate of bentonite loss into fractures; - Filtering; - Ion exchange; - Sol formation ability; - Ion diffusion; - Mass loss due to erosion. The performed erosion experiments show that erosion does not occur in a mixed calcium/sodium montmorillonite with at least 20% calcium in exchange positions, when the external solution contains above 4 mM charge equivalents. This result is in agreement with the presented conceptual view of sol formation and measured equilibrium properties in mixed calcium/sodium montmorillonite. The findings imply that the buffer will be stable for non-glacial conditions. However, erosion due to sol formation cannot be ruled out for glacial conditions.

  12. Dune erosion above revetments

    NARCIS (Netherlands)

    Van Thiel de Vries, J.S.M.

    2012-01-01

    In a situation with a narrow dune, the dune base can be protected with a revetment to reduce dune erosion during extreme events. To quantify the effects of a revetment on storm impact, the functionality of the numerical storm impact model XBeach (Roelvink et al., 2009) is extended to account for the

  13. Categorization of erosion control matting.

    Science.gov (United States)

    2012-05-29

    Erosion control is a critical aspect of any Georgia Department of Transportation (GDOT) : construction project, with the extreme negative impacts of high sediment loads in natural : waterways having been well documented. A variety of erosion control ...

  14. The Effect of Shoreline Recreational Angling Activities on Aquatic and Riparian Habitat Within an Urban Environment: Implications for Conservation and Management

    Science.gov (United States)

    O'Toole, Amanda C.; Hanson, Kyle C.; Cooke, Steven J.

    2009-08-01

    There is growing concern that recreational shoreline angling activity may negatively impact littoral and riparian habitats independent of any direct or indirect influences of fish harvest or fishing mortality through mechanisms such as disturbance (e.g., trampling, erosion) and pollution (e.g., littering). We sampled a suite of aquatic and terrestrial variables (i.e., water quality, aquatic and terrestrial macrophytes, soil compaction, anthropogenic refuse) at 14 high shoreline angling-activity sites (identified by way of interviews with conservation officers and angling clubs) within an urban area (Ottawa, Canada). For each high angling-activity site, a nearby corresponding low angling-activity site was sampled for comparison. We found that the percentage of barren area and soil compaction were greater in areas of high angling activity compared with areas that experienced relatively low angling activity. In addition, terrestrial and aquatic macrophyte density, height, and diversity were lower at high angling-activity sites. Angling- and non-angling-related litter was present in large quantities at each of the high angling-activity sites, and comparatively little litter was found at low angling-activity sites. Collectively, these findings indicate that shoreline angling does alter the riparian environment, contributing to pollution and environmental degradation in areas of high angling intensity. With growing interest in providing urban angling opportunities and in response to increasing interest in developing protected areas and parks, a better understanding of the ecologic impacts of shoreline angling is necessary to address multiuser conflicts, to develop angler outreach and educational materials, and to optimize management of angling effort to maintain ecologic integrity of riparian and aquatic ecosystems.

  15. The effect of shoreline recreational angling activities on aquatic and riparian habitat within an urban environment: implications for conservation and management.

    Science.gov (United States)

    O'Toole, Amanda C; Hanson, Kyle C; Cooke, Steven J

    2009-08-01

    There is growing concern that recreational shoreline angling activity may negatively impact littoral and riparian habitats independent of any direct or indirect influences of fish harvest or fishing mortality through mechanisms such as disturbance (e.g., trampling, erosion) and pollution (e.g., littering). We sampled a suite of aquatic and terrestrial variables (i.e., water quality, aquatic and terrestrial macrophytes, soil compaction, anthropogenic refuse) at 14 high shoreline angling-activity sites (identified by way of interviews with conservation officers and angling clubs) within an urban area (Ottawa, Canada). For each high angling-activity site, a nearby corresponding low angling-activity site was sampled for comparison. We found that the percentage of barren area and soil compaction were greater in areas of high angling activity compared with areas that experienced relatively low angling activity. In addition, terrestrial and aquatic macrophyte density, height, and diversity were lower at high angling-activity sites. Angling- and non-angling-related litter was present in large quantities at each of the high angling-activity sites, and comparatively little litter was found at low angling-activity sites. Collectively, these findings indicate that shoreline angling does alter the riparian environment, contributing to pollution and environmental degradation in areas of high angling intensity. With growing interest in providing urban angling opportunities and in response to increasing interest in developing protected areas and parks, a better understanding of the ecologic impacts of shoreline angling is necessary to address multiuser conflicts, to develop angler outreach and educational materials, and to optimize management of angling effort to maintain ecologic integrity of riparian and aquatic ecosystems.

  16. Desert pavement development on the lake shorelines of Lake Eyre (South), South Australia

    Science.gov (United States)

    Al-Farraj, Asma

    2008-08-01

    To the southwest of Lake Eyre (South), South Australia, silcrete boulders exposed by the erosion of the surrounding fine sediments undergo mechanical weathering to form desert pavement. Successive palaeoshorelines of Lake Eyre have exposed an age-related sequence of different stages in the weathering of the boulders. This study investigates desert pavement development in this saline environment. In addition, it attempts to develop a model for the development of desert pavement following exposure of the silcrete boulders, based on palaeo-lake shorelines dated from previous studies. Seven stages can be recognised corresponding to stages of soil and pavement development. Prior to stage one is the actual exposure of the boulder as the result of erosion by wave action at the lake shoreline or by erosion as the lake level falls during desiccation. At stage-1 the upper surface of the boulder breaks up through mechanical weathering (salt weathering), while the rest of the boulder is still buried. At stage-2 the surface fragments fall to the edge of the stone and expose more of the stone, which continues to break-up. There is no soil development in stages 1 and 2. By stage-3 most of the stone is exposed and broken up, making a mini-hill. At this stage soil development begins with the accumulation of sandy soil between the rock fragments. At stage-4 the stones form small cones and the soil is more developed. It is sandy with a typical of colour 10 YR 6/6. At stage-5 the stones forming the small cone are completely fragmented. Stone fragments at the centre are very angular but smoother at the edges of the mini-hill as the result of weathering (etching by chemical processes?). Soil texture is silty/sand and soil colour is 7.5 YR 6/6. At stage-6 the surface is nearly flat. The soil is sandy/silt and soil colour is between 7.5 YR 5/6 and 7.5 YR 5/8. Stage-7a is the gibber plain phase, composed of small well rounded stones, as a result of continued etching of the edges of the

  17. Development of an Integrated Water and Wind Erosion Model

    Science.gov (United States)

    Flanagan, D. C.; Ascough, J. C.; Wagner, L. E.; Geter, W. F.

    2006-12-01

    Prediction technologies for soil erosion by the forces of wind or water have largely been developed independently from one another, especially within the United States. Much of this has been due to the initial creation of equations and models which were empirical in nature (i.e., Universal Soil Loss Equation, Wind Erosion Equation) and based upon separate water erosion or wind erosion plot and field measurements. Additionally, institutional organizations in place typically divided research efforts and funding to unique wind or water erosion research and modeling projects. However, during the past 20 years computer technologies and erosion modeling have progressed to the point where it is now possible to merge physical process-based computer simulation models into an integrated water and wind erosion prediction system. In a physically- based model, many of the processes which must be simulated for wind and water erosion computations are the same, e.g., climate, water balance, runoff, plant growth, etc. Model components which specifically deal with the wind or water detachment, transport and deposition processes are those that must differ, as well as any necessary parameterization of input variables (e.g., adjusted soil erodibilities, critical shear stresses, etc.) for those components. This presentation describes current efforts towards development of a combined wind and water erosion model, based in part upon technologies present in the Water Erosion Prediction Project (WEPP) and the Wind Erosion Prediction System (WEPS) models. Initial efforts during the past two years have resulted in modular modeling components that allow for prediction of infiltration, surface runoff, and water erosion at a hillslope scale within an Object Modeling System. Additional components currently in development include wind detachment at a single field point, continuous water balance, and unified plant growth. Challenges in this project are many, and include adequate field

  18. Soil erosion and agricultural sustainability

    OpenAIRE

    Montgomery, David R.

    2007-01-01

    Data drawn from a global compilation of studies quantitatively confirm the long-articulated contention that erosion rates from conventionally plowed agricultural fields average 1–2 orders of magnitude greater than rates of soil production, erosion under native vegetation, and long-term geological erosion. The general equivalence of the latter indicates that, considered globally, hillslope soil production and erosion evolve to balance geologic and climate forcing, whereas conventional plow-bas...

  19. Operational shoreline mapping with high spatial resolution radar and geographic processing

    Science.gov (United States)

    Rangoonwala, Amina; Jones, Cathleen E; Chi, Zhaohui; Ramsey, Elijah W.

    2017-01-01

    A comprehensive mapping technology was developed utilizing standard image processing and available GIS procedures to automate shoreline identification and mapping from 2 m synthetic aperture radar (SAR) HH amplitude data. The development used four NASA Uninhabited Aerial Vehicle SAR (UAVSAR) data collections between summer 2009 and 2012 and a fall 2012 collection of wetlands dominantly fronted by vegetated shorelines along the Mississippi River Delta that are beset by severe storms, toxic releases, and relative sea-level rise. In comparison to shorelines interpreted from 0.3 m and 1 m orthophotography, the automated GIS 10 m alongshore sampling found SAR shoreline mapping accuracy to be ±2 m, well within the lower range of reported shoreline mapping accuracies. The high comparability was obtained even though water levels differed between the SAR and photography image pairs and included all shorelines regardless of complexity. The SAR mapping technology is highly repeatable and extendable to other SAR instruments with similar operational functionality.

  20. Seismicity, seismology and erosion

    Science.gov (United States)

    Hovius, Niels; Meunier, Patrick; Burtin, Arnaud; Marc, Odin

    2013-04-01

    At the interface of geomorphology and seismology, patterns of erosion can be used to constrain seismic processes, and seismological instruments to determine geomorphic activity. For example, earthquakes trigger mass wasting in proportion to peak ground velocity or acceleration, modulated by local geologic and topographic conditions. This geomorphic response determines the mass balance and net topographic effect of earthquakes. It can also be used to obtain information about the distribution of seismic slip where instrumental observations are not available. Equally, seismometers can register the signals of geomorphic processes, revealing their location, type and magnitude. The high temporal resolution of such records can help determine the exact meteorological conditions that gave rise to erosion events, and the interactions between individual surface processes during such events. We will illustrate this synergy of disciplines with examples from active mountain belts around the world, including Taiwan, Japan, Papua New Guinea and the Alps.

  1. Rainfall erosivity map for Ghana

    International Nuclear Information System (INIS)

    Oduro Afriyie, K.

    1995-10-01

    Monthly rainfall data, spanning over a period of more than thirty years, were used to compute rainfall erosivity indices for various stations in Ghana, using the Fournier index, c, defined as p 2 /P, where p is the rainfall amount in the wettest month and P is the annual rainfall amount. Values of the rainfall erosivity indices ranged from 24.5 mm at Sunyani in the mid-portion of Ghana to 180.9 mm at Axim in the south western coastal portion. The indices were used to construct a rainfall erosivity map for the country. The map revealed that Ghana may be broadly divided into five major erosion risk zones. The middle sector of Ghana is generally in the low erosion risk zone; the northern sector is in the moderate to severe erosion risk zone, while the coastal sector is in the severe to extreme severe erosion risk zone. (author). 11 refs, 1 fig., 1 tab

  2. Actinides, accelerators and erosion

    Directory of Open Access Journals (Sweden)

    Fifield L.K.

    2012-10-01

    Full Text Available Fallout isotopes can be used as artificial tracers of soil erosion and sediment accumulation. The most commonly used isotope to date has been 137Cs. Concentrations of 137Cs are, however, significantly lower in the Southern Hemisphere, and furthermore have now declined to 35% of original values due to radioactive decay. As a consequence the future utility of 137Cs is limited in Australia, with many erosion applications becoming untenable within the next 20 years, and there is a need to replace it with another tracer. Plutonium could fill this role, and has the advantages that there were six times as many atoms of Pu as of 137Cs in fallout, and any loss to decay has been negligible due to the long half-lives of the plutonium isotopes. Uranium-236 is another long-lived fallout isotope with significant potential for exploitation as a tracer of soil and sediment movement. Uranium is expected to be more mobile in soils than plutonium (or caesium, and hence the 236U/Pu ratio will vary with soil depth, and so could provide an independent measure of the amount of soil loss. In this paper we discuss accelerator based ultra-sensitive measurements of plutonium and 236U isotopes and their advantages over 137Cs as tracers of soil erosion and sediment movement.

  3. Characterizing rainfall parameters which influence erosivity in southeastern Nigeria

    International Nuclear Information System (INIS)

    Obi, M.E.; Salako, F.K.

    1993-12-01

    An investigation was carried out to characterize some selected parameters which influence rainfall erosivity in southeastern Nigeria. Rainfall amount, distribution, duration, intensity, storm types, energy loads and frequency of rain events in the region were studied using data from stations located in three major agroecological zones. Raindrop size and detaching capacity were evaluated in one of the stations for two months. The mean annual rainfall erosivity values for southeastern Nigeria point to the fact that rainfall tend to be highly erosive. 25 refs, 6 figs, 8 tabs

  4. Synthesis study of an erosion hot spot, Ocean Beach, California

    Science.gov (United States)

    Barnard, Patrick L.; Hansen, Jeff E.; Erikson, Li H.

    2012-01-01

    A synthesis of multiple coastal morphodynamic research efforts is presented to identify the processes responsible for persistent erosion along a 1-km segment of 7-km-long Ocean Beach in San Francisco, California. The beach is situated adjacent to a major tidal inlet and in the shadow of the ebb-tidal delta at the mouth of San Francisco Bay. Ocean Beach is exposed to a high-energy wave climate and significant alongshore variability in forcing introduced by varying nearshore bathymetry, tidal forcing, and beach morphology (e.g., beach variably backed by seawall, dunes, and bluffs). In addition, significant regional anthropogenic factors have influenced sediment supply and tidal current strength. A variety of techniques were employed to investigate the erosion at Ocean Beach, including historical shoreline and bathymetric analysis, monthly beach topographic surveys, nearshore and regional bathymetric surveys, beach and nearshore grain size analysis, two surf-zone hydrodynamic experiments, four sets of nearshore wave and current experiments, and several numerical modeling approaches. Here, we synthesize the results of 7 years of data collection to lay out the causes of persistent erosion, demonstrating the effectiveness of integrating an array of data sets covering a huge range of spatial scales. The key findings are as follows: anthropogenic influences have reduced sediment supply from San Francisco Bay, leading to pervasive contraction (i.e., both volume and area loss) of the ebb-tidal delta, which in turn reduced the regional grain size and modified wave focusing patterns along Ocean Beach, altering nearshore circulation and sediment transport patterns. In addition, scour associated with an exposed sewage outfall pipe causes a local depression in wave heights, significantly modifying nearshore circulation patterns that have been shown through modeling to be key drivers of persistent erosion in that area.

  5. Decadal shoreline changes in the muddy coastline of Ondo State, Nigeria

    Directory of Open Access Journals (Sweden)

    TEMITOPE D. TIMOTHY OYEDOTUN

    2015-12-01

    Full Text Available Modifications du littoral décennales dans le l ittoral boueux de l'Etat d'Ondo , Nigeria . Les changements dans les positions du rivage à proximité du littoral boueux de l'Etat d'Ondo (sud - ouest du Nigeria sont étudiés, entre 1972 et 2014. Les mouvements de l'eau (HW rivage haut ont été étudiés en utilisant le système n umérique Shoreline Analyse (DSAS, une extension ArcGIS développé par l'USGS. Les ensembles de données comprend plusieurs éditions de photographie de Landsat et le Nigeria Imageries satellite. le Shoreline délimitées les unes des images année inclus les po sitions de HW, qui ont été calculées à partir du rivage Mouvement net (NSM et End Point Noter (EPR, le taux annuel de mouvement. Les résultats préliminaires montrent que les rivages de Ondo côte État ont connu un mouvement vers la terre constante au cour s des quatre décennies. Ces changements sont attribués à des attaques d'onde, l'augmentation des niveaux des marées dans le golfe de l'Atlantique du Bénin, la récente hausse du niveau de la mer, canalisation de la rivière qui réduisent le transport de sédi ments dans la zone côtière, l'extraction historique probable de sable et d'autres activités anthropiques dans la zone côtière.

  6. A Study of Cavitation Erosion

    International Nuclear Information System (INIS)

    Hiromu Isaka; Masatsugu Tsutsumi; Tadashi Shiraishi; Hiroyuki Kobayashi

    2002-01-01

    The authors performed experimental study for the purpose of the following two items from a viewpoint of cavitation erosion of a cylindrical orifice in view of a problem at the letdown orifice in PWR (Pressurized Water Reactor). 1. To get the critical cavitation parameter of the cylindrical orifice to establish the design criteria for prevention of cavitation erosion, and 2. to ascertain the erosion rate in such an eventuality that the cavitation erosion occurs with the orifice made of stainless steel with precipitation hardening (17-4-Cu hardening type stainless steel), so that we confirm the appropriateness of the design criteria. Regarding the 1. item, we carried out the cavitation tests to get the critical cavitation parameters inside and downstream of the orifice. The test results showed that the cavitation parameter at inception is independent of the length or the diameter of the orifice. Moreover, the design criteria of cavitation erosion of cylindrical orifices have been established. Regarding the 2. item, we tested the erosion rate under high-pressure conditions. The cavitation erosion actually occurred in the cylindrical orifice at the tests that was strongly resemble to the erosion occurred at the plant. It will be seldom to reproduce resemble cavitation erosion in a cylindrical orifice with the hard material used at plants. We could establish the criteria for preventing the cavitation erosion from the test results. (authors)

  7. Managing shoreline assessment data during the Lake Wabamun incident

    Energy Technology Data Exchange (ETDEWEB)

    Lamarche, A. [Environmental Performance and Decision Support, Montreal, PQ (Canada); Martin, V. [Eastern Canada Response Corp. Ltd., Vercheres, PQ (Canada)

    2009-07-01

    A freight train derailed near the shore of Lake Wabamun near Edmonton in August 2003, spilling about 750 m{sup 3} of heavy Bunker C oil on the lakeshore. The nature and extent of oiling was assessed over a period of 3 consecutive summers using a variety of techniques. Surface oiling along the shore was evaluated using the Shoreline Cleanup Assessment Team (SCAT) approach, with some modifications to consider local conditions. Oiling conditions of the submerged tar ball oil in the shallow near shore waters was evaluated in the summer of 2006. Several computerized functions were developed in order to provide reports and maps of the submerged oil conditions, so that the treatment team could remove most of the oil before the next reed growing season. The location of all observations were recorded using GPS. Lake Wabamun includes the following along its shores: industry which uses the lake water for cooling purposes; a provincial park; a First-nations reservation; and private residences. Since all survey data was made available to the general public, it had to be detailed and easy to understand. This paper described how some of the data management issues were addressed within the framework of the shoreline assessment organization. 6 refs., 3 tabs., 13 figs.

  8. Radiation dates of holocene shorelines in Peninsula Malaysia

    International Nuclear Information System (INIS)

    Tjia, H.D.; Kigoshi, K.

    1977-01-01

    Fifteen newly determined radiocarbon dates indicate the presence of former shorelines up to 3 meters above present high tide level in the tectonically stable Peninsula of Malaysia. The sea level indicators consist of oysters in growth position (9 samples), molluscs in beach deposits (2), corals in growth position (3), and beachrock (1). In the Peninsula living oysters occur up to or slightly above high tide, modern beach deposits may occur as high as 1.5 meters above high tide, and corals live up to low tide level. The literature shows that high tide, and corals live up to low tide level. The literature shows that beachrock marks intertidal zones. Combined with seven previously published ages of raised shorelines in the region, strong evidence is presented for one or more high Holocene, eustatic sea level stands in the continental part of Southeast Asia. Periods of high sea levels occur between 2500 and 2900 yr BP, and between 4200 and 5700 yr BP. There is also some indication of high sea level between 8300 and 9500 yr BP. (author)

  9. A terminological matter: paragenesis, antigravitative erosion or antigravitational erosion ?

    Directory of Open Access Journals (Sweden)

    Pasini G.

    2009-07-01

    Full Text Available In the speleological literature three terms are utilized to designate the “ascending erosion”: paragenesis (= paragénésis, coined in1968, antigravitative erosion (= erosione antigravitativa, coined in 1966 and antigravitational erosion (wrong English translation ofthe Italian term erosione antigravitativa, utilized later on. The term paragenesis should be abandoned because of the priority of theterm erosione antigravitativa - on the ground of the “law of priority” – and because of its ambiguous etimology. On the other hand,the term antigravitational erosion should be forsaken in favour of the term antigravitative erosion, given the meaning that the termsgravitation and gravity have in Physics. Therefore, to designate the phenomenon of the “ascending erosion” there would be nothingleft but the term antigravitative erosion.The antigravitative erosion process and its recognizability are illustrated.Examples of caves with evident antigravitative erosion phenomena, developed in different karstifiable rocks and in several partsof the world, are given.It is recalled that the antigravitative erosion is a phenomenon well-known since 1942 and widely proven and supported, and that it isrelatively easy – in many cases - to recognize the antigravitative origin of karstic passages.It is stressed that the antigravitative erosion is an important phenomenon, exclusive of the karstic caves and unique in nature.

  10. Eolian erosion of the Martian surface. I - Erosion rate similitude

    Science.gov (United States)

    Iversen, J. D.; White, B. R.; Greeley, R.; Pollack, J. B.

    1975-01-01

    A similitude parameter is derived which is based on theoretical considerations of erosion due to sand in saltation. This parameter has been used to correlate wind tunnel experiments of particle flow over model craters. The characteristics of the flow field in the vicinity and downstream of a crater are discussed and it is shown that erosion is initiated in areas lying under a pair of trailing vortices. The erosion rate parameter is used to calculate erosion rates on Mars, reported in Part 2, to be published later.

  11. Evaluating the new soil erosion map of Hungary

    Science.gov (United States)

    Waltner, István; Centeri, Csaba; Takács, Katalin; Pirkó, Béla; Koós, Sándor; László, Péter; Pásztor, László

    2017-04-01

    With growing concerns on the effects of climate change and land use practices on our soil resources, soil erosion by water is becoming a significant issue internationally. Since the 1964 publication of the first soil erosion map of Hungary, there have been several attempts to provide a countrywide assessment of erosion susceptibility. However, there has been no up-to-date map produced in the last decade. In 2016, a new, 1:100 000 scale soil erosion map was published, based on available soil, elevation, land use and meteorological data for the extremely wet year of 2010. The map utilized combined outputs for two spatially explicit methods: the widely used empirical Universal Soil Loss Equation (USLE) and the process-based Pan-European Soil Erosion Risk Assessment (PESERA) models. The present study aims to provide a detailed analysis of the model results. In lieu of available national monitoring data, information from other sources were used. The Soil Degradation Subsystem (TDR) of the National Environmental Information System (OKIR) is a digital database based on a soil survey and farm dairy data collected from representative farms in Hungary. During the survey all kind of degradation forms - including soil erosion - were considered. Agricultural and demographic data was obtained from the Hungarian Central Statistical Office (KSH). Data from an interview-based survey was also used in an attempt to assess public awareness of soil erosion risks. Point-based evaluation of the model results was complemented with cross-regional assessment of soil erosion estimates. This, combined with available demographic information provides us with an opportunity to address soil erosion on a community level, with the identification of regions with the highest risk of being affected by soil erosion.

  12. DiMES divertor erosion experiments on DIII-D

    International Nuclear Information System (INIS)

    Whyte, D.G.; Brooks, J.N.; Wong, C.P.C.; West, W.P.; Bastasz, R.; Wampler, W.R.; Rubinstein, J.

    1996-01-01

    The DiMES (Divertor Material Evaluation Studies) mechanism allows insertion of material samples to the lower divertor floor of the DIII-D tokamak. The main purpose of these studies is to measure erosion rates and redeposition mechanisms under tokamak divertor plasma conditions in order to obtain a physical understanding of the erosion/redeposition processes and to determine its implications for fusion power plant plasma facing components. Thin metal films of Be, W, V, and Mo, were deposited on a Si depth-marked graphite sample and exposed to the steady-state outer strike point on DIII-D. A variety of surface analysis techniques are used to determine the erosion/redeposition of the metals and the carbon after 5--15 seconds of exposure. These short exposure times ensure controlled exposure conditions and the extensive array of DIII-D divertor diagnostics provide a well characterized plasma for modeling efforts. Erosion rates and redeposition lengths are found to decrease with the atomic number of the metallic species, as expected. Under these conditions, the peak net erosion rate for carbon is ∼ 4 nm/s, with the erosion following the ion flux profile. Comparisons of the measured carbon erosion with REDEP code calculations show good agreement for both the absolute net erosion rate and its spatial variation. Measured erosion rates of the metals are smaller than predicted for sputtering from a bare metal surface, apparently due to effects of carbon deposition on the metal surface. Visible spectroscopic measurements of singly ionized Be have determined that the erosion process reaches steady-state during the exposure

  13. TOXICITY TRENDS DURING AN OIL SPILL BIOREMEDIATION EXPERIMENT ON A SANDY SHORELINE IN DELAWARE, USA

    Science.gov (United States)

    A 13-week, refereed, inter-agency toxicity testing program involving five bioassay methods was used to document the effectiveness of shoreline bioremediation to accelerate toxicity reduction of an oiled sandy shoreline at Fowler Beach, Delaware, USA. The study was part of an inte...

  14. Oil characterization and distribution in shoreline sediments of Pensacola Bay, Florida following the Deepwater Horizon spill

    Science.gov (United States)

    Barrier islands of Northwest Florida were heavily oiled during the Deepwater Horizon spill, but less is known about the impacts to the shorelines of the associated estuaries. Shoreline sediment oiling was investigated at 18 sites within the Pensacola Bay, Florida system prior to...

  15. Calibration of Numerical Model for Shoreline Change Prediction Using Satellite Imagery Data

    Directory of Open Access Journals (Sweden)

    Sigit Sutikno

    2015-12-01

    Full Text Available This paper presents a method for calibration of numerical model for shoreline change prediction using satellite imagery data in muddy beach. Tanjung Motong beach, a muddy beach that is suffered high abrasion in Rangsang Island, Riau province, Indonesia was picked as study area. The primary numerical modeling tool used in this research was GENESIS (GENEralized Model for Simulating Shoreline change, which has been successfully applied in many case studies of shoreline change phenomena on a sandy beach.The model was calibrated using two extracted coastlines satellite imagery data, such as Landsat-5 TM and Landsat-8 OLI/TIRS. The extracted coastline data were analyzed by using DSAS (Digital Shoreline Analysis System tool to get the rate of shoreline change from 1990 to 2014. The main purpose of the calibration process was to find out the appropriate value for K 1 and K coefficients so that the predicted shoreline change had an acceptable correlation with the output of the satellite data processing. The result of this research showed that the shoreline change prediction had a good correlation with the historical evidence data in Tanjung Motong coast. It means that the GENESIS tool is not only applicable for shoreline prediction in sandy beach but also in muddy beach.

  16. Inferring autogenically induced depositional discontinuities from observations on experimental deltaic shoreline trajectories

    NARCIS (Netherlands)

    Mikes, D.; ten Veen, J.H.; Postma, G.; Steel, Ronald

    2015-01-01

    Palaeo shoreline is a commonly used proxy for palaeo sea level, but only if deposition is continuous and constant will shoreline trajectory T(l) completely capture sea-level time-series E(t). Artificial deltas were generated in the Eurotank flume facility under stepwise tectonic subsidence, periodic

  17. Two and three-dimensional shoreline behaviour at a MESO-MACROTIDAL barred beach

    NARCIS (Netherlands)

    Angnuureng, Donatus Bapentire; Almar, Rafael; Senechal, Nadia; Castelle, Bruno; Appeaning Addo, Kwasi; Marieu, Vincent; Ranasinghe, Roshanka

    2017-01-01

    The present work investigates cross-shore shoreline migration as well as its alongshore variability (with deformation) on timescales of days to years using 6 years of time-averaged video images. The variability of the shoreline is estimated through empirical statistical methods with comprehensive

  18. 50 Years of coastal erosion analysis: A new methodological approach.

    Science.gov (United States)

    Prieto Campos, Antonio; Diaz Cuevas, Pilar; Ojeda zujar, Jose; Guisado-Pintado, Emilia

    2017-04-01

    Coasts over the world have been subjected to increased anthropogenic pressures which combined with natural hazards impacts (storm events, rising sea-levels) have led to strong erosion problems with negative impacts on the economy and the safety of coastal communities. The Andalusian coast (South Spain) is a renowned global tourist destination. In the past decades a deep transformation in the economic model led to significant land use changes: strong regulation of rivers, urbanisation and occupation of dunes, among others. As a result irreversible transformations on the coastline, from the aggressive urbanisation undertaken, are now to be faced by local authorities and suffered by locals and visitors. Moreover, the expected impacts derived from the climate change aggravated by anthropic activities emphasises the need for tools that facilitates decision making for a sustainable coastal management. In this contribution a homogeneous (only a proxy and one photointerpreter) methodology is proposed for the calculation of coastal erosion rates of exposed beaches in Andalusia (640 km) through the use of detailed series (1:2500) of open source orthophotographies for the period (1956-1977-2001-2011). The outstanding combination of the traditional software DSAS (Digital Shoreline Analysis System) with a spatial database (PostgreSQL) which integrates the resulting erosion rates with related coastal thematic information (geomorphology, presence of engineering infrastructures, dunes and ecosystems) enhances the capacity of analysis and exploitation. Further, the homogeneity of the method used allows the comparison of the results among years in a highly diverse coast, with both Mediterranean and Atlantic façades. The novelty development and integration of a PostgreSQL/Postgis database facilitates the exploitation of the results by the user (for instance by relating calculated rates with other thematic information as geomorphology of the coast or the presence of a dune field on

  19. Hydrodynamic Modeling for Channel and Shoreline Stabilization at Rhodes Point, Smith Island, MD

    Science.gov (United States)

    2016-11-01

    Navigation Research, Development, and Technology Transfer (RD&T) portfolio. The Director of ERDC-CHL was José E. Sánchez. The Commander of ERDC was...and current estimates for follow-up structural design calculations. Impacts of environmental forcings (winds, water levels, waves, and currents) on...supports seafood and tourism needs of Smith Island, which are two sources of livelihood for the island residents. Fishermen have mooring docks and

  20. Shoulder erosions in renal osteodystrophy

    International Nuclear Information System (INIS)

    Bonavita, J.A.; Dalinka, M.K.

    1980-01-01

    The radiographic manifestations of renal osteodystrophy may be articular as well as osseous. The latter are well recognized, i.e. subperiosteal and subchondral bony resorption. Recently attention has been directed to the occurrence of an erosive arthritis of the hands and wrists in hyperparathyroidism. The authors present six patients with humeral head erosions, all of whom were on chronic long-term hemodialysis. These intra-articular erosions occurred at the 'bare' area of the humeral head and thus represent an erosive arthritis and therefore can be distinguished from the usual sites of subchondral and subperiosteal bony resorption seen in hyperparathyroidism. (orig.) [de

  1. Multiperspective analysis of erosion tolerance

    Directory of Open Access Journals (Sweden)

    Sparovek Gerd

    2003-01-01

    Full Text Available Erosion tolerance is the most multidisciplinary field of soil erosion research. Scientists have shown lack in ability to adequately analyze the huge list of variables that influence soil loss tolerance definitions. For these the perspectives of erosion made by farmers, environmentalists, society and politicians have to be considered simultaneously. Partial and biased definitions of erosion tolerance may explain not only the polemic nature of the currently suggested values but also, in part, the nonadoption of the desired levels of erosion control. To move towards a solution, considerable changes would have to occur on how this topic is investigated, especially among scientists, who would have to change methods and strategies and extend the perspective of research out of the boundaries of the physical processes and the frontiers of the academy. A more effective integration and communication with the society and farmers, to learn about their perspective of erosion and a multidisciplinary approach, integrating soil, social, economic and environmental sciences are essential for improved erosion tolerance definitions. In the opinion of the authors, soil erosion research is not moving in this direction and a better understanding of erosion tolerance is not to be expected in the near future.

  2. Management of Coastal Erosion Using Remote Sensing and GIS Techniques (SE India

    Directory of Open Access Journals (Sweden)

    S. Saravanan

    2014-12-01

    Full Text Available World wide, coastal erosion is recognized as a great threat for beach environment. Total control of coastal erosion is not feasible but it should not be ignored and needs timely management. Erosional activities have been significantly noticed along the coastal tract of Vembar and Kallar (Kallurani, South India. An attempt has been made here to delineate different zones based on their sand budget and erosion rate. Linear Imaging Self Scanning Sensor (LISS III 2001 and Linear Imaging Self Scanning Sensor III and PAN merged data of the year 2001 have been utilized to identify the coastal geomorphological features, shoreline changes and river course changes. A Geographic Information System (GIS software namely ArcGIS (9.1 has been used as a tool to delineate the coastal erosion hazard for proper planning and management of coastal developments. Beach profile studies have shown significant variation in the beach morphology. The study area has been categorized into five different zones in the GIS analysis based on the degree of coastal erosion and sediment dynamics namely (i very high - Kalaignanapuram, (ii high - Sippikulam (iii medium - Periyasamypuram (iv low - Vembar and Kallar (Kallurani (v very low - Pachayapuram.

  3. Plasma erosion switch

    International Nuclear Information System (INIS)

    Mendel, C.W. Jr.; Goldstein, S.A.; Miller, P.A.

    1976-01-01

    The plasma erosion switch is a device capable of initially carrying high currents, and then of opening in nanoseconds to stand off high voltages. It depends upon the erosion of a plasma which initially fills the switch. The sheath between the plasma and the cathode behaves as a diode with a rapidly increasing A-K gap. Preliminary tests of the switch on the Proto I accelerator at Sandia will be described. In these tests, the switch consisted of a cylinder of highly ionized plasma four inches in diameter and one-inch thick surrounding a one-inch cathode. The switch shorted out prepulse voltages and allowed energy to be stored in the diode inductance outside the switch until the accelerator current reached 75 kA. The switch impedance then rose rapidly to approximately 100 ω in 5 nanoseconds, whereupon the accelerator current transferred to the cathode. Current rise rates of 3.10 13 A/sec were limited by cathode turn-on. Voltage rise rates of 10 15 V/sec were achieved. The elimination of prepulse and machine turn-on transients allowed A-K gaps of 2 mm to be used with 2.5 MV pulses, yielding average E fields of 12 MV/cm. Staged versions of the device are being built and should improve rise rates. The switch shows promise for use with future, higher power, lower inductance machines

  4. Erosion in extruder flow

    Science.gov (United States)

    Kaufman, Miron; Fodor, Petru S.

