WorldWideScience

Sample records for pm10 air pollution

  1. Regression trees modeling and forecasting of PM10 air pollution in urban areas

    Science.gov (United States)

    Stoimenova, M.; Voynikova, D.; Ivanov, A.; Gocheva-Ilieva, S.; Iliev, I.

    2017-10-01

    Fine particulate matter (PM10) air pollution is a serious problem affecting the health of the population in many Bulgarian cities. As an example, the object of this study is the pollution with PM10 of the town of Pleven, Northern Bulgaria. The measured concentrations of this air pollutant for this city consistently exceeded the permissible limits set by European and national legislation. Based on data for the last 6 years (2011-2016), the analysis shows that this applies both to the daily limit of 50 micrograms per cubic meter and the allowable number of daily concentration exceedances to 35 per year. Also, the average annual concentration of PM10 exceeded the prescribed norm of no more than 40 micrograms per cubic meter. The aim of this work is to build high performance mathematical models for effective prediction and forecasting the level of PM10 pollution. The study was conducted with the powerful flexible data mining technique Classification and Regression Trees (CART). The values of PM10 were fitted with respect to meteorological data such as maximum and minimum air temperature, relative humidity, wind speed and direction and others, as well as with time and autoregressive variables. As a result the obtained CART models demonstrate high predictive ability and fit the actual data with up to 80%. The best models were applied for forecasting the level pollution for 3 to 7 days ahead. An interpretation of the modeling results is presented.

  2. Identification of PM10 air pollution origins at a rural background site

    Science.gov (United States)

    Reizer, Magdalena; Orza, José A. G.

    2018-01-01

    Trajectory cluster analysis and concentration weighted trajectory (CWT) approach have been applied to investigate the origins of PM10 air pollution recorded at a rural background site in North-eastern Poland (Diabla Góra). Air mass back-trajectories used in this study have been computed with the Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) model for a 10-year period of 2006-2015. A cluster analysis grouped back-trajectories into 7 clusters. Most of the trajectories correspond to fast and moderately moving westerly and northerly flows (45% and 25% of the cases, respectively). However, significantly higher PM10 concentrations were observed for slow moving easterly (11%) and southerly (20%) air masses. The CWT analysis shows that high PM10 levels are observed at Diabla Góra site when air masses are originated and passed over the heavily industrialized areas in Central-Eastern Europe located to the south and south-east of the site.

  3. Air Pollution Quality Index (AQI and Density of PM1, PM2.5 and PM10 in the Air of Qom

    Directory of Open Access Journals (Sweden)

    Safdari M

    2011-06-01

    Full Text Available Background and Objectives: Air pollution has broad social, economical, political and technical aspects. one of the major issues in this regard is taking measures to prevent its increase. Since suspended particles are among the standard pollutants, the present study was carried out with the aim of measuring the amounts of these particles.Methods: In the present study, the suspended particles ( PM1, PM2.5 and PM10 were measured at two sites in Qom city. For each of them, 60 samples were selected with the Enviro Check during five consecutive months during summer (2 months and fall.Results: During sampling, PM10 in the period between October 22'th to November 22nd 2007 had the maximum amount with the mean of 117µg/m3 and in the period between September 22'th to October 22nd 2007 it had the minimum amount with the mean of 83µg/m3. PM2.5 in the period between November 22nd to December 22nd 2007 with the mean of 33µg/m3 had the maximum amount and in the period between July 22nd to October 22nd 2007 it had the minimum amount with the mean of 8µg/m3. Conclusion: Based on the findings of this study, the densities of suspended particles PM1, PM2.5 and PM10 were below the standard levels on most occasions. The amounts of AQI for them were normal and acceptable.

  4. Spatiotemporal Characteristics of Air Pollutants (PM10, PM2.5, SO2, NO2, O3, and CO in the Inland Basin City of Chengdu, Southwest China

    Directory of Open Access Journals (Sweden)

    Kuang Xiao

    2018-02-01

    Full Text Available Most cities in China are experiencing severe air pollution due to rapid economic development and accelerated urbanization. Long-term air pollution data with high temporal and spatial resolutions are needed to support research into physical and chemical processes that affect air quality, and the corresponding health risks. For the first time, data on PM10, PM2.5, SO2, NO2, O3 and CO concentrations in 23 ambient air quality automatic monitoring stations and routine meteorological were collected between January 2014 and December 2016 to determine the spatial and temporal variation in these pollutants and influencing factors in Chengdu. The annual mean concentrations of PM2.5 and PM10 exceeded the standard of Chinese Ambient Air Quality and World Health Organization guidelines standards at all of the stations. The concentrations of PM10, PM2.5, SO2 and CO decreased from 2014 to 2016, and the NO2 level was stable, whereas the O3 level increased markedly during this period. The air pollution characteristics in Chengdu showed simultaneously high PM concentrations and O3. High PM concentrations were mainly observed in the middle region of Chengdu and may have been due to the joint effects of industrial and vehicle emissions. Ozone pollution was mainly due to vehicle emissions in the downtown area, and industry had a more important effect on O3 in the northern area with fewer vehicles. The concentrations of PM10, PM2.5, NO2 and CO were highest in winter and lowest in summer; the highest SO2 concentration was also observed in winter and was lowest in autumn, whereas the O3 concentration peaked in summer. Haze pollution can easily form under the weather conditions of static wind, low temperature and relative humidity, and high surface pressure inside Chengdu. In contrast, severe ozone pollution is often associated with high temperature.

  5. Characterisation and quantification of the sources of PM10 during air pollution episodes in the UK

    International Nuclear Information System (INIS)

    Muir, David; Longhurst, J.W.S.; Tubb, A.

    2006-01-01

    Data for concentrations of PM 10 and gaseous pollutants from sites in the UK Automatic Urban and Rural Network have been examined during periods of elevated concentrations of PM 10 . The ratios of concentrations of PM 10 to those of the other pollutants were used to determine the most probable source of the additional particles. The hypothesis is that because the concentrations of PM 10 were divided by those of the other pollutants, the ratio should decrease when PM 10 and the other pollutants have a common source. Conversely, the ratio should increase when the sources are different. During episodes where road traffic was the most probable source of the additional particles, the ratios of concentrations of PM 10 to carbon monoxide and oxides of nitrogen did decrease, but the comparable ratios for sulphur dioxide and ozone increased. In contrast, during episodes known to have been caused by construction activity, all these ratios increased. This is taken to show that the basic hypothesis is valid. For prolonged episodes, it was possible to use data averaged over the total duration of the episode for the purposes of source identification. For sporadic construction, or other short-duration episodes, it was necessary to use time series data. The data have also been used to calculate the differences between hourly average concentrations of pollutants measured during episodes and long-term hourly average concentrations. These have been used to model the additional PM 10 during air pollution episodes associated with construction activities and road traffic emissions. This confirms the lack of relationship between PM 10 and other pollutants during construction works. During episodes arising from road traffic emissions, there was good agreement between measured and modelled additional concentrations of PM 10 when an appropriate factor, F, related to the contribution of road traffic emissions to PM 10 at different site types was applied. The values used were 0.2 (Suburban

  6. Assessment of social losses of pollution's health caused by man-made pollution of atmospheric air with emissions of particulate matters (PM10

    Directory of Open Access Journals (Sweden)

    Turos Ye.I.

    2017-04-01

    Full Text Available According to available estimates, about 3% of lethal outcomes from cardiac-pulmonary pathology and 5% from lung cancer are related to the impact of patriculate matters (PM. In the course of the study there were assessed social losses of population’s health (additional death cases caused by risk conditions of atmospheric air pollution with PM of various air-dynamic diameter (PM10, proper to emissions of various industrial enterprises. It was established that 90% of population of cities under study live under high exposures (≥50 µg/m3 health and risks for population (IRM=10-3÷10-4, caused by PM10 emissions. Results showed that metallurgical industry is responsible for 7,2 to 2193 additional mortality cases. The impact of machine building enterprises – from 0.06 to 21 cases; coke and chemical – from 1.5 to 36 cases; mining – from 1.1 to 14,6 cases. The findings revealed 0.6 % increase in lifetime mortality for each 10 µg/m3 in 24-hour average PM10 concentration. Based on research outcomes, a set of instruments was developed for implementation of air pollution risk management programs aimed at mitigation of health risks from (PM10 in highly exposed groups.

  7. Air Pollution Quality Index (AQI and Density of PM1, PM2.5 and PM10 in the Air of Qom

    Directory of Open Access Journals (Sweden)

    M Azizifar

    2012-05-01

    Full Text Available

    Background and Objectives: Air pollution has broad social, economical, political and technical aspects. one of the major issues in this regard is taking measures to prevent its increase. Since suspended particles are among the standard pollutants, the present study was carried out with the aim of measuring the amounts of these particles.

     

    Methods: In the present study, the suspended particles ( PM1, PM2.5 and PM10 were measured at two sites in Qom city. For each of them, 60 samples were selected with the Enviro Check during five consecutive months during summer (2 months and fall.

     

    Results: During sampling, PM10 in the period between October 22'th to November 22nd 2007 had the maximum amount with the mean of 117µg/m3 and in the period between September 22'th to October 22nd 2007 it had the minimum amount with the mean of 83µg/m3. PM2.5 in the period between November 22nd to December 22nd 2007 with the mean of 33µg/m3 had the maximum amount and in the period  between July 22nd to October 22nd 2007 it had the minimum amount with the mean of 8µg/m3.

     

    Conclusion: Based on the findings of this study, the densities of suspended particles PM1, PM2.5 and PM10 were below the standard levels on most occasions. The amounts of AQI for them were normal and acceptable.

  8. Monitoring of 7Be in surface air of varying PM10 concentrations

    International Nuclear Information System (INIS)

    Chao, J.H.; Liu, C.C.; Cho, I.C.; Niu, H.

    2014-01-01

    In this study, beryllium-7 ( 7 Be) concentrations of surface air were monitored throughout a span of 23 years (1992–2012) in the Taiwanese cities Yilan, Taipei, Taichung, and Kaohsiung. During this period, particulate matter (PM) concentrations, in terms of PM 10 , were collected monthly from the nearest air-quality pollutant monitoring stations and compared against 7 Be concentrations. Seasonal monsoons influenced 7 Be concentrations in all cities, resulting in high winter and low summer concentrations. In addition, the meteorological conditions caused seasonal PM 10 variations, yielding distinct patterns among the cities. There was no correlation between 7 Be and PM 10 in the case cities. The average annual 7 Be concentrations varied little among the cities, ranging from 2.9 to 3.5 mBq/m 3 , while the PM 10 concentrations varied significantly from 38 μg/m 3 in Yilan to 92 μg/m 3 in Kaohsiung depending on the degree of air pollution and meteorological conditions. The correlation between the 7 Be concentration and gross-beta activities (A β ) in air implied that the 7 Be was mainly attached to crustal PM and its concentration varied little among the cities, regardless of the increase in anthropogenic PM in air-polluted areas. - Highlights: • Both 7 Be and PM 10 concentrations were monitored in four Taiwanese cities from 1992 to 2012. • Seasonal variations of 7 Be and PM 10 were explained based on on meteorological and pollution conditions. • The annual concentrations of 7 Be varied little among the four cities even in high PM environment. • 7 Be is believed to mainly attach to natural PM in the cities that exhibited varying PM 10 concentrations

  9. Study variation of PM-10 air pollution at Lang Meteorological Station, Hanoi Coded: CS/02/04-06

    International Nuclear Information System (INIS)

    Vuong Thu Bac; Dinh Thien Lam; Ngyen Thi Hong Thinh; Dang Duc Nhan; Nguyen Hao Quang; Pham Duy Hien

    2003-01-01

    577 air dust samples have been collected with two kinds of air samplers (2-SFU, 1-ASP) on every Wednesday and Sunday for 24 hours at both of monitoring stations (Lang - Hanoi and Lucnam - Bacgiang). PM(2.5), PM(2.5-10), PM(10) and BC concentrations in 452 air dust samples have been determined. 9032 data have been analyzed with many of different multi-elements analytical techniques (IC: 264 samples x 9 ions, PIXE: 388 samples x 15 elements, XRF: 48 samples x 8 elements, LR: 452 samples x 1 element). Over 6000 of meteorological parameters (T, Rain, WS, WD, RH...) have been collected and processed.Variations and levels of air dust concentrations and BC in Hanoi from 1998 to 2002 have been studied. PM(2.5), PM(2.5-10), PM(10) and BC concentrations and BC obviously periodically vary. They reach maximum in the winter season, especially in December and January, sometimes they reached 300-400 μg.m -3 , They reach minimum in the summer season, sometimes they went down 10 μg.m -3 on rainy days. These variations were affected by meteorological parameters. PM(2.5), PM(10) daily average concentrations in Hanoi are greater than the American air standards (PM(2.5): 65 μg.m -3 , PM(10): 150 μg.m -3 ) in many days and their yearly average concentrations are also far exceeded. Air dust pollution levels in Hanoi are higher than in developed countries and even countries in the region. BC (5.9 μg.m -3 ) concentration and Pb (0.11 μg.m -3 ) are also higher than in many countries. (VTB)

  10. Characterisation and quantification of the sources of PM{sub 10} during air pollution episodes in the UK

    Energy Technology Data Exchange (ETDEWEB)

    Muir, David [Environmental Quality Unit, Department of Planning, Transport and Sustainable Development, Bristol City Council, The CREATE Centre, Smeaton Road, Bristol BS1 6XN (United Kingdom); Longhurst, J.W.S.; Tubb, A. [Faculty of Applied Sciences, University of the West of England, Frenchay Campus, Coldharbour Lane, Bristol BS16 1QY (United Kingdom)

    2006-04-01

    Data for concentrations of PM{sub 10} and gaseous pollutants from sites in the UK Automatic Urban and Rural Network have been examined during periods of elevated concentrations of PM{sub 10}. The ratios of concentrations of PM{sub 10} to those of the other pollutants were used to determine the most probable source of the additional particles. The hypothesis is that because the concentrations of PM{sub 10} were divided by those of the other pollutants, the ratio should decrease when PM{sub 10} and the other pollutants have a common source. Conversely, the ratio should increase when the sources are different. During episodes where road traffic was the most probable source of the additional particles, the ratios of concentrations of PM{sub 10} to carbon monoxide and oxides of nitrogen did decrease, but the comparable ratios for sulphur dioxide and ozone increased. In contrast, during episodes known to have been caused by construction activity, all these ratios increased. This is taken to show that the basic hypothesis is valid. For prolonged episodes, it was possible to use data averaged over the total duration of the episode for the purposes of source identification. For sporadic construction, or other short-duration episodes, it was necessary to use time series data. The data have also been used to calculate the differences between hourly average concentrations of pollutants measured during episodes and long-term hourly average concentrations. These have been used to model the additional PM{sub 10} during air pollution episodes associated with construction activities and road traffic emissions. This confirms the lack of relationship between PM{sub 10} and other pollutants during construction works. During episodes arising from road traffic emissions, there was good agreement between measured and modelled additional concentrations of PM{sub 10} when an appropriate factor, F, related to the contribution of road traffic emissions to PM{sub 10} at different site types

  11. A simple method for the detection of PM2.5 air pollutions using MODIS data

    Science.gov (United States)

    Kato, Yoshinobu

    2016-05-01

    In recent years, PM2.5 air pollution is a social and transboundary environmental issue with the rapid economic growth in many countries. As PM2.5 is small and includes various ingredients, the detection of PM2.5 air pollutions by using satellite data is difficult compared with the detection of dust and sandstorms. In this paper, we examine various images (i.e., single-band images, band-difference images, RGB composite color images) to find a good method for detecting PM2.5 air pollutions by using MODIS data. A good method for the detection of PM2.5 air pollution is {R, G, B = band10, band9, T11}, where T11 is the brightness temperature of band31. In this composite color image, PM2.5 air pollutions are represented by light purple or pink color. This proposed method is simpler than the method by Nagatani et al. (2013), and is useful to grasp the distribution of PM2.5 air pollutions in the wide area (e.g., from China and India to Japan). By comparing AVI image with the image by proposed method, DSS and PM2.5 air pollutions can be classified.

  12. Particulate pollution of PM10 and PM2.5 due to strong anthropopressure in Sosnowiec city

    Directory of Open Access Journals (Sweden)

    Jolanta Cembrzyńska

    2012-12-01

    Full Text Available Introduction: Air contamination with particulate matter causes a serious problem in large cities and urban-industrial agglomerations both in Poland and Europe. Anthropogenic sources of air pollution in urban areas are emissions from municipal, industrial and transportation sector. Many epidemiological studies have revealed that exposure to air pollution, especially the fine particles with aerodynamic diameter less than 2,5 micrometer, can pose a threat to human health exposed to exceedingly high concentrations of particulate matter. Aim of the study: The aim of this study was to evaluate PM10 and PM2,5 mass concentrations in autumn and winter season in the city of Sosnowiec, in relation to ambient air quality standards in Poland and the European Union. Results: The average concentrations of PM10 and PM2,5 in autumn-winter seasons in Sosnowiec city 2010–2011 were 2,1 to 2,7 times higher than limit values, specified in the legislation acts.

  13. Investigation of air pollution of Shanghai subway stations in ventilation seasons in terms of PM2.5 and PM10.

    Science.gov (United States)

    Guo, Erbao; Shen, Henggen; He, Lei; Zhang, Jiawen

    2017-07-01

    In November 2015, the PM 2.5 and PM 10 particulate matter (PM) levels in platforms, station halls, and rail areas of the Shangcheng and Jiashan Road Station were monitored to investigate air pollution in the Shanghai subway system. The results revealed that in subway stations, PM 2.5 and PM 10 concentrations were significantly higher than those in outdoor environments. In addition, particle concentrations in the platforms exceeded maximum levels that domestic safety standards allowed. Particularly on clear days, PM 2.5 and PM 10 concentrations in platforms were significantly higher than maximum standards levels. Owing to the piston effect, consistent time-varying trends were exhibited by PM 2.5 concentrations in platforms, station halls, and rail areas. Platform particle concentrations were higher than the amount in station halls, and they were higher on clear days than on rainy days. The time-varying trends of PM 10 and PM 2.5 concentrations in platforms and station halls were similar to each other. Activities within the station led to most of the inhalable particles within the station area. The mass concentration ratios of PM 2.5 and PM 10 in platforms were within 0.65-0.93, and fine particles were the dominant components.

  14. Ambient air pollutant PM10 and risk of pregnancy-induced hypertension in urban China

    International Nuclear Information System (INIS)

    Huang, Xin; Qiu, Jie; Qiu, Weitao; He, Xiaochun; Wang, Yixuan; Sun, Qingmei; Cui, Hongmei; Liu, Sufen; Tang, Zhongfeng; Chen, Ya; Yue, Li; Da, Zhenqiang; Lv, Ling; Lin, Xiaojuan; Zhang, Chong; Zhang, Honghong; Xu, Ruifeng; Zhu, Daling; Zhang, Yaqun; Zhao, Nan

    2015-01-01

    Background: The relationship between air borne particulate matter ≤10 μm (PM 10 ) exposure and pregnancy-induced hypertension (PIH) is inconclusive. Few studies have been conducted, and fewer were conducted in areas with high levels of PM 10 . Methods: To examine the association between PM 10 and PIH by different exposure time windows during pregnancy, we analyzed data from a birth cohort study conducted in Lanzhou, China including 8 745 pregnant women with available information on air pollution during pregnancy. A total of 333 PIH cases (127 gestational hypertension (GH) and 206 preeclampsia (PE)) were identified. PM 10 daily average concentrations of each subject were calculated according to the distance between home/work addresses and monitor stations using an inverse-distance weighting approach. Results: Average PM 10 concentration over the duration of entire pregnancy was significantly associated with PIH (OR = 1.12, 95%CI: 1.02, 1.23 per 10 μg m −3 increase), PE (OR = 1.16, 95%CI: 1.03, 1.30 per 10 μg m −3 increase), late onset PE (OR = 1.17, 95% CI: 1.03, 1.32 per10 μg m −3 increase), and severe PE (OR = 1.25, 95% CI: 1.06, 1.48 per 10 μg m −3 increase). Average PM 10 during the first 12 gestational weeks was associated with the risk of GH (OR = 1.10, 95% CI: 1.00, 1.21 per 10 μg m −3 increase), and PM 10 exposure before 20 gestational weeks was associated with the risk of severe PE (OR = 1.14, 95% CI: 1.01, 1.30 per 10 μg m −3 increase). Conclusions: We found that high level exposure to ambient PM 10 during pregnancy was associated with an increased risk of PIH, GH and PE and that the strength of the association varied by timing of exposure during pregnancy. (letter)

  15. To Investigate the Effects of Air Pollution (PM10 and SO2) on the Respiratory Diseases Asthma and Chronic Obstructive Pulmonary Disease.

    Science.gov (United States)

    Saygın, Mustafa; Gonca, Taner; Öztürk, Önder; Has, Mehmet; Çalışkan, Sadettin; Has, Zehra Güliz; Akkaya, Ahmet

    2017-04-01

    Effects of air pollution parameters of sulfur dioxide (SO2) and particulate matter (PM10) values on the respiratory system were investigated. Data of SO 2 and PM10 were obtained daily for air pollution and classified into two groups: Group I (2006-2007), coal burning years and Group II (2008-2009), natural gas+ coal burning. Groups I and II were divided into two subgroups according to the months of combustion as combustible (November-April) and noncombustible (May-October). The number of patients with asthma and chronic obstructive pulmonary disorder (COPD) was recorded between 2006 and 2009. There was no statistically significant difference between Groups I and II for PM10 and SO 2 (p>0.05). Within the years, the values of SO 2 and PM10 were statistically different between the groups defined by month (p0.05). A correlation was found between SO 2 and COPD (p0.05). The number of visits for COPD and asthma was statistically different between combustible and noncombustible subgroups (X2:58.61, p=0.000; X2:34.55, p=0.000, respectively). The r2 values for SO 2 and PM10 for COPD patients were 17% and 24%, respectively, in contrast to 8% and 5%, respectivley for asthma patients. Air pollution is known to increase respiratory disease occurrences. With decrease in the usage of solid fuel, air pollution could be reduced and may be effective in preventing respiratory diseases.

  16. Measurement of Ambient Air Particle (TSP, PM10, PM2,5) Around Candidate Location of PLTN Semenanjung Lemahabang

    International Nuclear Information System (INIS)

    AgusGindo S; Budi Hari H

    2008-01-01

    Measurement analysis of ambient air particle (TSP, PM 10 , PM 2,5 ) around location candidate of PLTN (Power Station of Nuclear Energy) Semenanjung Lemahabang has been carried out. The measurement was conducted in May 2007 with a purpose to providing information about concentration of ambient air particle (TSP, PM 10 , PM 2,5 ) and diameter distribution of its air particle. The measurement was conducted in three locations i.e. 1). Balong village 2). Bayuran 3). Bondo. Concentration of TSP, PM 10 , and PM 2,5 per 24 hours in all measured locations in area candidate of PLTN exceed quality standard of national ambient air is specified by government. All measurement locations for the TSP, PM 10 , and PM 2,5 was include category of ISPU (Standard Index of Air Pollution) moderate. (author)

  17. ANALYSIS OF THE RESULTS OF MEASUREMENT OF CONCENTRATIONS OF AIR POLLUTION WITH PM10 AND PM2.5 MEASURING STATION SQUARE OF POZNAN IN BYDGOSZCZ

    Directory of Open Access Journals (Sweden)

    Rafał Pasela

    2017-02-01

    Full Text Available The phenomenon of suspended particulate pollution PM10 and PM2.5 occurs in large urban areas where the main source of their presence is communication, which is primarily related to the combustion of liquid fuels. PM2.5 dust pollution is a major risk factor for diseases of the respiratory, cardiovascular, and allergy. Act regulating the standards and target dates for reducing concentrations of particulate matter in urban areas and in all the cities of over 100 thousand. residents of the Directive of the European Parliament and Council Directive 2008/50/EC of 21 May 2008. on ambient air quality and cleaner air for Europe (CAFE. The acceptable level of average daily concentration of PM10 is 50 μg/m3 and may be exceeded by not more than 35 times a year, while the level of allowable annual average concentration of 40 μg/m3. The aim of this study was to assess the state of air pollution of dust PM10 and PM2.5 for the selected area of the city of Bydgoszcz. The analysis was conducted using data from air monitoring stations located at Poznanska street. The station is owned by the Provincial Inspectorate for Environmental Protection (VIEP in Bydgoszcz. The studies have shown that the annual average concentration of particulate matter analyzed station in Bydgoszcz in the years 2013-2015 amounted to PM10 41 μg/m3 PM2.5 and 23 μg/m3. The results are on the borderline of acceptable levels of concentration resulting from the Regulation of the Minister of the Environment of 2 August 2012. The concentrations of particulate matter in ambient air are strongly associated with meteorological conditions. The definitely higher concentrations observed in the autumn-winter season. The decrease in temperature causes the combustion in the boiler house of fuels with a high emissions. The highest average daily concentration of suspended particulate matter was observed on Thursday and Friday in the winter months, and while the lowest concentration was recorded in the

  18. Modelling of particulate matter pollution (PM10) over the Etang de Berre area Determination of areas of homogeneous pollution

    International Nuclear Information System (INIS)

    Brocheton, F.; Poulet, D.; Mesbah, B.; Hourdin, G.

    2010-01-01

    AIRFOBEP is the association in charge of the air quality monitoring in the Etang de Berre area. AIRFOBEP is managing a network of ten sensors to monitor the PMI (particulate matter index) particulate pollution. This network is updated once a year according to the Air Quality Monitoring Plan (PSQA). Optimizing this network needs to know how the particulate pollution is distributed in the area. In other words, to determine the limits of homogeneous zones of PM 10 pollution. The aim of the project presented in this article is to produce a map of homogeneous zones of PM 10 pollution in the Etang de Berre area. The project was carried out in two steps: - PM 10 atmospheric dispersion modeling, using a ADMS-URBAN software, - Statistic classification, based on the well known Hierarchical Ascending Classification (HAC) technique. Results of the atmospheric dispersion modeling was namely adjusted using an original technique for the 'background PM 10 pollution' computation. Good performances have been obtained when comparing modeling and measurements data. Finally, a set of five homogeneous zones was found to well describe the PM 10 pollution level distribution in the Etang de Berre area. (author)

  19. Investigation of Air Quality Index and PM10 and PM2.5 in Arak

    Directory of Open Access Journals (Sweden)

    Fatemeh Fazelinia

    2013-12-01

    Full Text Available Background and purpose: In this study, the air quality index and concentration of particles such as PM10 and PM2.5 were investigated in Arak. Materials and Methods: To determine the concentration of PM10 and PM2.5, 60 samples were collected by laser TSI model 8520 in summer and winter 2012. The collection site was around Arak city center. Results: during the sampling period, as a matter of PM10, the cleanest and the most polluted month were December and June with the average of 34.33 µg m-3 and 100.1 µg m-3, respectively. The concentration of PM2.5 was 12.93 and 53.17 µg m-3 for December and June, respectively. Meanwhile, in terms of air quality index (AQI, in 98.3% and 70% of cases, the concentrations of PM10 and PM2.5, respectively were less than normal (AQI100. Conclusion: The concentration of PM10 in the study period was less than Environmental Protection Agency (EPA 2006 guideline. Meanwhile, the concentrations of PM2.5 in 30% of air samples were greater than EPA guideline. The average PM2.5/PM10 ratio during the sampling period was 0.41 compared to range 0.15 to 0.25 reported by EPA.

  20. Asthma and PM10

    Directory of Open Access Journals (Sweden)

    Gilmour M Ian

    2000-07-01

    Full Text Available Abstract PM10 (the mass of particles present in the air having a 50% cutoff for particles with an aerodynamic diameter of 10 μm is the standard measure of particulate air pollution used worldwide. Epidemiological studies suggest that asthma symptoms can be worsened by increases in the levels of PM10. Epidemiological evidence at present indicates that PM10 increases do not raise the chances of initial sensitisation and induction of disease, although further research is warranted. PM10 is a complex mixture of particle types and has many components and there is no general agreement regarding which component(s could lead to exacerbations of asthma. However pro-inflammatory effects of transition metals, hydrocarbons, ultrafine particles and endotoxin, all present to varying degrees in PM10, could be important. An understanding of the role of the different components of PM10 in exacerbating asthma is essential before proper risk assessment can be undertaken leading to advice on risk management for the many asthmatics who are exposed to air pollution particles.

  1. Inhalable microorganisms in Beijing's PM2.5 and PM10 pollutants during a severe smog event.

    Science.gov (United States)

    Cao, Chen; Jiang, Wenjun; Wang, Buying; Fang, Jianhuo; Lang, Jidong; Tian, Geng; Jiang, Jingkun; Zhu, Ting F

    2014-01-01

    Particulate matter (PM) air pollution poses a formidable public health threat to the city of Beijing. Among the various hazards of PM pollutants, microorganisms in PM2.5 and PM10 are thought to be responsible for various allergies and for the spread of respiratory diseases. While the physical and chemical properties of PM pollutants have been extensively studied, much less is known about the inhalable microorganisms. Most existing data on airborne microbial communities using 16S or 18S rRNA gene sequencing to categorize bacteria or fungi into the family or genus levels do not provide information on their allergenic and pathogenic potentials. Here we employed metagenomic methods to analyze the microbial composition of Beijing's PM pollutants during a severe January smog event. We show that with sufficient sequencing depth, airborne microbes including bacteria, archaea, fungi, and dsDNA viruses can be identified at the species level. Our results suggested that the majority of the inhalable microorganisms were soil-associated and nonpathogenic to human. Nevertheless, the sequences of several respiratory microbial allergens and pathogens were identified and their relative abundance appeared to have increased with increased concentrations of PM pollution. Our findings may serve as an important reference for environmental scientists, health workers, and city planners.

  2. Household air pollution and personal inhalation exposure to particles (TSP/PM2.5/PM1.0/PM0.25) in rural Shanxi, North China

    International Nuclear Information System (INIS)

    Huang, Ye; Du, Wei; Chen, Yuanchen; Shen, Guofeng; Su, Shu; Lin, Nan; Shen, Huizhong; Zhu, Dan; Yuan, Chenyi; Duan, Yonghong; Liu, Junfeng; Li, Bengang; Tao, Shu

    2017-01-01

    Personal exposure to size-segregated particles among rural residents in Shanxi, China in summer, 2011 were investigated using portable carried samplers (N = 84). Household air pollution was simultaneously studied using stationary samplers in nine homes. Information on household fuel types, cooking activity, smoking behavior, kitchen ventilation conditions etc., were also collected and discussed. The study found that even in the summer period, the daily average concentrations of PM 2.5 and PM 1.0 in the kitchen were as high as 376 ± 573 and 288 ± 397 μg/m 3 (N = 6), that were nearly 3 times of 114 ± 81 and 97 ± 77 μg/m 3 in the bedroom (N = 8), and significantly higher than those of 64 ± 28 and 47 ± 21 μg/m 3 in the outdoor air (N = 6). The personal daily exposure to PM 2.5 and PM 1.0 were 98 ± 52 and 77 ± 47 μg/m 3 , respectively, that were lower than the concentrations in the kitchen but higher than the outdoor levels. The mass fractions of PM 2.5 in TSP were 90%, 72%, 65% and 68% on average in the kitchen, bedroom, outdoor air and personal inhalation exposure, respectively, and moreover, a majority of particles in PM 2.5 had diameters less than 1.0 μm. Calculated time-weighted average exposure based on indoor and outdoor air concentrations and time spent indoor and outdoor were positively correlated but, was ∼33% lower than the directly measured exposure. The daily exposure among those burning traditional solid fuels could be lower by ∼41% if the kitchen was equipped with an outdoor chimney, but was still 8–14% higher than those household using cleaning energies, like electricity and gas. With a ventilator in the kitchen, the exposure among the population using clean energies could be further reduced by 10–24%. - Highlights: • High inhalation exposure of fine PM 2.5 and PM 1.0 among rural residents. • Smoking prevails on cooking in increasing exposure to finer particles. • PM exposure could be reduced by

  3. Household air pollution and personal inhalation exposure to particles (TSP/PM2.5/PM1.0/PM0.25) in rural Shanxi, North China.

    Science.gov (United States)

    Huang, Ye; Du, Wei; Chen, Yuanchen; Shen, Guofeng; Su, Shu; Lin, Nan; Shen, Huizhong; Zhu, Dan; Yuan, Chenyi; Duan, Yonghong; Liu, Junfeng; Li, Bengang; Tao, Shu

    2017-12-01

    Personal exposure to size-segregated particles among rural residents in Shanxi, China in summer, 2011 were investigated using portable carried samplers (N = 84). Household air pollution was simultaneously studied using stationary samplers in nine homes. Information on household fuel types, cooking activity, smoking behavior, kitchen ventilation conditions etc., were also collected and discussed. The study found that even in the summer period, the daily average concentrations of PM 2.5 and PM 1.0 in the kitchen were as high as 376 ± 573 and 288 ± 397 μg/m 3 (N = 6), that were nearly 3 times of 114 ± 81 and 97 ± 77 μg/m 3 in the bedroom (N = 8), and significantly higher than those of 64 ± 28 and 47 ± 21 μg/m 3 in the outdoor air (N = 6). The personal daily exposure to PM 2.5 and PM 1.0 were 98 ± 52 and 77 ± 47 μg/m 3 , respectively, that were lower than the concentrations in the kitchen but higher than the outdoor levels. The mass fractions of PM 2.5 in TSP were 90%, 72%, 65% and 68% on average in the kitchen, bedroom, outdoor air and personal inhalation exposure, respectively, and moreover, a majority of particles in PM 2.5 had diameters less than 1.0 μm. Calculated time-weighted average exposure based on indoor and outdoor air concentrations and time spent indoor and outdoor were positively correlated but, was ∼33% lower than the directly measured exposure. The daily exposure among those burning traditional solid fuels could be lower by ∼41% if the kitchen was equipped with an outdoor chimney, but was still 8-14% higher than those household using cleaning energies, like electricity and gas. With a ventilator in the kitchen, the exposure among the population using clean energies could be further reduced by 10-24%. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Monetary Valuation of PM10-Related Health Risks in Beijing China: The Necessity for PM10 Pollution Indemnity.

    Science.gov (United States)

    Yin, Hao; Xu, Linyu; Cai, Yanpeng

    2015-08-21

    Severe health risks caused by PM10 (particulate matter with an aerodynamic diameter ≤10 μm) pollution have induced inevitable economic losses and have rendered pressure on the sustainable development of society as a whole. In China, with the "Polluters Pay Principle", polluters should pay for the pollution they have caused, but how much they should pay remains an intractable problem for policy makers. This paper integrated an epidemiological exposure-response model with economics methods, including the Amended Human Capital (AHC) approach and the Cost of Illness (COI) method, to value the economic loss of PM10-related health risks in 16 districts and also 4 functional zones in Beijing from 2008 to 2012. The results show that from 2008 to 2012 the estimated annual deaths caused by PM10 in Beijing are around 56,000, 58,000, 63,000, 61,000 and 59,000, respectively, while the economic losses related to health damage increased from around 23 to 31 billion dollars that PM10 polluters should pay for pollution victims between 2008 and 2012. It is illustrated that not only PM10 concentration but also many other social economic factors influence PM10-related health economic losses, which makes health economic losses show a time lag discrepancy compared with the decline of PM10 concentration. In conclusion, health economic loss evaluation is imperative in the pollution indemnity system establishment and should be considered for the urban planning and policy making to control the burgeoning PM10 health economic loss.

  5. Determinants of perceived air pollution annoyance and association between annoyance scores and air pollution (PM 2.5, NO 2) concentrations in the European EXPOLIS study

    Science.gov (United States)

    Rotko, Tuulia; Oglesby, Lucy; Künzli, Nino; Carrer, Paolo; Nieuwenhuijsen, Mark J.; Jantunen, Matti

    Apart from its traditionally considered objective impacts on health, air pollution can also have perceived effects, such as annoyance. The psychological effects of air pollution may often be more important to well-being than the biophysical effects. Health effects of perceived annoyance from air pollution are so far unknown. More knowledge of air pollution annoyance levels, determinants and also associations with different air pollution components is needed. In the European air pollution exposure study, EXPOLIS, the air pollution annoyance as perceived at home, workplace and in traffic were surveyed among other study objectives. Overall 1736 randomly drawn 25-55-yr-old subjects participated in six cities (Athens, Basel, Milan, Oxford, Prague and Helsinki). Levels and predictors of individual perceived annoyances from air pollution were assessed. Instead of the usual air pollution concentrations at fixed monitoring sites, this paper compares the measured microenvironment concentrations and personal exposures of PM 2.5 and NO 2 to the perceived annoyance levels. A considerable proportion of the adults surveyed was annoyed by air pollution. Female gender, self-reported respiratory symptoms, downtown living and self-reported sensitivity to air pollution were directly associated with high air pollution annoyance score while in traffic, but smoking status, age or education level were not significantly associated. Population level annoyance averages correlated with the city average exposure levels of PM 2.5 and NO 2. A high correlation was observed between the personal 48-h PM 2.5 exposure and perceived annoyance at home as well as between the mean annoyance at work and both the average work indoor PM 2.5 and the personal work time PM 2.5 exposure. With the other significant determinants (gender, city code, home location) and home outdoor levels the model explained 14% (PM 2.5) and 19% (NO 2) of the variation in perceived air pollution annoyance in traffic. Compared to

  6. Inhalable Microorganisms in Beijing’s PM2.5 and PM10 Pollutants during a Severe Smog Event

    Science.gov (United States)

    2014-01-01

    Particulate matter (PM) air pollution poses a formidable public health threat to the city of Beijing. Among the various hazards of PM pollutants, microorganisms in PM2.5 and PM10 are thought to be responsible for various allergies and for the spread of respiratory diseases. While the physical and chemical properties of PM pollutants have been extensively studied, much less is known about the inhalable microorganisms. Most existing data on airborne microbial communities using 16S or 18S rRNA gene sequencing to categorize bacteria or fungi into the family or genus levels do not provide information on their allergenic and pathogenic potentials. Here we employed metagenomic methods to analyze the microbial composition of Beijing’s PM pollutants during a severe January smog event. We show that with sufficient sequencing depth, airborne microbes including bacteria, archaea, fungi, and dsDNA viruses can be identified at the species level. Our results suggested that the majority of the inhalable microorganisms were soil-associated and nonpathogenic to human. Nevertheless, the sequences of several respiratory microbial allergens and pathogens were identified and their relative abundance appeared to have increased with increased concentrations of PM pollution. Our findings may serve as an important reference for environmental scientists, health workers, and city planners. PMID:24456276

  7. Comprehensive urban air quality studies of Islamabad: elemental characterization of PM10 and PM2.5, source apportionment and transboundary pollutant migration (abstract)

    International Nuclear Information System (INIS)

    Waheed, S.; Siddique, N.; Daud, M.

    2011-01-01

    Long term urban air quality of Islamabad, the capital city of Pakistan, has been investigated as a part of the joint UNDP/IAEA/RCA/RAS/7/015 project, entitled C haracterization and source identification of particulate air pollution in the Asian region (RCA) . Around 380 pairs of fine (PM2.5) and coarse (PM10-2.5) polycarbonate filters from the Nilore area were collected using GENT sampler. The average PM2.5 and PM2.5-10 masses at this site were found to be 15.02 and 37.01 g/m/sup 3/ respectively that are far below to the Pakistani limit for PM10 of 100 g/m/sup 3/. The average Black Carbon (BC) was found to be 2.58 and 1.22 g/m/sup 3/ corresponding to 20.7% and 4.54% of the fine and coarse mass respectively. The non destructive Ion Beam Analysis method, Proton induced X-ray emission (PIXE) and Proton induced gamma ray emission (PIGE) were employed to quantify more than 40 elements in both fine and coarse fractions. The acquired elemental data has been statistically treated and subjected to mass closure studies, principal component and factor analysis to calculate correlation matrices. The reconstructed mass (RCM) was calculated for both particle modes using soil, sulphate, smoke, sea salt and BC as pseudo sources. Data analysis performed using EPA-PMF3 shows that the fine and coarse data for the suburban site identifies 4 sources; biomass/ combustion, road dust, soil and automobile. Long range transport of pollutants was studied using HYSPLIT4 model. It was observed that high fine soil contributions in this area were mainly from dust storms arriving from west and North West of the country. (author)

  8. Air Pollution and Suicide in 10 Cities in Northeast Asia: A Time-Stratified Case-Crossover Analysis.

    Science.gov (United States)

    Kim, Yoonhee; Ng, Chris Fook Sheng; Chung, Yeonseung; Kim, Ho; Honda, Yasushi; Guo, Yue Leon; Lim, Youn-Hee; Chen, Bing-Yu; Page, Lisa A; Hashizume, Masahiro

    2018-03-06

    There is growing evidence suggesting an association between air pollution and suicide. However, previous findings varied depending on the type of air pollutant and study location. We examined the association between air pollutants and suicide in 10 large cities in South Korea, Japan, and Taiwan. We used a two-stage meta-analysis. First, we conducted a time-stratified case-crossover analysis to estimate the short-term association between nitrogen dioxide (NO 2 ), sulfur dioxide (SO 2 ), and particulate matter [aerodynamic diameter ≤10μm (PM 10 ), aerodynamic diameter ≤2.5μm (PM 2.5 ), and PM 10–2.5 ] and suicide, adjusted for weather factors, day-of-week, long-term time trends, and season. Then, we conducted a meta-analysis to combine the city-specific effect estimates for NO 2 , SO 2 , and PM 10 across 10 cities and for PM 2.5 and PM 10–2.5 across 3 cities. We first fitted single-pollutant models, followed by two-pollutant models to examine the robustness of the associations. Higher risk of suicide was associated with higher levels of NO 2 , SO 2 , PM 10 , and PM 10–2.5 over multiple days. The combined relative risks (RRs) were 1.019 for NO 2 (95% confidence interval [CI]: 0.999, 1.039), 1.020 for SO 2 (95% CI: 1.005, 1.036), 1.016 for PM 10 (95% CI: 1.004, 1.029), and 1.019 for PM 10–2.5 (95% CI: 1.005, 1.033) per interquartile range (IQR) increase in the 0-1 d average level of each pollutant. We found no evidence of an association for PM 2.5 . Some of the associations, particularly for SO 2 and NO 2 , were attenuated after adjusting for a second pollutant. Our findings suggest that higher levels of air pollution may be associated with suicide, and further research is merited to understand the underlying mechanisms. https://doi.org/10.1289/EHP2223.

  9. Predictability Analysis of PM10 Concentrations in Budapest

    Science.gov (United States)

    Ferenczi, Zita

    2013-04-01

    Climate, weather and air quality may have harmful effects on human health and environment. Over the past few hundred years we had to face the changes in climate in parallel with the changes in air quality. These observed changes in climate, weather and air quality continuously interact with each other: pollutants are changing the climate, thus changing the weather, but climate also has impacts on air quality. The increasing number of extreme weather situations may be a result of climate change, which could create favourable conditions for rising of pollutant concentrations. Air quality in Budapest is determined by domestic and traffic emissions combined with the meteorological conditions. In some cases, the effect of long-range transport could also be essential. While the time variability of the industrial and traffic emissions is not significant, the domestic emissions increase in winter season. In recent years, PM10 episodes have caused the most critical air quality problems in Budapest, especially in winter. In Budapest, an air quality network of 11 stations detects the concentration values of different pollutants hourly. The Hungarian Meteorological Service has developed an air quality prediction model system for the area of Budapest. The system forecasts the concentration of air pollutants (PM10, NO2, SO2 and O3) for two days in advance. In this work we used meteorological parameters and PM10 data detected by the stations of the air quality network, as well as the forecasted PM10 values of the air quality prediction model system. In this work we present the evaluation of PM10 predictions in the last two years and the most important meteorological parameters affecting PM10 concentration. The results of this analysis determine the effect of the meteorological parameters and the emission of aerosol particles on the PM10 concentration values as well as the limits of this prediction system.

  10. Ambient endotoxin in PM10 and association with inflammatory activity, air pollutants, and meteorology, in Chitwan, Nepal.

    Science.gov (United States)

    Mahapatra, Parth Sarathi; Jain, Sumeet; Shrestha, Sujan; Senapati, Shantibhusan; Puppala, Siva Praveen

    2018-03-15

    Endotoxin associated with ambient PM (particulate matter) has been linked to adverse respiratory symptoms, but there have been few studies of ambient endotoxin and its association with co-pollutants and inflammation. Our aim was to measure endotoxin associated with ambient PM 10 (particulate matter with aerodynamic diametermeteorology, co-pollutants, and inflammatory activity. PM 10 concentrations were recorded and filter paper samples were collected using E-samplers; PM 1, PM 2.5 , black carbon (BC), methane (CH 4 ), and carbon monoxide (CO) were also measured. The Limulus amebocyte lysate (LAL) assay was used for endotoxin quantification and the nuclear factor kappa B (NFκB) activation assay to assess inflammatory activity. The mean concentration of PM 10 at the different locations ranged from 136 to 189μg/m 3 , and of endotoxin from 0.29 to 0.53EU/m 3 . Pollutant presence was positively correlated with endotoxin. Apart from relative humidity, meteorological variations had no significant impact on endotoxin concentration. NF-κB activity was negatively correlated with endotoxin concentration. To the best of our knowledge, this study provides the first measurements of ambient endotoxin associated with PM 10 in Nepal. Endotoxin and co-pollutants were positively associated indicating a similar source. Endotoxin was negatively correlated with inflammatory activity as a result of a time-limited forest fire event during the sampling period. Studies of co-pollutants suggested that the higher levels of endotoxin related to biomass burning were accompanied by increased levels of anti-inflammatory agents, which suppressed the endotoxin inflammatory effect. Copyright © 2017. Published by Elsevier B.V.

  11. A Visualization Approach to Air Pollution Data Exploration—A Case Study of Air Quality Index (PM2.5 in Beijing, China

    Directory of Open Access Journals (Sweden)

    Huan Li

    2016-02-01

    Full Text Available In recent years, frequent occurrences of significant air pollution events in China have routinely caused panic and are a major topic of discussion by the public and air pollution experts in government and academia. Therefore, this study proposed an efficient visualization method to represent directly, quickly, and clearly the spatio-temporal information contained in air pollution data. Data quality check and cleansing during a preliminary visual analysis is presented in tabular form, heat matrix, or line chart, upon which hypotheses can be deduced. Further visualizations were designed to verify the hypotheses and obtain useful findings. This method was tested and validated in a year-long case study of the air quality index (AQI of PM2.5 in Beijing, China. We found that PM2.5, PM10, and NO2 may be emitted by the same sources, and strong winds may accelerate the spread of pollutants. The average concentration of PM2.5 in Beijing was greater than the AQI value of 50 over the six-year study period. Furthermore, arable lands exhibited considerably higher concentrations of air pollutants than vegetation-covered areas. The findings of this study showed that our visualization method is intuitive and reliable through data quality checking and information sharing with multi-perspective air pollution graphs. This method allows the data to be easily understood by the public and inspire or aid further studies in other fields.

  12. PM 10 Nonattainment Areas

    Data.gov (United States)

    U.S. Environmental Protection Agency — This data layer identifies areas in the U.S. where air pollution levels have not met the National Ambient Air Quality Standards (NAAQS) for PM 10 and have been...

  13. Multicontaminant air pollution in Chinese cities.

    Science.gov (United States)

    Han, Lijian; Zhou, Weiqi; Pickett, Steward Ta; Li, Weifeng; Qian, Yuguo

    2018-04-01

    To investigate multicontaminant air pollution in Chinese cities, to quantify the urban population affected and to explore the relationship between air pollution and urban population size. We obtained data for 155 cities with 276 million inhabitants for 2014 from China's air quality monitoring network on concentrations of fine particulate matter measuring under 2.5 μm (PM 2.5 ), coarse particulate matter measuring 2.5 to 10 μm (PM 10 ), nitrogen dioxide (NO 2 ), sulfur dioxide (SO 2 ) and ozone (O 3 ). Concentrations were considered as high, if they exceeded World Health Organization (WHO) guideline limits. Overall, 51% (142 million) of the study population was exposed to mean annual multicontaminant concentrations above WHO limits - east China and the megacities were worst affected. High daily levels of four-contaminant mixtures of PM 2.5 , PM 10 , SO 2 and O 3 and PM 2.5 , PM 10 , SO 2 and NO 2 occurred on up to 110 days in 2014 in many cities, mainly in Shandong and Hebei Provinces. High daily levels of PM 2.5 , PM 10 and SO 2 occurred on over  146 days in 110 cities, mainly in east and central China. High daily levels of mixtures of PM 2.5 and PM 10 , PM 2.5 and SO 2 , and PM 10 and SO 2 occurred on over  146 days in 145 cities, mainly in east China. Surprisingly, multicontaminant air pollution was less frequent in cities with populations over 10 million than in smaller cities. Multicontaminant air pollution was common in Chinese cities. A shift from single-contaminant to multicontaminant evaluations of the health effects of air pollution is needed. China should implement protective measures during future urbanization.

  14. EVALUATION OF AIR POLLUTION FROM ROVINARI (GORJ WITH SUBSTANCES IN SOSPENSION (PM10 AS A RESULT OF AUTO TRAFFIC

    Directory of Open Access Journals (Sweden)

    Emil Cătălin ŞCHIOPU

    2016-12-01

    Full Text Available The paper presents a short introduction of the impact that auto transportation has on air quality and on the main pollutants resulting from fuel burning in the engines with internal combustion. Also here are presented the results obtained as a result of monitoring substances in suspension, fraction PM10, realized in the proximity of the most important auto traffic roads of Rovinari. The comparison of the results obtained was realized according to Law 104/2011 on the protection of ambient air quality

  15. Cardiovascular effects of air pollution.

    Science.gov (United States)

    Bourdrel, Thomas; Bind, Marie-Abèle; Béjot, Yannick; Morel, Olivier; Argacha, Jean-François

    2017-11-01

    Air pollution is composed of particulate matter (PM) and gaseous pollutants, such as nitrogen dioxide and ozone. PM is classified according to size into coarse particles (PM 10 ), fine particles (PM 2.5 ) and ultrafine particles. We aim to provide an original review of the scientific evidence from epidemiological and experimental studies examining the cardiovascular effects of outdoor air pollution. Pooled epidemiological studies reported that a 10μg/m 3 increase in long-term exposure to PM 2.5 was associated with an 11% increase in cardiovascular mortality. Increased cardiovascular mortality was also related to long-term and short-term exposure to nitrogen dioxide. Exposure to air pollution and road traffic was associated with an increased risk of arteriosclerosis, as shown by premature aortic and coronary calcification. Short-term increases in air pollution were associated with an increased risk of myocardial infarction, stroke and acute heart failure. The risk was increased even when pollutant concentrations were below European standards. Reinforcing the evidence from epidemiological studies, numerous experimental studies demonstrated that air pollution promotes a systemic vascular oxidative stress reaction. Radical oxygen species induce endothelial dysfunction, monocyte activation and some proatherogenic changes in lipoproteins, which initiate plaque formation. Furthermore, air pollution favours thrombus formation, because of an increase in coagulation factors and platelet activation. Experimental studies also indicate that some pollutants have more harmful cardiovascular effects, such as combustion-derived PM 2.5 and ultrafine particles. Air pollution is a major contributor to cardiovascular diseases. Promotion of safer air quality appears to be a new challenge in cardiovascular disease prevention. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  16. Potential impact of particulate matter less than 10 micron (PM10) to ambient air quality of Jakarta and Palembang

    Science.gov (United States)

    Agustine, I.; Yulinawati, H.; Gunawan, D.; Suswantoro, E.

    2018-01-01

    Particulate is a main urban air pollutant affects the environment and human wellbeing. The purpose of this study is to analyze the impact of particulate matter less than 10 micron (PM10) to ambient air quality of Jakarta and Palembang. The analysis is done with calendarPlot Function of openair model, which is based on the calculation of Pollutant Standards Index (PSI) or better known as Air Quality Index (AQI). The AQI category of “moderate” dominates Jakarta’s calendar from 2015 to 2016, which indicates the impact of PM10 is the visibility reduction. There was one day with category “unhealthy” that indicates the impact of dust exposure everywhere in Jakarta during 2015. Similar to Jakarta, the AQI category “moderate” also dominates Palembang’s calendar during 2015. However, the AQI category “hazardous” happened for few days in September and October 2015 during forest fires, which indicates the more harmful impacts of PM10, such as reduced visibility, dust exposure everywhere, increased sensitivity in patients with asthma and bronchitis to respiratory illness in all exposed populations. During 2016, AQI category of Jakarta mostly “moderate”, while in Palembang was “good”. Dominant AQI category from 2015 to 2016 shows higher PM10 concentration occurred in Jakarta compared to Palembang.

  17. [Prevention and control of air pollution needs to strengthen further study on health damage caused by air pollution].

    Science.gov (United States)

    Wu, T C

    2016-08-06

    Heath issues caused by air pollution such as particulate matter (PM) are much concerned and focused among air, water and soil pollutions because human breathe air for whole life span. Present comments will review physical and chemical characteristics of PM2.5 and PM10; Dose-response associations of PM10, PM2.5 and their components with mortality and risk of cardiopulmonary diseases, early health damages such as the decrease of lung functions and heart rate variability, DNA damage; And the roles of genetic variations and epigenetic changes in lung functions and heart rate variability, DNA damage related to PMs and their components. This comments list some limitations and perspectives about the associations of air pollution with health.

  18. The role of perceived air pollution and health risk perception in health symptoms and disease: a population-based study combined with modelled levels of PM10.

    Science.gov (United States)

    Orru, Kati; Nordin, Steven; Harzia, Hedi; Orru, Hans

    2018-03-31

    Adverse health impact of air pollution on health may not only be associated with the level of exposure, but rather mediated by perception of the pollution and by top-down processing (e.g. beliefs of the exposure being hazardous), especially in areas with relatively low levels of pollutants. The aim of this study was to test a model that describes interrelations between air pollution (particles pollution, health risk perception, health symptoms and diseases. A population-based questionnaire study was conducted among 1000 Estonian residents (sample was stratified by age, sex, and geographical location) about health risk perception and coping. The PM 10 levels were modelled in 1 × 1 km grids using a Eulerian air quality dispersion model. Respondents were ascribed their annual mean PM 10 exposure according to their home address. Path analysis was performed to test the validity of the model. The data refute the model proposing that exposure level significantly influences symptoms and disease. Instead, the perceived exposure influences symptoms and the effect of perceived exposure on disease is mediated by health risk perception. This relationship is more pronounced in large cities compared to smaller towns or rural areas. Perceived pollution and health risk perception, in particular in large cities, play important roles in understanding and predicting environmentally induced symptoms and diseases at relatively low levels of air pollution.

  19. Estimation of health effects (morbidity and mortality attributed to PM10 and PM2.5 exposure using an Air Quality model in Bukan city, from 2015-2016 exposure using air quality model

    Directory of Open Access Journals (Sweden)

    Bahram Kamarehie

    2017-08-01

    Full Text Available Background: Air Quality software is a useful tool for assessing the health risks associated with air pollutants. Quantifying the effects of exposure to air pollutants in terms of public health has become a critical component of policy discussion. The present study purposed to quantify the health effects of particulate matters on mortality and morbidity in a Bukan city hospital from 2015-2016. Methods: Information regarding coordinates, exposed population, number of stations used in profiling, mean and maximum concentrations (annual, winter, and summer, annual 98th percentile, baseline incidence (BI per 100 000 per year, and relative risk was needed for use with the software. Results: The average particulate matter concentration was higher in summer than in winter. The concentrations of PM10 in summer and winter were 84.37 and 74.86 μg m-3, respectively. The Air Quality model predicted that total mortality rates related to PM10 and PM2.5 were 33.3 and 49.8 deaths, respectively. As a result, 3.79% of the total mortality was due to PM10. In Bukan city, 2.004% of total deaths were due to cardiovascular mortality. The Air Quality model predicted that the deaths of 92.2 people were related to hospital admissions for respiratory disease. Conclusion: The continual evaluation of air quality data is necessary for investigating the effect of pollutants on human health.

  20. Burden of mortality and years of life lost due to ambient PM10 pollution in Wuhan, China.

    Science.gov (United States)

    Zhang, Yunquan; Peng, Minjin; Yu, Chuanhua; Zhang, Lan

    2017-11-01

    Ambient particulate matter (PM) has been mainly linked with mortality and morbidity when assessing PM-associated health effects. Up-to-date epidemiologic evidence is very sparse regarding the relation between PM and years of life lost (YLL). The present study aimed to estimate the burden of YLL and mortality due to ambient PM pollution. Individual records of all registered deaths and daily data on PM 10 and meteorology during 2009-2012 were obtained in Wuhan, central China. Using a time-series study design, we applied generalized additive model to assess the short-term association of 10-μg/m 3 increase in PM 10 with daily YLL and mortality, adjusting for long-term trend and seasonality, mean temperature, relative humidity, public holiday, and day of the week. A linear-no-threshold dose-response association was observed between daily ambient PM 10 and mortality outcomes. PM 10 pollution along lag 0-1 days was found to be mostly strongly associated with mortality and YLL. The effects of PM 10 on cause-specific mortality and YLL showed generally similar seasonal patterns, with stronger associations consistently occurring in winter and/or autumn. Compared with males and younger persons, females and the elderly suffered more significantly from both increased YLL and mortality due to ambient PM 10 pollution. Stratified analyses by education level (0-6 and 7 + years) demonstrated great mortality impact on both subgroups, whereas only low-educated persons were strongly affected by PM 10 -associated burden of YLL. Our study confirmed that short-term PM 10 exposure was linearly associated with significant increases in both mortality incidence and years of life lost. Given the non-threshold adverse effects on mortality burden, the on-going efforts to reduce particulate air pollution would substantially benefit public health in China. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Long-term exposure to ambient air pollution (including PM1) and metabolic syndrome: The 33 Communities Chinese Health Study (33CCHS).

    Science.gov (United States)

    Yang, Bo-Yi; Qian, Zhengmin Min; Li, Shanshan; Fan, Shujun; Chen, Gongbo; Syberg, Kevin M; Xian, Hong; Wang, Si-Quan; Ma, Huimin; Chen, Duo-Hong; Yang, Mo; Liu, Kang-Kang; Zeng, Xiao-Wen; Hu, Li-Wen; Guo, Yuming; Dong, Guang-Hui

    2018-07-01

    Little evidence exists about the effects of long-term exposure to ambient air pollution on metabolic syndrome (MetS). This study aimed to determine the association between long-term ambient air pollution and MetS in China. A total of 15,477 adults who participated in the 33 Communities Chinese Health Study (33CCHS) in 2009 were evaluated. MetS was defined based on the recommendation by the Joint Interim Societies. Exposure to air pollutants was assessed using data from monitoring stations and a spatial statistical model (including particles with diameters ≤ 1.0 µm (PM 1 ), ≤ 2.5 µm (PM 2.5 ), and ≤ 10 µm (PM 10 ), sulfur dioxide (SO 2 ), nitrogen dioxide (NO 2 ), and ozone (O 3 )). Two-level logistic regression analyses were utilized to assess the associations between air pollutants and MetS. The prevalence of MetS was 30.37%. The adjusted odds ratio of MetS per 10 µg/m 3 increase in PM 1 , PM 2.5 , PM 10 , SO 2 , NO 2 , and O 3 were 1.12 (95% CI = 1.00-1.24), 1.09 (95% CI = 1.00-1.18), 1.13 (95% CI = 1.08-1.19), 1.10 (95% CI = 1.02-1.18), 1.33 (95% CI = 1.12-1.57), and 1.10 (95% CI = 1.01-1.18), respectively. Stratified analyses indicated that the above associations were stronger in participants with the demographic variables of males, < 50 years of age, and higher income, as well as with the behavioral characteristics of smoking, drinking, and consuming sugar-sweetened soft drinks frequently. This study indicates that long-term exposure to ambient air pollutants may increase the risk of MetS, especially among males, the young to middle aged, those of low income, and those with unhealthy lifestyles. Copyright © 2018 Elsevier Inc. All rights reserved.

  2. Air pollution exposure in Oslo, Drammen, Bergen and Trondheim. Calculations of NO2, PM10 and PM2,5 for the winter 1995 to 1996

    International Nuclear Information System (INIS)

    Sloerdal, Leif Haavard

    1998-07-01

    The Norwegian Institute for Air Research (NILU) commissioned by the Norwegian Pollution Control Authority (Statens forurensningstilsyn), has calculated human exposure values to NO 2 , PM 1 0 and PM 2 ,5 in the cities of Oslo, Drammen, Bergen and Trondheim. In Oslo, Drammen and Bergen the calculations are made for the winter 1995 to 1996. For Trondheim the necessary meteorological data were missing and the calculations are therefore made for the winter of 1994 to 1995. In the project only simplified exposure calculations are carried out where estimated ground concentrations and population distribution information at the km 2 level are connected. The calculations are then made as if everyone have been outside at the home address during the entire estimation period, termed ''potential exposure''. The population exposure load is estimated for excesses of various air quality criteria and the results are presented. In addition values for the worst hour and/or the worst day of exposure for each of the four cities are presented. The term worst is defined as the hour or the day in the simulation period where the most number of people are exposed to concentrations exceeding the threshold values for air quality recommended by the Norwegian Pollution Control Authority. For NO 2 these threshold figures are 100 microgram/m 3 for hour values and 75 microgram/m 3 for day values. For PM 1 0 and PM 2 ,5 criteria for hour values do not exist while day values are now stipulated as 35 microgram/m 3 for PM 1 0 and 20 microgram/m 3 for PM 2 ,5. The calculated maximum concentrations may not coincide with these values. The report gives results for exposure estimates for NO 2 , PM 1 0 and PM 2 ,5 in the cities and evaluates the significance of regional background levels, traffic and heating emissions in contributions to the total population exposure load. The exposure to NO 2 is largest in Bergen. The PM 1 0 and PM 2 ,5 i.e. particle exposure, is greater than for NO 2 and is largest in Oslo

  3. Comparison of Ground-Based PM2.5 and PM10 Concentrations in China, India, and the U.S.

    Directory of Open Access Journals (Sweden)

    Xingchuan Yang

    2018-07-01

    Full Text Available Urbanization and industrialization have spurred air pollution, making it a global problem. An understanding of the spatiotemporal characteristics of PM2.5 and PM10 concentrations (particulate matter with an aerodynamic diameter of less than 2.5 μm and 10 μm, respectively is necessary to mitigate air pollution. We compared the characteristics of PM2.5 and PM10 concentrations and their trends of China, India, and the U.S. from 2014 to 2017. Particulate matter levels were lowest in the U.S., while China showed higher concentrations, and India showed the highest. Interestingly, significant declines in PM2.5 and PM10 concentrations were found in some of the most polluted regions in China as well as the U.S. No comparable decline was observed in India. A strong seasonal trend was observed in China and India, with the highest values occurring in winter and the lowest in summer. The opposite trend was noted for the U.S. PM2.5 was highly correlated with PM10 for both China and India, but the correlation was poor for the U.S. With regard to reducing particulate matter pollutant concentrations, developing countries can learn from the experiences of developed nations and benefit by establishing and implementing joint regional air pollution control programs.

  4. The Concentrations and Reduction of Airborne Particulate Matter (PM10, PM2.5, PM1 at Shelterbelt Site in Beijing

    Directory of Open Access Journals (Sweden)

    Jungang Chen

    2015-05-01

    Full Text Available Particulate matter is a serious source of air pollution in urban areas, where it exerts adverse effects on human health. This article focuses on the study of subduction of shelterbelts for atmospheric particulates. The results suggest that (1 the PM mass concentration is higher in the morning or both morning and noon inside the shelterbelts and lower mass concentrations at other times; (2 the particle mass concentration inside shelterbelt is higher than outside; (3 the particle interception efficiency of the two forest belts over the three months in descending order was PM10 > PM1 > PM2.5; and (4 the two shelterbelts captured air pollutants at rates of 1496.285 and 909.075 kg/month and the major atmospheric pollutant in Beijing city is PM10. Future research directions are to study PM mass concentration variation of shelterbelt with different tree species and different configuration.

  5. Effect of the Apulia air quality plan on PM10 and benzo(apyrene exceedances

    Directory of Open Access Journals (Sweden)

    L. Trizio

    2016-03-01

    Full Text Available During the last years, several exceedances of PM10 and benzo(apyrene limit values exceedances were recorded in Taranto, a city in southern Italy included in so-called areas at high risk of environmental crisis because of the presence of a heavy industrial district including the largest steel factory in Europe. A study of these critical pollution events showed a close correlation with the wind coming from the industrial site to the adjacent urban area. During 2011, at monitoring sites closes to the industrial area, at least the 65% of PM10 exceedances were related to wind day conditions (characterized by at least 3 consecutive hours of wind coming from 270-360±2deg with an associated speed higher than 7 m/s. For this reason, in 2012 an integrated environmental permit and a regional air quality plan were enacted to reduce pollutant emissions from industrial plants. A study of PM10 levels registered during windy days was performed during critical episodes of pollution highlighting that the difference between windy days and no windy days’ concentrations reduces from 2012 to 2014 in industrial site. False negative events (verified ex-post by observed meteorological data not identified by the forecast model - did not show a significant influence on PM concentration: PM10 values were comparable and sometimes lower than windy days levels. It is reasonable that the new scenario with a relevant reduction emissions form Ilva plant reduced the pollutants contribution from industrial area, contributing to PM10 levels decrease, also in false negative events.

  6. Assesment of PM10 pollution episodes in a ceramic cluster (NE Spain): proposal of a new quality index for PM10, As, Cd, Ni and Pb.

    Science.gov (United States)

    Vicente, A B; Sanfeliu, T; Jordan, M M

    2012-10-15

    Environmental pollution control is one of the most important goals in pollution risk assessment today. In this sense, modern and precise tools that allow scientists to evaluate, quantify and predict air pollution are of particular interest. Monitoring atmospheric particulate matter is a challenge faced by the European Union. Specific rules on this subject are being developed (Directive 2004/107/EC, Directive 2008/50/EC) in order to reduce the potential adverse effects on human health caused by air pollution. Air pollution has two sources: natural and anthropogenic. Contributions from natural sources can be assessed but cannot be controlled, while emissions from anthropogenic sources can be controlled; monitoring to reduce this latter type of pollution should therefore be carried out. In this paper, we describe an air quality evaluation in terms of levels of atmospheric particles (PM10), as outlined by European Union legislation, carried out in an industrialised Spanish coastal area over a five-year period with the purpose of comparing these values with those of other areas in the Mediterranean Basin with different weather conditions from North of Europe. The study area is in the province of Castellón. This province is a strategic area in the frame work of European Union (EU) pollution control. Approximately 80% of European ceramic tiles and ceramic frit manufacturers are concentrated in two areas, forming the so-called "ceramics clusters"; ones in Modena (Italy) and the other in Castellón. In this kind of areas, there are a lot of air pollutants from this industry then it is difficult to fulfill de European limits of PM10 so it is necessary to control the air quality in them. The seasonal differences in the number of days in which pollutant level limits were exceeded were evaluated and the sources of contamination were identified. Air quality indexes for each pollutant have been established to determine easily and clearly the quality of air breathed. Furthermore

  7. Air pollution exposure in Oslo, Drammen, Bergen and Trondheim. Calculations of NO{sub 2}, PM{sub 10} and PM{sub 2,5} for the winter 1995 to 1996; Eksponering til luftforurensing i Oslo, Drammen, Bergen og Trondheim. Beregninger av NO{sub 2}, PM{sub 10} og PM{sub 2,5} for vinteren 1995-1996

    Energy Technology Data Exchange (ETDEWEB)

    Sloerdal, Leif Haavard

    1998-07-01

    The Norwegian Institute for Air Research (NILU) commissioned by the Norwegian Pollution Control Authority (Statens forurensningstilsyn), has calculated human exposure values to NO{sub 2}, PM{sub 1}0 and PM{sub 2},5 in the cities of Oslo, Drammen, Bergen and Trondheim. In Oslo, Drammen and Bergen the calculations are made for the winter 1995 to 1996. For Trondheim the necessary meteorological data were missing and the calculations are therefore made for the winter of 1994 to 1995. In the project only simplified exposure calculations are carried out where estimated ground concentrations and population distribution information at the km{sub 2} level are connected. The calculations are then made as if everyone have been outside at the home address during the entire estimation period, termed ''potential exposure''. The population exposure load is estimated for excesses of various air quality criteria and the results are presented. In addition values for the worst hour and/or the worst day of exposure for each of the four cities are presented. The term worst is defined as the hour or the day in the simulation period where the most number of people are exposed to concentrations exceeding the threshold values for air quality recommended by the Norwegian Pollution Control Authority. For NO{sub 2} these threshold figures are 100 microgram/m{sup 3} for hour values and 75 microgram/m{sup 3} for day values. For PM{sub 1}0 and PM{sub 2},5 criteria for hour values do not exist while day values are now stipulated as 35 microgram/m{sup 3} for PM{sub 1}0 and 20 microgram/m{sup 3} for PM{sub 2},5. The calculated maximum concentrations may not coincide with these values. The report gives results for exposure estimates for NO{sub 2}, PM{sub 1}0 and PM{sub 2},5 in the cities and evaluates the significance of regional background levels, traffic and heating emissions in contributions to the total population exposure load. The exposure to NO{sub 2} is largest in Bergen. The PM{sub 1}0 and

  8. Variations of PM2.5, PM10 mass concentration and health assessment in Islamabad, Pakistan

    Science.gov (United States)

    Memhood, Tariq; Tianle, Z.; Ahmad, I.; Li, X.; Shen, F.; Akram, W.; Dong, L.

    2018-04-01

    Sparse information appears in lack of awareness among the people regarding the linkage between particulate matter (PM) and mortality in Pakistan. The current study is aimed to investigate the seasonal mass concentration level of PM2.5 and PM10 in ambient air of Islamabad to assess the health risk of PM pollution. The sampling was carried out with two parallel medium volume air samplers on Whatman 47 mm quartz filter at a flow rate of 100L/min. Mass concentration was obtained by gravimetric analysis. A noticeable seasonal change in PM10 and PM2.5 mass concentration was observed. In case of PM2.5, the winter was a most polluted and spring was the cleanest season of 2017 in Islamabad with 69.97 and 40.44 μgm‑3 mean concentration. Contrary, highest (152.42 μgm‑3) and lowest (74.90 μgm‑3) PM10 mass concentration was observed in autumn and summer respectively. Air Quality index level for PM2.5 and PM10 was remained moderated to unhealthy and good to sensitive respectively. Regarding health risk assessment, using national data for mortality rates, the excess mortality due to PM2.5 and PM10 exposure has been calculated and amounts to over 198 and 98 deaths annually for Islamabad. Comparatively estimated lifetime risk for PM2.5 (1.16×10-6) was observed higher than PM10 (7.32×10-8).

  9. Assessment of annual air pollution levels with PM1, PM2.5, PM10 and associated heavy metals in Algiers, Algeria.

    Science.gov (United States)

    Talbi, Abdelhamid; Kerchich, Yacine; Kerbachi, Rabah; Boughedaoui, Ménouèr

    2018-01-01

    Concentrations of particulate matter less than 1  μm, 2.5  μm, 10 μm and their contents of heavy metals were investigated in two different stations, urban and roadside at Algiers (Algeria). Sampling was conducted during two years by a high volume samplers (HVS) equipped with a cascade impactor at four levels stage, for one year sampling. The characterization of the heavy metals associated to the particulate matter (PM) was carried out by X-Ray Fluorescence analysis (XRF). The annual average concentration of PM 1 , PM 2.5 and PM 10 in both stations were 18.24, 32.23 and 60.01 μg m -3 respectively. The PM 1 , PM 2.5 and PM 10 concentrations in roadside varied from 13.46 to 25.59 μg m -3 , 20.82-49.85 μg m -3 and 45.90-77.23 μg m -3 respectively. However in the urban station, the PM 1 , PM 2.5 and PM 10 concentrations varied from 10.45 to 26.24 μg m -3 , 18.53-47.58 μg m -3 and 43.8-91.62 μg m -3 . The heavy metals associated to the PM were confirmed by Scanning Electron Microscopy-Energy Dispersive X-Ray analyses (SEM-EDX). The different spots of PM 2.5 analysis by SEM-EDX shows the presence of nineteen elements with anthropogenic and natural origins, within the heavy metal detected, the lead was found with maximum of 5% (weight percent). In order to determine the source contributions of PM levels at the two sampling sites sampling, principal compound analysis (PCA) was applied to the collected data. Statistical analysis confirmed anthropogenic source with traffic being a significant source and high contribution of natural emissions. At both sites, the PM 2.5 /PM 10 ratio is lower than that usually recorded in developed countries. The study of the back-trajectories of the air masses starting from Sahara shows that desert dust influences the concentration and the composition of the PM measured in Algiers. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Air pollution in China: Status and spatiotemporal variations.

    Science.gov (United States)

    Song, Congbo; Wu, Lin; Xie, Yaochen; He, Jianjun; Chen, Xi; Wang, Ting; Lin, Yingchao; Jin, Taosheng; Wang, Anxu; Liu, Yan; Dai, Qili; Liu, Baoshuang; Wang, Ya-Nan; Mao, Hongjun

    2017-08-01

    In recent years, China has experienced severe and persistent air pollution associated with rapid urbanization and climate change. Three years' time series (January 2014 to December 2016) concentrations data of air pollutants including particulate matter (PM 2.5 and PM 10 ) and gaseous pollutants (SO 2 , NO 2 , CO, and O 3 ) from over 1300 national air quality monitoring sites were studied to understand the severity of China's air pollution. In 2014 (2015, 2016), annual population-weighted-average (PWA) values in China were 65.8 (55.0, 50.7) μg m -3 for PM 2.5 , 107.8 (91.1, 85.7) μg m -3 for PM 10 , 54.8 (56.2, 57.2) μg m -3 for O 3 _8 h, 39.6 (33.3, 33.4) μg m -3 for NO 2 , 34.1 (26, 21.9) μg m -3 for SO 2 , 1.2 (1.1, 1.1) mg m -3 for CO, and 0.60 (0.59, 0.58) for PM 2.5 /PM 10 , respectively. In 2014 (2015, 2016), 7% (14%, 19%), 17% (27%, 34%), 51% (67%, 70%) and 88% (97%, 98%) of the population in China lived in areas that meet the level of annual PM 2.5 , PM 10 , NO 2 , and SO 2 standard metrics from Chinese Ambient Air Quality Standards-Grade II. The annual PWA concentrations of PM 2.5 , PM 10 , O 3 _8 h, NO 2 , SO 2 , CO in the Northern China are about 40.4%, 58.9%, 5.9%, 24.6%, 96.7%, and 38.1% higher than those in Southern China, respectively. Though the air quality has been improving recent years, PM 2.5 pollution in wintertime is worsening, especially in the Northern China. The complex air pollution caused by PM and O 3 (the third frequent major pollutant) is an emerging problem that threatens the public health, especially in Chinese mega-city clusters. NOx controls were more beneficial than SO 2 controls for improvement of annual PM air quality in the northern China, central, and southwest regions. Future epidemiologic studies are urgently required to estimate the health impacts associated with multi-pollutants exposure, and revise more scientific air quality index standards. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. The Effects of Bus Ridership on Airborne Particulate Matter (PM10 Concentrations

    Directory of Open Access Journals (Sweden)

    Jaeseok Her

    2016-07-01

    Full Text Available Air pollution caused by rapid urbanization and the increased use of private vehicles seriously affects citizens’ health. In order to alleviate air pollution, many cities have replaced diesel buses with compressed natural gas (CNG buses that emit less exhaust gas. Urban planning strategies such as transit-oriented development (TOD posit that reducing private vehicle use and increasing public transportation use would reduce air pollution levels. The present study examined the effects of bus ridership on airborne particulate matter (PM10 concentrations in the capital region of Korea. We interpolated the levels of PM10 from 128 air pollution monitoring stations, utilizing the Kriging method. Spatial regression models were used to estimate the impact of bus ridership on PM10 levels, controlling for physical environment attributes and socio-economic factors. The analysis identified that PM10 concentration levels tend to be lower in areas with greater bus ridership. This result implies that urban and transportation policies designed to promote public transportation may be effective strategies for reducing air pollution.

  12. MUTAGENIC AND CYTOTOXIC FACTORS IN PM10 AND PM2.5 FRACTIONS IN ATMOSPHERE IN SOSNOWIEC

    Directory of Open Access Journals (Sweden)

    Agnieszka Kozłowska

    2011-12-01

    Full Text Available Air dust pollution enters human body via respiratory system. Its cytotoxic effect is surveyed using cell lines of mononuclear or pulmonary epithelial cell origins. Mutagenic properties are assessed using short-term assay on Salmonella typhimurium bacterial strains. Mutagenic and cytotoxic properties of air dust pollution – fractions PM10 and PM2.5, which were collected in autumn and in winter, were assessed using Ames test with Salmonella typhimurium strains and MTT cytoxicity assay on mononuclear cell line RAW 264.7, respectively. Samples of dust were collected on glass fiber filters by (Harvard impactor with air flow ca. 9 l/min, splitting samples to the fraction PM10 and PM2.5. Extraction of pollution was carried out using dichlorometane. Extracted samples were dissolved in dimethylsulfoxide (DMSO before analyses. The highest value of mutagenicity ratio (MR was observed in YG1041 strain with metabolic activation by S9 extract in the PM10 sample of dust collected in winter. The lowest one was observed in TA98 strain without activation in the PM2.5 sample of dust collected in autumn. Winter dust samples, both the fractions PM10 and PM2,5, were toxic for TA98 strain in both test conditions (5S9. MTT cytotoxicity assay using mononuclear cell line RAW 264.7 showed that fractions PM10 and PM2.5 collected in winter were of highest toxic properties. The viability of cells, which were treated with samples of 0,312 m3 air, were 1,7% and 1,6%, respectively, while for autumn samples for PM2,5 the viability was 63%.

  13. Health benefits of PM10 reduction in Iran

    Science.gov (United States)

    Marzouni, Mohammad Bagherian; Moradi, Mahsa; Zarasvandi, Alireza; Akbaripoor, Shayan; Hassanvand, Mohammad Sadegh; Neisi, Abdolkazem; Goudarzi, Gholamreza; Mohammadi, Mohammad Javad; Sheikhi, Reza; Kermani, Majid; Shirmardi, Mohammad; Naimabadi, Abolfazl; Gholami, Moeen; Mozhdehi, Saeed Pourkarim; Esmaeili, Mehdi; Barari, Kian

    2017-08-01

    Air pollution contains a complex mixture of poisonous compounds including particulate matter (PM) which has wide spectrum of adverse health effects. The main purpose of this study was to estimate the potential health impacts or benefits due to any changes in annual PM10 level in four major megacities of Iran. The required data of PM10 for AirQ software was collected from air quality monitoring stations in four megacities of Iran. The preprocessing was carried out using macro coding in excel environment. The relationship between different presumptive scenarios and health impacts was determined. We also assessed the health benefits of reducing PM10 to WHO Air Quality Guidelines (WHO-AQGs) and National Ambient Air Quality Standards (NAAQSs) levels with regard to the rate of mortality and morbidity in studied cities. We found that the 10 μg/m3 increase in annual PM10 concentration is responsible for seven (95% CI 6-8) cases increase in total number of deaths per 2 × 105 person. We also found that 10.7, 7.2, 5.7, and 5.3% of total death is attributable to short-term exposure to air pollution for Ahvaz, Isfahan, Shiraz, and Tehran, respectively. We found that by attaining the WHO's proposed value for PM10, the potential health benefits of 89, 84, 79, and 78% were obtained in Ahvaz, Isfahan, Shiraz, and Tehran, respectively. The results also indicated that 27, 10, 3, and 1% of health impacts were attributed to dust storm days for Ahvaz, Isfahan, Shiraz, and Tehran, respectively.

  14. Assessment of the Possible Association of Air Pollutants PM10, O3, NO2 With an Increase in Cardiovascular, Respiratory, and Diabetes Mortality in Panama City: A 2003 to 2013 Data Analysis.

    Science.gov (United States)

    Zúñiga, Julio; Tarajia, Musharaf; Herrera, Víctor; Urriola, Wilfredo; Gómez, Beatriz; Motta, Jorge

    2016-01-01

    In recent years, Panama has experienced a marked economic growth, and this, in turn, has been associated with rapid urban development and degradation of air quality. This study is the first evaluation done in Panama on the association between air pollution and mortality. Our objective was to assess the possible association between monthly levels of PM10, O3, and NO2, and cardiovascular, respiratory, and diabetes mortality, as well as the seasonal variation of mortality in Panama City, Panama.The study was conducted in Panama City, using air pollution data from January 2003 to December 2013. We utilized a Poisson regression model based on generalized linear models, to evaluate the association between PM10, NO2, and O3 exposure and mortality from diabetes, cardiovascular, and respiratory diseases. The sample size for PM10, NO2, and O2 was 132, 132, and 108 monthly averages, respectively.We found that levels of PM10, O3, and NO2 were associated with increases in cardiovascular, respiratory, and diabetes mortality. For PM10 levels ≥ 40 μg/m3, we found an increase in cardiovascular mortality of 9.7% (CI 5.8-13.6%), and an increase of 12.6% (CI 0.2-24.2%) in respiratory mortality. For O3 levels ≥ 20 μg/m3 we found an increase of 32.4% (IC 14.6-52.9) in respiratory mortality, after a 2-month lag period following exposure in the 65 to respiratory mortality of 11.2% (IC 1.9-21.3), after a 2-month lag period following exposure among those aged between 65 and pollution in Panama City and an increase in cardiovascular, respiratory, and diabetes mortality. This study confirms the urgent need to improve the measurement frequency of air pollutants in Panama.

  15. Particulate matter urban air pollution from traffic car

    Science.gov (United States)

    Filip, G. M.; Brezoczki, V. M.

    2017-05-01

    The particulate matters (PM) are very important compounds of urban air pollution. There are a lot of air pollution sources who can generate PM and one of the most important of them it is urban traffic car. Air particulate matters have a major influence on human health so everywhere are looking for PM reducing solutions. It is knows that one of the solution for reduce the PM content from car traffic on ambient urban air is the fluidity of urban traffic car by introduction the roundabout intersections. This paper want to present some particulate matter determinations for PM10 and PM2.5 conducted on the two types of urban intersection respectively traffic light and roundabout intersections in Baia Mare town in the approximate the same work conditions. The determinations were carried out using a portable particulate matter monitor Haz - Dust model EPAM - 5000, who can provide a real time data for PM10, PM 2.5.Determinations put out that there are differences between the two locations regarding the PM content on ambient air. On roundabout intersection the PM content is less than traffic light intersection for both PM10 and PM 2.5 with more than 30%.

  16. Using gravimetric measurement for determination of the mass fraction PM10

    Directory of Open Access Journals (Sweden)

    Nicolae Chirilă

    2011-12-01

    Full Text Available In this paper, we tried to determinate the air pollution level with mass fraction PM10 from Targu Mures area. For this purpose, determinations were made in University Petru Maior’s laboratory, using ADR 1200 S device and in Targu Mures Environmental Department’s laboratory. The results that we obtained show a low level of air pollution with mass fraction PM10 in Targu Mures area.

  17. Evolution of air pollution source contributions over one decade, derived by PM10 and PM2.5 source apportionment in two metropolitan urban areas in Greece

    Science.gov (United States)

    Diapouli, E.; Manousakas, M.; Vratolis, S.; Vasilatou, V.; Maggos, Th; Saraga, D.; Grigoratos, Th; Argyropoulos, G.; Voutsa, D.; Samara, C.; Eleftheriadis, K.

    2017-09-01

    Metropolitan Urban areas in Greece have been known to suffer from poor air quality, due to variety of emission sources, topography and climatic conditions favouring the accumulation of pollution. While a number of control measures have been implemented since the 1990s, resulting in reductions of atmospheric pollution and changes in emission source contributions, the financial crisis which started in 2009 has significantly altered this picture. The present study is the first effort to assess the contribution of emission sources to PM10 and PM2.5 concentration levels and their long-term variability (over 5-10 years), in the two largest metropolitan urban areas in Greece (Athens and Thessaloniki). Intensive measurement campaigns were conducted during 2011-2012 at suburban, urban background and urban traffic sites in these two cities. In addition, available datasets from previous measurements in Athens and Thessaloniki were used in order to assess the long-term variability of concentrations and sources. Chemical composition analysis of the 2011-2012 samples showed that carbonaceous matter was the most abundant component for both PM size fractions. Significant increase of carbonaceous particle concentrations and of OC/EC ratio during the cold period, especially in the residential urban background sites, pointed towards domestic heating and more particularly wood (biomass) burning as a significant source. PMF analysis further supported this finding. Biomass burning was the largest contributing source at the two urban background sites (with mean contributions for the two size fractions in the range of 24-46%). Secondary aerosol formation (sulphate, nitrate & organics) was also a major contributing source for both size fractions at the suburban and urban background sites. At the urban traffic site, vehicular traffic (exhaust and non-exhaust emissions) was the source with the highest contributions, accounting for 44% of PM10 and 37% of PM2.5, respectively. The long

  18. Seasonal variation, risk assessment and source estimation of PM 10 and PM10-bound PAHs in the ambient air of Chiang Mai and Lamphun, Thailand.

    Science.gov (United States)

    Pengchai, Petch; Chantara, Somporn; Sopajaree, Khajornsak; Wangkarn, Sunanta; Tengcharoenkul, Urai; Rayanakorn, Mongkon

    2009-07-01

    Daily PM10 concentrations were measured at four sampling stations located in Chiang Mai and Lamphun provinces, Thailand. The sampling scheme was conducted during June 2005 to June 2006; every 3 days for 24 h in each sampling period. The result revealed that all stations shared the same pattern, in which the PM10 (particulate matters with diameter of less than 10 microm) concentration increased at the beginning of dry season (December) and reached its peak in March before decreasing by the end of April. The maximum PM10 concentration for each sampling station was in the range of 140-182 microg/m(3) which was 1.1-1.5 times higher than the Thai ambient air quality standard of 120 microg/m(3). This distinctly high concentration of PM10 in the dry season (Dec. 05-Mar. 06) was recognized as a unique seasonal pattern for the northern part of Thailand. PM10 concentration had a medium level of negative correlation (r = -0.696 to -0.635) with the visibility data. Comparing the maximum PM10 concentration detected at each sampling station to the permitted PM10 level of the national air quality standard, the warning visibility values for the PM10 pollution-watch system were determined as 10 km for Chiang Mai Province and 5 km for Lamphun Province. From the analysis of PM10 constituents, no component exceeded the national air quality standard. The total concentrations of PM10-bond polycyclic aromatic hydrocarbons (PAHs) are calculated in terms of total toxicity equivalent concentrations (TTECs) using the toxicity equivalent factors (TEFs) method. TTECs in Chiang Mai and Lamphun ambient air was found at a level comparable to those observed in Nagasaki, Bangkok and Rome and at a lower level than those reported at Copenhagen. The annual number of lung cancer cases for Chiang Mai and Lamphun Provinces was estimated at two cases/year which was lower than the number of cases in Bangkok (27 cases/year). The principal component analysis/absolute principal component scores (PCA

  19. Disability-adjusted life years and economic cost assessment of the health effects related to PM2.5 and PM10 pollution in Mumbai and Delhi, in India from 1991 to 2015.

    Science.gov (United States)

    Maji, Kamal Jyoti; Dikshit, Anil Kumar; Deshpande, Ashok

    2017-02-01

    Particulate air pollution is becoming a serious public health concern in urban cities in India due to air pollution-related health effects associated with disability-adjusted life years (DALYs) and economic loss. To obtain the quantitative result of health impact of particulate matter (PM) in most populated Mumbai City and most polluted Delhi City in India, an epidemiology-based exposure-response function has been used to calculate the attributable number of mortality and morbidity cases from 1991 to 2015 in a 5-year interval and the subsequent DALYs, and economic cost is estimated of the health damage based on unit values of the health outcomes. Here, we report the attributable number of mortality due to PM 10 in Mumbai and Delhi increased to 32,014 and 48,651 in 2015 compared with 19,291 and 19,716 in year 1995. And annual average mortality due to PM 2.5 in Mumbai and Delhi was 10,880 and 10,900. Premature cerebrovascular disease (CEV), ischemic heart disease (IHD), and chronic obstructive pulmonary disease (COPD) causes are about 35.3, 33.3, and 22.9% of PM 2.5 -attributable mortalities. Total DALYs due to PM10 increased from 0.34 million to 0.51 million in Mumbai and 0.34 million to 0.75 million in Delhi from average year 1995 to 2015. Among all health outcomes, mortality and chronic bronchitis shared about 95% of the total DALYs. Due to PM 10 , the estimated total economic cost at constant price year 2005 US$ increased from 2680.87 million to 4269.60 million for Mumbai City and 2714.10 million to 6394.74 million for Delhi City, from 1995 to 2015, and the total amount accounting about 1.01% of India's gross domestic product (GDP). A crucial presumption is that in 2030, PM 10 levels would have to decline by 44% (Mumbai) and 67% (Delhi) absolutely to maintain the same health outcomes in year 2015 levels. The results will help policy makers from pollution control board for further cost-benefit analyses of air pollution management programs in Mumbai and Delhi.

  20. Human health risk due to variations in PM10-PM2.5 and associated PAHs levels

    Science.gov (United States)

    Sosa, Beatriz S.; Porta, Andrés; Colman Lerner, Jorge Esteban; Banda Noriega, Roxana; Massolo, Laura

    2017-07-01

    WHO (2012) reports that chronic exposure to air pollutants, including particulate matter (PM), causes the death of 7 million people, constituting the most important environmental risk for health in the world. IARC classifies contaminated outdoor air as carcinogenic, Group 1 category. However, in our countries there are few studies regarding air pollution levels and possible associated effects on public health. The current study determined PM and associated polycyclic aromatic hydrocarbons (PAHs) levels in outdoor air, identified their possible emission sources and analysed health risks in the city of Tandil (Argentina). PM10 and PM2.5 samples were collected using a low volume sampler (MiniVol TAS) in three areas: city centre, industrial and residential. Concentrations were determined by gravimetric methods and the content of the US EPA 16 priority PAHs was found by high performance liquid chromatography (HPLC). Description of the main emission sources and selection of monitoring sites resulted from spatial analysis and the IVE (International Vehicle Emissions) model was used in the characterisation of the traffic flow. Median values of 35.7 μgm-3 and 9.6 μgm-3 in PM10 and PM2.5 respectively and characteristic profiles were found for each area. Local values PAHs associated to PM10 and PM2.5, in general, were lower than 10ngm-3. The estimated Unit Risk for the three areas exceeds US EPA standards (9 × 10-5). The number of deaths attributable to short term exposure to outdoor PM10 was 4 cases in children under 5 years of age, and 21 cases in total population, for a relative risk of 1.037.

  1. Air pollution exposure, cause-specific deaths and hospitalizations in a highly polluted Italian region.

    Science.gov (United States)

    Carugno, Michele; Consonni, Dario; Randi, Giorgia; Catelan, Dolores; Grisotto, Laura; Bertazzi, Pier Alberto; Biggeri, Annibale; Baccini, Michela

    2016-05-01

    The Lombardy region in northern Italy ranks among the most air polluted areas of Europe. Previous studies showed air pollution short-term effects on all-cause mortality. We examine here the effects of particulate matter with aerodynamic diameter ≤10µm (PM10) and nitrogen dioxide (NO2) exposure on deaths and hospitalizations from specific causes, including cardiac, cerebrovascular and respiratory diseases. We considered air pollution, mortality and hospitalization data for a non-opportunistic sample of 18 highly polluted and most densely populated areas of the region in the years 2003-2006. We obtained area-specific effect estimates for PM10 and NO2 from a Poisson regression model on the daily number of total deaths or cause-specific hospitalizations and then combined them in a Bayesian random-effects meta-analysis. For cause-specific mortality, we applied a case-crossover analysis. Age- and season-specific analyses were also performed. Effect estimates were expressed as percent variation in mortality or hospitalizations associated with a 10µg/m(3) increase in PM10 or NO2 concentration. Natural mortality was positively associated with both pollutants (0.30%, 90% Credibility Interval [CrI]: -0.31; 0.78 for PM10; 0.70%, 90%CrI: 0.10; 1.27 for NO2). Cardiovascular deaths showed a higher percent variation in association with NO2 (1.12%, 90% Confidence Interval [CI]: 0.14; 2.11), while the percent variation for respiratory mortality was highest in association with PM10 (1.64%, 90%CI: 0.35; 2.93). The effect of both pollutants was more evident in the summer season. Air pollution was also associated to hospitalizations, the highest variations being 0.77% (90%CrI: 0.22; 1.43) for PM10 and respiratory diseases, and 1.70% (90%CrI: 0.39; 2.84) for NO2 and cerebrovascular diseases. The effect of PM10 on respiratory hospital admissions appeared to increase with age. For both pollutants, effects on cerebrovascular hospitalizations were more evident in subjects aged less than

  2. Changes in gene expression in chronic allergy mouse model exposed to natural environmental PM2.5-rich ambient air pollution.

    Science.gov (United States)

    Ouyang, Yuhui; Xu, Zhaojun; Fan, Erzhong; Li, Ying; Miyake, Kunio; Xu, Xianyan; Zhang, Luo

    2018-04-20

    Particulate matter (PM) air pollution has been associated with an increase in the incidence of chronic allergic diseases; however, the mechanisms underlying the effect of exposure to natural ambient air pollution in chronic allergic diseases have not been fully elucidated. In the present study, we aimed to investigate the cellular responses induced by exposure to natural ambient air pollution, employing a mouse model of chronic allergy. The results indicated that exposure to ambient air pollution significantly increased the number of eosinophils in the nasal mucosa. The modulation of gene expression profile identified a set of regulated genes, and the Triggering Receptor Expressed on Myeloid cells1(TREM1) signaling canonical pathway was increased after exposure to ambient air pollution. In vitro, PM2.5 increased Nucleotide-binding oligomerization domain-containing protein 1 (Nod1) and nuclear factor (NF)-κB signaling pathway activation in A549 and HEK293 cell cultures. These results suggest a novel mechanism by which, PM2.5 in ambient air pollution may stimulate the innate immune system through the PM2.5-Nod1-NF-κB axis in chronic allergic disease.

  3. Is smog innocuous? Air pollution and cardiovascular disease

    Directory of Open Access Journals (Sweden)

    Sundeep Mishra

    2017-07-01

    Full Text Available Air pollution is a significant environmental and health hazard. Earlier studies had examined the adverse health effects associated with short- and long-term exposure to particulate matter on respiratory disease. However, later studies demonstrated that was actually cardiovascular disease that accounted for majority of mortality. Furthermore, it was not gaseous pollutants like oxides of nitrate, sulfur, carbon mono-oxide or ozone but the particulate matter or PM, of fine or coarse size (PM2.5 and PM10 which was linearly associated with mortality; PM2.5 with long term and PM10 with short term. Several cardiovascular diseases are associated with pollution; acute myocardial infarction, heart failure, cardiac arrhythmias, atherosclerosis and cardiac arrest. The ideal way to address this problem is by adhering to stringent environmental standards of pollutants but some individual steps like choosing to stay indoors (on high pollution days, reducing outdoor air permeation to inside, purifying indoor air using air filters, and also limiting outdoor physical activity near source of air pollution can help. Nutritional anti-oxidants like statins or Mediterranean diet, and aspirin have not been associated with reduced risk but specific nutritional agents like broccoli, cabbage, cauliflower or brussels sprouts, fish oil supplement may help. Use of face-mask has been controversial but may be useful if particulate matter load is higher.

