WorldWideScience

Sample records for plausible binding modes

  1. Metal ion binding with dehydroannulenes - Plausible two-dimensional molecular sieves

    Indian Academy of Sciences (India)

    B Sateesh; Y Soujanya; G Narahari Sastry

    2007-09-01

    Theoretical investigations have been carried out at B3LYP/6-311++G∗∗ level of theory to study the binding interaction of various metal ions, Li+, Na+ and K+ with dehydroannulene systems. The present study reveals that alkali metal ions bind strongly to dehydroannulenes and the passage through the central cavity is controlled by the size of metal ion and dimension of dehydroannulene cavity.

  2. Landscape of protein-small ligand binding modes.

    Science.gov (United States)

    Kasahara, Kota; Kinoshita, Kengo

    2016-09-01

    Elucidating the mechanisms of specific small-molecule (ligand) recognition by proteins is a long-standing conundrum. While the structures of these molecules, proteins and ligands, have been extensively studied, protein-ligand interactions, or binding modes, have not been comprehensively analyzed. Although methods for assessing similarities of binding site structures have been extensively developed, the methods for the computational treatment of binding modes have not been well established. Here, we developed a computational method for encoding the information about binding modes as graphs, and assessing their similarities. An all-against-all comparison of 20,040 protein-ligand complexes provided the landscape of the protein-ligand binding modes and its relationships with protein- and chemical spaces. While similar proteins in the same SCOP Family tend to bind relatively similar ligands with similar binding modes, the correlation between ligand and binding similarities was not very high (R(2)  = 0.443). We found many pairs with novel relationships, in which two evolutionally distant proteins recognize dissimilar ligands by similar binding modes (757,474 pairs out of 200,790,780 pairs were categorized into this relationship, in our dataset). In addition, there were an abundance of pairs of homologous proteins binding to similar ligands with different binding modes (68,217 pairs). Our results showed that many interesting relationships between protein-ligand complexes are still hidden in the structure database, and our new method for assessing binding mode similarities is effective to find them.

  3. Review of the Third Domain Receptor Binding Fragment of Alpha-fetoprotein (AFP): Plausible Binding of AFP to Lysophospholipid Receptor Targets.

    Science.gov (United States)

    Mizejewski, G J

    2016-01-31

    Alpha-fetoprotein (AFP) is a 69 kD fetal- and tumor-associated single-chain glycoprotein belonging to the albuminoid gene family. AFP functions as a carrier/transport molecule as well as a growth regulator and has been utilized as a clinical biomarker for both fetal defects and cancer growth. Lysophospholipids (LPLs) are plasma membrane-derived bioactive lipid signaling mediators composed of a small molecular weight single acyl carbon chain (palmitic, oleic acid) attached to a polar headgroup; they range in molecular mass from 250-750 daltons. The LPLs consist of either sphingosine-1-phosphate or lysophosphatidic acid, and mostly their choline, ethanolamine, serine or inositol derivatives. They are present only in vertebrates. These bioactive paracrine lipid mediators are ubiquitously distributed in tissues and are released from many different cell types (platelets, macrophages, monocytes, etc.) involved in developmental, physiological, and pathological processes. The LPLs bind to four different classes of G-protein coupled receptors described herein which transduce a multiple of cell effects encompassing activities such as morphogenesis, neural development, angiogenesis, and carcinogenesis. The identification of potential binding sites of LPL receptors on the AFP third domain receptor binding fragment were derived by computer modeling analysis. It is conceivable, but not proven, that AFP might bind not only to the LPL receptors, but also to LPLs themselves since AFP binds medium and long chain fatty acids. It is proposed that some of the activities ascribed to AFP in the past might be due in part to the presence of bound LPLs and/or their receptors.

  4. Predicting bioactive conformations and binding modes of macrocycles

    Science.gov (United States)

    Anighoro, Andrew; de la Vega de León, Antonio; Bajorath, Jürgen

    2016-10-01

    Macrocyclic compounds experience increasing interest in drug discovery. It is often thought that these large and chemically complex molecules provide promising candidates to address difficult targets and interfere with protein-protein interactions. From a computational viewpoint, these molecules are difficult to treat. For example, flexible docking of macrocyclic compounds is hindered by the limited ability of current docking approaches to optimize conformations of extended ring systems for pose prediction. Herein, we report predictions of bioactive conformations of macrocycles using conformational search and binding modes using docking. Conformational ensembles generated using specialized search technique of about 70 % of the tested macrocycles contained accurate bioactive conformations. However, these conformations were difficult to identify on the basis of conformational energies. Moreover, docking calculations with limited ligand flexibility starting from individual low energy conformations rarely yielded highly accurate binding modes. In about 40 % of the test cases, binding modes were approximated with reasonable accuracy. However, when conformational ensembles were subjected to rigid body docking, an increase in meaningful binding mode predictions to more than 50 % of the test cases was observed. Electrostatic effects did not contribute to these predictions in a positive or negative manner. Rather, achieving shape complementarity at macrocycle-target interfaces was a decisive factor. In summary, a combined computational protocol using pre-computed conformational ensembles of macrocycles as a starting point for docking shows promise in modeling binding modes of macrocyclic compounds.

  5. Multiple binding modes of ibuprofen in human serum albumin identified by absolute binding free energy calculations

    KAUST Repository

    Evoli, Stefania

    2016-11-10

    Human serum albumin possesses multiple binding sites and transports a wide range of ligands that include the anti-inflammatory drug ibuprofen. A complete map of the binding sites of ibuprofen in albumin is difficult to obtain in traditional experiments, because of the structural adaptability of this protein in accommodating small ligands. In this work, we provide a set of predictions covering the geometry, affinity of binding and protonation state for the pharmaceutically most active form (S-isomer) of ibuprofen to albumin, by using absolute binding free energy calculations in combination with classical molecular dynamics (MD) simulations and molecular docking. The most favorable binding modes correctly reproduce several experimentally identified binding locations, which include the two Sudlow\\'s drug sites (DS2 and DS1) and the fatty acid binding sites 6 and 2 (FA6 and FA2). Previously unknown details of the binding conformations were revealed for some of them, and formerly undetected binding modes were found in other protein sites. The calculated binding affinities exhibit trends which seem to agree with the available experimental data, and drastically degrade when the ligand is modeled in a protonated (neutral) state, indicating that ibuprofen associates with albumin preferentially in its charged form. These findings provide a detailed description of the binding of ibuprofen, help to explain a wide range of results reported in the literature in the last decades, and demonstrate the possibility of using simulation methods to predict ligand binding to albumin.

  6. Looking for plausibility

    CERN Document Server

    Abdullah, Wan Ahmad Tajuddin Wan

    2010-01-01

    In the interpretation of experimental data, one is actually looking for plausible explanations. We look for a measure of plausibility, with which we can compare different possible explanations, and which can be combined when there are different sets of data. This is contrasted to the conventional measure for probabilities as well as to the proposed measure of possibilities. We define what characteristics this measure of plausibility should have. In getting to the conception of this measure, we explore the relation of plausibility to abductive reasoning, and to Bayesian probabilities. We also compare with the Dempster-Schaefer theory of evidence, which also has its own definition for plausibility. Abduction can be associated with biconditionality in inference rules, and this provides a platform to relate to the Collins-Michalski theory of plausibility. Finally, using a formalism for wiring logic onto Hopfield neural networks, we ask if this is relevant in obtaining this measure.

  7. Observation of Protein Structural Vibrational Mode Sensitivity to Ligand Binding

    Science.gov (United States)

    Niessen, Katherine; Xu, Mengyang; Snell, Edward; Markelz, Andrea

    2014-03-01

    We report the first measurements of the dependence of large-scale protein intramolecular vibrational modes on ligand binding. These collective vibrational modes in the terahertz (THz) frequency range (5-100 cm-1) are of great interest due to their predicted relation to protein function. Our technique, Crystals Anisotropy Terahertz Microscopy (CATM), allows for room temperature, table-top measurements of the optically active intramolecular modes. CATM measurements have revealed surprisingly narrowband features. CATM measurements are performed on single crystals of chicken egg-white lysozyme (CEWL) as well as CEWL bound to tri-N-acetylglucosamine (CEWL-3NAG) inhibitor. We find narrow band resonances that dramatically shift with binding. Quasiharmonic calculations are performed on CEWL and CEWL-3NAG proteins with CHARMM using normal mode analysis. The expected CATM response of the crystals is then calculated by summing over all protein orientations within the unit cell. We will compare the CATM measurements with the calculated results and discuss the changes which arise with protein-ligand binding. This work is supported by NSF grant MRI 2 grant DBI2959989.

  8. Biologically Plausible, Human-scale Knowledge Representation

    Science.gov (United States)

    Crawford, Eric; Gingerich, Matthew; Eliasmith, Chris

    2016-01-01

    Several approaches to implementing symbol-like representations in neurally plausible models have been proposed. These approaches include binding through synchrony (Shastri & Ajjanagadde, 1993), "mesh" binding (van der Velde & de Kamps, 2006), and conjunctive binding (Smolensky, 1990). Recent theoretical work has suggested that…

  9. Fluoroquinolone-gyrase-DNA complexes: two modes of drug binding.

    Science.gov (United States)

    Mustaev, Arkady; Malik, Muhammad; Zhao, Xilin; Kurepina, Natalia; Luan, Gan; Oppegard, Lisa M; Hiasa, Hiroshi; Marks, Kevin R; Kerns, Robert J; Berger, James M; Drlica, Karl

    2014-05-02

    DNA gyrase and topoisomerase IV control bacterial DNA topology by breaking DNA, passing duplex DNA through the break, and then resealing the break. This process is subject to reversible corruption by fluoroquinolones, antibacterials that form drug-enzyme-DNA complexes in which the DNA is broken. The complexes, called cleaved complexes because of the presence of DNA breaks, have been crystallized and found to have the fluoroquinolone C-7 ring system facing the GyrB/ParE subunits. As expected from x-ray crystallography, a thiol-reactive, C-7-modified chloroacetyl derivative of ciprofloxacin (Cip-AcCl) formed cross-linked cleaved complexes with mutant GyrB-Cys(466) gyrase as evidenced by resistance to reversal by both EDTA and thermal treatments. Surprisingly, cross-linking was also readily seen with complexes formed by mutant GyrA-G81C gyrase, thereby revealing a novel drug-gyrase interaction not observed in crystal structures. The cross-link between fluoroquinolone and GyrA-G81C gyrase correlated with exceptional bacteriostatic activity for Cip-AcCl with a quinolone-resistant GyrA-G81C variant of Escherichia coli and its Mycobacterium smegmatis equivalent (GyrA-G89C). Cip-AcCl-mediated, irreversible inhibition of DNA replication provided further evidence for a GyrA-drug cross-link. Collectively these data establish the existence of interactions between the fluoroquinolone C-7 ring and both GyrA and GyrB. Because the GyrA-Gly(81) and GyrB-Glu(466) residues are far apart (17 Å) in the crystal structure of cleaved complexes, two modes of quinolone binding must exist. The presence of two binding modes raises the possibility that multiple quinolone-enzyme-DNA complexes can form, a discovery that opens new avenues for exploring and exploiting relationships between drug structure and activity with type II DNA topoisomerases.

  10. ELK1 uses different DNA binding modes to regulate functionally distinct classes of target genes.

    Directory of Open Access Journals (Sweden)

    Zaneta Odrowaz

    Full Text Available Eukaryotic transcription factors are grouped into families and, due to their similar DNA binding domains, often have the potential to bind to the same genomic regions. This can lead to redundancy at the level of DNA binding, and mechanisms are required to generate specific functional outcomes that enable distinct gene expression programmes to be controlled by a particular transcription factor. Here we used ChIP-seq to uncover two distinct binding modes for the ETS transcription factor ELK1. In one mode, other ETS transcription factors can bind regulatory regions in a redundant fashion; in the second, ELK1 binds in a unique fashion to another set of genomic targets. Each binding mode is associated with different binding site features and also distinct regulatory outcomes. Furthermore, the type of binding mode also determines the control of functionally distinct subclasses of genes and hence the phenotypic response elicited. This is demonstrated for the unique binding mode where a novel role for ELK1 in controlling cell migration is revealed. We have therefore uncovered an unexpected link between the type of binding mode employed by a transcription factor, the subsequent gene regulatory mechanisms used, and the functional categories of target genes controlled.

  11. A 3D-QSAR-driven approach to binding mode and affinity prediction

    DEFF Research Database (Denmark)

    Tosco, Paolo; Balle, Thomas

    2012-01-01

    A method for predicting the binding mode of a series of ligands is proposed. The procedure relies on three-dimensional quantitative structure-activity relationships (3D-QSAR) and does not require structural knowledge of the binding site. Candidate alignments are automatically built and ranked...... according to a consensus scoring function. 3D-QSAR analysis based on the selected binding mode enables affinity prediction of new drug candidates having less than 10 rotatable bonds....

  12. NMR Studies of a New Binding Mode of the Amino Acid Esters by Porphyrinatozinc(Ⅱ)

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The binding mode of the amino acid ethyl esters(guest) by 5-(2-carboxylphenyl)-10,15,20-triphenylporphyrinatozinc(Ⅱ)(host 1) was studied by means of 1H NMR spectra. The binding mode is the hydrogen-bonding between the amino group of the guest and the carboxyl group of host 1 plus the coordination between the zinc atom of porphyrinatozinc(Ⅱ) and the carbonyl group of the guest. This is a novel binding mode of the metalloporphyrin to amino acid derivatives.

  13. The binding cavity of mouse major urinary protein is optimised for a variety of ligand binding modes

    Energy Technology Data Exchange (ETDEWEB)

    Pertinhez, Thelma A.; Ferrari, Elena; Casali, Emanuela [Department of Experimental Medicine, University of Parma, Via Volturno, 39, 43100 Parma (Italy); Patel, Jital A. [Department of Chemistry, University of Oxford, Inorganic Chemistry Laboratory, South Parks Road, Oxford OX1 3QR (United Kingdom); Spisni, Alberto, E-mail: alberto.spisni@unipr.it [Department of Experimental Medicine, University of Parma, Via Volturno, 39, 43100 Parma (Italy); Smith, Lorna J., E-mail: lorna.smith@chem.ox.ac.uk [Department of Chemistry, University of Oxford, Inorganic Chemistry Laboratory, South Parks Road, Oxford OX1 3QR (United Kingdom)

    2009-12-25

    {sup 15}N and {sup 1}HN chemical shift data and {sup 15}N relaxation studies have been used to characterise the binding of N-phenyl-naphthylamine (NPN) to mouse major urinary protein (MUP). NPN binds in the {beta}-barrel cavity of MUP, hydrogen bonding to Tyr120 and making extensive non-bonded contacts with hydrophobic side chains. In contrast to the natural pheromone 2-sec-butyl-4,5-dihydrothiazole, NPN binding gives no change to the overall mobility of the protein backbone of MUP. Comparison with 11 different ligands that bind to MUP shows a range of binding modes involving 16 different residues in the {beta}-barrel cavity. These finding justify why MUP is able to adapt to allow for many successful binding partners.

  14. Accuracy of binding mode prediction with a cascadic stochastic tunneling method.

    Science.gov (United States)

    Fischer, Bernhard; Basili, Serena; Merlitz, Holger; Wenzel, Wolfgang

    2007-07-01

    We investigate the accuracy of the binding modes predicted for 83 complexes of the high-resolution subset of the ASTEX/CCDC receptor-ligand database using the atomistic FlexScreen approach with a simple forcefield-based scoring function. The median RMS deviation between experimental and predicted binding mode was just 0.83 A. Over 80% of the ligands dock within 2 A of the experimental binding mode, for 60 complexes the docking protocol locates the correct binding mode in all of ten independent simulations. Most docking failures arise because (a) the experimental structure clashed in our forcefield and is thus unattainable in the docking process or (b) because the ligand is stabilized by crystal water.

  15. An in silico analysis of the binding modes and binding affinities of small molecule modulators of PDZ-peptide interactions.

    Directory of Open Access Journals (Sweden)

    Garima Tiwari

    Full Text Available Inhibitors of PDZ-peptide interactions have important implications in a variety of biological processes including treatment of cancer and Parkinson's disease. Even though experimental studies have reported characterization of peptidomimetic inhibitors of PDZ-peptide interactions, the binding modes for most of them have not been characterized by structural studies. In this study we have attempted to understand the structural basis of the small molecule-PDZ interactions by in silico analysis of the binding modes and binding affinities of a set of 38 small molecules with known K(i or K(d values for PDZ2 and PDZ3 domains of PSD-95 protein. These two PDZ domains show differential selectivity for these compounds despite having a high degree of sequence similarity and almost identical peptide binding pockets. Optimum binding modes for these ligands for PDZ2 and PDZ3 domains were identified by using a novel combination of semi-flexible docking and explicit solvent molecular dynamics (MD simulations. Analysis of the binding modes revealed most of the peptidomimectic ligands which had high K(i or K(d moved away from the peptide binding pocket, while ligands with high binding affinities remained in the peptide binding pocket. The differential specificities of the PDZ2 and PDZ3 domains primarily arise from differences in the conformation of the loop connecting βB and βC strands, because this loop interacts with the N-terminal chemical moieties of the ligands. We have also computed the MM/PBSA binding free energy values for these 38 compounds with both the PDZ domains from multiple 5 ns MD trajectories on each complex i.e. a total of 228 MD trajectories of 5 ns length each. Interestingly, computational binding free energies show good agreement with experimental binding free energies with a correlation coefficient of approximately 0.6. Thus our study demonstrates that combined use of docking and MD simulations can help in identification of potent inhibitors

  16. Branched peptide boronic acids (BPBAs): a novel mode of binding towards RNA.

    Science.gov (United States)

    Zhang, Wenyu; Bryson, David I; Crumpton, Jason B; Wynn, Jessica; Santos, Webster L

    2013-03-25

    We report branched peptide boronic acids (BPBAs) that bind to RRE IIB from an on-bead high-throughput screening of a 3.3.4-library (46 656 compounds). We demonstrate that boronic acids are tunable moieties that afford a novel binding mode towards RNA.

  17. Molecular level studies on binding modes of labeling molecules with polyalanine peptides

    Science.gov (United States)

    Mao, Xiaobo; Wang, Chenxuan; Ma, Xiaojing; Zhang, Min; Liu, Lei; Zhang, Lan; Niu, Lin; Zeng, Qindao; Yang, Yanlian; Wang, Chen

    2011-04-01

    In this work, the binding modes of typical labeling molecules (thioflavin T (ThT), Congo red (CR) and copper(ii) phthalocyanine tetrasulfonic acid tetrasodium salt (PcCu(SO3Na)4)) on pentaalanine, which is a model peptide segment of amyloidpeptides, have been resolved at the molecular level by using scanning tunneling microscopy (STM). In the STM images, ThT molecules are predominantly adsorbed parallel to the peptide strands and two binding modes could be identified. It was found that ThT molecules are preferentially binding on top of the peptide strand, and the mode of intercalated between neighboring peptides also exists. The parallel binding mode of CR molecules can be observed with pentaalaninepeptides. Besides the binding modes of labeling molecules, the CR and PcCu(SO3Na)4 display different adsorption affinity with the pentaalaninepeptides. The results could be beneficial for obtaining molecular level insight of the interactions between labeling molecules and peptides.In this work, the binding modes of typical labeling molecules (thioflavin T (ThT), Congo red (CR) and copper(ii) phthalocyanine tetrasulfonic acid tetrasodium salt (PcCu(SO3Na)4)) on pentaalanine, which is a model peptide segment of amyloidpeptides, have been resolved at the molecular level by using scanning tunneling microscopy (STM). In the STM images, ThT molecules are predominantly adsorbed parallel to the peptide strands and two binding modes could be identified. It was found that ThT molecules are preferentially binding on top of the peptide strand, and the mode of intercalated between neighboring peptides also exists. The parallel binding mode of CR molecules can be observed with pentaalaninepeptides. Besides the binding modes of labeling molecules, the CR and PcCu(SO3Na)4 display different adsorption affinity with the pentaalaninepeptides. The results could be beneficial for obtaining molecular level insight of the interactions between labeling molecules and peptides. Electronic

  18. Study on the binding mode of Mg(Sal2trien) with DNA

    Institute of Scientific and Technical Information of China (English)

    XI Xiaoli; YANG Manman; ZHOU Chengyong; ZHAO Jing; YANG Pin

    2006-01-01

    In this study the complex Mg(Sal2trien) was synthesized for the first time, the binding mode of which with CT DNA was studied by the methods of UV spectra, fluorescence spectra, viscosity and CV (cyclic voltammetry). It was found that after the complex acted with CT DNA, the Abs of UV spectra rose obviously; the fluorescence intensity of EB-DNA was almost not changed; viscosity decreased. Determination of cyclic voltammetry showed that DNA made the MgL's formal potential negatively shift. Scatchard plot showed that the addition of the binding mode of the complex to EB was uncompetitive inhibition compared with EB to DNA. So the binding mode of the complex with CT DNA was stable-electricity binding. Then the interaction of the complex with pBR322 was studied by the method of gel electrophoresis. The result showed that the complex could cleave pBR322 DNA effectively.

  19. Binding Mode of Insulin Receptor and Agonist Peptide

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Insulin is a protein hormone secreted by pancreatic β cells. One of its main functions is to keep the balance of glucose inside the body by regulating the absorption and metabolism of glucose in the periphery tissue, as well as the production and storage of hepatic glycogen. The insulin receptor is a transmembrane glycoprotein in which two α subunits with a molecular weight of 135 kD and twoβ subunits with a molecular weight of 95 kD are joined by a disulfide bond to form a β-α-α-β structure. The extracellular α subunit, especially, its three domains near the N-terminal are partially responsible for signal transduction or ligand-binding, as indicated by the experiments. The extracellular α subunits are involved in binding the ligands. The experimental results indicate that the three domains of the N-terminal of the α subunits are the main determinative parts of the insulin receptor to bind the insulin or mimetic peptide.We employed the extracellular domain (PDBID: 1IGR) of the insulin-like growth factor-1 receptor (IGF-1 R ) as the template to simulate and optimize the spatial structures of the three domains in the extracellular domain of the insulin receptor, which includes 468 residues. The work was accomplished by making use of the homology program in the Insight Ⅱ package on an Origin3800 server. The docking calculations of the insulin receptor obtained by homology with hexapeptides were carried out by means of the program Affinity. The analysis indicated that there were hydrogen bonding, and electrostatic and hydrophobic effects in the docking complex of the insulin receptor with hexapeptides.Moreover, we described the spatial orientation of a mimetic peptide with agonist activity in the docking complex. We obtained a rough model of binding of DLAPSQ or STIVYS with the insulin receptor, which provides the powerful theoretical support for designing the minimal insulin mimetic peptide with agonist activity, making it possible to develop oral small

  20. Comparison and correlation of binding mode of ATP in the kinase domains of Hexokinase family

    Science.gov (United States)

    Kumar, Yellapu Nanda; Kumar, Pasupuleti Santhosh; Sowjenya, Gopal; Rao, Valasani Koteswara; Yeswanth, Sthanikam; Prasad, Uppu Venkateswara; Pradeepkiran, Jangampalli Adi; Sarma, PVGK; Bhaskar, Matcha

    2012-01-01

    Hexokinases (HKs) are the enzymes that catalyses the ATP dependent phosphorylation of Hexose sugars to Hexose-6-Phosphate (Hex-6-P). There exist four different forms of HKs namely HK-I, HK-II, HK-III and HK-IV and all of them share a common ATP binding site core surrounded by more variable sequence that determine substrate affinities. Although they share a common binding site but they differ in their kinetic functions, hence the present study is aimed to analyze the binding mode of ATP. The analysis revealed that the four ATP binding domains are showing 13 identical, 7 similar and 6 dissimilar residues with similar structural conformation. Molecular docking of ATP into the kinase domains using Molecular Operating Environment (MOE) soft ware tool clearly showed the variation in the binding mode of ATP with variable docking scores. This probably explains the variable phosphorylation rates among hexokinases family. PMID:22829728

  1. Binding Mode Selection Determines the Action of Ecstasy Homologs at Monoamine Transporters.

    Science.gov (United States)

    Sandtner, Walter; Stockner, Thomas; Hasenhuetl, Peter S; Partilla, John S; Seddik, Amir; Zhang, Yuan-Wei; Cao, Jianjing; Holy, Marion; Steinkellner, Thomas; Rudnick, Gary; Baumann, Michael H; Ecker, Gerhard F; Newman, Amy Hauck; Sitte, Harald H

    2016-01-01

    Determining the structural elements that define substrates and inhibitors at the monoamine transporters is critical to elucidating the mechanisms underlying these disparate functions. In this study, we addressed this question directly by generating a series of N-substituted 3,4-methylenedioxyamphetamine analogs that differ only in the number of methyl substituents on the terminal amine group. Starting with 3,4-methylenedioxy-N-methylamphetamine, 3,4-methylenedioxy-N,N-dimethylamphetamine (MDDMA) and 3,4-methylenedioxy-N,N,N-trimethylamphetamine (MDTMA) were prepared. We evaluated the functional activities of the compounds at all three monoamine transporters in native brain tissue and cells expressing the transporters. In addition, we used ligand docking to generate models of the respective protein-ligand complexes, which allowed us to relate the experimental findings to available structural information. Our results suggest that the 3,4-methylenedioxyamphetamine analogs bind at the monoamine transporter orthosteric binding site by adopting one of two mutually exclusive binding modes. 3,4-methylenedioxyamphetamine and 3,4-methylenedioxy-N-methylamphetamine adopt a high-affinity binding mode consistent with a transportable substrate, whereas MDDMA and MDTMA adopt a low-affinity binding mode consistent with an inhibitor, in which the ligand orientation is inverted. Importantly, MDDMA can alternate between both binding modes, whereas MDTMA exclusively binds to the low-affinity mode. Our experimental results are consistent with the idea that the initial orientation of bound ligands is critical for subsequent interactions that lead to transporter conformational changes and substrate translocation.

  2. Structure-Based Understanding of Binding Affinity and Mode of Estrogen Receptor α Agonists and Antagonists

    Science.gov (United States)

    Barron, Mace G.

    2017-01-01

    The flexible hydrophobic ligand binding pocket (LBP) of estrogen receptor α (ERα) allows the binding of a wide variety of endocrine disruptors. Upon ligand binding, the LBP reshapes around the contours of the ligand and stabilizes the complex by complementary hydrophobic interactions and specific hydrogen bonds with the ligand. Here we present a framework for quantitative analysis of the steric and electronic features of the human ERα-ligand complex using three dimensional (3D) protein-ligand interaction description combined with 3D-QSAR approach. An empirical hydrophobicity density field is applied to account for hydrophobic contacts of ligand within the LBP. The obtained 3D-QSAR model revealed that hydrophobic contacts primarily determine binding affinity and govern binding mode with hydrogen bonds. Several residues of the LBP appear to be quite flexible and adopt a spectrum of conformations in various ERα-ligand complexes, in particular His524. The 3D-QSAR was combined with molecular docking based on three receptor conformations to accommodate receptor flexibility. The model indicates that the dynamic character of the LBP allows accommodation and stable binding of structurally diverse ligands, and proper representation of the protein flexibility is critical for reasonable description of binding of the ligands. Our results provide a quantitative and mechanistic understanding of binding affinity and mode of ERα agonists and antagonists that may be applicable to other nuclear receptors. PMID:28061508

  3. The structure and binding mode of citrate in the stabilization of gold nanoparticles

    KAUST Repository

    Al-Johani, Hind

    2017-03-27

    Elucidating the binding mode of carboxylate-containing ligands to gold nanoparticles (AuNPs) is crucial to understand their stabilizing role. A detailed picture of the three-dimensional structure and coordination modes of citrate, acetate, succinate and glutarate to AuNPs is obtained by 13C and 23Na solid-state NMR in combination with computational modelling and electron microscopy. The binding between the carboxylates and the AuNP surface is found to occur in three different modes. These three modes are simultaneously present at low citrate to gold ratios, while a monocarboxylate monodentate (1κO1) mode is favoured at high citrate:gold ratios. The surface AuNP atoms are found to be predominantly in the zero oxidation state after citrate coordination, although trace amounts of Auδ+ are observed. 23Na NMR experiments show that Na+ ions are present near the gold surface, indicating that carboxylate binding occurs as a 2e− L-type interaction for each oxygen atom involved. This approach has broad potential to probe the binding of a variety of ligands to metal nanoparticles.

  4. The structure and binding mode of citrate in the stabilization of gold nanoparticles

    Science.gov (United States)

    Al-Johani, Hind; Abou-Hamad, Edy; Jedidi, Abdesslem; Widdifield, Cory M.; Viger-Gravel, Jasmine; Sangaru, Shiv Shankar; Gajan, David; Anjum, Dalaver H.; Ould-Chikh, Samy; Hedhili, Mohamed Nejib; Gurinov, Andrei; Kelly, Michael J.; El Eter, Mohamad; Cavallo, Luigi; Emsley, Lyndon; Basset, Jean-Marie

    2017-09-01

    Elucidating the binding mode of carboxylate-containing ligands to gold nanoparticles (AuNPs) is crucial to understand their stabilizing role. A detailed picture of the three-dimensional structure and coordination modes of citrate, acetate, succinate and glutarate to AuNPs is obtained by 13C and 23Na solid-state NMR in combination with computational modelling and electron microscopy. The binding between the carboxylates and the AuNP surface is found to occur in three different modes. These three modes are simultaneously present at low citrate to gold ratios, while a monocarboxylate monodentate (1κO1) mode is favoured at high citrate:gold ratios. The surface AuNP atoms are found to be predominantly in the zero oxidation state after citrate coordination, although trace amounts of Auδ+ are observed. 23Na NMR experiments show that Na+ ions are present near the gold surface, indicating that carboxylate binding occurs as a 2e- L-type interaction for each oxygen atom involved. This approach has broad potential to probe the binding of a variety of ligands to metal nanoparticles.

  5. Structure-based drug design enables conversion of a DFG-in binding CSF-1R kinase inhibitor to a DFG-out binding mode.

    Science.gov (United States)

    Meyers, Marvin J; Pelc, Matthew; Kamtekar, Satwik; Day, Jacqueline; Poda, Gennadiy I; Hall, Molly K; Michener, Marshall L; Reitz, Beverly A; Mathis, Karl J; Pierce, Betsy S; Parikh, Mihir D; Mischke, Deborah A; Long, Scott A; Parlow, John J; Anderson, David R; Thorarensen, Atli

    2010-03-01

    The work described herein demonstrates the utility of structure-based drug design (SBDD) in shifting the binding mode of an HTS hit from a DFG-in to a DFG-out binding mode resulting in a class of novel potent CSF-1R kinase inhibitors suitable for lead development.

  6. Structure-based drug design enables conversion of a DFG-in binding CSF-1R kinase inhibitor to a DFG-out binding mode

    Energy Technology Data Exchange (ETDEWEB)

    Meyers, Marvin J.; Pelc, Matthew; Kamtekar, Satwik; Day, Jacqueline; Poda, Gennadiy I.; Hall, Molly K.; Michener, Marshall L.; Reitz, Beverly A.; Mathis, Karl J.; Pierce, Betsy S.; Parikh, Mihir D.; Mischke, Deborah A.; Long, Scott A.; Parlow, John J.; Anderson, David R.; Thorarensen, Atli (Pfizer)

    2010-08-11

    The work described herein demonstrates the utility of structure-based drug design (SBDD) in shifting the binding mode of an HTS hit from a DFG-in to a DFG-out binding mode resulting in a class of novel potent CSF-1R kinase inhibitors suitable for lead development.

  7. Non-peptide ligand binding to the formyl peptide receptor FPR2--A comparison to peptide ligand binding modes.

    Science.gov (United States)

    Stepniewski, Tomasz M; Filipek, Slawomir

    2015-07-15

    Ligands of the FPR2 receptor initiate many signaling pathways including activation of phospholipase C, protein kinase C, the mitogen-activated protein kinase, and phosphatidylinositol 3-kinase/protein kinase B pathway. The possible actions include also calcium flux, superoxide generation, as well as migration and proliferation of monocytes. FPR2 activation may induce a pro- and anti-inflammatory effect depending on the ligand type. It is also found that this receptor is involved in tumor growth. Most of currently known FPR2 ligands are agonists since they were designed based on N-formyl peptides, which are natural agonists of formyl receptors. Since the non-peptide drugs are indispensable for effective treatment strategies, we performed a docking study of such ligands employing a generated dual template homology model of the FPR2 receptor. The study revealed different binding modes of particular classes of these drugs. Based on the obtained docking poses we proposed a detailed location of three hydrophobic pockets in orthosteric binding site of FPR2. Our model emphasizes the importance of aromatic stacking, especially with regard to residues His102(3.29) and Phe257(6.51), for binding of FPR2 ligands. We also identified other residues important for non-peptide ligand binding in the binding site of FPR2. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Structural Basis for p53 Lys120-Acetylation-Dependent DNA-Binding Mode.

    Science.gov (United States)

    Vainer, Radion; Cohen, Sarit; Shahar, Anat; Zarivach, Raz; Arbely, Eyal

    2016-07-31

    Normal cellular homeostasis depends on tight regulation of gene expression, which requires the modulation of transcription factors' DNA-binding specificity. That said, the mechanisms that allow transcription factors to distinguish between closely related response elements following different cellular signals are not fully understood. In the tumor suppressor protein p53, acetylation of loop L1 residue Lys120 within the DNA-binding domain has been shown to promote the transcription of proapoptotic genes such as bax. Here, we report the crystal structures of Lys120-acetylated p53 DNA-binding domain in complex with a consensus response element and with the natural BAX response element. Our structural analyses reveal that Lys120 acetylation expands the conformational space of loop L1 in the DNA-bound state. Loop L1 flexibility is known to increase p53's DNA-binding specificity, and Lys120-acetylation-dependent conformational changes in loop L1 enable the formation of sequence-dependent DNA-binding modes for p53. Furthermore, binding to the natural BAX response element is accompanied by global conformational changes, deformation of the DNA helical structure, and formation of an asymmetric tetrameric complex. Based on these findings, we suggest a model for p53's Lys120 acetylation-dependent DNA-binding mode. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Binding Modes of Aromatic Ligands to Mammalian Heme Peroxidases with Associated Functional Implications

    Science.gov (United States)

    Singh, Amit K.; Singh, Nagendra; Sinha, Mau; Bhushan, Asha; Kaur, Punit; Srinivasan, Alagiri; Sharma, Sujata; Singh, Tej P.

    2009-01-01

    The binding and structural studies of bovine lactoperoxidase with three aromatic ligands, acetylsalicylic acid (ASA), salicylhydoxamic acid (SHA), and benzylhydroxamic acid (BHA) show that all the three compounds bind to lactoperoxidase at the substrate binding site on the distal heme side. The binding of ASA occurs without perturbing the position of conserved heme water molecule W-1, whereas both SHA and BHA displace it by the hydroxyl group of their hydroxamic acid moieties. The acetyl group carbonyl oxygen atom of ASA forms a hydrogen bond with W-1, which in turn makes three other hydrogen-bonds, one each with heme iron, His-109 Nϵ2, and Gln-105 Nϵ2. In contrast, in the complexes of SHA and BHA, the OH group of hydroxamic acid moiety in both complexes interacts with heme iron directly with Fe-OH distances of 3.0 and 3.2Å respectively. The OH is also hydrogen bonded to His-109 Nϵ2 and Gln-105Nϵ2. The plane of benzene ring of ASA is inclined at 70.7° from the plane of heme moiety, whereas the aromatic planes of SHA and BHA are nearly parallel to the heme plane with inclinations of 15.7 and 6.2°, respectively. The mode of ASA binding provides the information about the mechanism of action of aromatic substrates, whereas the binding characteristics of SHA and BHA indicate the mode of inhibitor binding. PMID:19465478

  10. The PIP2 binding mode of the C2 domains of rabphilin-3A.

    Science.gov (United States)

    Montaville, Pierre; Coudevylle, Nicolas; Radhakrishnan, Anand; Leonov, Andrei; Zweckstetter, Markus; Becker, Stefan

    2008-06-01

    Phosphatidylinositol-4,5-bisphosphate (PIP2) is a key player in the neurotransmitter release process. Rabphilin-3A is a neuronal C2 domain tandem containing protein that is involved in this process. Both its C2 domains (C2A and C2B) are able to bind PIP2. The investigation of the interactions of the two C2 domains with the PIP2 headgroup IP3 (inositol-1,4,5-trisphosphate) by NMR showed that a well-defined binding site can be described on the concave surface of each domain. The binding modes of the two domains are different. The binding of IP3 to the C2A domain is strongly enhanced by Ca(2+) and is characterized by a K(D) of 55 microM in the presence of a saturating concentration of Ca(2+) (5 mM). Reciprocally, the binding of IP3 increases the apparent Ca(2+)-binding affinity of the C2A domain in agreement with a Target-Activated Messenger Affinity (TAMA) mechanism. The C2B domain binds IP3 in a Ca(2+)-independent fashion with low affinity. These different PIP2 headgroup recognition modes suggest that PIP2 is a target of the C2A domain of rabphilin-3A while this phospholipid is an effector of the C2B domain.

  11. THz time scale structural rearrangements and binding modes in lysozyme-ligand interactions.

    Science.gov (United States)

    Woods, K N

    2014-03-01

    Predicting the conformational changes in proteins that are relevant for substrate binding is an ongoing challenge in the aim of elucidating the functional states of proteins. The motions that are induced by protein-ligand interactions are governed by the protein global modes. Our measurements indicate that the detected changes in the global backbone motion of the enzyme upon binding reflect a shift from the large-scale collective dominant mode in the unbound state towards a functional twisting deformation that assists in closing the binding cleft. Correlated motion in lysozyme has been implicated in enzyme function in previous studies, but detailed characterization of the internal fluctuations that enable the protein to explore the ensemble of conformations that ultimately foster large-scale conformational change is yet unknown. For this reason, we use THz spectroscopy to investigate the picosecond time scale binding modes and collective structural rearrangements that take place in hen egg white lysozyme (HEWL) when bound by the inhibitor (NAG)3. These protein thermal motions correspond to fluctuations that have a role in both selecting and sampling from the available protein intrinsic conformations that communicate function. Hence, investigation of these fast, collective modes may provide knowledge about the mechanism leading to the preferred binding process in HEWL-(NAG)3. Specifically, in this work we find that the picosecond time scale hydrogen-bonding rearrangements taking place in the protein hydration shell with binding modify the packing density within the hydrophobic core on a local level. These localized, intramolecular contact variations within the protein core appear to facilitate the large cooperative movements within the interfacial region separating the α- and β- domain that mediate binding. The THz time-scale fluctuations identified in the protein-ligand system may also reveal a molecular mechanism for substrate recognition.

  12. Evidence of DNA-Ligand Binding with Different Modes Studied by Spectroscopy

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The binding behavior of several fluorescence dyes to calf thymus DNA has been studied by absorption, fluorescence and atomic force microscopy (AFM), which could provide direct evidence of formation modes and the corresponding nanostructural features of the ligand-DNA complexes.

  13. DNA interaction with DAPI fluorescent dye: Force spectroscopy decouples two different binding modes.

    Science.gov (United States)

    Reis, L A; Rocha, M S

    2017-05-01

    In this work, we use force spectroscopy to investigate the interaction between the DAPI fluorescent dye and the λ-DNA molecule under high (174 mM) and low (34 mM) ionic strengths. Firstly, we have measured the changes on the mechanical properties (persistence and contour lengths) of the DNA-DAPI complexes as a function of the dye concentration in the sample. Then, we use recently developed models in order to connect the behavior of both mechanical properties to the physical chemistry of the interaction. Such analysis has allowed us to identify and to decouple two main binding modes, determining the relevant physicochemical (binding) parameters for each of these modes: minor groove binding, which saturates at very low DAPI concentrations ( CT ∼ 0.50 μM) and presents equilibrium binding constants of the order of ∼10(7) M(-1) for the two ionic strengths studied; and intercalation, which starts to play a significant role only after the saturation of the first mode, presenting much smaller equilibrium binding constants (∼10(5) M(-1) ).

  14. The binding modes of carbazole derivatives with telomere G-quadruplex

    Science.gov (United States)

    Zhang, Xiu-feng; Zhang, Hui-juan; Xiang, Jun-feng; Li, Qian; Yang, Qian-fan; Shang, Qian; Zhang, Yan-xia; Tang, Ya-lin

    2010-10-01

    It is reported that carbazole derivatives can stabilize G-quadruplex DNA structure formed by human telomeric sequence, and therefore, they have the potential to serve as anti-cancer agents. In this present study, in order to further explore the binding mode between carbazole derivatives and G-quadruplex formed by human telomeric sequence, two carbazole iodides (BMVEC, MVEC) molecules were synthesized and used to investigate the interaction with the human telomeric parallel and antiparallel G-quadruplex structures by NMR, CD and molecular modeling study. Interestingly, it is the pivotal the cationic charge pendant groups of pyridinium rings of carbazole that plays an essential role in the stabilizing and binding mode of the human telomeric sequences G-quadruplex structure. It was found that BMVEC with two cationic charge pendant groups of pyridinium rings of 9-ethylcarbazole cannot only stabilize parallel G-quadruple of Hum6 by groove binding and G-tetrad stacking modes and antiparallel G-quadruplex of Hum22 by groove binding, but also induce the formation of mixed G-quadruplex of Hum22. While MVEC with one cationic charge pendant groups of pyridinium ring only can bind with the parallel G-quadruplex of Hum6 by the stacking onto the G4 G-tetrad and could not interact with the G-quadruplex of Hum22.

  15. Binding Energy Distribution Analysis Method: Hamiltonian Replica Exchange with Torsional Flattening for Binding Mode Prediction and Binding Free Energy Estimation.

    Science.gov (United States)

    Mentes, Ahmet; Deng, Nan-Jie; Vijayan, R S K; Xia, Junchao; Gallicchio, Emilio; Levy, Ronald M

    2016-05-10

    Molecular dynamics modeling of complex biological systems is limited by finite simulation time. The simulations are often trapped close to local energy minima separated by high energy barriers. Here, we introduce Hamiltonian replica exchange (H-REMD) with torsional flattening in the Binding Energy Distribution Analysis Method (BEDAM), to reduce energy barriers along torsional degrees of freedom and accelerate sampling of intramolecular degrees of freedom relevant to protein-ligand binding. The method is tested on a standard benchmark (T4 Lysozyme/L99A/p-xylene complex) and on a library of HIV-1 integrase complexes derived from the SAMPL4 blind challenge. We applied the torsional flattening strategy to 26 of the 53 known binders to the HIV Integrase LEDGF site found to have a binding energy landscape funneled toward the crystal structure. We show that our approach samples the conformational space more efficiently than the original method without flattening when starting from a poorly docked pose with incorrect ligand dihedral angle conformations. In these unfavorable cases convergence to a binding pose within 2-3 Å from the crystallographic pose is obtained within a few nanoseconds of the Hamiltonian replica exchange simulation. We found that torsional flattening is insufficient in cases where trapping is due to factors other than torsional energy, such as the formation of incorrect intramolecular hydrogen bonds and stacking. Work is in progress to generalize the approach to handle these cases and thereby make it more widely applicable.

  16. Reassessment of the unique mode of binding between angiotensin II type 1 receptor and their blockers.

    Directory of Open Access Journals (Sweden)

    Shin-Ichiro Miura

    Full Text Available While the molecular structures of angiotensin II (Ang II type 1 (AT1 receptor blockers (ARBs are very similar, they are also slightly different. Although each ARB has been shown to exhibit a unique mode of binding to AT1 receptor, different positions of the AT1 receptor have been analyzed and computational modeling has been performed using different crystal structures for the receptor as a template and different kinds of software. Therefore, we systematically analyzed the critical positions of the AT1 receptor, Tyr(113, Tyr(184, Lys(199, His(256 and Gln(257 using a mutagenesis study, and subsequently performed computational modeling of the binding of ARBs to AT1 receptor using CXCR4 receptor as a new template and a single version of software. The interactions between Tyr(113 in the AT1 receptor and the hydroxyl group of olmesartan, between Lys(199 and carboxyl or tetrazole groups, and between His(256 or Gln(257 and the tetrazole group were studied. The common structure, a tetrazole group, of most ARBs similarly bind to Lys(199, His(256 and Gln(257 of AT1 receptor. Lys(199 in the AT1 receptor binds to the carboxyl group of EXP3174, candesartan and azilsartan, whereas oxygen in the amidecarbonyl group of valsartan may bind to Lys(199. The benzimidazole portion of telmisartan may bind to a lipophilic pocket that includes Tyr(113. On the other hand, the n-butyl group of irbesartan may bind to Tyr(113. In conclusion, we confirmed that the slightly different structures of ARBs may be critical for binding to AT1 receptor and for the formation of unique modes of binding.