    A detailed analysis of the fluid flow in Tadmor's unwound channel model of the single screw extruder is performed by combining numerical and analytical methods. Using the analytical solution for the longitudinal velocity field (in the limit of zero Reynolds number) allows us to devote all the computational resources solely for a detailed numerical solution of the transversal velocity field. This high resolution 3D model of the fluid flow in a single-screw extruder allows us to identify the position and extent of Moffatt eddies that impede mixing. We further consider the erosion of particles (e.g. carbon-black agglomerates) advected by the polymeric flow. We assume a particle to be made of primary fragments bound together. In the erosion process a primary fragment breaks out of a given particle. Particles are advected by the laminar flow and they disperse because of the shear stresses imparted by the fluid. The time evolution of the numbers of particles of different sizes is described by the Bateman coupled differential equations used to model radioactivity. Using the particle size distribution we compute an entropic fragmentation index which varies from 0 for a monodisperse system to 1 for an extreme poly-disperse system.

  5. Erosion mechanism and erosion products in carbon-based materials

    Energy Technology Data Exchange (ETDEWEB)

    Arkhipov, N.; Bakhtin, V.; Barsuk, V.; Kurkin, S.; Mironova, E.; Piazza, G.; Safronov, V. E-mail: vsafr@rico.ttk.ru; Scaffidi-Argentina, F.; Toporkov, D.; Vasenin, S.; Wuerz, H.; Zhitlukhin, A

    2002-12-01

    Plasma/material interaction was studied in disruption simulation experiments at the plasma gun facility MK-200. Graphite and carbon-fibre composites were exposed to pulsed energetic plasma under heat loads typically expected for disruptions in future tokamaks. Erosion rates, erosion mechanisms and the properties of the eroded carbon have been studied.

  6. Methodology update for determination of the erosion coefficient(Z

    Directory of Open Access Journals (Sweden)

    Tošić Radislav

    2012-01-01

    Full Text Available The research and mapping the intensity of mechanical water erosion that have begun with the empirical methodology of S. Gavrilović during the mid-twentieth century last, by various intensity, until the present time. A many decades work on the research of these issues pointed to some shortcomings of the existing methodology, and thus the need for its innovation. In this sense, R. Lazarević made certain adjustments of the empirical methodology of S. Gavrilović by changing the tables for determination of the coefficients Φ, X and Y, that is, the tables for determining the mean erosion coefficient (Z. The main objective of this paper is to update the existing methodology for determining the erosion coefficient (Z with the empirical methodology of S. Gavrilović and amendments made by R. Lazarević (1985, but also with better adjustments to the information technologies and the needs of modern society. The proposed procedure, that is, the model to determine the erosion coefficient (Z in this paper is the result of ten years of scientific research and project work in mapping the intensity of mechanical water erosion and its modeling using various models of erosion in the Republic of Srpska and Serbia. By analyzing the correlation of results obtained by regression models and results obtained during the mapping of erosion on the territory of the Republic of Srpska, a high degree of correlation (R² = 0.9963 was established, which is essentially a good assessment of the proposed models.

  7. Quantification Of Erosion Rates Of Agriculturally Used Soils By Artificial

    Science.gov (United States)

    Jha, Abhinand

    2010-05-01

    for 137Cs and 53 days for 7Be), delivery rates, delivery histories, and land use (Fig. 2). An Physical processes, such as water and wind, are the dominant factors moving 137Cs, 7Be tagged soil particles within and between landscape compartments. PIC Figure 2: Generalized sketch illustrating the distributions of 137Cs and 7Be in tilled and undisturbed soils 2 Erosion study at Young Moraine regions of Germany Recently, a study had been performed to evaluate erosion rates in a typical pattern of landscapes in the Young Moraine regions of North-East Germany [5]. The 137Cs concentrations were measured at selected sampling points of various study sites. Among the areas selected for sampling was Basedow, which is a cultivated area, situated north of Berlin. During a master thesis study at university of Bremen in the academic year 2008-2009 [6] a second sampling campaign was performed at the same study site and 137Cs and 7Be concentrations were measured. Two mathematical models (a proportional model and a mass balance model) were applied to estimate erosion or deposition rates giving a distinction between uncultivated or essentially undisturbed soils and cultivated or soils under permanent pasture (Fig.3A). An improved depositional model was developed during this study. The simulation results from this model are presented in Fig.4. Due to the half-life (53.2 days) of 7Be, a mass balance model was developed and used to calculate erosion rates from 7Be (Fig.3B). PIC Figure 3: A: Erosion rates for 137Cs calculated by mass balance model. B: Erosion rates calculated with mass balance model using the 7Be data at Basedow (2008). The results verify that there is long term erosion as a result of wind, water and agricultural practices. The annual erosion rates at Basedow calculated using a mass balance and a proportional model were in the range between 30-50 t ha-1yr-1. These values were comparable to the erosion rates calculated in the previous study [5] by the models mentioned above

  8. Do erosion control and snakes mesh?

    Science.gov (United States)

    Christopher Barton; Karen Kinkead

    2005-01-01

    In the battle to curb soil erosion and sedimentation, numberous techniques and products for controlling erosion and sedimentation have been developed and are being implemented. Rolled erosion control products, such as a temporary erosion control blankets and permanent turf reinforcement mats, represent one type of erosion control product that has been used extensively...

  9. Rill erosion rates in burned forests

    Science.gov (United States)

    Joseph W. Wagenbrenner; Peter R. Robichaud

    2011-01-01

    Introduction Wildfires often produce large increases in runoff and erosion rates (e.g., Moody and Martin, 2009), and land managers need to predict the frequency and magnitude of postfire erosion to determine the needs for hazard response and possible erosion mitigation to reduce the impacts of increased erosion on public safety and valued resources. The Water Erosion...

  10. Rapid adjustment of shoreline behavior to changing seasonality of storms : Observations and modelling at an open-coast beach

    NARCIS (Netherlands)

    Splinter, Kristen D.; Turner, Ian L.; Reinhardt, Mika; Ruessink, B.G.

    2017-01-01

    An 8-year time series of weekly shoreline data collected at the Gold Coast, Australia, is used to examine the temporal evolution of a beach, focusing on the frequency response of the shoreline to time-varying wave height and period. Intriguingly, during 2005 the movement of the shoreline at this

  11. 75 FR 41881 - Notice of Intent To Prepare a Shoreline Restoration and Management Plan/Environmental Impact...

    Science.gov (United States)

    2010-07-19

    ... National Park Service Notice of Intent To Prepare a Shoreline Restoration and Management Plan/Environmental... Service (NPS) is announcing its intent to prepare an environmental impact statement (EIS) for a Shoreline... restoration activities that are to be achieved and maintained for the shoreline over the next 15 to 20 years...

  12. 76 FR 18216 - Dominion Virginia Power/North Carolina Power; Notice of Availability of Shoreline Management Plan...

    Science.gov (United States)

    2011-04-01

    .... Application Type: Revised Shoreline Management Plan. b. Project No.: 2778-062. c. Date Filed: December 29... of the Roanoke Rapids and Gaston Hydroelectric Project, has filed a revised Shoreline Management Plan... Power/North Carolina Power; Notice of Availability of Shoreline Management Plan Update for the Shoshone...

  13. Multiscale analysis of restoration priorities for marine shoreline planning.

    Science.gov (United States)

    Diefenderfer, Heida L; Sobocinski, Kathryn L; Thom, Ronald M; May, Christopher W; Borde, Amy B; Southard, Susan L; Vavrinec, John; Sather, Nichole K

    2009-10-01

    Planners are being called on to prioritize marine shorelines for conservation status and restoration action. This study documents an approach to determining the management strategy most likely to succeed based on current conditions at local and landscape scales. The conceptual framework based in restoration ecology pairs appropriate restoration strategies with sites based on the likelihood of producing long-term resilience given the condition of ecosystem structures and processes at three scales: the shorezone unit (site), the drift cell reach (nearshore marine landscape), and the watershed (terrestrial landscape). The analysis is structured by a conceptual ecosystem model that identifies anthropogenic impacts on targeted ecosystem functions. A scoring system, weighted by geomorphic class, is applied to available spatial data for indicators of stress and function using geographic information systems. This planning tool augments other approaches to prioritizing restoration, including historical conditions and change analysis and ecosystem valuation.

  14. Megascale rhythmic shoreline forms on a beach with multiple bars

    Directory of Open Access Journals (Sweden)

    Zbigniew Pruszak

    2008-06-01

    Full Text Available The study, carried out in 2003 and 2006 at the Lubiatowo Coastal ResearchStation (Poland, located on the non-tidal southern Baltic coast(tidal range < 0.06 m, focused on larger rhythmic forms (mega-cusps withwavelengths in the interval 500 m > Lc > 20 m. Statistical analyses of detailed shoreline configurations were performed mostly with the Discrete Wavelet Transformmethod (DWT. The beach is composed of fine sand with grain diameter D50 ≈ 0.22 mm, which produces 4 longshore sandbars and a gently sloping seabed with β = 0.015. The analysis confirms the key role of bars in hydro- and morphodynamic surf zone processes.The hypothesis was therefore set up that, in a surf zone with multiple bars, the bars and mega-scale shoreline rhythmic forms form one integrated physical system; experimental evidence to substantiate this hypothesis was also sought.In such a system not only do self-regulation processes include swash zone phenomena, they also incorporate processes in offshore surf zone locations.The longshore dimensions of large cusps are thus related to the distances between periodically active large bed forms (bars. The spatial dimension of bar system activity (number of active bars depends, at a given time scale, on the associated hydrodynamic conditions. It was assumed that such a time scale could include either the development and duration of a storm, or a period of stable, yet distinct waves, capable of remodelling the beach configuration.The indentation to wavelength ratio of mega-cusps for the studied non-tidal dissipative environment may be one order of magnitude greater than for mesotidal, reflective beaches.

  15. Rainfall erosivity: An historical review

    Science.gov (United States)

    Rainfall erosivity is the capability of rainfall to cause soil loss from hillslopes by water. Modern definitions of rainfall erosivity began with the development of the Universal Soil Loss Equation (USLE), where rainfall characteristics were statistically related to soil loss from thousands of plot...

  16. Rainfall Erosivity in Europe

    DEFF Research Database (Denmark)

    Panagos, Panos; Ballabio, Cristiano; Borrelli, Pasquale

    2015-01-01

    on the best available datasets. Data have been collected from 1541 precipitation stations in all European Union (EU) Member States and Switzerland, with temporal resolutions of 5 to 60 min. The R-factor values calculated from precipitation data of different temporal resolutions were normalised to R......-factor values with temporal resolutions of 30 min using linear regression functions. Precipitation time series ranged from a minimum of 5 years to a maximum of 40 years. The average time series per precipitation station is around 17.1 years, the most datasets including the first decade of the 21st century....... Gaussian Process Regression (GPR) has been used to interpolate the R-factor station values to a European rainfall erosivity map at 1 km resolution. The covariates used for the R-factor interpolation were climatic data (total precipitation, seasonal precipitation, precipitation of driest/wettest months...

  17. Western Lake Erie Shore Study, Ohio. Reconnaissance Report (Stage 1) on Flood Protection and Shoreline Erosion Control,

    Science.gov (United States)

    1981-06-01

    8217 COUNTY S- ./’ APPROXIMATE SCALE 1:1 I8,000 DATA BASE YEAR 1975N-.- ’.. - 7 W7N -N/’ URBAN7 ’. N -’ UT"-ITY RECREATIONAL H.7~f5 7 L"’N AGRICULTURA N, El...Shore Field Trip, 21 January through 23 January 1981 1. Participants: R. liammoser A. rulco 2. Purpose: Familiarization with study area, take photos...at Bono. Purpose of visit was familiarization . ISeveral photos were taken. 4 DISPOSITION FORM O’, rer *a* of* fee An 340.15, tke pepasent agency Is

  18. Global evaluation of erosion rates in relation to tectonics

    Science.gov (United States)

    Hecht, Hagar; Oguchi, Takashi

    2017-12-01

    Understanding the mechanisms and controlling factors of erosion rates is essential in order to sufficiently comprehend bigger processes such as landscape evolution. For decades, scientists have been researching erosion rates where one of the main objectives was to find the controlling factors. A variety of parameters have been suggested ranging from climate-related, basin morphometry and the tectonic setting of an area. This study focuses on the latter. We use previously published erosion rate data obtained mainly using 10Be and sediment yield and sediment yield data published by the United States Geological Survey. We correlate these data to tectonic-related factors, i.e., distance to tectonic plate boundary, peak ground acceleration ( PGA), and fault distribution. We also examine the relationship between erosion rate and mean basin slope and find significant correlations of erosion rates with distance to tectonic plate boundary, PGA, and slope. The data are binned into high, medium, and low values of each of these parameters and grouped in all combinations. We find that groups with a combination of high PGA (> 0.2.86 g) and long distance (> 1118.69 km) or low PGA (erosion rates include long distance and/or low PGA, and groups with high erosion rates include neither of these. These observations indicate that tectonics plays a major role in determining erosion rates, which is partly ascribable to steeper slopes produced by active crustal movements. However, our results show no apparent correlation of slope with erosion rates, pointing to problems with using mean basin-wide slope as a slope indicator because it does not represent the complex slope distribution within a basin.

  19. Multi-decadal shoreline changes on Takú Atoll, Papua New Guinea: Observational evidence of early reef island recovery after the impact of storm waves

    Science.gov (United States)

    Mann, Thomas; Westphal, Hildegard

    2016-03-01

    Hurricanes, tropical cyclones and other high-magnitude events are important steering mechanisms in the geomorphic development of coral reef islands. Sandy reef islands located outside the storm belts are strongly sensitive to the impact of occasional high-magnitude events and show abrupt, commonly erosive geomorphic change in response to such events. Based on the interpretation of remote sensing data, it is well known that the process of landform recovery might take several decades or even longer. However, despite the increasing amount of scientific attention towards short- and long-term island dynamics, the lack of data and models often prevent a robust analysis of the timing and nature of recovery initiation. Here we show how natural island recovery starts immediately after the impact of a high-magnitude event. We analyze multi-temporal shoreline changes on Takú Atoll, Papua New Guinea and combine our findings with a unique set of published field observations (Smithers and Hoeke, 2014). Trends of shoreline change since 1943 and changes in planform island area indicate a long-term accretionary mode for most islands. Apparent shoreline instability is detected for the last decade of analysis, however this can be explained by the impact of storm waves in December 2008 that (temporarily?) masked the long-term trend. The transition from negative to positive rates of change in the aftermath of this storm event is indicative of inherent negative feedback processes that counteract short-term changes in energy input and represent the initiation of island recovery. Collectively, our results support the concept of dynamic rather than static reef islands and clearly demonstrate how short-term processes can influence interpretations of medium-term change.

  20. Monitoring of shoreline changes using remote sensing (case study: coastal city of Bandar Abbas)

    International Nuclear Information System (INIS)

    Tamassoki, E; Amiri, H; Soleymani, Z

    2014-01-01

    Shoreline change is one of the most common natural processes that prevail upon coastal areas. The most important aspect of managing coastal areas is identifying the location and change over time of shoreline. This requires frequent monitoring of the shoreline using satellite imagery over time. We have used imagery from the Landsat TM-5 sensor from 1984,1998 and 2009 in order to monitor shoreline changes using the Max Likelihood Classification method (MLC) in Bandar Abbas city. Monitoring showed that during the period from 1984 to 1998 the area of coastline of Bandar Abbas increased 804.09 hectares. The increase over the next 11-year period was as less, at only 140.81 hectares. In 2009 there was a drastic decrease in shoreline, with the total length of shoreline decreasing from 330 km to 271 km during the period from 1984 to 2009.Results showed that in each period in which the area of coastline advanced, changes in length of shoreline had been less prominent

  1. The Pilot Valley shoreline: An early record of Lake Bonneville dynamics: Chapter 3

    Science.gov (United States)

    Miller, David; Phelps, Geoffrey

    2016-01-01

    The Pilot Valley shoreline is named for distinctive gravel beaches on the eastern, northern, and western sides of Pilot Valley playa, Utah. The shoreline has been identified across the Bonneville basin where it is characterized by one to three beach crests between ~ 1305 and 1309 m elevation, all overlain by deep-water marl of Lake Bonneville. It thus represents the lowest and earliest recognized shoreline of Lake Bonneville. Features of the shoreline indicate that both high wave energy and high stream sediment discharge contributed to shoreline development. Basin hypsometry did not play a role in the development of the shoreline, which must have been caused by a combination of climatically driven hydrologic and storm factors, such as reduced precipitation that stabilized lake level and increase in storm-driven wave energy. The Pilot Valley shoreline is poorly dated at about 30 ka. If it is somewhat older, correlation with Greenland Interstadial 5.1 at 30.8–30.6 ka could explain the stabilization of lake level.

  2. Persistent shoreline shape induced from offshore geologic framework: Effects of shoreface connected ridges

    Science.gov (United States)

    Safak, Ilgar; List, Jeffrey; Warner, John C.; Schwab, William C.

    2017-01-01

    Mechanisms relating offshore geologic framework to shoreline evolution are determined through geologic investigations, oceanographic deployments, and numerical modeling. Analysis of shoreline positions from the past 50 years along Fire Island, New York, a 50 km long barrier island, demonstrates a persistent undulating shape along the western half of the island. The shelf offshore of these persistent undulations is characterized with shoreface-connected sand ridges (SFCR) of a similar alongshore length scale, leading to a hypothesis that the ridges control the shoreline shape through the modification of flow. To evaluate this, a hydrodynamic model was configured to start with the US East Coast and scale down to resolve the Fire Island nearshore. The model was validated using observations along western Fire Island and buoy data, and used to compute waves, currents and sediment fluxes. To isolate the influence of the SFCR on the generation of the persistent shoreline shape, simulations were performed with a linearized nearshore bathymetry to remove alongshore transport gradients associated with shoreline shape. The model accurately predicts the scale and variation of the alongshore transport that would generate the persistent shoreline undulations. In one location, however, the ridge crest connects to the nearshore and leads to an offshore-directed transport that produces a difference in the shoreline shape. This qualitatively supports the hypothesized effect of cross-shore fluxes on coastal evolution. Alongshore flows in the nearshore during a representative storm are driven by wave breaking, vortex force, advection and pressure gradient, all of which are affected by the SFCR.

  3. Persistent Shoreline Shape Induced From Offshore Geologic Framework: Effects of Shoreface Connected Ridges

    Science.gov (United States)

    Safak, Ilgar; List, Jeffrey H.; Warner, John C.; Schwab, William C.

    2017-11-01

    Mechanisms relating offshore geologic framework to shoreline evolution are determined through geologic investigations, oceanographic deployments, and numerical modeling. Analysis of shoreline positions from the past 50 years along Fire Island, New York, a 50 km long barrier island, demonstrates a persistent undulating shape along the western half of the island. The shelf offshore of these persistent undulations is characterized with shoreface-connected sand ridges (SFCR) of a similar alongshore length scale, leading to a hypothesis that the ridges control the shoreline shape through the modification of flow. To evaluate this, a hydrodynamic model was configured to start with the US East Coast and scale down to resolve the Fire Island nearshore. The model was validated using observations along western Fire Island and buoy data, and used to compute waves, currents and sediment fluxes. To isolate the influence of the SFCR on the generation of the persistent shoreline shape, simulations were performed with a linearized nearshore bathymetry to remove alongshore transport gradients associated with shoreline shape. The model accurately predicts the scale and variation of the alongshore transport that would generate the persistent shoreline undulations. In one location, however, the ridge crest connects to the nearshore and leads to an offshore-directed transport that produces a difference in the shoreline shape. This qualitatively supports the hypothesized effect of cross-shore fluxes on coastal evolution. Alongshore flows in the nearshore during a representative storm are driven by wave breaking, vortex force, advection and pressure gradient, all of which are affected by the SFCR.

  4. Using REE tracers to measure sheet erosion changing to rill erosion

    International Nuclear Information System (INIS)

    Liu Puling; Xue Yazhou; Song Wei; Wang Mingyi; Ju Tongjun

    2004-01-01

    Rare Earth Elements (REE) tracer method was used to study sheet erosion changing to rill erosion on slope land. By placing different rare earth elements of different soil depth across a slope in an indoor plot, two simulated rainfalls were applied to study the change of erosion type and the rill erosion process. The results indicate that the main erosion type is sheet erosion at the beginning of the rainfalls, and serious erosion happens after rill erosion appears. Accumulated sheet and rill erosion amounts increase with the rainfalls time. The percentage of sheet erosion amount decreases and rill erosion percentage increases with time. At the end of the rainfalls, the total rill erosion amounts are 4-5 times more than sheet erosion. In this paper, a new REE tracer method was used to quantitatively distinguish sheet and rill erosion amounts. The new REE tracer method should be useful to future studying of erosion processes on slope lands. (authors)

  5. Oblique Aerial Photography of the Arctic Coast of Alaska, Nulavik to Demarcation Point, August 7-10, 2006

    Science.gov (United States)

    Gibbs, Ann E.; Richmond, Bruce M.

    2009-01-01

    The Arctic Coastal Plain of northern Alaska, an area of strategic economic importance to the United States, is home to remote Native American communities and encompasses unique habitats of global significance. Coastal erosion along the Arctic coast is chronic and widespread; recent evidence suggests that erosion rates are among the highest in the world (up to ~16 m/yr) and may be accelerating. Coastal erosion adversely impacts energy-related infrastructure, natural shoreline habitats, and Native American communities. Climate change is thought to be a key component of recent environmental changes in the Arctic. Reduced sea-ice cover in the Arctic Ocean is one of the probable mechanisms responsible for increasing coastal exposure to wave attack and the resulting increase in erosion. Extended periods of permafrost melting and associated decrease in bluff cohesion and stability are another possible source of the increase in erosion. Several studies of selected areas on the Alaska coast document past shoreline positions and coastal change, but none have examined the entire North coast systematically. Results from these studies indicate high rates of coastal retreat that vary spatially along the coast. To address the need for a comprehensive and regionally consistent evaluation of shoreline change along the North coast of Alaska, the U.S. Geological Survey (USGS), as part of their Coastal and Marine Geology Program's (CMGP) National Assessment of Shoreline Change Study, is evaluating shoreline change from Peard Bay to the United States/Canadian border, using historical maps and photography and a standardized methodology that is consistent with other shoreline-change studies along the Nation's coastlines (for example, URL http://coastal.er.usgs.gov/shoreline-change/ (last accessed March 2, 2009). This report contains photographs collected during an aerial-reconnaissance survey conducted in support of this study. An accompanying ESRI ArcGIS shape file (and plain-text copy

  6. Comparison of methods for calculating water erosion

    OpenAIRE

    SVOBODOVÁ, Pavlína

    2011-01-01

    Bachelor thesis presents a comparison of methods for calculating water erosion. The aim is to summarize available evidence concerning the problems of water erosion. There are presented some methods how to calculate average annual erosion of soils, and selected models for calculating the erosion immediately. There are also listed possible erosion control measures through which we can at least slow the effects of erosion, rather than stop completely.

  7. Coastal Vulnerability to Erosion Processes: Study Cases from Different Countries

    Science.gov (United States)

    Anfuso, Giorgio; Martinez Del Pozo, Jose Angel; Rangel-Buitrago, Nelson

    2010-05-01

    When natural processes affect or threaten human activities or infrastructures they become a natural hazard. In order to prevent the natural hazards impact and the associated economic and human losses, coastal managers need to know the intrinsic vulnerability of the littoral, using information on the physical and ecological coastal features, human occupation and present and future shoreline trends. The prediction of future coastline positions can be based on the study of coastal changes which have occurred over recent decades. Vertical aerial photographs, satellite imagery and maps are very useful data sources for the reconstruction of coast line changes at long (>60 years) and medium (between 60 and 10 years) temporal and spatial scales. Vulnerability maps have been obtained for several coastal sectors around the world through the use of Geographical Information Systems (GIS), computer-assisted multivariate analysis and numerical models. In the USA, "Flood Insurance Rate Maps" have been created by the government and "Coastal Zone Hazard Maps" have been prepared for coastal stretches affected by hurricane Hugo. In Spain, the vulnerability of the Ebro and an Andalusia coastal sector were investigated over different time scales. McLaughlin et al., (2002) developed a GIS based coastal vulnerability index for the Northern Ireland littoral that took into account socio-economic activities and coastal resistance to erosion and energetic characteristics. Lizárraga et al., (2001) combined beach reduction at Rosario (Mexico) with the probability of damage to landward structures, obtaining a vulnerability matrix. In this work several coastal vulnerability maps have also been created by comparing data on coastal erosion/accretion and land use along different coastal sectors in Italy, Morocco and Colombia. Keywords: Hazard, Vulnerability, Coastal Erosion, Italy, Morocco, Colombia.

  8. Assessing the multidimensionality of coastal erosion risks: public participation and multicriteria analysis in a Mediterranean coastal system.

    Science.gov (United States)

    Roca, Elisabet; Gamboa, Gonzalo; Tàbara, J David

    2008-04-01

    The complex and multidimensional nature of coastal erosion risks makes it necessary to move away from single-perspective assessment and management methods that have conventionally predominated in coastal management. This article explores the suitability of participatory multicriteria analysis (MCA) for improving the integration of diverse expertises and values and enhancing the social-ecological robustness of the processes that lead to the definition of relevant policy options to deal with those risks. We test this approach in the Mediterranean coastal locality of Lido de Sète in France. Results show that the more adaptive alternatives such as "retreating the shoreline" were preferred by our selected stakeholders to those corresponding to "protecting the shoreline" and the business as usual proposals traditionally put forward by experts and policymakers on these matters. Participative MCA contributed to represent coastal multidimensionality, elicit and integrate different views and preferences, facilitated knowledge exchange, and allowed highlighting existing uncertainties.

  9. The basics for a permanent observatory of shoreline evolution in tropical environments; lessons from back-reef beaches in La Reunion Island

    Science.gov (United States)

    Mahabot, Marie-Myriam; Jaud, Marion; Pennober, Gwenaëlle; Le Dantec, Nicolas; Troadec, Roland; Suanez, Serge; Delacourt, Christophe

    2017-10-01

    Under natural and anthropogenic pressure, the coastal regions are evolving rapidly (population growth, erosion, modification of services, etc.), and some of these changes increase their vulnerability. Monitoring the evolution of the coastal regions has thus become essential to understand how they respond to the various pressures and to define how their resilience could be increased. Among other outcomes, such monitoring should provide continuous, high-resolution data on the spatial and temporal evolution of the coastal areas, especially the shoreline zone. One appropriate way to acquire long, continuous, time series of data is to set up a permanent observatory in the zone to be monitored. This paper aims to provide recommendations and a methodological framework to set up a "shoreline observatory" dedicated to monitor some of the specific features and behaviours of tropical littorals, more particularly back-reef beaches and their geomorphic changes. After a brief review of carbonate sandy beach morphodynamics, we present survey solutions (TLS, UAV photogrammetry) to monitor at high resolution and repeatedly the geomorphic changes of the coastal area, both on land and in shallow water. The example case is that of the back-reef beaches in La Reunion Island.

  10. An empirical orthogonal function analysis of ocean shoreline location on the Virginia barrier islands

    Science.gov (United States)

    Haluska, J. D.

    2017-12-01

    Shoreline change along the Eastern Atlantic shore of Virginia has been studied for the individual barrier islands but not as an integrated system. This study combines the Atlantic shoreline locations for eleven barrier islands obtained from LANDSAT 5, 7, and 8 images. Approximately 250 shoreline locations over a 24-year period from Jan 1990 to Dec 2014 were extracted from the digitized shoreline data at 338 transects. The resulting 338 by 250 matrix was analyzed by the empirical orthogonal function (EOF) technique. The first four principal components (PC) explained 86 percent of the sample variance. Since the data was not detrended, the first PC was the overall trend of the data with a discontinuity in 2004-2005. The 2004-2005 interval included storm events and large shoreline changes. PCs 2 to 4 reflect the effects of El Nino events and tropical and non-tropical storms. Eigenvectors 1 to 4 all show the effects of the nine inlets in the island group. Eigenvector (EV) 1 explains 59 percent of the shoreline spatial variance and shows the largest changes at the northern and southern island ends. EVs 2 to 4 reflect the pattern of EV1 but at sequentially smaller percentages of the spatial variance. As a group, the eleven islands are losing ocean side shoreline. The lone exception is Hog Island. Sea level had the strongest correlation with the shoreline loss trend of PC1. The coefficient of determination was 0.41. The NAO and MEI also correlated with PC1 with correlations of determination of 0.05 and 0.12 respectively. These confidence level for the three factors was better than 99 percent. Sea level also correlated with PC3 and PC4. The PCs as a group show that the year intervals 2004-2005 and 2009-2010 had large effects on the shoreline change pattern for the island group. EVs 1 to 4 had the highest range of shoreline change at the island ends indicating the effect the changes of the inlets have on the adjacent islands. The smaller islands as a group had a higher level

  11. Shoreline change assessment using multi-temporal satellite images: a case study of Lake Sapanca, NW Turkey.

    Science.gov (United States)

    Duru, Umit

    2017-08-01

    The research summarized here determines historical shoreline changes along Lake Sapanca by using Remote Sensing (RS) and Geographical Information Systems (GIS). Six multi-temporal satellite images of Landsat Multispectral Scanner (L1-5 MMS), Enhanced Thematic Mapper Plus (L7 ETM+), and Operational Land Imager Sensors (L8 OLI), covering the period between 17 June 1975 and 15 July 2016, were used to monitor shoreline positions and estimate change rates along the coastal zone. After pre-possessing routines, the Normalized Difference Water Index (NDWI), Modified Normalized Difference Water Index (MNDWI), and supervised classification techniques were utilized to extract six different shorelines. Digital Shoreline Analysis System (DSAS), a toolbox that enables transect-based computations of shoreline displacement, was used to compute historical shoreline change rates. The average rate of shoreline change for the entire cost was 2.7 m/year of progradation with an uncertainty of 0.2 m/year. While the great part of the lake shoreline remained stable, the study concluded that the easterly and westerly coasts and deltaic coasts are more vulnerable to shoreline displacements over the last four decades. The study also reveals that anthropogenic activities, more specifically over extraction of freshwater from the lake, cyclic variation in rainfall, and deposition of sediment transported by the surrounding creeks dominantly control spatiotemporal shoreline changes in the region. Monitoring shoreline changes using multi-temporal satellite images is a significant component for the coastal decision-making and management.

  12. A calculation methodology proposed for liquid droplet impingement erosion

    Energy Technology Data Exchange (ETDEWEB)

    Li, Rui, E-mail: rui.l.aa@m.titech.ac.jp [Research Laboratory for Nuclear Reactors, Tokyo Institute of Technology, 2-12-1-N1-5, Ookayama, Meguro-ku, Tokyo 152-8550 (Japan); Mori, Michitsugu [Research and Development Centre, Tokyo Electric Power Company, 4-1, Egasaki-cho, Tsurumi-ku, Kanagawa 230-8510 (Japan); School of Science and Technology, Meiji University, 1-1-1, Higashi-Mita, Tama-ku, Kawasaki-shi, Kanagawa 214-8571 (Japan); Ninokata, Hisashi [Research Laboratory for Nuclear Reactors, Tokyo Institute of Technology, 2-12-1-N1-5, Ookayama, Meguro-ku, Tokyo 152-8550 (Japan)

    2012-01-15

    Highlights: Black-Right-Pointing-Pointer We proposed a two phase flow methodology to liquid droplet impingement erosion. Black-Right-Pointing-Pointer An innovative impact angle function was implemented into erosion rate calculation. Black-Right-Pointing-Pointer A comparison with an accident erosion data was made to validate our methodology. - Abstract: Bent pipe wall thinning has been often found at the elbow of the drain line and the high-pressure secondary feed-water bent pipe in nuclear reactors. Liquid droplet impingement (LDI) erosion could be regarded as one of the major causes and is a significant issue of the thermal hydraulics and structural integrity in aging and life extension for nuclear power plant safety. In this paper a computational methodology is established for simulation of LDI erosion using computational fluid dynamics (CFD) simulation and theoretical calculation. Two-phase flow numerical simulations are conducted for standard elbow geometry, typically with the pipe diameter of 170 mm. This computational fluid model is built up by incompressible Reynolds Averaged Navier-Stoke equations using standard k-{epsilon} turbulence model and the SIMPLE algorithm, and the numerical droplet model adopts the Lagrangian approach. The turbulence damping in vapor-droplets flow is theoretically analyzed by a damping function on the energy spectrum basis of single phase flow. Locally, a droplet impact angle function is employed to determine the overall erosion rate. Finally, the overall and local investigations are combined to purpose a general methodology of LDI erosion prediction procedure, which has been complemented into CFD code. Based on our more physical computational results, comparison with an available accident data was made to prove that our methodology could be an appropriate way to simulate and predict the bent pipe wall thinning phenomena.

  13. Materials erosion and redeposition studies at the PISCES-facility: net erosion under redeposition

    International Nuclear Information System (INIS)

    Hirooka, Y.; Goebel, D.M.; Conn, R.W.; Leung, W.K.; Campbell, G.A.

    1986-05-01

    Simultaneous erosion and redeposition of copper and 304 stainless steel under controlled and continuous plasma (D,He,Ar) bombardment has been investigated in the PISCES-facility, which generates typical edge-plasma conditions of magnetic fusion devices. The plasma bombardment conditions are: incident ion flux in the range from 10 17 to 10 18 ions/sec/cm 2 , ion bombarding energy of 100 eV, electron temperature in the range from 5 to 15 eV, plasma density in the range from 10 11 to 10 13 cm -3 , target temperature in the range from 300 to 900K, and the total ion fluence in the range from 10 20 to 10 22 ions/cm 2 . The net erosion yield under redeposition is found to be significantly smaller than the classical sputtering yield data. A first-order modeling is attempted to interpret the erosion and redeposition behavior of materials under plasma bombardment. It is pointed out both theoretically and experimentally that the mean free path for electron impact ionization of the sputtered material is the key parameter to control the overall mechanism of erosion and redeposition. Strongly modified surface morphologies of bombarded targets are observed and indicate a retrapping effect

  14. Erosion and deposition in tokamaks

    International Nuclear Information System (INIS)

    Staudenmaier, G.