  4. Is smog innocuous? Air pollution and cardiovascular disease.

    Science.gov (United States)

    Mishra, Sundeep

    Air pollution is a significant environmental and health hazard. Earlier studies had examined the adverse health effects associated with short- and long-term exposure to particulate matter on respiratory disease. However, later studies demonstrated that was actually cardiovascular disease that accounted for majority of mortality. Furthermore, it was not gaseous pollutants like oxides of nitrate, sulfur, carbon mono-oxide or ozone but the particulate matter or PM, of fine or coarse size (PM 2.5 and PM 10 ) which was linearly associated with mortality; PM 2.5 with long term and PM 10 with short term. Several cardiovascular diseases are associated with pollution; acute myocardial infarction, heart failure, cardiac arrhythmias, atherosclerosis and cardiac arrest. The ideal way to address this problem is by adhering to stringent environmental standards of pollutants but some individual steps like choosing to stay indoors (on high pollution days), reducing outdoor air permeation to inside, purifying indoor air using air filters, and also limiting outdoor physical activity near source of air pollution can help. Nutritional anti-oxidants like statins or Mediterranean diet, and aspirin have not been associated with reduced risk but specific nutritional agents like broccoli, cabbage, cauliflower or brussels sprouts, fish oil supplement may help. Use of face-mask has been controversial but may be useful if particulate matter load is higher. Copyright © 2017. Published by Elsevier B.V.

  5. Tillage and straw management affect PM10 emission potential in subarctic Alaska

    Science.gov (United States)

    Emission of PM10 (particulates =10 um in diameter regulated by many nations as an air pollutant) from agricultural soils can impact regional air quality. Little information exists that describes the potential for PM10 and airborne dust emissions from subarctic soils or agricultural soils subject to ...

  6. The use of total susceptibility in the analysis of long term PM10 (PM2.5) collected at Hungarian air quality monitoring stations

    Science.gov (United States)

    Márton, Emö; Domján, Ádám; Lautner, Péter; Szentmarjay, Tibor; Uram, János

    2013-04-01

    Air monitoring stations in Hungary are operated by Environmental, Nature Conservancy and Water Pollution Inspectorates, according to the CEN/TC 264 European Union standards. PM10 samples are collected on a 24-hour basis, for two weeks in February, in May, in August and in November. About 720m3 air is pumped through quartz filters daily. Mass measurements and toxic metal analysis (As, Pb, Cd, Ni) are made on each filter (Whatmann DHA-80 PAH, 150 mm diameter) by the inspectorates. We have carried out low field magnetic susceptibility measurements using a KLY-2 instrument on all PM10 samples collected at 9 stations from 2009 on (a total of more than 2000 filters). One station, located far from direct sources, monitors background pollution. Here PM2.5 was also collected in two-week runs, seven times during the period of 2009-2012 and made available for the non-destructive magnetic susceptibility measurements. Due to the rather weak magnetic signal, the susceptibility of each PM-10 sample was computed from 10, that of each PM2.5 sample from 20 measurements. Corrections were made for the susceptibility of the sample holder, for the unpolluted filter (provided with each of the two-week runs), and for the plastic bag containing the samples. The susceptibilities of the PM10 samples were analyzed from different aspects, like the degree of magnetic pollution at different stations, daily and seasonal variations of the total and mass susceptibilities compared to the mass of the pollutants and in relation to the concentrations of the toxic elements. As expected, the lowest total and mass susceptibilities characterize the background station (pollution arrives mostly from distant sources, Vienna, Bratislava or even the Sudeten), while the highest values were measured for an industrial town with heavy traffic. At the background station the mass of the PM10 and PM2.5, respectively for the same period are quite similar, while the magnetic susceptibilities are usually higher in the

  7. Correlation Analysis of PM10 and the Incidence of Lung Cancer in Nanchang, China.

    Science.gov (United States)

    Zhou, Yi; Li, Lianshui; Hu, Lei

    2017-10-19

    Air pollution and lung cancer are closely related. In 2013, the World Health Organization listed outdoor air pollution as carcinogenic and regarded it as the most widespread carcinogen that humans are currently exposed to. Here, grey correlation and data envelopment analysis methods are used to determine the pollution factors causing lung cancer among residents in Nanchang, China, and identify population segments which are more susceptible to air pollution. This study shows that particulate matter with particle sizes below 10 micron (PM 10 ) is most closely related to the incidence of lung cancer among air pollution factors including annual mean concentrations of SO₂, NO₂, PM 10 , annual haze days, and annual mean Air Pollution Index/Air Quality Index (API/AQI). Air pollution has a greater impact on urban inhabitants as compared to rural inhabitants. When gender differences are considered, women are more likely to develop lung cancer due to air pollution. Smokers are more likely to suffer from lung cancer. These results provide a reference for the government to formulate policies to reduce air pollutant emissions and strengthen anti-smoking measures.

  8. Twelve-Year Trends of PM10 and Visibility in the Hefei Metropolitan Area of China

    Directory of Open Access Journals (Sweden)

    Lin Huang

    2016-01-01

    Full Text Available China has been experiencing severe air pollution and previous studies have mostly focused on megacities and a few hot spot regions. Hefei, the provincial capital city of Anhui province, has a population of near 5 million in its metropolitan area, but its air quality has not been reported in literature. In this study, daily PM10 and visibility data in 2001–2012 were analyzed to investigate the air quality status as well as the twelve-year pollution trends in Hefei. The results reveal that Hefei has been suffering high PM10 pollution and low visibility during the study period. The annual average PM10 concentrations are 2~3 times of the Chinese Ambient Air Quality Standard. PM10 shows fluctuating variation in 2001–2007 and has a slightly decreasing trend after 2008. The annual average visibility range is generally lower than 7 km and shows a worsening trend from 2001 to 2006 followed by an improving trend from 2007 to 2012. Wind speed, precipitation, and relative humidity have negative effects on PM10 concentrations in Hefei, while temperature could positively or negatively affect PM10. The results provide a general understanding of the status and long-term trends of PM10 pollution and visibility in a typical second-tier city in China.

  9. Network modeling of PM10 concentration in Malaysia

    Science.gov (United States)

    Supian, Muhammad Nazirul Aiman Abu; Bakar, Sakhinah Abu; Razak, Fatimah Abdul

    2017-08-01

    Air pollution is not a new phenomenon in Malaysia. The Department of Environment (DOE) monitors the country's ambient air quality through a network of 51 stations. The air quality is measured using the Air Pollution Index (API) which is mainly recorded based on the concentration of particulate matter, PM10 readings. The Continuous Air Quality Monitoring (CAQM) stations are located in various places across the country. In this study, a network model of air quality based on PM10 concen tration for selected CAQM stations in Malaysia has been developed. The model is built using a graph formulation, G = (V, E) where vertex, V is a set of CAQM stations and edges, E is a set of correlation values for each pair of vertices. The network measurements such as degree distributions, closeness centrality, and betweenness centrality are computed to analyse the behaviour of the network. As a result, a rank of CAQM stations has been produced based on their centrality characteristics.

  10. Preliminary PM2.5 and PM10 fractions source apportionment complemented by statistical accuracy determination

    Directory of Open Access Journals (Sweden)

    Samek Lucyna

    2016-03-01

    Full Text Available Samples of PM10 and PM2.5 fractions were collected between the years 2010 and 2013 at the urban area of Krakow, Poland. Numerous types of air pollution sources are present at the site; these include steel and cement industries, traffic, municipal emission sources and biomass burning. Energy dispersive X-ray fluorescence was used to determine the concentrations of the following elements: Cl, K, Ca, Ti, Mn, Fe, Ni, Cu, Zn, Br, Rb, Sr, As and Pb within the collected samples. Defining the elements as indicators, airborne particulate matter (APM source profiles were prepared by applying principal component analysis (PCA, factor analysis (FA and multiple linear regression (MLR. Four different factors identifying possible air pollution sources for both PM10 and PM2.5 fractions were attributed to municipal emissions, biomass burning, steel industry, traffic, cement and metal industry, Zn and Pb industry and secondary aerosols. The uncertainty associated with each loading was determined by a statistical simulation method that took into account the individual elemental concentrations and their corresponding uncertainties. It will be possible to identify two or more sources of air particulate matter pollution for a single factor in case it is extremely difficult to separate the sources.

  11. Assessment of PM10 enhancement by yellow sand on the air quality of Taipei, Taiwan in 2001.

    Science.gov (United States)

    Chang, Shuenn-Chin; Lee, Chung-Te

    2007-09-01

    The impact of long-range transport of yellow sand from Asian Continent to the Taipei Metropolitan Area (Taipei) not only deteriorates air quality but also poses health risks to all, especially the children and the elderly. As such, it is important to assess the enhancement of PM(10) during yellow sand periods. In order to estimate PM(10) enhancement, we adopted factor analysis to distinguish the yellow-sand (YS) periods from non-yellow-sand (NYS) periods based on air quality monitoring records. Eight YS events were identified using factor analysis coupling with an independent validation procedure by checking background site values, examining meteorological conditions, and modeling air mass trajectory from January 2001 to May 2001. The duration of each event varied from 11 to 132 h, which was identified from the time when the PM(10) level was high, and the CO and NOx levels were low. Subsequently, we used the artificial neural network (ANN) to simulate local PM(10) levels from related parameters including local gas pollutants and meteorological factors during the NYS periods. The PM(10) enhancement during the YS periods is then calculated by subtracting the simulated PM(10) from the observed PM(10) levels. Based on our calculations, the PM(10) enhancement in the maximum hour of each event ranged from 51 to 82%. Moreover, in the eight events identified in 2001, it was estimated that a total amount of 7,210 tons of PM(10) were transported by yellow sand to Taipei. Thus, in this study, we demonstrate that an integration of factor analysis with ANN model could provide a very useful method in identifying YS periods and in determining PM(10) enhancement caused by yellow sand.

  12. Association between exposure to ambient air pollution and renal function in Korean adults.

    Science.gov (United States)

    Kim, Hyun-Jin; Min, Jin-Young; Seo, Yong-Seok; Min, Kyoung-Bok

    2018-01-01

    Ambient air pollution has a negative effect on many diseases, such as cardiovascular and respiratory diseases. Recent studies have reported a relationship between air pollution and renal function, but the results were limited to exposure to particulate matter (PM). This study was to identify associations between various air pollutants and renal function among Korean adults. Nationwide survey data for a total of 24,407 adults were analyzed. We calculated the estimated glomerular filtration rate (eGFR) for each individual to assess their renal function and used this to categorize those with chronic kidney disease (CKD). To evaluate exposure to ambient air pollution, we used the annual mean concentrations of four ambient air pollutants: PM with an aerodynamic diameter ≤ 10 μm (PM 10 ), nitrogen dioxide (NO 2 ), sulfur dioxide (SO 2 ), and carbon monoxide (CO). We identified significant inverse relationships between the air pollutants PM 10 and NO 2 and eGFR in all statistical adjustment models (all p  ambient air pollutants were significantly related to an increased risk of CKD in the unadjusted model ( p   0.05). Exposures to PM 10 and NO 2 were significantly associated with decreases in eGFR levels, but not CKD, in Korean adults.

  13. A possible link between particulate matter air pollution and type 2 diabetes

    NARCIS (Netherlands)

    Volders, Evelien

    2008-01-01

    Particulate matter (PM) air pollution is most commonly referred to as PM10 and can be subdivided into coarse particles, fine particles and ultrafine particles. Sources of PM air pollution include combustion from car engines and industrial processes. Expos

  14. Short Term Prediction of PM10 Concentrations Using Seasonal Time Series Analysis

    Directory of Open Access Journals (Sweden)

    Hamid Hazrul Abdul

    2016-01-01

    Full Text Available Air pollution modelling is one of an important tool that usually used to make short term and long term prediction. Since air pollution gives a big impact especially to human health, prediction of air pollutants concentration is needed to help the local authorities to give an early warning to people who are in risk of acute and chronic health effects from air pollution. Finding the best time series model would allow prediction to be made accurately. This research was carried out to find the best time series model to predict the PM10 concentrations in Nilai, Negeri Sembilan, Malaysia. By considering two seasons which is wet season (north east monsoon and dry season (south west monsoon, seasonal autoregressive integrated moving average model were used to find the most suitable model to predict the PM10 concentrations in Nilai, Negeri Sembilan by using three error measures. Based on AIC statistics, results show that ARIMA (1, 1, 1 × (1, 0, 012 is the most suitable model to predict PM10 concentrations in Nilai, Negeri Sembilan.

  15. PM10 source apportionment study in Pleasant Valley, Nevada

    International Nuclear Information System (INIS)

    Egami, R.T.; Chow, J.C.; Watson, J.G.; DeLong, T.

    1990-01-01

    A source apportionment study was conducted between March 18 and April 4, 1988, at Pleasant Valley, Nevada, to evaluate air pollutant concentrations to which community residents were exposed and the source contributions to those pollutants. Daily PM 10 samples were taken for chemical speciation of 40 trace elements, ions, and organic and elemental carbon. This paper reports that the objectives of this case study are: to determine the emissions source composition of the potential upwind source, a geothermal plant; to measure the ambient particulate concentration and its chemical characteristics in Pleasant Valley; and to estimate the contributions of different emissions sources to PM 10 . The study found that: particulate emissions from the geothermal cooling-tower plume consisted primarily of sulfate, ammonia, chloride, and trace elements; no significant quantities of toxic inorganic species were found in the ambient air; ambient PM 10 concentrations in Pleasant Valley were within Federal standards; and source contribution to PM 10 were approximately 60% geological material; 20% motor vehicle exhaust; and 10% cooling-tower plume

  16. Metro Commuter Exposures to Particulate Air Pollution and PM2.5-Associated Elements in Three Canadian Cities: The Urban Transportation Exposure Study.

    Science.gov (United States)

    Van Ryswyk, Keith; Anastasopolos, Angelos T; Evans, Greg; Sun, Liu; Sabaliauskas, Kelly; Kulka, Ryan; Wallace, Lance; Weichenthal, Scott

    2017-05-16

    System-representative commuter air pollution exposure data were collected for the metro systems of Toronto, Montreal, and Vancouver, Canada. Pollutants measured included PM 2.5 (PM = particulate matter), PM 10 , ultrafine particles, black carbon, and the elemental composition of PM 2.5 . Sampling over three weeks was conducted in summer and winter for each city and covered each system on a daily basis. Mixed-effect linear regression models were used to identify system features related to particulate exposures. Ambient levels of PM 2.5 and its elemental components were compared to those of the metro in each city. A microenvironmental exposure model was used to estimate the contribution of a 70 min metro commute to daily mean exposure to PM 2.5 elemental and mass concentrations. Time spent in the metro was estimated to contribute the majority of daily exposure to several metallic elements of PM 2.5 and 21.2%, 11.3% and 11.5% of daily PM 2.5 exposure in Toronto, Montreal, and Vancouver, respectively. Findings suggest that particle air pollutant levels in Canadian metros are substantially impacted by the systems themselves, are highly enriched in steel-based elements, and can contribute a large portion of PM 2.5 and its elemental components to a metro commuter's daily exposure.

  17. Controlling Indoor Air Pollution from Moxibustion

    Directory of Open Access Journals (Sweden)

    Chung-Yen Lu

    2016-06-01

    Full Text Available Indoor air quality (IAQ control of hospitals plays a critical role in protecting both hospital staffs and patients, particularly those who are highly susceptible to the adverse effects of indoor noxious hazards. However, moxibustion in outpatient departments (OPDs of traditional Chinese medicine (TCM may be a source of indoor air pollution in hospitals. Some studies have investigated indoor air pollution during moxibustion in Chinese medicine clinics (CMCs and moxibustion rooms, demonstrating elevated air pollutants that pose a threat to the health of medical staff and patients. Our study investigated the indoor air pollutants of indoor carbon dioxide (CO2, carbon monoxide (CO, formaldehyde (HCHO, total volatile organic compounds (TVOCs, airborne particulate matter with a diameter of ≤10 µm (PM10 and ≤2.5 µm (PM2.5 during moxibustion in an acupuncture and moxibustion room of the OPD in a hospital in Taipei. To evaluate the different control strategies for indoor air pollution from moxibution, a comparison of air pollutants during moxibution among the methods of using alternative old moxa wools, local exhaust ventilation and an air cleaner was conducted. In this study, burning alternative old moxa wools for moxibustion obviously reduced all gaseous pollutants except for aerosols comparing burning fresh moxa wools. Using local exhaust ventilation reduced most of the aerosols after burning moxa. We also found that using an air cleaner was inefficient for controlling indoor air pollutants, particularly gaseous pollutants. Therefore, combining replacing alternative old moxa wools and local exhaust ventilation could be a suitable design for controlling indoor air pollution during moxibustion therapy.

  18. Relationships of relative humidity with PM2.5 and PM10 in the Yangtze River Delta, China.

    Science.gov (United States)

    Lou, Cairong; Liu, Hongyu; Li, Yufeng; Peng, Yan; Wang, Juan; Dai, Lingjun

    2017-10-23

    Severe particulate matter (PM, including PM 2.5 and PM 10 ) pollution frequently impacts many cities in the Yangtze River Delta (YRD) in China, which has aroused growing concern. In this study, we examined the associations between relative humidity (RH) and PM pollution using the equal step-size statistical method. Our results revealed that RH had an inverted U-shaped relationship with PM 2.5 concentrations (peaking at RH = 45-70%), and an inverted V-shaped relationship (peaking at RH = 40 ± 5%) with PM 10 , SO 2 , and NO 2 . The trends of polluted-day number significantly changed at RH = 70%. The very-dry (RH humidity (RH = 60-70%) conditions positively affected PM 2.5 and exerted an accumulation effect, while the mid-humidity (RH = 70-80%), high-humidity (RH = 80-90%), and extreme-humidity (RH = 90-100%) conditions played a significant role in reducing particle concentrations. For PM 10 , the accumulation and reduction effects of RH were split at RH = 45%. Moreover, an upward slope in the PM 2.5 /PM 10 ratio indicated that the accumulation effects from increasing RH were more intense on PM 2.5 than on PM 10 , while the opposite was noticed for the reduction effects. Secondary transformations from SO 2 and NO 2 to sulfate and nitrate were mainly responsible for PM 2.5 pollution, and thus, controlling these precursors is effective in mitigating the PM pollution in the YRD, especially during winter. The conclusions in this study will be helpful for regional air-quality management.

  19. Monitoring of air pollution levels related to Charilaos Trikoupis Bridge.

    Science.gov (United States)

    Sarigiannis, D A; Handakas, E J; Kermenidou, M; Zarkadas, I; Gotti, A; Charisiadis, P; Makris, K; Manousakas, M; Eleftheriadis, K; Karakitsios, S P

    2017-12-31

    Charilaos Trikoupis bridge is the longest cable bridge in Europe that connects Western Greece with the rest of the country. In this study, six air pollution monitoring campaigns (including major regulated air pollutants) were carried out from 2013 to 2015 at both sides of the bridge, located in the urban areas of Rio and Antirrio respectively. Pollution data were statistically analyzed and air quality was characterized using US and European air quality indices. From the overall campaign, it was found that air pollution levels were below the respective regulatory thresholds, but once at the site of Antirrio (26.4 and 52.2μg/m 3 for PM 2.5 and ΡΜ 10 , respectively) during the 2nd winter period. Daily average PM 10 and PM 2.5 levels from two monitoring sites were well correlated to gaseous pollutant (CO, NO, NO 2 , NO x and SO 2 ) levels, meteorological parameters and factor scores from Positive Matrix Factorization during the 3-year period. Moreover, the elemental composition of PM 10 and PM 2.5 was used for source apportionment. That analysis revealed that major emission sources were sulfates, mineral dust, biomass burning, sea salt, traffic and shipping emissions for PM 10 and PM 2.5 , for both Rio and Antirrio. Seasonal variation indicates that sulfates, mineral dust and traffic emissions increased during the warm season of the year, while biomass burning become the dominant during the cold season. Overall, the contribution of the Charilaos Trikoupis bridge to the vicinity air pollution is very low. This is the result of the relatively low daily traffic volume (~10,000 vehicles per day), the respective traffic fleet composition (~81% of the traffic fleet are private vehicles) and the speed limit (80km/h) which does not favor traffic emissions. In addition, the strong and frequent winds further contribute to the rapid dispersion of the emitted pollutants. Copyright © 2017. Published by Elsevier B.V.

  20. Air pollution and hospital admissions for respiratory diseases in Lanzhou, China

    International Nuclear Information System (INIS)

    Tao, Yan; Mi, Shengquan; Zhou, Shuhong; Wang, Shigong; Xie, Xiaoyun

    2014-01-01

    Lanzhou is among the most seriously air-polluted cities in China as a whole, due to its unique topography, climate, industrial structure and so on. We studied the relationship between different air pollution and respiratory hospitalizations from 2001 to 2005, the total of respiratory hospital admissions were 28,057. The data were analyzed using Poisson regression models after controlling for the long time trend for air pollutants, the “day of week” effect and confounding meteorological factors. Three air pollutants (PM 10 , SO 2 , NO 2 ) had a lag effect, the lag was 3–5 days for PM 10 , 1–3 days for SO 2 and 1–4 days for NO 2 . The relative risks were calculated for increases in the inter-quartile range of the pollutants (139 μg/m 3 in PM 10 , 61 μg/m 3 in SO 2 and 31 μg/m 3 in NO 2 ). Results showed that there were significant associations between air pollutants and respiratory hospital admissions, and stronger effects were observed for females and aged ≥65 yrs in Lanzhou. -- There were significant associations between air pollutants and respiratory diseases with lag effect, and the aged and female people are more vulnerable to air pollutants. -- Highlights: • We assess the association between different air pollutants and respiratory diseases in 2001–2005. • The associations are significant and show a lag effect. • The lag was 3–5 days for PM 10 , 1–3 days for SO 2 and 1–4 days for NO 2

  1. Correlation Analysis of PM10 and the Incidence of Lung Cancer in Nanchang, China

    Science.gov (United States)

    Zhou, Yi; Li, Lianshui; Hu, Lei

    2017-01-01

    Air pollution and lung cancer are closely related. In 2013, the World Health Organization listed outdoor air pollution as carcinogenic and regarded it as the most widespread carcinogen that humans are currently exposed to. Here, grey correlation and data envelopment analysis methods are used to determine the pollution factors causing lung cancer among residents in Nanchang, China, and identify population segments which are more susceptible to air pollution. This study shows that particulate matter with particle sizes below 10 micron (PM10) is most closely related to the incidence of lung cancer among air pollution factors including annual mean concentrations of SO2, NO2, PM10, annual haze days, and annual mean Air Pollution Index/Air Quality Index (API/AQI). Air pollution has a greater impact on urban inhabitants as compared to rural inhabitants. When gender differences are considered, women are more likely to develop lung cancer due to air pollution. Smokers are more likely to suffer from lung cancer. These results provide a reference for the government to formulate policies to reduce air pollutant emissions and strengthen anti-smoking measures. PMID:29048397

  2. Correlation Analysis of PM10 and the Incidence of Lung Cancer in Nanchang, China

    Directory of Open Access Journals (Sweden)

    Yi Zhou

    2017-10-01

    Full Text Available Air pollution and lung cancer are closely related. In 2013, the World Health Organization listed outdoor air pollution as carcinogenic and regarded it as the most widespread carcinogen that humans are currently exposed to. Here, grey correlation and data envelopment analysis methods are used to determine the pollution factors causing lung cancer among residents in Nanchang, China, and identify population segments which are more susceptible to air pollution. This study shows that particulate matter with particle sizes below 10 micron (PM10 is most closely related to the incidence of lung cancer among air pollution factors including annual mean concentrations of SO2, NO2, PM10, annual haze days, and annual mean Air Pollution Index/Air Quality Index (API/AQI. Air pollution has a greater impact on urban inhabitants as compared to rural inhabitants. When gender differences are considered, women are more likely to develop lung cancer due to air pollution. Smokers are more likely to suffer from lung cancer. These results provide a reference for the government to formulate policies to reduce air pollutant emissions and strengthen anti-smoking measures.

  3. Influence of Social-economic Activities on Air Pollutants in Beijing, China

    Science.gov (United States)

    Li, Xiaolu; Zheng, Wenfeng; Yin, Lirong; Yin, Zhengtong; Song, Lihong; Tian, Xia

    2017-08-01

    With the rapid economic development, the serious air pollution in Beijing attracts increasing attention in the last decade. Seen as one whole complex and grey system, the causal relationship between the social development and the air pollution in Beijing has been quantitatively analyzed in this paper. By using the grey relational model, the aim of this study is to explore how the socio-economic and human activities affect on the air pollution in the city of Beijing, China. Four air pollutants, as the particulate matter with size 2.5 micrometers or less (PM2.5), particulate matter with size 10 micrometers or less (PM10), sulfur dioxide (SO2) and nitrogen dioxide (NOx), are selected as the indicators of air pollution. Additionally, fifteen socio-economic indicators are selected to account for the regional socio-economic characteristics (economy variables, energy consumption variables, pollution emissions variables, environment and construction activity variables). The results highlight that all variables are associated with the concentrations of the four selected air pollutants, but with notable differences between the air pollutants. Most of the socio-economic indicators, such as industrial output, total energy consumption are highly correlated with PM2.5, while PM10, SO2, and NOx present in general moderate correlations with most of the socio-economic variables. Contrary to other studies and reports this study reveals that vehicles and life energy do not have the strongest effect on air pollution in Beijing. This study provides useful information to reduce air pollution and support decision-making for sustainable development.

  4. Influence of Social-economic Activities on Air Pollutants in Beijing, China

    Directory of Open Access Journals (Sweden)

    Li Xiaolu

    2017-08-01

    Full Text Available With the rapid economic development, the serious air pollution in Beijing attracts increasing attention in the last decade. Seen as one whole complex and grey system, the causal relationship between the social development and the air pollution in Beijing has been quantitatively analyzed in this paper. By using the grey relational model, the aim of this study is to explore how the socio-economic and human activities affect on the air pollution in the city of Beijing, China. Four air pollutants, as the particulate matter with size 2.5 micrometers or less (PM2.5, particulate matter with size 10 micrometers or less (PM10, sulfur dioxide (SO2 and nitrogen dioxide (NOx, are selected as the indicators of air pollution. Additionally, fifteen socio-economic indicators are selected to account for the regional socio-economic characteristics (economy variables, energy consumption variables, pollution emissions variables, environment and construction activity variables. The results highlight that all variables are associated with the concentrations of the four selected air pollutants, but with notable differences between the air pollutants. Most of the socio-economic indicators, such as industrial output, total energy consumption are highly correlated with PM2.5, while PM10, SO2, and NOx present in general moderate correlations with most of the socio-economic variables. Contrary to other studies and reports this study reveals that vehicles and life energy do not have the strongest effect on air pollution in Beijing. This study provides useful information to reduce air pollution and support decision-making for sustainable development.

  5. [Characterizing Beijing's Airborne Bacterial Communities in PM2.5 and PM1 Samples During Haze Pollution Episodes Using 16S rRNA Gene Analysis Method].

    Science.gov (United States)

    Wang, Bu-ying; Lang, Ji-dong; Zhang, Li-na; Fang, Jian-huo; Cao, Chen; Hao, Ji-ming; Zhu, Ting; Tian, Geng; Jiang, Jing-kun

    2015-08-01

    During 8th-14th Jan., 2013, severe particulate matter (PM) pollution episodes happened in Beijing. These air pollution events lead to high risks for public health. In addition to various PM chemical compositions, biological components in the air may also impose threaten. Little is known about airborne microbial community in such severe air pollution conditions. PM2.5 and PM10 samples were collected during that 7-day pollution period. The 16S rRNA gene V3 amplification and the MiSeq sequencing were performed for analyzing these samples. It is found that there is no significant difference at phylum level for PM2.5 bacterial communities during that 7-day pollution period both at phylum and at genus level. At genus level, Arthrobacter and Frankia are the major airborne microbes presented in Beijing winter.samples. At genus level, there are 39 common genera (combined by first 50 genera bacterial of the two analysis) between the 16S rRNA gene analysis and those are found by Metagenomic analysis on the same PM samples. Frankia and Paracoccus are relatively more abundant in 16S rRNA gene data, while Kocuria and Geodermatophilus are relatively more abundant in Meta-data. PM10 bacterial communities are similar to those of PM2.5 with some noticeable differences, i.e., at phylum level, more Firmicutes and less Actinobacteria present in PM10 samples than in PM2.5 samples, while at genus level, more Clostridium presents in PM10 samples. The findings in Beijing were compared with three 16S rRNA gene studies in other countries. Although the sampling locations and times are different from each other, compositions of bacterial community are similar for those sampled at the ground atmosphere. Airborne microbial communities near the ground surface are different from those sampled in the upper troposphere.

  6. Particulate matter air pollution components and risk for lung cancer

    DEFF Research Database (Denmark)

    Raaschou-Nielsen, O.; Beelen, Rob; Wang, M.

    2016-01-01

    geocoded baseline addresses and assessed air pollution with land-use regression models for eight elements (Cu, Fe, K, Ni, S, Si, V and Zn) in size fractions of PM2.5 and PM10. We used Cox regression models with adjustment for potential confounders for cohort-specific analyses and random effect models...... was statistically significant. In analyses restricted to participants who did not change residence during follow-up, statistically significant associations were found for PM2.5 Cu (HR, 1.25; 95% CI, 1.01-1.53 per 5ng/m(3)), PM10 Zn (1.28; 1.02-1.59 per 20ng/m(3)), PM10 S (1.58; 1.03-2.44 per 200ng/m(3)), PM10 Ni (1.......59; 1.12-2.26 per 2ng/m(3)) and PM10 K (1.17; 1.02-1.33 per 100ng/m(3)). In two-pollutant models, associations between PM10 and PM2.5 and lung cancer were largely explained by PM2.5 S. CONCLUSIONS: This study indicates that the association between PM in air pollution and lung cancer can be attributed...

  7. The association between air pollution and mortality in Thailand.

    Science.gov (United States)

    Guo, Yuming; Li, Shanshan; Tawatsupa, Benjawan; Punnasiri, Kornwipa; Jaakkola, Jouni J K; Williams, Gail

    2014-07-01

    Bayesian statistical inference with a case-crossover design was used to examine the effects of air pollutants {Particulate matter pollutants had significant short-term impacts on non-accidental mortality. An increase of 10 μg/m(3) in PM10, 10 ppb in O₃, 1 ppb in SO₂ were associated with a 0.40% (95% posterior interval (PI): 0.22, 0.59%), 0.78% (95% PI: 0.20, 1.35%) and 0.34% (95% PI: 0.17, 0.50%) increase of non-accidental mortality, respectively. O₃ air pollution is significantly associated with cardiovascular mortality, while PM10 is significantly related to respiratory mortality. In general, the effects of all pollutants on all mortality types were higher in summer and winter than those in the rainy season. This study highlights the effects of exposure to air pollution on mortality risks in Thailand. Our findings support the Thailand government in aiming to reduce high levels of air pollution.

  8. PM10 Pollution: Its Prediction and Meteorological Influence in PasirGudang, Johor

    International Nuclear Information System (INIS)

    Afzali, A; Ramli, M; Rashid, M; Sabariah, B

    2014-01-01

    Ambient PM 10 (i.e particulate diameter less than 10 um in size) pollution has negative impacts on human health and it is influenced by meteorological conditions. Although the correlation between meteorological parameters and PM 10 concentrations is significant in most cases, the linear relationship between them implies that the fraction of the variance, R2 rarely exceeds 25%. However, considering the previous day's concentration of pollutants to the multi-linear regression enhances the model performance and increases the value of R2. Alternatively, artificial neural networks (ANN) are used to capture the complex relationships among many factors considered which present a better prediction. Thus, this study presents the results of predicting ambient PM 10 concentration and the influence of meteorological parameters based on the data sampled from 2008 – 2010 in an industrial area of PasirGudang, Johor

  9. Air Quality in Lanzhou, a Major Industrial City in China: Characteristics of Air Pollution and Review of Existing Evidence from Air Pollution and Health Studies

    Science.gov (United States)

    Zhang, Yaqun; Li, Min; Bravo, Mercedes A.; Jin, Lan; Nori-Sarma, Amruta; Xu, Yanwen; Guan, Donghong; Wang, Chengyuan; Chen, Mingxia; Wang, Xiao; Tao, Wei; Qiu, Weitao; Zhang, Yawei

    2015-01-01

    Air pollution contributes substantially to global health burdens; however, less is known about pollution patterns in China and whether they differ from those elsewhere. We evaluated temporal and spatial heterogeneity of air pollution in Lanzhou, an urban Chinese city (April 2009–December 2012), and conducted a systematic review of literature on air pollution and health in Lanzhou. Average levels were 141.5, 42.3, and 47.2 µg/m3 for particulate matter with an aerodynamic diameter ≤10 µm (PM10), NO2, and SO2, respectively. Findings suggest some seasonality, particularly for SO2, with higher concentrations during colder months relative to warmer months, although a longer time frame of data is needed to evaluate seasonality fully. Correlation coefficients generally declined with distance between monitors, while coefficients of divergence increased with distance. However, these trends were not statistically significant. PM10 levels exceeded Chinese and other health-based standards and guidelines. The review identified 13 studies on outdoor air pollution and health. Although limited, the studies indicate that air pollution is associated with increased risk of health outcomes in Lanzhou. These studies and the high air pollution levels suggest potentially serious health consequences. Findings can provide guidance to future epidemiological studies, monitor placement programs, and air quality policies. PMID:25838615

  10. Day and night variation in chemical composition and toxicological responses of size segregated urban air PM samples in a high air pollution situation

    Science.gov (United States)

    Jalava, P. I.; Wang, Q.; Kuuspalo, K.; Ruusunen, J.; Hao, L.; Fang, D.; Väisänen, O.; Ruuskanen, A.; Sippula, O.; Happo, M. S.; Uski, O.; Kasurinen, S.; Torvela, T.; Koponen, H.; Lehtinen, K. E. J.; Komppula, M.; Gu, C.; Jokiniemi, J.; Hirvonen, M.-R.

    2015-11-01

    Urban air particulate pollution is a known cause for adverse human health effects worldwide. China has encountered air quality problems in recent years due to rapid industrialization. Toxicological effects induced by particulate air pollution vary with particle sizes and season. However, it is not known how distinctively different photochemical activity and different emission sources during the day and the night affect the chemical composition of the PM size ranges and subsequently how it is reflected to the toxicological properties of the PM exposures. The particulate matter (PM) samples were collected in four different size ranges (PM10-2.5; PM2.5-1; PM1-0.2 and PM0.2) with a high volume cascade impactor. The PM samples were extracted with methanol, dried and thereafter used in the chemical and toxicological analyses. RAW264.7 macrophages were exposed to the particulate samples in four different doses for 24 h. Cytotoxicity, inflammatory parameters, cell cycle and genotoxicity were measured after exposure of the cells to particulate samples. Particles were characterized for their chemical composition, including ions, element and PAH compounds, and transmission electron microscopy (TEM) was used to take images of the PM samples. Chemical composition and the induced toxicological responses of the size segregated PM samples showed considerable size dependent differences as well as day to night variation. The PM10-2.5 and the PM0.2 samples had the highest inflammatory potency among the size ranges. Instead, almost all the PM samples were equally cytotoxic and only minor differences were seen in genotoxicity and cell cycle effects. Overall, the PM0.2 samples had the highest toxic potential among the different size ranges in many parameters. PAH compounds in the samples and were generally more abundant during the night than the day, indicating possible photo-oxidation of the PAH compounds due to solar radiation. This was reflected to different toxicity in the PM

  11. Addition of PM2.5 into the National Ambient Air Quality Standards of China and the Contribution to Air Pollution Control: The Case Study of Wuhan, China

    Science.gov (United States)

    You, Mingqing

    2014-01-01

    PM2.5 has gradually become a major environmental problem of China with its rapid economic development, urbanization, and increasing of motor vehicles. Findings and awareness of serious PM2.5 pollution make the PM2.5 a new criterion pollutant of the Chinese National Ambient Air Quality Standard (NAAQS) revised in 2012. The 2012 NAAQS sets the PM2.5 concentrate limitation with the 24-hour average value and the annual mean value. Wuhan is quite typical among central and southern China in climate, economy, development level, and energy consumption. The data are cited from the official website of Wuhan Environmental Protection Bureau and cover the period from 1 January to 30 June 2013. The data definitely confirm the existence of serious PM2.5 pollution in Wuhan and indicate that the addition of PM2.5 as a criterion pollutant significantly brings down the attainment rate of air quality. The example of Wuhan reveals that local governments should take measures to reduce the emission of PM2.5 if it affects the attainment rate and the performance evaluation value of air quality. The main contribution of 2012 NAAQS is that it brings down the attainment rate of the air quality and forces local governmental officials to take the measures accordingly. PMID:24982994

  12. Addition of PM 2.5 into the national ambient air quality standards of China and the contribution to air pollution control: the case study of Wuhan, China.

    Science.gov (United States)

    You, Mingqing

    2014-01-01

    PM2.5 has gradually become a major environmental problem of China with its rapid economic development, urbanization, and increasing of motor vehicles. Findings and awareness of serious PM2.5 pollution make the PM2.5 a new criterion pollutant of the Chinese National Ambient Air Quality Standard (NAAQS) revised in 2012. The 2012 NAAQS sets the PM2.5 concentrate limitation with the 24-hour average value and the annual mean value. Wuhan is quite typical among central and southern China in climate, economy, development level, and energy consumption. The data are cited from the official website of Wuhan Environmental Protection Bureau and cover the period from 1 January to 30 June 2013. The data definitely confirm the existence of serious PM2.5 pollution in Wuhan and indicate that the addition of PM2.5 as a criterion pollutant significantly brings down the attainment rate of air quality. The example of Wuhan reveals that local governments should take measures to reduce the emission of PM2.5 if it affects the attainment rate and the performance evaluation value of air quality. The main contribution of 2012 NAAQS is that it brings down the attainment rate of the air quality and forces local governmental officials to take the measures accordingly.

  13. Addition of PM2.5 into the National Ambient Air Quality Standards of China and the Contribution to Air Pollution Control: The Case Study of Wuhan, China

    Directory of Open Access Journals (Sweden)

    Mingqing You

    2014-01-01

    Full Text Available PM2.5 has gradually become a major environmental problem of China with its rapid economic development, urbanization, and increasing of motor vehicles. Findings and awareness of serious PM2.5 pollution make the PM2.5 a new criterion pollutant of the Chinese National Ambient Air Quality Standard (NAAQS revised in 2012. The 2012 NAAQS sets the PM2.5 concentrate limitation with the 24-hour average value and the annual mean value. Wuhan is quite typical among central and southern China in climate, economy, development level, and energy consumption. The data are cited from the official website of Wuhan Environmental Protection Bureau and cover the period from 1 January to 30 June 2013. The data definitely confirm the existence of serious PM2.5 pollution in Wuhan and indicate that the addition of PM2.5 as a criterion pollutant significantly brings down the attainment rate of air quality. The example of Wuhan reveals that local governments should take measures to reduce the emission of PM2.5 if it affects the attainment rate and the performance evaluation value of air quality. The main contribution of 2012 NAAQS is that it brings down the attainment rate of the air quality and forces local governmental officials to take the measures accordingly.

  14. Estimating premature mortality attributable to PM2.5 exposure and benefit of air pollution control policies in China for 2020.

    Science.gov (United States)

    Maji, Kamal Jyoti; Dikshit, Anil Kumar; Arora, Mohit; Deshpande, Ashok

    2018-01-15

    In past decade of rapid industrial development and urbanization, China has witnessed increasingly persistent severe haze and smog episodes, posing serious health hazards to the Chinese population, especially in densely populated cities. Quantification of health impacts attributable to PM 2.5 (particulates with aerodynamic diameter≤2.5μm) has important policy implications to tackle air pollution. The Chinese national monitoring network has recently included direct measurements of ground level PM 2.5 , providing a potentially more reliable source for exposure assessment. This study reports PM 2.5 -related long-term mortality of year 2015 in 161 cities of nine regions across China using integrated exposure risk (IER) model for PM 2.5 exposure-response functions (ERF). It further provides an estimate of the potential health benefits by year 2020 with a realization of the goals of Air Pollution Prevention and Control Action Plan (APPCAP) and the three interim targets (ITs) and Air Quality Guidelines (AQG) for PM 2.5 by the World Health Organization (WHO). PM 2.5 -related premature mortality in 161 cities was 652 thousand, about 6.92% of total deaths in China during year 2015. Among all premature deaths, contributions of cerebrovascular disease (stroke), ischemic heart disease (IHD), chronic obstructive pulmonary disease (COPD), lung cancer (LC) and acute lower respiratory infections (ALRIs) were 51.70, 26.26, 11.77, 9.45 and 0.82%, respectively. The premature mortality in densely populated cities is very high, such as Tianjin (12,533/year), Beijing (18,817/year), Baoding (10,932/year), Shanghai (18,679/year), Chongqing (23,561/year), Chengdu (11,809/year), Harbin (9037/year) and Linyi (9141/year). The potential health benefits will be 4.4, 16.2, 34.5, 63.6 and 81.5% of the total present premature mortality when PM 2.5 concentrations in China meet the APPCAP, WHO IT-1, IT-2, IT-3 and AQG respectively, by the year 2020. In the current situation, by the end of year 2030

  15. Health risk assessment of China’s main air pollutants

    Directory of Open Access Journals (Sweden)

    Jian Sun

    2017-02-01

    Full Text Available Abstract Background With the rapid development of China’s economy, air pollution has attracted public concern because of its harmful effects on health. Methods The source apportioning of air pollution, the spatial distribution characteristics, and the relationship between atmospheric contamination, and the risk of exposure were explored. The in situ daily concentrations of the principal air pollutants (PM2.5, PM10, SO2, NO2, CO and O3 were obtained from 188 main cities with many continuous air-monitoring stations across China (2014 and 2015. Results The results indicate positive correlations between PM2.5 and SO2 (R 2 = 0.395/0.404, P  0.05 for both 2014 and 2015. Additionally, a significant relationship between SO2, NO2, and CO was discovered using regression analysis (P < 0.0001, indicating that the origin of air pollutants is likely to be vehicle exhaust, coal consumption, and biomass open-burning. For the spatial pattern of air pollutants, we found that the highest concentration of SO2, NO2, and CO were mainly distributed in north China (Beijing-Tianjin-Hebei regions, Shandong, Shanxi and Henan provinces, part of Xinjiang and central Inner Mongolia (2014 and 2015. Conclusions The highest concentration and risk of PM2.5 was observed in the Beijing–Tianjin–Hebei economic belts, and Shandong, Henan, Shanxi, Hubei and Anhui provinces. Nevertheless, the highest concentration of O3 was irregularly distributed in most areas of China. A high-risk distribution of PM10, SO2 and NO2 was also observed in these regions, with the high risk of PM10 and NO2 observed in the Hebei and Shandong province, and high-risk of PM10 in Urumchi. The high-risk of NO2 distributed in Beijing-Yangtze River Delta region-Pearl River Delta region-central. Although atmospheric contamination slightly improved in 2015 compared to 2014, humanity faces the challenge of reducing the environmental and public health effects of air pollution by altering the present

  16. Long-term exposure to ambient air pollution and incidence of brain tumor

    DEFF Research Database (Denmark)

    Andersen, Zorana J.; Pedersen, Marie; Weinmayr, Gudrun

    2018-01-01

    .5 absorbance (Hazard Ratio and 95% Confidence Interval: 1.67; 0.89-3.14 per 10 -5/m 3), and weak positive or null associations with the other pollutants. Hazard ratio for PM2.5 absorbance (1.01; 0.38-2.71 per 10 -5/m 3) and all other pollutants were lower for nonmalignant than for malignant brain tumors......Background: Epidemiological evidence on the association between ambient air pollution and brain tumor risk is sparse and inconsistent. Methods: In 12 cohorts from six European countries, individual estimates of annual mean air pollution levels at the baseline residence were estimated...... by standardized land-use regression models developed within the ESCAPE and TRANSPHORM projects: particulate matter (PM) ≤ 2.5, ≤ 10, and 2.5-10 μm in diameter (PM2.5, PM10, and PMcoarse), PM2.5 absorbance, nitrogen oxides (NO2 and NOx) and elemental composition of PM. We estimated cohort-specific associations...

  17. PM10 and gaseous pollutants trends from air quality monitoring networks in Bari province: principal component analysis and absolute principal component scores on a two years and half data set

    Science.gov (United States)

    2014-01-01

    Background The chemical composition of aerosols and particle size distributions are the most significant factors affecting air quality. In particular, the exposure to finer particles can cause short and long-term effects on human health. In the present paper PM10 (particulate matter with aerodynamic diameter lower than 10 μm), CO, NOx (NO and NO2), Benzene and Toluene trends monitored in six monitoring stations of Bari province are shown. The data set used was composed by bi-hourly means for all parameters (12 bi-hourly means per day for each parameter) and it’s referred to the period of time from January 2005 and May 2007. The main aim of the paper is to provide a clear illustration of how large data sets from monitoring stations can give information about the number and nature of the pollutant sources, and mainly to assess the contribution of the traffic source to PM10 concentration level by using multivariate statistical techniques such as Principal Component Analysis (PCA) and Absolute Principal Component Scores (APCS). Results Comparing the night and day mean concentrations (per day) for each parameter it has been pointed out that there is a different night and day behavior for some parameters such as CO, Benzene and Toluene than PM10. This suggests that CO, Benzene and Toluene concentrations are mainly connected with transport systems, whereas PM10 is mostly influenced by different factors. The statistical techniques identified three recurrent sources, associated with vehicular traffic and particulate transport, covering over 90% of variance. The contemporaneous analysis of gas and PM10 has allowed underlining the differences between the sources of these pollutants. Conclusions The analysis of the pollutant trends from large data set and the application of multivariate statistical techniques such as PCA and APCS can give useful information about air quality and pollutant’s sources. These knowledge can provide useful advices to environmental policies in

  18. Evaluation of 5 Air Criteria Pollutants; Tehran, Iran

    Directory of Open Access Journals (Sweden)

    Mazaheri Tehrani A. MSc,

    2015-09-01

    Full Text Available Aims Tehran’s uncontrolled expansion, which promoted housing, public utilities, industries and increase of vehicles caused the problem of air pollution. Necessary information about air quality in different places and different times is the first step of combating the air pollution. The purpose of this study was to investigate the annual, monthly and hourly average of 5 criteria air pollutants (PM10, O3, NO2, SO2, CO of Tehran City, Iran. Instrument & Methods The hourly concentrations of PM10, O3, NO2, SO2, CO were obtained from 21 air quality-measuring stations of Tehran City, Iran, during April 2012 to March 2013. Data were presented by descriptive statistics in the form of mean and standard deviation. Findings CO concentration was not changed during the period of study. Nitrogen dioxide increased in spring and winter. Sulfur dioxide was not changed in the first six months of the year but its concentration increased in winter. Trend of changes of floating particles showed increasing the concentration of this pollutant in May 2012 and January 2013. Ozone concentration increased in the warm seasons and decreased in the cold seasons. Conclusion PM10, O3, NO2, SO2 and CO has high concentrations and cold periods of the year are more polluted than the warm periods in Tehran City, Iran.

  19. Household Cooking with Solid Fuels Contributes to Ambient PM2.5 Air Pollution and the Burden of Disease

    Science.gov (United States)

    Chafe, Zoë A.; Brauer, Michael; Klimont, Zbigniew; Van Dingenen, Rita; Mehta, Sumi; Rao, Shilpa; Riahi, Keywan; Dentener, Frank

    2014-01-01

    Background: Approximately 2.8 billion people cook with solid fuels. Research has focused on the health impacts of indoor exposure to fine particulate pollution. Here, for the 2010 Global Burden of Disease project (GBD 2010), we evaluated the impact of household cooking with solid fuels on regional population-weighted ambient PM2.5 (particulate matter ≤ 2.5 μm) pollution (APM2.5). Objectives: We estimated the proportion and concentrations of APM2.5 attributable to household cooking with solid fuels (PM2.5-cook) for the years 1990, 2005, and 2010 in 170 countries, and associated ill health. Methods: We used an energy supply–driven emissions model (GAINS; Greenhouse Gas and Air Pollution Interactions and Synergies) and source-receptor model (TM5-FASST) to estimate the proportion of APM2.5 produced by households and the proportion of household PM2.5 emissions from cooking with solid fuels. We estimated health effects using GBD 2010 data on ill health from APM2.5 exposure. Results: In 2010, household cooking with solid fuels accounted for 12% of APM2.5 globally, varying from 0% of APM2.5 in five higher-income regions to 37% (2.8 μg/m3 of 6.9 μg/m3 total) in southern sub-Saharan Africa. PM2.5-cook constituted > 10% of APM2.5 in seven regions housing 4.4 billion people. South Asia showed the highest regional concentration of APM2.5 from household cooking (8.6 μg/m3). On the basis of GBD 2010, we estimate that exposure to APM2.5 from cooking with solid fuels caused the loss of 370,000 lives and 9.9 million disability-adjusted life years globally in 2010. Conclusions: PM2.5 emissions from household cooking constitute an important portion of APM2.5 concentrations in many places, including India and China. Efforts to improve ambient air quality will be hindered if household cooking conditions are not addressed. Citation: Chafe ZA, Brauer M, Klimont Z, Van Dingenen R, Mehta S, Rao S, Riahi K, Dentener F, Smith KR. 2014. Household cooking with solid fuels contributes to

  20. Weekly cycle of magnetic characteristics of PM2.5 and PM2.5-10 in Beijing, China

    Science.gov (United States)

    SHI, M.; Wu, H.; Zhang, S.; Li, H.; Yang, T.

    2013-12-01

    In urban areas,fine particle matter with aerodynamic diameter between 2.5 um and 10 um (PM2.5-10), and 2.5 um (PM2.5), as an important source of urban particulate matter (PM) pollutants, have significant negative effects on health, atmospheric visibility and climate. PM has increasingly become a significant index of indicating the atmospheric pollution of city. In recent years, Beijing, China has been listed as one of the most serious air pollution city in the world. In order to investigate the sources of air pollutants, a total of 283 pairs of PM2.5 and PM2.5-10 samples were collected daily from July, 2010 to June, 2011 in Beijing. Mineral magnetic properties and Scanning electron microscope (SEM) observations and energy dispersive X-ray spectroscopy (EDS) analyses of PM2.5 and PM2.5-10 were measured to verify the magnetic materials. Magnetic measures for PM indicated that the major magnetic phase was coarse-grained magnetite-like material. The χlf, χarm, SIRM and χarm/SIRM series of the PM2.5 and PM2.5-10 show seasonal dependences: high values in winter and low values in summer. In additional the parameters analyzed by Time-series methods show a strong cycle about 7 days above 95% confidence level. Weekly cycle of magnetic characteristics of PM2.5 and PM2.5-10 show different pattern: the concentration of magnetic particles in PM2.5-10 show high values in mid-week, and particle sizes is steady, while the concentration of magnetic particles in PM2.5 show reverse a weekly cycle pattern, and particle sizes is smaller in the mid-week.Microscopy analyses reveal basically three morphologies of magnetic grains: aggregate, spherules and angular particles. The ultrafine carbonaceous particles which tend to form complex clusters and chain-like structures, most likely come from coal burning and motor vehicle exhaust. Spherical particles in PM2.5 are dominantly composed of Fe, O and C, grain-diameters of particles range from 0.3 to 2 um. Angular particles of Fe

  1. Effects of prenatal exposure to air pollution on preeclampsia in Shenzhen, China.

    Science.gov (United States)

    Wang, Qiong; Zhang, Huanhuan; Liang, Qianhong; Knibbs, Luke D; Ren, Meng; Li, Changchang; Bao, Junzhe; Wang, Suhan; He, Yiling; Zhu, Lei; Wang, Xuemei; Zhao, Qingguo; Huang, Cunrui

    2018-06-01

    The impact of ambient air pollution on pregnant women is a concern in China. However, little is known about the association between air pollution and preeclampsia and the potential modifying effects of meteorological conditions have not been assessed. This study aimed to assess the effects of prenatal exposure to air pollution on preeclampsia, and to explore whether temperature and humidity modify the effects. We performed a retrospective cohort study based on 1.21 million singleton births from the birth registration system in Shenzhen, China, between 2005 and 2012. Daily average measurements of particulate matter air temperature (T), and dew point (T d ) were collected. Logistic regression models were performed to estimate associations between air pollution and preeclampsia during the first and second trimesters, and during the entire pregnancy. In each time window, we observed a positive gradient of increasing preeclampsia risk with increasing quartiles of PM 10 and SO 2 exposure. When stratified by T and T d in three categories (95th percentile), we found a significant interaction between PM 10 and T d on preeclampsia; the adverse effects of PM 10 increased with T d . During the entire pregnancy, there was a null association between PM 10 and preeclampsia under T d   95th percentile. We also found that air pollution effects on preeclampsia in autumn/winter seasons were stronger than those in the spring/summer. This is the first study to address modifying effects of meteorological factors on the association between air pollution and preeclampsia. Findings indicate that prenatal exposure to PM 10 and SO 2 increase preeclampsia risk in Shenzhen, China, and the effects could be modified by humidity. Pregnant women should limit air pollution exposure, particularly during humid periods. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. Impact of Air Pollutants on Outpatient Visits for Acute Respiratory Outcomes

    Directory of Open Access Journals (Sweden)

    Ran Li

    2017-01-01

    Full Text Available The air pollution in China is a severe problem. The aim of our study was to investigate the impact of air pollutants on acute respiratory outcomes in outpatients. Outpatient data from 2 December 2013 to 1 December 2014 were collected, as well as air pollutant data including ozone (O3, nitrogen dioxide (NO2, carbon monoxide (CO, sulfur dioxide (SO2, and particulate matter (PM2.5 and PM10. We screened six categories of acute respiratory outcomes and analyzed their associations with different air pollutant exposures, including upper respiratory tract infection (URTI, acute bronchitis (AB, community-acquired pneumonia (CAP, acute exacerbation of chronic obstructive pulmonary disease (AECOPD, acute exacerbation of asthma (AE-asthma, and acute exacerbation of bronchiectasis (AEBX. A case-crossover design with a bidirectional control sampling approach was used for statistical analysis. A total of 57,144 patients were enrolled for analysis. PM2.5, PM10, NO2, SO2, and CO exposures were positively associated with outpatient visits for URTI, AB, CAP, and AEBX. PM10, SO2, and CO exposures were positively associated with outpatient visits for AECOPD. Exposure to O3 was positively associated with outpatient visits for AE-asthma, but negatively associated with outpatient visits for URTI, CAP, and AEBX. In conclusion, air pollutants had acute effects on outpatient visits for acute respiratory outcomes, with specific outcomes associated with specific pollutants.

  3. Enhanced PM10 bounded PAHs from shipping emissions

    Science.gov (United States)

    Pongpiachan, S.; Hattayanone, M.; Choochuay, C.; Mekmok, R.; Wuttijak, N.; Ketratanakul, A.

    2015-05-01

    Earlier studies have highlighted the importance of maritime transport as a main contributor of air pollutants in port area. The authors intended to investigate the effects of shipping emissions on the enhancement of PM10 bounded polycyclic aromatic hydrocarbons (PAHs) and mutagenic substances in an industrial area of Rayong province, Thailand. Daily PM10 speciation data across two air quality observatory sites in Thailand during 2010-2013 were collected. Diagnostic binary ratios of PAH congeners, analysis of variances (ANOVA), and principal component analysis (PCA) were employed to evaluate the enhanced genotoxicity of PM10 during the docking period. Significant increase of PAHs and mutagenic index (MI) of PM10 were observed during the docking period in both sampling sites. Although stationary sources like coal combustions from power plants and vehicular exhausts from motorway can play a great role in enhancing PAH concentrations, regulating shipping emissions from diesel engine in the port area like Rayong is predominantly crucial.

  4. Levels of PM2.5/PM10 and associated metal(loid)s in rural households of Henan Province, China.

    Science.gov (United States)

    Wu, Fuyong; Wang, Wei; Man, Yu Bon; Chan, Chuen Yu; Liu, Wenxin; Tao, Shu; Wong, Ming Hung

    2015-04-15

    Although a majority of China's rural residents use solid fuels (biomass and coal) for household cooking and heating, clean energy such as electricity and liquid petroleum gas is becoming more popular in the rural area. Unfortunately, both solid fuels and clean energy could result in indoor air pollution. Daily respirable particulate matter (PM≤10 μm) and inhalable particulate matter (PM≤2.5 μm) were investigated in kitchens, sitting rooms and outdoor area in rural Henan during autumn (Sep to Oct 2012) and winter (Jan 2013). The results showed that PM (PM2.5 and PM10) and associated metal(loid)s varied among the two seasons and the four types of domestic energy used. Mean concentrations of PM2.5 and PM10 in kitchens during winter were 59.2-140.4% and 30.5-145.1% higher than those during autumn, respectively. Similar with the trends of PM2.5 and PM10, concentrations of As, Pb, Zn, Cd, Cu, Ni and Mn in household PM2.5 and PM10 were apparently higher in winter than those in autumn. The highest mean concentrations of PM2.5 and PM10 (368.5 and 588.7 μg m(-3)) were recorded in sitting rooms in Baofeng during winter, which were 5.7 and 3.9 times of corresponding health based guidelines for PM2.5 and PM10, respectively. Using coal can result in severe indoor air pollutants including PM and associated metal(loid)s compared with using crop residues, electricity and gas in rural Henan Province. Rural residents' exposure to PM2.5 and PM10 would be roughly reduced by 13.5-22.2% and 8.9-37.7% via replacing coal or crop residues with electricity. The present study suggested that increased use of electricity as domestic energy would effectively improve indoor air quality in rural China. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Health Impact Assessment of Air Pollution in São Paulo, Brazil

    Directory of Open Access Journals (Sweden)

    Karina Camasmie Abe

    2016-07-01

    Full Text Available Epidemiological research suggests that air pollution may cause chronic diseases, as well as exacerbation of related pathologies such as cardiovascular and respiratory morbidity and mortality. This study evaluates air pollution scenarios considering a Health Impact Assessment approach in São Paulo, Brazil. We have analyzed abatement scenarios of Particulate Matter (PM with an aerodynamic diameter <10 μm (PM10, <2.5 μm (PM2.5 and ozone concentrations and the health effects on respiratory and cardiovascular morbidity and mortality in the period from 2009 to 2011 through the APHEKOM tool, as well as the associated health costs. Considering World Health Organization (WHO standards of PM2.5 (10 μg/m3, São Paulo would avoid more than 5012 premature deaths (equivalent to 266,486 life years’ gain and save US$15.1 billion annually. If São Paulo could even diminish the mean of PM2.5 by 5 μg/m3, nearly 1724 deaths would be avoided, resulting in a gain of US$ 4.96 billion annually. Reduced levels of PM10, PM2.5 and ozone could save lives and an impressive amount of money in a country where economic resources are scarce. Moreover, the reduced levels of air pollution would also lower the demand for hospital care, since hospitalizations would diminish. In this sense, Brazil should urgently adopt WHO air pollution standards in order to improve the quality of life of its population.

  6. Revealing driving factors of China's PM2.5 pollution

    Science.gov (United States)

    Zheng, Y.; Zhao, H.; Zhang, Q.; Geng, G.; Tong, D.; Peng, L.; He, K.

    2017-12-01

    China's rapid economic development and intensive energy consumption are deteriorating the air quality significantly. Understanding the key driving factors behind China's growing emissions of air pollutants and the accompanying PM2.5 pollution is critical for the development of China's clean air policies and also provides insight into how other emerging economies may develop a clear sky future. Here we reveal the socioeconomic drivers of the variations of China's PM2.5 concentrations during 2002-2012 by using an interdisciplinary framework that integrates an emission inventory model, an index decomposition analysis model, and a regional air quality model. The decomposition results demostrate that the improvements in emission efficiency and energy efficiency failed to offset the increased emissions of both primary PM2.5 and gaseous PM2.5 precursors (including SO2 NOx, and volatile organic compounds) triggered by the surging economic growth during 2002-2012. During the same time, the effects of energy structure, production structure and population growth were relatively less significant to all pollutants, which indicates the potential of large emission abatements through energy structure and production structure adjustment. Sensitivity simulations by the air quality model based on the provincial decomposition results also show that the economic growth have outpaced efficiency improvements in the increments of PM2.5 concentrations during the study years. As China continues to develop rapidly, future policies should promote further improvements in efficiency and accelerate the adjustments toward clean energy and production structures, which are critical for reducing China's emissions and alleviating the severe PM2.5 pollution.

  7. TSP, PM10, and PM2.5 emissions from a beef cattle feedlot using the flux-gradient technique

    Science.gov (United States)

    Emissions data on air pollutants from large open-lot beef cattle feedlots are limited. This research was conducted to determine emissions of total suspended particulates (TSP) and particulate matter (PM10 and PM2.5) from a commercial beef cattle feedlot in Kansas (USA). Vertical particulate concentr...

  8. AJUSTE DE CURVAS MEDIANTE MÉTODOS NO PARAMÉTRICOS PARA ESTUDIAR EL COMPORTAMIENTO DE CONTAMINACIÓN DEL AIRE POR MATERIAL PARTICULADO PM10 AJUSTE DE CURVAS MEDIANTE MÉTODOS NÃO PARAMÉTRICOS PARA ESTUDAR O COMPORTAMENTO DE CONTAMINAÇÃO DO AR POR MATERIAL PARTICULADO PM10 CURVE FITTING NONPARAMETRIC METHODS FOR STUDYING BEHAVIOR FROM AIR POLLUTION PM10

    Directory of Open Access Journals (Sweden)

    Jhovana Reina

    2012-12-01

    comportamento do PM10 usando suavizadores kernel e spline. O processamento executa-se com o software estatístico de livre distribuição R. As curvas estimadas permitem observar um comportamento unimodal do PM10 durante as horas da manhã, diferenciado por dias da semana e por dias com chuva e sem chuva. Os modelos permitem caracterizar de maneira robusta o comportamento diário do PM10, tendo em conta observações heterocedásticas baixo um cenário de múltiplas respostas por ponto de desenho.One of the main air pollutants is the particulate matter whose aerodynamic diameter is less than 10 micrometers, usually referred as PM10. It is a fact that the PM10 behavior in the air varies in an irregular way, and also in a temporal way in the atmosphere, mainly due to human activities, to unstable atmospheric conditions, and to meteorological phenomena. Our main purpose is to characterize through a nonparametric smooth model the PM10 daily behavior, taking into account the day of the week, and the precipitation levels. We illustrate the model using records on PM10 contamination, as well as on data on rain precipitation in the north side of Cali, Colombia. We estimate daily typical curves of the PM10 behavior using kernel and spline estimators. We processed these data using the free distribution statistical software R. The estimated curves allow us to observe a PM10 unimodal behavior during the morning hours, which varies from one day to another and from rainy to non-rainy days. The fitted models allow a robust characterization of the PM10 daily behavior, considering heteroscedastic observations on a multiple response per design point scenario.

  9. Studying the effect of meteorological factors on the SO2 and PM10 pollution levels with refined versions of the SARIMA model

    Energy Technology Data Exchange (ETDEWEB)

    Voynikova, D. S., E-mail: desi-sl2000@yahoo.com; Gocheva-Ilieva, S. G., E-mail: snegocheva@yahoo.com; Ivanov, A. V., E-mail: aivanov-99@yahoo.com [Department of Applied Mathematics and Modeling, Faculty of Mathematics and Informatics, Paisii Hilendarski University of Plovdiv, 24 Tzar Assen str., 4000 Plovdiv (Bulgaria); Iliev, I. P., E-mail: iliev55@abv.bg [Department of Physics, Technical University – Plovdiv, 25 Tzanko Djusstabanov str., 4000 Plovdiv (Bulgaria)

    2015-10-28

    Numerous time series methods are used in environmental sciences allowing the detailed investigation of air pollution processes. The goal of this study is to present the empirical analysis of various aspects of stochastic modeling and in particular the ARIMA/SARIMA methods. The subject of investigation is air pollution in the town of Kardzhali, Bulgaria with 2 problematic pollutants – sulfur dioxide (SO2) and particulate matter (PM10). Various SARIMA Transfer Function models are built taking into account meteorological factors, data transformations and the use of different horizons selected to predict future levels of concentrations of the pollutants.

  10. Can the Air Pollution Index be used to communicate the health risks of air pollution?

    Science.gov (United States)

    Li, Li; Lin, Guo-Zhen; Liu, Hua-Zhang; Guo, Yuming; Ou, Chun-Quan; Chen, Ping-Yan

    2015-10-01

    The validity of using the Air Pollution Index (API) to assess health impacts of air pollution and potential modification by individual characteristics on air pollution effects remain uncertain. We applied distributed lag non-linear models (DLNMs) to assess associations of daily API, specific pollution indices for PM10, SO2, NO2 and the weighted combined API (APIw) with mortality during 2003-2011 in Guangzhou, China. An increase of 10 in API was associated with a 0.88% (95% confidence interval (CI): 0.50, 1.27%) increase of non-accidental mortality at lag 0-2 days. Harvesting effects appeared after 2 days' exposure. The effect estimate of API over lag 0-15 days was statistically significant and similar with those of pollutant-specific indices and APIw. Stronger associations between API and mortality were observed in the elderly, females and residents with low educational attainment. In conclusion, the API can be used to communicate health risks of air pollution. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. [Simulation of air pollution characteristics and estimates of environmental capacity in Zibo City].

    Science.gov (United States)

    Xue, Wen-Bo; Wang, Jin-Nan; Yang, Jin-Tian; Lei, Yu; Yan, Li; He, Jin-Yu; Han, Bao-Ping

    2013-04-01

    To develop a new pattern of air pollution control that is based on the integration of "concentration control, total amount control, and quality control", and in the context of developing national (2011-2015 air pollution control plan for key areas) and (Environmental protection plan of Zibo municipality for the "12th Five-Year Plan" period), a simulation of atmospheric dispersion of air pollutants in Zibo City and its peripheral areas is carried out by employing CALPUFF model, and the atmospheric environmental capacity of SO2, NO(x) and PM10 is estimated based on the results of model simulation and using multi-objective linear programming optimization. The results indicates that the air pollution in Zibo City is significantly related to the pollution sources outside of Zibo City, which contributes to the annual average concentration of SO2, NO2 and PM10 in Zibo City by 26.34%, 21.23%, and 14.58% respectively. There is a notable interaction between districts and counties of Zibo municipality, in which the contribution of SO2, NO(x) and PM10 emissions in surrounding counties and districts to the annual average concentrations of SO2, NO2 and PM10 in downtown area are 35.96%, 43.17%, and 17.69% respectively. There is a great variation in spatial sensitivity of air pollutant emission, and the environmental impact of unit pollutant emissions from Zhoucun, Huantai, Zhangdian and Zichuan is greater than that released from other districts/counties. To meet the requirement of (Ambient air quality standard) (GB 3095-2012), the environmental capacities of SO2, NO(x) and PM10 of Zibo City are only 8.03 x 10(4) t, 19.16 x 10(4) t and 3.21 x 10(4) t, respectively. Therefore, it is imperative to implement regional air pollution joint control in Shandong peninsula in order to ensure the achievement of air quality standard in Zibo City.

  12. Ambient levels and temporal variations of PM2.5 and PM10 at a residential site in the mega-city, Nanjing, in the western Yangtze River Delta, China.

    Science.gov (United States)

    Shen, Guo F; Yuan, Si Y; Xie, Yu N; Xia, Si J; Li, Li; Yao, Yu K; Qiao, Yue Z; Zhang, Jie; Zhao, Qiu Y; Ding, Ai J; Li, Bin; Wu, Hai S

    2014-01-01

    The deteriorating air quality in eastern China including the Yangtze River Delta is attracting growing public concern. In this study, we measured the ambient PM10 and fine PM2.5 in the mega-city, Nanjing at four different times. The 24-h average PM2.5 and PM10 mass concentrations were 0.033-0.234 and 0.042-0.328 mg/m(3), respectively. The daily PM10 and PM2.5 concentrations were 2.9 (2.7-3.2, at 95% confidence interval) and 4.2 (3.8-4.6) times the WHO air quality guidelines of 0.025 mg/m(3) for PM2.5 and 0.050 mg/m(3) for PM10, respectively, which indicated serious air pollution in the city. There was no obvious weekend effect. The highest PM10 pollution occurred in the wintertime, with higher PM2.5 loadings in the winter and summer. PM2.5 was correlated significantly with PM10 and the average mass fraction of PM2.5 in PM10 was about 72.5%. This fraction varied during different sampling periods, with the lowest PM2.5 fraction in the spring but minor differences among the other three seasons.

  13. Particulate air pollution and mortality in a cohort of Chinese men

    International Nuclear Information System (INIS)

    Zhou, Maigeng; Liu, Yunning; Wang, Lijun; Kuang, Xingya; Xu, Xiaohui; Kan, Haidong

    2014-01-01

    Few prior cohort studies exist in developing countries examining the association of ambient particulate matter (PM) with mortality. We examined the association of particulate air pollution with mortality in a prospective cohort study of 71,431 middle-aged Chinese men. Baseline data were obtained during 1990–1991. The follow-up evaluation was completed in January, 2006. Annual average PM exposure between 1990 and 2005, including TSP and PM 10 , were estimated by linking fixed-site monitoring data with residential communities. We found significant associations between PM 10 and mortality from cardiopulmonary diseases; each 10 μg/m 3 PM 10 was associated with a 1.6% (95%CI: 0.7%, 2.6%), 1.8% (95%CI: 0.8%, 2.9%) and 1.7% (95%CI: 0.3%, 3.2%) increased risk of total, cardiovascular and respiratory mortality, respectively. For TSP, we observed significant associations only for cardiovascular morality. These data contribute to the scientific literature on long-term effects of particulate air pollution for high exposure settings typical in developing countries. -- Highlights: • There have been few air pollution cohort studies in developing countries. • PM 10 was associated with increased cardiorespiratory mortality in 71,431 Chinese men. • PM was not significantly associated with lung cancer mortality. -- PM 10 was associated with increased cardiorespiratory mortality in a cohort of 71,431 Chinese men

  14. Modelling the long-range transport of secondary PM 10 to the UK

    Science.gov (United States)

    Malcolm, A. L.; Derwent, R. G.; Maryon, R. H.

    The fine fraction of airborne particulate matter (PM 10) is known to be harmful to human health. In order to establish how current air quality standards can best be met now and in the future, it is necessary to understand the cause of PM 10 episodes. The UK Met Office's dispersion model, NAME, has been used to model hourly concentrations of sulphate aerosol for 1996 at a number of UK locations. The model output has been compared with measured values of PM 10 or sulphate aerosol at these sites and used to provide attribution information. In particular two large PM 10 episodes in March and July 1996 have been studied. The March episode has been shown to be the result of imported pollution from outside the UK, whereas the July case was dominated by UK emissions. This work highlights the need to consider trans-boundary pollution when setting air quality standards and when making policy decisions on emissions.

  15. Identification of Regional Air Pollution Characteristic and the Correlation with Public Health in Taiwan

    Directory of Open Access Journals (Sweden)

    Huey H. Hsieh

    2007-06-01

    Full Text Available This study aims to classify regions with different air pollution characteristics into groups in Taiwan, and further to evaluate and compare the air quality of various groups. A selected multivariate analysis technique, cluster analysis, is applied to the pollution monitoring dataset which including PM10, SO2, NO2, CO and O3. The obtained results have proved that the regions with similar air pollution characteristic can be appropriately grouped by applying cluster analysis. All 22 regions are classified into six groups, and the pollution pattern for each group is characterized as: Group 1 (high SO2/NO2; low PM10, Group 2 (high PM10, Group 3 (high SO2/PM10, Group 4 (low SO2/NO2/CO; high O3, Group 5 (low CO/NO2; high O3 and Group 6 (low PM10/SO2/NO2/O3/CO. Results from air quality evaluation indicate that the regions in group 6 (Ilan, Hualien and Taitung have the best air quality while the regions in group 3 (Kaohsiung and Kaohsiung City have the worst air quality in Taiwan. The results from correlation analysis reveal that incidence of the respiratory system disease is significantly positively correlated with pollution of NO2 and CO at 99% confidence level.

  16. Analysis of PM10, PM2.5, and PM2 5-10 concentrations in Santiago, Chile, from 1989 to 2001.

    Science.gov (United States)

    Koutrakis, Petros; Sax, Sonja N; Sarnat, Jeremy A; Coull, Brent; Demokritou, Phil; Oyola, Pedro; Garcia, Javier; Gramsch, Ernesto

    2005-03-01

    Daily particle samples were collected in Santiago, Chile, at four urban locations from January 1, 1989, through December 31, 2001. Both fine PM with da Ambient Air Quality Standards and the European Union concentration limits. Mean PM2.5 levels during the cold season (April through September) were more than twice as high as those observed in the warm season (October through March); whereas coarse particle levels were similar in both seasons. PM concentration trends were investigated using regression models, controlling for site, weekday, month, wind speed, temperature, and RH. Results showed that PM2.5 concentrations decreased substantially, 52% over the 12-year period (1989-2000), whereas PM2.5-10 concentrations increased by approximately 50% in the first 5 years and then decreased by a similar percentage over the following 7 years. These decreases were evident even after controlling for significant climatic effects. These results suggest that the pollution reduction programs developed and implemented by the Comisión Nacional del Medio Ambiente (CONAMA) have been effective in reducing particle levels in the Santiago Metropolitan region. However, particle levels remain high and it is thus imperative that efforts to improve air quality continue.

  17. [A Meta analysis on the associations between air pollution and respiratory mortality in China].

    Science.gov (United States)

    Liu, Changjing; Huang, Fei; Yang, Zhizhou; Sun, Zhaorui; Huang, Changbao; Liu, Hongmei; Shao, Danbing; Zhang, Wei; Ren, Yi; Tang, Wenjie; Han, Xiaoqin; Nie, Shinan

    2015-08-01

    To analyze the associations between air pollution and adverse health outcomes on respiratory diseases and to estimate the short-term effects of air pollutions [Particulate matter with particle size below 10 microns (PM(10)), PM(10) particulate matter with particle size below 2.5 microns (PM(2.5)), nitrogen dioxide (NO₂), sulphur dioxide (SO₂) and ozone (O₃)] on respiratory mortality in China. Data related to the epidemiological studies on the associations between air pollution and adverse health outcomes of respiratory diseases that published from 1989 through 2014 in China, were collected by systematically searching databases of PubMed, SpringerLink, Embase, Medline, CNKI, CBM and VIP in different provinces of China. Short-term effects between (PM(10), PM(2.5), NO₂, SO₂, O₃) and respiratory mortality were analyzed by Meta-analysis method, and estimations were pooled by random or fixed effect models, using the Stata 12.0 software. A total of 157 papers related to the associations between air pollution and adverse health outcomes of respiratory diseases in China were published, which covered 79.4% of all the provinces in China. Results from the Meta-analysis showed that a 10 µg/m³ increase in PM10, PM(2.5), NO₂, SO₂, and O₃was associated with mortality rates as 0.50% (95% CI: 0-0.90%), 0.50% (95% CI: 0.30%-0.70%), 1.39% (95% CI: 0.90%-1.78%), 1.00% (95% CI: 0.40%-1.59%) and 0.10% (95% CI: -1.21%-1.39%) in respiratory tracts, respectively. No publication bias was found among these studies. There seemed positive associations existed between PM(10)/PM(2.5)/NO₂/SO₂and respiratory mortality in China that the relationship called for further attention on air pollution and adverse health outcomes of the respiratory diseases.

  18. Procedures for identifying reasonably available control technology for stationary sources of PM-10. Final report

    International Nuclear Information System (INIS)

    Fitzpatrick, M.J.; Ellefson, R.

    1992-09-01

    The guidance document sets forth procedures and identifies sources of information that will assist State and local air pollution control agencies in determining Reasonably Available Control Technology (RACT) for PM-10 (particulate matter having a nominal aerometric diameter of 10 microns or less) emission from existing stationary sources on a case-by-case basis. It provides an annotated bibliography of documents to aid in identifying the activities that cause PM-10 emissions as well as applicable air pollution control measures and their effectiveness in reducing emissions. The most stringent state total particulate matter (PM) emission limits are identified for several categories of PM-10 sources and compared to available emission test data. Finally, guidance is provided on procedures for estimating total capital investment and total annual cost of the control measures which are generally used to control PM-10 emissions

  19. External costs of PM2.5 pollution in Beijing, China

    DEFF Research Database (Denmark)

    Hao, Yin; Pizzol, Massimo; Xu, Linyu

    2017-01-01

    Some cities in China are facing serious air pollution problems including high concentrations of particles, SO2 and NOx. Exposure to PM2.5, one of the primary air pollutants in many cities in China, is highly correlated with various adverse health impacts and ultimately represents a cost for society....... The aim of this study is to assess health impacts and external costs related to PM2.5 pollution in Beijing, China with different baseline concentrations and valuation methods. The idea is to provide a reasonable estimate of the total health impacts and external cost due to PM2.5 pollution, as well...... as a quantification of the relevant uncertainty. PM2.5 concentrations were retrieved for the entire 2012 period in 16 districts of Beijing. The various PM2.5 related health impacts were identified and classified to avoid double counting. Exposure-response coefficients were then obtained from literature. Both...

  20. Temporal variations and spatial distribution of ambient PM2.2 and PM10 concentrations in Dhaka, Bangladesh.

    Science.gov (United States)

    Begum, Bilkis A; Biswas, Swapan K; Hopke, Philip K

    2006-04-01

    Concentrations and characteristics of airborne particulate matter (PM(10), PM(2.2) and BC) on air quality have been studied at two air quality-monitoring stations in Dhaka, the capital of Bangladesh. One site is at the Farm Gate area, a hot spot with very high pollutant concentrations because of its proximity to major roadways. The other site is at a semi-residential area located at the Atomic Energy Centre, Dhaka Campus, (AECD) with relatively less traffic. The samples were collected using a 'Gent' stacked filter unit in two fractions of 0-2.2 mum and 2.2-10 mum sizes. Samples of fine (PM(2.2)) and coarse (PM(2.2-10)) airborne particulate matter fractions collected from 2000 to 2003 were studied. It has been observed that fine particulate matter has a decreasing trend, from prior year measurements, because of Government policy interventions like phase-wise plans to take two-stroke three-wheelers off the roads in Dhaka and finally banned from January 1, 2003. Other policy interventions were banning of old buses and trucks to ply on Dhaka city promotion of the using compressed natural gas (CNG), introducing air pollution control devices in vehicles, etc. It was found that both local (mostly from vehicular emissions) and possibly some regional emission sources are responsible for high PM(2.2) and BC concentrations in Dhaka. PM(2.2), PM(2.2-10) and black carbon concentration levels depend on the season, wind direction and wind speed. Transport related emissions are the major source of BC and long-range transportation from fossil fuel related sources and biomass burning could be another substantial source of BC.

  1. Selected Malaysia air quality pollutants assessment using ...

    African Journals Online (AJOL)

    Analysis of PCA, FA, KMO and Bartlett's test were done on five main air quality pollutants (O3, NO2, SO2, CO and PM10) from all around Malaysia. From the data analysis obtained, the concentrations of air quality pollutants all around Malaysia starting from 2008 to 2011 were acceptable and the most dominant major ...

  2. Exposure to ambient air pollution--does it affect semen quality and the level of reproductive hormones?

    Science.gov (United States)

    Radwan, Michał; Jurewicz, Joanna; Polańska, Kinga; Sobala, Wojciech; Radwan, Paweł; Bochenek, Michał; Hanke, Wojciech

    2016-01-01

    Ambient air pollution has been associated with a variety of reproductive disorders. However, a limited amount of research has been conducted to examine the association between air pollution and male reproductive outcomes, specifically semen quality. The present study was designed to address the hypothesis that exposure to fluctuating levels of specific air pollutants adversely affects sperm parameters and the level of reproductive hormones. The study population consisted of 327 men who were attending an infertility clinic in Łodź, Poland for diagnostic purposes and who had normal semen concentration of 15-300 mln/ml. All participants were interviewed and provided a semen sample. Air quality data were obtained from AirBase database. The statistically significant association was observed between abnormalities in sperm morphology and exposure to all examined air pollutants (PM10, PM2.5, SO2, NOX, CO). Exposure to air pollutants (PM10, PM2.5, CO, NOx) was also negatively associated with the level of testosterone. Additional exposure to PM2.5, PM10 increase the percentage of cells with immature chromatin (HDS). The present study provides suggestive evidence of an association between ambient air pollution and sperm quality. Further research is needed to explore this association in more detail. Individual precise exposure assessment would be needed for more detailed risk characterization.

  3. Environmental pollution: quantitative analysis of particulate matter (PM10) by SR-TXRF

    International Nuclear Information System (INIS)

    Moreira, Silvana; Melo Junior, Ariston da Silva; Zucchi, Orgheda Luiza Araujo Domingues; Vives, Ana Elisa Sirito de

    2007-01-01

    The atmospheric pollution is a concern in the great urban centers, due its association with man pathologies. The Campinas region is one of the most urbanized of the Sao Paulo State and an important industrial center. Thus, due to its location and importance were installed three samplers for particulate material (PM 10 ). One sampler was located in downtown of Campinas city, in an avenue with high vehicular flow. Another sampler was installed in the UNICAMP campus and the third one in Paulinia city, near to REPLAN. For downtown of Campinas city PM 10 concentrations higher than regular air quality established by CETESB (150 μg.m -3 ) was observed. The PM 10 values for Paulinia and downtown of Campinas were higher than Barao Geraldo location. Employing SR-TXRF was possible identify and quantify 19 elements in the particulate material samples. All the measurements were performed at Synchrotron Light Source Laboratory, Campinas, SP. After statistics analysis by principal components and cluster analysis was possible to assemble the elements according emission sources. The dusty soil for coarse fraction contributed with 62%, 51% and 46% for Barao Geraldo, Paulinia and downtown of Campinas, respectively. The vehicular emission was responsible for 16% at downtown Campinas city as expected due to high vehicular flow at sampling place. The vehicular and industrial emissions contributed with 20% and 25%, respectively at Paulinia sampling site. The industrial emissions observed for Barao Geraldo and downtown of Campinas city were 27% and 33%, respectively. (author)

  4. Assessment of PM10 in Aurangabad City of Central India

    Directory of Open Access Journals (Sweden)

    Geetanjali Kaushik

    2016-05-01

    Full Text Available Almost 670 million people comprising 54.5% of our population reside in regions that do not meet the Indian NAAQS for fine particulate matter. Numerous studies have revealed a consistent correlation for particulate matter concentration with health than any other air pollutant. Aurangabad city a rapidly growing city with population of 1.5 million is home to five major industrial areas, the city is also known for its historical monuments which might also be adversely affected from air pollution. Therefore, this research aims at estimating PM10 concentrations at several locations across Aurangabad. The concentration of PM10 was highest at the Railway Station followed by Waluj (an industrial zone and City chowk is the centre of the city which has high population, tall buildings, few open spaces which causes high congestion and does not allow the particulates to disperse. Other locations with high concentrations of PM are Mill corner, Harsul T-point, Kranti Chowk, Seven Hill, TV centre and Beed Bye pass. All these locations have narrow roads, high traffic density, poor road condition with pot holes and few crossing points which cause congestion and vehicle idling which are responsible for high pollution. Therefore, it is evident that air pollution is a serious issue in the city which may be further aggravated if it is not brought under control. Hence, strategies have to be adopted for combating the menace of air pollution.INTERNATIONAL JOURNAL OF ENVIRONMENTVolume-5, Issue-2, March-May 2016, Page :61-74

  5. Outdoor air pollution and sperm quality.

    Science.gov (United States)

    Lafuente, Rafael; García-Blàquez, Núria; Jacquemin, Bénédicte; Checa, Miguel Angel

    2016-09-15

    Exposure to air pollution has been clearly associated with a range of adverse health effects, including reproductive toxicity, but its effects on male semen quality are still unclear. We performed a systematic review (up to June 2016) to assess the impact of air pollutants on sperm quality. We included 17 semi-ecological, panel, and cohort studies, assessing outdoor air pollutants, such as PM2.5, PM10, NOx, SO2, and O3, and their effects on DNA fragmentation, sperm count, sperm motility, and sperm morphology. Thirteen studies assessed air pollution exposure measured environmentally, and six used biomarkers of air pollution exposure (two did both). We rated the studies using the Newcastle-Ottawa Scale and assessed with the exposure method. Taking into account these factors and the number of studies finding significant results (positive or negative), the evidence supporting an effect of air pollution on DNA fragmentation is weak but suggestive, on sperm motility is limited and probably inexistent, on lower sperm count is inconclusive, and on sperm morphology is very suggestive. Because of the diversity of air pollutants and sperm parameters, and the studies' designs, we were unable to perform a meta-analysis. In summary, most studies concluded that outdoor air pollution affects at least one of the four semen quality parameters included in the review. However, results lack consistency, and furthermore, studies were not comparable. Studies using standardized air pollution and semen measures are required to obtain more reliable conclusions. CRD42015007175. Copyright © 2016 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  6. Acute effects of air pollution on influenza-like illness in Nanjing, China: A population-based study.

    Science.gov (United States)

    Huang, Lei; Zhou, Lian; Chen, Jin; Chen, Kai; Liu, Yang; Chen, Xiaodong; Tang, Fenyang

    2016-03-01

    Influenza-like illness causes substantial morbidity and mortality. Air pollution has already been linked to many health issues, and increasing evidence in recent years supports an association between air pollution and respiratory infections. It is a pioneer study in China to quantify the effects of air pollution on influenza-like illness. This study used wavelet coherence analysis and generalized additive models to explore the potential association between air pollution (including particulate matter with aerodynamic diameter ≦2.5 μm (PM2.5), particulate matter with aerodynamic diameter ≦10 μm (PM10) and nitrogen dioxide (NO2)) and influenza-like illness (a total of 59860 cases) in Nanjing, China from January 1, 2013 to December 31, 2013. The average concentrations of PM2.5, PM10 and NO2 were 77.37 μg/m(3), 135.20 μg/m(3) and 55.80 μg/m(3). An interquartile range increase in PM2.5 concentration was associated with a 2.99% (95% confidence interval (CI): 1.64%, 4.36%) increase in daily influenza-like cases on the same day, while the corresponding increase in NO2 was associated with a 3.77% (95% CI: 2.01%, 5.56%) increase in daily cases. People aged 0-4 were proved to be significantly susceptible to PM10 and NO2; 5-14 ages were significantly susceptible to PM2.5 and PM10; and 15-24 ages were significantly susceptible to all the analyzed air pollutants. Air pollution effects tended to be null or negative for patients aged over 25, which might be due to the small number of influenza-like cases in this age group. This study can be useful for understanding the adverse health effects of air pollution and the cause of influenza-like illness. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Effect of environmental air pollution on cardiovascular diseases.

    Science.gov (United States)

    Meo, S A; Suraya, F

    2015-12-01

    Environmental air pollution has become a leading health concern especially in the developing countries with more urbanization, industrialization and rapidly growing population. Prolonged exposure to air pollution is a risk factor for cardiovascular diseases. The present study aimed to investigate the effects of environmental air pollution on progression of cardiovascular problems. In this study, we identified 6880 published articles through a systematic database including ISI-Web of Science, PubMed and EMBASE. The allied literature was searched by using the key words such as environmental pollution, air pollution, particulate matter pollutants PM 2.5 μm-PM 10 μm. Literature in which environmental air pollution and cardiac diseases were discussed was included. Descriptive information was retrieved from the selected literature. Finally, we included 67 publications and remaining studies were excluded. Environmental pollution can cause high blood pressure, arrhythmias, enhanced coagulation, thrombosis, acute arterial vasoconstriction, atherosclerosis, ischemic heart diseases, myocardial infarction and even heart failure. Environmental air pollution is associated with increased risk of cardiovascular diseases. Environmental pollution exerts its detrimental effects on the heart by developing pulmonary inflammation, systemic inflammation, oxidative stress, endothelial dysfunction and prothrombotic changes. Environmental protection officials must take high priority steps to minimize the air pollution to decrease the prevalence of cardiovascular diseases.

  8. Adverse health effects of air pollutants in a nonsmoking population.

    Science.gov (United States)

    Pope, C A

    1996-07-17

    Utah Valley has provided an interesting and unique opportunity to evaluate the health effects of respirable particulate air pollution (PM10). Residents of this valley are predominantly nonsmoking members of the Church of Jesus Christ of Latter-day Saints (Mormons). The area has moderately high average PM10 levels with periods of highly elevated PM10 concentrations due to local emissions being trapped in a stagnant air mass near the valley floor during low-level temperature inversion episodes. Due to a labor dispute, there was intermittent operation of the single largest pollution source, an old integrated steel mill. Levels of other common pollutants including sulfur dioxide, ozone, and acidic aerosol are relatively low. Studies specific to Utah Valley have observed that elevated PM10 concentrations are associated with: (1) decreased lung function; (2) increased incidence of respiratory symptoms; (3) increased school absenteeism; (4) increased respiratory hospital admissions; and (5) increased mortality, especially respiratory and cardiovascular mortality.

  9. Composition of PM2.5 and PM1 on high and low pollution event days and its relation to indoor air quality in a home for the elderly.

    Science.gov (United States)

    Buczyńska, Anna J; Krata, Agnieszka; Van Grieken, Rene; Brown, Andrew; Polezer, Gabriela; De Wael, Karolien; Potgieter-Vermaak, Sanja

    2014-08-15

    Many studies probing the link between air quality and health have pointed towards associations between particulate matter (PM) exposure and decreased lung function, aggravation of respiratory diseases like asthma, premature death and increased hospitalisation admissions for the elderly and individuals with cardiopulmonary diseases. Of recent, it is believed that the chemical composition and physical properties of PM may contribute significantly to these adverse health effects. As part of a Belgian Science Policy project ("Health effects of particulate matter in relation to physical-chemical characteristics and meteorology"), the chemical composition (elemental and ionic compositions) and physical properties (PM mass concentrations) of PM were investigated, indoors and outdoors of old age homes in Antwerp. The case reported here specifically relates to high versus normal/low pollution event periods. PM mass concentrations for PM1 and PM2.5 fractions were determined gravimetrically after collection via impaction. These same samples were hence analysed by EDXRF spectrometry and IC for their elemental and ionic compositions, respectively. During high pollution event days, PM mass concentrations inside the old age home reached 53 μg m(-3) and 32 μg m(-3) whilst outside concentrations were 101 μg m(-3) and 46 μg m(-3) for PM2.5 and PM1, respectively. The sum of nss-sulphate, nitrate and ammonium, dominate the composition of PM, and contribute the most towards an increase in the PM during the episode days constituting 64% of ambient PM2.5 (52 μg m(-3)) compared to 39% on non-episode days (10 μg m(-3)). Other PM components, such as mineral dust, sea salt or heavy metals were found to be considerably higher during PM episodes but relatively less important. Amongst heavy metals Zn and Pb were found at the highest concentrations in both PM2.5 and PM1. Acid-base ionic balance equations were calculated and point to acidic aerosols during event days and acidic to alkaline

  10. Monitoring of PM10 and PM2.5 around primary particulate anthropogenic emission sources

    Science.gov (United States)

    Querol, Xavier; Alastuey, Andrés; Rodriguez, Sergio; Plana, Felicià; Mantilla, Enrique; Ruiz, Carmen R.

    Investigations on the monitoring of ambient air levels of atmospheric particulates were developed around a large source of primary anthropogenic particulate emissions: the industrial ceramic area in the province of Castelló (Eastern Spain). Although these primary particulate emissions have a coarse grain-size distribution, the atmospheric transport dominated by the breeze circulation accounts for a grain-size segregation, which results in ambient air particles occurring mainly in the 2.5-10 μm range. The chemical composition of the ceramic particulate emissions is very similar to the crustal end-member but the use of high Al, Ti and Fe as tracer elements as well as a peculiar grain-size distribution in the insoluble major phases allow us to identify the ceramic input in the bulk particulate matter. PM2.5 instead of PM10 monitoring may avoid the interference of crustal particles without a major reduction in the secondary anthropogenic load, with the exception of nitrate. However, a methodology based in PM2.5 measurement alone is not adequate for monitoring the impact of primary particulate emissions (such as ceramic emissions) on air quality, since the major ambient air particles derived from these emissions are mainly in the range of 2.5-10 μm. Consequently, in areas characterised by major secondary particulate emissions, PM2.5 monitoring should detect anthropogenic particulate pollutants without crustal particulate interference, whereas PM10 measurements should be used in areas with major primary anthropogenic particulate emissions.

  11. Temporal Variation of Ambient PM10 Concentration within an Urban-Industrial Environment

    Science.gov (United States)

    Wong, Yoon-Keaw; Noor, Norazian Mohamed; Izzah Mohamad Hashim, Nur

    2018-03-01

    PM10 concentration in the ambient air has been reported to be the main pollutant affecting human health, particularly in the urban areas. This research is conducted to study the variation of PM10 concentration at the three urban-industrial areas in Malaysia, namely Shah Alam, Kuala Terengganu and Melaka. In addition, the association and correlation between PM10 concentration and other air pollutants will be distinguished. Five years interval dataset (2008-2012) consisting of PM10, SOX, NOX and O3 concentrations and other weather parameters such as wind speed, humidity and temperature were obtained from Department of Environment, Malaysia. Shah Alam shows the highest average of PM10 concentration with the value of 62.76 μg/m3 in June, whereas for Kuala Terengganu was 59.29 μg/m3 in February and 46.61 μg/m3 in August for Melaka. Two peaks were observed from the time series plot using the averaged monthly PM10 concentration. First peak occurs when PM10 concentration rises from January to February and the second peak is reached in June and remain high for the next two consecutive months for Shah Alam and Kuala Terengganu. Meanwhile the second peak for Melaka is only achieved in August as a result of the transboundary of smoke from forest fires in the Sumatra region during dry season from May to September. Both of the pollutants can be sourced from rapid industrial activities at Shah Alam. PM10 concentration is strongly correlated with carbon monoxide concentration in Kuala Terengganu and Melaka with value of r2 = 0.1725 and 0.2744 respectively. High carbon monoxide and PM10 concentration are associated with burning of fossil fuel from increased number of vehicles at these areas.

  12. A Time-Series Study of the Effect of Air Pollution on Outpatient Visits for Acne Vulgaris in Beijing.

    Science.gov (United States)

    Liu, Wei; Pan, Xiaochuan; Vierkötter, Andrea; Guo, Qun; Wang, Xuying; Wang, Qiaowei; Seité, Sophie; Moyal, Dominique; Schikowski, Tamara; Krutmann, Jean

    2018-01-01

    There is increasing evidence that exposure to air pollutants, including particulate matter (PM2.5, PM10), nitrogen dioxide (NO2), and sulfur dioxide (SO2), might aggravate preexisting skin diseases such as eczema and urticaria. Here we investigated if a possible link exists between air pollution and acne vulgaris. We assessed the association between ambient air pollutant concentrations and the number of visits of patients for acne vulgaris to a dermatological outpatient clinic in Beijing, China, from April 1, 2012 to April 30, 2014. In this time period, 59,325 outpatient visits were recorded because of acne vulgaris. Daily air pollution parameters for PM10, PM2.5, SO2, and NO2 were obtained from the Beijing Municipal Environmental Monitoring Center. Increased concentrations of ambient PM2.5, PM10, and NO2 were significantly associated with increased numbers of outpatient visits for acne vulgaris over the 2 years. These effects could be observed for NO2 in a single-pollutant model and for PM2.5, PM10, and NO2 in 2-pollutant models, which are closer to real-life exposure. Of note, these effects were specific because they were not observed for increased SO2 concentrations, which even showed negative correlations in all test models. This study provides indirect evidence for a link between acne vulgaris and air pollution. © 2018 S. Karger AG, Basel.