  17. Study on the Binding Mode of a Co(Ⅱ) Complex with DNA

    Institute of Scientific and Technical Information of China (English)

    ZHOU Qing-Hua; YANG Pin

    2005-01-01

    The mode of binding of CoLCl2, here L=bis(2-benzimidazolylmethyl)amine, with calf thymus DNA has been investigated by fluorescence measurements, equilibrium dialysis, viscosity experiments and gel electrophoresis. The complex was found to bind but weakly to DNA, with binding constant of 1.96× 104 L/mol determind at 20 ℃ in a solution containing 5 mmol/L Tris-HCl (pH 7.1) and 50 mmol/L NaCl. Polyelectrolyte theory was applied to analyse these values. Viscosity experiments show that binding did not alter the relative viscosity of DNA with any complexes to an appreciable extent. Electrophoresis test displayed that the compound could not cleave the DNA.These results show that the complex is essentially electrostatically bound to DNA.

  18. Deciphering the groove binding modes of tau-fluvalinate and flumethrin with calf thymus DNA

    Science.gov (United States)

    Tao, Mo; Zhang, Guowen; Pan, Junhui; Xiong, Chunhong

    2016-02-01

    Tau-fluvalinate (TFL) and flumethrin (FL), widely used in agriculture and a class of synthetic pyrethroid pesticides with a similar structure, may cause a potential security risk. Herein, the modes of binding in vitro of TFL and FL with calf thymus DNA (ctDNA) were characterized by fluorescence, UV-vis absorption, circular dichroism (CD) and Fourier transform infrared (FT-IR) spectroscopy with the aid of viscosity measurements, melting analyses and molecular docking studies. The fluorescence titration indicated that both TFL and FL bound to ctDNA forming complexes through hydrogen bonding and van der Waals forces. The binding constants of TFL and FL with ctDNA were in the range of 104 L mol- 1, and FL exhibited a higher binding propensity than TFL. The iodide quenching effect, single/double-stranded DNA effects, and ctDNA melting and viscosity measurements demonstrated that the binding of both TFL and FL to ctDNA was groove mode. The FT-IR analyses suggested the A-T region of the minor groove of ctDNA as the preferential binding for TFL and FL, which was confirmed by the displacement assays with Hoechst 33258 probe, and the molecular docking visualized the specific binding. The changes in CD spectra indicated that both FL and TFL induced the perturbation on the base stacking and helicity of B-DNA, but the disturbance caused by FL was more obvious. Gel electrophoresis analyses indicated that both TFL and FL did not cause significant DNA cleavage. This study provides novel insights into the binding properties of TFL/FL with ctDNA and its toxic mechanisms.

  19. Schizosaccharomyces pombe protection of telomeres 1 utilizes alternate binding modes to accommodate different telomeric sequences.

    Science.gov (United States)

    Altschuler, Sarah E; Dickey, Thayne H; Wuttke, Deborah S

    2011-09-01

    The ends of eukaryotic chromosomes consist of long tracts of repetitive GT-rich DNA with variable sequence homogeneity between and within organisms. Telomeres terminate in a conserved 3'-ssDNA overhang that, regardless of sequence variability, is specifically and tightly bound by proteins of the telomere-end protection family. The high affinity ssDNA-binding activity of S. pombe Pot1 protein (SpPot1) is conferred by a DNA-binding domain consisting of two subdomains, Pot1pN and Pot1pC. Previous work has shown that Pot1pN binds a single repeat of the core telomere sequence (GGTTAC) with exquisite specificity, while Pot1pC binds an extended sequence of nine nucleotides (GGTTACGGT) with modest specificity requirements. We find that full-length SpPot1 binds the composite 15mer, (GGTTAC)(2)GGT, and a shorter two-repeat 12mer, (GGTTAC)(2), with equally high affinity (<3 pM), but with substantially different kinetic and thermodynamic properties. The binding mode of the SpPot1/15mer complex is more stable than that of the 12mer complex, with a 2-fold longer half-life and increased tolerance to nucleotide and amino acid substitutions. Our data suggest that SpPot1 protection of heterogeneous telomeres is mediated through 5'-sequence recognition and the use of alternate binding modes to maintain high affinity interaction with the G-strand, while simultaneously discriminating against the complementary strand.

  20. Deciphering the groove binding modes of tau-fluvalinate and flumethrin with calf thymus DNA.

    Science.gov (United States)

    Tao, Mo; Zhang, Guowen; Pan, Junhui; Xiong, Chunhong

    2016-02-15

    Tau-fluvalinate (TFL) and flumethrin (FL), widely used in agriculture and a class of synthetic pyrethroid pesticides with a similar structure, may cause a potential security risk. Herein, the modes of binding in vitro of TFL and FL with calf thymus DNA (ctDNA) were characterized by fluorescence, UV-vis absorption, circular dichroism (CD) and Fourier transform infrared (FT-IR) spectroscopy with the aid of viscosity measurements, melting analyses and molecular docking studies. The fluorescence titration indicated that both TFL and FL bound to ctDNA forming complexes through hydrogen bonding and van der Waals forces. The binding constants of TFL and FL with ctDNA were in the range of 10(4)Lmol(-1), and FL exhibited a higher binding propensity than TFL. The iodide quenching effect, single/double-stranded DNA effects, and ctDNA melting and viscosity measurements demonstrated that the binding of both TFL and FL to ctDNA was groove mode. The FT-IR analyses suggested the A-T region of the minor groove of ctDNA as the preferential binding for TFL and FL, which was confirmed by the displacement assays with Hoechst 33258 probe, and the molecular docking visualized the specific binding. The changes in CD spectra indicated that both FL and TFL induced the perturbation on the base stacking and helicity of B-DNA, but the disturbance caused by FL was more obvious. Gel electrophoresis analyses indicated that both TFL and FL did not cause significant DNA cleavage. This study provides novel insights into the binding properties of TFL/FL with ctDNA and its toxic mechanisms.

  1. Computational determination of the binding mode of α-conotoxin to nicotinic acetylcholine receptor

    Science.gov (United States)

    Tabassum, Nargis; Yu, Rilei; Jiang, Tao

    2016-12-01

    Conotoxins belong to the large families of disulfide-rich peptide toxins from cone snail venom, and can act on a broad spectrum of ion channels and receptors. They are classified into different subtypes based on their targets. The α-conotoxins selectively inhibit the current of the nicotinic acetylcholine receptors. Because of their unique selectivity towards distinct nAChR subtypes, α-conotoxins become valuable tools in nAChR study. In addition to the X-ray structures of α-conotoxins in complex with acetylcholine-binding protein, a homolog of the nAChR ligand-binding domain, the high-resolution crystal structures of the extracellular domain of the α1 and α9 subunits are also obtained. Such structures not only revealed the details of the configuration of nAChR, but also provided higher sequence identity templates for modeling the binding modes of α-conotoxins to nAChR. This mini-review summarizes recent modeling studies for the determination of the binding modes of α-conotoxins to nAChR. As there are not crystal structures of the nAChR in complex with conotoxins, computational modeling in combination of mutagenesis data is expected to reveal the molecular recognition mechanisms that govern the interactions between α-conotoxins and nAChR at molecular level. An accurate determination of the binding modes of α-conotoxins on AChRs allows rational design of α-conotoxin analogues with improved potency or selectivity to nAChRs.

  2. Interaction of coumarin with calf thymus DNA: deciphering the mode of binding by in vitro studies.

    Science.gov (United States)

    Sarwar, Tarique; Rehman, Sayeed Ur; Husain, Mohammed Amir; Ishqi, Hassan Mubarak; Tabish, Mohammad

    2015-02-01

    DNA is the major target for a wide range of therapeutic substances. Thus, there has been considerable interest in the binding studies of small molecules with DNA. Interaction between small molecules and DNA provides a structural guideline in rational drug designing and in the synthesis of new and improved drugs with enhanced selective activity and greater clinical efficacy. Plant derived polyphenolic compounds have a large number of biological and pharmacological properties. Coumarin is a polyphenolic compound which has been extensively studied for its diverse pharmacological properties. However, its mode of interaction with DNA has not been elucidated. In the present study, we have attempted to ascertain the mode of binding of coumarin with calf thymus DNA (Ct-DNA) through various biophysical techniques. Analysis of UV-visible absorbance spectra and fluorescence spectra indicates the formation of complex between coumarin and Ct-DNA. Several other experiments such as effect of ionic strength, iodide induced quenching, competitive binding assay with ethidium bromide, acridine orange and Hoechst 33258 reflected that coumarin possibly binds to the minor groove of the Ct-DNA. These observations were further supported by CD spectral analysis, viscosity measurements, DNA melting studies and in silico molecular docking.

  3. Study on the drug resistance and the binding mode of HIV-1 integrase with LCA inhibitor

    Institute of Scientific and Technical Information of China (English)

    HU; JianPing; CHANG; Shan; CHEN; WeiZu; WANG; CunXin

    2007-01-01

    Human immunodeficiency virus type 1 (HIV-1) integrase (IN) is an essential enzyme in the lifecycle of this virus and also an important target for the study of anti-HIV drugs. The binding mode of the wild type IN core domain and its G140S mutant with L-Chicoric acid (LCA) inhibitor were investigated by using multiple conformation molecular docking and molecular dynamics (MD) simulation. Based on the binding modes, the drug resistance mechanism was explored for the G140S mutant of IN with LCA. The results indicate that the binding site of the G140S mutant of IN core domain with LCA is different from that of the core domain of the wild type IN, which leads to the partial loss of inhibition potency of LCA. The flexibility of the IN functional loop region and the interactions between Mg2+ ion and the three key residues (i.e., D64, D116, E152) stimulate the biological operation of IN. The drug resistance also lies in several other important effects, such as the repulsion between LCA and E152 in the G140S mutant core domain, the weakening of K159 binding with LCA and Y143 pointing to the pocket of the G140S mutant. All of the above simulation results agree well with experimental data, which provide us with some helpful information for designing the drug of anti-HIV based on the structure of IN.

  4. Exploring the stability of ligand binding modes to proteins by molecular dynamics simulations

    Science.gov (United States)

    Liu, Kai; Watanabe, Etsurou; Kokubo, Hironori

    2017-02-01

    The binding mode prediction is of great importance to structure-based drug design. The discrimination of various binding poses of ligand generated by docking is a great challenge not only to docking score functions but also to the relatively expensive free energy calculation methods. Here we systematically analyzed the stability of various ligand poses under molecular dynamics (MD) simulation. First, a data set of 120 complexes was built based on the typical physicochemical properties of drug-like ligands. Three potential binding poses (one correct pose and two decoys) were selected for each ligand from self-docking in addition to the experimental pose. Then, five independent MD simulations for each pose were performed with different initial velocities for the statistical analysis. Finally, the stabilities of ligand poses under MD were evaluated and compared with the native one from crystal structure. We found that about 94% of the native poses were maintained stable during the simulations, which suggests that MD simulations are accurate enough to judge most experimental binding poses as stable properly. Interestingly, incorrect decoy poses were maintained much less and 38-44% of decoys could be excluded just by performing equilibrium MD simulations, though 56-62% of decoys were stable. The computationally-heavy binding free energy calculation can be performed only for these survived poses.

  5. Mode of Binding of the Tuberculosis Prodrug Isoniazid to Heme Peroxidases

    Science.gov (United States)

    Singh, Amit K.; Kumar, Ramasamy P.; Pandey, Nisha; Singh, Nagendra; Sinha, Mau; Bhushan, Asha; Kaur, Punit; Sharma, Sujata; Singh, Tej P.

    2010-01-01

    Isoniazid (INH) is an anti-tuberculosis prodrug that is activated by mammalian lactoperoxidase and Mycobacterium tuberculosis catalase peroxidase (MtCP). We report here binding studies, an enzyme assay involving INH, and the crystal structure of the complex of bovine lactoperoxidase (LPO) with INH to illuminate binding properties and INH activation as well as the mode of diffusion and interactions together with a detailed structural and functional comparison with MtCP. The structure determination shows that isoniazid binds to LPO at the substrate binding site on the distal heme side. The substrate binding site is connected to the protein surface through a long hydrophobic channel. The acyl hydrazide moiety of isoniazid interacts with Phe422 O, Gln423 Oϵ1, and Phe254 O. In this arrangement, pyridinyl nitrogen forms a hydrogen bond with a water molecule, W-1, which in turn forms three hydrogen bonds with Fe3+, His109 Nϵ2, and Gln105 Nϵ2. The remaining two sides of isoniazid form hydrophobic interactions with the atoms of heme pyrrole ring A, Cβ and Cγ atoms of Glu258, and Cγ and Cδ atoms of Arg255. The binding studies indicate that INH binds to LPO with a value of 0.9 × 10−6 m for the dissociation constant. The nitro blue tetrazolium reduction assay shows that INH is activated by the reaction of LPO-H2O2 with INH. This suggests that LPO can be used for INH activation. It also indicates that the conversion of INH into isonicotinoyl radical by LPO may be the cause of INH toxicity. PMID:19907057

  6. Distinct pose of discodermolide in taxol binding pocket drives a complementary mode of microtubule stabilization.

    Science.gov (United States)

    Khrapunovich-Baine, Marina; Menon, Vilas; Verdier-Pinard, Pascal; Smith, Amos B; Angeletti, Ruth Hogue; Fiser, Andras; Horwitz, Susan Band; Xiao, Hui

    2009-12-15

    The microtubule cytoskeleton has proven to be an effective target for cancer therapeutics. One class of drugs, known as microtubule stabilizing agents (MSAs), binds to microtubule polymers and stabilizes them against depolymerization. The prototype of this group of drugs, Taxol, is an effective chemotherapeutic agent used extensively in the treatment of human ovarian, breast, and lung carcinomas. Although electron crystallography and photoaffinity labeling experiments determined that the binding site for Taxol is in a hydrophobic pocket in beta-tubulin, little was known about the effects of this drug on the conformation of the entire microtubule. A recent study from our laboratory utilizing hydrogen-deuterium exchange (HDX) in concert with various mass spectrometry (MS) techniques has provided new information on the structure of microtubules upon Taxol binding. In the current study we apply this technique to determine the binding mode and the conformational effects on chicken erythrocyte tubulin (CET) of another MSA, discodermolide, whose synthetic analogues may have potential use in the clinic. We confirmed that, like Taxol, discodermolide binds to the taxane binding pocket in beta-tubulin. However, as opposed to Taxol, which has major interactions with the M-loop, discodermolide orients itself away from this loop and toward the N-terminal H1-S2 loop. Additionally, discodermolide stabilizes microtubules mainly via its effects on interdimer contacts, specifically on the alpha-tubulin side, and to a lesser extent on interprotofilament contacts between adjacent beta-tubulin subunits. Also, our results indicate complementary stabilizing effects of Taxol and discodermolide on the microtubules, which may explain the synergy observed between the two drugs in vivo.

  7. Exploring the DNA binding mode of transition metal based biologically active compounds

    Science.gov (United States)

    Raman, N.; Sobha, S.

    2012-01-01

    Few novel 4-aminoantipyrine derived Schiff bases and their metal complexes were synthesized and characterized. Their structural features and other properties were deduced from the elemental analysis, magnetic susceptibility and molar conductivity as well as from mass, IR, UV-vis, 1H NMR and EPR spectral studies. The binding of the complexes with CT-DNA was analyzed by electronic absorption spectroscopy, viscosity measurement, and cyclic voltammetry. The interaction of the metal complexes with DNA was also studied by molecular modeling with special reference to docking. The experimental and docking results revealed that the complexes have the ability of interaction with DNA of minor groove binding mode. The intrinsic binding constants ( Kb) of the complexes with CT-DNA were found out which show that they are minor groove binders. Gel electrophoresis assay demonstrated the ability of the complexes to cleave the pUC19 DNA in the presence of AH 2 (ascorbic acid). Moreover, the oxidative cleavage studies using distamycin revealed the minor groove binding for the newly synthesized 4-aminoantipyrine derived Schiff bases and their metal complexes. Evaluation of antibacterial activity of the complexes against Staphylococcus aureus, Pseudomonas aeruginosa, Escherichia coli, Staphylococcus epidermidis, and Klebsiella pneumoniae exhibited that the complexes have potent biocidal activity than the free ligands.

  8. Distinct ETA receptor binding mode of macitentan as determined by site directed mutagenesis.

    Directory of Open Access Journals (Sweden)

    John Gatfield

    Full Text Available The competitive endothelin receptor antagonists (ERA bosentan and ambrisentan, which have long been approved for the treatment of pulmonary arterial hypertension, are characterized by very short (1 min occupancy half-lives at the ET(A receptor. The novel ERA macitentan, displays a 20-fold increased receptor occupancy half-life, causing insurmountable antagonism of ET-1-induced signaling in pulmonary arterial smooth muscle cells. We show here that the slow ET(A receptor dissociation rate of macitentan was shared with a set of structural analogs, whereas compounds structurally related to bosentan displayed fast dissociation kinetics. NMR analysis showed that macitentan adopts a compact structure in aqueous solution and molecular modeling suggests that this conformation tightly fits into a well-defined ET(A receptor binding pocket. In contrast the structurally different and negatively charged bosentan-type molecules only partially filled this pocket and expanded into an extended endothelin binding site. To further investigate these different ET(A receptor-antagonist interaction modes, we performed functional studies using ET(A receptor variants harboring amino acid point mutations in the presumed ERA interaction site. Three ET(A receptor residues significantly and differentially affected ERA activity: Mutation R326Q did not affect the antagonist activity of macitentan, however the potencies of bosentan and ambrisentan were significantly reduced; mutation L322A rendered macitentan less potent, whereas bosentan and ambrisentan were unaffected; mutation I355A significantly reduced bosentan potency, but not ambrisentan and macitentan potencies. This suggests that--in contrast to bosentan and ambrisentan--macitentan-ET(A receptor binding is not dependent on strong charge-charge interactions, but depends predominantly on hydrophobic interactions. This different binding mode could be the reason for macitentan's sustained target occupancy and

  9. Dynamics in the DNA recognition by DAPI: exploration of the various binding modes.

    Science.gov (United States)

    Banerjee, Debapriya; Pal, Samir Kumar

    2008-01-24

    Two distinct modes of interaction of the fluorescent probe 4',6-diamidino-2-phenylindole (DAPI), depending on the sequence of DNA, have been reported in the literature. In the present study, the dynamics of solvation has been utilized to explore the binding interaction of DAPI to DNA oligomers of different sequences. Picosecond-resolved fluorescence and polarization-gated anisotropy have been used to characterize the binding of DAPI to the different oligomers. In the double-stranded dodecamer of sequence CGCGAATTCGCG (oligo1), the solvation relaxation dynamics of the probe reveals time constants of 0.130 ns (75%) and 2.35 ns (25%). Independent exploration of the minor-groove environment of oligo1 using another well-known minor-groove binder Hoechst 33258 (H258) shows similar timescales, further confirming minor-groove binding of DAPI to oligo1. In the double-stranded dodecamer (oligo2) having the sequence GCGCGCGCGCGC, where intercalation has been reported in the literature, no solvation is observed in our experimental window. DAPI bound to oligo2 shows quenching of fluorescence compared to that of DAPI in a buffer. The quenching of fluorescence of DAPI intercalated in DNA is also borne out by the appearance of a fast component of 30 ps in the fluorescence lifetime, revealing electron transfer to DAPI from GC base pairs, between which it intercalates. In addition to this, the excited-state lifetime of the probe in the DAPI-DNA complex also shows a time constant similar to that of the dye in a buffer, indicating that the excited-state photoprocesses associated with the free dye is also operative in this binding mode, consistent with the binding geometry of the DAPI in the DNA. The dynamics of DAPI in calf thymus DNA having a random sequence of base pairs is similar to that associated with the DNA minor groove. Our studies clearly explore the structure-dynamics correlation of the DAPI-DNA complex in the two distinct modes of interaction of DAPI with DNA.

  10. Structural investigations into the binding mode of novel neolignans Cmp10 and Cmp19 microtubule stabilizers by in silico molecular docking, molecular dynamics, and binding free energy calculations.

    Science.gov (United States)

    Tripathi, Shubhandra; Kumar, Akhil; Kumar, B Sathish; Negi, Arvind S; Sharma, Ashok

    2016-06-01

    Microtubule stabilizers provide an important mode of treatment via mitotic cell arrest of cancer cells. Recently, we reported two novel neolignans derivatives Cmp10 and Cmp19 showing anticancer activity and working as microtubule stabilizers at micromolar concentrations. In this study, we have explored the binding site, mode of binding, and stabilization by two novel microtubule stabilizers Cmp10 and Cmp19 using in silico molecular docking, molecular dynamics (MD) simulation, and binding free energy calculations. Molecular docking studies were performed to explore the β-tubulin binding site of Cmp10 and Cmp19. Further, MD simulations were used to probe the β-tubulin stabilization mechanism by Cmp10 and Cmp19. Binding affinity was also compared for Cmp10 and Cmp19 using binding free energy calculations. Our docking results revealed that both the compounds bind at Ptxl binding site in β-tubulin. MD simulation studies showed that Cmp10 and Cmp19 binding stabilizes M-loop (Phe272-Val288) residues of β-tubulin and prevent its dynamics, leading to a better packing between α and β subunits from adjacent tubulin dimers. In addition, His229, Ser280 and Gln281, and Arg278, Thr276, and Ser232 were found to be the key amino acid residues forming H-bonds with Cmp10 and Cmp19, respectively. Consequently, binding free energy calculations indicated that Cmp10 (-113.655 kJ/mol) had better binding compared to Cmp19 (-95.216 kJ/mol). This study provides useful insight for better understanding of the binding mechanism of Cmp10 and Cmp19 and will be helpful in designing novel microtubule stabilizers.

  11. Theory and Normal Mode Analysis of Change in Protein Vibrational Dynamics on Ligand Binding

    Energy Technology Data Exchange (ETDEWEB)

    Mortisugu, Kei [RIKEN, Japan; Njunda, Brigitte [Computational Molecular Biophysics, Interdisciplinary Center for Scientific Computing (IWR); Smith, Jeremy C [ORNL

    2009-12-01

    The change of protein vibrations on ligand binding is of functional and thermodynamic importance. Here, this process is characterized using a simple analytical 'ball-and-spring' model and all-atom normal-mode analysis (NMA) of the binding of the cancer drug, methotrexate (MTX) to its target, dihydrofolate reductase (DHFR). The analytical model predicts that the coupling between protein vibrations and ligand external motion generates entropy-rich, low-frequency vibrations in the complex. This is consistent with the atomistic NMA which reveals vibrational softening in forming the DHFR-MTX complex, a result also in qualitative agreement with neutron-scattering experiments. Energy minimization of the atomistic bound-state (B) structure while gradually decreasing the ligand interaction to zero allows the generation of a hypothetical 'intermediate' (I) state, without the ligand force field but with a structure similar to that of B. In going from I to B, it is found that the vibrational entropies of both the protein and MTX decrease while the complex structure becomes enthalpically stabilized. However, the relatively weak DHFR:MTX interaction energy results in the net entropy gain arising from coupling between the protein and MTX external motion being larger than the loss of vibrational entropy on complex formation. This, together with the I structure being more flexible than the unbound structure, results in the observed vibrational softening on ligand binding.

  12. Studies of the binding mode of TXNHCH2COOH with calf thymus DNA by spectroscopic methods

    Science.gov (United States)

    Ataci, Nese; Arsu, Nergis

    2016-12-01

    In this study, a thioxanthone derivative named 2-(9-oxo-9H-thioxanthen-2ylamino) acetic acid (TX-NHCH2COOH) was used to investigate small molecule and DNA binding interactions. Absorption and fluorescence emission spectroscopy were used and melting studies were used to explain the binding mode of TXNHCH2COOH-DNA. Intrinsic binding constant Kb TXNHCH2COOH was found 6 × 105 M- 1from UV-Vis absorption spectroscopy. Fluorescence emmision intensity increased by adding ct-DNA to the TXNHCH2COOH and KI quenching experiments resulted with low Ksv value. Additionally, 3.7 °C increase for Tm was observed. The observed quenching of EB and ct-DNA complex and increase viscosity values of ct-DNA by addition of TXNHCH2COOH was determined. All those results indicate that TXNHCH2COOH can intercalate into DNA base pairs. Fluorescence microscopy helped to display imaging of the TXNHCH2COOH-DNA solution.

  13. DNA binding mode of novel tetradentate amino acid based 2-hydroxybenzylidene-4-aminoantipyrine complexes

    Science.gov (United States)

    Raman, N.; Sobha, S.; Selvaganapathy, M.; Mahalakshmi, R.

    2012-10-01

    Few transition metal complexes of tetradentate N2O2 donor Schiff base ligands containing 2-hydroxybenzylidene-4-aminoantipyrine and amino acids (alanine/valine) abbreviated to KHL1/KHL2 have been synthesized. All the metal complexes have been fully characterized with the help of elemental analyses, molecular weights, molar conductance values, magnetic moments and spectroscopic data. The Schiff bases KHL1/KHL2 are found to act as tetradentate ligands using N2O2 donor set of atoms leading to a square-planar geometry for the complexes around the metal ions. The binding behaviors of the complexes to calf thymus DNA have been investigated by absorption spectra, viscosity measurements and cyclic voltammetry. The DNA binding constants reveal that all these complexes interact with DNA through minor groove binding mode. The studies on mechanism of photocleavage reveal that singlet oxygen (1O2) and superoxide anion radical (O2rad -) may play an important role in the photocleavage. The Schiff bases and their metal complexes have been screened for their in vitro antibacterial activities against Staphylococcus aureus, Pseudomonas aeruginosa, Escherichia coli, Staphylococcus epidermidis, Klebsiella pneumoniae and antifungal activities against Aspergillus niger, Fusarium solani, Culvularia lunata, Rhizoctonia bataicola and Candida albicans by MIC method.

  14. Binding mode and free energy prediction of fisetin/β-cyclodextrin inclusion complexes

    Directory of Open Access Journals (Sweden)

    Bodee Nutho

    2014-11-01

    Full Text Available In the present study, our aim is to investigate the preferential binding mode and encapsulation of the flavonoid fisetin in the nano-pore of β-cyclodextrin (β-CD at the molecular level using various theoretical approaches: molecular docking, molecular dynamics (MD simulations and binding free energy calculations. The molecular docking suggested four possible fisetin orientations in the cavity through its chromone or phenyl ring with two different geometries of fisetin due to the rotatable bond between the two rings. From the multiple MD results, the phenyl ring of fisetin favours its inclusion into the β-CD cavity, whilst less binding or even unbinding preference was observed in the complexes where the larger chromone ring is located in the cavity. All MM- and QM-PBSA/GBSA free energy predictions supported the more stable fisetin/β-CD complex of the bound phenyl ring. Van der Waals interaction is the key force in forming the complexes. In addition, the quantum mechanics calculations with M06-2X/6-31G(d,p clearly showed that both solvation effect and BSSE correction cannot be neglected for the energy determination of the chosen system.

  15. Identification of a potent synthetic FXR agonist with an unexpected mode of binding and activation

    Energy Technology Data Exchange (ETDEWEB)

    Soisson, Stephen M.; Parthasarathy, Gopalakrishnan; Adams, Alan D.; Sahoo, Soumya; Sitlani, Ayesha; Sparrow, Carl; Cui, Jisong; Becker, Joseph W. (Merck)

    2008-07-08

    The farnesoid X receptor (FXR), a member of the nuclear hormone receptor family, plays important roles in the regulation of bile acid and cholesterol homeostasis, glucose metabolism, and insulin sensitivity. There is intense interest in understanding the mechanisms of FXR regulation and in developing pharmaceutically suitable synthetic FXR ligands that might be used to treat metabolic syndrome. We report here the identification of a potent FXR agonist (MFA-1) and the elucidation of the structure of this ligand in ternary complex with the human receptor and a coactivator peptide fragment using x-ray crystallography at 1.9-{angstrom} resolution. The steroid ring system of MFA-1 binds with its D ring-facing helix 12 (AF-2) in a manner reminiscent of hormone binding to classical steroid hormone receptors and the reverse of the pose adopted by naturally occurring bile acids when bound to FXR. This binding mode appears to be driven by the presence of a carboxylate on MFA-1 that is situated to make a salt-bridge interaction with an arginine residue in the FXR-binding pocket that is normally used to neutralize bound bile acids. Receptor activation by MFA-1 differs from that by bile acids in that it relies on direct interactions between the ligand and residues in helices 11 and 12 and only indirectly involves a protonated histidine that is part of the activation trigger. The structure of the FXR:MFA-1 complex differs significantly from that of the complex with a structurally distinct agonist, fexaramine, highlighting the inherent plasticity of the receptor.

  16. Benzimidazole inhibitors of the protein kinase CHK2: Clarification of the binding mode by flexible side chain docking and protein–ligand crystallography

    Science.gov (United States)

    Matijssen, Cornelis; Silva-Santisteban, M. Cris; Westwood, Isaac M.; Siddique, Samerene; Choi, Vanessa; Sheldrake, Peter; van Montfort, Rob L.M.; Blagg, Julian

    2012-01-01

    Two closely related binding modes have previously been proposed for the ATP-competitive benzimidazole class of checkpoint kinase 2 (CHK2) inhibitors; however, neither binding mode is entirely consistent with the reported SAR. Unconstrained rigid docking of benzimidazole ligands into representative CHK2 protein crystal structures reveals an alternative binding mode involving a water-mediated interaction with the hinge region; docking which incorporates protein side chain flexibility for selected residues in the ATP binding site resulted in a refinement of the water-mediated hinge binding mode that is consistent with observed SAR. The flexible docking results are in good agreement with the crystal structures of four exemplar benzimidazole ligands bound to CHK2 which unambiguously confirmed the binding mode of these inhibitors, including the water-mediated interaction with the hinge region, and which is significantly different from binding modes previously postulated in the literature. PMID:23058106

  17. Mode of bindings of zinc oxide nanoparticles to myoglobin and horseradish peroxidase: A spectroscopic investigations

    Science.gov (United States)

    Mandal, Gopa; Bhattacharya, Sudeshna; Ganguly, Tapan

    2011-07-01

    The interactions between two heme proteins myoglobin (HMb) and horseradish peroxidase (HRP) with zinc oxide (ZnO) nanoparticles are investigated by using UV-vis absorption, steady state fluorescence, synchronous fluorescence, time-resolved fluorescence, FT-IR, atomic force microscopy (AFM) and circular dichroism (CD) techniques under physiological condition of pH˜7.4. The presence of mainly static mode in fluorescence quenching mechanism of HMb and HRP by ZnO nanoparticle indicates the possibility of formation of ground state complex. The processes of bindings of ZnO nanoparticles with the two proteins are spontaneous molecular interaction procedures. In both cases hydrogen bonding plays a major role. The circular dichroism (CD) spectra reveal that a helicity of the proteins is reduced by increasing ZnO nanoparticle concentration although the α-helical structures of HMb and HRP retain their identity. On binding to the ZnO nanoparticles the secondary structure of HRP molecules (or HMb molecules) remains unchanged while there is a substantial change in the environment of the tyrosin active site in case of HRP molecules and tryptophan active site in case of HMb molecules. Tapping mode atomic force microscopy (AFM) was applied for the investigation the structure of HRP adsorbed in the environment of nanoparticles on the silicon and on the bare silicon. HRP molecules adsorb and aggregate on the mica with ZnO nanoparticle. The aggregation indicates an attractive interaction among the adsorbed molecules. The molecules are randomly distributed on the bare silicon wafer. The adsorption of HRP in the environment of ZnO nanoparticle changes drastically the domains due to a strong interaction between HRP and ZnO nanoparticles. Similar situation is observed in case of HMb molecules. These findings demonstrate the efficacy of biomedical applications of ZnO nanoparticles as well as in elucidating their mechanisms of action as drugs in both human and plant systems.

  18. In vivo detection of molybdate-binding proteins using a competition assay with ModE in Escherichia coli.

    Science.gov (United States)

    Kuper, Jochen; Meyer zu Berstenhorst, Sonja; Vödisch, Bernd; Mendel, Ralf R; Schwarz, Günter; Boxer, David H

    2003-01-21

    Molybdenum is an important trace element as it forms the essential part of the active site in all molybdenum-containing enzymes. We have designed an assay for the in vivo detection of molybdate binding to proteins in Escherichia coli. The assay is based on (i). the molybdate-dependent transcriptional regulation of the moa operon by the ModE protein, and (ii). the competition for molybdate between ModE and other molybdate-binding proteins in the cytoplasm of E. coli. We were able to verify in vivo molybdate binding to three different bacterial proteins that are known to bind molybdate. This sensitive in vivo system allows the testing of different proteins for molybdate binding under in vivo conditions and will facilitate the identification of other cellular factors needed for molybdate binding. As a first example, we examined the eukaryotic protein Cnx1 that is involved in the last step of molybdenum cofactor biosynthesis in plants, and show that it is able to compete with ModE for molybdate in a molybdopterin-dependent fashion.

  19. Probing ligand-binding modes and binding mechanisms of benzoxazole-based amide inhibitors with soluble epoxide hydrolase by molecular docking and molecular dynamics simulation.

    Science.gov (United States)

    Chen, Hang; Zhang, Ying; Li, Liang; Han, Ju-Guang

    2012-08-30

    Soluble epoxide hydrolase (sEH) has become a new therapeutic target for treating a variety of human diseases. The inhibition of human sEH hydrolase activity was studied by molecular docking and molecular dynamics (MD) simulation techniques. A set of six benzoxazole-based amide inhibitors binding to sEH has been studied through molecular docking, MD simulation, free energy calculations, and energy decomposition analysis. On the basis of molecular mechanics-generalized Born/surface area (MM-GB/SA) computation and normal-mode analysis (NMA), the obtained results indicate that the rank of calculated binding free energies (ΔΔGTOT) of these inhibitors is in excellent agreement with that of experimental bioactivity data (IC50). The correlation coefficient (r(2)) between the predicted ΔΔGTOT and IC50 is 0.88. van der Waals energies are the largest component of the total energies, and the entropy changes play an indispensable role in determining the ΔΔGTOT. Rational binding modes were discussed and determined by the docking results and binding free energies. The free energy decomposition of each residue reveals that the residue Trp334 dominates the most binding free energies among all residues and that the activities for these molecules to the sEH are not decided by hydrogen bonds or a certain residue but by the common effect of multiple side chains in the active site.

  20. Nonspecific recognition is achieved in Pot1pC through the use of multiple binding modes.

    Science.gov (United States)

    Dickey, Thayne H; McKercher, Marissa A; Wuttke, Deborah S

    2013-01-01

    Pot1 is the protein responsible for binding to and protecting the 3' single-stranded DNA (ssDNA) overhang at most eukaryotic telomeres. Here, we present the crystal structure of one of the two oligonucleotide/oligosaccharide-binding folds (Pot1pC) that make up the ssDNA-binding domain in S. pombe Pot1. Comparison with the homologous human domain reveals unexpected structural divergence in the mode of ligand binding that explains the differing ligand requirements between species. Despite the presence of apparently base-specific hydrogen bonds, Pot1pC is able to bind a wide range of ssDNA sequences with thermodynamic equivalence. To address how Pot1pC binds ssDNA with little to no specificity, multiple structures of Pot1pC bound to noncognate ssDNA ligands were solved. These structures reveal that this promiscuity is implemented through new binding modes that thermodynamically compensate for base-substitutions through alternate stacking interactions and new H-bonding networks.

  1. What can we learn from Plausible Values?

    Science.gov (United States)

    Marsman, Maarten; Maris, Gunter; Bechger, Timo; Glas, Cees

    2016-06-01

    In this paper, we show that the marginal distribution of plausible values is a consistent estimator of the true latent variable distribution, and, furthermore, that convergence is monotone in an embedding in which the number of items tends to infinity. We use this result to clarify some of the misconceptions that exist about plausible values, and also show how they can be used in the analyses of educational surveys.

  2. New insight into the binding modes of TNP-AMP to human liver fructose-1,6-bisphosphatase

    Science.gov (United States)

    Han, Xinya; Huang, Yunyuan; Zhang, Rui; Xiao, San; Zhu, Shuaihuan; Qin, Nian; Hong, Zongqin; Wei, Lin; Feng, Jiangtao; Ren, Yanliang; Feng, Lingling; Wan, Jian

    2016-08-01

    Human liver fructose-1,6-bisphosphatase (FBPase) contains two binding sites, a substrate fructose-1,6-bisphosphate (FBP) active site and an adenosine monophosphate (AMP) allosteric site. The FBP active site works by stabilizing the FBPase, and the allosteric site impairs the activity of FBPase through its binding of a nonsubstrate molecule. The fluorescent AMP analogue, 2‧,3‧-O-(2,4,6-trinitrophenyl)adenosine 5‧-monophosphate (TNP-AMP) has been used as a fluorescent probe as it is able to competitively inhibit AMP binding to the AMP allosteric site and, therefore, could be used for exploring the binding modes of inhibitors targeted on the allosteric site. In this study, we have re-examined the binding modes of TNP-AMP to FBPase. However, our present enzyme kinetic assays show that AMP and FBP both can reduce the fluorescence from the bound TNP-AMP through competition for FBPase, suggesting that TNP-AMP binds not only to the AMP allosteric site but also to the FBP active site. Mutagenesis assays of K274L (located in the FBP active site) show that the residue K274 is very important for TNP-AMP to bind to the active site of FBPase. The results further prove that TNP-AMP is able to bind individually to the both sites. Our present study provides a new insight into the binding mechanism of TNP-AMP to the FBPase. The TNP-AMP fluorescent probe can be used to exam the binding site of an inhibitor (the active site or the allosteric site) using FBPase saturated by AMP and FBP, respectively, or the K247L mutant FBPase.

  3. The telomeric protein Pot1 from Schizosaccharomyces pombe binds ssDNA in two modes with differing 3' end availability.

    Science.gov (United States)

    Dickey, Thayne H; Wuttke, Deborah S

    2014-09-01

    Telomere protection and length regulation are important processes for aging, cancer and several other diseases. At the heart of these processes lies the single-stranded DNA (ssDNA)-binding protein Pot1, a component of the telomere maintenance complex shelterin, which is present in species ranging from fission yeast to humans. Pot1 contains a dual OB-fold DNA-binding domain (DBD) that fully confers its high affinity for telomeric ssDNA. Studies of S. pombe Pot1-DBD and its individual OB-fold domains revealed a complex non-additive behavior of the two OB-folds in the context of the complete Pot1 protein. This behavior includes the use of multiple distinct binding modes and an ability to form higher order complexes. Here we use NMR and biochemical techniques to investigate the structural features of the complete Pot1-DBD. These experiments reveal one binding mode characterized by only subtle alternations to the individual OB-fold subdomain structures, resulting in an inaccessible 3' end of the ssDNA. The second binding mode, which has equivalent affinity, interacts differently with the 3' end, rendering it available for interaction with other proteins. These findings suggest a structural switch that contributes to telomere end-protection and length regulation.

  4. Non-specific recognition is achieved in Pot1pC through the use of multiple binding modes

    Science.gov (United States)

    Dickey, Thayne H.; McKercher, Marissa A.; Wuttke, Deborah S.

    2012-01-01

    Summary Pot1 is the protein responsible for binding to and protecting the 3’ single-stranded DNA (ssDNA) overhang at most eukaryotic telomeres. Here we present the crystal structure of one of the two OB-folds (Pot1pC) that make up the ssDNA-binding domain in S. pombe Pot1. Comparison with the homologous human domain reveals unexpected structural divergence in the mode of ligand binding that explains the differing ligand requirements between species. Despite the presence of apparently base-specific hydrogen bonds, Pot1pC is able to bind a wide range of ssDNA sequences with thermodynamic equivalence. To address how Pot1pC binds ssDNA with little to no specificity, multiple structures of Pot1pC bound to non-cognate ssDNA ligands were solved. These structures reveal that this promiscuity is implemented through new binding modes that thermodynamically compensate for base-substitutions through alternate stacking interactions and new H-bonding networks. PMID:23201273

  5. An alternate mode of binding of the polyphenol quercetin with serum albumins when complexed with Cu(II)

    Energy Technology Data Exchange (ETDEWEB)

    Singha Roy, Atanu; Tripathy, Debi Ranjan; Ghosh, Arup Kumar [Department of Chemistry, Indian Institute of Technology, Kharagpur 721302 (India); Dasgupta, Swagata, E-mail: swagata@chem.iitkgp.ernet.in [Department of Chemistry, Indian Institute of Technology, Kharagpur 721302 (India)

    2012-11-15

    Polyphenols find wide use as antioxidants, cancer chemopreventive agents and metal chelators. The latter activity has proved interesting in many aspects. We have probed the binding characteristics of the polyphenol quercetin-Cu(II) complex with human serum albumin (HSA) and bovine serum albumin (BSA). Fluorescence studies reveal that the quercetin-Cu(II) complex can quench the fluorescence of the serum albumins. The binding constant (K{sub b}) values are of the order of 10{sup 5} M{sup -1} which increased with rise in temperature in case of HSA and BSA interacting with the quercetin-Cu(II) complex. Displacement studies reveal that both the ligands bind to site 1 (subdomain IIA) of the serum albumins. However, thermodynamic parameters calculated from temperature dependent studies indicated that the mode of interaction of the complexes with the proteins differs. Both {Delta}H Degree-Sign and {Delta}S Degree-Sign were positive for the interaction of the quercetin-Cu(II) complex with both proteins but the value of {Delta}H Degree-Sign was negative in case of the interaction of quercetin with the proteins. This implies that after chelation with metal ions, the polyphenol alters its mode of interaction which could have varying implications on its other physicochemical activities. - Research Highlights: Black-Right-Pointing-Pointer Mode of binding of quercetin with SAs is altered after complexation with Cu(II). Black-Right-Pointing-Pointer Hydrophobic forces play a key role in the binding of the copper complex with SAs. Black-Right-Pointing-Pointer Negative {Delta}G Degree-Sign values indicate the spontaneity of the binding processes. Black-Right-Pointing-Pointer Quercetin and its copper complex bind at the same site of the SAs.

  6. From intercalation to groove binding: switching the DNA-binding mode of isostructural transition-metal complexes.

    Science.gov (United States)

    Ahmad, Haslina; Wragg, Ashley; Cullen, Will; Wombwell, Claire; Meijer, Anthony J H M; Thomas, Jim A

    2014-03-10

    The interaction with duplex DNA of a small library of structurally related complexes that all contain a d6-metal ion coordinated to either the 2,2′:4,4′′:4′,4′′′-quaterpyridyl ligand or its methylated derivative are reported. This library is made up of a mixture of newly synthesised and previously reported systems. Despite their structural similarities the complexes display an almost 20-fold variation in binding affinities. Although effects due to the overall charge of the complexes are apparent, the differences in binding characteristics are deeper than this; indeed, in a number of cases, changes in overall charge have little effect on binding affinity. Intriguingly, despite interacting with DNA through unfused ring systems, although two of the complexes studied are groove binders, the majority are non-classical intercalators. A rationale for these effects has been obtained through a combination of experimental and computational studies.

  7. Crystal structure and RNA-binding properties of an Hfq homolog from the deep-branching Aquificae: conservation of the lateral RNA-binding mode.