    1985-01-01

    The flow of metal impurities from the wall and limiter to the plasma, and back towards the wall, is investigated using surface collection probes and subsequent surface analysis in order to understand impuritiy generation and impurity transport. Impurity fluxes and their scrapeoff lengths have been investigated for several years in a large number of tokamaks. The results are summarized and discussed. Erosion exceeding deposition was first observed to occur at limiterlike structures closest to the plasma edge. Recently, a new probe has been developed to measure quantitatively the erosion in ASDEX. Subsequent quantitative surface analysis is performed in situ by electron induced x-ray analysis. Erosion caused either by ions (limiter) or charge exchange neutrals (wall) can be investigated separately. The erosion at the wall is about two orders of magnitude smaller than the erosion at limiterlike structures, which is of the order of one monolayer per discharge. Simultaneous measurements of deposition and erosion have been performed to elucidate net values of deposition and erosion

  15. Gastric Mucosal Erosions - Radiologic evaluation -

    International Nuclear Information System (INIS)

    Kim, Seung Hyup

    1985-01-01

    70 cases of gastric mucosal erosions were diagnosed by double contrast upper gastrointestinal examinations and endoscopic findings. Analyzing the radiologic findings of these 70 cases of gastric mucosal erosions, the following results were obtained. 1. Among the total 70 cases, 65 cases were typical varioliform erosions showing central depressions and surrounding mucosal elevations. Remaining 5 cases were erosions of acute phase having multiple irregular depressions without surrounding elevations. 2. The gastric antrum was involved alone or in part in all cases. Duodenal bulb was involved with gastric antrum in 4 cases. 3. The majority of the cases had multiple erosions. There were only 2 cases of single erosion. 4. In 65 cases of varioliform erosions; 1) The diameter of the surrounding elevations varied from 3 to 20 mm with the majority (47 cases) between 6 and 10 mm. 2) In general, the surrounding elevations with sharp margin on double contrast films were also clearly demonstrated on compression films but those with faint margin were not. 3) The size of the central barium collections varied from pinpoint to 10 mm with the majority under 5 mm. The shape of the central barium collections in majority of the cases were round with a few cases of linear, triangular or star-shape. 5. In 5 cases of acute phase erosions; 1) All the 5 cases were females. 2) On double contrast radiography, all the cases showed multiple irregular depressed lesions without surrounding elevations. 3) 1 case had the history of hematemesis. 4) In 1 case, there was marked radiological improvement on follow-up study of 2 months interval. 6. In 23 cases, there were coexistent diseases with gastric mucosal erosions. These were 13 cases of duodenal bulb ulcers,7 cases of benign gastric ulcers and 3 others

  16. Historical Loss and Current Rehabilitation of Shoreline Habitat along an Urban-Industrial River—Detroit River, Michigan, USA

    Directory of Open Access Journals (Sweden)

    John H. Hartig

    2017-05-01

    Full Text Available The purpose of this study was to evaluate the historical loss and current shoreline habitat rehabilitation efforts along the urban-industrial Detroit River using geographical information system methods and a shoreline survey. This study found a 97% loss of historical coastal wetlands to human development. By 1985, 55% of the U.S. mainland shoreline had been hardened with steel sheet piling or concrete breakwater that provide limited habitat. Since 1995, 19 projects were implemented, improving 4.93 km of shoreline habitat. A comparison of the 1985 and 2015 georeferenced aerial imagery showed that 2.32 km of soft shoreline was also converted to hard shoreline during this timeframe. Of the 19 projects surveyed, 11 representing 3.35 km made habitat improvements to shoreline that was already georeferenced as “soft“, three representing 360 m converted shoreline from “hard” to “soft”, and five representing 1.22 km added incidental habitat to hardened shoreline. Even with the addition of 1.58 km of new soft shoreline and incidental habitat, there was an overall net loss of 0.74 km of soft shoreline over the 30-year timeframe. To reach the “good” state of at least 70% soft shoreline, an additional 12.1 km of soft shoreline will have to be added. This confirms that shoreline hardening continues despite the best efforts of resource managers and conservation organizations. Resource managers must become opportunistic and get involved up front in urban waterfront redevelopment projects to advocate for habitat. Incremental progress will undoubtedly be slow following adaptive management.

  17. Columbia River ESI: ESI (Environmental Sensitivity Index Shoreline Types - Lines and Polygons)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains vector lines and polygons representing the shoreline and coastal habitats of Columbia River classified according to the Environmental...

  18. Environmental Assessment for Shoreline Stabilization at Langley Air Force Base, Virginia

    National Research Council Canada - National Science Library

    Dischner, David M; Lingner, David; Rock, Howard B; Combs, Jennifer; Brandenburg, Catherine

    2006-01-01

    The United States Air Force (Air Force), 1st Fighter Wing (1 FW) proposes to implement various methods to stabilize the shoreline at several locations along the Back River waterfront at Langley Air Force Base (AFB...

  19. Aquifer Sampling Tube Completion Report: 100 Area and Hanford Townsite Shorelines

    International Nuclear Information System (INIS)

    Peterson, R.E.; Borghese, J.V.; Erb, D.B.

    1998-02-01

    Groundwater contamination is known or suspected along the Hanford Site shoreline of the Columbia River adjacent to the retired reactor areas. Along the shoreline away from the reactor areas, where contamination is presumed to be absent, monitoring sites are frequently widely spaced or unavailable to confirm the presumption. Previous characterizations of contamination near the river have relied on data from a limited number of near-river wells, contaminant plume migration predictions, and river bank seepage sampling to anticipate shoreline conditions. In recent years, new methods have been developed to obtain groundwater samples from the aquifer near the groundwater/river water interface. These methods include using (1) divers to obtain samples of pore water from riverbed sediment and (2) sampling tubes that are driven into the aquifer at the shoreline. The latter method also permits sampling the aquifer at multiple depths, which helps to determine the thickness of the potentially contaminated groundwater layer that discharges into the river

  20. Sensitivity of Coastal Environments and Wildlife to Spilled Oil: Florida Panhandle: ESIL (ESI Shoreline Types - Lines)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The ESIL data set contains vector lines representing the shoreline and coastal habitats of the Florida Panhandle, classified according to the Environmental...

  1. Sensitivity of Coastal Environments and Wildlife to Spilled Oil: Florida Panhandle: ESIP (ESI Shoreline Types - Polygons)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The ESIP data set contains vector polygons representing the shoreline and coastal habitats of the Florida Panhandle, classified according to the Environmental...

  2. Using time lapse cameras to monitor shoreline changes due to sea level rise.

    Science.gov (United States)

    2017-01-01

    Shoreline habitats and infrastructure are currently being affected by sea level rise (SLR) and as : global temperatures continue to rise, will continue to get worse for millennia. Governments : and individuals decisions to adapt to SLR could ha...

  3. Developing a 1:3,000,000 Arctic and Antarctic Regions Shoreline Using the WVS Plus

    National Research Council Canada - National Science Library

    Doody, Martin

    1998-01-01

    .... The Naval Research Laboratory Geographic Information Systems (GIS) Lab has been tasked to assist in the EWG project by creating a shoreline for the Arctic and Antarctic Areas of Interest (AOI) defined by NIC...

  4. Lake shoreline and littoral physical habitat structure in a national lakes assessment

    Science.gov (United States)

    Riparian and littoral habitat components are important to lake biological assemblages, providing refuge from predation, living and egg-laying substrates, and food. Shoreline structure also affects nutrient cycling, littoral production, and sedimentation rates. Measures of ripar...

  5. Sensitivity of Coastal Environments and Wildlife to Spilled Oil: South Florida: ESIL (ESI Shoreline Types - Lines)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The ESIL data set contains vector lines representing the shoreline and coastal habitats of South Florida classified according to the Environmental Sensitivity Index...

  6. Sensitivity of Coastal Environments and Wildlife to Spilled Oil: South Florida: ESIP (ESI Shoreline Types - Polygons)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The ESIP data set contains vector polygons representing the shoreline and coastal habitats of South Florida classified according to the Environmental Sensitivity...

  7. Erosion of the Mekong delta: the role of human activities

    Science.gov (United States)

    Anthony, E.; Dussouillez, P.; Goichot, M.; Brunier, G.; Dolique, F.; Nguyen, V.; Loisel, H.; Mangin, A.; Vantrepotte, V.

    2013-12-01

    River deltas are threatened by dams, dykes, flow channelling, and aggregate extraction. These activities outweigh climate change and sea-level rise in causing delta vulnerability1, and will aggravate the impacts to be expected from these effects2. We show here from analysis of: (1) delta channel morphology and sediment budgets, and (2) satellite imagery, that the Mekong delta, considered as the world's third largest, and hitherto strongly prograding, is now in a phase of large-scale erosion. We discuss the mechanistic links involved in erosion and the way these are related to human activities. High-resolution (2.5 m) SPOT 5 images for the years 2003, 2007, 2011/12 covering 405 km of the delta shoreline show an overall retreat rate of over 8 m a year. 75% of the analysed shoreline, i.e., the muddy western sector, is now retreating at rates exceeding 50 m a year in places. The sandy river-mouth sector maintains a semblance of stability, but with strong variations. We attribute erosion to a cascade of morphosedimentary changes linked to sediment mining from the deltaic channels and upstream dam interception. We estimated from Meris satellite imagery an annual 5% decrease in surface suspended concentrations exiting at the mouths of the Mekong over the period 2003-2011 that may reflect increased trapping of mud behind dams in China. We also infer modification of river-mouth and coastal mud storage patterns resulting from a loss of ca. 200 million m3 of delta channel sediments between 1998 and 2008 from aggregate extraction. Dykes have been shown to result in increased channel flow velocities during the high-discharge monsoon season, favouring further channel deepening3. Stronger river-mouth outflow velocities during this season may be leading to export of a greater proportion of mud far offshore of the coastal longshore transport corridor that ensured mud supply to, and past progradation of, the muddy western coast. In contrast, greater seawater penetration in the

  8. Emerging and Submerging Shorelines: Impacts of Physical Change on Bioband Length

    Science.gov (United States)

    Kruger, L. E.; Johnson, A. C.; Gregovich, D.; Buma, B.; Noel, J.

    2017-12-01

    We approximated shifts in coastal benthic species for shoreline length units undergoing both sea level rise and relative sea level lowering (often post-glacial, termed isostatic rebound) where subsistence-based, southeast Alaska Natives reside. From six community centers, we examined 30 km radii shoreline reaches by merging relevant portions of the NOAA ShoreZone database with near shore bathymetry and measures of mean global sea level rise with local global positioning system information (GIS) of tectonic shift and isostatic rebound. For our analysis, we estimated change for 9,868 assessed shoreline length units having uniform substrate and biologic type over a 100-yr time span (2008-2108) using geometric analysis of shoreline attributes. For each shoreline length unit we assessed relationships among substrate, slope, exposure, and presence of five benthic species including eel grass (Zostera marina), blue mussel (Mytilus edulis), butter clams (Saxidomus gigantean), bull kelp (Nereocytis leutkeana), and foliose red algae including ribbon kelp (Palmaria sp.). Our research indicates that both emergence, up to 1.8 m, and submergence, up 0.2 m, of the land will result in disportionately larger shoreline length segment alterations for habitats in protected low-slope gradient bays and estuaries (dominated by eelgrass and butter clam habitats) with less change for rocky steep-gradient exposed penninsulas (red algae and canopy kelp). This trend, holding true regardless of isostatic rebound, tectonic shift or sea level rise rate, highlights the importance of initial geomorphology-based assessments serving to improve bio-physical, chemical, and socially-related coastal research. Where shorelines are emerging 30% decreases in estuary lengths are predicted, but where shorelines are submerging up to 3% increases in estuaries are expected. Our research results are consistent with anthropology studies assessing past coastal change. Coastal change, influencing subsistance foods

  9. Sub-weekly to interannual variability of a high-energy shoreline

    Science.gov (United States)

    Barnard, Patrick L.; Jeff E. Hansen,

    2010-01-01

    Sixty-one Global Positioning System (GPS), sub-aerial beach surveys were completed at 7 km long Ocean Beach, San Francisco, CA (USA), between April 2004 and March 2009. The five-year time series contains over 1 million beach elevation measurements and documents detailed changes in beach morphology over a variety of spatial, temporal, and physical forcing scales. Results show that seasonal processes dominate at Ocean Beach, with the seasonal increase and decrease in wave height being the primary driver of shoreline change. Storm events, while capable of causing large short-term changes in the shoreline, did not singularly account for a large percentage of the overall observed change. Empirical orthogonal function (EOF) analysis shows that the first two modes account for approximately three-quarters of the variance in the data set and are represented by the seasonal onshore/offshore movement of sediment (60%) and the multi-year trend of shoreline rotation (14%). The longer-term trend of shoreline rotation appears to be related to larger-scale bathymetric change. An EOF-based decomposition technique is developed that is capable of estimating the shoreline position to within one standard deviation of the range of shoreline positions observed at most locations along the beach. The foundation of the model is the observed relationship between the temporal amplitudes of the first EOF mode and seasonally-averaged offshore wave height as well as the linear trend of shoreline rotation. This technique, while not truly predictive because of the requirement of real-time wave data, is useful because it can predict shoreline position to within reasonable confidence given the absence of field data once the model is developed at a particular site.

  10. Shoreline change detection from Karwar to Gokarna - South West coast of India using remotely Sensed data

    Digital Repository Service at National Institute of Oceanography (India)

    Choudhary, R.; Gowthaman, R.; SanilKumar, V.

    and monitoring temporal changes for coastline and coastal area by using aerial data images and digital photogrammetry: A case study from [6] Samsun, Turkey. International Journal of the Physical Sciences, 5(10), pp. 1567-1575 [7] H. Gangadhara Bhat and K... between land - water boundary in the satellite image and thus shoreline was identified and demarcated. High waterline of the toposheet was digitized as line feature. Digitized shorelines for different years were overlaid and polygons were created...

  11. Marine archaeological investigations in inferring shoreline / sea level changes along the Indian coast

    Digital Repository Service at National Institute of Oceanography (India)

    Vora, K.H.

    @nio.org Studies on sea level changes are of major interest to decipher implication of global warming and its impact on coastal belt. Out of many methods to draw inferences on cause and effect analysis, geological investigations, especially marine... sites have been useful proxies to understand the local shorelines change caused either by sealevel variation or seismic activity. Suggested Readings: Gaur, A.S., Vora, K.H. and Sundaresh, 2007. Shoreline changes during last 2000 years...

  12. Erosive tooth wear in children

    NARCIS (Netherlands)

    Carvalho, T.S.; Lussi, A.; Jaeggi, T.; Gambon, D.L.; Lussi, A.; Ganss, C.

    2014-01-01

    Erosive tooth wear in children is a common condition. Besides the anatomical differences between deciduous and permanent teeth, additional histological differences may influence their susceptibility to dissolution. Considering laboratory studies alone, it is not clear whether deciduous teeth are

  13. Compost for steep slope erosion.

    Science.gov (United States)

    2008-06-01

    This study was initiated to develop guidelines for maintenance erosion control measures for steep slopes. The study focused on evaluating and monitoring KY-31 fescue germination rates using two media treatments 1) 100 percent by weight compost and 2)...

  14. Erosion-resistant composite material

    Science.gov (United States)

    Finch, C.B.; Tennery, V.J.; Curlee, R.M.

    A highly erosion-resistant composite material is formed of chemical vapor-deposited titanium diboride on a sintered titanium diboride-nickel substrate. This material may be suitable for use in cutting tools, coal liquefaction systems, etc.

  15. The Provo shoreline of Lake Bonneville: Chapter 7

    Science.gov (United States)

    Miller, David

    2016-01-01

    G.K. Gilbert studied the Bonneville basin 150 years ago and his findings have largely stood the test of time: The Provo shoreline, the most prominent geomorphic feature of Lake Bonneville, reflects threshold-stabilized overflow of the lake after the Bonneville flood and before a drier climate caused the lake to shrink. Subsequent refinements in chronology allow the Provo lake to be identified as about 18.2–14.8 cal ka BP, and stratigraphic studies show that the lake was gradually growing deeper during that time. Because the lake deepened through time as isostatic rebound occurred, individual landforms in general reflect processes operating for a small part of the ~ 3400 year of Provo time. Opportunities remain to improve our knowledge of the Provo lake; topics include (1) refinement of lake levels using delta and beach stratigraphy; (2) improved understanding of lake water chemistry and its role in determining deep-water sediment and cave deposits, which have disparate interpretations; (3) identifying processes at the threshold that caused the lake level to rise; and (4) identifying climate variability signals during Provo time.

  16. Planktonic biodiversity along with shoreline of RPS lake

    International Nuclear Information System (INIS)

    Sarang, N.; Anil Kumar; Sharma, L.L.; Sharma, S.K.; Sharma, B.K.; Verma, P.C.; Venkatramani, B.

    2007-01-01

    The four PHWR units of Rajasthan Atomic Power Station (RAPS) which are operating at 220 MWe each are located on the eastern bank of Rana Pratap Sagar (RPS) in Rajasthan. The RPS is a man made fresh water reservoir and is balancing between Gandhi Sagar on upstream and Jawahar sagar on its down stream. RAPS utilises water from RPS lake for its condenser cooling purposes. The water is drawn through a 300 m long conduit pipe located at lake bottom about 20 m below the surface. The warmed condenser outlet from RAPS is allowed to discharge into RPS in a controlled engineering manner. The warm water is likely to remain at the surface and get mixed with lake water and cooled due to wind currents, dilutions and evaporation from lake surface. The heat release to the RPS lake through condenser outlet could effect the microbiological and water quality parameters, planktonic biodiversity and fish productivity. This paper presents the results of thermal ecological studies carried out at either side of the discharge canal along with shoreline of RPS lake. The study includes the periodic monitoring of several physico-chemical, biological and bacteriological parameters at various locations on the eastern shore of RPS. The paper also presents the seasonal variation of the monitored parameters. The study reveals that the biodiversity of planktonic organisms has been fairly good which is evident from the identification of 66 phytoplankton and 36 zooplankton on the shore sampling of RPS. (author)

  17. Accumulation of microplastic on shorelines woldwide: sources and sinks.

    Science.gov (United States)

    Browne, Mark Anthony; Crump, Phillip; Niven, Stewart J; Teuten, Emma; Tonkin, Andrew; Galloway, Tamara; Thompson, Richard

    2011-11-01

    Plastic debris microplastic) is accumulating in marine habitats. Ingestion of microplastic provides a potential pathway for the transfer of pollutants, monomers, and plastic-additives to organisms with uncertain consequences for their health. Here, we show that microplastic contaminates the shorelines at 18 sites worldwide representing six continents from the poles to the equator, with more material in densely populated areas, but no clear relationship between the abundance of miocroplastics and the mean size-distribution of natural particulates. An important source of microplastic appears to be through sewage contaminated by fibers from washing clothes. Forensic evaluation of microplastic from sediments showed that the proportions of polyester and acrylic fibers used in clothing resembled those found in habitats that receive sewage-discharges and sewage-effluent itself. Experiments sampling wastewater from domestic washing machines demonstrated that a single garment can produce >1900 fibers per wash. This suggests that a large proportion of microplastic fibers found in the marine environment may be derived from sewage as a consequence of washing of clothes. As the human population grows and people use more synthetic textiles, contamination of habitats and animals by microplastic is likely to increase.

  18. Habitat structure and zonation patterns of northwestern Mediterranean shoreline strands

    Directory of Open Access Journals (Sweden)

    Simone Mariani

    2017-06-01

    Full Text Available We studied the habitat structure (macrofaunal assemblages and bottom types and zonation patterns of 29 unvegetated shoreline strands along the 900-km coast of Catalonia (NW Mediterranean Sea. Organisms were sampled with grabs, pitfall traps, sticky traps, clam nets and spades to ensure capture of the different proportions of macrofaunal assemblages from the supra-, medio- and infralittoral levels. We collected 211 taxa: 194 animals and 17 algae. The most abundant and dominant organisms collected with van Veen grabs were Nematoda, Oligochaeta and Collembola at the supralittoral level; the polychaetes Saccocirrus spp. and Pisione remota, the amphipod Corophium orientale, Nematoda, and Turbellaria at the mediolittoral level; and Nematoda at the upper infralittoral level. SIMPER analysis revealed great dissimilarity between the organisms inhabiting the supralittoral and the other littoral levels. Regarding the epifauna, the sticky traps used at the supralittoral level mainly collected Collembola, which were nearly absent in pitfall traps. The qualitative study performed with a clam net and a small spade revealed that Nematoda, Saccocirrus spp., Turbellaria, Nemertea and the polychaete P. remota were the most abundant animals at both the medio- and the infralittoral levels and no differences were found between these levels. Different qualitative sampling methodologies showed that in fine sediments the bivalves Donax trunculus and D. semistriatus determined more than 97% of dissimilarity from coarse-sand sites. Richness increased in protected sandy and cobble shores. Littoral level and bottom-type features were only to a certain extent valid indicators of specific biotic components for a specific habitat.

  19. Nutrient-enhanced bioremediation of oil-contaminated shoreline

    International Nuclear Information System (INIS)

    Glaser, J.A.

    1991-01-01

    On March 24, 1989, the collision of the supertanker Exxon Valdez with a submerged reef in Prince William Sound AK, released 41.6 million L (11 million gal) of Prudhoe Bay crude oil. The oil spread with time to contaminate an estimated 565 km (350 miles) of shoreline. The degradation of oil components by biological mechanisms has been intensively studied during the last 20 years. The general outline of biodegradation pathways for aliphatic and aromatic hydrocarbons has been formulated and continues to be developed in greater detail. Consequently, the microbial decomposition of oil in aquatic environments is well understood to include descriptions of biodegradation kinetics; temperature effects for biodegradation can be described by an Arrhenius relationship. Even cold-water environments have been shown to support the biodegradation of oil components. This paper reports that a panel of experts was assembled to assist the U.S. Environmental Protection Agency (EPA) in determining the best treatment strategy to accelerate the natural biodegradation process in Prince William Sound

  20. Soil Erosion and Agricultural Sustainability

    Science.gov (United States)

    Montgomery, D. R.

    2009-04-01

    Data drawn from a global compilation of studies support the long articulated contention that erosion rates from conventionally plowed agricultural fields greatly exceed rates of soil production, erosion under native vegetation, and long-term geological erosion. Whereas data compiled from around the world show that soil erosion under conventional agriculture exceeds both rates of soil production and geological erosion rates by up to several orders of magnitude, similar global distributions of soil production and geological erosion rates suggest an approximate balance. Net soil erosion rates in conventionally plowed fields on the order of 1 mm/yr can erode typical hillslope soil profiles over centuries to millennia, time-scales comparable to the longevity of major civilizations. Well-documented episodes of soil loss associated with agricultural activities date back to the introduction of erosive agricultural methods in regions around the world, and stratigraphic records of accelerated anthropogenic soil erosion have been recovered from lake, fluvial, and colluvial stratigraphy, as well as truncation of soil stratigraphy (such as truncated A horizons). A broad convergence in the results from studies based on various approaches employed to study ancient soil loss and rates of downstream sedimentation implies that widespread soil loss has accompanied human agricultural intensification in examples drawn from around the world. While a broad range of factors, including climate variability and society-specific social and economic contexts — such as wars or colonial relationships — all naturally influence the longevity of human societies, the ongoing loss of topsoil inferred from studies of soil erosion rates in conventional agricultural systems has obvious long-term implications for agricultural sustainability. Consequently, modern agriculture — and therefore global society — faces a fundamental question over the upcoming centuries. Can an agricultural system

  1. Measurements of carbon and tungsten erosion/deposition in the DIII-D divertor

    International Nuclear Information System (INIS)

    Bastasz, R.; Wampler, W.R.; Cuthbertson, J.W.; Buchenauer, D.A.; Brooks, N.; Junge, R.; West, W.P.; Wong, C.P.C.

    1994-01-01

    Net erosion/deposition rates of carbon and tungsten were measured at the outer strike point of the divertor plasma on the floor of the DIII-D tokamak during deuterium H-mode operation at a peak power deposition of about 40 W/cm 2 . For carbon, net erosion rates of up to 4 nm/s were found. For a tungsten film, no appreciable erosion was detected. However, measurements of deposited tungsten on adjacent carbon surfaces indicated a net W erosion rate of 0.06 nm/s

  2. Erosion characteristics of ethylene propylene diene monomer composite insulation by high-temperature dense particles

    Science.gov (United States)

    Li, Jiang; Guo, Meng-fei; Lv, Xiang; Liu, Yang; Xi, Kun; Guan, Yi-wen

    2018-04-01

    In this study, a dense particles erosion test motor which can simulate the erosion state of a solid rocket motor under high acceleration was developed. Subsequently, erosion experiments were carried out for the ethylene propylene diene monomer composite insulation and the microstructure of the char layer analysed. A turning point effect was found from the influence of the particle impact velocity on the ablation rate, and three erosion modes were determined according to the micro-morphology of the char layer. A reasonable explanation for the different structures of the char layer in the three modes was presented based on the formation mechanism of the compact/loose structure of the char layer.

  3. Vegetation of natural and artificial shorelines in Upper Klamath Basin’s fringe wetlands

    Science.gov (United States)

    Ray, Andrew M.; Irvine, Kathryn M.; Hamilton, Andy S.

    2013-01-01

    The Upper Klamath Basin (UKB) in northern California and southern Oregon supports large hypereutrophic lakes surrounded by natural and artificial shorelines. Lake shorelines contain fringe wetlands that provide key ecological services to the people of this region. These wetlands also provide a context for drawing inferences about how differing wetland types and wave exposure contribute to the vegetative assemblages in lake-fringe wetlands. Here, we summarize how elevation profiles and vegetation richness vary as a function of wave exposure and wetland type. Our results show that levee wetland shorelines are 4X steeper and support fewer species than other wetland types. We also summarize the occurrence probability of the five common wetland plant species that represent the overwhelming majority of the diversity of these wetlands. In brief, the occurrence probability of the culturally significant Nuphar lutea spp. polysepala and the invasive Phalaris arundinacea in wave exposed and sheltered sites varies based on wetland type. The occurrence probability for P. arundinacea was greatest in exposed portions of deltaic shorelines, but these trends were reversed on levees where the occurrence probability was greater in sheltered sites. The widespread Schoenoplectus acutus var. acutus occurred throughout all wetland and exposure type combinations but had a higher probability of occurrence in wave exposed sites. Results from this work will add to our current understanding of how wetland shoreline profiles interact with wave exposure to influence the occurrence probability of the dominant vegetative species in UKB’s shoreline wetlands.

  4. Wind erosion of soils burned by wildfire

    Science.gov (United States)

    N. S. Wagenbrenner; M. J. Germino; B. K. Lamb; R. B. Foltz; P. R. Robichaud

    2011-01-01

    Wind erosion and aeolian transport processes are largely unstudied in the post-wildfire environment, but recent studies have shown that wind erosion can play a major role in burned landscapes. A wind erosion monitoring system was installed immediately following a wildfire in southeastern Idaho, USA to measure wind erosion from the burned area (Figure 1). This paper...

  5. Erosion and deposition of metals and carbon in the DIII-D divertor

    International Nuclear Information System (INIS)

    Wampler, W.R.; Bastasz, R.; Buchenauer, D.

    1995-01-01

    Net erosion rates at the outer strike point of the DIII-D divertor plasma were measured for several materials during quiescent H-mode operation with deuterium plasmas. Materials examined include graphite, beryllium, tungsten, vanadium and molybdenum. For graphite, net erosion rates up to 4 nm/sec were found. Erosion rates for the metals were much smaller than for carbon. Ion fluxes from Langmuir probe measurements were used to predict gross erosion by sputtering. Measured net erosion was much smaller than predicted gross erosion. Transport of metal atoms by the plasma across the divertor surface was also examined. Light atoms were transported farther than heavy atoms as predicted by impurity transport models

  6. Introduction to littoral erosion problem in Uraba (Arboletes-Turbo area) Colombian Caribbean Coast

    International Nuclear Information System (INIS)

    Correa; Ivan D; Vernette, Georges

    2004-01-01

    Shoreline retreat has been the net dominant historical trend along the 145 km-length littoral between Arboletes and Turbo (southern Caribbean of Colombia). For the last four decades, there were identified in this littoral shoreline retreat of about 50-100 m in several places (Uveros, Damaquiel, Zapata, Turbo) and a maximum of 1.6 km in the Punta Rey-Arboletes area, where land losses were of 4.5 km 2 , at exceptional rates of 40 rn/year. The synthesis of the available information suggest that the general susceptibility to erosion between Arboletes and turbo could be related primarily to relative sea level rise, associated to tectonic movements as well as to the effects of mud diapirism and hydroisostacy. In the more critical areas (Arboletes, Turbo), the natural erosive trends were accelerated by anthropic actions, including river diversion (Turbo), beach mining and inadequate (or total absence) practices for controlling residual and natural waters. Up to august 2000, there were invested about $ Col 10.000 billions in 155 engineering defenses (groins, sea walls and rip-rap which totalize 6.2 km of total length and a volume of materials of 37.000 m 3 ). With few exceptions, groins have not been successful and are now part of the problem, accelerating shore erosion along the adjacent sectors. In the short term, the littoral erosion between Arboletes and turbo is caused both by marine and by sub aerial factors. it is facilitated by the poor lithological strengths of cliffs and marine terraces, mainly composed of highly fractured and weathered claystones and mudstones (with stratification and weakness planes dipping toward sea) and non-consolidated, easily liquefacted, fine sediments; both conditions facilitate the occurrence of rocks falls, slides and mud flows that result in high figures of cliff retreat (3 to 4 m), specially during the first 15 days of the summer-winter transition (April) and in high waves periods. The case of the littoral erosion between Arboletes

  7. Living shorelines can enhance the nursery role of threatened estuarine habitats.

    Science.gov (United States)

    Gittman, Rachel K; Peterson, Charles H; Currin, Carolyn A; Fodrie, F Joel; Piehler, Michael F; Bruno, John F

    2016-01-01

    Coastal ecosystems provide numerous services, such as nutrient cycling, climate change amelioration, and habitat provision for commercially valuable organisms. Ecosystem functions and processes are modified by human activities locally and globally, with degradation of coastal ecosystems by development and climate change occurring at unprecedented rates. The demand for coastal defense strategies against storms and sea-level rise has increased with human population growth and development along coastlines world-wide, even while that population growth has reduced natural buffering of shorelines. Shoreline hardening, a common coastal defense strategy that includes the use of seawalls and bulkheads (vertical walls constructed of concrete, wood, vinyl, or steel), is resulting in a "coastal squeeze" on estuarine habitats. In contrast to hardening, living shorelines, which range from vegetation plantings to a combination of hard structures and plantings, can be deployed to restore or enhance multiple ecosystem services normally delivered by naturally vegetated shores. Although hundreds of living shoreline projects have been implemented in the United States alone, few studies have evaluated their effectiveness in sustaining or enhancing ecosystem services relative to naturally vegetated shorelines and hardened shorelines. We quantified the effectiveness of (1) sills with landward marsh (a type of living shoreline that combines marsh plantings with an offshore low-profile breakwater), (2) natural salt marsh shorelines (control marshes), and (3) unvegetated bulkheaded shores in providing habitat for fish and crustaceans (nekton). Sills supported higher abundances and species diversity of fishes than unvegetated habitat adjacent to bulkheads, and even control marshes. Sills also supported higher cover of filter-feeding bivalves (a food resource and refuge habitat for nekton) than bulkheads or control marshes. These ecosystem-service enhancements were detected on shores with

  8. In situ bioremediation strategies for oiled shoreline environments

    International Nuclear Information System (INIS)

    Lee, K.; Mora, S. de

    1999-01-01

    Despite advances in preventative measures, recent events have demonstrated that accidental oil spills at sea will still occur. While physical (e.g. booms and skimmers) and chemical (e.g. chemical dispersants) methods have been developed to recover and/or disperse oil spilled at sea, they are not 100% effective and are frequently limited by operational constraints attributed to sea state and/or nature of the contamination. As a result, oil spills frequently impact shoreline environments. In situ bioremediation, the addition of substances or modification of habitat at contaminated sites to accelerate natural biodegradation processes, is now recognised as an alternative spill response technology of the remediation of these sites. Recommended for use following the physical removal of bulk oil, this treatment strategy has an operational advantage in that it breaks down and/or removes the residual contamination in place. Laboratory experiments and field trials have demonstrated the feasibility and success of bioremediation strategies such as nutrient enrichment to enhance bacterial degradation of oil on cobble, sand beach and salt marsh environments. With improved knowledge of the factors that limit natural oil degradation rates, the feasibility of other strategies such as phytoremediation, enhanced oil-mineral fines interaction and the addition of oxygen or alternative electron acceptors are now being evaluated. Laboratory and field test protocols are being refined for the selection of effective bioremediation agents and methods of application. It is recommended that future operational guidelines include real time product efficacy test and environmental effects monitoring programs. Termination of treatment should be implemented when: 1) it is no longer effective; 2) the oil has degraded to acceptable biologically benign concentrations; or 3) toxicity due to the treatment is increasing. (Author)

  9. Shoreline changes at the mouths of the Mekong River delta over the last 50 years: fluctuating sediment supply and shoreline cells

    Science.gov (United States)

    Anthony, E.; Besset, M.; Brunier, G.; Dussouillez, P.; Dolique, F.; Nguyen, V. L.; Goichot, M.

    2014-12-01

    River delta shorelines may be characterized by complex patterns of sediment transport and sequestering at various timescales in response to changes in sediment supply, hydrodynamic conditions, and deltaic self-organization. While being good indicators of delta stability, these changes also have important coastal management and defence implications. These aspects are examined with reference to the mouths of the Mekong River delta, the world's third largest delta, backbone of the Vietnamese economy and home to nearly 20 million people. We conducted an analysis of shoreline fluctuations over the last five decades using low-resolution Landsat (1973-2014), very high-resolution SPOT 5 (2003-2011) satellite imagery, topographic maps (1950, 1965), and field hydrodynamic and shoreline topographic measurements. The results show that the 250 km-long river-mouth sector of the delta shoreline has been characterized by overall accretion but with marked temporal and spatial variations. The temporal pattern is attributed to fluctuations in sediment supply due to both human activities and natural variations in catchment sediment loads (e.g., 2000-2003), and natural adjustments in delta-plain sediment storage and delivery to the coast. The spatial pattern is indicative of discrete sediment cells that may be a response to an overall decreasing sand supply, especially since 2003, following increasingly massive riverbed mining with concomitant losses in channel-bed sand. Field measurements show the prevalence of mesotidal bar-trough beaches characterized by sand migration to the southwest in response to energetic dry-season monsoon waves. Beaches underfed as a result of both wave-energy gradients and possible diminishing sand supply from the adjacent river mouths are eroded to feed accreting beaches. Understanding this cell pattern has important implications in terms of: (1) interpreting past patterns of shoreline translation involved in the construction of successive beach ridges that

  10. Local Community Verification of Coastal Erosion Risks in the Arctic: Insights from Alaska's North Slope

    Science.gov (United States)

    Brady, M.