  13. Spatiotemporal patterns of particulate matter (PM and associations between PM and mortality in Shenzhen, China

    Directory of Open Access Journals (Sweden)

    Fengying Zhang

    2016-03-01

    Full Text Available Abstract Background Most studies on air pollution exposure and its associations with human health in China have focused on the heavily polluted industrial areas and/or mega-cities, and studies on cities with comparatively low air pollutant concentrations are still rare. Only a few studies have attempted to analyse particulate matter (PM for the vibrant economic centre Shenzhen in the Pearl River Delta. So far no systematic investigation of PM spatiotemporal patterns in Shenzhen has been undertaken and the understanding of pollution exposure in urban agglomerations with comparatively low pollution is still limited. Methods We analyze daily and hourly particulate matter concentrations and all-cause mortality during 2013 in Shenzhen, China. Temporal patterns of PM (PM2.5 and PM10 with aerodynamic diameters of 2.5 (10 μm or less (or less (including particles with a diameter that equals to 2.5 (10 μm are studied, along with the ratio of PM2.5 to PM10. Spatial distributions of PM10 and PM2.5 are addressed and associations of PM10 or PM2.5 and all-cause mortality are analyzed. Results Annual average PM10 and PM2.5 concentrations were 61.3 and 39.6 μg/m3 in 2013. PM2.5 failed to meet the Class 2 annual limit of the National Ambient Air Quality Standard. PM2.5 was the primary air pollutant, with 8.8 % of days having heavy PM2.5 pollution. The daily PM2.5/PM10 ratios were high. Hourly PM2.5 concentrations in the tourist area were lower than downtown throughout the day. PM10 and PM2.5 concentrations were higher in western parts of Shenzhen than in eastern parts. Excess risks in the number of all-cause mortality with a 10 μg/m3 increase of PM were 0.61 % (95 % confidence interval [CI]: 0.50–0.72 for PM10, and 0.69 % (95 % CI: 0.55–0.83 for PM2.5, respectively. The greatest ERs of PM10 and PM2.5 were in 2-day cumulative measures for the all-cause mortality, 2-day lag for females and the young (0–65 years, and L02 for males and the elder (>65

  14. Diagnosis of Dust- and Pollution- Impacted PM10, PM2.5, and PM1 Aerosols Observed at Gosan Climate Observatory

    Science.gov (United States)

    Shang, X.; Lee, M.; LIM, S.; Gustafsson, O.; Lee, G.; Chang, L.

    2017-12-01

    In East Asia, dust is prevalent and used to be mixed with various pollutants during transportation, causing a large uncertainty in estimating the climate forcing of aerosol and difficulty in making environmental policy. In order to diagnose the influence of dust particles on aerosol, we conducted a long-term measurement of PM10, PM2.5 and PM1 for mass, water-soluble ions, and carbonaceous compounds at Gosan Climate Observatory, South Korea from August 2007 to February 2012. The result of principle component analysis reveals that anthropogenic, typical soil dust, and saline dust impact explain 46 %, 16 %, and 9 % of the total variance for all samples, respectively. The mode analysis of mass distributions provides the criteria to distinguish these principle factors. The anthropogenic impact was most pronounced in PM1 and diagnosed by the PM1 mass higher than mean+σ. If PM10 mass was greater than mean+σ, it was highly likely to be affected by typical soil dust. This criterion is also applicable for PM2.5 mass, which was enhanced by both haze and dust particles, though. In the present study, saline dust was recognized by relatively high concentrations of Na and Cl ions in PM1.0. However, their existence was not manifested by increased mass in any of three PM types.

  15. Air pollution and incidence of cancers of the stomach and the upper aerodigestive tract in the European Study of Cohorts for Air Pollution Effects (ESCAPE).

    Science.gov (United States)

    Nagel, Gabriele; Stafoggia, Massimo; Pedersen, Marie; Andersen, Zorana J; Galassi, Claudia; Munkenast, Jule; Jaensch, Andrea; Sommar, Johan; Forsberg, Bertil; Olsson, David; Oftedal, Bente; Krog, Norun H; Aamodt, Geir; Pyko, Andrei; Pershagen, Göran; Korek, Michal; De Faire, Ulf; Pedersen, Nancy L; Östenson, Claes-Göran; Fratiglioni, Laura; Sørensen, Mette; Tjønneland, Anne; Peeters, Petra H; Bueno-de-Mesquita, Bas; Vermeulen, Roel; Eeftens, Marloes; Plusquin, Michelle; Key, Timothy J; Concin, Hans; Lang, Alois; Wang, Meng; Tsai, Ming-Yi; Grioni, Sara; Marcon, Alessandro; Krogh, Vittorio; Ricceri, Fulvio; Sacerdote, Carlotta; Ranzi, Andrea; Cesaroni, Giulia; Forastiere, Francesco; Tamayo-Uria, Ibon; Amiano, Pilar; Dorronsoro, Miren; de Hoogh, Kees; Beelen, Rob; Vineis, Paolo; Brunekreef, Bert; Hoek, Gerard; Raaschou-Nielsen, Ole; Weinmayr, Gudrun

    2018-04-26

    Air pollution has been classified as carcinogenic to humans. However, to date little is known about the relevance for cancers of the stomach and upper aerodigestive tract (UADT). We investigated the association of long-term exposure to ambient air pollution with incidence of gastric and UADT cancer in 11 European cohorts. Air pollution exposure was assigned by land-use regression models for particulate matter (PM) below 10 µm (PM 10 ), below 2.5 µm (PM 2.5 ), between 2.5 and 10 µm (PM coarse ), PM 2.5 absorbance and nitrogen oxides (NO 2 and NO X ) as well as approximated by traffic indicators. Cox regression models with adjustment for potential confounders were used for cohort-specific analyses. Combined estimates were determined with random effects meta-analyses. During average follow-up of 14.1 years of 305 551 individuals, 744 incident cases of gastric cancer and 933 of UADT cancer occurred. The hazard ratio for an increase of 5 µg/m 3 of PM 2.5 was 1.38 (95%-CI 0.99;1.92) for gastric and 1.05 (95%-CI 0.62;1.77) for UADT cancers. No associations were found for any of the other exposures considered. Adjustment for additional confounders and restriction to study participants with stable addresses did not influence markedly the effect estimate for PM 2.5 and gastric cancer. Higher estimated risks of gastric cancer associated with PM 2.5 was found in men (HR 1.98 (1.30;3.01)) as compared to women (HR 0.85 (0.5;1.45)). This large multicentre cohort study shows an association between long-term exposure to PM 2.5 and gastric cancer, but not UADT cancers, suggesting that air pollution may contribute to gastric cancer risk. This article is protected by copyright. All rights reserved. © 2018 UICC.

  16. Evaluation for Long Term PM10 Concentration Forecasting using Multi Linear Regression (MLR and Principal Component Regression (PCR Models

    Directory of Open Access Journals (Sweden)

    Samsuri Abdullah

    2016-07-01

    Full Text Available Air pollution in Peninsular Malaysia is dominated by particulate matter which is demonstrated by having the highest Air Pollution Index (API value compared to the other pollutants at most part of the country. Particulate Matter (PM10 forecasting models development is crucial because it allows the authority and citizens of a community to take necessary actions to limit their exposure to harmful levels of particulates pollution and implement protection measures to significantly improve air quality on designated locations. This study aims in improving the ability of MLR using PCs inputs for PM10 concentrations forecasting. Daily observations for PM10 in Kuala Terengganu, Malaysia from January 2003 till December 2011 were utilized to forecast PM10 concentration levels. MLR and PCR (using PCs input models were developed and the performance was evaluated using RMSE, NAE and IA. Results revealed that PCR performed better than MLR due to the implementation of PCA which reduce intricacy and eliminate data multi-collinearity.

  17. Can air pollution negate the health benefits of cycling and walking?

    Science.gov (United States)

    Tainio, Marko; de Nazelle, Audrey J; Götschi, Thomas; Kahlmeier, Sonja; Rojas-Rueda, David; Nieuwenhuijsen, Mark J; de Sá, Thiago Hérick; Kelly, Paul; Woodcock, James

    2016-06-01

    Active travel (cycling, walking) is beneficial for the health due to increased physical activity (PA). However, active travel may increase the intake of air pollution, leading to negative health consequences. We examined the risk-benefit balance between active travel related PA and exposure to air pollution across a range of air pollution and PA scenarios. The health effects of active travel and air pollution were estimated through changes in all-cause mortality for different levels of active travel and air pollution. Air pollution exposure was estimated through changes in background concentrations of fine particulate matter (PM2.5), ranging from 5 to 200μg/m3. For active travel exposure, we estimated cycling and walking from 0 up to 16h per day, respectively. These refer to long-term average levels of active travel and PM2.5 exposure. For the global average urban background PM2.5 concentration (22μg/m3) benefits of PA by far outweigh risks from air pollution even under the most extreme levels of active travel. In areas with PM2.5 concentrations of 100μg/m3, harms would exceed benefits after 1h 30min of cycling per day or more than 10h of walking per day. If the counterfactual was driving, rather than staying at home, the benefits of PA would exceed harms from air pollution up to 3h 30min of cycling per day. The results were sensitive to dose-response function (DRF) assumptions for PM2.5 and PA. PA benefits of active travel outweighed the harm caused by air pollution in all but the most extreme air pollution concentrations. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  18. Promoted relationship of cardiovascular morbidity with air pollutants in a typical Chinese urban area.

    Directory of Open Access Journals (Sweden)

    Ling Tong

    Full Text Available BACKGROUND: A large number of studies about effects of air pollutants on cardiovascular mortality have been conducted; however, those investigating association between air pollutants and cardiovascular morbidity are limited, especially in developing countries. METHODS: A time-series analysis on the short-term association between outdoor air pollutants including particulate matter (PM with diameters of 10 µm or less (PM10, sulfur dioxide (SO2 and nitrogen dioxide (NO2 and cardiovascular morbidity was conducted in Tianjin, China based on 4 years of daily data (2008-2011. The morbidity data were stratified by sex and age. The effects of air pollutants during the warm season and the cool season were also analyzed separately. RESULTS: Each increase in PM10, SO2, and NO2 by increments of 10 µg/m3 in a 2-day average concentration was associated with increases in the cardiovascular morbidity of 0.19% with 95 percent confidence interval (95% CI of 0.08-0.31, 0.43% with 95% CI of 0.03-0.84, and 0.52% with 95% CI of -0.09-1.13, respectively. The effects of air pollutants were more evident in the cool season than those in the warm season, females and the elderly were more vulnerable to outdoor air pollution. CONCLUSIONS: All estimated coefficients of PM10, SO2 and NO2 are positive but only the effect of SO2 implied statistical significance at the 5% level. Moreover, season, sex and age might modify health effects of outdoor air pollutants. This work may bring inspirations for formulating local air pollutant standards and social policy regarding cardiovascular health of residents.

  19. Individual and Neighborhood Stressors, Air Pollution and Cardiovascular Disease.

    Science.gov (United States)

    Hazlehurst, Marnie F; Nurius, Paula S; Hajat, Anjum

    2018-03-08

    Psychosocial and environmental stress exposures across the life course have been shown to be relevant in the development of cardiovascular disease (CVD). Assessing more than one stressor from different domains (e.g., individual and neighborhood) and across the life course moves us towards a more integrated picture of how stress affects health and well-being. Furthermore, these individual and neighborhood psychosocial stressors act on biologic pathways, including immune function and inflammatory response, which are also impacted by ubiquitous environmental exposures such as air pollution. The objective of this study is to evaluate the interaction between psychosocial stressors, at both the individual and neighborhood level, and air pollution on CVD. This study used data from the 2009-2011 Behavioral Risk Factor Surveillance System (BRFSS) from Washington State. Adverse childhood experiences (ACEs) measured at the individual level, and neighborhood deprivation index (NDI) measured at the zip code level, were the psychosocial stressors of interest. Exposures to three air pollutants-particulate matter (both PM 2.5 and PM 10 ) and nitrogen dioxide (NO₂)-were also calculated at the zip code level. Outcome measures included several self-reported CVD-related health conditions. Both multiplicative and additive interaction quantified using the relative excess risk due to interaction (RERI), were evaluated. This study included 32,151 participants in 502 unique zip codes. Multiplicative and positive additive interactions were observed between ACEs and PM 10 for diabetes, in models adjusted for NDI. The prevalence of diabetes was 1.58 (95% CI: 1.40, 1.79) times higher among those with both high ACEs and high PM 10 compared to those with low ACEs and low PM 10 ( p -value = 0.04 for interaction on the multiplicative scale). Interaction was also observed between neighborhood-level stressors (NDI) and air pollution (NO₂) for the stroke and diabetes outcomes on both

  20. The Interaction between Ambient PM10 and NO₂ on Mortality in Guangzhou, China.

    Science.gov (United States)

    Gu, Yuzhou; Lin, Hualiang; Liu, Tao; Xiao, Jianpeng; Zeng, Weilin; Li, Zhihao; Lv, Xiaojuan; Ma, Wenjun

    2017-11-13

    Air pollution is now a significant environmental issue in China. To better understand the health impacts of ambient air pollution, this study investigated the potential interaction between PM 10 and NO₂ on mortality in Guangzhou, China. Time series data of daily non-accidental mortality and concentrations of PM 10 and NO₂ from 2006 to 2010 were collected. Based on generalized additive model, we developed two models (bivariate model and stratified model) to explore the interaction both qualitatively and quantitatively. At lag of 0-2 days, greater interactive effects between PM 10 and NO₂ were presented in the graphs. Positive modified effects were also found between the two pollutants on total non-accidental death and cardiovascular death. When the NO₂ concentration was at a high level (>76.14 μg/m³), PM 10 showed the greatest excess relative risk percentage (ERR%) for total non-accidental mortality (0.46, 95% CI: 0.13-0.79) and cardiovascular disease mortality (0.61, 95% CI: 0.06-1.16) for each 10 μg/m³ increase. During the period of high PM 10 concentration (>89.82 μg/m³), NO₂ demonstrated its strongest effect for total non-accidental mortality (ERR%: 0.92, 95% CI: 0.42-1.42) and cardiovascular disease mortality (ERR%: 1.20, 95% CI: 0.38-2.03). Our results suggest a positive interaction between PM 10 and NO₂ on non-accidental mortality in Guangzhou.

  1. Long-Term Exposure to Ambient Air Pollution and Incidence of Cerebrovascular Events

    DEFF Research Database (Denmark)

    Stafoggia, Massimo; Cesaroni, Giulia; Peters, Annette

    2014-01-01

    and occurrence of a first stroke was evaluated. Individual air pollution exposures were predicted from land-use regression models developed within the "European Study of Cohorts for Air Pollution Effects" (ESCAPE). The exposures were: PM2.5 (particulate matter [PM] below 2.5 µm in diameter), coarse PM (PM...... between 2.5 and 10 µm), PM10 (PM below 10 µm), PM2.5 absorbance, nitrogen oxides, and two traffic indicators. Cohort-specific analyses were conducted using Cox proportional hazards models. Random-effects meta-analysis was used for pooled effect estimation. RESULTS: 99,446 subjects were included, 3......,086 of whom developed stroke. A 5-μg/m(3) increase in annual PM2.5 exposure was associated with 19% increased risk of incident stroke (hazard ratio [HR] = 1.19, 95% confidence interval [CI]: 0.88, 1.62). Similar findings were obtained for PM10. The results were robust to adjustment for an extensive list...

  2. Association of air pollution with increased incidence of ventricular tachyarrhythmias recorded by implantable cardioverter defibrillators: Vulnerable patients to air pollution.

    Science.gov (United States)

    Kim, In-Soo; Sohn, Jungwoo; Lee, Seung-Jun; Park, Jin-Kyu; Uhm, Jae-Sun; Pak, Hui-Nam; Lee, Moon-Hyoung; Kim, Changsoo; Joung, Boyoung

    2017-08-01

    This study investigated the acute effects of exposure to air pollution on ventricular tachyarrhythmias (VTAs) in an East Asian population. The association between air pollution and VTA has not yet been studied in an East Asian country affected by the Asian dust phenomenon, which worsens air quality. The study cohort consisted of 160patients with implantable cardioverter defibrillator (ICD) devices in the Seoul metropolitan area who were followed for 5.5±3.8years. We used ICD records of VTAs and matched these with hourly measurements of air pollutant concentrations and meteorological data. Fine particle mass and gaseous air pollution plus temperature and relative humidity were measured hourly during the study period. During the study period, 1064 VTA events including 204 instances of ventricular fibrillation (VF) were observed. We found a statistically significant association between overall VTA events and SO 2 (lag 24h; OR 1.49, 95%CI 1.16-1.92, p=0.002), PM 10 (lag 2h; OR 2.56, 95%CI 2.03-3.23, pair pollution and VTA were observed in a metropolitan area of an East Asian country. Exposures to SO 2 , PM 10 , NO 2 , and CO were significantly associated with VTAs in ICD patients with SHD. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. The relation between air pollution and respiratory deaths in Tehran, Iran- using generalized additive models.

    Science.gov (United States)

    Dehghan, Azizallah; Khanjani, Narges; Bahrampour, Abbas; Goudarzi, Gholamreza; Yunesian, Masoud

    2018-03-20

    Some epidemiological evidence has shown a relation between ambient air pollution and adverse health outcomes. The aim of this study was to investigate the effect of air pollution on mortality from respiratory diseases in Tehran, Iran. In this ecological study, air pollution data was inquired from the Tehran Province Environmental Protection Agency and the Tehran Air Quality Control Company. Meteorological data was collected from the Tehran Meteorology Organization and mortality data from the Tehran Cemetery Mortality Registration. Generalized Additive Models (GAM) was used for data analysis with different lags, up to 15 days. A 10-unit increase in all pollutants except CO (1-unit) was used to compute the Relative Risk of deaths. During 2005 until 2014, 37,967 respiratory deaths occurred in Tehran in which 21,913 (57.7%) were male. The strongest relationship between NO 2 and PM 10 and respiratory death was seen on the same day (lag 0), and was respectively (RR = 1.04, 95% CI: 1.02-1.07) and (RR = 1.03, 95% CI: 1.02-1.04). O 3 and PM 2.5 had the strongest relationship with respiratory deaths on lag 2 and 1 respectively, and the RR was equal to 1.03, 95% CI: 1.01-1.05 and 1.06, 95% CI: 1.02-1.10 respectively. NO 2 , O 3 , PM 10 and PM 2.5 also showed significant relations with respiratory deaths in the older age groups. The findings of this study showed that O 3 , NO 2 , PM 10 and PM 2.5 air pollutants were related to respiratory deaths in Tehran. Reducing ambient air pollution can save lives in Tehran.

  4. A GIS-based spatial correlation analysis for ambient air pollution and AECOPD hospitalizations in Jinan, China.

    Science.gov (United States)

    Wang, Wenqiao; Ying, Yangyang; Wu, Quanyuan; Zhang, Haiping; Ma, Dedong; Xiao, Wei

    2015-03-01

    Acute exacerbations of COPD (AECOPD) are important events during disease procedure. AECOPD have negative effect on patients' quality of life, symptoms and lung function, and result in high socioeconomic costs. Though previous studies have demonstrated the significant association between outdoor air pollution and AECOPD hospitalizations, little is known about the spatial relationship utilized a spatial analyzing technique- Geographical Information System (GIS). Using GIS to investigate the spatial association between ambient air pollution and AECOPD hospitalizations in Jinan City, 2009. 414 AECOPD hospitalization cases in Jinan, 2009 were enrolled in our analysis. Monthly concentrations of five monitored air pollutants (NO2, SO2, PM10, O3, CO) during January 2009-December 2009 were provided by Environmental Protection Agency of Shandong Province. Each individual was geocoded in ArcGIS10.0 software. The spatial distribution of five pollutants and the temporal-spatial specific air pollutants exposure level for each individual was estimated by ordinary Kriging model. Spatial autocorrelation (Global Moran's I) was employed to explore the spatial association between ambient air pollutants and AECOPD hospitalizations. A generalized linear model (GLM) using a Poisson distribution with log-link function was used to construct a core model. At residence, concentrations of SO2, PM10, NO2, CO, O3 and AECOPD hospitalization cases showed statistical significant spatially clustered. The Z-score of SO2, PM10, CO, O3, NO2 at residence is 15.88, 13.93, 12.60, 4.02, 2.44 respectively, while at workplace, concentrations of PM10, SO2, O3, CO and AECOPD hospitalization cases showed statistical significant spatially clustered. The Z-score of PM10, SO2, O3, CO at workplace is 11.39, 8.07, 6.10, and 5.08 respectively. After adjusting for potential confounders in the model, only the PM10 concentrations at workplace showed statistical significance, with a 10 μg/m(3) increase of PM10 at

  5. The Reproducibility of Indoor Air Pollution (IAP Measurement: A Test Case for the Measurement of Key Air Pollutants from the Pan Frying of Fish Samples

    Directory of Open Access Journals (Sweden)

    Ki-Hyun Kim

    2014-01-01

    Full Text Available To assess the robustness of various indoor air quality (IAQ indices, we explored the possible role of reproducibility-induced variability in the measurements of different pollutants under similar sampling and emissions conditions. Polluted indoor conditions were generated by pan frying fish samples in a closed room. A total of 11 experiments were carried out to measure a list of key variables commonly used to represent indoor air pollution (IAP indicators such as particulate matter (PM: PM1, PM2.5, PM10, and TSP and a set of individual volatile organic compounds (VOCs with some odor markers. The cooking activity conducted as part of our experiments was successful to consistently generate significant pollution levels (mean PM10: 7110 μg m−3 and mean total VOC (TVOC: 1400 μg m−3, resp.. Then, relative standard error (RSE was computed to assess the reproducibility between different IAP paramters measured across the repeated experiments. If the results were evaluated by an arbitrary criterion of 10%, the patterns were divided into two data groups (e.g., 10% for the remainders. Most noticeably, TVOC had the most repeatable results with a reproducibility (RSE value of 3.2% (n=11.

  6. Modeling PM10 in Ho Chi Minh City, Vietnam and evaluation of its impact on human health

    Directory of Open Access Journals (Sweden)

    Bang Quoc Ho

    2017-03-01

    Full Text Available According to World Health Organization (WHO and Global Burden of Disease, ambient air pollution is estimated to be responsible for 3.7 million premature deaths in 2012 [1]. Therefore, it is urgent to estimate the impact of air pollution on public health and economic damage. The objectives of this research are: study the distribution of PM10 concentration over Ho Chi Minh city (HCMC and relationship to public health and for proposing solutions of diseases prevention in HCM, Vietnam. EMIssion SENSitivity model was applied to conduct air emission inventory for transportation sector. Then, Finite Volume Model and Transport and Photochemistry Mesoscale Model were used to simulate the meteorology and the spatial distribution of PM10 in HCMC. Together with disease data obtained, the US Environmental Benefits Mapping and Analysis Model was applied for calculating the number of deaths and estimating economic losses due to PM10 pollution. Finally, solutions to reduce PM10 pollution and protect public health are proposed. The results showed that the highest 1-h average concentration of PM10 is 240 μg m−3 in North Eastern of HCMC. The concentration of PM10 for annual average in District 5 ranged from 17 to 49 μg m−3. There are 12 wards of District 5 with PM10 concentration exceeding the WHO guidelines (20 μg m−3 for annual average of PM10 and 50 μg m−3 for 24-h average. The high concentration of PM10 causes 5 deaths yr−1 in District 5 and 204 deaths yr−1 in HCMC, and it causes economic losses of 1.84 billion of USD.

  7. Air pollution and cardiovascular and respiratory disease: Rationale and methodology of CAPACITY study

    Science.gov (United States)

    Rabiei, Katayoun; Hosseini, Sayed Mohsen; Sadeghi, Erfan; Jafari-Koshki, Tohid; Rahimi, Mojtaba; Shishehforoush, Mansour; Lahijanzadeh, Ahmadreza; Sadeghian, Babak; Moazam, Elham; Mohebi, Mohammad Bagher; Ezatian, Victoria; Sarrafzadegan, Nizal

    2017-01-01

    BACKGROUND Considering the high level of air pollution and its impact on health, we aimed to study the correlation of air pollution with hospitalization and mortality of cardiovascular (CVD) and respiratory diseases (ResD) (CAPACITY) to determine the effects of air pollutants on CVD and ResD hospitalizations and deaths in Isfahan, Iran. METHODS Hourly levels of air pollutants including particulate matter (PM), carbon monoxide (CO), nitrogen dioxide (NO2), sulfur dioxide (SO2), and ozone (O3), information of CVD and ResD admissions and death certificate were obtained respectively from Department of Environment (DOE), Iran, hospitals and cemetery. Time series and case-crossover model were used to find the impact of air pollutants. This paper only summarizes the descriptive findings of the CAPACITY study. RESULTS The total number of hospitalized patients were 23781 in 2010 and 22485 in 2011. The most frequent cause of hospitalization and death was ischemic heart diseases in both years. While the mean annual levels of O3, CO, and PM10 were lower in 2011 than in 2010, NO2 and SO2 levels higher in 2011. In both years, PM10 was similarly increased during last month of fall, late spring and early summer. In 2011, the PM2.5 and PM10 monthly trend of change were similar. CONCLUSION The CAPACITY study is one of the few large-scale studies that evaluated the effects of air pollutants on a variety of CVD and ResD in a large city of Iran. This study can provide many findings that could clarify the effects of these pollutants on the incidence and burden of both disease groups. PMID:29643921

  8. Air pollution and cardiovascular and respiratory disease: Rationale and methodology of CAPACITY study.

    Science.gov (United States)

    Rabiei, Katayoun; Hosseini, Sayed Mohsen; Sadeghi, Erfan; Jafari-Koshki, Tohid; Rahimi, Mojtaba; Shishehforoush, Mansour; Lahijanzadeh, Ahmadreza; Sadeghian, Babak; Moazam, Elham; Mohebi, Mohammad Bagher; Ezatian, Victoria; Sarrafzadegan, Nizal

    2017-11-01

    Considering the high level of air pollution and its impact on health, we aimed to study the correlation of air pollution with hospitalization and mortality of cardiovascular (CVD) and respiratory diseases (ResD) (CAPACITY) to determine the effects of air pollutants on CVD and ResD hospitalizations and deaths in Isfahan, Iran. Hourly levels of air pollutants including particulate matter (PM), carbon monoxide (CO), nitrogen dioxide (NO2), sulfur dioxide (SO2), and ozone (O3), information of CVD and ResD admissions and death certificate were obtained respectively from Department of Environment (DOE), Iran, hospitals and cemetery. Time series and case-crossover model were used to find the impact of air pollutants. This paper only summarizes the descriptive findings of the CAPACITY study. The total number of hospitalized patients were 23781 in 2010 and 22485 in 2011. The most frequent cause of hospitalization and death was ischemic heart diseases in both years. While the mean annual levels of O3, CO, and PM10 were lower in 2011 than in 2010, NO2 and SO2 levels higher in 2011. In both years, PM10 was similarly increased during last month of fall, late spring and early summer. In 2011, the PM2.5 and PM10 monthly trend of change were similar. The CAPACITY study is one of the few large-scale studies that evaluated the effects of air pollutants on a variety of CVD and ResD in a large city of Iran. This study can provide many findings that could clarify the effects of these pollutants on the incidence and burden of both disease groups.

  9. Air pollution and cardiovascular and respiratory disease: Rationale and methodology of CAPACITY study

    Directory of Open Access Journals (Sweden)

    Katayoun Rabiei

    2017-11-01

    Full Text Available BACKGROUND: Considering the high level of air pollution and its impact on health, we aimed to study the correlation of air pollution with hospitalization and mortality of cardiovascular (CVD and respiratory diseases (ResD (CAPACITY to determine the effects of air pollutants on CVD and ResD hospitalizations and deaths in Isfahan, Iran.METHODS: Hourly levels of air pollutants including particulate matter (PM, carbon monoxide (CO, nitrogen dioxide (NO2, sulfur dioxide (SO2, and ozone (O3, information of CVD and ResD admissions and death certificate were obtained respectively from Department of Environment (DOE, Iran, hospitals and cemetery. Time series and case-crossover model were used to find the impact of air pollutants. This paper only summarizes the descriptive findings of the CAPACITY study.RESULTS: The total number of hospitalized patients were 23781 in 2010 and 22485 in 2011. The most frequent cause of hospitalization and death was ischemic heart diseases in both years. While the mean annual levels of O3, CO, and PM10 were lower in 2011 than in 2010, NO2 and SO2 levels higher in 2011. In both years, PM10 was similarly increased during last month of fall, late spring and early summer. In 2011, the PM2.5 and PM10 monthly trend of change were similar.CONCLUSION: The CAPACITY study is one of the few large-scale studies that evaluated the effects of air pollutants on a variety of CVD and ResD in a large city of Iran. This study can provide many findings that could clarify the effects of these pollutants on the incidence and burden of both disease groups. 

  10. Can the Air Pollution Index be used to communicate the health risks of air pollution?

    International Nuclear Information System (INIS)

    Li, Li; Lin, Guo-Zhen; Liu, Hua-Zhang; Guo, Yuming; Ou, Chun-Quan; Chen, Ping-Yan

    2015-01-01

    The validity of using the Air Pollution Index (API) to assess health impacts of air pollution and potential modification by individual characteristics on air pollution effects remain uncertain. We applied distributed lag non-linear models (DLNMs) to assess associations of daily API, specific pollution indices for PM 10 , SO 2 , NO 2 and the weighted combined API (APIw) with mortality during 2003–2011 in Guangzhou, China. An increase of 10 in API was associated with a 0.88% (95% confidence interval (CI): 0.50, 1.27%) increase of non-accidental mortality at lag 0–2 days. Harvesting effects appeared after 2 days’ exposure. The effect estimate of API over lag 0–15 days was statistically significant and similar with those of pollutant-specific indices and APIw. Stronger associations between API and mortality were observed in the elderly, females and residents with low educational attainment. In conclusion, the API can be used to communicate health risks of air pollution. - Highlights: • The cumulative effects of API on mortality over lag 0–15 days remained significant. • The indices for three specific pollutants had similar associations with mortality. • The effects of API were modified by age, gender and educational attainment. • Our findings can help to communicate health risks of air pollution to the public. - The Air Pollution Index communicates health risks of air pollution

  11. Mortality and morbidity due to exposure to outdoor air pollution in Mashhad metropolis, Iran. The AirQ model approach.

    Science.gov (United States)

    Miri, Mohammad; Derakhshan, Zahra; Allahabadi, Ahmad; Ahmadi, Ehsan; Oliveri Conti, Gea; Ferrante, Margherita; Aval, Hamideh Ebrahimi

    2016-11-01

    In the past two decades, epidemiological studies have shown that air pollution is one of the causes of morbidity and mortality. In this study the effect of PM10, PM2.5, NO2, SO2 and O3 pollutants on human health among the inhabitants of Mashhad has been evaluated. To evaluate the health effects due to air pollution, the AirQ model software 3.3.2, developed by WHO European Centre for Environment and Health, was used. The daily data related to the pollutants listed above has been used for the short term health effects (total mortality, cardiovascular and respiratory mortality, hospitalization due to cardiovascular and respiratory diseases, chronic obstructive pulmonary disease and acute myocardial infarction). PM2.5 had the most health effects on Mashhad inhabitants. With increasing in each 10μg/m3, relative risk rate of pollutant concentration for total mortality due to PM10, PM2.5, SO 2 , NO 2 and O 3 was increased of 0.6%, 1.5%, 0.4%, 0.3% and 0.46% respectively and, the attributable proportion of total mortality attributed to these pollutants was respectively equal to 4.24%, 4.57%, 0.99%, 2.21%, 2.08%, and 1.61% (CI 95%) of the total mortality (correct for the non-accident) occurred in the year of study. The results of this study have a good compatibly with other studies conducted on the effects of air pollution on humans. The AirQ software model can be used in decision-makings as a useful and easy tool. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Urban aerosol in Oporto, Portugal: Chemical characterization of PM10 and PM2.5

    Science.gov (United States)

    Custódio, Danilo; Ferreira, Catarina; Alves, Célia; Duarte, Mácio; Nunes, Teresa; Cerqueira, Mário; Pio, Casimiro; Frosini, Daniele; Colombi, Cristina; Gianelle, Vorne; Karanasiou, Angeliki; Querol, Xavier

    2014-05-01

    Several urban and industrial areas in Southern Europe are not capable of meeting the implemented EU standards for particulate matter. Efficient air quality management is required in order to ensure that the legal limits are not exceeded and that the consequences of poor air quality are controlled and minimized. Many aspects of the direct and indirect effects of suspended particulate matter on climate and public health are not well understood. The temporal variation of the chemical composition is still demanded, since it enables to adopt off-set strategies and to better estimate the magnitude of anthropogenic forcing on climate. This study aims to provide detailed information on concentrations and chemical composition of aerosol from Oporto city, an urban center in Southern Europe. This city is located near the coast line in the North of Portugal, being the country's second largest urban area. Moreover, Oporto city economic prospects depend heavily on a diversified industrial park, which contribute to air quality degradation. Another strong source of air pollution is traffic. The main objectives of this study are: 1) to characterize the chemical composition of PM10 and PM2.5 by setting up an orchestra of aerosol sampling devices in a strategic place in Oporto; 2) to identify the sources of particles exploring parameters such as organic and inorganic markers (e.g. sugars as tracers for biomass burning; metals and elemental carbon for industrial and vehicular emissions); 3) to evaluate long range transport of pollutants using back trajectory analysis. Here we present data obtained between January 2013 and January 2014 in a heavy traffic roadside sampling site located in the city center. Different PM10 and PM2.5 samplers were operated simultaneously in order to collect enough mass on different filter matrixes and to fulfill the requirements of analytical methodologies. More than 100 aerosol samples were collected and then analysed for their mass concentration and

  13. Economic evaluation of health losses from air pollution in Beijing, China.

    Science.gov (United States)

    Zhao, Xiaoli; Yu, Xueying; Wang, Ying; Fan, Chunyang

    2016-06-01

    Aggravated air pollution in Beijing, China has caused serious health concern. This paper comprehensively evaluates the health losses from illness and premature death caused by air pollution in monetary terms. We use the concentration of PM10 as an indicator of the pollution since it constitutes the primary pollutant in Beijing. By our estimation, air pollution in Beijing caused a health loss equivalent to Ұ583.02 million or 0.03 % of its GDP. Most of the losses took the form of depreciation in human capital that resulted from premature death. The losses from premature deaths were most salient for people of either old or young ages, with the former group suffering from the highest mortality rates and the latter group the highest per capital losses of human capitals from premature death. Policies that target on PM10 emission reduction, urban vegetation expansion, and protection of vulnerable groups are all proposed as possible solutions to air pollution risks in Beijing.

  14. Air pollution and decreased semen quality: A comparative study of Chongqing urban and rural areas

    International Nuclear Information System (INIS)

    Zhou, Niya; Cui, Zhihong; Yang, Sanming; Han, Xue; Chen, Gangcai; Zhou, Ziyuan; Zhai, Chongzhi; Ma, Mingfu; Li, Lianbing; Cai, Min; Li, Yafei; Ao, Lin; Shu, Weiqun; Liu, Jinyi; Cao, Jia

    2014-01-01

    To investigate the association and effects of air pollution level on male semen quality in urban and rural areas, this study examines the outdoor concentrations of particulate matter (PM 10 ), sulfur dioxide (SO 2 ), nitrous dioxide (NO 2 ) and semen quality outcomes for 1346 volunteers in both urban and rural areas in Chongqing, China. We found the urban area has a higher pollution level than the rural area, contrasted with better semen quality in the rural residents, especially for sperm morphology and computer assistant semen analysis (CASA) motility parameters. A multivariate linear regression analysis demonstrates that concentrations of PM 10 , SO 2 , and NO 2 significantly and negatively are associated with normal sperm morphology percentage (P  10 , SO 2 , and NO 2 in urban ambient air may account for worse semen quality in urban males. - Highlights: • We investigate the distributions of PM 10 , SO 2 and NO 2 in urban and rural areas in Chongqing, China. • We explore the associations of air pollution and male semen quality. • The concentrations of PM 10 , SO 2 , and NO 2 are significantly higher in urban areas. • Median values of some semen quality parameters in rural male were higher than urban male. • PM 10 , SO 2 , and NO 2 were negatively associated with semen quality parameters. - Air pollution is higher in the urban area while there is better semen quality in rural males. Polluted air may thus account for worse semen quality in urban males

  15. Sampling and preparation of air pollutants at the Coal Paiton Power Plant area Probolinggo

    International Nuclear Information System (INIS)

    Iswantoro; Sutanto, W.W

    2013-01-01

    Sampling has been conducted on April 8 th to 18 th, 2012 at the plant area of Paiton Coal Power Plant using e-sampler for particulated matter PM-2,5 and PM-10, high volume air sampler for total suspended particulate (TSP) at the three sampling locations as the representative pollution. Filter before and after sampling was weighed and extremely guarded contamination. Air filters stored in desiccator filter for 24 hours. Determination of concentration of ambient air pollutants conducted by gravimetric method derived from a reduction in weight the samples on the filter PM-2,5; PM-10 and TSP to the weight of the empty filter. (author)

  16. Air pollution removal by urban trees and shrubs in the United States

    Science.gov (United States)

    David J. Nowak; Daniel E. Crane; Jack C. Stevens

    2006-01-01

    A modeling study using hourly meteorological and pollution concentration data from across the coterminous United States demonstrates that urban trees remove large amounts of air pollution that consequently improve urban air quality. Pollution removal (03, PM10, NO2, SO2, CO)...

  17. Individual and Neighborhood Stressors, Air Pollution and Cardiovascular Disease

    Science.gov (United States)

    Hazlehurst, Marnie F.; Nurius, Paula S.; Hajat, Anjum

    2018-01-01

    Psychosocial and environmental stress exposures across the life course have been shown to be relevant in the development of cardiovascular disease (CVD). Assessing more than one stressor from different domains (e.g., individual and neighborhood) and across the life course moves us towards a more integrated picture of how stress affects health and well-being. Furthermore, these individual and neighborhood psychosocial stressors act on biologic pathways, including immune function and inflammatory response, which are also impacted by ubiquitous environmental exposures such as air pollution. The objective of this study is to evaluate the interaction between psychosocial stressors, at both the individual and neighborhood level, and air pollution on CVD. This study used data from the 2009–2011 Behavioral Risk Factor Surveillance System (BRFSS) from Washington State. Adverse childhood experiences (ACEs) measured at the individual level, and neighborhood deprivation index (NDI) measured at the zip code level, were the psychosocial stressors of interest. Exposures to three air pollutants—particulate matter (both PM2.5 and PM10) and nitrogen dioxide (NO2)—were also calculated at the zip code level. Outcome measures included several self-reported CVD-related health conditions. Both multiplicative and additive interaction quantified using the relative excess risk due to interaction (RERI), were evaluated. This study included 32,151 participants in 502 unique zip codes. Multiplicative and positive additive interactions were observed between ACEs and PM10 for diabetes, in models adjusted for NDI. The prevalence of diabetes was 1.58 (95% CI: 1.40, 1.79) times higher among those with both high ACEs and high PM10 compared to those with low ACEs and low PM10 (p-value = 0.04 for interaction on the multiplicative scale). Interaction was also observed between neighborhood-level stressors (NDI) and air pollution (NO2) for the stroke and diabetes outcomes on both multiplicative and

  18. An assessment of air pollution and its attributable mortality in Ulaanbaatar, Mongolia.

    Science.gov (United States)

    Allen, Ryan W; Gombojav, Enkhjargal; Barkhasragchaa, Baldorj; Byambaa, Tsogtbaatar; Lkhasuren, Oyuntogos; Amram, Ofer; Takaro, Tim K; Janes, Craig R

    2013-03-01

    Epidemiologic studies have consistently reported associations between outdoor fine particulate matter (PM 2.5 ) air pollution and adverse health effects. Although Asia bears the majority of the public health burden from air pollution, few epidemiologic studies have been conducted outside of North America and Europe due in part to challenges in population exposure assessment. We assessed the feasibility of two current exposure assessment techniques, land use regression (LUR) modeling and mobile monitoring, and estimated the mortality attributable to air pollution in Ulaanbaatar, Mongolia. We developed LUR models for predicting wintertime spatial patterns of NO 2 and SO 2 based on 2-week passive Ogawa measurements at 37 locations and freely available geographic predictors. The models explained 74% and 78% of the variance in NO 2 and SO 2 , respectively. Land cover characteristics derived from satellite images were useful predictors of both pollutants. Mobile PM 2.5 monitoring with an integrating nephelometer also showed promise, capturing substantial spatial variation in PM 2.5 concentrations. The spatial patterns in SO 2 and PM, seasonal and diurnal patterns in PM 2.5 , and high wintertime PM 2.5 /PM 10 ratios were consistent with a major impact from coal and wood combustion in the city's low-income traditional housing (ger) areas. The annual average concentration of PM 2.5 measured at a centrally located government monitoring site was 75 μg/m 3 or more than seven times the World Health Organization's PM 2.5 air quality guideline, driven by a wintertime average concentration of 148 μg/m 3 . PM 2.5 concentrations measured in a traditional housing area were higher, with a wintertime mean PM 2.5 concentration of 250 μg/m 3 . We conservatively estimated that 29% (95% CI, 12-43%) of cardiopulmonary deaths and 40% (95% CI, 17-56%) of lung cancer deaths in the city are attributable to outdoor air pollution. These deaths correspond to nearly 10% of the city's total

  19. Emission characteristics of harmful air pollutants from cremators in Beijing, China.

    Directory of Open Access Journals (Sweden)

    Yifeng Xue

    Full Text Available The process of corpse cremation generates numerous harmful air pollutants, including particulate matter (PM, sulfur dioxide (SO2, nitrogen oxides (NOx, volatile organic compounds (VOCs, and heavy metals. These pollutants could have severe effects on the surrounding environment and human health. Currently, the awareness of the emission levels of harmful air pollutants from cremators and their emission characteristics is insufficient. In this study, we obtained the emission characteristics of flue gas from cremators in Beijing and determined the localized emission factors and emission levels of harmful air pollutants based on actual monitoring data from nine typical cremators. The results show that the emissions of air pollutants from the cremators that directly discharge flue gas exceed the emission standards of China and Beijing. The installation of a flue gas post-treatment system could effectively reduce gaseous pollutants and the emission levels of PM. After being equipped with a flue gas post-treatment system, the emission concentrations of PM10, PM2.5, CO, SO2 and VOCs from the cremators are reduced by 97.6, 99.2, 19.6, 85.2 and 70.7%, respectively. Moreover, the emission factors of TSP, PM10, PM2.5, CO, SO2 and VOCs are also reduced to 12.5, 9.3, 3.0, 164.1, 8.8 and 19.8 g/body. Although the emission concentration of VOCs from the cremators is not high, they are one of major sources of "odor" in the crematories and demand more attention. Benzene, a chemical that can seriously harm human health, constitutes the largest proportion (~50% of the chemical components of VOCs in the flue gas from the cremators.

  20. Beyond PM2.5: The role of ultrafine particles on adverse health effects of air pollution.

    Science.gov (United States)

    Chen, Rui; Hu, Bin; Liu, Ying; Xu, Jianxun; Yang, Guosheng; Xu, Diandou; Chen, Chunying

    2016-12-01

    Air pollution constitutes the major threat to human health, whereas their adverse impacts and underlying mechanisms of different particular matters are not clearly defined. Ultrafine particles (UFPs) are high related to the anthropogenic emission sources, i.e. combustion engines and power plants. Their composition, source, typical characters, oxidative effects, potential exposure routes and health risks were thoroughly reviewed. UFPs play a major role in adverse impacts on human health and require further investigations in future toxicological research of air pollution. Unlike PM2.5, UFPs may have much more impacts on human health considering loads of evidences emerging from particulate matters and nanotoxicology research fields. The knowledge of nanotoxicology contributes to the understanding of toxicity mechanisms of airborne UFPs in air pollution. This article is part of a Special Issue entitled Air Pollution, edited by Wenjun Ding, Andrew J. Ghio and Weidong Wu. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Characterization of short- and medium-chain chlorinated paraffins in outdoor/indoor PM10/PM2.5/PM1.0 in Beijing, China.

    Science.gov (United States)

    Huang, Huiting; Gao, Lirong; Xia, Dan; Qiao, Lin; Wang, Runhua; Su, Guijin; Liu, Wenbin; Liu, Guorui; Zheng, Minghui

    2017-06-01

    Persistent organic pollutants (POPs) were listed in the Stockholm Convention, because of their adverse health effects, persistence, bioaccumulation and ubiquitous presence in the environment. Short chain chlorinated paraffins (SCCPs), chlorinated derivatives of n-alkanes, have been listed as candidate POPs under Stockholm Convention. Inhalation uptake was an important exposure pathway for non-occupational adult human and the pollution of particle matter has caused great concern. There are some studies focused on POPs such as polychlorinated biphenyls, polychlorinated dibenzo-p-dioxins and dibenzofurans and polybrominated diphenyl ethers in different size particles. However, there were no studies that discussed CP concentrations in particulate matter (PM) with different sizes. In this study, a total of 30 PM samples were collected both outdoors and indoors at a sampling site in Beijing. These samples were used to investigate the concentrations and distributions of SCCPs and medium chain chlorinated paraffins (MCCPs) in PM fractions of different sizes, and to evaluate inhalation exposure risks. The results showed that the average SCCPs and MCCPs in the outdoor PM 10 were 23.9 and 3.6 ng m -3 , while the mean values in indoor were 61.1 and 6.9 ng m -3 , respectively. The levels of SCCPs and MCCPs in indoor and outdoor were relatively high. SCCP and MCCP concentrations in the indoor PM 10 /PM 2.5 /PM 1.0 samples were higher than the corresponding values in the outdoor, because of the using of some products containing CPs in the indoors, like paints and coatings, leather and rubber products. In both outdoor and indoor air, CPs are mainly associated with particles ≤2.5 μm in diameter. The main homolog groups for both SCCPs and MCCPs were C 10-11 Cl 7-8 . It is assumed that SCCPs in the outdoor and indoor PM samples may mainly derive from the production and use of CP-42 and CP-52. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Air pollution: what matters most? : Physical, chemical and oxidative properties of air pollution components related to toxic effects

    NARCIS (Netherlands)

    Steenhof, M.

    2015-01-01

    Numerous studies have been published on the adverse health effects associated with both short- and long-term exposure to air pollution. Air pollution is a heterogeneous, complex mixture of gases, liquids, and particulate matter (PM). Up to now, PM mass concentration has been the metric of choice to

  3. Elemental characterization of New Year's Day PM10 and PM2.2 particulates matter at several sites in Metro Manila

    International Nuclear Information System (INIS)

    Santos, Flora L.; Pabroa, Preciosa Corazon B.; Morco, Ryan P.; Racho, Joseph Michael D.

    2007-01-01

    In the Philippines, it has been a yearly tradition to welcome the coming of the New Year with the loudest noise as can be achieved. Firecrackers and fireworks have been a necessity for Filipinos during this time despite bans on the use of most of these and despite the Department of Health (DOH) campaign to use alternative safe practices to welcome the New Year. Data for PM 10 samples (fractionated as PM 10-2.2 or the course fraction and PM2.2 or the fine fraction) collected in four PNRI sampling sites in Metro Manila show the air pollution impacts of fireworks on New Year's Eve. Samples were collected from 1998 to 2006 using a Gent dichotomous sampler in connection with the PNRI project P articulate Matter Source Apportionment Using Nuclear and Related Analytical Techniques . Particulate mass was determined by gravimetry. Elemental analysis of the air filters was done using X-ray Fluorescence Spectrometry (X RF) or Particle induced X-ray Emission (PIXE), multielemental non-destructive nuclear analytical techniques. Black carbon was analyzed using reflectometry. PM 10 values increased by two to four times the usual averages (36.4 to 55.4 ug/cum) and in 2002 even exceeded the PNAAQ short-term guideline value of 150 ug/cum at the ADMU sampling station. PM2.2 values increased by two to six times the usual averages (15 to 28 ug/cum), even many times exceeding US EPA short-term guideline value of 65 ug/cum. The increase in the particulate mass of New Year's Day samples can be attributed more to an increase in the metal pollutants rather than the black carbon, with higher contribution to the fine fraction. Increase in the elemental concentrations of Al, S, Cl, K, Ba, Sr, Ti, V, Mn, Cu and Pb were observed with the highest contribution from K. Results show that the usual practices of burning firecrackers and fireworks during New Year's day celebration is a very strong source of air pollution which contributes significantly high amount of metal pollutants in the air

  4. Is ozone, rather than PM2.5, actually the largest contributor to premature deaths associated with trans-continental transport of air pollution?

    Science.gov (United States)

    Henze, D. K.; Davila, Y.; Anenberg, S.; Malley, C.; Kuylenstierna, J. C. I.; Vallack, H.; Ashmore, M. R.; Turner, M.; Sudo, K.; Jonson, J. E.; Chin, M.; Doherty, R. M.

    2017-12-01

    While both ozone and PM2.5 contribute to a range of deleterious human health impacts, evaluations of regional and global burdens of disease associated with exposure to these pollutants have concluded that PM2.5 is the larger driver of premature deaths from degraded air quality. This is owing to both high PM2.5 concentrations in heavily populated areas and stronger concentration-response relationships between PM2.5 exposure and increased mortality risk. Meanwhile, both PM2.5 and O3 are formed and/or advected far downwind of their sources and contribute to long-range (trans-continental) pollution transport. Ozone most often makes greater contributions to long-range pollution transport in terms of percent changes in surface-level concentrations given its longer tropospheric lifetime than PM2.5. Combining these factors, previous works have identified PM2.5 as more frequently being the dominant long-range source of air pollution related premature deaths, closely followed by O3. Here we re-evaluate this question using several updates, drawing from ensembles of model simulations performed as part of Phase 2 of the Hemispheric Transport of Air Pollutants (HTAP) project. Most importantly, we use recently revised concentration-response relationships for respiratory (and, less confidently, cardiovascular) disease associated with long-term O3 exposure, which we have shown increases estimates of premature death owing to O3 several-fold, and integrated exposure response (IER) functions for PM2.5. Further, we attempt to overcome well-recognized biases in estimating PM2.5 exposure with global-scale models via assimilation of high resolution (0.1 x 0.1) maps of surface PM2.5 derived from satellite observations. Overall, we find that our revised estimates of long-range O3 and PM2.5 related premature deaths are most often dominated by O3. These findings provide additional incentives for considering the global-scale consequences of regional emissions controls of O3 precursors.

  5. Overall human mortality and morbidity due to exposure to air pollution.

    Science.gov (United States)

    Samek, Lucyna

    2016-01-01

    Concentrations of particulate matter that contains particles with diameter ≤ 10 mm (PM10) and diameter ≤ 2.5 mm (PM2.5) as well as nitrogen dioxide (NO2) have considerable impact on human mortality, especially in the cases when cardiovascular or respiratory causes are attributed. Additionally, they affect morbidity. An estimation of human mortality and morbidity due to the increased concentrations of PM10, PM2.5 and NO2 between the years 2005-2013 was performed for the city of Kraków, Poland. For this purpose the Air Quality Health Impact Assessment Tool (AirQ) software was successfully applied. The Air Quality Health Impact Assessment Tool was used for the calculation of the total, cardiovascular and respiratory mortality as well as hospital admissions related to cardiovascular and respiratory diseases. Data on concentrations of PM10, PM2.5 and NO2, which was obtained from the website of the Voivodeship Inspectorate for Environmental Protection (WIOS) in Kraków, was used in this study. Total mortality due to exposure to PM10 in 2005 was found to be 41 deaths per 100 000 and dropped to 30 deaths per 100 000 in 2013. Cardiovascular mortality was 2 times lower than the total mortality. However, hospital admissions due to respiratory diseases were more than an order of magnitude higher than the respiratory mortality. The calculated total mortality due to PM2.5 was higher than that due to PM10. Air pollution was determined to have a significant effect on human health. The values obtained by the use of the AirQ software for the city of Kraków imply that exposure to polluted air can result in serious health problems. This work is available in Open Access model and licensed under a CC BY-NC 3.0 PL license.

  6. Overall human mortality and morbidity due to exposure to air pollution

    Directory of Open Access Journals (Sweden)

    Lucyna Samek

    2016-06-01

    Full Text Available Objectives: Concentrations of particulate matter that contains particles with diameter ≤ 10 mm (PM10 and diameter ≤ 2.5 mm (PM2.5 as well as nitrogen dioxide (NO2 have considerable impact on human mortality, especially in the cases when cardiovascular or respiratory causes are attributed. Additionally, they affect morbidity. An estimation of human mortality and morbidity due to the increased concentrations of PM10, PM2.5 and NO2 between the years 2005–2013 was performed for the city of Kraków, Poland. For this purpose the Air Quality Health Impact Assessment Tool (AirQ software was successfully applied. Material and Methods: The Air Quality Health Impact Assessment Tool was used for the calculation of the total, cardiovascular and respiratory mortality as well as hospital admissions related to cardiovascular and respiratory diseases. Data on concentrations of PM10, PM2.5 and NO2, which was obtained from the website of the Voivodeship Inspectorate for Environmental Protection (WIOS in Kraków, was used in this study. Results: Total mortality due to exposure to PM10 in 2005 was found to be 41 deaths per 100 000 and dropped to 30 deaths per 100 000 in 2013. Cardiovascular mortality was 2 times lower than the total mortality. However, hospital admissions due to respiratory diseases were more than an order of magnitude higher than the respiratory mortality. Conclusions: The calculated total mortality due to PM2.5 was higher than that due to PM10. Air pollution was determined to have a significant effect on human health. The values obtained by the use of the AirQ software for the city of Kraków imply that exposure to polluted air can result in serious health problems.

  7. Understanding the Patterns and Drivers of Air Pollution on Multiple Time Scales: The Case of Northern China

    Science.gov (United States)

    Liu, Yupeng; Wu, Jianguo; Yu, Deyong; Hao, Ruifang

    2018-06-01

    China's rapid economic growth during the past three decades has resulted in a number of environmental problems, including the deterioration of air quality. It is necessary to better understand how the spatial pattern of air pollutants varies with time scales and what drive these changes. To address these questions, this study focused on one of the most heavily air-polluted areas in North China. We first quantified the spatial pattern of air pollution, and then systematically examined the relationships of air pollution to several socioeconomic and climatic factors using the constraint line method, correlation analysis, and stepwise regression on decadal, annual, and seasonal scales. Our results indicate that PM2.5 was the dominant air pollutant in the Beijing-Tianjin-Hebei region, while PM2.5 and PM10 were both important pollutants in the Agro-pastoral Transitional Zone (APTZ) region. Our statistical analyses suggest that energy consumption and gross domestic product (GDP) in the industry were the most important factors for air pollution on the decadal scale, but the impacts of climatic factors could also be significant. On the annual and seasonal scales, high wind speed, low relative humidity, and long sunshine duration constrained PM2.5 accumulation; low wind speed and high relative humidity constrained PM10 accumulation; and short sunshine duration and high wind speed constrained O3 accumulation. Our study showed that analyses on multiple temporal scales are not only necessary to determine key drivers of air pollution, but also insightful for understanding the spatial patterns of air pollution, which was important for urban planning and air pollution control.

  8. A new air quality monitoring and early warning system: Air quality assessment and air pollutant concentration prediction.

    Science.gov (United States)

    Yang, Zhongshan; Wang, Jian

    2017-10-01

    Air pollution in many countries is worsening with industrialization and urbanization, resulting in climate change and affecting people's health, thus, making the work of policymakers more difficult. It is therefore both urgent and necessary to establish amore scientific air quality monitoring and early warning system to evaluate the degree of air pollution objectively, and predict pollutant concentrations accurately. However, the integration of air quality assessment and air pollutant concentration prediction to establish an air quality system is not common. In this paper, we propose a new air quality monitoring and early warning system, including an assessment module and forecasting module. In the air quality assessment module, fuzzy comprehensive evaluation is used to determine the main pollutants and evaluate the degree of air pollution more scientifically. In the air pollutant concentration prediction module, a novel hybridization model combining complementary ensemble empirical mode decomposition, a modified cuckoo search and differential evolution algorithm, and an Elman neural network, is proposed to improve the forecasting accuracy of six main air pollutant concentrations. To verify the effectiveness of this system, pollutant data for two cities in China are used. The result of the fuzzy comprehensive evaluation shows that the major air pollutants in Xi'an and Jinan are PM 10 and PM 2.5 respectively, and that the air quality of Xi'an is better than that of Jinan. The forecasting results indicate that the proposed hybrid model is remarkably superior to all benchmark models on account of its higher prediction accuracy and stability. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Association between air pollutants and dementia risk in the elderly.

    Science.gov (United States)

    Wu, Yun-Chun; Lin, Yuan-Chien; Yu, Hwa-Lung; Chen, Jen-Hau; Chen, Ta-Fu; Sun, Yu; Wen, Li-Li; Yip, Ping-Keung; Chu, Yi-Min; Chen, Yen-Ching

    2015-06-01

    The aging rate in Taiwan is the second highest in the world. As the population ages quickly, the prevalence of dementia increases rapidly. There are some studies that have explored the association between air pollution and cognitive decline, but the association between air pollution and dementia has not been directly evaluated. This was a case-control study comprising 249 Alzheimer's disease (AD) patients, 125 vascular dementia (VaD) patients, and 497 controls from three teaching hospitals in northern Taiwan from 2007 to 2010. Data of particulate matter Bayesian maximum entropy was used to estimate the individual exposure level of air pollutants, which was then tertiled for analysis. Conditional logistic regression models were used to estimate adjusted odds ratios (AORs) and 95% confidence intervals between the association of PM10 and ozone exposure with AD and VaD risk. The highest tertile of PM10 (≥49.23 μg/m(3)) or ozone (≥21.56 ppb) exposure was associated with increased AD risk (highest vs. lowest tertile of PM10: AOR = 4.17; highest vs. lowest tertile of ozone: AOR = 2.00). Similar finding was observed for VaD. The association with AD and VaD risk remained for the highest tertile PM10 exposure after stratification by APOE ɛ4 status and gender. Long-term exposure to the highest tertile of PM10 or ozone was significantly associated with an increased risk of AD and VaD.

  10. Indoor pollution: PM2.5 and PM10 from cigarette smoke

    International Nuclear Information System (INIS)

    Chianese, E.; Barone, G.; Castaldo, R.M.; Riccio, A.

    2009-01-01

    This work is aimed to establishing the temporal and spatial dispersion of PM 10 and PM 2.5 particulate matter fractions generated by cigarettes smoking in an indoor ambient. To this purpose, PM 10 and PM 2.5 concentrations were collected with a mobile instrument positioned in a room accommodating a smoking machine. [it

  11. Assessing Health Impacts of Air Pollution in Kashan 2011

    Directory of Open Access Journals (Sweden)

    Masoud Motalleby

    2015-08-01

    Full Text Available Abstract Background: The air pollutants such as CO, SO2, NO2, O3, and particulate matters have harmful effects on public health. Determination of the actual concentration of the pollutants and description of air quantity and quality contents in comparison of standard conditions and timely informing people to regulate control programs is essential. Kashan is exposed to the winds contain-ing the suspended particulate matters due to the proximity of the desert. Moreover, the growth of population, factories and industries in the city are artifical resources of the air pollution. Hence, assessment and monitoring of air pollution standard condition in kashan is crucial. Materials and Methods: In this cross-sectional and descriptive study, the concentration of CO, SO2, NO2, O3, and suspended particulate matters less than 10 microns (PM10 measured according to WHO standards in Panzdah-e-Khordad station of Kashan in 2011. The annual mean and maximum rates, the mean and maximum rate of summer and winter, and annual percentile 98%, determined for each pollutant and used in AirQ software. Then, the number of death and disease attributed to each pollutant was calculated. Results: The results demonstrate that the cumulative number of deaths attributed to PM10, NO2, SO2, and O3 was 100, 22, 82, and 54, respectively. Conclusion: In total, the suspended particulate matters have the most effects on death and disease resulted from the air pollution. Hence, managing the resources of particulate matters and SO2 pollutants has many effects on reducing the adverse health effects of air pollution in Kashan.

  12. Prenatal Air Pollution Exposure and Early Cardiovascular Phenotypes in Young Adults.

    Directory of Open Access Journals (Sweden)

    Carrie V Breton

    Full Text Available Exposure to ambient air pollutants increases risk for adverse cardiovascular health outcomes in adults. We aimed to evaluate the contribution of prenatal air pollutant exposure to cardiovascular health, which has not been thoroughly evaluated. The Testing Responses on Youth (TROY study consists of 768 college students recruited from the University of Southern California in 2007-2009. Participants attended one study visit during which blood pressure, heart rate and carotid artery arterial stiffness (CAS and carotid artery intima-media thickness (CIMT were assessed. Prenatal residential addresses were geocoded and used to assign prenatal and postnatal air pollutant exposure estimates using the U.S. Environmental Protection Agency's Air Quality System (AQS database. The associations between CAS, CIMT and air pollutants were assessed using linear regression analysis. Prenatal PM10 and PM2.5 exposures were associated with increased CAS. For example, a 2 SD increase in prenatal PM2.5 was associated with CAS indices, including a 5% increase (β = 1.05, 95% CI 1.00-1.10 in carotid stiffness index beta, a 5% increase (β = 1.05, 95% CI 1.01-1.10 in Young's elastic modulus and a 5% decrease (β = 0.95, 95% CI 0.91-0.99 in distensibility. Mutually adjusted models of pre- and postnatal PM2.5 further suggested the prenatal exposure was most relevant exposure period for CAS. No associations were observed for CIMT. In conclusion, prenatal exposure to elevated air pollutants may increase carotid arterial stiffness in a young adult population of college students. Efforts aimed at limiting prenatal exposures are important public health goals.

  13. Integrated Assessment of Air Pollution Control Measures for Megacities

    Science.gov (United States)

    Friedrich, R.; Theloke, J.; Denier-van-der-Gon, H.; Kugler, U.; Kampffmeyer, T.; Roos, J.; Torras, S.

    2012-04-01

    Air pollution in large cities is still a matter of concern. Especially the concentration of fine particles (PM10 and PM2.5) is largest in large cities leading to severe health impacts. Furthermore the PM10 thresholds of the EU Air Quality Directive are frequently exceeded. Thus the question arises, whether the initiated policies and measures for mitigating air pollution are sufficient to meet the air quality targets and - if not - which efficient further pollution mitigation measures exist. These questions have been addressed in the EU research project MEGAPOLI for the four European megacities respectively agglomerations London, Paris, Rhine-Ruhr area and Po valley. Firstly, a reference scenario of future activities and emissions has been compiled for the megacities for the years 2020, 2030 and 2050 for all relevant air pollutants (CO, NH3, NMVOC, NOx, PM10, PM2.5 and SO2) and greenhouse gases (CO2, CH4 and N2O). The reference scenario takes into account as well population changes as technical progress and economic growth. As pollution flowing in from outside the city is about as important as pollution caused by emissions in the city, the analysis covers the whole of Europe and not only the city area. Emissions are then transformed into concentrations using atmospheric models. The higher concentrations in cities were estimated with a newly developed 'urban increment' model. Results show, that in the megacities the limits of the Air Quality Directive (2008/50/EC) will be exceeded. Thus additional efforts are necessary to reduce emissions further. Thus, a number of further measures (not implemented in current legislation) were selected and assessed. These included mitigation options for road transport, other mobile sources, large combustion plants, small and medium combustion plants and industry. For each measure and in addition for various bundles of measures a cost-benefit analysis has been carried out. Benefits (avoided health risks and climate change risks) have

  14. The classification of PM10 concentrations in Johor Based on Seasonal Monsoons

    Science.gov (United States)

    Hamid, Hazrul Abdul; Hanafi Rahmat, Muhamad; Aisyah Sapani, Siti

    2018-04-01

    Air is the most important living resource in life. Contaminated air could adversely affect human health and the environment, especially during the monsoon season. Contamination occurs as a result of human action and haze. There are several pollutants present in the air where one of them is PM10. Secondary data was obtained from the Department of Environment from 2010 until 2014 and was analyzed using the hourly average of PM10 concentrations. This paper examined the relation between PM10 concentrations and the monsoon seasons (Northeast Monsoon and Southwest Monsoon) in Larkin and Pasir Gudang. It was expected that the concentration of PM10 would be higher during the Southwest Monsoon as it is a dry season. The data revealed that the highest PM10 concentrations were recorded between 2010 to 2014 during this particular monsoon season. The characteristics of PM10 concentration were compared using descriptive statistics based on the monsoon seasons and classified using the hierarchical cluster analysis (Ward Methods). The annual average of PM10 concentration during the Southwest Monsoon had exceeded the standard set by the Malaysia Ambient Air Quality Guidelines (50 μg/m3) while the PM10 concentration during the Northeast Monsoon was below the acceptable level for both stations. The dendrogram displayed showed two clusters for each monsoon season for both stations excepted for the PM10 concentration during the Northeast Monsoon in Larkin which was classified into three clusters due to the haze in 2010. Overall, the concentration of PM10 in 2013 was higher based on the clustering shown for every monsoon season at both stations according to the characteristics in the descriptive statistics.

  15. A modeling analysis of a heavy air pollution episode occurred in Beijing

    Directory of Open Access Journals (Sweden)

    X. An

    2007-06-01

    Full Text Available The concentrations of fine particulate matter (PM and ozone in Beijing often exceed healthful levels in recent years, therefore China is to taking steps to improve Beijing's air quality for the 2008 Olympic Games. In this paper, the Models-3 Community Multiscale Air Quality (CMAQ Modeling System was used to investigate a heavy air pollution episode in Beijing during 3–7 April 2005 to obtain the basic information of how heavy air pollution formed and the contributions of local sources and surround emissions. The modeling domain covered from East Asia with four nested grids with 81 to 3 km horizontal resolution focusing on urban Beijing. This was coupled with a regional emissions inventory with a 10 km resolution and a local 1 km Beijing emissions database. The trend of predicted concentrations of various pollutants agreed reasonably well with the observations and captured the main features of this heavy pollution episode. The simulated column concentration distribution of PM was correlated well with the MODIS remote sensing products. Control runs with and without Beijing emissions were conducted to quantify the contributions of non-Beijing sources (NBS to the Beijing local air pollution. The contributions of NBS to each species differed spatially and temporally with the order of PM2.5>PM10>SO2> soil for this episode. The percentage contribution of NBS to fine particle (PM2.5 in Beijing was averaged about 39%, up to 53% at the northwest of urban Beijing and only 15% at southwest. The spatial distribution of NBS contributions for PM10 was similar to that for PM2.5, with a slightly less average percentage of about 30%. The average NBS contributions for SO2 and soil (diameter between 2.5 μm and 10 μm were 18% and 10%. In addition, the pollutant transport flux was calculated and compared at different levels to investigate transport pathway and magnitude. It was found

  16. Non-linear increase of respiratory diseases and their costs under severe air pollution.

    Science.gov (United States)

    Shen, Ying; Wu, Yiyun; Chen, Guangdi; Van Grinsven, Hans J M; Wang, Xiaofeng; Gu, Baojing; Lou, Xiaoming

    2017-05-01

    China is experiencing severe and persistent air pollution, with concentrations of fine particulate matters (PM 2.5 ) reaching unprecedentedly high levels in many cities. Quantifying the detrimental effects on health and their costs derived from high PM 2.5 levels is crucial because of the unsolved challenges to mitigate air pollution in the following decades. Using the daily monitoring data on PM 2.5 concentrations and clinic visits, we found a non-linear increase of respiratory diseases, but not for other diseases (e.g., digestive diseases) under severe air pollution. We found an increase of respiratory diseases by 1% for each 10 μg m -3 increase in PM 2.5 when the annual average daily PM 2.5 concentration was less than 50 μg m -3 ; while this ratio was doubled (around 2%) with the daily PM 2.5 concentration larger than 50 μg m -3 . Under severe air pollution (PM 2.5 concentration >150 μg m -3 ), the respiratory diseases increased by over 50% compared to that in clean days. Children are more sensitive to the severe air pollution. The increase of clinic visits, especially for adults, was observed mainly in bigger (>500 beds) hospitals. Re-allocating medical resources (e.g., doctors) from big hospitals to community hospitals can benefit the respiratory patients due to air pollution. The total medical cost of clinic visits of respiratory diseases derived from PM 2.5 pollution was estimated at 17.2-57.0 billion Yuan in 2014 in China, accounting for 0.5-1.6% of national total health expenditure. Because these medical costs only represent a small part of total health cost derived from air pollution, the reduction of associated health costs would be an important co-benefit of implementation of air pollution preventive strategies. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Assessment of microbial communities in PM1 and PM10 of Urumqi during winter

    International Nuclear Information System (INIS)

    Gou, Huange; Lu, Jianjiang; Li, Shanman; Tong, Yanbin; Xie, Chunbin; Zheng, Xiaowu

    2016-01-01

    Recently, inhalable particulate matter has been reported to carry microorganisms responsible for human allergy and respiratory disease. The unique geographical environment and adverse weather conditions of Urumqi cause double pollution of dust and smog, but research on the microbial content of the atmosphere has not been commenced. In this study, 16S and 18S rRNA gene sequencing were conducted to investigate the microbial composition of Urumqi's PM 1 and PM 10 pollutants in winter. Results showed that the bacterial community is mainly composed of Proteobacteria, Firmicutes and Actinobacteria, Proteobacteria accounted for the most proportion which was significant difference in some aforementioned studies. Ascomycota and Basidiomycota constitute the main part of the fungal microbial community. The difference of bacterial relative abundance in sample point is greater than in particle sizes. The sequences of several pathogenic bacteria and opportunistic pathogens were also detected, such as Acinetobacter, Delftia, Serratia, Chryseobacterium, which may impact on immunocompromised populations (elderly, children and postoperative convalescence patients), and some fungal genera may cause several plant diseases. Our findings may serve an important reference value in the global air microbial propagation and air microbial research in desert. - Highlights: • Using 16 s rDNA double variable region (V3 + V4) sequencing to elucidate the bacterial communities. • Several potential microbial allergens and pathogens present in PM 1 and PM 10 were found. • Providing a great supplement to environmental science and human health assessment.

  18. Temporal variations and spatial distribution of ambient PM{sub 2.2} and PM{sub 10} concentrations in Dhaka, Bangladesh

    Energy Technology Data Exchange (ETDEWEB)

    Begum, Bilkis A.; Biswas, Swapan K. [Chemistry Division, Atomic Energy Centre, P.O. Box-164, Dhaka (Bangladesh); Hopke, Philip K. [Department of Chemical Engineering, Clarkson University, Potsdam, NY 13699-5810 (United States)

    2006-04-01

    Concentrations and characteristics of airborne particulate matter (PM{sub 10}, PM{sub 2.2} and BC) on air quality have been studied at two air quality-monitoring stations in Dhaka, the capital of Bangladesh. One site is at the Farm Gate area, a hot spot with very high pollutant concentrations because of its proximity to major roadways. The other site is at a semi-residential area located at the Atomic Energy Centre, Dhaka Campus, (AECD) with relatively less traffic. The samples were collected using a 'Gent' stacked filter unit in two fractions of 0-2.2 {mu}m and 2.2-10 {mu}m sizes. Samples of fine (PM{sub 2.2}) and coarse (PM{sub 2.2-10}) airborne particulate matter fractions collected from 2000 to 2003 were studied. It has been observed that fine particulate matter has a decreasing trend, from prior year measurements, because of Government policy interventions like phase-wise plans to take two-stroke three-wheelers off the roads in Dhaka and finally banned from January 1, 2003. Other policy interventions were banning of old buses and trucks to ply on Dhaka city promotion of the using compressed natural gas (CNG), introducing air pollution control devices in vehicles, etc. It was found that both local (mostly from vehicular emissions) and possibly some regional emission sources are responsible for high PM{sub 2.2} and BC concentrations in Dhaka. PM{sub 2.2}, PM{sub 2.2-10} and black carbon concentration levels depend on the season, wind direction and wind speed. Transport related emissions are the major source of BC and long-range transportation from fossil fuel related sources and biomass burning could be another substantial source of BC. (author)

  19. The health benefits of reducing air pollution in Sydney, Australia.

    Science.gov (United States)

    Broome, Richard A; Fann, Neal; Cristina, Tina J Navin; Fulcher, Charles; Duc, Hiep; Morgan, Geoffrey G

    2015-11-01

    Among industrialised countries, fine particle (PM2.5) and ozone levels in the Sydney metropolitan area of Australia are relatively low. Annual mean PM2.5 levels have historically remained below 8 μg/m(3) while warm season (November-March) ozone levels occasionally exceed the Australian guideline value of 0.10 ppm (daily 1 h max). Yet, these levels are still below those seen in the United States and Europe. This analysis focuses on two related questions: (1) what is the public health burden associated with air pollution in Sydney; and (2) to what extent would reducing air pollution reduce the number of hospital admissions, premature deaths and number of years of life lost (YLL)? We addressed these questions by applying a damage function approach to Sydney population, health, PM2.5 and ozone data for 2007 within the BenMAP-CE software tool to estimate health impacts and economic benefits. We found that 430 premature deaths (90% CI: 310-540) and 5800 YLL (95% CI: 3900-7600) are attributable to 2007 levels of PM2.5 (about 2% of total deaths and 1.8% of YLL in 2007). We also estimate about 630 (95% CI: 410-840) respiratory and cardiovascular hospital admissions attributable to 2007 PM2.5 and ozone exposures. Reducing air pollution levels by even a small amount will yield a range of health benefits. Reducing 2007 PM2.5 exposure in Sydney by 10% would, over 10 years, result in about 650 (95% CI: 430-850) fewer premature deaths, a gain of 3500 (95% CI: 2300-4600) life-years and about 700 (95% CI: 450-930) fewer respiratory and cardiovascular hospital visits. These results suggest that substantial health benefits are attainable in Sydney with even modest reductions in air pollution. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Outdoor air pollution and lung cancer: what now?

    Directory of Open Access Journals (Sweden)

    Enrico Pira

    2013-12-01

    Full Text Available In the last decade a substantial number of epidemiological studies suggested that outdoor air pollution and in particular respirable particulate matter (PM10 and fine particulate matter (PM2.5 are associated with an increased risk of lung cancer.The most recent is a multicentre European study...

  1. Survey on Air Pollution and Cardiopulmonary Mortality in Shiraz from 2011 to 2012: An Analytical-Descriptive Study

    Directory of Open Access Journals (Sweden)

    Mansooreh Dehghani

    2014-01-01

    Conclusions: Air pollution can aggravate chronic cardiopulmonary disease. In the current study, one of the most important air pollutants in Shiraz was the PM 10 component. Mechanical processes, such as wind blowing from neighboring countries, is the most important parameter increasing PM 10 in Shiraz to alarming conditions. The average monthly variation in PSI values of air pollutants such as NO 2 , CO, and SO 2 were lower than standard limits. Moreover, there was no significant correlation between the average monthly variation in PSI of NO 2 , CO, PM 10, and SO 2 and the number of those expired from cardiopulmonary disease in Shiraz.

  2. Multivariate analysis between air pollutants and meteorological variables in Seoul

    International Nuclear Information System (INIS)

    Kim, J.; Lim, J.

    2005-01-01

    Multivariate analysis was conducted to analyze the relationship between air pollutants and meteorological variables measured in Seoul from January 1 to December 31, 1999. The first principal component showed the contrast effect between O 3 and the other pollutants. The second principal component showed the contrast effect between CO, SO 2 , NO 2 , and O 3 , PM 10 , TSP. Based on the cluster analysis, three clusters represented different air pollution levels, seasonal characteristics of air pollutants, and meteorological conditions. Discriminant analysis with air environment index (AEI) was carried out to develop an air pollution index function. (orig.)

  3. Association between air pollution and cardiovascular mortality in Hefei, China: A time-series analysis.

    Science.gov (United States)

    Zhang, Chao; Ding, Rui; Xiao, Changchun; Xu, Yachun; Cheng, Han; Zhu, Furong; Lei, Ruoqian; Di, Dongsheng; Zhao, Qihong; Cao, Jiyu

    2017-10-01

    In recent years, air pollution has become an alarming problem in China. However, evidence on the effects of air pollution on cardiovascular mortality is still not conclusive to date. This research aimed to assess the short-term effects of air pollution on cardiovascular morbidity in Hefei, China. Data of air pollution, cardiovascular mortality, and meteorological characteristics in Hefei between 2010 and 2015 were collected. Time-series analysis in generalized additive model was applied to evaluate the association between air pollution and daily cardiovascular mortality. During the study period, the annual average concentration of PM 10, SO 2 , and NO 2 was 105.91, 20.58, and 30.93 μg/m 3 , respectively. 21,816 people (including 11,876 man, and 14,494 people over 75 years of age) died of cardiovascular diseases. In single pollutant model, the effects of multi-day exposure were greater than single-day exposure of the air pollution. For every increase of 10 μg/m 3 in SO 2 , NO 2 , and PM 10 levels, CVD mortality increased by 5.26% (95%CI: 3.31%-7.23%), 2.71% (95%CI: 1.23%-4.22%), and 0.68% (95%CI: 0.33%-1.04%) at a lag03, respectively. The multi-pollutant models showed that PM 10 and SO 2 remained associated with CVD mortality, although the effect estimates attenuated. However, the effect of NO 2 on CVD mortality decreased to statistically insignificant. Subgroup analyses further showed that women were more vulnerable than man upon air pollution exposure. These findings showed that air pollution could significantly increase the CVD mortality. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Air pollution and health studies in China--policy implications.

    Science.gov (United States)

    Chen, Bingheng; Kan, Haidong; Chen, Renjie; Jiang, Songhui; Hong, Chuanjie

    2011-11-01

    During the rapid economic development in China, ambient air pollutants in major cities, including PM10 (particulate matter with aerodynamic diameter air pollution levels in China are still at the higher end of the world level. Less information is available regarding changes in national levels of other pollutants such as PM2.5 and ozone. The Chinese Ministry of Environmental Protection (MOEP) set an index for "controlling/reducing total SO2 emissions" to evaluate the efficacy of air pollution control strategy in the country. Total SO2 emissions declined for the first time in 2007. Chinese epidemiologic studies evidenced adverse health effects of ambient air pollution similar to those reported from developed countries, though risk estimates on mortality/morbidity per unit increase of air pollutant are somewhat smaller than those reported in developed countries. Disease burden on health attributable to air pollution is relatively greater in China because of higher pollution levels. Improving ambient air quality has substantial and measurable public health benefits in China. It is recommended that the current Chinese air quality standards be updated/revised and the target for "controlling/reducing total SO2 emissions" be maintained and another target for "reducing total NO2 emissions" be added in view of rapid increase in motor vehicles. Continuous and persistent efforts should be taken to improve ambient air quality.

  5. Household cooking with solid fuels contributes to ambient PM2.5 air pollution and the burden of disease.

    Science.gov (United States)

    Chafe, Zoë A; Brauer, Michael; Klimont, Zbigniew; Van Dingenen, Rita; Mehta, Sumi; Rao, Shilpa; Riahi, Keywan; Dentener, Frank; Smith, Kirk R

    2014-12-01

    Approximately 2.8 billion people cook with solid fuels. Research has focused on the health impacts of indoor exposure to fine particulate pollution. Here, for the 2010 Global Burden of Disease project (GBD 2010), we evaluated the impact of household cooking with solid fuels on regional population-weighted ambient PM2.5 (particulate matter ≤ 2.5 μm) pollution (APM2.5). We estimated the proportion and concentrations of APM2.5 attributable to household cooking with solid fuels (PM2.5-cook) for the years 1990, 2005, and 2010 in 170 countries, and associated ill health. We used an energy supply-driven emissions model (GAINS; Greenhouse Gas and Air Pollution Interactions and Synergies) and source-receptor model (TM5-FASST) to estimate the proportion of APM2.5 produced by households and the proportion of household PM2.5 emissions from cooking with solid fuels. We estimated health effects using GBD 2010 data on ill health from APM2.5 exposure. In 2010, household cooking with solid fuels accounted for 12% of APM2.5 globally, varying from 0% of APM2.5 in five higher-income regions to 37% (2.8 μg/m3 of 6.9 μg/m3 total) in southern sub-Saharan Africa. PM2.5-cook constituted > 10% of APM2.5 in seven regions housing 4.4 billion people. South Asia showed the highest regional concentration of APM2.5 from household cooking (8.6 μg/m3). On the basis of GBD 2010, we estimate that exposure to APM2.5 from cooking with solid fuels caused the loss of 370,000 lives and 9.9 million disability-adjusted life years globally in 2010. PM2.5 emissions from household cooking constitute an important portion of APM2.5 concentrations in many places, including India and China. Efforts to improve ambient air quality will be hindered if household cooking conditions are not addressed.

  6. Winter season air pollution in El Paso-Ciudad Juarez. A review of air pollution studies in an international airshed

    Energy Technology Data Exchange (ETDEWEB)

    Einfeld, W.; Church, H.W.

    1995-03-01

    This report summarizes a number of research efforts completed over the past 20 years in the El Paso del Norte region to characterize pollution sources and air quality trends. The El Paso del Norte region encompasses the cities of El Paso, Texas and Ciudad Juarez, Chihuahua and is representative of many US-Mexico border communities that are facing important air quality issues as population growth and industrialization of Mexican border communities continue. Special attention is given to a group of studies carried out under special US Congressional funding and administered by the US Environmental Protection Agency. Many of these studies were fielded within the last several years to develop a better understanding of air pollution sources and trends in this typical border community. Summary findings from a wide range of studies dealing with such issues as the temporal and spatial distribution of pollutants and pollution potential from both stationary and mobile sources in both cities are presented. Particular emphasis is given to a recent study in El Paso-Ciudad Juarez that focussed on winter season PM{sub 10} pollution in El Paso-Ciudad Juarez. Preliminary estimates from this short-term study reveal that biomass combustion products and crustal material are significant components of winter season PM{sub 10} in this international border community.

  7. Evaluating strategies to reduce urban air pollution

    Science.gov (United States)

    Duque, L.; Relvas, H.; Silveira, C.; Ferreira, J.; Monteiro, A.; Gama, C.; Rafael, S.; Freitas, S.; Borrego, C.; Miranda, A. I.

    2016-02-01

    During the last years, specific air quality problems have been detected in the urban area of Porto (Portugal). Both PM10 and NO2 limit values have been surpassed in several air quality monitoring stations and, following the European legislation requirements, Air Quality Plans were designed and implemented to reduce those levels. In this sense, measures to decrease PM10 and NO2 emissions have been selected, these mainly related to the traffic sector, but also regarding the industrial and residential combustion sectors. The main objective of this study is to investigate the efficiency of these reduction measures with regard to the improvement of PM10 and NO2 concentration levels over the Porto urban region using a numerical modelling tool - The Air Pollution Model (TAPM). TAPM was applied over the study region, for a simulation domain of 80 × 80 km2 with a spatial resolution of 1 × 1 km2. The entire year of 2012 was simulated and set as the base year for the analysis of the impacts of the selected measures. Taking into account the main activity sectors, four main scenarios have been defined and simulated, with focus on: (1) hybrid cars; (2) a Low Emission Zone (LEZ); (3) fireplaces and (4) industry. The modelling results indicate that measures to reduce PM10 should be focused on residential combustion (fireplaces) and industrial activity and for NO2 the strategy should be based on the traffic sector. The implementation of all the defined scenarios will allow a total maximum reduction of 4.5% on the levels of both pollutants.

  8. Adverse effect of outdoor air pollution on cardiorespiratory fitness in Chinese children

    Science.gov (United States)

    Gao, Yang; Chan, Emily Y. Y.; Zhu, Yingjia; Wong, Tze Wai

    2013-01-01

    Little is known about the health impact of air pollution on children's cardiovascular health. A cross-sectional study was conducted and data was analysed in 2048 Chinese schoolchildren (aged 8-10 years) in three districts of Hong Kong to examine the association between exposure to outdoor air pollution and cardiorespiratory fitness. Annual means of ambient PM10, SO2, NO2 and O3 from 1996 to 2003 were used to estimate individual exposure of the subjects. Cardiorespiratory fitness was measured for maximal oxygen uptake (VO2max), predicted by the multistage fitness test (MFT). Height and weight were measured and other potential confounders were collected with questionnaires. Analysis of covariance was performed to estimate the impact of air pollution on complete speed in the MFT and predicted VO2max. The results showed that children in high-pollution district had significantly lower complete speed and predicted VO2max compared to those in low- and moderate-pollution districts. Complete speed and predicted VO2max was estimated to reduce 0.327 km h-1 and 1.53 ml kg-1 min-1 per 10 μg m-3 increase in PM10 annual mean respectively, with those in girls being greater than in boys. Being physically active could not significantly result in improved cardiorespiratory fitness in polluted districts. The adverse effect seems to be independent of short-term exposure to air pollution. We concluded that long-term exposure to higher outdoor air pollution levels was negatively associated with cardiorespiratory fitness in Chinese schoolchildren, especially for girls. PM10 is the most relevant pollutant of the adverse effect. Elevated cardiorespiratory fitness observed in physically activate children could be negated by increased amount of inhaled pollutants during exercise.

  9. An integrated approach to identify the origin of PM10 exceedances.

    Science.gov (United States)

    Amodio, M; Andriani, E; de Gennaro, G; Demarinis Loiotile, A; Di Gilio, A; Placentino, M C

    2012-09-01

    This study was aimed to the development of an integrated approach for the characterization of particulate matter (PM) pollution events in the South of Italy. PM(10) and PM(2.5) daily samples were collected from June to November 2008 at an urban background site located in Bari (Puglia Region, South of Italy). Meteorological data, particle size distributions and atmospheric dispersion conditions were also monitored in order to provide information concerning the different features of PM sources. The collected data allowed suggesting four indicators to characterize different PM(10) exceedances. PM(2.5)/PM(10) ratio, natural radioactivity, aerosol maps and back-trajectory analysis and particle distributions were considered in order to evaluate the contribution of local anthropogenic sources and to determine the different origins of intrusive air mass coming from long-range transport, such as African dust outbreaks and aerosol particles from Central and Eastern Europe. The obtained results were confirmed by applying principal component analysis to the number particle concentration dataset and by the chemical characterization of the samples (PM(10) and PM(2.5)). The integrated approach for PM study suggested in this paper can be useful to support the air quality managers for the development of cost-effective control strategies and the application of more suitable risk management approaches.

  10. Acute effects of air pollution on asthma hospitalization in Shanghai, China

    International Nuclear Information System (INIS)

    Cai, Jing; Zhao, Ang; Zhao, Jinzhuo; Chen, Renjie; Wang, Weibing; Ha, Sandie; Xu, Xiaohui; Kan, Haidong

    2014-01-01

    Air pollution has been accepted as an important contributor to asthma development and exacerbation. However, the evidence is limited in China. In this study, we investigated the acute effect of air pollution on asthma hospitalization in Shanghai, China. We applied over-dispersed generalized additive model adjusted for weather conditions, day of the week, long-term and seasonal trends. An interquartile range increase in the moving average concentrations of PM 10 , SO 2 , NO 2 and BC on the concurrent day and previous day corresponded to 1.82%, 6.41%, 8.26% and 6.62% increase of asthmatic hospitalization, respectively. The effects of SO 2 and NO 2 were robust after adjustment for PM 10 . The associations appeared to be more evident in the cool season than in the warm season. Our results contribute to the limited data in the scientific literature on acute effects of air pollution on asthma in high exposure settings, which are typical in developing countries. - Highlights: • Few prior studies in China examine the effect of air pollution on asthma. • We found acute effect of air pollution on asthma hospitalization in Shanghai. • Our results contribute to limited data on air pollution and asthma in China. - Ambient air pollution increases the risk of asthma hospitalization in Shanghai, China

  11. A comparison of individual exposure, perception, and acceptable levels of PM2.5 with air pollution policy objectives in China.

    Science.gov (United States)

    Huang, Lei; Rao, Chao; van der Kuijp, Tsering Jan; Bi, Jun; Liu, Yang

    2017-08-01

    Atmospheric pollution has emerged as a major public health issue in China. Public perception and acceptable risk levels of air pollution can prompt individual behavioral changes and play a major role in the public's response to health risks. Therefore, to explore these responses and evaluate what constitutes publicly acceptable concentrations of fine particulate matter (PM 2.5 ), questionnaire surveys were conducted in three representative cities of China: Beijing, Nanjing, and Guangzhou. Great differences in public risk perception were revealed. Public perception of the health effects of air pollution (Effect) and familiarity with it (Familiarity) were significantly higher in the winter than in the summer, and also during severe haze days compared with typical days. The public perception of trust in the government (Trust) was consistent across all conditions. Exposure to severe haze pollution and experiencing harms from it were key factors influencing public willingness to respond to haze. These results reflected individual exposure levels correlating closely with risk perception and acceptance of PM 2.5 . However, a crucial gap exists between public acceptable risk levels (PARL) of air pollution and the policy objectives of the State Council's Action Plan. Thus, policymakers can utilize this study to develop more targeted measures to combat air pollution. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Environmental pollution: quantitative analysis of particulate matter (PM{sub 10}) by SR-TXRF

    Energy Technology Data Exchange (ETDEWEB)

    Moreira, Silvana; Melo Junior, Ariston da Silva [Universidade Estadual de Campinas (UNICAMP), Campinas, SP (Brazil). Faculdade de Engenharia Civil, Arquitetura e Urbanismo]. E-mails: silvana@fec.unicamp.br; juniorariston@gmail.com; Zucchi, Orgheda Luiza Araujo Domingues [Universidade de Sao Paulo (USP), Ribeirao Preto, SP (Brazil). Faculdade de Ciencias Farmaceuticas]. E-mail: olzucchi@fcfrp.usp.br; Vives, Ana Elisa Sirito de [Universidade Metodista de Piracicaba (UNIMEP), Santa Barbara D' Oeste, SP (Brazil). Faculdade de Engenharia Civil, Arquitetura e Urbanismo]. E-mail: aesvives@unimep.br

    2007-07-01

    The atmospheric pollution is a concern in the great urban centers, due its association with man pathologies. The Campinas region is one of the most urbanized of the Sao Paulo State and an important industrial center. Thus, due to its location and importance were installed three samplers for particulate material (PM{sub 10}). One sampler was located in downtown of Campinas city, in an avenue with high vehicular flow. Another sampler was installed in the UNICAMP campus and the third one in Paulinia city, near to REPLAN. For downtown of Campinas city PM{sub 10} concentrations higher than regular air quality established by CETESB (150 {mu}g.m{sup -3}) was observed. The PM{sub 10} values for Paulinia and downtown of Campinas were higher than Barao Geraldo location. Employing SR-TXRF was possible identify and quantify 19 elements in the particulate material samples. All the measurements were performed at Synchrotron Light Source Laboratory, Campinas, SP. After statistics analysis by principal components and cluster analysis was possible to assemble the elements according emission sources. The dusty soil for coarse fraction contributed with 62%, 51% and 46% for Barao Geraldo, Paulinia and downtown of Campinas, respectively. The vehicular emission was responsible for 16% at downtown Campinas city as expected due to high vehicular flow at sampling place. The vehicular and industrial emissions contributed with 20% and 25%, respectively at Paulinia sampling site. The industrial emissions observed for Barao Geraldo and downtown of Campinas city were 27% and 33%, respectively. (author)

  13. Removal of PM10 by Forests as a Nature-Based Solution for Air Quality Improvement in the Metropolitan City of Rome

    Directory of Open Access Journals (Sweden)

    Federica Marando

    2016-07-01

    Full Text Available Nature-based solutions have been identified by the European Union as being critical for the enhancement of environmental qualities in cities, where urban and peri-urban forests play a key role in air quality amelioration through pollutant removal. A remote sensing and geographic information system (GIS approach was applied to the Metropolitan City (MC of Rome to assess the seasonal particulate matter (PM10 removal capacity of evergreen (broadleaves and conifers and deciduous species. Moreover, a monetary evaluation of PM10 removal was performed on the basis of pollution externalities calculated for Europe. Deciduous broadleaves represent the most abundant tree functional group and also yielded the highest total annual PM10 deposition values (1769 Mg. By contrast, PM10 removal efficiency (Mg·ha−1 was 15%–22% higher in evergreen than in deciduous species. To assess the different removal capacity of the three functional groups in an area with homogeneous environmental conditions, a study case was performed in a peri-urban forest protected natural reserve (Castelporziano Presidential Estate. This study case highlighted the importance of deciduous species in summer and of evergreen communities as regards the annual PM10 removal balance. The monetary evaluation indicated that the overall PM10 removal value of the MC of Rome amounted to 161.78 million Euros. Our study lends further support to the crucial role played by nature-based solutions for human well-being in urban areas.

  14. Aircraft noise, air pollution, and mortality from myocardial infarction.

    Science.gov (United States)

    Huss, Anke; Spoerri, Adrian; Egger, Matthias; Röösli, Martin

    2010-11-01

    Myocardial infarction has been associated with both transportation noise and air pollution. We examined residential exposure to aircraft noise and mortality from myocardial infarction, taking air pollution into account. We analyzed the Swiss National Cohort, which includes geocoded information on residence. Exposure to aircraft noise and air pollution was determined based on geospatial noise and air-pollution (PM10) models and distance to major roads. We used Cox proportional hazard models, with age as the timescale. We compared the risk of death across categories of A-weighted sound pressure levels (dB(A)) and by duration of living in exposed corridors, adjusting for PM10 levels, distance to major roads, sex, education, and socioeconomic position of the municipality. We analyzed 4.6 million persons older than 30 years who were followed from near the end of 2000 through December 2005, including 15,532 deaths from myocardial infarction (ICD-10 codes I 21, I 22). Mortality increased with increasing level and duration of aircraft noise. The adjusted hazard ratio comparing ≥60 dB(A) with noise. Aircraft noise was associated with mortality from myocardial infarction, with a dose-response relationship for level and duration of exposure. The association does not appear to be explained by exposure to particulate matter air pollution, education, or socioeconomic status of the municipality.

  15. Assesment of Pb concentration in PM{sub 2,5} and PM{sub 10} at Serpong area; Asesmen konsentrasi Pb pada PM{sub 2,5} dan PM{sub 10} di kawasan Serpong

    Energy Technology Data Exchange (ETDEWEB)

    Rita,; Hamonangan, Esrom; Halimah Syafrul, E-mail: ritaiim@yahoo.com [Pusat Sarana Pengendalian Dampak Lingkungan, Kemenneg Lingkungan Hidup, Kawasan Puspiptek Serpong, Tangerang 15314 (Indonesia); Santoso, Muhayatun; Lestian, Diah Dwiana [Pusat Tenaga Nuklir Bahan dan Radiometri (PTNBR) - BATAN, JI. Tamansari NO.71 Bandung 40132 (Indonesia)

    2010-11-15

    Ambient air pollution, especially Pb, in Serpong area has been detected since 1996. Pollution caused by heavy metals Pb deserve serious attention because of the impact is very influential on health such as reduced levels of intelligence, learning disability, symptoms of anemia, barriers to growth, poor cognitive development, weakened immune system, symptoms of autism, and even premature death. This study was conducted to determine Pb concentration of PM{sub 2,5} and PM{sub 10} in four residential locations in Serpong area as part of a series of comprehensive studies for the characterization and identification of sources pollution. Particulates were sampled using Gent Stacked Filter Unit Sampler at 3 housing locations and 1 office location in the period of August 25 to November 3, 2008, Samples were analyzed using nuclear analytical techniques, Proton Induced X-ray Emission. The results showed that the activity concentration of Pb in PM{sub 2,5} for the location of Setu, Pusarpedal, Batan Indah, and BSD were in the range of 33-388, 12-254, 6-282, and 5-332 ng/m{sup 3}, while for PM{sub 10} were 69-732, 59-647, 31-810, and 28718 ng/m{sup 3}, respectively, In general, Pb concentrations in Serpong area were higher than those in some other cities in Asia region. These results are expected to be used as scientific based reference in formulating, taking action, and appropriate policies to overcome environmental problems. (author)

  16. Socioeconomic and urban-rural differentials in exposure to air pollution and mortality burden in England.

    Science.gov (United States)

    Milojevic, Ai; Niedzwiedz, Claire L; Pearce, Jamie; Milner, James; MacKenzie, Ian A; Doherty, Ruth M; Wilkinson, Paul

    2017-10-06

    Socioeconomically disadvantaged populations often have higher exposures to particulate air pollution, which can be expected to contribute to differentials in life expectancy. We examined socioeconomic differentials in exposure and air pollution-related mortality relating to larger scale (5 km resolution) variations in background concentrations of selected pollutants across England. Ozone and particulate matter (sub-divided into PM 10 , PM 2.5 , PM 2.5-10 , primary, nitrate and sulphate PM 2.5 ) were simulated at 5 km horizontal resolution using an atmospheric chemistry transport model (EMEP4UK). Annual mean concentrations of these pollutants were assigned to all 1,202,578 residential postcodes in England, which were classified by urban-rural status and socioeconomic deprivation based on the income and employment domains of the 2010 English Index of Multiple Deprivation for the Lower-level Super Output Area of residence. We used life table methods to estimate PM 2.5 -attributable life years (LYs) lost in both relative and absolute terms. Concentrations of the most particulate fractions, but not of nitrate PM 2.5 or ozone, were modestly higher in areas of greater socioeconomic deprivation. Relationships between pollution level and socioeconomic deprivation were non-linear and varied by urban-rural status. The pattern of PM 2.5 concentrations made only a small contribution to the steep socioeconomic gradient in LYs lost due to PM 2.5 per 10 3 population, which primarily was driven by the steep socioeconomic gradient in underlying mortality rates. In rural areas, the absolute burden of air pollution-related LYs lost was lowest in the most deprived deciles. Air pollution shows modest socioeconomic patterning at 5 km resolution in England, but absolute attributable mortality burdens are strongly related to area-level deprivation because of underlying mortality rates. Measures that cause a general reduction in background concentrations of air pollution may modestly

  17. ANALISIS TEMPORAL Y ESPACIAL DE LA CALIDAD DEL AIRE DETERMINADO POR MATERIAL PARTICULADO PM10 Y PM2,5 EN LIMA METROPOLITANA

    OpenAIRE

    Pacsi Valdivia, Sergio A.; Universidad Nacional Agraria La Molina (Perú).