    Science.gov (United States)

    Stanek, Kimberly A; Patterson-West, Jennifer; Randolph, Peter S; Mura, Cameron

    2017-04-01

    The host factor Hfq, as the bacterial branch of the Sm family, is an RNA-binding protein involved in the post-transcriptional regulation of mRNA expression and turnover. Hfq facilitates pairing between small regulatory RNAs (sRNAs) and their corresponding mRNA targets by binding both RNAs and bringing them into close proximity. Hfq homologs self-assemble into homo-hexameric rings with at least two distinct surfaces that bind RNA. Recently, another binding site, dubbed the `lateral rim', has been implicated in sRNA·mRNA annealing; the RNA-binding properties of this site appear to be rather subtle, and its degree of evolutionary conservation is unknown. An Hfq homolog has been identified in the phylogenetically deep-branching thermophile Aquifex aeolicus (Aae), but little is known about the structure and function of Hfq from basal bacterial lineages such as the Aquificae. Therefore, Aae Hfq was cloned, overexpressed, purified, crystallized and biochemically characterized. Structures of Aae Hfq were determined in space groups P1 and P6, both to 1.5 Å resolution, and nanomolar-scale binding affinities for uridine- and adenosine-rich RNAs were discovered. Co-crystallization with U6 RNA reveals that the outer rim of the Aae Hfq hexamer features a well defined binding pocket that is selective for uracil. This Aae Hfq structure, combined with biochemical and biophysical characterization of the homolog, reveals deep evolutionary conservation of the lateral RNA-binding mode, and lays a foundation for further studies of Hfq-associated RNA biology in ancient bacterial phyla.

  8. Plausibility functions and exact frequentist inference

    CERN Document Server

    Martin, Ryan

    2012-01-01

    In the frequentist program, inferential methods with exact control on error rates are a primary focus. Methods based on asymptotic distribution theory may not be suitable in a particular problem, in which case, a numerical method is needed. This paper presents a general, Monte Carlo-driven framework for the construction of frequentist procedures based on plausibility functions. It is proved that the suitably defined plausibility function-based tests and confidence regions have desired frequentist properties. Moreover, in an important special case involving likelihood ratios, conditions are given such that the plausibility function behaves asymptotically like a consistent Bayesian posterior distribution. An extension of the proposed method is also given for the case where nuisance parameters are present. A number of examples are given which illustrate the method and demonstrate its strong performance compared to other popular existing methods.

  9. Bisimulation for Single-Agent Plausibility Models

    DEFF Research Database (Denmark)

    Andersen, Mikkel Birkegaard; Bolander, Thomas; van Ditmarsch, H.;

    2013-01-01

    Epistemic plausibility models are Kripke models agents use to reason about the knowledge and beliefs of themselves and each other. Restricting ourselves to the single-agent case, we determine when such models are indistinguishable in the logical language containing conditional belief, i.e., we...... define a proper notion of bisimulation, and prove that bisimulation corresponds to logical equivalence on image-finite models. We relate our results to other epistemic notions, such as safe belief and degrees of belief. Our results imply that there are only finitely many non-bisimilar single......-agent epistemic plausibility models on a finite set of propositions. This gives decidability for single-agent epistemic plausibility planning....

  10. Mode of binding of the tuberculosis prodrug isoniazid to heme peroxidases: binding studies and crystal structure of bovine lactoperoxidase with isoniazid at 2.7 A resolution.

    Science.gov (United States)

    Singh, Amit K; Kumar, Ramasamy P; Pandey, Nisha; Singh, Nagendra; Sinha, Mau; Bhushan, Asha; Kaur, Punit; Sharma, Sujata; Singh, Tej P

    2010-01-01

    Isoniazid (INH) is an anti-tuberculosis prodrug that is activated by mammalian lactoperoxidase and Mycobacterium tuberculosis catalase peroxidase (MtCP). We report here binding studies, an enzyme assay involving INH, and the crystal structure of the complex of bovine lactoperoxidase (LPO) with INH to illuminate binding properties and INH activation as well as the mode of diffusion and interactions together with a detailed structural and functional comparison with MtCP. The structure determination shows that isoniazid binds to LPO at the substrate binding site on the distal heme side. The substrate binding site is connected to the protein surface through a long hydrophobic channel. The acyl hydrazide moiety of isoniazid interacts with Phe(422) O, Gln(423) O(epsilon1), and Phe(254) O. In this arrangement, pyridinyl nitrogen forms a hydrogen bond with a water molecule, W-1, which in turn forms three hydrogen bonds with Fe(3+), His(109) N(epsilon2), and Gln(105) N(epsilon2). The remaining two sides of isoniazid form hydrophobic interactions with the atoms of heme pyrrole ring A, C(beta) and C(gamma) atoms of Glu(258), and C(gamma) and C(delta) atoms of Arg(255). The binding studies indicate that INH binds to LPO with a value of 0.9 x 10(-6) m for the dissociation constant. The nitro blue tetrazolium reduction assay shows that INH is activated by the reaction of LPO-H(2)O(2) with INH. This suggests that LPO can be used for INH activation. It also indicates that the conversion of INH into isonicotinoyl radical by LPO may be the cause of INH toxicity.

  11. Improving binding mode and binding affinity predictions of docking by ligand-based search of protein conformations: evaluation in D3R grand challenge 2015

    Science.gov (United States)

    Xu, Xianjin; Yan, Chengfei; Zou, Xiaoqin

    2017-08-01

    The growing number of protein-ligand complex structures, particularly the structures of proteins co-bound with different ligands, in the Protein Data Bank helps us tackle two major challenges in molecular docking studies: the protein flexibility and the scoring function. Here, we introduced a systematic strategy by using the information embedded in the known protein-ligand complex structures to improve both binding mode and binding affinity predictions. Specifically, a ligand similarity calculation method was employed to search a receptor structure with a bound ligand sharing high similarity with the query ligand for the docking use. The strategy was applied to the two datasets (HSP90 and MAP4K4) in recent D3R Grand Challenge 2015. In addition, for the HSP90 dataset, a system-specific scoring function (ITScore2_hsp90) was generated by recalibrating our statistical potential-based scoring function (ITScore2) using the known protein-ligand complex structures and the statistical mechanics-based iterative method. For the HSP90 dataset, better performances were achieved for both binding mode and binding affinity predictions comparing with the original ITScore2 and with ensemble docking. For the MAP4K4 dataset, although there were only eight known protein-ligand complex structures, our docking strategy achieved a comparable performance with ensemble docking. Our method for receptor conformational selection and iterative method for the development of system-specific statistical potential-based scoring functions can be easily applied to other protein targets that have a number of protein-ligand complex structures available to improve predictions on binding.

  12. Determining the binding mode and binding affinity constant of tyrosine kinase inhibitor PD153035 to DNA using optical tweezers

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Chih-Ming [School of Dental Technology, Taipei Medical University, Taipei 110, Taiwan (China); Research Center for Biomedical Implants and Microsurgery Devices, Taipei Medical University, Taipei 110, Taiwan (China); Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu 30043, Taiwan (China); Lee, Yuarn-Jang [Section of Infectious Diseases, Department of Internal Medicine, Taipei Medical University Hospital, Taipei 110, Taiwan (China); Wang, Wei-Ting [School of Dental Technology, Taipei Medical University, Taipei 110, Taiwan (China); Institute of Biomedical Materials and Engineering, Taipei Medical University, Taipei 110, Taiwan (China); Research Center for Biomedical Implants and Microsurgery Devices, Taipei Medical University, Taipei 110, Taiwan (China); Hsu, Chien-Ting [Institute of Biomedical Materials and Engineering, Taipei Medical University, Taipei 110, Taiwan (China); Research Center for Biomedical Implants and Microsurgery Devices, Taipei Medical University, Taipei 110, Taiwan (China); Tsai, Jing-Shin [School of Dental Technology, Taipei Medical University, Taipei 110, Taiwan (China); Institute of Biomedical Materials and Engineering, Taipei Medical University, Taipei 110, Taiwan (China); Research Center for Biomedical Implants and Microsurgery Devices, Taipei Medical University, Taipei 110, Taiwan (China); Wu, Chien-Ming [Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu 30043, Taiwan (China); Ou, Keng-Liang [Institute of Biomedical Materials and Engineering, Taipei Medical University, Taipei 110, Taiwan (China); Research Center for Biomedical Implants and Microsurgery Devices, Taipei Medical University, Taipei 110, Taiwan (China); and others

    2011-01-07

    Research highlights: {yields} PD153035 is a DNA intercalator and intercalation occurs only under very low salt concentration. {yields} The minimum distance between adjacent bound PD153035 {approx} 11 bp. {yields} Binding affinity constant for PD153035 is 1.18({+-}0.09) x 10{sup 4} (1/M). {yields} The change of binding free energy of PD153035-DNA interaction is -5.49 kcal mol{sup -1} at 23 {+-} 0.5 {sup o}C. -- Abstract: Accurately predicting binding affinity constant (K{sub A}) is highly required to determine the binding energetics of the driving forces in drug-DNA interactions. Recently, PD153035, brominated anilinoquinazoline, has been reported to be not only a highly selective inhibitor of epidermal growth factor receptor but also a DNA intercalator. Here, we use a dual-trap optical tweezers to determining K{sub A} for PD153035, where K{sub A} is determined from the changes in B-form contour length (L) of PD153035-DNA complex. Here, L is fitted using a modified wormlike chain model. We found that a noticeable increment in L in 1 mM sodium cacodylate was exhibited. Furthermore, our results showed that K{sub A} = 1.18({+-}0.09) x 10{sup 4} (1/M) at 23 {+-} 0.5 {sup o}C and the minimum distance between adjacent bound PD153035 {approx} 11 bp. We anticipate that by using this approach we can determine the complete thermodynamic profiles due to the presence of DNA intercalators.

  13. High resolution crystal structures of unliganded and liganded human liver ACBP reveal a new mode of binding for the acyl-CoA ligand

    DEFF Research Database (Denmark)

    Taskinen, Jukka P; van Aalten, Daan M; Knudsen, Jens;

    2007-01-01

    The acyl-CoA binding protein (ACBP) is essential for the fatty acid metabolism, membrane structure, membrane fusion, and ceramide synthesis. Here high resolution crystal structures of human cytosolic liver ACBP, unliganded and liganded with a physiological ligand, myristoyl-CoA are described....... The binding of the acyl-CoA molecule induces only few structural differences near the binding pocket. The crystal form of the liganded ACBP, which has two ACBP molecules in the asymmetric unit, shows that in human ACBP the same acyl-CoA binding pocket is present as previously described for the bovine...... and Plasmodium falciparum ACBP and the mode of binding of the 3'-phosphate-AMP moiety is conserved. Unexpectedly, in one of the acyl-CoA binding pockets the acyl moiety is bound in a reversed mode as compared with the bovine and P. falciparum structures. In this binding mode, the myristoyl-CoA molecule is fully...

  14. Synthesis and structural characterization of a calcium coordination polymer based on a 3-bridging tetradentate binding mode of glycine

    Indian Academy of Sciences (India)

    Subramanian Natarajan; Bikshandarkoil R Srinivasan; J Kalyana Sundar; K Ravikumar; R V Krishnakumar; J Suresh

    2012-07-01

    A new coordination polymer namely [[Ca6(H-gly)12(H2O)18]Cl12·6H2O] (1) (H-gly = glycine) has been isolated from the calcium chloride-glycine-water system and structurally characterized. Each Ca(II) in 1 is eight-coordinated and is bonded to eight oxygen atoms three of which are from terminal water molecules and five oxygen atoms from four symmetry related zwitterionic glycine ligands. The H-gly ligands exhibit two different binding modes viz. a monodentate carboxylate ligation and a 3-tetradentate bridging carboxylate binding mode, which results in the formation of a one-dimensional coordination polymer. In the infinite chain the Ca(II) atoms are organized in a zigzag fashion. A comparative study reveals a rich and diverse structural chemistry of calcium halide-glycine compounds.

  15. Pharmacophore-based virtual screening, biological evaluation and binding mode analysis of a novel protease-activated receptor 2 antagonist

    Science.gov (United States)

    Cho, Nam-Chul; Seo, Seoung-Hwan; Kim, Dohee; Shin, Ji-Sun; Ju, Jeongmin; Seong, Jihye; Seo, Seon Hee; Lee, Iiyoun; Lee, Kyung-Tae; Kim, Yun Kyung; No, Kyoung Tai; Pae, Ae Nim

    2016-08-01

    Protease-activated receptor 2 (PAR2) is a G protein-coupled receptor, mediating inflammation and pain signaling in neurons, thus it is considered to be a potential therapeutic target for inflammatory diseases. In this study, we performed a ligand-based virtual screening of 1.6 million compounds by employing a common-feature pharmacophore model and two-dimensional similarity search to identify a new PAR2 antagonist. The common-feature pharmacophore model was established based on the biological screening results of our in-house library. The initial virtual screening yielded a total number of 47 hits, and additional biological activity tests including PAR2 antagonism and anti-inflammatory effects resulted in a promising candidate, compound 43, which demonstrated an IC50 value of 8.22 µM against PAR2. In next step, a PAR2 homology model was constructed using the crystal structure of the PAR1 as a template to explore the binding mode of the identified ligands. A molecular docking method was optimized by comparing the binding modes of a known PAR2 agonist GB110 and antagonist GB83, and applied to predict the binding mode of our hit compound 43. In-depth docking analyses revealed that the hydrophobic interaction with Phe2435.39 is crucial for PAR2 ligands to exert antagonistic activity. MD simulation results supported the predicted docking poses that PAR2 antagonist blocked a conformational rearrangement of Na+ allosteric site in contrast to PAR2 agonist that showed Na+ relocation upon GPCR activation. In conclusion, we identified new a PAR2 antagonist together with its binding mode, which provides useful insights for the design and development of PAR2 ligands.

  16. Pharmacophore-based virtual screening, biological evaluation and binding mode analysis of a novel protease-activated receptor 2 antagonist.

    Science.gov (United States)

    Cho, Nam-Chul; Seo, Seoung-Hwan; Kim, Dohee; Shin, Ji-Sun; Ju, Jeongmin; Seong, Jihye; Seo, Seon Hee; Lee, Iiyoun; Lee, Kyung-Tae; Kim, Yun Kyung; No, Kyoung Tai; Pae, Ae Nim

    2016-08-01

    Protease-activated receptor 2 (PAR2) is a G protein-coupled receptor, mediating inflammation and pain signaling in neurons, thus it is considered to be a potential therapeutic target for inflammatory diseases. In this study, we performed a ligand-based virtual screening of 1.6 million compounds by employing a common-feature pharmacophore model and two-dimensional similarity search to identify a new PAR2 antagonist. The common-feature pharmacophore model was established based on the biological screening results of our in-house library. The initial virtual screening yielded a total number of 47 hits, and additional biological activity tests including PAR2 antagonism and anti-inflammatory effects resulted in a promising candidate, compound 43, which demonstrated an IC50 value of 8.22 µM against PAR2. In next step, a PAR2 homology model was constructed using the crystal structure of the PAR1 as a template to explore the binding mode of the identified ligands. A molecular docking method was optimized by comparing the binding modes of a known PAR2 agonist GB110 and antagonist GB83, and applied to predict the binding mode of our hit compound 43. In-depth docking analyses revealed that the hydrophobic interaction with Phe243(5.39) is crucial for PAR2 ligands to exert antagonistic activity. MD simulation results supported the predicted docking poses that PAR2 antagonist blocked a conformational rearrangement of Na(+) allosteric site in contrast to PAR2 agonist that showed Na(+) relocation upon GPCR activation. In conclusion, we identified new a PAR2 antagonist together with its binding mode, which provides useful insights for the design and development of PAR2 ligands.

  17. Structure, mechanics, and binding mode heterogeneity of LEDGF/p75-DNA nucleoprotein complexes revealed by scanning force microscopy

    Science.gov (United States)

    Vanderlinden, Willem; Lipfert, Jan; Demeulemeester, Jonas; Debyser, Zeger; de Feyter, Steven

    2014-04-01

    LEDGF/p75 is a transcriptional coactivator implicated in the pathogenesis of AIDS and leukemia. In these contexts, LEDGF/p75 acts as a cofactor by tethering protein cargo to transcriptionally active regions in the human genome. Our study - based on scanning force microscopy (SFM) imaging - is the first to provide structural information on the interaction of LEDGF/p75 with DNA. Two novel approaches that allow obtaining insights into the DNA conformation inside nucleoprotein complexes revealed (1) that LEDGF/p75 can bind at least in three different binding modes, (2) how DNA topology and protein dimerization affect these binding modes, and (3) geometrical and mechanical aspects of the nucleoprotein complexes. These structural and mechanical details will help us to better understand the cellular mechanisms of LEDGF/p75 as a transcriptional coactivator and as a cofactor in disease.LEDGF/p75 is a transcriptional coactivator implicated in the pathogenesis of AIDS and leukemia. In these contexts, LEDGF/p75 acts as a cofactor by tethering protein cargo to transcriptionally active regions in the human genome. Our study - based on scanning force microscopy (SFM) imaging - is the first to provide structural information on the interaction of LEDGF/p75 with DNA. Two novel approaches that allow obtaining insights into the DNA conformation inside nucleoprotein complexes revealed (1) that LEDGF/p75 can bind at least in three different binding modes, (2) how DNA topology and protein dimerization affect these binding modes, and (3) geometrical and mechanical aspects of the nucleoprotein complexes. These structural and mechanical details will help us to better understand the cellular mechanisms of LEDGF/p75 as a transcriptional coactivator and as a cofactor in disease. Electronic supplementary information (ESI) available: SFM topographs of phage lambda DNA in situ, in the absence and presence of LEDGF/p75; model-independent tests for DNA chain equilibration in 2D; SFM topographs of

  18. Theoretical and experimental studies on binding mode of 3,5-pyrazoledicarboxylic acid in its new La(III) complex

    Science.gov (United States)

    Peica, Niculina; Kostova, Irena; Kiefer, Wolfgang

    2006-06-01

    A new La(III) complex with 3,5-pyrazoledicarboxylic acid (HPy) was synthesized and characterized with elemental analysis, IR, and Raman spectroscopies. Significant differences in the IR and Raman spectra of the complex were observed as compared to the spectra of the ligand. The metal-ligand binding mode was studied on the basis of theoretical and experimental data. B3PW91 and B3LYP methods with 6-311++G ∗∗ and LANL2DZ basis sets were successfully applied to study the molecular and vibrational structures as well as the conformational behavior of the neutral ligand and its new La(III) complex. The theoretical calculations of HPy suggested bidentate binding mode through the carboxylic oxygens. Detailed vibrational analysis of HPy and La(III)-Py systems based on both the calculated and experimental spectra confirmed the suggested metal-ligand binding mode. The density functional theory (DFT) calculated geometries, harmonic vibrational wavenumbers including IR and Raman scattering activities for the ligand and its La(III) complex were in good agreement with the experimental data, a complete vibrational assignment being proposed.

  19. Investigating the Structural Variability and Binding Modes of the Glioma Targeting NFL-TBS.40-63 Peptide on Tubulin.

    Science.gov (United States)

    Laurin, Yoann; Savarin, Philippe; Robert, Charles H; Takahashi, Masayuki; Eyer, Joel; Prevost, Chantal; Sacquin-Mora, Sophie

    2015-06-16

    NFL-TBS.40-63 is a 24 amino acid peptide corresponding to the tubulin-binding site located on the light neurofilament subunit, which selectively enters glioblastoma cells, where it disrupts their microtubule network and inhibits their proliferation. We investigated its structural variability and binding modes on a tubulin heterodimer using a combination of NMR experiments, docking, and molecular dynamics (MD) simulations. Our results show that, while lacking a stable structure, the peptide preferentially binds on a specific single site located near the β-tubulin C-terminal end, thus giving us precious hints regarding the mechanism of action of the NFL-TBS.40-63 peptide's antimitotic activity at the molecular level.

  20. Determination of the cationic amphiphilic drug-DNA binding mode and DNA-assisted fluorescence resonance energy transfer amplification.

    Science.gov (United States)

    Yaseen, Zahid; Banday, Abdul Rouf; Hussain, Mohammed Aamir; Tabish, Mohammad; Kabir-ud-Din

    2014-03-25

    Understanding the mechanism of drug-DNA binding is crucial for predicting the potential genotoxicity of drugs. Agarose gel electrophoresis, absorption, steady state fluorescence, and circular dichroism have been used in exploring the interaction of cationic amphiphilic drugs (CADs) such as amitriptyline hydrochloride (AMT), imipramine hydrochloride (IMP), and promethazine hydrochloride (PMT) with calf thymus or pUC19 DNA. Agarose gel electrophoresis assay, along with absorption and steady state fluorescence studies, reveal interaction between the CADs and DNA. A comparative study of the drugs with respect to the effect of urea, iodide induced quenching, and ethidium bromide (EB) exclusion assay reflects binding of CADs to the DNA primarily in an intercalative fashion. Circular dichroism data also support the intercalative mode of binding. Besides quenching, there is fluorescence exchange energy transfer (FRET) in between CADs and EB using DNA as a template.

  1. Catechol alkenyls from Semecarpus anacardium: acetylcholinesterase inhibition and binding mode predictions.

    Science.gov (United States)

    Adhami, H R; Linder, T; Kaehlig, H; Schuster, D; Zehl, M; Krenn, L

    2012-01-06

    The fruits of Semecarpus anacardium L. f. (Anacardiaceae) are used in Ayurvedic medicine and also in Iranian Traditional Medicine for various indications, among those for retarding and treatment of dementia. The severity of Alzheimer's disease obviously correlates with a cholinergic deficit. In a screening for acetylcholinesterase (AChE) inhibitory activity, an extract from the fruit resin of Semecarpus anacardium was among the most active ones. Thus, the aim of this study was to isolate the active compounds and to investigate them in detail. Their binding mode to the active site of AChE was investigated by in silico docking experiments. From a dichloromethane extract in an activity-guided fractionation the active compounds were isolated under use of different chromatographic techniques. Their structures were unambiguously identified by one and two-dimensional (1)H and (13)C NMR spectroscopy and mass spectrometry and their cholinesterase inhibitory activities were determined by a microplate assay. In order to compare the 3D active sites of AChE from Torpedo californica (TcAChE) and from Electrophorus electricus (EeAChE), three files from the Protein Data Bank (PDB) were used and for docking experiments, GOLD 3.1 software was employed. The concentrations of active compounds in the extract and the fruits were determined by HPLC analysis. The active compounds were determined as 1',2'-dihydroxy-3'-pentadec-8-enylbenzene (A) and 1',2'-dihydroxy-3'-pentadeca-8,11-dienylbenzene (B). Their IC(50) values in an in vitro assay on AChE inhibition were determined as 12 and 34 μg/mL, respectively, while they were not active in the inhibition of butyrylcholinesterase (BChE). In silico docking experiments showed a similar bioactivity for compounds A and B. The concentration of compounds A and B in the fruits was 1.85% and 1.88%, respectively. In the search for the active principle of the fruit resin of Semecarpus anacardium, compounds A and B were identified as two selective

  2. Unexpected tricovalent binding mode of boronic acids within the active site of a penicillin-binding protein.

    Science.gov (United States)

    Zervosen, Astrid; Herman, Raphael; Kerff, Frédéric; Herman, Alexandre; Bouillez, André; Prati, Fabio; Pratt, R F; Frère, Jean-Marie; Joris, Bernard; Luxen, André; Charlier, Paulette; Sauvage, Eric

    2011-07-20

    Boronic acids bearing appropriate side chains are good inhibitors of serine amidohydrolases. The boron usually adopts a tetrahedral conformation, bound to the nucleophilic serine of the active site and mimicking the transition state of the enzymatic reaction. We have solved the structures of complexes of a penicillin-binding protein, the DD-peptidase from Actinomadura sp. R39, with four amidomethylboronic acids (2,6-dimethoxybenzamidomethylboronic acid, phenylacetamidomethylboronic acid, 2-chlorobenzamidomethylboronic acid, and 2-nitrobenzamidomethylboronic acid) and the pinacol ester derived from phenylacetamidomethylboronic acid. We found that, in each case, the boron forms a tricovalent adduct with Oγ of Ser49, Ser298, and the terminal amine group of Lys410, three key residues involved in the catalytic mechanism of penicillin-binding proteins. This represents the first tricovalent enzyme-inhibitor adducts observed by crystallography. In two of the five R39-boronate structures, the boronic acid is found as a tricovalent adduct in two monomers of the asymmetric unit and as a monocovalent adduct with the active serine in the two remaining monomers of the asymmetric unit. Formation of the tricovalent complex from a classical monocovalent complex may involve rotation around the Ser49 Cα-Cβ bond to place the boron in a position to interact with Ser298 and Lys410, and a twisting of the side-chain amide such that its carbonyl oxygen is able to hydrogen bond to the oxyanion hole NH of Thr413. Biphasic kinetics were observed in three of the five cases, and details of the reaction between R39 and 2,6-dimethoxybenzamidomethylboronic acid were studied. Observation of biphasic kinetics was not, however, thought to be correlated to formation of tricovalent complexes, assuming that the latter do form in solution. On the basis of the crystallographic and kinetic results, a reaction scheme for this unexpected inhibition by boronic acids is proposed.

  3. Molecular docking study investigating the possible mode of binding of C.I. Acid Red 73 with DNA.

    Science.gov (United States)

    Guo, Yumei; Yue, Qinyan; Gao, Baoyu

    2011-07-01

    C.I. Acid Red 73 is a reactive azo dye with a variable potential carcinogenicity. The mechanism mediating interactions that occur between the dye and DNA have not been completely understood thus far. In this study, molecular docking techniques were applied to describe the most probable mode of DNA binding as well as the sequence selectivity of the C.I. Acid Red 73 dye. These docking experiments revealed that the dye is capable of interacting with the minor groove of the DNA on the basis of its curved shape, which fits well with the topology of double-stranded DNA. In addition, the dye can bind selectively to the minor groove of the DNA by applying CGT sequence selectivity. Further, the minor groove can be recognized although DNA targets present intercalation gaps. However, intercalative binding can also occur when the DNA target possesses an appropriate intercalation gap. Compared with the other eight DNA sequences that were studied, the DNA dodecamer d(CGCGATATCGCG)(2) (PDB ID: 1DNE) presents a very favorable target for the binding of C.I. Acid Red 73 to the minor groove, with the lowest binding free energy -9.19 kcal/mol. Results reported from this study are expected to provide useful information for research involving further simulations of molecular dynamics and toxicology investigations of the dye.

  4. Distinct modes of SMAD2 chromatin binding and remodeling shape the transcriptional response to NODAL/Activin signaling

    Science.gov (United States)

    Coda, Davide M; Gaarenstroom, Tessa; East, Philip; Patel, Harshil; Miller, Daniel S J; Lobley, Anna; Matthews, Nik; Stewart, Aengus; Hill, Caroline S

    2017-01-01

    NODAL/Activin signaling orchestrates key processes during embryonic development via SMAD2. How SMAD2 activates programs of gene expression that are modulated over time however, is not known. Here we delineate the sequence of events that occur from SMAD2 binding to transcriptional activation, and the mechanisms underlying them. NODAL/Activin signaling induces dramatic chromatin landscape changes, and a dynamic transcriptional network regulated by SMAD2, acting via multiple mechanisms. Crucially we have discovered two modes of SMAD2 binding. SMAD2 can bind pre-acetylated nucleosome-depleted sites. However, it also binds to unacetylated, closed chromatin, independently of pioneer factors, where it induces nucleosome displacement and histone acetylation. For a subset of genes, this requires SMARCA4. We find that long term modulation of the transcriptional responses requires continued NODAL/Activin signaling. Thus SMAD2 binding does not linearly equate with transcriptional kinetics, and our data suggest that SMAD2 recruits multiple co-factors during sustained signaling to shape the downstream transcriptional program. DOI: http://dx.doi.org/10.7554/eLife.22474.001 PMID:28191871

  5. Characterization of the modes of binding between human sweet taste receptor and low-molecular-weight sweet compounds.

    Directory of Open Access Journals (Sweden)

    Katsuyoshi Masuda

    Full Text Available One of the most distinctive features of human sweet taste perception is its broad tuning to chemically diverse compounds ranging from low-molecular-weight sweeteners to sweet-tasting proteins. Many reports suggest that the human sweet taste receptor (hT1R2-hT1R3, a heteromeric complex composed of T1R2 and T1R3 subunits belonging to the class C G protein-coupled receptor family, has multiple binding sites for these sweeteners. However, it remains unclear how the same receptor recognizes such diverse structures. Here we aim to characterize the modes of binding between hT1R2-hT1R3 and low-molecular-weight sweet compounds by functional analysis of a series of site-directed mutants and by molecular modeling-based docking simulation at the binding pocket formed on the large extracellular amino-terminal domain (ATD of hT1R2. We successfully determined the amino acid residues responsible for binding to sweeteners in the cleft of hT1R2 ATD. Our results suggest that individual ligands have sets of specific residues for binding in correspondence with the chemical structures and other residues responsible for interacting with multiple ligands.

  6. Glycosaminoglycans are interactants of Langerin: comparison with gp120 highlights an unexpected calcium-independent binding mode.

    Directory of Open Access Journals (Sweden)

    Eric Chabrol

    Full Text Available Langerin is a C-type lectin specifically expressed in Langerhans cells. As recently shown for HIV, Langerin is thought to capture pathogens and mediate their internalisation into Birbeck Granules for elimination. However, the precise functions of Langerin remain elusive, mostly because of the lack of information on its binding properties and physiological ligands. Based on recent reports that Langerin binds to sulfated sugars, we conducted here a comparative analysis of Langerin interaction with mannose-rich HIV glycoprotein gp120 and glycosaminoglycan (GAGs, a family of sulfated polysaccharides expressed at the surface of most mammalian cells. Our results first revealed that Langerin bound to these different glycans through very distinct mechanisms and led to the identification of a novel, GAG-specific binding mode within Langerin. In contrast to the canonical lectin domain, this new binding site showed no Ca(2+-dependency, and could only be detected in entire, trimeric extracellular domains of Langerin. Interestingly binding to GAGs, did not simply rely on a net charge effect, but rather on more discrete saccharide features, such as 6-O-sulfation, or iduronic acid content. Using molecular modelling simulations, we proposed a model of Langerin/heparin complex, which located the GAG binding site at the interface of two of the three Carbohydrate-recognition domains of the protein, at the edge of the a-helix coiled-coil. To our knowledge, the binding properties that we have highlighted here for Langerin, have never been reported for C-type lectins before. These findings provide new insights towards the understanding of Langerin biological functions.

  7. Cooperative binding mode of the inhibitors of R6K replication, pi dimers.

    Science.gov (United States)

    Bowers, Lisa M; Filutowicz, Marcin

    2008-03-28

    The replication initiator protein, pi, plays an essential role in the initiation of plasmid R6K replication. Both monomers and dimers of pi bind to iterons in the gamma origin of plasmid R6K, yet monomers facilitate open complex formation, while dimers, the predominant form in the cell, do not. Consequently, pi monomers activate replication, while pi dimers inhibit replication. Recently, it was shown that the monomeric form of pi binds multiple tandem iterons in a strongly cooperative fashion, which might explain how monomers outcompete dimers for replication initiation when plasmid copy number and pi supply are low. Here, we examine cooperative binding of pi dimers and explore the role that these interactions may have in the inactivation of gamma origin. To examine pi dimer/iteron interactions in the absence of competing pi monomer/iteron interactions using wild-type pi, constructs were made with key base changes to each iteron that eliminate pi monomer binding yet have no impact on pi dimer binding. Our results indicate that, in the absence of pi monomers, pi dimers bind with greater cooperativity to alternate iterons than to adjacent iterons, thus preferentially leaving intervening iterons unbound and the origin unsaturated. We discuss new insights into plasmid replication control by pi dimers.

  8. The Mode of Inhibitor Binding to Peptidyl-tRNA Hydrolase: Binding Studies and Structure Determination of Unbound and Bound Peptidyl-tRNA Hydrolase from Acinetobacter baumannii

    Science.gov (United States)

    Kaushik, Sanket; Singh, Nagendra; Yamini, Shavait; Singh, Avinash; Sinha, Mau; Arora, Ashish; Kaur, Punit; Sharma, Sujata; Singh, Tej P.

    2013-01-01

    The incidences of infections caused by an aerobic Gram-negative bacterium, Acinetobacter baumannii are very common in hospital environments. It usually causes soft tissue infections including urinary tract infections and pneumonia. It is difficult to treat due to acquired resistance to available antibiotics is well known. In order to design specific inhibitors against one of the important enzymes, peptidyl-tRNA hydrolase from Acinetobacter baumannii, we have determined its three-dimensional structure. Peptidyl-tRNA hydrolase (AbPth) is involved in recycling of peptidyl-tRNAs which are produced in the cell as a result of premature termination of translation process. We have also determined the structures of two complexes of AbPth with cytidine and uridine. AbPth was cloned, expressed and crystallized in unbound and in two bound states with cytidine and uridine. The binding studies carried out using fluorescence spectroscopic and surface plasmon resonance techniques revealed that both cytidine and uridine bound to AbPth at nanomolar concentrations. The structure determinations of the complexes revealed that both ligands were located in the active site cleft of AbPth. The introduction of ligands to AbPth caused a significant widening of the entrance gate to the active site region and in the process of binding, it expelled several water molecules from the active site. As a result of interactions with protein atoms, the ligands caused conformational changes in several residues to attain the induced tight fittings. Such a binding capability of this protein makes it a versatile molecule for hydrolysis of peptidyl-tRNAs having variable peptide sequences. These are the first studies that revealed the mode of inhibitor binding in Peptidyl-tRNA hydrolases which will facilitate the structure based ligand design. PMID:23844024

  9. The mode of inhibitor binding to peptidyl-tRNA hydrolase: binding studies and structure determination of unbound and bound peptidyl-tRNA hydrolase from Acinetobacter baumannii.

    Directory of Open Access Journals (Sweden)

    Sanket Kaushik

    Full Text Available The incidences of infections caused by an aerobic Gram-negative bacterium, Acinetobacter baumannii are very common in hospital environments. It usually causes soft tissue infections including urinary tract infections and pneumonia. It is difficult to treat due to acquired resistance to available antibiotics is well known. In order to design specific inhibitors against one of the important enzymes, peptidyl-tRNA hydrolase from Acinetobacter baumannii, we have determined its three-dimensional structure. Peptidyl-tRNA hydrolase (AbPth is involved in recycling of peptidyl-tRNAs which are produced in the cell as a result of premature termination of translation process. We have also determined the structures of two complexes of AbPth with cytidine and uridine. AbPth was cloned, expressed and crystallized in unbound and in two bound states with cytidine and uridine. The binding studies carried out using fluorescence spectroscopic and surface plasmon resonance techniques revealed that both cytidine and uridine bound to AbPth at nanomolar concentrations. The structure determinations of the complexes revealed that both ligands were located in the active site cleft of AbPth. The introduction of ligands to AbPth caused a significant widening of the entrance gate to the active site region and in the process of binding, it expelled several water molecules from the active site. As a result of interactions with protein atoms, the ligands caused conformational changes in several residues to attain the induced tight fittings. Such a binding capability of this protein makes it a versatile molecule for hydrolysis of peptidyl-tRNAs having variable peptide sequences. These are the first studies that revealed the mode of inhibitor binding in Peptidyl-tRNA hydrolases which will facilitate the structure based ligand design.

  10. A comprehensive approach to ascertain the binding mode of curcumin with DNA

    Science.gov (United States)

    Haris, P.; Mary, Varughese; Aparna, P.; Dileep, K. V.; Sudarsanakumar, C.

    2017-03-01

    Curcumin is a natural phytochemical from the rhizoma of Curcuma longa, the popular Indian spice that exhibits a wide range of pharmacological properties like antioxidant, anticancer, anti-inflammatory, antitumor, and antiviral activities. In the published literatures we can see different studies and arguments on the interaction of curcumin with DNA. The intercalative binding, groove binding and no binding of curcumin with DNA were reported. In this context, we conducted a detailed study to understand the mechanism of recognition of dimethylsulfoxide-solubilized curcumin by DNA. The interaction of curcumin with calf thymus DNA (ctDNA) was confirmed by agarose gel electrophoresis. The nature of binding and energetics of interaction were studied by Isothermal Titration Calorimetry (ITC), Differential Scanning Calorimetry (DSC), UV-visible, fluorescence and melting temperature (Tm) analysis. The experimental data were compared with molecular modeling studies. Our investigation confirmed that dimethylsulfoxide-solubilized curcumin binds in the minor groove of the ctDNA without causing significant structural alteration to the DNA.

  11. Binding modes of decavanadate to myosin and inhibition of the actomyosin ATPase activity.

    Science.gov (United States)

    Tiago, Teresa; Martel, Paulo; Gutiérrez-Merino, Carlos; Aureliano, Manuel

    2007-04-01

    Decavanadate, a vanadate oligomer, is known to interact with myosin and to inhibit the ATPase activity, but the putative binding sites and the mechanism of inhibition are still to be clarified. We have previously proposed that the decavanadate (V(10)O(28)(6-)) inhibition of the actin-stimulated myosin ATPase activity is non-competitive towards both actin and ATP. A likely explanation for these results is that V(10) binds to the so-called back-door at the end of the Pi-tube opposite to the nucleotide-binding site. In order to further investigate this possibility, we have carried out molecular docking simulations of the V(10) oligomer on three different structures of the myosin motor domain of Dictyostelium discoideum, representing distinct states of the ATPase cycle. The results indicate a clear preference of V(10) to bind at the back-door, but only on the "open" structures where there is access to the phosphate binding-loop. It is suggested that V(10) acts as a "back-door stop" blocking the closure of the 50-kDa cleft necessary to carry out ATP-gamma-phosphate hydrolysis. This provides a simple explanation to the non-competitive behavior of V(10) and spurs the use of the oligomer as a tool to elucidate myosin back-door conformational changes in the process of muscle contraction.

  12. Structural analysis of the STING adaptor protein reveals a hydrophobic dimer interface and mode of cyclic di-GMP binding.

    Science.gov (United States)

    Ouyang, Songying; Song, Xianqiang; Wang, Yaya; Ru, Heng; Shaw, Neil; Jiang, Yan; Niu, Fengfeng; Zhu, Yanping; Qiu, Weicheng; Parvatiyar, Kislay; Li, Yang; Zhang, Rongguang; Cheng, Genhong; Liu, Zhi-Jie

    2012-06-29

    STING is an essential signaling molecule for DNA and cyclic di-GMP (c-di-GMP)-mediated type I interferon (IFN) production via TANK-binding kinase 1 (TBK1) and interferon regulatory factor 3 (IRF3) pathway. It contains an N-terminal transmembrane region and a cytosolic C-terminal domain (CTD). Here, we describe crystal structures of STING CTD alone and complexed with c-di-GMP in a unique binding mode. The strictly conserved aa 153-173 region was shown to be cytosolic and participated in dimerization via hydrophobic interactions. The STING CTD functions as a dimer and the dimerization was independent of posttranslational modifications. Binding of c-di-GMP enhanced interaction of a shorter construct of STING CTD (residues 139-344) with TBK1. This suggests an extra TBK1 binding site, other than serine 358. This study provides a glimpse into the unique architecture of STING and sheds light on the mechanism of c-di-GMP-mediated TBK1 signaling.

  13. A Comparative Reverse Docking Strategy to Identify Potential Antineoplastic Targets of Tea Functional Components and Binding Mode

    Directory of Open Access Journals (Sweden)

    Rong Zheng

    2011-08-01

    Full Text Available The main functional components of green tea, such as epigallocatechin gallate (EGCG, epigallocatechin (EGC, epicatechin gallate (ECG and epicatechin (EC, are found to have a broad antineoplastic activity. The discovery of their targets plays an important role in revealing the antineoplastic mechanism. Therefore, to identify potential target proteins for tea polyphenols, we have taken a comparative virtual screening approach using two reverse docking systems, one based on Autodock software and the other on Tarfisdock. Two separate in silico workflows were implemented to derive a set of target proteins related to human diseases and ranked by the binding energy score. Several conventional clinically important proteins with anti-tumor effects are screened out from the PDTD protein database as the potential receptors by both procedures. To further analyze the validity of docking results, we study the binding mode of EGCG and the potential target protein Leukotriene A4 hydrolase in detail. We indicate that interactions mediated by electrostatic and hydrogen bond play a key role in ligand binding. EGCG binds to the enzyme with certain orientation and conformation that is suitable for nucleophilic attacks by several electrical residues inside the enzyme’s activity cavity. This study provides useful information for studying the antitumor mechanism of tea’s functional components. The comparative reverse docking strategy presented generates a tractable set of antineoplastic proteins for future experimental validation as drug targets against tumors.

  14. Molecular modeling study on the tubulin-binding modes of epothilone derivatives: Insight into the structural basis for epothilones activity.

    Science.gov (United States)

    Jiménez, Verónica A; Alderete, Joel B; Navarrete, Karen R

    2017-06-20

    Molecular dynamics (MD) simulations were employed to study the tubulin-binding modes of 20 epothilone derivatives spanning a wide range of antitumor activity. Trajectory analysis revealed that active ligands shared a common region of association and similar binding poses compared to the high-resolution crystal structure of the tubulin complex with epothilone A, the stathmin-like protein RB3, and tubulin tyrosine ligase (PDB code 4I50). Conformational analysis of epothilones in aqueous solution and tubulin-bound states indicated that the bound conformations of active species can be found to a significant extent within the ensemble of conformers available in aqueous solution. On the other hand, inactive derivatives were unable to adopt bound-like conformations in aqueous solution, thus requiring an extensive conformational pre-organization to accomplish an effective interaction with the tubulin receptor. Additionally, MD results revealed that epothilone binding-induced structuring of the M-loop and local flexibility changes in protein regions involved in interdimeric contacts that are relevant for microtubule stabilization. These results provide novel, valuable structural information to increase understanding about the underlying molecular aspects of epothilones activity and support further work on the search for new active tubulin-binding agents. © 2017 John Wiley & Sons A/S.

  15. Quest for the binding mode of tetrabromobisphenol A with Calf thymus DNA

    Science.gov (United States)

    Wang, Yan-Qing; Zhang, Hong-Mei; Cao, Jian

    2014-10-01

    The binding interaction of tetrabromobisphenol A with Calf thymus DNA was studied by multi-spectroscopic and molecular modeling methods. The UV-vis study revealed that an obvious interaction between tetrabromobisphenol A and Calf thymus DNA happened. The π-π∗ transitions and the electron cloud of tetrabromobisphenol A might be changed by entering the groove of Calf thymus DNA. From the fluorescence spectral and thermodynamics studies, it was concluded that the hydrogen bonds and hydrophobic force played a major role in the binding of tetrabromobisphenol A to Calf thymus DNA. The molecular modeling study showed that the possible sites of tetrabromobisphenol A in the groove of DNA. Circular dichroism study also depicted that tetrabromobisphenol A bond to DNA. These above results would further advance our knowledge on the molecular mechanism of the binding interactions of brominated flame-retardants with nucleic acid.

  16. Bridging Binding Modes of Phosphine-Stabilized Nitrous Oxide to Zn(C6F5)2

    NARCIS (Netherlands)

    Neu, Rebecca C.; Otten, Edwin; Stephan, Douglas W.

    2009-01-01

    Reaction of [tBu3PN2O(B(C6H4F)3)] with 1, 1.5, or 2 equivalents of Zn(C6F5)2 affords the species [{tBu3PN2OZn(C6F5)2}2], [{tBu3PN2OZn(C6F5)2}2Zn(C6F5)2], and [tBu3PN2O{Zn(C6F5)2}2] displaying unique binding modes of Zn to the phosphine-stabilized N2O fragment.

  17. Probe the Binding Mode of Aristololactam-β-D-glucoside to Phenylalanine Transfer RNA in Silico

    DEFF Research Database (Denmark)

    Xiao, Xingqing; Zhao, Binwu; Yang, Li

    2016-01-01

    Understanding the interactions of drug molecules with biomacromolecules at a micro-scale level is essential to design potent drugs for the treatments of human genome diseases. To unravel the mechanism of binding of aristololactam-β-D-glucoside (ADG) and phenylalanine transfer RNA (tRNAPhe), an in......Understanding the interactions of drug molecules with biomacromolecules at a micro-scale level is essential to design potent drugs for the treatments of human genome diseases. To unravel the mechanism of binding of aristololactam-β-D-glucoside (ADG) and phenylalanine transfer RNA (t...

  18. Machine Learning Reveals a Non-Canonical Mode of Peptide Binding to MHC class II Molecules

    DEFF Research Database (Denmark)

    Andreatta, Massimo; Jurtz, Vanessa Isabell; Kaever, Thomas

    2017-01-01

    MHC class II molecules play a fundamental role in the cellular immune system: they load short peptide fragments derived from extracellular proteins and present them on the cell surface. It is currently thought that the peptide binds lying more or less flat in the MHC groove, with a fixed distance...