    2016-12-01

    During his historic trip to Alaska in 2015, U.S. President Barack Obama announced a collaborative effort to update maps of the Arctic region in anticipation of increased maritime access and resource development and to support climate resilience. Included in this effort is development of an Arctic-wide satellite-based digital elevation model (DEM) to provide a baseline to monitor landscape change such as coastal erosion. Focusing in Alaska's North Slope, an objective of this study is to transform emerging Arctic environment spatial data products including the new DEM into information that can support local level planning and decision-making in the face of extreme coastal erosion and related environmental threats. In pursuit of this, in 2016, 4 workshops were held in three North Slope villages highly exposed to coastal erosion. The first workshop with approximately 10 managers in Barrow solicited feedback on an erosion risk database developed in a previous research stage and installed onto the North Slope's planning Web portal. The database includes a physical risk indicator based on factors such as historical erosion and effects of sea ice loss summarized at asset locations. After a demonstration of the database, participants discussed usability aspects such as data reliability. The focus of the mapping workshops in Barrow and two smaller villages Wainwright and Kaktovik was to verify and expand the risk database by interactively mapping erosion observations and community asset impacts. Using coded stickers and paper maps of the shoreline showing USGS erosion rates, a total of 50 participants provided feedback on erosion data accuracy. Approximately 25 of the total 50 participants were elders and hunters who also provided in-depth community risk information. The workshop with managers confirmed physical risk factors used in the risk database, and revealed that the information may be relied upon to support some development decisions and better engage developers about

  11. Historical Loss and Current Rehabilitation of Shoreline Habitat along an Urban-Industrial River—Detroit River, Michigan, USA

    OpenAIRE

    John H. Hartig; David Bennion

    2017-01-01

    The purpose of this study was to evaluate the historical loss and current shoreline habitat rehabilitation efforts along the urban-industrial Detroit River using geographical information system methods and a shoreline survey. This study found a 97% loss of historical coastal wetlands to human development. By 1985, 55% of the U.S. mainland shoreline had been hardened with steel sheet piling or concrete breakwater that provide limited habitat. Since 1995, 19 projects were implemented, improving...

  12. Bentonite erosion - Laboratory studies

    International Nuclear Information System (INIS)

    Jansson, Mats

    2010-01-01

    Document available in extended abstract form only. Bentonite clay is proposed as buffer material in the KBS-3 concept of storing spent nuclear fuel. Since the clay is plastic it will protect the canisters containing the spent fuel from movements in the rock. Furthermore, the clay will expand when taking up water, become very compact and hence limit the transport of solutes to and from the canister to only diffusion. The chemical stability of the bentonite barrier is of vital importance. If much material would be lost the barrier will lose its functions. As a side effect, lots of colloids will be released which may facilitate radionuclide transport in case of a breach in the canister. There are scenarios where during an ice age fresh melt water may penetrate down to repository depths with relatively high flow rates and not mix with older waters of high salinity. Under such conditions bentonite colloids will be more stable and there is a possibility that the bentonite buffer would start to disperse and bentonite colloids be carried away by the passing water. This work is a part of a larger project called Bentonite Erosion, initiated and supported by SKB. In this work several minor experiments have been performed in order to investigate the influence of for instance di-valent cations, gravity, etc. on the dispersion behaviour of bentonite and/or montmorillonite. A bigger experiment where the real situation was simulated using an artificial fracture was conducted. Two Plexiglas slabs were placed on top of each other, separated by plastic spacers. Bentonite was placed in a container in contact with a fracture. The bentonite was water saturated before deionized water was pumped through the fracture. The evolution of the bentonite profile in the fracture was followed visually. The eluate was collected in five different slots at the outlet side and analyzed for colloid concentration employing Photon Correlation Spectroscopy (PCS) and a Single Particle Counter (SPC). Some

  13. Bentonite erosion. Laboratory studies

    Energy Technology Data Exchange (ETDEWEB)

    Jansson, Mats (Div. of Nuclear Chemistry, Royal Inst. of Technology, Stockholm (Sweden), School of Chemical Science and Engineering)

    2009-11-15

    This report covers the laboratory studies that have been performed at Nuclear Chemistry, KTH in the project 'Bentonite Erosion'. Many of the experiments in this report were performed to support the work of the modelling group and were often relatively simple. One of the experiment series was performed to see the impact of gravity and concentration of mono- and di-valent cations. A clay suspension was prepared in a test tube. A net was placed in contact with the suspension, the test tube was filled with solutions of different concentrations and the system was left overnight to settle. The tube was then turned upside down and the behaviour was visually observed. Either the clay suspension fell through the net or stayed on top. By using this method surprisingly sharp determinations of the Critical Coagulation (Flocculation) Concentration (CCC/CFC) could be made. The CCC/CFC of Ca2+ was for sodium montmorillonite determined to be between 1 and 2 mM. An artificial fracture was manufactured in order to simulate the real case scenario. The set-up was two Plexiglas slabs separated by 1 mm thick spacers with a bentonite container at one side of the fracture. Water was pumped with a very low flow rate perpendicular to bentonite container and the water exiting the fracture was sampled and analyzed for colloid content. The bentonite used was treated in different ways. In the first experiment a relatively montmorillonite rich clay was used while in the second bentonite where only the readily soluble minerals had been removed was used. Since Plexiglas was used it was possible to visually observe the bentonite dispersing into the fracture. After the compacted bentonite (1,000 kg/m3) had been water saturated the clay had expanded some 12 mm out into the fracture. As the experiment progressed the clay expanded more out into the fracture and seemed to fractionate in two different phases with less material in the outmost phase. A dark rim which was later analyzed to contain

  14. Seasonal variation and climate change impact in Rainfall Erosivity across Europe

    Science.gov (United States)

    Panagos, Panos; Borrelli, Pasquale; Meusburger, Katrin; Alewell, Christine; Ballabio, Cristiano

    2017-04-01

    Rainfall erosivity quantifies the climatic effect on water erosion and is of high importance for soil scientists, land use planners, agronomists, hydrologists and environmental scientists in general. The rainfall erosivity combines the influence of rainfall duration, magnitude, frequency and intensity. Rainfall erosivity is calculated from a series of single storm events by multiplying the total storm kinetic energy with the measured maximum 30-minute rainfall intensity. This estimation requests high temporal resolution (e.g. 30 minutes) rainfall data for sufficiently long time periods (i.e. 20 years). The European Commission's Joint Research Centr(JRC) in collaboration with national/regional meteorological services and Environmental Institutions made an extensive data collection of high resolution rainfall data in the 28 Member States of the European Union plus Switzerland to estimate rainfall erosivity in Europe. This resulted in the Rainfall Erosivity Database on the European Scale (REDES) which included 1,675 stations. The interpolation of those point erosivity values with a Gaussian Process Regression (GPR) model has resulted in the first Rainfall Erosivity map of Europe (Science of the Total Environment, 511: 801-815). In 2016, REDES extended with a monthly component, which allowed developing monthly and seasonal erosivity maps and assessing rainfall erosivity both spatially and temporally for European Union and Switzerland. The monthly erosivity maps have been used to develop composite indicators that map both intra-annual variability and concentration of erosive events (Science of the Total Environment, 579: 1298-1315). Consequently, spatio-temporal mapping of rainfall erosivity permits to identify the months and the areas with highest risk of soil loss where conservation measures should be applied in different seasons of the year. Finally, the identification of the most erosive month allows recommending certain agricultural management practices (crop

  15. Soil erosion in Slovene Istria

    Directory of Open Access Journals (Sweden)

    Matjaž Mikoš

    2009-12-01

    Full Text Available From the end of nineties of the 20th century, intense hydrologic and geomorphologic research is taking place in the Slovene Istria. As a part of this research also studies on soil erosion were undertaken in the period from 2005 to 2008. The field measurements were under taken onclosed 1m2 large erosion plots under three different land uses (on bare soils in an olive grove, on an overgrown meadow, in a forest, placed south of the Marezige village in the Rokava River basin.We show weekly measurements of surface erosion (interrill erosion for the period of 13 months (the end of March 2005 – the end of April 2006, as well as monthly and seasonal averages together with selected linear statistical correlations between soil erosion and weather parameters.From May 2005 to April 2006 the interrill erosion on bare soils in an olive grove with an inclination of 5.5° amounted to 9013 g/m2 (90 t/ha that corresponds to surface lowering rate of 8.5 mm/yr; on an overgrown meadow with an inclination of 9.4° it amounted to 168 g/m2 (1,68 t/ha that corresponds to surface lowering rate of 0.16 mm//yr; and in a forest with an inclination of 7.8° it amounted to 391 g/m2 (3,91 t/ha and in a forest with an inclination of 21.4° it amounted to 415 g/m2 (4,15 t/ha, respectively, that corresponds to surface lowering rate of 0.4 mm/yr.

  16. Twisting of post-glacial Fennoscandian shorelines requires a low-viscosity asthenosphere

    Science.gov (United States)

    Fjeldskaar, Willy; Amantov, Aleksey

    2014-05-01

    The Fennoscandian uplift has been intensely studied and discussed since the 18th century and it is now widely accepted to be an isostatic response to the recent deglaciation. Our knowledge of the ?uid properties of the Earth comes largely from its uplift response to load redistributions that occurred over the last ice age. The elevation of past shorelines and the present rate of land uplift constrain the ?uid properties of the mantle and the elastic rigidity of the lithosphere. The post-glacial uplift in Fennoscandia has been mapped by the following means: 1. Shorelevel displacement curves, showing the vertical displacement at a certain location, 2. Shoreline diagrams, showing the displacement and tilting of palaeo shorelines, 3. Present-day uplift monitored by tide gauge, old water marks, GPS observations and by satellite missions. The Earth rheology is best constrained by the peripheral response of the former glaciated area. The Norwegian west coast has experienced significant transgression in Younger Dryas (YD). Both north of this area and south of this area the relative sea level fell during YD. In the area of transgression the 60 m YD isobase crosses the 60 m Allerød isobase. This twisting of the shorelines happens between Bergen and Stavanger. There has been no change in the shoreline tilts between Allerød and Younger Dryas in this area. The same section of the coast that was transgressed during the YD also experienced a major YD ice-sheet re-advance. In part of this area the ice sheet re-advanced by at least 40 km. It seems likely that there is a causal connection between the ice-advance and the shoreline transgression. The Earth's response to glaciers and sediments has been modeled by using a layered viscous model overlain by an elastic lithosphere. In the calculations we have used the lack of tilting of the palaeo shorelines and twisting of shorelines as to constrain the Earth rheology. We will show that this data is very sensitive to the mantle

  17. Holocene Erosion Patterns in European Alps Viewed from Lake Sediment

    Science.gov (United States)

    Arnaud, F.; Poulenard, J.; Giguet-Covex, C.; Wilhelm, B.; Revillon, S.; Jenny, J. P.; Revel, M.; Enters, D.; Bajard, M.; Fouinat, L.; Doyen, E.; Simonneau, A.; Chapron, E.; Vannière, B.; Sabatier, P.

    2016-12-01

    In this paper we review the scientific efforts that were led over the last decades to reconstruct erosion from continuous alpine lake sediment records. Whereas most available geological records of Holocene terrigenous input focused in climate we propose a regional approach without any a priori regarding erosion forcing factors. In that aim, we integrated a set of sediment sequences from various environment along an altitudinal gradient from 200 up to 2400m asl in Northern French Alps. Altogether our data point climate change as one of the main factor of erosion variability. In particular, the last two cold spells that occurred during the early middle age (Dark Age) and between the 14th and the 20th century AD (Little Ice Age) appear to be outstanding compared to any other periods of enhanced erosion along the Holocene. The climatic forcing of those erosion phases is supported by an increase in the contribution of glacier-eroded material at a regional scale. However, at local scales, our data point the growing importance, since at least the mid Bronze Age (ca. 3500 cal. BP) of human activities as a major erosion factor. This influence peaked during the late Iron Age and Antiquity periods (200 BC - 400 AD) when we record a regional generalised period of enhanced erosion in response to the development of pasturing activities. Thanks to provenance and weathering markers, we evidenced a strong relationship between the changes in ecosystems, soil development and erosion patterns. We hence showed the vegetal colonisation of bared soil led to a period of intense weathering while new soils were under formation between 11,000 and 8,000 cal. BP. Soils then knew an optimum until the onset of the Neoglacial at ca. 4,500 cal. BP prior to decline under both climate and human pressures. Altogether our data point the complexity of processes that affected the Earth critical zone along the Holocene and especially since humans became a major geologic agent. However, we highlight the

  18. Numerical simulation of hydrodynamic and water quality effects of shoreline changes in Bohai Bay

    Science.gov (United States)

    Jia, Han; Shen, Yongming; Su, Meirong; Yu, Chunxue

    2018-02-01

    This study uses the HD and Ecolab modules of MIKE to simulate the hydrodynamic and water quality and predict the influence of shoreline changes in Bohai Bay, China. The study shows that shoreline changes weaken the residual current and generate a counter-clockwise circulation south of Huanghua Port, thereby resulting in weak water exchange capacity and low pollutant-diffusing capacity. Shoreline changes reduce the area of Bohai Bay, resulting in a smaller tidal prism and further weakening the water exchange capacity. This situation is not conducive to the diffusion of pollutants, and therefore may lead to increased water pollution in the bay. Shoreline changes hinder the spread of runoff, weaken the dilution effect of the river on seawater, and block the spread of coastal residual current, thereby resulting in increased salinity near the reclamation area. Shoreline changes lead to an increase in PO4-P concentration and decrease in DIN concentration. The value of N/P near the project decreases, thereby weakening the phosphorus-limited effect.

  19. Effects of tailing dam profiles on relative wind erosion rates

    Energy Technology Data Exchange (ETDEWEB)

    Coffey, P.S.; Scott, W.D.; Summers, K.J.

    Erosion from mine treatment and associated residue areas can pose a significant environmental problem for surrounding locations from dust and other transported materials. The shape of such residue areas can influence windfield behavior by causing significant wind speed increases. Residue areas are often unprotected so that increasing the speed of wind passing over these areas will cause extra erosion. Values of wind speed-up predicted by an empirical model for wind flow over hills of low slope were compared with measured values over approach slopes to a tailings dam. Hunt's model used in this study relates wind speed from a point on the hill to that observed if there was no hill. Measured values are in agreement with those predicted by the model. Shear stress values calculated from the wind flow model are then used to determine the friction velocity which, in turn, predict the relative rates of erosion. This prediction is based on the cubic relation between the friction velocity and erosion rate observed by Bagnold. These calculations are repeated for the various possible hill shapes allowed by the plant layout and the need to integrate long term spoil heaps with existing topography. A strategy for minimizing erosion of mine tailings through shape selection can then form part of the environmental considerations associated with tailings dams.

  20. 75 FR 54377 - Cattle Point Road Relocation; Draft Environmental Impact Statement; San Juan Island National...

    Science.gov (United States)

    2010-09-07

    ... to coastal bluff erosion which threatens Cattle Point Road located in San Juan Island National... threatened by coastal erosion at the base of the slope traversed by the road. This road passes through the... unsafe in a few years-- life expectancy (relative to coastal erosion) is estimated at approximately 100...

  1. Erosion and lateral surface processes

    Science.gov (United States)

    : Erosion can cause serious agricultural and environmental hazards. It can generate severe damage to the landscape, lead to significant loss of agricultural land and consequently to reduction in agricultural productivity, induce surface water pollution due to the transport of sediments and suspende...

  2. Increase in the rate and uniformity of coastline erosion in Arctic Alaska

    Science.gov (United States)

    Jones, Benjamin M.; Arp, C.D.; Jorgenson, M.T.; Hinkel, Kenneth M.; Schmutz, J.A.; Flint, P.L.

    2009-01-01

    Analysis of a 60 km segment of the Alaskan Beaufort Sea coast using a time-series of aerial photography revealed that mean annual erosion rates increased from 6.8 m a-1 (1955 to 1979), to 8.7 m a-1 (1979 to 2002), to 13.6 m a-1 (2002 to 2007). We also observed that spatial patterns of erosion have become more uniform across shoreline types with different degrees of ice-richness. Further, during the remainder of the 2007 ice-free season 25 m of erosion occurred locally, in the absence of a westerly storm event. Concurrent arctic changes potentially responsible for this shift in the rate and pattern of land loss include declining sea ice extent, increasing summertime sea surface temperature, rising sea-level, and increases in storm power and corresponding wave action. Taken together, these factors may be leading to a new regime of ocean-land interactions that are repositioning and reshaping the Arctic coastline. Copyright 2009 by the American Geophysical Union.

  3. Elevated temperature erosive wear of metallic materials

    International Nuclear Information System (INIS)

    Roy, Manish

    2006-01-01

    Solid particle erosion of metals and alloys at elevated temperature is governed by the nature of the interaction between erosion and oxidation, which, in turn, is determined by the thickness, pliability, morphology, adhesion characteristics and toughness of the oxide scale. The main objective of this paper is to critically review the present state of understanding of the elevated temperature erosion behaviour of metals and alloys. First of all, the erosion testing at elevated temperature is reviewed. This is followed by discussion of the essential features of elevated temperature erosion with special emphasis on microscopic observation, giving details of the erosion-oxidation (E-O) interaction mechanisms. The E-O interaction has been elaborated in the subsequent section. The E-O interaction includes E-O maps, analysis of transition criteria from one erosion mechanism to another mechanism and quantification of enhanced oxidation kinetics during erosion. Finally, the relevant areas for future studies are indicated. (topical review)

  4. Measuring Sea Level Rise-Induced Shoreline Changes and Inundation in Real Time

    Science.gov (United States)

    Shilling, F.; Waetjen, D.; Grijalva, E.

    2016-12-01

    We describe a method to monitor shoreline inundation and changes in response to sea level rise (SLR) using a network of time-lapse cameras. We found for coastal tidal marshes that this method was sensitive to vertical changes in sea level of 20 cm has occurred in the San Francisco Bay and other US coastal areas and is likely to rise by another 30-45 cm by mid-century, which will flood and erode many coastal ecosystems, highways, and urban areas. This rapid degree of rise means that it is imperative to co-plan for natural and built systems. Many public facilities are adjacent to shoreline ecosystems, which both protect infrastructure from wave and tide energy and are home to regulated species and habitats. Accurate and timely information about the actual extent of SLR impacts to shorelines will be critical during built-system adaptation. Currently, satellite-sourced imagery cannot provide the spatial or temporal resolution necessary to investigate fine-scale shoreline changes, leaving a gap between predictive models and knowing how, where and when these changes are occurring. The method described is feasible for near-term (1 to 10 years) to long-term application and can be used for measuring fine-resolution shoreline changes (services to organize photographs that could be combined with related external data (e.g., gauged water levels) to create an information mashup. This information could be used to validate models predicting shoreline inundation and loss, inform SLR-adaptation planning, and to visualize SLR impacts to the public.

  5. Mobile Laser Scanning along Dieppe coastal cliffs: reliability of the acquired point clouds applied to rockfall assessments

    Science.gov (United States)

    Michoud, Clément; Carrea, Dario; Augereau, Emmanuel; Cancouët, Romain; Costa, Stéphane; Davidson, Robert; Delacourt, Chirstophe; Derron, Marc-Henri; Jaboyedoff, Michel; Letortu, Pauline; Maquaire, Olivier

    2013-04-01

    Dieppe coastal cliffs, in Normandy, France, are mainly formed by sub-horizontal deposits of chalk and flintstone. Largely destabilized by an intense weathering and the Channel sea erosion, small and large rockfalls are regularly observed and contribute to retrogressive cliff processes. During autumn 2012, cliff and intertidal topographies have been acquired with a Terrestrial Laser Scanner (TLS) and a Mobile Laser Scanner (MLS), coupled with seafloor bathymetries realized with a multibeam echosounder (MBES). MLS is a recent development of laser scanning based on the same theoretical principles of aerial LiDAR, but using smaller, cheaper and portable devices. The MLS system, which is composed by an accurate dynamic positioning and orientation (INS) devices and a long range LiDAR, is mounted on a marine vessel; it is then possible to quickly acquire in motion georeferenced LiDAR point clouds with a resolution of about 15 cm. For example, it takes about 1 h to scan of shoreline of 2 km long. MLS is becoming a promising technique supporting erosion and rockfall assessments along the shores of lakes, fjords or seas. In this study, the MLS system used to acquire cliffs and intertidal areas of the Cap d'Ailly was composed by the INS Applanix POS-MV 320 V4 and the LiDAR Optech Ilirs LR. On the same day, three MLS scans with large overlaps (J1, J21 and J3) have been performed at ranges from 600 m at 4 knots (low tide) up to 200 m at 2.2 knots (up tide) with a calm sea at 2.5 Beaufort (small wavelets). Mean scan resolutions go from 26 cm for far scan (J1) to about 8.1 cm for close scan (J3). Moreover, one TLS point cloud on this test site has been acquired with a mean resolution of about 2.3 cm, using a Riegl LMS Z390i. In order to quantify the reliability of the methodology, comparisons between scans have been realized with the software Polyworks™, calculating shortest distances between points of one cloud and the interpolated surface of the reference point cloud. A Mat

  6. Review of evidence for late Tertiary shorelines occurring on South Atlantic coasts

    Science.gov (United States)

    Nunn, Patrick D.

    1984-06-01

    Recognition of (late) Tertiary shorelines on continental coasts is becoming increasingly common. It is argued that the elevations of such features are central to their approximate dating and the demonstration of contemporaneity with similar features elsewhere. South Atlantic coasts have not had a long history of investigation, yet there exist many diffuse observations, in both time and space, which are here drawn together into a preliminary synthesis and the case for widespread occurrences of late Tertiary shorelines in the region reviewed. This allows comparison with other areas from which Tertiary shorelines are known, the Atlantic seaboards of the Southeastern United States and Northwest Europe, for example. The coasts of oceanic islands are probably the best places to examine the legacy of late Cenozoic sea-level changes. It is suggested that, since many of the cliffed shores of these islands appear to be the result of a rapid emergence, coastal features predating this event might be preserved on the cliff-tops. Possible late Tertiary shorelines from South Atlantic islands are described, as are those which have been positively dated to this period, in the Eastern Canary Islands, for instance. Sedimentary and morphological indicators of Tertiary high sea-levels are described from Antarctic coasts. South American and African Atlantic continental margins. Evidence from the latter two areas is most suspect, owing to their generally more complex Quaternary tectonic histories. A summary of the evidence for Tertiary shorelines on South Atlantic coasts is tabulated. Methods which have been or could be used to date late Tertiary shorelines are described. Minimum age can be deduced from that of deposits resting on an erosional surface, maximum age from that of the youngest formation across which a surface is cut. More precise age can be estimated where a marine surface is sandwiched between datable non-marine formations or where periods of tectonic activity (responsible

  7. Further ecological and shoreline stability reconnaissance surveys of Back Island, Behm Canal, Southeast Alaska

    Energy Technology Data Exchange (ETDEWEB)

    Young, J.S.; Strand, J.A.; Ecker, R.M.

    1987-09-01

    A diver reconnaissance of the intertidal and subtidal zones of Back Island was performed to catalog potentially vulnerable shellfish, other invertebrates, and marine plant resources occurring at three proposed alternate pier sites on the west side of Back Island. Additionally, a limited survey of terrestrial vegetation was conducted in the vicinity of one of the proposed alternate pier sites to describe the littoral community and to list the dominant plant species found there. Finally, a reconnaissance survey of the shoreline of Back Island was conducted to evaluate potential changes in shoreline stability resulting from construction of onshore portions of the Southeast Alaska Acoustic Measurement Facility (SEAFAC).

  8. Modeling erosion from forest roads with WEPP

    Science.gov (United States)

    J. McFero Grace

    2007-01-01

    Forest roads can be major sources of soil erosion from forest watersheds. Sediments from forest roads are a concern due to their potential delivery to stream systems resulting in degradation of water quality. The Water Erosion Prediction Project (WEPP) was used to predict erosion from forest road components under different management practices. WEPP estimates are...

  9. Soil Erosion. LC Science Tracer Bullet.

    Science.gov (United States)

    Buydos, John F., Comp.

    Soil erosion is the detachment and movement of topsoil or soil material from the upper part of the soil profile. It may occur in the form of rill, gully, sheet, or wind erosion. Agents of erosion may be water, wind, glacial ice, agricultural implements, machinery, and animals. Soil conservation measures require a thorough understanding of the…

  10. Natural and anthropogenic rates of soil erosion

    Science.gov (United States)

    Regions of land that are brought into crop production from native vegetation typically undergo a period of soil erosion instability, and long term erosion rates are greater than for natural lands as long as the land continues being used for crop production. Average rates of soil erosion under natur...

  11. Soil erosion in humid regions: a review

    Science.gov (United States)

    Daniel J. Holz; Karl W.J. Williard; Pamela J. Edwards; Jon E. Schoonover

    2015-01-01

    Soil erosion has significant implications for land productivity and surface water quality, as sediment is the leading water pollutant worldwide. Here, erosion processes are defined. The dominant factors influencing soil erosion in humid areas are reviewed, with an emphasis on the roles of precipitation, soil moisture, soil porosity, slope steepness and length,...

  12. [Assessment of the impacts of soil erosion on water environment based on the integration of soil erosion process and landscape pattern].

    Science.gov (United States)

    Liu, Yu; Wu, Bing-Fang; Zeng, Yuan; Zhang, Lei

    2013-09-01

    The integration of the effects of landscape pattern to the assessment of the impacts of soil erosion on eco-environmental is of practical significance in methodological prospect, being able to provide an approach for identifying water body's sediment source area, assessing the potential risks of sediment export of on-site soil erosion to the target water body, and evaluating the capacity of regional landscape pattern in preventing soil loss. In this paper, the RUSLE model was applied to simulate the on-site soil erosion rate. With the consideration of the soil retention potential of vegetation cover and topography, a quantitative assessment was conducted on the impacts of soil erosion in the water source region of the middle route for South-to-North Water Transfer Project on rivers and reservoirs by delineating landscape pattern at point (or cell) scale and sub-watershed level. At point (or grid cell) scale, the index of soil erosion impact intensity (I) was developed as an indicator of the potential risk of sediment export to the water bodies. At sub-watershed level, the landscape leakiness index (LI) was employed to indicate the sediment retention capacity of a given landscape pattern. The results revealed that integrating the information of landscape pattern and the indices of soil erosion process could spatially effectively reflect the impact intensity of in situ soil erosion on water bodies. The LI was significantly exponentially correlated to the mean sediment retention capacity of landscape and the mean vegetation coverage of watershed, and the sediment yield at sub-watershed scale was significantly correlated to the LI in an exponential regression. It could be concluded that the approach of delineating landscape pattern based on soil erosion process and the integration of the information of landscape pattern with its soil retention potential could provide a new approach for the risk evaluation of soil erosion.

  13. Shoreline vegetation distribution in relation to wave exposure and bay characteristics in a tropical great lake, Lake Victoria

    NARCIS (Netherlands)

    Azza, N.; Van de Koppel, J.; Denny, P.; Kansiime, F.

    2007-01-01

    We investigated the presumption that wind-wave exposure is a major regulator of vegetation distribution within lakes. Along a 675-km stretch of shore in northern Lake Victoria (Uganda), the pattern of vegetation distribution in relation to shoreline features, and the variation of shoreline swamp

  14. Fan-delta and interdeltaic shoreline sediments of Middle Devonian Granite Wash and Keg River clastics, Red Earth field, north Alberta basin, Canada

    Energy Technology Data Exchange (ETDEWEB)

    Sabry, H.

    1989-03-01

    A detailed sedimentological investigation of over 4000 ft of core and 500 well logs of the Middle Devonian granite wash and Keg River clastics in the Red Earth field, North Alberta basin, Canada, has led to the recognition of a granite wash subaerial fan-delta system that is laterally continuous with a Keg River subaqueous delta component along an eastern shoreline of the ancestral Peace River arch. The subaerial fan delta includes alluvial fan facies, sheet wash and mud flows, and playa lakes. The subaqueous delta component includes lower shoreface, upper shoreface, beach-foreshore, eolian sand dunes, lagoon, washover sands, tidal channels and flats, and supratidal carbonates and anhydrites. Within this system, six mappable units are defined. A conceptual depositional model for the sequence depicts four main events. (1) Erosion of Peach River arch uplifted fault blocks, which produced coarse-grained fan-delta sediments in an adjacent fault-bounded margin. Subsequent fluvial reworking resulted in the deposition of thick, lenticular, wedge-shaped alluvial fans of granite wash. (2) Progradation of alluvial fans seaward into the Keg River Sea. (3) Transgression by Middle Devonian seas from the east, which reworked alluvial fans and led to deposition of discontinuous linear sand bodies represented by the Keg River regressive shoreline sediments. (4) Restriction of the sea by the Presqu'ile barrier reef to the north, which deposited evaporites of the Muskeg Formation over the whole sequence. Modern analog to this fan-delta system is the coastal fans of the Gulf of Aqaba, Red Sea. Red Earth field contains over 27 million bbl of recoverable oil, related to a combination structural-stratigraphic trap.

  15. Erosion resistance and adhesion of composite metal/ceramic coatings produced by plasma spraying

    International Nuclear Information System (INIS)

    Ramm, D.A.J.; Hutchings, I.M.; Clyne, T.W.

    1993-01-01

    Ceramic coatings can exhibit greater erosion resistance than most metallic coatings. Such coatings are conveniently produced by thermal spraying. Unfortunately, thermally sprayed ceramic coatings often exhibit poor adhesion, partly as a consequence of the development of residual stresses during spraying and subsequent cooling. Composite coatings have been studied using aluminium/alumina deposits on steel substrates. The incorporation of ceramics within a ductile matrix has potential for sharply reducing the erosive wear at high erodent impact angles, whilst retaining the good erosion resistance of ceramics at low angles. It is shown that the proportion of metal and ceramic at the free surface can be specified so as to optimise the erosion resistance. Experiments have also been carried out on the resistance of the coatings to debonding during four-point bending of the coated substrate. Progress is being made towards the tailoring of composition profiles in graded coatings so as to optimise the combination of erosion resistance and adhesion. (orig.)

  16. A model for landscape development in terms of shoreline displacement, sediment dynamics, lake formation, and lake choke-up processes

    Energy Technology Data Exchange (ETDEWEB)

    Brydsten, Lars [Umeaa University, Dept. of Ecology and Environmental Science (Sweden)

    2006-12-15

    This project expands on the study 'A mathematical model for lake ontogeny in terms of filling with sediments and macrophyte vegetation' published in SKB TR-04-09. As the title suggests, this older model focuses on lakes (existing and future lakes). This newer study extends the model to examine progress of terrestrial objects such as mires or arable land. Furthermore, this newer model could simulate progress of the areas close to the objects. These areas are divided according to their watershed boundaries. If two or more objects are situated along the same brook, the lower situated area is defined as its catchments minus the catchments of the closest higher situated object. The model encourages the study of an object situated in the sea from the time of deglaciation (c. 10,000 BP) to the time for the object due to positive shore displacement is situated on land or that a lake object has progressed to a wetland, however not longer than 18,000 AP. The model focuses on the object and its location in 100-year steps. The model is written in VisualBasic and is divided into two modules, a marine module and a lake module. The marine module deals with shoreline displacement, erosion and accumulation of postglacial fine-grained sediments and erosion of glacial clay. Inputs to the marine module are a digital elevation model (DEM), a digital map showing the extension of the objects and a marine quaternary map. The two maps are in raster formats with exactly the same formats (extension and cell sizes) as the DEM. For each time step the water depths at each pixel are calculated using a shore displacement equation. Next, the water depth changes due to sediment dynamics are calculated using the following rules; accumulation of fine-grained sediments are allowed if the pixel is situated within a future lake object; erosion of fine-grained sediment is allowed if the pixel is not within a future lake object and the marine quaternary map shows occurrence of postglacial

  17. A model for landscape development in terms of shoreline displacement, sediment dynamics, lake formation, and lake choke-up processes

    International Nuclear Information System (INIS)

    Brydsten, Lars

    2006-12-01

    This project expands on the study 'A mathematical model for lake ontogeny in terms of filling with sediments and macrophyte vegetation' published in SKB TR-04-09. As the title suggests, this older model focuses on lakes (existing and future lakes). This newer study extends the model to examine progress of terrestrial objects such as mires or arable land. Furthermore, this newer model could simulate progress of the areas close to the objects. These areas are divided according to their watershed boundaries. If two or more objects are situated along the same brook, the lower situated area is defined as its catchments minus the catchments of the closest higher situated object. The model encourages the study of an object situated in the sea from the time of deglaciation (c. 10,000 BP) to the time for the object due to positive shore displacement is situated on land or that a lake object has progressed to a wetland, however not longer than 18,000 AP. The model focuses on the object and its location in 100-year steps. The model is written in VisualBasic and is divided into two modules, a marine module and a lake module. The marine module deals with shoreline displacement, erosion and accumulation of postglacial fine-grained sediments and erosion of glacial clay. Inputs to the marine module are a digital elevation model (DEM), a digital map showing the extension of the objects and a marine quaternary map. The two maps are in raster formats with exactly the same formats (extension and cell sizes) as the DEM. For each time step the water depths at each pixel are calculated using a shore displacement equation. Next, the water depth changes due to sediment dynamics are calculated using the following rules; accumulation of fine-grained sediments are allowed if the pixel is situated within a future lake object; erosion of fine-grained sediment is allowed if the pixel is not within a future lake object and the marine quaternary map shows occurrence of postglacial sediments and

  18. Investigation of the Hosgri Fault, offshore Southern California, Point Sal to Point Conception

    Science.gov (United States)

    Payne, C.M.; Swanson, O.E.; Schell, B.A.

    1979-01-01

    A high-resolution seismic reflection survey of the inner continental shelf between Point Sal and Point Conception has revealed faults that displace post-Wisconsin strata (less than 17,000-20,000 years). These faults are the Hosgri fault, the Offshore Lompoc fault, and smaller unnamed faults. Faults trending offshore from the adjacent shoreline such as the Pezzoni, Lions Head, Honda, and Pacifico faults, do not show post-Wisconsin activity. The Hosgri fault trends directly toward the coastline between Purisima Point and Point Arguello where it appears to merge with folds and smaller faults in the western Transverse Ranges. This trend of offshore structures toward the Point Arguello-Point Conception area is consistent with a hypothesis that the regional structural fabric of the southern California Coast Ranges and its adjacent offshore area merge with the Transverse Ranges.

  19. Preventing erosion at pipeline crossings of watercourses

    International Nuclear Information System (INIS)

    Sawatsky, L.; Arnold, G.

    1997-01-01

    Watercourses are naturally vulnerable to erosion but the risk is particularly acute after sub-soil and armour materials have been disturbed by trenching and backfilling during construction. Various types of erosion (river scour, river bed, river channel bed and river bank ) and the progressive removal of pipeline cover resulting from erosion were discussed. Methods of estimating the risk of progressive erosion, river avulsions and beaver dam scour, and methods of mitigating erosion at pipeline crossings such as deep burial, proper siting, conventional armouring, and a combination of bank toe protection, and upper bank vegetation cover, were described

  20. Using GPS-surveyed intertidal zones to determine the validity of shorelines automatically mapped by Landsat water indices

    Science.gov (United States)

    Kelly, Joshua T.; Gontz, Allen M.