    2016-01-01

    En el presente estudio se realizó un análisis de la variación temporal y espacial de la concentración del PM2,5 y PM10 en Lima y el Callao. Se utilizaron datos de concentración de PM2,5 y PM10 medidos y analizados por la DIGESA y el SENAMHI, a través de la red de monitoreo de calidad del aire de Lima Metropolitana, durante el periodo 2001 y 2014. Los resultados muestran que los promedios diarios de PM10 no sobrepasan los Estándares de Calidad del aire (ENCA) del Perú, sin embargo los promedio...

  18. Association between PM2.5 and primary care visits due to asthma attack in Japan: relation to Beijing's air pollution episode in January 2013.

    Science.gov (United States)

    Yamazaki, Shin; Shima, Masayuki; Yoda, Yoshiko; Oka, Katsumi; Kurosaka, Fumitake; Shimizu, Shigeta; Takahashi, Hironobu; Nakatani, Yuji; Nishikawa, Jittoku; Fujiwara, Katsuhiko; Mizumori, Yasuyuki; Mogami, Akira; Yamada, Taku; Yamamoto, Nobuharu

    2014-03-01

    In January 2013, extremely high concentrations of fine particles (PM2.5) were observed around Beijing, China. In Japan, the health effects of transboundary air pollution have been a matter of concern. We examined the association between the levels of outdoor PM2.5 and other air pollutants with primary care visits (PCVs) at night due to asthma attack in Himeji City, western Japan. A case-crossover study was conducted in a primary care clinic in Himeji City, Japan, involving 112 subjects aged 0-80 years who visited the clinic due to an asthma attack between 9 p.m. and 6 a.m. during the period January-March, 2013. Daily concentrations of particulate matter, ozone, nitrogen dioxide, and some meteorological elements were measured, and a conditional logistic regression model was used to estimate the odds ratios (OR) of PCVs per unit increment in air pollutants or meteorological elements. Of the 112 subjects, 76 (68 %) were aged asthma attack at night. A positive relation between ozone and PCVs due to asthma attack was detected. The OR per 10 ppb increment in daily mean ozone the day before the visit was 2.31 (95 % confidence interval 1.16-4.61). These findings do not support an association between daily mean concentration of PM2.5 and PCVs at night. However, we did find evidence suggesting that ozone is associated with PCVs.

  19. Update on the development of cotton gin PM10 emission factors for EPA's AP-42

    Science.gov (United States)

    A cotton ginning industry-supported project was initiated in 2008 to update the U.S. Environmental Protection Agency’s (EPA) Compilation of Air Pollution Emission Factors (AP-42) to include PM10 emission factors. This study develops emission factors from the PM10 emission factor data collected from ...

  20. Human health effects of air pollution

    International Nuclear Information System (INIS)

    Kampa, Marilena; Castanas, Elias

    2008-01-01

    Hazardous chemicals escape to the environment by a number of natural and/or anthropogenic activities and may cause adverse effects on human health and the environment. Increased combustion of fossil fuels in the last century is responsible for the progressive change in the atmospheric composition. Air pollutants, such as carbon monoxide (CO), sulfur dioxide (SO 2 ), nitrogen oxides (NOx), volatile organic compounds (VOCs), ozone (O 3 ), heavy metals, and respirable particulate matter (PM2.5 and PM10), differ in their chemical composition, reaction properties, emission, time of disintegration and ability to diffuse in long or short distances. Air pollution has both acute and chronic effects on human health, affecting a number of different systems and organs. It ranges from minor upper respiratory irritation to chronic respiratory and heart disease, lung cancer, acute respiratory infections in children and chronic bronchitis in adults, aggravating pre-existing heart and lung disease, or asthmatic attacks. In addition, short- and long-term exposures have also been linked with premature mortality and reduced life expectancy. These effects of air pollutants on human health and their mechanism of action are briefly discussed. - The effect of air pollutants on human health and underlying mechanisms of cellular action are discussed

  1. Spatial distribution of particulate matter (PM10 and PM2.5) in Seoul Metropolitan Subway stations.

    Science.gov (United States)

    Kim, Ki Youn; Kim, Yoon Shin; Roh, Young Man; Lee, Cheol Min; Kim, Chi Nyon

    2008-06-15

    The aims of this study are to examine the concentrations of PM10 and PM2.5 in areas within the Seoul Metropolitan Subway network and to provide fundamental data in order to protect respiratory health of subway workers and passengers from air pollutants. A total of 22 subway stations located on lines 1-4 were selected based on subway official's guidance. At these stations both subway worker areas (station offices, rest areas, ticket offices and driver compartments) and passengers areas (station precincts, subway carriages and platforms) were the sites used for measuring the levels of PM. The mean concentrations of PM10 and PM2.5 were relatively higher on platforms, inside subway carriages and in driver compartments than in the other areas monitored. The levels of PM10 and PM2.5 for station precincts and platforms exceeded the 24-h acceptable threshold limits of 150 microg/m3 for PM10 and 35 microg/m3 for PM2.5, which are regulated by the U.S. Environmental Protection Agency (EPA). However, levels measured in station and ticket offices fell below the respective threshold. The mean PM10 and PM2.5 concentrations on platforms located underground were significantly higher than those at ground level (p<0.05).

  2. Effects of air pollution on respiratory hospital admissions in İstanbul, Turkey, 2013 to 2015.

    Science.gov (United States)

    Çapraz, Özkan; Deniz, Ali; Doğan, Nida

    2017-08-01

    We examined the associations between the daily variations of air pollutants and hospital admissions for respiratory diseases in İstanbul, the largest city of Turkey. A time series analysis of counts of daily hospital admissions and outdoor air pollutants was performed using single-pollutant Poisson generalized linear model (GLM) while controlling for time trends and meteorological factors over a 3-year period (2013-2015) at different time lags (0-9 days). Effects of the pollutants (Excess Risk, ER) on current-day (lag 0) hospital admissions to the first ten days (lag 9) were determined. Data on hospital admissions, daily mean concentrations of air pollutants of PM 10 , PM 2.5 and NO 2 and daily mean concentrations of temperature and humidity of İstanbul were used in the study. The analysis was conducted among people of all ages, but also focused on different sexes and different age groups including children (0-14 years), adults (35-44 years) and elderly (≥65 years). We found significant associations between air pollution and respiratory related hospital admissions in the city. Our findings showed that the relative magnitude of risks for an association of the pollutants with the total respiratory hospital admissions was in the order of: PM 2.5 , NO 2 , and PM 10 . The highest association of each pollutant with total hospital admission was observed with PM 2.5 at lag 4 (ER = 1.50; 95% CI = 1.09-1.99), NO 2 at lag 4 (ER = 1.27; 95% CI = 1.02-1.53) and PM 10 at lag 0 (ER = 0.61; 95% CI = 0.33-0.89) for an increase of 10 μg/m3 in concentrations of the pollutants. In conclusion, our study showed that short-term exposure to air pollution was positively associated with increased respiratory hospital admissions in İstanbul during 2013-2015. As the first air pollution hospital admission study using GLM in İstanbul, these findings may have implications for local environmental and social policies. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. On the origin and variability of suspended particulate matter (PM1, PM2.5 and PM10) concentrations in Cyprus.

    Science.gov (United States)

    Pikridas, Michael; Vrekoussis, Mihalis; Mihalopoulos, Nikolaos; Kizas, Christos; Savvides, Chrysanthos; Sciare, Jean

    2017-04-01

    The Eastern Mediterranean (EM) lies at the crossroad of three different continents (Europe, Asia, and Africa). EM is a densely populated region including several cities with 3M inhabitants or more (e.g. Athens, Istanbul, Izmir, and Cairo). It has been identified as the most polluted area in Europe with respect to particulate matter (PM) mainly due to the combination of high photochemical activity, which causes pollutants to oxidize and partitioning in the particle phase, with the elevated pollutants emissions from neighboring regions. In addition, the proximity to Africa and the Middle East allows frequent transport of dust particles. At the center of the Eastern Mediterranean lies the island of Cyprus, which has received very little attention regarding its PM levels despite being the location in Europe most frequently impacted by air masses from the Middle East. Herewith, we present a historical PM archive that spans 2 decades. It involves ongoing monitoring on a daily basis of particulate matter with diameters smaller than 10 μm (PM10), 2.5 μm (PM2.5), and 1 μm (PM1) conducted in at least one, of the 12 currently existing air quality stations in Cyprus since 1997, 2005, and 2009, respectively. The most extended PM datasets correspond a) to the Agia Marina Xyliatou (AMX) monitoring station established at a remote area at the foothills of mount Troodos and b) that of the inland capital, Nicosia. Based on this long-term dataset, the diurnal, temporal and annual variability is assessed. Prior to 2010, PM10 concentration at all sites remained relatively constant, but at different levels, violating the annual EU legislated PM10 limit of 40 μg m-3. Since 2010, coarse mode levels have decreased at all sites. The reported decrease was equal to 30% at AMX. As a result, since 2010 the observed levels comply with the EU legislation threshold. Satellite observations of Aerosol Optical Thickness (AOT) Moderate Resolution Imaging Spectroradiometer (MODIS) onboard NASA

  4. Indoor air quality modeling for PM 10, PM 2.5, and PM 1.0 in naturally ventilated classrooms of an urban Indian school building.

    Science.gov (United States)

    Goyal, Radha; Khare, Mukesh

    2011-05-01

    Assessment of indoor air quality (IAQ) in classrooms of school buildings is of prime concern due to its potential effects on student's health and performance as they spend a substantial amount of their time (6-7 h per day) in schools. A number of airborne contaminants may be present in urban school environment. However, respirable suspended particulate matter (RSPM) is of great significance as they may significantly affect occupants' health. The objectives of the present study are twofold, one, to measure the concentrations of PM(10) (building located near a heavy-traffic roadway (9,755 and 4,296 vehicles/hour during weekdays and weekends, respectively); and second, to develop single compartment mass balance-based IAQ models for PM(10) (NVIAQM(pm10)), PM(2.5) (NVIAQM(pm2.5)), and PM(1.0) (NVIAQM(pm1.0)) for predicting their indoor concentrations. Outdoor RSPM levels and classroom characteristics, such as size, occupancy level, temperature, relative humidity, and CO(2) concentrations have also been monitored during school hours. Predicted indoor PM(10) concentrations show poor correlations with observed indoor PM(10) concentrations (R (2) = 0.028 for weekdays, and 0.47 for weekends). However, a fair degree of agreement (d) has been found between observed and predicted concentrations, i.e., 0.42 for weekdays and 0.59 for weekends. Furthermore, NVIAQM(pm2.5) and NVIAQM(pm1.0) results show good correlations with observed concentrations of PM(2.5) (R(2) = 0.87 for weekdays and 0.9 for weekends) and PM(1.0) (R(2) = 0.86 for weekdays and 0.87 for weekends). NVIAQM(pm10) shows the tendency to underpredict indoor PM(10) concentrations during weekdays as it does not take into account the occupant's activities and its effects on the indoor concentrations during the class hours. Intense occupant's activities cause resuspension or delayed deposition of PM(10). The model results further suggests conductance of experimental and physical simulation studies on dispersion of

  5. Health benefits of a reduction of PM10 and NO2 exposure after implementing a clean air plan in the Agglomeration Lausanne-Morges.

    Science.gov (United States)

    Castro, Alberto; Künzli, Nino; Götschi, Thomas

    2017-07-01

    Exposure to urban air pollution has been associated with adverse effects on cardio-vascular and respiratory health, both short and long term. Consequently, governments have applied policies to reduce air pollution. Quantitative health impact assessments of hypothetic changes in air pollution have been conducted at national and global level, but assessments of observed air pollution changes associated with specific clean air policies at a local or regional scale remain scarce. This study estimates health impacts attributable to a decrease in PM 10 and NO 2 exposure in the Agglomeration of Lausanne-Morges (ALM), Switzerland, between 2005 and 2015, corresponding to the implementation period of a supra-municipal plan of measures to reduce air pollution in different sectors such as transport, energy, and industry (called Plan OPair 05). The health impact assessment compares health effects attributed to air pollution exposure levels in 2015 (reference case) with those in 2005 (counterfactual scenario), using 2015 as baseline for all other input data. In the ALM, the modeled PM 10 exposure reduction of 3.3μg/m 3 from 2005 to 2015 prevents 26 premature deaths (equivalent to around 290 years of life lost), 215 hospitalization days due to cardio-vascular and respiratory diseases as well as approximately 47,000 restricted activity days annually. Monetized health impacts of the reduction of PM 10 exposure are valued at approximately CHF 36 million annually. Immaterial costs, mainly related to the economic valuation of years of life lost, dominate the monetized health impacts (90% of total value), while savings at the workplace (net loss in production and reoccupation costs) amount to about CHF 1.9 million, and savings in health care costs to about CHF 0.5 million. The assessment is sensitive to the value assigned to immaterial costs and to uncertainties in the relative risk estimates, whereas variations in the baseline year (i.e. using 2005 data instead of 2015 data) affect

  6. The Burden of COPD Morbidity Attributable to the Interaction between Ambient Air Pollution and Temperature in Chengdu, China

    Directory of Open Access Journals (Sweden)

    Hang Qiu

    2018-03-01

    Full Text Available Evidence on the burden of chronic obstructive pulmonary disease (COPD morbidity attributable to the interaction between ambient air pollution and temperature has been limited. This study aimed to examine the modification effect of temperature on the association of ambient air pollutants (including particulate matter (PM with aerodynamic diameter <10 μm (PM10 and <2.5 μm (PM2.5, nitrogen dioxide (NO2, sulfur dioxide (SO2, carbon monoxide (CO and ozone (O3 with risk of hospital admissions (HAs for COPD, as well as the associated morbidity burden in urban areas of Chengdu, China, from 2015 to 2016. Based on the generalized additive model (GAM with quasi-Poisson link, bivariate response surface model and stratification parametric model were developed to investigate the potential interactions between ambient air pollution and temperature on COPD HAs. We found consistent interactions between ambient air pollutants (PM2.5, PM10 and SO2 and low temperature on COPD HAs, demonstrated by the stronger associations between ambient air pollutants and COPD HAs at low temperatures than at moderate temperatures. Subgroup analyses showed that the elderly (≥80 years and males were more vulnerable to this interaction. The joint effect of PM and low temperature had the greatest impact on COPD morbidity burden. Using WHO air quality guidelines as reference concentration, about 17.30% (95% CI: 12.39%, 22.19% and 14.72% (95% CI: 10.38%, 19.06% of COPD HAs were attributable to PM2.5 and PM10 exposures on low temperature days, respectively. Our findings suggested that low temperature significantly enhanced the effects of PM and SO2 on COPD HAs in urban Chengdu, resulting in increased morbidity burden. This evidence has important implications for developing interventions to reduce the risk effect of COPD morbidity.

  7. Temporal and spatial analyses of particulate matter (PM10 and PM2.5) and its relationship with meteorological parameters over an urban city in northeast China

    Science.gov (United States)

    Li, Xiaolan; Ma, Yanjun; Wang, Yangfeng; Liu, Ningwei; Hong, Ye

    2017-12-01

    Temporal and spatial characteristics of atmospheric particulate matter (PM10 and PM2.5) and its relationship with meteorology over Shenyang, a city in northeast China, were statistically analyzed using hourly and daily averaged PM mass concentrations measured at 11 locations and surface meteorological parameters, from January 2014 to May 2016. Using averaged data from 11 stations in Shenyang, it was found that the monthly mean PM2.5 mass concentrations were higher in winter (97.2 ± 11.2 μg m- 3) and autumn (85.5 ± 42.9 μg m- 3), and lower in spring (62.0 ± 14.0 μg m- 3) and summer (42.5 ± 8.4 μg m- 3), similar to the seasonal variation in PM10 concentrations. The monthly ratios of PM2.5/PM10 ranged from 0.41 to 0.87, and were larger in autumn and winter but lowest in spring due to dust activities. PM pollution was concentrated mainly in the central, northern, and western areas of Shenyang in most seasons mainly due to anthropogenic activities such as traffic and residential emission and construction activity as well as natural dust emission. PM concentrations observed over different areas in all seasons generally exhibited two peaks, at 08:00-10:00 local time (LT) and 21:00-23:00 LT, with the exception of PM2.5 in summer, which showed only one peak during the daytime. In addition, PM10 concentrations peaked around 14:00 LT during spring in the western area of Shenyang because of strong thermal and dynamic turbulence, resulting in elevated dust emissions from adjacent dust sources. The relationship between daily PM concentrations and meteorological parameters showed both seasonal and annual variation. Overall, both PM2.5 and PM10 concentrations were negatively correlated with atmospheric visibility, with correlation coefficients (R) of 0.71 and 0.56, respectively. In most seasons, PM concentrations also exhibited negative correlations with wind speed, but showed positive correlations with air pressure, air temperature, and relative humidity. Strong wind

  8. The effects of air pollution on length of hospital stay for adult patients with asthma.

    Science.gov (United States)

    Luo, Li; Ren, Jing; Zhang, Fengyi; Zhang, Wei; Li, Chunyang; Qiu, Zhixin; Huang, Debin

    2018-04-23

    Length of hospital stay (LOS) of asthma can be a reflection of the disease burden faced by patients, and it is also sensitive to air pollution. This study aims at estimating and validating the effects of air pollution and readmission on the LOS for those who have asthma, considering their readmission history, minimum temperature, and threshold effects of air pollutants. In addition, sex, age, and season were also constructed for stratification to achieve more precise and specific results. The results show that no significant effects of PM 2.5 and NO 2 on LOS were observed in any of the patients, but there were significant effects of PM 2.5 and NO 2 on LOS when a stratifying subgroup analysis was performed. The effect of PM 10 on LOS was found to be lower than that of PM 2.5 and higher than that of NO 2 . SO 2 did not have a significant effect on LOS for patients with asthma in our study. Our study confirmed that the adverse effects of air pollutants (such as PM 10 ) on LOS for patients with asthma existed; in addition, these effects vary for different stratifications. We measured the effects of air pollutants on the LOS for patients with asthma, and this study offers policy makers quantitative evidence that can support relevant policies for health care resource management and ambient air pollutants control. Copyright © 2018 John Wiley & Sons, Ltd.

  9. The burden of COPD mortality due to ambient air pollution in Guangzhou, China

    Science.gov (United States)

    Li, Li; Yang, Jun; Song, Yun-Feng; Chen, Ping-Yan; Ou, Chun-Quan

    2016-05-01

    Few studies have investigated the chronic obstructive pulmonary disease (COPD) mortality fraction attributable to air pollution and modification by individual characteristics of air pollution effects. We applied distributed lag non-linear models to assess the associations between air pollution and COPD mortality in 2007-2011 in Guangzhou, China, and the total COPD mortality fraction attributable to air pollution was calculated as well. We found that an increase of 10 μg/m3 in particulate matter with an aerodynamic diameter of 10 μm or less (PM10), sulfur dioxide (SO2) and nitrogen dioxide (NO2) was associated with a 1.58% (95% confidence interval (CI): 0.12-3.06%), 3.45% (95% CI: 1.30-5.66%) and 2.35% (95% CI: 0.42-4.32%) increase of COPD mortality over a lag of 0-15 days, respectively. Greater air pollution effects were observed in the elderly, males and residents with low educational attainment. The results showed 10.91% (95% CI: 1.02-9.58%), 12.71% (95% CI: 5.03-19.85%) and 13.38% (95% CI: 2.67-22.84%) COPD mortality was attributable to current PM10, SO2 and NO2 exposure, respectively. In conclusion, the associations between air pollution and COPD mortality differed by individual characteristics. There were remarkable COPD mortality burdens attributable to air pollution in Guangzhou.

  10. A joint prevention and control mechanism for air pollution in the Beijing-Tianjin-Hebei region in china based on long-term and massive data mining of pollutant concentration

    Science.gov (United States)

    Wang, Hongbo; Zhao, Laijun

    2018-02-01

    China's Beijing-Tianjin-Hebei (BTH) region suffers from the country's worst air pollution. The problem has caused widespread concern both at home and abroad. Based on long-term and massive data mining of PM2.5 and PM10 concentration, we found that these pollutants showed similar variations in four seasons, but the most severe pollution was in winter. Through cluster analysis of the winter daily average concentration (DAC) of the two pollutants, we defined regions with similar variations in pollutant concentrations in winter. For the most polluted cities in BTH, the relationship between correlation coefficients for winter DAC and the distance between cities revealed that PM2.5 has regional, large-scale characteristics, with concentrated outbreaks, whereas PM10 has local, small-scale characteristics, with outbreaks at multiple locations. By selecting the key cities with the strongest linear relationship between the pollutant's DAC of each city and the daily individual air quality index values of the BTH region and through cluster analysis on the correlations between the pollutant DACs of the key cities, we defined regional divisions suitable for Joint Prevention and Control of Atmospheric Pollution (JPCAP) program to control PM2.5 and PM10. Comprehensively considering the degree of influence of regional atmospheric pollution control (RAPC) on air quality in BTH, as well as the elasticity and urgency of RAPC, we defined the control grades of the JPCAP regions. We found both the regions and corresponding control grades were consistent for PM2.5 and PM10. The thinking and methods of atmospheric pollution control we proposed will have broad significance for implementation of RAPC in other regions around the world.

  11. Exposure to hazardous volatile organic compounds, PM 10 and CO while walking along streets in urban Guangzhou, China

    Science.gov (United States)

    Zhao, Lirong; Wang, Xinming; He, Qiusheng; Wang, Hao; Sheng, Guoying; Chan, L. Y.; Fu, Jiamo; Blake, D. R.

    Toxic air pollutants in street canyons are important issues concerning public health especially in some large Asian cities like Guangzhou. In 1998 Guangzhou citizens used public transportation modes, with a majority commuting on foot (42%) or by bicycle (22%). Of the pedestrians, 57% were either senior citizens or students. In the present study, we measured toxic air pollutants while walking along urban streets in Guangzhou to evaluate pedestrian exposure. Volatile organic compounds (VOCs) were collected with sorbent tubes, and PM 10 and CO were measured simultaneously with portable analyzers. Our results showed that pedestrian exposure to PM 10 (with an average of 303 μg m -3 for all samples) and some toxic VOCs (for example, benzene) was relatively high. Monocyclic aromatic hydrocarbons were found to be the most abundant VOCs, and 71% of the samples had benzene levels higher than 30 μg m -3. Benzene, PM 10 and CO in walk-only streets were significantly lower ( ptransportation modes (bus and subway). The good correlations between BTEX, PM 10 and CO in the streets indicated that automotive emission might be their major source. Our study also showed that the risk to pedestrians due to air pollution was misinterpreted by the reported air quality index based on measurement of SO 2, NO x and PM 10 in the government monitoring stations. An urban roadside monitoring station might be needed by air quality monitoring networks in large Asian cities like Guangzhou, in order to survey exposure to air toxics in urban roadside microenvironments.

  12. Effects of PM10 on human health in the western half of Iran (Ahwaz, Bushehr and Kermanshah Cities

    Directory of Open Access Journals (Sweden)

    Sahar Geravandi

    2015-10-01

    Full Text Available Background & Aims of the Study: Particulate matter pollutants have harmful effects on human health and can intensify mortality and disease. The aim of this study is evaluate to adverse health effects caused by exposure to PM 10 in Ahwaz, Bushehr and Kermanshah Cities during 2011. Materials & Methods: In this study, the Air Q2.2.3 model was used for estimated adverse health effects of exposure to PM 10 . Air Q model provided by the WHO European Centre for Environment and Health (ECEH. Air Q software proved to be a valid and reliable tool to estimate the potential short term effects of air pollution. Daily concentrations of PM 10 were taken from Department of Environment (ADoE. Then processing data’s and finally the cardiovascular and respiratory disease attributable to this pollutant were calculated.   Results: Results show that the non hospitalized patients suffer from the cardiovascular and respiratory diseases attributable to Pm 10 . The patients from Ahwaz allocate the highest rate of hospital admittance to themselves with 19% respiratory and 20% cardiovascular charts those from Bushehr refer to hospitals 14% for respiratory illness and 15% for cardiac disease and the subjects from Kermanshah go to the hospitals 12% for respiratory complications and 14% for cardiac failures. Conclusions: The results indicate a direct relationship between the concentration of PM 10 and health effects resulting from exposure to them. The highest rate belongs to Ahwaz becomes it has greater concentration of dusty air. Therefore, the higher relative risk value can depict mismanagement in urban air quality.

  13. Characterization and dynamics of air pollutants in the Lower Rio Grande Valley

    Energy Technology Data Exchange (ETDEWEB)

    Mejia-Velazquez, G.M.; Sheya, S.A.; Dworzanski, J.; Rodriguez-Gallegos, M.; Tejeda-Honstein, D.D.; Cardona-Carrizalez, J.M.; Meuzelaar, H.L.C.

    1999-07-01

    The Lower Rio Grande Valley (LRGV) has become a region of increasing interest because of its rapid economic development and the increased international border crossing traffic, as well as for its extensive agricultural activities. Over the past few years air pollution problems in the region have been reported by the population. However, very few air quality studies have been performed in the area. In this paper some results of a study to demonstrate the feasibility of a comprehensive (criteria pollutant + VOC/SVOC + PM{sub FINE}) air pollutant dynamics characterization and modeling study in the LRGV are presented and discussed. The study involved both sides of the US/Mexican border and used. A highly mobile monitoring station equipped with a broad array of physical and chemical samplers and sensors was used in the study in two periods in December, 1995 and March,1998. PM10/PM2.5 and NO{sub x} (the latter only in the March 1998 study) concentrations were measured in Reynosa, Rio Bravo and Matamoros, Mexico, as well as Hidalgo, Brownsville and along the Freeway between Brownsville and McAllen on Texas. The photochemical model predicted peak ozone concentrations that reached, and on some days exceeded, air quality standards. The concurrent PM10/PM2.5 study involved both physical (size distributed counting) and time-resolved (2-hourly) organic chemical (VOC/SVOC type PM{sub FINE} adsorbates) characterization methods. Recently completed multivariate data analysis results from a December 1995 study at one of the sites (Hidalgo international bridge) are being presented to illustrate the capabilities of the time-resolved PM{sub FINE} characterization approach. The results of this work show that the LRGV region does not appear to have grave air pollution problems yet. However, with the increase in traffic activities over the next few years, air quality is likely to deteriorate.

  14. Investigation of air pollutants in rural nursery school - a case study

    Science.gov (United States)

    Mainka, Anna; Zajusz-Zubek, Elwira; Kozielska, Barbara; Brągoszewska, Ewa

    2018-01-01

    Children's exposure to air pollutants is an important public health challenge. Indoor air quality (IAQ) in nursery school is believed to be different from elementary school. Moreover, younger children are more vulnerable to air pollution than higher grade children because they spend more time indoors, and their immune systems and bodies are less mature. The purpose of this study was to evaluate the indoor air quality (IAQ) at naturally ventilated rural nursery schools located in Upper Silesia, Poland. We investigated the concentrations of volatile organic compounds (VOCs), particulate matter (PM), bacterial and fungal bioaerosols, as well as carbon dioxide (CO2) concentrations in younger and older children's classrooms during the winter and spring seasons. The concentration of the investigated pollutants in indoor environments was higher than those in outdoor air. The results indicate the problem of elevated concentrations of PM2.5 and PM10 inside the examined classrooms, as well as that of high levels of CO2 exceeding 1,000 ppm in relation to outdoor air. The characteristics of PM and CO2 levels were significantly different, both in terms of classroom occupation (younger or older children) and of season (winter or spring).

  15. Maternal air pollution exposure and preterm birth in Wuxi, China: Effect modification by maternal age.

    Science.gov (United States)

    Han, Yingying; Jiang, Panhua; Dong, Tianyu; Ding, Xinliang; Chen, Ting; Villanger, Gro Dehli; Aase, Heidi; Huang, Lu; Xia, Yankai

    2018-08-15

    Numerous studies have investigated prenatal air pollution and shown that air pollutants have adverse effect on birth outcomes. However, which trimester was the most sensitive and whether the effect was related to maternal age is still ambiguous. This study aims to explore the association between maternal air pollution exposure during pregnancy and preterm birth, and if this relationship is modified by maternal age. In this retrospective cohort study, we examine the causal relationship of prenatal exposure to air pollutants including particulate matters, which are less than 10 µm (PM 10 ), and ozone (O 3 ), which is one of the gaseous pollutants, on preterm birth by gestational age. A total of 6693 pregnant women were recruited from Wuxi Maternal and Child Health Care Hospital. The participants were dichotomized into child-bearing age group ( = 35 years old) in order to analyze the effect modification by maternal age. Logistic and linear regression models were performed to assess the risk for preterm birth (gestational age air pollution exposure. With adjustment for covariates, the highest level of PM 10 exposure significantly increased the risk of preterm birth by 1.42-fold (95% CI: 1.10, 1.85) compared those with the lowest level in the second trimester. Trimester-specific PM 10 exposure was positively associated with gestational age, whereas O 3 exposure was associated with gestational age in the early pregnancy. When stratified by maternal age, PM 10 exposure was significantly associated with an increased risk of preterm birth only in the advanced age group during pregnancy (OR:2.15, 95% CI: 1.13, 4.07). The results suggested that PM 10 exposure associated with preterm birth was modified by advanced maternal age (OR interaction = 2.00, 95% CI: 1.02, 3.91, P interaction = 0.032). Prenatal air pollution exposure would increase risk of preterm birth and reduced gestational age. Thus, more attention should be paid to the effects of ambient air pollution

  16. The cumulative effect of air pollutants on the acute exacerbation of COPD in Shanghai, China.

    Science.gov (United States)

    Sun, Xian Wen; Chen, Pei Li; Ren, Lei; Lin, Ying Ni; Zhou, Jian Ping; Ni, Lei; Li, Qing Yun

    2018-05-01

    Epidemiologic studies have shown the effect of air pollutants on acute exacerbation of chronic obstructive pulmonary disease (AECOPD). However, little is known regarding the dose-response relationship. This study aimed to investigate the cumulative effect of air pollutants on AECOPD. We collected 101 patients with AECOPD from November 2010 through August 2011 in Shanghai. Multiple logistic regression was used to estimate associations between air pollutants and AECOPD. Poisson regression was then applied to determine the cumulative effect of air pollutants including particulate matter 10 (PM10), PM2.5, nitrogen dioxide (NO 2 ), sulphur dioxide (SO 2 ) and ozone (O 3 ) on AECOPD, of which the seasonal variation was further explored. The monthly episodes of AECOPD were associated with the concentrations of PM2.5 (r=0.884, peffect in cold season, whereas 7days in warm season. The RR for AECOPD for per 10μg/m 3 increment in NO 2 was 1.07, with a 5-day cumulative effect without seasonal variation. High consecutive levels of PM2.5 and NO 2 increase the risk of developing AECOPD. Cumulative effect of PM2.5 and NO 2 appears before the exacerbation onset. These gradations were more evident in the PM2.5 during different seasons. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Particulate air pollution and mortality in a cohort of Chinese men.

    Science.gov (United States)

    Zhou, Maigeng; Liu, Yunning; Wang, Lijun; Kuang, Xingya; Xu, Xiaohui; Kan, Haidong

    2014-03-01

    Few prior cohort studies exist in developing countries examining the association of ambient particulate matter (PM) with mortality. We examined the association of particulate air pollution with mortality in a prospective cohort study of 71,431 middle-aged Chinese men. Baseline data were obtained during 1990-1991. The follow-up evaluation was completed in January, 2006. Annual average PM exposure between 1990 and 2005, including TSP and PM10, were estimated by linking fixed-site monitoring data with residential communities. We found significant associations between PM10 and mortality from cardiopulmonary diseases; each 10 μg/m(3) PM10 was associated with a 1.6% (95%CI: 0.7%, 2.6%), 1.8% (95%CI: 0.8%, 2.9%) and 1.7% (95%CI: 0.3%, 3.2%) increased risk of total, cardiovascular and respiratory mortality, respectively. For TSP, we observed significant associations only for cardiovascular morality. These data contribute to the scientific literature on long-term effects of particulate air pollution for high exposure settings typical in developing countries. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Economic Impacts from PM2.5 Pollution-Related Health Effects: A Case Study in Shanghai.

    Science.gov (United States)

    Wu, Rui; Dai, Hancheng; Geng, Yong; Xie, Yang; Masui, Toshihiko; Liu, Zhiqing; Qian, Yiying

    2017-05-02

    PM 2.5 pollution-related diseases cause additional medical expenses and work time loss, leading to macroeconomic impact in high PM 2.5 concentration areas. Previous economic impact assessments of air pollution focused on benefits from environmental regulations while ignoring climate policies. In this study, we examine the health and economic impacts from PM 2.5 pollution under various air pollution control strategies and climate policies scenarios in the megacity of Shanghai. The estimation adopts an integrated model combining a Greenhouse Gas and Air Pollution Interactions and Synergies (GAINS) model, exposure-response functions (ERFs), and a computable general equilibrium (CGE) model. The results show that without control measures, Shanghai's mortality caused by PM 2.5 pollution are estimated to be 192 400 cases in 2030 and the work time loss to be 72.1 h/cap annually. The corresponding GDP values and welfare losses would be approximately 2.26% and 3.14%, respectively. With an estimated control cost of 0.76% of local GDP, Shanghai would gain approximately 1.01% of local GDP through local air pollution control measures and climate policies. Furthermore, the application of multiregional integrated control strategies in neighboring provinces would be the most effective in reducing PM 2.5 concentration in Shanghai, leading to only 0.34% of GDP loss. At the sectoral level, labor-intensive sectors suffer more output loss from PM 2.5 pollution. Sectors with the highest control costs include power generation, iron and steel, and transport. The results indicate that the combination of multiregional integrated air pollution control strategies and climate policies would be cost-beneficial for Shanghai.

  19. Generalized additive model of air pollution to daily mortality

    International Nuclear Information System (INIS)

    Kim, J.; Yang, H.E.

    2005-01-01

    The association of air pollution with daily mortality due to cardiovascular disease, respiratory disease, and old age (65 or older) in Seoul, Korea was investigated in 1999 using daily values of TSP, PM10, O 3 , SO 2 , NO 2 , and CO. Generalized additive Poisson models were applied to allow for the highly flexible fitting of daily trends in air pollution as well as nonlinear association with meteorological variables such as temperature, humidity, and wind speed. To estimate the effect of air pollution and weather on mortality, LOESS smoothing was used in generalized additive models. The findings suggest that air pollution levels affect significantly the daily mortality. (orig.)

  20. Elemental characterization of New Year's Day PM10 and PM2.2 particulates matter at several sites in Metro Manila

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Flora L; Pabroa, Preciosa Corazon B; Morco, Ryan P; Racho, Joseph Michael D [Analytical Measurements Research Group, Philippine Nuclear Research Institute, Commonwealth Ave., Diliman, Quezon City (Philippines)

    2007-07-01

    In the Philippines, it has been a yearly tradition to welcome the coming of the New Year with the loudest noise as can be achieved. Firecrackers and fireworks have been a necessity for Filipinos during this time despite bans on the use of most of these and despite the Department of Health (DOH) campaign to use alternative safe practices to welcome the New Year. Data for PM 10 samples (fractionated as PM 10-2.2 or the course fraction and PM2.2 or the fine fraction) collected in four PNRI sampling sites in Metro Manila show the air pollution impacts of fireworks on New Year's Eve. Samples were collected from 1998 to 2006 using a Gent dichotomous sampler in connection with the PNRI project {sup P}articulate Matter Source Apportionment Using Nuclear and Related Analytical Techniques{sup .} Particulate mass was determined by gravimetry. Elemental analysis of the air filters was done using X-ray Fluorescence Spectrometry (X RF) or Particle induced X-ray Emission (PIXE), multielemental non-destructive nuclear analytical techniques. Black carbon was analyzed using reflectometry. PM 10 values increased by two to four times the usual averages (36.4 to 55.4 ug/cum) and in 2002 even exceeded the PNAAQ short-term guideline value of 150 ug/cum at the ADMU sampling station. PM2.2 values increased by two to six times the usual averages (15 to 28 ug/cum), even many times exceeding US EPA short-term guideline value of 65 ug/cum. The increase in the particulate mass of New Year's Day samples can be attributed more to an increase in the metal pollutants rather than the black carbon, with higher contribution to the fine fraction. Increase in the elemental concentrations of Al, S, Cl, K, Ba, Sr, Ti, V, Mn, Cu and Pb were observed with the highest contribution from K. Results show that the usual practices of burning firecrackers and fireworks during New Year's day celebration is a very strong source of air pollution which contributes significantly high amount of metal pollutants in the

  1. [Air pollution and mortality in twenty-five Italian cities: results of the EpiAir2 Project].

    Science.gov (United States)

    Alessandrini, Ester Rita; Faustini, Annunziata; Chiusolo, Monica; Stafoggia, Massimo; Gandini, Martina; Demaria, Moreno; Antonelli, Antonello; Arena, Pasquale; Biggeri, Annibale; Canova, Cristina; Casale, Giovanna; Cernigliaro, Achille; Garrone, Elsa; Gherardi, Bianca; Gianicolo, Emilio Antonio Luca; Giannini, Simone; Iuzzolino, Claudia; Lauriola, Paolo; Mariottini, Mauro; Pasetto, Paolo; Randi, Giorgia; Ranzi, Andrea; Santoro, Michele; Selle, Vittorio; Serinelli, Maria; Stivanello, Elisa; Tominz, Riccardo; Vigotti, Maria Angela; Zauli-Sajani, Stefano; Forastiere, Francesco; Cadum, Ennio

    2013-01-01

    this study aims at presenting the results from the Italian EpiaAir2 Project on the short-term effects of air pollution on adult population (35+ years old) in 25 Italian cities. the short-term effects of air pollution on resident people died in their city were analysed adopting the time series approach. The association between increases in 10µg/m(3) in PM10, PM2.5, NO2 and O3 air concentration and natural, cardiac, cerebrovascular and respiratory mortality was studied. City-specific Poisson models were fitted to estimate the association of daily concentrations of pollutants with daily counts of deaths. The analysis took into account temporal and meteorological factors to control for potential confounding effect. Pooled estimates have been derived from random effects meta-analysis, evaluating the presence of heterogeneity in the city specific results. it was analysed 422,723 deaths in the 25 cities of the project among people aged 35 years or more, resident in each city during the period 2006-2010. daily counts of natural, cardiac, cerebrovascular, and respiratory mortality, obtained from the registries of each city. Demographic information were obtained by record linkage procedure with the civil registry of each city. mean number of deaths for natural causes ranged from 513 in Rovigo to 20,959 in Rome. About 25% of deaths are due to cardiac diseases, 10% to cerebrovascular diseases, and 7% to respiratory diseases. It was found an immediate effect of PM10 on natural mortality (0.51%; 95%CI 0.16-0.86; lag 0-1). More relevant and prolonged effects (lag 0-5) have been found for PM2.5 (0.78%; 95%CI 0.12-1.46) and NO2 (1.10%; 95%CI 0.63-1.58). Increases in cardiac mortality are associated with PM10 (0.93%; 95%CI 0.16-1.70) and PM2.5 (1.25%; 95%CI 0.17-2.34), while for respiratory mortality exposure to NO2 has an important role (1.67%; 95%CI 0.23-3.13; lag 2-5), as well as PM10 (1.41%; 95%CI - 0.23;+3.08). Results are strongly homogeneous among cities, except for

  2. Pulmonary Function and Incidence of Selected Respiratory Diseases Depending on the Exposure to Ambient PM10

    Directory of Open Access Journals (Sweden)

    Artur Badyda

    2016-11-01

    Full Text Available It is essential in pulmonary disease research to take into account traffic-related air pollutant exposure among urban inhabitants. In our study, 4985 people were examined for spirometric parameters in the presented research which was conducted in the years 2008–2012. The research group was divided into urban and rural residents. Traffic density, traffic structure and velocity, as well as concentrations of selected air pollutants (CO, NO2 and PM10 were measured at selected areas. Among people who live in the city, lower percentages of predicted values of spirometric parameters were noticed in comparison to residents of rural areas. Taking into account that the difference in the five-year mean concentration of PM10 in the considered city and rural areas was over 17 μg/m3, each increase of PM10 by 10 μg/m3 is associated with the decline in FEV1 (forced expiratory volume during the first second of expiration by 1.68%. These findings demonstrate that traffic-related air pollutants may have a significant influence on the decline of pulmonary function and the growing rate of respiratory diseases.

  3. Hospital indoor PM10/PM2.5 and associated trace elements in Guangzhou, China

    International Nuclear Information System (INIS)

    Wang Xinhua; Bi Xinhui; Sheng Guoying; Fu Jiamo

    2006-01-01

    PM10 and PM2.5 samples were collected in the indoor environments of four hospitals and their adjacent outdoor environments in Guangzhou, China during the summertime. The concentrations of 18 target elements in particles were also quantified. The results showed that indoor PM2.5 levels with an average of 99 μg m -3 were significantly higher than outdoor PM2.5 standard of 65 μg m -3 recommended by USEPA [United States Environmental Protection Agency. Office of Air and Radiation, Office of Air Quality Planning and Standards, Fact Sheet. EPA's Revised Particulate Matter Standards, 17, July 1997] and PM2.5 constituted a large fraction of indoor respirable particles (PM10) by an average of 78% in four hospitals. High correlation between PM2.5 and PM10 (R 2 of 0.87 for indoors and 0.90 for outdoors) suggested that PM2.5 and PM10 came from similar particulate emission sources. The indoor particulate levels were correlated with the corresponding outdoors (R 2 of 0.78 for PM2.5 and 0.67 for PM10), demonstrating that outdoor infiltration could lead to direct transportation into indoors. In addition to outdoor infiltration, human activities and ventilation types could also influence indoor particulate levels in four hospitals. Total target elements accounted for 3.18-5.56% of PM2.5 and 4.38-9.20% of PM10 by mass, respectively. Na, Al, Ca, Fe, Mg, Mn and Ti were found in the coarse particles, while K, V, Cr, Ni, Cu, Zn, Cd, Sn, Pb, As and Se existed more in the fine particles. The average indoor concentrations of total elements were lower than those measured outdoors, suggesting that indoor elements originated mainly from outdoor emission sources. Enrichment factors (EF) for trace element were calculated to show that elements of anthropogenic origins (Zn, Pb, As, Se, V, Ni, Cu and Cd) were highly enriched with respect to crustal composition (Al, Fe, Ca, Ti and Mn). Factor analysis was used to identify possible pollution source-types, namely street dust, road traffic and

  4. Hospital indoor PM10/PM2.5 and associated trace elements in Guangzhou, China.

    Science.gov (United States)

    Wang, Xinhua; Bi, Xinhui; Sheng, Guoying; Fu, Jiamo

    2006-07-31

    PM10 and PM2.5 samples were collected in the indoor environments of four hospitals and their adjacent outdoor environments in Guangzhou, China during the summertime. The concentrations of 18 target elements in particles were also quantified. The results showed that indoor PM2.5 levels with an average of 99 microg m(-3) were significantly higher than outdoor PM2.5 standard of 65 microg m(-3) recommended by USEPA [United States Environmental Protection Agency. Office of Air and Radiation, Office of Air Quality Planning and Standards, Fact Sheet. EPA's Revised Particulate Matter Standards, 17, July 1997] and PM2.5 constituted a large fraction of indoor respirable particles (PM10) by an average of 78% in four hospitals. High correlation between PM2.5 and PM10 (R(2) of 0.87 for indoors and 0.90 for outdoors) suggested that PM2.5 and PM10 came from similar particulate emission sources. The indoor particulate levels were correlated with the corresponding outdoors (R(2) of 0.78 for PM2.5 and 0.67 for PM10), demonstrating that outdoor infiltration could lead to direct transportation into indoors. In addition to outdoor infiltration, human activities and ventilation types could also influence indoor particulate levels in four hospitals. Total target elements accounted for 3.18-5.56% of PM2.5 and 4.38-9.20% of PM10 by mass, respectively. Na, Al, Ca, Fe, Mg, Mn and Ti were found in the coarse particles, while K, V, Cr, Ni, Cu, Zn, Cd, Sn, Pb, As and Se existed more in the fine particles. The average indoor concentrations of total elements were lower than those measured outdoors, suggesting that indoor elements originated mainly from outdoor emission sources. Enrichment factors (EF) for trace element were calculated to show that elements of anthropogenic origins (Zn, Pb, As, Se, V, Ni, Cu and Cd) were highly enriched with respect to crustal composition (Al, Fe, Ca, Ti and Mn). Factor analysis was used to identify possible pollution source-types, namely street dust, road traffic

  5. Associations between air pollution and socioeconomic characteristics, ethnicity and age profile of neighbourhoods in England and the Netherlands

    International Nuclear Information System (INIS)

    Fecht, Daniela; Fischer, Paul; Fortunato, Léa; Hoek, Gerard; Hoogh, Kees de; Marra, Marten; Kruize, Hanneke; Vienneau, Danielle; Beelen, Rob; Hansell, Anna

    2015-01-01

    Air pollution levels are generally believed to be higher in deprived areas but associations are complex especially between sensitive population subgroups. We explore air pollution inequalities at national, regional and city level in England and the Netherlands comparing particulate matter (PM 10 ) and nitrogen dioxide (NO 2 ) concentrations and publicly available population characteristics (deprivation, ethnicity, proportion of children and elderly). We saw higher concentrations in the most deprived 20% of neighbourhoods in England (1.5 μg/m 3 higher PM 10 and 4.4 μg/m 3 NO 2 ). Concentrations in both countries were higher in neighbourhoods with >20% non-White (England: 3.0 μg/m 3 higher PM 10 and 10.1 μg/m 3 NO 2 ; the Netherlands: 1.1 μg/m 3 higher PM 10 and 4.5 μg/m 3 NO 2 ) after adjustment for urbanisation and other variables. Associations for some areas differed from the national results. Air pollution inequalities were mainly an urban problem suggesting measures to reduce environmental air pollution inequality should include a focus on city transport. - Highlights: • Air pollution inequalities are believed to vary between subpopulations. • We explore this across two European countries at different geographical levels. • We found that air pollution inequalities are largely an urban problem. • Ethnically diverse neighbourhoods have the highest air pollution levels. • Associations vary across two countries that might be thought to be quite similar. - Air pollution inequalities are largely an urban problem and associations with deprivation and ethnicity vary even across two European countries that might be thought to be quite similar

  6. Multi-criteria Analysis of Air Pollution with SO(2) and PM(10) in Urban Area Around the Copper Smelter in Bor, Serbia.

    Science.gov (United States)

    Nikolić, Djordje; Milošević, Novica; Mihajlović, Ivan; Zivković, Zivan; Tasić, Viša; Kovačević, Renata; Petrović, Nevenka

    2010-02-01

    This work presents the results of 4 years long monitoring of concentrations of SO(2) gas and PM(10) in the urban area around the copper smelter in Bor. The contents of heavy metals Pb, Cd, Cu, Ni, and As in PM(10) were determined and obtained values were compared to the limit values provided in EU Directives. Manifold excess concentrations of all the components in the atmosphere of the urban area of the townsite Bor were registered. Through application of a multi-criteria analysis by using PROMETHEE/GAIA method, the zones were ranked according to the level of pollution.

  7. The Association between Ambient Air Pollution and Allergic Rhinitis: Further Epidemiological Evidence from Changchun, Northeastern China

    Science.gov (United States)

    Teng, Bo; Zhang, Xuelei; Yi, Chunhui; Zhang, Yan; Ye, Shufeng; Wang, Yafang; Tong, Daniel Q.; Lu, Binfeng

    2017-01-01

    With the continuous rapid urbanization process over the last three decades, outdoors air pollution has become a progressively more serious public health hazard in China. To investigate the possible associations, lag effects and seasonal differences of urban air quality on respiratory health (allergic rhinitis) in Changchun, a city in Northeastern China, we carried out a time-series analysis of the incidents of allergic rhinitis (AR) from 2013 to 2015. Environmental monitoring showed that PM2.5 and PM10 were the major air pollutants in Changchun, followed by SO2, NO2 and O3. The results also demonstrated that the daily concentrations of air pollutants had obvious seasonal differences. PM10 had higher daily mean concentrations in spring (May, dust storms), autumn (October, straw burning) and winter (November to April, coal burning). The mean daily number of outpatient AR visits in the warm season was higher than in the cold season. The prevalence of allergic rhinitis was significantly associated with PM2.5, PM10, SO2 and NO2, and the increased mobility was 10.2% (95% CI, 5.5%–15.1%), 4.9% (95% CI, 0.8%–9.2%), 8.5% (95% CI, −1.8%–19.8%) and 11.1% (95% CI, 5.8%–16.5%) for exposure to each 1-Standard Deviation (1-SD) increase of pollutant, respectively. Weakly or no significant associations were observed for CO and O3. As for lag effects, the highest Relative Risks (RRs) of AR from SO2, NO2, PM10 and PM2.5 were on the same day, and the highest RR from CO was on day 4 (L4). The results also indicated that the concentration of air pollutants might contribute to the development of AR. To summarize, this study provides further evidence of the significant association between ambient particulate pollutants (PM2.5 and PM10, which are usually present in high concentrations) and the prevalence of respiratory effects (allergic rhinitis) in the city of Changchun, located in Northeastern China. Environmental control and public health strategies should be enforced to

  8. The Association between Ambient Air Pollution and Allergic Rhinitis: Further Epidemiological Evidence from Changchun, Northeastern China

    Directory of Open Access Journals (Sweden)

    Bo Teng

    2017-02-01

    Full Text Available With the continuous rapid urbanization process over the last three decades, outdoors air pollution has become a progressively more serious public health hazard in China. To investigate the possible associations, lag effects and seasonal differences of urban air quality on respiratory health (allergic rhinitis in Changchun, a city in Northeastern China, we carried out a time-series analysis of the incidents of allergic rhinitis (AR from 2013 to 2015. Environmental monitoring showed that PM2.5 and PM10 were the major air pollutants in Changchun, followed by SO2, NO2 and O3. The results also demonstrated that the daily concentrations of air pollutants had obvious seasonal differences. PM10 had higher daily mean concentrations in spring (May, dust storms, autumn (October, straw burning and winter (November to April, coal burning. The mean daily number of outpatient AR visits in the warm season was higher than in the cold season. The prevalence of allergic rhinitis was significantly associated with PM2.5, PM10, SO2 and NO2, and the increased mobility was 10.2% (95% CI, 5.5%–15.1%, 4.9% (95% CI, 0.8%–9.2%, 8.5% (95% CI, −1.8%–19.8% and 11.1% (95% CI, 5.8%–16.5% for exposure to each 1-Standard Deviation (1-SD increase of pollutant, respectively. Weakly or no significant associations were observed for CO and O3. As for lag effects, the highest Relative Risks (RRs of AR from SO2, NO2, PM10 and PM2.5 were on the same day, and the highest RR from CO was on day 4 (L4. The results also indicated that the concentration of air pollutants might contribute to the development of AR. To summarize, this study provides further evidence of the significant association between ambient particulate pollutants (PM2.5 and PM10, which are usually present in high concentrations and the prevalence of respiratory effects (allergic rhinitis in the city of Changchun, located in Northeastern China. Environmental control and public health strategies should be enforced to

  9. Air pollution and multiple acute respiratory outcomes.

    Science.gov (United States)

    Faustini, Annunziata; Stafoggia, Massimo; Colais, Paola; Berti, Giovanna; Bisanti, Luigi; Cadum, Ennio; Cernigliaro, Achille; Mallone, Sandra; Scarnato, Corrado; Forastiere, Francesco

    2013-08-01

    Short-term effects of air pollutants on respiratory mortality and morbidity have been consistently reported but usually studied separately. To more completely assess air pollution effects, we studied hospitalisations for respiratory diseases together with out-of-hospital respiratory deaths. A time-stratified case-crossover study was carried out in six Italian cities from 2001 to 2005. Daily particulate matter (particles with a 50% cut-off aerodynamic diameter of 10 μm (PM10)) and nitrogen dioxide (NO2) associations with hospitalisations for respiratory diseases (n = 100 690), chronic obstructive pulmonary disease (COPD) (n = 38 577), lower respiratory tract infections (LRTI) among COPD patients (n = 9886) and out-of-hospital respiratory deaths (n = 5490) were estimated for residents aged ≥35 years. For an increase of 10 μg·m(-3) in PM10, we found an immediate 0.59% (lag 0-1 days) increase in hospitalisations for respiratory diseases and a 0.67% increase for COPD; the 1.91% increase in LRTI hospitalisations lasted longer (lag 0-3 days) and the 3.95% increase in respiratory mortality lasted 6 days. Effects of NO2 were stronger and lasted longer (lag 0-5 days). Age, sex and previous ischaemic heart disease acted as effect modifiers for different outcomes. Analysing multiple rather than single respiratory events shows stronger air pollution effects. The temporal relationship between the pollutant increases and hospitalisations or mortality for respiratory diseases differs.

  10. Is physical activity a modifier of the association between air pollution and arterial stiffness in older adults: The SAPALDIA cohort study.

    Science.gov (United States)

    Endes, Simon; Schaffner, Emmanuel; Caviezel, Seraina; Dratva, Julia; Stolz, Daiana; Schindler, Christian; Künzli, Nino; Schmidt-Trucksäss, Arno; Probst-Hensch, Nicole

    2017-08-01

    Air pollution and insufficient physical activity have been associated with inflammation and oxidative stress, molecular mechanisms linked to arterial stiffness and cardiovascular disease. There are no studies on how physical activity modifies the association between air pollution and arterial stiffness. We examined whether the adverse cardiovascular effects of air pollution were modified by individual physical activity levels in 2823 adults aged 50-81 years from the well-characterized Swiss Cohort Study on Air Pollution and Lung and Heart Diseases (SAPALDIA). We assessed arterial stiffness as the brachial-ankle pulse wave velocity (baPWV [m/s]) with an oscillometric device. We administered a self-reported physical activity questionnaire to classify each subject's physical activity level. Air pollution exposure was estimated by the annual average individual home outdoor PM 10 and PM 2.5 (particulate matter air pollution exposure and physical activity while adjusting for relevant confounders. We found evidence that the association of air pollution exposure with baPWV was different between inactive and active participants. The probability of having increased baPWV was significantly higher with higher PM 10 , PM 2.5 , NO 2 , PNC and LDSA exposure in inactive, but not in physically active participants. We found some evidence of an interaction between physical activity and ambient air pollution exposure for PM 10 , PM 2.5 and NO 2 (p interaction =0.06, 0.09, and 0.04, respectively), but not PNC and LDSA (p interaction =0.32 and 0.35). Our study provides some indication that physical activity may protect against the adverse vascular effects of air pollution in low pollution settings. Additional research in large prospective cohorts is needed to assess whether the observed effect modification translates to high pollution settings in mega-cities of middle and low-income countries. Copyright © 2017 Elsevier GmbH. All rights reserved.

  11. Air pollution problem in the Mexico City metropolitan zone: Photochemical pollution

    Energy Technology Data Exchange (ETDEWEB)

    Alvarez, H.B.; Alvarez, P.S.; Echeverria, R.S.; Jardon, R.T. [Centro de Ciencias de la Atmosfera (Mexico). Seccion de Contaminacion Ambiental

    1997-12-31

    Mexico City Metropolitan Zone (MCMZ) represents an example of a megacity where the air pollution problem has reached an important evolution in a very short time, causing a risk in the health of a population of more than 20 million inhabitants. The atmospheric pollution problem in the MCMZ, began several decades ago, but it increased drastically in the middle of the 80`s. It is important to recognize that in the 60`s, 70`s and the first half of the 80`s the main pollutants were sulfur dioxide and total suspended particles. However since the second half of the 80`s until now, ozone is the most important air pollutant besides of the suspended particles (PM{sub 10}) and other toxic pollutants (1--8). The purpose of this paper is to discuss the evolution of the ozone atmospheric pollution problem in the MCMZ, as well as to analyze the results of several implemented air pollution control strategies.

  12. Spatiotemporal analysis of particulate air pollution and ischemic heart disease mortality in Beijing, China.

    Science.gov (United States)

    Xu, Meimei; Guo, Yuming; Zhang, Yajuan; Westerdahl, Dane; Mo, Yunzheng; Liang, Fengchao; Pan, Xiaochuan

    2014-12-12

    Few studies have used spatially resolved ambient particulate matter with an aerodynamic diameter of <10 μm (PM10) to examine the impact of PM10 on ischemic heart disease (IHD) mortality in China. The aim of our study is to evaluate the short-term effects of PM10 concentrations on IHD mortality by means of spatiotemporal analysis approach. We collected daily data on air pollution, weather conditions and IHD mortality in Beijing, China during 2008 and 2009. Ordinary kriging (OK) was used to interpolate daily PM10 concentrations at the centroid of 287 township-level areas based on 27 monitoring sites covering the whole city. A generalized additive mixed model was used to estimate quantitatively the impact of spatially resolved PM10 on the IHD mortality. The co-effects of the seasons, gender and age were studied in a stratified analysis. Generalized additive model was used to evaluate the effects of averaged PM10 concentration as well. The averaged spatially resolved PM10 concentration at 287 township-level areas was 120.3 ± 78.1 μg/m3. Ambient PM10 concentration was associated with IHD mortality in spatiotemporal analysis and the strongest effects were identified for the 2-day average. A 10 μg/m3 increase in PM10 was associated with an increase of 0.33% (95% confidence intervals: 0.13%, 0.52%) in daily IHD mortality. The effect estimates using spatially resolved PM10 were larger than that using averaged PM10. The seasonal stratification analysis showed that PM10 had the statistically stronger effects on IHD mortality in summer than that in the other seasons. Males and older people demonstrated the larger response to PM10 exposure. Our results suggest that short-term exposure to particulate air pollution is associated with increased IHD mortality. Spatial variation should be considered for assessing the impacts of particulate air pollution on mortality.

  13. Chemical Components, Variation, and Source Identification of PM1 during the Heavy Air Pollution Episodes in Beijing in December 2016

    Science.gov (United States)

    Zhang, Yangmei; Wang, Yaqiang; Zhang, Xiaoye; Shen, Xiaojing; Sun, Junying; Wu, Lingyan; Zhang, Zhouxiang; Che, Haochi

    2018-02-01

    Air pollution is a current global concern. The heavy air pollution episodes (HPEs) in Beijing in December 2016 severely influenced visibility and public health. This study aims to survey the chemical compositions, sources, and formation processes of the HPEs. An aerodyne quadruple aerosol mass spectrometer (Q-AMS) was utilized to measure the non-refractory PM1 (NR-PM1) mass concentration and size distributions of the main chemical components including organics, sulfate, nitrate, ammonium, and chloride in situ during 15-23 December 2016. The NR-PM1 mass concentration was found to increase from 6 to 188 μg m-3 within 5 days. During the most serious polluted episode, the PM1 mass concentration was about 2.6 times that during the first pollution stage and even 40 times that of the clean days. The formation rates of PM2.5 in the five pollution stages were 26, 22, 22, 32, and 67 μg m-3 h-1, respectively. Organics and nitrate occupied the largest proportion in the polluted episodes, whereas organics and sulfate dominated the submicron aerosol during the clean days. The size distribution of organics is always broader than those of other species, especially in the clean episodes. The peak sizes of the interested species grew gradually during different HPEs. Aqueous reaction might be important in forming sulfate and chloride, and nitrate was formed via oxidization and condensation processes. PMF (positive matrix factorization) analysis on AMS mass spectra was employed to separate the organics into different subtypes. Two types of secondary organic aerosol with different degrees of oxidation consisted of 43% of total organics. By contrast, primary organics from cooking, coal combustion, and traffic emissions comprised 57% of the organic aerosols during the HPEs.

  14. Modeling PM2.5 Urban Pollution Using Machine Learning and Selected Meteorological Parameters

    Directory of Open Access Journals (Sweden)

    Jan Kleine Deters

    2017-01-01

    Full Text Available Outdoor air pollution costs millions of premature deaths annually, mostly due to anthropogenic fine particulate matter (or PM2.5. Quito, the capital city of Ecuador, is no exception in exceeding the healthy levels of pollution. In addition to the impact of urbanization, motorization, and rapid population growth, particulate pollution is modulated by meteorological factors and geophysical characteristics, which complicate the implementation of the most advanced models of weather forecast. Thus, this paper proposes a machine learning approach based on six years of meteorological and pollution data analyses to predict the concentrations of PM2.5 from wind (speed and direction and precipitation levels. The results of the classification model show a high reliability in the classification of low (25 µg/m3 and low (<10 µg/m3 versus moderate (10–25 µg/m3 concentrations of PM2.5. A regression analysis suggests a better prediction of PM2.5 when the climatic conditions are getting more extreme (strong winds or high levels of precipitation. The high correlation between estimated and real data for a time series analysis during the wet season confirms this finding. The study demonstrates that the use of statistical models based on machine learning is relevant to predict PM2.5 concentrations from meteorological data.

  15. Transboundary health impacts of transported global air pollution and international trade

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Qiang; Jiang, Xujia; Tong, Dan; Davis, Steven J.; Zhao, Hongyan; Geng, Guannan; Feng, Tong; Zheng, Bo; Lu, Zifeng; Streets, David G.; Ni, Ruijing; Brauer, Michael; van Donkelaar, Aaron; Martin, Randall V.; Huo, Hong; Liu, Zhu; Pan, Da; Kan, Haidong; Yan, Yingying; Lin, Jintai; He, Kebin; Guan, Dabo

    2017-03-29

    Millions of people die every year from diseases caused by exposure to outdoor air pollution1, 2, 3, 4, 5. Some studies have estimated premature mortality related to local sources of air pollution6, 7, but local air quality can also be affected by atmospheric transport of pollution from distant sources8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18. International trade is contributing to the globalization of emission and pollution as a result of the production of goods (and their associated emissions) in one region for consumption in another region14, 19, 20, 21, 22. The effects of international trade on air pollutant emissions23, air quality14 and health24 have been investigated regionally, but a combined, global assessment of the health impacts related to international trade and the transport of atmospheric air pollution is lacking. Here we combine four global models to estimate premature mortality caused by fine particulate matter (PM2.5) pollution as a result of atmospheric transport and the production and consumption of goods and services in different world regions. We find that, of the 3.45 million premature deaths related to PM2.5 pollution in 2007 worldwide, about 12 per cent (411,100 deaths) were related to air pollutants emitted in a region of the world other than that in which the death occurred, and about 22 per cent (762,400 deaths) were associated with goods and services produced in one region for consumption in another. For example, PM2.5 pollution produced in China in 2007 is linked to more than 64,800 premature deaths in regions other than China, including more than 3,100 premature deaths in western Europe and the USA; on the other hand, consumption in western Europe and the USA is linked to more than 108,600 premature deaths in China. Our results reveal that the transboundary health impacts of PM2.5 pollution associated with international trade are greater than those associated with long-distance atmospheric pollutant transport.

  16. Estimating the influence of different urban canopy cover types on atmospheric particulate matter (PM10) pollution abatement in London UK.

    Science.gov (United States)

    Tallis, Matthew; Freer-Smith, Peter; Sinnett, Danielle; Aylott, Matthew; Taylor, Gail

    2010-05-01

    In the urban environment atmospheric pollution by PM10 (particulate matter with a diameter less than 10 x 10-6 m) is a problem that can have adverse effects on human health, particularly increasing rates of respiratory disease. The main contributors to atmospheric PM10 in the urban environment are road traffic, industry and power production. The urban tree canopy is a receptor for removing PM10s from the atmosphere due to the large surface areas generated by leaves and air turbulence created by the structure of the urban forest. In this context urban greening has long been known as a mechanism to contribute towards PM10 removal from the air, furthermore, tree canopy cover has a role in contributing towards a more sustainable urban environment. The work reported here has been carried out within the BRIDGE project (SustainaBle uRban plannIng Decision support accountinG for urban mEtabolism). The aim of this project is to assess the fluxes of energy, water, carbon dioxide and particulates within the urban environment and develope a DSS (Decision Support System) to aid urban planners in sustainable development. A combination of published urban canopy cover data from ground, airborne and satellite based surveys was used. For each of the 33 London boroughs the urban canopy was classified to three groups, urban woodland, street trees and garden trees and each group quantified in terms of ground cover. The total [PM10] for each borough was taken from the LAEI (London Atmospheric Emissions Inventory 2006) and the contribution to reducing [PM10] was assessed for each canopy type. Deposition to the urban canopy was assessed using the UFORE (Urban Forest Effects Model) approach. Deposition to the canopy, boundary layer height and percentage reduction of the [PM10] in the atmosphere was assessed using both hourly meterological data and [PM10] and seasonal data derived from annual models. Results from hourly and annual data were compared with measured values. The model was then

  17. Coal Mine Air Pollution and Number of Children Hospitalizations because of Respiratory Tract Infection: A Time Series Analysis

    Directory of Open Access Journals (Sweden)

    Yonglin Liu

    2015-01-01

    Full Text Available To analyze the relationship between levels of air pollution and number of children hospitalizations because of respiratory tract infection in Shenmu County, the data regarding meteorological factors, environmental pollutants, that is SO2 and NO2, Particulate Matter 10 (PM10, and hospitalizations of children less than 16 years of age was collected during the time duration of November 2009 to October 2012. Using SAS 9.3, descriptive data analysis for meteorological and environmental factors and hospital admissions were performed along with main air pollutants determination. Using the statistical software R 3.0.1, a generalized additive Poisson regression model was established, the linear fitting models of the air pollutant concentrations and meteorological factors were introduced considering the lag effect, and the relative risk of the main atmospheric pollutants on children hospitalization was evaluated. The results showed that the primary air pollutant in Shenmu County is PM10 and its Pearson correlation coefficient with Air Pollution Index (API is 0.917. After control of long term climate trend, “week day effect,” meteorological factors, and impact of other contaminants, it was found that, on the same day and during the lag of 1 to 10 days, PM10 concentrations had no significant effect on children hospitalization rate.

  18. Source identification and long-term monitoring of airborne particulate matter (PM2.5/PM10) in an urban region of Korea

    International Nuclear Information System (INIS)

    Yong-Sam Chung; Sun-Ha Kim; Jong-Hwa Moon; Young-Jin Kim; Jong-Myoung Lim; Jin-Hong Lee

    2006-01-01

    For the identification of air pollution sources, about 500 airborne particulate matter (PM 2.5 and PM 10 ) samples were collected by using a Gent air sampler and a polycarbonate filter in an urban region in the middle of Korea from 2000 to 2003. The concentrations of 25 elements in the samples were measured by using instrumental neutron activation analysis (INAA). Receptor modeling was performed on the air monitoring data by using the positive matrix factorization (PMF2) method. According to this analysis, the existence of 6 to 10 PMF factors, such as metal-alloy, oil combustion, diesel exhaust, coal combustion, gasoline exhaust, incinerator, Cu-smelter, biomass burning, sea-salt, and soil dust were identified. (author)

  19. PM(10) episodes in Greece: Local sources versus long-range transport-observations and model simulations.

    Science.gov (United States)

    Matthaios, Vasileios N; Triantafyllou, Athanasios G; Koutrakis, Petros

    2017-01-01

    Periods of abnormally high concentrations of atmospheric pollutants, defined as air pollution episodes, can cause adverse health effects. Southern European countries experience high particulate matter (PM) levels originating from local and distant sources. In this study, we investigated the occurrence and nature of extreme PM 10 (PM with an aerodynamic diameter ≤10 μm) pollution episodes in Greece. We examined PM 10 concentration data from 18 monitoring stations located at five sites across the country: (1) an industrial area in northwestern Greece (Western Macedonia Lignite Area, WMLA), which includes sources such as lignite mining operations and lignite power plants that generate a high percentage of the energy in Greece; (2) the greater Athens area, the most populated area of the country; and (3) Thessaloniki, (4) Patra, and (5) Volos, three large cities in Greece. We defined extreme PM 10 pollution episodes (EEs) as days during which PM 10 concentrations at all five sites exceeded the European Union (EU) 24-hr PM 10 standards. For each EE, we identified the corresponding prevailing synoptic and local meteorological conditions, including wind surface data, for the period from January 2009 through December 2011. We also analyzed data from remote sensing and model simulations. We recorded 14 EEs that occurred over 49 days and could be grouped into two categories: (1) Local Source Impact (LSI; 26 days, 53%) and (2) African Dust Impact (ADI; 23 days, 47%). Our analysis suggested that the contribution of local sources to ADI EEs was relatively small. LSI EEs were observed only in the cold season, whereas ADI EEs occurred throughout the year, with a higher frequency during the cold season. The EEs with the highest intensity were recorded during African dust intrusions. ADI episodes were found to contribute more than local sources in Greece, with ADI and LSI fraction contribution ranging from 1.1 to 3.10. The EE contribution during ADI fluctuated from 41 to 83

  20. Source apportionment analysis of air pollutants using CMAQ/BFM for national air quality management policy over Republic of Korea.

    Science.gov (United States)

    Moon, N.; Kim, S.; Seo, J.; Lee, Y. J.

    2017-12-01

    Recently, the Korean government is focusing on solving air pollution problem such as fine particulate matter and ozone. Korea has high population density and concentrated industrial complex in its limited land space. For better air quality management, it is important to understand source and contribution relation to target pollutant. The air quality analysis representing the mutual contribution among the local regions enables to understand the substantive state of the air quality of a region in association with neighboring regions. Under this background, the source apportionment of PM10, PM2.5, O3, NO2, SO2 using WRF and CMAQ/BFM was analyzed over Korea and BFM was applied to mobile, area and point sources in each local government. The contribution rate from neighboring region showed different pattern for each pollutant. In case of primary pollutants such as NO2, SO2, local source contribution is dominant, on the other hand secondary pollutants case especially O3, contribution from neighboring region is higher than that from source region itself. Local source contribution to PM10 showed 20-25% and the contribution rate to O3 has big difference with different meteorological condition year after year. From this study, we tried to estimate the conversion rate between source (NOx, VOC, SO2, NH3, PMC, PM2.5, CO) and concentration (PM10, PM2.5, O3, NO2, SO2,) by regional group over Korea. The result can contribute to the decision-making process of important national planning related to large-scale industrial developments and energy supply policies (eg., operations of coal-fired power plants and diesel cars) and emission control plan, where many controversies and concerns are currently concentrated among local governments in Korea. With this kind of approach, various environmental and social problems related to air quality can also be identified early so that a sustainable and environmentally sound plan can be established by providing data infrastructures to be utilized

  1. Association between air pollution and coronary artery calcification within six metropolitan areas in the USA (the Multi-Ethnic Study of Atherosclerosis and Air Pollution): a longitudinal cohort study.

    Science.gov (United States)

    Kaufman, Joel D; Adar, Sara D; Barr, R Graham; Budoff, Matthew; Burke, Gregory L; Curl, Cynthia L; Daviglus, Martha L; Diez Roux, Ana V; Gassett, Amanda J; Jacobs, David R; Kronmal, Richard; Larson, Timothy V; Navas-Acien, Ana; Olives, Casey; Sampson, Paul D; Sheppard, Lianne; Siscovick, David S; Stein, James H; Szpiro, Adam A; Watson, Karol E

    2016-08-13

    Long-term exposure to fine particulate matter less than 2.5 μm in diameter (PM2.5) and traffic-related air pollutant concentrations are associated with cardiovascular risk. The disease process underlying these associations remains uncertain. We aim to assess association between long-term exposure to ambient air pollution and progression of coronary artery calcium and common carotid artery intima-media thickness. In this prospective 10-year cohort study, we repeatedly measured coronary artery calcium by CT in 6795 participants aged 45-84 years enrolled in the Multi-Ethnic Study of Atherosclerosis and Air Pollution (MESA Air) in six metropolitan areas in the USA. Repeated scans were done for nearly all participants between 2002 and 2005, for a subset of participants between 2005 and 2007, and for half of all participants between 2010 and 2012. Common carotid artery intima-media thickness was measured by ultrasound in all participants at baseline and in 2010-12 for 3459 participants. Residence-specific spatio-temporal pollution concentration models, incorporating community-specific measurements, agency monitoring data, and geographical predictors, estimated concentrations of PM2.5 and nitrogen oxides (NOX) between 1999 and 2012. The primary aim was to examine the association between both progression of coronary artery calcium and mean carotid artery intima-media thickness and long-term exposure to ambient air pollutant concentrations (PM2.5, NOX, and black carbon) between examinations and within the six metropolitan areas, adjusting for baseline age, sex, ethnicity, socioeconomic characteristics, cardiovascular risk factors, site, and CT scanner technology. In this population, coronary calcium increased on average by 24 Agatston units per year (SD 58), and intima-media thickness by 12 μm per year (10), before adjusting for risk factors or air pollutant exposures. Participant-specific pollutant concentrations averaged over the years 2000-10 ranged from 9.2-22.6

  2. Impacts of pollution controls on air quality in Beijing during the 2008 Olympic Games.

    Science.gov (United States)

    Shen, Jianlin; Tang, Aohan; Liu, Xuejun; Kopsch, Jenny; Fangmeier, Andreas; Goulding, Keith; Zhang, Fusuo

    2011-01-01

    Air pollution has become one of the main environmental concerns in China since the 1980s due to China's rapid economic growth and resultant pollution. However, it is difficult to directly evaluate the anthropogenic contribution to air pollution in China. The 2008 Olympic Games in Beijing provided a unique opportunity for testing the contribution of anthropogenic pollution because of the clean-up controls on air quality in Beijing enforced over the period of the Games. In this case study, we monitored the concentrations of major air pollutants before, during, and after the Olympics at a suburban site in Beijing. Atmospheric concentrations of PM10, PM2.5, NH3, NO2, SO2, and the particulate ions NH4+, NO3-, SO4(2-) Ca2+, Mg2+, and K+ all decreased during the Olympic period because of strict emission controls, compared with the same period from 2005 to 2007. For example, the average PM10 concentration (61 microg m(-3)) during the Olympics was only 37% of that (166 microg m(-3)) in the same month (August) from 2005 to 2007. However, just 1 mo and 1 yr after the Games had ended, mean concentrations of these pollutants had increased significantly again. This rapid "recovery' of air pollutant concentrations after the Olympics suggests that China needs to implement long-lasting decreases in its air pollution in Beijing and other major cities.

  3. Urban Air Pollution in Taiwan before and after the Installation of a Mass Rapid Transit System.

    Science.gov (United States)

    Ding, Pei-Hsiou; Wang, Gen-Shuh; Chen, Bing-Yu; Wan, Gwo-Hwa

    2016-09-01

    Urbanization causes air pollution in metropolitan areas, coupled with meteorological factors that affect air quality. Although previous studies focused on the relationships of urbanization, air pollution, and climate change in Western countries, this study evaluated long-term variations of air quality and meteorological factors in Taiwanese metropolitan areas (Taipei area, Taichung City, and Kaohsiung City) and a rural area (Hualien County) between 1993 and 2012. The influence of a mass rapid transit (MRT) system on air quality was also evaluated. Air pollutant concentrations and meteorology data were collected from Taiwan Environmental Protection Administration (TEPA) air monitoring stations and Central Weather Bureau stations in the surveyed areas, respectively. Analyses indicate that levels of air pollution in metropolitan areas were greater than in the rural area. Kaohsiung City had the highest levels of O, SO, and particulate matter 2.5 or 10 µm in diameter (PM and PM). Clear downward trends for CO, NO, PM, PM, and especially SO concentrations were found in the surveyed areas, whereas O showed no decrease. Both O and PM concentrations showed similar bimodal seasonal distributions. Taiwan's air quality has improved significantly since 1993, indicating the effectiveness of promoting air pollution strategies and policies by the TEPA. Air pollution had an obvious improvement in Taipei area after the MRT system began operations in 1996. Because global climate may potentially affect urban air pollution in Taiwan, further study to clarify the mechanisms by which air pollution may affect human health and other biological effects is warranted. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  4. Ambient air pollution the risk of stillbirth: A prospective birth cohort study in Wuhan, China.

    Science.gov (United States)

    Yang, Shaoping; Tan, Yafei; Mei, Hui; Wang, Fang; Li, Na; Zhao, Jinzhu; Zhang, Yiming; Qian, Zhengmin; Chang, Jen Jen; Syberg, Kevin M; Peng, Anna; Mei, Hong; Zhang, Dan; Zhang, Yan; Xu, Shunqing; Li, Yuanyuan; Zheng, Tongzhang; Zhang, Bin

    2018-04-01

    Recent studies suggest that ambient air pollution exposure during pregnancy is associated with stillbirth occurrence. However, the results on the associations between ambient air pollutants and stillbirths are inconsistent and little is known about the gestational timing of sensitive periods for the effects of ambient air pollutants exposure on stillbirth. This study aimed to examine whether exposure to high levels of ambient air pollutants in a Chinese population is associated with an increased risk of stillbirth, and determine the gestational period when the fetus is most susceptible. We conducted a population-based cohort study in Wuhan, China, involving 95,354 births between June 10, 2011 and June 9, 2013. The exposure assessments were based on the daily mean concentrations of air pollutants obtained from the exposure monitor nearest to the pregnant women's residence. Logistic regression analyses were performed to determine the associations between stillbirths and exposure to each of the air pollutants at different pregnancy periods with adjustment for confounding factors. Stillbirth increased with a 10 μg/m 3 increase in particulate matter 2.5 (PM 2.5 ) in each stage of pregnancy, and a significant association between carbon monoxide (CO) exposure and stillbirth was found during the third trimester (adjusted odds ratio (aOR): 1.01, 95% confidence interval (CI): 1.00-1.01) and in the entire pregnancy (aOR: 1.18, 95% CI: 1.04-1.34). Furthermore, an increased risk of stillbirth in the third trimester was associated with a 10 μg/m 3 increase in PM 10 (aOR: 1.08, 95% CI: 1.04-1.11), nitrogen dioxide (NO 2 ) (aOR: 1.13, 95% CI: 1.07-1.21) and sulfur dioxide (SO 2 ) (aOR: 1.26, 95% CI: 1.16-1.35). However, no positive association was observed between ozone exposure and stillbirth. In the two-pollutant models, PM 2.5 and CO exposures were found to be consistently associated with stillbirth. Our study revealed that exposure to high levels of PM 2.5 , PM 10 , SO 2

  5. Respiratory disease and particulate air pollution in Santiago Chile: Contribution of erosion particles from fine sediments

    International Nuclear Information System (INIS)

    Garcia-Chevesich, Pablo A.; Alvarado, Sergio; Neary, Daniel G.; Valdes, Rodrigo; Valdes, Juan; Aguirre, Juan José; Mena, Marcelo; Pizarro, Roberto; Jofré, Paola; Vera, Mauricio; Olivares, Claudio

    2014-01-01

    Air pollution in Santiago is a serious problem every winter, causing thousands of cases of breathing problems within the population. With more than 6 million people and almost two million vehicles, this large city receives rainfall only during winters. Depending on the frequency of storms, statistics show that every time it rains, air quality improves for a couple of days, followed by extreme levels of air pollution. Current regulations focus mostly on PM10 and PM2.5, due to its strong influence on respiratory diseases. Though more than 50% of the ambient PM10s in Santiago is represented by soil particles, most of the efforts have been focused on the remaining 50%, i.e. particulate material originating from fossil and wood fuel combustion, among others. This document emphasizes the need for the creation of erosion/sediment control regulations in Chile, to decrease respiratory diseases on Chilean polluted cities. - We emphasize the urgent need to implement erosion and sediment control politics in Santiago, to decrease PM10 concentrations in the city's air, based on the US experience

  6. Cardiovascular effects of air pollution.

    Science.gov (United States)

    Brook, Robert D

    2008-09-01

    Air pollution is a heterogeneous mixture of gases, liquids and PM (particulate matter). In the modern urban world, PM is principally derived from fossil fuel combustion with individual constituents varying in size from a few nanometres to 10 microm in diameter. In addition to the ambient concentration, the pollution source and chemical composition may play roles in determining the biological toxicity and subsequent health effects. Nevertheless, studies from across the world have consistently shown that both short- and long-term exposures to PM are associated with a host of cardiovascular diseases, including myocardial ischaemia and infarctions, heart failure, arrhythmias, strokes and increased cardiovascular mortality. Evidence from cellular/toxicological experiments, controlled animal and human exposures and human panel studies have demonstrated several mechanisms by which particle exposure may both trigger acute events as well as prompt the chronic development of cardiovascular diseases. PM inhaled into the pulmonary tree may instigate remote cardiovascular health effects via three general pathways: instigation of systemic inflammation and/or oxidative stress, alterations in autonomic balance, and potentially by direct actions upon the vasculature of particle constituents capable of reaching the systemic circulation. In turn, these responses have been shown to trigger acute arterial vasoconstriction, endothelial dysfunction, arrhythmias and pro-coagulant/thrombotic actions. Finally, long-term exposure has been shown to enhance the chronic genesis of atherosclerosis. Although the risk to one individual at any single time point is small, given the prodigious number of people continuously exposed, PM air pollution imparts a tremendous burden to the global public health, ranking it as the 13th leading cause of morality (approx. 800,000 annual deaths).

  7. [Air pollution and cardiovascular disease in Trondheim].

    Science.gov (United States)

    Mannsåker, Bård; Vikan, Torkel; Holme, Jonas

    2004-05-20

    There is some evidence linking air pollution to cardiovascular morbidity. Our aim was to examine whether there is a correlation between air pollution and cardiovascular morbidity in the city of Trondheim, Norway. We compared the mean daily number of admissions for cardiovascular disease to the St. Olav University hospital on days with relatively low and high levels of PM10 (1993-2001), PM2,5, NO, NO2, SO2, O3, toluene and paraxylene (1998-2001). A time series analysis was carried out to see how day-to-day variations in concentrations of air pollutants correlated with the number of hospitalizations for cardiovascular disease. In the bivariate analysis, the mean daily number of hospitalizations was found to be significantly higher (p < 0.05) on days with NO and NO2 levels above the 80 th percentile (57.6 microg/m3 and 43.1 microg/m3, respectively) than on days with pollutant levels below the 20th percentile (11.3 microg/m3 and 16.9 microg/m3, respectively). Time series analysis did not show any statistically significant correlation between day-to-day variations in air pollution and hospital admissions for cardiovascular disease. The findings regarding NO2 and NO indicate that exposure to gases and/or ultra-small particles from diesel exhaust may influence cardiovascular morbidity.

  8. Assesment of Pb concentration in PM_2_,_5 and PM_1_0 at Serpong area

    International Nuclear Information System (INIS)

    Rita; Esrom Hamonangan; Halimah Syafrul; Muhayatun Santoso; Diah Dwiana Lestian

    2010-01-01

    Ambient air pollution, especially Pb, in Serpong area has been detected since 1996. Pollution caused by heavy metals Pb deserve serious attention because of the impact is very influential on health such as reduced levels of intelligence, learning disability, symptoms of anemia, barriers to growth, poor cognitive development, weakened immune system, symptoms of autism, and even premature death. This study was conducted to determine Pb concentration of PM_2_,_5 and PM_1_0 in four residential locations in Serpong area as part of a series of comprehensive studies for the characterization and identification of sources pollution. Particulates were sampled using Gent Stacked Filter Unit Sampler at 3 housing locations and 1 office location in the period of August 25 to November 3, 2008, Samples were analyzed using nuclear analytical techniques, Proton Induced X-ray Emission. The results showed that the activity concentration of Pb in PM_2_,_5 for the location of Setu, Pusarpedal, Batan Indah, and BSD were in the range of 33-388, 12-254, 6-282, and 5-332 ng/m"3, while for PM_1_0 were 69-732, 59-647, 31-810, and 28718 ng/m"3, respectively, In general, Pb concentrations in Serpong area were higher than those in some other cities in Asia region. These results are expected to be used as scientific based reference in formulating, taking action, and appropriate policies to overcome environmental problems. (author)

  9. Ambient air pollution, smog episodes and mortality in Jinan, China.

    Science.gov (United States)

    Zhang, Jun; Liu, Yao; Cui, Liang-Liang; Liu, Shou-Qin; Yin, Xi-Xiang; Li, Huai-Chen

    2017-09-11

    We aimed to assess the acute effects of ambient air pollution and weather conditions on mortality in the context of Chinese smog episodes. A total of 209,321 deaths were recorded in Jinan, a large city in eastern China, during 2011-15. The mean concentrations of daily particulate matter ≤10 μm (PM 10 ), fine particulate matter (PM 2.5 ), sulfur dioxide (SO 2 ) and nitrogen dioxide (NO 2 ) were 169 μg/m 3 , 100 μg/m 3 , 77 μg/m 3 , and 54 μg/m 3 , respectively. Increases of 10 μg/m 3 in PM 10 , PM 2.5 , SO 2 and NO 2 were associated with 1.11% (95% CI 0.96-1.26%), 0.71% (95% CI 0.60-0.82%), 1.69% (95% CI 1.56-1.83%), and 3.12% (95% CI 2.72-3.53%) increases in daily non-accidental mortality rates, respectively. Moreover, the risk estimates for these 4 pollutants were higher in association with respiratory and cardiovascular mortality. The effects of all the evaluated pollutants on mortality were greater in winter than in summer. Smog episodes were associated with a 5.87% (95% CI 0.16-11.58%) increase in the rate of overall mortality. This study highlights the effect of exposure to air pollution on the rate of mortality in China.

  10. Synoptic weather types and aeroallergens modify the effect of air pollution on hospitalisations for asthma hospitalisations in Canadian cities

    International Nuclear Information System (INIS)

    Hebbern, Christopher; Cakmak, Sabit

    2015-01-01

    Pollution levels and the effect of air pollution on human health can be modified by synoptic weather type and aeroallergens. We investigated the effect modification of aeroallergens on the association between CO, O 3 , NO 2 , SO 2 , PM 10 , PM 2.5 and asthma hospitalisation rates in seven synoptic weather types. We developed single air pollutant models, adjusted for the effect of aeroallergens and stratified by synoptic weather type, and pooled relative risk estimates for asthma hospitalisation in ten Canadian cities. Aeroallergens significantly modified the relative risk in 19 pollutant-weather type combinations, reducing the size and variance for each single pollutant model. However, aeroallergens did not significantly modify relative risk for any pollutant in the DT or MT weather types, or for PM 10 in any weather type. Thus, there is a modifying effect of aeroallergens on the association between CO, O 3 , NO 2 , SO 2 , PM 2.5 and asthma hospitalisations that differs under specific synoptic weather types. - Highlights: • We model effect modification of aeroallergens on air pollutant–asthma association. • The air pollutant association was modelled in seven synoptic weather types. • Aeroallergens modify CO, O 3 , NO 2 , SO 2 , and PM 2.5 effect on asthma hospitalisations. • Synoptic weather types modify the air pollutant and asthma association. - We identify a modifying effect of aeroallergens on the relationship between air pollutants and hospitalisation rates for asthma, that differs under specific synoptic weather types

  11. Air pollution studies in terms of PM2.5, PM2.5-10, PM10, lead and black carbon in urban areas of Antananarivo-Madagascar

    International Nuclear Information System (INIS)

    Rasoazanany, E. O.; Andriamahenina, N. N.; Ravoson, H. N.; Raoelina Andriambololona; Randriamanivo, L. V.; Ramaherison, H.; Ahmed, H.; Harinoely, M.

    2011-01-01

    Atmospheric aerosols or particulate matters are chemically complex and dynamic mixtures of solid and liquid particles. Sources of particulate matters include both natural and anthropogenic processes. The present work consists in determining the concentrations of existing elements in the aerosols collected in Andravoahangy and in Ambodin Isotry in Antananarivo city (Madagascar). The size distribution of these elements and their main sources are also studied.The Total Reflection X-Ray Fluorescence spectrometer is used for the qualitative and quantitative analyses. The results show that the concentrations of the airborne particulate matters PM 2.5-10 are higher than those of PM 2.5 .The identified elements in the aerosol samples are Ti, Cr, Mn, Fe, Ni, Cu, Zn, Br, Sr and Pb. The average concentrations of these elements are also higher in the coarse particles than in the fine particles. The calculation of the enrichment factors by Mason's model shows that Cr, Ni, Cu, Zn, Br and Pb are of anthropogenic origins. The average concentrations of lead (2.8 ng.m -3 , 31.3 ng.m -3 and 19.6 ng.m -3 respectively in aerosols collected in Andravoahangy in 2007 and in 2008 and in Ambodin Isotry in 2008) are largely lower than the average concentration of 1.8 μg.m -3 obtained in 2000 in the Antananarivo urban areas. The concentration of black carbon is higher in the fine particles. The Air Quality Index category is variable in the two sites.

  12. Impact of ambient air pollution on physical activity among adults: a systematic review and meta-analysis.

    Science.gov (United States)

    An, Ruopeng; Zhang, Sheng; Ji, Mengmeng; Guan, Chenghua

    2018-03-01

    This study systematically reviewed literature regarding the impact of ambient air pollution on physical activity among children and adults. Keyword and reference search was conducted in PubMed and Web of Science to systematically identify articles meeting all of the following criteria - study designs: interventions or experiments, retrospective or prospective cohort studies, cross-sectional studies, and case-control studies; subjects: adults; exposures: specific air pollutants and overall air quality; outcomes: physical activity and sedentary behaviour; article types: peer-reviewed publications; and language: articles written in English. Meta-analysis was performed to estimate the pooled effect size of ambient PM 2.5 air pollution on physical inactivity. Seven studies met the inclusion criteria. Among them, six were conducted in the United States, and one was conducted in the United Kingdom. Six adopted a cross-sectional study design, and one used a prospective cohort design. Six had a sample size larger than 10,000. Specific air pollutants assessed included PM 2.5 , PM 10 , O 3 , and NO x , whereas two studies focused on overall air quality. All studies found air pollution level to be negatively associated with physical activity and positively associated with leisure-time physical inactivity. Study participants, and particularly those with respiratory disease, self-reported a reduction in outdoor activities to mitigate the detrimental impact of air pollution. Meta-analysis revealed a one unit (μg/m 3 ) increase in ambient PM 2.5 concentration to be associated with an increase in the odds of physical inactivity by 1.1% (odds ratio = 1.011; 95% confidence interval = 1.001, 1.021; p-value air pollution discouraged physical activity. Current literature predominantly adopted a cross-sectional design and focused on the United States. Future studies are warranted to implement a longitudinal study design and evaluate the impact of air pollution on physical

  13. Urban Air Pollution by Nanoparticles in Ostrava Region

    International Nuclear Information System (INIS)

    Zdenka, Kalicáková; Pavel, Danihelka; Vladimír, Mícka; Karel, Lach

    2013-01-01

    Air pollution harms human health and the environment. Ostrava's agglomeration and its immediate vicinity suffer regular exceeding of air pollution limits due to its geomorphologic location and present heavy industry. Maximum exceedances of air quality standards and especially PM10 which 24 hour limit value is in EU 50μg.m-3, must not be exceeded more than 35 days per year. This limit is being still often exceeded. In the year 2011 such as situation occurred 126 times. It is very important then for identify sources of air pollution to find out maximum information about air borne dust, like size distribution, chemical composition of individual size fractions, morphology of particulate matter together with other parameters like meteorological conditions, year season etc. Our measurement started two years ago. We focus on the critical situation when there are values of PM10 over a long period above the limit. In winter season it is so called inversion. By default, during the campaign it is measured size distribution of air born dust in range 5.6 nm −560nm by FMPS and using the sampler NanoId are collected samples in range 1nm – 35μm in 12 size fractions for chemical analysis and morphological observations. This contribution deals with results of size distributions only.

  14. Long-Term Exposure to Ambient Air Pollution and Incidence of Postmenopausal Breast Cancer in 15 European Cohorts within the ESCAPE Project

    Science.gov (United States)

    Stafoggia, Massimo; Weinmayr, Gudrun; Pedersen, Marie; Galassi, Claudia; Jørgensen, Jeanette T.; Oudin, Anna; Forsberg, Bertil; Olsson, David; Oftedal, Bente; Marit Aasvang, Gunn; Aamodt, Geir; Pyko, Andrei; Pershagen, Göran; Korek, Michal; De Faire, Ulf; Pedersen, Nancy L.; Östenson, Claes-Göran; Fratiglioni, Laura; Eriksen, Kirsten T.; Tjønneland, Anne; Peeters, Petra H.; Bueno-de-Mesquita, Bas; Plusquin, Michelle; Key, Timothy J.; Jaensch, Andrea; Nagel, Gabriele; Lang, Alois; Wang, Meng; Tsai, Ming-Yi; Fournier, Agnes; Boutron-Ruault, Marie-Christine; Baglietto, Laura; Grioni, Sara; Marcon, Alessandro; Krogh, Vittorio; Ricceri, Fulvio; Sacerdote, Carlotta; Migliore, Enrica; Tamayo-Uria, Ibon; Amiano, Pilar; Dorronsoro, Miren; Vermeulen, Roel; Sokhi, Ranjeet; Keuken, Menno; de Hoogh, Kees; Beelen, Rob; Vineis, Paolo; Cesaroni, Giulia; Brunekreef, Bert; Hoek, Gerard; Raaschou-Nielsen, Ole

    2017-01-01

    Background: Epidemiological evidence on the association between ambient air pollution and breast cancer risk is inconsistent. Objective: We examined the association between long-term exposure to ambient air pollution and incidence of postmenopausal breast cancer in European women. Methods: In 15 cohorts from nine European countries, individual estimates of air pollution levels at the residence were estimated by standardized land-use regression models developed within the European Study of Cohorts for Air Pollution Effects (ESCAPE) and Transport related Air Pollution and Health impacts - Integrated Methodologies for Assessing Particulate Matter (TRANSPHORM) projects: particulate matter (PM) ≤2.5μm, ≤10μm, and 2.5–10μm in diameter (PM2.5, PM10, and PMcoarse, respectively); PM2.5 absorbance; nitrogen oxides (NO2 and NOx); traffic intensity; and elemental composition of PM. We estimated cohort-specific associations between breast cancer and air pollutants using Cox regression models, adjusting for major lifestyle risk factors, and pooled cohort-specific estimates using random-effects meta-analyses. Results: Of 74,750 postmenopausal women included in the study, 3,612 developed breast cancer during 991,353 person-years of follow-up. We found positive and statistically insignificant associations between breast cancer and PM2.5 {hazard ratio (HR)=1.08 [95% confidence interval (CI): 0.77, 1.51] per 5 μg/m3}, PM10 [1.07 (95% CI: 0.89, 1.30) per 10 μg/m3], PMcoarse [1.20 (95% CI: 0.96, 1.49 per 5 μg/m3], and NO2 [1.02 (95% CI: 0.98, 1.07 per 10 μg/m3], and a statistically significant association with NOx [1.04 (95% CI: 1.00, 1.08) per 20 μg/m3, p=0.04]. Conclusions: We found suggestive evidence of an association between ambient air pollution and incidence of postmenopausal breast cancer in European women. https://doi.org/10.1289/EHP1742 PMID:29033383

  15. Indoor Air Pollution and Risk of Lung Cancer among Chinese Female Non-Smokers

    Science.gov (United States)

    Mu, Lina; Liu, Li; Niu, Rungui; Zhao, Baoxing; Shi, Jianping; Li, Yanli; Scheider, William; Su, Jia; Chang, Shen-Chih; Yu, Shunzhang; Zhang, Zuo-Feng

    2013-01-01

    Purpose To investigate indoor particulate matter (PM) level and various indoor air pollution exposure, and to examine their relationships with risk of lung cancer in an urban Chinese population, with a focus on non-smoking women. Methods We conducted a case-control study in Taiyuan, China, consisting of 399 lung cancer cases and 466 controls, of which 164 cases and 218 controls were female non-smokers. Indoor PM concentrations, including PM1, PM2.5, PM7, PM10 and TSP, were measured using a particle mass monitor. Unconditional logistic regression models were used to calculate odds ratios (ORs) and 95% confidence intervals after adjusting for age, education, annual income and smoking. Results Among non-smoking women, lung cancer was strongly associated with multiple sources of indoor air pollution 10 years ago, including heavy exposure to ETS at work (aOR=3.65), high frequency of cooking (aOR=3.30), and solid fuel usage for cooking (aOR=4.08) and heating (aORcoal stove=2.00). Housing characteristics related to poor ventilation, including single-story, less window area, no separate kitchen, no ventilator and rarely having windows open, are associated with lung cancer. Indoor medium PM2.5 concentration was 68ug/m3, and PM10 was 230ug/m3. PM levels in winter are strongly correlated with solid fuel usage for cooking, heating and ventilators. PM1 levels in cases are more than 3-time higher than that in controls. Every 10 ug/m3 increase in PM1 is associated with 45% increased risk of lung cancer. Conclusions Indoor air pollution plays an important role in the development of lung cancer among non-smoking Chinese women. PMID:23314675

  16. Air Pollution Control Policies in China: A Retrospective and Prospects.

    Science.gov (United States)

    Jin, Yana; Andersson, Henrik; Zhang, Shiqiu

    2016-12-09

    With China's significant role on pollution emissions and related health damage, deep and up-to-date understanding of China's air pollution policies is of worldwide relevance. Based on scientific evidence for the evolution of air pollution and the institutional background of environmental governance in China, we examine the development of air pollution control policies from the 1980s and onwards. We show that: (1) The early policies, until 2005, were ineffective at reducing emissions; (2) During 2006-2012, new instruments which interact with political incentives were introduced in the 11th Five-Year Plan, and the national goal of reducing total sulfur dioxide (SO₂) emissions by 10% was achieved. However, regional compound air pollution problems dominated by fine particulate matter (PM 2.5 ) and ground level ozone (O₃) emerged and worsened; (3) After the winter-long PM 2.5 episode in eastern China in 2013, air pollution control policies have been experiencing significant changes on multiple fronts. In this work we analyze the different policy changes, the drivers of changes and key factors influencing the effectiveness of policies in these three stages. Lessons derived from the policy evolution have implications for future studies, as well as further reforming the management scheme towards air quality and health risk oriented directions.