  19. Structure and Mode of Peptide Binding of Pheromone Receptor PrgZ

    NARCIS (Netherlands)

    Berntsson, Ronnie P. -A.; Schuurman-Wolters, Gea K.; Dunny, Gary; Slotboom, Dirk-Jan; Poolman, Bert

    2012-01-01

    Wepresent the crystal structure of the pheromone receptor protein PrgZ from Enterococcus faecalis in complex with the heptapeptide cCF10 (LVTLVFV), which is used in signaling between conjugative recipient and donor cells. Comparison of PrgZ with homologous oligopeptide-binding proteins (AppA and Opp

  20. RANKL employs distinct binding modes to engage RANK and the osteoprotegerin decoy receptor.

    Science.gov (United States)

    Nelson, Christopher A; Warren, Julia T; Wang, Michael W-H; Teitelbaum, Steven L; Fremont, Daved H

    2012-11-07

    Osteoprotegerin (OPG) and receptor activator of nuclear factor κB (RANK) are members of the tumor necrosis factor receptor (TNFR) superfamily that regulate osteoclast formation and function by competing for RANK ligand (RANKL). RANKL promotes osteoclast development through RANK activation, while OPG inhibits this process by sequestering RANKL. For comparison, we solved crystal structures of RANKL with RANK and RANKL with OPG. Complementary biochemical and functional studies reveal that the monomeric cytokine-binding region of OPG binds RANKL with ∼500-fold higher affinity than RANK and inhibits RANKL-stimulated osteoclastogenesis ∼150 times more effectively, in part because the binding cleft of RANKL makes unique contacts with OPG. Several side chains as well as the C-D and D-E loops of RANKL occupy different orientations when bound to OPG versus RANK. High affinity OPG binding requires a 90s loop Phe residue that is mutated in juvenile Paget's disease. These results suggest cytokine plasticity may help to fine-tune specific tumor necrosis factor (TNF)-family cytokine/receptor pair selectivity.

  1. The Interplay of Chromatin Landscape and DNA-Binding Context Suggests Distinct Modes of EIN3 Regulation in Arabidopsis thaliana

    Science.gov (United States)

    Zemlyanskaya, Elena V.; Levitsky, Victor G.; Oshchepkov, Dmitry Y.; Grosse, Ivo; Mironova, Victoria V.

    2017-01-01

    The plant hormone ethylene regulates numerous developmental processes and stress responses. Ethylene signaling proceeds via a linear pathway, which activates transcription factor (TF) EIN3, a primary transcriptional regulator of ethylene response. EIN3 influences gene expression upon binding to a specific sequence in gene promoters. This interaction, however, might be considerably affected by additional co-factors. In this work, we perform whole genome bioinformatics study to identify the impact of epigenetic factors in EIN3 functioning. The analysis of publicly available ChIP-Seq data on EIN3 binding in Arabidopsis thaliana showed bimodality of distribution of EIN3 binding regions (EBRs) in gene promoters. Besides a sharp peak in close proximity to transcription start site, which is a common binding region for a wide variety of TFs, we found an additional extended peak in the distal promoter region. We characterized all EBRs with respect to the epigenetic status appealing to previously published genome-wide map of nine chromatin states in A. thaliana. We found that the implicit distal peak was associated with a specific chromatin state (referred to as chromatin state 4 in the primary source), which was just poorly represented in the pronounced proximal peak. Intriguingly, EBRs corresponding to this chromatin state 4 were significantly associated with ethylene response, unlike the others representing the overwhelming majority of EBRs related to the explicit proximal peak. Moreover, we found that specific EIN3 binding sequences predicted with previously described model were enriched in the EBRs mapped to the chromatin state 4, but not to the rest ones. These results allow us to conclude that the interplay of genetic and epigenetic factors might cause the distinct modes of EIN3 regulation. PMID:28119721

  2. Identification, pharmacological evaluation and binding mode analysis of novel chromene and chromane based σ1 receptor ligands.

    Science.gov (United States)

    Laurini, Erik; Harel, Dipak; Marson, Domenico; Schepmann, Dirk; Schmidt, Thomas J; Pricl, Sabrina; Wünsch, Bernhard

    2014-08-18

    A set of aminoethyl substituted chromenes 3 and chromanes 4, originally developed as antiprotozoal drugs was evaluated as novel types of σ1 receptor ligands. Analysis of SAR showed that chromenes 3 have a higher σ1 affinity than chromanes 4. A distance of four bond lengths between the basic amino moiety and the phenyl ring (3c), an alicyclic N-substituent such as the cyclohexylmethyl moiety (3l), and methylation of the secondary amine to afford a tertiary amine (3n) result in very high σ1 affinity and selectivity over the σ2 subtype. Compounds 3a-n and 4a-e were docked into the putative binding site of the σ1 receptor model and the relevant binding mode was analyzed and scored. Specifically, for the best σ1 ligand 3n, a salt bridge between Asp126 and the protonated amino group, an H-bond between the receptor backbone NH group (Ala122-Glu123) and the methoxy moiety of 3n, a lipophilic protein cavity encasing the chromene ring, and a T-shaped π-π stacking between the indole ring of Trp121 and the phenyl ring of 3n represent the most important ligand/protein stabilizing interactions. The binding pose of 3n was compared with the binding poses of the non-methylated chromene 3c, the saturated chromane 4c, and the N-cyclohexylmethyl derivative 3l. The contribution of the single amino acids to the overall free binding enthalpy was analyzed.

  3. Ultrafast photoelectron migration in dye-sensitized solar cells: Influence of the binding mode and many-body interactions

    Science.gov (United States)

    Hermann, G.; Tremblay, J. C.

    2016-11-01

    In the present contribution, the ultrafast photoinduced electron migration dynamics at the interface between an alizarin dye and an anatase TiO2 thin film is investigated from first principles. Comparison between a time-dependent many-electron configuration interaction ansatz and a single active electron approach sheds light on the importance of many-body effects, stemming from uniquely defined initial conditions prior to photoexcitation. Particular emphasis is put on understanding the influence of the binding mode on the migration process. The dynamics is analyzed on the basis of a recently introduced toolset in the form of electron yields, electronic fluxes, and flux densities, to reveal microscopic details of the electron migration mechanism. From the many-body perspective, insight into the nature of electron-electron and hole-hole interactions during the charge transfer process is obtained. The present results reveal that the single active electron approach yields quantitatively and phenomenologically similar results as the many-electron ansatz. Furthermore, the charge migration processes in the dye-TiO2 model clusters with different binding modes exhibit similar mechanistic pathways but on largely different time scales.

  4. Direct demonstration of unique mode of natural peptide binding to the type 2 cholecystokinin receptor using photoaffinity labeling.

    Science.gov (United States)

    Dong, Maoqing; Miller, Laurence J

    2013-08-01

    Direct analysis of mode of peptide docking using intrinsic photoaffinity labeling has provided detailed insights for the molecular basis of cholecystokinin (CCK) interaction with the type 1 CCK receptor. In the current work, this technique has been applied to the closely related type 2 CCK receptor that also binds the natural full agonist peptide, CCK, with high affinity. A series of photolabile CCK analog probes with sites of covalent attachment extending from position 26 through 32 were characterized, with the highest affinity analogs that possessed full biological activity utilized in photoaffinity labeling. The position 29 probe, incorporating a photolabile benzoyl-phenylalanine in that position, was shown to bind with high affinity and to be a full agonist, with potency not different from that of natural CCK, and to covalently label the type 2 CCK receptor in a saturable, specific and efficient manner. Using proteolytic peptide mapping, mutagenesis, and radiochemical Edman degradation sequencing, this probe was shown to establish a covalent bond with type 2 CCK receptor residue Phe¹²⁰ in the first extracellular loop. This was in contrast to its covalent attachment to Glu³⁴⁵ in the third extracellular loop of the type 1 CCK receptor, directly documenting differences in mode of docking this peptide to these receptors.

  5. Implications of binding mode and active site flexibility for inhibitor potency against the salicylate synthase from Mycobacterium tuberculosis.

    Science.gov (United States)

    Chi, Gamma; Manos-Turvey, Alexandra; O'Connor, Patrick D; Johnston, Jodie M; Evans, Genevieve L; Baker, Edward N; Payne, Richard J; Lott, J Shaun; Bulloch, Esther M M

    2012-06-19

    MbtI is the salicylate synthase that catalyzes the first committed step in the synthesis of the iron chelating compound mycobactin in Mycobacterium tuberculosis. We previously developed a series of aromatic inhibitors against MbtI based on the reaction intermediate for this enzyme, isochorismate. The most potent of these inhibitors had hydrophobic substituents, ranging in size from a methyl to a phenyl group, appended to the terminal alkene of the enolpyruvyl group. These compounds exhibited low micromolar inhibition constants against MbtI and were at least an order of magnitude more potent than the parental compound for the series, which carries a native enolpyruvyl group. In this study, we sought to understand how the substituted enolpyruvyl group confers greater potency, by determining cocrystal structures of MbtI with six inhibitors from the series. A switch in binding mode at the MbtI active site is observed for inhibitors carrying a substituted enolpyruvyl group, relative to the parental compound. Computational studies suggest that the change in binding mode, and higher potency, is due to the effect of the substituents on the conformational landscape of the core inhibitor structure. The crystal structures and fluorescence-based thermal shift assays indicate that substituents larger than a methyl group are accommodated in the MbtI active site through significant but localized flexibility in the peptide backbone. These findings have implications for the design of improved inhibitors of MbtI, as well as other chorismate-utilizing enzymes from this family.

  6. Multiple DNA-binding modes for the ETS family transcription factor PU.1.

    Science.gov (United States)

    Esaki, Shingo; Evich, Marina G; Erlitzki, Noa; Germann, Markus W; Poon, Gregory M K

    2017-09-29

    The eponymous DNA-binding domain of ETS (E26 transformation-specific) transcription factors binds a single sequence-specific site as a monomer over a single helical turn. Following our previous observation by titration calorimetry that the ETS member PU.1 dimerizes sequentially at a single sequence-specific DNA-binding site to form a 2:1 complex, we have carried out an extensive spectroscopic and biochemical characterization of site-specific PU.1 ETS complexes. Whereas 10 bp of DNA was sufficient to support PU.1 binding as a monomer, additional flanking bases were required to invoke sequential dimerization of the bound protein. NMR spectroscopy revealed a marked loss of signal intensity in the 2:1 complex, and mutational analysis implicated the distal surface away from the bound DNA as the dimerization interface. Hydroxyl radical DNA footprinting indicated that the site-specifically bound PU.1 dimers occupied an extended DNA interface downstream from the 5'-GGAA-3' core consensus relative to its 1:1 counterpart, thus explaining the apparent site size requirement for sequential dimerization. The site-specifically bound PU.1 dimer resisted competition from nonspecific DNA and showed affinities similar to other functionally significant PU.1 interactions. As sequential dimerization did not occur with the ETS domain of Ets-1, a close structural homolog of PU.1, 2:1 complex formation may represent an alternative autoinhibitory mechanism in the ETS family at the protein-DNA level. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  7. The Mode of Hedgehog Binding to Ihog Homologues is Not Conserved Across Different Phyla

    Energy Technology Data Exchange (ETDEWEB)

    McLellan, J.; Zheng, X; Hauk, G; Ghirlando, R; Beachy, P; Leahy, D

    2008-01-01

    Hedgehog (Hh) proteins specify tissue pattern in metazoan embryos by forming gradients that emanate from discrete sites of expression and elicit concentration-dependent cellular differentiation or proliferation responses1, 2. Cellular responses to Hh and the movement of Hh through tissues are both precisely regulated, and abnormal Hh signalling has been implicated in human birth defects and cancer3, 4, 5, 6, 7. Hh signalling is mediated by its amino-terminal domain (HhN), which is dually lipidated and secreted as part of a multivalent lipoprotein particle8, 9, 10. Reception of the HhN signal is modulated by several cell-surface proteins on responding cells, including Patched (Ptc), Smoothened (Smo), Ihog (known as CDO or CDON in mammals) and the vertebrate-specific proteins Hip (also known as Hhip) and Gas1 (ref. 11). Drosophila Ihog and its vertebrate homologues CDO and BOC contain multiple immunoglobulin and fibronectin type III (FNIII) repeats, and the first FNIII repeat of Ihog binds Drosophila HhN in a heparin-dependent manner12, 13. Surprisingly, pull-down experiments suggest that a mammalian Sonic hedgehog N-terminal domain (ShhN) binds a non-orthologous FNIII repeat of CDO12, 14. Here we report biochemical, biophysical and X-ray structural studies of a complex between ShhN and the third FNIII repeat of CDO. We show that the ShhN-CDO interaction is completely unlike the HhN-Ihog interaction and requires calcium, which binds at a previously undetected site on ShhN. This site is conserved in nearly all Hh proteins and is a hotspot for mediating interactions between ShhN and CDO, Ptc, Hip and Gas1. Mutations in vertebrate Hh proteins causing holoprosencephaly and brachydactyly type A1 map to this calcium-binding site and disrupt interactions with these partners.

  8. Binding Mode and Selectivity of Steroids towards Glucose-6-phosphate Dehydrogenase from the Pathogen Trypanosoma cruzi

    Directory of Open Access Journals (Sweden)

    Cecilia Ortiz

    2016-03-01

    Full Text Available Glucose-6-phosphate dehydrogenase (G6PDH plays a housekeeping role in cell metabolism by generating reducing power (NADPH and fueling the production of nucleotide precursors (ribose-5-phosphate. Based on its indispensability for pathogenic parasites from the genus Trypanosoma, G6PDH is considered a drug target candidate. Several steroid-like scaffolds were previously reported to target the activity of G6PDH. Epiandrosterone (EA is an uncompetitive inhibitor of trypanosomal G6PDH for which its binding site to the enzyme remains unknown. Molecular simulation studies with the structure of Trypanosoma cruzi G6PDH revealed that EA binds in a pocket close to the G6P binding-site and protrudes into the active site blocking the interaction between substrates and hence catalysis. Site directed mutagenesis revealed the important steroid-stabilizing effect of residues (L80, K83 and K84 located on helix α-1 of T. cruzi G6PDH. The higher affinity and potency of 16α-Br EA by T. cruzi G6PDH is explained by the formation of a halogen bond with the hydrogen from the terminal amide of the NADP+-nicotinamide. At variance with the human enzyme, the inclusion of a 21-hydroxypregnane-20-one moiety to a 3β-substituted steroid is detrimental for T. cruzi G6PDH inhibition. The species-specificity of certain steroid derivatives towards the parasite G6PDH and the corresponding biochemically validated binding models disclosed in this work may prove valuable for the development of selective inhibitors against the pathogen’s enzyme.

  9. Binding Mode and Selectivity of Steroids towards Glucose-6-phosphate Dehydrogenase from the Pathogen Trypanosoma cruzi.

    Science.gov (United States)

    Ortiz, Cecilia; Moraca, Francesca; Medeiros, Andrea; Botta, Maurizio; Hamilton, Niall; Comini, Marcelo A

    2016-03-17

    Glucose-6-phosphate dehydrogenase (G6PDH) plays a housekeeping role in cell metabolism by generating reducing power (NADPH) and fueling the production of nucleotide precursors (ribose-5-phosphate). Based on its indispensability for pathogenic parasites from the genus Trypanosoma, G6PDH is considered a drug target candidate. Several steroid-like scaffolds were previously reported to target the activity of G6PDH. Epiandrosterone (EA) is an uncompetitive inhibitor of trypanosomal G6PDH for which its binding site to the enzyme remains unknown. Molecular simulation studies with the structure of Trypanosoma cruzi G6PDH revealed that EA binds in a pocket close to the G6P binding-site and protrudes into the active site blocking the interaction between substrates and hence catalysis. Site directed mutagenesis revealed the important steroid-stabilizing effect of residues (L80, K83 and K84) located on helix α-1 of T. cruzi G6PDH. The higher affinity and potency of 16α-Br EA by T. cruzi G6PDH is explained by the formation of a halogen bond with the hydrogen from the terminal amide of the NADP+-nicotinamide. At variance with the human enzyme, the inclusion of a 21-hydroxypregnane-20-one moiety to a 3β-substituted steroid is detrimental for T. cruzi G6PDH inhibition. The species-specificity of certain steroid derivatives towards the parasite G6PDH and the corresponding biochemically validated binding models disclosed in this work may prove valuable for the development of selective inhibitors against the pathogen's enzyme.

  10. Calculating the contribution of different binding modes to Quinacrine - DNA complex formation from polarized fluorescence data

    CERN Document Server

    Voloshin, Igor; Karachevtsev, Victor; Zozulya, Victor

    2013-01-01

    Binding of acridine derivative quinacrine (QA) to chicken erythrocyte DNA was studied by methods of absorption and polarized fluorescent spectroscopy. Measurements were carried out in aqueous buffered solutions (pH 6.9) of different dye concentrations (QA concentration range from $10^{-6}$ till $10^{-4}$ M) and ionic strengths ($Na^{+}$ concentration rang from $10^{-3}$ till 0.15 M) in a wide range of phosphate-to-dye molar ratios ($P/D$). It is established that the minimum of fluorescent titration curve plotted as relative fluorescence intensity $vs$ $P/D$ is conditioned by the competition between the two types of QA binding to DNA which posses by different emission parameters: (i) intercalative one dominating under high $P/D$ values, and (ii) outside electrostatic binding dominating under low $P/D$ values, which is accompanied by the formation of non-fluorescent dye associates on the DNA backbone. Absorption and fluorescent characteristics of complexes formed were determined. The method of calculation of di...

  11. A Novel, ;Double-Clamp; Binding Mode for Human Heme Oxygenase-1 Inhibition

    Energy Technology Data Exchange (ETDEWEB)

    Rahman, Mona N.; Vlahakis, Jason Z.; Vukomanovic, Dragic; Lee, Wallace; Szarek, Walter A.; Nakatsu, Kanji; Jia, Zongchao (Queens)

    2012-08-01

    The development of heme oxygenase (HO) inhibitors is critical in dissecting and understanding the HO system and for potential therapeutic applications. We have established a program to design and optimize HO inhibitors using structure-activity relationships in conjunction with X-ray crystallographic analyses. One of our previous complex crystal structures revealed a putative secondary hydrophobic binding pocket which could be exploited for a new design strategy by introducing a functional group that would fit into this potential site. To test this hypothesis and gain further insights into the structural basis of inhibitor binding, we have synthesized and characterized 1-(1H-imidazol-1-yl)-4,4-diphenyl-2-butanone (QC-308). Using a carbon monoxide (CO) formation assay on rat spleen microsomes, the compound was found to be {approx}15 times more potent (IC{sub 50} = 0.27{+-}0.07 {mu}M) than its monophenyl analogue, which is already a potent compound in its own right (QC-65; IC{sub 50} = 4.0{+-}1.8 {mu}M). The crystal structure of hHO-1 with QC-308 revealed that the second phenyl group in the western region of the compound is indeed accommodated by a definitive secondary proximal hydrophobic pocket. Thus, the two phenyl moieties are each stabilized by distinct hydrophobic pockets. This 'double-clamp' binding offers additional inhibitor stabilization and provides a new route for improvement of human heme oxygenase inhibitors.

  12. Binding Mode Analysis of Zerumbone to Key Signal Proteins in the Tumor Necrosis Factor Pathway

    Directory of Open Access Journals (Sweden)

    Ayesha Fatima

    2015-01-01

    Full Text Available Breast cancer is the second most common cancer among women worldwide. Several signaling pathways have been implicated as causative and progression agents. The tumor necrosis factor (TNF α protein plays a dual role in promoting and inhibiting cancer depending largely on the pathway initiated by the binding of the protein to its receptor. Zerumbone, an active constituent of Zingiber zerumbet, Smith, is known to act on the tumor necrosis factor pathway upregulating tumour necrosis factor related apoptosis inducing ligand (TRAIL death receptors and inducing apoptosis in cancer cells. Zerumbone is a sesquiterpene that is able to penetrate into the hydrophobic pockets of proteins to exert its inhibiting activity with several proteins. We found a good binding with the tumor necrosis factor, kinase κB (IKKβ and the Nuclear factor κB (NF-κB component proteins along the TNF pathway. Our results suggest that zerumbone can exert its apoptotic activities by inhibiting the cytoplasmic proteins. It inhibits the IKKβ kinase that activates the NF-κB and also binds to the NF-κB complex in the TNF pathway. Blocking both proteins can lead to inhibition of cell proliferating proteins to be downregulated and possibly ultimate induction of apoptosis.

  13. Dual binding mode in cohesin-dockerin complexes as assessed through stretching studies

    Science.gov (United States)

    Wojciechowski, Michał; Cieplak, Marek

    2016-10-01

    A recent experimental study by Jobst et al. of stretching of a wild-type (WT) cohesin-dockerin complex has identified two kinds of the force-displacement patterns, with a single or double-peaked final rupture, which are termed "short" and "long" here. This duality has been interpreted as arising from the existence of two kinds of binding. Here, we analyze the separation of two cohesin-dockerin complexes of C. thermocellum theoretically. We use a coarse-grained structure-based model and the values of the pulling speeds are nearly experimental. In their native states, the two systems differ in the mutual binding orientations of the molecules in the complex. We demonstrate that the WT complex (PDB:1OHZ) unravels along two possible pathways that are qualitatively consistent with the presence of the short and long patterns observed experimentally. On the other hand, the mutated complex (PDB:2CCL) leads only to short trajectories. The short and long stretching pathways also appear in the cohesin-dockerin-Xmodule complex (PDB:4IU3, WT) of R. flavefaciens. Thus the duality in the stretching patterns need not be necessarily due to the duality in binding.

  14. A novel, "double-clamp" binding mode for human heme oxygenase-1 inhibition.

    Directory of Open Access Journals (Sweden)

    Mona N Rahman

    Full Text Available The development of heme oxygenase (HO inhibitors is critical in dissecting and understanding the HO system and for potential therapeutic applications. We have established a program to design and optimize HO inhibitors using structure-activity relationships in conjunction with X-ray crystallographic analyses. One of our previous complex crystal structures revealed a putative secondary hydrophobic binding pocket which could be exploited for a new design strategy by introducing a functional group that would fit into this potential site. To test this hypothesis and gain further insights into the structural basis of inhibitor binding, we have synthesized and characterized 1-(1H-imidazol-1-yl-4,4-diphenyl-2-butanone (QC-308. Using a carbon monoxide (CO formation assay on rat spleen microsomes, the compound was found to be ∼15 times more potent (IC(50 = 0.27±0.07 µM than its monophenyl analogue, which is already a potent compound in its own right (QC-65; IC(50 = 4.0±1.8 µM. The crystal structure of hHO-1 with QC-308 revealed that the second phenyl group in the western region of the compound is indeed accommodated by a definitive secondary proximal hydrophobic pocket. Thus, the two phenyl moieties are each stabilized by distinct hydrophobic pockets. This "double-clamp" binding offers additional inhibitor stabilization and provides a new route for improvement of human heme oxygenase inhibitors.

  15. A Novel, “Double-Clamp” Binding Mode for Human Heme Oxygenase-1 Inhibition

    Science.gov (United States)

    Rahman, Mona N.; Vlahakis, Jason Z.; Vukomanovic, Dragic; Lee, Wallace; Szarek, Walter A.; Nakatsu, Kanji; Jia, Zongchao

    2012-01-01

    The development of heme oxygenase (HO) inhibitors is critical in dissecting and understanding the HO system and for potential therapeutic applications. We have established a program to design and optimize HO inhibitors using structure-activity relationships in conjunction with X-ray crystallographic analyses. One of our previous complex crystal structures revealed a putative secondary hydrophobic binding pocket which could be exploited for a new design strategy by introducing a functional group that would fit into this potential site. To test this hypothesis and gain further insights into the structural basis of inhibitor binding, we have synthesized and characterized 1-(1H-imidazol-1-yl)-4,4-diphenyl-2-butanone (QC-308). Using a carbon monoxide (CO) formation assay on rat spleen microsomes, the compound was found to be ∼15 times more potent (IC50 = 0.27±0.07 µM) than its monophenyl analogue, which is already a potent compound in its own right (QC-65; IC50 = 4.0±1.8 µM). The crystal structure of hHO-1 with QC-308 revealed that the second phenyl group in the western region of the compound is indeed accommodated by a definitive secondary proximal hydrophobic pocket. Thus, the two phenyl moieties are each stabilized by distinct hydrophobic pockets. This “double-clamp” binding offers additional inhibitor stabilization and provides a new route for improvement of human heme oxygenase inhibitors. PMID:22276118

  16. A novel, "double-clamp" binding mode for human heme oxygenase-1 inhibition.

    Science.gov (United States)

    Rahman, Mona N; Vlahakis, Jason Z; Vukomanovic, Dragic; Lee, Wallace; Szarek, Walter A; Nakatsu, Kanji; Jia, Zongchao

    2012-01-01

    The development of heme oxygenase (HO) inhibitors is critical in dissecting and understanding the HO system and for potential therapeutic applications. We have established a program to design and optimize HO inhibitors using structure-activity relationships in conjunction with X-ray crystallographic analyses. One of our previous complex crystal structures revealed a putative secondary hydrophobic binding pocket which could be exploited for a new design strategy by introducing a functional group that would fit into this potential site. To test this hypothesis and gain further insights into the structural basis of inhibitor binding, we have synthesized and characterized 1-(1H-imidazol-1-yl)-4,4-diphenyl-2-butanone (QC-308). Using a carbon monoxide (CO) formation assay on rat spleen microsomes, the compound was found to be ∼15 times more potent (IC(50) = 0.27±0.07 µM) than its monophenyl analogue, which is already a potent compound in its own right (QC-65; IC(50) = 4.0±1.8 µM). The crystal structure of hHO-1 with QC-308 revealed that the second phenyl group in the western region of the compound is indeed accommodated by a definitive secondary proximal hydrophobic pocket. Thus, the two phenyl moieties are each stabilized by distinct hydrophobic pockets. This "double-clamp" binding offers additional inhibitor stabilization and provides a new route for improvement of human heme oxygenase inhibitors.

  17. Biomolecular mode of action of metformin in relation to its copper binding properties.

    Science.gov (United States)

    Repiščák, Peter; Erhardt, Stefan; Rena, Graham; Paterson, Martin J

    2014-02-04

    Metformin (Metf), the most commonly used type 2 diabetes drug, is known to affect the cellular housekeeping of copper. Recently, we discovered that the structurally closely related propanediimidamide (PDI) shows a cellular behavior different from that of Metf. Here we investigate the binding of these compounds to copper, to compare their binding strength. Furthermore, we take a closer look at the electronic properties of these compounds and their copper complexes such as molecular orbital interactions and electrostatic potential surfaces. Our results clearly show that the copper binding energies cannot alone be the cause of the biochemical differentiation between Metf and PDI. We conclude that other factors such as pKa values and hydrophilicity of the compounds play a crucial role in their cellular activity. Metf in contrast to PDI can occur as an anion in aqueous medium at moderate pH, forming much stronger complexes particularly with Cu(II) ions, suggesting that biguanides but not PDI may induce easy oxidation of Cu(I) ions extracted from proteins. The higher hydrophobicity and the lack of planarity of PDI may further differentiate it from biguanides in terms of their molecular recognition characteristics. These different properties could hold the key to metformin's mitochondrial activity because they suggest that the drug could act at least in part as a pro-oxidant of accessible protein-bound Cu(I) ions.

  18. Binding modes of phosphonic acid derivatives adsorbed on TiO2 surfaces: Assignments of experimental IR and NMR spectra based on DFT/PBC calculations

    Science.gov (United States)

    Geldof, D.; Tassi, M.; Carleer, R.; Adriaensens, P.; Roevens, A.; Meynen, V.; Blockhuys, F.

    2017-01-01

    A DFT study on the adsorption of a series of phosphonic acids (PAs) on the TiO2 anatase (101) and (001) surfaces was performed. The adsorption energies and geometries of the most stable binding modes were compared to literature data and the effect of the inclusion of dispersion forces in the energy calculations was gauged. As the (101) surface is the most exposed surface of TiO2 anatase, the calculated chemical shifts and vibrational frequencies of PAs adsorbed on this surface were compared to experimental 31P and 17O NMR and IR data in order to assign the two possible binding modes (mono- and bidentate) to peaks and bands in these spectra; due to the corrugated nature of anatase (101) tridentate binding is not possible on this surface. Analysis of the calculated and experimental 31P chemical shifts indicates that both monodentate and bidentate binding modes are present. For the reactive (001) surface, the results of the calculations indicate that both bi- and tridentate binding modes result in stable systems. Due to the particular sensitivity of 17O chemical shifts to hydrogen bonding and solvent effects, the model used is insufficient to assign these spectra at present. Comparison of calculated and experimental IR spectra leads to the conclusion that IR spectroscopy is not suitable for the characterization of the different binding modes of the adsorption complexes.

  19. Structural Insights into the Distinct Binding Mode of Cyclic Di-AMP with SaCpaA_RCK.

    Science.gov (United States)

    Chin, Ko-Hsin; Liang, Juin-Ming; Yang, Jauo-Guey; Shih, Min-Shao; Tu, Zhi-Le; Wang, Yu-Chuang; Sun, Xing-Han; Hu, Nien-Jen; Liang, Zhao-Xun; Dow, J Maxwell; Ryan, Robert P; Chou, Shan-Ho

    2015-08-11

    Cyclic di-AMP (c-di-AMP) is a relatively new member of the family of bacterial cyclic dinucleotide second messengers. It has attracted significant attention in recent years because of the abundant roles it plays in a variety of Gram-positive bacteria. The structural features that allow diverse bacterial proteins to bind c-di-AMP are not fully understood. Here we report the biophysical and structural studies of c-di-AMP in complex with a bacterial cation-proton antiporter (CpaA) RCK (regulator of the conductance of K(+)) protein from Staphylococcus aureus (Sa). The crystal structure of the SaCpaA_RCK C-terminal domain (CTD) in complex with c-di-AMP was determined to a resolution of 1.81 Å. This structure revealed two well-liganded water molecules, each interacting with one of the adenine bases by a unique H2Olp-π interaction to stabilize the complex. Sequence blasting using the SaCpaA_RCK primary sequence against the bacterial genome database returned many CpaA analogues, and alignment of these sequences revealed that the active site residues are all well-conserved, indicating a universal c-di-AMP binding mode for CpaA_RCK. A proteoliposome activity assay using the full-length SaCpaA membrane protein indicated that c-di-AMP binding alters its antiporter activity by approximately 40%. A comparison of this structure to all other reported c-di-AMP-receptor complex structures revealed that c-di-AMP binds to receptors in either a "U-shape" or "V-shape" mode. The two adenine rings are stabilized in the inner interaction zone by a variety of CH-π, cation-π, backbone-π, or H2Olp-π interaction, but more commonly in the outer interaction zone by hydrophobic CH-π or π-π interaction. The structures determined to date provide an understanding of the mechanisms by which a single c-di-AMP can interact with a variety of receptor proteins, and how c-di-AMP binds receptor proteins in a special way different from that of c-di-GMP.

  20. Active site binding modes of inhibitors of Staphylococcus aureus mevalonate diphosphate decarboxylase from docking and molecular dynamics simulations.

    Science.gov (United States)

    Addo, James K; Skaff, D Andrew; Miziorko, Henry M

    2016-01-01

    Bacterial mevalonate diphosphate decarboxylase (MDD) is an attractive therapeutic target for antibacterial drug development. In this work, we discuss a combined docking and molecular dynamics strategy toward inhibitor binding to bacterial MDD. The docking parameters utilized in this study were first validated with observations for the inhibitors 6-fluoromevalonate diphosphate (FMVAPP) and diphosphoglycolylproline (DPGP) using existing structures for the Staphylococcus epidermidis enzyme. The validated docking protocol was then used to predict structures of the inhibitors bound to Staphylococcus aureus MDD using the unliganded crystal structure of Staphylococcus aureus MDD. We also investigated a possible interactions improvement by combining this docking method with molecular dynamics simulations. Thus, the predicted docking structures were analyzed in a molecular dynamics trajectory to generate dynamic models and reinforce the predicted binding modes. FMVAPP is predicted to make more extensive contacts with S. aureus MDD, forming stable hydrogen bonds with Arg144, Arg193, Lys21, Ser107, and Tyr18, as well as making stable hydrophobic interactions with Tyr18, Trp19, and Met196. The differences in predicted binding are supported by experimentally determined Ki values of 0.23 ± 0.02 and 34 ± 8 μM, for FMVAPP and DPGP, respectively. The structural information coupled with the kinetic characterization obtained from this study should be useful in defining the requirements for inhibition as well as in guiding the selection of active compounds for inhibitor optimization.

  1. Molecular Dynamics Simulations to Investigate the Binding Mode of the Natural Product Liphagal with Phosphoinositide 3-Kinase α

    Directory of Open Access Journals (Sweden)

    Yanjuan Gao

    2016-06-01

    Full Text Available Phosphatidylinositol 3-kinase α (PI3Kα is an attractive target for anticancer drug design. Liphagal, isolated from the marine sponge Aka coralliphaga, possesses the special “liphagane” meroterpenoid carbon skeleton and has been demonstrated as a PI3Kα inhibitor. Molecular docking and molecular dynamics simulations were performed to explore the dynamic behaviors of PI3Kα binding with liphagal, and free energy calculations and energy decomposition analysis were carried out by use of molecular mechanics/Poisson-Boltzmann (generalized Born surface area (MM/PB(GBSA methods. The results reveal that the heteroatom rich aromatic D-ring of liphagal extends towards the polar region of the binding site, and the D-ring 15-hydroxyl and 16-hydroxyl form three hydrogen bonds with Asp810 and Tyr836. The cyclohexyl A-ring projects up into the upper pocket of the lipophilic region, and the hydrophobic/van der Waals interactions with the residues Met772, Trp780, Ile800, Ile848, Val850, Met922, Phe930, Ile932 could be the key interactions for the affinity of liphagal to PI3Kα. Thus, a new strategy for the rational design of more potent analogs of liphagal against PI3Kα is provided. Our proposed PI3Kα/liphagal binding mode would be beneficial for the discovery of new active analogs of liphagal against PI3Kα.

  2. Detailed Analysis of the Binding Mode of Vanilloids to Transient Receptor Potential Vanilloid Type I (TRPV1) by a Mutational and Computational Study

    Science.gov (United States)

    Mori, Yoshikazu; Ogawa, Kazuo; Warabi, Eiji; Yamamoto, Masahiro; Hirokawa, Takatsugu

    2016-01-01

    Transient receptor potential vanilloid type 1 (TRPV1) is a non-selective cation channel and a multimodal sensor protein. Since the precise structure of TRPV1 was obtained by electron cryo-microscopy, the binding mode of representative agonists such as capsaicin and resiniferatoxin (RTX) has been extensively characterized; however, detailed information on the binding mode of other vanilloids remains lacking. In this study, mutational analysis of human TRPV1 was performed, and four agonists (capsaicin, RTX, [6]-shogaol and [6]-gingerol) were used to identify amino acid residues involved in ligand binding and/or modulation of proton sensitivity. The detailed binding mode of each ligand was then simulated by computational analysis. As a result, three amino acids (L518, F591 and L670) were newly identified as being involved in ligand binding and/or modulation of proton sensitivity. In addition, in silico docking simulation and a subsequent mutational study suggested that [6]-gingerol might bind to and activate TRPV1 in a unique manner. These results provide novel insights into the binding mode of various vanilloids to the channel and will be helpful in developing a TRPV1 modulator. PMID:27606946

  3. Anatomically Plausible Surface Alignment and Reconstruction

    DEFF Research Database (Denmark)

    Paulsen, Rasmus R.; Larsen, Rasmus

    2010-01-01

    With the increasing clinical use of 3D surface scanners, there is a need for accurate and reliable algorithms that can produce anatomically plausible surfaces. In this paper, a combined method for surface alignment and reconstruction is proposed. It is based on an implicit surface representation...... combined with a Markov Random Field regularisation method. Conceptually, the method maintains an implicit ideal description of the sought surface. This implicit surface is iteratively updated by realigning the input point sets and Markov Random Field regularisation. The regularisation is based on a prior...... energy that has earlier proved to be particularly well suited for human surface scans. The method has been tested on full cranial scans of ten test subjects and on several scans of the outer human ear....

  4. The Role of Plausible Values in Large-Scale Surveys

    Science.gov (United States)

    Wu, Margaret

    2005-01-01

    In large-scale assessment programs such as NAEP, TIMSS and PISA, students' achievement data sets provided for secondary analysts contain so-called "plausible values." Plausible values are multiple imputations of the unobservable latent achievement for each student. In this article it has been shown how plausible values are used to: (1) address…

  5. Comprehending Conflicting Science-Related Texts: Graphs as Plausibility Cues

    Science.gov (United States)

    Isberner, Maj-Britt; Richter, Tobias; Maier, Johanna; Knuth-Herzig, Katja; Horz, Holger; Schnotz, Wolfgang

    2013-01-01

    When reading conflicting science-related texts, readers may attend to cues which allow them to assess plausibility. One such plausibility cue is the use of graphs in the texts, which are regarded as typical of "hard science." The goal of our study was to investigate the effects of the presence of graphs on the perceived plausibility and…

  6. Diverse modes of binding in structures of Leishmania majorN-myristoyltransferase with selective inhibitors

    Directory of Open Access Journals (Sweden)

    James A. Brannigan

    2014-07-01

    Full Text Available The leishmaniases are a spectrum of global diseases of poverty associated with immune dysfunction and are the cause of high morbidity. Despite the long history of these diseases, no effective vaccine is available and the currently used drugs are variously compromised by moderate efficacy, complex side effects and the emergence of resistance. It is therefore widely accepted that new therapies are needed. N-Myristoyltransferase (NMT has been validated pre-clinically as a target for the treatment of fungal and parasitic infections. In a previously reported high-throughput screening program, a number of hit compounds with activity against NMT from Leishmania donovani have been identified. Here, high-resolution crystal structures of representative compounds from four hit series in ternary complexes with myristoyl-CoA and NMT from the closely related L. major are reported. The structures reveal that the inhibitors associate with the peptide-binding groove at a site adjacent to the bound myristoyl-CoA and the catalytic α-carboxylate of Leu421. Each inhibitor makes extensive apolar contacts as well as a small number of polar contacts with the protein. Remarkably, the compounds exploit different features of the peptide-binding groove and collectively occupy a substantial volume of this pocket, suggesting that there is potential for the design of chimaeric inhibitors with significantly enhanced binding. Despite the high conservation of the active sites of the parasite and human NMTs, the inhibitors act selectively over the host enzyme. The role of conformational flexibility in the side chain of Tyr217 in conferring selectivity is discussed.

  7. Invariant visual object recognition: biologically plausible approaches.

    Science.gov (United States)

    Robinson, Leigh; Rolls, Edmund T

    2015-10-01

    Key properties of inferior temporal cortex neurons are described, and then, the biological plausibility of two leading approaches to invariant visual object recognition in the ventral visual system is assessed to investigate whether they account for these properties. Experiment 1 shows that VisNet performs object classification with random exemplars comparably to HMAX, except that the final layer C neurons of HMAX have a very non-sparse representation (unlike that in the brain) that provides little information in the single-neuron responses about the object class. Experiment 2 shows that VisNet forms invariant representations when trained with different views of each object, whereas HMAX performs poorly when assessed with a biologically plausible pattern association network, as HMAX has no mechanism to learn view invariance. Experiment 3 shows that VisNet neurons do not respond to scrambled images of faces, and thus encode shape information. HMAX neurons responded with similarly high rates to the unscrambled and scrambled faces, indicating that low-level features including texture may be relevant to HMAX performance. Experiment 4 shows that VisNet can learn to recognize objects even when the view provided by the object changes catastrophically as it transforms, whereas HMAX has no learning mechanism in its S-C hierarchy that provides for view-invariant learning. This highlights some requirements for the neurobiological mechanisms of high-level vision, and how some different approaches perform, in order to help understand the fundamental underlying principles of invariant visual object recognition in the ventral visual stream.

  8. Assessing protein-ligand binding modes with computational tools: the case of PDE4B.

    Science.gov (United States)

    Çifci, Gülşah; Aviyente, Viktorya; Akten, E Demet; Monard, Gerald

    2017-06-01

    In a first step in the discovery of novel potent inhibitor structures for the PDE4B family with limited side effects, we present a protocol to rank newly designed molecules through the estimation of their IC[Formula: see text] values. Our protocol is based on reproducing the linear relationship between the logarithm of experimental IC[Formula: see text] values [[Formula: see text](IC[Formula: see text])] and their calculated binding free energies ([Formula: see text]). From 13 known PDE4B inhibitors, we show here that (1) binding free energies obtained after a docking process by AutoDock are not accurate enough to reproduce this linear relationship; (2) MM-GB/SA post-processing of molecular dynamics (MD) trajectories of the top ranked AutoDock pose improves the linear relationship; (3) by taking into account all representative structures obtained by AutoDock and by averaging MM-GB/SA computations on a series of 40 independent MD trajectories, a linear relationship between [Formula: see text](IC[Formula: see text]) and the lowest [Formula: see text] is achieved with [Formula: see text].

  9. Binding Mode of Acetylated Histones to Bromodomains: Variations on a Common Motif.

    Science.gov (United States)

    Marchand, Jean-Rémy; Caflisch, Amedeo

    2015-08-01

    Bromodomains, epigenetic readers that recognize acetylated lysine residues in histone tails, are potential drug targets in cancer and inflammation. Herein we review the crystal structures of human bromodomains in complex with histone tails and analyze the main interaction motifs. The histone backbone is extended and occupies, in one of the two possible orientations, the bromodomain surface groove lined by the ZA and BC loops. The acetyl-lysine side chain is buried in the cavity between the four helices of the bromodomain, and its oxygen atom accepts hydrogen bonds from a structural water molecule and a conserved asparagine residue in the BC loop. In stark contrast to this common binding motif, a large variety of ancillary interactions emerge from our analysis. In 10 of 26 structures, a basic side chain (up to five residues up- or downstream in sequence with respect to the acetyl-lysine) interacts with the carbonyl groups of the C-terminal turn of helix αB. Furthermore, the complexes reveal many heterogeneous backbone hydrogen bonds (direct or water-bridged). These interactions contribute unselectively to the binding of acetylated histone tails to bromodomains, which provides further evidence that specific recognition is modulated by combinations of multiple histone modifications and multiple modules of the proteins involved in transcription. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Salmonella Enterica Serovar Typhimurium BipA Exhibits Two Distinct Ribosome Binding Modes

    Energy Technology Data Exchange (ETDEWEB)

    deLivron, M.; Robinson, V

    2008-01-01

    BipA is a highly conserved prokaryotic GTPase that functions to influence numerous cellular processes in bacteria. In Escherichia coli and Salmonella enterica serovar Typhimurium, BipA has been implicated in controlling bacterial motility, modulating attachment and effacement processes, and upregulating the expression of virulence genes and is also responsible for avoidance of host defense mechanisms. In addition, BipA is thought to be involved in bacterial stress responses, such as those associated with virulence, temperature, and symbiosis. Thus, BipA is necessary for securing bacterial survival and successful invasion of the host. Steady-state kinetic analysis and pelleting assays were used to assess the GTPase and ribosome-binding properties of S. enterica BipA. Under normal bacterial growth, BipA associates with the ribosome in the GTP-bound state. However, using sucrose density gradients, we demonstrate that the association of BipA and the ribosome is altered under stress conditions in bacteria similar to those experienced during virulence. The data show that this differential binding is brought about by the presence of ppGpp, an alarmone that signals the onset of stress-related events in bacteria.