    2018-03-01

    Satellite remote sensing has been used extensively in a variety of shoreline studies and validated using aerial photography. This ground truth method only represents an instantaneous depiction of the shoreline at the time of acquisition and does not take into account the spatial and temporal variability of the dynamic shoreline boundary. Landsat 8‧s Operational Land Imager sensor's capability to accurately delineate a shoreline is assessed by comparing all known Landsat water index-derived shorelines with two GPS-surveyed intertidal zones that coincide with the satellite flyover date, one of which had near-neap tide conditions. Seven indices developed for automatically classifying water pixels were evaluated for their ability to delineate shorelines. The shoreline is described here as the area above and below maximum low and high tide, otherwise known as the intertidal zone. The high-water line, or wet/dry sediment line, was chosen as the shoreline indicator to be mapped using a handheld GPS. The proportion of the Landsat-derived shorelines that fell within this zone and their alongshore profile lengths were calculated. The most frequently used water index and the predecessor to Modified Normalized Difference Water Index (MNDWI), Normalized Difference Water Index (NDWI), was found to be the least accurate by a significant margin. Other indices required calibration of their threshold value to achieve accurate results, thus diminishing their replicability success for other regions. MNDWI was determined to be the best index for automated shoreline mapping, based on its superior accuracy and repeatable, stable threshold value.

  1. Shoreline type and subsurface oil persistence in the Exon Valdez spill zone of Prince William Sound, Alaska

    Energy Technology Data Exchange (ETDEWEB)

    Page, D.S. [Bowdoin College, Brunswick, ME (United States). Dept. of Chemistry; Boehm, P.D. [Exponent Inc., Maynard, MA (United States); Neff, J.M. [Neff and Associates, Duxbury, MA (United States)

    2008-07-01

    The grounding of the Exxon Valdez in Prince William Sound (PWS), Alaska in the spring of 1989 resulted in the release of 258,000 barrels of Alaska North Slope crude oil into the marine environment. Nearly 800 km of shoreline were oiled to some degree. There was an unprecedented oil spill cleanup effort following the spill. The shoreline surveys of the spill zone were synthesized in this paper in an effort to demonstrate the relationship between shoreline type and persistence of subsurface oil (SSO) residues. Shoreline surveys of surface and SSO indicate rapid initial oil loss with a decline from about 800 linear km of PWS shoreline in 1989 to about 10 km of oiled shoreline in 1992. The period of rapid loss was attributed to natural physical process, biodegradation and cleanup activities that removed accessible spill remnants from shorelines. This was followed by a slower natural average loss rate for less accessible surface and SSO deposits of about 22 per cent per year for the period 1992-2001. This paper emphasized that shoreline type plays a key role in determining SSO persistence. The geology of PWS is complex. Many of the shorelines where SSO persists have armouring layers composed of hard, dense clasts, such as the quartzite boulders and cobblestones that can protect SSO deposits. Eighteen years after the spill, persistent SSO deposits in PWS shorelines remain protected from tidal water-washing and biodegradation by a surface boulder/cobble armour and low sediment porosity. The SSO deposits are in a physical/chemical form and location where they do not pose a health risk to intertidal biological communities and animals. The surveys continue to substantiate that remaining SSO deposits in PWS continue to degrade and go away slowly. 37 refs., 5 tabs., 7 figs.

  2. Measurement of soil water erosion in Africa: the potential support provided by nuclear techniques

    Science.gov (United States)

    Mabit, Lionel

    2010-05-01

    medium-term rates of soil redistribution integrating land use and climatic variability. FRN can be used to obtain average soil redistribution figures for time scales ranging from single events to many years of erosion processes, while direct erosion measurements are related to single rainfall events or rather short periods of time (e.g. erosion plots). FRN methodologies integrate all processes involving soil particle movements and allow quantification of soil loss and deposition associated with sheet erosion, which is difficult to assess using other conventional approaches. Sampling of individual points allows spatially distributed information on rates and patterns of soil redistribution. Also, one of the main advantages of the FRN is that time-consuming, costly maintenance, long-term monitoring programme and installations required by non isotopic and conventional methods can be avoided. Soil sampling can be completed in a short time and the site disturbance during sampling is minimal and does not interfere with seeding and cultivation operations. Since radionuclide-based measurements also provide information on the spatial distribution of erosion/sedimentation rates, they can be used to validate the results of distributed soil erosion models. The main purpose of this contribution is to present a synthetic overview of the usefulness in using nuclear techniques in Africa to investigate medium and short term soil erosion and sedimentation processes. Also, the advantages and limitations in using the FRN (137-Cs, 210-Pb and 7-Be) as soil redistribution tracer will be compared to other conventional water erosion methods. Keywords: Water erosion, conventional erosion assessment and measurement, nuclear techniques.

  3. Splash erosion. A bibliometric Review

    Science.gov (United States)

    Fernández Raga, M. B.

    2012-04-01

    Ellison (1944) developed the splash board as a system for measuring splash erosion that was both cheap and reliable. Bollinne (1975), Morgan (1978, 1981). Mutchler (1967) described another different type of splash detectors according to whether they were passive or could register data. In the study mentioned above these authors included bottles, funnels, glasses, photography, markers. After that several devices has been made up like the splash sampler (Leguedois et al., 2005), soil tray (Van Dijk et al., 2002), splash funnel (Terry, 1989) and several rain cups (Fernandez-Raga et al., 2010; Molina and Llinares, 1996; Torri et al., 1987). Splash erosion research has materialized in the form of a number of papers published in international journals. The database of bibliographic references employed has been one of the most prestigious ones: theWeb of Science (ISI). The search was carried out on January 27th 2012. Among the 3x10^8 scholarly documents included in the Science Citation Index Expanded (SCI-EXPANDED) 1899 to present , the searching engine located 439 containing the word "splash erosion*", where the asterisk acts as a wildcard for any letter or group of letters. Of these, 383 were classified as articles, 87 as proceeding papers, 5 as editorial material, 2 as notes and 1 as correction. These documents have been published in 163 different journals, although four are particularly recurrent: Earth surface processes and Landforms, Catena, Soil Science Society of America Journal and Hydrological processes, with 41, 35, 35 and 26 published documents respectively. A geographic analysis of these articles has been carried out in an attempt to determine in what parts of the world research projects were making use of splash erosion. The results are that anglo-saxon countries, as USA, England and Australia dominate, particularly USA, with 130 articles. China and Japan are large communities of researches too, and some Central European countries as Belgium, France Germany

  4. Soil Erosion Threatens Food Production

    Directory of Open Access Journals (Sweden)

    Michael Burgess

    2013-08-01

    Full Text Available Since humans worldwide obtain more than 99.7% of their food (calories from the land and less than 0.3% from the oceans and aquatic ecosystems, preserving cropland and maintaining soil fertility should be of the highest importance to human welfare. Soil erosion is one of the most serious threats facing world food production. Each year about 10 million ha of cropland are lost due to soil erosion, thus reducing the cropland available for world food production. The loss of cropland is a serious problem because the World Health Organization and the Food and Agricultural Organization report that two-thirds of the world population is malnourished. Overall, soil is being lost from agricultural areas 10 to 40 times faster than the rate of soil formation imperiling humanity’s food security.

  5. On inhibition of dental erosion.

    Science.gov (United States)

    Rölla, Gunnar; Jonski, Grazyna; Saxegaard, Erik

    2013-11-01

    To examine the erosion-inhibiting effect of different concentrations of hydrofluoric acid. Thirty-six human molars were individually treated with 10 ml of 0.1 M citric acid for 30 min (Etch 1), acid was collected and stored until analysis. The teeth were randomly divided into six groups and then individually treated with 10 ml of one of six dilutions (from 0.1-1%) of hydrofluoric acid. The teeth were then again treated with citric acid (Etch 2). The individual acid samples from Etch 1 and 2 were analyzed for calcium by flame atomic absorption spectroscopy and difference in calcium loss was calculated. The highest erosion inhibiting effect was obtained in groups with the highest concentrations of hydrofluoric acid, where the pH was lowest, below pKa of 3.17, thus the hydrofluoric acids being mainly in an undissociated state. Diluted hydrofluoric acid is present in aqueous solution of SnF2 and TiF4 (which are known to inhibit dental erosion): SnF2 + 3H2O = Sn(OH)2 + 2HF + H2O and TiF4 + 5H2O = Ti(OH)4 + 4HF + H2O. It is also known that pure, diluted hydrofluoric acid can inhibit dental erosion. Teeth treated with hydrofluoric acid are covered by a layer of CaF2-like mineral. This mineral is acid resistant at pH acid resistant mineral, initiated by tooth enamel treatment with hydrofluoric acid. Hydrofluoric acid is different in having fluoride as a conjugated base, which provides this acid with unique properties.

  6. Sports drinks and dental erosion.

    Science.gov (United States)

    Noble, Warden H; Donovan, Terence E; Geissberger, Marc

    2011-04-01

    Sports drinks were originally developed to improve hydration and performance in athletes taking part in intense or endurance sporting events. These drinks contain relatively high amounts of carbohydrates (sugars), salt, and citric acid. These ingredients create the potential for dental ramifications and overall public health consequences such as obesity and diabetes. High intake of sports drinks during exercise, coupled with xerostomia from dehydration, may lead to the possibility of erosive damage to teeth.

  7. Erosive forms in rivers systems

    International Nuclear Information System (INIS)

    Una Alvarez, E. de; Vidal Romani, J. R.; Rodriguez Martinez-Conde, R.

    2009-01-01

    The purpose of this work is to analyze the geomorphological meaning of the concepts of stability/change and to study its influence on a fluvial erosion system. Different cases of fluvial potholes in Galicia (NW of the Iberian Peninsula) are considered. The work conclusions refer to the nature of the process and its morphological evolution in order to advance towards later contributions with respect of this type of systems. (Author) 14 refs.

  8. Erosion behavior of EEDS cermet coatings

    International Nuclear Information System (INIS)

    Jin Guo; Xu Binshi; Wang Haidou; Yin Liang; Li Qingfen; Wei Shicheng; Cui Xiufang

    2008-01-01

    This paper investigates the erosion performance of electro-thermal explosion directional spraying (EEDS) cermet WC/Co coatings using an air solid particle erosion rig. The influences of the different parameters such as impact angle, impingement velocity, environment temperature, particle diameter, on the erosion property of the coatings were studied. The eroded surfaces were examined by scanning electron microscopy (SEM) equipped with energy dispersive spectrometry (EDS) and the erosion mechanisms were discussed. The structure and bond characters of the coatings were also determined by transmission electron microscopy (TEM), X-ray diffraction (XRD) and SEM. The results indicate that the EEDS WC/Co coatings are characterized by fine grain structure, good metallurgical bond and brittle erosion character. The erosion rates of the coatings decrease with temperature increasing and increase with impact angle and impingement velocity increasing. At elevated temperature, the oxidation happens on the coatings surface, which affects the erosion behavior

  9. Review of erosion dynamics along the major N-S climatic gradient in Chile and perspectives

    Science.gov (United States)

    Carretier, S.; Tolorza, V.; Regard, V.; Aguilar, G.; Bermúdez, M. A.; Martinod, J.; Guyot, J.-L.; Hérail, G.; Riquelme, R.

    2018-01-01

    Chile is an elongated country, running in a north-south direction for more than 30° along a subduction zone. Its climate is progressively wetter and colder from north to south. This particular geography has been used positively by a growing number of studies to better understand the relationships between erosion processes and climate, land use, slope, tectonics, volcanism, etc. Here we review the erosion rates, factors, and dynamics over millennial to daily periods reported in the literature. In addition, 21 new catchment mean erosion rates (suspended sediment and 10Be) are provided, and previous suspended sediment-derived erosion rates are updated. A total of 485 local and catchment mean erosion rates are reported. Erosion rates vary between some of the smallest values on earth (10-5 mm/a) to moderate values ≤0.5 mm/a compared to other active ranges. This review highlights strong limitations concerning the quantification of local erosion factors because of uncertainties in sampling point location, slope and rainfall data. For the mean erosion rates E for the millennial and decennial catchments, a model of the form E ∝ S/ [1 - (S/0.6)2] Rα with α = [0.3,0.8] accounts for 40 to 70% of the erosion variance, confirming a primary role of slope S compared to precipitation rate R over this time scale. Over the long-term, this review points to the long (5 to >10 Ma) response time of rivers to surface uplift in north-central arid Chile. Over millennia, data provide evidence for the progressive contribution of extreme erosion events to millennial averages for drier climates, as well as the link between glacier erosion and glacier sliding velocity. In this period of time, a discrepancy exists between the long-term offshore sedimentological record and continental decennial or millennial erosion data, for which no single explanation appears. Still, little information is available concerning the magnitude of variation of millennial erosion rates. Over centuries, data

  10. Surface Modelling of Nanostructured Copper Subjected to Erosion-Corrosion

    Directory of Open Access Journals (Sweden)

    Osama M. Irfan

    2017-04-01

    Full Text Available The last decade has witnessed considerable advancements in nanostructured material synthesis and property characterization. However, there still exists some deficiency in the mechanical and surface property characterization of these materials. In this paper, the erosion corrosion (E-C behavior of nanostructured copper was studied. The nanostructured copper was produced through severe plastic deformation (SPD by applying four passes of equal channel angular pressing (ECAP. The combined effects of the testing time, impact velocity, and concentration of erosive solid particles (i.e., sand concentration on the E-C behavior of nanostructured copper were then examined. Based on a defined domain for the testing time, impact velocity, and sand concentration, E-C tests were performed for numerous combinations of test points via the slurry pot method. The test points were selected using the face-centered center composite design of experiments to enable visualization of the test results through surface plots. The extent of E-C on the test specimens was determined by measuring the mass loss. Polynomial regression and Kriging were used to fit surfaces to the experimental data, which were subsequently used to generate surface plots. The results showed that the E-C of nanostructured copper is best described by a quadratic function of testing time, velocity, and erosive solid particle concentration. The results also revealed that E-C increases with an increasing testing time, impact velocity, and erosive solid particle concentration. In addition, it was observed that the effect of the erosive solid particles on E-C is further intensified by an increased impact velocity.

  11. Soil Erosion Estimation Using Remote Sensing Techniques in Wadi Yalamlam Basin, Saudi Arabia

    Directory of Open Access Journals (Sweden)

    Jarbou A. Bahrawi

    2016-01-01

    Full Text Available Soil erosion is one of the major environmental problems in terms of soil degradation in Saudi Arabia. Soil erosion leads to significant on- and off-site impacts such as significant decrease in the productive capacity of the land and sedimentation. The key aspects influencing the quantity of soil erosion mainly rely on the vegetation cover, topography, soil type, and climate. This research studies the quantification of soil erosion under different levels of data availability in Wadi Yalamlam. Remote Sensing (RS and Geographic Information Systems (GIS techniques have been implemented for the assessment of the data, applying the Revised Universal Soil Loss Equation (RUSLE for the calculation of the risk of erosion. Thirty-four soil samples were randomly selected for the calculation of the erodibility factor, based on calculating the K-factor values derived from soil property surfaces after interpolating soil sampling points. Soil erosion risk map was reclassified into five erosion risk classes and 19.3% of the Wadi Yalamlam is under very severe risk (37,740 ha. GIS and RS proved to be powerful instruments for mapping soil erosion risk, providing sufficient tools for the analytical part of this research. The mapping results certified the role of RUSLE as a decision support tool.

  12. The influx of marine debris from the Great Japan Tsunami of 2011 to North American shorelines.

    Science.gov (United States)

    Murray, Cathryn Clarke; Maximenko, Nikolai; Lippiatt, Sherry

    2018-01-10

    Marine debris is one of the leading threats to the ocean and the Great East Japan Earthquake and tsunami on March 11, 2011 washed away an estimated 5million tons of debris in a single, tragic event. Here we used shoreline surveys, disaster debris reports and ocean drift models to investigate the temporal and spatial trends in the arrival of tsunami marine debris. The increase in debris influx to surveyed North American and Hawaiian shorelines was substantial and significant, representing a 10 time increase over the baseline in northern Washington State where a long term dataset was available. The tsunami event brought different types of debris along the coast, with high-windage items dominant in Alaska and British Columbia and large, medium-windage items in Washington State and Oregon. Recorded cumulative debris landings to North America were close to 100,000 items in the four year study period. The temporal peaks in measured shoreline debris and debris reports match the ocean drift model solutions. Mitigation and monitoring activities, such as shoreline surveys, provide crucial data and monitoring for potential impacts should be continued in the future. Crown Copyright © 2018. Published by Elsevier Ltd. All rights reserved.

  13. 18 CFR 1304.208 - Shoreline stabilization on TVA-owned residential access shoreland.

    Science.gov (United States)

    2010-04-01

    ... Resources TENNESSEE VALLEY AUTHORITY APPROVAL OF CONSTRUCTION IN THE TENNESSEE RIVER SYSTEM AND REGULATION OF STRUCTURES AND OTHER ALTERATIONS TVA-Owned Residential Access Shoreland § 1304.208 Shoreline... retaining wall shall not be located more than an average of two horizontal feet lakeward of the existing...

  14. Shoreline oiling conditions in Prince William Sound following the Exxon Valdez oil spill

    International Nuclear Information System (INIS)

    Neff, J.M.; Owens, E.H.; Stoker, S.W.; McCormick, D.M.

    1995-01-01

    Following the Exxon Valdez oil spill of March 24, 1989, in Prince William Sound, Alaska, Exxon conducted comprehensive, systematic shoreline surveys in cooperation with federal and state authorities to obtain information on the distribution and magnitude of shoreline oiling and to identify natural and cultural resources requiring special protection. Similar joint surveys were performed during the springs of 1990, 1991, and 1992 on all Prince william Sound and Gulf of Alaska shorelines that were suspected of having remnants of weathered oil and that would benefit from further cleanup. In the springs of 1990, 1991, and 1992, isolated pockets of subsurface oil were found, chiefly in small scattered zones in coarse cobble/boulder sediments in the upper intertidal or supratidal zones. In 1991, about one-third of the subdivisions in Prince William Sound with surface oil also contained some subsurface oil. The areal extent of this subsurface oil declined by nearly 70% between 1991 and 1992, from about 37,000 m 2 to about 12,000 m 2 . Moreover, where subsurface oil remained in 1992, it was present in lesser amounts. Rates of oil removal were greatest on coastal sections treated early in the spring and summer of 1989. Where shoreline treatment was delayed, the subsequent rate of removal of oil from the shore by natural processes was slower. 27 refs., 10 figs., 3 tabs

  15. Growth and decline of shoreline industry in Sydney estuary (Australia) and influence on adjacent estuarine sediments.

    Science.gov (United States)

    Birch, G F; Lean, J; Gunns, T

    2015-06-01

    Sydney estuary (Australia), like many urbanised waterways, is degraded due to an extended history of anthropogenic activity. Two major sources of contamination to this estuary are discharge by former shoreline industries and historic and contemporary catchment stormwater. The objectives of the present study were to document changes in shoreline land use from European settlement to the present day and determine the influence of this trend on the metal content of adjacent estuarine sediments. Temporal analysis of land use for seven time horizons between 1788 and 2010 showed rapid expansion of industry along much of the Sydney estuary foreshore soon after European settlement due to the benefits of easy and inexpensive access and readily available water for cooling and power. Shoreline industry attained maximum development in 1978 (32-km length) and declined rapidly to the present-day (9-km length) through redevelopment of industrial sites into medium- to high-density, high-value residential housing. Cores taken adjacent to 11 long-term industrial sites showed that past industrial practices contributed significantly to contamination of estuarine sediment. Subsurface metal concentrations were up to 35 times that of present-day surface sediment and over 100 times greater than natural background concentrations. Sedimentation rates for areas adjacent to shoreline industry were between 0.6 and 2.5 cm/year, and relaxation times were estimated at 50 to 100 years. Natural relaxation and non-disturbance of sediments may be the best management practice in most locations.

  16. Palaeoenvironment and shoreline displacement on Suursaari Island, the Gulf of Finland

    Directory of Open Access Journals (Sweden)

    Atko Heinsalu

    2000-01-01

    Full Text Available The island of Suursaari in the middle of the Gulf of Finland is exceptionally high (175 m a.s.l.. Sediment profiles from one mire and three lakes were investigated using diatom and pollen analysis, radiocarbon dating and levelling of the elevations of ancient shorelines. The pollen stratigraphy of the Lounatkorkiasuo Mire sediment suggests a sedimentary record dating from the late Allerød.The development of late-glacial vegetation went through the same phases as in southern Finland, however these are probably somewhat earlier on the island of Suursaari. There are differences in the Holocene vegetation history of the higher and lower areas of the island. Lake Ruokalahenjärvi was isolated around 10 000 BP during the initial phase of the Yoldia Sea and the diatom assemblage indicates that at that time brackish-water flow had not penetrated into the Gulfof Finland. Diatoms from the isolation sediments of Lake Liivalahenjärvi and Lake Veteljärvi indicate a freshwater environment for the Yoldia Sea final phase at 9500–9600 BP. Levelling of coastal formations on Suursaari Island reveals that the Late Weichselian and early Holocene ancient shorelines are 5–15 m higher than expected from the isobase data for similar land uplift areas on the mainland.The anomalous shoreline levels on Suursaari Island may be explained byirregular land uplift. By the time of the Litorina Sea differences in shoreline altitudes had disappeared.

  17. Shoreline resilience to individual storms and storm clusters on a meso-macrotidal barred beach

    NARCIS (Netherlands)

    Angnuureng, Donatus Bapentire; Almar, Rafael; Senechal, Nadia; Castelle, Bruno; Addo, Kwasi Appeaning; Marieu, Vincent; Ranasinghe, Roshanka

    2017-01-01

    This study investigates the impact of individual storms and storm clusters on shoreline recovery for the meso-to macrotidal, barred Biscarrosse beach in SW France, using 6 years of daily video observations. While the study area experienced 60 storms during the 6-year study period, only 36 storms

  18. Hurricane impact and recovery shoreline change analysis of the Chandeleur Islands, Louisiana, USA: 1855 to 2005

    Science.gov (United States)

    Fearnley, Sarah Mary; Miner, Michael D.; Kulp, Mark; Bohling, Carl; Penland, Shea

    2009-12-01

    Results from historical (1855-2005) shoreline change analysis conducted along the Chandeleur Islands, Louisiana demonstrate that tropical cyclone frequency dominates the long-term evolution of this barrier island chain. Island area decreased at a rate of -0.16 km2/year for the relatively quiescent time period up until 1996, when an increase in tropical cyclone frequency accelerated this island area reduction to a rate of -1.01 km2/year. More frequent hurricanes also affected shoreline retreat rates, which increased from -11.4 m/year between 1922 and 1996 to -41.9 m/year between 1982 and 2005. The erosional impact caused by the passage of Hurricane Katrina in 2005 was unprecedented. Between 2004 and 2005, the shoreline of the northern islands retreated -201.5 m/year, compared with an average retreat rate of -38.4 m/year between 1922 and 2004. A linear regression analysis of shoreline change predicts that, as early as 2013, the backbarrier marsh that serves to stabilize the barrier island chain will be completely destroyed if storm frequency observed during the past decade persists. If storm frequency decreases to pre-1996 recurrence intervals, the backbarrier marsh is predicted to remain until 2037. Southern portions of the barrier island chain where backbarrier marsh is now absent behave as ephemeral islands that are destroyed after storm impacts and reemerge during extended periods of calm weather, a coastal behavior that will eventually characterize the entire island chain.

  19. Shoreline changes along Tamil Nadu coast: A study based on archaeological and coastal dynamics perspective

    Digital Repository Service at National Institute of Oceanography (India)

    Sundaresh; ManiMurali, R.; JayaKumar S.; Gaur, A.S.

    s of coast line over a period of 2000 years Shoreline changes have been calculated to about 497 m and 380 m at Poompuhar and Tranquebar during the last 75 years Apart from prevailing waves and currents, past sea level change estimates, tectonic movement...

  20. SCAT 2000 : a new generation of forms for the description and documentation of oiled shorelines

    International Nuclear Information System (INIS)

    Owens, E.H.; Sergy, G.A.; Martin, R.D.; Tarpley, J.A.; Michel, J.; Yender, R.

    2000-01-01

    Over ten years ago, the Exxon Valdez and the Nestucca both generated major oil spills which highlighted the need to develop appropriate response procedures and documentation protocols. The Shoreline Cleanup Assessment Team approach was born. In recent years, the forms were used to describe the conditions resulting from oil spills and shoreline oiling conditions and recommendations were made for improvements and modifications. The call was heard and the staff at Environment Canada worked closely with the staff at the National Oceanic and Atmospheric Administration (NOAA) to review the forms and provide a suitable upgrade for the third generation set of forms. The authors described the improvements which included: (1) a revised standard shoreline oiling form, (2) a revised short form, (3) a tar ball form, and (4) a revised marsh/wetlands oiling form. Environment Canada also introduced (5) a tidal flat form, and (6) a revised sketch map base. It also made provisions for the use of those forms for large freshwater lakes, arctic coasts, mangroves, coral reefs, rivers, and stream environments and for winter ice or snow conditions with a few minor adjustments suggested. Only a few minor differences remained, specifically in the standard shoreline types, between the systems used by NOAA and Environment Canada since both agencies cooperated for their development. 24 refs., 3 tabs., 2 figs

  1. Soil cover and wind erosion

    Energy Technology Data Exchange (ETDEWEB)

    Fryrear, D.W.

    Wind erosion on agricultural lands can be reduced if the soil surface is protected with crop residues. In evaluating the influence of residues on wind erosion, previous research has expressed residues of various crops as an equivalent of flat, small grain. This becomes difficult as the density of the residue changes with weathering, or as crops other than the major cultivated crops are grown. Soil losses due to wind erosion were determined by covering various percentages of the soil surface with simulated flat residues (wood dowels 3.1 to 25.4 mm in diameter). Covering 20% of the soil surface reduced soil losses 57%, and a 50% cover reduced soil losses 95%. The expression SLR = 1.81 e/sup x/ where x = /sup -0.072% SC/ describes the relationship between soil loss ratio (SLR) and percent soil cover (% SC) with a correlation coefficient of -0.94 (soil cover limits 8 to 80%). The cover can be any nonerodible material such as large clods, gravel, cotton gin trash, or any diameter stick between 3.1 and 25.4 mm. Percent soil cover is easily measured in the field or can be estimated with a minimum of training and experience.

  2. MR imaging of erosions in interphalangeal joint osteoarthritis: is all osteoarthritis erosive?

    International Nuclear Information System (INIS)

    Grainger, A.J.; Farrant, J.M.; O'Connor, P.J.; Tan, A.L.; Emery, P.; Tanner, S.; McGonagle, D.

    2007-01-01

    Erosive osteoarthritis is usually considered as an inflammatory subset of osteoarthritis (OA). However, an inflammatory component is now recognised in all subsets of OA, so this subgroup of erosive or inflammatory OA is more difficult to conceptualise. The aim of this study was to compare routine CR and MRI to investigate erosion numbers and morphology to determine whether hand OA in general is a more erosive disease than previously recognised. Fifteen patients with clinical (OA) of the small joints of the hand underwent MRI of one of the affected proximal interphalangeal (PIP) or distal interphalangeal (DIP) joints. Conventional radiographs (CR) of the hand were also obtained. The MR images were reviewed by two observers for the presence of central and marginal erosions. The site and morphology of any erosions was recorded. CR images of the same hand joint were scored independently for central and marginal erosions by the same observers. There was 100% agreement between the observers for scoring erosions on CR. Agreement for the MRI scores was also excellent (kappa = 0.84). MRI detected 37 erosions, of which only 9 were seen on CR. The increase in sensitivity using MRI was much greater for marginal erosions (1 detected on CR, 19 on MRI) than for central erosions (8 on CR, 18 on MRI). Using MRI 80% of joints examined showed 1 or more erosions compared with 40% using CR. If only marginal erosions were considered 80% of joints were still considered erosive by MRI criteria, but only 1 showed evidence of erosion on CR. Morphologically central erosions appeared to represent areas of subchondral collapse and pressure atrophy. In contrast, marginal erosions resembled those seen in inflammatory arthritides. Erosions, and particularly marginal erosions typical of those seen in inflammatory arthritis, are a more common feature of small joint OA than conventional radiographs have previously indicated. (orig.)

  3. In-Situ Measurement of Hall Thruster Erosion Using a Fiber Optic Regression Probe

    Science.gov (United States)

    Polzin, Kurt; Korman, Valentin

    2009-01-01

    One potential life-limiting mechanism in a Hall thruster is the erosion of the ceramic material comprising the discharge channel. This is especially true for missions that require long thrusting periods and can be problematic for lifetime qualification, especially when attempting to qualify a thruster by analysis rather than a test lasting the full duration of the mission. In addition to lifetime, several analytical and numerical models include electrode erosion as a mechanism contributing to enhanced transport properties. However, there is still a great deal of dispute over the importance of erosion to transport in Hall thrusters. The capability to perform an in-situ measurement of discharge channel erosion is useful in addressing both the lifetime and transport concerns. An in-situ measurement would allow for real-time data regarding the erosion rates at different operating points, providing a quick method for empirically anchoring any analysis geared towards lifetime qualification. Erosion rate data over a thruster s operating envelope would also be useful in the modeling of the detailed physics inside the discharge chamber. There are many different sensors and techniques that have been employed to quantify discharge channel erosion in Hall thrusters. Snapshots of the wear pattern can be obtained at regular shutdown intervals using laser profilometry. Many non-intrusive techniques of varying complexity and sensitivity have been employed to detect the time-varying presence of erosion products in the thruster plume. These include the use quartz crystal microbalances, emission spectroscopy, laser induced flourescence, and cavity ring-down spectroscopy. While these techniques can provide a very accurate picture of the level of eroded material in the thruster plume, it is more difficult to use them to determine the location from which the material was eroded. Furthermore, none of the methods cited provide a true in-situ measure of erosion at the channel surface while

  4. Comparison of erosion and erosion control works in Macedonia, Serbia and Bulgaria

    Directory of Open Access Journals (Sweden)

    Ivan Blinkov

    2013-12-01

    Natural conditions in the Balkan countries contribute to the appearance of various erosion forms and the intensity of the erosion processes. Over the history of these countries, people who settled this region used the available natural resources to fill their needs (tree cutting, incorrect plugging, overgrazing, which contributed to soil erosion. Organized erosion control works in the Balkans started in the beginning of the 20th century (1905 in Bulgaria. The highest intensity of erosion control works were carried out during the period 1945 – 1990. Various erosion control works were launched. Bulgaria had a large anti-erosion afforestation, almost 1 million ha. Bulgaria's ecological river restoration approach has been in use for almost 50 years. Serbia contributed significant erosion and torrent control works on hilly agricultural areas. Specific screen barrages and afforestation on extremely dry areas are characteristic in Macedonia. A common characteristic for all countries is a high decrease in erosion control works in the last 20 years.

  5. An assessment for the erosion rate of DEMO first wall

    Science.gov (United States)

    Tokar, M. Z.

    2018-01-01

    In a fusion reactor a significant fraction of plasma particles lost from the confined volume will reach the vessel wall. The recombination of these charged species, electrons and ions of hydrogen isotopes, is a source of neutral molecules and atoms, recycling back into the plasma. Here they participate, in particular, in charge-exchange (c-x) collisions with the plasma ions and, as a result, atoms of high energies with chaotically oriented velocities are generated. A significant fraction of these hot neutrals will hit the wall, leading, as well as the outflowing fuel and impurity ions, to its erosion, limiting the reactor operation time. The rate of the wall erosion in DEMO is assessed by applying a one-dimensional model which takes into account the transport of charged and neutral species across the flux surfaces in the main part of the scrape-off layer, beyond the X-point vicinity and divertor, and by considering the shift of the centers of flux surfaces, their elongation and triangularity. Atoms generated by c-x of recycling neutrals are modeled kinetically to define firmly their energy spectrum, being of particular importance for the erosion assessment. It is demonstrated the erosion rate of the DEMO wall armor of tungsten will have a pronounced ballooning character with a significant maximum of 0.3 mm per full power year at the low field side, decreasing with an increase in the anomalous perpendicular transport in the ‘far’ SOL or the plasma density at the separatrix.

  6. Tipping Point

    Medline Plus

    Full Text Available ... en español Blog About OnSafety CPSC Stands for Safety The Tipping Point Home > 60 Seconds of Safety (Videos) > The Tipping Point The Tipping Point by ... danger death electrical fall furniture head injury product safety television tipover tv Watch the video in Adobe ...

  7. Modeling Coastal Erosion, Passive Inundation, and Dynamic Wave Inundation under Higher Sea Level in Hawaii

    Science.gov (United States)

    Anderson, T. R.

    2015-12-01

    Hawaii State legislators recently formed the Interagency Committee on Climate Adaptation to investigate community vulnerability to sea level rise. We developed modeling to provide the committee with assessments of exposure to coastal erosion, wave inundation, and passive flooding based on the IPCC RCP 8.5 model of sea level rise over the 21st Century. We model the exposure to coastal erosion using a hybrid equilibrium profile model (Anderson et al., 2015) that combines historical rates of shoreline change with a Bruun-type model of beach profile translation. Results are mapped in a GIS showing the 80th percentile probability of potential erosion at years 2030, 2050, 2075, and 2100. Wave inundation is modeled using XBeach. We use a 3 m significant wave height to represent a seasonal high swell event. A separate simulation was run for each heightened sea level (corresponding to the years previously mentioned); which accounts for changes in wave dynamics due to the change in water level over the reef platform. We use a bare earth topo/bathy LiDAR DEM derived from data collected during the 2013 JBLTX survey of the Hawaiian Islands. XBeach modeling is done along one-dimensional profiles spaced 20 m apart. From this, we develop a gridded product of water depth and velocity for use in a vulnerability analysis. Passive inundation due to sea level rise, the so-called "bath tub" method, provide estimates of storm drain flooding and groundwater inundation. Our analysis of these three impacts of sea level rise, combined - coastal erosion, wave inundation, and passive flooding - are used with other available data in the FEMA Hazus software to estimate exposure and loss of upland assets.

  8. Mapping monthly rainfall erosivity in Europe

    DEFF Research Database (Denmark)

    Ballabio, C; Meusburger, K; Klik, A

    2017-01-01

    Rainfall erosivity as a dynamic factor of soil loss by water erosion is modelled intra-annually for the first time at European scale. The development of Rainfall Erosivity Database at European Scale (REDES) and its 2015 update with the extension to monthly component allowed to develop monthly and...... events. Consequently, spatio-temporal mapping of rainfall erosivity permits to identify the months and the areas with highest risk of soil loss where conservation measures should be applied in different seasons of the year....... and seasonal R-factor maps and assess rainfall erosivity both spatially and temporally. During winter months, significant rainfall erosivity is present only in part of the Mediterranean countries. A sudden increase of erosivity occurs in major part of European Union (except Mediterranean basin, western part...... to Eastern Europe. The maps also show a clear delineation of areas with different erosivity seasonal patterns, whose spatial outline was evidenced by cluster analysis. The monthly erosivity maps can be used to develop composite indicators that map both intra-annual variability and concentration of erosive...