  17. Differentiating the effects of characteristics of PM pollution on mortality from ischemic and hemorrhagic strokes.

    Science.gov (United States)

    Lin, Hualiang; Tao, Jun; Du, Yaodong; Liu, Tao; Qian, Zhengmin; Tian, Linwei; Di, Qian; Zeng, Weilin; Xiao, Jianpeng; Guo, Lingchuan; Li, Xing; Xu, Yanjun; Ma, Wenjun

    2016-03-01

    Though increasing evidence supports significant association between particulate matter (PM) air pollution and stroke, it remains unclear what characteristics, such as particle size and chemical constituents, are responsible for this association. A time-series model with quasi-Poisson function was applied to assess the association of PM pollution with different particle sizes and chemical constituents with mortalities from ischemic and hemorrhagic strokes in Guangzhou, China, we controlled for potential confounding factors in the model, such as temporal trends, day of the week, public holidays, meteorological factors and influenza epidemic. We found significant association between stroke mortality and various PM fractions, such as PM10, PM2.5 and PM1, with generally larger magnitudes for smaller particles. For the PM2.5 chemical constituents, we found that organic carbon (OC), elemental carbon (EC), sulfate, nitrate and ammonium were significantly associated with stroke mortality. The analysis for specific types of stroke suggested that it was hemorrhagic stroke, rather than ischemic stroke, that was significantly associated with PM pollution. Our study shows that various PM pollution fractions are associated with stroke mortality, and constituents primarily from combustion and secondary aerosols might be the harmful components of PM2.5 in Guangzhou, and this study suggests that PM pollution is more relevant to hemorrhagic stroke in the study area, however, more studies are warranted due to the underlying limitations of this study. Copyright © 2015 Elsevier GmbH. All rights reserved.

  18. Air pollution and cardiovascular mortality with over 25years follow-up: A combined analysis of two British cohorts.

    Science.gov (United States)

    Dehbi, Hakim-Moulay; Blangiardo, Marta; Gulliver, John; Fecht, Daniela; de Hoogh, Kees; Al-Kanaani, Zaina; Tillin, Therese; Hardy, Rebecca; Chaturvedi, Nish; Hansell, Anna L

    2017-02-01

    Adverse effects of air pollution on cardiovascular disease (CVD) mortality are well established. There are comparatively fewer studies in Europe, and in the UK particularly, than in North America. We examined associations in two British cohorts with >25years of follow-up. Annual average NO 2 , SO 2 and black smoke (BS) air pollution exposure estimates for 1991 were obtained from land use regression models using contemporaneous monitoring data. From the European Study of Cohorts and Air Pollution (ESCAPE), air pollution estimates in 2010-11 were obtained for NO 2 , NO x , PM 10 , PM coarse and PM 2.5 . The exposure estimates were assigned to place of residence 1989 for participants in a national birth cohort born in 1946, the MRC National Study of Health and Development (NSHD), and an adult multi-ethnic London cohort, Southall and Brent Revisited (SABRE) recruited 1988-91. The combined median follow-up was 26years. Single-pollutant competing risk models were employed, adjusting for individual risk factors. Elevated non-significant hazard ratios for CVD mortality were seen with 1991 BS and SO 2 and with ESCAPE PM 10 and PM 2.5 in fully adjusted linear models. Per 10μg/m 3 increase HRs were 1.11 [95% CI: 0.76-1.61] for BS, 1.05 [95% CI: 0.91-1.22] for SO 2 , 1.16 [95% CI: 0.70-1.92] for PM 10 and 1.30 [95% CI: 0.39-4.34] for PM 2.5 , with largest effects seen in the fourth quartile of BS and PM 2.5 compared to the first with HR 1.24 [95% CI: 0.91-1.61] and 1.21 [95% CI: 0.88-1.66] respectively. There were no consistent associations with other ESCAPE pollutants, or with 1991 NO 2 . Modelling using Cox regression led to similar results. Our results support a detrimental long-term effect for air pollutants on cardiovascular mortality. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  19. Air Pollution and Glucose Metabolism: An Analysis in Non-Diabetic Participants of the Heinz Nixdorf Recall Study.

    Science.gov (United States)

    Lucht, Sarah A; Hennig, Frauke; Matthiessen, Clara; Ohlwein, Simone; Icks, Andrea; Moebus, Susanne; Jöckel, Karl-Heinz; Jakobs, Hermann; Hoffmann, Barbara

    2018-04-03

    Despite the importance of understanding the connection between air pollution exposure and diabetes, studies investigating links between air pollution and glucose metabolism in nondiabetic adults are limited. We aimed to estimate the association of medium-term air pollution exposures with blood glucose and glycated hemoglobin A1c (HbA1c) among nondiabetics. This study included observations from nondiabetic participants (n obs =7,108) of the population-based Heinz Nixdorf Recall study at baseline (2000–2003) and follow-up examination (2006–2008). Daily fine particulate matter (aerodynamic diameter≤2.5 μm, PM 2.5 ; aerodynamic diameter≤10 μm, PM 10 ), accumulation mode particle number (PN AM ), and nitrogen dioxide (NO 2 ) exposures were estimated at participants’ residences using the spatiotemporal European Air Pollution Dispersion (EURAD) chemistry transport model. We evaluated the associations between medium-term air pollution exposures (28- and 91-d means) and glucose metabolism measures using mixed linear regression and adjusting for season, meteorology, and personal characteristics. A range of other exposure windows (1-, 2-, 3-, 7-, 14-, 45-, 60-, 75-, 105-, 120-, and 182-d means) were also evaluated to identify potentially relevant biological windows. We observed positive associations between PM 2.5 and PN AM exposures and blood glucose levels [e.g., 28-d PM 2.5 : 0.91 mg/dL (95% CI: 0.38, 1.44) per 5.7 μg/m 3 ]. PM 2.5 , PM 10 , and PN AM exposures were positively associated with HbA1c [e.g., 91-d PM 2.5 : 0.07 p.p. (95% CI: 0.04, 0.10) per 4.0 μg/m 3 ]. Mean exposures during longer exposure windows (75- to 105-d) were most strongly associated with HbA1c, whereas 7- to 45-d exposures were most strongly associated with blood glucose. NO 2 exposure was not associated with blood glucose or with HbA1c. Medium-term PM and PN AM exposures were positively associated with glucose measures in nondiabetic adults. These findings indicate

  20. Use of multi-objective air pollution monitoring sites and online air pollution monitoring system for total health risk assessment in Hyderabad, India.

    Science.gov (United States)

    Anjaneyulu, Y; Jayakumar, I; Hima Bindu, V; Sagareswar, G; Mukunda Rao, P V; Rambabu, N; Ramani, K V

    2005-08-01

    A consensus has been emerging among public health experts in developing countries that air pollution, even at current ambient levels, aggravates respiratory and cardiovascular diseases and leads to premature mortality. Recent studies have also presented well-founded theories concerning the biological mechanisms involved and the groups of people that are probably more susceptible to health effects caused or exacerbated by inhalation of ambient particulate matter (PM.). On the basis of prognostic studies carried out in Center for Environment, JNT University, Hyderabad "it has been estimated that in Hyderabad some 1,700 to 3,000 people per year die prematurely as a result of inhaling PM". These figures reflect only the effects of acute exposure to air pollution. If the long-term effects of chronic exposure are taken into account, 10,000-15,000 people a year could die prematurely in Hyderabad. This estimate of the chronic effects is based on other studies, which are not completely comparable with the Hyderabad situation. While the study designs and analyses in these other studies may indeed be different or irrelevant to Hyderabad, the fact they were carried out in other countries is irrelevant. Taking into account these considerations, a model for total health risk assessment for the city of Hyderabad, and its state of Andhra Pradesh in India has been developed using a multi-objective air pollution monitoring network and online and real time air pollution monitoring stations. For the model studies a number of potential monitoring sites were screened for general and site-specific criteria in a geographic information system (GIS) environment that may, on a local basis, affect the representativeness of the data collected. Local features that may affect either the chemical or meteorological parameters are evaluated to assure a minimum of interference. Finally, for monitoring air pollution, an online and real-time monitoring system was designed using advanced

  1. Characterization of particle number concentrations and PM2.5 in a school: influence of outdoor air pollution on indoor air.

    Science.gov (United States)

    Guo, Hai; Morawska, Lidia; He, Congrong; Zhang, Yanli L; Ayoko, Godwin; Cao, Min

    2010-07-01

    The impact of air pollution on school children's health is currently one of the key foci of international and national agencies. Of particular concern are ultrafine particles which are emitted in large quantities, contain large concentrations of toxins and are deposited deeply in the respiratory tract. In this study, an intensive sampling campaign of indoor and outdoor airborne particulate matter was carried out in a primary school in February 2006 to investigate indoor and outdoor particle number (PN) and mass concentrations (PM(2.5)), and particle size distribution, and to evaluate the influence of outdoor air pollution on the indoor air. For outdoor PN and PM(2.5), early morning and late afternoon peaks were observed on weekdays, which are consistent with traffic rush hours, indicating the predominant effect of vehicular emissions. However, the temporal variations of outdoor PM(2.5) and PN concentrations occasionally showed extremely high peaks, mainly due to human activities such as cigarette smoking and the operation of mower near the sampling site. The indoor PM(2.5) level was mainly affected by the outdoor PM(2.5) (r = 0.68, p changes to the modal structure of particle number and size distribution, even though the I/O ratio was different for different size classes. The I/O curves had a maximum value for particles with diameters of 100-400 nm under both occupied and unoccupied scenarios, whereas no significant difference in I/O ratio for PM(2.5) was observed between occupied and unoccupied conditions. Inspection of the size-resolved I/O ratios in the preschool centre and the classroom suggested that the I/O ratio in the preschool centre was the highest for accumulation mode particles at 600 nm after school hours, whereas the average I/O ratios of both nucleation mode and accumulation mode particles in the classroom were much lower than those of Aitken mode particles. The findings obtained in this study are useful for epidemiological studies to estimate the

  2. Air pollutants and atmospheric pressure increased risk of ED visit for spontaneous pneumothorax.

    Science.gov (United States)

    Park, Joo Hyung; Lee, Sun Hwa; Yun, Seong Jong; Ryu, Seokyong; Choi, Seung Woon; Kim, Hye Jin; Kang, Tae Kyung; Oh, Sung Chan; Cho, Suk Jin

    2018-04-14

    To investigate the impact of short-term exposure to air pollutants and meteorological variation on ED visits for primary spontaneous pneumothorax (PSP). We retrospectively identified PSP cases that presented at the ED of our tertiary center between January 2015 and September 2016. We classified the days into three types: no PSP day (0 case/day), sporadic days (1-2 cases/day), and cluster days (PSP, ≥3 cases/day). Association between the daily incidence of PSP with air pollutants and meteorological data were determined using Poisson generalized-linear-model to calculate incidence rate ratio (IRRs) and the use of time-series (lag-1 [the cumulative air pollution level on the previous day of PSP], lag-2 [two days ago], and lag-3 [three days ago]). Using multivariate logistic regression analysis, O 3 (p = 0.010), NO 2 (p = 0.047), particulate matters (PM) 10 (p = 0.021), and PM 2.5 (p = 0.008) were significant factors of PSP occurrence. When the concentration of O 3 , NO 2 , PM 10 , and PM 2.5 were increased, PSP IRRs increased approximately 15, 16, 3, and 5-fold, respectively. With the time-series analyses, atmospheric pressure in lag-3 was significantly lower and in lag-2, was significantly higher in PSP days compared with no PSP days. Among air pollutant concentrations, O 3 in lag-1 (p = 0.017) and lag-2 (p = 0.038), NO 2 in lag-1 (p = 0.015) and lag-2 (p = 0.009), PM 10 in lag-1 (p = 0.012), and PM 2.5 in lag-1 (p = 0.021) and lag-2 (p = 0.032) were significantly different between no PSP and PSP days. Increased concentrations of air pollutants and abrupt change in atmospheric pressure were significantly associated with increased IRR of PSP. Copyright © 2018 Elsevier Inc. All rights reserved.

  3. Using Google Location History to track personal exposure to air pollution

    Science.gov (United States)

    Marais, E. A.; Wiedinmyer, C.

    2017-12-01

    Big data is increasingly used in air pollution research to monitor air quality and develop mitigation strategies. Google Location History provides an archive of geolocation and time information from mobile devices that can be used to track personal exposure to air pollution. Here we demonstrate the utility of Google Location History for assessing true exposure of individuals to air pollution hazardous to human health in an increasingly mobile world. We use the GEOS-Chem chemical transport model at coarse resolution (2° × 2.5°; latitude × longitude) to calculate and sample surface concentrations of fine particle mass (PM2.5) and ozone concentrations at the same time and location of each of six volunteers for 2 years (June 2015 to May 2017) and compare this to annual mean PM2.5 and ozone estimated at their postal addresses. The latter is synonymous with Global Burden of Disease studies that use a static population distribution map. We find that mobile PM2.5 is higher than static PM2.5 for most (five out of six) volunteers and can lead to a 10% increase in the risk for ischemic heart disease and stroke mortality. The difference may be more if instead a high resolution CTM or an abundant air quality monitoring network is used. There is tremendous potential to exploit geolocation and time data from mobile devices for cohort health studies and to determine best practices for limiting personal exposure to air pollution.

  4. The Association between Air Pollution and Outpatient and Inpatient Visits in Shenzhen, China

    Science.gov (United States)

    Liu, Yachuan; Chen, Shanen; Xu, Jian; Liu, Xiaojian; Wu, Yongsheng; Zhou, Lin; Cheng, Jinquan; Ma, Hanwu; Zheng, Jing; Lin, Denan; Zhang, Li; Chen, Lili

    2018-01-01

    Nowadays, air pollution is a severe environmental problem in China. To investigate the effects of ambient air pollution on health, a time series analysis of daily outpatient and inpatient visits in 2015 were conducted in Shenzhen (China). Generalized additive model was employed to analyze associations between six air pollutants (namely SO2, CO, NO2, O3, PM10, and PM2.5) and daily outpatient and inpatient visits after adjusting confounding meteorological factors, time and day of the week effects. Significant associations between air pollutants and two types of hospital visits were observed. The estimated increase in overall outpatient visits associated with each 10 µg/m3 increase in air pollutant concentration ranged from 0.48% (O3 at lag 2) to 11.48% (SO2 with 2-day moving average); for overall inpatient visits ranged from 0.73% (O3 at lag 7) to 17.13% (SO2 with 8-day moving average). Our results also suggested a heterogeneity of the health effects across different outcomes and in different populations. The findings in present study indicate that even in Shenzhen, a less polluted area in China, significant associations exist between air pollution and daily number of overall outpatient and inpatient visits. PMID:29360738

  5. The Association between Air Pollution and Outpatient and Inpatient Visits in Shenzhen, China

    Directory of Open Access Journals (Sweden)

    Yachuan Liu

    2018-01-01

    Full Text Available Nowadays, air pollution is a severe environmental problem in China. To investigate the effects of ambient air pollution on health, a time series analysis of daily outpatient and inpatient visits in 2015 were conducted in Shenzhen (China. Generalized additive model was employed to analyze associations between six air pollutants (namely SO2, CO, NO2, O3, PM10, and PM2.5 and daily outpatient and inpatient visits after adjusting confounding meteorological factors, time and day of the week effects. Significant associations between air pollutants and two types of hospital visits were observed. The estimated increase in overall outpatient visits associated with each 10 µg/m3 increase in air pollutant concentration ranged from 0.48% (O3 at lag 2 to 11.48% (SO2 with 2-day moving average; for overall inpatient visits ranged from 0.73% (O3 at lag 7 to 17.13% (SO2 with 8-day moving average. Our results also suggested a heterogeneity of the health effects across different outcomes and in different populations. The findings in present study indicate that even in Shenzhen, a less polluted area in China, significant associations exist between air pollution and daily number of overall outpatient and inpatient visits.

  6. Air pollutant characterization in Tula industrial corridor, Central Mexico, during the MILAGRO study.

    Science.gov (United States)

    Sosa, G; Vega, E; González-Avalos, E; Mora, V; López-Veneroni, D

    2013-01-01

    Pollutant emissions and their contribution to local and regional air quality at the industrial area of Tula were studied during a four-week period as part of the MILAGRO initiative. A recurrent shallow stable layer was observed in the morning favoring air pollutants accumulation in the lower 100 m atmospheric layer. In the afternoon the mixing layer height reached 3000 m, along with a featuring low level jet which was responsible of transporting air pollutants at regional scales. Average PM10 at Jasso (JAS) and Tepeji (TEP) was 75.1 and 36.8 μ g/m(3), respectively while average PM2.5 was 31.0 and 25.7 μ g/m(3). JAS was highly impacted by local limestone dust, while TEP was a receptor of major sources of combustion emissions with 70% of the PM10 constituted by PM2.5. Average hourly aerosol light absorption was 22 Mm(-1), while aerosol scattering (76 Mm(-1)) was higher compared to a rural site but much lower than at Mexico City. δ(13)C values in the epiphyte Tillandsia recurvata show that the emission plume directly affects the SW sector of Mezquital Valley and is then constrained by a mountain range preventing its dispersion. Air pollutants may exacerbate acute and chronic adverse health effects in this region.

  7. Air Pollutant Characterization in Tula Industrial Corridor, Central Mexico, during the MILAGRO Study

    Directory of Open Access Journals (Sweden)

    G. Sosa

    2013-01-01

    Full Text Available Pollutant emissions and their contribution to local and regional air quality at the industrial area of Tula were studied during a four-week period as part of the MILAGRO initiative. A recurrent shallow stable layer was observed in the morning favoring air pollutants accumulation in the lower 100 m atmospheric layer. In the afternoon the mixing layer height reached 3000 m, along with a featuring low level jet which was responsible of transporting air pollutants at regional scales. Average PM10 at Jasso (JAS and Tepeji (TEP was 75.1 and 36.8 μg/m3, respectively while average PM2.5 was 31.0 and 25.7 μg/m3. JAS was highly impacted by local limestone dust, while TEP was a receptor of major sources of combustion emissions with 70% of the PM10 constituted by PM2.5. Average hourly aerosol light absorption was 22 Mm−1, while aerosol scattering (76 Mm−1 was higher compared to a rural site but much lower than at Mexico City. δ13C values in the epiphyte Tillandsia recurvata show that the emission plume directly affects the SW sector of Mezquital Valley and is then constrained by a mountain range preventing its dispersion. Air pollutants may exacerbate acute and chronic adverse health effects in this region.

  8. Neurotoxicity of traffic-related air pollution.

    Science.gov (United States)

    Costa, Lucio G; Cole, Toby B; Coburn, Jacki; Chang, Yu-Chi; Dao, Khoi; Roqué, Pamela J

    2017-03-01

    The central nervous system is emerging as an important target for adverse health effects of air pollution, where it may contribute to neurodevelopmental and neurodegenerative disorders. Air pollution comprises several components, including particulate matter (PM) and ultrafine particulate matter (UFPM), gases, organic compounds, and metals. An important source of ambient PM and UFPM is represented by traffic-related air pollution, primarily diesel exhaust (DE). Human epidemiological studies and controlled animal studies have shown that exposure to air pollution, and to traffic-related air pollution or DE in particular, may lead to neurotoxicity. In particular, air pollution is emerging as a possible etiological factor in neurodevelopmental (e.g. autism spectrum disorders) and neurodegenerative (e.g. Alzheimer's disease) disorders. The most prominent effects caused by air pollution in both humans and animals are oxidative stress and neuro-inflammation. Studies in mice acutely exposed to DE (250-300μg/m 3 for 6h) have shown microglia activation, increased lipid peroxidation, and neuro-inflammation in various brain regions, particularly the hippocampus and the olfactory bulb. An impairment of adult neurogenesis was also found. In most cases, the effects of DE were more pronounced in male mice, possibly because of lower antioxidant abilities due to lower expression of paraoxonase 2. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Background Atmospheric Levels of Aldehydes, BTEX and PM10 Pollutants in a Medium-Sized City of Southern Italy

    International Nuclear Information System (INIS)

    Iovino, P.; Salvestrini, S.; Capasso, S.

    2007-01-01

    Background atmospheric levels of aldehydes, BTEX and PM10 pollutants were measured in the suburb of Caserta (Italy), 75 thousands inhabitants, 41 0 04' N, on rainless weekdays and weekends during 2005. On weekdays the average daily concentrations (μg m -3 ) were 41.6 PM10, 8.6 benzene, 25.2 toluene, 6.3 ethylbenzene, 14.0 (m+p)-xylene, 11.7 o-xylene, 6.5 formaldehyde, 3.3 acetaldehyde. All the pollutant concentrations were strictly correlated (mean correlation coefficients = 0.90). At weekends the concentrations were lower by about 1.6 times. Both on weekdays and at weekends the PM10 and benzene levels exceeded the limits set by the EU Directive 30/1999 and 69/2000, respectively

  10. Air pollution episodes in Stockholm regional background air due to sources in Europe and their effects on human population

    Energy Technology Data Exchange (ETDEWEB)

    Andersson, C. [Swedish Meteorological and Hydrological Inst., Norrkoping (Sweden)], E-mail: camilla.andersson@smhi.se; Joensson, O. [Stockholm Univ. (Sweden). Dept. of Applied Environmental Science; Forsberg, B. [Umea Univ. (Sweden), Occupational and Environmental Medicine; Johansson, C. [Environmental and Health Administration, Stockholm (Sweden)

    2013-09-01

    Using air quality measurements, we categorized air pollution according to source sectors in a rural background environment in southern Sweden based on hourly air-mass backward trajectories during 1997-2010. Concentrations of fine (PM{sub 2.5}) and sum of fine and coarse particulate matter (PM{sub 10}), accumulation mode particle number, black carbon and surface ozone were 4.0, 3.9, 4.5, 6.8 and 1.3 times higher, respectively, in air masses from the southeast as compared with those in air masses from the cleanest sector in the northwest, consistent with air-mass transport over areas with relatively high emissions of primary particulate matter (PM) and secondary PM precursors. The highest ultrafine particle numbers were associated with clean air from the northwest. We estimate that almost 7.8% and 0.6% higher premature human mortality is caused by PM{sub 2.5} and ozone exposure, respectively, when air originates from the southeast as compared with that when air originates from the northwest. Reductions of emissions in eastern Europe would reduce the highest air pollution concentrations and associated health risks. However, since air masses from the southwest are more frequent, emissions in the western part of Europe are more important for annual mean premature mortality. (orig.)

  11. Elevated biomarkers of sympatho-adrenomedullary activity linked to e-waste air pollutant exposure in preschool children.

    Science.gov (United States)

    Cong, Xiaowei; Xu, Xijin; Xu, Long; Li, Minghui; Xu, Cheng; Qin, Qilin; Huo, Xia

    2018-06-01

    Air pollution is a risk factor for cardiovascular disease (CVD), and cardiovascular regulatory changes in childhood contribute to the development and progression of cardiovascular events at older ages. The aim of the study was to investigate the effect of air pollutant exposure on the child sympatho-adrenomedullary (SAM) system, which plays a vital role in regulating and controlling the cardiovascular system. Two plasma biomarkers (plasma epinephrine and norepinephrine) of SAM activity and heart rate were measured in preschool children (n = 228) living in Guiyu, and native (n = 104) and non-native children (n = 91) living in a reference area (Haojiang) for >1 year. Air pollution data, over the 4-months before the health examination, was also collected. Environmental PM 2.5 , PM 10 , SO 2 , NO 2 and CO, plasma norepinephrine and heart rate of the e-waste recycling area were significantly higher than for the non-e-waste recycling area. However, there was no difference in plasma norepinephrine and heart rate between native children living in the non-e-waste recycling area and non-native children living in the non-e-waste recycling area. PM 2.5 , PM 10 , SO 2 and NO 2 data, over the 30-day and the 4-month average of pollution before the health examination, showed a positive association with plasma norepinephrine level. PM 2.5 , PM 10 , SO 2 , NO 2 and CO concentrations, over the 24 h of the day of the health examination, the 3 previous 24-hour periods before the health examination, and the 24 h after the health examination, were related to increase in heart rate. At the same time, plasma norepinephrine and heart rate on children in the high air pollution level group (≤50-m radius of family-run workshops) were higher than those in the low air pollution level group. Our results suggest that air pollution exposure in e-waste recycling areas could result in an increase in heart rate and plasma norepinephrine, implying e-waste air pollutant exposure

  12. Efecto del tiempo de exposición a PM10 en las urgencias por bronquitis aguda Effect of exposure time to PM10 on emergency admissions for acute bronchitis

    Directory of Open Access Journals (Sweden)

    Franz Muñoz

    2009-03-01

    Full Text Available Este trabajo analiza el efecto de las horas de exposición a PM10 en las urgencias diarias por bronquitis aguda, controlando por temperatura y humedad. El estudio fue realizado en seis sectores de la ciudad de Santiago, Chile, durante el período de invierno de los años 2002 al 2004, para lactantes ( 65 años. Analizamos el retraso de la respuesta mediante una función polinomial distributiva (pdl, incluida en un modelo lineal generalizado (GLM-pdl, y la estructura del efecto de la exposición, mediante modelos aditivos generalizados (GAM, utilizando regresión spline como técnica de estimación. Los resultados mostraron que al cuarto día de retardo, el efecto de la exposición fue mayor, especialmente en lactantes, y varió en la medida que incrementó la concentración atmosférica de PM10. El efecto de las horas de exposición a PM10 mostró una variación significativa, según el sector geográfico. Al estimar linealmente este efecto en el sector Oeste, notamos que el incremento de consultas diarias en lactantes fue de 3% por cada hora de exposición sobre os 150µg/m³.To study the health effect of air pollution, measured as particulate matter greater than 10mm in diameter (PM10, we analyzed the effect of daily hours of exposure on the number of urgency admissions for acute bronchitis, adjusting for temperature and humidity on the same day. The study was conducted in six regions of Santiago, Chile, during the winter of years 2002 to 2004, for infants and elders. The delay between pollution time series and disease was modeled using a polynomial distributed lag (PDL function included in a generalized linear model. The linearity assumption was evaluated using a smooth-spline model approach. The highest effect for exposure to PM10 was detected with 4 days of delay. For both groups, the effect of temperature was linear, but that of humidity was not. Air pollution effect varied according to level of exposure and geographic region, increasing

  13. Assessment of health risk due to PM 10 using fuzzy linear membership kriging with particle swarm optimization

    International Nuclear Information System (INIS)

    Singh, Jeetendra B.; Reddy, Vijay S.; Jana, Soumya; De, Swades

    2013-01-01

    Air quality is an important determinant of individual as well as broader well-being. Major pollutants include gasses as well as assorted suspended particulate matter (PM). In this paper, we focus on PM10, which are a collection of particles with median aerodynamic diameter less than 10 μm that remains suspended in the air for long periods. PM10, usually consist of smoke, dirt and dust particles, as well as spores and pollen, could easily be inhaled deep into lung. As a result, high outdoor PM10 concentration poses significant health hazard, and accurate modeling and prediction of health risk due to PM10 assume importance in pollution and public health management. In this backdrop, we propose an improved health risk assessment technique, and demonstrate its efficacy using widely used California PM10 database. At the heart of the proposed method lies indicator kriging, a well-known risk estimation technique. However, improved assessment of subjective health risk is achieved by posing the problem in a fuzzy setting, and optimizing the associated membership functions. In particular, we employ particle swarm optimization (PSO) algorithm, which has been motivated by natural behavior of organisms such as fish-schooling and bird flocking, and proven effective in various optimization contexts. We apply the fuzzy PSO membership grade kriging technique to predict the PM10 spatial distribution over the entire California state. (orig.)

  14. Assessment of health risk due to PM 10 using fuzzy linear membership kriging with particle swarm optimization

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Jeetendra B.; Reddy, Vijay S.; Jana, Soumya [Indian Institute of Technology, Hyderabad (India). Dept. of Electrical Engineering; De, Swades [Indian Institute of Technology, Delhi (India). Dept. of Electrical Engineering

    2013-07-01

    Air quality is an important determinant of individual as well as broader well-being. Major pollutants include gasses as well as assorted suspended particulate matter (PM). In this paper, we focus on PM10, which are a collection of particles with median aerodynamic diameter less than 10 {mu}m that remains suspended in the air for long periods. PM10, usually consist of smoke, dirt and dust particles, as well as spores and pollen, could easily be inhaled deep into lung. As a result, high outdoor PM10 concentration poses significant health hazard, and accurate modeling and prediction of health risk due to PM10 assume importance in pollution and public health management. In this backdrop, we propose an improved health risk assessment technique, and demonstrate its efficacy using widely used California PM10 database. At the heart of the proposed method lies indicator kriging, a well-known risk estimation technique. However, improved assessment of subjective health risk is achieved by posing the problem in a fuzzy setting, and optimizing the associated membership functions. In particular, we employ particle swarm optimization (PSO) algorithm, which has been motivated by natural behavior of organisms such as fish-schooling and bird flocking, and proven effective in various optimization contexts. We apply the fuzzy PSO membership grade kriging technique to predict the PM10 spatial distribution over the entire California state. (orig.)

  15. Spatiotemporal variation of PM1 pollution in China

    Science.gov (United States)

    Chen, Gongbo; Morawska, Lidia; Zhang, Wenyi; Li, Shanshan; Cao, Wei; Ren, Hongyan; Wang, Boguang; Wang, Hao; Knibbs, Luke D.; Williams, Gail; Guo, Jianping; Guo, Yuming

    2018-04-01

    Understanding spatiotemporal variation of PM1 (mass concentrations of particles with aerodynamic diameter health, which is potentially more severe for its deeper penetrating capability into human bodies compared with larger particles. This study aimed to quantify the spatial and temporal distribution of PM1 across China as well as its ratio with PM2.5 (additive models were employed to examine the relationships between PM1 and meteorological parameters. We showed that PM1 concentrations were the lowest in summer and the highest in winter. Across China, the PM1/PM2.5 ratios ranged from 0.75-0.88, reaching higher levels in January and lower in August. For spatial distribution, higher PM1/PM2.5 ratios (>0.9) were observed in North-Eastern China, North China Plain, coastal areas of Eastern China and Sichuan Basin while lower ratios (<0.7) were present in remote areas in North-Western and Northern China (e.g., Xinjiang, Tibet and Inner Mongolia). Higher PM1/PM2.5 ratios were observed on heavily polluted days and lower ratios on clean days. The high PM1/PM2.5 ratios observed in China suggest that smaller particles, PM1 fraction, are key drivers of air pollution, and that they effectively account for the majority of PM2.5 concentrations. This emphasised the role of combustion process and secondary particle formation, the sources of PM1, and the significance of controlling them.

  16. The relationship between air pollution and low birth weight: effects by mother's age, infant sex, co-pollutants, and pre-term births

    International Nuclear Information System (INIS)

    Bell, Michelle L; Ebisu, Keita; Belanger, Kathleen

    2008-01-01

    Previously we identified associations between the mother's air pollution exposure and birth weight for births in Connecticut and Massachusetts from 1999-2002. Other studies also found effects, though results are inconsistent. We explored potential uncertainties in earlier work and further explored associations between air pollution and birth weight for PM 10 , PM 2.5 , CO, NO 2 , and SO 2 . Specifically we investigated: (1) whether infants of younger (≤24 years) and older (≥40 years) mothers are particularly susceptible to air pollution's effects on birth weight; (2) whether the relationship between air pollution and birth weight differed by infant sex; (3) confounding by co-pollutants and differences in pollutants' measurement frequencies; and (4) whether observed associations were influenced by inclusion of pre-term births. Findings did not indicate higher susceptibility to the relationship between air pollution and birth weight based on the mother's age or the infant's sex. Results were robust to exclusion of pre-term infants and co-pollutant adjustment, although sample size decreased for some pollutant pairs. These findings provide additional evidence for the relationship between air pollution and birth weight, and do not identify susceptible sub-populations based on infant sex or mother's age. We conclude with discussion of key challenges in research on air pollution and pregnancy outcomes.

  17. Nonmalignant respiratory mortality and long-term exposure to PM10 and SO2: A 12-year cohort study in northern China

    International Nuclear Information System (INIS)

    Chen, Xi; Wang, Xue; Huang, Jia-ju; Zhang, Li-wen; Song, Feng-ju; Mao, Hong-jun; Chen, Ke-xin; Chen, Jie; Liu, Ya-min; Jiang, Guo-hong; Dong, Guang-hui; Bai, Zhi-peng

    2017-01-01

    Highlights: • The relationship between air pollution and respiratory disease is proposed. • Nonmalignant respiratory disease mortality was associated with PM 10 and SO 2 . • Passive smokers are susceptible to the harmful effects of air pollution.

  18. The Impact of Multi-pollutant Clusters on the Association between Fine Particulate Air Pollution and Microvascular Function

    Science.gov (United States)

    Ljungman, Petter L.; Wilker, Elissa H.; Rice, Mary B.; Austin, Elena; Schwartz, Joel; Gold, Diane R.; Koutrakis, Petros; Benjamin, Emelia J.; Vita, Joseph A.; Mitchell, Gary F.; Vasan, Ramachandran S.

    2016-01-01

    Background Prior studies including the Framingham Heart Study have suggested associations between single components of air pollution and vascular function; however, underlying mixtures of air pollution may have distinct associations with vascular function. Methods We used a k-means approach to construct five distinct pollution mixtures from elemental analyses of particle filters, air pollution monitoring data, and meteorology. Exposure was modeled as an interaction between fine particle mass (PM2.5), and concurrent pollution cluster. Outcome variables were two measures of microvascular function in the fingertip in the Framingham Offspring and Third Generation cohorts from 2003-2008. Results In 1,720 participants, associations between PM2.5 and baseline pulse amplitude tonometry differed by air pollution cluster (interaction p value 0.009). Higher PM2.5 on days with low mass concentrations but high proportion of ultrafine particles from traffic was associated with 18% (95% CI 4.6%; 33%) higher baseline pulse amplitude per 5 μg/m3 and days with high contributions of oil and wood combustion with 16% (95% CI 0.2%; 34%) higher baseline pulse amplitude. We observed no variation in associations of PM2.5 with hyperemic response to ischemia observed across air pollution clusters. Conclusions PM2.5 exposure from air pollution mixtures with large contributions of local ultrafine particles from traffic, heating oil and wood combustion was associated with higher baseline pulse amplitude but not PAT ratio. Our findings suggest little association between acute exposure to air pollution clusters reflective of select sources and hyperemic response to ischemia, but possible associations with excessive small artery pulsatility with potentially deleterious microvascular consequences. PMID:26562062

  19. Short-term exposure to air pollution and digital vascular function.

    Science.gov (United States)

    Ljungman, Petter L; Wilker, Elissa H; Rice, Mary B; Schwartz, Joel; Gold, Diane R; Koutrakis, Petros; Vita, Joseph A; Mitchell, Gary F; Vasan, Ramachandran S; Benjamin, Emelia J; Mittleman, Murray A; Hamburg, Naomi M

    2014-09-01

    We investigated associations between ambient air pollution and microvessel function measured by peripheral arterial tonometry between 2003 and 2008 in the Framingham Heart Study Offspring and Third Generation Cohorts. We measured particulate matter with aerodynamic diameter ≤2.5 µm (PM2.5), black carbon, sulfates, particle number, nitrogen oxides, and ozone by using fixed monitors, and we determined moving averages for 1-7 days preceding vascular testing. We examined associations between these exposures and hyperemic response to ischemia and baseline pulse amplitude, a measure of arterial tone (n = 2,369). Higher short-term exposure to air pollutants, including PM2.5, black carbon, and particle number was associated with higher baseline pulse amplitude. For example, higher 3-day average PM2.5 exposure was associated with 6.3% higher baseline pulse amplitude (95% confidence interval: 2.0, 10.9). However, there were no consistent associations between the air pollution exposures assessed and hyperemic response. Our findings in a community-based sample exposed to relatively low pollution levels suggest that short-term exposure to ambient particulate pollution is not associated with vasodilator response, but that particulate air pollution is associated with baseline pulse amplitude, suggesting potentially adverse alterations in baseline vascular tone or compliance. © The Author 2014. Published by Oxford University Press on behalf of the Johns Hopkins Bloomberg School of Public Health. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  20. Urban air pollution and respiratory emergency visits at pediatric unit, Reggio Emilia, Italy.

    Science.gov (United States)

    Bedeschi, Emanuela; Campari, Cinzia; Candela, Silvia; Collini, Giorgia; Caranci, Nicola; Frasca, Gabriella; Galassi, Claudia; Francesca, Gabriella; Vigotti, Maria Angela

    2007-02-01

    Short-term effects of air pollution on daily mortality and hospital admissions for respiratory causes are well documented. Few studies, however, explore the association between exposure to air pollution and daily emergency room visits for respiratory disorders, particularly in Italy and particularly among children as a susceptible population. A time-series analysis was conducted to explore the short-term association between air pollutants (PM10, total suspended particulates [TSP], NO2, SO2, CO, O3) and pediatric emergency room (ER) visits in a small city of northern Italy, Reggio Emilia, during the period 03/01/2001-03/31/2002. There were 1051 ER visits included in the study. Data were analyzed using generalized additive models (GAM), adjusting for various confounding variables, including temperature, humidity, and pollens (Graminaceae). The analyses were also stratified according to the nationality of children (Italians and foreigners). In single-pollutant models, the strongest associations were observed at lag 3 for a 10-microg/m3 increase of TSP (2.7% increase in ER, 95% CI 0.7-4.6) and PM10 (3.0% increase, 95% CI 0.4-5.7), and at lag 4 for a 10-microg/m3 increase of NO2 (11.0% increase in ER, 95% CI 3.6-18.8). At lag 3, the percentage increase in ER visits is similar for the 2 groups of children (Italians and foreigners) for TSP and PM10. The results of the study support the findings that air pollution is a relevant determinant of deterioration of respiratory health among children.

  1. Sources and perceptions of indoor and ambient air pollution in rural Alaska.

    Science.gov (United States)

    Ware, Desirae; Lewis, Johnnye; Hopkins, Scarlett; Boyer, Bert; Noonan, Curtis; Ward, Tony

    2013-08-01

    Even though Alaska is the largest state in the United States, much of the population resides in rural and underserved areas with documented disparities in respiratory health. This is especially true in the Yukon-Kuskokwim (southwest) and Ahtna (southcentral) Regions of Alaska. In working with community members, the goal of this study was to identify the air pollution issues (both indoors and outdoors) of concern within these two regions. Over a two-year period, 328 air quality surveys were disseminated within seven communities in rural Alaska. The surveys focused on understanding the demographics, home heating practices, indoor activities, community/outdoor activities, and air quality perceptions within each community. Results from these surveys showed that there is elevated potential for PM10/PM2.5 exposures in rural Alaska communities. Top indoor air quality concerns included mold, lack of ventilation or fresh air, and dust. Top outdoor air pollution concerns identified were open burning/smoke, road dust, and vehicle exhaust (e.g., snow machines, ATVs, etc.). These data can now be used to seek additional funding for interventions, implementing long-term, sustainable solutions to the identified problems. Further research is needed to assess exposures to PM10/PM2.5 and the associated impacts on respiratory health, particularly among susceptible populations such as young children.

  2. Associations between lifestyle and air pollution exposure: Potential for confounding in large administrative data cohorts.

    Science.gov (United States)

    Strak, Maciej; Janssen, Nicole; Beelen, Rob; Schmitz, Oliver; Karssenberg, Derek; Houthuijs, Danny; van den Brink, Carolien; Dijst, Martin; Brunekreef, Bert; Hoek, Gerard

    2017-07-01

    Cohorts based on administrative data have size advantages over individual cohorts in investigating air pollution risks, but often lack in-depth information on individual risk factors related to lifestyle. If there is a correlation between lifestyle and air pollution, omitted lifestyle variables may result in biased air pollution risk estimates. Correlations between lifestyle and air pollution can be induced by socio-economic status affecting both lifestyle and air pollution exposure. Our overall aim was to assess potential confounding by missing lifestyle factors on air pollution mortality risk estimates. The first aim was to assess associations between long-term exposure to several air pollutants and lifestyle factors. The second aim was to assess whether these associations were sensitive to adjustment for individual and area-level socioeconomic status (SES), and whether they differed between subgroups of the population. Using the obtained air pollution-lifestyle associations and indirect adjustment methods, our third aim was to investigate the potential bias due to missing lifestyle information on air pollution mortality risk estimates in administrative cohorts. We used a recent Dutch national health survey of 387,195 adults to investigate the associations of PM 10 , PM 2.5 , PM 2.5-10 , PM 2.5 absorbance, OP DTT, OP ESR and NO 2 annual average concentrations at the residential address from land use regression models with individual smoking habits, alcohol consumption, physical activity and body mass index. We assessed the associations with and without adjustment for neighborhood and individual SES characteristics typically available in administrative data cohorts. We illustrated the effect of including lifestyle information on the air pollution mortality risk estimates in administrative cohort studies using a published indirect adjustment method. Current smoking and alcohol consumption were generally positively associated with air pollution. Physical activity

  3. Assessment of microbial communities in PM1 and PM10 of Urumqi during winter.

    Science.gov (United States)

    Gou, Huange; Lu, Jianjiang; Li, Shanman; Tong, Yanbin; Xie, Chunbin; Zheng, Xiaowu

    2016-07-01

    Recently, inhalable particulate matter has been reported to carry microorganisms responsible for human allergy and respiratory disease. The unique geographical environment and adverse weather conditions of Urumqi cause double pollution of dust and smog, but research on the microbial content of the atmosphere has not been commenced. In this study, 16S and 18S rRNA gene sequencing were conducted to investigate the microbial composition of Urumqi's PM1 and PM10 pollutants in winter. Results showed that the bacterial community is mainly composed of Proteobacteria, Firmicutes and Actinobacteria, Proteobacteria accounted for the most proportion which was significant difference in some aforementioned studies. Ascomycota and Basidiomycota constitute the main part of the fungal microbial community. The difference of bacterial relative abundance in sample point is greater than in particle sizes. The sequences of several pathogenic bacteria and opportunistic pathogens were also detected, such as Acinetobacter, Delftia, Serratia, Chryseobacterium, which may impact on immunocompromised populations (elderly, children and postoperative convalescence patients), and some fungal genera may cause several plant diseases. Our findings may serve an important reference value in the global air microbial propagation and air microbial research in desert. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Short-term effects of ambient air pollution on pediatric outpatient visits for respiratory diseases in Yichang city, China

    International Nuclear Information System (INIS)

    Liu, Yuewei; Xie, Shuguang; Yu, Qing; Huo, Xixiang; Ming, Xiaoyan; Wang, Jing; Zhou, Yun; Peng, Zhe; Zhang, Hai; Cui, Xiuqing; Xiang, Hua; Huang, Xiji; Zhou, Ting; Chen, Weihong; Shi, Tingming

    2017-01-01

    Previous studies have suggested that short-term exposure to ambient air pollution was associated with pediatric hospital admissions and emergency room visits for certain respiratory diseases; however, there is limited evidence on the association between short-term air pollution exposure and pediatric outpatient visits. Our aim was to quantitatively assess the short-term effects of ambient air pollution on pediatric outpatient visits for respiratory diseases. We conducted a time-series study in Yichang city, China between Jan 1, 2014 and Dec 31, 2015. Daily counts of pediatric respiratory outpatient visits were collected from 3 large hospitals, and then linked with air pollution data from 5 air quality monitoring stations by date. We used generalized additive Poisson models to conduct linear and nonlinear exposure-response analyses between air pollutant exposures and pediatric respiratory outpatient visits, adjusting for seasonality, day of week, public holiday, temperature, and relative humidity. Each interquartile range (IQR) increase in PM 2.5 (lag 0), PM 10 (lag 0), NO 2 (lag 0), CO (lag 0), and O 3 (lag 4) concentrations was significantly associated with a 1.91% (95% CI: 0.60%, 3.23%), 2.46% (1.09%, 3.85%), 1.88% (0.49%, 3.29%), 2.00% (0.43%, 3.59%), and 1.91% (0.45%, 3.39%) increase of pediatric respiratory outpatient visits, respectively. Similarly, the nonlinear exposure-response analyses showed monotonic increases of pediatric respiratory outpatient visits by increasing air pollutant exposures, though the associations for NO 2 and CO attenuated at higher concentrations. These associations were unlikely modified by season. We did not observe significant association for SO 2 exposure. Our results suggest that short-term exposures to PM 2.5 , PM 10 , NO 2 , CO, and O 3 may account for increased risk of pediatric outpatient visits for respiratory diseases, and emphasize the needs for reduction of air pollutant exposures for children. - Highlights: • PM 2

  5. Dietary habits and the short-term effects of air pollution on mortality in the Chinese population in Hong Kong.

    Science.gov (United States)

    Ou, Chun-Quan; Wong, Chit-Ming; Ho, Sai-Yin; Schooling, Mary; Yang, Lin; Hedley, Anthony J; Lam, Tai-Hing

    2012-03-01

    Both diet and air pollution are associated with mortality risks. However, no epidemiological study has examined the potential interaction between diet and air pollution on mortality. We assessed their interaction on an additive scale. We analysed the data on daily concentrations of ambient air pollutants (PM(10), NO(2), SO(2) and O(3)) and a total of 23 484 deaths in 1998 in Hong Kong. A standardised questionnaire was used in all four death registries to collect food frequency data from proxy respondents while waiting for the registration to be completed. We fitted a linear odds ratio model and estimated excess relative risk due to the interaction (ERRI) between air pollution and regular consumption (at least once per week) of each food item to measure departure from additivity of effects on mortality. We observed consistently negative ERRI between all of the four pollutants and regular consumption of vegetables, fruits and soy. The effects of PM(10), NO(2) and O(3) were significant smaller in the subjects who regularly consumed fruits than those who never or seldom consumed such food. The effect modification of soy consumption on PM(10), NO(2) and SO(2) associated mortality was also found statistically significant. However, regular consumption of dairy products was associated with significant increased effects of PM(10) and NO(2). This study provides insight into dietary habit as one of the modifiers of health effects of air pollution. Our findings merit further studies to characterise the influence of diet on air pollution-related health and elucidate the underlying mechanisms.

  6. Adult lung function and long-term air pollution exposure. ESCAPE: a multicentre cohort study and meta-analysis

    Science.gov (United States)

    Adam, Martin; Schikowski, Tamara; Carsin, Anne Elie; Cai, Yutong; Jacquemin, Benedicte; Sanchez, Margaux; Vierkötter, Andrea; Marcon, Alessandro; Keidel, Dirk; Sugiri, Dorothee; Al Kanani, Zaina; Nadif, Rachel; Siroux, Valérie; Hardy, Rebecca; Kuh, Diana; Rochat, Thierry; Bridevaux, Pierre-Olivier; Eeftens, Marloes; Tsai, Ming-Yi; Villani, Simona; Phuleria, Harish Chandra; Birk, Matthias; Cyrys, Josef; Cirach, Marta; de Nazelle, Audrey; Nieuwenhuijsen, Mark J.; Forsberg, Bertil; de Hoogh, Kees; Declerq, Christophe; Bono, Roberto; Piccioni, Pavilio; Quass, Ulrich; Heinrich, Joachim; Jarvis, Deborah; Pin, Isabelle; Beelen, Rob; Hoek, Gerard; Brunekreef, Bert; Schindler, Christian; Sunyer, Jordi; Krämer, Ursula; Kauffmann, Francine; Hansell, Anna L.; Künzli, Nino; Probst-Hensch, Nicole

    2015-01-01

    The chronic impact of ambient air pollutants on lung function in adults is not fully understood. The objective of this study was to investigate the association of long-term exposure to ambient air pollution with lung function in adult participants from five cohorts in the European Study of Cohorts for Air Pollution Effects (ESCAPE). Residential exposure to nitrogen oxides (NO2, NOx) and particulate matter (PM) was modelled and traffic indicators were assessed in a standardised manner. The spirometric parameters forced expiratory volume in 1 s (FEV1) and forced vital capacity (FVC) from 7613 subjects were considered as outcomes. Cohort-specific results were combined using meta-analysis. We did not observe an association of air pollution with longitudinal change in lung function, but we observed that a 10 μg·m−3 increase in NO2 exposure was associated with lower levels of FEV1 (−14.0 mL, 95% CI −25.8 to −2.1) and FVC (−14.9 mL, 95% CI −28.7 to −1.1). An increase of 10 μg·m−3 in PM10, but not other PM metrics (PM2.5, coarse fraction of PM, PM absorbance), was associated with a lower level of FEV1 (−44.6 mL, 95% CI −85.4 to −3.8) and FVC (−59.0 mL, 95% CI −112.3 to −5.6). The associations were particularly strong in obese persons. This study adds to the evidence for an adverse association of ambient air pollution with lung function in adults at very low levels in Europe. PMID:25193994

  7. KANDUNGAN TSP DAN PM-10 DI UDARA JAKARTA DAN SEKITARNYA

    Directory of Open Access Journals (Sweden)

    Hendro Martono

    2016-09-01

    Full Text Available Abstract. A survey was performed to assess the quality of ambient air in Jakarta, Bogor,Depok,  Tangerang  and Bekasi.  Ambient air samples were collected from 33 sampling points at a distance of 0meter and 120 meters from each main roads respectively. The highest average content of TSP in ambientair at 0 meter was found in West Jakarta (652.02 p.g/cu.m and that of 120 meters from the main road was in Bekasi (445.46µg/cu.m . The highest difference of the TSP content between the two sampling pointswas in Kebon  Jeruk, West Jakarta (96.62 %,  and the lowest one was inCikarang, Bekasi (1.63 %.  Furthermore, the highest difference of the PM-10 content between the two sampling points was inJalan  Raya Bogor, Depok  (96.86 %,  and the lowest one was in Cikarang,  Bekasi (17.26%. In the whole areasof study, the average content of TSP  was 522.44.tg/cu.m  (0 meter, and178.09µg/cu.m (120 meters,  so the difference of the pollutant content between the two sampling points was 65.91%. Meanwhile, theaverage content of PM-10 was 326.25µg/cu.m  (0 meter, and97.09µg/cu.m (120 meters, so the difference of the pollutant content between the two sampling points was 70.24 %. The difference of the means ofboth TSP  and PM-10 content levels between the two sampling sites were significant. The percentages ofsampling points complying withTSP level standard were 9.52 %  (0 meter and 75.76% (120 meters from the road sides. While that of PM-10 were 18.18%  (road side sampling and 78.79% (120 meters from theroad sides.Crusial  measure for controlling theTSP  and PM-10 pollution should also be addressed tomobile sources, such as reducing diesel motorized-vehicles and providing proper mass transportation.

  8. Repeated intratracheal instillation of PM10 induces lipid reshaping in lung parenchyma and in extra-pulmonary tissues.

    Directory of Open Access Journals (Sweden)

    Angela Maria Rizzo

    Full Text Available Adverse health effects of air pollution attributed mainly to airborne particulate matter have been well documented in the last couple of decades. Short term exposure, referring to a few hours exposure, to high ambient PM10 concentration is linked to increased hospitalization rates for cardiovascular events, typically 24 h after air pollution peaks. Particulate matter exposure is related to pulmonary and cardiovascular diseases, with increased oxidative stress and inflammatory status. Previously, we have demonstrated that repeated intratracheal instillation of PM10sum in BALB/c mice leads to respiratory tract inflammation, creating in lung a condition which could potentially evolve in a systemic toxic reaction. Additionally, plasma membrane and tissue lipids are easily affected by oxidative stress and directly correlated with inflammatory products. With this aim, in the present investigation using the same model, we analyzed the toxic potential of PM10sum exposure on lipid plasma membrane composition, lipid peroxidation and the mechanisms of cells protection in multiple organs such as lung, heart, liver and brain. Obtained results indicated that PM10 exposure led to lung lipid reshaping, in particular phospholipid and cholesterol content increases; concomitantly, the generation of oxidative stress caused lipid peroxidation. In liver we found significant changes in lipid content, mainly due to an increase of phosphatidylcholine, and in total fatty acid composition with a more pronounced level of docosahexaenoic acid; these changes were statistically correlated to lung molecular markers. Heart and brain were similarly affected; heart was significantly enriched in triglycerides in half of the PM10sum treated mice. These results demonstrated a direct involvement of PM10sum in affecting lipid metabolism and oxidative stress in peripheral tissues that might be related to the serious systemic air-pollution effects on human health.

  9. The impact of the "Air Pollution Prevention and Control Action Plan" on PM2.5 concentrations in Jing-Jin-Ji region during 2012-2020.

    Science.gov (United States)

    Cai, Siyi; Wang, Yangjun; Zhao, Bin; Wang, Shuxiao; Chang, Xing; Hao, Jiming

    2017-02-15

    In order to cope with heavy haze pollution in China, the Air Pollution Prevention and Control Action Plan including phased goals of the fine particulate matter (PM 2.5 ) was issued in 2013. In this study, China's emission inventories in the baseline 2012 and the future scenarios of 2017 and 2020 have been developed based on this Action Plan. Beijing-Tianjin-Hebei (Jing-Jin-Ji) region, one of the most polluted regions in China, was taken as a case to assess the impact of phased emission control measures on PM 2.5 concentration reduction using WRF-CMAQ model system. With the implementation of the Action Plan, the emissions of sulfur dioxide (SO 2 ), nitrogen oxides (NO X ) , PM 2.5 , non-methane volatile organic compound (NMVOC), and ammonia (NH 3 ) in 2017 will decrease by36%, 31%, 30%,12%, and -10% from the 2012 levels in Jing-Jin-Ji, respectively. In 2020, the emissions of SO 2 , NO X, PM 2.5 , NMVOC, and NH 3 will decrease by 40%, 44%, 40%, 22%, and -3% from the 2012 levels in Jing-Jin-Ji, respectively. Consequently, the ambient annual PM 2.5 concentration under the scenarios of 2017 and 2020 will be 28.3% and 37.8% lower than those in 2012, respectively. The Action Plan provided an effective approach to alleviate PM 2.5 pollution level in Jing-Jin-Ji region. However, emission control of NMVOC and NH 3 should be paid more attention and be strengthened in future. Meanwhile, emission control of NO x , SO 2 , NH 3 and NMVOC synergistically are highly needed in the future because multiple pollutants impact on PM 2.5 and O 3 concentrations nonlinearly. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. A framework for delineating the regional boundaries of PM2.5 pollution: A case study of China.

    Science.gov (United States)

    Liu, Jianzheng; Li, Weifeng; Wu, Jiansheng

    2018-04-01

    Fine particulate matter (PM 2.5 ) pollution has been a major issue in many countries. Considerable studies have demonstrated that PM 2.5 pollution is a regional issue, but little research has been done to investigate the regional extent of PM 2.5 pollution or to define areas in which PM 2.5 pollutants interact. To allow for a better understanding of the regional nature and spatial patterns of PM 2.5 pollution, This study proposes a novel framework for delineating regional boundaries of PM 2.5 pollution. The framework consists of four steps, including cross-correlation analysis, time-series clustering, generation of Voronoi polygons, and polygon smoothing using polynomial approximation with exponential kernel method. Using the framework, the regional PM 2.5 boundaries for China are produced and the boundaries define areas where the monthly PM 2.5 time series of any two cities show, on average, more than 50% similarity with each other. These areas demonstrate straightforwardly that PM 2.5 pollution is not limited to a single city or a single province. We also found that the PM 2.5 areas in China tend to be larger in cold months, but more fragmented in warm months, suggesting that, in cold months, the interactions between PM 2.5 concentrations in adjacent cities are stronger than in warmer months. The proposed framework provides a tool to delineate PM 2.5 boundaries and identify areas where PM 2.5 pollutants interact. It can help define air pollution management zones and assess impacts related to PM 2.5 pollution. It can also be used in analyses of other air pollutants. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Temperature-related mortality estimates after accounting for the cumulative effects of air pollution in an urban area.

    Science.gov (United States)

    Stanišić Stojić, Svetlana; Stanišić, Nemanja; Stojić, Andreja

    2016-07-11

    To propose a new method for including the cumulative mid-term effects of air pollution in the traditional Poisson regression model and compare the temperature-related mortality risk estimates, before and after including air pollution data. The analysis comprised a total of 56,920 residents aged 65 years or older who died from circulatory and respiratory diseases in Belgrade, Serbia, and daily mean PM10, NO2, SO2 and soot concentrations obtained for the period 2009-2014. After accounting for the cumulative effects of air pollutants, the risk associated with cold temperatures was significantly lower and the overall temperature-attributable risk decreased from 8.80 to 3.00 %. Furthermore, the optimum range of temperature, within which no excess temperature-related mortality is expected to occur, was very broad, between -5 and 21 °C, which differs from the previous findings that most of the attributable deaths were associated with mild temperatures. These results suggest that, in polluted areas of developing countries, most of the mortality risk, previously attributed to cold temperatures, can be explained by the mid-term effects of air pollution. The results also showed that the estimated relative importance of PM10 was the smallest of four examined pollutant species, and thus, including PM10 data only is clearly not the most effective way to control for the effects of air pollution.

  12. Air Pollution Control Policies in China: A Retrospective and Prospects

    Science.gov (United States)

    Jin, Yana; Andersson, Henrik; Zhang, Shiqiu

    2016-01-01

    With China’s significant role on pollution emissions and related health damage, deep and up-to-date understanding of China’s air pollution policies is of worldwide relevance. Based on scientific evidence for the evolution of air pollution and the institutional background of environmental governance in China, we examine the development of air pollution control policies from the 1980s and onwards. We show that: (1) The early policies, until 2005, were ineffective at reducing emissions; (2) During 2006–2012, new instruments which interact with political incentives were introduced in the 11th Five-Year Plan, and the national goal of reducing total sulfur dioxide (SO2) emissions by 10% was achieved. However, regional compound air pollution problems dominated by fine particulate matter (PM2.5) and ground level ozone (O3) emerged and worsened; (3) After the winter-long PM2.5 episode in eastern China in 2013, air pollution control policies have been experiencing significant changes on multiple fronts. In this work we analyze the different policy changes, the drivers of changes and key factors influencing the effectiveness of policies in these three stages. Lessons derived from the policy evolution have implications for future studies, as well as further reforming the management scheme towards air quality and health risk oriented directions. PMID:27941665

  13. Air Pollution Control Policies in China: A Retrospective and Prospects

    Directory of Open Access Journals (Sweden)

    Yana Jin

    2016-12-01

    Full Text Available With China’s significant role on pollution emissions and related health damage, deep and up-to-date understanding of China’s air pollution policies is of worldwide relevance. Based on scientific evidence for the evolution of air pollution and the institutional background of environmental governance in China, we examine the development of air pollution control policies from the 1980s and onwards. We show that: (1 The early policies, until 2005, were ineffective at reducing emissions; (2 During 2006–2012, new instruments which interact with political incentives were introduced in the 11th Five-Year Plan, and the national goal of reducing total sulfur dioxide (SO2 emissions by 10% was achieved. However, regional compound air pollution problems dominated by fine particulate matter (PM2.5 and ground level ozone (O3 emerged and worsened; (3 After the winter-long PM2.5 episode in eastern China in 2013, air pollution control policies have been experiencing significant changes on multiple fronts. In this work we analyze the different policy changes, the drivers of changes and key factors influencing the effectiveness of policies in these three stages. Lessons derived from the policy evolution have implications for future studies, as well as further reforming the management scheme towards air quality and health risk oriented directions.

  14. Variability in impact of air pollution on subjective well-being

    Science.gov (United States)

    Du, Guodong; Shin, Kong Joo; Managi, Shunsuke

    2018-06-01

    This paper examines the impact of variability in impact of air pollution on life satisfaction (LS). Previous studies have shown robust negative impact of air pollution on subjective well-being (SWB). However, empirical studies that consider variability in air pollution effects through comparative city study are limited. This study provides comparative evaluation of two major Chinese cities: Beijing and Shanghai. We apply a geo-statistical spatial interpolation technique on pollution data from monitoring sites to estimate the Sulfur Dioxide (SO2), Nitrogen Dioxide (NO2), coarse particles with a diameter between 2.5 and 10 μm (PM10) and fine particles with a diameter of 2.5 μm or less (PM2.5) pollution exposure of respondents of a survey conducted in 2016. The results show that all pollutants have robust negative impacts on LS for Beijing residents, whereas only SO2 and NO2 have significant negative impacts on LS for Shanghai residents; Per unit impact of SO2 is greater in Shanghai, and that of NO2 is greater in Beijing. Beijing and Shanghai residents have almost same monetary valuation for SO2 reduction but Beijing residents place approximately 1.5 times valuation on NO2 reduction compared to Shanghai residents. Moreover, the LS of Beijing residents is sensitive to temporal changes in the pollution level, whereas Shanghai residents are unaffected by such changes.

  15. Traffic-related air pollution exposure and incidence of stroke in four cohorts from Stockholm.

    Science.gov (United States)

    Korek, Michal J; Bellander, Tom D; Lind, Tomas; Bottai, Matteo; Eneroth, Kristina M; Caracciolo, Barbara; de Faire, Ulf H; Fratiglioni, Laura; Hilding, Agneta; Leander, Karin; Magnusson, Patrik K E; Pedersen, Nancy L; Östenson, Claes-Göran; Pershagen, Göran; Penell, Johanna C

    2015-01-01

    We investigated the risk of stroke related to long-term ambient air pollution exposure, in particular the role of various exposure time windows, using four cohorts from Stockholm County, Sweden. In total, 22,587 individuals were recruited from 1992 to 2004 and followed until 2011. Yearly air pollution levels resulting from local road traffic emissions were assessed at participant residences using dispersion models for particulate matter (PM10) and nitrogen oxides (NOX). Cohort-specific hazard ratios were estimated for time-weighted air pollution exposure during different time windows and the incidence of stroke, adjusted for common risk factors, and then meta-analysed. Overall, 868 subjects suffered a non-fatal or fatal stroke during 238,731 person-years of follow-up. An increment of 20 μg/m(3) in estimated annual mean of road-traffic related NOX exposure at recruitment was associated with a hazard ratio of 1.16 (95% CI 0.83-1.61), with evidence of heterogeneity between the cohorts. For PM10, an increment of 10 μg/m(3) corresponded to a hazard ratio of 1.14 (95% CI 0.68-1.90). Time-window analyses did not reveal any clear induction-latency pattern. In conclusion, we found suggestive evidence of an association between long-term exposure to NOX and PM10 from local traffic and stroke at comparatively low levels of air pollution.

  16. Air pollution "holiday effect" resulting from the Chinese New Year

    Science.gov (United States)

    Tan, Pei-Hua; Chou, Chia; Liang, Jing-Yi; Chou, Charles C.-K.; Shiu, Chein-Jung

    Our study was an attempt to conduct a comprehensive and systematical examination of the holiday effect, defined as the difference in air pollutant concentrations between holiday and non-holiday periods. This holiday effect can be applied to other countries with similar national or cultural holidays. Hourly and daily surface measurements of six major air pollutants from thirteen air quality monitoring stations of the Taiwan Environmental Protection Administration during the Chinese New Year (CNY) and non-Chinese New Year (NCNY) periods were used. We documented evidence of a "holiday effect", where air pollutant concentrations were significantly different between holidays (CNY) and non-holidays (NCNY), in the Taipei metropolitan area over the past thirteen years (1994-2006). The concentrations of NO x, CO, NMHC, SO 2 and PM 10 were lower in the CNY than in the NCNY period, while the variation in the concentration of O 3 was reversed, which was mainly due to the NO titration effect. Similar differences in these six air pollutants between the CNY and NCNY periods were also found in the diurnal cycle and in the interannual variation. For the diurnal cycle, a common traffic-related double-peak variation was observed in the NCNY period, but not in the CNY period. Impacts of dust storms were also observed, especially on SO 2 and PM 10 in the CNY period. In the 13-year period of 1994-2006, decreasing trends of NO x and CO in the NCNY period implied a possible reduction of local emissions. Increasing trends of SO 2 and PM 10 in the CNY period, on the other hand, indicated a possible enhancement of long-range transport. These two mechanisms weakened the holiday effect.

  17. Modelling PM 10 concentrations and carrying capacity associated with woodheater emissions in Launceston, Tasmania

    Science.gov (United States)

    Luhar, Ashok K.; Galbally, Ian E.; Keywood, Melita

    Launceston is one of the Australian cities most affected by particle pollution due to the use of woodheaters in the winter months, with frequent exceedences of the national standard, the National Environment Protection Measure for Ambient Air Quality (or Air NEPM in short), of 50 micrograms per cubic metre for daily PM 10 (particulate matter with an aerodynamic diameter of 10 μm or less). The main objective of the present study was to determine the woodheater carrying capacity for Launceston—the number of woodheaters that can operate in the city without exceeding the Air NEPM. For this purpose, a prognostic meteorological and air pollution model called TAPM is used, coupled to a gridded woodheater PM 10 emissions inventory. The latter was derived using information on dwelling density, the percentage of dwellings with woodheaters, woodheater emission rates and their diurnal and seasonal variations, and the proportions of compliant/non-compliant woodheaters and open fireplaces. The model simulations are performed for the year 1998, and the concentrations are scaled for previous and subsequent years using trends in woodheater numbers and types. The modelled number of exceedences of the Air NEPM for the period 1997-2004 is in good agreement with the observations. The modelling indicates that the PM 10 Air NEPM would be met in Launceston when the total number of woodheaters is 20% of the total number of dwellings, of which 76%, 18%, 6% would be compliant woodheaters, non-compliant woodheaters and open fireplaces, respectively. With the present trends in the regional woodheater profile, this should occur in the year 2007.

  18. Effect of air pollution on the total bacteria and pathogenic bacteria in different sizes of particulate matter.

    Science.gov (United States)

    Liu, Huan; Zhang, Xu; Zhang, Hao; Yao, Xiangwu; Zhou, Meng; Wang, Jiaqi; He, Zhanfei; Zhang, Huihui; Lou, Liping; Mao, Weihua; Zheng, Ping; Hu, Baolan

    2018-02-01

    In recent years, air pollution events have occurred frequently in China during the winter. Most studies have focused on the physical and chemical composition of polluted air. Some studies have examined the bacterial bioaerosols both indoors and outdoors. But few studies have focused on the relationship between air pollution and bacteria, especially pathogenic bacteria. Airborne PM samples with different diameters and different air quality index values were collected in Hangzhou, China from December 2014 to January 2015. High-throughput sequencing of 16S rRNA was used to categorize the airborne bacteria. Based on the NCBI database, the "Human Pathogen Database" was established, which is related to human health. Among all the PM samples, the diversity and concentration of total bacteria were lowest in the moderately or heavily polluted air. However, in the PM2.5 and PM10 samples, the relative abundances of pathogenic bacteria were highest in the heavily and moderately polluted air respectively. Considering the PM samples with different particle sizes, the diversities of total bacteria and the proportion of pathogenic bacteria in the PM10 samples were different from those in the PM2.5 and TSP samples. The composition of PM samples with different sizes range may be responsible for the variances. The relative humidity, carbon monoxide and ozone concentrations were the main factors, which affected the diversity of total bacteria and the proportion of pathogenic bacteria. Among the different environmental samples, the compositions of the total bacteria were very similar in all the airborne PM samples, but different from those in the water, surface soil, and ground dust samples. Which may be attributed to that the long-distance transport of the airflow may influence the composition of the airborne bacteria. This study of the pathogenic bacteria in airborne PM samples can provide a reference for environmental and public health researchers. Copyright © 2017 Elsevier Ltd

  19. Short-Term Health Impact Assessment of Urban PM10 in Bejaia City (Algeria

    Directory of Open Access Journals (Sweden)

    Fatima Benaissa

    2016-01-01

    Full Text Available We used Health Impact Assessment (HIA to analyze the impact on a given population’s health outcomes in terms of all-causes mortality and respiratory and cardiovascular hospitalizations attributable to short-term exposure to particulate matter less than 10 μm diameter (PM10 in Bejaia city, for which health effects of air pollution have never been investigated. Two scenarios of PM10 reduction were considered: first, a scenario where the PM10 annual mean is decreased by 5 µg/m3, and then a scenario where this PM10 mean is decreased to 20 µg/m3 (World Health Organization annual air quality guideline (WHO-AQG. Annual mean level of PM10 (81.7 µg/m3 was calculated from objective measurements assessed in situ. Each year, about 4 and 55 deaths could be postponed with the first and the second scenarios successfully. Furthermore, decreasing PM10 annual mean by 5 µg/m3 would avoid 5 and 3 respiratory and cardiac hospitalizations, respectively, and not exceeding the PM10 WHO-AQG (20 µg/m3 would result in a potential gain of 36 and 23 per 100000 respiratory and cardiac hospitalizations, respectively. Lowering in current levels of PM10 has a nonnegligible impact in terms of public health that it is expected to be higher in the case of long-term effects.

  20. Spatial & temporal variations of PM10 and particle number concentrations in urban air.

    Science.gov (United States)

    Johansson, Christer; Norman, Michael; Gidhagen, Lars

    2007-04-01

    The size of particles in urban air varies over four orders of magnitude (from 0.001 microm to 10 microm in diameter). In many cities only particle mass concentrations (PM10, i.e. particles tires and traction sand on streets during winter; up to 90% of the locally emitted PM10 may be due to road abrasion. PM10 emissions and concentrations, but not PNC, at kerbside are controlled by road moisture. Annual mean urban background PM10 levels are relatively uniformly distributed over the city, due to the importance of long range transport. For PNC local sources often dominate the concentrations resulting in large temporal and spatial gradients in the concentrations. Despite these differences in the origin of PM10 and PNC, the spatial gradients of annual mean concentrations due to local sources are of equal magnitude due to the common source, namely traffic. Thus, people in different areas experiencing a factor of 2 different annual PM10 exposure due to local sources will also experience a factor of 2 different exposure in terms of PNC. This implies that health impact studies based solely on spatial differences in annual exposure to PM10 may not separate differences in health effects due to ultrafine and coarse particles. On the other hand, health effect assessments based on time series exposure analysis of PM10 and PNC, should be able to observe differences in health effects of ultrafine particles versus coarse particles.

  1. WRF modeling of PM2.5 remediation by SALSCS and its clean air flow over Beijing terrain.

    Science.gov (United States)

    Cao, Qingfeng; Shen, Lian; Chen, Sheng-Chieh; Pui, David Y H

    2018-06-01

    Atmospheric simulations were carried out over the terrain of entire Beijing, China, to investigate the effectiveness of an air-pollution cleaning system named Solar-Assisted Large-Scale Cleaning System (SALSCS) for PM 2.5 mitigation by using the Weather Research and Forecasting (WRF) model. SALSCS was proposed to utilize solar energy to generate airflow therefrom the airborne particulate pollution of atmosphere was separated by filtration elements. Our model used a derived tendency term in the potential temperature equation to simulate the buoyancy effect of SALSCS created with solar radiation on its nearby atmosphere. PM 2.5 pollutant and SALSCS clean air were simulated in the model domain by passive tracer scalars. Simulation conditions with two system flow rates of 2.64 × 10 5  m 3 /s and 3.80 × 10 5  m 3 /s were tested for seven air pollution episodes of Beijing during the winters of 2015-2017. The numerical results showed that with eight SALSCSs installed along the 6 th Ring Road of the city, 11.2% and 14.6% of PM 2.5 concentrations were reduced under the two flow-rate simulation conditions, respectively. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. Measuring concentrations of selected air pollutants inside California vehicles. Final report

    International Nuclear Information System (INIS)

    Rodes, C.; Sheldon, L.; Whitaker, D.; Clayton, A.; Fitzgerald, K.

    1999-01-01

    This project measured 2-hour integrated concentrations of PM10, PM2.5, metals and a number of organic chemicals including benzene and MTBE inside vehicles on California roadways. Using continuous samplers, particle counts, black carbon, and CO were also measured. In addition to measuring in-vehicle levels, the investigators measured pollutant levels just outside the vehicle, at roadside stations, and ambient air monitoring stations. Different driving scenarios were designed to assess the effects of a number of factors on in-vehicle pollutant levels. These factors included roadway type, carpool lanes, traffic conditions, geographical locations, vehicle type, and vehicle ventilation conditions. The statewide average in-vehicle concentrations of benzene, MTBE, and formaldehyde ranged from 3--22 microg/m 3 , 3--90 microg/m 3 , and 0---22 microg/m 3 , respectively. The ranges of mean PM10 and PM2.5 in-vehicle levels in Sacramento were 20--40 microg/m 3 and 6--22 microg/m 3 , respectively. In general, pollutant levels inside or just outside the vehicles were higher than those measured at the roadside stations or the ambient air stations. In-vehicle pollutant levels were consistently higher in Los Angeles than Sacramento. Pollutant levels measured inside vehicles traveling in a carpool lane were much lower than those in the right-hand, slower lanes. Under the study conditions, factors such as vehicle type and ventilation and little effect on in-vehicle pollutant levels. Other factors, such as roadway type, freeway congestion level, and time-of-day had some influence on in-vehicle pollution levels

  3. Hourly differences in air pollution on the risk of asthma exacerbation

    International Nuclear Information System (INIS)

    Kim, Jayeun; Kim, Ho; Kweon, Jung

    2015-01-01

    We investigated the association between hourly differences in air pollution and asthma exacerbation in Korea using asthma-related emergency department data and verified seasonality and demographic modifiers with an hourly temporal resolution. We applied time-stratified case-crossover adjusted for weather and influenza; the lag was stratified as 1–6, 7–12, 13–18, 19–24, 25–48, and49–72 h. Odds ratios (95% confidence interval) per interquartile range increase were 1.05 (1.00–1.11) after 1–6 h for PM 10–2.5 and 1.10 (1.04–1.16) after 19–24 h for O 3 . Effect size was 1.14 (1.06–1.22) at a 1–6 h lag in spring for PM 10–2.5 , and 1.25 (1.03–1.51) at a 25–48 h lag in winter for O 3 . O 3 effects were age- and low socio-economic status-modified at a 7–12 h lag [1.25 (1.04–1.51)]. Increased PM 10–2.5 and O 3 increased the risk of asthma exacerbation; the effect of PM 10–2.5 was most immediate. - Highlights: • We examined hourly differences in air pollution levels and asthma exacerbation risk. • Increased PM 10–2.5 and O 3 levels increased the risk of asthma exacerbation. • The effect of PM 10–2.5 was more immediate than other pollutants. • The effect of O 3 was modified by age and socio-economic status. • O 3 has a longer lag effect, particularly in winter. - Hourly increments of PM 10–2.5 and O 3 induced an increased risk of asthma-related emergency room visits, and the effect of PM 10–2.5 was most immediate

  4. Socioeconomic Drivers of PM2.5 in the Accumulation Phase of Air Pollution Episodes in the Yangtze River Delta of China

    Directory of Open Access Journals (Sweden)

    Cai-Rong Lou

    2016-09-01

    Full Text Available Recent studies in PM2.5 sources show that anthropogenic emissions are the main contributors to haze pollution. Due to their essential roles in establishing policies for improving air quality, socioeconomic drivers of PM2.5 levels have attracted increasing attention. Unlike previous studies focusing on the annual PM2.5 concentration (Cyear, this paper focuses on the accumulation phase of PM2.5 during the pollution episode (PMAE in the Yangtze River Delta in China. This paper mainly explores the spatial variations of PMAE and its links to the socioeconomic factors using a geographical detector and simple linear regression. The results indicated that PM2.5 was more likely to accumulate in more developed cities, such as Nanjing and Shanghai. Compared with Cyear, PMAE was more sensitive to socioeconomic impacts. Among the twelve indicators chosen for this study, population density was an especially critical factor that could affect the accumulation of PM2.5 dramatically and accounted for the regional difference. A 1% increase in population density could cause a 0.167% rise in the maximal increment and a 0.214% rise in the daily increase rate of PM2.5. Additionally, industry, energy consumption, and vehicles were also significantly associated with PM2.5 accumulation. These conclusions could serve to remediate the severe PM2.5 pollution in China.

  5. Air quality in terms of particulate matter (PM10) and element components in Antananarivo city

    International Nuclear Information System (INIS)

    Raoelina Andriambololona; Rakotondramanana, H.T.; Rasoazanany, E.O.; Randriamanivo, L.V.; Rasolofonirina, M.; Razafy Andrianarivo, R.

    2001-01-01

    The main objective of this research was to study the size distribution of toxic elements, undesirables ones and PM10 in the aerosols of Antananarivo urban areas using Total reflection X-ray Fluorescence. This work was carried out in the framework of Co-ordinated Research Program organised by the IAEA in 1998. The air sampler DICHOTOMOUS was used for sampling, with which two types of aerosols could be obtained: respirable aerosols or fine particles (aerodynamic diameter below 2.5 μm PM-2 ,5 ) and inhalable or coarse particles (aerodynamic diameter from 2.5 μm to 10μm PM 10 ). Samples were taken from six sampling sites, namely Ambohidahy tunnel, Ambanidia tunnel, Andravoahangy, Soarano, Mahamasina and Ankorondrano. Then, they were digested with acid digestion bomb. The results showed the presence of elements such as sulfur (S), chlorine (Cl), kalium (K), calcium (Ca), titanium (Ti), lead (Pb) in the aerosols. Their concentrations are higher in respirable particles. For classical air pollutant components, particularly lead and PM10, the 1.8 μg.m -3 mean concentration value of lead is largely higher than 0.5μg. m -3 , which is the WHO (World Health organization) adopted value, and above the USEPA (United States Environmental Protection Agency) maximum admissible one (1.5 μg.m -3 ) as well. Regarding the size distribution of lead, the results showed that the small particles were mainly enriched in lead. The same observation can also be stated for PM10 with a 240 μg.m -3 mean concentration value , higher than 150 μg.m - 3 , adopted by the two above-mentioned organizations. Therefore, the Antananarivo urban area is classified as saturated zone for both parameters (lead and particulate matter). In addition, the results of Mason enrichment factors showed that the elements such as sulfur (S), chromium (Cr), copper (Cu), zinc (Zn), bromine (Br), and lead (Pb) are from both natural and anthropogenic sources. The elements such as kalium (K), chlorine (Cl), calcium (Ca

  6. The Characteristics of Air Pollutants during Two Distinct Episodes of Fireworks Burning in a Valley City of North China.

    Directory of Open Access Journals (Sweden)

    Yang Song

    Full Text Available The elevation and dissipation of pollutants after the ignition of fireworks in different functional areas of a valley city were investigated.The Air Quality Index (AQI as well as inter-day and intra-day concentrations of various air pollutants (PM10, PM2.5, SO2, NO2, CO, O3 were measured during two episodes that took place during Chinese New Year festivities.For the special terrain of Jinan, the mean concentrations of pollutants increased sharply within 2-4 h of the firework displays, and concentrations were 4-6 times higher than the usual levels. It took 2-3 d for the pollutants to dissipate to background levels. Compared to Preliminary Eve (more fireworks are ignited on New Year's Eve, but the amounts of other human activities are also lesser, the primary pollutants PM2.5, PM10, and CO reached higher concentrations on New Year's Eve, and the highest concentrations of these pollutants were detected in living quarters. All areas suffered from serious pollution problems on New Year's Eve (rural = urban for PM10, but rural > urban for PM2.5. However, SO2 and NO2 levels were 20%-60% lower in living quarters and industrial areas compared to the levels in these same areas on Preliminary Eve. In contrast to the other pollutants, O3 concentrations fell instead of rising with the firework displays.Interactions between firework displays and other human activities caused different change trends of pollutants. PM2.5 and PM10 were the main pollutants, and the rural living quarter had some of the highest pollution levels.

  7. Long-term exposure to air pollution and the risk of suicide death: A population-based cohort study.

    Science.gov (United States)

    Min, Jin-Young; Kim, Hye-Jin; Min, Kyoung-Bok

    2018-07-01

    Suicide is a major public health problem. Previous studies have reported a significant association between acute exposure to air pollution and suicide; little attention has been paid to the long-term effects of air pollution on risk of suicide. We investigated whether long-term exposure to particulate matter of ≤10μm in diameter (PM 10 ), nitrogen dioxide (NO 2 ), and sulfur dioxide (SO 2 ) would be associated with a greater risk of death by suicide. The study sample comprised 265,749 adults enrolled in the National Health Insurance Service-National Sample Cohort (2002-2013) in South Korea. Suicide death was defined as per ICD-10 code. Data on air pollution exposure used nationwide monitoring data, and individual exposure levels were assigned using geographic information systems. Air pollution exposure was categorized as the interquartile range (IQR) and quartiles. Hazards ratios (HRs) were calculated for the occurrence of suicide death after adjusting for potential covariates. During the study period, 564 (0.2%) subjects died from suicide. Increases in IQR pollutants (7.5μg/m 3 for PM 10 , 11.8ppb for NO 2 , and 0.8ppb for SO 2 ) significantly increased HR for suicide death [PM 10 : HR=3.09 (95% CI: 2.63-3.63); NO 2 : HR=1.33 (95% CI: 1.09-1.64); and SO 2 : HR=1.15 (95% CI: 1.07-1.24)]. Compared with the lowest level of air pollutants (Quartile 1), the risk of suicide significantly increased in the highest quartile level (Quartile 4) for PM 10 (HR=4.03; 95% CI: 2.97-5.47) and SO 2 (HR=1.65; 95% CI: 1.29-2.11) and in the third quartile for NO 2 (HR=1.52; 95% CI: 1.17-1.96). HRs for subjects with a physical or mental disorder were higher than that those for subjects without the disorder. Subjects living in metropolitan areas were more vulnerable to long-term PM 10 exposure than those living in non-metropolitan areas. Long-term exposure to air pollution was associated with a significantly increased risk of suicide death. People having underlying diseases or

  8. [Air pollution and its health effects on residents in Taiwanese communities].

    Science.gov (United States)

    Ko, Y C

    1996-12-01

    The are a number of particular features of air pollution in Taiwan, as described below: (1) In Taiwan area, the air load of pollutants is more serious than previously reported. (2) There exists severe air pollution throughout the island. (3) Industry is the major source of pollution. (4) No demarcation exists between plants and residential quarters. (5) There is a high concentration of pollutants indoors/outdoors. The influence of air pollution spreads over all aspects of physical health, primarily on the respiratory tract, causing lung cancer and exaggerating cardiovascular diseases. A few Taiwanese studies are reviewed below which deserve more elaboration. (1) Use PM10 for indexing health effect. The annual average value of PM10 in Taiwan has been around 70 micrograms/m3 in 1994. Dr. Schwarz indicated that no safety margin could be derived; for each additional 10 micrograms/ m3 of PM10, the death number could be increased by 1% on the basis of Western studies. (2) Research with reference to lung cancer cases in the Kaohsiung Medical College Hospital. Living within 3 km of industrial district counted for 9% of cases and caused a 6-fold increase in the risk of disease for people living more than 20 years in the case control study for lung cancer. (3) Death due to cancer of inhabitants close to petroleum and petrochemical industries. For youths and children below 20 years, cancers related to brain tumors were 2-4 fold of what was expected deaths. Analysis of another petrochemical complex in Chienchen, Kaohsiung, revealed the inhabitants within 1 km showed a higher standardized mortality ratio for cancers of the lung, kidney, urinary bladder, and leukemia than was to be expected. (4) Lower lung function and higher incidence of respiratory diseases among residents near a coal-fired power plant (within 3 Km) compared to residents who lived further away from the plant (3-11 Km). (5) Lead contamination around a kindergarten near a battery recycling plant. There was

  9. Statistical Analysis of Spatiotemporal Heterogeneity of the Distribution of Air Quality and Dominant Air Pollutants and the Effect Factors in Qingdao Urban Zones

    Directory of Open Access Journals (Sweden)

    Xiangwei Zhao

    2018-04-01

    Full Text Available Air pollution has impacted people’s lives in urban China, and the analysis of the distribution and driving factors behind air quality has become a current research focus. In this study, the temporal heterogeneity of air quality (AQ and the dominant air pollutants across the four seasons were analyzed based on the Kruskal-Wallis rank-sum test method. Then, the spatial heterogeneity of AQ and the dominant air pollutants across four sites were analyzed based on the Wilcoxon signed-rank test method. Finally, the copula model was introduced to analyze the effect of relative factors on dominant air pollutants. The results show that AQ and dominant air pollutants present significant spatiotemporal heterogeneity in the study area. AQ is worst in winter and best in summer. PM10, O3, and PM2.5 are the dominant air pollutants in spring, summer, and winter, respectively. The average concentration of dominant air pollutants presents significant and diverse daily peaks and troughs across the four sites. The main driving factors are pollutants such as SO2, NO2, and CO, so pollutant emission reduction is the key to improving air quality. Corresponding pollution control measures should account for this heterogeneity in terms of AQ and the dominant air pollutants among different urban zones.

  10. Association between Ambient Air Pollution and Hospital Emergency Admissions for Respiratory and Cardiovascular Diseases in Beijing: a Time Series Study.

    Science.gov (United States)

    Zhang, Ying; Wang, Shi Gong; Ma, Yu Xia; Shang, Ke Zheng; Cheng, Yi Fan; Li, Xu; Ning, Gui Cai; Zhao, Wen Jing; Li, Nai Rong

    2015-05-01

    To investigate the association between ambient air pollution and hospital emergency admissions in Beijing. In this study, a semi-parametric generalized additive model (GAM) was used to evaluate the specific influences of air pollutants (PM10, SO2, and NO2) on hospital emergency admissions with different lag structures from 2009 to 2011, the sex and age specific influences of air pollution and the modifying effect of seasons on air pollution to analyze the possible interaction. It was found that a 10 μg/m3 increase in concentration of PM10 at lag 03 day, SO2 and NO2 at lag 0 day were associated with an increase of 0.88%, 0.76%, and 1.82% respectively in overall emergency admissions. A 10 μg/m3 increase in concentration of PM10, SO2 and NO2 at lag 5 day were associated with an increase of 1.39%, 1.56%, and 1.18% respectively in cardiovascular disease emergency admissions. For lag 02, a 10 μg/m3 increase in concentration of PM10, SO2 and NO2 were associated with 1.72%, 1.34%, and 2.57% increases respectively in respiratory disease emergency admissions. This study further confirmed that short-term exposure to ambient air pollution was associated with increased risk of hospital emergency admissions in Beijing. Copyright © 2015 The Editorial Board of Biomedical and Environmental Sciences. Published by China CDC. All rights reserved.

  11. Air pollution and mortality in the Canary Islands: a time-series analysis

    Directory of Open Access Journals (Sweden)

    Ballester Ferran

    2010-02-01

    Full Text Available Abstract Background The island factor of the cities of Las Palmas de Gran Canaria and Santa Cruz de Tenerife, along with their proximity to Africa and their meteorology, create a particular setting that influences the air quality of these cities and provides researchers an opportunity to analyze the acute effects of air-pollutants on daily mortality. Methods From 2000 to 2004, the relationship between daily changes in PM10, PM2.5, SO2, NO2, CO, and ozone levels and daily total mortality and mortality due to respiratory and heart diseases were assessed using Generalized Additive Poisson models controlled for potential confounders. The lag effect (up to five days as well as the concurrent and previous day averages and distributed lag models were all estimated. Single and two pollutant models were also constructed. Results Daily levels of PM10, PM2.5, NO2, and SO2 were found to be associated with an increase in respiratory mortality in Santa Cruz de Tenerife and with increased heart disease mortality in Las Palmas de Gran Canaria, thus indicating an association between daily ozone levels and mortality from heart diseases. The effects spread over five successive days. SO2 was the only air pollutant significantly related with total mortality (lag 0. Conclusions There is a short-term association between current exposure levels to air pollution and mortality (total as well as that due specifically to heart and respiratory diseases in both cities. Risk coefficients were higher for respiratory and cardiovascular mortality, showing a delayed effect over several days.

  12. [Indoor air pollution in southeast Santiago, Chile].

    Science.gov (United States)

    Pino, P; Oyarzún, M; Walter, T; von Baer, D; Romieu, I

    1998-04-01

    Indoor air pollution could play an important role in the susceptibility to respiratory diseases of vulnerable individuals, such as elders and infants. To evaluate indoor air pollution in a low income population of South East Santiago. A domiciliary survey of contaminant sources was carried out in the bouses of a cohort of 522 children less than one year old. Using a case-control design, 121 children consulting for respiratory diseases were considered as cases and 131 healthy infants of the same age and sex were considered as controls. In the houses of both groups, active monitors for particulate matter (PM10) and passive monitors for NO2 were installed. Forty two percent of fathers and 30% of mothers were smokers, and in two thirds of the families there was at least one smoker. Eighty five percent used portable heaters in winter. Of these, 77% used kerosene as fuel. Only 27% had water heating appliances. The rest heated water on the kitchen store or on bonfires. Most kitchen stoves used liquid gas as fuel. Twenty four hour PM10 was 109 +/- 3.2 micrograms/m3. Mean indoor and outdoor NO2 in 24 h was 108 +/- 76.3 and 84 +/- 53.6 micrograms/m3 respectively. Indoor NO2 levels were related to the use of heating devices and smoking. No differences in PM10 and NO2 levels were observed between cases and controls. There is a clear relationship between indoor pollution and contaminating sources. Indoor NO2 levels are higher than outdoors.

  13. A novel method to construct an air quality index based on air pollution profiles.

    Science.gov (United States)

    Thach, Thuan-Quoc; Tsang, Hilda; Cao, Peihua; Ho, Lai-Ming

    2018-01-01

    Air quality indices based on the maximum of sub-indices of pollutants are easy to produce and help quantify the degree of air pollution. However, they discount the additive effects of multiple pollutants and are only sensitive to changes in highest sub-index. We propose a simple and concise method to construct an air quality index that takes into account additive effects of multiple pollutants and evaluate the extent to which this index predicts health effects. We obtained concentrations of four criteria pollutants: particulate matter with aerodynamic diameter ≤ 10μm (PM 10 ), sulphur dioxide (SO 2 ), nitrogen dioxide (NO 2 ) and ozone (O 3 ) and daily admissions to Hong Kong hospitals for cardiovascular and respiratory diseases for all ages and those 65 years or older for years 2001-2012. We derived sub-indices of the four criteria pollutants, calculated by normalizing pollutant concentrations to their respective short-term WHO Air Quality Guidelines (WHO AQG). We aggregated the sub-indices using the root-mean-power function with an optimal power to form an overall air quality index. The optimal power was determined by minimizing the sum of over- and under-estimated days. We then assessed associations between the pollution bands of the index and cardiovascular and respiratory admissions using a time-stratified case-crossover design adjusted for ambient temperature, relative humidity and influenza epidemics. Further, we conducted case-crossover analyses using the Hong Kong air quality data with the respective standards and classification of pollution bands of the China Air Quality Index (AQI), the United Kingdom Daily AQI (DAQI), and the United States Environmental Protection Agency (USEPA) AQI. The mean concentrations of PM 10 and SO 2 based on maximum 3-h mean exceeded the WHO AQG by 37% and 50%, respectively. We identified the combined condition of observed high-pollution days as either at least one pollutant > 1.5×WHO AQG or at least two pollutants > 1.0

  14. Spatio-temporal characteristics of PM10 concentration across Malaysia

    Science.gov (United States)

    Juneng, Liew; Latif, Mohd Talib; Tangang, Fredolin T.; Mansor, Haslina

    The recurrence of forest fires in Southeast Asia and associated biomass burning, has contributed markedly to the problem of trans-boundary haze and the long-range movement of pollutants in the region. Air pollutants, specifically particulate matter in the atmosphere, have received extensive attention, mainly because of their adverse effect on people's health. In this study, the spatial and temporal variability of the PM10 concentration across Malaysia was analyzed by means of the rotated principal component analysis. The results suggest that the variability of the PM10 concentration can be decomposed into four dominant modes, each characterizing different spatial and temporal variations. The first mode characterizes the southwest coastal region of the Malaysian Peninsular with the PM10 showing a peak concentration during the summer monsoon i.e. when the winds are predominantly southerlies or southwesterlies, and a minimal concentration during the winter monsoon. The second mode features the region of western Borneo with the PM10 exhibiting a concentration surge in August-September, which is likely to be the result of the northward shift of the Inter Tropical Convergence Zone (ITCZ) and the subsequent rapid arrival of the rainy season. The third mode delineates the northern region of the Malaysian Peninsular with strong bimodality in the PM10 concentration. Seasonally, this component exhibits two concentration maxima during the late winter and summer monsoons, as well as two minima during the inter-monsoon periods. The fourth dominant mode characterizes the northern Borneo region which exhibits weaker seasonality of the PM10 concentration. Generally, the seasonal fluctuation of the PM10 concentration is largely associated with the seasonal variation of rainfall in the country. However, in addition to this, the PM10 concentration also fluctuates markedly in two timescale bands i.e. 10-20 days quasi-biweekly (QBW) and 30-60 days lower frequency (LF) band of the intra

  15. Health Impacts and Economic Costs of Air Pollution in the Metropolitan Area of Skopje.

    Science.gov (United States)

    Martinez, Gerardo Sanchez; Spadaro, Joseph V; Chapizanis, Dimitris; Kendrovski, Vladimir; Kochubovski, Mihail; Mudu, Pierpaolo

    2018-03-29

    Urban outdoor air pollution, especially particulate matter, remains a major environmental health problem in Skopje, the capital of the former Yugoslav Republic of Macedonia. Despite the documented high levels of pollution in the city, the published evidence on its health impacts is as yet scarce. we obtained, cleaned, and validated Particulate Matter (PM) concentration data from five air quality monitoring stations in the Skopje metropolitan area, applied relevant concentration-response functions, and evaluated health impacts against two theoretical policy scenarios. We then calculated the burden of disease attributable to PM and calculated the societal cost due to attributable mortality. In 2012, long-term exposure to PM 2.5 (49.2 μg/m³) caused an estimated 1199 premature deaths (CI95% 821-1519). The social cost of the predicted premature mortality in 2012 due to air pollution was estimated at between 570 and 1470 million euros. Moreover, PM 2.5 was also estimated to be responsible for 547 hospital admissions (CI95% 104-977) from cardiovascular diseases, and 937 admissions (CI95% 937-1869) for respiratory disease that year. Reducing PM 2.5 levels to the EU limit (25 μg/m³) could have averted an estimated 45% of PM-attributable mortality, while achieving the WHO Air Quality Guidelines (10 μg/m³) could have averted an estimated 77% of PM-attributable mortality. Both scenarios would also attain significant reductions in attributable respiratory and cardiovascular hospital admissions. Besides its health impacts in terms of increased premature mortality and hospitalizations, air pollution entails significant economic costs to the population of Skopje. Reductions in PM 2.5 concentrations could provide substantial health and economic gains to the city.