  11. Interaction and Binding Modes of bis-Ruthenium(II Complex to Synthetic DNAs

    Directory of Open Access Journals (Sweden)

    Hasi Rani Barai

    2016-06-01

    Full Text Available [μ-(linkerL2(dipyrido[3,2-a:2′,3′-c]phenazine2(phenanthroline2Ru(II2]2+ with linker: 1,3-bis-(4-pyridyl-propane, L: PF6 (bis-Ru-bpp was synthesized and their binding properties to a various polynucleotides were investigated by spectroscopy, including normal absorption, circular dichroism(CD, linear dichroism(LD, and luminescence techniques in this study. On binding to polynucleotides, the bis-Ru-bpp complex with poly[d(A-T2], and poly[d(I-C2] exhibited a negative LDr signal whose intensity was as large as that in the DNA absorption region, followed by a complicated LDr signal in the metal-to-ligand charge transfer region. Also, the emission intensity and equilibrium constant of the bis-Ru-bpp complex with poly[d(A-T2], and poly[d(I-C2] were enhanced. It was reported that both of dppz ligand of the bis-Ru-bpp complex intercalated between DNA base-pairs when bound to native, mixed sequence DNA. Observed spectral properties resemble to those observed for poly[d(A-T2] and poly[d(I-C2], led us to be concluded that both dppz ligands intercalate between alternated AT and IC bases-pairs In contrast when bis-Ru-bpp complex was bound to poly[d(G-C2], the magnitude of the LDr in the dppz absorption region, as well as the emission intensity, was half in comparison to that of bound to poly[d(A-T2], and poly[d(I-C2]. Therefore the spectral properties of the bis-Ru-bpp-poly[d(G-C2] complex suggested deviation from bis-intercalation model in the poly[d(G-C2] case. These results can be explained by a model whereby one of the dppz ligands is intercalated while the other is exposed to solvent or may exist near to phosphate. Also it is indicative that the amine group of guanine in the minor groove provides the steric hindrance for incoming intercalation binder and it also takes an important role in a difference in binding of bis-Ru-bpp bound to poly[d(A-T2] and poly[d(I-C2].

  12. Temporal and Qualitative Decomposition of Plausible Reasoning

    Science.gov (United States)

    1993-12-15

    be priming for ’Philip’ at the * position in this discourse is compatible with assuming that the process of binding the anaphoric pronoun does not...suggestion that contextually based binding of implicit anaphors is delayed until triggers are encountered (rather than occurring on line), the aspect of...displayed; one subject group received the target ’him’, and the comparison group received the target ’her’. The targets were always anaphoric pronouns. The

  13. On the binding mode of urease active site inhibitors: A density functional study

    Science.gov (United States)

    Leopoldini, M.; Marino, T.; Russo, N.; Toscano, M.

    The way with which boric acid, a rapid reversible competitive inhibitor, binds the urease active site was explored at density functional B3LYP level of theory. The catalytic core of the enzyme was simulated by two models of different size. In both cases, amino acid residues belonging to the inner and to the outer coordination spheres of nickel ions were replaced by smaller molecular species. Contrary to the experimental indication that attributes the inhibitory ability of this acid to the lack of a nucleophilic attack by the enzyme to the boron atom, we instead found that another possibility exists based on the presence of a strong covalent sigma bond between boron and urease that we think can be hardly broken to allow any course of the reaction.

  14. Structural combination of established 5-HT(2A) receptor ligands: new aspects of the binding mode

    DEFF Research Database (Denmark)

    Kramer, Vasko; Herth, Matthias M; Santini, Martin A;

    2010-01-01

    MH.MZ, MDL 100907, and altanserin are structurally similar 4-benzoyl-piperidine derivatives and are well accommodated to receptor interaction models. We combined structural elements of different high-affinity and selective 5-HT(2A) antagonists, as MH.MZ, altanserin, and SR 46349B, to improve......) with a moderate affinity toward the 5-HT(2A) receptor (K(i) = 57 nm). The remarkably reduced affinity of other compounds (4a), (4b), and (4c) (K(i) = 411, 360 and 356 nm respectively) indicates that MH.MZ can only bind to the 5-HT(2A) receptor with the p-fluorophenylethyl residue in a sterically restricted...

  15. Studies on Aryl-Substituted Phenylalanines: Synthesis, Activity, and Different Binding Modes at AMPA Receptors

    DEFF Research Database (Denmark)

    Szymanska, Ewa; Frydenvang, Karla Andrea; Pickering, Darryl S

    2016-01-01

    A series of racemic aryl-substituted phenylalanines was synthesized and evaluated in vitro at recombinant rat GluA1−3, at GluK1−3, and at native AMPA receptors. The individual enantiomers of two target compounds, (RS)-2-amino-3-(3,4-dichloro-5-(5-hydroxypyridin-3-yl)phenyl)- propanoic acid (37......, not previously seen for amino acid-based AMPA receptor antagonists, X-ray crystal structures of both eutomers in complex with the GluA2 ligand binding domain were solved. The cocrystal structures of (S)-37 and (R)-38 showed similar interactions of the amino acid parts but unexpected and different orientations...

  16. Thermodynamics and binding mode of novel structurally related 1,2,4-thiadiazole derivatives with native and modified cyclodextrins

    Science.gov (United States)

    Terekhova, Irina V.; Chislov, Mikhail V.; Brusnikina, Maria A.; Chibunova, Ekaterina S.; Volkova, Tatyana V.; Zvereva, Irina A.; Proshin, Alexey N.

    2017-03-01

    Study of complex formation of cyclodextrins with 1,2,4-thiadiazole derivatives intended for Alzheimer's disease treatment was carried out using 1H NMR, ITC and phase solubility methods. Structure of cyclodextrins and thiadiazoles affects the binding mode and thermodynamics of complexation. The larger cavity of β- and γ-cyclodextrins is more appropriate for deeper insertion of 1,2,4-thiadiazole derivatives which is accompanied by intensive dehydration and solvent reorganization. Benzene ring of the thiadiazoles is located inside macrocyclic cavity while piperidine ring is placed outside the cavity and can form H-bonds with cyclodextrin exterior. Complexation with cyclodextrins induces the enhancement of aqueous solubility of 1,2,4-thiadiazole derivatives.

  17. Selective binding modes and allosteric inhibitory effects of lupane triterpenes on protein tyrosine phosphatase 1B.

    Science.gov (United States)

    Jin, Tiantian; Yu, Haibo; Huang, Xu-Feng

    2016-02-11

    Protein Tyrosine Phosphatase 1B (PTP1B) has been recognized as a promising therapeutic target for treating obesity, diabetes, and certain cancers for over a decade. Previous drug design has focused on inhibitors targeting the active site of PTP1B. However, this has not been successful because the active site is positively charged and conserved among the protein tyrosine phosphatases. Therefore, it is important to develop PTP1B inhibitors with alternative inhibitory strategies. Using computational studies including molecular docking, molecular dynamics simulations, and binding free energy calculations, we found that lupane triterpenes selectively inhibited PTP1B by targeting its more hydrophobic and less conserved allosteric site. These findings were verified using two enzymatic assays. Furthermore, the cell culture studies showed that lupeol and betulinic acid inhibited the PTP1B activity stimulated by TNFα in neurons. Our study indicates that lupane triterpenes are selective PTP1B allosteric inhibitors with significant potential for treating those diseases with elevated PTP1B activity.

  18. Evolutionary Limitation and Opportunities for Developing tRNA Synthetase Inhibitors with 5-Binding-Mode Classification

    Directory of Open Access Journals (Sweden)

    Pengfei Fang

    2015-12-01

    Full Text Available Aminoacyl-tRNA synthetases (aaRSs are enzymes that catalyze the transfer of amino acids to their cognate tRNAs as building blocks for translation. Each of the aaRS families plays a pivotal role in protein biosynthesis and is indispensable for cell growth and survival. In addition, aaRSs in higher species have evolved important non-translational functions. These translational and non-translational functions of aaRS are attractive for developing antibacterial, antifungal, and antiparasitic agents and for treating other human diseases. The interplay between amino acids, tRNA, ATP, EF-Tu and non-canonical binding partners, had shaped each family with distinct pattern of key sites for regulation, with characters varying among species across the path of evolution. These sporadic variations in the aaRSs offer great opportunity to target these essential enzymes for therapy. Up to this day, growing numbers of aaRS inhibitors have been discovered and developed. Here, we summarize the latest developments and structural studies of aaRS inhibitors, and classify them with distinct binding modes into five categories.

  19. A unique binding mode enables MCM2 to chaperone histones H3-H4 at replication forks.

    Science.gov (United States)

    Huang, Hongda; Strømme, Caroline B; Saredi, Giulia; Hödl, Martina; Strandsby, Anne; González-Aguilera, Cristina; Chen, Shoudeng; Groth, Anja; Patel, Dinshaw J

    2015-08-01

    During DNA replication, chromatin is reassembled by recycling of modified old histones and deposition of new ones. How histone dynamics integrates with DNA replication to maintain genome and epigenome information remains unclear. Here, we reveal how human MCM2, part of the replicative helicase, chaperones histones H3-H4. Our first structure shows an H3-H4 tetramer bound by two MCM2 histone-binding domains (HBDs), which hijack interaction sites used by nucleosomal DNA. Our second structure reveals MCM2 and ASF1 cochaperoning an H3-H4 dimer. Mutational analyses show that the MCM2 HBD is required for MCM2-7 histone-chaperone function and normal cell proliferation. Further, we show that MCM2 can chaperone both new and old canonical histones H3-H4 as well as H3.3 and CENPA variants. The unique histone-binding mode of MCM2 thus endows the replicative helicase with ideal properties for recycling histones genome wide during DNA replication.

  20. A unique binding mode enables MCM2 to chaperone histones H3-H4 at replication forks

    DEFF Research Database (Denmark)

    Huang, Hongda; Strømme, Caroline B; Saredi, Giulia

    2015-01-01

    , chaperones histones H3-H4. Our first structure shows an H3-H4 tetramer bound by two MCM2 histone-binding domains (HBDs), which hijack interaction sites used by nucleosomal DNA. Our second structure reveals MCM2 and ASF1 cochaperoning an H3-H4 dimer. Mutational analyses show that the MCM2 HBD is required......During DNA replication, chromatin is reassembled by recycling of modified old histones and deposition of new ones. How histone dynamics integrates with DNA replication to maintain genome and epigenome information remains unclear. Here, we reveal how human MCM2, part of the replicative helicase...... for MCM2-7 histone-chaperone function and normal cell proliferation. Further, we show that MCM2 can chaperone both new and old canonical histones H3-H4 as well as H3.3 and CENPA variants. The unique histone-binding mode of MCM2 thus endows the replicative helicase with ideal properties for recycling...

  1. A unique binding mode enables MCM2 to chaperone histones H3–H4 at replication forks

    Science.gov (United States)

    Huang, Hongda; Strømme, Caroline B; Saredi, Giulia; Hödl, Martina; Strandsby, Anne; González-Aguilera, Cristina; Chen, Shoudeng; Groth, Anja; Patel, Dinshaw J

    2015-01-01

    During DNA replication, chromatin is reassembled by recycling of modified old histones and deposition of new ones. How histone dynamics integrates with DNA replication to maintain genome and epigenome information remains unclear. Here, we reveal how human MCM2, part of the replicative helicase, chaperones histones H3–H4. Our first structure shows an H3–H4 tetramer bound by two MCM2 histone-binding domains (HBDs), which hijack interaction sites used by nucleosomal DNA. Our second structure reveals MCM2 and ASF1 cochaperoning an H3–H4 dimer. Mutational analyses show that the MCM2 HBD is required for MCM2–7 histone-chaperone function and normal cell proliferation. Further, we show that MCM2 can chaperone both new and old canonical histones H3–H4 as well as H3.3 and CENPA variants. The unique histone-binding mode of MCM2 thus endows the replicative helicase with ideal properties for recycling histones genome wide during DNA replication. PMID:26167883

  2. Co-solvation effect on the binding mode of the α-mangostin/β-cyclodextrin inclusion complex

    Directory of Open Access Journals (Sweden)

    Chompoonut Rungnim

    2015-11-01

    Full Text Available Cyclodextrins (CDs have been extensively utilized as host molecules to enhance the solubility, stability and bioavailability of hydrophobic drug molecules through the formation of inclusion complexes. It was previously reported that the use of co-solvents in such studies may result in ternary (host:guest:co-solvent complex formation. The objective of this work was to investigate the effect of ethanol as a co-solvent on the inclusion complex formation between α-mangostin (α-MGS and β-CD, using both experimental and theoretical studies. Experimental phase-solubility studies were carried out in order to assess complex formation, with the mechanism of association being probed using a mathematical model. It was found that α-MGS was poorly soluble at low ethanol concentrations (0–10% v/v, but higher concentrations (10–40% v/v resulted in better α-MGS solubility at all β-CD concentrations studied (0–10 mM. From the equilibrium constant calculation, the inclusion complex is still a binary complex (1:1, even in the presence of ethanol. The results from our theoretical study confirm that the binding mode is binary complex and the presence of ethanol as co-solvent enhances the solubility of α-MGS with some effects on the binding affinity with β-CD, depending on the concentration employed.

  3. Ligand binding modes from low resolution GPCR models and mutagenesis: chicken bitter taste receptor as a test-case.

    Science.gov (United States)

    Di Pizio, Antonella; Kruetzfeldt, Louisa-Marie; Cheled-Shoval, Shira; Meyerhof, Wolfgang; Behrens, Maik; Niv, Masha Y

    2017-08-15

    Bitter taste is one of the basic taste modalities, warning against consuming potential poisons. Bitter compounds activate members of the bitter taste receptor (Tas2r) subfamily of G protein-coupled receptors (GPCRs). The number of functional Tas2rs is species-dependent. Chickens represent an intriguing minimalistic model, because they detect the bitter taste of structurally different molecules with merely three bitter taste receptor subtypes. We investigated the binding modes of several known agonists of a representative chicken bitter taste receptor, ggTas2r1. Because of low sequence similarity between ggTas2r1 and crystallized GPCRs (~10% identity, ~30% similarity at most), the combination of computational approaches with site-directed mutagenesis was used to characterize the agonist-bound conformation of ggTas2r1 binding site between TMs 3, 5, 6 and 7. We found that the ligand interactions with N93 in TM3 and/or N247 in TM5, combined with hydrophobic contacts, are typically involved in agonist recognition. Next, the ggTas2r1 structural model was successfully used to identify three quinine analogues (epiquinidine, ethylhydrocupreine, quinidine) as new ggTas2r1 agonists. The integrated approach validated here may be applicable to additional cases where the sequence identity of the GPCR of interest and the existing experimental structures is low.

  4. Plausibility and evidence: the case of homeopathy.

    Science.gov (United States)

    Rutten, Lex; Mathie, Robert T; Fisher, Peter; Goossens, Maria; van Wassenhoven, Michel

    2013-08-01

    Homeopathy is controversial and hotly debated. The conclusions of systematic reviews of randomised controlled trials of homeopathy vary from 'comparable to conventional medicine' to 'no evidence of effects beyond placebo'. It is claimed that homeopathy conflicts with scientific laws and that homoeopaths reject the naturalistic outlook, but no evidence has been cited. We are homeopathic physicians and researchers who do not reject the scientific outlook; we believe that examination of the prior beliefs underlying this enduring stand-off can advance the debate. We show that interpretations of the same set of evidence--for homeopathy and for conventional medicine--can diverge. Prior disbelief in homeopathy is rooted in the perceived implausibility of any conceivable mechanism of action. Using the 'crossword analogy', we demonstrate that plausibility bias impedes assessment of the clinical evidence. Sweeping statements about the scientific impossibility of homeopathy are themselves unscientific: scientific statements must be precise and testable. There is growing evidence that homeopathic preparations can exert biological effects; due consideration of such research would reduce the influence of prior beliefs on the assessment of systematic review evidence.

  5. Tight-binding model for topological insulators: Analysis of helical surface modes over the whole Brillouin zone

    Science.gov (United States)

    Mao, Shijun; Yamakage, Ai; Kuramoto, Yoshio

    2011-09-01

    A tight-binding model is constructed for Bi2Se3-type topological insulators with rhombohedral crystal structure. The model takes full account of the spin-orbit interaction, and realizes both strong (S) and weak (W) topological insulators (TIs) depending on the mass parameter that causes the band inversion. It is found that there are two separate STIs with either a single or three Dirac cones on the surface, while the WTI realizes either zero or four surface Dirac cones keeping the same Z2 indices. Closing of the bulk direct gap gives rise to transition between either STI and WTI, or TI and an ordinary insulator. On the other hand, closing of the indirect gap keeps intact the surface Dirac cones in both STIs and WTIs. As a result, helical modes can remain even in semimetals. It is found that reentrant helical modes appear in finite-momentum regions in some cases in STIs, and even in ordinary insulators with strong particle-hole asymmetry. All results are obtained analytically.

  6. Homology modeling of Homo sapiens lipoic acid synthase: Substrate docking and insights on its binding mode.

    Science.gov (United States)

    Krishnamoorthy, Ezhilarasi; Hassan, Sameer; Hanna, Luke Elizabeth; Padmalayam, Indira; Rajaram, Rama; Viswanathan, Vijay

    2017-05-07

    Lipoic acid synthase (LIAS) is an iron-sulfur cluster mitochondrial enzyme which catalyzes the final step in the de novo pathway for the biosynthesis of lipoic acid, a potent antioxidant. Recently there has been significant interest in its role in metabolic diseases and its deficiency in LIAS expression has been linked to conditions such as diabetes, atherosclerosis and neonatal-onset epilepsy, suggesting a strong inverse correlation between LIAS reduction and disease status. In this study we use a bioinformatics approach to predict its structure, which would be helpful to understanding its role. A homology model for LIAS protein was generated using X-ray crystallographic structure of Thermosynechococcus elongatus BP-1 (PDB ID: 4U0P). The predicted structure has 93% of the residues in the most favour region of Ramachandran plot. The active site of LIAS protein was mapped and docked with S-Adenosyl Methionine (SAM) using GOLD software. The LIAS-SAM complex was further refined using molecular dynamics simulation within the subsite 1 and subsite 3 of the active site. To the best of our knowledge, this is the first study to report a reliable homology model of LIAS protein. This study will facilitate a better understanding mode of action of the enzyme-substrate complex for future studies in designing drugs that can target LIAS protein. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Determination of the binding mode for anti-inflammatory natural product xanthohumol with myeloid differentiation protein 2

    Directory of Open Access Journals (Sweden)

    Fu W

    2016-01-01

    Full Text Available Weitao Fu,1,* Lingfeng Chen,1,* Zhe Wang,1 Chengwei Zhao,1 Gaozhi Chen,1 Xing Liu,1 Yuanrong Dai,2 Yuepiao Cai,1 Chenglong Li,1,3 Jianmin Zhou,1 Guang Liang1 1Chemical Biology Research Center, School of Pharmaceutical Sciences, 2Department of Respiratory Medicine, the Second Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, People’s Republic of China; 3Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, Ohio State University, Columbus, OH, USA *These authors contributed equally to this work Abstract: It is recognized that myeloid differentiation protein 2 (MD-2, a coreceptor of toll-like receptor 4 (TLR4 for innate immunity, plays an essential role in activation of the lipopolysaccharide signaling pathway. MD-2 is known as a neoteric and suitable therapeutical target. Therefore, there is great interest in the development of a potent MD-2 inhibitor for anti-inflammatory therapeutics. Several studies have reported that xanthohumol (XN, an anti-inflammatory natural product from hops and beer, can block the TLR4 signaling by binding to MD-2 directly. However, the interaction between MD-2 and XN remains unknown. Herein, our work aims at characterizing interactions between MD-2 and XN. Using a combination of experimental and theoretical modeling analysis, we found that XN can embed into the hydrophobic pocket of MD-2 and form two stable hydrogen bonds with residues ARG-90 and TYR-102 of MD-2. Moreover, we confirmed that ARG-90 and TYR-102 were two necessary residues during the recognition process of XN binding to MD-2. Results from this study identified the atomic interactions between the MD-2 and XN, which will contribute to future structural design of novel MD-2-targeting molecules for the treatment of inflammatory diseases. Keywords: myeloid differentiation 2, xanthohumol, binding mode, inflammation, molecular dynamics simulation 

  8. Binding mode analyses and pharmacophore model development for stilbene derivatives as a novel and competitive class of α-glucosidase inhibitors.

    Science.gov (United States)

    Lee, Yuno; Kim, Songmi; Kim, Jun Young; Arooj, Mahreen; Kim, Siu; Hwang, Swan; Kim, Byeong-Woo; Park, Ki Hun; Lee, Keun Woo

    2014-01-01

    Stilbene urea derivatives as a novel and competitive class of non-glycosidic α-glucosidase inhibitors are effective for the treatment of type II diabetes and obesity. The main purposes of our molecular modeling study are to explore the most suitable binding poses of stilbene derivatives with analyzing the binding affinity differences and finally to develop a pharmacophore model which would represents critical features responsible for α-glucosidase inhibitory activity. Three-dimensional structure of S. cerevisiae α-glucosidase was built by homology modeling method and the structure was used for the molecular docking study to find out the initial binding mode of compound 12, which is the most highly active one. The initial structure was subjected to molecular dynamics (MD) simulations for protein structure adjustment at compound 12-bound state. Based on the adjusted conformation, the more reasonable binding modes of the stilbene urea derivatives were obtained from molecular docking and MD simulations. The binding mode of the derivatives was validated by correlation analysis between experimental Ki value and interaction energy. Our results revealed that the binding modes of the potent inhibitors were engaged with important hydrogen bond, hydrophobic, and π-interactions. With the validated compound 12-bound structure obtained from combining approach of docking and MD simulation, a proper four featured pharmacophore model was generated. It was also validated by comparison of fit values with the Ki values. Thus, these results will be helpful for understanding the relationship between binding mode and bioactivity and for designing better inhibitors from stilbene derivatives.

  9. Conserved inhibitory mechanism and competent ATP binding mode for adenylyltransferases with Fic fold.

    Directory of Open Access Journals (Sweden)

    Arnaud Goepfert

    Full Text Available The ubiquitous FIC domain is evolutionarily conserved from bacteria to human and has been shown to catalyze AMP transfer onto protein side-chain hydroxyl groups. Recently, it was predicted that most catalytically competent Fic proteins are inhibited by the presence of an inhibitory helix αinh that is provided by a cognate anti-toxin (class I, or is part of the N- or C-terminal part of the Fic protein itself (classes II and III. In vitro, inhibition is relieved by mutation of a conserved glutamate of αinh to glycine. For the class III bacterial Fic protein NmFic from Neisseria meningitidis, the inhibitory mechanism has been elucidated. Here, we extend above study by including bacterial class I and II Fic proteins VbhT from Bartonella schoenbuchensis and SoFic from Shewanella oneidensis, respectively, and the respective E->G mutants. Comparative enzymatic and crystallographic analyses show that, in all three classes, the ATP substrate binds to the wild-type FIC domains, but with the α-phosphate in disparate and non-competent orientations. In the E->G mutants, however, the tri-phosphate moiety is found reorganized to the same tightly bound structure through a unique set of hydrogen bonds with Fic signature motif residues. The γ-phosphate adopts the location that is taken by the inhibitory glutamate in wild-type resulting in an α-phosphate orientation that can be attacked in-line by a target side-chain hydroxyl group. The latter is properly registered to the Fic active center by main-chain β-interactions with the β-hairpin flap. These data indicate that the active site motif and the exposed edge of the flap are both required to form an adenylylation-competent Fic protein.

  10. Identical phosphatase mechanisms achieved through distinct modes of binding phosphoprotein substrate

    Energy Technology Data Exchange (ETDEWEB)

    Pazy, Y.; Motaleb, M.A.; Guarnieri, M.T.; Charon, N.W.; Zhao, R.; Silversmith, R.E. (WVU); (UNC); (Colorado); (EC Uni.)

    2010-04-05

    Two-component signal transduction systems are widespread in prokaryotes and control numerous cellular processes. Extensive investigation of sensor kinase and response regulator proteins from many two-component systems has established conserved sequence, structural, and mechanistic features within each family. In contrast, the phosphatases which catalyze hydrolysis of the response regulator phosphoryl group to terminate signal transduction are poorly understood. Here we present structural and functional characterization of a representative of the CheC/CheX/FliY phosphatase family. The X-ray crystal structure of Borrelia burgdorferi CheX complexed with its CheY3 substrate and the phosphoryl analogue BeF{sub 3}{sup -} reveals a binding orientation between a response regulator and an auxiliary protein different from that shared by every previously characterized example. The surface of CheY3 containing the phosphoryl group interacts directly with a long helix of CheX which bears the conserved (E - X{sub 2} - N) motif. Conserved CheX residues Glu96 and Asn99, separated by a single helical turn, insert into the CheY3 active site. Structural and functional data indicate that CheX Asn99 and CheY3 Thr81 orient a water molecule for hydrolytic attack. The catalytic residues of the CheX-CheY3 complex are virtually superimposable on those of the Escherichia coli CheZ phosphatase complexed with CheY, even though the active site helices of CheX and CheZ are oriented nearly perpendicular to one other. Thus, evolution has found two structural solutions to achieve the same catalytic mechanism through different helical spacing and side chain lengths of the conserved acid/amide residues in CheX and CheZ.

  11. Substrate Binding Mode and its Implication on Drug Design for Botulinum Neurotoxin A

    Energy Technology Data Exchange (ETDEWEB)

    Kumaran, D.; Rawat, R; Ahmed, A; Swaminathan, S

    2008-01-01

    The seven antigenically distinct serotypes of Clostridium botulinum neurotoxins, the causative agents of botulism, block the neurotransmitter release by specifically cleaving one of the three SNARE proteins and induce flaccid paralysis. The Centers for Disease Control and Prevention (CDC) has declared them as Category A biowarfare agents. The most potent among them, botulinum neurotoxin type A (BoNT/A), cleaves its substrate synaptosome-associated protein of 25 kDa (SNAP-25). An efficient drug for botulism can be developed only with the knowledge of interactions between the substrate and enzyme at the active site. Here, we report the crystal structures of the catalytic domain of BoNT/A with its uncleavable SNAP-25 peptide 197QRATKM202 and its variant 197RRATKM202 to 1.5 A and 1.6 A, respectively. This is the first time the structure of an uncleavable substrate bound to an active botulinum neurotoxin is reported and it has helped in unequivocally defining S1 to S5? sites. These substrate peptides make interactions with the enzyme predominantly by the residues from 160, 200, 250 and 370 loops. Most notably, the amino nitrogen and carbonyl oxygen of P1 residue (Gln197) chelate the zinc ion and replace the nucleophilic water. The P1?-Arg198, occupies the S1? site formed by Arg363, Thr220, Asp370, Thr215, Ile161, Phe163 and Phe194. The S2? subsite is formed by Arg363, Asn368 and Asp370, while S3? subsite is formed by Tyr251, Leu256, Val258, Tyr366, Phe369 and Asn388. P4?-Lys201 makes hydrogen bond with Gln162. P5?-Met202 binds in the hydrophobic pocket formed by the residues from the 250 and 200 loop. Knowledge of interactions between the enzyme and substrate peptide from these complex structures should form the basis for design of potent inhibitors for this neurotoxin.

  12. Substrate binding mode and its implication on drug design for botulinum neurotoxin A.

    Directory of Open Access Journals (Sweden)

    Desigan Kumaran

    Full Text Available The seven antigenically distinct serotypes of Clostridium botulinum neurotoxins, the causative agents of botulism, block the neurotransmitter release by specifically cleaving one of the three SNARE proteins and induce flaccid paralysis. The Centers for Disease Control and Prevention (CDC has declared them as Category A biowarfare agents. The most potent among them, botulinum neurotoxin type A (BoNT/A, cleaves its substrate synaptosome-associated protein of 25 kDa (SNAP-25. An efficient drug for botulism can be developed only with the knowledge of interactions between the substrate and enzyme at the active site. Here, we report the crystal structures of the catalytic domain of BoNT/A with its uncleavable SNAP-25 peptide (197QRATKM(202 and its variant (197RRATKM(202 to 1.5 A and 1.6 A, respectively. This is the first time the structure of an uncleavable substrate bound to an active botulinum neurotoxin is reported and it has helped in unequivocally defining S1 to S5' sites. These substrate peptides make interactions with the enzyme predominantly by the residues from 160, 200, 250 and 370 loops. Most notably, the amino nitrogen and carbonyl oxygen of P1 residue (Gln197 chelate the zinc ion and replace the nucleophilic water. The P1'-Arg198, occupies the S1' site formed by Arg363, Thr220, Asp370, Thr215, Ile161, Phe163 and Phe194. The S2' subsite is formed by Arg363, Asn368 and Asp370, while S3' subsite is formed by Tyr251, Leu256, Val258, Tyr366, Phe369 and Asn388. P4'-Lys201 makes hydrogen bond with Gln162. P5'-Met202 binds in the hydrophobic pocket formed by the residues from the 250 and 200 loop. Knowledge of interactions between the enzyme and substrate peptide from these complex structures should form the basis for design of potent inhibitors for this neurotoxin.

  13. The versatile binding mode of transition-state analogue inhibitors of tyrosinase towards dicopper(II) model complexes: experimental and theoretical investigations.

    Science.gov (United States)

    Orio, Maylis; Bochot, Constance; Dubois, Carole; Gellon, Gisèle; Hardré, Renaud; Jamet, Hélène; Luneau, Dominique; Philouze, Christian; Réglier, Marius; Serratrice, Guy; Belle, Catherine

    2011-11-25

    We describe 2-mercaptopyridine-N-oxide (HSPNO) as a new and efficient competitive inhibitor of mushroom tyrosinase (K(IC) =3.7 μM). Binding studies of HSPNO and 2-hydroxypyridine-N-oxide (HOPNO) on dinuclear copper(II) complexes [Cu(2)(BPMP)(μ-OH)](ClO(4))(2) (1; HBPMP=2,6-bis[bis(2-pyridylmethyl)aminomethyl]-4-methylphenol) and [Cu(2)(BPEP)(μ-OH)](ClO(4))(2)) (2; HBPEP=2,6-bis{bis[2-(2-pyridyl)ethyl]aminomethyl}-4-methylphenol), known to be functional models for the tyrosinase diphenolase activity, have been performed. A combination of structural data, spectroscopic studies, and DFT calculations evidenced the adaptable binding mode (bridging versus chelating) of HOPNO in relation to the geometry and chelate size of the dicopper center. For comparison, binding studies of HSPNO and kojic acid (5-hydroxy-2-(hydroxymethyl)-4-pyrone) on dinuclear complexes were performed. A theoretical approach has been developed and validated on HOPNO adducts to compare the binding mode on the model complexes. It has been applied for HSPNO and kojic acid. Although results for HSPNO were in line with those obtained with HOPNO, thus reflecting their chemical similarity, we showed that the bridging mode was the most preferential binding mode for kojic acid on both complexes.

  14. Analytic Models of Plausible Gravitational Lens Potentials

    Energy Technology Data Exchange (ETDEWEB)

    Baltz, Edward A.; Marshall, Phil; Oguri, Masamune

    2007-05-04

    Gravitational lenses on galaxy scales are plausibly modeled as having ellipsoidal symmetry and a universal dark matter density profile, with a Sersic profile to describe the distribution of baryonic matter. Predicting all lensing effects requires knowledge of the total lens potential: in this work we give analytic forms for that of the above hybrid model. Emphasizing that complex lens potentials can be constructed from simpler components in linear combination, we provide a recipe for attaining elliptical symmetry in either projected mass or lens potential.We also provide analytic formulae for the lens potentials of Sersic profiles for integer and half-integer index. We then present formulae describing the gravitational lensing effects due to smoothly-truncated universal density profiles in cold dark matter model. For our isolated haloes the density profile falls off as radius to the minus fifth or seventh power beyond the tidal radius, functional forms that allow all orders of lens potential derivatives to be calculated analytically, while ensuring a non-divergent total mass. We show how the observables predicted by this profile differ from that of the original infinite-mass NFW profile. Expressions for the gravitational flexion are highlighted. We show how decreasing the tidal radius allows stripped haloes to be modeled, providing a framework for a fuller investigation of dark matter substructure in galaxies and clusters. Finally we remark on the need for finite mass halo profiles when doing cosmological ray-tracing simulations, and the need for readily-calculable higher order derivatives of the lens potential when studying catastrophes in strong lenses.

  15. The Drosophila hnRNP F/H Homolog Glorund Uses Two Distinct RNA-Binding Modes to Diversify Target Recognition

    Energy Technology Data Exchange (ETDEWEB)

    Tamayo, Joel V.; Teramoto, Takamasa; Chatterjee, Seema; Hall, Traci M. Tanaka; Gavis, Elizabeth R.

    2017-04-01

    The Drosophila hnRNP F/H homolog, Glorund (Glo), regulates nanos mRNA translation by interacting with a structured UA-rich motif in the nanos 3' untranslated region. Glo regulates additional RNAs, however, and mammalian homologs bind G-tract sequences to regulate alternative splicing, suggesting that Glo also recognizes G-tract RNA. To gain insight into how Glo recognizes both structured UA-rich and G-tract RNAs, we used mutational analysis guided by crystal structures of Glo’s RNA-binding domains and identified two discrete RNA-binding surfaces that allow Glo to recognize both RNA motifs. By engineering Glo variants that favor a single RNA-binding mode, we show that a subset of Glo’s functions in vivo is mediated solely by the G-tract binding mode, whereas regulation of nanos requires both recognition modes. Our findings suggest a molecular mechanism for the evolution of dual RNA motif recognition in Glo that may be applied to understanding the functional diversity of other RNA-binding proteins.

  16. Encoding the target or the plausible preview word? The nature of the plausibility preview benefit in reading Chinese.

    Science.gov (United States)

    Yang, Jinmian; Li, Nan; Wang, Suiping; Slattery, Timothy J; Rayner, Keith

    2014-01-01

    Previous studies have shown that a plausible preview word can facilitate the processing of a target word as compared to an implausible preview word (a plausibility preview benefit effect) when reading Chinese (Yang, Wang, Tong, & Rayner, 2012; Yang, 2013). Regarding the nature of this effect, it is possible that readers processed the meaning of the plausible preview word and did not actually encode the target word (given that the parafoveal preview word lies close to the fovea). The current experiment examined this possibility with three conditions wherein readers received a preview of a target word that was either (1) identical to the target word (identical preview), (2) a plausible continuation of the pre-target text, but the post-target text in the sentence was incompatible with it (initially plausible preview), or (3) not a plausible continuation of the pre-target text, nor compatible with the post-target text (implausible preview). Gaze durations on target words were longer in the initially plausible condition than the identical condition. Overall, the results showed a typical preview benefit, but also implied that readers did not encode the initially plausible preview. Also, a plausibility preview benefit was replicated: gaze durations were longer with implausible previews than the initially plausible ones. Furthermore, late eye movement measures did not reveal differences between the initially plausible and the implausible preview conditions, which argues against the possibility of misreading the plausible preview word as the target word. In sum, these results suggest that a plausible preview word provides benefit in processing the target word as compared to an implausible preview word, and this benefit is only present in early but not late eye movement measures.

  17. Binding modes of aromatic ligands to mammalian heme peroxidases with associated functional implications: crystal structures of lactoperoxidase complexes with acetylsalicylic acid, salicylhydroxamic acid, and benzylhydroxamic acid.

    Science.gov (United States)

    Singh, Amit K; Singh, Nagendra; Sinha, Mau; Bhushan, Asha; Kaur, Punit; Srinivasan, Alagiri; Sharma, Sujata; Singh, Tej P

    2009-07-24

    The binding and structural studies of bovine lactoperoxidase with three aromatic ligands, acetylsalicylic acid (ASA), salicylhydoxamic acid (SHA), and benzylhydroxamic acid (BHA) show that all the three compounds bind to lactoperoxidase at the substrate binding site on the distal heme side. The binding of ASA occurs without perturbing the position of conserved heme water molecule W-1, whereas both SHA and BHA displace it by the hydroxyl group of their hydroxamic acid moieties. The acetyl group carbonyl oxygen atom of ASA forms a hydrogen bond with W-1, which in turn makes three other hydrogen-bonds, one each with heme iron, His-109 N(epsilon2), and Gln-105 N(epsilon2). In contrast, in the complexes of SHA and BHA, the OH group of hydroxamic acid moiety in both complexes interacts with heme iron directly with Fe-OH distances of 3.0 and 3.2A respectively. The OH is also hydrogen bonded to His-109 N(epsilon2) and Gln-105N(epsilon2). The plane of benzene ring of ASA is inclined at 70.7 degrees from the plane of heme moiety, whereas the aromatic planes of SHA and BHA are nearly parallel to the heme plane with inclinations of 15.7 and 6.2 degrees , respectively. The mode of ASA binding provides the information about the mechanism of action of aromatic substrates, whereas the binding characteristics of SHA and BHA indicate the mode of inhibitor binding.

  18. The telomeric protein Pot1 from Schizosaccharomyces pombe binds ssDNA in two modes with differing 3′ end availability

    Science.gov (United States)

    Dickey, Thayne H.; Wuttke, Deborah S.

    2014-01-01

    Telomere protection and length regulation are important processes for aging, cancer and several other diseases. At the heart of these processes lies the single-stranded DNA (ssDNA)-binding protein Pot1, a component of the telomere maintenance complex shelterin, which is present in species ranging from fission yeast to humans. Pot1 contains a dual OB-fold DNA-binding domain (DBD) that fully confers its high affinity for telomeric ssDNA. Studies of S. pombe Pot1-DBD and its individual OB-fold domains revealed a complex non-additive behavior of the two OB-folds in the context of the complete Pot1 protein. This behavior includes the use of multiple distinct binding modes and an ability to form higher order complexes. Here we use NMR and biochemical techniques to investigate the structural features of the complete Pot1-DBD. These experiments reveal one binding mode characterized by only subtle alternations to the individual OB-fold subdomain structures, resulting in an inaccessible 3′ end of the ssDNA. The second binding mode, which has equivalent affinity, interacts differently with the 3′ end, rendering it available for interaction with other proteins. These findings suggest a structural switch that contributes to telomere end-protection and length regulation. PMID:25074378

  19. Structural Dynamics Investigation of Human Family 1 & 2 Cystatin-Cathepsin L1 Interaction: A Comparison of Binding Modes.

    Science.gov (United States)

    Nandy, Suman Kumar; Seal, Alpana

    2016-01-01

    Cystatin superfamily is a large group of evolutionarily related proteins involved in numerous physiological activities through their inhibitory activity towards cysteine proteases. Despite sharing the same cystatin fold, and inhibiting cysteine proteases through the same tripartite edge involving highly conserved N-terminal region, L1 and L2 loop; cystatins differ widely in their inhibitory affinity towards C1 family of cysteine proteases and molecular details of these interactions are still elusive. In this study, inhibitory interactions of human family 1 & 2 cystatins with cathepsin L1 are predicted and their stability and viability are verified through protein docking & comparative molecular dynamics. An overall stabilization effect is observed in all cystatins on complex formation. Complexes are mostly dominated by van der Waals interaction but the relative participation of the conserved regions varied extensively. While van der Waals contacts prevail in L1 and L2 loop, N-terminal segment chiefly acts as electrostatic interaction site. In fact the comparative dynamics study points towards the instrumental role of L1 loop in directing the total interaction profile of the complex either towards electrostatic or van der Waals contacts. The key amino acid residues surfaced via interaction energy, hydrogen bonding and solvent accessible surface area analysis for each cystatin-cathepsin L1 complex influence the mode of binding and thus control the diverse inhibitory affinity of cystatins towards cysteine proteases.

  20. Structural Dynamics Investigation of Human Family 1 & 2 Cystatin-Cathepsin L1 Interaction: A Comparison of Binding Modes

    Science.gov (United States)

    Nandy, Suman Kumar; Seal, Alpana

    2016-01-01

    Cystatin superfamily is a large group of evolutionarily related proteins involved in numerous physiological activities through their inhibitory activity towards cysteine proteases. Despite sharing the same cystatin fold, and inhibiting cysteine proteases through the same tripartite edge involving highly conserved N-terminal region, L1 and L2 loop; cystatins differ widely in their inhibitory affinity towards C1 family of cysteine proteases and molecular details of these interactions are still elusive. In this study, inhibitory interactions of human family 1 & 2 cystatins with cathepsin L1 are predicted and their stability and viability are verified through protein docking & comparative molecular dynamics. An overall stabilization effect is observed in all cystatins on complex formation. Complexes are mostly dominated by van der Waals interaction but the relative participation of the conserved regions varied extensively. While van der Waals contacts prevail in L1 and L2 loop, N-terminal segment chiefly acts as electrostatic interaction site. In fact the comparative dynamics study points towards the instrumental role of L1 loop in directing the total interaction profile of the complex either towards electrostatic or van der Waals contacts. The key amino acid residues surfaced via interaction energy, hydrogen bonding and solvent accessible surface area analysis for each cystatin-cathepsin L1 complex influence the mode of binding and thus control the diverse inhibitory affinity of cystatins towards cysteine proteases. PMID:27764212

  1. Plausibility Judgments in Conceptual Change and Epistemic Cognition

    Science.gov (United States)

    Lombardi, Doug; Nussbaum, E. Michael; Sinatra, Gale M.

    2016-01-01

    Plausibility judgments rarely have been addressed empirically in conceptual change research. Recent research, however, suggests that these judgments may be pivotal to conceptual change about certain topics where a gap exists between what scientists and laypersons find plausible. Based on a philosophical and empirical foundation, this article…

  2. Source Effects and Plausibility Judgments When Reading about Climate Change

    Science.gov (United States)

    Lombardi, Doug; Seyranian, Viviane; Sinatra, Gale M.

    2014-01-01

    Gaps between what scientists and laypeople find plausible may act as a barrier to learning complex and/or controversial socioscientific concepts. For example, individuals may consider scientific explanations that human activities are causing current climate change as implausible. This plausibility judgment may be due-in part-to individuals'…

  3. Structure of Bacillus subtilis γ-glutamyltranspeptidase in complex with acivicin: diversity of the binding mode of a classical and electrophilic active-site-directed glutamate analogue

    Energy Technology Data Exchange (ETDEWEB)

    Ida, Tomoyo [Osaka University, Toyonaka, Osaka 560-0043 (Japan); Suzuki, Hideyuki [Kyoto Institute of Technology, Goshokaido-cho, Matsugasaki, Sakyo-ku, Kyoto 606-8585 (Japan); Fukuyama, Keiichi [Osaka University, Toyonaka, Osaka 560-0043 (Japan); Hiratake, Jun [Kyoto University, Uji, Kyoto 611-0011 (Japan); Wada, Kei, E-mail: keiwada@med.miyazaki-u.ac.jp [University of Miyazaki, Miyazaki 889-1692 (Japan); Osaka University, Toyonaka, Osaka 560-0043 (Japan)

    2014-02-01

    The binding modes of acivicin, a classical and an electrophilic active-site-directed glutamate analogue, to bacterial γ-glutamyltranspeptidases were found to be diverse. γ-Glutamyltranspeptidase (GGT) is an enzyme that plays a central role in glutathione metabolism, and acivicin is a classical inhibitor of GGT. Here, the structure of acivicin bound to Bacillus subtilis GGT determined by X-ray crystallography to 1.8 Å resolution is presented, in which it binds to the active site in a similar manner to that in Helicobacter pylori GGT, but in a different binding mode to that in Escherichia coli GGT. In B. subtilis GGT, acivicin is bound covalently through its C3 atom with sp{sup 2} hybridization to Thr403 O{sup γ}, the catalytic nucleophile of the enzyme. The results show that acivicin-binding sites are common, but the binding manners and orientations of its five-membered dihydroisoxazole ring are diverse in the binding pockets of GGTs.

  4. Structure of the Staphylococcus aureus AgrA LytTR Domain Bound to DNA Reveals a Beta Fold with an Unusual Mode of Binding

    Energy Technology Data Exchange (ETDEWEB)

    Sidote,D.; Barbieri, C.; Wu, T.; Stock, A.

    2008-01-01

    The LytTR domain is a DNA-binding motif found within the AlgR/AgrA/LytR family of transcription factors that regulate virulence factor and toxin gene expression in pathogenic bacteria. This previously uncharacterized domain lacks sequence similarity with proteins of known structure. The crystal structure of the DNA-binding domain of Staphylococcus aureus AgrA complexed with a DNA pentadecamer duplex has been determined at 1.6 Angstroms resolution. The structure establishes a 10-stranded {beta} fold for the LytTR domain and reveals its mode of interaction with DNA. Residues within loop regions of AgrA contact two successive major grooves and the intervening minor groove on one face of the oligonucleotide duplex, inducing a substantial bend in the DNA. Loss of DNA binding upon substitution of key interacting residues in AgrA supports the observed binding mode. This mode of protein-DNA interaction provides a potential target for future antimicrobial drug design.

  5. Structure of the Staphylococcus aureus AgrA LytTR Domain Bound to DNA Reveals a Beta Fold with a Novel Mode of Binding

    Science.gov (United States)

    Sidote, David J.; Barbieri, Christopher M.; Wu, Ti; Stock, Ann M.