  9. Estuarine shoreline changes in Jamaica Bay, New York City: implications for management of an urban national park.

    Science.gov (United States)

    Boger, Rebecca; Connolly, James; Christiano, Mark

    2012-01-01

    The Jamaica Bay portion of Gateway National Recreation Area, located next to highly urbanized New York City, faces many challenges to preserve and protect its natural, cultural, and recreational resources. To aid in the management of the park resources, detailed estuarine shoreline analyses of Jamaica Bay were undertaken using imagery taken in 1951, 1974, and 2006. A 15-class land use/land cover (LULC) classification scheme was created after doing an initial examination of the types of LULC in the 2006 orthoimagery and then applied in the analyses of the previous years. By quantifying how and where the shoreline has changed over the past 60 years, park managers can better assess the impact of management practices by comparing LULC of the shoreline within the park boundary to the LULC of the shoreline outside the park boundary before and after the park was created in 1972. Despite the heavy development of New York City and the trend for shoreline modification, the overall shoreline of Jamaica Bay has maintained large percentages of undeveloped vegetation and sandy beaches. Much of the LULC change has occurred in the creeks as a result of dredging and shape modification for residential and commercial uses. Park management has been effective in limiting the alteration of undeveloped shoreline although there have been significant changes in the relative percentages of sand and vegetated beaches between 1974 and 2006.

  10. Validating and improving interrill erosion equations.

    Science.gov (United States)

    Zhang, Feng-Bao; Wang, Zhan-Li; Yang, Ming-Yi

    2014-01-01

    Existing interrill erosion equations based on mini-plot experiments have largely ignored the effects of slope length and plot size on interrill erosion rate. This paper describes a series of simulated rainfall experiments which were conducted according to a randomized factorial design for five slope lengths (0.4, 0.8, 1.2, 1.6, and 2 m) at a width of 0.4 m, five slope gradients (17%, 27%, 36%, 47%, and 58%), and five rainfall intensities (48, 62.4, 102, 149, and 170 mm h(-1)) to perform a systematic validation of existing interrill erosion equations based on mini-plots. The results indicated that the existing interrill erosion equations do not adequately describe the relationships between interrill erosion rate and its influencing factors with increasing slope length and rainfall intensity. Univariate analysis of variance showed that runoff rate, rainfall intensity, slope gradient, and slope length had significant effects on interrill erosion rate and that their interactions were significant at p = 0.01. An improved interrill erosion equation was constructed by analyzing the relationships of sediment concentration with rainfall intensity, slope length, and slope gradient. In the improved interrill erosion equation, the runoff rate and slope factor are the same as in the interrill erosion equation in the Water Erosion Prediction Project (WEPP), with the weight of rainfall intensity adjusted by an exponent of 0.22 and a slope length term added with an exponent of -0.25. Using experimental data from WEPP cropland soil field interrill erodibility experiments, it has been shown that the improved interrill erosion equation describes the relationship between interrill erosion rate and runoff rate, rainfall intensity, slope gradient, and slope length reasonably well and better than existing interrill erosion equations.

  11. Validating and Improving Interrill Erosion Equations

    Science.gov (United States)

    Zhang, Feng-Bao; Wang, Zhan-Li; Yang, Ming-Yi

    2014-01-01

    Existing interrill erosion equations based on mini-plot experiments have largely ignored the effects of slope length and plot size on interrill erosion rate. This paper describes a series of simulated rainfall experiments which were conducted according to a randomized factorial design for five slope lengths (0.4, 0.8, 1.2, 1.6, and 2 m) at a width of 0.4 m, five slope gradients (17%, 27%, 36%, 47%, and 58%), and five rainfall intensities (48, 62.4, 102, 149, and 170 mm h−1) to perform a systematic validation of existing interrill erosion equations based on mini-plots. The results indicated that the existing interrill erosion equations do not adequately describe the relationships between interrill erosion rate and its influencing factors with increasing slope length and rainfall intensity. Univariate analysis of variance showed that runoff rate, rainfall intensity, slope gradient, and slope length had significant effects on interrill erosion rate and that their interactions were significant at p = 0.01. An improved interrill erosion equation was constructed by analyzing the relationships of sediment concentration with rainfall intensity, slope length, and slope gradient. In the improved interrill erosion equation, the runoff rate and slope factor are the same as in the interrill erosion equation in the Water Erosion Prediction Project (WEPP), with the weight of rainfall intensity adjusted by an exponent of 0.22 and a slope length term added with an exponent of −0.25. Using experimental data from WEPP cropland soil field interrill erodibility experiments, it has been shown that the improved interrill erosion equation describes the relationship between interrill erosion rate and runoff rate, rainfall intensity, slope gradient, and slope length reasonably well and better than existing interrill erosion equations. PMID:24516624

  12. Multifractal Model of Soil Water Erosion

    Science.gov (United States)

    Oleshko, Klaudia

    2017-04-01

    Breaking of solid surface symmetry during the interaction between the rainfall of high erosivity index and internally unstable volcanic soil/vegetation systems, results in roughness increasing as well as fertile horizon loosing. In these areas, the sustainability of management practices depends on the ability to select and implement the precise indicators of soil erodibility and vegetation capacity to protect the system against the extreme damaging precipitation events. Notwithstanding, the complex, non-linear and scaling nature of the phenomena involved in the interaction among the soil, vegetation and precipitation is still not taken into account by the numerous commonly used empirical, mathematical and computer simulation models: for instance, by the universal soil loss equation (USLE). The soil erodibility factor (K-factor) is still measuring by a set of empirical, dimensionless parameters and indexes, without taking into account the scaling (frequently multifractal) origin of a broad range of heterogeneous, anisotropic and dynamical phenomena involved in hydric erosion. Their mapping is not representative of this complex system spatial variability. In our research, we propose to use the toolbox of fractals and multifractals techniques in vista of its ability to measure the scale invariance and type/degree of soil, vegetation and precipitation symmetry breaking. The hydraulic units are chosen as the precise measure of soil/vegetation stability. These units are measured and modeled for soils with contrasting architecture, based on their porosity/permeability (Poroperm) as well as retention capacity relations. The simple Catalog of the most common Poroperm relations is proposed and the main power law relations among the elements of studied system are established and compared for some representative agricultural and natural Biogeosystems of Mexico. All resulted are related with the Mandelbrot' Baby Theorem in order to construct the universal Phase Diagram which

  13. LiDAR Mapping of Earthquake Uplifted Paleo-shorelines, Southern Wairarapa Coast, North Island, New Zealand

    Science.gov (United States)

    Valenciano, J.; Angenent, J.; Marshall, J. S.; Clark, K.; Litchfield, N. J.

    2017-12-01

    The Hikurangi subduction margin along the east coast of the North Island, New Zealand accommodates oblique convergence of the Pacific Plate westward beneath the Australian plate at 45 mm/yr. Pronounced forearc uplift occurs at the southern end of the margin along the Wairarapa coast, onshore of the subducting Hikurangi plateau. Along a narrow coastal lowland, a series of uplifted Holocene marine terraces and beach ridges preserve a geologic record of prehistoric coseismic uplift events. In January 2017, we participated in the Research Experience for Undergraduates (REU) program of the NSF SHIRE Project (Subduction at Hikurangi Integrated Research Experiment). We visited multiple coastal sites for reconnaissance fieldwork to select locations for future in-depth study. For the coastline between Flat Point and Te Kaukau Point, we used airborne LiDAR data provided by Land Information New Zealand (LINZ) to create ArcGIS digital terrain models for mapping and correlating uplifted paleo-shorelines. Terrace elevations derived from the LiDAR data were calibrated through the use of Real Time Kinematic (RTK) GPS surveying at one field site (Glenburn Station). Prior field mapping and radiocarbon dating results (Berryman et al., 2001; Litchfield and Clark, 2015) were used to guide our LiDAR mapping efforts. The resultant maps show between four and seven uplifted terraces and associated beach ridges along this coastal segment. At some sites, terrace mapping and lateral correlation are impeded by discontinuous exposures and the presence of landslide debris, alluvial fan deposits, and sand dunes. Tectonic uplift along the southern Hikurangi margin is generated by a complex interaction between deep megathrust slip and shallow upper-plate faulting. Each uplifted Holocene paleo-shoreline is interpreted to represent a single coseismic uplift event. Continued mapping, surveying, and age dating may help differentiate between very large margin-wide megathrust earthquakes (M8.0-9.0+) and

  14. Decadal shoreline assessment using remote sensing along the central Odisha coast, India

    Digital Repository Service at National Institute of Oceanography (India)

    ManiMurali, R.; Dhiman, R.; Choudhary, R.; Jayakumar, S.; Ilangovan, D.; Vethamony, P.

    al. 2010). Assessment of long term erosion and accretion rate of the coastal area is essential for the selection of different types of coastal structures. Erosion and accretion index is prepared for Kuwait coast (Neelamani and Uddin 2013... (TM) and 2002 (ETM) was used after image processing and coastline was detected by self organizing data analysis technique classifications, edge detection and overlay technique. DSAS was used to calculate erosion and accretion rate at different time...

  15. Use of synthetic aperture radar for recognition of Coastal Geomorphological Features, land-use assessment and shoreline changes in Bragança coast, Pará, Northern Brazil

    Directory of Open Access Journals (Sweden)

    Souza-Filho Pedro W. M.

    2003-01-01

    Full Text Available Synthetic Aperture Radar (SAR images are being used more extensively than ever before for geoscience applications in the moist tropics. In this investigation, a RADARSAT1-1 C-HH SAR image acquired in 1998 was used for coastal mapping and land-cover assessment in the Bragança area, in the northern Brazil. The airborne GEMS 1000 X-HH radar image acquired in 1972 during the RADAM Project was also used for evaluating coastal changes occurring over the last three decades. The research has confirmed the usefulness of RADARSAT-1 image for geomorphological mapping and land-cover assessment, particularly in macrotidal mangrove coasts. It was possible to map mangroves, salt marshes, chenier sand ridges, dunes, barrier-beach ridges, shallow water morphologies and different forms of land-use. Furthermore, a new method to estimate shoreline changes based on the superimposition of vectors extracted from both sources of SAR data has indicated that the shoreline has been subjected to severe coastal erosion responsible for retreat of 32 km² and accretion of 20 km², resulting in a mangrove land loss of almost 12 km². In an application perspective, orbital and airborne SAR data proved to be a fundamental source of information for both geomorphological mapping and monitoring coastal changes in moist tropical environments.

  16. Accurate 3D point cloud comparison and volumetric change analysis of Terrestrial Laser Scan data in a hard rock coastal cliff environment

    Science.gov (United States)

    Earlie, C. S.; Masselink, G.; Russell, P.; Shail, R.; Kingston, K.

    2013-12-01

    -situ measurements of the nearshore wave climate, using a pressure transducer, offshore wave climate from a directional wavebuoy, and rainfall records from nearby weather stations were collected. Combining beach elevation information from the georeferenced point clouds with a continuous time series of wave climate provides an indication of the variation in wave energy delivered to the cliff face. The rates of retreat were found to agree with the existing rates that are currently used in shoreline management. The additional geotechnical detail afforded by applying the M3C2 method to a hard rock environment provides not only a means of obtaining volumetric changes with confidence, but also a clear illustration of the locations of failure on the cliff face. Monthly cliff scans help to narrow down the timings of failure under energetic wave conditions or periods of heavy rainfall. Volumetric changes and sensitive regions to failure established using this method allows us to capture episodic changes to the cliff face at a high resolution (1 - 2 cm) that are otherwise missed using lower resolution techniques typically used for shoreline management, and to understand in greater detail the geotechnical behaviour of hard rock cliffs and determine rates of erosion with greater accuracy.

  17. Surface decontamination by cavitation erosion

    International Nuclear Information System (INIS)

    Verry, P.; Lecoffre, Y.

    1984-01-01

    The aim of the study is to show the interest of using erosion by cavitation to remove a thin layer of matter from an irradiated surface during nuclear power plant dismantling. Several cavitation devices are tested on different surfaces to erode: aluminum, stainless steel, plexiglas, paints... The process is efficient enough to measure mass loss on materials as hard as stainless steels for a pressure of only 60 bars. Qualification tests using a nozzle feed under a 300 to 600 bar pressure are envisaged

  18. DENTAL EROSION IN PRIMARY DENTITION- A REVIEW

    Directory of Open Access Journals (Sweden)

    Rafi Shaik

    2017-06-01

    Full Text Available BACKGROUND The pattern of oral diseases has been influenced by ever changing human lifestyle. Tooth wear especially dental erosion has drawn increasing attention as risk factor for tooth damage or loss in recent years. It is a common condition in primary dentition compared to permanent dentition due to thinner and less mineralised enamel. However, it is more worrying, when this condition is being found in an alarming proportion among children. The presence of dental erosion in children is likely to be associated with a number of general health and dietary factors, but it is also aggravated by the relatively more rapid progression of erosion in the deciduous teeth. An understanding of the aetiologies and risk factors for erosion is important for early recognition of dental erosion to prevent serious irreversible damage to the dentition. This paper discusses the erosion in children with regard to its epidemiology, prevalence, clinical features, measurement and prevention.

  19. Physics of soil erosion at the microscale

    Directory of Open Access Journals (Sweden)

    Philippe Pierre

    2017-01-01

    Full Text Available We focus here on the major and always topical issue of soil erosion by fluid flows, and more specifically on the determination of both a critical threshold for erosion occurrence and a kinetics that specifies the rate of eroded matter entrainment. A synthetic state-of-the-art is first proposed with a critical view on the most commonly used methods and erosion models. It is then discussed an alternative strategy, promoting the use of model materials that allow systematic parametric investigations with the purpose of first identifying more precisely the local mechanisms responsible for soil particle erosion and second ultimately quantifying both critical onsets and kinetics, possibly through existing or novel empirical erosion laws. Finally, we present and discuss several examples following this methodology, implemented either by means of experiments or numerical simulations, and coupling erosion tests in several particular hydrodynamical configurations with wisely selected mechanical tests.

  20. Varioliform erosions in the stomach and duodenum

    International Nuclear Information System (INIS)

    Lotz, W.; Schulz, D.; Munkel, G.

    1984-01-01

    One thousand five hundred and eighty-three patients who were x-rayed for dyspepsia showed varioliform erosions in 15.3%. Men had an incidence of 9.8%, almost twice as common as in women (5.5%). Mucosal polyps, usually of the hyperplastic type, occurred in 2.4%. 15% of patients with gastric ulcers and 16% of patients with duodenal ulcers had varioliform erosions. On the other hand, amongst patients with erosions, 11% had gastric ulcers and 8.3% duodenal ulcers. The definitions of erosion which have been given in the literature are partly contradictory, and are discussed. Varioliform erosions, also known as complete erosions, may be acute or chronic. They are the third most common cause of bleeding from the upper gastrointestinal tract. With modern radiological methods of examining the stomach, they are no longer a rare finding. (orig.) [de

  1. Correlation of Lake Agassiz Shoreline Deposits Through Reconstruction of Late-Glacial Paleotopography

    Science.gov (United States)

    Leverington, D.; Matile, G.

    2006-12-01

    During the most recent deglaciation, retreat of the southern margin of the Laurentide Ice Sheet (LIS) progressively exposed large expanses of North America. In the central portion of the continent, the wasting LIS acted to impede northward drainage, at times causing water to pool against the ice sheet to form proglacial lakes. The largest of these was Lake Agassiz, which is believed to have existed over a period of ~5000 calendar years. The history of Lake Agassiz was complex as a result of the combined effects of differential glacio-isostatic rebound and the shifting position of the confining northern ice margin. Much of the history of Lake Agassiz was recorded in the form of shoreline and off-shore deposits. The extents of various stages of Lake Agassiz have, in over a century of research, been determined from the distribution and geometry of beach deposits, which are only discontinuously preserved and have been vertically deformed by differential rebound. Many of these beach segments are located in southern Manitoba. In the present study, computer-based reconstructions of the paleobathymetry of Lake Agassiz were used to correlate shoreline deposits with particular lakes stages in an area of southeastern Manitoba between 95 and 98 degrees longitude, and 49 and 51 degrees latitude. The study was conducted using topographic data from the Shuttle Radar Topography Mission, as well as isobase curves produced in past work on the basis of the collective geometry of selected shoreline deposits located throughout much the Lake Agassiz basin. A series of 17 maps has been generated, each map depicting the location of the shoreline of Lake Agassiz at the time of a particular lake stage. The overlay of beach deposits on paleoshoreline maps has allowed for the correlation between beach deposits and past lake levels. Isobase data were originally derived from a proportion of the very shoreline deposits being investigated, and thus the correlations do not add to our understanding

  2. Are mangroves as tough as a seawall? Flow-vegetation interaction in a living shoreline restoration

    Science.gov (United States)

    Kibler, K. M.; Kitsikoudis, V.; Spiering, D. W.

    2017-12-01

    This study aims to assess the impact of an established living shoreline restoration on near-shore hydraulics, shoreline slope, and sediment texture and organic matter content. We collected data from three 100 m shoreline sites within an estuarine lagoon in Canaveral National Seashore: one restored; one that had been stabilized by a seawall; and one in a reference condition stabilized by mature mangrove vegetation. The living shoreline site was restored five years prior with a breakwater of oyster shell bags, emergent marsh grasses (Spartina alterniflora), and mangroves (Rhizophora mangle and Avicennia germinans). We sampled water depth and incoming velocity profiles of the full water column at 2 Hz using a 2 MHz Acoustic Doppler Current Profiler (ADCP, Nortek), stationed down-looking, approximately 10 m offshore. A 2 - 3 cm velocity profile above the bed was sampled on the shoreline at 100 Hz, using a Nortek Vectrino profiler. In restored and reference sites, the onshore probe was placed within vegetation. We surveyed vegetation upstream of the probe for species and diameter at water level. Windspeed and direction were collected 2 m above the water surface. Shorelines were surveyed in transects using GPS survey equipment. Five sediment cores were collected to 20 cm depth from both onshore and offshore of each site. Individual cores were processed for loss on ignition before being pooled by site for analysis of grain size distribution. While incoming velocity profiles were similar between sites, hydraulic conditions onshore within the vegetated sites deviated from the seawall site, which was devoid of vegetation. Offshore to onshore gradients in shear stress, mean velocity, and turbulent kinetic energy differed widely between sites, despite similar wind and tidal conditions. Sediment grain sizes were finer and contained more organic matter in the restored and reference sites than in the seawall site. Profiles of the restored and seawall sites were similar, though

  3. Reduction of surface erosion in fusion reactors

    International Nuclear Information System (INIS)

    Rossing, T.D.; Das, S.K.; Kaminsky, M.

    1976-01-01

    Some of the major processes leading to surface erosion in fusion reactors are reviewed briefly, including blistering by implanted gas, sputtering by ions, atoms, and neutrons, and vaporization by local heating. Surface erosion affects the structural integrity and limits the lifetime of reactor components exposed to plasma radiation. In addition, some of the processes leading to surface erosion also cause the release of plasma contaminants. Methods proposed to reduce surface erosion have included control of surface temperature, selection of materials with a favorable microstructure, chemical and mechanical treatment of surfaces, and employment of protective surface coatings, wall liners, and divertors. The advantages and disadvantages of some of these methods are discussed

  4. Erosive lichen planus: a therapeutic challenge.

    Science.gov (United States)

    Romero, Williams; Giesen, Laura; Navajas-Galimany, Lucas; Gonzalez, Sergio

    2016-01-01

    Erosive lichen planus is an uncommon variant of lichen planus. Chronic erosions of the soles, accompanied by intense and disabling pain, are some of its most characteristic manifestations. We present the case of a woman who developed oral and plantar erosive lichen planus associated with lichen planus pigmentosus and ungueal lichen planus that were diagnosed after several years. The patient failed to respond to multiple therapies requiring longstanding medication but remained refractory. Knowledge of the treatment options for erosive lichen planus is insufficient. Further research is required to clarify their effectiveness, ideally adopting an evidence-based methodology.

  5. Erosion products in disruption simulation experiments

    Energy Technology Data Exchange (ETDEWEB)

    Safronov, V.; Arkhipov, N.; Bakhtin, V.; Barsuk, V.; Kurkin, S.; Mironova, E.; Toporkov, D.; Vasenin, S.; Zhitlukhin, A. [Troitsk Inst. for Innovation and Fusion Research, Troisk, Moscow region (Russian Federation); Arkhipov, I. [Inst. of Physical Chemistry, Russian Academy of Science, Moscow (Russian Federation); Werle, H.; Wuerz, H. [Forschungszentrum Karlsruhe (Germany)

    1998-07-01

    Erosion of divertor materials under tokamak disruption event presents a serious problem of ITER technology. Erosion restricts the divertor lifetime and leads to production of redeposited layers of the material retaining large amount of tritium, which is a major safety issue for future fusion reactor. Since ITER disruptive heatloads are not achievable in existing tokamaks, material erosion is studied in special simulation experiments. Till now the simulation experiments have focused mainly on investigation of shielding effect and measurement of erosion rate. In the present work the properties of eroded and redeposited graphite are studied under condition typical for hard ITER disruption. (author)

  6. The Amazon-influenced muddy coast of South America: A review of mud-bank-shoreline interactions

    Science.gov (United States)

    Anthony, Edward J.; Gardel, Antoine; Gratiot, Nicolas; Proisy, Christophe; Allison, Mead A.; Dolique, Franck; Fromard, François

    2010-12-01

    The 1500 km-long coast of South America between the Amazon and the Orinoco river mouths is the world's muddiest. This is due to the huge suspended-sediment discharge of the Amazon River (10 6 × 754 tons yr - 1 ± 9%), part of which is transported alongshore as mud banks. Mud-bank formation is controlled by the physical oceanography of the continental shelf seaward of the Amazon River mouth, an initial seafloor storage area for much of the suspended sediment discharged from the river. In this area, rapid and sustained fluid-mud concentration and trapping are associated with fresh water-salt water interaction and estuarine front activity on the shelf due to the enormous Amazon water discharge (ca. 173,000 m 3 s - 1 at Obidos, 900 km upstream of the mouth). Fluid mud is transported shoreward and then along the coasts of the Guianas by a complex interaction of wave and tidal forcing, and wind-generated coastal currents. The mud banks, which may number up to 15 or more at any time, are up to 5 m-thick, 10 to 60 km-long, and 20 to 30 km-wide, and each may contain the equivalent mass of the annual mud supply of the Amazon. As the banks migrate alongshore, their interaction with waves results in complex and markedly fluctuating shorelines that are associated with space- and time-varying depositional 'bank' phases and erosional 'inter-bank' phases. Bank zones are protected from wave attack as a result of wave-energy dampening by mud, and undergo significant, albeit temporary, coastal accretion accompanied by rapid mangrove colonization. The dampening of waves in bank areas as they propagate onshore is accompanied by the shoreward recycling of mud, commonly in the form of individual mud bars. These bars progressively undergo desiccation and consolidation, and thus constitute a major pathway for rapid and massive colonization by mangroves. Erosion by waves propagating across relatively mud-deficient shoreface zones in inter-bank areas can lead to muddy shoreline retreat

  7. Remontant erosion in desert soils of Tamaulipas, México.

    Science.gov (United States)

    Rivera-Ortiz, P.; Andrade-Limas, E.; De la Garza-Requena, F.; Castro-Meza, B.

    2012-04-01

    REMONTANT EROSION IN DESERT SOILS OF TAMAULIPAS MÉXICO Rivera-Ortiz, P.1; Andrade-Limas, E.1; De la Garza-Requena, F.1 and Castro-Meza, B.1 1Facultad de Ingeniería y Ciencias, Universidad Autónoma de Tamaulipas, México The degradation of soil reduces the capacity of soils to produce food and sustain life. Erosion is one of the main types of soil degradation. Hydric erosion of remontant type can occur in soils located close to the channel of a river through the expansion of a gully that begins as a fluvial incision over the ravine of one side of the river. The incision takes place at the point of greatest flow of runoff from areas adjacent to empty into the river. The depth of the incision causes the growth of the gully by collapse to move their heads back, upstream. The soil loss by remontant erosion on land use in agriculture and livestock was estimated in order to understand the evolution of gullies formed by this type of erosion. Through measurements on satellite images and GPS (Global Positioning System) two gullies, developed on alluvial soils which drain into the river Chihue, were studied. The investigation was conducted during 2003 to 2010 period in the municipality of Jaumave, Tamaulipas, in northeastern Mexico. Soil loss in gullies developed by remontant erosion was large and it was caused by soil collapse and drag of soil on the headers. The estimated loss of soil by remontant erosion was 3500 t in the deeper gully during 2010 and nearly 1200 t per year in the period 2003-2009. New sections of gully of about 20 m length, with more than 3 m deep and up to 13 m wide, were formed each year. This degradation has significantly reduced the productive surface of soil that for many years has been used to the cultivation of maize (Zea mays) and beans (Phaseolus vulgaris) as well as pasture production.

  8. Tipping Point

    Medline Plus

    Full Text Available ... OnSafety CPSC Stands for Safety The Tipping Point Home > 60 Seconds of Safety (Videos) > The Tipping Point ... 24 hours a day. For young children whose home is a playground, it’s the best way to ...

  9. Fixed Points

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 5; Issue 5. Fixed Points - From Russia with Love - A Primer of Fixed Point Theory. A K Vijaykumar. Book Review Volume 5 Issue 5 May 2000 pp 101-102. Fulltext. Click here to view fulltext PDF. Permanent link:

  10. Erosion rates of wood during natural weathering. Part II, Earlywood and latewood erosion rates

    Science.gov (United States)

    R. Sam Williams; Mark T. Knaebe; William C. Feist

    2001-01-01

    This is the second in a series of reports on the erosion rates of wood exposed outdoors near Madison, Wisconsin. In the work reported here, the erosion rates of earlywood and latewood were determined for smooth-planed vertical-grained lumber for an exposure period of 14 years. The specimens were oriented vertically, facing south; erosion was measured annually for the...

  11. Erosion rates of wood during natural weathering. Part III, Effect of exposure angle on erosion rate

    Science.gov (United States)

    R. Sam Williams; Mark T. Knaebe; James W. Evans; William C. Feist

    2001-01-01

    This is the third in a series of reports on the erosion rates of wood exposed outdoors near Madison, Wisconsin. The specimens were exposed at an orientation of 90* or 45* facing south or horizontally (0*) for 10 years. Erosion was measured annually for the first 8 years and after 10 years. The erosion rates of earlywood (springwood) and latewood (summerwood) were...

  12. Graffiti for science - erosion painting reveals spatially variable erosivity of sediment-laden flows

    Science.gov (United States)

    Beer, Alexander R.; Kirchner, James W.; Turowski, Jens M.

    2016-12-01

    Spatially distributed detection of bedrock erosion is a long-standing challenge. Here we show how the spatial distribution of surface erosion can be visualized and analysed by observing the erosion of paint from natural bedrock surfaces. If the paint is evenly applied, it creates a surface with relatively uniform erodibility, such that spatial variability in the erosion of the paint reflects variations in the erosivity of the flow and its entrained sediment. In a proof-of-concept study, this approach provided direct visual verification that sediment impacts were focused on upstream-facing surfaces in a natural bedrock gorge. Further, erosion painting demonstrated strong cross-stream variations in bedrock erosion, even in the relatively narrow (5 m wide) gorge that we studied. The left side of the gorge experienced high sediment throughput with abundant lateral erosion on the painted wall up to 80 cm above the bed, but the right side of the gorge only showed a narrow erosion band 15-40 cm above the bed, likely due to deposited sediment shielding the lower part of the wall. This erosion pattern therefore reveals spatial stream bed aggradation that occurs during flood events in this channel. The erosion painting method provides a simple technique for mapping sediment impact intensities and qualitatively observing spatially distributed erosion in bedrock stream reaches. It can potentially find wide application in both laboratory and field studies.

  13. Graffiti for science – erosion painting reveals spatially variable erosivity of sediment-laden flows

    Directory of Open Access Journals (Sweden)

    A. R. Beer

    2016-12-01

    Full Text Available Spatially distributed detection of bedrock erosion is a long-standing challenge. Here we show how the spatial distribution of surface erosion can be visualized and analysed by observing the erosion of paint from natural bedrock surfaces. If the paint is evenly applied, it creates a surface with relatively uniform erodibility, such that spatial variability in the erosion of the paint reflects variations in the erosivity of the flow and its entrained sediment. In a proof-of-concept study, this approach provided direct visual verification that sediment impacts were focused on upstream-facing surfaces in a natural bedrock gorge. Further, erosion painting demonstrated strong cross-stream variations in bedrock erosion, even in the relatively narrow (5 m wide gorge that we studied. The left side of the gorge experienced high sediment throughput with abundant lateral erosion on the painted wall up to 80 cm above the bed, but the right side of the gorge only showed a narrow erosion band 15–40 cm above the bed, likely due to deposited sediment shielding the lower part of the wall. This erosion pattern therefore reveals spatial stream bed aggradation that occurs during flood events in this channel. The erosion painting method provides a simple technique for mapping sediment impact intensities and qualitatively observing spatially distributed erosion in bedrock stream reaches. It can potentially find wide application in both laboratory and field studies.

  14. Farmers' identification of erosion indicators and related erosion damage in the Central Highlands of Kenya

    NARCIS (Netherlands)

    Sterk, G.; Okoba, B.O.

    2006-01-01

    Most soil and water conservation planning approaches rely on empirical assessment methods and hardly consider farmers' knowledge of soil erosion processes. Farmers' knowledge of on-site erosion indicators could be useful in assessing the site-specific erosion risk before planning any conservation

  15. Chemical fingerprinting of petroleum biomarkers in Deepwater Horizon oil spill samples collected from Alabama shoreline.

    Science.gov (United States)

    Mulabagal, V; Yin, F; John, G F; Hayworth, J S; Clement, T P

    2013-05-15

    We compare the chromatographic signatures of petroleum biomarkers in Deepwater Horizon (DH) source oil, three other reference crude oils, DH emulsified mousse that arrived on Alabama's shoreline in June 2010, and seven tar balls collected from Alabama beaches from 2011 to 2012. Characteristic hopane and sterane fingerprints show that all the tar ball samples originated from DH oil. In addition, the diagnostic ratios of various hopanes indicate an excellent match. Quantitation data for C₃₀αβ-hopane concentration levels show that most of the weathering observed in DH-related tar balls found on Alabama's beaches is likely the result of natural evaporation and dissolution that occurred during transport across the Gulf of Mexico prior to beach deposition. Based on the physical and biomarker characterization data presented in this study we conclude that virtually all fragile, sticky, brownish tar balls currently found on Alabama shoreline originated from the DH oil spill. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Sensitivity of Coastal Environments and Wildlife to Spilled Oil: Central California: ESI (Environmental Sensitivity Index Shoreline Types - Lines and Polygons)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains vector lines and polygons representing the shoreline and coastal habitats of Central California classified according to the Environmental...

  17. Rhode Island, Connecticut, New York, and New Jersey ESI: ESI (Environmental Sensitivity Index Shoreline Types - Polygons and Lines)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains vector lines and polygons representing the shoreline and coastal habitats of Rhode Island, Connecticut, New York, and New Jersey, classified...

  18. 76 FR 22879 - Intent To Prepare an Environmental Impact Statement for Update of the Shoreline Management Plan...

    Science.gov (United States)

    2011-04-25

    ... regulations governing U.S. Army Corps of Engineers civil works projects. At Eufaula Lake, private shoreline... access and safety, (5) impacts to lake use, public parks and recreation, (6) aesthetics, (7...

  19. Sensitivity of Coastal Environments and Wildlife to Spilled Oil: Northern California: ESI (Environmental Sensitivity Index Shoreline Types - Lines and Polygons)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains vector lines and polygons representing the shoreline and coastal habitats of Northern California, classified according to the Environmental...

  20. Sensitivity of Coastal Environments and Wildlife to Spilled Oil: Upper Coast of Texas: ESIP (ESI Shoreline Types - Polygons)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The ESIP data set contains polygons representing the shoreline and coastal habitats of the Upper Coast of Texas, classified according to the Environmental...

  1. Sensitivity of Coastal Environments and Wildlife to Spilled Oil: Upper Coast of Texas: ESIL (ESI Shoreline Types - Lines)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The ESIL data set contains lines representing the shoreline and coastal habitats of the Upper Coast of Texas, classified according to the Environmental Sensitivity...

  2. Sensitivity of Coastal Environments and Wildlife to Spilled Oil: Hudson River: ESI (Environmental Sensitivity Index Shoreline Types - Lines and Polygons)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains vector lines and polygons representing the shoreline and coastal habitats for the Hudson River, classified according to the Environmental...

  3. Research into the further development of the LIMPET shoreline wave energy plant

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-07-01

    This report summarises the findings of a project focussing on technical issues associated with the design of the LIMPET shoreline oscillating water column (OWC) wave energy plant. Fifteen tasks are listed as the objectives of the project which was carried out to broaden the knowledge of the wave environment and the construction and operation of a wave energy plant. The experience gained in LIMPET instrumentation, control systems, and grid integration issues are discussed.

  4. 78 FR 33051 - Non-Rock Alternatives to Shoreline Protection Demonstration Project (LA-16) Iberia, Jefferson...

    Science.gov (United States)

    2013-06-03

    ...Pursuant to Section 102(2)(C) of the National Environmental Policy Act of 1969; the Council on Environmental Quality Guidelines (40 CFR part 1500); and the Natural Resources Conservation Service Guidelines (7 CFR part 650); the Natural Resources Conservation Service, U.S. Department of Agriculture, gives notice that an environmental impact statement is not being prepared for the Non-Rock Alternatives to Shoreline Protection Demonstration Project (LA-16), Iberia, Jefferson, and Lafourche Parishes, Louisiana.

  5. The ichthyofauna of the shoreline zone in the longitudinal profile of the Danube River, Bulgaria

    Czech Academy of Sciences Publication Activity Database

    Polačik, Matej; Trichkova, T.; Janáč, Michal; Vassilev, M.; Jurajda, Pavel

    2008-01-01

    Roč. 60, č. 1 (2008), s. 77-88 ISSN 0324-0770 R&D Projects: GA MŠk LC522 Grant - others:National Science Fund(BG) B-1510/05 Institutional research plan: CEZ:AV0Z60930519 Keywords : Lower Danube * shoreline zone * fish community * distribution * abundance * endangered species Subject RIV: EH - Ecology, Behaviour http://www.acta-zoologica-bulgarica.eu/downloads/acta-zoologica-bulgarica/2008/60-1-077-088.pdf

  6. The New Digital Shoreline: How Web 2.0 and Millennials Are Revolutionizing Higher Education

    Science.gov (United States)

    McHaney, Roger

    2011-01-01

    Two seismic forces beyond our control--the advent of Web 2.0 and the inexorable influx of tech-savvy Millennials on campus--are shaping what Roger McHaney calls "The New Digital Shoreline" of higher education. Failure to chart its contours, and adapt, poses a major threat to higher education as we know it. These forces demand that we as educators…

  7. Hurricane impact and recovery shoreline change analysis of the Chandeleur Islands, Louisiana, USA: 1855 to 2005

    Science.gov (United States)

    Fearnley, Sarah M.; Miner, Michael; Brock, John C.