  16. Endothelial damage due to air pollution

    Directory of Open Access Journals (Sweden)

    Livio Dei Cas

    2010-05-01

    Full Text Available The first human deaths due to air pollution were recorded in the mid-20th century. There were 6,000 cases of illness recorded in Donora, Pennsylvania, in 1948 and 20,000 in London in 1952; 15 and 4,000 cases of death, respectively, were allegedly ascribed to air pollution. Since then, many countries have adopted standards of air quality in order to protect environmental and human health, although the quality of the air in some industrialized countries remains worrying. Emerging countries in the Far East and South America are also cause for concern because of the growth in the population, industrialization and transport. The WHO World Health Report 2002 estimated that air pollutants, particularly PM10, are associated with a mortality rate of 5% for cancer of the respiratory system, 2% for cardiovascular diseases and about 1% for respiratory tract infections. These estimates consider the mortality but not the morbidity rate, which would increase proportionally the number of cases of these pathologies, despite the difficulty in evaluation.

  17. Health Effects of Air Pollution: A Historical Review and Present Status.

    Science.gov (United States)

    Shima, Masayuki

    2017-01-01

    During the 1960s, the concentrations of air pollutants, particularly that of sulfur dioxide (SO 2 ), were extremely high in many industrial cities in Japan, and the prevalence of bronchial asthma and chronic bronchitis increased among residents living in the cities. To evaluate the effects of air pollution on respiratory diseases, many epidemiological studies were conducted, and the findings played an important role in the regulatory control of air pollution. After 1970, the concentration of SO 2 has decreased markedly, and its adverse health effects have been minimized. On the other hand, the increasing automobile traffic in Japan has caused considerable increases in concentrations of air pollutants, such as nitrogen oxides (NOx) and particulate matter (PM). The large-scale epidemiological studies conducted in Japan showed that traffic-related air pollution was associated with the development of asthma in school children and the persistence of asthmatic symptoms in preschool children. In recent years, however, the concentrations of NOx and PM have gradually decreased, since control measures based on the Automobile NOx/PM law were enforced in 2001. At present, the adverse health effects of airborne fine particulate matter (PM 2.5 ) and photochemical oxidants have become a major concern. These air pollutants consist of not only emissions from primary sources but also secondary formations in air, and have spread worldwide. Both short- and long-term exposure to these air pollutants are reported to increase the risk of respiratory and cardiovascular diseases in the population. Therefore, global efforts are necessary to reduce the health risk of these air pollutants.

  18. Letter to the Editor: Applications Air Q Model on Estimate Health Effects Exposure to Air Pollutants

    Directory of Open Access Journals (Sweden)

    Gholamreza Goudarzi

    2016-02-01

    Full Text Available Epidemiologic studies in worldwide have measured increases in mortality and morbidity associated with air pollution (1-3. Quantifying the effects of air pollution on the human health in urban area causes an increasingly critical component in policy discussion (4-6. Air Q model was proved to be a valid and reliable tool to predicts health effects related to criteria  pollutants (particulate matter (PM, ozone (O3, nitrogen dioxide (NO2, sulfur dioxide (SO2, and carbon monoxide (CO, determinate  the  potential short term effects of air pollution  and allows the examination of various scenarios in which emission rates of pollutants are varied (7,8. Air Q software provided by the WHO European Centre for Environment and Health (ECEH (9. Air Q model is based on cohort studies and used to estimates of both attributable average reductions in life-span and numbers of mortality and morbidity associated with exposure to air pollution (10,11. Applications

  19. Exposure to air pollutants and mortality in hypertensive patients according to demography: a 10 year case-crossover study.

    Science.gov (United States)

    Wong, Martin C S; Tam, Wilson W S; Wang, Harry H X; Lao, X Q; Zhang, Daisy Dexing; Chan, Sky W M; Kwan, Mandy W M; Fan, Carmen K M; Cheung, Clement S K; Tong, Ellen L H; Cheung, N T; Tse, L A; Yu, Ignatius T S

    2014-09-01

    This study evaluated whether short term exposures to NO2, O3, particulate matter <10 mm in diameter (PM10) were associated with higher risk of mortality. A total of 223,287 hypertensive patients attended public health-care services and newly prescribed at least 1 antihypertensive agent were followed-up for up to 5 years. A time-stratified, bi-directional case-crossover design was adopted. For all-cause mortality, significant positive associations were observed for NO2 and PM10 at lag 0-3 days per 10 μg/m(3) increase in concentration (excess risks 1.187%-2.501%). Significant positive associations were found for O3 at lag 1 and 2 days and the excess risks were 1.654% and 1.207%, respectively. We found similarly positive associations between these pollutants and respiratory disease mortality. These results were significant among those aged ≥65 years and in cold seasons only. Older hypertensive patients are susceptible to all-cause and respiratory disease-specific deaths from these air pollutants in cold weather. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Commuters' exposure to particulate matter air pollution is affected by mode of transport, fuel type, and route.

    Science.gov (United States)

    Zuurbier, Moniek; Hoek, Gerard; Oldenwening, Marieke; Lenters, Virissa; Meliefste, Kees; van den Hazel, Peter; Brunekreef, Bert

    2010-06-01

    Commuters are exposed to high concentrations of air pollutants, but little quantitative information is currently available on differences in exposure between different modes of transport, routes, and fuel types. The aim of our study was to assess differences in commuters' exposure to traffic-related air pollution related to transport mode, route, and fuel type. We measured particle number counts (PNCs) and concentrations of PM2.5 (particulate matter bus passengers, we calculated that the inhaled air pollution doses were highest for cyclists. With the exception of PM10, we found that inhaled air pollution doses were lowest for electric bus passengers. Commuters' rush hour exposures were significantly influenced by mode of transport, route, and fuel type.

  1. Estimation of daily PM10 concentrations in Italy (2006-2012) using finely resolved satellite data, land use variables and meteorology.

    Science.gov (United States)

    Stafoggia, Massimo; Schwartz, Joel; Badaloni, Chiara; Bellander, Tom; Alessandrini, Ester; Cattani, Giorgio; De' Donato, Francesca; Gaeta, Alessandra; Leone, Gianluca; Lyapustin, Alexei; Sorek-Hamer, Meytar; de Hoogh, Kees; Di, Qian; Forastiere, Francesco; Kloog, Itai

    2017-02-01

    Health effects of air pollution, especially particulate matter (PM), have been widely investigated. However, most of the studies rely on few monitors located in urban areas for short-term assessments, or land use/dispersion modelling for long-term evaluations, again mostly in cities. Recently, the availability of finely resolved satellite data provides an opportunity to estimate daily concentrations of air pollutants over wide spatio-temporal domains. Italy lacks a robust and validated high resolution spatio-temporally resolved model of particulate matter. The complex topography and the air mixture from both natural and anthropogenic sources are great challenges difficult to be addressed. We combined finely resolved data on Aerosol Optical Depth (AOD) from the Multi-Angle Implementation of Atmospheric Correction (MAIAC) algorithm, ground-level PM 10 measurements, land-use variables and meteorological parameters into a four-stage mixed model framework to derive estimates of daily PM 10 concentrations at 1-km2 grid over Italy, for the years 2006-2012. We checked performance of our models by applying 10-fold cross-validation (CV) for each year. Our models displayed good fitting, with mean CV-R2=0.65 and little bias (average slope of predicted VS observed PM 10 =0.99). Out-of-sample predictions were more accurate in Northern Italy (Po valley) and large conurbations (e.g. Rome), for background monitoring stations, and in the winter season. Resulting concentration maps showed highest average PM 10 levels in specific areas (Po river valley, main industrial and metropolitan areas) with decreasing trends over time. Our daily predictions of PM 10 concentrations across the whole Italy will allow, for the first time, estimation of long-term and short-term effects of air pollution nationwide, even in areas lacking monitoring data. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Characteristics of PM1.0, PM2.5, and PM10, and Their Relation to Black Carbon in Wuhan, Central China

    Directory of Open Access Journals (Sweden)

    Wei Gong

    2015-09-01

    Full Text Available Hourly average monitoring data for mass concentrations of PM1, PM2.5, PM10, and black carbon (BC were measured in Wuhan from December 2013 to December 2014, which has a flourishing steel industry, to analyze the characteristics of PM and their relation to BC, using statistical methods. The results indicate that variations in the monthly average mass concentrations of PM have similar concave parabolic shapes, with the highest values occurring in January and the lowest values appearing in August or September. The correlation coefficient of the linear regression model between PM1 and PM2.5 is quite high, reaching 0.99. Furthermore, the proportion of PM1 contained within PM2.5 is roughly 90%, directly proving that ultrafine particles whose diameter less than 1 μm may be a primary component of PM2.5 in Wuhan. Additionally, better seasonal correlation between PM and BC occurs only in summer and autumn, due to multiple factors such as topography, temperature, and the atmosphere in winter and spring. Finally, analysis of the diurnal variation of PM and BC demonstrates that the traffic emissions during rush hour, exogenous pollutants, and the shallow PBLH with stagnant atmosphere, all contribute to the severe pollution of Wuhan in winter.

  3. Effect of Exposure to PM10 on Cardiovascular Diseases Hospitalizations in Ahvaz, Khorramabad and Ilam, Iran During 2014

    Directory of Open Access Journals (Sweden)

    Seyed Mohammad Daryanoosh

    2016-01-01

    Full Text Available Particulate matter with an aerodynamic diameter less than or equal to 10μm (PM10 has the great adverse endpoints on human health. The aim of this study was to assess the hospital admissions (HA due to cardiovascular diseases (CVD attributed to PM10 among people living in the cities of Ahvaz, Khorramabad and Ilam, during 2014. In this study, Air Quality Health Impact Assessment (AirQ2.2.3 software proposed by the World Health Organization (WHO to assess of health impacts of atmospheric pollutants was used. To evaluate human exposure and health outcome of PM10, 24-hour data was taken from the Departments of Environment of Ahvaz, Khorramabad and Ilam. We acquired an input file for the software from raw data and quantified PM10 by the AirQ2.2.3 model. The annual averages in three study areas illustrated that PM10 concentration in Ahvaz and Ilam with values of 534.77 and 60.45μg/m3, were the highest and lowest in 2014, respectively. The number of excess cases for HA due to CVD in Ahvaz, Khorramabad, and Ilam was estimated 508, 144 and 66 persons, respectively. The most percentage of person-days was attributable to the concentration interval of 130-139µg/m3 of PM10, whereas this was for Khorramabad and Ilam 60-69 and 40-49µg/m3, respectively. The comparison of PM10 concentrations with NAAQS standard was revealed the annual average of particulate matter concentrations in Ahvaz was higher than standard. Therefore, the efforts should be conducted in the governmental scale to prevent pollution and reduce PM10 emission from various sources, such as transport and industries and also control dust entering the country by spreading mulch and development of green space.

  4. Assessment of an air pollution monitoring network to generate urban air pollution maps using Shannon information index, fuzzy overlay, and Dempster-Shafer theory, A case study: Tehran, Iran

    Science.gov (United States)

    Pahlavani, Parham; Sheikhian, Hossein; Bigdeli, Behnaz

    2017-10-01

    Air pollution assessment is an imperative part of megacities planning and control. Hence, a new comprehensive approach for air pollution monitoring and assessment was introduced in this research. It comprises of three main sections: optimizing the existing air pollutant monitoring network, locating new stations to complete the coverage of the existing network, and finally, generating an air pollution map. In the first section, Shannon information index was used to find less informative stations to be candidate for removal. Then, a methodology was proposed to determine the areas which are not sufficiently covered by the current network. These areas are candidates for establishing new monitoring stations. The current air pollution monitoring network of Tehran was used as a case study, where the air pollution issue has been worsened due to the huge population, considerable commuters' absorption and topographic barriers. In this regard, O3, NO, NO2, NOx, CO, PM10, and PM2.5 were considered as the main pollutants of Tehran. Optimization step concluded that all the 16 active monitoring stations should be preserved. Analysis showed that about 35% of the Tehran's area is not properly covered by monitoring stations and about 30% of the area needs additional stations. The winter period in Tehran always faces the most severe air pollution in the year. Hence, to produce the air pollution map of Tehran, three-month of winter measurements of the mentioned pollutants, repeated for five years in the same period, were selected and extended to the entire area using the kriging method. Experts specified the contribution of each pollutant in overall air pollution. Experts' rankings aggregated by a fuzzy-overlay process. Resulted maps characterized the study area with crucial air pollution situation. According to the maps, more than 45% of the city area faced high pollution in the study period, while only less than 10% of the area showed low pollution. This situation confirms the need

  5. Enhanced air pollution via aerosol-boundary layer feedback in China.

    Science.gov (United States)

    Petäjä, T; Järvi, L; Kerminen, V-M; Ding, A J; Sun, J N; Nie, W; Kujansuu, J; Virkkula, A; Yang, X-Q; Fu, C B; Zilitinkevich, S; Kulmala, M

    2016-01-12

    Severe air pollution episodes have been frequent in China during the recent years. While high emissions are the primary reason for increasing pollutant concentrations, the ultimate cause for the most severe pollution episodes has remained unclear. Here we show that a high concentration of particulate matter (PM) will enhance the stability of an urban boundary layer, which in turn decreases the boundary layer height and consequently cause further increases in PM concentrations. We estimate the strength of this positive feedback mechanism by combining a new theoretical framework with ambient observations. We show that the feedback remains moderate at fine PM concentrations lower than about 200 μg m(-3), but that it becomes increasingly effective at higher PM loadings resulting from the combined effect of high surface PM emissions and massive secondary PM production within the boundary layer. Our analysis explains why air pollution episodes are particularly serious and severe in megacities and during the days when synoptic weather conditions stay constant.

  6. Quantifying the co-impacts of energy sector decarbonisation on outdoor air pollution in the United Kingdom

    International Nuclear Information System (INIS)

    Lott, Melissa C.; Pye, Steve; Dodds, Paul E.

    2017-01-01

    The energy sector is a major contributor to greenhouse gas (GHG) emissions and other types of air pollution that negatively impact human health and the environment. Policy targets to achieve decarbonisation goals for national energy systems will therefore impact levels of air pollution. Advantages can be gained from considering these co-impacts when analysing technology transition scenarios in order to avoid tension between climate change and air quality policies. We incorporated non-GHG air pollution into a bottom-up, technoeconomic energy systems model that is at the core of UK decarbonisation policy development. We then used this model to assess the co-impacts of decarbonisation on other types of air pollution and evaluated the extent to which transition pathways would be altered if these other pollutants were considered. In a scenario where the UK meets its existing decarbonisation targets to 2050, including the costs of non-GHG air pollution led to a 40% and 45% decrease in PM_1_0 and PM_2_._5 pollution (respectively) between 2010 and 2050 due to changes in technology choice in residential heating. Conversely, limited change in the pollution profile for transportation were observed, suggesting that other policy strategies will be necessary to reduce pollution from transport. - Highlights: • Strategies to decarbonise energy systems should consider other air pollutants. • Energy systems models can show decarbonisation pathway co-impacts on PM, NO_x and SO_x. • Considering non-GHG pollution eliminates carbon & air quality policy tensions. • Transport particulate pollution challenges will only be addressed by modal shifting.

  7. Perceived indoor air quality and its relationship to air pollutants in French dwellings.

    Science.gov (United States)

    Langer, S; Ramalho, O; Le Ponner, E; Derbez, M; Kirchner, S; Mandin, C

    2017-11-01

    Perception of indoor air quality (PIAQ) was evaluated in a nationwide survey of 567 French dwellings, and this survey was combined with measurements of gaseous and particulate matter (PM 10 and PM 2.5 ) indoor air pollutants and indoor climate parameters. The perception was assessed on a nine-grade scale by both the occupants of the dwellings and the inspectors who performed the measurements. The occupants perceived the air quality in their homes as more pleasant than the inspectors. The inspectors perceived the air quality as more unpleasant in dwellings in which the residents smoked indoors. Significant associations between PIAQ and indoor air pollutant concentrations were observed for both the inspectors and, to a lesser extent, the occupants. Introducing confounding parameters, such as building and personal characteristics, into a multivariate model suppressed most of the observed bivariate correlations and identified the tenure status of the occupants and their occupation as the parameters that most influenced their PIAQ. For the inspectors, perceived air quality was affected by the presence of smokers, the season, the type of ventilation, retrofitting, and the concentrations of acetaldehyde and acrolein. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  8. Out-of-hospital cardiac arrests and outdoor air pollution exposure in Copenhagen, Denmark.

    Directory of Open Access Journals (Sweden)

    Janine Wichmann

    Full Text Available Cardiovascular disease is the number one cause of death globally and air pollution can be a contributing cause. Acute myocardial infarction and cardiac arrest are frequent manifestations of coronary heart disease. The objectives of the study were to investigate the association between 4 657 out-of-hospital cardiac arrests (OHCA and hourly and daily outdoor levels of PM(10, PM(2.5, coarse fraction of PM (PM(10-2.5, ultrafine particle proxies, NO(x, NO(2, O(3 and CO in Copenhagen, Denmark, for the period 2000-2010. Susceptible groups by age and sex was also investigated. A case-crossover design was applied. None of the hourly lags of any of the pollutants were significantly associated with OHCA events. The strongest association with OHCA events was observed for the daily lag4 of PM(2.5, lag3 of PM(10, lag3 of PM(10-2.5, lag3 of NO(x and lag4 of CO. An IQR increase of PM(2.5 and PM(10 was associated with a significant increase of 4% (95% CI: 0%; 9% and 5% (95% CI: 1%; 9% in OHCA events with 3 days lag, respectively. None of the other daily lags or other pollutants was significantly associated with OHCA events. Adjustment for O(3 slightly increased the association between OHCA and PM(2.5 and PM(10. No susceptible groups were identified.

  9. Análisis del origen de PM10 y PM2.5 en Bogotá usando gráficos polares (Analysis of the origin of PM10 and PM2.5 in Bogota by using polar plots

    Directory of Open Access Journals (Sweden)

    Pedro Alejandro García Ávila

    2016-09-01

    Full Text Available Determinar la procedencia de los contaminantes del aire registrados por una red de monitoreo es fundamental para diseñar acciones de prevención y control de la contaminación. Con este fin, se analizaron, mediante la aplicación Openair®, los registros de material particulado (PM10 y PM2.5, velocidad y dirección de los vientos, en 10 estaciones de monitoreo de calidad del aire en Bogotá para el período 2009-2011, encontrándose la influencia de fuentes locales y regionales. Se determinaron altas concentraciones de material particulado relacionadas con velocidades de viento superiores a 5 m/s procedentes del occidente, lo cual sugiere un transporte regional de contaminantes desde los municipios vecinos del occidente de la ciudad (Soacha, Funza, Mosquera, Madrid, hacia su centro geográfico. Estos municipios concentran actividad industrial y transporte pesado de bienes desde y hacia Bogotá. Las fuentes localizadas al interior de la ciudad, en particular aquellas que emplean carbón como combustible y las fuentes móviles que transitan sobre las vías principales, contribuyen a generar altos niveles de material particulado cuando los vientos son débiles, pero en menor magnitud que las fuentes externas. (Abstract. The design of pollution prevention strategies and plans requires information about the origin of the pollutants. In this work, particulate matter (PM10 and PM2.5, wind speed and wind direction records from 10 air quality monitoring stations in Bogota between 2009 and 2011 were analyzed using Openair®. The influence of local and regional sources was established. High concentrations of particulate matter associated with wind speeds exceeding 5 m/s from the West were found, suggesting regional transport from the neighboring municipalities of Soacha, Funza, Mosquera and Madrid, towards its geographic center. These municipalities have a significant industrial activity and heavy transport of goods to and from Bogota. Sources located

  10. Air pollution and mortality in São Paulo, Brazil: Effects of multiple pollutants and analysis of susceptible populations.

    Science.gov (United States)

    Bravo, Mercedes A; Son, Jiyoung; de Freitas, Clarice Umbelino; Gouveia, Nelson; Bell, Michelle L

    2016-01-01

    Health impacts of air pollution may differ depending on sex, education, socioeconomic status (SES), location at time of death, and other factors. In São Paulo, Brazil, questions remain regarding roles of individual and community characteristics. We estimate susceptibility to air pollution based on individual characteristics, residential SES, and location at time of death (May 1996-December 2010). Exposures for particulate matter with an aerodynamic diameter ≤ 10 μm (PM10), nitrogen dioxide (NO2), sulfur dioxide (SO2), carbon monoxide (CO), and ozone (O3) were estimated using ambient monitors. Time-stratified case-crossover analysis was used with individual-level health data. Increased risk of non-accidental, cardiovascular, and respiratory mortality were associated with all pollutants (P effect estimates for those with > 11 years education were lower than estimates for those with 0 years education for NO2, SO2, and CO (1.66% (95% confidence interval: 0.23%, 3.08%); 1.51% (0.51%, 2.51%); and 2.82% (0.23%, 5.35%), respectively). PM10 cardiovascular mortality effects were (3.74% (0.044%, 7.30%)) lower for the high education group (> 11 years) compared with the no education group. Positive, significant associations between pollutants and mortality were observed for in-hospital deaths, but evidence of differences in air pollution-related mortality risk by location at time of death was not strong.

  11. Air pollution exposure modeling of individuals

    Science.gov (United States)

    Air pollution epidemiology studies of ambient fine particulate matter (PM2.5) often use outdoor concentrations as exposure surrogates. These surrogates can induce exposure error since they do not account for (1) time spent indoors with ambient PM2.5 levels attenuated from outdoor...

  12. Composition and sources of particles in Mannerheimintie during exceedance days of PM{sub 10} limit value in 2009; Hiukkasten koostumus ja laehteet Mannerheimintiellae PM{sub 10}-raja-arvon ylityspaeivinae 2009

    Energy Technology Data Exchange (ETDEWEB)

    Kupiainen, K.; Stojiljkovic, A.; Ritola, R. (Nordic Envicon Oy, Helsinki (Finland))

    2011-06-15

    The purpose of the work was to determine sources of thoracic particles (PM{sub 10}) in the center of Helsinki, in Mannerheimintie, in 2009 during the days when the daily average concentration of PM{sub 10} exceeded 50 mug/m3. Work was commissioned by the Helsinki City Public Works department, the Helsinki Environment Centre and the Helsinki Region Environmental Services Authority HSY (formerly YTV). By the end of the year there were altogether 30 exceedance days. The allowed number of exceedance days per year is 35, so the limit value was not exceeded in 2009. HSY is responsible for monitoring the air quality in the Helsinki metropolitan area. The PM{sub 10} monitoring data in combination with electron microscopy based single particle compositional analysis and receptor modeling was used to evaluate dust source contributions on the exceedance days at HSY's air quality monitoring station in Mannerheimintie. Dust sources related to traction control (winter maintenance and pavement wear by studded tyres) contributed most to the PM{sub 10} concentrations in Mannerheimintie. On 12 exceeding days this group accounted for more than 50 % of PM{sub 10} particles, on 3 days the group alone was sufficient to cause the exceedance. On 3 of the exceedance days long-range transboundary air pollution or traffic exhaust emissions were on the same level with the traction control sources. On 11 days the most significant impact came from construction sites. (orig.)

  13. Air pollution and asthma control in the Epidemiological study on the Genetics and Environment of Asthma

    Science.gov (United States)

    Jacquemin, Bénédicte; Kauffmann, Francine; Pin, Isabelle; Le Moual, Nicole; Bousquet, Jean; Gormand, Frédéric; Just, Jocelyne; Nadif, Rachel; Pison, Christophe; Vervloet, Daniel; Künzli, Nino; Siroux, Valérie

    2012-01-01

    Background The associations between exposure to air pollution and asthma control are not well known. The objective is to assess the association between long term exposure to NO2, O3 and PM10 and asthma control in the EGEA2 study (2003–2007). Methods Modeled outdoor NO2, O3 and PM10 estimates were linked to each residential address using the 4-km grid air pollutant surface developed by the French Institute of Environment for 2004. Asthma control was assessed in 481 subjects with current asthma using a multidimensional approach following the 2006–2009 GINA guidelines. Multinomial and ordinal logistic regressions were conducted adjusted on sex, age, BMI, education, smoking and use of inhaled corticosteroids. The association between air pollution and the three domains of asthma control (symptoms, exacerbations and lung function) was assessed. Odds Ratios (ORs) are reported per Inter Quartile Range (IQR). Results Median concentrations (μg.m−3) were 32(IQR 25–38) for NO2 (n=465), 46(41–52) for O3 and 21(18–21) for PM10 (n=481). In total, 44%, 29% and 27% had controlled, partly-controlled and uncontrolled asthma. The ordinal ORs for O3 and PM10 with asthma control were 1.69(95%CI 1.22–2.34) and 1.35(95%CI 1.13–1.64) respectively. When including both pollutants in the same model, both associations persisted. Associations were not modified by sex, smoking status, use of inhaled corticosteroids, atopy, season of examination or BMI. Both pollutants were associated with each of the three main domains of control. Conclusions The results suggest that long-term exposure to PM10 and O3 is associated with uncontrolled asthma in adults, defined by symptoms, exacerbations and lung function. Abstract Word count: 250 Key words: air pollution, asthma, asthma control PMID:21690606

  14. Acute exposure to air pollution triggers atrial fibrillation.

    Science.gov (United States)

    Link, Mark S; Luttmann-Gibson, Heike; Schwartz, Joel; Mittleman, Murray A; Wessler, Benjamin; Gold, Diane R; Dockery, Douglas W; Laden, Francine

    2013-08-27

    This study sought to evaluate the association of air pollution with the onset of atrial fibrillation (AF). Air pollution in general and more specifically particulate matter has been associated with cardiovascular events. Although ventricular arrhythmias are traditionally thought to convey the increased cardiovascular risk, AF may also contribute. Patients with dual chamber implantable cardioverter-defibrillators (ICDs) were enrolled and followed prospectively. The association of AF onset with air quality including ambient particulate matter pollution between 2 and 48 h prior to the AF were examined. Of 176 patients followed for an average of 1.9 years, 49 patients had 328 episodes of AF lasting ≥ 30 s. Positive but nonsignificant associations were found for PM2.5 in the prior 24 h, but stronger associations were found with shorter exposure windows. The odds of AF increased by 26% (95% confidence interval: 8% to 47%) for each 6.0 μg/m(3) increase in PM2.5 in the 2 h prior to the event (p = 0.004). The odds of AF were highest at the upper quartile of mean PM2.5. PM was associated with increased odds of AF onset within hours following exposure in patients with known cardiac disease. Air pollution is an acute trigger of AF, likely contributing to the pollution-associated adverse cardiac outcomes observed in epidemiological studies. Copyright © 2013 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.

  15. Concentration distribution of NO2, PM10 and PM2,5 in severe pollution episodes in Oslo, Drammen, Bergen and Trondheim

    International Nuclear Information System (INIS)

    Sloerdal, Leiv Haavard; Toennesen, Dag

    1999-04-01

    Based on hourly model calculations of NO 2 , PM 1 0 and PM 2 ,5 through a 6 months winter season in the cities of Oslo, Drammen, Bergen and Trondheim, the 10 most severe pollution episodes have been analysed. Concentration distributions, calculated as the average of these episodes have been combined with the population distribution in order to reveal the exposure levels in such episodes. The model calculations have only been performed for the city background, i.e. on a km 2 grid system. (author)

  16. Burden of disease attributed to ambient air pollution in Thailand: A GIS-based approach.

    Directory of Open Access Journals (Sweden)

    Chayut Pinichka

    Full Text Available Growing urbanisation and population requiring enhanced electricity generation as well as the increasing numbers of fossil fuel in Thailand pose important challenges to air quality management which impacts on the health of the population. Mortality attributed to ambient air pollution is one of the sustainable development goals (SDGs. We estimated the spatial pattern of mortality burden attributable to selected ambient air pollution in 2009 based on the empirical evidence in Thailand.We estimated the burden of disease attributable to ambient air pollution based on the comparative risk assessment (CRA framework developed by the World Health Organization (WHO and the Global Burden of Disease study (GBD. We integrated geographical information systems (GIS-based exposure assessments into spatial interpolation models to estimate ambient air pollutant concentrations, the population distribution of exposure and the concentration-response (CR relationship to quantify ambient air pollution exposure and associated mortality. We obtained air quality data from the Pollution Control Department (PCD of Thailand surface air pollution monitoring network sources and estimated the CR relationship between relative risk (RR and concentration of air pollutants from the epidemiological literature.We estimated 650-38,410 ambient air pollution-related fatalities and 160-5,982 fatalities that could have been avoided with a 20 reduction in ambient air pollutant concentrations. The summation of population-attributable fraction (PAF of the disease burden for all-causes mortality in adults due to NO2 and PM2.5 were the highest among all air pollutants at 10% and 7.5%, respectively. The PAF summation of PM2.5 for lung cancer and cardiovascular disease were 16.8% and 14.6% respectively and the PAF summations of mortality attributable to PM10 was 3.4% for all-causes mortality, 1.7% for respiratory and 3.8% for cardiovascular mortality, while the PAF summation of mortality

  17. Burden of disease attributed to ambient air pollution in Thailand: A GIS-based approach.

    Science.gov (United States)

    Pinichka, Chayut; Makka, Nuttapat; Sukkumnoed, Decharut; Chariyalertsak, Suwat; Inchai, Puchong; Bundhamcharoen, Kanitta

    2017-01-01

    Growing urbanisation and population requiring enhanced electricity generation as well as the increasing numbers of fossil fuel in Thailand pose important challenges to air quality management which impacts on the health of the population. Mortality attributed to ambient air pollution is one of the sustainable development goals (SDGs). We estimated the spatial pattern of mortality burden attributable to selected ambient air pollution in 2009 based on the empirical evidence in Thailand. We estimated the burden of disease attributable to ambient air pollution based on the comparative risk assessment (CRA) framework developed by the World Health Organization (WHO) and the Global Burden of Disease study (GBD). We integrated geographical information systems (GIS)-based exposure assessments into spatial interpolation models to estimate ambient air pollutant concentrations, the population distribution of exposure and the concentration-response (CR) relationship to quantify ambient air pollution exposure and associated mortality. We obtained air quality data from the Pollution Control Department (PCD) of Thailand surface air pollution monitoring network sources and estimated the CR relationship between relative risk (RR) and concentration of air pollutants from the epidemiological literature. We estimated 650-38,410 ambient air pollution-related fatalities and 160-5,982 fatalities that could have been avoided with a 20 reduction in ambient air pollutant concentrations. The summation of population-attributable fraction (PAF) of the disease burden for all-causes mortality in adults due to NO2 and PM2.5 were the highest among all air pollutants at 10% and 7.5%, respectively. The PAF summation of PM2.5 for lung cancer and cardiovascular disease were 16.8% and 14.6% respectively and the PAF summations of mortality attributable to PM10 was 3.4% for all-causes mortality, 1.7% for respiratory and 3.8% for cardiovascular mortality, while the PAF summation of mortality attributable to

  18. Part 5. Public health and air pollution in Asia (PAPA): a combined analysis of four studies of air pollution and mortality.

    Science.gov (United States)

    Wong, C M; Vichit-Vadakan, N; Vajanapoom, N; Ostro, B; Thach, T Q; Chau, P Y K; Chan, E K P; Chung, R Y N; Ou, C Q; Yang, L; Peiris, J S M; Thomas, G N; Lam, T H; Wong, T W; Hedley, A J; Kan, H; Chen, B; Zhao, N; London, S J; Song, G; Chen, G; Zhang, Y; Jiang, L; Qian, Z; He, Q; Lin, H M; Kong, L; Zhou, D; Liang, S; Zhu, Z; Liao, D; Liu, W; Bentley, C M; Dan, J; Wang, B; Yang, N; Xu, S; Gong, J; Wei, H; Sun, H; Qin, Z

    2010-11-01

    researchers in Wuhan used additional smoothing for periods with extreme weather conditions. For mortality due to all natural (nonaccidental) causes at all ages, the effects of air pollutants per 10-microg/m3 increase in concentration was found to be higher in Bangkok than in the three Chinese cities, with the exception of the effect of NO2 in Wuhan. The magnitude of the effects for cardiovascular and respiratory mortality were generally higher than for all natural mortality at all ages. In addition, the effects associated with PM10 and O3 in all natural, cardiovascular; and respiratory mortality were found to be higher in Bangkok than in the three Chinese cities. The explanation for these three findings might be related to consistently higher daily mean temperatures in Bangkok, variations in average time spent outdoors by the susceptible populations, and the fact that less air conditioning is available and used in Bangkok than in the other cities. However, when pollutant concentrations were incorporated into the excess risk estimates through the use of interquartile range (IQR), the excess risk was more comparable across the four cities. We found that the increases in effects among older age groups were greater in Bangkok than in the other three cities. After excluding data on extremely high concentrations of PM10 in Bangkok, the effect estimate associated with PM10 concentrations decreased in Bangkok (suggesting a convex relationship between risk and PM10, where risk levels off at high concentrations) instead of increasing, as it did in the other cities. This leveling off of effect estimates at high concentrations might be related to differences in vulnerability and exposure of the population to air pollution as well as to the sources of the air pollutant. IMPLICATIONS OF THE STUDY: The PAPA project is the first coordinated Asian multicity air pollution study ever published; this signifies the beginning of an era of cooperation and collaboration in Asia, with the development

  19. Respiratory disease and particulate air pollution in Santiago Chile: contribution of erosion particles from fine sediments.

    Science.gov (United States)

    Garcia-Chevesich, Pablo A; Alvarado, Sergio; Neary, Daniel G; Valdes, Rodrigo; Valdes, Juan; Aguirre, Juan José; Mena, Marcelo; Pizarro, Roberto; Jofré, Paola; Vera, Mauricio; Olivares, Claudio

    2014-04-01

    Air pollution in Santiago is a serious problem every winter, causing thousands of cases of breathing problems within the population. With more than 6 million people and almost two million vehicles, this large city receives rainfall only during winters. Depending on the frequency of storms, statistics show that every time it rains, air quality improves for a couple of days, followed by extreme levels of air pollution. Current regulations focus mostly on PM10 and PM2.5, due to its strong influence on respiratory diseases. Though more than 50% of the ambient PM10s in Santiago is represented by soil particles, most of the efforts have been focused on the remaining 50%, i.e. particulate material originating from fossil and wood fuel combustion, among others. This document emphasizes the need for the creation of erosion/sediment control regulations in Chile, to decrease respiratory diseases on Chilean polluted cities. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Does air pollution trigger suicide? A case-crossover analysis of suicide deaths over the life span.

    Science.gov (United States)

    Casas, Lidia; Cox, Bianca; Bauwelinck, Mariska; Nemery, Benoit; Deboosere, Patrick; Nawrot, Tim Steve

    2017-11-01

    In addition to underlying health disorders and socio-economic or community factors, air pollution may trigger suicide mortality. This study evaluates the association between short-term variation in air pollution and 10 years of suicide mortality in Belgium. In a bidirectional time-stratified case-crossover design, 20,533 suicide deaths registered between January 1st 2002 and December 31st 2011 were matched by temperature with control days from the same month and year. We used municipality-level air pollution [particulate matter (PM 10 ) and O 3 concentrations] data and meteorology data. We applied conditional logistic regression models adjusted for duration of sunshine and day of the week to obtain odds ratios (OR) and their 95% CI for an increase of 10 µg/m 3 in pollutant concentrations over different lag periods (lag 0, 0-1, 0-2, 0-3, 0-4, 0-5, and 0-6 days). Effect modification by season and age was investigated by including interaction terms. We observed significant associations of PM 10 and O 3 with suicide during summer (OR ranging from 1.02 to 1.07, p-values suicide, particularly during warm periods, even at concentrations below the European thresholds. Furthermore, PM 10 may have strong trigger effects among children and elderly population.

  1. ARAMIS a regional air quality model for air pollution management: evaluation and validation

    Energy Technology Data Exchange (ETDEWEB)

    Solar, M. R.; Gamez, P.; Olid, M.

    2015-07-01

    The aim of this research was to better understand the dynamics of air pollutants and to forecast the air quality over regional areas in order to develop emission abatement strategies for air pollution and adverse health effects. To accomplish this objective, we developed and applied a high resolution Eulerian system named ARAMIS (A Regional Air Quality Modelling Integrated System) over the north-east of Spain (Catalonia), where several pollutants exceed threshold values for the protection of human health. The results indicate that the model reproduced reasonably well observed concentrations, as statistical values fell within Environmental Protection Agency (EPA) recommendations and European (EU) regulations. Nevertheless, some hourly O{sub 3} exceedances in summer and hourly peaks of NO{sub 2} in winter were underestimated. Concerning PM10 concentrations less accurate model levels were obtained with a moderate trend towards underestimation during the day. (Author)

  2. ARAMIS a regional air quality model for air pollution management: evaluation and validation

    Energy Technology Data Exchange (ETDEWEB)

    Soler, M.R.; Gamez, P.; Olid, M.

    2015-07-01

    The aim of this research was to better understand the dynamics of air pollutants and to forecast the air quality over regional areas in order to develop emission abatement strategies for air pollution and adverse health effects. To accomplish this objective, we developed and applied a high resolution Eulerian system named ARAMIS (A Regional Air Quality Modelling Integrated System) over the north-east of Spain (Catalonia), where several pollutants exceed threshold values for the protection of human health. The results indicate that the model reproduced reasonably well observed concentrations, as statistical values fell within Environmental Protection Agency (EPA) recommendations and European (EU) regulations. Nevertheless, some hourly O3 exceedances in summer and hourly peaks of NO2 in winter were underestimated. Concerning PM10 concentrations less accurate model levels were obtained with a moderate trend towards underestimation during the day. (Author)

  3. Two-way effect modifications of air pollution and air temperature on total natural and cardiovascular mortality in eight European urban areas.

    Science.gov (United States)

    Chen, Kai; Wolf, Kathrin; Breitner, Susanne; Gasparrini, Antonio; Stafoggia, Massimo; Samoli, Evangelia; Andersen, Zorana Jovanovic; Bero-Bedada, Getahun; Bellander, Tom; Hennig, Frauke; Jacquemin, Bénédicte; Pekkanen, Juha; Hampel, Regina; Cyrys, Josef; Peters, Annette; Schneider, Alexandra

    2018-07-01

    Although epidemiological studies have reported associations between mortality and both ambient air pollution and air temperature, it remains uncertain whether the mortality effects of air pollution are modified by temperature and vice versa. Moreover, little is known on the interactions between ultrafine particles (diameter ≤ 100 nm, UFP) and temperature. We investigated whether the short-term associations of particle number concentration (PNC in the ultrafine range (≤100 nm) or total PNC ≤ 3000 nm, as a proxy for UFP), particulate matter ≤ 2.5 μm (PM 2.5 ) and ≤ 10 μm (PM 10 ), and ozone with daily total natural and cardiovascular mortality were modified by air temperature and whether air pollution levels affected the temperature-mortality associations in eight European urban areas during 1999-2013. We first analyzed air temperature-stratified associations between air pollution and total natural (nonaccidental) and cardiovascular mortality as well as air pollution-stratified temperature-mortality associations using city-specific over-dispersed Poisson additive models with a distributed lag nonlinear temperature term in each city. All models were adjusted for long-term and seasonal trend, day of the week, influenza epidemics, and population dynamics due to summer vacation and holidays. City-specific effect estimates were then pooled using random-effects meta-analysis. Pooled associations between air pollutants and total and cardiovascular mortality were overall positive and generally stronger at high relatively compared to low air temperatures. For example, on days with high air temperatures (>75th percentile), an increase of 10,000 particles/cm 3 in PNC corresponded to a 2.51% (95% CI: 0.39%, 4.67%) increase in cardiovascular mortality, which was significantly higher than that on days with low air temperatures (air pollution (>50th percentile), both heat- and cold-related mortality risks increased. Our findings showed that

  4. Trade-driven relocation of air pollution and health impacts in China.

    Science.gov (United States)

    Wang, Haikun; Zhang, Yanxu; Zhao, Hongyan; Lu, Xi; Zhang, Yanxia; Zhu, Weimo; Nielsen, Chris P; Li, Xin; Zhang, Qiang; Bi, Jun; McElroy, Michael B

    2017-09-29

    Recent studies show that international trade affects global distributions of air pollution and public health. Domestic interprovincial trade has similar effects within countries, but has not been comprehensively investigated previously. Here we link four models to evaluate the effects of both international exports and interprovincial trade on PM 2.5 pollution and public health across China. We show that 50-60% of China's air pollutant emissions in 2007 were associated with goods and services consumed outside of the provinces where they were produced. Of an estimated 1.10 million premature deaths caused by PM 2.5 pollution throughout China, nearly 19% (208,500 deaths) are attributable to international exports. In contrast, interprovincial trade leads to improved air quality in developed coastal provinces with a net effect of 78,500 avoided deaths nationwide. However, both international export and interprovincial trade exacerbate the health burdens of air pollution in China's less developed interior provinces. Our results reveal trade to be a critical but largely overlooked consideration in effective regional air quality planning for China.International and domestic interprovincial trade of China are entangled, but their health impacts have been treated separately in earlier studies. Here Wang. quantify the complex impacts of trade on public health across China within an integrative framework.

  5. PM2.5 exposure in highly polluted cities: A case study from New Delhi, India.

    Science.gov (United States)

    Pant, Pallavi; Habib, Gazala; Marshall, Julian D; Peltier, Richard E

    2017-07-01

    Personal exposure (PE) to air pollutants is driven by a combination of pollutant concentrations in indoor and outdoor environments, and time-activity pattern of individuals. The objectives of this study were to estimate personal exposure to PM 2.5 and black carbon (BC), and assess the representability of ambient air quality monitoring stations to serve as surrogates for PE in New Delhi. Personal exposure to air pollutants (PM 2.5-PE and BC PE ) was measured using portable, battery-operated instruments (PM 2.5 - pDR1500 and BC- microAethalometer AE51) in a small cohort of healthy adults (n=12 in summer, n=6 in winter) with no occupational exposure. Average PM 2.5-PE and BC PE (µg/m 3 ) were 53.9±136 and 3.71±4.29 respectively, in summer and 489.2±209.2 and 23.3±14.9 respectively, in winter. Activities associated with highest exposure levels were cooking and indoor cleaning for PM 2.5 , and commuting for BC. Within transport microenvironments, autorickshaws were found to be the most polluted, and lowest BC exposure was registered in public buses. Comparison of fixed-site ambient monitoring data showed a higher correlation with personal exposure dataset in winter compared to summer (r 2 of 0.51 (winter) and 0.21 (summer); 51% (winter) and 20% (summer)). This study highlights the need for detailed assessment of PE to air pollutants in Indian cities, and calls for a denser network of monitoring stations for better exposure assessment. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. The Public Health and Air Pollution in Asia (PAPA) Project: estimating the mortality effects of particulate matter in Bangkok, Thailand.

    Science.gov (United States)

    Vichit-Vadakan, Nuntavarn; Vajanapoom, Nitaya; Ostro, Bart

    2008-09-01

    Air pollution data in Bangkok, Thailand, indicate that levels of particulate matter with aerodynamic diameter air pollution in Bangkok, Thailand. The study period extended from 1999 to 2003, for which the Ministry of Public Health provided the mortality data. Measures of air pollution were derived from air monitoring stations, and information on temperature and relative humidity was obtained from the weather station in central Bangkok. The statistical analysis followed the common protocol for the multicity PAPA (Public Health and Air Pollution Project in Asia) project in using a natural cubic spline model with smooths of time and weather. The excess risk for non-accidental mortality was 1.3% [95% confidence interval (CI), 0.8-1.7] per 10 microg/m(3) of PM(10), with higher excess risks for cardiovascular and above age 65 mortality of 1.9% (95% CI, 0.8-3.0) and 1.5% (95% CI, 0.9-2.1), respectively. In addition, the effects from PM(10) appear to be consistent in multipollutant models. The results suggest strong associations between several different mortality outcomes and PM(10). In many cases, the effect estimates were higher than those typically reported in Western industrialized nations.

  7. Health Impacts and Economic Costs of Air Pollution in the Metropolitan Area of Skopje

    Directory of Open Access Journals (Sweden)

    Gerardo Sanchez Martinez

    2018-03-01

    Full Text Available Background: Urban outdoor air pollution, especially particulate matter, remains a major environmental health problem in Skopje, the capital of the former Yugoslav Republic of Macedonia. Despite the documented high levels of pollution in the city, the published evidence on its health impacts is as yet scarce. Methods: we obtained, cleaned, and validated Particulate Matter (PM concentration data from five air quality monitoring stations in the Skopje metropolitan area, applied relevant concentration-response functions, and evaluated health impacts against two theoretical policy scenarios. We then calculated the burden of disease attributable to PM and calculated the societal cost due to attributable mortality. Results: In 2012, long-term exposure to PM2.5 (49.2 μg/m3 caused an estimated 1199 premature deaths (CI95% 821–1519. The social cost of the predicted premature mortality in 2012 due to air pollution was estimated at between 570 and 1470 million euros. Moreover, PM2.5 was also estimated to be responsible for 547 hospital admissions (CI95% 104–977 from cardiovascular diseases, and 937 admissions (CI95% 937–1869 for respiratory disease that year. Reducing PM2.5 levels to the EU limit (25 μg/m3 could have averted an estimated 45% of PM-attributable mortality, while achieving the WHO Air Quality Guidelines (10 μg/m3 could have averted an estimated 77% of PM-attributable mortality. Both scenarios would also attain significant reductions in attributable respiratory and cardiovascular hospital admissions. Conclusions: Besides its health impacts in terms of increased premature mortality and hospitalizations, air pollution entails significant economic costs to the population of Skopje. Reductions in PM2.5 concentrations could provide substantial health and economic gains to the city.

  8. Air pollution and population health: a global challenge.

    Science.gov (United States)

    Chen, Bingheng; Kan, Haidong

    2008-03-01

    "Air pollution and population health" is one of the most important environmental and public health issues. Economic development, urbanization, energy consumption, transportation/motorization, and rapid population growth are major driving forces of air pollution in large cities, especially in megacities. Air pollution levels in developed countries have been decreasing dramatically in recent decades. However, in developing countries and in countries in transition, air pollution levels are still at relatively high levels, though the levels have been gradually decreasing or have remained stable during rapid economic development. In recent years, several hundred epidemiological studies have emerged showing adverse health effects associated with short-term and long-term exposure to air pollutants. Time-series studies conducted in Asian cities also showed similar health effects on mortality associated with exposure to particulate matter (PM), sulfur dioxide (SO(2)), nitrogen dioxide (NO(2)) and ozone (O(3)) to those explored in Europe and North America. The World Health Organization (WHO) published the "WHO Air Quality Guidelines (AQGs), Global Update" in 2006. These updated AQGs provide much stricter guidelines for PM, NO(2), SO(2) and O(3). Considering that current air pollution levels are much higher than the WHO-recommended AQGs, interim targets for these four air pollutants are also recommended for member states, especially for developing countries in setting their country-specific air quality standards. In conclusion, ambient air pollution is a health hazard. It is more important in Asian developing countries within the context of pollution level and population density. Improving air quality has substantial, measurable and important public health benefits.

  9. Transboundary health impacts of transported global air pollution and international trade

    Science.gov (United States)

    Tong, D.; Zhang, Q.; Jiang, X.

    2017-12-01

    Millions of people die every year from diseases caused by exposure to outdoor air pollution. Some studies have estimated premature mortality related to local sources of air pollution, but local air quality can also be affected by atmospheric transport of pollution from distant sources. International trade is contributing to the globalization of emission and pollution as a result of the production of goods (and their associated emissions) in one region for consumption in another region. The effects of international trade on air pollutant emissions, air quality and health have been investigated regionally, but a combined, global assessment of the health impacts related to international trade and the transport of atmospheric air pollution is lacking. Here we combine four global models to estimate premature mortality caused by fine particulate matter (PM2.5) pollution as a result of atmospheric transport and the production and consumption of goods and services in different world regions. We find that, of the 3.45 million premature deaths related to PM2.5 pollution in 2007 worldwide, about 12 per cent (411,100 deaths) were related to air pollutants emitted in a region of the world other than that in which the death occurred, and about 22 per cent (762,400 deaths) were associated with goods and services produced in one region for consumption in another. For example, PM2.5 pollution produced in China in 2007 is linked to more than 64,800 premature deaths in regions other than China, including more than 3,100 premature deaths in western Europe and the USA; on the other hand, consumption in western Europe and the USA is linked to more than 108,600 premature deaths in China. Our results reveal that the transboundary health impacts of PM2.5 pollution associated with international trade are greater than those associated with long-distance atmospheric pollutant transport.

  10. Transboundary health impacts of transported global air pollution and international trade.

    Science.gov (United States)

    Zhang, Qiang; Jiang, Xujia; Tong, Dan; Davis, Steven J; Zhao, Hongyan; Geng, Guannan; Feng, Tong; Zheng, Bo; Lu, Zifeng; Streets, David G; Ni, Ruijing; Brauer, Michael; van Donkelaar, Aaron; Martin, Randall V; Huo, Hong; Liu, Zhu; Pan, Da; Kan, Haidong; Yan, Yingying; Lin, Jintai; He, Kebin; Guan, Dabo

    2017-03-29

    Millions of people die every year from diseases caused by exposure to outdoor air pollution. Some studies have estimated premature mortality related to local sources of air pollution, but local air quality can also be affected by atmospheric transport of pollution from distant sources. International trade is contributing to the globalization of emission and pollution as a result of the production of goods (and their associated emissions) in one region for consumption in another region. The effects of international trade on air pollutant emissions, air quality and health have been investigated regionally, but a combined, global assessment of the health impacts related to international trade and the transport of atmospheric air pollution is lacking. Here we combine four global models to estimate premature mortality caused by fine particulate matter (PM 2.5 ) pollution as a result of atmospheric transport and the production and consumption of goods and services in different world regions. We find that, of the 3.45 million premature deaths related to PM 2.5 pollution in 2007 worldwide, about 12 per cent (411,100 deaths) were related to air pollutants emitted in a region of the world other than that in which the death occurred, and about 22 per cent (762,400 deaths) were associated with goods and services produced in one region for consumption in another. For example, PM 2.5 pollution produced in China in 2007 is linked to more than 64,800 premature deaths in regions other than China, including more than 3,100 premature deaths in western Europe and the USA; on the other hand, consumption in western Europe and the USA is linked to more than 108,600 premature deaths in China. Our results reveal that the transboundary health impacts of PM 2.5 pollution associated with international trade are greater than those associated with long-distance atmospheric pollutant transport.

  11. Air pollution episodes associated with East Asian winter monsoons

    Energy Technology Data Exchange (ETDEWEB)

    Hien, P.D., E-mail: pdhien@gmail.com [Vietnam Atomic Energy Agency, 59 Ly Thuong Kiet str. Hanoi (Viet Nam); Loc, P.D.; Dao, N.V. [National Hydro-Meteorological Center, 62-A2 Nguyen Chi Thanh str. Hanoi (Viet Nam)

    2011-11-01

    A dozen multi-day pollution episodes occur from October to February in Hanoi, Vietnam due to prolonged anticyclonic conditions established after the northeast monsoon surges (cold surges). These winter pollution episodes (WPEs) account for most of the 24-h PM{sub 10} exceedances and the highest concentrations of gaseous pollutants in Hanoi. In this study, WPEs were investigated using continuous air quality monitoring data and information on upper-air soundings and air mass trajectories. The 24-h pollutant concentrations are lowest during cold surges; concurrently rise thereafter reaching the highest levels toward the middle of a monsoon cycle, then decline ahead of the next cold surge. Each monsoon cycle usually proceeds through a dry phase and a humid phase as Asiatic continental cold air arrives in Hanoi through inland China then via the East China Sea. WPEs are associated with nighttime radiation temperature inversions (NRTIs) in the dry phase and subsidence temperature inversions (STIs) in the humid phase. In NRTI periods, the rush hour pollution peak is more pronounced in the evening than in the morning and the pollution level is about two times higher at night than in daytime. In STI periods, broad morning and evening traffic peaks are observed and pollution is as high at night as in daytime. The close association between pollution and winter monsoon meteorology found in this study for the winter 2003-04 may serve as a basis for advance warning of WPEs and for forecasting the 24-h pollutant concentrations. - Highlights: {yields} Dozen pollution episodes from Oct. to Feb in Hanoi associated with anticyclones after monsoon surges. {yields} 24-h concentrations of PM{sub 10}, SO{sub 2}, NO{sub 2}, CO rise after surge and decline ahead of the next. {yields} Episodes caused by nighttime radiation and subsidence inversions in dry and humid monsoon phases. {yields} Distinct diurnal variations of pollutant concentrations observed in the two periods. {yields} Close

  12. Effects of Urban Landscape Pattern on PM2.5 Pollution--A Beijing Case Study.

    Science.gov (United States)

    Wu, Jiansheng; Xie, Wudan; Li, Weifeng; Li, Jiacheng

    2015-01-01

    PM2.5 refers to particulate matter (PM) in air that is less than 2.5 μm in aerodynamic diameter, which has negative effects on air quality and human health. PM2.5 is the main pollutant source in haze occurring in Beijing, and it also has caused many problems in other cities. Previous studies have focused mostly on the relationship between land use and air quality, but less research has specifically explored the effects of urban landscape patterns on PM2.5. This study considered the rapidly growing and heavily polluted Beijing, China. To better understand the impact of urban landscape pattern on PM2.5 pollution, five landscape metrics including PLAND, PD, ED, SHEI, and CONTAG were applied in the study. Further, other data, such as street networks, population density, and elevation considered as factors influencing PM2.5, were obtained through RS and GIS. By means of correlation analysis and stepwise multiple regression, the effects of landscape pattern on PM2.5 concentration was explored. The results showed that (1) at class-level, vegetation and water were significant landscape components in reducing PM2.5 concentration, while cropland played a special role in PM2.5 concentration; (2) landscape configuration (ED and PD) features at class-level had obvious effects on particulate matter; and (3) at the landscape-level, the evenness (SHEI) and fragmentation (CONTAG) of the whole landscape related closely with PM2.5 concentration. Results of this study could expand our understanding of the role of urban landscape pattern on PM2.5 and provide useful information for urban planning.

  13. Prenatal air pollution exposure and newborn blood pressure.

    Science.gov (United States)

    van Rossem, Lenie; Rifas-Shiman, Sheryl L; Melly, Steven J; Kloog, Itai; Luttmann-Gibson, Heike; Zanobetti, Antonella; Coull, Brent A; Schwartz, Joel D; Mittleman, Murray A; Oken, Emily; Gillman, Matthew W; Koutrakis, Petros; Gold, Diane R

    2015-04-01

    Air pollution exposure has been associated with increased blood pressure in adults. We examined associations of antenatal exposure to ambient air pollution with newborn systolic blood pressure (SBP). We studied 1,131 mother-infant pairs in a Boston, Massachusetts, area pre-birth cohort. We calculated average exposures by trimester and during the 2 to 90 days before birth for temporally resolved fine particulate matter (≤ 2.5 μm; PM2.5), black carbon (BC), nitrogen oxides, nitrogen dioxide, ozone (O3), and carbon monoxide measured at stationary monitoring sites, and for spatiotemporally resolved estimates of PM2.5 and BC at the residence level. We measured SBP at a mean age of 30 ± 18 hr with an automated device. We used mixed-effects models to examine associations between air pollutant exposures and SBP, taking into account measurement circumstances; child's birth weight; mother's age, race/ethnicity, socioeconomic position, and third-trimester BP; and time trend. Estimates represent differences in SBP associated with an interquartile range (IQR) increase in each pollutant. Higher mean PM2.5 and BC exposures during the third trimester were associated with higher SBP (e.g., 1.0 mmHg; 95% CI: 0.1, 1.8 for a 0.32-μg/m3 increase in mean 90-day residential BC). In contrast, O3 was negatively associated with SBP (e.g., -2.3 mmHg; 95% CI: -4.4, -0.2 for a 13.5-ppb increase during the 90 days before birth). Exposures to PM2.5 and BC in late pregnancy were positively associated with newborn SBP, whereas O3 was negatively associated with SBP. Longitudinal follow-up will enable us to assess the implications of these findings for health during later childhood and adulthood.

  14. Long-term effects of total and source-specific particulate air pollution on incident cardiovascular disease in Gothenburg, Sweden.

    Science.gov (United States)

    Stockfelt, Leo; Andersson, Eva M; Molnár, Peter; Gidhagen, Lars; Segersson, David; Rosengren, Annika; Barregard, Lars; Sallsten, Gerd

    2017-10-01

    Long-term exposure to air pollution increases cardiopulmonary morbidity and mortality, but it is not clear which components of air pollution are the most harmful, nor which time window of exposure is most relevant. Further studies at low exposure levels have also been called for. We analyzed two Swedish cohorts to investigate the effects of total and source-specific particulate matter (PM) on incident cardiovascular disease for different time windows of exposure. Two cohorts initially recruited to study predictors of cardiovascular disease (the PPS cohort and the GOT-MONICA cohort) were followed from 1990 to 2011. We collected data on residential addresses and assigned each individual yearly total and source-specific PM and Nitrogen Oxides (NO x ) exposures based on dispersion models. Using multivariable Cox regression models with time-dependent exposure, we studied the association between three different time windows (lag 0, lag 1-5, and exposure at study start) of residential PM and NO x exposure, and incidence of ischemic heart disease, stroke, heart failure and atrial fibrillation. During the study period, there were 2266 new-onset cases of ischemic heart disease, 1391 of stroke, 925 of heart failure and 1712 of atrial fibrillation. The majority of cases were in the PPS cohort, where participants were older. Exposure levels during the study period were moderate (median: 13µg/m 3 for PM 10 and 9µg/m 3 for PM 2.5 ), and similar in both cohorts. Road traffic and residential heating were the largest local sources of PM air pollution, and long distance transportation the largest PM source in total. In the PPS cohort, there were positive associations between PM in the last five years and both ischemic heart disease (HR: 1.24 [95% CI: 0.98-1.59] per 10µg/m 3 of PM 10 , and HR: 1.38 [95% CI: 1.08-1.77] per 5µg/m 3 of PM 2.5 ) and heart failure. In the GOT-MONICA cohort, there were positive but generally non-significant associations between PM and stroke (HR: 1

  15. Re-entrained road dust PM10 emission from selected streets of Krakow and its impact on air quality

    Directory of Open Access Journals (Sweden)

    Bogacki Marek

    2018-01-01

    Full Text Available Scientific research studies conducted in various parts of the world confirm that PM10 concentrations in urban air depend to a great extent on the resuspension processes of the dust deposited on the road surface. The paper presents the results of the study related to the determination of the re-entrained PM10 emissions from four selected streets of Krakow (Southern Poland together with the assessment of its impact on air quality. Examined streets are characterised by different traffic intensity (from 500 to over 20 000 vehicles per day and individual vehicle structure. Dust material sampling and estimation of the PM10 emission were conducted according to the U.S. EPA methodology (AP 42 Fifth Edition. Two variants of sample collection were applied: from the road surface including the area at the curb (4 streets and from the road surface alone (1 street. The estimates of resuspended road dust emission as well as the reference values derived from the U.S. EPA guidelines were used to assess the impact of this emission on the PM10 levels in the air at the location of one of the analysed streets. This assessment was conducted using the CALINE4 mathematical model. The study showed that the PM10 emissions from the re-entrained road dust can be responsible for up to 25 % in the winter and 50 % in the summer of the total PM10 concentrations in the air near the roads.

  16. Re-entrained road dust PM10 emission from selected streets of Krakow and its impact on air quality

    Science.gov (United States)

    Bogacki, Marek; Mazur, Marian; Oleniacz, Robert; Rzeszutek, Mateusz; Szulecka, Adriana

    2018-01-01

    Scientific research studies conducted in various parts of the world confirm that PM10 concentrations in urban air depend to a great extent on the resuspension processes of the dust deposited on the road surface. The paper presents the results of the study related to the determination of the re-entrained PM10 emissions from four selected streets of Krakow (Southern Poland) together with the assessment of its impact on air quality. Examined streets are characterised by different traffic intensity (from 500 to over 20 000 vehicles per day) and individual vehicle structure. Dust material sampling and estimation of the PM10 emission were conducted according to the U.S. EPA methodology (AP 42 Fifth Edition). Two variants of sample collection were applied: from the road surface including the area at the curb (4 streets) and from the road surface alone (1 street). The estimates of resuspended road dust emission as well as the reference values derived from the U.S. EPA guidelines were used to assess the impact of this emission on the PM10 levels in the air at the location of one of the analysed streets. This assessment was conducted using the CALINE4 mathematical model. The study showed that the PM10 emissions from the re-entrained road dust can be responsible for up to 25 % in the winter and 50 % in the summer of the total PM10 concentrations in the air near the roads.

  17. Ionic and carbonaceous compositions of PM10, PM2.5 and PM1.0 at Gosan ABC Superstation and their ratios as source signature

    Directory of Open Access Journals (Sweden)

    S. Kim

    2012-02-01

    Full Text Available PM1.0, PM2.5, and PM10 were sampled at Gosan ABC Superstation on Jeju Island from August 2007 to September 2008. The carbonaceous aerosols were quantified with the thermal/optical reflectance (TOR method, which produced five organic carbon (OC fractions, OC1, OC2, OC3, OC4, and pyrolyzed organic carbon (OP, and three elemental carbon (EC fractions, EC1, EC2, and EC3. The mean mass concentrations of PM1.0, PM2.5, and PM10 were 13.7 μg m−3, 17.2 μg m−3, and 28.4 μg m−3, respectively. The averaged mass fractions of OC and EC were 23.0% and 10.4% for PM1.0, 22.9% and 9.8% for PM2.5, and 16.4% and 6.0% for PM10. Among the OC and EC sub-components, OC2 and EC2+3 were enriched in the fine mode, but OC3 and OC4 in the coarse mode. The filter-based PM1.0 EC agreed well with black carbon (BC measured by an Aethalometer, and PM10 EC was higher than BC, implying less light absorption by larger particles. EC was well correlated with sulfate, resulting in good relationships of sulfate with both aerosol scattering coefficient measured by Nephelometer and BC concentration. Our measurements of EC confirmed the definition of EC1 as char-EC emitted from smoldering combustion and EC2+3 as soot-EC generated from higher-temperature combustion such as motor vehicle exhaust and coal combustion (Han et al., 2010. In particular, EC1 was strongly correlated with potassium, a traditional biomass burning indicator, except during the summer, when the ratio of EC1 to EC2+3 was the lowest. We also found the ratios of major chemical species to be a useful tool to constrain the main sources of aerosols, by which the five air masses were well distinguished: Siberia, Beijing, Shanghai, Yellow Sea, and East Sea types. Except Siberian air, the continental background of the study region, Beijing plumes showed the highest EC1 (and OP to sulfate ratio, which implies that this air mass had the highest net warming by aerosols of the four air masses. Shanghai-type air, which was

  18. Chemical characteristics and influence of continental outflow on PM1.0, PM2.5 and PM10 measured at Tuoji island in the Bohai Sea.

    Science.gov (United States)

    Zhang, Junmei; Yang, Lingxiao; Mellouki, Abdelwahid; Wen, Liang; Yang, Yumeng; Gao, Ying; Jiang, Pan; Li, Yanyan; Wang, Wenxing

    2016-12-15

    To investigate the chemical characteristics and sources of size-segregated particles in the background region, PM 1.0 , PM 2.5 and PM 10 samples were collected in Tuoji Island (TI) during the winter of 2014. Water-soluble inorganic ions (WSIIs) including Na + , NH 4 + , K + , Mg 2+ , Ca 2+ , Cl - , NO 3 - and SO 4 2- , organic carbon (OC) and elemental carbon (EC) and water-soluble organic carbon (WSOC) were analysed. The average mass concentrations of PM 1.0 , PM 2.5 and PM 10 were 44.5μg/m 3 , 62.0μg/m 3 and 94.4μg/m 3 , respectively, and particles were importantly enriched in PM 1.0 . Secondary WSIIs (NH 4 + , NO 3 - and SO 4 2- ) were the most abundant species, and their contribution was highest in PM 1.0 . The average values of NOR and SOR were more than 0.1 in PM 1.0 , suggesting that secondary formation of SO 4 2- and NO 3 - from the gas precursors SO 2 and NO 2 occurred in PM 1.0 . Secondary organic carbon accounted for 62.3% in PM 1.0 , 61.9% in PM 1.0-2.5 and 48.9% in PM 2.5-10 of OC, formed mainly in the fine mode. The particles concentrations were mainly affected by air mass from the North China Plain, especially the air mass from the southwest of Shandong province, which had low speed and altitude. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Validation of Satellite AOD Data with the Ground PM10 Data over Islamabad Pakistan

    Science.gov (United States)

    Bulbul, Gufran; Shahid, Imran

    2016-07-01

    Introduction The issue of air pollution affects the entire globe, but the countries having huge urban growth and industries are specially confronted with high amounts of suspended particles in atmosphere. According to WHO, for the areas where air pollution is monitored in Pakistan, the air pollution is deteriorating the air quality as time is passing. Pakistan, during the last decade, has seen an extensive rise in population growth, urbanization, and industrialization, together with a great increase in motorization and energy use. As a result, rise has taken place in the emission of various air pollutants. However, due to the lack of air quality management, the country is suffering from deterioration of air quality. From the air quality point of view, spatial and temporal distribution of aerosols and its variations are very important. The variations in the atmospheric aerosol, land surface properties, greenhouse gases, solar radiations and climatic changes alter the energy balance of the earth's atmospheric system. The addition of aerosol particles to the atmosphere is not only dependent upon the anthropogenic sources but these are also formed by physical and chemical atmospheric processes. Aerosols are a mixture of particles and these are characterized by their shape, their size (from nanometers (nm) to micrometers (µm) in radius) and their chemical composition. PM10 is the designation for particulate matter in the atmosphere that has an aerodynamic diameter of 10µm or less. The sources of PM10 may be natural (volcanoes, dust, storms, forest and grassland fires, living vegetation, or anthropogenic (burning of fossil fuels in vehicles, power plants and industrialization). The current interest in atmospheric particulate matter (PM10) is mainly due to its effect on human health and its role in climate change. Therefore, the particulate matter must be monitored continuously to understand their likely impact on the atmosphere, environment and particularly human

  20. Transcriptome-wide analyses indicate mitochondrial responses to particulate air pollution exposure

    DEFF Research Database (Denmark)

    Winckelmans, Ellen; Nawrot, Tim S.; Tsamou, Maria

    2017-01-01

    validation cohort (n = 169, 55.6% women). Results: Overrepresentation analyses revealed significant pathways (p-value transport chain (ETC) for medium-term exposure in women. For men, medium-term PM10....... Conclusions: In this exploratory study, we identified mitochondrial genes and pathways associated with particulate air pollution indicating upregulation of energy producing pathways as a potential mechanism to compensate for PM-induced mitochondrial damage....

  1. The relationship between air pollution and low birth weight: effects by mother's age, infant sex, co-pollutants, and pre-term births

    Energy Technology Data Exchange (ETDEWEB)

    Bell, Michelle L; Ebisu, Keita [School of Forestry and Environmental Studies, Yale University, 205 Prospect Street, New Haven, CT 06511 (United States); Belanger, Kathleen [Department of Epidemiology and Public Health, School of Medicine, Yale University, One Church Street, 6th Floor, New Haven, CT 06510 (United States)], E-mail: michelle.bell@yale.edu

    2008-10-15

    Previously we identified associations between the mother's air pollution exposure and birth weight for births in Connecticut and Massachusetts from 1999-2002. Other studies also found effects, though results are inconsistent. We explored potential uncertainties in earlier work and further explored associations between air pollution and birth weight for PM{sub 10}, PM{sub 2.5}, CO, NO{sub 2}, and SO{sub 2}. Specifically we investigated: (1) whether infants of younger ({<=}24 years) and older ({>=}40 years) mothers are particularly susceptible to air pollution's effects on birth weight; (2) whether the relationship between air pollution and birth weight differed by infant sex; (3) confounding by co-pollutants and differences in pollutants' measurement frequencies; and (4) whether observed associations were influenced by inclusion of pre-term births. Findings did not indicate higher susceptibility to the relationship between air pollution and birth weight based on the mother's age or the infant's sex. Results were robust to exclusion of pre-term infants and co-pollutant adjustment, although sample size decreased for some pollutant pairs. These findings provide additional evidence for the relationship between air pollution and birth weight, and do not identify susceptible sub-populations based on infant sex or mother's age. We conclude with discussion of key challenges in research on air pollution and pregnancy outcomes.

  2. Ambient air pollution, temperature and out-of-hospital coronary deaths in Shanghai, China

    International Nuclear Information System (INIS)

    Dai, Jinping; Chen, Renjie; Meng, Xia; Yang, Changyuan; Zhao, Zhuohui; Kan, Haidong

    2015-01-01

    Few studies have evaluated the effects of ambient air pollution and temperature in triggering out-of-hospital coronary deaths (OHCDs) in China. We evaluated the associations of air pollution and temperature with daily OHCDs in Shanghai, China from 2006 to 2011. We applied an over-dispersed generalized additive model and a distributed lag nonlinear model to analyze the effects of air pollution and temperature, respectively. A 10 μg/m 3 increase in the present-day PM 10 , PM 2.5 , SO 2 , NO 2 and CO were associated with increases in OHCD mortality of 0.49%, 0.68%, 0.88%, 1.60% and 0.08%, respectively. A 1 °C decrease below the minimum-mortality temperature corresponded to a 3.81% increase in OHCD mortality on lags days 0–21, and a 1 °C increase above minimum-mortality temperature corresponded to a 4.61% increase over lag days 0–3. No effects were found for in-hospital coronary deaths. This analysis suggests that air pollution, low temperature and high temperature may increase the risk of OHCDs. - Highlights: • Few studies have evaluated the effects of air pollution and temperature on OHCDs in China. • The present-day concentrations of air pollution were associated with OHCDs. • The effect of high temperatures on OHCDs was more immediate than low temperatures. • No significant effects were found for in-hospital coronary deaths. - Ambient air pollution and temperature may trigger out-of-hospital coronary deaths but not in-hospital coronary deaths

  3. Urban air pollution induces micronuclei in peripheral erythrocytes of mice in vivo

    International Nuclear Information System (INIS)

    Soares, S.R.C.; Bueno-Guimaraes, H.M.; Ferreira, C.M.; Rivero, D.H.R.F.; Castro, I. de; Garcia, M.L.B.; Saldiva, P.H.N.

    2003-01-01

    In this study, we explored the role of chronic exposure to urban air pollution in causing DNA damage (micronuclei frequency in peripheral erythrocytes) in rodents in vivo. Mice (n=20) were exposed to the urban atmosphere of Sao Paulo for 120 days (February to June 1999) and compared to animals (n=20) maintained in the countryside (Atibaia) for the same period. Daily levels of inhalable particles (PM10), CO, NO 2 , and SO 2 , were available for Sao Paulo. Occasional measurements of CO and O 3 were made in Atibaia, showing negligible levels of pollution in the area. The frequency of micronuclei (repeated-measures ANOVA) increased with aging, the highest values obtained for the 90th day of experiment (P 2 (P<0.001), and PM10 (P<0.001). Our results support the concept that urban levels of air pollution may cause somatic mutations

  4. In-traffic air pollution exposure and CC16, blood coagulation, and inflammation markers in healthy adults.

    Science.gov (United States)

    Zuurbier, Moniek; Hoek, Gerard; Oldenwening, Marieke; Meliefste, Kees; Krop, Esmeralda; van den Hazel, Peter; Brunekreef, Bert

    2011-10-01

    Exposure to traffic-related air pollution is a risk factor for cardiovascular events, probably involving mechanisms of inflammation and coagulation. Little is known about effects of the short exposures encountered while participating in traffic. The objective of the study was to examine effects of exposure of commuters to air pollution on cardiovascular biomarkers. Thirty-four healthy adult volunteers commuted for 2 hr by bus, car, or bicycle during the morning rush hour. During the commute, exposure to particle number, particulate matter (PM) ≤ 2.5 µm in aerodynamic diameter (PM2.5), PM10 µm in diameter (PM10), and soot was measured. We estimated inhaled doses based on heart rate monitoring. Shortly before exposure and 6 hr after exposure, blood samples were taken and analyzed for CC16 (Clara cell protein 16), blood cell count, coagulation markers, and inflammation markers. Between June 2007 and June 2008, 352 pre- and postexposure blood samples were collected on 47 test days. We used mixed models to analyze the associations between exposure and changes in health parameters. We observed no consistent associations between the air pollution exposures and doses and the various biomarkers that we investigated. Air pollution exposure during commuting was not consistently associated with acute changes in inflammation markers, blood cell counts, or blood coagulation markers.

  5. Air pollution and associated human mortality: the role of air pollutant emissions, climate change and methane concentration increases from the preindustrial period to present

    Directory of Open Access Journals (Sweden)

    Y. Fang

    2013-02-01

    Full Text Available Increases in surface ozone (O3 and fine particulate matter (≤2.5 μm aerodynamic diameter, PM2.5 are associated with excess premature human mortalities. We estimate changes in surface O3 and PM2.5 from pre-industrial (1860 to present (2000 and the global present-day (2000 premature human mortalities associated with these changes. We extend previous work to differentiate the contribution of changes in three factors: emissions of short-lived air pollutants, climate change, and increased methane (CH4 concentrations, to air pollution levels and associated premature mortalities. We use a coupled chemistry-climate model in conjunction with global population distributions in 2000 to estimate exposure attributable to concentration changes since 1860 from each factor. Attributable mortalities are estimated using health impact functions of long-term relative risk estimates for O3 and PM2.5 from the epidemiology literature. We find global mean surface PM2.5 and health-relevant O3 (defined as the maximum 6-month mean of 1-h daily maximum O3 in a year have increased by 8 ± 0.16 μg m−3 and 30 ± 0.16 ppbv (results reported as annual average ±standard deviation of 10-yr model simulations, respectively, over this industrial period as a result of combined changes in emissions of air pollutants (EMIS, climate (CLIM and CH4 concentrations (TCH4. EMIS, CLIM and TCH4 cause global population-weighted average PM2.5 (O3 to change by +7.5 ± 0.19 μg m−3 (+25 ± 0.30 ppbv, +0.4 ± 0.17 μg m−3 (+0.5 ± 0.28 ppbv, and 0.04 ± 0.24 μg m−3 (+4.3 ± 0.33 ppbv, respectively. Total global changes in PM2.5 are associated with 1.5 (95% confidence interval, CI, 1.2–1.8 million cardiopulmonary mortalities and 95 (95% CI, 44–144 thousand lung cancer

  6. Outdoor air pollution and respiratory health in Asia.

    Science.gov (United States)

    Chung, Kian Fan; Zhang, Junfeng; Zhong, Nanshan

    2011-10-01

    With the rapid economic development occurring in the last decade in many countries of Asia, the level of air pollution has increased from both industrial and motor vehicle emissions. Compared with Europe and North America, the potential health effects of this increasing air pollution in Asia remain largely unmeasured. Recent data published by the Health Effects Institute from some major cities in India and China reveal that a 10 µg/m(3) increase in PM(10) was associated with an increase in mortality of 0.6% in daily all-natural cause mortality, with higher risks being found at extremes of high temperatures and in the lowest economically advantaged population. Other Asian studies have confirmed the link between hospital admissions for the worsening of COPD and the increase in asthma prevalence to levels of outdoor air pollutants. Although potential health effects appear to be similar to already-published Western data, it is important that further studies be carried out in Asia that will inform the public and the authorities of the necessity to curb levels of outdoor air pollutants to acceptable levels. © 2011 The Authors. Respirology © 2011 Asian Pacific Society of Respirology.

  7. The association between daily concentrations of air pollution and visits to a psychiatric emergency unit: a case-crossover study.

    Science.gov (United States)

    Oudin, Anna; Åström, Daniel Oudin; Asplund, Peter; Steingrimsson, Steinn; Szabo, Zoltan; Carlsen, Hanne Krage

    2018-01-10

    Air pollution is one of the leading causes of mortality and morbidity worldwide. Experimental studies, and a few epidemiological studies, suggest that air pollution may cause acute exacerbation of psychiatric disorders, and even increase the rate of suicide attempts, but epidemiological studies on air pollution in association with psychiatric disorders are still few. Our aim was to investigate associations between daily fluctuations in air pollution concentrations and the daily number of visits to a psychiatric emergency unit. Data from Sahlgrenska University Hospital, Gothenburg, Sweden, on the daily number of visits to the Psychiatric emergency unit were combined with daily data on monitored concentrations of respirable particulate matter(PM 10 ), ozone(O 3 ), nitrogen dioxides(NO 2 ) and temperature between 1st July 2012 and 31st December 2016. We used a case-crossover design to analyze data with conditional Poisson regression models allowing for over-dispersion. We stratified data on season. Visits increased with increasing PM 10 levels during the warmer season (April to September) in both single-pollutant and two-pollutant models. For example, an increase of 3.6% (95% Confidence Interval, CI, 0.4-7.0%) was observed with a 10 μg/m3 increase in PM 10 adjusted for NO 2 . In the three-pollutant models (adjusting for NO 2 and O 3 simultaneously) the increase was 3.3% (95% CI, -0.2-6.9). There were no clear associations between the outcome and NO 2 , O 3 , or PM 10 during the colder season (October to March). Ambient air particle concentrations were associated with the number of visits to the Psychiatric emergency unit in the warm season. The results were only borderline statistically significant in the fully adjusted (three-pollutant) models in this small study. The observation could be interpreted as indicative of air pollution as either exacerbating an underlying psychiatric disorder, or increasing mental distress, even in areas with comparatively low levels of

  8. Does the Short-Term Effect of Air Pollution Influence the Incidence of Spontaneous Intracerebral Hemorrhage in Different Patient Groups? Big Data Analysis in Taiwan

    Science.gov (United States)

    Chien, Ting-Ying; Ting, Hsien-Wei; Chan, Chien-Lung; Lai, K. Robert; Hung, Su-In

    2017-01-01

    Spontaneous intracerebral hemorrhage (sICH) has a high mortality rate. Research has demonstrated that the occurrence of sICH is related to air pollution. This study used big data analysis to explore the impact of air pollution on the risk of sICH in patients of differing age and geographic location. 39,053 cases were included in this study; 14,041 in the Taipei region (Taipei City and New Taipei City), 5537 in Taoyuan City, 7654 in Taichung City, 4739 in Tainan City, and 7082 in Kaohsiung City. The results of correlation analysis indicated that there were two pollutants groups, the CO and NO2 group and the PM2.5 and PM10 group. Furthermore, variations in the correlations of sICH with air pollutants were identified in different age groups. The co-factors of the influence of air pollutants in the different age groups were explored using regression analysis. This study integrated Taiwan National Health Insurance data and air pollution data to explore the risk factors of sICH using big data analytics. We found that PM2.5 and PM10 are very important risk factors for sICH, and age is an important modulating factor that allows air pollutants to influence the incidence of sICH. PMID:29232865

  9. Does the Short-Term Effect of Air Pollution Influence the Incidence of Spontaneous Intracerebral Hemorrhage in Different Patient Groups? Big Data Analysis in Taiwan.

    Science.gov (United States)

    Chien, Ting-Ying; Ting, Hsien-Wei; Chan, Chien-Lung; Yang, Nan-Ping; Pan, Ren-Hao; Lai, K Robert; Hung, Su-In

    2017-12-10

    Spontaneous intracerebral hemorrhage (sICH) has a high mortality rate. Research has demonstrated that the occurrence of sICH is related to air pollution. This study used big data analysis to explore the impact of air pollution on the risk of sICH in patients of differing age and geographic location. 39,053 cases were included in this study; 14,041 in the Taipei region (Taipei City and New Taipei City), 5537 in Taoyuan City, 7654 in Taichung City, 4739 in Tainan City, and 7082 in Kaohsiung City. The results of correlation analysis indicated that there were two pollutants groups, the CO and NO₂ group and the PM 2.5 and PM 10 group. Furthermore, variations in the correlations of sICH with air pollutants were identified in different age groups. The co-factors of the influence of air pollutants in the different age groups were explored using regression analysis. This study integrated Taiwan National Health Insurance data and air pollution data to explore the risk factors of sICH using big data analytics. We found that PM 2.5 and PM 10 are very important risk factors for sICH, and age is an important modulating factor that allows air pollutants to influence the incidence of sICH.

  10. Chronic effects of ambient air pollution on respiratory morbidities among Chinese children: a cross-sectional study in Hong Kong.

    Science.gov (United States)

    Gao, Yang; Chan, Emily Yy; Li, Liping; Lau, Patrick Wc; Wong, Tze Wai

    2014-02-03

    The chronic health effects from exposure to ambient air pollution are still unclear. This study primarily aims to examine the relationship between long-term exposure to ambient air pollution and respiratory morbidities in Chinese children. A cross-sectional study was conducted among 2,203 school children aged 8-10 in three districts with different air pollution levels in Hong Kong. Annual means for ambient PM10, SO2, NO2 and O3 in each district were used to estimate participants' individual exposure. Two questionnaires were used to collect children's respiratory morbidities and other potential risk factors. Multivariable logistic regression was fitted to estimate the risks of air pollution for respiratory morbidities. Compared to those in the low-pollution district (LPD), girls in the high-pollution district (HPD) were at significantly higher risk for cough at night (ORadj. = 1.81, 95% CI: 1.71-2.78) and phlegm without colds (ORadj. = 3.84, 95% CI: 1.74-8.47). In addition, marginal significance was reached for elevated risks for asthma, wheezing symptoms, and phlegm without colds among boys in HPD (adjusted ORs: 1.71-2.82), as well as chronic cough among girls in HPD (ORadj. = 2.03, 95% CI: 0.88-4.70). Results have confirmed certain adverse effects on children's respiratory health from long-term exposure to ambient air pollution. PM10 may be the most relevant pollutant with adverse effects on wheezing and phlegm in boys. Both PM10 and NO2 may be contributing to cough and phlegm in girls.

  11. Short-term Elevation of Fine Particulate Matter Air Pollution and Acute Lower Respiratory Infection.

    Science.gov (United States)

    Horne, Benjamin D; Joy, Elizabeth A; Hofmann, Michelle G; Gesteland, Per H; Cannon, John B; Lefler, Jacob S; Blagev, Denitza P; Korgenski, E Kent; Torosyan, Natalie; Hansen, Grant I; Kartchner, David; Pope Iii, C Arden

    2018-04-13

    Nearly 60% of U.S. children live in counties with PM2.5 concentrations above air quality standards. Understanding the relationship between ambient air pollution exposure and health outcomes informs actions to reduce exposure and disease risk. To evaluate the association between ambient PM2.5 levels and healthcare encounters for acute lower respiratory infection (ALRI). Using an observational case-crossover design, subjects (N=146,397) were studied if they had an ALRI diagnosis and resided on Utah's Wasatch Front. PM2.5 air pollution concentrations were measured using community-based air quality monitors between 1999 and 2016. Odds ratios (OR) for ALRI healthcare encounters were calculated after stratification by ages 0-2, 3-17, and 18+ years. Approximately 77% (n=112,467) of subjects were 0-2 years of age. The odds of ALRI encounter for these young children increased within 1 week of elevated PM2.5 and peaked after 3 weeks with a cumulative 28-day OR= 1.15 per +10 μg/m3 (95% CI= 1.12, 1.19). ALRI encounters with diagnosed and laboratory-confirmed RSV and influenza increased following elevated ambient PM2.5 levels. Similar elevated odds for ALRI were also observed for older children, although the number of events and precision of estimates were much lower. In this large sample of urban/suburban patients, short-term exposure to elevated PM2.5 air pollution was associated with greater healthcare utilization for ALRI in both young children, older children, and adults. Further exploration is needed of causal interactions between PM2.5 and ALRI.

  12. Synoptic weather types and aeroallergens modify the effect of air pollution on hospitalisations for asthma hospitalisations in Canadian cities.

    Science.gov (United States)

    Hebbern, Christopher; Cakmak, Sabit

    2015-09-01

    Pollution levels and the effect of air pollution on human health can be modified by synoptic weather type and aeroallergens. We investigated the effect modification of aeroallergens on the association between CO, O3, NO2, SO2, PM10, PM2.5 and asthma hospitalisation rates in seven synoptic weather types. We developed single air pollutant models, adjusted for the effect of aeroallergens and stratified by synoptic weather type, and pooled relative risk estimates for asthma hospitalisation in ten Canadian cities. Aeroallergens significantly modified the relative risk in 19 pollutant-weather type combinations, reducing the size and variance for each single pollutant model. However, aeroallergens did not significantly modify relative risk for any pollutant in the DT or MT weather types, or for PM10 in any weather type. Thus, there is a modifying effect of aeroallergens on the association between CO, O3, NO2, SO2, PM2.5 and asthma hospitalisations that differs under specific synoptic weather types. Crown Copyright © 2015. Published by Elsevier Ltd. All rights reserved.

  13. Potential Sources and Formations of the PM2.5 Pollution in Urban Hangzhou

    Directory of Open Access Journals (Sweden)

    Jian Wu

    2016-07-01

    Full Text Available Continuous measurements of meteorological parameters, gaseous pollutants, particulate matters, and the major chemical species in PM2.5 were conducted in urban Hangzhou from 1 September to 30 November 2013 to study the potential sources and formations of PM2.5 pollution. The average PM2.5 concentration was 69 µg·m−3, ~97% higher than the annual concentration limit in the national ambient air quality standards (NAAQS of China. Relative humidity (RH and wind speed (WS were two important factors responsible for the increase of PM2.5 concentration, with the highest value observed under RH of 70%–90%. PM2.5 was in good correlation with both NO2 and CO, but not with SO2, and the potential source contribution function (PSCF results displayed that local emissions were important potential sources contributing to the elevated PM2.5 and NO2 in Hangzhou. Thus, local vehicle emission was suggested as a major contribution to the PM2.5 pollution. Concentrations of NO2 and CO significantly increased in pollution episodes, while the SO2 concentration even decreased, implying local emission rather than region transport was the major source contributing to the formation of pollution episodes. The sum of SO42−, NO3−, and NH4+ accounted for ~50% of PM2.5 in mass in pollution episodes and the NO3−/EC ratios were significantly elevated, revealing that the formation of secondary inorganic species, particularly NO3−, was an important contributor to the PM2.5 pollution in Hangzhou. This study highlights that controlling local pollution emissions was essential to reduce the PM2.5 pollution in Hangzhou, and the control of vehicle emission in particular should be further promoted in the future.

  14. DNA damage in buccal mucosa cells of pre-school children exposed to high levels of urban air pollutants.

    Directory of Open Access Journals (Sweden)

    Elisabetta Ceretti

    Full Text Available Air pollution has been recognized as a human carcinogen. Children living in urban areas are a high-risk group, because genetic damage occurring early in life is considered able to increase the risk of carcinogenesis in adulthood. This study aimed to investigate micronuclei (MN frequency, as a biomarker of DNA damage, in exfoliated buccal cells of pre-school children living in a town with high levels of air pollution. A sample of healthy 3-6-year-old children living in Brescia, Northern Italy, was investigated. A sample of the children's buccal mucosa cells was collected during the winter months in 2012 and 2013. DNA damage was investigated using the MN test. Children's exposure to urban air pollution was evaluated by means of a questionnaire filled in by their parents that included items on various possible sources of indoor and outdoor pollution, and the concentration of fine particulate matter (PM10, PM2.5 and NO2 in the 1-3 weeks preceding biological sample collection. 181 children (mean age ± SD: 4.3 ± 0.9 years were investigated. The mean ± SD MN frequency was 0.29 ± 0.13%. A weak, though statistically significant, association of MN with concentration of air pollutants (PM10, PM2.5 and NO2 was found, whereas no association was apparent between MN frequency and the indoor and outdoor exposure variables investigated via the questionnaire. This study showed a high MN frequency in children living in a town with heavy air pollution in winter, higher than usually found among children living in areas with low or medium-high levels of air pollution.

  15. Chemical characterization of individual particles (PM10) from ambient air in Guiyang City, China

    International Nuclear Information System (INIS)

    Xie, R.K.; Seip, H.M.; Leinum, J.R.; Winje, T.; Xiao, J.S.

    2005-01-01

    PM 10 samples were collected during 5 days in Guiyang, China in July 2003. A total of about 2300 particles was analyzed by an automated Scanning Electron Microscope with Energy-Dispersive Spectrometer (SEM-EDS). Hierarchical cluster analysis (HCA) was used to identify different particle types that occurred in the aerosol. Seventeen particle types were identified and presented in the order of decreasing number abundance as: silicomanganese slag, soil and fly ash, coal burning, silicomanganese, quartz, syngenite, S-bearing iron, calcium rich, gypsum, sphalerite, dolomite, iron, alloy, lead sulfate, zinc rich, sulfur-rich particles and aluminum manufacturing dust. The majority of the particles in the studied size range are of anthropogenic origin, especially from metallurgical industry. The study illustrates the complexity of particle pollution in air of an industrial Chinese city and the results should be useful in planning mitigation measures

  16. Influence of traffic-related noise and air pollution on self-reported fatigue.

    Science.gov (United States)

    Jazani, Reza Khani; Saremi, Mahnaz; Rezapour, Tara; Kavousi, Amir; Shirzad, Hadi

    2015-01-01

    A growing body of evidence suggests that exposure to environmental pollutions is related to health problems. It is, however, questionable whether this condition affects working performance in occupational settings. The aim of this study is to determine the predictive value of age as well as traffic related air and noise pollutions for fatigue. 246 traffic officers participated in this study. Air pollution data were obtained from the local Air Quality Control Company. A sound level meter was used for measuring ambient noise. Fatigue was evaluated by the MFI-20 questionnaire. The general and physical scales showed the highest, while the reduced activity scale showed the lowest level of fatigue. Age had an independent direct effect on reduced activity and physical fatigue. The average of daytime equivalent noise level was between 71.63 and 88.51 dB(A). In the case of high noise exposure, older officers feel more fatigue than younger ones. Exposure to PM10 and O3 resulted in general and physical fatigue. Complex Interactions between SO2, CO and NO2 were found. Exposure to noise and some components of air pollution, especially O3 and PM10, increases fatigue. The authorities should adopt and rigorously implement environmental protection policies in order to protect people.

  17. Reducing personal exposure to particulate air pollution improves cardiovascular health in patients with coronary heart disease.

    Science.gov (United States)

    Langrish, Jeremy P; Li, Xi; Wang, Shengfeng; Lee, Matthew M Y; Barnes, Gareth D; Miller, Mark R; Cassee, Flemming R; Boon, Nicholas A; Donaldson, Ken; Li, Jing; Li, Liming; Mills, Nicholas L; Newby, David E; Jiang, Lixin

    2012-03-01

    Air pollution exposure increases cardiovascular morbidity and mortality and is a major global public health concern. We investigated the benefits of reducing personal exposure to urban air pollution in patients with coronary heart disease. In an open randomized crossover trial, 98 patients with coronary heart disease walked on a predefined route in central Beijing, China, under different conditions: once while using a highly efficient face mask, and once while not using the mask. Symptoms, exercise, personal air pollution exposure, blood pressure, heart rate, and 12-lead electrocardiography were monitored throughout the 24-hr study period. Ambient air pollutants were dominated by fine and ultrafine particulate matter (PM) that was present at high levels [74 μg/m³ for PM(2.5) (PM with aerodynamic diamater reduced maximal ST segment depression (-142 vs. -156 μV, p = 0.046) over the 24-hr period. When the face mask was used during the prescribed walk, mean arterial pressure was lower (93 ± 10 vs. 96 ± 10 mmHg, p = 0.025) and heart rate variability increased (high-frequency power: 54 vs. 40 msec², p = 0.005; high-frequency normalized power: 23.5 vs. 20.5 msec, p = 0.001; root mean square successive differences: 16.7 vs. 14.8 msec, p = 0.007). However, mask use did not appear to influence heart rate or energy expenditure. Reducing personal exposure to air pollution using a highly efficient face mask appeared to reduce symptoms and improve a range of cardiovascular health measures in patients with coronary heart disease. Such interventions to reduce personal exposure to PM air pollution have the potential to reduce the incidence of cardiovascular events in this highly susceptible population.

  18. Air pollution and associated human mortality: The role of air pollutant emissions, climate change and methane concentration increases during the industrial period

    Science.gov (United States)

    Fang, Y.; Naik, V.; Horowitz, L. W.; Mauzerall, D. L.

    2012-12-01

    Increases in surface ozone (O3) and fine particulate matter (≤ 2.5μm aerodynamic diameter, PM2.5) are associated with excess premature human mortalities. Here we estimate changes in surface O3 and PM2.5 since preindustrial (1860) times and the global present-day (2000) premature human mortalities associated with these changes. We go beyond previous work to analyze and differentiate the contribution of three factors: changes in emissions of short-lived air pollutants, climate change, and increased methane (CH4) concentrations, to air pollution levels and the associated premature mortalities. We use a coupled chemistry-climate model in conjunction with global population distributions in 2000 to estimate exposure attributable to concentration changes since 1860 from each factor. Attributable mortalities are estimated using health impact functions of long-term relative risk estimates for O3 and PM2.5 from the epidemiology literature. We find global mean surface PM2.5 and health-relevant O3 (defined as the maximum 6-month mean of 1-hour daily maximum O3 in a year) have increased by 8±0.16 μg/m3 and 30±0.16 ppbv, respectively, over this industrial period as a result of combined changes in emissions of air pollutants (EMIS), climate (CLIM) and CH4 concentrations (TCH4). EMIS, CLIM and TCH4 cause global average PM2.5 (O3) to change by +7.5±0.19 μg/m3 (+25±0.30 ppbv), +0.4±0.17 μg/m3 (+0.5±0.28 ppbv), and -0.02±0.01 μg/m3 (+4.3±0.33 ppbv), respectively. Total changes in PM2.5 are associated with 1.5 (95% confidence interval, CI, 1.0-2.5) million all-cause mortalities annually and in O3 are associated with 375 (95% CI, 129-592) thousand respiratory mortalities annually. Most air pollution mortality is driven by changes in emissions of short-lived air pollutants and their precursors (95% and 85% of mortalities from PM2.5 and O3 respectively). However, changing climate and increasing CH4 concentrations also increased premature mortality associated with air

  19. A mouse dry eye model induced by topical administration of the air pollutant particulate matter 10.

    Science.gov (United States)

    Li, Juan; Tan, Gang; Ding, Xiaoyan; Wang, Yahong; Wu, Anhua; Yang, Qichen; Ye, Lei; Shao, Yi

    2017-12-01

    To introduce a novel dry eye mouse model induced by topical administration of the air pollutant particulate matter 10 (PM 10 ). A total of 60 male BALB/c mice were used in this study and divided into two groups: group A (PBS eye drops, n=30) and group B (PM 10 eye drop group, n=30). Each treatment was dosed four times a day, every time 50ul with the concentration of 5mg/ml PM10, for 14 consecutive days in the right eye. The clinical manifestations of dry eye were measured before therapy and 4, 7 and 14days post-treatment respectively, which included the tear volume, tear break-up (BUT) time, corneal fluorescein staining, rose bengal staining, Lissamine Green staining and inflammatory index. Eye samples were collected on D14 and examined by histologic light microscopy, transmission electron microscopy (TEM) and scanning electron microscopy (SEM), corneal cytokeration 10 (K10) immunnostaining, and tumor necrosis factor-α (TNF-α), NF-κB-p65 and NF-κB Western Blot analysis. At 0d, 7d and 14d, there were no statistical changes in tear volume, BUT after treatment (P>0.05) with PBS in group A. In group B, all items showed statistical differences at each time point (Plevels of K10 and reduced number of goblet cells in the conjunctival fornix in group B. PM 10 significantly increased the levels of TNF-α, NF-κB-p65 and NF-κB in the cornea. PM 10 can damage the tear film function and cause the destruction of the structural organization of ocular surface in mice. Topical administration of PM 10 in mice induces ocular surface changes that are similar to those of dry eye in humans, representing a novel model of DES. Copyright © 2017. Published by Elsevier Masson SAS.