    2008-01-01

    SUMMARY The LytTR domain is a DNA-binding motif found within the AlgR/AgrA/LytR family of transcription factors that regulate virulence factor and toxin gene expression in pathogenic bacteria. This previously uncharacterized domain lacks sequence similarity with proteins of known structure. The crystal structure of the DNA-binding domain of Staphylococcus aureus AgrA complexed with a DNA pentadecamer duplex has been determined at 1.6 Å resolution. The structure establishes a 10-stranded β fold for the LytTR domain and reveals a novel mode of interaction with DNA. Residues within loop regions of AgrA contact two successive major grooves and the intervening minor groove on one face of the oligonucleotide duplex, inducing a substantial bend in the DNA. Loss of DNA-binding upon substitution of key interacting residues in AgrA supports the observed binding mode. This novel mode of protein-DNA interacton provides a potential target for future antimicrobial drug design. PMID:18462677

  6. Structure of the Staphylococcus aureus AgrA LytTR domain bound to DNA reveals a beta fold with an unusual mode of binding.

    Science.gov (United States)

    Sidote, David J; Barbieri, Christopher M; Wu, Ti; Stock, Ann M

    2008-05-01

    The LytTR domain is a DNA-binding motif found within the AlgR/AgrA/LytR family of transcription factors that regulate virulence factor and toxin gene expression in pathogenic bacteria. This previously uncharacterized domain lacks sequence similarity with proteins of known structure. The crystal structure of the DNA-binding domain of Staphylococcus aureus AgrA complexed with a DNA pentadecamer duplex has been determined at 1.6 A resolution. The structure establishes a 10-stranded beta fold for the LytTR domain and reveals its mode of interaction with DNA. Residues within loop regions of AgrA contact two successive major grooves and the intervening minor groove on one face of the oligonucleotide duplex, inducing a substantial bend in the DNA. Loss of DNA binding upon substitution of key interacting residues in AgrA supports the observed binding mode. This mode of protein-DNA interaction provides a potential target for future antimicrobial drug design.

  7. Two modes of interaction of the single-stranded DNA-binding protein of bacteriophage T7 with the DNA polymerase-thioredoxin complex

    KAUST Repository

    Ghosh, Sharmistha

    2010-04-06

    The DNA polymerase encoded by bacteriophage T7 has low processivity. Escherichia coli thioredoxin binds to a segment of 76 residues in the thumb subdomain of the polymerase and increases the processivity. The binding of thioredoxin leads to the formation of two basic loops, loops A and B, located within the thioredoxin-binding domain (TBD). Both loops interact with the acidic C terminus of the T7 helicase. A relatively weak electrostatic mode involves the C-terminal tail of the helicase and the TBD, whereas a high affinity interaction that does not involve the C-terminal tail occurs when the polymerase is in a polymerization mode. T7 gene 2.5 single-stranded DNA-binding protein (gp2.5) also has an acidic C-terminal tail. gp2.5 also has two modes of interaction with the polymerase, but both involve the C-terminal tail of gp2.5. An electrostatic interaction requires the basic residues in loops A and B, and gp2.5 binds to both loops with similar affinity as measured by surface plasmon resonance. When the polymerase is in a polymerization mode, the C terminus of gene 2.5 protein interacts with the polymerase in regions outside the TBD.gp2.5 increases the processivity of the polymerase-helicase complex during leading strand synthesis. When loop B of the TBD is altered, abortive DNA products are observed during leading strand synthesis. Loop B appears to play an important role in communication with the helicase and gp2.5, whereas loop A plays a stabilizing role in these interactions. © 2010 by The American Society for Biochemistry and Molecular Biology, Inc.

  8. Binding modes of environmental endocrine disruptors to human serum albumin: insights from STD-NMR, ITC, spectroscopic and molecular docking studies.

    Science.gov (United States)

    Yang, Hongqin; Huang, Yanmei; Liu, Jiuyang; Tang, Peixiao; Sun, Qiaomei; Xiong, Xinnuo; Tang, Bin; He, Jiawei; Li, Hui

    2017-09-11

    Given that bisphenols have an endocrine-disrupting effect on human bodies, thoroughly exposing their potential effects at the molecular level is important. Saturation transfer difference (STD) NMR-based binding studies were performed to investigate the binding potential of two bisphenol representatives, namely, bisphenol B (BPB) and bisphenol E (BPE), toward human serum albumin (HSA). The relative STD (%) suggested that BPB and BPE show similar binding modes and orientations, in which the phenolic rings were spatially close to HSA binding site. ITC analysis results showed that BPB and BPE were bound to HSA with moderately strong binding affinity through electrostatic interactions and hydrogen bonds. The order of binding affinity of HSA for two test bisphenols is as follows: BPE > BPB. The results of fluorescence competitive experiments using 5-dimethylaminonaphthalene-1-sulfonamide and dansylsarcosine as competitors, combined with molecular docking indicated that both bisphenols are prone to attach to the binding site II in HSA. Spectroscopic results (FT-IR, CD, synchronous and 3D fluorescence spectra) showed that BPB/BPE induces different degrees of microenvironmental and conformational changes to HSA.

  9. The binding mode of second-generation sulfonamide inhibitors of MurD: clues for rational design of potent MurD inhibitors.

    Directory of Open Access Journals (Sweden)

    Mihael Simčič

    Full Text Available A series of optimized sulfonamide derivatives was recently reported as novel inhibitors of UDP-N-acetylmuramoyl-L-alanine:D-glutamate ligase (MurD. These are based on naphthalene-N-sulfonyl-D-glutamic acid and have the D-glutamic acid replaced with rigidified mimetics. Here we have defined the binding site of these novel ligands to MurD using (1H/(13C heteronuclear single quantum correlation. The MurD protein was selectively (13C-labeled on the methyl groups of Ile (δ1 only, Leu and Val, and was isolated and purified. Crucial Ile, Leu and Val methyl groups in the vicinity of the ligand binding site were identified by comparison of chemical shift perturbation patterns among the ligands with various structural elements and known binding modes. The conformational and dynamic properties of the bound ligands and their binding interactions were examined using the transferred nuclear Overhauser effect and saturation transfer difference. In addition, the binding mode of these novel inhibitors was thoroughly examined using unrestrained molecular dynamics simulations. Our results reveal the complex dynamic behavior of ligand-MurD complexes and its influence on ligand-enzyme contacts. We further present important findings for the rational design of potent Mur ligase inhibitors.

  10. An activating mutation reveals a second binding mode of the integrin α2 I domain to the GFOGER motif in collagens.

    Directory of Open Access Journals (Sweden)

    Federico Carafoli

    Full Text Available The GFOGER motif in collagens (O denotes hydroxyproline represents a high-affinity binding site for all collagen-binding integrins. Other GxOGER motifs require integrin activation for maximal binding. The E318W mutant of the integrin α2β1 I domain displays a relaxed collagen specificity, typical of an active state. E318W binds more strongly than the wild-type α2 I domain to GMOGER, and forms a 2:1 complex with a homotrimeric, collagen-like, GFOGER peptide. Crystal structure analysis of this complex reveals two E318W I domains, A and B, bound to a single triple helix. The E318W I domains are virtually identical to the collagen-bound wild-type I domain, suggesting that the E318W mutation activates the I domain by destabilising the unligated conformation. E318W I domain A interacts with two collagen chains similarly to wild-type I domain (high-affinity mode. E318W I domain B makes favourable interactions with only one collagen chain (low-affinity mode. This observation suggests that single GxOGER motifs in the heterotrimeric collagens V and IX may support binding of activated integrins.

  11. Interaction of the amyloid precursor protein-like protein 1 (APLP1) E2 domain with heparan sulfate involves two distinct binding modes

    Energy Technology Data Exchange (ETDEWEB)

    Dahms, Sven O., E-mail: sdahms@fli-leibniz.de [Leibniz Institute for Age Research (FLI), Beutenbergstrasse 11, 07745 Jena (Germany); Mayer, Magnus C. [Freie Universität Berlin, Thielallee 63, 14195 Berlin (Germany); Miltenyi Biotec GmbH, Robert-Koch-Strasse 1, 17166 Teterow (Germany); Roeser, Dirk [Leibniz Institute for Age Research (FLI), Beutenbergstrasse 11, 07745 Jena (Germany); Multhaup, Gerd [McGill University Montreal, Montreal, Quebec H3G 1Y6 (Canada); Than, Manuel E., E-mail: sdahms@fli-leibniz.de [Leibniz Institute for Age Research (FLI), Beutenbergstrasse 11, 07745 Jena (Germany)

    2015-03-01

    Two X-ray structures of APLP1 E2 with and without a heparin dodecasaccharide are presented, revealing two distinct binding modes of the protein to heparan sulfate. The data provide a mechanistic explanation of how APP-like proteins bind to heparan sulfates and how they specifically recognize nonreducing structures of heparan sulfates. Beyond the pathology of Alzheimer’s disease, the members of the amyloid precursor protein (APP) family are essential for neuronal development and cell homeostasis in mammals. APP and its paralogues APP-like protein 1 (APLP1) and APP-like protein 2 (APLP2) contain the highly conserved heparan sulfate (HS) binding domain E2, which effects various (patho)physiological functions. Here, two crystal structures of the E2 domain of APLP1 are presented in the apo form and in complex with a heparin dodecasaccharide at 2.5 Å resolution. The apo structure of APLP1 E2 revealed an unfolded and hence flexible N-terminal helix αA. The (APLP1 E2){sub 2}–(heparin){sub 2} complex structure revealed two distinct binding modes, with APLP1 E2 explicitly recognizing the heparin terminus but also interacting with a continuous heparin chain. The latter only requires a certain register of the sugar moieties that fits to a positively charged surface patch and contributes to the general heparin-binding capability of APP-family proteins. Terminal binding of APLP1 E2 to heparin specifically involves a structure of the nonreducing end that is very similar to heparanase-processed HS chains. These data reveal a conserved mechanism for the binding of APP-family proteins to HS and imply a specific regulatory role of HS modifications in the biology of APP and APP-like proteins.

  12. A new mode of DNA binding distinguishes Capicua from other HMG-box factors and explains its mutation patterns in cancer

    Science.gov (United States)

    Forés, Marta; Samper, Núria; Barbacid, Mariano

    2017-01-01

    HMG-box proteins, including Sox/SRY (Sox) and TCF/LEF1 (TCF) family members, bind DNA via their HMG-box. This binding, however, is relatively weak and both Sox and TCF factors employ distinct mechanisms for enhancing their affinity and specificity for DNA. Here we report that Capicua (CIC), an HMG-box transcriptional repressor involved in Ras/MAPK signaling and cancer progression, employs an additional distinct mode of DNA binding that enables selective recognition of its targets. We find that, contrary to previous assumptions, the HMG-box of CIC does not bind DNA alone but instead requires a distant motif (referred to as C1) present at the C-terminus of all CIC proteins. The HMG-box and C1 domains are both necessary for binding specific TGAATGAA-like sites, do not function via dimerization, and are active in the absence of cofactors, suggesting that they form a bipartite structure for sequence-specific binding to DNA. We demonstrate that this binding mechanism operates throughout Drosophila development and in human cells, ensuring specific regulation of multiple CIC targets. It thus appears that HMG-box proteins generally depend on auxiliary DNA binding mechanisms for regulating their appropriate genomic targets, but that each sub-family has evolved unique strategies for this purpose. Finally, the key role of C1 in DNA binding also explains the fact that this domain is a hotspot for inactivating mutations in oligodendroglioma and other tumors, while being preserved in oncogenic CIC-DUX4 fusion chimeras associated to Ewing-like sarcomas. PMID:28278156

  13. A computational analysis of the binding mode of closantel as inhibitor of the Onchocerca volvulus chitinase: insights on macrofilaricidal drug design

    Science.gov (United States)

    Segura-Cabrera, Aldo; Bocanegra-García, Virgilio; Lizarazo-Ortega, Cristian; Guo, Xianwu; Correa-Basurto, José; Rodríguez-Pérez, Mario A.

    2011-12-01

    Onchocerciasis is a leading cause of blindness with at least 37 million people infected and more than 120 million people at risk of contracting the disease; most (99%) of this population, threatened by infection, live in Africa. The drug of choice for mass treatment is the microfilaricidal Mectizan® (ivermectin); it does not kill the adult stages of the parasite at the standard dose which is a single annual dose aimed at disease control. However, multiple treatments a year with ivermectin have effects on adult worms. The discovery of new therapeutic targets and drugs directed towards the killing of the adult parasites are thus urgently needed. The chitinase of filarial nematodes is a new drug target due to its essential function in the metabolism and molting of the parasite. Closantel is a potent and specific inhibitor of chitinase of Onchocerca volvulus (OvCHT1) and other filarial chitinases. However, the binding mode and specificity of closantel towards OvCHT1 remain unknown. In the absence of a crystallographic structure of OvCHT1, we developed a homology model of OvCHT1 using the currently available X-ray structures of human chitinases as templates. Energy minimization and molecular dynamics (MD) simulation of the model led to a high quality of 3D structure of OvCHIT1. A flexible docking study using closantel as the ligand on the binding site of OvCHIT1 and human chitinases was performed and demonstrated the differences in the closantel binding mode between OvCHIT1 and human chitinase. Furthermore, molecular dynamics simulations and free-energy calculation were employed to determine and compare the detailed binding mode of closantel with OvCHT1 and the structure of human chitinase. This comparative study allowed identification of structural features and properties responsible for differences in the computationally predicted closantel binding modes. The homology model and the closantel binding mode reported herein might help guide the rational development of

  14. Plausible values: how to deal with their limitations.

    Science.gov (United States)

    Monseur, Christian; Adams, Raymond

    2009-01-01

    Rasch modeling and plausible values methodology were used to scale and report the results of the Organization for Economic Cooperation and Development's Programme for International Student Achievement (PISA). This article will describe the scaling approach adopted in PISA. In particular it will focus on the use of plausible values, a multiple imputation approach that is now commonly used in large-scale assessment. As with all imputation models the plausible values must be generated using models that are consistent with those used in subsequent data analysis. In the case of PISA the plausible value generation assumes a flat linear regression with all students' background variables collected through the international student questionnaire included as regressors. Further, like most linear models, homoscedasticity and normality of the conditional variance are assumed. This article will explore some of the implications of this approach. First, we will discuss the conditions under which the secondary analyses on variables not included in the model for generating the plausible values might be biased. Secondly, as plausible values were not drawn from a multi-level model, the article will explore the adequacy of the PISA procedures for estimating variance components when the data have a hierarchical structure.

  15. Computational modeling of the Fc αRI receptor binding in the Fc α domain of the human antibody IgA: Normal Modes Analysis (NMA) study

    Science.gov (United States)

    Jayasinghe, Manori; Posgai, Monica; Tonddast-Navaei, Sam; Ibrahim, George; Stan, George; Herr, Andrew; George Stan Group Collaboration; Herr's Group Team

    2014-03-01

    Fc αRI receptor binding in the Fc α domain of the antibody IgA triggers immune effector responses such as phagocytosis and antibody-dependent cell-mediated cytotoxicity in eukaryotic cells. Fc α is a dimer of heavy chains of the IgA antibody and each Fc α heavy chain which consisted of two immunoglobulin constant domains, CH2 and CH3, can bind one Fc αRI molecule at the CH2-CH3 interface forming a 2:1 stoichiometry. Experimental evidences confirmed that Fc αRI binding to the Fc α CH2-CH3 junction altered the kinetics of HAA lectin binding at the distant IgA1 hinge. Our focus in this research was to understand the conformational changes and the network of residues which co-ordinate the receptor binding dynamics of the Fc α dimer complex. Structure-based elastic network modeling was used to compute normal modes of distinct Fc α configurations. Asymmetric and un-liganded Fc α configurations were obtained from the high resolution crystal structure of Fc α-Fc αRI 2:1 symmetric complex of PDB ID 1OW0. Our findings confirmed that Fc αRI binding, either in asymmetric or symmetric complex with Fc α, propagated long-range conformational changes across the Fc domains, potentially also impacting the distant IgA1 hinge.

  16. Mode of encapsulation of linezolid by β-cyclodextrin and its role in bovine serum albumin binding.

    Science.gov (United States)

    Natesan, Sudha; Sowrirajan, Chandrasekaran; Yousuf, Sameena; Enoch, Israel V M V

    2015-01-22

    We describe, in this article, the associative interaction between Linezolid and β-Cyclodextrin, and the influence of β-Cyclodextrin on Linezolid's binding to Bovine serum albumin. β-Cyclodextrin forms a 1:1 inclusion complex with Linezolid, with a binding constant value of 3.51×10(2)M(-1). The binding is studied using ultraviolet-visible absorption, fluorescence, nuclear magnetic resonance, and rotating-frame overhauser effect spectroscopic techniques. The amide substituent on the oxazolidinone ring of Linezolid is involved in its binding to β-Cyclodextrin. The binding of the Linezolid to bovine serum albumin, in the absence and the presence of β-Cyclodextrin, is studied by analyzing the fluorescence quenching and Förster resonance energy transfer. The Stern-Volmer quenching constant, the binding constant, and energy transfer occurring on the interaction of the Linezolid with BSA are found to be smaller in the presence of β-Cyclodextrin than in water.

  17. Spectroscopic and viscometric elucidation of the interaction between a potential chloride channel blocker and calf-thymus DNA: the effect of medium ionic strength on the binding mode.

    Science.gov (United States)

    Ganguly, Aniruddha; Ghosh, Soumen; Guchhait, Nikhil

    2015-01-07

    The present study demonstrates a detailed characterization of the binding interaction of a potential chloride channel blocker 9-methyl anthroate (9-MA) with calf-thymus DNA. The modulated photophysical properties of the emissive molecule within the microheterogeneous bio-assembly have been spectroscopically exploited to monitor the drug-DNA binding interaction. Experimental results based on fluorescence and absorption spectroscopy aided with DNA-melting, viscometric and circular dichroism studies unambiguously establish the binding mode between the drug and DNA to be principally intercalative. Concomitantly, a discernible dependence of the mode of binding between the concerned moieties on the ionic strength of the medium is noteworthy. A dip-and-rise characteristic of the rotational relaxation profile of the drug within the DNA environment has been argued to be originating from a substantial difference in the lifetime as well as amplitude of the free and DNA bound drug molecule. In view of the prospective biological applications of the drug, the issue of facile dissociation of the intercalated drug from the DNA helix via a simple detergent-sequestration technique has also been unveiled. The utility of the present work resides in exploring the potential applicability of the fluorescence properties of 9-MA for studying its interactions with other relevant biological or biomimicking targets.

  18. Structural insight into mode of binding of Meropenem to CTX-M-15 type β-lactamase.

    Science.gov (United States)

    Maryam, Lubna; Khan, Asad U

    2017-03-01

    Among Enterobacteriaceae, CTX-M type extended spectrum beta lactamase confers potent hydrolytic activity against cephalosporin group of antibiotics. Strains producing CTX-M type beta lactamase enzymes, show high level of resistance against cefotaxime. Therefore carbapenem antibiotics are used against beta lactamase producing strains. Hence, this study was designed to understand an insight of molecular basis of CTX-M-15 interaction with meropenem, and its effect on CTX-M-15 efficiency. Clinical strain of Enterobacter cloacae (EC-15) was used to clone blaCTX-M-15 gene in E.coli BL21cells. The protein was then expressed and purified. Results showed that CTX-M-15 producing strains are susceptible to meropenem. It quenches the fluorescence of CTX-M-15 spontaneously with binding constant of the order of 10(3)M(-1). Meropenem binds on the active site of CTX-M-15, hydrogen bonded with four common amino acid residues of cefotaxime binding site, as revealed by molecular docking studies. Conformational change in the structure of CTX-M-15 was observed upon meropenem binding by CD spectroscopy. The catalytic efficiency of CTX-M-15 was decreased up to 4 times upon meropenem binding. Docking study shows that few amino acids of active site of enzyme are also involved in meropenem binding, hence substrate is difficult to bind on active site properly and does not get hydrolysed. Moreover, meropenem binding induces structural changes in CTX-M-15, making the enzyme less efficient.

  19. The Vα14 invariant natural killer T cell TCR forces microbial glycolipids and CD1d into a conserved binding mode

    Science.gov (United States)

    Li, Yali; Girardi, Enrico; Wang, Jing; Yu, Esther Dawen; Painter, Gavin F.; Kronenberg, Mitchell

    2010-01-01

    Invariant natural killer T cells (iNKT cells) rapidly produce effector cytokines. In this study, we report the first crystal structures of the iNKT cell T cell receptor (TCR) bound to two natural, microbial glycolipids presented by CD1d. Binding of the TCR induced CDR3-α–dependent structural changes in the F′ roof of CD1d; these changes resemble those occurring in the absence of TCR engagement when the highly potent synthetic antigen α-galactosylceramide (α-GalCer) binds CD1d. Furthermore, in the Borrelia burgdorferi α–galactosyl diacylglycerol–CD1d complex, TCR binding caused a marked repositioning of the galactose sugar into an orientation that closely resembles α-GalCer. The TCR-dependent reorientation of the sugar, together with the induced CD1d fit, may explain the weaker potency of the microbial antigens compared with α-GalCer. We propose that the TCR of iNKT cells binds with a conserved footprint onto CD1d, regardless of the bound glycolipid antigen, and that for microbial antigens this unique binding mode requires TCR-initiated conformational changes. PMID:20921281

  20. Differential interfacial and substrate binding modes of mammalian pancreatic phospholipases A2: a comparison among human, bovine, and porcine enzymes.

    Science.gov (United States)

    Snitko, Y; Han, S K; Lee, B I; Cho, W

    1999-06-15

    To identify the residues essential for interfacial binding and substrate binding of human pancreatic phospholipase A2 (hpPLA2), several ionic residues in the putative interfacial binding surface (R6E, K7E, K10E, and K116E) and substrate binding site (D53K and K56E) were mutated. Interfacial affinity of these mutants was measured using anionic polymerized liposomes, and their enzymatic activity was measured using various substrates including phospholipid monomers, zwitterionic and anionic micelles, and anionic polymerized mixed liposomes. Similar mutations (R6E, K10E, K56E, and K116E) were made to porcine pancreatic phospholipase A2 (ppPLA2), and the properties of mutants were measured by the same methods. Results indicate that hpPLA2 and ppPLA2 have similar interfacial binding mechanisms in which cationic residues in the amino terminus and Lys-116 in the carboxy terminus are involved in binding to anionic lipid surfaces. Small but definite differences between the two enzymes were observed in overall interfacial affinity and activity and the effects of the mutations on interfacial enzyme activity. The interfacial binding of hpPLA2 and ppPLA2 is distinct from that of bovine pancreatic phospholipase A2 in that Lys-56 is involved in the interfacial binding of the latter enzyme. The unique phospholipid headgroup specificity of hpPLA2 derives from the presence of Asp-53 in the substrate binding site. This residue appears to participate in stabilizing electrostatic interactions with the cationic ethanolamine headgroup, hence the phosphatidylethanolamine preference of hpPLA2. Taken together, these studies reveal the similarities and the differences in the mechanisms by which mammalian pancreatic phospholipases A2 interact with lipid aggregates and perform interfacial catalysis.

  1. Search for β2 adrenergic receptor ligands by virtual screening via grid computing and investigation of binding modes by docking and molecular dynamics simulations.

    Directory of Open Access Journals (Sweden)

    Qifeng Bai

    Full Text Available We designed a program called MolGridCal that can be used to screen small molecule database in grid computing on basis of JPPF grid environment. Based on MolGridCal program, we proposed an integrated strategy for virtual screening and binding mode investigation by combining molecular docking, molecular dynamics (MD simulations and free energy calculations. To test the effectiveness of MolGridCal, we screened potential ligands for β2 adrenergic receptor (β2AR from a database containing 50,000 small molecules. MolGridCal can not only send tasks to the grid server automatically, but also can distribute tasks using the screensaver function. As for the results of virtual screening, the known agonist BI-167107 of β2AR is ranked among the top 2% of the screened candidates, indicating MolGridCal program can give reasonable results. To further study the binding mode and refine the results of MolGridCal, more accurate docking and scoring methods are used to estimate the binding affinity for the top three molecules (agonist BI-167107, neutral antagonist alprenolol and inverse agonist ICI 118,551. The results indicate agonist BI-167107 has the best binding affinity. MD simulation and free energy calculation are employed to investigate the dynamic interaction mechanism between the ligands and β2AR. The results show that the agonist BI-167107 also has the lowest binding free energy. This study can provide a new way to perform virtual screening effectively through integrating molecular docking based on grid computing, MD simulations and free energy calculations. The source codes of MolGridCal are freely available at http://molgridcal.codeplex.com.

  2. Some Remarks on the Model Theory of Epistemic Plausibility Models

    CERN Document Server

    Demey, Lorenz

    2010-01-01

    Classical logics of knowledge and belief are usually interpreted on Kripke models, for which a mathematically well-developed model theory is available. However, such models are inadequate to capture dynamic phenomena. Therefore, epistemic plausibility models have been introduced. Because these are much richer structures than Kripke models, they do not straightforwardly inherit the model-theoretical results of modal logic. Therefore, while epistemic plausibility structures are well-suited for modeling purposes, an extensive investigation of their model theory has been lacking so far. The aim of the present paper is to fill exactly this gap, by initiating a systematic exploration of the model theory of epistemic plausibility models. Like in 'ordinary' modal logic, the focus will be on the notion of bisimulation. We define various notions of bisimulations (parametrized by a language L) and show that L-bisimilarity implies L-equivalence. We prove a Hennesy-Milner type result, and also two undefinability results. ...

  3. Unbound position II in MXCXXC metallochaperone model peptides impacts metal binding mode and reactivity: Distinct similarities to whole proteins.

    Science.gov (United States)

    Shoshan, Michal S; Dekel, Noa; Goch, Wojciech; Shalev, Deborah E; Danieli, Tsafi; Lebendiker, Mario; Bal, Wojciech; Tshuva, Edit Y

    2016-06-01

    The effect of position II in the binding sequence of copper metallochaperones, which varies between Thr and His, was investigated through structural analysis and affinity and oxidation kinetic studies of model peptides. A first Cys-Cu(I)-Cys model obtained for the His peptide at acidic and neutral pH, correlated with higher affinity and more rapid oxidation of its complex; in contrast, the Thr peptide with the Cys-Cu(I)-Met coordination under neutral conditions demonstrated weaker and pH dependent binding. Studies with human antioxidant protein 1 (Atox1) and three of its mutants where S residues were replaced with Ala suggested that (a) the binding affinity is influenced more by the binding sequence than by the protein fold (b) pH may play a role in binding reactivity, and (c) mutating the Met impacted the affinity and oxidation rate more drastically than did mutating one of the Cys, supporting its important role in protein function. Position II thus plays a dominant role in metal binding and transport.

  4. The Plausibility of a String Quartet Performance in Virtual Reality.

    Science.gov (United States)

    Bergstrom, Ilias; Azevedo, Sergio; Papiotis, Panos; Saldanha, Nuno; Slater, Mel

    2017-04-01

    We describe an experiment that explores the contribution of auditory and other features to the illusion of plausibility in a virtual environment that depicts the performance of a string quartet. 'Plausibility' refers to the component of presence that is the illusion that the perceived events in the virtual environment are really happening. The features studied were: Gaze (the musicians ignored the participant, the musicians sometimes looked towards and followed the participant's movements), Sound Spatialization (Mono, Stereo, Spatial), Auralization (no sound reflections, reflections corresponding to a room larger than the one perceived, reflections that exactly matched the virtual room), and Environment (no sound from outside of the room, birdsong and wind corresponding to the outside scene). We adopted the methodology based on color matching theory, where 20 participants were first able to assess their feeling of plausibility in the environment with each of the four features at their highest setting. Then five times participants started from a low setting on all features and were able to make transitions from one system configuration to another until they matched their original feeling of plausibility. From these transitions a Markov transition matrix was constructed, and also probabilities of a match conditional on feature configuration. The results show that Environment and Gaze were individually the most important factors influencing the level of plausibility. The highest probability transitions were to improve Environment and Gaze, and then Auralization and Spatialization. We present this work as both a contribution to the methodology of assessing presence without questionnaires, and showing how various aspects of a musical performance can influence plausibility.

  5. Computational Studies of Difference in Binding Modes of Peptide and Non-Peptide Inhibitors to MDM2/MDMX Based on Molecular Dynamics Simulations

    Directory of Open Access Journals (Sweden)

    Yuxin Zhang

    2012-02-01

    Full Text Available Inhibition of p53-MDM2/MDMX interaction is considered to be a promising strategy for anticancer drug design to activate wild-type p53 in tumors. We carry out molecular dynamics (MD simulations to study the binding mechanisms of peptide and non-peptide inhibitors to MDM2/MDMX. The rank of binding free energies calculated by molecular mechanics generalized Born surface area (MM-GBSA method agrees with one of the experimental values. The results suggest that van der Waals energy drives two kinds of inhibitors to MDM2/MDMX. We also find that the peptide inhibitors can produce more interaction contacts with MDM2/MDMX than the non-peptide inhibitors. Binding mode predictions based on the inhibitor-residue interactions show that the π–π, CH–π and CH–CH interactions dominated by shape complimentarity, govern the binding of the inhibitors in the hydrophobic cleft of MDM2/MDMX. Our studies confirm the residue Tyr99 in MDMX can generate a steric clash with the inhibitors due to energy and structure. This finding may theoretically provide help to develop potent dual-specific or MDMX inhibitors.

  6. (19) F NMR Spectroscopic Analysis of the Binding Modes in Triple-Helical Peptide Nucleic Acid (PNA)/MicroRNA Complexes.

    Science.gov (United States)

    Tähtinen, Ville; Granqvist, Lotta; Murtola, Merita; Strömberg, Roger; Virta, Pasi

    2017-05-23

    Triplex-forming peptide nucleic acids (TFPNAs) were targeted to double-helical regions of (19) F-labeled RNA hairpin models (a UA-rich duplex with a hexaethylene glycol (heg) loop and a microRNA model, miR-215). In addition to conventional UV- and circular dichroism (CD)-based detection, binding was monitored by (19) F NMR spectroscopy. Detailed information on the stoichiometry and transition between the triple-helical peptide nucleic acid (PNA)/RNA and (PNA)2 /RNA binding modes could be obtained. γ-(R)-Hydroxymethyl-modified thymine-1-yl- and 2-aminopyridin-3-yl-acetyl derivatives of TFPNAs were additionally synthesized, which were targeted to the same RNA models, and the effect of the γ-(R)-hydroxymethyl group on binding was studied. An appropriate pattern of γ-(R)-hydroxymethyl modifications reduced the stability of the ternary complex and preferred stoichiometric binding to the miR-215 model. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Characterization of the differences in the cyclopiazonic acid binding mode to mammalian and P. Falciparum Ca2+ pumps: a computational study.

    KAUST Repository

    Di Marino, Daniele

    2015-03-01

    Despite the investments in malaria research, an effective vaccine has not yet been developed and the causative parasites are becoming increasingly resistant to most of the available drugs. PfATP6, the sarco/endoplasmic reticulum Ca2+ pump (SERCA) of P. falciparum, has been recently genetically validated as a potential antimalarial target and cyclopiazonic acid (CPA) has been found to be a potent inhibitor of SERCAs in several organisms, including P. falciparum. In position 263, PfATP6 displays a leucine residue, whilst the corresponding position in the mammalian SERCA is occupied by a glutamic acid. The PfATP6 L263E mutation has been studied in relation to the artemisinin inhibitory effect on P. falciparum and recent studies have provided evidence that the parasite with this mutation is more susceptible to CPA. Here, we characterized, for the first time, the interaction of CPA with PfATP6 and its mammalian counterpart to understand similarities and differences in the mode of binding of the inhibitor to the two Ca2+ pumps. We found that, even though CPA does not directly interact with the residue in position 263, the presence of a hydrophobic residue in this position in PfATP6 rather than a negatively charged one, as in the mammalian SERCA, entails a conformational arrangement of the binding pocket which, in turn, determines a relaxation of CPA leading to a different binding mode of the compound. Our findings highlight differences between the plasmodial and human SERCA CPA-binding pockets that may be exploited to design CPA derivatives more selective toward PfATP6.

  8. Classification using sparse representations: a biologically plausible approach.

    Science.gov (United States)

    Spratling, M W

    2014-02-01

    Representing signals as linear combinations of basis vectors sparsely selected from an overcomplete dictionary has proven to be advantageous for many applications in pattern recognition, machine learning, signal processing, and computer vision. While this approach was originally inspired by insights into cortical information processing, biologically plausible approaches have been limited to exploring the functionality of early sensory processing in the brain, while more practical applications have employed non-biologically plausible sparse coding algorithms. Here, a biologically plausible algorithm is proposed that can be applied to practical problems. This algorithm is evaluated using standard benchmark tasks in the domain of pattern classification, and its performance is compared to a wide range of alternative algorithms that are widely used in signal and image processing. The results show that for the classification tasks performed here, the proposed method is competitive with the best of the alternative algorithms that have been evaluated. This demonstrates that classification using sparse representations can be performed in a neurally plausible manner, and hence, that this mechanism of classification might be exploited by the brain.

  9. The distal pocket histidine residue in horse heart myoglobin directs the O-binding mode of nitrite to the heme iron.

    Science.gov (United States)

    Yi, Jun; Heinecke, Julie; Tan, Hui; Ford, Peter C; Richter-Addo, George B

    2009-12-23

    It is now well-established that mammalian heme proteins are reactive with various nitrogen oxide species and that these reactions may play significant roles in mammalian physiology. For example, the ferrous heme protein myoglobin (Mb) has been shown to reduce nitrite (NO(2)(-)) to nitric oxide (NO) under hypoxic conditions. We demonstrate here that the distal pocket histidine residue (His64) of horse heart metMb(III) (i.e., ferric Mb(III)) has marked effects on the mode of nitrite ion coordination to the iron center. X-ray crystal structures were determined for the mutant proteins metMb(III) H64V (2.0 A resolution) and its nitrite ion adduct metMb(III) H64V-nitrite (1.95 A resolution), and metMb(III) H64V/V67R (1.9 A resolution) and its nitrite ion adduct metMb(III) H64V/V67R-nitrite (2.0 A resolution). These are compared to the known structures of wild-type (wt) hh metMb(III) and its nitrite ion adduct hh metMb(III)-nitrite, which binds NO(2)(-) via an O-atom in a trans-FeONO configuration. Unlike wt metMb(III), no axial H(2)O is evident in either of the metMb(III) mutant structures. In the ferric H64V-nitrite structure, replacement of the distal His residue with Val alters the binding mode of nitrite from the nitrito (O-binding) form in the wild-type protein to a weakly bound nitro (N-binding) form. Reintroducing a H-bonding residue in the H64V/V67R double mutant restores the O-binding mode of nitrite. We have also examined the effects of these mutations on reactivities of the metMb(III)s with cysteine as a reducing agent and of the (ferrous) Mb(II)s with nitrite ion under anaerobic conditions. The Mb(II)s were generated by reduction of the Mb(III) precursors in a second-order reaction with cysteine, the rate constants for this step following the order H64V/V67R > H64V > wt. The rate constants for the oxidation of the Mb(II)s by nitrite (giving NO as the other product) follow the order wt > H64V/V67R > H64V and suggest a significant role of the distal pocket H

  10. Alternative binding modes identified for growth and differentiation factor-associated serum protein (GASP) family antagonism of myostatin.

    Science.gov (United States)

    Walker, Ryan G; Angerman, Elizabeth B; Kattamuri, Chandramohan; Lee, Yun-Sil; Lee, Se-Jin; Thompson, Thomas B

    2015-03-20

    Myostatin, a member of the TGF-β family of ligands, is a strong negative regulator of muscle growth. As such, it is a prime therapeutic target for muscle wasting disorders. Similar to other TGF-β family ligands, myostatin is neutralized by binding one of a number of structurally diverse antagonists. Included are the antagonists GASP-1 and GASP-2, which are unique in that they specifically antagonize myostatin. However, little is known from a structural standpoint describing the interactions of GASP antagonists with myostatin. Here, we present the First low resolution solution structure of myostatin-free and myostatin-bound states of GASP-1 and GASP-2. Our studies have revealed GASP-1, which is 100 times more potent than GASP-2, preferentially binds myostatin in an asymmetrical 1:1 complex, whereas GASP-2 binds in a symmetrical 2:1 complex. Additionally, C-terminal truncations of GASP-1 result in less potent myostatin inhibitors that form a 2:1 complex, suggesting that the C-terminal domains of GASP-1 are the primary mediators for asymmetric complex formation. Overall, this study provides a new perspective on TGF-β antagonism, where closely related antagonists can utilize different ligand-binding strategies. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  11. Alternative Binding Modes Identified for Growth and Differentiation Factor-associated Serum Protein (GASP) Family Antagonism of Myostatin*

    Science.gov (United States)

    Walker, Ryan G.; Angerman, Elizabeth B.; Kattamuri, Chandramohan; Lee, Yun-Sil; Lee, Se-Jin; Thompson, Thomas B.

    2015-01-01

    Myostatin, a member of the TGF-β family of ligands, is a strong negative regulator of muscle growth. As such, it is a prime therapeutic target for muscle wasting disorders. Similar to other TGF-β family ligands, myostatin is neutralized by binding one of a number of structurally diverse antagonists. Included are the antagonists GASP-1 and GASP-2, which are unique in that they specifically antagonize myostatin. However, little is known from a structural standpoint describing the interactions of GASP antagonists with myostatin. Here, we present the First low resolution solution structure of myostatin-free and myostatin-bound states of GASP-1 and GASP-2. Our studies have revealed GASP-1, which is 100 times more potent than GASP-2, preferentially binds myostatin in an asymmetrical 1:1 complex, whereas GASP-2 binds in a symmetrical 2:1 complex. Additionally, C-terminal truncations of GASP-1 result in less potent myostatin inhibitors that form a 2:1 complex, suggesting that the C-terminal domains of GASP-1 are the primary mediators for asymmetric complex formation. Overall, this study provides a new perspective on TGF-β antagonism, where closely related antagonists can utilize different ligand-binding strategies. PMID:25657005

  12. A Conserved Mode of Protein Recognition and Binding in a ParD−ParE Toxin−Antitoxin Complex

    Energy Technology Data Exchange (ETDEWEB)

    Dalton, Kevin M.; Crosson, Sean (UC)

    2010-05-06

    Toxin-antitoxin (TA) systems form a ubiquitous class of prokaryotic proteins with functional roles in plasmid inheritance, environmental stress response, and cell development. ParDE family TA systems are broadly conserved on plasmids and bacterial chromosomes and have been well characterized as genetic elements that promote stable plasmid inheritance. We present a crystal structure of a chromosomally encoded ParD-ParE complex from Caulobacter crescentus at 2.6 {angstrom} resolution. This TA system forms an {alpha}{sub 2}{beta}{sub 2} heterotetramer in the crystal and in solution. The toxin-antitoxin binding interface reveals extensive polar and hydrophobic contacts of ParD antitoxin helices with a conserved recognition and binding groove on the ParE toxin. A cross-species comparison of this complex structure with related toxin structures identified an antitoxin recognition and binding subdomain that is conserved between distantly related members of the RelE/ParE toxin superfamily despite a low level of overall primary sequence identity. We further demonstrate that ParD antitoxin is dimeric, stably folded, and largely helical when not bound to ParE toxin. Thus, the paradigmatic model in which antitoxin undergoes a disorder-to-order transition upon toxin binding does not apply to this chromosomal ParD-ParE TA system.

  13. Inhibition and Larvicidal Activity of Phenylpropanoids from Piper sarmentosum on Acetylcholinesterase against Mosquito Vectors and Their Binding Mode of Interaction.

    Directory of Open Access Journals (Sweden)

    Arshia Hematpoor

    Full Text Available Aedes aegypti, Aedes albopictus and Culex quinquefasciatus are vectors of dengue fever and West Nile virus diseases. This study was conducted to determine the toxicity, mechanism of action and the binding interaction of three active phenylpropanoids from Piper sarmentosum (Piperaceae toward late 3rd or early 4th larvae of above vectors. A bioassay guided-fractionation on the hexane extract from the roots of Piper sarmentosum led to the isolation and identification of three active phenylpropanoids; asaricin 1, isoasarone 2 and trans-asarone 3. The current study involved evaluation of the toxicity and acetylcholinesterase (AChE inhibition of these compounds against Aedes aegypti, Aedes albopictus and Culex quinquefasciatus larvae. Asaricin 1 and isoasarone 2 were highly potent against Aedes aegypti, Aedes albopictus and Culex quinquefasciatus larvae causing up to 100% mortality at ≤ 15 μg/mL concentration. The ovicidal activity of asaricin 1, isoasarone 2 and trans-asarone 3 were evaluated through egg hatching. Asaricin 1 and isoasarone 2 showed potent ovicidal activity. Ovicidal activity for both compounds was up to 95% at 25μg/mL. Asaricin 1 and isoasarone 2 showed strong inhibition on acetylcholinesterase with relative IC50 values of 0.73 to 1.87 μg/mL respectively. These findings coupled with the high AChE inhibition may suggest that asaricin 1 and isoasarone 2 are neuron toxic compounds toward Aedes aegypti, Aedes albopictus and Culex quinquefasciatus. Further computational docking with Autodock Vina elaborates the possible interaction of asaricin 1 and isoasarone 2 with three possible binding sites of AChE which includes catalytic triads (CAS: S238, E367, H480, the peripheral sites (PAS: E72, W271 and anionic binding site (W83. The binding affinity of asaricin 1 and isoasarone 2 were relatively strong with asaricin 1 showed a higher binding affinity in the anionic pocket.

  14. Inhibition and Larvicidal Activity of Phenylpropanoids from Piper sarmentosum on Acetylcholinesterase against Mosquito Vectors and Their Binding Mode of Interaction.

    Science.gov (United States)

    Hematpoor, Arshia; Liew, Sook Yee; Chong, Wei Lim; Azirun, Mohd Sofian; Lee, Vannajan Sanghiran; Awang, Khalijah

    2016-01-01

    Aedes aegypti, Aedes albopictus and Culex quinquefasciatus are vectors of dengue fever and West Nile virus diseases. This study was conducted to determine the toxicity, mechanism of action and the binding interaction of three active phenylpropanoids from Piper sarmentosum (Piperaceae) toward late 3rd or early 4th larvae of above vectors. A bioassay guided-fractionation on the hexane extract from the roots of Piper sarmentosum led to the isolation and identification of three active phenylpropanoids; asaricin 1, isoasarone 2 and trans-asarone 3. The current study involved evaluation of the toxicity and acetylcholinesterase (AChE) inhibition of these compounds against Aedes aegypti, Aedes albopictus and Culex quinquefasciatus larvae. Asaricin 1 and isoasarone 2 were highly potent against Aedes aegypti, Aedes albopictus and Culex quinquefasciatus larvae causing up to 100% mortality at ≤ 15 μg/mL concentration. The ovicidal activity of asaricin 1, isoasarone 2 and trans-asarone 3 were evaluated through egg hatching. Asaricin 1 and isoasarone 2 showed potent ovicidal activity. Ovicidal activity for both compounds was up to 95% at 25μg/mL. Asaricin 1 and isoasarone 2 showed strong inhibition on acetylcholinesterase with relative IC50 values of 0.73 to 1.87 μg/mL respectively. These findings coupled with the high AChE inhibition may suggest that asaricin 1 and isoasarone 2 are neuron toxic compounds toward Aedes aegypti, Aedes albopictus and Culex quinquefasciatus. Further computational docking with Autodock Vina elaborates the possible interaction of asaricin 1 and isoasarone 2 with three possible binding sites of AChE which includes catalytic triads (CAS: S238, E367, H480), the peripheral sites (PAS: E72, W271) and anionic binding site (W83). The binding affinity of asaricin 1 and isoasarone 2 were relatively strong with asaricin 1 showed a higher binding affinity in the anionic pocket.