    2011-01-01

    Results from historical (1855-2005) shoreline change analysis of the Chandeleur Islands, Louisiana, demonstrate that tropical cyclone frequency dominates the long-term evolution of this barrier-island arc. The detailed results of this study were published in December 2009 as part of a special issue of Geo-Marine Letters that documents early results from the Northern Gulf of Mexico (NGOM) Ecosystem Change and Hazard Susceptibility Project.

  8. Geographic information systems-based expert system modelling for shoreline sensitivity to oil spill disaster in Rivers State, Nigeria

    Directory of Open Access Journals (Sweden)

    Olanrewaju Lawal

    2017-07-01

    Full Text Available In the absence of adequate and appropriate actions, hazards often result in disaster. Oil spills across any environment are very hazardous; thus, oil spill contingency planning is pertinent, supported by Environmental Sensitivity Index (ESI mapping. However, a significant data gap exists across many low- and middle-income countries in aspect of environmental monitoring. This study developed a geographic information system (GIS-based expert system (ES for shoreline sensitivity to oiling. It focused on the biophysical attributes of the shoreline with Rivers State as a case study. Data on elevation, soil, relative wave exposure and satellite imageries were collated and used for the development of ES decision rules within GIS. Results show that about 70% of the shoreline are lined with swamp forest/mangroves/nympa palm, and 97% have silt and clay as dominant sediment type. From the ES, six ranks were identified; 61% of the shoreline has a rank of 9 and 19% has a rank of 3 for shoreline sensitivity. A total of 568 km out of the 728 km shoreline is highly sensitive (ranks 7–10. There is a clear indication that the study area is a complex mixture of sensitive environments to oil spill. GIS-based ES with classification rules for shoreline sensitivity represents a rapid and flexible framework for automatic ranking of shoreline sensitivity to oiling. It is expected that this approach would kick-start sensitivity index mapping which is comprehensive and openly available to support disaster risk management around the oil producing regions of the country.

  9. Radiological survey of shoreline vegetation from the Hanford Reach of the Columbia River, 1990--1992

    International Nuclear Information System (INIS)

    Antonio, E.J.; Poston, T.M.; Rickard, W.H. Jr.

    1993-09-01

    A great deal of interest exists concerning the seepage of radiologically contaminated groundwater into the Columbia River where it borders the US Department of Energy's Hanford Site (Hanford Reach). Areas of particular interest include the 100-N Area, the Old Hanford Townsite, and the 300 Area springs. While the radiological character of the seeps and springs along the Hanford Site shoreline has been studied, less attention has been given to characterizing the radionuclides that may be present in shoreline vegetation. The objective of this study was to characterize radionuclide concentrations in shoreline plants along the Hanford Reach of the Columbia River that were usable by humans for food or other purposes. Vegetation in two areas was found to have elevated levels of radionuclides. Those areas were the 100-N Area and the Old Hanford Townsite. There was also some indication of uranium accumulation in milfoil and onions collected from the 300 Area. Tritium was elevated above background in all areas; 60 Co and 9O Sr were found in highest concentrations in vegetation from the 100-N Area. Technetium-99 was found in 2 of 12 plants collected from the Old Hanford Townsite and 1 of 10 samples collected upstream from the Vernita Bridge. The concentrations of 137 Cs, 238 Pu, 239,240 Pu, and isotopes of uranium were just above background in all three areas (100-N Area, Old Hanford Townsite, and 300 Area)

  10. Lake Izabal (Guatemala) shoreline detection and inundated area estimation from ENVISAT ASAR images

    Science.gov (United States)

    Medina, C.; Gomez-Enri, J.; Alonso, J. J.; Villares, P.

    2008-10-01

    The surface extent of a lake reflects its water storage variations. This information has important hydrological and operational applications. However, there is a lack of information regarding this subject because the traditional methodologies for this purposes (ground surveys, aerial photos) requires high resources investments. Remote sensing techniques (optical/radar sensors) permit a low cost, constant and accurate monitoring of this parameter. The objective of this study was to determine the surface variations of Lake Izabal, the largest one in Guatemala. The lake is located close to the Caribbean Sea coastline. The climate in the region is predominantly cloudy and rainy, being the Synthetic Aperture Radar (SAR) the best suited sensor for this purpose. Although several studies have successfully used SAR products in detecting land-water boundaries, all of them highlighted some sensor limitations. These limitations are mainly caused by roughened water surfaces caused by strong winds which are frequent in Lake Izabal. The ESA's ASAR data products were used. From the set of 9 ASAR images used, all of them have wind-roughened ashore waters in several levels. Here, a chain of image processing steps were applied in order to extract a reliable shoreline. The shoreline detection is the key task for the surface estimation. After the shoreline extraction, the inundated area of the lake was estimated. In-situ lake level measurements were used for validation. The results showed good agreement between the inundated areas estimations and the lake level gauges.

  11. A Personal Digital Assistant (PDA) system for data acquisition during shoreline assessment field surveys

    International Nuclear Information System (INIS)

    Lamarche, A.; Owens, E.H.; Laflamme, A.; Laforest, S.; Clement, S.

    2004-01-01

    The Shoreline Cleanup Assessment Technique (SCAT) is a recognized method in North America to collect shoreline information and report observations on an oil spill. The long processing time required to analyze SCAT observations sometimes causes delays in oil spill response. Computerized systems have been developed to address this problem, but data entry of SCAT within such system involves much effort and is subject to potential errors. This paper described the development of a tool dedicated to the field capture of SCAT data on a Windows CE based Personal Digital Assistant (PDA). The system is compatible with both the SCAT methodology and Global Positioning System technology. A prototype of the system was tested during oil spills in Ontario and Nova Scotia. This paper described how the field data collection system was designed, developed and tested. Details of some user interfaces were provided to demonstrate how the large paper Shoreline Oiling Summary forms were made to fit on the small display screen of pocket-size devices. 8 refs., 1 tab., 12 figs

  12. Coral reefs as the first line of defense: Shoreline protection in face of climate change.

    Science.gov (United States)

    Elliff, Carla I; Silva, Iracema R

    2017-06-01

    Coral reefs are responsible for a wide array of ecosystem services including shoreline protection. However, the processes involved in delivering this particular service have not been fully understood. The objective of the present review was to compile the main results in the literature regarding the study of shoreline protection delivered by coral reefs, identifying the main threats climate change imposes to the service, and discuss mitigation and recovery strategies that can and have been applied to these ecosystems. While different zones of a reef have been associated with different levels of wave energy and wave height attenuation, more information is still needed regarding the capacity of different reef morphologies to deliver shoreline protection. Moreover, the synergy between the main threats imposed by climate change to coral reefs has also not been thoroughly investigated. Recovery strategies are being tested and while there are numerous mitigation options, the challenge remains as to how to implement them and monitor their efficacy. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Shoreline changes in reef islands of the Central Pacific: Takapoto Atoll, Northern Tuamotu, French Polynesia

    Science.gov (United States)

    Duvat, Virginie K. E.; Pillet, Valentin

    2017-04-01

    Atoll reef islands are considered highly vulnerable to the impacts of climate change. While accelerated sea-level rise is expected to destabilize reef islands, ocean warming and acidification are considered as major threats to coral reef growth, which is of primary importance for the persistence of islands and of food supply to islanders. Using multi-date aerial imagery, shoreline and island changes between 1969 and 2013 were assessed on Takapoto Atoll, Northern Tuamotu region, in French Polynesia. Results show that over the 44-year study period, 41% of islands were stable in area while 33% expanded and 26% contracted. Island expansion was the dominant mode of change on the leeward side of the atoll. Tropical Cyclone Orama (category 3, 1983) contributed to shoreline and island change on the windward side of the atoll through the reworking of previous storm deposits and the injection of fresh sediments in the island system (with up to 62% of an island's land area being covered with fresh sediments). Human activities contributed significantly to shoreline and island change throughout the atoll through infrastructure construction, the removal of the indigenous vegetation from a number of islets and sediment mining.

  14. Application of Low-Cost Fixed-Wing UAV for Inland Lakes Shoreline Investigation

    Science.gov (United States)

    Templin, Tomasz; Popielarczyk, Dariusz; Kosecki, Rafał

    2017-10-01

    One of the most important factors that influences the performance of geomorphologic parameters on urban lakes is the water level. It fluctuates periodically, causing shoreline changes. It is especially significant for typical environmental studies like bathymetric surveys, morphometric parameters calculation, sediment depth changes, thermal structure, water quality monitoring, etc. In most reservoirs, it can be obtained from digitized historical maps or plans or directly measured using the instruments such as: geodetic total station, GNSS receivers, UAV with different sensors, satellite and aerial photos, terrestrial and airborne light detection and ranging, or others. Today one of the most popular measuring platforms, increasingly applied in many applications is UAV. Unmanned aerial system can be a cheap, easy to use, on-demand technology for gathering remote sensing data. Our study presents a reliable methodology for shallow lake shoreline investigation with the use of a low-cost fixed-wing UAV system. The research was implemented on a small, eutrophic urban inland reservoir located in the northern part of Poland—Lake Suskie. The geodetic TS, and RTK/GNSS measurements, hydroacoustic soundings and experimental aerial mapping were conducted by the authors in 2012-2015. The article specifically describes the UAV system used for experimental measurements, the obtained results and the accuracy analysis. Final conclusions demonstrate that even a low-cost fixed-wing UAV can provide an excellent tool for accurately surveying a shallow lake shoreline and generate valuable geoinformation data collected definitely faster than when traditional geodetic methods are employed.

  15. A multi-indicator approach for identifying shoreline sewage pollution hotspots adjacent to coral reefs.

    Science.gov (United States)

    Abaya, Leilani M; Wiegner, Tracy N; Colbert, Steven L; Beets, James P; Carlson, Kaile'a M; Kramer, K Lindsey; Most, Rebecca; Couch, Courtney S

    2018-04-01

    Sewage pollution is contributing to the global decline of coral reefs. Identifying locations where it is entering waters near reefs is therefore a management priority. Our study documented shoreline sewage pollution hotspots in a coastal community with a fringing coral reef (Puakō, Hawai'i) using dye tracer studies, sewage indicator measurements, and a pollution scoring tool. Sewage reached shoreline waters within 9 h to 3 d. Fecal indicator bacteria concentrations were high and variable, and δ 15 N macroalgal values were indicative of sewage at many stations. Shoreline nutrient concentrations were two times higher than those in upland groundwater. Pollution hotspots were identified with a scoring tool using three sewage indicators. It confirmed known locations of sewage pollution from dye tracer studies. Our study highlights the need for a multi-indicator approach and scoring tool to identify sewage pollution hotspots. This approach will be useful for other coastal communities grappling with sewage pollution. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. Radiological survey of shoreline vegetation from the Hanford Reach of the Columbia River, 1990--1992

    Energy Technology Data Exchange (ETDEWEB)

    Antonio, E.J.; Poston, T.M.; Rickard, W.H. Jr.

    1993-09-01

    A great deal of interest exists concerning the seepage of radiologically contaminated groundwater into the Columbia River where it borders the US Department of Energy`s Hanford Site (Hanford Reach). Areas of particular interest include the 100-N Area, the Old Hanford Townsite, and the 300 Area springs. While the radiological character of the seeps and springs along the Hanford Site shoreline has been studied, less attention has been given to characterizing the radionuclides that may be present in shoreline vegetation. The objective of this study was to characterize radionuclide concentrations in shoreline plants along the Hanford Reach of the Columbia River that were usable by humans for food or other purposes. Vegetation in two areas was found to have elevated levels of radionuclides. Those areas were the 100-N Area and the Old Hanford Townsite. There was also some indication of uranium accumulation in milfoil and onions collected from the 300 Area. Tritium was elevated above background in all areas; {sup 60}Co and {sup 9O}Sr were found in highest concentrations in vegetation from the 100-N Area. Technetium-99 was found in 2 of 12 plants collected from the Old Hanford Townsite and 1 of 10 samples collected upstream from the Vernita Bridge. The concentrations of {sup 137}Cs, {sup 238}Pu, {sup 239,240}Pu, and isotopes of uranium were just above background in all three areas (100-N Area, Old Hanford Townsite, and 300 Area).

  17. Diachronical soil surveys: a way to quantify long term diffuse erosion

    Science.gov (United States)

    Pineux, Nathalie; Brieuc, Michel; Xavier, Legrain; Gilles, Colinet; Aurore, Degré

    2015-04-01

    The loess belt of Western Europe is a high-risk area regarding diffuse erosion. It is due to the climate and the topography but also to the soil type. Loamy soils are naturally highly sensitive to diffuse erosion. Hence, these soils are very fertile. So, they are intensively cultivated which increases their sensitivity to erosion. Sheet erosion is an erosion type strongly represented in these regions. Contrarily to the concentrated form of erosion which happens more brutally, sheet erosion needs long-term observation time-scales, which remains rare. In Belgium, a soil map was established in 1956. This map is quite detailed and notably informs about the different horizons which are in the profile (ploughed horizon, eluvial horizon, clay included between the horizons, carbonate-free loess horizon, and all these were characterised by drainage class) and their depth. It was based on a dense augering network across the country (one point every 75 meters). A new augering campaign was done again in 2014. It consisted in one observation every 50 meters on an agricultural watershed of 124 hectares located in the centre of Belgium. This catchment has been cultivated since the 14th century and is representative of the local context (gentle slope (3-8%), plot size (mean value of 10 ha), …). We compared the two soil maps produced on this site with a 58years time lapse. Results show that the large majority of the watershed falls from upslope soils with weak erosion to slope soils with strong erosion. The soil thickness diminished in some zones to 1m10 (minimum estimation) of erosion. This comparison shows that very few upslope soils are preserved. On the other hand, the areas where colluviums were present to the full depth stay at the same place in the main thalweg of the watershed. Other areas on the watershed seem to be subject to a (minimum estimation) of 40cm of sediments deposition. Large areas in the watershed suffered from erosion and came to deposition areas as the

  18. SOIL EROSION ANALYSIS IN THE INFLUENCE AREA OF TIETÊ- PARANÁ HYDROWAY (TIETÊ BRANCH

    Directory of Open Access Journals (Sweden)

    Maria Cristina Jacinto de Almeida

    2005-05-01

    channel of navigation and in transposition points (bridges, landfills, terminals and others are the major impacts due to erosion processes in the region.

  19. A study of the surface deterioration due to erosion. [of gas turbine blades

    Science.gov (United States)

    Tabakoff, W.; Balan, C.

    1983-01-01

    It is pointed out that materials exposed to particle impacts are eroded and subjected to deterioration of their surface quality. In the case of turbomachinery, this surface deterioration can lead to a significant decrease in engine performance. Tabakoff and Balan (1981) have conducted experiments on the erosion related performance changes in two-dimensional airfoil cascades. It was found that the increase in surface roughness associated with erosion is a major factor in the performance decrease of the cascades. Attention is given to experiments which were conducted on 6061 T6 flat plate aluminum specimens. A series of experiments were carried out in an erosion wind tunnel using a collimated beam of particles. In agreement with existing theories and experiments, erosion ripple generation was observed for the angles of attack up to 60 degrees.

  20. Deepwater Horizon MC252 shoreline data from the Environmental Response Management Application (ERMA) containing shoreline exposure and data related to the shoreline exposure model, coastal wetland vegetation sites and other datasets collected between 2010-01-01 to 2015-01-01 for the DWH response in the Northern Gulf of Mexico (NCEI Accession 0163814)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This Archival Information Package (AIP) contains Environmental Resource Management Application (ERMA) GIS layers including shoreline exposure model for beach and...

  1. Hydrogeological And Geotechnical Investigations Of Gully Erosion ...

    African Journals Online (AJOL)

    For many years, gully erosion and landslides are posing a serious threat to human existence, agricultural land, infrastructure and socio-economic activities in Calabar and its environs. Consequently, hydrogeological and geotechnical studies of gully erosion sites were carried out in order to provide information on the ...

  2. Backward erosion piping : Initiation and progression

    NARCIS (Netherlands)

    Van Beek, V.M.

    2015-01-01

    Backward erosion piping is an internal erosion mechanism during which shallow pipes are formed in the direction opposite to the flow underneath water-retaining structures as a result of the gradual removal of sandy material by the action of water. It is an important failure mechanism in both dikes

  3. Interrill soil erosion processes on steep slopes

    Science.gov (United States)

    To date interrill erosion processes and regimes are not fully understood. The objectives are to 1) identify the erosion regimes and limiting processes between detachment and transport on steep slopes, 2) characterize the interactive effects between rainfall intensity and flow depth on sediment trans...

  4. The erosive potential of candy sprays

    NARCIS (Netherlands)

    Gambon, D.L.; Brand, H.S.; Nieuw Amerongen, A.V.

    2009-01-01

    Objective To determine the erosive potential of seven different commercially available candy sprays in vitro and in vivo. Material and methods The erosive potential was determined in vitro by measuring the pH and neutralisable acidity. The salivary pH and flow rate were measured in healthy

  5. EVALUATION OF RAINFALL EROSIVIT OF RAINFALL EROSIVITY ...

    African Journals Online (AJOL)

    eobe

    The coefficient of Determination R ficient of Determination R2 was 0.5011. was 0.5011. During this per .... reducing its energy and preventing splash erosion. It also slows runoff, reduces sheet erosion, and anchors ... surface roughness, infiltration, interception, lower the density of the soil, and improve the structure of.

  6. Rethinking erosion on Java: a reaction

    NARCIS (Netherlands)

    Graaff, de J.; Wiersum, K.F.

    1992-01-01

    In a recent article (Diemont et al., 1991) about erosion on Java, it has been postulated that low inputs, not surface erosion, is the main cause of low productivity of upland food crops on this island. In this article it is argued that this hypothesis is too simple. An analysis of empirical field

  7. Reduction of soil erosion on forest roads

    Science.gov (United States)

    Edward R. Burroughs; John G. King

    1989-01-01

    Presents the expected reduction in surface erosion from selected treatments applied to forest road traveledways, cutslopes, fillslopes, and ditches. Estimated erosion reduction is expressed as functions of ground cover, slope gradient, and soil properties whenever possible. A procedure is provided to select rock riprap size for protection of the road ditch.

  8. Erosion-Resistant Water-Blast Nozzle

    Science.gov (United States)

    Roberts, Marion L.; Rice, R. M.; Cosby, S. A.

    1988-01-01

    Design of nozzle reduces erosion of orifice by turbulent high-pressure water flowing through it. Improved performance and resistance to erosion achieved by giving interior nozzle surface long, gradual convergence before exit orifice abrupt divergence after orifice and by machining surface to smooth finish.

  9. Wind erosion modelling in a Sahelian environment

    NARCIS (Netherlands)

    Faye-Visser, S.M.; Sterk, G.; Karssenberg, D.

    2005-01-01

    In the Sahel field observations of wind-blown mass transport often show considerable spatial variation related to the spatial variation of the wind erosion controlling parameters, e.g. soil crust and vegetation cover. A model, used to predict spatial variation in wind erosion and deposition is a

  10. Rainfall erosivity in Brazil: A Review

    Science.gov (United States)

    In this paper, we review the erosivity studies conducted in Brazil to verify the quality and representativeness of the results generated and to provide a greater understanding of the rainfall erosivity (R-factor) in Brazil. We searched the ISI Web of Science, Scopus, SciELO, and Google Scholar datab...

  11. Soil erosion dynamics response to landscape pattern

    NARCIS (Netherlands)

    Ouyang, W.; Skidmore, A.K.; Hao, F.; Wang, T.

    2010-01-01

    Simulating soil erosion variation with a temporal land use database reveals long-term fluctuations in landscape patterns, as well as priority needs for soil erosion conservation. The application of a multi-year land use database in support of a Soil Water Assessment Tool (SWAT) led to an accurate

  12. EPro Non-contact erosion profiling

    DEFF Research Database (Denmark)

    Meinert, Palle

    EPro is a profiler controlled by software, which is constructed to measure the same surface or work piece multiple times and track changes due to erosion.......EPro is a profiler controlled by software, which is constructed to measure the same surface or work piece multiple times and track changes due to erosion....

  13. Tipping Point

    Medline Plus

    Full Text Available ... Point by CPSC Blogger September 22, 2009 appliance child Childproofing CPSC danger death electrical fall furniture head ... see news reports about horrible accidents involving young children and furniture, appliance and tv tip-overs. The ...

  14. Uncertainties in assessing tillage erosion - How appropriate are our measuring techniques?

    Science.gov (United States)

    Fiener, P.; Wilken, F.; Aldana-Jague, E.; Deumlich, D.; Gómez, J. A.; Guzmán, G.; Hardy, R. A.; Quinton, J. N.; Sommer, M.; Van Oost, K.; Wexler, R.

    2018-03-01

    Tillage erosion on arable land is a very important process leading to a net downslope movement of soil and soil constitutes. Tillage erosion rates are commonly in the same order of magnitude as water erosion rates and can be even higher, especially under highly mechanized agricultural soil management. Despite its prevalence and magnitude, tillage erosion is still understudied compared to water erosion. The goal of this study was to bring together experts using different techniques to determine tillage erosion and use the different results to discuss and quantify uncertainties associated with tillage erosion measurements. The study was performed in northeastern Germany on a 10 m by 50 m plot with a mean slope of 8%. Tillage erosion was determined after two sequences of seven tillage operations. Two different micro-tracers (magnetic iron oxide mixed with soil and fluorescent sand) and one macro-tracer (passive radio-frequency identification transponders (RFIDs), size: 4 × 22 mm) were used to directly determine soil fluxes. Moreover, tillage induced changes in topography were measured for the entire plot with two different terrestrial laser scanners and an unmanned aerial system for structure from motion topography analysis. Based on these elevation differences, corresponding soil fluxes were calculated. The mean translocation distance of all techniques was 0.57 m per tillage pass, with a relatively wide range of mean soil translocation distances ranging from 0.39 to 0.72 m per pass. A benchmark technique could not be identified as all used techniques have individual error sources, which could not be quantified. However, the translocation distances of the macro-tracers used were consistently smaller than the translocation distances of the micro-tracers (mean difference = - 26 ± 12%), which questions the widely used assumption of non-selective soil transport via tillage operations. This study points out that tillage erosion measurements, carried out under almost

  15. Soil erosion processes on sloping land using REE tracer

    International Nuclear Information System (INIS)

    Shen Zhenzhou; Liu Puling; Yang Mingyi; Lian Zhenlong; Ju Tongjun; Yao Wenyi; Li Mian

    2007-01-01

    Sheet erosion is the main performance in the slope soil erosion process at the primary stage of natural rainfall. For three times of rainfall during experiment, the ratios of sheet erosion to total erosion account for 71%, 48% and 49% respectively, which showed that the sloping erosion was still at the primary stage from sheet erosion to rill erosion. With the rainfall going, the rill erosion amount increase. It showed that soil erosion was changing from sheet erosion to rill erosion. The sources of sediment from different sections of the plot were analyzed, and the results indicated that whatever the sheet erosion changed, the ratio erosion of upper part of surface soil was always lower than 10%. Sheet erosion came mainly from the lower section of surface soil. With the ratios to the amount of total rill erosion changes, the rill erosion amount of each section regularly changes too. The general conclusion is that when the rainfall ends, relative erosion of different slope element to the foot of slope is: 1 meter away accounts for 16%, 2-4 meters away is 6% and 5-9 meters away is 3%. The ratio of rill erosion amount of these three slope element is 5:2:1, which shows the rill erosion amount are mainly from the slope element of 4 meters from the foot of slope. (authors)

  16. Erosion testing of hard materials and coatings

    Energy Technology Data Exchange (ETDEWEB)

    Hawk, Jeffrey A.

    2005-04-29

    Erosion is the process by which unconstrained particles, usually hard, impact a surface, creating damage that leads to material removal and component failure. These particles are usually very small and entrained in fluid of some type, typically air. The damage that occurs as a result of erosion depends on the size of the particles, their physical characteristics, the velocity of the particle/fluid stream, and their angle of impact on the surface of interest. This talk will discuss the basics of jet erosion testing of hard materials, composites and coatings. The standard test methods will be discussed as well as alternative approaches to determining the erosion rate of materials. The damage that occurs will be characterized in genera1 terms, and examples will be presented for the erosion behavior of hard materials and coatings (both thick and thin).

  17. Erosion Pressure on the Danish Coasts

    DEFF Research Database (Denmark)

    Sørensen, Carlo Sass; Sørensen, Per; Kroon, Aart

    Coastlines around the world are receding due to coastal erosion.With rising sea levels and a potential climatic deterioration due to climate change, erosion rates are likely to increase at many locations in the future.Together with the current preference of people to settle near or directly...... by the ocean, coastal erosion issues become increasingly more important to the human values at risk. Along many Danish coastlines, hard structures already act as coastal protection in the form of groins, breakwaters, revetments etc. These eroding coasts however still lack sand and where the public, in general......, neglects the need for sand replenishment i.e. in the form of repeated sand nourishments. Here we present a conceptual model and method for dividing coastal erosion into acute and chronic erosion pressure, respectively. We focus on the model use for management and climate change adaptation purposes...

  18. Dietary assessment and counseling for dental erosion.

    Science.gov (United States)

    Marshall, Teresa A

    2018-02-01

    Dental erosion occurs after exposure to intrinsic or extrinsic acids. Exposure to intrinsic gastrointestinal acids is associated with anorexia nervosa, bulimia nervosa, rumination syndrome, or gastroesophageal reflux. Extrinsic dietary acids from foods or beverages also can cause erosion, particularly when exposure is prolonged by holding or swishing behaviors. Clinicians should screen patients exhibiting dental erosion for anorexia nervosa, bulimia nervosa, rumination syndrome, and gastroesophageal reflux disease. Clinicians should screen patients without a medical explanation for their erosion for exposure to acidic foods and beverages, particularly for habits that prolong exposure. Identification of intrinsic and extrinsic acid exposures and recommendations to minimize exposures are important to prevent erosion and maintain oral health. Copyright © 2018 American Dental Association. Published by Elsevier Inc. All rights reserved.

  19. Automated lake-wide erosion predictions and economic damage calculations upstream of the Moses-Saunders power dam

    International Nuclear Information System (INIS)

    Zuzek, P.; Baird, W.F.; International Joint Commission, Ottawa, ON

    2008-01-01

    This presentation discussed an automated flood and erosion prediction system designed for the upstream sections of the Moses-Saunders power dam. The system included a wave prediction component along with 3-D maps, hourly run-ups, geographic information system (GIS) tools and a hazard analysis tool. Parcel, reach, township, and county databases were used to populate the system. The prediction system was used to develop detailed study sites of shore units in the study area. Shoreline classes included sand and cohesive buffs, low banks, coarse beaches, and cobble or boulder lags. Time series plots for Lake Ontario water and wave levels were presented. Great Lakes ice cover data were also included in the system as well as erosion predictions from 1961 to 1995. The system was also used to develop bluff recession equations and cumulative recession analyses for different regulation plans. Cumulative bluff recession and protection requirements were outlined. Screenshots of the flood and erosion prediction system interface were also included. tabs., figs

  20. Monitoring bank erosion at the Locke Island Archaeological National Register District: Summary of 1996/1997 field activities

    Energy Technology Data Exchange (ETDEWEB)

    Nickens, P.R. [ed.; Bjornstad, B.N.; Nickens, P.R.; Cadoret, N.A.; Wright, M.K.

    1998-08-01

    Locke Island is located in the Columbia River in south-central Washington. The US Department of Energy (DOE) owns Locke Island as part of its Hanford Site. In the 1960s and 1970s, as a result of intensive irrigation developments on the inland shoreline to the east of the island, the White Bluffs, which form the eastern boundary of the Columbia River channel in this area, began to show geological failures as excess irrigation water seeped out along the bluffs. One of the largest such failures, known as the Locke Island Landslide, is located just east of Locke Island. By the early 1980s, this landslide mass had moved westward into the river channel toward the island and was diverting the current at the island`s eastern perimeter. Erosion of the bank in the center of the island accelerated, threatening the cultural resources. By the early 1990s, the erosion had exposed cultural features and artifacts along the bank, leading to the beginning of intermittent monitoring of the cutbank. In 1994, DOE initiated more scheduled, systematic monitoring of island erosion to better understand the physical processes involved as well as mitigate ongoing loss of the archaeological record.

  1. Isoerosivity and erosion risk maps in studying water erosion in Sicily

    International Nuclear Information System (INIS)

    Ferro, V.; Giordano, G.; Iovino, M.; Palermo Univ.

    1991-01-01

    In this paper, the authors review simplified methods for evaluating the rainfall erosivity index and propose two relationships for estimating the annual value of Wischmeier's rainfall erosivity index at sites equipped with recording and non-recording rain-gauges. For the Sicilian region of Italy the FAO index is also found to represent the erosion risk. A regional relationship to estimate the standard deviation of the annual erosivity index is proposed. The isoerosivity map is plotted by using 41 values of the rainfall erosivity index, calculated by the Wischmeier procedure, and 128 values estimated according to a relationship proposed by the authors. Finally, for each of the 169 sites, an erosion risk is calculated and an erosion risk map plotted too

  2. Dynamic Analysis of Soil Erosion in Songhua River Watershed

    Science.gov (United States)

    Zhang, Yujuan; Li, Xiuhai; Wang, Qiang; Liu, Jiang; Liang, Xin; Li, Dan; Ni, Chundi; Liu, Yan

    2018-01-01

    In this paper, based on RS and GIS technology and Revised Universal Soil Loss Equation (RUSLE), the soil erosion dynamic changes during the two periods of 1990 and 2010 in Bin County was analyzed by using the Landsat TM data of the two periods, so as to reveal the soil erosion spatial distribution pattern and spatial and temporal dynamic evolution rule in the region. The results showed that: the overall patterns of soil erosion were basically the same in both periods, mainly featuring slight erosion and mild erosion, with the area proportions of 80.68% and 74.71% respectively. The slight and extremely intensive erosion changing rates showed a narrowing trend; mild, moderate and intensive erosion was increasing, with a trend of increased soil erosion; mild and intensive erosion were developing towards moderate erosion and moderate and extremely intensive erosion were progressing towards intensive erosion.

  3. Erosion resistance comparison of alternative surface treatments

    Science.gov (United States)

    Česánek, Z.; Schubert, J.; Houdková, Š.

    2017-05-01

    Erosion is a process characterized by the particle separation and the damage of component functional surfaces. Thermal spraying technology HP/HVOF (High Pressure / High Velocity Oxygen Fuel) is commonly used for protection of component surfaces against erosive wear. Alloy as well as cermet based coatings meet the requirements for high erosion resistance. Wear resistance is in many cases the determining property of required component functioning. The application suitability of coating materials is particularly influenced by different hardness. This paper therefore presents an erosion resistance comparison of alloy and cermet based coatings. The coatings were applied on steel substrates and were subjected to the erosive test using the device for evaluation of material erosion resistance working on the principle of centrifugal erodent flow. Abrasive sand Al2O3 with grain size 212-250 μm was selected as an erosive material. For this purpose, the specimens were prepared by thermal spraying technology HP/HVOF using commercially available powders Stellite 6, NiCrBSi, Cr3C2-25%NiCr, Cr3C2-25%CoNiCrAlY, Hastelloy C-276 and experimental coating TiMoCN-29% Ni. Erosion resistance of evaluated coatings was compared with erosive resistance of 1.4923 high alloyed steel without nitridation and in nitrided state and further with surface treatment using technology PVD. According to the evaluation, the resulting erosive resistance depends not only on the selected erodent and surface protection, but also on the erodent impact angle.

  4. Mapping monthly rainfall erosivity in Europe.

    Science.gov (United States)

    Ballabio, Cristiano; Borrelli, Pasquale; Spinoni, Jonathan; Meusburger, Katrin; Michaelides, Silas; Beguería, Santiago; Klik, Andreas; Petan, Sašo; Janeček, Miloslav; Olsen, Preben; Aalto, Juha; Lakatos, Mónika; Rymszewicz, Anna; Dumitrescu, Alexandru; Tadić, Melita Perčec; Diodato, Nazzareno; Kostalova, Julia; Rousseva, Svetla; Banasik, Kazimierz; Alewell, Christine; Panagos, Panos

    2017-02-01

    Rainfall erosivity as a dynamic factor of soil loss by water erosion is modelled intra-annually for the first time at European scale. The development of Rainfall Erosivity Database at European Scale (REDES) and its 2015 update with the extension to monthly component allowed to develop monthly and seasonal R-factor maps and assess rainfall erosivity both spatially and temporally. During winter months, significant rainfall erosivity is present only in part of the Mediterranean countries. A sudden increase of erosivity occurs in major part of European Union (except Mediterranean basin, western part of Britain and Ireland) in May and the highest values are registered during summer months. Starting from September, R-factor has a decreasing trend. The mean rainfall erosivity in summer is almost 4 times higher (315MJmmha -1 h -1 ) compared to winter (87MJmmha -1 h -1 ). The Cubist model has been selected among various statistical models to perform the spatial interpolation due to its excellent performance, ability to model non-linearity and interpretability. The monthly prediction is an order more difficult than the annual one as it is limited by the number of covariates and, for consistency, the sum of all months has to be close to annual erosivity. The performance of the Cubist models proved to be generally high, resulting in R 2 values between 0.40 and 0.64 in cross-validation. The obtained months show an increasing trend of erosivity occurring from winter to summer starting from western to Eastern Europe. The maps also show a clear delineation of areas with different erosivity seasonal patterns, whose spatial outline was evidenced by cluster analysis. The monthly erosivity maps can be used to develop composite indicators that map both intra-annual variability and concentration of erosive events. Consequently, spatio-temporal mapping of rainfall erosivity permits to identify the months and the areas with highest risk of soil loss where conservation measures should be

  5. Response of roseate tern to a shoreline protection project on Falkner Island, Connecticut

    Science.gov (United States)

    Rogers, C.J.; Spendelow, J.A.; Guilfoyle, Michael P.; Fischer, Richard A.; Pashley, David N.; Lott, Casey A.