  20. Journey-time exposure to particulate air pollution

    Science.gov (United States)

    Gulliver, John; Briggs, David J.

    Journey-time exposures to particulate air pollution were investigated in Leicester, UK, between January and March 2005. Samples of TSP, PM 10, PM 2.5, and PM 1 were simultaneously collected using light scattering devices whilst journeys were made by walking an in-car. Over a period of two months, 33 pairs of walking and in-car measurements were collected along two circular routes. Average exposures while walking were seen to be higher than those found in-car for each of the particle fractions: average walking to in-car ratios were 1.2 (± 0.6), 1.5 (± 0.6), 1.3 (± 0.6), and 1.4 (± 0.6) μg m -3 for coarse (TSP-PM 10), intermediate (PM 10-PM 2.5), fine (PM 2.5-PM 1), and very fine particles (PM 1), respectively. Correlations between walking and in-car exposures were seen to be weak for coarse particles ( r=0.10, p=0.58), moderate for the intermediate particles ( r=0.49, pcar exposures were 25% higher than the same fixed-site monitor. Particles with an aerodynamic diameter of less than 2.5 μm were seen to be highly correlated between walking and in-car particle exposures and a rural fixed-site monitor about 30 km south of Leicester.

  1. Development of cotton gin PM10 emission factors for EPA’s AP-42

    Science.gov (United States)

    The Compilation of Air Pollution Emission Factors (AP-42) emission factors are assigned ratings, from A (Excellent) to E (Poor), based on the quality of data used to develop them. All current PM10 cotton gin emission factors received quality ratings of D or lower. In an effort to improve these ratin...

  2. Association between air pollution and suicide: a time series analysis in four Colombian cities.

    Science.gov (United States)

    Fernández-Niño, Julián Alfredo; Astudillo-García, Claudia Iveth; Rodríguez-Villamizar, Laura Andrea; Florez-Garcia, Víctor Alfonso

    2018-05-12

    Recent epidemiological studies have suggested that air pollution could be associated with suicide. However, other studies have criticized these results for being analytically weak and not taking into account potential confounding factors. As such, further studies examining the relationship under diverse contexts are necessary to help clarify this issue. This study explored the association between specific air pollutants (NO 2 , SO 2 , PM 10 , PM 2.5 , CO and O 3 ) and suicide incidence in four Colombian cities after adjusting for climatic variables and holidays. A time series of daily suicides among men and women living in Bogota, Medellin, Cali and Bucaramanga was generated using information from the National Administrative Department of Statistics (DANE) for the years 2011-2014. At the same time, the average daily concentration of each air pollutant for each city was obtained from monitoring stations belonging to the National Air Quality Surveillance System. Using this information together, we generated conditional Poisson models (stratified by day, month and year) for the suicide rate in men and women, with air pollutants as the principal explanatory variable. These models were adjusted for temperature, relative humidity, precipitation and holidays. No association was found between any of the examined pollutants and suicide: NO 2 (IRR:0.99, 95% CI: 0.95-1.04), SO 2 (IRR:0.99, 95% CI: 0.98-1.01), PM 10 (IRR:0.99, 95% CI:0.95-1.03), PM 2.5 (IRR:1.01, 95% CI: 0.98-1.05), CO (IRR:1.00, 95% CI:1.00-1.00) and O 3 (IRR: 1.00, 95% CI: 0.96-1.04). In the same way, no association was found in stratified models by sex and age group neither in lagged and cumulative effects models. After adjusting for major confounding factors, we found no statistically significant association between air pollution and suicide in Colombia. These "negative" results provide further insight into the current discussion regarding the existence of such a relationship.

  3. Transboundary Air-Pollution Transport in the Czech-Polish Border Region between the Cities of Ostrava and Katowice.

    Science.gov (United States)

    Černikovský, Libor; Krejčí, Blanka; Blažek, Zdeněk; Volná, Vladimíra

    2016-12-01

    The Czech Hydrometeorological Institute (CHMI) estimated the transboundary transport of air pollution between the Czech Republic and Poland by assessing relationships between weather conditions and air pollution in the area as part of the "Air Quality Information System in the Polish-Czech border of the Silesian and Moravian-Silesian region" project (http://www.air-silesia.eu). Estimation of cross-border transport of pollutants is important for Czech-Polish negotiations and targeted measures for improving air quality. Direct measurement of PM 10 and sulphur dioxide (SO 2 ) concentrations and the direction and wind speed from measuring stations in the vicinity of the Czech-Polish state border in 2006-2012. Taking into account all the inaccuracies, simplifications and uncertainties, by which all of the measurements are affected, it is possible to state that the PM 10 transboundary transport was greater from the direction of Poland to the Czech Republic, rather than the other way around. Nevertheless, the highest share of the overall PM 10 concentration load was recorded on days with a vaguely estimated airflow direction. This usually included days with changing wind direction or days with a distinct wind change throughout the given day. A changeable wind is most common during low wind speeds. It can be assumed that during such days with an ambiguous daily airflow, the polluted air saturated with sources on both sides of the border moves from one country to the other. Therefore, we could roughly ascribe an equal level of these concentrations to both the Czech and Polish side. PM 10 transboundary transport was higher from Poland to the Czech Republic than from the opposite direction, despite the predominant air flow from the Czech Republic to Poland. Copyright© by the National Institute of Public Health, Prague 2016

  4. Long-term exposure to ambient air pollution and traffic noise and incident hypertension in seven cohorts of the European study of cohorts for air pollution effects (ESCAPE).

    Science.gov (United States)

    Fuks, Kateryna B; Weinmayr, Gudrun; Basagaña, Xavier; Gruzieva, Olena; Hampel, Regina; Oftedal, Bente; Sørensen, Mette; Wolf, Kathrin; Aamodt, Geir; Aasvang, Gunn Marit; Aguilera, Inmaculada; Becker, Thomas; Beelen, Rob; Brunekreef, Bert; Caracciolo, Barbara; Cyrys, Josef; Elosua, Roberto; Eriksen, Kirsten Thorup; Foraster, Maria; Fratiglioni, Laura; Hilding, Agneta; Houthuijs, Danny; Korek, Michal; Künzli, Nino; Marrugat, Jaume; Nieuwenhuijsen, Mark; Östenson, Claes-Göran; Penell, Johanna; Pershagen, Göran; Raaschou-Nielsen, Ole; Swart, Wim J R; Peters, Annette; Hoffmann, Barbara

    2017-04-01

    We investigated whether traffic-related air pollution and noise are associated with incident hypertension in European cohorts. We included seven cohorts of the European study of cohorts for air pollution effects (ESCAPE). We modelled concentrations of particulate matter with aerodynamic diameter ≤2.5 µm (PM2.5), ≤10 µm (PM10), >2.5, and ≤10 µm (PMcoarse), soot (PM2.5 absorbance), and nitrogen oxides at the addresses of participants with land use regression. Residential exposure to traffic noise was modelled at the facade according to the EU Directive 2002/49/EC. We assessed hypertension as (i) self-reported and (ii) measured (systolic BP ≥ 140 mmHg or diastolic BP ≥ 90 mmHg or intake of BP lowering medication (BPLM). We used Poisson regression with robust variance estimation to analyse associations of traffic-related exposures with incidence of hypertension, controlling for relevant confounders, and combined the results from individual studies with random-effects meta-analysis. Among 41 072 participants free of self-reported hypertension at baseline, 6207 (15.1%) incident cases occurred within 5-9 years of follow-up. Incidence of self-reported hypertension was positively associated with PM2.5 (relative risk (RR) 1.22 [95%-confidence interval (CI):1.08; 1.37] per 5 µg/m³) and PM2.5 absorbance (RR 1.13 [95% CI:1.02; 1.24] per 10 - 5m - 1). These estimates decreased slightly upon adjustment for road traffic noise. Road traffic noise was weakly positively associated with the incidence of self-reported hypertension. Among 10 896 participants at risk, 3549 new cases of measured hypertension occurred. We found no clear associations with measured hypertension. Long-term residential exposures to air pollution and noise are associated with increased incidence of self-reported hypertension. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2016. For Permissions, please email: journals.permissions@oup.com.

  5. Winter mass concentrations of carbon species in PM10, PM 2.5 and PM1 in Zagreb air, Croatia.

    Science.gov (United States)

    Godec, Ranka; Čačković, Mirjana; Šega, Krešimir; Bešlić, Ivan

    2012-11-01

    The purpose of our investigation was to examine the mass concentrations of EC, OC and TC (EC + OC) in PM(10), PM(2.5) and PM(1) particle fractions. Daily PM(10), PM(2.5) and PM(1) samples were collected at an urban background monitoring site in Zagreb during winter 2009. Average OC and EC mass concentrations were 11.9 and 1.8 μg m(-3) in PM(10), 9.0 and 1.4 μg m(-3) in PM(2.5), and 5.5 and 1.1 μg m(-3) in PM(1). Average OC/EC ratios in PM(10), PM(2.5), and PM(1) were 7.4, 6.9 and 5.4, respectively.

  6. Association between ambient air pollution and pregnancy rate in women who underwent IVF.

    Science.gov (United States)

    Choe, S A; Jun, Y B; Lee, W S; Yoon, T K; Kim, S Y

    2018-04-05

    Are the concentrations of five criteria air pollutants associated with probabilities of biochemical pregnancy loss and intrauterine pregnancy in women? Increased concentrations of ambient particulate matter (PM10), nitrogen dioxide (NO2), carbon monoxide (CO) during controlled ovarian stimulation (COS) and after embryo transfer were associated with a decreased probability of intrauterine pregnancy. Exposure to high ambient air pollution was suggested to be associated with low fertility and high early pregnancy loss in women. Using a retrospective cohort study design, we analysed 6621 cycles of 4581 patients who underwent one or more fresh IVF cycles at a fertility centre from January 2006 to December 2014, and lived in Seoul at the time of IVF treatment. To estimate patients' individual exposure to air pollution, we computed averages of hourly concentrations of five air pollutants including PM10, NO2, CO, sulphur dioxide (SO2) and ozone (O3) measured at 40 regulatory monitoring sites in Seoul for each of the four exposure periods: period 1 (start of COS to oocyte retrieval), period 2 (oocyte retrieval to embryo transfer), period 3 (embryo transfer to hCG test), and period 4 (start of COS to hCG test). Hazard ratios (HRs) from the time-varying Cox-proportional hazards model were used to estimate probabilities of biochemical pregnancy loss and intrauterine pregnancy for an interquartile range (IQR) increase in each air pollutant concentration during each period, after adjusting for individual characteristics. We tested the robustness of the result using generalised linear mixed model, accounting for within-woman correlation. Mean age of the women was 35 years. Average BMI was 20.9 kg/m2 and the study population underwent 1.4 IVF cycles on average. Cumulative pregnancy rate in multiple IVF cycles was 51.3% per person. Survival analysis showed that air pollution during periods 1 and 3 was generally associated with IVF outcomes. Increased NO2 (adjusted HR = 0.93, 95% CI

  7. Traffic-related air pollution and noise and children's blood pressure: results from the PIAMA birth cohort study.

    Science.gov (United States)

    Bilenko, Natalya; van Rossem, Lenie; Brunekreef, Bert; Beelen, Rob; Eeftens, Marloes; Hoek, Gerard; Houthuijs, Danny; de Jongste, Johan C; van Kempen, Elise; Koppelman, Gerard H; Meliefste, Kees; Oldenwening, Marieke; Smit, Henriette A; Wijga, Alet H; Gehring, Ulrike

    2015-01-01

    Elevation of a child's blood pressure may cause possible health risks in later life. There is evidence for adverse effects of exposure to air pollution and noise on blood pressure in adults. Little is known about these associations in children. We investigated the associations of air pollution and noise exposure with blood pressure in 12-year-olds. Blood pressure was measured at age 12 years in 1432 participants of the PIAMA birth cohort study. Annual average exposure to traffic-related air pollution [NO2, mass concentrations of particulate matter with diameters of less than 2.5 µm (PM2.5) and less than 10 µm (PM10), and PM2.5 absorbance] at the participants' home and school addresses at the time of blood pressure measurements was estimated by land-use regression models. Air pollution exposure on the days preceding blood pressure measurements was estimated from routine air monitoring data. Long-term noise exposure was assessed by linking addresses to modelled equivalent road traffic noise levels. Associations of exposures with blood pressure were analysed by linear regression. Effects are presented for an interquartile range increase in exposure. Long-term exposure to NO2 and PM2.5 absorbance were associated with increased diastolic blood pressure, in children who lived at the same address since birth [adjusted mean difference (95% confidence interval) [mmHg] 0.83 (0.06 to 1.61) and 0.75 (-0.08 to 1.58), respectively], but not with systolic blood pressure. We found no association of blood pressure with short-term air pollution or noise exposure. Long-term exposure to traffic-related air pollution may increase diastolic blood pressure in children. © The European Society of Cardiology 2013 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  8. Particulate Matter Air Pollution in an Urban Area : a Case Study

    Directory of Open Access Journals (Sweden)

    Piotr Holnicki

    2016-01-01

    Full Text Available Many European agglomerations suffer from high concentrations of particulate matter (PM, which is now one of the most detrimental pollutants characterizing the urban atmospheric environment. This paper addresses the problem of PM10 pollution in the Warsaw metropolitan area, including very harmful fine fractions (PM2.5, and also some heavy metals. The analysis of air quality in the Warsaw agglomeration discussed in this study is based on results from computer modeling presented elsewhere, and refers to emission and meteorological data for the year 2012. The range of emissions considered in this analysis includes the main sectors of municipal activity: energy generation, industry, urban transport, residential sector. The trans-boundary inflow of the main pollutants coming from distant sources is also taken into account. The regional scale computer model CALPUFF was used to assess the annual mean concentrations of major pollutants in the urban area. The results show the regions where the air quality limits are exceeded and indicate the dominant sources of emission which are responsible for these violations (source apportionment. These are the key data required to implement efficient regulatory actions. (original abstract

  9. Associations between air pollution and socioeconomic characteristics, ethnicity and age profile of neighbourhoods in England and the Netherlands

    NARCIS (Netherlands)

    Fecht, Daniela; Fischer, Paul; Fortunato, Léa; Hoek, Gerard; de Hoogh, Kees; Marra, Marten; Kruize, Hanneke; Vienneau, Danielle; Beelen, Rob; Hansell, Anna

    2015-01-01

    Air pollution levels are generally believed to be higher in deprived areas but associations are complex especially between sensitive population subgroups. We explore air pollution inequalities at national, regional and city level in England and the Netherlands comparing particulate matter (PM10) and

  10. Indoor air pollution levels in public buildings in Thailand and exposure assessment.

    Science.gov (United States)

    Klinmalee, Aungsiri; Srimongkol, Kasama; Kim Oanh, Nguyen Thi

    2009-09-01

    Levels of pollutants including PM2.5 and PM2.5 composition (black carbon and water soluble ions), SO(2), NO(2), CO, CO(2), and BTEX (benzene, toluene, ethylbenzene, xylene) were monitored for indoor and outdoor air at a university campus and a shopping center, both located in the Northern suburb of Bangkok. Sampling was done during December 2005-February 2006 on both weekdays and weekends. At the university, indoor monitoring was done in two different air conditioned classrooms which shows the I/O ratios for all pollutants to be below 0.5-0.8 during the weekends. However, on weekdays the ratios for CO(2) and most detected BTEX were above 1.0. The concept of classroom occupancy was defined using a function of the student number in a lecture hour and the number of lecture hours per day. Classroom 2, which had a higher occupancy than classroom 1, was characterized by higher concentrations of most pollutants. PM2.5 was an exception and was higher in classroom 1 (37 microg/m(3), weekdays) as compared to classroom 2 (26 microg/m(3), weekdays) which was likely linked to the dust resuspension from the carpeted floor in the former. Monitoring was also done in the shopping mall at three different sites. Indoor pollutants levels and the I/O ratios at the shopping mall were higher than at the university. Levels of all pollutants measured at the car park, except for toluene and CO(2), were the highest. I/O ratios of the pollutants at the mall were above 1.0, which indicates the relatively higher influence of the indoor sources. However, the black carbon content in PM2.5 outdoor is higher than indoor, which suggest the important contribution from outdoor combustion sources such as the traffic. Major sources of outdoor air pollution in the areas were briefly discussed. Exposure modeling was applied using the time activity and measured pollutant concentrations to assess the exposure of different groups of people in the study areas. High exposure to PM2.5, especially for the people

  11. PM10 modeling in the Oviedo urban area (Northern Spain) by using multivariate adaptive regression splines

    Science.gov (United States)

    Nieto, Paulino José García; Antón, Juan Carlos Álvarez; Vilán, José Antonio Vilán; García-Gonzalo, Esperanza

    2014-10-01

    The aim of this research work is to build a regression model of the particulate matter up to 10 micrometers in size (PM10) by using the multivariate adaptive regression splines (MARS) technique in the Oviedo urban area (Northern Spain) at local scale. This research work explores the use of a nonparametric regression algorithm known as multivariate adaptive regression splines (MARS) which has the ability to approximate the relationship between the inputs and outputs, and express the relationship mathematically. In this sense, hazardous air pollutants or toxic air contaminants refer to any substance that may cause or contribute to an increase in mortality or serious illness, or that may pose a present or potential hazard to human health. To accomplish the objective of this study, the experimental dataset of nitrogen oxides (NOx), carbon monoxide (CO), sulfur dioxide (SO2), ozone (O3) and dust (PM10) were collected over 3 years (2006-2008) and they are used to create a highly nonlinear model of the PM10 in the Oviedo urban nucleus (Northern Spain) based on the MARS technique. One main objective of this model is to obtain a preliminary estimate of the dependence between PM10 pollutant in the Oviedo urban area at local scale. A second aim is to determine the factors with the greatest bearing on air quality with a view to proposing health and lifestyle improvements. The United States National Ambient Air Quality Standards (NAAQS) establishes the limit values of the main pollutants in the atmosphere in order to ensure the health of healthy people. Firstly, this MARS regression model captures the main perception of statistical learning theory in order to obtain a good prediction of the dependence among the main pollutants in the Oviedo urban area. Secondly, the main advantages of MARS are its capacity to produce simple, easy-to-interpret models, its ability to estimate the contributions of the input variables, and its computational efficiency. Finally, on the basis of

  12. Air Pollution and Daily Clinic Visits for Headache in a Subtropical City: Taipei, Taiwan

    Directory of Open Access Journals (Sweden)

    Hui-Fen Chiu

    2015-02-01

    Full Text Available This study was undertaken to determine whether there was an association between air pollutant levels and daily clinic visits for headache in Taipei, Taiwan. Daily clinic visits for headache and ambient air pollution data for Taipei were obtained for the period from 2006–2011. The odds ratio of clinic visits for headache was estimated using a case-crossover approach, controlling for weather variables, day of the week, seasonality, and long-term time trends. In the single pollutant models, on warm days (>23 °C statistically significant positive associations were found for increased rate of headache occurrence and levels of particulate matter (PM10, sulfur dioxide (SO2, nitrogen dioxide (NO2, carbon monoxide (CO, and ozone (O3. On cool days (<23 °C, all pollutants were significantly associated with increased headache visits except SO2. For the two-pollutant models, PM10, O3 and NO2 were significant for higher rate of headache visits in combination with each of the other four pollutants on cool days. On warm days, CO remained statistically significant in all two-pollutant models. This study provides evidence that higher levels of ambient air pollutants increase the risk of clinic visits for headache.

  13. The possible association between exposure to air pollution and the risk for congenital malformations.

    Science.gov (United States)

    Farhi, Adel; Boyko, Valentina; Almagor, Jonatan; Benenson, Itzhak; Segre, Enrico; Rudich, Yinon; Stern, Eli; Lerner-Geva, Liat

    2014-11-01

    Over the last decade, there is growing evidence that exposure to air pollution may be associated with increased risk for congenital malformations. To evaluate the possible association between exposures to air pollution during pregnancy and congenital malformations among infants born following spontaneously conceived (SC) pregnancies and assisted reproductive technology (ART) pregnancies. This is an historical cohort study comprising 216,730 infants: 207,825 SC infants and 8905 ART conceived infants, during the periods 1997-2004. Air pollution data including sulfur dioxide (SO2), particulate matter air monitoring stations database for the study period. Using a geographic information system (GIS) and the Kriging procedure, exposure to air pollution during the first trimester and the entire pregnancy was assessed for each woman according to her residential location. Logistic regression models with generalized estimating equation (GEE) approach were used to evaluate the adjusted risk for congenital malformations. In the study cohort increased concentrations of PM10 and NOx pollutants in the entire pregnancy were associated with slightly increased risk for congenital malformations: OR 1.06(95% CI, 1.01-1.11) for 10 µg/m(3) increase in PM10 and OR 1.03(95% CI, 1.01-1.04) for 10 ppb increase in NOx. Specific malformations were evident in the circulatory system (for PM10 and NOx exposure) and genital organs (for NOx exposure). SO2 and O3 pollutants were not significantly associated with increased risk for congenital malformations. In the ART group higher concentrations of SO2 and O3 in entire pregnancy were associated (although not significantly) with an increased risk for congenital malformations: OR 1.06(95% CI, 0.96-1.17) for 1 ppb increase in SO2 and OR 1.15(95% CI, 0.69-1.91) for 10 ppb increase in O3. Exposure to higher levels of PM10 and NOx during pregnancy was associated with an increased risk for congenital malformations. Specific malformations were evident in

  14. Study on the association between ambient air pollution and daily cardiovascular and respiratory mortality in an urban district of Beijing.

    Science.gov (United States)

    Zhang, Fengying; Li, Liping; Krafft, Thomas; Lv, Jinmei; Wang, Wuyi; Pei, Desheng

    2011-06-01

    The association between daily cardiovascular/respiratory mortality and air pollution in an urban district of Beijing was investigated over a 6-year period (January 2003 to December 2008). The purpose of this study was to evaluate the relative importance of the major air pollutants [particulate matter (PM), SO2, NO2] as predictors of daily cardiovascular/respiratory mortality. The time-series studied comprises years with lower level interventions to control air pollution (2003-2006) and years with high level interventions in preparation for and during the Olympics/Paralympics (2007-2008). Concentrations of PM10, SO2, and NO2, were measured daily during the study period. A generalized additive model was used to evaluate daily numbers of cardiovascular/respiratory deaths in relation to each air pollutant, controlling for time trends and meteorological influences such as temperature and relative humidity. The results show that the daily cardiovascular/respiratory death rates were significantly associated with the concentration air pollutants, especially deaths related to cardiovascular disease. The current day effects of PM10 and NO2 were higher than that of single lags (distributed lags) and moving average lags for respiratory disease mortality. The largest RR of SO2 for respiratory disease mortality was in Lag02. For cardiovascular disease mortality, the largest RR was in Lag01 for PM10, and in current day (Lag0) for SO2 and NO2. NO2 was associated with the largest RRs for deaths from both cardiovascular disease and respiratory disease.

  15. Modeling extreme PM10 concentration in Malaysia using generalized extreme value distribution

    Science.gov (United States)

    Hasan, Husna; Mansor, Nadiah; Salleh, Nur Hanim Mohd

    2015-05-01

    Extreme PM10 concentration from the Air Pollutant Index (API) at thirteen monitoring stations in Malaysia is modeled using the Generalized Extreme Value (GEV) distribution. The data is blocked into monthly selection period. The Mann-Kendall (MK) test suggests a non-stationary model so two models are considered for the stations with trend. The likelihood ratio test is used to determine the best fitted model and the result shows that only two stations favor the non-stationary model (Model 2) while the other eleven stations favor stationary model (Model 1). The return level of PM10 concentration that is expected to exceed the maximum once within a selected period is obtained.

  16. Modelling street level PM10 concentrations across Europe: source apportionment and possible futures

    Directory of Open Access Journals (Sweden)

    G. Kiesewetter

    2015-02-01

    Full Text Available Despite increasing emission controls, particulate matter (PM has remained a critical issue for European air quality in recent years. The various sources of PM, both from primary particulate emissions as well as secondary formation from precursor gases, make this a complex problem to tackle. In order to allow for credible predictions of future concentrations under policy assumptions, a modelling approach is needed that considers all chemical processes and spatial dimensions involved, from long-range transport of pollution to local emissions in street canyons. Here we describe a modelling scheme which has been implemented in the GAINS integrated assessment model to assess compliance with PM10 (PM with aerodynamic diameter 10 across Europe. Furthermore, we analyse the predicted evolution of PM10 concentrations in the European Union until 2030 under different policy scenarios. Significant improvements in ambient PM10 concentrations are expected assuming successful implementation of already agreed legislation; however, these will not be large enough to ensure attainment of PM10 limit values in hot spot locations such as Southern Poland and major European cities. Remaining issues are largely eliminated in a scenario applying the best available emission control technologies to the maximal technically feasible extent.

  17. Assessment of PM10 and heavy metals concentration in a Ceramic Cluster (NE Spain)

    Science.gov (United States)

    Belen Vicente, Ana; Pardo, Francisco; Sanfeliu, Teofilo; Bech, Joan

    2013-04-01

    Environmental pollution control is one of the most important goals in pollution risk assessment today. The aim of this study is conducting a retrospective view of the evolution of particulate matter (PM10) and heavy metals (As, Cd, Ni and Pb) at different localities in the Spanish cluster ceramic in the period between January 2007 and December 2011. The study area is in the province of Castellón. This province is a strategical area in the framework of European Union Pollution control. Approximately 80% of European ceramic tiles and ceramic frits manufacturers are concentrated in two areas, forming the so-called "Ceramics Clusters"; one is in Modena (Italy) and the other in Castellón (Spain). In this kind of areas, there are a lot of pollutants from this industry that represent an important contribution to soil contamination so it is necessary to control the air quality in them. These atmospheric particles are deposited in the ground through both dry and wet deposition. Soil is a major sink for heavy metals released into the environment. The level of pollution of soils by heavy metals depends on the retention capacity of the soil, especially on physical-chemical properties (mineralogy, grain size, organic matter) affecting soil particle surfaces and also on the chemical properties of the metal. The most direct consequences on the ground of air pollutants are acidification, salinization and the pollutions that can cause heavy metals as components of suspended particulate matter. For this purpose the levels of PM10 in ambient air and the corresponding annual and weekly trend were calculated. The results of the study show that the PM10 and heavy metals concentrations are below the limit values recommended by European Union Legislation for the protection of human health and ecosystems in the study period. There is an important reduction of them from 2009 in all control stations due to the economic crisis. References Moral, R., Gilkes, R.J., Jordán, M.M., 2005

  18. Seasonal analysis of the short-term effects of air pollution on daily mortality in Northeast Asia.

    Science.gov (United States)

    Kim, Satbyul Estella; Honda, Yasushi; Hashizume, Masahiro; Kan, Haidong; Lim, Youn-Hee; Lee, Hyewon; Kim, Clara Tammy; Yi, Seung-Muk; Kim, Ho

    2017-01-15

    The constituents and concentrations of pollutants, individual exposures, and biologic responses to air pollution may vary by season and meteorological conditions. However, evidence regarding seasonality of the acute effects of air pollution on mortality is limited and inconsistent. Herein, we examined seasonal patterns in the short-term associations of particulate matter (PM) smaller than 10μm (PM 10 ) with daily mortality in 29 cities of three northeast Asian countries. Stratified time-series models were used to determine whether season altered the effect of PM 10 on mortality. This effect was first quantified within each season and at each location using a time-series model, after which city-specific estimates were pooled using a hierarchical Bayesian model. In all data sets, 3,675,348 non-accidental deaths were registered from 1993 to 2009. In Japan, a 10μg/m 3 increase in PM 10 was significantly associated with increases in non-accidental mortality of 0.44% (95% confidence interval [CI]: 0.03%, 0.8%) in spring and 0.42% (0.02%, 0.82%) in fall. In South Korea, a 10μg/m 3 increase in PM 10 was significantly associated with increases in non-accidental mortality of 0.51% (0.01%, 1.01%) in summer and 0.45% (0.03%, 0.87%) in fall, in cardiovascular disease mortality of 0.96% (0.29%, 1.63%) in fall, and in respiratory disease mortality of 1.57% (0.40%, 2.75%) in fall. In China, a 10μg/m 3 increase in PM 10 was associated with increases in non-accidental mortality of 0.33% (0.01%, 0.66%) in summer and 0.41% (0.09%, 0.73%) in winter, in cardiovascular disease mortality of 0.41% (0.08%, 0.74%) in spring and 0.33% (0.02%, 0.64%) in winter, and in respiratory diseases mortality of 0.78% (0.27%, 1.30%) in winter. Our analyses suggest that the acute effect of particulate air pollution could vary seasonally and geographically. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. External costs of PM2.5 pollution in Beijing, China: Uncertainty analysis of multiple health impacts and costs

    DEFF Research Database (Denmark)

    Hao, Yin; Pizzol, Massimo; Xu, Linyu

    2017-01-01

    Some cities in China are facing serious air pollution problems including high concentrations of particles, SO2 and NOx. Exposure to PM2.5, one of the primary air pollutants in many cities in China, is highly correlated with various adverse health impacts and ultimately represents a cost for society....... The aim of this study is to assess health impacts and external costs related to PM2.5 pollution in Beijing, China with different baseline concentrations and valuation methods. The idea is to provide a reasonable estimate of the total health impacts and external cost due to PM2.5 pollution, as well...... as a quantification of the relevant uncertainty. PM2.5 concentrations were retrieved for the entire 2012 period in 16 districts of Beijing. The various PM2.5 related health impacts were identified and classified to avoid double counting. Exposure-response coefficients were then obtained from literature. Both...

  20. PM levels in urban area of Bejaia

    Science.gov (United States)

    Benaissa, Fatima; Maesano, Cara Nichole; Alkama, Rezak; Annesi-Maesano, Isabella

    2017-04-01

    Air pollution is not routinely measured in Bejaia City, Algeria, an urban area of around 200,000 inhabitants. We present first time measurements of particulate matter (PM) mass concentrations for this city (PM10, PM7, PM4, PM2.5 and PM1) over the course of one week, from July 8 to July 14, 2015. This study covered eight urban sampling sites and 169 measurements were obtained to determine mass concentration levels. Air pollution is not routinely measured in Bejaia City, Algeria, an urban area of around 200,000 inhabitants. We present first time measurements of particulate matter (PM) mass concentrations for this city (PM10, PM7, PM4, PM2.5 and PM1) over the course of one week, from July 8 to July 14, 2015. This study covered eight urban sampling sites and 169 measurements were obtained to determine mass concentration levels. The average city-wide PM10 and PM2.5 concentrations measured during this sampling were 87.8 ± 33.9 and 28.7 ± 10.6 µg/m3 respectively. These results show that particulate matter levels are high and exceed Algerian ambient air quality standards (maximum 80 µg/m3, without specifying the particle size). Further, PM10 and PM2.5 averages were well above the prescribed 24-hour average World Health Organization Air Quality Guidelines (WHO AQG) (50 µg/m3 for PM10 and 25 µg/m3 for PM2.5). The PM1, PM2,5, PM4 and PM7 fractions accounted for 15%, 32 %, 56% and 78% respectively of the PM10 measurements. Our analysis reveals that PM concentration variations in the study region were influenced primarily by traffic. In fact, lower PM10 concentrations (21.7 and 33.1 µg/m3) were recorded in residential sites while higher values (53.1, and 45.2 µg/m3) were registered in city centers. Keywords: Particulate matter, Urban area, vehicle fleet, Bejaia.

  1. Air pollution, asthma and allergy - the importance of different types of particles

    International Nuclear Information System (INIS)

    Ormstad, Heidi; Loevik, Martinus

    2002-01-01

    Particulate air pollution has been much discussed in Norway during the last few years. Coarse particles from asphalt are likely to have quite different properties than the far smaller particles from diesel exhaust. On the basis of data from the literature and our own research, we discuss the health problem of different types of particles with a focus on allergy and respiratory symptoms. Diesel exhaust particles have well-documented adverse effects in relation to allergic airway disease. They increase symptoms load in already allergic individuals and also seem to contribute to the increased prevalence of allergy. PM 10 is today measured on the basis of weight, not on number. Diesel exhaust particles are much smaller than road surface particles; hence PM 10 measurements reflect road surface dust pollution more than exhaust particles. Focus should now be given to diesel exhaust particles in order to reduce the adverse health effects of particulate air pollution in Norwegian cities. (author)

  2. Traffic-related air pollution and hyperactivity/inattention, dyslexia and dyscalculia in adolescents of the German GINIplus and LISAplus birth cohorts.

    Science.gov (United States)

    Fuertes, Elaine; Standl, Marie; Forns, Joan; Berdel, Dietrich; Garcia-Aymerich, Judith; Markevych, Iana; Schulte-Koerne, Gerd; Sugiri, Dorothea; Schikowski, Tamara; Tiesler, Carla M T; Heinrich, Joachim

    2016-12-01

    Few studies have examined the link between air pollution exposure and behavioural problems and learning disorders during late childhood and adolescence. To determine whether traffic-related air pollution exposure is associated with hyperactivity/inattention, dyslexia and dyscalculia up to age 15years using the German GINIplus and LISAplus birth cohorts (recruitment 1995-1999). Hyperactivity/inattention was assessed using the German parent-completed (10years) and self-completed (15years) Strengths and Difficulties Questionnaire. Responses were categorized into normal versus borderline/abnormal. Parent-reported dyslexia and dyscalculia (yes/no) at age 10 and 15years were defined using parent-completed questionnaires. Individual-level annual average estimates of nitrogen dioxide (NO 2 ), particulate matter (PM) 10 mass, PM 2.5 mass and PM 2.5 absorbance concentrations were assigned to each participant's birth, 10year and 15year home address. Longitudinal associations between the air pollutants and the neurodevelopmental outcomes were assessed using generalized estimation equations, separately for both study areas, and combined in a random-effects meta-analysis. Odds ratios and 95% confidence intervals are given per interquartile range increase in pollutant concentration. The prevalence of abnormal/borderline hyperactivity/inattention scores and parental-reported dyslexia and dyscalculia at 15years of age was 12.9%, 10.5% and 3.4%, respectively, in the combined population (N=4745). In the meta- analysis, hyperactivity/inattention was associated with PM 2.5 mass estimated to the 10 and 15year addresses (1.12 [1.01, 1.23] and 1.11 [1.01, 1.22]) and PM 2.5 absorbance estimated to the 10 and 15year addresses (1.14 [1.05, 1.25] and 1.13 [1.04, 1.23], respectively). We report associations suggesting a potential link between air pollution exposure and hyperactivity/inattention scores, although these findings require replication. Copyright © 2016 Elsevier Ltd. All rights

  3. Characterization of the GENT PM10 sampler. Appendix 18

    International Nuclear Information System (INIS)

    Hopke, Philip K.; Xie Ying; Raunemaa, Taisto; Biegalski, Steven; Landsberger, Sheldon

    1995-01-01

    An integral part of the Co-ordinated Research Programme: Applied Research on Air Pollution using Nuclear-Related Analytical Techniques is the PM 10 sampler that was designed by Dr. W. Maenhaut of the University of Gent. Each participant was provided with such a sampler so that comparable samples will be obtained by each of the participating groups. Thus, in order to understand the characteristics of this sampler, we have undertaken several characterization studies in which we have examine the aerodynamic collection characteristics of the impactor inlet and the reproducibility of the sample mass collection. The sampler does provide a collection efficiency that follows the guidelines for a PM 10 sampler. Comparing one of the original samplers built at the University of Gent with a unit built from the same plans at Clarkson University showed good reproducibility in mass collection. (author)

  4. Effect of air pollution and racism on ethnic differences in respiratory health among adolescents living in an urban environment.

    Science.gov (United States)

    Astell-Burt, Thomas; Maynard, Maria J; Lenguerrand, Erik; Whitrow, Melissa J; Molaodi, Oarabile R; Harding, Seeromanie

    2013-09-01

    Recent studies suggest that stress can amplify the harm of air pollution. We examined whether experience of racism and exposure to particulate matter with an aerodynamic diameter of less than 2.5 µm and 10 µm (PM2.5 and PM10) had a synergistic influence on ethnic differences in asthma and lung function across adolescence. Analyses using multilevel models showed lower forced expiratory volume (FEV1), forced vital capacity (FVC) and lower rates of asthma among some ethnic minorities compared to Whites, but higher exposure to PM2.5, PM10 and racism. Racism appeared to amplify the relationship between asthma and air pollution for all ethnic groups, but did not explain ethnic differences in respiratory health. Copyright © 2013 The Authors. Published by Elsevier Ltd.. All rights reserved.

  5. Relationship between Air Pollutants and Economic Development of the Provincial Capital Cities in China during the Past Decade

    Science.gov (United States)

    Luo, Yunpeng; Chen, Huai; Zhu, Qiu'an; Peng, Changhui; Yang, Gang; Yang, Yanzheng; Zhang, Yao

    2014-01-01

    With the economic development of China, air pollutants are also growing rapidly in recent decades, especially in big cities of the country. To understand the relationship between economic condition and air pollutants in big cities, we analysed the socioeconomic indictorssuch as Gross Regional Product per capita (GRP per capita), the concentration of air pollutants (PM10, SO2, NO2) and the air pollution index (API) from 2003 to 2012 in 31 provincial capitals of mainland China. The three main industries had a quadratic correlation with NO2, but a negative relationship with PM10 and SO2. The concentration of air pollutants per ten thousand yuan decreased with the multiplying of GRP in the provinical cities. The concentration of air pollutants and API in the provincial capital cities showed a declining trend or inverted-U trend with the rise of GRP per capita, which provided a strong evidence for the Environmental Kuznets Curve (EKC), that the environmental quality first declines, then improves, with the income growth. The results of this research improved our understanding of the alteration of atmospheric quality with the increase of social economy and demonstrated the feasibility of sustainable development for China. PMID:25083711

  6. Relationship between air pollutants and economic development of the provincial capital cities in China during the past decade.

    Science.gov (United States)

    Luo, Yunpeng; Chen, Huai; Zhu, Qiu'an; Peng, Changhui; Yang, Gang; Yang, Yanzheng; Zhang, Yao

    2014-01-01

    With the economic development of China, air pollutants are also growing rapidly in recent decades, especially in big cities of the country. To understand the relationship between economic condition and air pollutants in big cities, we analysed the socioeconomic indictors such as Gross Regional Product per capita (GRP per capita), the concentration of air pollutants (PM10, SO2, NO2) and the air pollution index (API) from 2003 to 2012 in 31 provincial capitals of mainland China. The three main industries had a quadratic correlation with NO2, but a negative relationship with PM10 and SO2. The concentration of air pollutants per ten thousand yuan decreased with the multiplying of GRP in the provincial cities. The concentration of air pollutants and API in the provincial capital cities showed a declining trend or inverted-U trend with the rise of GRP per capita, which provided a strong evidence for the Environmental Kuznets Curve (EKC), that the environmental quality first declines, then improves, with the income growth. The results of this research improved our understanding of the alteration of atmospheric quality with the increase of social economy and demonstrated the feasibility of sustainable development for China.

  7. Effects of air pollution on infant and children respiratory mortality in four large Latin-American cities

    International Nuclear Information System (INIS)

    Gouveia, Nelson; Junger, Washington Leite; Romieu, Isabelle; Cifuentes, Luis A.; Ponce de Leon, Antonio; Vera, Jeanette; Strappa, Valentina; Hurtado-Díaz, Magali; Miranda-Soberanis, Victor; Rojas-Bracho, Leonora; Carbajal-Arroyo, Luz; Tzintzun-Cervantes, Guadalupe

    2018-01-01

    Objectives: Air pollution is an important public health concern especially for children who are particularly susceptible. Latin America has a large children population, is highly urbanized and levels of pollution are substantially high, making the potential health impact of air pollution quite large. We evaluated the effect of air pollution on children respiratory mortality in four large urban centers: Mexico City, Santiago, Chile, and Sao Paulo and Rio de Janeiro in Brazil. Methods: Generalized Additive Models in Poisson regression was used to fit daily time-series of mortality due to respiratory diseases in infants and children, and levels of PM 10 and O 3 . Single lag and constrained polynomial distributed lag models were explored. Analyses were carried out per cause for each age group and each city. Fixed- and random-effects meta-analysis was conducted in order to combine the city-specific results in a single summary estimate. Results: These cities host nearly 43 million people and pollution levels were above the WHO guidelines. For PM 10 the percentage increase in risk of death due to respiratory diseases in infants in a fixed effect model was 0.47% (0.09–0.85). For respiratory deaths in children 1–5 years old, the increase in risk was 0.58% (0.08–1.08) while a higher effect was observed for lower respiratory infections (LRI) in children 1–14 years old [1.38% (0.91–1.85)]. For O 3 , the only summarized estimate statistically significant was for LRI in infants. Analysis by season showed effects of O 3 in the warm season for respiratory diseases in infants, while negative effects were observed for respiratory and LRI deaths in children. Discussion: We provided comparable mortality impact estimates of air pollutants across these cities and age groups. This information is important because many public policies aimed at preventing the adverse effects of pollution on health consider children as the population group that deserves the highest protection

  8. Acute effects of air pollution on respiratory disease mortalities and outpatients in Southeastern China.

    Science.gov (United States)

    Mo, Zhe; Fu, Qiuli; Zhang, Lifang; Lyu, Danni; Mao, Guangming; Wu, Lizhi; Xu, Peiwei; Wang, Zhifang; Pan, Xuejiao; Chen, Zhijian; Wang, Xiaofeng; Lou, Xiaoming

    2018-02-22

    The objective of this study was to investigate the potential association between air pollutants and respiratory diseases (RDs). Generalized additive models were used to analyze the effect of air pollutants on mortalities or outpatient visits. The average concentrations of air pollutants in Hangzhou (HZ) were 1.6-2.8 times higher than those in Zhoushan (ZS), except for O 3 . In a single pollutant model, the increased concentrations of PM 2.5 , NO 2 , and SO 2 were strongly associated with deaths caused by RD in HZ, while PM 2.5 and O 3 were associated with deaths caused by RD in ZS. All air pollutants (PM 2.5 , NO 2 , SO 2 , and O 3 ) were strongly associated with outpatient visits for RD in both HZ and ZS. In multiple pollutant models, a significant association was only observed between PM 2.5 and the mortality rate of RD patients in both HZ and in ZS. Moreover, strong associations between SO 2 , NO 2 , and outpatient visits for RD were observed in HZ and ZS. This study has provided evidence that both the mortality rates and outpatient visits for RD were significantly associated with air pollutants. Furthermore, the results showed that different air pollutant levels lead to regional differences between mortality rates and outpatient visits.

  9. Use of Multi-Objective Air Pollution Monitoring Sites and Online Air Pollution Monitoring System for Total Health Risk Assessment in Hyderabad, India

    Directory of Open Access Journals (Sweden)

    K. V. Ramani

    2005-08-01

    Full Text Available A consensus has been emerging among public health experts in developing countries that air pollution, even at current ambient levels, aggravates respiratory and cardiovascular diseases and leads to premature mortality. Recent studies have also presented well-founded theories concerning the biological mechanisms involved and the groups of people that are probably more susceptible to health effects caused or exacerbated by inhalation of ambient particulate matter (PM.. On the basis of prognostic studies carried out in Center for Environment, JNT University, Hyderabad “it has been estimated that in Hyderabad some 1,700 to 3,000 people per year die prematurely as a result of inhaling PM”. These figures reflect only the effects of acute exposure to air pollution. If the long-term effects of chronic exposure are taken into account, 10,000–15,000 people a year could die prematurely in Hyderabad. This estimate of the chronic effects is based on other studies, which are not completely comparable with the Hyderabad situation. While the study designs and analyses in these other studies may indeed be different or irrelevant to Hyderabad, the fact they were carried out in other countries is irrelevant. Taking into account these considerations, a model for total health risk assessment for the city of Hyderabad, and its state of Andhra Pradesh in India has been developed using a multi-objective air pollution monitoring network and online and real time air pollution monitoring stations. For the model studies a number of potential monitoring sites were screened for general and site-specific criteria in a geographic information system (GIS environment that may, on a local basis, affect the representativeness of the data collected. Local features that may affect either the chemical or meteorological parameters are evaluated to assure a minimum of interference. Finally, for monitoring air pollution, an online and real

  10. PM10 Analysis for Three Industrialized Areas using Extreme Value

    International Nuclear Information System (INIS)

    Hasfazilah Ahmat; Ahmad Shukri Yahaya; Nor Azam Ramli; Hasfazilah Ahmat

    2015-01-01

    One of the concerns of the air pollution studies is to compute the concentrations of one or more pollutants' species in space and time in relation to the independent variables, for instance emissions into the atmosphere, meteorological factors and parameters. One of the most significant statistical disciplines developed for the applied sciences and many other disciplines for the last few decades is the extreme value theory (EVT). This study assesses the use of extreme value distributions of the two-parameter Gumbel, two and three-parameter Weibull, Generalized Extreme Value (GEV) and two and three-parameter Generalized Pareto Distribution (GPD) on the maximum concentration of daily PM10 data recorded in the year 2010 - 2012 in Pasir Gudang, Johor; Bukit Rambai, Melaka; and Nilai, Negeri Sembilan. Parameters for all distributions are estimated using the Method of Moments (MOM) and Maximum Likelihood Estimator (MLE). Six performance indicators namely; the accuracy measures which include predictive accuracy (PA), Coefficient of Determination (R2), Index of Agreement (IA) and error measures that consist of Root Mean Square Error (RMSE), Mean Absolute Error (MAE) and Normalized Absolute Error (NAE) are used to find the goodness-of-fit of the distribution. The best distribution is selected based on the highest accuracy measures and the smallest error measures. The results showed that the GEV is the best fit for daily maximum concentration for PM10 for all monitoring stations. The analysis also demonstrates that the estimated numbers of days in which the concentration of PM10 exceeded the Malaysian Ambient Air Quality Guidelines (MAAQG) of 150 mg/ m"3 are between 1/2 and 11/2 days. (author)

  11. Wildfire air pollution hazard during the 21st century

    Science.gov (United States)

    Knorr, Wolfgang; Dentener, Frank; Lamarque, Jean-François; Jiang, Leiwen; Arneth, Almut

    2017-07-01

    Wildfires pose a significant risk to human livelihoods and are a substantial health hazard due to emissions of toxic smoke. Previous studies have shown that climate change, increasing atmospheric CO2, and human demographic dynamics can lead to substantially altered wildfire risk in the future, with fire activity increasing in some regions and decreasing in others. The present study re-examines these results from the perspective of air pollution risk, focussing on emissions of airborne particulate matter (PM2. 5), combining an existing ensemble of simulations using a coupled fire-dynamic vegetation model with current observation-based estimates of wildfire emissions and simulations with a chemical transport model. Currently, wildfire PM2. 5 emissions exceed those from anthropogenic sources in large parts of the world. We further analyse two extreme sets of future wildfire emissions in a socio-economic, demographic climate change context and compare them to anthropogenic emission scenarios reflecting current and ambitious air pollution legislation. In most regions of the world, ambitious reductions of anthropogenic air pollutant emissions have the potential to limit mean annual pollutant PM2. 5 levels to comply with World Health Organization (WHO) air quality guidelines for PM2. 5. Worst-case future wildfire emissions are not likely to interfere with these annual goals, largely due to fire seasonality, as well as a tendency of wildfire sources to be situated in areas of intermediate population density, as opposed to anthropogenic sources that tend to be highest at the highest population densities. However, during the high-fire season, we find many regions where future PM2. 5 pollution levels can reach dangerous levels even for a scenario of aggressive reduction of anthropogenic emissions.

  12. A health-based assessment of particulate air pollution in urban areas of Beijing in 2000-2004

    International Nuclear Information System (INIS)

    Zhang Minsi; Song Yu; Cai Xuhui

    2007-01-01

    Particulate air pollution is a serious problem in Beijing. The annual concentration of particulate matter with aerodynamic diameter less than 10 μm (PM 10 ), ranging from 141 to 166 μg m -3 in 2000-2004, could be very harmful to human health. In this paper, we presented the mortality and morbidity effects of PM 10 pollution based on statistical data and the epidemiological exposure-response function. The economic costs to health during the 5 years were estimated to lie between US$1670 and $3655 million annually, accounting for about 6.55% of Beijing's gross domestic product each year. The total costs were apportioned into two parts caused by: the local emissions and long-range transported pollution. The contribution from local emissions dominated the total costs, accounting on average for 3.60% of GDP. However, the contributions from transported pollution cannot be neglected, and the relative percentage to the total costs from the other regions could account for about 45%. An energy policy and effective measures should be proposed to reduce particulate matter, especially PM 2.5 pollution in Beijing to protect public health. The Beijing government also needs to cooperate with the other local governments to reduce high background level of particulate air pollution

  13. Seasonal and temporal variations of criteria air pollutants and the influence of meteorological parameters on the concentration of pollutants in ambient air in lahore, pakistan

    International Nuclear Information System (INIS)

    Tabinda, A.B.; Munir, S.; Yasir, A.; Ilyas, A.

    2016-01-01

    Criteria air pollutants have their significance for causing health threats and damage to the environment. The study was conducted to assess the seasonal and temporal variations of criteria air pollutants and evaluating the correlations of criteria air pollutants with meteorological parameters in the city of Lahore, Pakistan for a period of one year from April 2010 to March 2011. The concentrations of criteria air pollutants were determined at fixed monitoring stations equipped with HORIBA analyzers. The annual average concentrations (μ/m/super 3/) of PM /sub 2.5/, O/sub 3/, SO/sub 2/, CO and NO/sub x/ (NO+NO/sub 2/) for this study period were 118.94±57.46, 46.0±24.2, 39.9±8.9, 1940±1300 and 130.9±81.0 (61.8±46.2+57.3±22.19), respectively. PM/sub 2.5/, SO/sub 2/, CO and NO/sub x/ had maximum concentrations during winter whereas O/sub 3/ had maximum concentration during summer. Minimum concentrations of PM/sub 2.5/, SO/sub 2/ and NO/sub x/ were found during monsoon as compared to other seasons due to rainfall which scavenged these pollutants. The O/sub 3/ showed positive correlation with temperature and solar radiation but negative correlation with wind speed. All other criteria air pollutants showed negative correlation with wind speed, temperature and solar radiation. A significant (P<0.01) correlation was found between NO/sub x/ and CO (r = 0.779) which showed that NO/sub x/ and CO arise from common source that could be the vehicular emission. PM/sub 2.5/ was significantly correlated (P<0.01) with NO/sub x/ (r = 0.524) and CO (r = 0.519), respectively. High traffic intensity and traffic jams were responsible for increased air pollutants level especially the PM/sub 2.5/, NO/sub x/ and CO. (author)

  14. Economic evaluation of the air pollution effect on public health in China's 74 cities.

    Science.gov (United States)

    Li, Li; Lei, Yalin; Pan, Dongyan; Yu, Chen; Si, Chunyan

    2016-01-01

    Air deterioration caused by pollution has harmed public health. The existing studies on the economic loss caused by a variety of air pollutants in multiple cities are lacking. To understand the effect of different pollutants on public health and to provide the basis of the environmental governance for governments, based on the dose-response relation and the willingness to pay, this paper used the latest available data of the inhalable particulate matter (PM10) and sulphur dioxide (SO2) from January 2015 to June 2015 in 74 cities by establishing the lowest and the highest limit scenarios. The results show that (1) in the lowest and highest limit scenario, the health-related economic loss caused by PM10 and SO2 represented 1.63 and 2.32 % of the GDP, respectively; (2) For a single city, in the lowest and the highest limit scenarios, the highest economic loss of the public health effect caused by PM10 and SO2 was observed in Chongqing; the highest economic loss of the public health effect per capita occurred in Hebei Baoding. The highest proportion of the health-related economic loss accounting for GDP was found in Hebei Xingtai. The main reason is that the terrain conditions are not conducive to the spread of air pollutants in Chongqing, Baoding and Xingtai, and the three cities are typical heavy industrial cities that are based on coal resources. Therefore, this paper proposes to improve the energy structure, use the advanced production process, reasonably control the urban population growth, and adopt the emissions trading system in order to reduce the economic loss caused by the effects of air pollution on public health.

  15. The effect of long-range air mass transport pathways on PM10 and NO2 concentrations at urban and rural background sites in Ireland: Quantification using clustering techniques.

    Science.gov (United States)

    Donnelly, Aoife A; Broderick, Brian M; Misstear, Bruce D

    2015-01-01

    The specific aims of this paper are to: (i) quantify the effects of various long range transport pathways nitrogen dioxide (NO2) and particulate matter with diameter less than 10μm (PM10) concentrations in Ireland and identify air mass movement corridors which may lead to incidences poor air quality for application in forecasting; (ii) compare the effects of such pathways at various sites; (iii) assess pathways associated with a period of decreased air quality in Ireland. The origin of and the regions traversed by an air mass 96h prior to reaching a receptor is modelled and k-means clustering is applied to create air-mass groups. Significant differences in air pollution levels were found between air mass cluster types at urban and rural sites. It was found that easterly or recirculated air masses lead to higher NO2 and PM10 levels with average NO2 levels varying between 124% and 239% of the seasonal mean and average PM10 levels varying between 103% and 199% of the seasonal mean at urban and rural sites. Easterly air masses are more frequent during winter months leading to higher overall concentrations. The span in relative concentrations between air mass clusters is highest at the rural site indicating that regional factors are controlling concentration levels. The methods used in this paper could be applied to assist in modelling and forecasting air quality based on long range transport pathways and forecast meteorology without the requirement for detailed emissions data over a large regional domain or the use of computationally demanding modelling techniques.

  16. A high-resolution air pollutants emission inventory in 2013 for the Beijing-Tianjin-Hebei region, China

    Science.gov (United States)

    Qi, Ji; Zheng, Bo; Li, Meng; Yu, Fang; Chen, Chuchu; Liu, Fei; Zhou, Xiafei; Yuan, Jing; Zhang, Qiang; He, Kebin

    2017-12-01

    We developed a high-resolution Beijing-Tianjin-Hebei (BTH) regional air pollutants emission inventory for the year 2013. The inventory was established using a bottom-up approach based on facility-level activity data obtained from multiple data sources. The estimates from the BTH 2013 emission inventory show that the total emissions of SO2, NOX, PM2.5, PM10, CO, NMVOC, NH3, BC, and OC were 2,305, 2,686, 1,090, 1,494, 20,567, 2,207, 623, 160, and 254 Gg, respectively. The industry sector is the largest emissions source for SO2, NOX, PM2.5, PM10, CO, and NMVOC in the BTH region, contributing 72.6%, 43.7%, 59.6%, 64.7%, 60.3%, and 70.4% of the total emissions, respectively. Power plants contributed 11.8% and 23.3% of the total SO2 and NOX emissions, respectively. The transportation sector contributed 28.9% of the total NOX emissions. Emissions from the residential sector accounted for 31.3%, 21.5%, 46.6% and 71.7% of the total PM2.5, NMVOC, BC and OC emissions, respectively. In addition, more than 90% of the total NH3 emissions originate from the agriculture sector, with 44.2% from fertilizer use and 47.7% from livestock. The spatial distribution results illustrate that air pollutant emissions are mainly distributed over the eastern and southern BTH regions. Beijing, Tianjin, Shijiazhuang, Tangshan and Handan are the major contributors of air pollutants. The major NMVOC species in the BTH region are ethylene, acetylene, ethane and toluene. Ethylene is the biggest contributor in Tianjin and Hebei. The largest contributor in Beijing is toluene. There is relatively low uncertainty in SO2 and NOX emission estimates, medium uncertainty in PM2.5, PM10 and CO emission estimates, and high uncertainties in VOC, NH3, BC and OC emission estimates. The proposed policy recommendations, based on the BTH 2013 emission inventory, would be helpful to develop strategies for air pollution control.

  17. Roadside air particulate monitoring in the PM10 range at the Poveda Learning Center, EDSA, Metro Manila

    International Nuclear Information System (INIS)

    Santos, Flora L.; Pabroa, Preciosa Corazon B.; Esguerra, Luz V.; Racho, Joseph Michael; Almoneda, Rosalina V.; Sucgang, Raymond

    2006-01-01

    The Philippine Nuclear Research Institute undertakes air particulate matter monitoring in the PM10 range using a Gent-type dichotomous sampler. Samples are collected in 2 fractions; fine, having a mean aerodynamic diameter below 2.2 microns and coarse, with mean aerodynamic diameter of 2.2-10 microns. The PNRI station at Poveda Learning Center, Mandaluyong, Metro Manila was identified for sample collection under this project. The sampler is located about 100 m. away from the major highway, Epifanio delos Santos Avenue (EDSA), on the roof-deck of a three-story building. Mean annual and 24-hour PM10 levels were found to be below the national standards: 60 ug/cu m annual mean and 150 ug/cu m 24-hour value. Using the Gent sampler, the weight of the fine fraction underestimates PM2.5 by 15%. The sum of the coarse and fine fractions is equal to PM10. The 24-hour value for PM2.2 is generally below the US EPA standard of 65 ug./cu m while the annual mean is generally in exceedance of the long-term standard of 15 ug/cu m. This indicates the need to study current standards and its efficacy in protecting the general population from adverse health effects due to fine particulate pollution. Correlation plots of coarse and fine fractions with PM10 show greater contribution of the coarse fraction to PM10. Contribution of the fine fraction is found to decrease from 36% in 2002, to 29% in 2003 and 20% in 2004. Fine fraction contribution to PM10 at another station, the Ateneo de Manila is 40% for both years. The station at the Ateneo is farther from the road and is exposed to a lower volume of vehicular traffic. High coarse particle contribution to PM10 at the Poveda station could be due to particles resuspended from the road by the vehicles. An increase in the concentration of coarse particles is observed in 2003 which remains at the same level in 2004. Fine particle concentration also increases in 2003 but decreases in 2004, possibly reflecting the impact of government drive

  18. Interactions of Climate Change, Air Pollution, and Human Health.

    Science.gov (United States)

    Kinney, Patrick L

    2018-03-01

    I review literature on the impacts of climate change on air quality and human health, with a focus on articles published from 2013 on ozone and airborne particles. Selected previous literature is discussed where relevant in tracing the origins of our current knowledge. Climate and weather have strong influences on the spatial and temporal distribution of air pollution concentrations. Emissions of ozone and PM 2.5 precursors increase at higher ambient temperatures. The reactions that form ozone occur faster with greater sunlight and higher temperatures. Weather systems influence the movement and dispersion of air pollutants in the atmosphere through the action of winds, vertical mixing, and precipitation, all of which are likely to alter in a changing climate. Recent studies indicate that, holding anthropogenic air pollution emissions constant, ozone concentrations in populated regions will tend to increase in future climate scenarios. For the USA, the climate impact on ozone is most consistently seen in north-central and north-eastern states, with the potential for many thousands of additional ozone-related deaths. The sensitivity of anthropogenic PM 2.5 to climate is more variable across studies and regions, owing to the varied nature of PM constituents, as well as to less complete characterization of PM reaction chemistry in available atmospheric models. However, PM emitted by wildland fires is likely to become an increasing health risk in many parts of the world as climate continues to change. The complex interactions between climate change and air quality imply that future policies to mitigate these twin challenges will benefit from greater coordination. Assessing the health implications of alternative policy approaches towards climate and pollution mitigation will be a critical area of future work.

  19. [Study on air quality and pollution meteorology conditions of Guangzhou during the 2010 Asian games].

    Science.gov (United States)

    Li, Ting-Yuan; Deng, Xue-Jiao; Fan, Shao-Jia; Wu, Dui; Li, Fei; Deng, Tao; Tan, Hao-Bo; Jiang, De-Hai

    2012-09-01

    Based on the monitoring data of NO2, O3, SO2, PM, visibility, regional air quality index (RAQI) and the atmospheric transport and diffusion data from Nov. 4, 2010 to Dec. 10, 2010 in Guangzhou area, the variations of air quality and meteorological conditions during the Guangzhou Asian Games were analyzed. It was found that, during the Asian Games, the air quality was better than the air quality before or after the Asian Games. The visibility was greater than the visibility before or after the Asian Games, while the concentrations of PM1 and PM2.5 were lower. The correlation coefficient between visibility and the concentrations of PM1, PM2.5 indicated anti-correlation relationships. Daily and hourly concentrations of NO2 and SO2 met the primary ambient air quality standards, whereas the daily concentration of PM10 and hourly concentration of O3 met the secondary ambient air quality standards. Pollutants had been well controlled during the Asian Games. The concentration of SO2 in Guangzhou was influenced by local sources and long distance transmission, while the concentration of NO2 was significantly influenced by local sources. The emissions of NO2, SO2 and PM10 surrounding Guangzhou had a trend to affect the concentrations in Guangzhou, but the situation of O3 was opposite, the relatively high concentration of O3 in Guangzhou had tendency to be transported to the surrounding areas. The pollution meteorology conditions in the period of Asian Games were better than the conditions before or after the Asian Games. The decrease in the concentrations during the Asian Games did not only benefit from the emission control by the government, but also from the good meteorological conditions.

  20. Health risk assessment on human exposed to heavy metals in the ambient air PM10 in Ahvaz, southwest Iran

    Science.gov (United States)

    Goudarzi, Gholamreza; Alavi, Nadali; Geravandi, Sahar; Idani, Esmaeil; Behrooz, Hamid Reza Adeli; Babaei, Ali Akbar; Alamdari, Farzaneh Aslanpour; Dobaradaran, Sina; Farhadi, Majid; Mohammadi, Mohammad Javad

    2018-02-01

    Heavy metals (HM) are one of the main components of urban air pollution. Today, megacities and industrial regions in southwest of Iran are frequently suffering from severe haze episodes, which essentially caused by PM10-bound heavy metals. The purpose of this study was to evaluate the health risk assessment on human exposed to heavy metals (Cr, Ni, Pb, and Zn) in the ambient air PM10 in Ahvaz, southwest Iran. In this study, we estimated healthy people from the following scenarios: (S3) residential site; (S2) high-traffic site; (S1) industrial site in Ahvaz metropolitan during autumn and winter. In the current study, high-volume air samplers equipped with quartz fiber filters were used to sampling and measurements of heavy metal concentration. Inductively coupled plasma optical emission spectroscopy (ICP-OES) was utilized for detection of heavy metal concentration (ng m-3). Also, an estimate of the amount of health risk assessment (hazard index) of Cr, Ni, Pb, and Zn of heavy metal exposure to participants was used. Result of this study showed that the residential and industrial areas had the lowest and the highest level of heavy metal. Based on the result of this study, average levels of heavy metal in industrial, high-traffic, and residential areas in autumn and winter were 31.48, 30.89, and 23.21 μg m-3 and 42.60, 37.70, and 40.07 μg m-3, respectively. Based on the result of this study, the highest and the lowest concentration of heavy metal had in the industrial and residential areas. Zn and Pb were the most abundant elements among the studied PM10-bound heavy metals, followed by Cr and Ni. The carcinogenic risks of Cr, Pb, and the integral HQ of metals in PM10 for children and adults via inhalation and dermal exposures exceeded 1 × 10-4 in three areas. Also, based on the result of this study, the values of hazard index (HI) of HM exposure in different areas were significantly higher than standard. The health risks attributed to HM should be further

  1. Redox Toxicology of Ambient Air Pollution

    Science.gov (United States)

    Ambient air pollution is a leading global cause of morbidity and mortality. Millions of Americans live in areas in which levels of tropospheric ozone exceed air quality standards, while exposure to particulate matter (PM2.5) alone results in 3.2 million excess deaths annually wor...

  2. Mortality related to air pollution with the moscow heat wave and wildfire of 2010.

    Science.gov (United States)

    Shaposhnikov, Dmitry; Revich, Boris; Bellander, Tom; Bedada, Getahun Bero; Bottai, Matteo; Kharkova, Tatyana; Kvasha, Ekaterina; Lezina, Elena; Lind, Tomas; Semutnikova, Eugenia; Pershagen, Göran

    2014-05-01

    Prolonged high temperatures and air pollution from wildfires often occur together, and the two may interact in their effects on mortality. However, there are few data on such possible interactions. We analyzed day-to-day variations in the number of deaths in Moscow, Russia, in relation to air pollution levels and temperature during the disastrous heat wave and wildfire of 2010. Corresponding data for the period 2006-2009 were used for comparison. Daily average levels of PM10 and ozone were obtained from several continuous measurement stations. The daily number of nonaccidental deaths from specific causes was extracted from official records. Analyses of interactions considered the main effect of temperature as well as the added effect of prolonged high temperatures and the interaction with PM10. The major heat wave lasted for 44 days, with 24-hour average temperatures ranging from 24°C to 31°C and PM10 levels exceeding 300 μg/m on several days. There were close to 11,000 excess deaths from nonaccidental causes during this period, mainly among those older than 65 years. Increased risks also occurred in younger age groups. The most pronounced effects were for deaths from cardiovascular, respiratory, genitourinary, and nervous system diseases. Continuously increasing risks following prolonged high temperatures were apparent during the first 2 weeks of the heat wave. Interactions between high temperatures and air pollution from wildfires in excess of an additive effect contributed to more than 2000 deaths. Interactions between high temperatures and wildfire air pollution should be considered in risk assessments regarding health consequences of climate change.

  3. Effects of air pollution on meteorological parameters during Deepawali festival over an Indian urban metropolis

    Science.gov (United States)

    Saha, Upal; Talukdar, Shamitaksha; Jana, Soumyajyoti; Maitra, Animesh

    2014-12-01

    Atmospheric pollutants (NO2, SO2, PM10, BC, CO, surface O3), emitted during fireworks display, have significant effects on meteorological parameters like air temperature, relative humidity, lapse rate and visibility in air over Kolkata (22°65‧ N, 88°45‧ E), a metropolitan city near the land-ocean boundary, on the eve of Deepawali festival when extensive fireworks are burnt. Long-term trend (2005-2013), indicates that the yearly average concentrations of both primary and secondary air pollutants have increased, exceeding the National Ambient Air Quality Standard (NAAQS) limit, on the respective Deepawali days. Short-term study (2012-2013) during the festival shows that the average pollutant concentrations have increased too compared to normal days. This study also reveals the immediate effects of the increased air pollutants on the boundary layer meteorology. PM10 has been found to be the most dominant atmospheric pollutants during this period. As a result of an increase in atmospheric heat content with elevated surface air temperature, a significant increase in the environmental lapse rate bears a signature of the influence of pollutants on the boundary layer temperature profile. A change in the diurnal pattern of relative humidity as well as in the vertical temperature profile is due to the change of the lapse rate during the festival days. Thus, the atmospheric pollutants during this festival over the urban region have significant effect on the boundary layer meteorology with bearings on environmental hazards.

  4. Co-Mitigation of Ozone and PM2.5 Pollution over the Beijing-Tianjin-Hebei Region

    Science.gov (United States)

    Liu, J.; Xiang, S.; Yi, K.; Tao, W.

    2017-12-01

    With the rapid industrialization and urbanization, emissions of air pollutants in China were increasing rapidly during the past few decades, causing severe particulate matter and ozone pollution in many megacities. Facing these knotty environmental problems, China has released a series of pollution control policies to mitigate air pollution emissions and optimize energy supplement structure. Consequently, fine particulate matters (PM2.5) decrease recently. However, the concentrations of ambient ozone have been increasing, especially during summer time and over megacities. In this study, we focus on the opposite trends of ozone and PM2.5 over the Beijing-Tianjin-Hebei region. We use the Weather Research and Forecasting model coupled with Chemistry (WRF/Chem) to simulate and analyze the best emission reduction strategies, and adopt the Empirical Kinetics Modeling Approach (EKMA) to depict the influences of mitigating NOx and VOCs. We also incorporate the abatement costs for NOx and VOCs in our analysis to explore the most cost-effective mitigation strategies for both ozone and PM2.5.

  5. Assessment of PM10 concentrations from domestic biomass fuel combustion in two rural Bolivian highland villages

    International Nuclear Information System (INIS)

    Albalak, R.; Haber, M.

    1999-01-01

    PM 10 concentrations were measured in two contrasting rural Bolivian villages that cook with biomass fuels. In one of the villages, cooking was done exclusively indoors, and in the other, it was done primarily outdoors. Concentrations in all potential microenvironments of exposure (i.e., home, kitchen, and outdoors) were measured for a total of 621 samples. Geometric mean kitchen PM 10 concentrations were 1830 and 280 microg/m 3 and geometric mean home concentrations were 280 and 440 microg/m 3 for the indoor and outdoor cooking villages, respectively. An analysis of pollutant concentrations using generalized estimating equation techniques showed significant effects of village location, and interaction of village and location on log-transformed PM 10 concentrations. Pollutant concentrations and activity pattern data were used to estimate total exposure using the indirect method of exposure assessment. Daily exposure for women during the nonwork season was 15 120 and 6240 microg h -1 m -3 for the indoor and outdoor cooking villages, respectively. Differences in exposure to pollution between the villages were not as great as might be expected based on kitchen concentration alone. This study underscores the importance of measuring pollutant concentrations in all microenvironments where people spend time and of shifting the focus of air pollution studies to include rural populations in developing countries

  6. Positive association between short-term ambient air pollution exposure and children blood pressure in China-Result from the Seven Northeast Cities (SNEC) study.

    Science.gov (United States)

    Zeng, Xiao-Wen; Qian, Zhengmin Min; Vaughn, Michael G; Nelson, Erik J; Dharmage, Shyamali C; Bowatte, Gayan; Perret, Jennifer; Chen, Duo-Hong; Ma, Huimin; Lin, Shao; de Foy, Benjamin; Hu, Li-Wen; Yang, Bo-Yi; Xu, Shu-Li; Zhang, Chuan; Tian, Yan-Peng; Nian, Min; Wang, Jia; Xiao, Xiang; Bao, Wen-Wen; Zhang, Ya-Zhi; Dong, Guang-Hui

    2017-05-01

    The impact of ambient air pollution on health causes concerns in China. However, little is known about the association of short-term air pollution exposure with blood pressure (BP) in children. The goal of present study was to assess the association between short-term air pollution and BP in children from a highly polluted area in China. This study enrolled 9354 children in 24 elementary and middle schools (aged 5-17 years) from the Seven Northeast Cities (SNEC) study, respectively, during the period of 2012-2013. Ambient air pollutants, including particulate matter with an aerodynamic diameter of ≤10 μm (PM 10 ), sulfur dioxide (SO 2 ), nitrogen dioxide (NO 2 ) and ozone (O 3 ) on the days (1-5 days) preceding BP examination were collected from local air monitoring stations. Generalized additive models and two-level regression analyses were used to evaluate the relationship between air pollution and BP after adjusting for other covariates. Results showed that with an interquartile range (IQR) increase in PM 10 (50.0 μg/m 3 ) and O 3 (53.0 μg/m 3 ) level during the 5-day mean exposure, positive associations with elevated BP were observed, with an odds ratio of 2.17 (95% CI, 1.61-2.93) for PM 10 and 2.77 (95% CI, 1.94-3.95) for O 3 . Both systolic BP and diastolic BP levels were positively associated with an IQR increase of four air pollutants at different lag times. Specifically, an IQR increase in the 5-day mean of PM 10 and O 3 was associated with elevation of 2.07 mmHg (95% CI, 1.71-2.44) and 3.29 mmHg (95% CI, 2.86-3.72) in systolic BP, respectively. When stratified by sex, positive relationships were observed for elevated BP with NO 2 exposure only in males. This is the first report on the relationship between ambient short-term air pollution exposure and children BP in China. Findings indicate a need to control air pollutants and protect children from heavy air pollution exposure in China. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. An assessment of air pollutant exposure methods in Mexico City, Mexico.

    Science.gov (United States)

    Rivera-González, Luis O; Zhang, Zhenzhen; Sánchez, Brisa N; Zhang, Kai; Brown, Daniel G; Rojas-Bracho, Leonora; Osornio-Vargas, Alvaro; Vadillo-Ortega, Felipe; O'Neill, Marie S

    2015-05-01

    Geostatistical interpolation methods to estimate individual exposure to outdoor air pollutants can be used in pregnancy cohorts where personal exposure data are not collected. Our objectives were to a) develop four assessment methods (citywide average (CWA); nearest monitor (NM); inverse distance weighting (IDW); and ordinary Kriging (OK)), and b) compare daily metrics and cross-validations of interpolation models. We obtained 2008 hourly data from Mexico City's outdoor air monitoring network for PM10, PM2.5, O3, CO, NO2, and SO2 and constructed daily exposure metrics for 1,000 simulated individual locations across five populated geographic zones. Descriptive statistics from all methods were calculated for dry and wet seasons, and by zone. We also evaluated IDW and OK methods' ability to predict measured concentrations at monitors using cross validation and a coefficient of variation (COV). All methods were performed using SAS 9.3, except ordinary Kriging which was modeled using R's gstat package. Overall, mean concentrations and standard deviations were similar among the different methods for each pollutant. Correlations between methods were generally high (r=0.77 to 0.99). However, ranges of estimated concentrations determined by NM, IDW, and OK were wider than the ranges for CWA. Root mean square errors for OK were consistently equal to or lower than for the IDW method. OK standard errors varied considerably between pollutants and the computed COVs ranged from 0.46 (least error) for SO2 and PM10 to 3.91 (most error) for PM2.5. OK predicted concentrations measured at the monitors better than IDW and NM. Given the similarity in results for the exposure methods, OK is preferred because this method alone provides predicted standard errors which can be incorporated in statistical models. The daily estimated exposures calculated using these different exposure methods provide flexibility to evaluate multiple windows of exposure during pregnancy, not just trimester or

  8. Air pollution and genomic instability: The role of particulate matter in lung carcinogenesis

    International Nuclear Information System (INIS)

    Santibáñez-Andrade, Miguel; Quezada-Maldonado, Ericka Marel; Osornio-Vargas, Álvaro; Sánchez-Pérez, Yesennia; García-Cuellar, Claudia M.

    2017-01-01

    In this review, we summarize and discuss the evidence regarding the interaction between air pollution, especially particulate matter (PM), and genomic instability. PM has been widely studied in the context of several diseases, and its role in lung carcinogenesis gained relevance due to an increase in cancer cases for which smoking does not seem to represent the main risk factor. According to epidemiological and toxicological evidence, PM acts as a carcinogenic factor in humans, inducing high rates of genomic alterations. Here, we discuss not only how PM is capable of inducing genomic instability during the carcinogenic process but also how our genetic background influences the response to the sources of damage. - Highlights: • Air pollution represents a worldwide problem with impact on human health. • Particulate matter (PM) has a recognized carcinogenic potential in humans. • Lung cancer susceptibility depends on gene-environment interactions. • Epidemiological and experimental evidence links PM exposure to genomic instability. • PM and genomic instability are co-dependent factors during cancer continuum. - We summarize the association between particulate matter (a component of air pollution) and genomic instability as well as discuss how new strategies to study the impact of air pollution on genomic instability and lung-cancer development could improve our understanding of the lung-cancer genome.

  9. Long-term associations of morbidity with air pollution: A catalog and synthesis.

    Science.gov (United States)

    Lipfert, Frederick W

    2018-01-01

    I searched the National Institutes of Health MEDLINE database through January 2017 for long-term studies of morbidity and air pollution and cataloged them with respect to cardiovascular, respiratory, cancer, diabetes, hospitalization, neurological, and pregnancy-birth endpoints. The catalog is presented as an online appendix. Associations with PM 2.5 (particulate matter with an aerodynamic diameter pollutant significance (yes, no), duration of exposure, and publication date. I found statistically significant pollutant relationships (P pollutant effect estimates, 396 are statistically significant. Pollutant associations with cardiovascular indicators, lung function, respiratory symptoms, and low birth weight are more likely to be significant than with disease incidence, heart attacks, diabetes, or neurological endpoints. Elemental carbon (EC), traffic, and PM 2.5 are most likely to be significant for cardiovascular outcomes; TSP, EC, and ozone (O 3 ) for respiratory outcomes; NO 2 for neurological outcomes; and PM 10 for birth/pregnancy outcomes. Durations of exposure range from 60 days to 35 yr, but I found no consistent relationships with the likelihood of statistical significance. Respiratory studies began ca. 1975; studies of diabetes, cardiovascular, and neurological effects increased after about 2005. I found 72 studies of occupational air pollution exposures; 40 reported statistically significant adverse health effects, especially for respiratory conditions. I conclude that the aggregate of these studies supports the existence of nonlethal physiological effects of various pollutants, more so for non-life-threatening endpoints and for noncriteria pollutants (TSP, EC, PM 2.5 metals). However, most studies were cross-sectional analyses over limited time spans with no consideration of lag or disease latency. Further longitudinal studies are thus needed to investigate the progress of disease incidence in association with air pollution exposure. Relationships of

  10. [Preliminary study of source apportionment of PM10 and PM2.5 in three cities of China during spring].

    Science.gov (United States)

    Gao, Shen; Pan, Xiao-chuan; Madaniyazi, Li-na; Xie, Juan; He, Ya-hui

    2013-09-01

    To study source apportionment of atmospheric PM10 (particle matter ≤ 10 µm in aerodynamic diameter) and PM2.5 (particle matter ≤ 2.5 µm in aerodynamic diameter) in Beijing,Urumqi and Qingdao, China. The atmospheric particle samples of PM10 and PM2.5 collected from Beijing between May 17th and June 18th, 2005, from Urumqi between April 20th and June 1st, 2006 and from Qingdao between April 4th and May 15th, 2005, were detected to trace the source apportionment by factor analysis and enrichment factor methods. In Beijing, the source apportionment results derived from factor analysis model for PM10 were construction dust and soil sand dust (contributing rate of variance at 45.35%), industry dust, coal-combusted smoke and vehicle emissions (contributing rate at 31.83%), and biomass burning dust (13.57%). The main pollution element was Pb, while the content (median (minimum value-maximum value)was 0.216 (0.040-0.795) µg/m(3)) . As for PM2.5, the sources were construction dust and soil sand dust (38.86%), industry dust, coal-combusted smoke and vehicle emissions (25.73%), biomass burning dust (13.10%) and burning oil dust (11.92%). The main pollution element was Zn (0.365(0.126-0.808) µg/m(3)).In Urumqi, source apportionment results for PM10 were soil sand dust and coal-combusted dust(49.75%), industry dust, vehicle emissions and secondary particles dust (30.65%). The main characteristic pollution element was Cd (0.463(0.033-1.351) ng/m(3)). As for PM2.5, the sources were soil sand dust and coal-combusted dust (43.26%), secondary particles dust (22.29%), industry dust and vehicle emissions (20.50%). The main characteristic pollution element was As (14.599 (1.696-36.741) µg/m(3)).In Qingdao, source apportionment results for PM10 were construction dust (30.91%), vehicle emissions and industry dust (29.65%) and secondary particles dust (28.99%). The main characteristic pollution element was Pb (64.071 (5.846-346.831) µg/m(3)). As for PM2.5, the sources were

  11. Preliminary analysis of variability in concentration of fine particulate matter - PM1.0, PM2.5 and PM10 in area of Poznań city

    Directory of Open Access Journals (Sweden)

    Sówka Izabela

    2018-01-01

    Full Text Available It is commonly known, that suspended particulate matter pose a threat to human life and health, negatively influence the flora, climate and also materials. Especially dangerous is the presence of high concentration of particulate matter in the area of cities, where density of population is high. The research aimed at determining the variability of suspended particulate matter concentration (PM1.0, PM2.5 and PM10 in two different thermal seasons, in the area of Poznań city. As a part of carried out work we analyzed the variability of concentrations and also performed a preliminary analysis of their correlation. Measured concentrations of particulate matter were contained within following ranges: PM10 – 8.7-69.6 μg/m3, PM2.5 – 2.2-88.5 μg/m3, PM1.0 – 2.5-22.9 μg/m3 in the winter season and 1.0-42.8 μg/m3 (PM10, 1.2-40.3 μg/m3 (PM2.5 and 2.7-10.4 (PM1.0 in the summer season. Preliminary correlative analysis indicated interdependence between the temperature of air, the speed of wind and concentration of particulate matter in selected measurement points. The values of correlation coefficients between the air temperature, speed of wind and concentrations of particulate matter were respectively equal to: for PM10: -0.59 and -0.55 (Jana Pawła II Street, -0.53 and -0.53 (Szymanowskiego Street, for PM2.5: -0.60 and -0.53 (Jana Pawła II Street and for PM1.0 -0.40 and -0.59 (Jana Pawła II Street.

  12. Inflammation response and cytotoxic effects in human THP-1 cells of size-fractionated PM10 extracts in a polluted urban site.

    Science.gov (United States)

    Schilirò, T; Alessandria, L; Bonetta, S; Carraro, E; Gilli, G

    2016-02-01

    To contribute to a greater characterization of the airborne particulate matter's toxicity, size-fractionated PM10 was sampled during different seasons in a polluted urban site in Torino, a northern Italian city. Three main size fractions (PM10 - 3 μm; PM3 - 0.95 μm; PM THP-1 cells to evaluate their effects on cell proliferation, LDH activity, TNFα, IL-8 and CYP1A1 expression. The mean PM10 concentrations were statistically different in summer and in winter and the finest fraction PMtest) that could be used in the context of the different monitoring programs. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Association of PM2.5 pollution with the pattern of human activity: A case study of a developed city in eastern China.

    Science.gov (United States)

    Bao, Chengzhen; Chai, Pengfei; Lin, Hongbo; Zhang, Zhenyu; Ye, Zhenhua; Gu, Mengjia; Lu, Huaichu; Shen, Peng; Jin, Mingjuan; Wang, Jianbing; Chen, Kun

    2016-12-01

    Recently, air pollution has attracted a substantial amount of attention in China, which can be influenced by a variety of factors, but the association between air pollution and human activity is not quite clear. Based on real-time online data (January 1, 2014, to December 31, 2014) of air pollution and meteorology reported by official sites, and demographic, economic, and environmental reform data in a statistical yearbook, the influences of meteorological factors (temperature, relative humidity, precipitation intensity, and wind force) and human activities on PM 2.5 pollution were explored. After correlation analysis, logistic regression analysis, and a nonparametric test, weak negative correlations between temperature and PM 2.5 pollution were found. In most cases, festival and morning peak hours were protection and risk factors of PM 2.5 pollution, respectively. In addition, government actions, such as an afforestation project and increasing financial expenditure for energy saving and environmental protection, could greatly contribute to alleviating pollution of PM 2.5 . The findings could help officials formulate effective laws and regulations, and then PM 2.5 pollution related to the pattern of human activity would be ameliorated. Most of the time, festival and morning peak hours are protection and risk factors for PM 2.5 pollution, respectively. Increasing the percentage of afforestation area and financial expenditure for energy saving and environmental protection could significantly reduce PM 2.5 pollution. The findings can help officials formulate effective laws and regulations, and then PM 2.5 pollution related to the pattern of human activity, especially government action, will be ameliorated.

  14. Air pollution and sick-leaves. A case study using air pollution data from Oslo

    International Nuclear Information System (INIS)

    Hansen, A.C.; Selte, H.K.

    2000-01-01

    During the last decade an increasing amount of studies have investigated the relationship between air pollution and human health effects. In this study we investigate how these effects in turn induce reduced labour productivity in terms of sick-leaves, which is an important factor in assessment of air pollution costs in urban areas. For this purpose we employ a logit model along with data on sick-leaves from a large office in Oslo and different air pollutants. Our results indicate that sick-leaves are significantly associated with particulate matter (PM 1 0), while the associations with SO 2 and NO 2 are more ambiguous. We also try to estimate the induced social costs in terms of lost labour productivity and increased governmental expenditures, although these estimates are more uncertain. 17 refs

  15. Neurobehavioral effects of ambient air pollution on cognitive performance in US adults.

    Science.gov (United States)

    Chen, Jiu-Chiuan; Schwartz, Joel

    2009-03-01

    In vivo animal experiments demonstrate neurotoxicity of exposures to particulate matter (PM) and ozone, but only one small epidemiological study had linked ambient air pollution with central nervous system (CNS) functions in children. To examine the neurobehavioral effects associated with long-term exposure to ambient PM and ozone in adults. We conducted a secondary analysis of the Neurobehavioral Evaluation System-2 (NES2) data (including a simple reaction time test [SRTT] measuring motor response speed to a visual stimulus; a symbol-digit substitution test [SDST] for coding ability; and a serial-digit learning test [SDLT] for attention and short-term memory) from 1764 adult participants (aged 37.5+/-10.9 years) of the Third National Health and Nutrition Examination Survey in 1988-1991. Based on ambient PM(10) (PM with aerodynamic diameter SDLT, but not in SRTT. Each 10-ppb increase in annual ozone was associated with increased SDST and SDLT scores by 0.16 (95%CI: 0.01, 0.23) and 0.56 (95%CI: 0.07, 1.05), equivalent to 3.5 and 5.3 years of aging-related decline in cognitive performance. Our study provides the first epidemiological data supporting the adverse neurobehavioral effects of ambient air pollutants in adults.

  16. Modeling personal exposure to traffic related air pollutants

    NARCIS (Netherlands)

    Montagne, D.R.

    2015-01-01

    The first part of this thesis is about the VE3SPA project. Land use regression (LUR) models are often used to predict the outdoor air pollution at the home address of study participants, to study long-term effects of air pollution. While several studies have documented that PM2.5 mass measured at a

  17. Respiratory effects of commuters' exposure to air pollution in traffic.

    Science.gov (United States)

    Zuurbier, Moniek; Hoek, Gerard; Oldenwening, Marieke; Meliefste, Kees; van den Hazel, Peter; Brunekreef, Bert

    2011-03-01

    Much time is spent in traffic, especially during rush hours, when air pollution concentrations on roads are relatively high. Controlled exposure studies have shown acute respiratory effects of short, high exposures to air pollution from motor vehicles. Acute health effects of lower real-life exposures in traffic are unclear. Exposures of 34 healthy, nonsmoking adult volunteers were repeatedly measured while commuting for 2 hours by bus, car, or bicycle. Particle number (PN), particulate matter (PM2.5 and PM10), and soot exposures were measured. Lung function and airway resistance were measured directly before, directly following, and 6 hours after exposure. Exhaled nitric oxide (NO) was measured directly before and 6 hours after exposure. Inhaled doses were estimated based on monitored heart rates. Mixed models were used to analyze effects of exposure on changes in health parameters after exposure compared with before. PN, PM10, and soot were associated with decreased peak expiratory flow directly following but not 6 hours after exposure. PN doses were associated with decreases in maximum midexpiratory flow and forced expiratory flow (FEV1) 6 hours after exposure, whereas PN and soot exposures were associated with increased maximum midexpiratory flow and FEV1 directly after exposure. PN and soot were associated with increased exhaled NO after car and bus but not bicycle trips. PN was also associated with an increase in airway resistance directly following exposure but not 6 hours later. We found modest effects of 2-hour in-traffic exposure to air pollutants on peak flow, exhaled NO, and airway resistance.

  18. Multifaceted health impacts of Particulate Matter (PM and its management: An overview

    Directory of Open Access Journals (Sweden)

    Prabhat Kumar Rai

    2015-03-01

    Full Text Available Urban air quality is becoming a serious public health concern at global scale. Particulate matter (PM pollution is intimately linked with human health. Present review describes the different human health implications associated with PM pollution. PM may derive its origin from natural and anthropogenic sources. Vehicle derived pollutants as well as industrial emissions simultaneously release deleterious fine-grained PM into the atmosphere. Fine PM especially PM2.5 and PM10 are particularly deleterious to human health. Air pollution PM is an important environmental health risk factor for several respiratory and cardiovascular morbidity and mortality. Further, PM is inextricably linked with genotoxicity and mutations. Literature review of the cellular and molecular basis of adverse effects associated with PM is presented in this paper. Finally, management, existing technologies and policy options to reduce or mitigate the adverse health impacts of PM pollution is discussed as an eco-sustainable approach.

  19. Study on the Association between Ambient Air Pollution and Daily Cardiovascular and Respiratory Mortality in an Urban District of Beijing

    Directory of Open Access Journals (Sweden)

    Thomas Krafft

    2011-06-01

    Full Text Available The association between daily cardiovascular/respiratory mortality and air pollution in an urban district of Beijing was investigated over a 6-year period (January 2003 to December 2008. The purpose of this study was to evaluate the relative importance of the major air pollutants [particulate matter (PM, SO2, NO2] as predictors of daily cardiovascular/respiratory mortality. The time-series studied comprises years with lower level interventions to control air pollution (2003–2006 and years with high level interventions in preparation for and during the Olympics/Paralympics (2007–2008. Concentrations of PM10, SO2, and NO2, were measured daily during the study period. A generalized additive model was used to evaluate daily numbers of cardiovascular/ respiratory deaths in relation to each air pollutant, controlling for time trends and meteorological influences such as temperature and relative humidity. The results show that the daily cardiovascular/respiratory death rates were significantly associated with the concentration air pollutants, especially deaths related to cardiovascular disease. The current day effects of PM10 and NO2 were higher than that of single lags (distributed lags and moving average lags for respiratory disease mortality. The largest RR of SO2 for respiratory disease mortality was in Lag02. For cardiovascular disease mortality, the largest RR was in Lag01 for PM10, and in current day (Lag0 for SO2 and NO2. NO2 was associated with the largest RRs for deaths from both cardiovascular disease and respiratory disease.

  20. Relative roles of emissions and meteorology in the diurnal pattern of urban PM10: analysis of the daylight saving time effect.

    Science.gov (United States)

    Muñoz, Ricardo C

    2012-06-01

    Daylight saving time (DST) is a common practice in many countries, in which Official Time (OT) is abruptly shifted 1 hour with respect to solar time on two occasions every year (in fall and spring). All anthropogenic emitting processes tied to OT like job and school commuting traffic, abruptly change in this moment their timing with respect to solar time, inducing a sudden shift between emissions and the meteorological factors that control the dispersion and transport of air pollutants. Analyzing 13 years of hourly particulate matter (PM10) concentrations measured in Santiago, Chile, we demonstrate that the DST practice has observable non-trivial effects in the PM10 diurnal cycle. The clearest impact is in the morning peak of PM10 during the fall DST change, which occurs later and has on average a significant smaller magnitude in the days after the DST change as compared to the days before it. This decrease in magnitude is most remarkable because it occurs in a period of the year when overall PM10 concentrations increase due to generally worsening of the dispersion conditions. Results are shown for seven monitoring stations around the city, and for the fall and spring DST changes. They show clearly the interplay of emissions and meteorology in conditioning urban air pollution problems, highlighting the role of the morning and evening transitions of the atmospheric boundary layer in shaping the diurnal pattern of urban air pollutant concentrations.

  1. Air pollution and lung function among susceptible adult subjects: a panel study

    Directory of Open Access Journals (Sweden)

    Marconi Achille

    2006-05-01

    Full Text Available Abstract Background Adverse health effects at relatively low levels of ambient air pollution have consistently been reported in the last years. We conducted a time-series panel study of subjects with chronic obstructive pulmonary disease (COPD, asthma, and ischemic heart disease (IHD to evaluate whether daily levels of air pollutants have a measurable impact on the lung function of adult subjects with pre-existing lung or heart diseases. Methods Twenty-nine patients with COPD, asthma, or IHD underwent repeated lung function tests by supervised spirometry in two one-month surveys. Daily samples of coarse (PM10–2.5 and fine (PM2.5 particulate matter were collected by means of dichotomous samplers, and the dust was gravimetrically analyzed. The particulate content of selected metals (cadmium, chrome, iron, nickel, lead, platinum, vanadium, and zinc was determined by atomic absorption spectrometry. Ambient concentrations of nitrogen dioxide (NO2, carbon monoxide (CO, ozone (O3, and sulphur dioxide (SO2 were obtained from the regional air-quality monitoring network. The relationships between concentrations of air pollutants and lung function parameters were analyzed by generalized estimating equations (GEE for panel data. Results Decrements in lung function indices (FVC and/or FEV1 associated with increasing concentrations of PM2.5, NO2 and some metals (especially zinc and iron were observed in COPD cases. Among the asthmatics, NO2 was associated with a decrease in FEV1. No association between average ambient concentrations of any air pollutant and lung function was observed among IHD cases. Conclusion This study suggests that the short-term negative impact of exposure to air pollutants on respiratory volume and flow is limited to individuals with already impaired respiratory function. The fine fraction of ambient PM seems responsible for the observed effects among COPD cases, with zinc and iron having a potential role via oxidative stress. The

  2. Effect of public transport strikes on air pollution levels in Barcelona (Spain).

    Science.gov (United States)

    Basagaña, Xavier; Triguero-Mas, Margarita; Agis, David; Pérez, Noemí; Reche, Cristina; Alastuey, Andrés; Querol, Xavier

    2018-01-01

    Public transport strikes can lead to an increase of the number of private vehicle trips, which in turn can increase air pollution levels. We aimed to estimate the change in air pollution concentrations during public transport strikes in the city of Barcelona (Spain). Data on strikes of the metro, train or bus systems were collected from government records (2005-2016). We collected daily concentrations of NOx; particulate matter with an aerodynamic diameter smaller than 10μm (PM10), 2.5μm (PM2.5), and 1μm (PM1); particle number concentration (N); black carbon (BC) and CO from research and official monitoring stations. We fitted linear regression models for each pollutant with the strike indicator as an independent variable, and models were adjusted for day of the week, month, year, and holiday periods. During the study period, there were 208days affected by a strike of the metro (28), train (106) or bus (91) systems. Half of the strikes were partial, most of them were single-day strikes, there was little overlap between strikes of the different transport systems, and all strikes had to comply with mandatory minimal services. When pooling all types of strikes, NOx and BC showed higher levels during strike days in comparison with non-strike days (increase between 4.1% and 7.7%, with higher increases for NO). The increases in these concentrations were more evident during full day and multiday metro strikes. In conclusion, alterations in public transport have consequences on air quality. This highlights the importance of public transport in reducing air pollution concentrations in cities. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Activation of different pathways of apoptosis by air pollution particulate matter (PM2.5) in human epithelial lung cells (L132) in culture

    International Nuclear Information System (INIS)

    Dagher, Zeina; Garcon, Guillaume; Billet, Sylvain; Gosset, Pierre; Ledoux, Frederic; Courcot, Dominique; Aboukais, Antoine; Shirali, Pirouz

    2006-01-01

    Epidemiological studies have associated the increase of respiratory and cardiovascular mortality and morbidity with high levels of air pollution particulate matter (PM). However, the underlying mechanisms of actions by which PM induce adverse health effects are still unclear. We have recently undertaken an extensive investigation of the adverse health effects of air pollution PM 2.5 , and shown that in vitro short-term exposure to PM 2.5 induced oxidative stress and inflammation in human lung epithelial cells (L132). Hence, it was convenient to complete the physical and chemical characterization of PM and to investigate whether in vitro short-term exposure to PM could be imply in the activation of apoptosis. Accordingly, we found that 92.15% of PM were equal or smaller than 2.5 μm and their specific surface area was 1 m 2 /g. Inorganic (i.e. Fe, Al, Ca, Na, K, Mg, Pb, etc.) and organic (i.e. polycyclic aromatic hydrocarbons) chemicals were found in PM, suggesting that much of them derived from wind-borne dust from the industrial complex and the heavy motor vehicle traffic. In other respects, we showed that PM exposure induced apoptosis by activating not only the tumor necrosis factor-alpha (TNF-α)-induced pathway (i.e. TNF-α secretion, caspase-8 and -3 activation), but also the mitochondrial pathway (i.e. 8-hydroxy-2'-desoxyguanosine formation, cytochrome c release from mitochondria, caspase-9 and -3 activation). Moreover, changes in the transcription rates of p53, bcl-2, and bax genes, on the one hand, and DNA fragmentation, on the other hand, were reported in PM-exposed proliferating L132 cells, revealing the occurrence of apoptotic events. Taken together, these findings suggested that in vitro short-term exposure to PM 2.5 induced apoptosis in L132 cells

  4. Status of selected air pollution control programs, February 1992

    International Nuclear Information System (INIS)

    1992-02-01

    The collection of status reports has been prepared in order to provide a timely summary of selected EPA air pollution control activities to those individuals who are involved with the implementation of these programs. The report contains ozone/carbon monoxide (CO) programs; mobile sources programs; particulate matter nominally 10M and less (PM-10), sulfur dioxide (SO2) and lead programs; New Source Review (NSR); economics programs; emission standards programs; Indian activity programs; mobile sources programs; air toxics programs; acid rain programs; permits programs; chlorofluorocarbons programs; enforcement programs; and other programs

  5. Short-term effects of ambient air pollution on pediatric outpatient visits for respiratory diseases in Yichang city, China.