  15. Inhibition and Larvicidal Activity of Phenylpropanoids from Piper sarmentosum on Acetylcholinesterase against Mosquito Vectors and Their Binding Mode of Interaction

    Science.gov (United States)

    Hematpoor, Arshia; Liew, Sook Yee; Chong, Wei Lim; Azirun, Mohd Sofian; Lee, Vannajan Sanghiran; Awang, Khalijah

    2016-01-01

    Aedes aegypti, Aedes albopictus and Culex quinquefasciatus are vectors of dengue fever and West Nile virus diseases. This study was conducted to determine the toxicity, mechanism of action and the binding interaction of three active phenylpropanoids from Piper sarmentosum (Piperaceae) toward late 3rd or early 4th larvae of above vectors. A bioassay guided-fractionation on the hexane extract from the roots of Piper sarmentosum led to the isolation and identification of three active phenylpropanoids; asaricin 1, isoasarone 2 and trans-asarone 3. The current study involved evaluation of the toxicity and acetylcholinesterase (AChE) inhibition of these compounds against Aedes aegypti, Aedes albopictus and Culex quinquefasciatus larvae. Asaricin 1 and isoasarone 2 were highly potent against Aedes aegypti, Aedes albopictus and Culex quinquefasciatus larvae causing up to 100% mortality at ≤ 15 μg/mL concentration. The ovicidal activity of asaricin 1, isoasarone 2 and trans-asarone 3 were evaluated through egg hatching. Asaricin 1 and isoasarone 2 showed potent ovicidal activity. Ovicidal activity for both compounds was up to 95% at 25μg/mL. Asaricin 1 and isoasarone 2 showed strong inhibition on acetylcholinesterase with relative IC50 values of 0.73 to 1.87 μg/mL respectively. These findings coupled with the high AChE inhibition may suggest that asaricin 1 and isoasarone 2 are neuron toxic compounds toward Aedes aegypti, Aedes albopictus and Culex quinquefasciatus. Further computational docking with Autodock Vina elaborates the possible interaction of asaricin 1 and isoasarone 2 with three possible binding sites of AChE which includes catalytic triads (CAS: S238, E367, H480), the peripheral sites (PAS: E72, W271) and anionic binding site (W83). The binding affinity of asaricin 1 and isoasarone 2 were relatively strong with asaricin 1 showed a higher binding affinity in the anionic pocket. PMID:27152416

  16. Alternative binding modes of l-histidine guided by metal ions for the activation of the antiterminator protein HutP of Bacillus subtilis.

    Science.gov (United States)

    Dhakshnamoorthy, Balasundaresan; Mizuno, Hiroshi; Kumar, Penmetcha K R

    2013-09-01

    Anti-terminator proteins control gene expression by recognizing control signals within cognate transcripts and then preventing transcription termination. HutP is such a regulatory protein that regulates the expression of the histidine utilization (hut) operon in Bacillus subtilis by binding to cis-acting regulatory sequences in hut mRNAs. During the anti-termination process, l-histidine and a divalent ion are required for hutP to bind to the specific sequence within the hut mRNA. Our previous crystal structure of the HutP-l-histidine-Mg(2+)-RNA ternary complex demonstrated that the l-histidine ligand and Mg(2+) bind together such that the backbone nitrogen and carboxyl oxygen of l-histidine coordinate with Mg(2+). In addition to the Mg(2+), other divalent ions are also known to efficiently support the l-histidine-dependent anti-termination of the hut operon, and the best divalent ion is Zn(2+). In this study, we determined the crystal structure of the HutP-l-histidine-Zn(2+) complex and found that the orientation of l-histidine coordinated to Zn(2+) is reversed relative to that of l-histidine coordinated to Mg(2+), i.e., the imidazole side chain nitrogen of l-histidine coordinates to Zn(2+). This alternative binding mode of the l-histidine ligand to a divalent ion provides further insight into the mechanisms responsible for the activation of RNA binding during the hut anti-termination process.

  17. Probing Structural Features and Binding Mode of 3-Arylpyrimidin-2,4-diones within Housefly γ-Aminobutyric Acid (GABA Receptor

    Directory of Open Access Journals (Sweden)

    Xiangya Kong

    2011-09-01

    Full Text Available In order to obtain structural features of 3-arylpyrimidin-2,4-diones emerged as promising inhibitors of insect γ-aminobutyric acid (GABA receptor, a set of ligand-/receptor-based 3D-QSAR models for 60 derivatives are generated using Comparative Molecular Field Analysis (CoMFA and Comparative Molecular Similarity Index Analysis (CoMSIA. The statistically optimal CoMSIA model is produced with highest q2 of 0.62, r2ncv of 0.97, and r2pred of 0.95. A minor/bulky electronegative hydrophilic polar substituent at the 1-/6-postion of the uracil ring, and bulky substituents at the 3'-, 4'- and 5'-positions of the benzene ring are beneficial for the enhanced potency of the inhibitors as revealed by the obtained 3D-contour maps. Furthermore, homology modeling, molecular dynamics (MD simulation and molecular docking are also carried out to gain a better understanding of the probable binding modes of these inhibitors, and the results show that residues Ala-183(C, Thr-187(B, Thr-187(D and Thr-187(E in the second transmembrane domains of GABA receptor are responsible for the H-bonding interactions with the inhibitor. The good correlation between docking observations and 3D-QSAR analyses further proves the model reasonability in probing the structural features and the binding mode of 3-arylpyrimidin-2,4-dione derivatives within the housefly GABA receptor.

  18. Functional implications of the binding mode of a human conformation-dependent V2 monoclonal antibody against HIV.

    Science.gov (United States)

    Spurrier, Brett; Sampson, Jared; Gorny, Miroslaw K; Zolla-Pazner, Susan; Kong, Xiang-Peng

    2014-04-01

    Data from the RV144 HIV vaccine trial indicated that gp120 V2 antibodies were associated with a lower risk of infection; thus, the mapping of V2 epitopes can contribute to the design of an effective HIV vaccine. We solved the crystal structure of human monoclonal antibody (MAb) 2158, which targets a conformational V2 epitope overlapping the α4β7 integrin binding site, and constructed a full-length model of V1V2. Comparison of computational energy stability to experimental enzyme-linked immunosorbent assay (ELISA) results identified a hydrophobic core that stabilizes the V2 region for optimal 2158 binding, as well as residues that directly mediate side chain interactions with MAb 2158. These data define the binding surface recognized by MAb 2158 and offer a structural explanation for why a mismatched mutation at position 181 (I181X) in the V2 loop was associated with a higher vaccine efficiency in the RV144 clinical vaccine trial. Correlate analysis of the RV144 HIV-1 vaccine trial suggested that the presence of antibodies to the second variable region (V2) of HIV-1 gp120 was responsible for the modest protection observed in the trial. V2 is a highly variable and immunogenic region, and structural information on its antigenic landscape will be important for rational design of an effective HIV-1 vaccine. Using X-ray crystallography, computational design tools, and mutagenesis assays, we carried out a detailed and systematic investigation of the epitope recognition of human V2 MAb 2158 and demonstrated that its epitope region overlaps the integrin binding site within V2. In addition, we propose a structure-based mechanism for mismatching of the isoleucine at position 181 and the increased vaccine efficacy seen in the RV144 vaccine trial.

  19. Binding of the auxiliary subunit TRIP8b to HCN channels shifts the mode of action of cAMP.

    Science.gov (United States)

    Hu, Lei; Santoro, Bina; Saponaro, Andrea; Liu, Haiying; Moroni, Anna; Siegelbaum, Steven

    2013-12-01

    Hyperpolarization-activated cyclic nucleotide-regulated cation (HCN) channels generate the hyperpolarization-activated cation current Ih present in many neurons. These channels are directly regulated by the binding of cAMP, which both shifts the voltage dependence of HCN channel opening to more positive potentials and increases maximal Ih at extreme negative voltages where voltage gating is complete. Here we report that the HCN channel brain-specific auxiliary subunit TRIP8b produces opposing actions on these two effects of cAMP. In the first action, TRIP8b inhibits the effect of cAMP to shift voltage gating, decreasing both the sensitivity of the channel to cAMP (K1/2) and the efficacy of cAMP (maximal voltage shift); conversely, cAMP binding inhibits these actions of TRIP8b. These mutually antagonistic actions are well described by a cyclic allosteric mechanism in which TRIP8b binding reduces the affinity of the channel for cAMP, with the affinity of the open state for cAMP being reduced to a greater extent than the cAMP affinity of the closed state. In a second apparently independent action, TRIP8b enhances the action of cAMP to increase maximal Ih. This latter effect cannot be explained by the cyclic allosteric model but results from a previously uncharacterized action of TRIP8b to reduce maximal current through the channel in the absence of cAMP. Because the binding of cAMP also antagonizes this second effect of TRIP8b, application of cAMP produces a larger increase in maximal Ih in the presence of TRIP8b than in its absence. These findings may provide a mechanistic explanation for the wide variability in the effects of modulatory transmitters on the voltage gating and maximal amplitude of Ih reported for different neurons in the brain.

  20. Identification of the Zn2+ binding site and mode of operation of a mammalian Zn2+ transporter.

    Science.gov (United States)

    Ohana, Ehud; Hoch, Eitan; Keasar, Chen; Kambe, Taiho; Yifrach, Ofer; Hershfinkel, Michal; Sekler, Israel

    2009-06-26

    Vesicular zinc transporters (ZnTs) play a critical role in regulating Zn2+ homeostasis in various cellular compartments and are linked to major diseases ranging from Alzheimer disease to diabetes. Despite their importance, the intracellular localization of ZnTs poses a major challenge for establishing the mechanisms by which they function and the identity of their ion binding sites. Here, we combine fluorescence-based functional analysis and structural modeling aimed at elucidating these functional aspects. Expression of ZnT5 was followed by both accelerated removal of Zn2+ from the cytoplasm and its increased vesicular sequestration. Further, activity of this zinc transport was coupled to alkalinization of the trans-Golgi network. Finally, structural modeling of ZnT5, based on the x-ray structure of the bacterial metal transporter YiiP, identified four residues that can potentially form the zinc binding site on ZnT5. Consistent with this model, replacement of these residues, Asp599 and His451, with alanine was sufficient to block Zn2+ transport. These findings indicate, for the first time, that Zn2+ transport mediated by a mammalian ZnT is catalyzed by H+/Zn2+ exchange and identify the zinc binding site of ZnT proteins essential for zinc transport.

  1. Molecular dynamics simulation of tryptophan hydroxylase-1: binding modes and free energy analysis to phenylalanine derivative inhibitors.

    Science.gov (United States)

    Zhong, Hao; Huang, Wei; He, Gu; Peng, Cheng; Wu, Fengbo; Ouyang, Liang

    2013-05-10

    Serotonin is a neurotransmitter that modulates many central and peripheral functions. Tryptophan hydroxylase-1 (TPH1) is a key enzyme of serotonin synthesis. In the current study, the interaction mechanism of phenylalanine derivative TPH1 inhibitors was investigated using molecular dynamics (MD) simulations, free energy calculations, free energy decomposition analysis and computational alanine scanning. The predicted binding free energies of these complexes are consistent with the experimental data. The analysis of the individual energy terms indicates that although the van der Waals and electrostatics interaction contributions are important in distinguishing the binding affinities of these inhibitors, the electrostatic contribution plays a more crucial role in that. Moreover, it is observed that different configurations of the naphthalene substituent could form different binding patterns with protein, yet lead to similar inhibitory potency. The combination of different molecular modeling techniques is an efficient way to interpret the interaction mechanism of inhibitors and our work could provide valuable information for the TPH1 inhibitor design in the future.

  2. Molecular Dynamics Simulation of Tryptophan Hydroxylase-1: Binding Modes and Free Energy Analysis to Phenylalanine Derivative Inhibitors

    Directory of Open Access Journals (Sweden)

    Liang Ouyang

    2013-05-01

    Full Text Available Serotonin is a neurotransmitter that modulates many central and peripheral functions. Tryptophan hydroxylase-1 (TPH1 is a key enzyme of serotonin synthesis. In the current study, the interaction mechanism of phenylalanine derivative TPH1 inhibitors was investigated using molecular dynamics (MD simulations, free energy calculations, free energy decomposition analysis and computational alanine scanning. The predicted binding free energies of these complexes are consistent with the experimental data. The analysis of the individual energy terms indicates that although the van der Waals and electrostatics interaction contributions are important in distinguishing the binding affinities of these inhibitors, the electrostatic contribution plays a more crucial role in that. Moreover, it is observed that different configurations of the naphthalene substituent could form different binding patterns with protein, yet lead to similar inhibitory potency. The combination of different molecular modeling techniques is an efficient way to interpret the interaction mechanism of inhibitors and our work could provide valuable information for the TPH1 inhibitor design in the future.

  3. Agrobacterium Uses a Unique Ligand-Binding Mode for Trapping Opines and Acquiring A Competitive Advantage in the Niche Construction on Plant Host

    Science.gov (United States)

    Planamente, Sara; El Sahili, Abbas; Blin, Pauline; Aumont-Nicaise, Magali; Dessaux, Yves; Moréra, Solange; Faure, Denis

    2014-01-01

    By modifying the nuclear genome of its host, the plant pathogen Agrobacterium tumefaciens induces the development of plant tumours in which it proliferates. The transformed plant tissues accumulate uncommon low molecular weight compounds called opines that are growth substrates for A. tumefaciens. In the pathogen-induced niche (the plant tumour), a selective advantage conferred by opine assimilation has been hypothesized, but not experimentally demonstrated. Here, using genetics and structural biology, we deciphered how the pathogen is able to bind opines and use them to efficiently compete in the plant tumour. We report high resolution X-ray structures of the periplasmic binding protein (PBP) NocT unliganded and liganded with the opine nopaline (a condensation product of arginine and α-ketoglurate) and its lactam derivative pyronopaline. NocT exhibited an affinity for pyronopaline (KD of 0.6 µM) greater than that for nopaline (KD of 3.7 µM). Although the binding-mode of the arginine part of nopaline/pyronopaline in NocT resembled that of arginine in other PBPs, affinity measurement by two different techniques showed that NocT did not bind arginine. In contrast, NocT presented specific residues such as M117 to stabilize the bound opines. NocT relatives that exhibit the nopaline/pyronopaline-binding mode were only found in genomes of the genus Agrobacterium. Transcriptomics and reverse genetics revealed that A. tumefaciens uses the same pathway for assimilating nopaline and pyronopaline. Fitness measurements showed that NocT is required for a competitive colonization of the plant tumour by A. tumefaciens. Moreover, even though the Ti-plasmid conjugal transfer was not regulated by nopaline, the competitive advantage gained by the nopaline-assimilating Ti-plasmid donors led to a preferential horizontal propagation of this Ti-plasmid amongst the agrobacteria colonizing the plant-tumour niche. This work provided structural and genetic evidences to support the niche

  4. Agrobacterium uses a unique ligand-binding mode for trapping opines and acquiring a competitive advantage in the niche construction on plant host.

    Science.gov (United States)

    Lang, Julien; Vigouroux, Armelle; Planamente, Sara; El Sahili, Abbas; Blin, Pauline; Aumont-Nicaise, Magali; Dessaux, Yves; Moréra, Solange; Faure, Denis

    2014-10-01

    By modifying the nuclear genome of its host, the plant pathogen Agrobacterium tumefaciens induces the development of plant tumours in which it proliferates. The transformed plant tissues accumulate uncommon low molecular weight compounds called opines that are growth substrates for A. tumefaciens. In the pathogen-induced niche (the plant tumour), a selective advantage conferred by opine assimilation has been hypothesized, but not experimentally demonstrated. Here, using genetics and structural biology, we deciphered how the pathogen is able to bind opines and use them to efficiently compete in the plant tumour. We report high resolution X-ray structures of the periplasmic binding protein (PBP) NocT unliganded and liganded with the opine nopaline (a condensation product of arginine and α-ketoglurate) and its lactam derivative pyronopaline. NocT exhibited an affinity for pyronopaline (K(D) of 0.6 µM) greater than that for nopaline (KD of 3.7 µM). Although the binding-mode of the arginine part of nopaline/pyronopaline in NocT resembled that of arginine in other PBPs, affinity measurement by two different techniques showed that NocT did not bind arginine. In contrast, NocT presented specific residues such as M117 to stabilize the bound opines. NocT relatives that exhibit the nopaline/pyronopaline-binding mode were only found in genomes of the genus Agrobacterium. Transcriptomics and reverse genetics revealed that A. tumefaciens uses the same pathway for assimilating nopaline and pyronopaline. Fitness measurements showed that NocT is required for a competitive colonization of the plant tumour by A. tumefaciens. Moreover, even though the Ti-plasmid conjugal transfer was not regulated by nopaline, the competitive advantage gained by the nopaline-assimilating Ti-plasmid donors led to a preferential horizontal propagation of this Ti-plasmid amongst the agrobacteria colonizing the plant-tumour niche. This work provided structural and genetic evidences to support the niche

  5. Agrobacterium uses a unique ligand-binding mode for trapping opines and acquiring a competitive advantage in the niche construction on plant host.

    Directory of Open Access Journals (Sweden)

    Julien Lang

    2014-10-01

    Full Text Available By modifying the nuclear genome of its host, the plant pathogen Agrobacterium tumefaciens induces the development of plant tumours in which it proliferates. The transformed plant tissues accumulate uncommon low molecular weight compounds called opines that are growth substrates for A. tumefaciens. In the pathogen-induced niche (the plant tumour, a selective advantage conferred by opine assimilation has been hypothesized, but not experimentally demonstrated. Here, using genetics and structural biology, we deciphered how the pathogen is able to bind opines and use them to efficiently compete in the plant tumour. We report high resolution X-ray structures of the periplasmic binding protein (PBP NocT unliganded and liganded with the opine nopaline (a condensation product of arginine and α-ketoglurate and its lactam derivative pyronopaline. NocT exhibited an affinity for pyronopaline (K(D of 0.6 µM greater than that for nopaline (KD of 3.7 µM. Although the binding-mode of the arginine part of nopaline/pyronopaline in NocT resembled that of arginine in other PBPs, affinity measurement by two different techniques showed that NocT did not bind arginine. In contrast, NocT presented specific residues such as M117 to stabilize the bound opines. NocT relatives that exhibit the nopaline/pyronopaline-binding mode were only found in genomes of the genus Agrobacterium. Transcriptomics and reverse genetics revealed that A. tumefaciens uses the same pathway for assimilating nopaline and pyronopaline. Fitness measurements showed that NocT is required for a competitive colonization of the plant tumour by A. tumefaciens. Moreover, even though the Ti-plasmid conjugal transfer was not regulated by nopaline, the competitive advantage gained by the nopaline-assimilating Ti-plasmid donors led to a preferential horizontal propagation of this Ti-plasmid amongst the agrobacteria colonizing the plant-tumour niche. This work provided structural and genetic evidences to

  6. A Highly Tilted Binding Mode by a Self-Reactive T Cell Receptor Results in Altered Engagement of Peptide and MHC

    Energy Technology Data Exchange (ETDEWEB)

    D Sethi; D Schubert; A Anders; A Heroux; D Bonsor; C Thomas; E Sundberg; J Pyrdol; K Wucherpfennig

    2011-12-31

    Self-reactive T cells that escape elimination in the thymus can cause autoimmune pathology, and it is therefore important to understand the structural mechanisms of self-antigen recognition. We report the crystal structure of a T cell receptor (TCR) from a patient with relapsing-remitting multiple sclerosis that engages its self-peptide-major histocompatibility complex (pMHC) ligand in an unusual manner. The TCR is bound in a highly tilted orientation that prevents interaction of the TCR-{alpha} chain with the MHC class II {beta} chain helix. In this structure, only a single germline-encoded TCR loop engages the MHC protein, whereas in most other TCR-pMHC structures all four germline-encoded TCR loops bind to the MHC helices. The tilted binding mode also prevents peptide contacts by the short complementarity-determining region (CDR) 3{beta} loop, and interactions that contribute to peptide side chain specificity are focused on the CDR3{alpha} loop. This structure is the first example in which only a single germline-encoded TCR loop contacts the MHC helices. Furthermore, the reduced interaction surface with the peptide may facilitate TCR cross-reactivity. The structural alterations in the trimolecular complex are distinct from previously characterized self-reactive TCRs, indicating that there are multiple unusual ways for self-reactive TCRs to bind their pMHC ligand.

  7. A highly tilted binding mode by a self-reactive T cell receptor results in altered engagement of peptide and MHC

    Energy Technology Data Exchange (ETDEWEB)

    Sethi, D.K.; Heroux, A.; Schubert, D. A.; Anders, A.-K.; Bonsor, D. A.; Thomas, C. P.; Sundberg, E. J.; Pyrdol, J.; Wucherpfennig, K. W.

    2011-01-17

    Self-reactive T cells that escape elimination in the thymus can cause autoimmune pathology, and it is therefore important to understand the structural mechanisms of self-antigen recognition. We report the crystal structure of a T cell receptor (TCR) from a patient with relapsing-remitting multiple sclerosis that engages its self-peptide-major histocompatibility complex (pMHC) ligand in an unusual manner. The TCR is bound in a highly tilted orientation that prevents interaction of the TCR-{alpha} chain with the MHC class II {beta} chain helix. In this structure, only a single germline-encoded TCR loop engages the MHC protein, whereas in most other TCR-pMHC structures all four germline-encoded TCR loops bind to the MHC helices. The tilted binding mode also prevents peptide contacts by the short complementarity-determining region (CDR) 3{beta} loop, and interactions that contribute to peptide side chain specificity are focused on the CDR3{alpha} loop. This structure is the first example in which only a single germline-encoded TCR loop contacts the MHC helices. Furthermore, the reduced interaction surface with the peptide may facilitate TCR cross-reactivity. The structural alterations in the trimolecular complex are distinct from previously characterized self-reactive TCRs, indicating that there are multiple unusual ways for self-reactive TCRs to bind their pMHC ligand.

  8. Structural insight into epothilones antitumor activity based on the conformational preferences and tubulin binding modes of epothilones A and B obtained from molecular dynamics simulations.

    Science.gov (United States)

    Jiménez, Verónica A; Alderete, Joel B; Navarrete, Karen R

    2015-01-01

    Molecular dynamics simulations were employed to analyze the conformational preferences and binding modes of epothilones A and B as a source of structural information regarding the antitumor properties of these species. Our results suggest that the conformation of free and tubulin-bound epothilones is strongly influenced by the presence of a methyl group at C12 and that epothilones A and B exploit the binding cavity in a unique and different way. The binding sites of epothilones A and B share a common region of association (Leu215, Leu217, His227, Leu228, Ala231, Phe270, Gly360, and Leu361), but lead to different ligand-residue interactions. Average interaction energies predict a larger stabilization for the epothilone B-tubulin complex, which is mainly driven by the enhancement of the electrostatic component of ligand-residue interactions compared to the epothilone A-tubulin complex. These structural and energetic results can be useful to account for the activity difference between epothilones A and B, and to design more active and potent analogs that resemble the mechanism of action of epothilones against cancer cells.

  9. Molecular modeling of human APOBEC3G to predict the binding modes of the inhibitor compounds IMB26 and IMB35

    Directory of Open Access Journals (Sweden)

    Zhixin Zhang

    2013-07-01

    Full Text Available APOBEC3G(A3G is a host cytidine deaminase that incorporates into HIV-1 virions and efficiently inhibits viral replication. The virally encoded protein Vif binds to A3G and induces its degradation, thereby counteracting the antiviral activity of A3G. Vif-mediated A3G degradation clearly represents a potential target for anti-HIV drug development. Currently, there is an urgent need for understanding the three dimensional structure of full-length A3G. In this work, we use a homology modeling approach to propose a structure for A3G based on the crystal structure of APOBEC2 (APO2 and the catalytic domain structure of A3G. Two compounds, IMB26 and IMB35, which have been shown to bind to A3G and block degradation by Vif, were docked into the A3G model and the binding modes were generated for further analysis. The results may be used to design or optimize molecules targeting Vif–A3G interaction, and lead to the development of novel anti-HIV drugs.

  10. Crystal structures of antibiotic-bound complexes of aminoglycoside 2''-phosphotransferase IVa highlight the diversity in substrate binding modes among aminoglycoside kinases.

    Science.gov (United States)

    Shi, Kun; Houston, Douglas R; Berghuis, Albert M

    2011-07-19

    Aminoglycoside 2''-phosphotransferase IVa [APH(2'')-IVa] is a member of a family of bacterial enzymes responsible for medically relevant resistance to antibiotics. APH(2'')-IVa confers high-level resistance against several clinically used aminoglycoside antibiotics in various pathogenic Enterococcus species by phosphorylating the drug, thereby preventing it from binding to its ribosomal target and producing a bactericidal effect. We describe here three crystal structures of APH(2'')-IVa, one in its apo form and two in complex with a bound antibiotic, tobramycin and kanamycin A. The apo structure was refined to a resolution of 2.05 Å, and the APH(2'')-IVa structures with tobramycin and kanamycin A bound were refined to resolutions of 1.80 and 2.15 Å, respectively. Comparison among the structures provides insight concerning the substrate selectivity of this enzyme. In particular, conformational changes upon substrate binding, involving rotational shifts of two distinct segments of the enzyme, are observed. These substrate-induced shifts may also rationalize the altered substrate preference of APH(2'')-IVa in comparison to those of other members of the APH(2'') subfamily, which are structurally closely related. Finally, analysis of the interactions between the enzyme and aminoglycoside reveals a distinct binding mode as compared to the intended ribosomal target. The differences in the pattern of interactions can be utilized as a structural basis for the development of improved aminoglycosides that are not susceptible to these resistance factors.

  11. Families of Plausible Solutions to the Puzzle of Boyajian's Star

    CERN Document Server

    Wright, Jason T

    2016-01-01

    Good explanations for the unusual light curve of Boyajian's Star have been hard to find. Recent results by Montet & Simon lend strength and plausibility to the conclusion of Schaefer that in addition to short-term dimmings, the star also experiences large, secular decreases in brightness on decadal timescales. This, combined with a lack of long-wavelength excess in the star's spectral energy distribution, strongly constrains scenarios involving circumstellar material, including hypotheses invoking a spherical cloud of artifacts. We show that the timings of the deepest dimmings appear consistent with being randomly distributed, and that the star's reddening and narrow sodium absorption is consistent with the total, long-term dimming observed. Following Montet & Simon's encouragement to generate alternative hypotheses, we attempt to circumscribe the space of possible explanations with a range of plausibilities, including: a cloud in the outer solar system, structure in the ISM, natural and artificial ma...

  12. Representations of physical plausibility revealed by event-related potentials.

    Science.gov (United States)

    Roser, Matthew E; Fugelsang, Jonathan A; Handy, Todd C; Dunbar, Kevin N; Gazzaniga, Michael S

    2009-08-05

    Maintaining an accurate mental representation of the current environment is crucial to detecting change in that environment and ensuring behavioral coherence. Past experience with interactions between objects, such as collisions, has been shown to influence the perception of object interactions. To assess whether mental representations of object interactions derived from experience influence the maintenance of a mental model of the current stimulus environment, we presented physically plausible and implausible collision events while recording brain electrical activity. The parietal P300 response to 'oddball' events was found to be modulated by the physical plausibility of the stimuli, suggesting that past experience of object interactions can influence working memory processes involved in monitoring ongoing changes to the environment.

  13. Probabilistic reasoning in intelligent systems networks of plausible inference

    CERN Document Server

    Pearl, Judea

    1988-01-01

    Probabilistic Reasoning in Intelligent Systems is a complete and accessible account of the theoretical foundations and computational methods that underlie plausible reasoning under uncertainty. The author provides a coherent explication of probability as a language for reasoning with partial belief and offers a unifying perspective on other AI approaches to uncertainty, such as the Dempster-Shafer formalism, truth maintenance systems, and nonmonotonic logic. The author distinguishes syntactic and semantic approaches to uncertainty--and offers techniques, based on belief networks, that provid

  14. Complex Learning in Bio-plausible Memristive Networks

    OpenAIRE

    Deng, Lei; Li, Guoqi; Deng, Ning; Dong WANG; Zhang, Ziyang; He, Wei; Li, Huanglong; Pei, Jing; Shi, Luping

    2015-01-01

    The emerging memristor-based neuromorphic engineering promises an efficient computing paradigm. However, the lack of both internal dynamics in the previous feedforward memristive networks and efficient learning algorithms in recurrent networks, fundamentally limits the learning ability of existing systems. In this work, we propose a framework to support complex learning functions by introducing dedicated learning algorithms to a bio-plausible recurrent memristive network with internal dynamic...

  15. Structure of the human angiotensin II type 1 (AT1) receptor bound to angiotensin II from multiple chemoselective photoprobe contacts reveals a unique peptide binding mode.

    Science.gov (United States)

    Fillion, Dany; Cabana, Jérôme; Guillemette, Gaétan; Leduc, Richard; Lavigne, Pierre; Escher, Emanuel

    2013-03-22

    Breakthroughs in G protein-coupled receptor structure determination based on crystallography have been mainly obtained from receptors occupied in their transmembrane domain core by low molecular weight ligands, and we have only recently begun to elucidate how the extracellular surface of G protein-coupled receptors (GPCRs) allows for the binding of larger peptide molecules. In the present study, we used a unique chemoselective photoaffinity labeling strategy, the methionine proximity assay, to directly identify at physiological conditions a total of 38 discrete ligand/receptor contact residues that form the extracellular peptide-binding site of an activated GPCR, the angiotensin II type 1 receptor. This experimental data set was used in homology modeling to guide the positioning of the angiotensin II (AngII) peptide within several GPCR crystal structure templates. We found that the CXC chemokine receptor type 4 accommodated the results better than the other templates evaluated; ligand/receptor contact residues were spatially grouped into defined interaction clusters with AngII. In the resulting receptor structure, a β-hairpin fold in extracellular loop 2 in conjunction with two extracellular disulfide bridges appeared to open and shape the entrance of the ligand-binding site. The bound AngII adopted a somewhat vertical binding mode, allowing concomitant contacts across the extracellular surface and deep within the transmembrane domain core of the receptor. We propose that such a dualistic nature of GPCR interaction could be well suited for diffusible linear peptide ligands and a common feature of other peptidergic class A GPCRs.

  16. Structure of the Human Angiotensin II Type 1 (AT1) Receptor Bound to Angiotensin II from Multiple Chemoselective Photoprobe Contacts Reveals a Unique Peptide Binding Mode*

    Science.gov (United States)

    Fillion, Dany; Cabana, Jérôme; Guillemette, Gaétan; Leduc, Richard; Lavigne, Pierre; Escher, Emanuel

    2013-01-01

    Breakthroughs in G protein-coupled receptor structure determination based on crystallography have been mainly obtained from receptors occupied in their transmembrane domain core by low molecular weight ligands, and we have only recently begun to elucidate how the extracellular surface of G protein-coupled receptors (GPCRs) allows for the binding of larger peptide molecules. In the present study, we used a unique chemoselective photoaffinity labeling strategy, the methionine proximity assay, to directly identify at physiological conditions a total of 38 discrete ligand/receptor contact residues that form the extracellular peptide-binding site of an activated GPCR, the angiotensin II type 1 receptor. This experimental data set was used in homology modeling to guide the positioning of the angiotensin II (AngII) peptide within several GPCR crystal structure templates. We found that the CXC chemokine receptor type 4 accommodated the results better than the other templates evaluated; ligand/receptor contact residues were spatially grouped into defined interaction clusters with AngII. In the resulting receptor structure, a β-hairpin fold in extracellular loop 2 in conjunction with two extracellular disulfide bridges appeared to open and shape the entrance of the ligand-binding site. The bound AngII adopted a somewhat vertical binding mode, allowing concomitant contacts across the extracellular surface and deep within the transmembrane domain core of the receptor. We propose that such a dualistic nature of GPCR interaction could be well suited for diffusible linear peptide ligands and a common feature of other peptidergic class A GPCRs. PMID:23386604

  17. The different modes of binding of the dust mite allergens, Der f 7 and Der p 7, on a monoclonal antibody WH9 contribute to the differential reactivity.

    Science.gov (United States)

    Tai, Hsiao-Yun; Zhou, Jia-Kai; Yeh, Chang-Ching; Tam, Ming F; Sheu, Sheh-Yi; Shen, Horng-Der

    2017-06-28

    Der f 7 and Der p 7 are important house dust mite allergens. An IgE-binding inhibition monoclonal antibody WH9 reacts ten folds stronger against Der p 7 than to Der f 7. The purpose of this study is to identify the antigenic determinant(s) and the structural basis of Der f 7 recognize by WH9. WH9-reactive determinant(s) on Der f 7 was identified by immunoblot and immunoblot inhibition. The 3-D binary complex structures of WH9 and the group 7 allergens were simulated with homology modeling and docking methods. WH9 reacted with the Der f 7 f9 fragment. Among the five site-directed Der f 7 mutants, WH9 showed reduced immunoblot reactivity against Der f 7 S156A, D159A and P160A mutants. Only the wild-type protein and the Der f 7 I157A and L158A mutants can inhibit significantly the WH9-binding against Der f 7. The structural model of the Der f 7-WH9 complex suggests residues S156 and D159 of Der f 7 can bind to WH9 via potential hydrogen bonds. The structure models of Der f 7-WH9 and Der p 7-WH9 complexes revealed that the differential modes of binding of Der p 7 and Der f 7 allergens on WH9 contribute to the differential reactivity of WH9 against the Der f 7 and the Der p 7 mite allergens. Copyright © 2017. Published by Elsevier B.V.

  18. Anti-adaptors use distinct modes of binding to inhibit the RssB-dependent turnover of RpoS (σS by ClpXP.

    Directory of Open Access Journals (Sweden)

    Dimce eMicevski

    2015-04-01

    Full Text Available In Escherichia coli, σS is the master regulator of the general stress response. The level of σS changes in response to multiple stress conditions and it is regulated at many levels including protein turnover. In the absence of stress, σS is rapidly degraded by the AAA+ protease, ClpXP in a regulated manner that depends on the adaptor protein RssB. This two-component response regulator mediates the recognition of σS and its delivery to ClpXP. The turnover of σS however, can be inhibited in a stress specific manner, by one of three anti-adaptor proteins. Each anti-adaptor binds to RssB and inhibits its activity, but how this is achieved is not fully understood at a molecular level. Here we describe details of the interaction between each anti-adaptor and RssB that leads to the stabilization of σS. By defining the domains of RssB using partial proteolysis we demonstrate that each anti-adaptor uses a distinct mode of binding to inhibit RssB activity. IraD docks specifically to the N-terminal domain of RssB, IraP interacts primarily with the C-terminal domain, while IraM interacts with both domains. Despite these differences in binding, we propose that docking of each anti-adaptor induces a conformational change in RssB, which resembles the inactive dimer of RssB. This dimer-like state of RssB not only prevents substrate binding but also triggers substrate release from a pre-bound complex.

  19. Determination of the binding mode for anti-inflammatory natural product xanthohumol with myeloid differentiation protein 2.

    Science.gov (United States)

    Fu, Weitao; Chen, Lingfeng; Wang, Zhe; Zhao, Chengwei; Chen, Gaozhi; Liu, Xing; Dai, Yuanrong; Cai, Yuepiao; Li, Chenglong; Zhou, Jianmin; Liang, Guang

    2016-01-01

    It is recognized that myeloid differentiation protein 2 (MD-2), a coreceptor of toll-like receptor 4 (TLR4) for innate immunity, plays an essential role in activation of the lipopolysaccharide signaling pathway. MD-2 is known as a neoteric and suitable therapeutical target. Therefore, there is great interest in the development of a potent MD-2 inhibitor for anti-inflammatory therapeutics. Several studies have reported that xanthohumol (XN), an anti-inflammatory natural product from hops and beer, can block the TLR4 signaling by binding to MD-2 directly. However, the interaction between MD-2 and XN remains unknown. Herein, our work aims at characterizing interactions between MD-2 and XN. Using a combination of experimental and theoretical modeling analysis, we found that XN can embed into the hydrophobic pocket of MD-2 and form two stable hydrogen bonds with residues ARG-90 and TYR-102 of MD-2. Moreover, we confirmed that ARG-90 and TYR-102 were two necessary residues during the recognition process of XN binding to MD-2. Results from this study identified the atomic interactions between the MD-2 and XN, which will contribute to future structural design of novel MD-2-targeting molecules for the treatment of inflammatory diseases.

  20. Insights into cytochrome bc 1 complex binding mode of antimalarial 2-hydroxy-1,4-naphthoquinones through molecular modelling

    Science.gov (United States)

    Sodero, Ana Carolina Rennó; Abrahim-Vieira, Bárbara; Torres, Pedro Henrique Monteiro; Pascutti, Pedro Geraldo; Garcia, Célia RS; Ferreira, Vitor Francisco; da Rocha, David Rodrigues; Ferreira, Sabrina Baptista; Silva, Floriano Paes

    2017-01-01

    BACKGROUND Malaria persists as a major public health problem. Atovaquone is a drug that inhibits the respiratory chain of Plasmodium falciparum, but with serious limitations like known resistance, low bioavailability and high plasma protein binding. OBJECTIVES The aim of this work was to perform molecular modelling studies of 2-hydroxy-1,4-naphthoquinones analogues of atovaquone on the Qo site of P. falciparum cytochrome bc 1 complex (Pfbc1) to suggest structural modifications that could improve their antimalarial activity. METHODS We have built the homology model of the cytochrome b (CYB) and Rieske iron-sulfur protein (ISP) subunits from Pfbc1 and performed the molecular docking of 41 2-hydroxy-1,4-naphthoquinones with known in vitro antimalarial activity and predicted to act on this target. FINDINGS Results suggest that large hydrophobic R2 substituents may be important for filling the deep hydrophobic Qo site pocket. Moreover, our analysis indicates that the H-donor 2-hydroxyl group may not be crucial for efficient binding and inhibition of Pfbc1 by these atovaquone analogues. The C1 carbonyl group (H-acceptor) is more frequently involved in the important hydrogen bonding interaction with His152 of the Rieske ISP subunit. MAIN CONCLUSIONS Additional interactions involving residues such as Ile258 and residues required for efficient catalysis (e.g., Glu261) could be explored in drug design to avoid development of drug resistance by the parasite. PMID:28327793

  1. Kinetic and structural studies reveal a unique binding mode of sulfite to the nickel center in urease.

    Science.gov (United States)

    Mazzei, Luca; Cianci, Michele; Benini, Stefano; Bertini, Leonardo; Musiani, Francesco; Ciurli, Stefano

    2016-01-01

    Urease is the most efficient enzyme known to date, and catalyzes the hydrolysis of urea using two Ni(II) ions in the active site. Urease is a virulence factor in several human pathogens, while causing severe environmental and agronomic problems. Sporosarcina pasteurii urease has been used extensively in the structural characterization of the enzyme. Sodium sulfite has been widely used as a preservative in urease solutions to prevent oxygen-induced oxidation, but its role as an inhibitor has also been suggested. In the present study, isothermal titration microcalorimetry was used to establish sulfite as a competitive inhibitor for S. pasteurii urease, with an inhibition constant of 0.19mM at pH7. The structure of the urease-sulfite complex, determined at 1.65Å resolution, shows the inhibitor bound to the dinuclear Ni(II) center of urease in a tridentate mode involving bonds between the two Ni(II) ions in the active site and all three oxygen atoms of the inhibitor, supporting the observed competitive inhibition kinetics. This coordination mode of sulfite has never been observed, either in proteins or in small molecule complexes, and could inspire synthetic coordination chemists as well as biochemists to develop urease inhibitors based on this chemical moiety.

  2. Discovery, SAR, and X-ray Binding Mode Study of BCATm Inhibitors from a Novel DNA-Encoded Library.

    Science.gov (United States)

    Deng, Hongfeng; Zhou, Jingye; Sundersingh, Flora S; Summerfield, Jennifer; Somers, Don; Messer, Jeffrey A; Satz, Alexander L; Ancellin, Nicolas; Arico-Muendel, Christopher C; Sargent Bedard, Katie L; Beljean, Arthur; Belyanskaya, Svetlana L; Bingham, Ryan; Smith, Sarah E; Boursier, Eric; Carter, Paul; Centrella, Paolo A; Clark, Matthew A; Chung, Chun-Wa; Davie, Christopher P; Delorey, Jennifer L; Ding, Yun; Franklin, G Joseph; Grady, LaShadric C; Herry, Kenny; Hobbs, Clare; Kollmann, Christopher S; Morgan, Barry A; Pothier Kaushansky, Laura J; Zhou, Quan

    2015-08-13

    As a potential target for obesity, human BCATm was screened against more than 14 billion DNA encoded compounds of distinct scaffolds followed by off-DNA synthesis and activity confirmation. As a consequence, several series of BCATm inhibitors were discovered. One representative compound (R)-3-((1-(5-bromothiophene-2-carbonyl)pyrrolidin-3-yl)oxy)-N-methyl-2'-(methylsulfonamido)-[1,1'-biphenyl]-4-carboxamide (15e) from a novel compound library synthesized via on-DNA Suzuki-Miyaura cross-coupling showed BCATm inhibitory activity with IC50 = 2.0 μM. A protein crystal structure of 15e revealed that it binds to BCATm within the catalytic site adjacent to the PLP cofactor. The identification of this novel inhibitor series plus the establishment of a BCATm protein structure provided a good starting point for future structure-based discovery of BCATm inhibitors.

  3. Combined effects of estrogenic chemicals with the same mode of action using an estrogen receptor binding bioassay.

    Science.gov (United States)

    Yang, Rong; Li, Na; Ma, Mei; Wang, Zijian

    2014-11-01

    The increasing amounts of various estrogenic chemicals coexisting in the aquatic environment may pose environmental risks. While the concept of estradiol equivalent (EEQ) has been frequently applied in studying estrogenic mixtures, few experiments have been done to prove its reliability. In this study, the reliability of EEQ and the related model concentration addition (CA) was verified based on the two-hybrid recombinant yeast bioassay when all mixture components had the same mode of action and target of action. Our results showed that the measured estrogenic effects could be well predicted by CA and EEQ for all laboratory-made mixtures using two designs, despite the varying estrogenic activity, concentration levels and ratios of the test chemicals. This suggests that when an appropriate endpoint and its relevant bioassay are chosen, CA should be valid and the application of EEQ in predicting the effect of non-equi-effect mixtures is feasible.

  4. Unusual mode of protein binding by a cytotoxic π-arene ruthenium(ii) piano-stool compound containing an O,S-chelating ligand.

    Science.gov (United States)

    Hildebrandt, Jana; Görls, Helmar; Häfner, Norman; Ferraro, Giarita; Dürst, Matthias; Runnebaum, Ingo B; Weigand, Wolfgang; Merlino, Antonello

    2016-08-02

    A new pseudo-octahedral π-arene ruthenium(ii) piano-stool compound, containing an O,S-bidentate ligand (compound 1) and showing significant cytotoxic activity in vitro, was synthesized and characterized. In solution stability and interaction with the model protein bovine pancreatic ribonuclease (RNase A) were investigated by using UV-Vis absorption spectroscopy. Its crystal structure and that of the adduct formed upon reaction with RNase A were obtained by X-ray crystallography. The comparison between the structure of purified compound 1 and that of the fragment bound to RNase A reveals an unusual mode of protein binding that includes ligand exchange and alteration of coordination sphere geometry.

  5. Alkaloid metabolite profiles by GC/MS and acetylcholinesterase inhibitory activities with binding-mode predictions of five Amaryllidaceae plants.

    Science.gov (United States)

    Cortes, Natalie; Alvarez, Rafael; Osorio, Edison H; Alzate, Fernando; Berkov, Strahil; Osorio, Edison

    2015-01-01

    Acetylcholinesterase (AChE) enzymatic inhibition is an important target for the management of Alzheimer disease (AD) and AChE inhibitors are the mainstay drugs for its treatment. In order to discover new sources of potent AChE inhibitors, a combined strategy is presented based on AChE-inhibitory activity and chemical profiles by GC/MS, together with in silico studies. The combined strategy was applied on alkaloid extracts of five Amaryllidaceae species that grow in Colombia. Fifty-seven alkaloids were detected using GC/MS, and 21 of them were identified by comparing their mass-spectral fragmentation patterns with standard reference spectra in commercial and private library databases. The alkaloid extracts of Zephyranthes carinata exhibited a high level of inhibitory activity (IC50 = 5.97 ± 0.24 μg/mL). Molecular modeling, which was performed using the structures of some of the alkaloids present in this extract and the three-dimensional crystal structures of AChE derived from Torpedo californica, disclosed their binding configuration in the active site of this AChE. The results suggested that the alkaloids 3-epimacronine and lycoramine might be of interest for AChE inhibition. Although the galanthamine group is known for its potential utility in treating AD, the tazettine-type alkaloids should be evaluated to find more selective compounds of potential benefit for AD.