    2007-01-01

    Construction was initiated following the 2000 tern breeding season for Phase 1 of a planned two-phase ?Shoreline Protection and Erosion Control Project? at the Falkner Island Unit of the USFWS Stewart B. McKinney National Wildlife Refuge located in Long Island Sound off the coast of Guilford, CT. When the Common Tern (Sterna hirundo) and federally endangered Roseate Tern (S. dougallii) arrived in spring 2001, they encountered several major habitat changes from what had existed in previous years. These changes included: a rock revetment covering most of the former nesting habitat on the beach from the northwestern section around the northern tip and covering about 60% of the eastern side; an elevated 60- ? 4-m shelf covering the beach and lower bank of the southwestern section; and about 2,000 sq m of devegetated areas on top of the island on the northeast side above the revetment, and about one-third of the southern half of the island. The southwest shelf was created by bulldozing and compacting extra construction fill and in situ materials. This shelf differed in internal structure from the main revetment on the north and eastern sections of the island because it lacked the deep internal crevices of the revetment. The deep internal crevices were created from the large stones and boulders (up to 2 tons) used in the construction of the main revetment. Small rock and gravel was used to fill the crevices to within 3 feet (0.9 m) of the surface of the revetment. Because half-buried tires and nest boxes for the six Roseate Tern (Sterna dougallii) sub-colony areas were deployed in similar patterns on the remaining beach, and nest boxes were placed on the newly elevated shelf areas several meters above previous locations on the now-covered beach areas, the distribution of Roseate Tern nests did not change much from 2000 to 2001. However, the movements of Roseate Tern chicks ? in many cases led by their parents towards traditional hiding places ? into the labyrinth of

  6. Meteorological conditions during extreme wind erosion events on heavy soils

    Directory of Open Access Journals (Sweden)

    Bronislava Mužíková

    2010-01-01

    Full Text Available Wind erosion in the Czech Republic conditions poses relatively a lot of danger, especially for the most fertile areas, where agricultural land is more vulnerable due to the large pieces of land and inappropriate crop rotation. This process causes damage to agriculture by loss of topsoil, fertilizers, seeds and crop damage as well as sedimentation in water recipients and on roads. It also has negative impacts on human health (airborne dust. Wind erosion is especially affected by climatic elements (wind, temperature, precipitation and evaporation etc. and soil characteristics (soil type, content of erodible particles, soil moisture. Wind erosion affects mainly light and medium heavy soil. South Moravia is an example of the territories to which this rule does not apply. Although soils in the Carpathian flysch subsoil are mainly heavy, erosion has been causing damage here for many decades. Quite strong dust storms are not rare, especially at the end of winter and in early spring when the soil is not covered by vegetation.Notable cases of dust storms in the area were recorded in local chronicles, and then written in the summary publication by dr. Švehlík. Interest of this publication was focused on the most destructive cases of dust storms in Bílé Karpaty foothills. The aim was to study meteorological conditions during the period before and during the occurrence of dust storms in the area in detail and to find the relationship between weather and the intensity of wind erosion. The data of wind speed and direction, temperature, precipitation and snow were evaluated. In all cases the average daily air temperature and ground air temperature was over the freezing point or closely under it. The temperature generally increased before the dust storm occurrence and it often happened from negative to positive temperature and the soil probably defrosted. Snow cover was very small or there was no snow cover at all. In the course of April wind erosion

  7. Human-induced C erosion and burial across spatial and temporal scales. (Invited)

    Science.gov (United States)

    van oost, K.

    2013-12-01

    Anthropogenic land cover change and soil erosion are tightly coupled: accelerated erosion and deposition of soil are inevitable consequences of the removal of vegetative cover and increased exposure of the soil surface to erosion. A significant portion of the earth surface has now been disturbed and this has locally accelerated erosion 10- to 100-fold. Although there is now growing awareness that the erosion-induced C flux may be an important factor determining global and regional net terrestrial ecosystem C balances, the significance of this disturbance for the past, present and future C cycle remains uncertain. In this paper, we argue that the significance for both past and present C budgets remains poorly quantified due to uncertainty about the contribution of biotic versus erosion-induced C fluxes because of their intrinsically different space and time scales. Carbon erosion research in agro-ecosystems has traditionally focused on short-term processes, i.e. single events to a few decades and longer-term observations of C and sediment dynamics are therefore rare. Likewise, C cycling is typically studied at the profile-scale while erosion processes operate over various spatial scales and whole-watershed approaches are therefore needed. We address this issue here by synthesizing 3 case studies where we report results of a measurement campaign to characterize the erosional control on vertical carbon fluxes from degraded land. First, using signatures in soil sedimentary archives, we integrate the effects of accelerated C erosion across point, hillslope and catchment scale for a temperate river catchment over the period of agriculture to demonstrate that accounting for the non-steady-state C dynamics in geomorphic active systems is pertinent to understand both past and future anthropogenic global change. Secondly, we report year-round soil respiration measurements with high temporal resolution along an erosion gradient on cultivated sloping land in the Chinese Loess

  8. Erosion and stability of a mine soil

    International Nuclear Information System (INIS)

    Wu, T.H.; Stadler, A.T.; Low, C.

    1996-01-01

    Mine soils developed from mine spoils commonly have a wide range of particle size. The slopes of old spoil piles usually are marked by gullies due to years of uncontrolled erosion. These characteristics raise questions about applicability of available theories and models for estimating runoff and erosion. An investigation was made to determine whether available erosion models can work for mine soils and can account for gully erosion. The investigation at an abandoned surface mine consisted of measurement of soil and sediment properties, measurement of runoff and erosion, observations of armor by rock fragments on gully floor, and calculations with available theories of sediment transport and slope stability. The results at this site suggest that (1) predictions with the ANSWERS model have about the same accuracy as those made for agricultural lands; (2) armor provided by rock fragments are temporary as they are periodically removed by debris flows; (3) detachment by rainfall impact is the primary cause of erosion on short steep slopes; and (4) a simplified method can be used for estimating erosion on such slopes

  9. Soft drinks and in vitro dental erosion.

    Science.gov (United States)

    Gravelle, Brent L; Hagen Ii, Ted W; Mayhew, Susan L; Crumpton, Brooks; Sanders, Tyler; Horne, Victoria

    2015-01-01

    The purpose of this investigation was to determine to what extent the in vitro exposure of healthy teeth to various commonly consumed carbonated soft drinks may precipitate dental erosion. Forty-two healthy, extracted, previously unerupted human molars were weighed prior to, during, and after suspension in various sugared and diet or zero-calorie carbonated beverages for 20 days; the specimens were stored at room temperature while being stirred at 275 rpm. The percentage decrease in tooth weight from before to after exposure represented the weight loss due to enamel erosion; values in the experimental groups varied from 3.22% to 44.52% after 20 days' exposure. Data were subjected to analysis of variance and post hoc Scheffe testing at a level of α = 0.05. Nonsugared drinks (diet and zero-calorie) as a whole were more erosive than sugared beverages. A significant positive correlation was found between the amount of titratable acid and percentage of tooth erosion, while a significant negative correlation was revealed between the beverage pH and percentage of tooth erosion. No significant correlations were found between calcium or phosphate ion concentrations and the amount of erosion. It appears that enamel erosion is dependent on not only the beverage flow rate, pH, and amount of titratable acid, but also whether the soft drink is of the diet or zero-calorie variety, which reflects the type of artificial sweetener present.

  10. Lithosphere erosion atop mantle plumes

    Science.gov (United States)

    Agrusta, R.; Arcay, D.; Tommasi, A.

    2012-12-01

    Mantle plumes are traditionally proposed to play an important role in lithosphere erosion. Seismic images beneath Hawaii and Cape Verde show a lithosphere-asthenosphere-boundary (LAB) up to 50 km shallower than the surroundings. However, numerical models show that unless the plate is stationary the thermo-mechanical erosion of the lithosphere does not exceed 30 km. We use 2D petrological-thermo-mechanical numerical models based on a finite-difference method on a staggered grid and marker in cell method to study the role of partial melting on the plume-lithosphere interaction. A homogeneous peridotite composition with a Newtonian temperature- and pressure-dependent viscosity is used to simulate both the plate and the convective mantle. A constant velocity, ranging from 5 to 12.5 cm/yr, is imposed at the top of the plate. Plumes are created by imposing a thermal anomaly of 150 to 350 K on a 50 km wide domain at the base of the model (700 km depth); the plate right above the thermal anomaly is 40 Myr old. Partial melting is modeled using batch-melting solidus and liquidus in anhydrous conditions. We model the progressive depletion of peridotite and its effect on partial melting by assuming that the melting degree only strictly increases through time. Melt is accumulated until a porosity threshold is reached and the melt in excess is then extracted. The rheology of the partially molten peridotite is determined using viscous constitutive relationship based on a contiguity model, which enables to take into account the effects of grain-scale melt distribution. Above a threshold of 1%, melt is instantaneously extracted. The density varies as a function of partial melting degree and extraction. Besides, we analyze the kinematics of the plume as it impacts a moving plate, the dynamics of time-dependent small-scale convection (SSC) instabilities developing in the low-viscosity layer formed by spreading of hot plume material at the lithosphere base, and the resulting thermal

  11. Modeling erosion and accretion along the Illinois Lake Michigan shore using integrated airborne, waterborne and ground-based method

    Science.gov (United States)

    Mwakanyamale, K. E.; Brown, S.; Larson, T. H.; Theuerkauf, E.; Ntarlagiannis, D.; Phillips, A.; Anderson, A.

    2017-12-01

    Sediment distribution at the Illinois Lake Michigan shoreline is constantly changing in response to increased human activities and complex natural coastal processes associated with wave action, short and long term fluctuations in lake level, and the influence of coastal ice. Understanding changes to volume, distribution and thickness of sand along the shore through time, is essential for modeling shoreline changes and predicting changes due to extreme weather events and lake-level fluctuation. The use of helicopter transient electromagnetic (HTEM) method and integration with ground-based and waterborne geophysical and geologic methods provides high resolution spatial rich data required for modeling the extent of erosion and accretion at this dynamic coastal system. Analysis and interpretation of HTEM, ground and waterborne geophysical and geological data identify spatial distribution and thickness of beach and lake-bottom sand. The results provide information on existence of littoral sand deposits and identify coastal hazards such as lakebed down-cutting that occurs in sand-starved areas.

  12. Estimating surface soil erosion losses and mapping erosion risk for Yusufeli micro-catchment (Artvin

    Directory of Open Access Journals (Sweden)

    Mustafa Tüfekçioğlu

    2016-10-01

    Full Text Available Sheet erosion, one of the most important types of water erosion, takes place on the top soil as tiny soil layer movement that affects lake and stream ecosystem. This type of erosion is very important because the productive soil layer on the top soil can be lost in a very short period of time. The goal of this study was to quantify the amount of surface (sheet and rill soil erosion, and to identify areas under high erosion risk within the study area at Yusufeli province in Artvin by using RUSLE erosion methodology. As a result of the study it was found that the average annual potential soil loss by surface erosion was 3.6 ton ha-1yr-1. Additionally, the maps produced and conclusions reached by the study revealed that the areas of high erosion risk were identified spatially and measures to control erosion on some of these high risk areas can be possible with appropriate erosion control techniques.

  13. Interrill soil erosion processes on steep slopes

    Science.gov (United States)

    Zhang, X. C. (John); Wang, Z. L.

    2017-05-01

    To date interrill erosion processes are not fully understood under different rainfall and soil conditions. The objectives are to 1) identify the interrill erosion regime and limiting process under the study condition, 2) characterize the interactive effects of rainfall intensity and flow depth on sediment transport competency and mode, and 3) develop a lumped interrill erosion model. A loess loam soil with 39% sand and 45% silt was packed to flumes and exposed to simulated rainfall. A complete factorial design with three factors was used, which included rainfall intensity (48, 62, 102, 149, and 170 mm h-1), slope gradient (17.6, 26.8, 36.4, 46.6, and 57.7%), and slope length (0.4, 0.8, 1.2, 1.6, and 2 m). Rain splash, sediment discharge in runoff, and flow velocity were measured. Results showed that rainfall intensity played a dual role not only in detaching soil materials but also in enhancing sediment transport. Sediment transport was the process limiting interrill erosion rate under the study condition. Two major sediment transport modes were identified: rainfall-driven rolling/creeping and flow-driven rolling/sliding. The relative importance of each mode was largely determined by flow depth. The competence of the flow in transporting sediment decreased downslope as flow depth increased due to increased dissipation of raindrop energy. The optimal mean flow depth for the maximal interrill erosion rates was erosion rate. The negative correlation seemed stronger for heavier rains, indicating the cushioning effects of flow depth. Lumped interrill erosion models, developed from short slopes, are likely to overestimate erosion rates. Given transport as the limiting process, the so called erodibility value, estimated with those models, is indeed sediment transportability under the study condition. The effects of slope length on interrill erosion regimes need to be studied further under a wider range of conditions.

  14. Sputtering erosion of fusion reactor cavity walls

    International Nuclear Information System (INIS)

    Bohachevsky, I.O.; Hafer, J.F.

    1976-12-01

    Devised are functions that describe the empirically and theoretically determined behavior of sputtering coefficients. These functions are used in a computer program that calculates erosion rates and total erosion of surfaces bombarded by ion beams of specified intensity. Presented here are analytic expressions that describe the effects of ion energy and angle of incidence, computational procedures, and results. Results, computed for alpha, triton, deuteron, and heavy-metal ions bombarding niobium, carbon, and iron surfaces indicate that for pellets with heavy metal shell structures sputtering erosion should be carefully considered and properly designed for

  15. [Gastric band erosion: Alternative management].

    Science.gov (United States)

    Echaverry-Navarrete, Denis José; Maldonado-Vázquez, Angélica; Cortes-Romano, Pablo; Cabrera-Jardines, Ricardo; Mondragón-Pinzón, Erwin Eduardo; Castillo-González, Federico Armando

    2015-01-01

    Obesity is a public health problem, for which the prevalence has increased worldwide at an alarming rate, affecting 1.7 billion people in the world. To describe the technique employed in incomplete penetration of gastric band where endoscopic management and/or primary closure is not feasible. Laparoscopic removal of gastric band was performed in five patients with incomplete penetrance using Foley catheterization in the perforation site that could lead to the development of a gastro-cutaneous fistula. The cases presented include a leak that required surgical lavage with satisfactory outcome, and one patient developed stenosis 3 years after surgical management, which was resolved endoscopically. In all cases, the penetration site closed spontaneously. Gastric band erosion has been reported in 3.4% of cases. The reason for inserting a catheter is to create a controlled gastro-cutaneous fistula, allowing spontaneous closure. Various techniques have been described: the totally endoscopic, hybrid techniques (endoscopic/laparoscopic) and completely laparoscopic. A technique is described here that is useful and successful in cases where the above-described treatments are not viable. Copyright © 2015. Published by Masson Doyma México S.A.

  16. Detection of decadal shoreline changes along Dhamara and Maipura coast, Odisha, India

    Digital Repository Service at National Institute of Oceanography (India)

    ManiMurali, R.; Dhiman, R.; Jayakumar, S.; Ilangovan, D.; Vethamony, P.

    and accretion rate of the coastal area is essential for the selection of different types of coastal structures. Erosion and accretion index is prepared for Kuwait coast (Neelamani and Uddin, 2013). This study is helpful for identifying better sites... making for the implementation of protective measures. A research was 2 carried out to establish soil loss rates due to erosion by water and wind in protected natural areas, to predict the environmental effects of different land uses (Martinez...

  17. Assessing the Impacts of Coastal Erosion, Passive Inundation, and Dynamic Wave Inundation under Higher Sea Level in Hawaii

    Science.gov (United States)

    Fletcher, C. H., II; Anderson, T. R.; Barbee, M.

    2016-02-01

    The Interagency Climate Adaptation Committee was created by the Hawaii Legislature and Act 83 to investigate community vulnerability to sea level rise (SLR) in Hawaii. To support the committee, we model: (1) coastal erosion; (2) wave inundation; and (3) passive flooding based on the IPCC RCP 8.5 model of SLR over the 21st Century. Erosion is estimated using a hybrid equilibrium profile model (Anderson et al., 2015) that combines historical rates of shoreline change with a Bruun-type model of beach profile adjustment to SLR. Results are mapped to GIS layers showing the 80th-percentile probability of potential shoreline change at years 2030, 2050, 2075, and 2100. Seasonal wave inundation is modeled using XBeach (Deltares) in non-hydrostatic mode. A seasonal high wave event (Ho=2.3 m, Tp=16 s, Dir=200° for the Ewa test site) is simulated at each heightened sea level (corresponding to the years previously mentioned); which accounts for changes in wave dynamics due to the change in water level over the reef platform. We use a bare earth topo/bathy digital elevation model derived from USACE 2013 LIDAR data surveys and multi-beam and side-scan sonar data from the Hawaii Mapping Research Group at the University of Hawaii. Waves are modeled along one-dimensional profiles spaced 20 m apart. From this, we develop a gridded product of water depth and velocity for use in a vulnerability analysis. Passive flooding due to SLR, the so-called "bath tub" method, is used as a proxy for groundwater inundation of low-lying coastal plains (where the majority of development in Hawaii takes place). Modeling results are used with other available data in the FEMA Hazus software to estimate exposure and loss of upland assets. Here, we present the three modeling products and a summary of the larger hazard assessment for the Ewa area on the Hawaiian Island of Oahu.

  18. Characterizing Low-Z erosion and deposition in the DIII-D divertor using aluminum

    Directory of Open Access Journals (Sweden)

    C.P. Chrobak

    2017-08-01

    Full Text Available We present measurements and modeling of aluminum erosion and redeposition experiments in separate helium and deuterium low power, low density L-mode plasmas at the outer divertor strike point of DIII-D to provide a low-Z material benchmark dataset for tokamak erosion-deposition modeling codes. Coatings of Al ∼100nm thick were applied to ideal (smooth and realistic (rough surfaces and exposed to repeat plasma discharges using the DiMES probe. Redeposition in all cases was primarily in the downstream toroidal field direction, evident from both in-situ spectroscopic and post-mortem non-spectroscopic measurements. The gross Al erosion yield was estimated from film thickness change measurements of small area samples, and was found to be ∼40–70% of the expected erosion yield based on theoretical physical sputtering yields after including sputtering by a 1–3% carbon impurity. The multi-step redeposition and re-erosion process, and hence the measured net erosion yield and material migration patterns, were found to be influenced by the surface roughness and/or porosity. A time-dependent model of material migration accounting for deposit accumulation in hidden areas was developed to reproduce the measurements in these experiments and determine a redeposition probability distribution function for sputtered atoms.

  19. Recent Niger Delta shoreline response to Niger River hydrology: Conflict between forces of Nature and Humans

    Science.gov (United States)

    Dada, Olusegun A.; Li, Guangxue; Qiao, Lulu; Asiwaju-Bello, Yinusa Ayodele; Anifowose, Adeleye Yekini Biodun

    2018-03-01

    The Niger River Delta is a prolific hydrocarbon province and a mega-delta of economic and environmental relevance. To understand patterns of its recent shoreline evolution (1923-2013) in response to the Niger River hydrology, and establish the role played by forces of Nature and Human, available topographic and satellite remote sensing data, combined with hydro-climatic (rainfall and runoff) data were analyzed. Results indicate that the entire delta coastline dramatically receded: 82% of the >400 km-long coast retreated, during the period 1950-1987; and 69% between 2007 and 2012. Prior to 1950, there was a continuation of seaward advancement along 53-74% of the delta coast. The 1950-1987 shoreline recession coincided with occurrences of two major events in the Niger River basin; these are downward trends in hydro-climatic conditions (the great droughts of the 1970s-1980s), and dam construction on the Lower Niger River at Kainji (1964-1968). The 2007-2012 event corresponded with the extensive channel dredging during 2009-2012 in the Lower Niger River from the coastal town of Warri in the south to Baro in the north. Remarkably, the largest net shoreline advancement recorded in 74% of the entire delta area occurred within a year (2012-2013), which we link to increased sediment supply to the coast caused by the '2012' floods, adjudged the worst floods in the entire Niger River Basin in the last few decades. With both anthropogenic and environmental factors inducing delta evolution, only innovative river and coastal management can determine the fortune of the future coastal development of the Niger Delta.

  20. Drivers of shoreline change in atoll reef islands of the Tuamotu Archipelago, French Polynesia

    Science.gov (United States)

    Duvat, Virginie K. E.; Salvat, Bernard; Salmon, Camille

    2017-11-01

    This paper increases by around 30% the sample of atoll reef islands studied from a shoreline change perspective, and covers an under-studied geographical area, i.e. the French Tuamotu Archipelago. It brings new irrefutable evidences on the persistence of reef islands over the last decades, as 77% of the 111 study islands exhibited areal stability while 15% and 8% showed expansion and contraction, respectively. This paper also addresses a key research gap by interpreting the major local drivers controlling recent shoreline and island change, i.e. tropical cyclones and seasonal swells, sediment supply by coral reefs and human activities. The 1983 tropical cyclones had contrasting impacts, depending on the shoreline indicator considered. While they generally caused a marked retreat of the stability line, the base of the beach advanced at some locations, as a result of either sediment reworking or fresh sediment inputs. The post-cyclone fair weather period was characterised by reversed trends indicating island morphological readjustment. Cyclonic waves contributed to island upwards growth, which reached up to 1 m in places, through the transfer of sediments up onto the island surface. However, the steep outer slopes of atolls limited sediment transfers to the reef flat and island system. We found that 57% of the study islands are disturbed by human activities, including 'rural' and uninhabited islands. Twenty-six percent of these islands have lost the capacity to respond to ocean-climate related pressures, including the 'capital' islands concentrating atolls' population, infrastructures and economic activities, which is preoccupying under climate change.

  1. Sheen surveillance: An environmental monitoring program subsequent to the 1989 Exxon Valdez shoreline cleanup

    International Nuclear Information System (INIS)

    Taft, D.G.; Egging, D.E.; Kuhn, H.A.

    1995-01-01

    In the fall of 1989, an aerial surveillance program was implemented to locate oil sheens (or slicks) originating from shorelines affected by the Exxon Valdez spill. The objectives of the program were to identify any oil on the water that warranted response and to identify those sections of shoreline that would be priority candidates for further cleanup in 1990. The program initially surveyed the entire affected area, but, because proportionally fewer sheens were spotted in the Gulf of Alaska, the program was refocused on Prince Williams Sound in early 1990. The surveillance program consisted of frequent low-altitude flights with trained observers in a deHavilland Twin otter outfitted with observation ports and communication equipment. The primary surveillance technique used was direct visual observation. Other techniques, including photography, were tested but proved less effective. The flights targeted all shorelines of concern, particularly those near fishing, subsistence, and recreational areas.the observers attempted to locate all sheens, estimate their size and color, ad identify the source of the oil found in the sheen. Size and color were used to estimate the volume of oil in each sheen. Samples were collected whenever possible during the summer of 1990 using a floating Teflon trademark sampling device that was developed for easy deployment from a boat or the pontoon of a float plane. Forty four samples were analyzed by UV-fluorescence spectroscopy. Eleven of these samples were also analyzed by GC/MS. In general, the analyses confirmed the observers' judgment of source. 16 refs., 9 figs., 2 tabs

  2. Puerto Rico Relative Erosion Potential (REP) - 2000

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The relative erosion potential is an indicator of sediment and pollution runoff from land based on slope, soil type, land cover (circa 2000) and (maximum monthly)...

  3. Compressor Impeller Erosion Resistant Surface Treatment

    National Research Council Canada - National Science Library

    Riley, Michael

    2000-01-01

    ...). Coatings based on tungsten carbide tantalum carbide. titanium carbide all with a cobalt matrix were evaluated for high velocity particle erosion in conventional wear test studies as well as wind tunnel testing...

  4. Vegetated Reinforced Soil Slope Streambank Erosion Control

    National Research Council Canada - National Science Library

    Sotir, Robbin B; Fischenich, J. C

    2003-01-01

    ...). The VRSS system is useful for the immediate repair or prevention of deeper failures providing a structurally sound system with soil reinforcement, drainage and erosion control typically on steepened...

  5. The erosive potential of candy sprays.

    Science.gov (United States)

    Gambon, D L; Brand, H S; Nieuw Amerongen, A V

    2009-05-23

    To determine the erosive potential of seven different commercially available candy sprays in vitro and in vivo. The erosive potential was determined in vitro by measuring the pH and neutralisable acidity. The salivary pH and flow rate were measured in healthy volunteers after administration of a single dose of candy spray. Candy sprays have an extremely low pH (1.9-2.3) and a neutralisable acidity varying between 0.8-1.6 ml of 0.25M NaOH. In vivo, candy sprays induced a short-term 3.0 to 5.8-fold increase in salivary flow rate with a concomitant drop in salivary pH to values between 4.4 and 5.8. All candy sprays tested have an erosive potential. This information is of use for clinicians counselling juvenile patients with dental erosion.

  6. Puerto Rico Relative Vulnerability to Erosion

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Physical factors, such as the slope of the land, the texture of the soil, and the precipitation regime influence erosion in an area. Parts of Puerto Rico are very...

  7. Rain Erosion/Measurement Impact Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The FARM Rain Erosion/Impact Measurement Lab develops solutions for deficiencies in the ability of materials, coatings and designs to withstand a severe operational...

  8. Puerto Rico Relative Erosion Potential (REP) - 1990

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The relative erosion potential is an indicator of sediment and pollution runoff from land based on slope, soil type, land cover (circa 1990) and (maximum monthly)...

  9. Emission Facilities - Erosion & Sediment Control Facilities

    Data.gov (United States)

    NSGIC Education | GIS Inventory — An Erosion and Sediment Control Facility is a DEP primary facility type related to the Water Pollution Control program. The following sub-facility types related to...

  10. Understanding and Predicting Gun Barrel Erosion

    National Research Council Canada - National Science Library

    Johnston, Ian A

    2005-01-01

    The Australian Defence Force will soon have to contend with gun barrel erosion issues arising from the use of new low-vulnerability gun propellants, the acquisition of new ammunition and gun systems...

  11. Evaluation of erosion and siltation control fabrics.

    Science.gov (United States)

    1976-01-01

    New proprietary products in three areas of siltation and erosion control were evaluated. Hold/Gro and Griffnet materials were evaluated for use as slope stabilizers and were compared with the Department's present method of straw tacked with an asphal...

  12. The role of fluoride in erosion therapy.

    Science.gov (United States)

    Huysmans, Marie-Charlotte; Young, Alix; Ganss, Carolina

    2014-01-01

    The role of fluoride in erosion therapy has long been questioned. However, recent research has yielded positive results. In this chapter, an overview of the literature is provided regarding the application of fluorides in the prevention and treatment of erosion and erosive wear. The results are presented and discussed for different fluoride sources such as monovalent and polyvalent fluorides, and for different vehicles such as toothpastes, solutions and rinses, as well as varnishes and gels. It is concluded that fluoride applications are very likely to be of use in the preventive treatment of erosive wear. Most promising are high-concentration, acidic formulations and the polyvalent fluoride sources, with the best evidence available for stannous fluoride. However, the evidence base for clinical effectiveness is still small. © 2014 S. Karger AG, Basel.

  13. Paradiaphyseal calcific tendinitis with cortical bone erosion.

    Science.gov (United States)

    Fritz, P; Bardin, T; Laredo, J D; Ziza, J M; D'Anglejan, G; Lansaman, J; Bucki, B; Forest, M; Kuntz, D

    1994-05-01

    To determine the clinical, radiologic, and histologic features of calcific tendinitis with cortical bone erosion. The records of 6 patients with paradiaphyseal calcific tendinitis and adjacent bone cortex erosion were reviewed. Calcific tendinitis involved the linea aspera in 4 patients, the bicipital groove in 1 patient, and the deltoid insertion in another. Calcium deposits were associated with cortical bone erosions, revealed on plain radiographs in 4 patients and computed tomography scans in 2. Bone scans were performed in 2 patients and showed local hyperfixation of the isotope. In 4 patients, suspicion of a neoplasm led to a biopsy. Calcium deposits appeared to be surrounded by a foreign body reaction with numerous giant cells. Apatite crystals were identified by transmission electron microscopy and elemental analysis in 1 surgical sample. Paradiaphyseal calcific tendinitis with cortical bone erosion is an uncommon presentation of apatite deposition disease.

  14. Application of the AMBUR R package for spatio-temporal analysis of shoreline change: Jekyll Island, Georgia, USA

    Science.gov (United States)

    Jackson, Chester W.; Alexander, Clark R.; Bush, David M.

    2012-04-01

    The AMBUR (Analyzing Moving Boundaries Using R) package for the R software environment provides a collection of functions for assisting with analyzing and visualizing historical shoreline change. The package allows import and export of geospatial data in ESRI shapefile format, which is compatible with most commercial and open-source GIS software. The "baseline and transect" method is the primary technique used to quantify distances and rates of shoreline movement, and to detect classification changes across time. Along with the traditional "perpendicular" transect method, two new transect methods, "near" and "filtered," assist with quantifying changes along curved shorelines that are problematic for perpendicular transect methods. Output from the analyses includes data tables, graphics, and geospatial data, which are useful in rapidly assessing trends and potential errors in the dataset. A forecasting function also allows the user to estimate the future location of the shoreline and store the results in a shapefile. Other utilities and tools provided in the package assist with preparing and manipulating geospatial data, error checking, and generating supporting graphics and shapefiles. The package can be customized to perform additional statistical, graphical, and geospatial functions, and, it is capable of analyzing the movement of any boundary (e.g., shorelines, glacier terminus, fire edge, and marine and terrestrial ecozones).

  15. Rapid postglacial shoreline changes in the western Gulf of Maine and the Paleo-Indian environment

    Science.gov (United States)

    Oldale, Robert N.

    1985-01-01

    Rapid shoreline regression and transgression along the western Gulf of Maine between 13,000 and 9000 years B.P. are inferred to have produced a nearshore marine environment low in biologic productivity. Paleo-Indians living near the coast of the Gulf were probably forced to rely on nonmarine resources landward of the late-glacial marine limit. Thus, Paleo-Indian sites of the time period in question may be restricted in the region between the marine limit and the postglacial low sea-level stand, or may be altogether absent.

  16. Laboratory experiments on stranding of Anopheles larvae under different shoreline environmental conditions.

    Science.gov (United States)

    Endo, Noriko; Kiszewski, Anthony E; Eltahir, Elfatih A B

    2015-01-21

    One of the concerns for future malaria epidemiology is the elevated risks of malaria around an ever-increasing number of dam sites. Controlling larval populations around reservoirs behind dams by manipulating the water levels of reservoirs could be an effective and sustainable measure for suppressing malaria epidemics; however, the effectiveness of the water-level manipulation and the contributing mechanisms have been poorly studied. In this paper, we focus on how water recession may lead to larval stranding. Larvae of An. albimanus were studied to assess their susceptibility to stranding under different conditions representing reservoir shoreline environments in an experimental tank (50 cm × 100 cm). The tank was initially seeded with 80 larvae uniformly, and the numbers of larvae stranded on land and remaining in water were counted (summed up to recovered larvae), following the recession of water. The vertical water drawdown rate and the proportion of stranded larvae to recovered larvae (p) were measured. Shoreline conditions tested were inclinations of shore slopes (2% and 4%) and surface types (smooth, vegetated, rough, ridged). For the 2% slopes, the proportions of stranded larvae (p) increased by about 0.002, 0.004, and 0.010 as the water drawdown rate increased by a centimeter per day on the smooth, rough, and vegetated surfaces, respectively. p for the 4% slopes were smaller than for the 2% slopes. Unlike other surface conditions, no significant correlation between p and the drawdown rate was observed on the ridged surface. Larger proportions of Anopheles larvae were stranded at higher water drawdown rates, on smaller reservoir slopes, and under rough or vegetated surface conditions. Three mechanisms of larval stranding were identified: falling behind shoreline recession; entrapment in small closed water bodies; and inhabitation in shallow areas. Depending on the local vectors of Anopheles mosquitoes, the conditions for their favorable breeding sites

  17. Monitoring shoreline environment of Paradip, east coast of India using remote sensing

    Digital Repository Service at National Institute of Oceanography (India)

    ManiMurali, R.; Shrivastava, D.; Vethamony, P.

    and most popular tool to de- tect shoreline changes due to synoptic and repetitive data coverage, high resolution, multi-spectral database, near orthogonal projection and its cost effectiveness in com- parison to conventional techniques 1,2,5–7 . El... area of Karachi, Pakistan. Adv. Space Res., 2004, 33, 1200–1205. RESEARCH COMMUNICATIONS CURRENT SCIENCE, VOL. 97, NO. 1, 10 JULY 2009 84 *For correspondence. (e-mail: dr.venkatbh@rediffmail.com) 6. White Kevin, Hesham M. El Asmar, Monitoring...

  18. Tracing sediment sources in the Williams River catchment using caesium-137 and heavy metals: towards an assessment of the relative importance of surface erosion and gully erosion

    International Nuclear Information System (INIS)

    Krause, A.K.; Kalma, J.D.; Loughran, R.J.

    1999-01-01

    Recent sediment sourcing in the 1175km 2 Williams River catchment near Newcastle, NSW, has involved the use of caesium-137 ( 137 Cs) and heavy metals to identify zones of erosion and estimate erosion rates. Sediment sources to the Williams River include sheet erosion from forested and grazed lands, stream channels (especially banks), gullies and roads. The fallout environmental radioisotope 137 Cs was used to assess the erosion status of five vegetated slopes using soil sampling along transects. The net loss or gain of 137 Cs at each sampling point was compared with the 137 Cs level at a reference site at the slope crest. Net soil loss at each point was calculated from an Australian regression model relating net soil loss from runoff-erosion plots to 137 Cs deficit in soils (n=34; r=0.84). Net soil gain was calculated using the regression model in reverse mode. A weighted net soil loss (or gain) was then calculated for each slope transect. Results showed low net soil loss, ranging from zero to 0.64 t ha -1 yr 1 , suggesting that slopes were not major contributors of sediment to the Williams River. A small sub-catchment south of Wirragulla Hill, typical of the lower Williams region, was selected for more detailed tracing of sediment sources. The catchment contains gullies, sheet-erosion exposed sub-soil, grassland and one unsealed road. Heavy metals and 137 Cs have been used to fingerprint the sources, and these measurements will be compared with suspended sediment collected from drainage water in the creek. Only preliminary results have been obtained for this component of the study. The paper will assess these two approaches for the identification of sediment sources and discuss practical applications in water resources management

  19. Soil erosion - a local and national problem

    Science.gov (United States)

    C.G. Bates; O.R. Zeasman

    1930-01-01

    The erosion of soils through the action of rain water and that from melting snow is almost universal in its occurrence. The gradual erosion and levelling of any country is inevitable, being a process which has gone on as long as there has been free water on the face of the earth. Nevertheless, this process is an extremely slow one where the landscape is naturally well...

  20. Natural and anthropogenic rates of soil erosion

    Directory of Open Access Journals (Sweden)

    Mark A. Nearing

    2017-06-01

    Full Text Available Regions of land that are brought into crop production from native vegetation typically undergo a period of soil erosion instability, and long term erosion rates are greater than for natural lands as long as the land continues being used for crop production. Average rates of soil erosion under natural, non-cropped conditions have been documented to be less than 2 Mg ha−1 yr−1. On-site rates of erosion of lands under cultivation over large cropland areas, such as in the United States, have been documented to be on the order of 6 Mg ha−1 yr−1 or more. In northeastern China, lands that were brought into production during the last century are thought to have average rates of erosion over this large area of as much as 15 Mg ha−1 yr−1 or more. Broadly applied soil conservation practices, and in particular conservation tillage and no-till cropping, have been found to be effective in reducing rates of erosion, as was seen in the United States when the average rates of erosion on cropped lands decreased from on the order of 9 Mg ha−1 yr−1 to 6 or 7 Mg ha−1 yr−1 between 1982 and 2002, coincident with the widespread adoption of new conservation tillage and residue management practices. Taking cropped lands out of production and restoring them to perennial plant cover, as was done in areas of the United States under the Conservation Reserve Program, is thought to reduce average erosion rates to approximately 1 Mg ha−1 yr−1 or less on those lands.