    Science.gov (United States)

    Liu, Yuewei; Xie, Shuguang; Yu, Qing; Huo, Xixiang; Ming, Xiaoyan; Wang, Jing; Zhou, Yun; Peng, Zhe; Zhang, Hai; Cui, Xiuqing; Xiang, Hua; Huang, Xiji; Zhou, Ting; Chen, Weihong; Shi, Tingming

    2017-08-01

    Previous studies have suggested that short-term exposure to ambient air pollution was associated with pediatric hospital admissions and emergency room visits for certain respiratory diseases; however, there is limited evidence on the association between short-term air pollution exposure and pediatric outpatient visits. Our aim was to quantitatively assess the short-term effects of ambient air pollution on pediatric outpatient visits for respiratory diseases. We conducted a time-series study in Yichang city, China between Jan 1, 2014 and Dec 31, 2015. Daily counts of pediatric respiratory outpatient visits were collected from 3 large hospitals, and then linked with air pollution data from 5 air quality monitoring stations by date. We used generalized additive Poisson models to conduct linear and nonlinear exposure-response analyses between air pollutant exposures and pediatric respiratory outpatient visits, adjusting for seasonality, day of week, public holiday, temperature, and relative humidity. Each interquartile range (IQR) increase in PM 2.5 (lag 0), PM 10 (lag 0), NO 2 (lag 0), CO (lag 0), and O 3 (lag 4) concentrations was significantly associated with a 1.91% (95% CI: 0.60%, 3.23%), 2.46% (1.09%, 3.85%), 1.88% (0.49%, 3.29%), 2.00% (0.43%, 3.59%), and 1.91% (0.45%, 3.39%) increase of pediatric respiratory outpatient visits, respectively. Similarly, the nonlinear exposure-response analyses showed monotonic increases of pediatric respiratory outpatient visits by increasing air pollutant exposures, though the associations for NO 2 and CO attenuated at higher concentrations. These associations were unlikely modified by season. We did not observe significant association for SO 2 exposure. Our results suggest that short-term exposures to PM 2.5 , PM 10 , NO 2 , CO, and O 3 may account for increased risk of pediatric outpatient visits for respiratory diseases, and emphasize the needs for reduction of air pollutant exposures for children. Copyright © 2017

  6. Effect of Air Pollution on Menstrual Cycle Length-A Prognostic Factor of Women's Reproductive Health.

    Science.gov (United States)

    Merklinger-Gruchala, Anna; Jasienska, Grazyna; Kapiszewska, Maria

    2017-07-20

    Air pollution can influence women's reproductive health, specifically menstrual cycle characteristics, oocyte quality, and risk of miscarriage. The aim of the study was to assess whether air pollution can affect the length of the overall menstrual cycle and the length of its phases (follicular and luteal). Municipal ecological monitoring data was used to assess the air pollution exposure during the monitored menstrual cycle of each of 133 woman of reproductive age. Principal component analyses were used to group pollutants (PM 10 , SO₂, CO, and NO x ) to represent a source-related mixture. PM 10 and SO₂ assessed separately negatively affected the length of the luteal phase after standardization (b = -0.02; p = 0.03; b = -0.06; p = 0.02, respectively). Representing a fossil fuel combustion emission, they were also associated with luteal phase shortening (b = -0.32; p = 0.02). These pollutants did not affect the follicular phase length and overall cycle length, neither in single- nor in multi-pollutant models. CO and NO x assessed either separately or together as a traffic emission were not associated with overall cycle length or the length of cycle phases. Luteal phase shortening, a possible manifestation of luteal phase deficiency, can result from fossil fuel combustion. This suggests that air pollution may contribute to fertility problems in women.

  7. The effects of air pollutants on the mortality rate of lung cancer and leukemia.

    Science.gov (United States)

    Dehghani, Mansooreh; Keshtgar, Laila; Javaheri, Mohammad Reza; Derakhshan, Zahra; Oliveri Conti, Gea; Zuccarello, Pietro; Ferrante, Margherita

    2017-05-01

    World Health Organization classifies air pollution as the first cause of human cancer. The present study investigated impact of air pollutants on the mortality rates of lung cancer and leukemia in Shiraz, one of the largests cities of Iran. This cross‑sectional (longitudinal) study was carried out in Shiraz. Data on six main pollutants, CO, SO2, O3, NO2, PM10 and PM2.5, were collected from Fars Environmental Protection Agency for 3,001 days starting from 1 January, 2005. Also, measures of climatic factors (temperature, humidity, and air pressure) were obtained from Shiraz Meteorological Organization. Finally, data related to number of deaths due to lung and blood cancers (leukemia) were gathered from Shiraz University Hospital. Relationship between variations of pollutant concentrations and cancers in lung and blood was investigated using statistical software R and MiniTab to perform time series analysis. Results of the present study revealed that the mortality rate of leukemia had a direct significant correlation with concentrations of nitrogen dioxide and carbon monoxide in the air (Pcar sharing.

  8. How the Guangzhou Government Can Curtail Air Pollution from Road Traffic in a Least Costly Manner

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Xu

    1998-12-01

    This thesis explores the relationship between the increased motorized traffic and air pollution in urban Guangzhou, the prosperous capital of the Guangdong Province in southern China that is located in the vicinity of Hong Kong and Macao. The emphasis is placed on PM 10 pollutants (particles of less than 10 microns in size). It reviews the current status of ambient air quality, the harmful effects of PM 10 emissions on human health and how to reduce the problem. It is estimated that 3300 premature deaths per year could be avoided if Guangzhou met the Class II of the Chinese National Ambient Air Quality Standard for PM 10, and the Guangzhou Government could save 10% of its GDP in 1994. A theoretical framework for reducing pollution problems is presented based on cost-effectiveness theory. There is also an overview of possible pollution reducing measures based on worldwide experience. The theoretical framework is applied to a case study of selected measures: (1) reduced sulfur content of diesel fuel, (2) creating bus lanes, (3) fuel taxation, (4) introduction of toll roads, (5) measures on the metro line. The bus lane measure is found to be the most cost-effective one, followed by the toll road and fuel taxation measures. The metro measure is the most expensive one. Finally, the report recommends to the Guangzhou Government what measures should have first priority according to cost-effectiveness. 23 refs., 14 figs., 21 tabs.

  9. Measurement of Air Pollution Comes from Adra Cement Factory

    International Nuclear Information System (INIS)

    Odat, M.; Meslmani, Y.; Al-Kharfan, K.; Shamali, K.

    2013-06-01

    Measurements of air pollution were carried out in and around Adra cement factory during a single period (December). The Measurements included the following: 1- Dust fall. 2- Total suspended particulates (TSP) and inhalable particulates PM-1-0 & PM-3 inside the factor and in residential area surrounded the factory (Worker City of Adra, Adra city, Wafeden Mokheam, Baironi Hospital and Alkatiefa City). 3-Determination the levels of Cd, Pb, Cu and zinc associated with air born. 4- Determination of toxic gases (CO, SO-2 and NO-x) emitted from the chimneys. The results showed that the quantity of dust fall was varied obviously inside the factory and the regions affected by air pollutions. The monthly concentration of dust fall were 165, 27 and 10 tons/Km 2 /month inside the factory , affected villages and Baironi Hospital respectively, Wherein the permissible limit is (9tons/Km'2/month). The total suspended particulates (TSP) and inhalable particulates PM-1-0 & PM-3 in the studies area were higher than the permissible limit. The TSP concentrations inside the factory ranged between 497 and 2021 microgram/m'3 while the ranged between 328 and 561 microgram /m'3 in the surrounded villages and between 232 and 244 microgram/m'3 near Damascus, the were far higher than the world health organization (WHO) standards (120 Microgram/m'3). The PM-3 which is the most effecting on the human health reached 117.6, 124.6 and 62.6 microgram /m 3 inside the factory (main in trance), city worker of Adra and Baironi Hospital respectively, theses concentrations were higher than the Syrian standards (15 microgram/m'3) The measurements which were carried out through an exclusive day refered that the percentage of TSP/PM-3 is increasedwith moving away from the factory and reached 6.8, 18.6, 19.3% in the main intrance of the factory, worker city of Adra and Bironi Hospital respectively. The level of toxic gases inside the source (chimneys) was within the standards

  10. Modelación de episodios críticos de contaminación por material particulado (PM10 en Santiago de Chile: Comparación de la eficiencia predictiva de los modelos paramétricos y no paramétricos Modeling critical episodes of air pollution by PM10 in Santiago, Chile: Comparison of the predictive efficiency of parametric and non-parametric statistical models

    Directory of Open Access Journals (Sweden)

    Sergio A. Alvarado

    2010-12-01

    Full Text Available Objetivo: Evaluar la eficiencia predictiva de modelos estadísticos paramétricos y no paramétricos para predecir episodios críticos de contaminación por material particulado PM10 del día siguiente, que superen en Santiago de Chile la norma de calidad diaria. Una predicción adecuada de tales episodios permite a la autoridad decretar medidas restrictivas que aminoren la gravedad del episodio, y consecuentemente proteger la salud de la comunidad. Método: Se trabajó con las concentraciones de material particulado PM10 registradas en una estación asociada a la red de monitorización de la calidad del aire MACAM-2, considerando 152 observaciones diarias de 14 variables, y con información meteorológica registrada durante los años 2001 a 2004. Se ajustaron modelos estadísticos paramétricos Gamma usando el paquete estadístico STATA v11, y no paramétricos usando una demo del software estadístico MARS v 2.0 distribuida por Salford-Systems. Resultados: Ambos métodos de modelación presentan una alta correlación entre los valores observados y los predichos. Los modelos Gamma presentan mejores aciertos que MARS para las concentraciones de PM10 con valores Objective: To evaluate the predictive efficiency of two statistical models (one parametric and the other non-parametric to predict critical episodes of air pollution exceeding daily air quality standards in Santiago, Chile by using the next day PM10 maximum 24h value. Accurate prediction of such episodes would allow restrictive measures to be applied by health authorities to reduce their seriousness and protect the community´s health. Methods: We used the PM10 concentrations registered by a station of the Air Quality Monitoring Network (152 daily observations of 14 variables and meteorological information gathered from 2001 to 2004. To construct predictive models, we fitted a parametric Gamma model using STATA v11 software and a non-parametric MARS model by using a demo version of Salford

  11. The impacts of CO2 capture on transboundary air pollution in the Netherlands

    NARCIS (Netherlands)

    Koornneef, J.M.; van Harmelen, T.; van Horssen, A.; van Gijlswijk, R.; Ramirez-Ramirez, A.; Faaij, A.P.C.; Turkenburg, W.C.

    2009-01-01

    The focus of this research is to develop a first assessment of the impacts of the implementation of CO2 capture technologies in the Dutch power sector on the transboundary air pollution (SO2,NOX,NH3,NMV OC,PM10 and PM2.5) levels in 2020. Results show that for the power sector SO2 emissions will be

  12. Preconception and early pregnancy air pollution exposures and risk of gestational diabetes mellitus

    International Nuclear Information System (INIS)

    Robledo, Candace A.; Mendola, Pauline; Yeung, Edwina; Männistö, Tuija; Sundaram, Rajeshwari; Liu, Danping; Ying, Qi; Sherman, Seth; Grantz, Katherine L.

    2015-01-01

    Background: Air pollution has been linked to gestational diabetes mellitus (GDM) but no studies have evaluated impact of preconception and early pregnancy air pollution exposures on GDM risk. Methods: Electronic medical records provided data on 219,952 singleton deliveries to mothers with (n=11,334) and without GDM (n=208,618). Average maternal exposures to particulate matter (PM) ≤ 2.5 μm (PM 2.5 ) and PM 2.5 constituents, PM10 μm (PM 10 ), nitrogen oxides (NO x ), carbon monoxide, sulfur dioxide (SO 2 ) and ozone (O 3 ) were estimated for the 3-month preconception window, first trimester, and gestational weeks 1–24 based on modified Community Multiscale Air Quality models for delivery hospital referral regions. Binary regression models with robust standard errors estimated relative risks (RR) for GDM per interquartile range (IQR) increase in pollutant concentrations adjusted for study site, maternal age and race/ethnicity. Results: Preconception maternal exposure to NO X (RR=1.09, 95% CI: 1.04, 1.13) and SO 2 (RR=1.05, 1.01, 1.09) were associated with increased risk of subsequent GDM and risk estimates remained elevated for first trimester exposure. Preconception O 3 was associated with lower risk of subsequent GDM (RR=0.93, 0.90, 0.96) but risks increased later in pregnancy. Conclusion: Maternal exposures to NO x and SO 2 preconception and during the first few weeks of pregnancy were associated with increased GDM risk. O 3 appeared to increase GDM risk in association with mid-pregnancy exposure but not in earlier time windows. These common exposures merit further investigation. - Highlights: • Air pollution may be related to gestational diabetes (GDM). • No prior studies have examined preconception exposure. • Maternal exposure to NO x and SO 2 before conception increased subsequent GDM risk. • NO x and SO 2 exposure in the first seven weeks of pregnancy also increased GDM risk. • Early exposure to O 3 reduced GDM risk but risk increased

  13. Air Pollution and Ischemic Stroke Among Young Adults.

    Science.gov (United States)

    Yitshak Sade, Maayan; Novack, Victor; Ifergane, Gal; Horev, Anat; Kloog, Itai

    2015-12-01

    Studies have demonstrated consistent associations between cardiovascular illness and particulate matter (PM) stroke received less attention. We hypothesized that air pollution, an inflammation progenitor, can be associated with stroke incidence in young patients in whom the usual risk factors for stroke are less prevalent. We aimed to evaluate the association between stroke incidence and exposure to PM stroke between 2005 and 2012. Exposure assessment was based on a hybrid model incorporating daily satellite remote sensing data at 1-km spatial resolution. We performed case-crossover analysis, stratified by personal characteristics and distance from main roads. We identified 4837 stroke cases (89.4% ischemic stroke). Interquartile range of PM ischemic stroke and increases of interquartile range average concentrations of particulate matter ischemic stroke associated with PM among young adults. This finding can be explained by the inflammatory mechanism, linking air pollution and stroke. © 2015 American Heart Association, Inc.

  14. Dispersion of atmospheric air pollution in summer and winter season.

    Science.gov (United States)

    Cichowicz, Robert; Wielgosiński, Grzegorz; Fetter, Wojciech

    2017-11-04

    Seasonal variation of air pollution is associated with variety of seasons and specificity of particular months which form the so-called summer and winter season also known as the "heating" season. The occurrence of higher values of air pollution in different months of a year is associated with the type of climate, and accordingly with different atmospheric conditions in particular months, changing state of weather on a given day, and anthropogenic activity. The appearance of these conditions results in different levels of air pollution characteristic for a given period. The study uses data collected during a seven-year period (2009-2015) in the automatic measuring station of immissions located in Eastern Wielkopolska. The analysis concerns the average and maximum values of air pollution (i.e., particulate matter PM10, sulfur dioxide, nitrogen dioxide, carbon monoxide, and ozone) from the perspective of their occurrence in particular seasons and months or in relation to meteorological actors such as temperature, humidity, and wind speed.

  15. Effect of long-term exposure to air pollution on anxiety and depression in adults: A cross-sectional study.

    Science.gov (United States)

    Vert, Cristina; Sánchez-Benavides, Gonzalo; Martínez, David; Gotsens, Xavier; Gramunt, Nina; Cirach, Marta; Molinuevo, José Luis; Sunyer, Jordi; Nieuwenhuijsen, Mark J; Crous-Bou, Marta; Gascon, Mireia

    2017-08-01

    The association between exposure to air pollutants and mental disorders among adults has been suggested, although results are not consistent. To analyze the association between long-term exposure to air pollution and history of anxiety and depression disorders and of medication use (benzodiazepines and antidepressants) in adults living in Barcelona. A total of 958 adults (45-74 years old) residents in Barcelona, most of them having at least one of their parents diagnosed with dementia (86%), and participating in the ALFA (Alzheimer and Families) study, were included. We used Land Use Regression (LUR) models to estimate long-term residential exposure (period 2009-2014) to PM 2.5 , PM 2.5 absorbance (PM 2.5 abs), PM 10 , PM coarse, NO 2 and NO x . Between 2013 and 2014 participants self-reported their history of anxiety and depression disorders and related medication use. The analysis was focused on those participants reporting outcome occurrence from 2009 onwards (until 2014). We observed an increased odds of history of depression disorders with increasing concentrations of all air pollutants [e.g. an increased odds of depression of 2.00 (95% CI; 1.37, 2.93) for each 10μg/m 3 NO 2 increase]. Such associations were consistent with an increased odds of medication use in relation to higher concentrations of air pollutants [e.g. an increased odds of antidepressants use of 1.23 (1.04, 1.44) for each 20μg/m 3 NO x increase]. Associations regarding anxiety disorders did not reach statistical significance. Our study shows that increasing long-term exposure to air pollution may increase the odds of depression and the use of antidepressants and benzodiazepines. Further studies are needed to replicate our results and confirm this association. Copyright © 2017 Elsevier GmbH. All rights reserved.

  16. A critical review of the ESCAPE project for estimating long-term health effects of air pollution.

    Science.gov (United States)

    Lipfert, Frederick W

    2017-02-01

    The European Study of Cohorts for Air Pollution Effects (ESCAPE) is a13-nation study of long-term health effects of air pollution based on subjects pooled from up to 22 cohorts that were intended for other purposes. Twenty-five papers have been published on associations of various health endpoints with long-term exposures to NOx, NO2, traffic indicators, PM10, PM2.5 and PM constituents including absorbance (elemental carbon). Seven additional ESCAPE papers found moderate correlations (R2=0.3-0.8) between measured air quality and estimates based on land-use regression that were used; personal exposures were not considered. I found no project summaries or comparisons across papers; here I conflate the 25 ESCAPE findings in the context of other recent European epidemiology studies. Because one ESCAPE cohort contributed about half of the subjects, I consider it and the other 18 cohorts separately to compare their contributions to the combined risk estimates. I emphasize PM2.5 and confirm the published hazard ratio of 1.14 (1.04-1.26) per 10μg/m3 for all-cause mortality. The ESCAPE papers found 16 statistically significant (p<0.05) risks among the125 pollutant-endpoint combinations; 4 each for PM2.5 and PM10, 1 for PM absorbance, 5 for NO2, and 2 for traffic. No PM constituent was consistently significant. No significant associations were reported for cardiovascular mortality; low birthrate was significant for all pollutants except PM absorbance. Based on associations with PM2.5, I find large differences between all-cause death estimates and the sum of specific-cause death estimates. Scatterplots of PM2.5 mortality risks by cause show no consistency across the 18 cohorts, ostensibly because of the relatively few subjects. Overall, I find the ESCAPE project inconclusive and I question whether the efforts required to estimate exposures for small cohorts were worthwhile. I suggest that detailed studies of the large cohort using historical exposures and additional

  17. Relationship between air pollutants and economic development of the provincial capital cities in China during the past decade.

    Directory of Open Access Journals (Sweden)

    Yunpeng Luo

    Full Text Available With the economic development of China, air pollutants are also growing rapidly in recent decades, especially in big cities of the country. To understand the relationship between economic condition and air pollutants in big cities, we analysed the socioeconomic indictors such as Gross Regional Product per capita (GRP per capita, the concentration of air pollutants (PM10, SO2, NO2 and the air pollution index (API from 2003 to 2012 in 31 provincial capitals of mainland China. The three main industries had a quadratic correlation with NO2, but a negative relationship with PM10 and SO2. The concentration of air pollutants per ten thousand yuan decreased with the multiplying of GRP in the provincial cities. The concentration of air pollutants and API in the provincial capital cities showed a declining trend or inverted-U trend with the rise of GRP per capita, which provided a strong evidence for the Environmental Kuznets Curve (EKC, that the environmental quality first declines, then improves, with the income growth. The results of this research improved our understanding of the alteration of atmospheric quality with the increase of social economy and demonstrated the feasibility of sustainable development for China.

  18. The association of air pollution and greenness with mortality and life expectancy in Spain: A small-area study.

    Science.gov (United States)

    de Keijzer, Carmen; Agis, David; Ambrós, Albert; Arévalo, Gustavo; Baldasano, Jose M; Bande, Stefano; Barrera-Gómez, Jose; Benach, Joan; Cirach, Marta; Dadvand, Payam; Ghigo, Stefania; Martinez-Solanas, Èrica; Nieuwenhuijsen, Mark; Cadum, Ennio; Basagaña, Xavier

    2017-02-01

    Air pollution exposure has been associated with an increase in mortality rates, but few studies have focused on life expectancy, and most studies had restricted spatial coverage. A limited body of evidence is also suggestive for a beneficial association between residential exposure to greenness and mortality, but the evidence for such an association with life expectancy is still very scarce. To investigate the association of exposure to air pollution and greenness with mortality and life expectancy in Spain. Mortality data from 2148 small areas (average population of 20,750 inhabitants, and median population of 7672 inhabitants) covering Spain for years 2009-2013 were obtained. Average annual levels of PM 10 , PM 2.5 , NO 2 and O 3 were derived from an air quality forecasting system at 4×4km resolution. The normalized difference vegetation index (NDVI) was used to assess greenness in each small area. Air pollution and greenness were linked to standardized mortality rates (SMRs) using Poisson regression and to life expectancy using linear regression. The models were adjusted for socioeconomic status and lung cancer mortality rates (as a proxy for smoking), and accounted for spatial autocorrelation. The increase of 5μg/m 3 in PM 10 , NO 2 and O 3 or of 2μg/m 3 in PM 2.5 concentration resulted in a loss of life in years of 0.90 (95% credibility interval CI: 0.83, 0.98), 0.13 (95% CI: 0.09, 0.17), 0.20years (95% CI: 0.16, 0.24) and 0.64 (0.59, 0.70), respectively. Similar associations were found in the SMR analysis, with stronger associations for PM 2.5 and PM 10 , which were associated with an increased mortality risk of 3.7% (95% CI: 3.5%, 4.0%) and 5.7% (95% CI: 5.4%, 6.1%). For greenness, a protective effect on mortality and longer life expectancy was only found in areas with lower socioeconomic status. Air pollution concentrations were associated to important reductions in life expectancy. The reduction of air pollution should be a priority for public health

  19. An environmental, economical and socio-political analysis of a variety of urban air-pollution reduction policies for primary PM10 and NOx: The case study of the Province of Milan (Northern Italy)

    International Nuclear Information System (INIS)

    Chiesa, M.; Perrone, M.G.; Cusumano, N.; Ferrero, L.; Sangiorgi, G.; Bolzacchini, E.; Lorenzoni, A.; Ballarin Denti, A.

    2014-01-01

    Highlights: • PM10 and NO x emission reduction by different policies have been estimated. • Various actions have been considered, in the transport and residential sectors. • Environmental, economic and socio-political data were jointly evaluated. • Results are reported for the case study of the Province of Milan (Northern Italy). • Bike use fostering best matches cost–benefit results and socio-political acceptance. - Abstract: In the frame of urban air-pollution reduction policies, economic costs and environmental benefits of a variety of actions have been quantitatively assessed for the Province of Milan (Northern Italy), focusing on PM10 and NO x emission sources. Short-to-mid-term interventions that have been taken into consideration include reduction of inner temperature in residential buildings, banning of residential biomass heating systems, banning of diesel fuelled domestic boilers, night-time streets washing, speed limit reduction on highways, circulation restrictions of oldest EURO vehicles, conversion of diesel buses to natural gas, car sharing/biking promotion, DPF adoption in diesel vehicles, extension of road lanes for urban buses, energy efficiency refurbishment in residential buildings. Re*sults emerged from the cost–benefit analysis integrated with socio-political indicators obtained through direct surveys, will contribute, with an holistic and multidisciplinary approach, to drive the local administrators to implement the most suitable actions in one of the most polluted areas in west-Europe

  20. External costs of PM2.5 pollution in Beijing, China: Uncertainty analysis of multiple health impacts and costs

    International Nuclear Information System (INIS)

    Yin, Hao; Pizzol, Massimo; Xu, Linyu

    2017-01-01

    Some cities in China are facing serious air pollution problems including high concentrations of particles, SO 2 and NO x . Exposure to PM2.5, one of the primary air pollutants in many cities in China, is highly correlated with various adverse health impacts and ultimately represents a cost for society. The aim of this study is to assess health impacts and external costs related to PM2.5 pollution in Beijing, China with different baseline concentrations and valuation methods. The idea is to provide a reasonable estimate of the total health impacts and external cost due to PM2.5 pollution, as well as a quantification of the relevant uncertainty. PM2.5 concentrations were retrieved for the entire 2012 period in 16 districts of Beijing. The various PM2.5 related health impacts were identified and classified to avoid double counting. Exposure-response coefficients were then obtained from literature. Both the value of statistical life (VSL) and the amended human capital (AHC) approach were applied for external costs estimation, which could provide the upper and lower bound of the external costs due to PM2.5. To fully understand the uncertainty levels, the external cost distribution was determined via Monte Carlo simulation based on the uncertainty of the parameters such as PM2.5 concentration, exposure-response coefficients, and economic cost per case. The results showed that the external costs were equivalent to around 0.3% (AHC, China's guideline: C 0  = 35 μg/m 3 ) to 0.9% (VSL, WHO guideline: C 0  = 10 μg/m 3 ) of regional GDP depending on the valuation method and on the assumed baseline PM2.5 concentration (C 0 ). Among all the health impacts, the economic loss due to premature deaths accounted for more than 80% of the overall external costs. The results of this study could help policymakers prioritizing the PM2.5 pollution control interventions and internalize the external costs through the application of economic policy instruments. - Highlights:

  1. Residential proximity to major roads and term low birth weight: the roles of air pollution, heat, noise, and road-adjacent trees.

    Science.gov (United States)

    Dadvand, Payam; Ostro, Bart; Figueras, Francesc; Foraster, Maria; Basagaña, Xavier; Valentín, Antònia; Martinez, David; Beelen, Rob; Cirach, Marta; Hoek, Gerard; Jerrett, Michael; Brunekreef, Bert; Nieuwenhuijsen, Mark J

    2014-07-01

    Maternal residential proximity to roads has been associated with adverse pregnancy outcomes. However, there is no study investigating mediators or buffering effects of road-adjacent trees on this association. We investigated the association between mothers' residential proximity to major roads and term low birth weight (LBW), while exploring possible mediating roles of air pollution (PM(2.5), PM(2.5-10), PM(10), PM(2.5) absorbance, nitrogen dioxide, and nitrogen oxides), heat, and noise and buffering effect of road-adjacent trees on this association. This cohort study was based on 6438 singleton term births in Barcelona, Spain (2001-2005). Road proximity was measured as both continuous distance to and living within 200 m from a major road. We assessed individual exposures to air pollution, noise, and heat using, respectively, temporally adjusted land-use regression models, annual averages of 24-hour noise levels across 50 m and 250 m, and average of satellite-derived land-surface temperature in a 50-m buffer around each residential address. We used vegetation continuous fields to abstract tree coverage in a 200-m buffer around major roads. Living within 200 m of major roads was associated with a 46% increase in term LBW risk; an interquartile range increase in heat exposure with an 18% increase; and third-trimester exposure to PM(2.5), PM(2.5-10), and PM10 with 24%, 25%, and 26% increases, respectively. Air pollution and heat exposures together explained about one-third of the association between residential proximity to major roads and term LBW. Our observations on the buffering of this association by road-adjacent trees were not consistent between our 2 measures of proximity to major roads. An increased risk of term LBW associated with proximity to major roads was partly mediated by air pollution and heat exposures.

  2. Outdoor air pollution, exhaled 8-isoprostane and current asthma in adults: the EGEA study.

    Science.gov (United States)

    Havet, Anaïs; Zerimech, Farid; Sanchez, Margaux; Siroux, Valérie; Le Moual, Nicole; Brunekreef, Bert; Stempfelet, Morgane; Künzli, Nino; Jacquemin, Bénédicte; Matran, Régis; Nadif, Rachel

    2018-04-01

    Associations between outdoor air pollution and asthma in adults are still scarce, and the underlying biological mechanisms are poorly understood. Our aim was to study the associations between 1) long-term exposure to outdoor air pollution and current asthma, 2) exhaled 8-isoprostane (8-iso; a biomarker related to oxidative stress) and current asthma, and 3) outdoor air pollution and exhaled 8-iso.Cross-sectional analyses were conducted in 608 adults (39% with current asthma) from the first follow-up of the French case-control and family study on asthma (EGEA; the Epidemiological study of the Genetic and Environmental factors of Asthma). Data on nitrogen dioxide, nitrogen oxides, particulate matter with a diameter ≤10 and ≤2.5 µm (PM 10 and PM 2.5 ), road traffic, and ozone (O 3 ) were from ESCAPE (European Study of Cohorts for Air Pollution Effects) and IFEN (French Institute for the Environment) assessments. Models took account of city and familial dependence.The risk of current asthma increased with traffic intensity (adjusted (a)OR 1.09 (95% CI 1.00-1.18) per 5000 vehicles per day), with O 3 exposure (aOR 2.04 (95% CI 1.27-3.29) per 10 µg·m -3 ) and with exhaled 8-iso concentration (aOR 1.50 (95% CI 1.06-2.12) per 1 pg·mL -1 ). Among participants without asthma, exhaled 8-iso concentration increased with PM 2.5 exposure (adjusted (a)β 0.23 (95% CI 0.005-0.46) per 5 µg·m -3 ), and decreased with O 3 and O 3-summer exposures (aβ -0.20 (95% CI -0.39- -0.01) and aβ -0.52 (95% CI -0.77- -0.26) per 10 µg·m -3 , respectively).Our results add new insights into a potential role of oxidative stress in the associations between outdoor air pollution and asthma in adults. Copyright ©ERS 2018.

  3. Air pollution and children's asthma-related emergency hospital visits in southeastern France.

    Science.gov (United States)

    Mazenq, Julie; Dubus, Jean-Christophe; Gaudart, Jean; Charpin, Denis; Nougairede, Antoine; Viudes, Gilles; Noel, Guilhem

    2017-06-01

    Children's asthma is multifactorial. Environmental factors like air pollution exposure, meteorological conditions, allergens, and viral infections are strongly implicated. However, place of residence has rarely been investigated in connection with these factors. The primary aim of our study was to measure the impact of particulate matter (PM), assessed close to the children's homes, on asthma-related pediatric emergency hospital visits within the Bouches-du-Rhône area in 2013. In a nested case-control study on 3- to 18-year-old children, each control was randomly matched on the emergency room visit day, regardless of hospital. Each asthmatic child was compared to 15 controls. PM 10 and PM 2.5 , meteorological conditions, pollens, and viral data were linked to ZIP code and analyzed by purpose of emergency visit. A total of 68,897 visits were recorded in children, 1182 concerning asthma. Short-term exposure to PM 10 measured near children's homes was associated with excess risk of asthma emergency visits (adjusted odds ratio 1.02 (95% CI 1.01-1.04; p = 0.02)). Male gender, young age, and temperature were other risk factors. Conversely, wind speed was a protective factor. PM 10 and certain meteorological conditions near children's homes increased the risk of emergency asthma-related hospital visits in 3- to 18-year-old children in Bouches-du-Rhône. What is Known: • A relationship between short-term exposure to air pollution and increase in emergency room visits or hospital admissions as a result of increased pollution levels has already been demonstrated. What is New: • This study confirms these results but took into account confounding factors (viral data, pollens, and meteorological conditions) and is based on estimated pollution levels assessed close to the children's homes, rather than those recorded at the hospital. • The study area, the Mediterranean, is favorable to creation of secondary pollutants in these sunny and dry seasons.

  4. The Association between Air Pollution and Population Health Risk for Respiratory Infection: A Case Study of Shenzhen, China.

    Science.gov (United States)

    Xia, Xiaolin; Zhang, An; Liang, Shi; Qi, Qingwen; Jiang, Lili; Ye, Yanjun

    2017-08-23

    Nowadays, most of the research on air pollution and its adverse effects on public health in China has focused on megacities and heavily-polluted regions. Fewer studies have focused on cities that are slightly polluted. Shenzhen used to have a favorable air environment, but its air quality has deteriorated gradually as a result of development in recent years. So far, no systematic investigations have been conducted on the adverse effects of air pollution on public health in Shenzhen. This research has applied a time series analysis model to study the possible association between different types of air pollution and respiratory hospital admission in Shenzhen in 2013. Respiratory hospital admission was divided into two categories for comparison analysis among various population groups: acute upper respiratory infection and acute lower respiratory infection. The results showed that short-term exposure to ambient air pollution was significantly associated with acute respiratory infection hospital admission in Shenzhen in 2013. Children under 14 years old were the main susceptible population of acute respiratory infection due to air pollution. PM 10 , PM 2.5 and NO₂ were the primary air pollutants threatening respiratory health in Shenzhen. Though air pollution level is generally relatively low in Shenzhen, it will benefit public health to control the pollution of particulate matter as well as other gaseous pollutants.

  5. Commuters’ Exposure to Particulate Matter Air Pollution Is Affected by Mode of Transport, Fuel Type, and Route

    Science.gov (United States)

    Zuurbier, Moniek; Hoek, Gerard; Oldenwening, Marieke; Lenters, Virissa; Meliefste, Kees; van den Hazel, Peter; Brunekreef, Bert

    2010-01-01

    Background Commuters are exposed to high concentrations of air pollutants, but little quantitative information is currently available on differences in exposure between different modes of transport, routes, and fuel types. Objectives The aim of our study was to assess differences in commuters’ exposure to traffic-related air pollution related to transport mode, route, and fuel type. Methods We measured particle number counts (PNCs) and concentrations of PM2.5 (particulate matter ≤ 2.5 μm in aerodynamic diameter), PM10, and soot between June 2007 and June 2008 on 47 weekdays, from 0800 to 1000 hours, in diesel and electric buses, gasoline- and diesel-fueled cars, and along two bicycle routes with different traffic intensities in Arnhem, the Netherlands. In addition, each-day measurements were taken at an urban background location. Results We found that median PNC exposures were highest in diesel buses (38,500 particles/cm3) and for cyclists along the high-traffic intensity route (46,600 particles/cm3) and lowest in electric buses (29,200 particles/cm3). Median PM10 exposure was highest from diesel buses (47 μg/m3) and lowest along the high- and low-traffic bicycle routes (39 and 37 μg/m3). The median soot exposure was highest in gasoline-fueled cars (9.0 × 10−5/m), diesel cars (7.9 × 10−5/m), and diesel buses (7.4 × 10−5/m) and lowest along the low-traffic bicycle route (4.9 × 10−5/m). Because the minute ventilation (volume of air per minute) of cyclists, which we estimated from measured heart rates, was twice the minute ventilation of car and bus passengers, we calculated that the inhaled air pollution doses were highest for cyclists. With the exception of PM10, we found that inhaled air pollution doses were lowest for electric bus passengers. Conclusions Commuters’ rush hour exposures were significantly influenced by mode of transport, route, and fuel type. PMID:20185385

  6. Venous thromboembolism in an industrial north american city: temporal distribution and association with particulate matter air pollution.

    Directory of Open Access Journals (Sweden)

    Holly H Chiu

    Full Text Available BACKGROUND: Emerging evidence, mainly from Europe and Asia, indicates that venous thromboembolism (VTE occurs most often in winter. Factors implicated in such seasonality are low temperature-mediated exacerbation of coagulation and high levels of particulate matter (PM air pollution. However, in contrast to most European and Asian cities, particulate matter pollution peaks in the summer in many North American cities. OBJECTIVES: We aimed to exploit this geographical difference and examine the temporal distribution of VTE in a cold-weather, North American city, Detroit, with a summer PM peak. Our goal was thereby to resolve the influence of temperature and PM levels on VTE. METHODS: Our retrospective, analytical semi-ecological study used chart review to confirm 1,907 acute, ambulatory VTE cases, divided them by location (Detroit versus suburban, and plotted monthly VTE frequency distributions. We used Environmental Protection Agency data to determine the temporal distribution of PM pollution components in Detroit. Suburban PM air pollution is presumed negligible and therefore not monitored. RESULTS: Acute VTE cases in Detroit (1,490 exhibited a summer peak (June 24(th and differed from both a uniform distribution (P<0.01 and also that of 1,123 no-VTE cases (P<0.02. Levels of 10 µm diameter PM and coarse particle (2.5 to 10 µm PM also exhibited summer peaks versus a winter peak for 2.5 µm diameter PM. Contrary to their urban counterparts, suburban cases of acute VTE (417 showed no monthly variation. CONCLUSIONS: The summer peak of acute VTE in Detroit indicates that low temperature is not a major factor in VTE pathogenesis. In contrast, concordance of the 10 µm diameter PM, coarse particle, and the Detroit VTE monthly distributions, combined with no monthly suburban VTE variation, is consistent with a role for PM pollution. Furthermore, divergence of the VTE and 2.5 µm PM distributions suggests that particle size may play a role.

  7. Spatiotemporally resolved air exchange rate as a modifier of acute air pollution-related morbidity in Atlanta.

    Science.gov (United States)

    Sarnat, Jeremy A; Sarnat, Stefanie Ebelt; Flanders, W Dana; Chang, Howard H; Mulholland, James; Baxter, Lisa; Isakov, Vlad; Özkaynak, Halûk

    2013-01-01

    Epidemiological studies frequently use central site concentrations as surrogates of exposure to air pollutants. Variability in air pollutant infiltration due to differential air exchange rates (AERs) is potentially a major factor affecting the relationship between central site concentrations and actual exposure, and may thus influence observed health risk estimates. In this analysis, we examined AER as an effect modifier of associations between several urban air pollutants and corresponding emergency department (ED) visits for asthma and wheeze during a 4-year study period (January 1999-December 2002) for a 186 ZIP code area in metro Atlanta. We found positive associations for the interaction between AER and pollution on asthma ED visits for both carbon monoxide (CO) and nitrogen oxides (NO(x)), indicating significant or near-significant effect modification by AER on the pollutant risk-ratio estimates. In contrast, the interaction term between particulate matter (PM)(2.5) and AER on asthma ED visits was negative and significant. However, alternative distributional tertile analyses showed PM(2.5) and AER epidemiological model results to be similar to those found for NOx and CO (namely, increasing risk ratios (RRs) with increasing AERs when ambient PM(2.5) concentrations were below the highest tertile of their distribution). Despite the fact that ozone (O(3)) was a strong independent predictor of asthma ED visits in our main analysis, we found no O(3)-AER effect modification. To our knowledge, our findings for CO, NOx, and PM(2.5) are the first to provide an indication of short-term (i.e., daily) effect modification of multiple air pollution-related risk associations with daily changes in AER. Although limited to one outcome category in a single large urban locale, the findings suggest that the use of relatively simple and easy-to-derive AER surrogates may reflect intraurban differences in short-term exposures to pollutants of ambient origin.

  8. Impact of London's road traffic air and noise pollution on birth weight: retrospective population based cohort study.

    Science.gov (United States)

    Smith, Rachel B; Fecht, Daniela; Gulliver, John; Beevers, Sean D; Dajnak, David; Blangiardo, Marta; Ghosh, Rebecca E; Hansell, Anna L; Kelly, Frank J; Anderson, H Ross; Toledano, Mireille B

    2017-12-05

    Objective  To investigate the relation between exposure to both air and noise pollution from road traffic and birth weight outcomes. Design  Retrospective population based cohort study. Setting  Greater London and surrounding counties up to the M25 motorway (2317 km 2 ), UK, from 2006 to 2010. Participants  540 365 singleton term live births. Main outcome measures  Term low birth weight (LBW), small for gestational age (SGA) at term, and term birth weight. Results  Average air pollutant exposures across pregnancy were 41 μg/m 3 nitrogen dioxide (NO 2 ), 73 μg/m 3 nitrogen oxides (NO x ), 14 μg/m 3 particulate matter with aerodynamic diameter noise levels were 58 dB and 53 dB respectively. Interquartile range increases in NO 2 , NO x , PM 2.5 , PM 10 , and source specific PM 2.5 from traffic exhaust (PM 2.5 traffic exhaust ) and traffic non-exhaust (brake or tyre wear and resuspension) (PM 2.5 traffic non-exhaust ) were associated with 2% to 6% increased odds of term LBW, and 1% to 3% increased odds of term SGA. Air pollutant associations were robust to adjustment for road traffic noise. Trends of decreasing birth weight across increasing road traffic noise categories were observed, but were strongly attenuated when adjusted for primary traffic related air pollutants. Only PM 2.5 traffic exhaust and PM 2.5 were consistently associated with increased risk of term LBW after adjustment for each of the other air pollutants. It was estimated that 3% of term LBW cases in London are directly attributable to residential exposure to PM 2.5 >13.8 μg/m 3 during pregnancy. Conclusions  The findings suggest that air pollution from road traffic in London is adversely affecting fetal growth. The results suggest little evidence for an independent exposure-response effect of traffic related noise on birth weight outcomes. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  9. Exposure-response functions for health effects of ambient air pollution applicable for China. A meta-analysis

    International Nuclear Information System (INIS)

    Aunan, Kristin; Pan, Xiao-Chuan

    2004-01-01

    Assessing the benefits of projects and policies to reduce air pollution requires quantitative knowledge about the relationship between exposure to air pollution and public health. This article proposes exposure-response functions for health effects of PM 10 and SO 2 pollution in China. The functions are based on Chinese epidemiological studies, and cover mortality, hospital admissions, and chronic respiratory symptoms and diseases. We derive the following coefficients for acute effects: a 0.03% (S.E. 0.01) and a 0.04% (S.E. 0.01) increase in all-cause mortality per μg/m 3 PM 10 and SO 2 , respectively, a 0.04% (S.E. 0.01) increase in cardiovascular deaths per μg/m 3 for both PM 10 and SO 2 , and a 0.06% (S.E. 0.02) and a 0.10% (S.E. 0.02) increase in respiratory deaths per μg/m 3 PM 10 and SO 2 , respectively. For hospital admissions due to cardiovascular diseases the obtained coefficients are 0.07% (S.E. 0.02) and 0.19% (S.E. 0.03) for PM 10 and SO 2 , respectively, whereas the coefficients for hospital admissions due to respiratory diseases are 0.12% (S.E. 0.02) and 0.15% (S.E. 0.03) for PM 10 and SO 2 , respectively. Exposure-response functions for the impact of long-term PM 10 levels on the prevalence of chronic respiratory symptoms and diseases are derived from the results of cross-sectional questionnaire surveys, and indicate a 0.31% (S.E. 0.01) increase per μg/m 3 in adults and 0.44% (S.E. 0.02) per μg/m 3 in children. With some exceptions, Chinese studies report somewhat lower exposure-response coefficients as compared to studies in Europe and USA

  10. Ambient air pollution exposure and respiratory, cardiovascular and cerebrovascular mortality in Cape Town, South Africa: 2001–2006.

    Science.gov (United States)

    Wichmann, Janine; Voyi, Kuku

    2012-11-05

    Little evidence is available on the strength of the association between ambient air pollution exposure and health effects in developing countries such as South Africa. The association between the 24-h average ambient PM(10), SO(2) and NO(2) levels and daily respiratory (RD), cardiovascular (CVD) and cerebrovascular (CBD) mortality in Cape Town (2001-2006) was investigated with a case-crossover design. For models that included entire year data, an inter-quartile range (IQR) increase in PM(10) (12 mg/m3) and NO(2) (12 mg/m3) significantly increased CBD mortality by 4% and 8%, respectively. A significant increase of 3% in CVD mortality was observed per IQR increase in NO(2) and SO(2) (8 mg/m3). In the warm period, PM(10) was significantly associated with RD and CVD mortality. NO(2) had significant associations with CBD, RD and CVD mortality, whilst SO(2) was associated with CVD mortality. None of the pollutants were associated with any of the three outcomes in the cold period. Susceptible groups depended on the cause-specific mortality and air pollutant. There is significant RD, CVD and CBD mortality risk associated with ambient air pollution exposure in South Africa, higher than reported in developed countries.

  11. Ambient Air Pollution Exposure and Respiratory, Cardiovascular and Cerebrovascular Mortality in Cape Town, South Africa: 2001–2006

    Directory of Open Access Journals (Sweden)

    Kuku Voyi

    2012-11-01

    Full Text Available Little evidence is available on the strength of the association between ambient air pollution exposure and health effects in developing countries such as South Africa. The association between the 24-h average ambient PM10, SO2 and NO2 levels and daily respiratory (RD, cardiovascular (CVD and cerebrovascular (CBD mortality in Cape Town (2001–2006 was investigated with a case-crossover design. For models that included entire year data, an inter-quartile range (IQR increase in PM10 (12 mg/m3 and NO2 (12 mg/m3 significantly increased CBD mortality by 4% and 8%, respectively. A significant increase of 3% in CVD mortality was observed per IQR increase in NO2 and SO2 (8 mg/m3. In the warm period, PM10 was significantly associated with RD and CVD mortality. NO2 had significant associations with CBD, RD and CVD mortality, whilst SO2 was associated with CVD mortality. None of the pollutants were associated with any of the three outcomes in the cold period. Susceptible groups depended on the cause-specific mortality and air pollutant. There is significant RD, CVD and CBD mortality risk associated with ambient air pollution exposure in South Africa, higher than reported in developed countries.

  12. Air pollution and public health: the challenges for Delhi, India.

    Science.gov (United States)

    Sharma, Arun Kumar; Baliyan, Palak; Kumar, Prashant

    2018-03-28

    Mitigating the impact of pollution on human health worldwide is important to limit the morbidity and mortality arising from exposure to its effect. The level and type of pollutants vary in different urban and rural settings. Here, we explored the extent of air pollution and its impacts on human health in the megacity of Delhi (India) through a review of the published literature. The study aims at describing the extent of air pollution in Delhi, the magnitude of health problems due to air pollution and the risk relationship between air pollution and associated health effects. We found 234 published articles in the PubMed search. The search showed that the extent of air pollution in Delhi has been described by various researchers from about 1986 onwards. We synthesized the findings and discuss them at length with respect to reported values, their possible interpretations and any limitations of the methodology. The chemical composition of ambient air pollution is also discussed. Further, we discuss the magnitude of health problem with respect to chronic obstructive pulmonary diseases (COPD), bronchial asthma and other illnesses. The results of the literature search showed that data has been collected in last 28 years on ambient air quality in Delhi, though it lacks a scientific continuity, consistency of locations and variations in parameters chosen for reporting. As a result, it is difficult to construct a spatiotemporal picture of the air pollution status in Delhi over time. The number of sites from where data have been collected varied widely across studies and methods used for data collection is also non-uniform. Even the parameters studied are varied, as some studies focused on particulate matter ≤10 μm in aerodynamic diameter (PM10) and those ≤2.5 μm in aerodynamic diameter (PM2.5), and others on suspended particulate matter (SPM) and respirable suspended particulate matter (RSPM). Similarly, the locations of data collection have varied widely. Some of the

  13. How do people in different places experience different levels of air pollution? Using worldwide Chinese as a lens.

    Science.gov (United States)

    Chen, Bin; Song, Yimeng; Kwan, Mei-Po; Huang, Bo; Xu, Bing

    2018-07-01

    Air pollution, being especially severe in the fast-growing developing world, continues to post a threat to public health. Yet, few studies are capable of quantifying well how different groups of people in different places experience different levels of air pollution at the global scale. In this paper, we use worldwide Chinese as a lens to quantify the spatiotemporal variations and geographic differences in PM 2.5 exposures using unprecedented mobile phone big data and air pollution records. The results show that Chinese in South and East Asia suffer relatively serious PM 2.5 exposures, where the Chinese in China have the highest PM 2.5 exposures (52.8 μg/m 3 /year), which is fourfold higher than the exposures in the United States (10.7 μg/m 3 /year). Overall, the Chinese in Asian cities (35.5 μg/m 3 /year) experienced the most serious PM 2.5 exposures when compared with the Chinese in the cities of other continents. These results, partly presented as a spatiotemporally explicit map of PM 2.5 exposures for worldwide Chinese, help researchers and governments to consider how to address the effects of air pollution on public health with respect to different population groups and geographic locations. Copyright © 2018. Published by Elsevier Ltd.

  14. Environmental Pollution by Benzene and PM10 and Clinical Manifestations of Systemic Sclerosis: A Correlation Study.

    Science.gov (United States)

    Borghini, Alice; Poscia, Andrea; Bosello, Silvia; Teleman, Adele Anna; Bocci, Mario; Iodice, Lanfranco; Ferraccioli, Gianfranco; La Milìa, Daniele Ignazio; Moscato, Umberto

    2017-10-26

    Atmospheric air pollution has been associated with a range of adverse health effects. The environment plays a causative role in the development of Systemic Sclerosis (SSc). The aim of the present study is to explore the association between particulate (PM 10 ) and benzene (B) exposure in Italian patients with systemic sclerosis and their clinical characteristics of the disease. A correlation study was conducted by enrolling 88 patients who suffer from SSc at the Fondazione Policlinico "A. Gemelli" in Rome (Italy) in the period from January 2013 to January 2014. The average mean concentrations of B (in 11 monitoring sites) and PM 10 (in 14 sites) were calculated using data from the Regional Environmental Protection Agency's monitoring stations located throughout the Lazio region (Italy) and then correlated with the clinical characteristics of the SSc patients. Of the study sample, 92.5% were female. The mean age was 55 ± 12.9 years old and the mean disease duration from the onset of Raynaud's phenomenon was 13.0 ± 9.4 years. The Spearman's correlation showed that concentrations of B correlate directly with the skin score (R = 0.3; p ≤ 0.05) and inversely with Diffusing Lung Carbon Monoxide (DLCO) results (R = -0.36; p = 0.04). This study suggests a possible role of B in the development of diffuse skin disease and in a worse progression of the lung manifestations of SSc.

  15. Wintertime indoor air levels of PM10, PM2.5 and PM1 at public places and their contributions to TSP.

    Science.gov (United States)

    Liu, Yangsheng; Chen, Rui; Shen, Xingxing; Mao, Xiaoling

    2004-04-01

    From 26 October 2002 to 8 March 2003, particulate matter (PM) concentrations (total suspended particles [TSP], PM10, PM2.5 and PM1) were measured at 49 public places representing different environments in the urban area of Beijing. The objectives of this study were (1) to characterize the indoor PM concentrations in public places, (2) to evaluate the potential indoor sources and (3) to investigate the contribution of PM10 to TSP and the contributions of PM2.5 and PM1 to PM10. Additionally, The indoor and outdoor particle concentrations in the same type of indoor environment were employed to investigate the I/O level, and comparison was made between I/O levels in different types of indoor environment. Construction activities and traffic condition were the major outdoor sources to influence the indoor particle levels. The contribution of PM10 to TSP was even up to 68.8%, while the contributions of PM2.5 and PM1 to PM10 were not as much as that of PM10 to TSP.

  16. Milano summer particulate matter (PM10 triggers lung inflammation and extra pulmonary adverse events in mice.

    Directory of Open Access Journals (Sweden)

    Francesca Farina

    Full Text Available Recent studies have suggested a link between particulate matter (PM exposure and increased mortality and morbidity associated with pulmonary and cardiovascular diseases; accumulating evidences point to a new role for air pollution in CNS diseases. The purpose of our study is to investigate PM10sum effects on lungs and extra pulmonary tissues. Milano PM10sum has been intratracheally instilled into BALB/c mice. Broncho Alveolar Lavage fluid, lung parenchyma, heart and brain were screened for markers of inflammation (cell counts, cytokines, ET-1, HO-1, MPO, iNOS, cytotoxicity (LDH, ALP, Hsp70, Caspase8-p18, Caspase3-p17 for a putative pro-carcinogenic marker (Cyp1B1 and for TLR4 pathway activation. Brain was also investigated for CD68, TNF-α, GFAP. In blood, cell counts were performed while plasma was screened for endothelial activation (sP-selectin, ET-1 and for inflammation markers (TNF-α, MIP-2, IL-1β, MPO. Genes up-regulation (HMOX1, Cyp1B1, IL-1β, MIP-2, MPO and miR-21 have been investigated in lungs and blood. Inflammation in the respiratory tract of PM10sum-treated mice has been confirmed in BALf and lung parenchyma by increased PMNs percentage, increased ET-1, MPO and cytokines levels. A systemic spreading of lung inflammation in PM10sum-treated mice has been related to the increased blood total cell count and neutrophils percentage, as well as to increased blood MPO. The blood-endothelium interface activation has been confirmed by significant increases of plasma ET-1 and sP-selectin. Furthermore PM10sum induced heart endothelial activation and PAHs metabolism, proved by increased ET-1 and Cyp1B1 levels. Moreover, PM10sum causes an increase in brain HO-1 and ET-1. These results state the translocation of inflammation mediators, ultrafine particles, LPS, metals associated to PM10sum, from lungs to bloodstream, thus triggering a systemic reaction, mainly involving heart and brain. Our results provided additional insight into the toxicity

  17. Air pollution holiday effect in metropolitan Kaohsiung

    Science.gov (United States)

    Tan, P.; Chen, P. Y.

    2014-12-01

    Different from Taipei, the metropolitan Kaohsiung which is a coastal and industrial city has the major pollution sources from stationary sources such as coal-fired power plants, petrochemical facilities and steel plants, rather than mobile sources. This study was an attempt to conduct a comprehensive and systematical examination of the holiday effect, defined as the difference in air pollutant concentrations between holiday and non-holiday periods, over the Kaohsiung metropolitan area. We documented evidence of a "holiday effect", where concentrations of NOx, CO, NMHC, SO2 and PM10 were significantly different between holidays and non-holidays, in the Kaohsiung metropolitan area from daily surface measurements of seven air quality monitoring stations of the Taiwan Environmental Protection Administration during the Chinese New Year (CNY) and non-Chinese New Year (NCNY) periods of 1994-2010. Concentrations of the five pollutants were lower in the CNY than in the NCNY period, however, that of O3 was higher in the CNY than in the NCNY period and had no holiday effect. The exclusion of the bad air quality day (PSI > 100) and the Lantern Festival Day showed no significant effects on the holiday effects of air pollutants. Ship transportation data of Kaohsiung Harbor Bureau showed a statistically significant difference in the CNY and NCNY period. This difference was consistent with those found in air pollutant concentrations of some industrial and general stations in coastal areas, implying the possible impact of traffic activity on the air quality of coastal areas. Holiday effects of air pollutants over the Taipei metropolitan area by Tan et al. (2009) are also compared.

  18. Air pollution and hospital visits for acute upper and lower respiratory infections among children in Ningbo, China: A time-series analysis.

    Science.gov (United States)

    Zheng, Pei-Wen; Wang, Jian-Bing; Zhang, Zhen-Yu; Shen, Peng; Chai, Peng-Fei; Li, Die; Jin, Ming-Juan; Tang, Meng-Ling; Lu, Huai-Chu; Lin, Hong-Bo; Chen, Kun

    2017-08-01

    Acute upper and lower respiratory infections are main causes of mortality and morbidity in children. Air pollution has been recognized as an important contributor to development and exacerbation of respiratory infections. However, few studies are available in China. In this study, we investigated the short-term effect of air pollution on hospital visits for acute upper and lower respiratory infections among children under 15 years in Ningbo, China. Poisson generalized models were used to estimate the associations between air pollution and hospital visits for acute upper and lower respiratory infections adjusted for temporal, seasonal, and meteorological effects. We found that four pollutants (PM 2.5 , PM 10 , NO 2 , and SO 2 ) were significantly associated with hospital visits for acute upper and lower respiratory infections. The effect estimates for acute upper respiratory infections tended to be higher (PM 2.5 ER = 3.46, 95% CI 2.18, 4.76; PM 10 ER = 2.81, 95% CI 1.93, 3.69; NO 2 ER = 11.27, 95% CI 8.70, 13.89; SO 2 ER = 15.17, 95% CI 11.29, 19.19). Significant associations for gaseous pollutants (NO 2 and SO 2 ) were observed after adjustment for particular matter. Stronger associations were observed among older children and in the cold period. Our study suggested that short-term exposure to outdoor air pollution was associated with hospital visits for acute upper and lower respiratory infections in Ningbo.

  19. Air pollution impacts from carbon capture and storage (CCS)

    Energy Technology Data Exchange (ETDEWEB)

    Harmelen, T. van; Horssen, A. van; Jozwicka, M.; Pulles, T. (TNO, Delft (Netherlands)); Odeh, N. (AEA Technology, Harwell (United Kingdom)); Adams, M. (EEA, Copenhagen (Denmark))

    2011-11-15

    This report comprises two separate complementary parts that address the links between CCS implementation and its subsequent impacts on GHG and air pollutant emissions on a life-cycle basis: Part A discusses and presents key findings from the latest literature, focusing upon the potential air pollution impacts across the CCS life-cycle arising from the implementation of the main foreseen technologies. Both negative and positive impacts on air quality are presently suggested in the literature - the basis of scientific knowledge on these issues is rapidly advancing. Part B comprises a case study that quantifies and highlights the range of GHG and air pollutant life-cycle emissions that could occur by 2050 under a low-carbon pathway should CCS be implemented in power plants across the European Union under various hypothetical scenarios. A particular focus of the study was to quantify the main life-cycle emissions of the air pollutants taking into account the latest knowledge on air pollutant emission factors and life-cycle aspects of the CCS life-cycle as described in Part A of the report. Pollutants considered in the report were the main GHGs CO{sub 2}, methane (CH{sub 4}) and nitrous oxide (N{sub 2}O) and the main air pollutants with potential to harm human health and/or the environment - nitrogen oxides (NO{sub X}), sulphur dioxide (SO{sub 2}), ammonia (NH{sub 3}), non-methane volatile organic compounds (NMVOCs) and particulate matter (PM{sub 10}). (Author)

  20. A bird's eye view of the air pollution-cancer link in China

    Science.gov (United States)

    Huang, Yu-Bei; Song, Feng-Ju; Liu, Qun; Li, Wei-Qin; Zhang, Wei; Chen, Ke-Xin

    2014-01-01

    Air pollution in China comes from multiple sources, including coal consumption, construction and industrial dust, and vehicle exhaust. Coal consumption in particular directly determines the emissions of three major air pollutants: dust, sulfur dioxide (SO2), and nitrogen oxide (NOx). The rapidly increasing number of civilian vehicles is expected to bring NOx emission to a very high level. Contrary to expectations, however, existing data show that the concentrations of major pollutants [particulate matter-10 (PM10), SO2, and nitrogen dioxide (NO2)] in several large Chinese cities have declined during the past decades, though they still exceed the national standards of ambient air quality. Archived data from China does not fully support that the concentrations of pollutants directly depend on local emissions, but this is likely due to inaccurate measurement of pollutants. Analyses on the cancer registry data show that cancer burden related to air pollution is on the rise in China and will likely increase further, but there is a lack of data to accurately predict the cancer burden. Past experience from other countries has sounded alarm of the link between air pollution and cancer. The quantitative association requires dedicated research as well as establishment of needed monitoring infrastructures and cancer registries. The air pollution-cancer link is a serious public health issue that needs urgent investigation. PMID:24636232

  1. A Multicity Analysis of the Short-Term Effects of Air Pollution on the Chronic Obstructive Pulmonary Disease Hospital Admissions in Shandong, China.

    Science.gov (United States)

    Liu, Yi; Sun, Jingjie; Gou, Yannong; Sun, Xiubin; Li, Xiujun; Yuan, Zhongshang; Kong, Lizhi; Xue, Fuzhong

    2018-04-17

    Although there is growing evidence linking chronic obstructive pulmonary disease (COPD) hospital admissions to the exposure to ambient air pollution, the effect can vary depending on the local geography, pollution type, and pollution level. The number of large-scale multicity studies remains limited in China. This study aims to assess the short-term effects of ambient air pollution (PM 2.5 , PM 10 , SO₂, NO₂) on chronic obstructive pulmonary disease hospital admissions from 2015 to 2016, with a total of 216,159 records collected from 207 hospitals in 17 cities all over the Shandong province, east China. Generalized additive models and penalized splines were applied to study the data whilst controlling for confounding meteorological factors and long-term trends. The air pollution was analyzed with 0–6 day lag effects and the percentage change of hospital admissions was assessed for a 10-μg/m³ increase in the air pollution levels. We also examined the percentage changes for different age groups and gender, respectively. The results showed that air pollution was significantly associated with adverse health outcomes and stronger effects were observed for females. The air pollution health effects were also impacted by geographical factors such that the air pollution had weaker health effects in coastal cities.

  2. Correlation Between Occurrence and Deterioration of Respiratory Diseases and Air Pollution Within the Legally Permissible Limits.

    Science.gov (United States)

    Trnjar, Kristina; Pintarić, Sanja; Mornar Jelavić, Marko; Nesek, Višnja; Ostojić, Jelena; Pleština, Sanja; Šikić, Aljoša; Pintarić, Hrvoje

    2017-06-01

    The aim of the study was to investigate the unknown effect of air pollutants on the occurrence or deterioration of respiratory diseases in the area with a humid continental climate. This retrospective study included 5868 patients with respiratory symptomatology (upper respiratory tract infection (URTI), pneumonia, acute bronchitis, chronic obstructive pulmonary disease (COPD), and asthma) admitted to emergency department (ED). The number of patients, values of meteorological parameters (mean daily values of air temperature pressure and relative humidity) and concentrations of air pollution particles (≤10 μm (PM10), ozone (O3) and nitrogen dioxide (NO2)) were collected during a two-year ( July 2008 - June 2010) period. There were 1839 (31.3%), 1712 (29.2%), 1313 (22.4%), 614 (10.5%) and 390 (6.6%) patients with pneumonia, COPD, URTI, acute bronchitis and asthma, respectively. The mean daily concentrations of NO2 (25.9 (1.7-89.7) μg/m3), O3 (47.1 (4.7-135.4) μg/m3) and PM10 particles (25.7 (4.6-146.6) μg/m3) were below the legally defined thresholds. Among other results, the occurrence of respiratory diseases showed positive Spearman's correlation with the values of air humidity (days 0-3, r=0.15 to 0.19), PM10(days 0-3, r=0.10 to 0.13) and NO2 concentrations (day 0, r=0.11), and negative correlation with the values of air temperature (days 0-3, r=-0.36 to -0.34), pressure (day 0, r=-0.10) and O3 concentrations (days 0-3, r=-0.21 to -0.22) (prespiratory diseases showed correlation with weather conditions and air pollutants despite the legally permitted values in the region with a humid continental climate.

  3. Health risk assessment on human exposed to heavy metals in the ambient air PM10 in Ahvaz, southwest Iran.

    Science.gov (United States)

    Goudarzi, Gholamreza; Alavi, Nadali; Geravandi, Sahar; Idani, Esmaeil; Behrooz, Hamid Reza Adeli; Babaei, Ali Akbar; Alamdari, Farzaneh Aslanpour; Dobaradaran, Sina; Farhadi, Majid; Mohammadi, Mohammad Javad

    2018-06-01

    Heavy metals (HM) are one of the main components of urban air pollution. Today, megacities and industrial regions in southwest of Iran are frequently suffering from severe haze episodes, which essentially caused by PM 10 -bound heavy metals. The purpose of this study was to evaluate the health risk assessment on human exposed to heavy metals (Cr, Ni, Pb, and Zn) in the ambient air PM 10 in Ahvaz, southwest Iran. In this study, we estimated healthy people from the following scenarios: (S3) residential site; (S2) high-traffic site; (S1) industrial site in Ahvaz metropolitan during autumn and winter. In the current study, high-volume air samplers equipped with quartz fiber filters were used to sampling and measurements of heavy metal concentration. Inductively coupled plasma optical emission spectroscopy (ICP-OES) was utilized for detection of heavy metal concentration (ng m -3 ). Also, an estimate of the amount of health risk assessment (hazard index) of Cr, Ni, Pb, and Zn of heavy metal exposure to participants was used. Result of this study showed that the residential and industrial areas had the lowest and the highest level of heavy metal. Based on the result of this study, average levels of heavy metal in industrial, high-traffic, and residential areas in autumn and winter were 31.48, 30.89, and 23.21 μg m -3 and 42.60, 37.70, and 40.07 μg m -3 , respectively. Based on the result of this study, the highest and the lowest concentration of heavy metal had in the industrial and residential areas. Zn and Pb were the most abundant elements among the studied PM 10 -bound heavy metals, followed by Cr and Ni. The carcinogenic risks of Cr, Pb, and the integral HQ of metals in PM 10 for children and adults via inhalation and dermal exposures exceeded 1 × 10 -4 in three areas. Also, based on the result of this study, the values of hazard index (HI) of HM exposure in different areas were significantly higher than standard. The health risks attributed to HM should

  4. Concentration distribution of NO{sub 2}, PM{sub 10} and PM{sub 2,5} in severe pollution episodes in Oslo, Drammen, Bergen and Trondheim; Konsentrasjonsfordelingen av NO{sub 2}, PM{sub 10} og PM{sub 2,5} i sterke forurensningsepisoder i Oslo, Drammen, Bergen og Trondheim

    Energy Technology Data Exchange (ETDEWEB)

    Sloerdal, Leiv Haavard; Toennesen, Dag

    1999-04-01

    Based on hourly model calculations of NO{sub 2}, PM{sub 1}0 and PM{sub 2},5 through a 6 months winter season in the cities of Oslo, Drammen, Bergen and Trondheim, the 10 most severe pollution episodes have been analysed. Concentration distributions, calculated as the average of these episodes have been combined with the population distribution in order to reveal the exposure levels in such episodes. The model calculations have only been performed for the city background, i.e. on a km{sub 2} grid system. (author)

  5. Impacts of Energy Sector Emissions on PM2.5 Air Quality in Northern India

    Science.gov (United States)

    Karambelas, A. N.; Kiesewetter, G.; Heyes, C.; Holloway, T.

    2015-12-01

    India experiences high concentrations of fine particulate matter (PM2.5), and several Indian cities currently rank among the world's most polluted cities. With ongoing urbanization and a growing economy, emissions from different energy sectors remain major contributors to air pollution in India. Emission sectors impact ambient air quality differently due to spatial distribution (typical urban vs. typical rural sources) as well as source height characteristics (low-level vs. high stack sources). This study aims to assess the impacts of emissions from three distinct energy sectors—transportation, domestic, and electricity—on ambient PM2.5­­ in northern India using an advanced air quality analysis framework based on the U.S. EPA Community Multi-Scale Air Quality (CMAQ) model. Present air quality conditions are simulated using 2010 emissions from the Greenhouse Gas-Air Pollution Interaction and Synergies (GAINS) model. Modeled PM2.5 concentrations are compared with satellite observations of aerosol optical depth (AOD) from the Moderate Imaging Spectroradiometer (MODIS) for 2010. Energy sector emissions impacts on future (2030) PM2.5 are evaluated with three sensitivity simulations, assuming maximum feasible reduction technologies for either transportation, domestic, or electricity sectors. These simulations are compared with a business as usual 2030 simulation to assess relative sectoral impacts spatially and temporally. CMAQ is modeled at 12km by 12km and include biogenic emissions from the Community Land Model coupled with the Model of Emissions of Gases and Aerosols in Nature (CLM-MEGAN), biomass burning emissions from the Global Fires Emissions Database (GFED), and ERA-Interim meteorology generated with the Weather Research and Forecasting (WRF) model for 2010 to quantify the impact of modified anthropogenic emissions on ambient PM2.5 concentrations. Energy sector emissions analysis supports decision-making to improve future air quality and public health in

  6. Temporal multiscaling characteristics of particulate matter PM 10 and ground-level ozone O3 concentrations in Caribbean region

    Science.gov (United States)

    Plocoste, Thomas; Calif, Rudy; Jacoby-Koaly, Sandra

    2017-11-01

    A good knowledge of the intermittency of atmospheric pollutants is crucial for air pollution management. We consider here particulate matter PM 10 and ground-level ozone O3 time series in Guadeloupe archipelago which experiments a tropical and humid climate in the Caribbean zone. The aim of this paper is to study their scaling statistics in the framework of fully developed turbulence and Kolmogorov's theory. Firstly, we estimate their Fourier power spectra and consider their scaling properties in the physical space. The power spectra computed follows a power law behavior for both considered pollutants. Thereafter we study the scaling behavior of PM 10 and O3 time series. Contrary to numerous studies where the multifractal detrended fluctuation analysis is frequently applied, here, the classical structure function analysis is used to extract the scaling exponent or multifractal spectrum ζ(q) ; this function provides a full characterization of a process at all intensities and all scales. The obtained results show that PM 10 and O3 possess intermittent and multifractal properties. The singularity spectrum MS(α) also confirms both pollutants multifractal features. The originality of this work comes from a statistical modeling performed on ζ(q) and MS(α) by a lognormal model to compute the intermittency parameter μ. By contrast with PM 10 which mainly depends on puffs of Saharan dust (synoptic-scale), O3 is more intermittent due to variability of its local precursors. The results presented in this paper can help to better understand the mechanisms governing the dynamics of PM 10 and O3 in Caribbean islands context.

  7. Long-term exposure to ambient air pollution and respiratory disease mortality in Shenyang, China: a 12-year population-based retrospective cohort study.

    Science.gov (United States)

    Dong, Guang-Hui; Zhang, Pengfei; Sun, Baijun; Zhang, Liwen; Chen, Xi; Ma, Nannan; Yu, Fei; Guo, Huimin; Huang, Hui; Lee, Yungling Leo; Tang, Naijun; Chen, Jie

    2012-01-01

    In China, both the levels and patterns of outdoor air pollution have altered dramatically with the rapid economic development and urbanization over the past two decades. However, few studies have investigated the association of outdoor air pollution with respiratory mortality, especially in the high pollution range. We conducted a retrospective cohort study of 9,941 residents aged ≥35 years old in Shenyang, China, to examine the association between outdoor air pollutants [particulate matter mortality using 12 years of data. We applied extended Cox proportional hazards modeling with time-dependent covariates to respiratory mortality. Analyses were also stratified by age, sex, educational level, smoking status, personal income, occupational exposure and body mass index (BMI) to examine the association of air pollution with mortality. We found significant associations between PM(10) and NO(2) levels and respiratory disease mortality. Our analysis found a relative risk of 1.67 [95% confidence interval (CI) 1.60-1.74] and 2.97 (95% CI 2.69-3.27) for respiratory mortality per 10 µg/m(3) increase in PM(10) and NO(2), respectively. The effects of air pollution were more apparent in women than in men. Age, sex, educational level, smoking status, personal income, occupational exposure, BMI and exercise frequency influenced the relationship between outdoor PM(10) and NO(2) and mortality. For SO(2), only smoking, little regular exercise and BMI above 18.5 influenced the relationship with mortality. These data contribute to the scientific literature on the long-term effects of air pollution for the high-exposure settings typical in developing countries. Copyright © 2011 S. Karger AG, Basel.

  8. External costs of PM2.5 pollution in Beijing, China: Uncertainty analysis of multiple health impacts and costs.

    Science.gov (United States)

    Yin, Hao; Pizzol, Massimo; Xu, Linyu

    2017-07-01

    Some cities in China are facing serious air pollution problems including high concentrations of particles, SO 2 and NO x . Exposure to PM2.5, one of the primary air pollutants in many cities in China, is highly correlated with various adverse health impacts and ultimately represents a cost for society. The aim of this study is to assess health impacts and external costs related to PM2.5 pollution in Beijing, China with different baseline concentrations and valuation methods. The idea is to provide a reasonable estimate of the total health impacts and external cost due to PM2.5 pollution, as well as a quantification of the relevant uncertainty. PM2.5 concentrations were retrieved for the entire 2012 period in 16 districts of Beijing. The various PM2.5 related health impacts were identified and classified to avoid double counting. Exposure-response coefficients were then obtained from literature. Both the value of statistical life (VSL) and the amended human capital (AHC) approach were applied for external costs estimation, which could provide the upper and lower bound of the external costs due to PM2.5. To fully understand the uncertainty levels, the external cost distribution was determined via Monte Carlo simulation based on the uncertainty of the parameters such as PM2.5 concentration, exposure-response coefficients, and economic cost per case. The results showed that the external costs were equivalent to around 0.3% (AHC, China's guideline: C 0  = 35 μg/m 3 ) to 0.9% (VSL, WHO guideline: C 0  = 10 μg/m 3 ) of regional GDP depending on the valuation method and on the assumed baseline PM2.5 concentration (C 0 ). Among all the health impacts, the economic loss due to premature deaths accounted for more than 80% of the overall external costs. The results of this study could help policymakers prioritizing the PM2.5 pollution control interventions and internalize the external costs through the application of economic policy instruments. Copyright © 2017

  9. Geographic variation in Chinese children' forced vital capacity and its association with long-term exposure to local PM10: a national cross-sectional study.

    Science.gov (United States)

    Wang, Hai-Jun; Li, Qin; Guo, Yuming; Song, Jie-Yun; Wang, Zhiqiang; Ma, Jun

    2017-10-01

    The purpose of this study was to estimate the association between Chinese children's forced vital capacity (FVC) and particulate matter with aerodynamic diameter ≤10 μm (PM 10 ). The FVC data of 71,763 children aged 7 to 18 was collected from 2010 Chinese National Survey on Students' Construction and Health (CNSSCH). The local annual average concentration of PM 10 , relative humidity, ambient temperature, and other air pollutant data of 30 cities was collected from China Meteorological Administration and Ministry of Environment Protection of China. Then, we used generalized additive model (GAM) to estimate the association between children's FVC and PM 10 . The obvious geographic variation in FVC was found in children of 30 Chinese cities ranging from 1647 ml in Xining to 2571 ml in Beijing. The annual average concentration of PM 10 was also different, ranging from 40 μg/m 3 in Haikou to 155 μg/m 3 in Lanzhou. After adjusted individual characteristics, socioeconomic conditions, ambient temperature, relative humidity, and other air pollutants (e.g., NO 2 and SO 2 ) in the generalized additive model, we found that the increase of PM 10 was associated with decrease of FVC in Chinese children. A 10-μg/m 3 increase of PM 10 was associated with 1.33-ml decrease in FVC (95% confidence interval: -2.18 to -0.47). We also found a larger effect estimate of PM 10 on FVC in boys than that in girls. Consistent associations were found in both physically inactive and active children. The increase of PM 10 was associated with decrease of children's FVC. We should develop proper public health policy to protect children's respiratory health during growth and development in polluted areas.

  10. Historic air pollution exposure and long-term mortality risks in England and Wales: prospective longitudinal cohort study.

    Science.gov (United States)

    Hansell, Anna; Ghosh, Rebecca E; Blangiardo, Marta; Perkins, Chloe; Vienneau, Danielle; Goffe, Kayoung; Briggs, David; Gulliver, John

    2016-04-01

    Long-term air pollution exposure contributes to mortality but there are few studies examining effects of very long-term (>25 years) exposures. This study investigated modelled air pollution concentrations at residence for 1971, 1981, 1991 (black smoke (BS) and SO2) and 2001 (PM10) in relation to mortality up to 2009 in 367,658 members of the longitudinal survey, a 1% sample of the English Census. Outcomes were all-cause (excluding accidents), cardiovascular (CV) and respiratory mortality. BS and SO2 exposures remained associated with mortality decades after exposure-BS exposure in 1971 was significantly associated with all-cause (OR 1.02 (95% CI 1.01 to 1.04)) and respiratory (OR 1.05 (95% CI 1.01 to 1.09)) mortality in 2002-2009 (ORs expressed per 10 μg/m(3)). Largest effect sizes were seen for more recent exposures and for respiratory disease. PM10 exposure in 2001 was associated with all outcomes in 2002-2009 with stronger associations for respiratory (OR 1.22 (95% CI 1.04 to 1.44)) than CV mortality (OR 1.12 (95% CI 1.01 to 1.25)). Adjusting PM10 for past BS and SO2 exposures in 1971, 1981 and 1991 reduced the all-cause OR to 1.16 (95% CI 1.07 to 1.26) while CV and respiratory associations lost significance, suggesting confounding by past air pollution exposure, but there was no evidence for effect modification. Limitations include limited information on confounding by smoking and exposure misclassification of historic exposures. This large national study suggests that air pollution exposure has long-term effects on mortality that persist decades after exposure, and that historic air pollution exposures influence current estimates of associations between air pollution and mortality. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  11. Globalization and pollution: tele-connecting local primary PM2.5 emissions to global consumption.

    Science.gov (United States)

    Meng, Jing; Liu, Junfeng; Xu, Yuan; Guan, Dabo; Liu, Zhu; Huang, Ye; Tao, Shu

    2016-11-01

    Globalization pushes production and consumption to geographically diverse locations and generates a variety of sizeable opportunities and challenges. The distribution and associated effects of short-lived primary fine particulate matter (PM 2.5 ), a representative of local pollution, are significantly affected by the consumption through global supply chain. Tele-connection is used here to represent the link between production and consumption activity at large distances. In this study, we develop a global consumption-based primary PM 2.5 emission inventory to track primary PM 2.5 emissions embodied in the supply chain and evaluate the extent to which local PM 2.5 emissions are triggered by international trade. We further adopt consumption-based accounting and identify the global original source that produced the emissions. We find that anthropogenic PM 2.5 emissions from industrial sectors accounted for 24 Tg globally in 2007; approximately 30% (7.2 Tg) of these emissions were embodied in export of products principally from Brazil, South Africa, India and China (3.8 Tg) to developed countries. Large differences (up to 10 times) in the embodied emissions intensity between net importers and exporters greatly increased total global PM 2.5 emissions. Tele-connecting production and consumption activity provides valuable insights with respect to mitigating long-range transboundary air pollution and prompts concerted efforts aiming at more environmentally conscious globalization.

  12. Globalization and pollution: tele-connecting local primary PM2.5 emissions to global consumption

    Science.gov (United States)

    Meng, Jing; Xu, Yuan; Guan, Dabo; Liu, Zhu; Huang, Ye; Tao, Shu

    2016-01-01

    Globalization pushes production and consumption to geographically diverse locations and generates a variety of sizeable opportunities and challenges. The distribution and associated effects of short-lived primary fine particulate matter (PM2.5), a representative of local pollution, are significantly affected by the consumption through global supply chain. Tele-connection is used here to represent the link between production and consumption activity at large distances. In this study, we develop a global consumption-based primary PM2.5 emission inventory to track primary PM2.5 emissions embodied in the supply chain and evaluate the extent to which local PM2.5 emissions are triggered by international trade. We further adopt consumption-based accounting and identify the global original source that produced the emissions. We find that anthropogenic PM2.5 emissions from industrial sectors accounted for 24 Tg globally in 2007; approximately 30% (7.2 Tg) of these emissions were embodied in export of products principally from Brazil, South Africa, India and China (3.8 Tg) to developed countries. Large differences (up to 10 times) in the embodied emissions intensity between net importers and exporters greatly increased total global PM2.5 emissions. Tele-connecting production and consumption activity provides valuable insights with respect to mitigating long-range transboundary air pollution and prompts concerted efforts aiming at more environmentally conscious globalization. PMID:27956874

  13. Globalization and pollution: tele-connecting local primary PM2.5 emissions to global consumption

    Science.gov (United States)

    Meng, Jing; Liu, Junfeng; Xu, Yuan; Guan, Dabo; Liu, Zhu; Huang, Ye; Tao, Shu

    2016-11-01

    Globalization pushes production and consumption to geographically diverse locations and generates a variety of sizeable opportunities and challenges. The distribution and associated effects of short-lived primary fine particulate matter (PM2.5), a representative of local pollution, are significantly affected by the consumption through global supply chain. Tele-connection is used here to represent the link between production and consumption activity at large distances. In this study, we develop a global consumption-based primary PM2.5 emission inventory to track primary PM2.5 emissions embodied in the supply chain and evaluate the extent to which local PM2.5 emissions are triggered by international trade. We further adopt consumption-based accounting and identify the global original source that produced the emissions. We find that anthropogenic PM2.5 emissions from industrial sectors accounted for 24 Tg globally in 2007; approximately 30% (7.2 Tg) of these emissions were embodied in export of products principally from Brazil, South Africa, India and China (3.8 Tg) to developed countries. Large differences (up to 10 times) in the embodied emissions intensity between net importers and exporters greatly increased total global PM2.5 emissions. Tele-connecting production and consumption activity provides valuable insights with respect to mitigating long-range transboundary air pollution and prompts concerted efforts aiming at more environmentally conscious globalization.

  14. Short-term effects of ambient air pollution on emergency room admissions due to cardiovascular causes in Beijing, China

    International Nuclear Information System (INIS)

    Ma, Yuxia; Zhao, Yuxin; Yang, Sixu; Zhou, Jianding; Xin, Jinyuan; Wang, Shigong; Yang, Dandan

    2017-01-01

    Ambient air pollution has been a major global public health issue. A number of studies have shown various adverse effects of ambient air pollution on cardiovascular diseases. In the current study, we investigated the short-term effects of ambient air pollution on emergency room (ER) admissions due to cardiovascular causes in Beijing from 2009 to 2012 using a time-series analysis. A total of 82430 ER cardiovascular admissions were recorded. Different gender (male and female) and age groups (15yrs ≤ age <65 yrs and age ≥ 65 yrs) were also examined by single model and multiple-pollutant model. Three major pollutants (SO 2 , NO 2 and PM 10 ) had lag effects of 0–2 days on cardiovascular ER admissions. The relative risks (95% CI) of per 10 μg/m 3 increase in PM 10 , SO 2 and NO 2 were 1.008 (0.997–1.020), 1.008(0.999–1.018) and 1.014(1.003–1.024), respectively. The effect was more pronounced in age ≥65 and males in Beijing. We also found the stronger acute effects on the elderly and females at lag 0 than on the younger people and males at lag 2. - Highlights: • Significant associations were found between air pollution and emergency admissions of cardiovascular diseases. • Air pollutants had lag effects on age and gender groups. • Stronger effects of air pollutants were observed for age ≥65 yrs and males. • More acute effects of air pollutants were found for age ≥65 yrs and females. - Air pollutants had significant lag effects on different age and gender groups. The effects were more pronounced in age ≥65 and males in Beijing, China.

  15. Challenges and future direction of molecular research in air pollution-related lung cancers.

    Science.gov (United States)

    Shahadin, Maizatul Syafinaz; Ab Mutalib, Nurul Syakima; Latif, Mohd Talib; Greene, Catherine M; Hassan, Tidi

    2018-04-01

    Hazardous air pollutants or chemical release into the environment by a variety of natural and/or anthropogenic activities may give adverse effects to human health. Air pollutants such as sulphur dioxide (SO2), nitrogen oxides (NOx), carbon monoxide (CO), heavy metals and particulate matter (PM) affect number of different human organs, especially the respiratory system. The International Agency for Research on Cancer (IARC) reported that ambient air pollution is a cause of lung cancer. Recently, the agency has classified outdoor air pollution as well as PM air pollution as Group 1 carcinogens. In addition, several epidemiological studies have shown a positive association between air pollutants to lung cancer risks and mortality. However, there are only a few studies examining the molecular effects of air pollution exposure specifically in lung cancer due to multiple challenges to mimic air pollution exposure in basic experimentation. Another major issue is the lack of adequate adjustments for exposure misclassification as air pollution may differ temporo-spatially and socioeconomically. Thus, the purpose of this paper is to review the current molecular understanding of air pollution-related lung cancer and potential future direction in this challenging yet important research field. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. To what extent can aerosol water explain the discrepancy between model calculated and gravimetric PM10 and PM2.5?

    Directory of Open Access Journals (Sweden)

    S. G. Tsyro

    2005-01-01

    Full Text Available Inter-comparisons of European air quality models show that regional transport models, including the EMEP (Co-operative Programme for monitoring and evaluation of the long-range transmission of air pollutants in Europe aerosol model, tend to underestimate the observed concentrations of PM10 and PM2.5. Obviously, an accurate representation of the individual aerosol constituents is a prerequisite for adequate calculation of PM concentrations. On the other hand, available measurements on the chemical characterization of ambient particles reveal that full chemical PM mass closure is rarely achieved. The fraction unaccounted for by chemical analysis can comprise as much as 30-40% of gravimetric PM10 or PM2.5 mass. The unaccounted PM mass can partly be due to non-C atoms in organic aerosols and/or due to sampling and measurement artefacts. Moreover, a part of the unaccounted PM mass is likely to consist of water associated with particles. Thus, the gravimetrically measured particle mass does not necessarily represent dry PM10 and PM2.5 mass. This is thought to be one of the reasons for models under-prediction of observed PM, if calculated dry PM10 and PM2.5 concentrations are compared with measurements. The EMEP aerosol model has been used to study to what extent particle-bound water can explain the chemically unidentified PM mass in filter-based particle samples. Water content of PM2.5 and PM10 has been estimated with the model for temperature 20°C and relative humidity 50%, which are conditions required for equilibration of dust-loaded filters according to the Reference method recommended by the European Committee for Standardization (CEN. Model calculations for Europe show that, depending on particle composition, particle-bound water constitutes 20-35% of the annual mean PM10 and PM2.5 concentrations, which is consistent with existing experimental estimates. At two Austrian sites, in Vienna and Streithofen, where daily measurements of PM2.5 mass

  17. Analysing the Air: Experiences and Results of Long Term Air Pollution Monitoring in the Asia-Pacific Region Using Nuclear Analysis Techniques

    International Nuclear Information System (INIS)

    Atanacio, Armand J.

    2015-01-01

    Particles present in the air we breathe are now recognized as a major cause of disease and premature death globally. In fact, a World Health Organization (WHO) report recently ranked ambient air pollution as one of the top 10 causes of death in the world, directly contributing annually to around 3.7 million premature deaths worldwide 65% of which occurred in the Asian region alone. Airborne particulate matter (PM) can be generated from natural sources such as windblown soil or coastal sea-spray; as well as anthropogenic sources such as power stations, industry, vehicles and domestic biomass burning. At low concentration these fine pollution particles are too small to be seen by eye, but penetrate deep into our lungs and even our blood stream as our nose and throat are inefficient at filtering them out. At large concentrations, they can also have wider regional effects including reduced visibility, acid rain and even climate variability. The International Atomic Energy Agency (IAEA) in 2000, recognizing air pollution as a significant local, national and global challenge, initiated a collaborative air pollution study involving 14 countries across the greater Asia-pacific region from 2000 to 2015. This has amassed a database containing more than 14,000 data lines of PM mass concentration and the concentration of up to 40 elements using nuclear analytical techniques. It represents the most comprehensive and long-term airborne PM data set compiled to date for the Asia-Pacific region and as will be discussed, can be used to statistically resolve individual source fingerprints and their contributions to total air pollution using Positive Matrix Factorization (PMF). This sort of data necessary for implementing or reviewing the effectiveness of policy level changes aimed at targeted air pollution reduction. (author)

  18. Air pollution exposure and preeclampsia among US women with and without asthma

    Energy Technology Data Exchange (ETDEWEB)

    Mendola, Pauline, E-mail: pauline.mendola@nih.gov [Eunice Kennedy Shriver National Institute of Child Health and Human Development, Division of Intramural Population Health Research, Epidemiology Branch, Rockville, MD 20852 (United States); Wallace, Maeve [Eunice Kennedy Shriver National Institute of Child Health and Human Development, Division of Intramural Population Health Research, Epidemiology Branch, Rockville, MD 20852 (United States); Liu, Danping [Eunice Kennedy Shriver National Institute of Child Health and Human Development, Division of Intramural Population Health Research, Biostatistics and Bioinformatics Branch, Rockville, MD 20852 (United States); Robledo, Candace [Eunice Kennedy Shriver National Institute of Child Health and Human Development, Division of Intramural Population Health Research, Epidemiology Branch, Rockville, MD 20852 (United States); Männistö, Tuija [Eunice Kennedy Shriver National Institute of Child Health and Human Development, Division of Intramural Population Health Research, Epidemiology Branch, Rockville, MD 20852 (United States); Northern Finland Laboratory Centre NordLab, Oulu (Finland); Department of Clinical Chemistry, University of Oulu, Oulu (Finland); Medical Research Center Oulu, Oulu University Hospital and University of Oulu, PO Box 500, 90029 OYS (Finland); Department of Chronic Disease Prevention, National Institute for Health and Welfare, PO Box 310, 90101 Oulu (Finland); Grantz, Katherine L. [Eunice Kennedy Shriver National Institute of Child Health and Human Development, Division of Intramural Population Health Research, Epidemiology Branch, Rockville, MD 20852 (United States)

    2016-07-15

    Maternal asthma and air pollutants have been independently associated with preeclampsia but rarely studied together. Our objective was to comprehensively evaluate preeclampsia risk based on the interaction of maternal asthma and air pollutants. Preeclampsia and asthma diagnoses, demographic and clinical data came from electronic medical records for 210,508 singleton deliveries. Modified Community Multiscale Air Quality models estimated preconception, first and second trimester and whole pregnancy exposure to: particulate matter (PM)<2.5 and <10 µm, ozone, nitrogen oxides (NO{sub x}), sulfur dioxide (SO{sub 2}) and carbon monoxide (CO); PM{sub 2.5} constituents; volatile organic compounds (VOCs) and polycyclic aromatic hydrocarbons (PAHs). Asthma-pollutant interaction adjusted relative risks (RR) and 95% confidence intervals (CI) for preeclampsia were calculated by interquartile range for criteria pollutants and high exposure (≥75th percentile) for PAHs and VOCs. Asthmatics had higher risk associated with first trimester NO{sub x} and SO{sub 2} and whole pregnancy elemental carbon (EC) exposure than non-asthmatics, but only EC significantly increased risk (RR=1.11, CI:1.03–1.21). Asthmatics also had a 10% increased risk associated with second trimester CO. Significant interactions were observed for nearly all VOCs and asthmatics had higher risk during all time windows for benzene, ethylbenzene, m-xylene, o-xylene, p-xylene and toluene while most PAHs did not increase risk. - Highlights: • Asthma is common in pregnancy and asthmatic women have increased preeclampsia risk. • Air pollution could differentially increase preeclampsia risk for asthmatic women. • Preeclampsia risk was higher for asthmatics than non-asthmatics after VOC exposure. • Asthmatics also had higher risk after whole pregnancy exposure to elemental carbon. • Pregnant women with asthma appear to be particularly vulnerable to air pollutants.

  19. Air pollution exposure and preeclampsia among US women with and without asthma

    International Nuclear Information System (INIS)

    Mendola, Pauline; Wallace, Maeve; Liu, Danping; Robledo, Candace; Männistö, Tuija; Grantz, Katherine L.

    2016-01-01

    Maternal asthma and air pollutants have been independently associated with preeclampsia but rarely studied together. Our objective was to comprehensively evaluate preeclampsia risk based on the interaction of maternal asthma and air pollutants. Preeclampsia and asthma diagnoses, demographic and clinical data came from electronic medical records for 210,508 singleton deliveries. Modified Community Multiscale Air Quality models estimated preconception, first and second trimester and whole pregnancy exposure to: particulate matter (PM)<2.5 and <10 µm, ozone, nitrogen oxides (NO x ), sulfur dioxide (SO 2 ) and carbon monoxide (CO); PM 2.5 constituents; volatile organic compounds (VOCs) and polycyclic aromatic hydrocarbons (PAHs). Asthma-pollutant interaction adjusted relative risks (RR) and 95% confidence intervals (CI) for preeclampsia were calculated by interquartile range for criteria pollutants and high exposure (≥75th percentile) for PAHs and VOCs. Asthmatics had higher risk associated with first trimester NO x and SO 2 and whole pregnancy elemental carbon (EC) exposure than non-asthmatics, but only EC significantly increased risk (RR=1.11, CI:1.03–1.21). Asthmatics also had a 10% increased risk associated with second trimester CO. Significant interactions were observed for nearly all VOCs and asthmatics had higher risk during all time windows for benzene, ethylbenzene, m-xylene, o-xylene, p-xylene and toluene while most PAHs did not increase risk. - Highlights: • Asthma is common in pregnancy and asthmatic women have increased preeclampsia risk. • Air pollution could differentially increase preeclampsia risk for asthmatic women. • Preeclampsia risk was higher for asthmatics than non-asthmatics after VOC exposure. • Asthmatics also had higher risk after whole pregnancy exposure to elemental carbon. • Pregnant women with asthma appear to be particularly vulnerable to air pollutants.

  20. Association between ambient air pollution and proliferation of umbilical cord blood cells

    Energy Technology Data Exchange (ETDEWEB)

    Novack, L., E-mail: novack@bgu.ac.il [Department of Public Health, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva (Israel); Yitshak-Sade, M. [Clinical Research Center, Soroka University Medical Center, Beer-Sheva (Israel); Landau, D. [Division of Neonatology, University Medical Center, Beer-Sheva (Israel); Kloog, I. [Department of Geography, Ben-Gurion University of the Negev, Beer-Sheva (Israel); Sarov, B. [Department of Public Health, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva (Israel); Karakis, I. [Environmental Epidemiology Department, Ministry of Health, Jerusalem (Israel); Ashkelon Academic College, Ashkelon (Israel)

    2016-11-15

    It has been established as a common knowledge that ambient air pollution (AAP) has an adverse effect on human health. The pathophysiological mechanism of this impact is likely to be related to the oxidative stress. In the current study we estimate the association between AAP and cell proliferation (CP) of umbilical cord blood cells, representing maternal organism most proximal to the fetal body. Blood samples were tested for proliferation in 292 enrolled Arab-Bedouin women at delivery (July 2012–March 2013). The estimates of AAP were defined by a hybrid satellite based model predicting both PM{sub 2.5} (particles<2.5 µm in diameter) and PM{sub 10} (particles<10 µm in diameter) as well as monitoring stations for gaseous air pollutants. Risk estimates of pollution exposure were adjusted to medical history, household risk factors and meteorological factors on the day of delivery or one week prior. Ambient ozone (O{sub 3}) levels on 1, 2, 3and 4 days prior to delivery were associated with lower CP (Prevalence ratio (PR)=0.92, 0.92, 0.93, 0.93, respectively). Increase in inter-quartile range (IOR) of PM{sub 2.5} one day before delivery was associated with 9% increase in CP levels (PR=1.09). The positive direction in association was changed to negative association with CP for PM{sub 2.5} levels measured at more distant time periods (PR=0.90 and 0.93 for lags 5 and 6 days, respectively). Investigation of PM{sub 10} levels indicated a similar pattern (PR=1.05 for pollution values recorded one day before delivery and 0.93 and 0.95 for lags of 5 and 6 days, respectively). Carbon monoxide (CO) levels were associated with lower CP on the day of delivery and 1 day prior (PR=0.92 and PR=0.94). To conclude, the levels of cell proliferation of umbilical cord blood cells appear to be associated with the AAP. More studies are needed to support our findings. - Highlights: • Ambient air pollutants were suggested to have an impact on cell proliferation (CP) of umbilical cord