  6. Modeling, molecular docking, probing catalytic binding mode of acetyl-CoA malate synthase G in Brucella melitensis 16M.

    Science.gov (United States)

    Adi, Pradeepkiran Jangampalli; Yellapu, Nanda Kumar; Matcha, Bhaskar

    2016-12-01

    There are enormous evidences and previous reports standpoint that the enzyme of glyoxylate pathway malate synthase G (MSG) is a potential virulence factor in several pathogenic organisms, including Brucella melitensis 16M. Where the lack of crystal structures for best candidate proteins like MSG of B. melitensis 16M creates big lacuna to understand the molecular pathogenesis of brucellosis. In the present study, we have constructed a 3-D structure of MSG of Brucella melitensis 16M in MODELLER with the help of crystal structure of Mycobacterium tuberculosis malate synthase (PDB ID: 2GQ3) as template. The stereo chemical quality of the restrained model was evaluated by SAVES server; remarkably we identified the catalytic functional core domain located at 4(th) cleft with conserved catalytic amino acids, start at ILE 59 to VAL 586 manifest the function of the protein. Furthermore, virtual screening and docking results reveals that best leadmolecules binds at the core domain pocket of MSG catalytic residues and these ligand leads could be the best prospective inhibitors to treat brucellosis.

  7. Vitual screening and binding mode elucidation of curcumin analogues on Cyclooxygenase-2 using AYO_COX2_V1.1 protocol

    Science.gov (United States)

    Mulatsari, E.; Mumpuni, E.; Herfian, A.

    2017-05-01

    Curcumin is yellow colored phenolic compounds contained in Curcuma longa. Curcumin is known to have biological activities as anti-inflammatory, antiviral, antioxidant, and anti-infective agent [1]. Synthesis of curcumin analogue compounds has been done and some of them had biological activity like curcumin. In this research, the virtual screening of curcumin analogue compounds has been conducted. The purpose of this research was to determine the activity of these compounds as selective Cyclooxygenase-2inhibitors in in-silico. Binding mode elucidation was made by active and inactive representative compounds to see the interaction of the amino acids in the binding site of the compounds. This research used AYO_COX2_V.1.1, a structure-based virtual screening protocol (SBVS) that has been validated by Mumpuni E et al, 2014 [2]. AYO_COX2_V.1.1 protocol using a variety of integrated applications such as SPORES, PLANTS, BKchem, OpenBabel and PyMOL. The results of virtual screening conducted on 49 curcumin analogue compounds obtained 8 compounds with 4 active amino acid residues (GLY340, ILE503, PHE343, and PHE367) that were considered active as COX-2 inhibitor.

  8. Interaction pattern of Arg 62 in the A-pocket of differentially disease-associated HLA-B27 subtypes suggests distinct TCR binding modes.

    Directory of Open Access Journals (Sweden)

    Elisa Nurzia

    Full Text Available The single amino acid replacement Asp116His distinguishes the two subtypes HLA-B*2705 and HLA-B*2709 which are, respectively, associated and non-associated with Ankylosing Spondylitis, an autoimmune chronic inflammatory disease. The reason for this differential association is so far poorly understood and might be related to subtype-specific HLA:peptide conformations as well as to subtype/peptide-dependent dynamical properties on the nanoscale. Here, we combine functional experiments with extensive molecular dynamics simulations to investigate the molecular dynamics and function of the conserved Arg62 of the α1-helix for both B27 subtypes in complex with the self-peptides pVIPR (RRKWRRWHL and TIS (RRLPIFSRL, and the viral peptides pLMP2 (RRRWRRLTV and NPflu (SRYWAIRTR. Simulations of HLA:peptide systems suggest that peptide-stabilizing interactions of the Arg62 residue observed in crystal structures are metastable for both B27 subtypes under physiological conditions, rendering this arginine solvent-exposed and, probably, a key residue for TCR interaction more than peptide-binding. This view is supported by functional experiments with conservative (R62K and non-conservative (R62A B*2705 and B*2709 mutants that showed an overall reduction in their capability to present peptides to CD8+ T cells. Moreover, major subtype-dependent differences in the peptide recognition suggest distinct TCR binding modes for the B*2705 versus the B*2709 subtype.

  9. Binding mode of CA074, a specific irreversible inhibitor, to bovine cathepsin B as determined by X-ray crystal analysis of the complex.

    Science.gov (United States)

    Yamamoto, A; Hara, T; Tomoo, K; Ishida, T; Fujii, T; Hata, Y; Murata, M; Kitamura, K

    1997-05-01

    The binding mode of CA074 [N-(L-3-trans-propylcarbamoyl-oxirane-2-carbonyl)-L-isoleucyl-L-pr oline], a specific irreversible inhibitor, to bovine spleen cathepsin B was elucidated by X-ray crystal structure analysis of the complex at 2.2 A resolution (conventional R=0.185). Inconsistently with our model used for the development of CA074, the L-isoleucyl-L-proline and propylcarbamoyl moieties are located at the S' and S subsites, respectively. This unexpected binding is primarily due to (i) similar extended chain conformations (due to the same S configurations) at the oxirane C2 and C3 atoms of CA074 and (ii) the just fit formation of double hydrogen bonds between the carboxyl oxygens of L-proline and the imidazole nitrogens of His-110 and His-111 residues (these residues are missing in papain, the tertiary structure of which was used for the design of CA074). The oxirane C3 atom possessing the P' substituent is covalently bound to the Cys-29 Sgamma atom (C3-Sgamma=1.79 A) and the S configuration is maintained. The present result will provide useful information for characterizing the substrate-specificity of cathepsin B.

  10. Binding mode characterization of NBD series CD4-mimetic HIV-1 entry inhibitors by X-ray structure and resistance study.

    Science.gov (United States)

    Curreli, Francesca; Kwon, Young Do; Zhang, Hongtao; Yang, Yongping; Scacalossi, Daniel; Kwong, Peter D; Debnath, Asim K

    2014-09-01

    We previously identified two small-molecule CD4 mimetics--NBD-556 and NBD-557--and synthesized a series of NBD compounds that resulted in improved neutralization activity in a single-cycle HIV-1 infectivity assay. For the current investigation, we selected several of the most active compounds and assessed their antiviral activity on a panel of 53 reference HIV-1 Env pseudoviruses representing diverse clades of clinical isolates. The selected compounds inhibited tested clades with low-micromolar potencies. Mechanism studies indicated that they act as CD4 agonists, a potentially unfavorable therapeutic trait, in that they can bind to the gp120 envelope glycoprotein and initiate a similar physiological response as CD4. However, one of the compounds, NBD-09027, exhibited reduced agonist properties, in both functional and biophysical studies. To understand the binding mode of these inhibitors, we first generated HIV-1-resistant mutants, assessed their behavior with NBD compounds, and determined the X-ray structures of two inhibitors, NBD-09027 and NBD-10007, in complex with the HIV-1 gp120 core at ∼2-Å resolution. Both studies confirmed that the NBD compounds bind similarly to NBD-556 and NBD-557 by inserting their hydrophobic groups into the Phe43 cavity of gp120. The basic nitrogen of the piperidine ring is located in close proximity to D368 of gp120 but it does not form any H-bond or salt bridge, a likely explanation for their nonoptimal antagonist properties. The results reveal the structural and biological character of the NBD series of CD4 mimetics and identify ways to reduce their agonist properties and convert them to antagonists. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  11. Binding mode of an α-amino acid-linked quinoxaline-2,3-dione analogue at glutamate receptor subtype GluK1.

    Science.gov (United States)

    Demmer, Charles S; Møller, Charlotte; Brown, Patricia M G E; Han, Liwei; Pickering, Darryl S; Nielsen, Birgitte; Bowie, Derek; Frydenvang, Karla; Kastrup, Jette S; Bunch, Lennart

    2015-06-17

    Two α-amino acid-functionalized quinoxalines, 1a (CNG-10301) and 1b (CNG-10300), of a quinoxaline moiety coupled to an amino acid moiety were designed, synthesized, and characterized pharmacologically. While 1a displayed low affinity at native AMPA, KA, and NMDA receptors, and at homomeric GluK1,3 receptors, the affinity for GluK2 was in the midmicromolar range (Ki = 136 μM), 1b displayed low to midmicromolar range binding affinity at all the iGluRs (Ki = 9-126 μM). In functional experiments (outside-out patches excised from transfected HEK293T cells), 100 μM 1a partially blocked GluK1 (33% peak response), while GluK2 was unaffected (96% peak response). Furthermore, 1a was shown not to be an agonist at GluK1 and GluK2 at 100 μM. On the other hand, 100 μM 1b fully antagonized GluK1 (8% peak response) but only partially blocked GluK2 (33% peak response). An X-ray structure at 2.3 Å resolution of 1b in the GluK1-LBD (ligand-binding domain) disclosed an unexpected binding mode compared to the predictions made during the design phase; the quinoxaline moiety remains to act as an amino acid bioisostere, but the amino acid moiety is oriented into a new area within the GluK1 receptor. The structure of the GluK1-LBD with 1b showed a large variation in domain openings of the three molecules from 25° to 49°, demonstrating that the GluK1-LBD is capable of undergoing major domain movements.

  12. Binding modes of phosphotriesterase-like lactonase complexed with δ-nonanoic lactone and paraoxon using molecular dynamics simulations.

    Science.gov (United States)

    Guan, Shanshan; Zhao, Li; Jin, Hanyong; Shan, Ning; Han, Weiwei; Wang, Song; Shan, Yaming

    2017-02-01

    Phosphotriesterase-like lactonases (PLLs) have received much attention because of their physical and chemical properties. They may have widespread applications in various fields. For example, they show potential for quorum-sensing signaling pathways and organophosphorus (OP) detoxification in agricultural science. However, the mechanism by which PLLs hydrolyze, which involves OP compounds and lactones and a variety of distinct catalytic efficiencies, has only rarely been explored. In the present study, molecular dynamics (MD) simulations were performed to characterize and contrast the structural dynamics of DrPLL, a member of the PLL superfamily in Deinococcus radiodurans, bound to two substrates, δ-nonanoic lactone and paraoxon. It has been observed that there is a 16-fold increase in the catalytic efficiency of the two mutant strains of DrPLL (F26G/C72I) vs. the wild-type enzyme toward the hydrolysis of paraoxon, but an explanation for this behavior is currently lacking. The analysis of the molecular trajectories of DrPLL bound to δ-nonanoic lactone indicated that lactone-induced conformational changes take place in loop 8, which is near the active site. Binding to paraoxon may lead to conformational displacement of loop 1 residues, which could lead to the deformation of the active site and so trigger the entry of the paraoxon into the active site. The efficiency of the F26G/C72I mutant was increased by decreasing the displacement of loop 1 residues and increasing the flexibility of loop 8 residues. These results provide a molecular-level explanation for the experimental behavior.

  13. Reproducing Crystal Binding Modes of Ligand Functional Groups using Site-Identification by Ligand Competitive Saturation (SILCS) Simulations

    Science.gov (United States)

    Raman, E. Prabhu; Yu, Wenbo; Guvench, Olgun; MacKerell, Alexander D.

    2011-01-01

    The applicability of a computational method, Site Identification by Ligand Competitive Saturation (SILCS), to identify regions on a protein surface with which different types of functional groups on low-molecular weight inhibitors interact is demonstrated. The method involves molecular dynamics (MD) simulations of a protein in an aqueous solution of chemically diverse small molecules from which probability distributions of fragments types, termed FragMaps, are obtained. In the present application, SILCS simulations are performed with an aqueous solution of 1 M benzene and propane to map the affinity pattern of the protein for aromatic and aliphatic functional groups. In addition, water hydrogen and oxygen atoms serve as probes for hydrogen bond donor and acceptor affinity, respectively. The method is tested using a set of 7 proteins for which crystal structures of complexes with several high affinity inhibitors are known. Good agreement is obtained between FragMaps and the positions of chemically similar functional groups in inhibitors as observed in the X-ray crystallographic structures. Quantitative capabilities of the SILCS approach are demonstrated by converting FragMaps to free energies, termed Grid Free Energies (GFE), and showing correlation between the GFE values and experimental binding affinities. For proteins for which ligand decoy sets are available, GFE values are shown to typically score the crystal conformation and conformations similar to it more favorable than decoys. Additionally, SILCS is tested for its ability to capture the subtle differences in ligand affinity across homologous proteins, information which may be of utility towards specificity-guided drug design. Taken together, our results show that SILCS can recapitulate the known location of functional groups of bound inhibitors for a number of proteins, suggesting that the method may be of utility for rational drug design. PMID:21456594

  14. Plausible scenarios for the radiography profession in Sweden in 2025.

    Science.gov (United States)

    Björkman, B; Fridell, K; Tavakol Olofsson, P

    2017-11-01

    Radiography is a healthcare speciality with many technical challenges. Advances in engineering and information technology applications may continue to drive and be driven by radiographers. The world of diagnostic imaging is changing rapidly and radiographers must be proactive in order to survive. To ensure sustainable development, organisations have to identify future opportunities and threats in a timely manner and incorporate them into their strategic planning. Hence, the aim of this study was to analyse and describe plausible scenarios for the radiography profession in 2025. The study has a qualitative design with an inductive approach based on focus group interviews. The interviews were inspired by the Scenario-Planning method. Of the seven trends identified in a previous study, the radiographers considered two as the most uncertain scenarios that would have the greatest impact on the profession should they occur. These trends, labelled "Access to career advancement" and "A sufficient number of radiographers", were inserted into the scenario cross. The resulting four plausible future scenarios were: The happy radiographer, the specialist radiographer, the dying profession and the assembly line. It is suggested that "The dying profession" scenario could probably be turned in the opposite direction by facilitating career development opportunities for radiographers within the profession. Changing the direction would probably lead to a profession composed of "happy radiographers" who are specialists, proud of their profession and competent to carry out advanced tasks, in contrast to being solely occupied by "the assembly line". Copyright © 2017 The College of Radiographers. Published by Elsevier Ltd. All rights reserved.

  15. Prebiotically plausible mechanisms increase compositional diversity of nucleic acid sequences.

    Science.gov (United States)

    Derr, Julien; Manapat, Michael L; Rajamani, Sudha; Leu, Kevin; Xulvi-Brunet, Ramon; Joseph, Isaac; Nowak, Martin A; Chen, Irene A

    2012-05-01

    During the origin of life, the biological information of nucleic acid polymers must have increased to encode functional molecules (the RNA world). Ribozymes tend to be compositionally unbiased, as is the vast majority of possible sequence space. However, ribonucleotides vary greatly in synthetic yield, reactivity and degradation rate, and their non-enzymatic polymerization results in compositionally biased sequences. While natural selection could lead to complex sequences, molecules with some activity are required to begin this process. Was the emergence of compositionally diverse sequences a matter of chance, or could prebiotically plausible reactions counter chemical biases to increase the probability of finding a ribozyme? Our in silico simulations using a two-letter alphabet show that template-directed ligation and high concatenation rates counter compositional bias and shift the pool toward longer sequences, permitting greater exploration of sequence space and stable folding. We verified experimentally that unbiased DNA sequences are more efficient templates for ligation, thus increasing the compositional diversity of the pool. Our work suggests that prebiotically plausible chemical mechanisms of nucleic acid polymerization and ligation could predispose toward a diverse pool of longer, potentially structured molecules. Such mechanisms could have set the stage for the appearance of functional activity very early in the emergence of life.

  16. Use of molecular modeling, docking, and 3D-QSAR studies for the determination of the binding mode of benzofuran-3-yl-(indol-3-yl)maleimides as GSK-3beta inhibitors.

    Science.gov (United States)

    Kim, Ki Hwan; Gaisina, Irina; Gallier, Franck; Holzle, Denise; Blond, Sylvie Y; Mesecar, Andrew; Kozikowski, Alan P

    2009-12-01

    Molecular modeling and docking studies along with three-dimensional quantitative structure relationships (3D-QSAR) studies have been used to determine the correct binding mode of glycogen synthase kinase 3beta (GSK-3beta) inhibitors. The approaches of comparative molecular field analysis (CoMFA) and comparative molecular similarity index analysis (CoMSIA) are used for the 3D-QSAR of 51 substituted benzofuran-3-yl-(indol-3-yl)maleimides as GSK-3beta inhibitors. Two binding modes of the inhibitors to the binding site of GSK-3beta are investigated. The binding mode 1 yielded better 3D-QSAR correlations using both CoMFA and CoMSIA methodologies. The three-component CoMFA model from the steric and electrostatic fields for the experimentally determined pIC(50) values has the following statistics: R(2)(cv) = 0.386 nd SE(cv) = 0.854 for the cross-validation, and R(2) = 0.811 and SE = 0.474 for the fitted correlation. F (3,47) = 67.034, and probability of R(2) = 0 (3,47) = 0.000. The binding mode suggested by the results of this study is consistent with the preliminary results of X-ray crystal structures of inhibitor-bound GSK-3beta. The 3D-QSAR models were used for the estimation of the inhibitory potency of two additional compounds.

  17. Use of Molecular Modelling, Docking, and 3D-QSAR Studies for the Determination of the Binding Mode of 3-Benzofuranyl-4-indolyl-maleimides as GSK-3β Inhibitors

    Science.gov (United States)

    Kim, Ki Hwan; Gaisina, Irina; Gallier, Franck; Holzle, Denise; Blond, Sylvie Y.; Mesecar, Andrew; Kozikowski, Alan P.

    2010-01-01

    Molecular modelling and docking studies along with three-dimensional quantitative structure relationships (3D-QSAR) studies have been used to determine the correct binding mode of glycogen synthase kinase 3β (GSK-3β) inhibitors. The approaches of Comparative Molecular Field Analysis (CoMFA) and Comparative Molecular Similarity Index Analysis (CoMSIA) are used for the 3D-QSAR of 51 substituted 3-benzofuranyl-4-indolyl-maleimides as GSK-3β inhibitors. Two binding modes of the inhibitors to the binding site of GSK-3β are investigated. The binding mode 1 yielded better 3D-QSAR correlations using both CoMFA and CoMSIA methodologies. The three-component CoMFA model from the steric and electrostatic fields for the experimentally determined pIC50 values has the following statistics: R2(cv) = 0.386 and SE(cv) = 0.854 for the cross-validation, and R2 = 0.811 and SE = 0.474 for the fitted correlation. F (3,47) = 67.034, and Probability.of R2 = 0 (3,47) = 0.000. The binding mode suggested by the results of this study is consistent with the preliminary results of X-ray crystal structures of inhibitor-bound GSK-3β. The 3D-QSAR models were used for the estimation of the inhibitory potency of two additional compounds. PMID:19440740

  18. Neural networks, nativism, and the plausibility of constructivism.

    Science.gov (United States)

    Quartz, S R

    1993-09-01

    Recent interest in PDP (parallel distributed processing) models is due in part to the widely held belief that they challenge many of the assumptions of classical cognitive science. In the domain of language acquisition, for example, there has been much interest in the claim that PDP models might undermine nativism. Related arguments based on PDP learning have also been given against Fodor's anti-constructivist position--a position that has contributed to the widespread dismissal of constructivism. A limitation of many of the claims regarding PDP learning, however, is that the principles underlying this learning have not been rigorously characterized. In this paper, I examine PDP models from within the framework of Valiant's PAC (probably approximately correct) model of learning, now the dominant model in machine learning, and which applies naturally to neural network learning. From this perspective, I evaluate the implications of PDP models for nativism and Fodor's influential anti-constructivist position. In particular, I demonstrate that, contrary to a number of claims, PDP models are nativist in a robust sense. I also demonstrate that PDP models actually serve as a good illustration of Fodor's anti-constructivist position. While these results may at first suggest that neural network models in general are incapable of the sort of concept acquisition that is required to refute Fodor's anti-constructivist position, I suggest that there is an alternative form of neural network learning that demonstrates the plausibility of constructivism. This alternative form of learning is a natural interpretation of the constructivist position in terms of neural network learning, as it employs learning algorithms that incorporate the addition of structure in addition to weight modification schemes. By demonstrating that there is a natural and plausible interpretation of constructivism in terms of neural network learning, the position that nativism is the only plausible model of

  19. On the biological plausibility of Wind Turbine Syndrome.

    Science.gov (United States)

    Harrison, Robert V

    2015-01-01

    An emerging environmental health issue relates to potential ill-effects of wind turbine noise. There have been numerous suggestions that the low-frequency acoustic components in wind turbine signals can cause symptoms associated with vestibular system disorders, namely vertigo, nausea, and nystagmus. This constellation of symptoms has been labeled as Wind Turbine Syndrome, and has been identified in case studies of individuals living close to wind farms. This review discusses whether it is biologically plausible for the turbine noise to stimulate the vestibular parts of the inner ear and, by extension, cause Wind Turbine Syndrome. We consider the sound levels that can activate the semicircular canals or otolith end organs in normal subjects, as well as in those with preexisting conditions known to lower vestibular threshold to sound stimulation.

  20. Hamiltonian formulation of time-dependent plausible inference

    CERN Document Server

    Davis, Sergio

    2014-01-01

    Maximization of the path information entropy is a clear prescription for performing time-dependent plausible inference. Here it is shown that, following this prescription under the assumption of arbitrary instantaneous constraints on position and velocity, a Lagrangian emerges which determines the most probable trajectory. Deviations from the probability maximum can be consistently described as slices in time by a Hamiltonian, according to a nonlinear Langevin equation and its associated Fokker-Planck equation. The connections unveiled between the maximization of path entropy and the Langevin/Fokker-Planck equations imply that missing information about the phase space coordinate never decreases in time, a purely information-theoretical version of the Second Law of Thermodynamics. All of these results are independent of any physical assumptions, and thus valid for any generalized coordinate as a function of time, or any other parameter. This reinforces the view that the Second Law is a fundamental property of ...

  1. Alkaloids from Pandanus amaryllifolius: Isolation and Their Plausible Biosynthetic Formation.

    Science.gov (United States)

    Tsai, Yu-Chi; Yu, Meng-Lun; El-Shazly, Mohamed; Beerhues, Ludger; Cheng, Yuan-Bin; Chen, Lei-Chin; Hwang, Tsong-Long; Chen, Hui-Fen; Chung, Yu-Ming; Hou, Ming-Feng; Wu, Yang-Chang; Chang, Fang-Rong

    2015-10-23

    Pandanus amaryllifolius Roxb. (Pandanaceae) is used as a flavor and in folk medicine in Southeast Asia. The ethanolic crude extract of the aerial parts of P. amaryllifolius exhibited antioxidant, antibiofilm, and anti-inflammatory activities in previous studies. In the current investigation, the purification of the ethanolic extract yielded nine new compounds, including N-acetylnorpandamarilactonines A (1) and B (2); pandalizines A (3) and B (4); pandanmenyamine (5); pandamarilactones 2 (6) and 3 (7), and 5(E)-pandamarilactonine-32 (8); and pandalactonine (9). The isolated alkaloids, with either a γ-alkylidene-α,β-unsaturated-γ-lactone or γ-alkylidene-α,β-unsaturated-γ-lactam system, can be classified into five skeletons including norpandamarilactonine, indolizinone, pandanamine, pandamarilactone, and pandamarilactonine. A plausible biosynthetic route toward 1-5, 7, and 9 is proposed.

  2. Complex Learning in Bio-plausible Memristive Networks.

    Science.gov (United States)

    Deng, Lei; Li, Guoqi; Deng, Ning; Wang, Dong; Zhang, Ziyang; He, Wei; Li, Huanglong; Pei, Jing; Shi, Luping

    2015-06-19

    The emerging memristor-based neuromorphic engineering promises an efficient computing paradigm. However, the lack of both internal dynamics in the previous feedforward memristive networks and efficient learning algorithms in recurrent networks, fundamentally limits the learning ability of existing systems. In this work, we propose a framework to support complex learning functions by introducing dedicated learning algorithms to a bio-plausible recurrent memristive network with internal dynamics. We fabricate iron oxide memristor-based synapses, with well controllable plasticity and a wide dynamic range of excitatory/inhibitory connection weights, to build the network. To adaptively modify the synaptic weights, the comprehensive recursive least-squares (RLS) learning algorithm is introduced. Based on the proposed framework, the learning of various timing patterns and a complex spatiotemporal pattern of human motor is demonstrated. This work paves a new way to explore the brain-inspired complex learning in neuromorphic systems.

  3. Differential induction of anti-V3 crown antibodies with cradle- and ladle-binding modes in response to HIV-1 envelope vaccination.

    Science.gov (United States)

    Balasubramanian, Preetha; Kumar, Rajnish; Williams, Constance; Itri, Vincenza; Wang, Shixia; Lu, Shan; Hessell, Ann J; Haigwood, Nancy L; Sinangil, Faruk; Higgins, Keith W; Liu, Lily; Li, Liuzhe; Nyambi, Phillipe; Gorny, Miroslaw K; Totrov, Maxim; Nadas, Arthur; Kong, Xiang-Peng; Zolla-Pazner, Susan; Hioe, Catarina E

    2017-03-07

    The V3 loop in the HIV envelope gp120 is one of the immunogenic sites targeted by Abs. The V3 crown in particular has conserved structural elements recognized by cross-reactive neutralizing Abs, indicating its potential contribution in protection against HIV. Crystallographic analyses of anti-V3 crown mAbs in complex with the V3 peptides have revealed that these mAbs recognize the conserved sites on the V3 crown via two distinct strategies: a cradle-binding mode (V3C) and a ladle-binding (V3L) mode. However, almost all of the anti-V3 crown mAbs studied in the past were isolated from chronically HIV-infected individuals. The extents to which the two types of anti-V3 crown Abs are generated by vaccination are unknown. This study analyzed the prevalence of V3C-type and V3L-type Ab responses in HIV-infected individuals and in HIV envelope-immunized humans and animals using peptide mimotopes that distinguish the two Ab types. The results show that both V3L-type and V3C-type Abs were generated by the vast majority of chronically HIV-infected humans, although the V3L-type were more prevalent. In contrast, only one of the two V3 Ab types was elicited in vaccinated humans or animal models, irrespective of HIV-1 envelope clades, envelope constructs (oligomeric or monomeric), and protocols (DNA plus protein or protein alone) used for vaccinations. The V3C-type Abs were produced by vaccinated humans, macaques, and rabbits, whereas the V3L-type Abs were made by mice. The V3C-type and V3L-type Abs generated by the vaccinations were able to mediate virus neutralization. These data indicate the restricted repertoires and the species-specific differences in the functional V3-specific Ab responses induced by the HIV envelope vaccines. The study implies the need for improving immunogen designs and vaccination strategies to broaden the diversity of Abs in order to target the different conserved epitopes in the V3 loop and, by extension, in the entire HIV envelope. Published by

  4. New insights into the structure and mode of action of Mo-CBP3, an antifungal chitin-binding protein of Moringa oleifera seeds.

    Directory of Open Access Journals (Sweden)

    Adelina B Batista

    Full Text Available Mo-CBP3 is a chitin-binding protein purified from Moringa oleifera Lam. seeds that displays inhibitory activity against phytopathogenic fungi. This study investigated the structural properties and the antifungal mode of action of this protein. To this end, circular dichroism spectroscopy, antifungal assays, measurements of the production of reactive oxygen species and microscopic analyses were utilized. Mo-CBP3 is composed of 30.3% α-helices, 16.3% β-sheets, 22.3% turns and 30.4% unordered forms. The Mo-CBP3 structure is highly stable and retains its antifungal activity regardless of temperature and pH. Fusarium solani was used as a model organism for studying the mechanisms by which this protein acts as an antifungal agent. Mo-CBP3 significantly inhibited spore germination and mycelial growth at 0.05 mg.mL-1. Mo-CBP3 has both fungistatic and fungicidal effects, depending on the concentration used. Binding of Mo-CBP3 to the fungal cell surface is achieved, at least in part, via electrostatic interactions, as salt was able to reduce its inhibitory effect. Mo-CBP3 induced the production of ROS and caused disorganization of both the cytoplasm and the plasma membrane in F. solani cells. Based on its high stability and specific toxicity, with broad-spectrum efficacy against important phytopathogenic fungi at low inhibitory concentrations but not to human cells, Mo-CBP3 has great potential for the development of new antifungal drugs or transgenic crops with enhanced resistance to phytopathogens.

  5. Computational study on the inhibitor binding mode and allosteric regulation mechanism in hepatitis C virus NS3/4A protein.

    Directory of Open Access Journals (Sweden)

    Weiwei Xue

    Full Text Available HCV NS3/4A protein is an attractive therapeutic target responsible for harboring serine protease and RNA helicase activities during the viral replication. Small molecules binding at the interface between the protease and helicase domains can stabilize the closed conformation of the protein and thus block the catalytic function of HCV NS3/4A protein via an allosteric regulation mechanism. But the detailed mechanism remains elusive. Here, we aimed to provide some insight into the inhibitor binding mode and allosteric regulation mechanism of HCV NS3/4A protein by using computational methods. Four simulation systems were investigated. They include: apo state of HCV NS3/4A protein, HCV NS3/4A protein in complex with an allosteric inhibitor and the truncated form of the above two systems. The molecular dynamics simulation results indicate HCV NS3/4A protein in complex with the allosteric inhibitor 4VA adopts a closed conformation (inactive state, while the truncated apo protein adopts an open conformation (active state. Further residue interaction network analysis suggests the communication of the domain-domain interface play an important role in the transition from closed to open conformation of HCV NS3/4A protein. However, the inhibitor stabilizes the closed conformation through interaction with several key residues from both the protease and helicase domains, including His57, Asp79, Asp81, Asp168, Met485, Cys525 and Asp527, which blocks the information communication between the functional domains interface. Finally, a dynamic model about the allosteric regulation and conformational changes of HCV NS3/4A protein was proposed and could provide fundamental insights into the allosteric mechanism of HCV NS3/4A protein function regulation and design of new potent inhibitors.

  6. New insights into the structure and mode of action of Mo-CBP3, an antifungal chitin-binding protein of Moringa oleifera seeds.

    Science.gov (United States)

    Batista, Adelina B; Oliveira, José T A; Gifoni, Juliana M; Pereira, Mirella L; Almeida, Marina G G; Gomes, Valdirene M; Da Cunha, Maura; Ribeiro, Suzanna F F; Dias, Germana B; Beltramini, Leila M; Lopes, José Luiz S; Grangeiro, Thalles B; Vasconcelos, Ilka M

    2014-01-01

    Mo-CBP3 is a chitin-binding protein purified from Moringa oleifera Lam. seeds that displays inhibitory activity against phytopathogenic fungi. This study investigated the structural properties and the antifungal mode of action of this protein. To this end, circular dichroism spectroscopy, antifungal assays, measurements of the production of reactive oxygen species and microscopic analyses were utilized. Mo-CBP3 is composed of 30.3% α-helices, 16.3% β-sheets, 22.3% turns and 30.4% unordered forms. The Mo-CBP3 structure is highly stable and retains its antifungal activity regardless of temperature and pH. Fusarium solani was used as a model organism for studying the mechanisms by which this protein acts as an antifungal agent. Mo-CBP3 significantly inhibited spore germination and mycelial growth at 0.05 mg.mL-1. Mo-CBP3 has both fungistatic and fungicidal effects, depending on the concentration used. Binding of Mo-CBP3 to the fungal cell surface is achieved, at least in part, via electrostatic interactions, as salt was able to reduce its inhibitory effect. Mo-CBP3 induced the production of ROS and caused disorganization of both the cytoplasm and the plasma membrane in F. solani cells. Based on its high stability and specific toxicity, with broad-spectrum efficacy against important phytopathogenic fungi at low inhibitory concentrations but not to human cells, Mo-CBP3 has great potential for the development of new antifungal drugs or transgenic crops with enhanced resistance to phytopathogens.

  7. New hypotheses for the binding mode of 4- and 7-substituted indazoles in the active site of neuronal nitric oxide synthase.

    Science.gov (United States)

    Lohou, Elodie; Sopkova-de Oliveira Santos, Jana; Schumann-Bard, Pascale; Boulouard, Michel; Stiebing, Silvia; Rault, Sylvain; Collot, Valérie

    2012-09-01

    Taking into account the potency of 4- and 7-nitro and haloindazoles as nNOS inhibitors previously reported in the literature by our team, a multidisciplinary study, described in this article, has recently been carried out to elucidate their binding mode in the enzyme active site. Firstly, nitrogenous fastening points on the indazole building block have been investigated referring to molecular modeling hypotheses and thanks to the in vitro biological evaluation of N(1)- and N(2)-methyl and ethyl-4-substituted indazoles on nNOS. Secondly, we attempted to confirm the importance of the substitution in position 4 or 7 by a hydrogen bond acceptor group thanks to the synthesis and the in vitro biological evaluation of a new analogous 4-substituted derivative, the 4-cyanoindazole. Finally, by opposition to previous hypotheses describing NH function in position 1 of the indazole as a key fastening point, the present work speaks in favour of a crucial role of nitrogen in position 2.

  8. Determination of the binding mode for the cyclopentapeptide CXCR4 antagonist FC131 using a dual approach of ligand modifications and receptor mutagenesis

    DEFF Research Database (Denmark)

    Thiele, Stefanie; Mungalpara, J; Steen, A

    2014-01-01

    pocket) respectively. Arg(1) forms charge-charge interactions with Asp(187) in ECL-2, while D-Tyr(5) points to the extracellular side of CXCR4. Furthermore, the backbone of FC131 interacts with the chemokine receptor-conserved Glu(288) via two water molecules. Intriguingly, Tyr(116) and Glu(288) form a H......BACKGROUND AND PURPOSE: The cyclopentapeptide FC131 (cyclo(-L-Arg(1) -L-Arg(2) -L-2-Nal(3) -Gly(4) -D-Tyr(5) -)) is an antagonist at the CXC chemokine receptor CXCR4, which plays a role in human immunodeficiency virus infection, cancer and stem cell recruitment. Binding modes for FC131 in CXCR4...... activation) of FC131 and three analogues were performed on wild-type CXCR4 and 25 receptor mutants. Computational modelling was used to rationalize the experimental data. KEY RESULTS: The Arg(2) and 2-Nal(3) side chains of FC131 interact with residues in TM-3 (His(113) , Asp(171) ) and TM-5 (hydrophobic...

  9. Liderazgo preventivo para la universidad. Una experiencia plausible

    Directory of Open Access Journals (Sweden)

    Alejandro Rodríguez Rodríguez

    2015-06-01

    Full Text Available El desarrollo del liderazgo, en el ámbito educativo superior, busca soluciones de aplicación inmediata a contextos en que todo líder se desenvuelve, pero se diluye el sustento teórico-práctico en la formación del líder que posibilite entender los procesos intelectivos durante la toma de decisiones. El paradigma de convergencia entre el método antropológico lonerganiano, la comunidad de aprendizaje vygotskiana y una relectura del sistema preventivo salesiano se presentan como propuesta plausible de formación al liderazgo preventivo entre los diversos actores de una comunidad universitaria. Un estudio de caso de la Universidad Salesiana en México empleando un método mixto de investigación, facilita una relectura del liderazgo desde una óptica preventiva como posibilidad de convergencia en un diálogo interdisciplinar. Los resultados teórico-práctico propuestos y examinados se muestran como herramienta útil para evaluar, enriquecer y renovar la teoría sobre el líder y el desarrollo de liderazgo en las universidades frente a una sociedad globalizada.

  10. A perspective on SIDS pathogenesis. The hypotheses: plausibility and evidence

    Directory of Open Access Journals (Sweden)

    Goldwater Paul N

    2011-05-01

    Full Text Available Abstract Several theories of the underlying mechanisms of Sudden Infant Death Syndrome (SIDS have been proposed. These theories have born relatively narrow beach-head research programs attracting generous research funding sustained for many years at expense to the public purse. This perspective endeavors to critically examine the evidence and bases of these theories and determine their plausibility; and questions whether or not a safe and reasoned hypothesis lies at their foundation. The Opinion sets specific criteria by asking the following questions: 1. Does the hypothesis take into account the key pathological findings in SIDS? 2. Is the hypothesis congruent with the key epidemiological risk factors? 3. Does it link 1 and 2? Falling short of any one of these answers, by inference, would imply insufficient grounds for a sustainable hypothesis. Some of the hypotheses overlap, for instance, notional respiratory failure may encompass apnea, prone sleep position, and asphyxia which may be seen to be linked to co-sleeping. For the purposes of this paper, each element will be assessed on the above criteria.

  11. A plausible explanation for male dominance in typhoid ileal perforation

    Directory of Open Access Journals (Sweden)

    Khan M

    2012-11-01

    Full Text Available Mohammad KhanDepartment of Microbiology, College of Medicine, Chichiri, Blantyre, MalawiAbstract: The phenomenon of consistent male dominance in typhoid ileal perforation (TIP is not well understood. It cannot be explained on the basis of microbial virulence, Peyer's patch anatomy, ileal wall thickness, gastric acidity, host genetic factors, or sex-linked bias in hospital attendance. The cytokine response to an intestinal infection in males is predominantly proinflammatory as compared with that in females, presumably due to differences in the sex hormonal milieu. Sex hormone receptors have been detected on lymphocytes and macrophages, including on Peyer's patches, inflammation of which (probably similar to the Shwartzman reaction/Koch phenomenon is the forerunner of TIP, and is not excluded from the regulatory effects of sex hormones. Hormonal control of host-pathogen interaction may override genetic control. Environmental exposure to Salmonella typhi may be more frequent in males, presumably due to sex-linked differences in hygiene practices and dining-out behavior. A plausible explanation of male dominance in TIP could include sex-linked differences in the degree of natural exposure of Peyer's patches to S. typhi. An alternative explanation may include sexual dimorphism in host inflammatory response patterns in Peyer's patches that have been induced by S. typhi. Both hypotheses are testable.Keywords: explanation, dominance, male, perforation, ileum, typhoid

  12. A plausible explanation for male dominance in typhoid ileal perforation.

    Science.gov (United States)

    Khan, Mohammad

    2012-01-01

    The phenomenon of consistent male dominance in typhoid ileal perforation (TIP) is not well understood. It cannot be explained on the basis of microbial virulence, Peyer's patch anatomy, ileal wall thickness, gastric acidity, host genetic factors, or sex-linked bias in hospital attendance. The cytokine response to an intestinal infection in males is predominantly proinflammatory as compared with that in females, presumably due to differences in the sex hormonal milieu. Sex hormone receptors have been detected on lymphocytes and macrophages, including on Peyer's patches, inflammation of which (probably similar to the Shwartzman reaction/Koch phenomenon) is the forerunner of TIP, and is not excluded from the regulatory effects of sex hormones. Hormonal control of host-pathogen interaction may override genetic control. Environmental exposure to Salmonella typhi may be more frequent in males, presumably due to sex-linked differences in hygiene practices and dining-out behavior. A plausible explanation of male dominance in TIP could include sex-linked differences in the degree of natural exposure of Peyer's patches to S. typhi. An alternative explanation may include sexual dimorphism in host inflammatory response patterns in Peyer's patches that have been induced by S. typhi. Both hypotheses are testable.

  13. Plausible rice yield losses under future climate warming.

    Science.gov (United States)

    Zhao, Chuang; Piao, Shilong; Wang, Xuhui; Huang, Yao; Ciais, Philippe; Elliott, Joshua; Huang, Mengtian; Janssens, Ivan A; Li, Tao; Lian, Xu; Liu, Yongwen; Müller, Christoph; Peng, Shushi; Wang, Tao; Zeng, Zhenzhong; Peñuelas, Josep

    2016-12-19

    Rice is the staple food for more than 50% of the world's population(1-3). Reliable prediction of changes in rice yield is thus central for maintaining global food security. This is an extraordinary challenge. Here, we compare the sensitivity of rice yield to temperature increase derived from field warming experiments and three modelling approaches: statistical models, local crop models and global gridded crop models. Field warming experiments produce a substantial rice yield loss under warming, with an average temperature sensitivity of -5.2 ± 1.4% K(-1). Local crop models give a similar sensitivity (-6.3 ± 0.4% K(-1)), but statistical and global gridded crop models both suggest less negative impacts of warming on yields (-0.8 ± 0.3% and -2.4 ± 3.7% K(-1), respectively). Using data from field warming experiments, we further propose a conditional probability approach to constrain the large range of global gridded crop model results for the future yield changes in response to warming by the end of the century (from -1.3% to -9.3% K(-1)). The constraint implies a more negative response to warming (-8.3 ± 1.4% K(-1)) and reduces the spread of the model ensemble by 33%. This yield reduction exceeds that estimated by the International Food Policy Research Institute assessment (-4.2 to -6.4% K(-1)) (ref. 4). Our study suggests that without CO2 fertilization, effective adaptation and genetic improvement, severe rice yield losses are plausible under intensive climate warming scenarios.

  14. A biologically plausible embodied model of action discovery

    Directory of Open Access Journals (Sweden)

    Rufino eBolado-Gomez

    2013-03-01

    Full Text Available During development, animals can spontaneously discover action-outcomepairings enabling subsequent achievement of their goals. We present abiologically plausible embodied model addressing key aspects of thisprocess. The biomimetic model core comprises the basal ganglia and itsloops through cortex and thalamus. We incorporate reinforcementlearning with phasic dopamine supplying a sensory prediction error,signalling 'surprising' outcomes. Phasic dopamine is used in acorticostriatal learning rule which is consistent with recent data. Wealso hypothesised that objects associated with surprising outcomesacquire 'novelty salience' contingent on the predicability of theoutcome. To test this idea we used a simple model of predictiongoverning the dynamics of novelty salience and phasic dopamine. Thetask of the virtual robotic agent mimicked an in vivo counterpart(Gancarz et al., 2011 and involved interaction with a target objectwhich caused a light flash, or a control object which did not.Learning took place according to two schedules. In one, the phasicoutcome was delivered after interaction with the target in anunpredictable way which emulated the in vivo protocol. Without noveltysalience, the model was unable to account for the experimental data.In the other schedule, the phasic outcome was reliably delivered andthe agent showed a rapid increase in the number of interactions withthe target which then decreased over subsequent sessions. We arguethis is precisely the kind of change in behaviour required torepeatedly present representations of context, action and outcome, toneural networks responsible for learning action-outcome contingency.The model also showed corticostriatal plasticity consistent withlearning a new action in basal ganglia. We conclude that actionlearning is underpinned by a complex interplay of plasticity andstimulus salience, and that our model contains many of the elementsfor biological action discovery to take place.

  15. Changing beliefs about implausible autobiographical events: a little plausibility goes a long way.

    Science.gov (United States)

    Mazzoni, G A; Loftus, E F; Kirsch, I

    2001-03-01

    Three experiments investigated the malleability of perceived plausibility and the subjective likelihood of occurrence of plausible and implausible events among participants who had no recollection of experiencing them. In Experiment 1, a plausibility-enhancing manipulation (reading accounts of the occurrence of events) combined with a personalized suggestion increased the perceived plausibility of the implausible event, as well as participants' ratings of the likelihood that they had experienced it. Plausibility and likelihood ratings were uncorrelated. Subsequent studies showed that the plausibility manipulation alone was sufficient to increase likelihood ratings but only if the accounts that participants read were set in a contemporary context. These data suggest that false autobiographical beliefs can be induced in clinical and forensic contexts even for initially implausible events.

  16. Dissecting the Binding Mode of Low Affinity Phage Display Peptide Ligands to Protein Targets by Hydrogen/Deuterium Exchange Coupled to Mass Spectrometry

    DEFF Research Database (Denmark)

    Leurs, Ulrike; Lohse, Brian; Ming, Shonoi A;

    2014-01-01

    Phage display (PD) is frequently used to discover peptides capable of binding to biological protein targets. The structural characterization of peptide-protein complexes is often challenging due to their low binding affinities and high structural flexibility. Here, we investigate the use of hydro......Phage display (PD) is frequently used to discover peptides capable of binding to biological protein targets. The structural characterization of peptide-protein complexes is often challenging due to their low binding affinities and high structural flexibility. Here, we investigate the use...

  17. Conformational restriction approach to β-secretase (BACE1) inhibitors III: effective investigation of the binding mode by combinational use of X-ray analysis, isothermal titration calorimetry and theoretical calculations.

    Science.gov (United States)

    Yonezawa, Shuji; Fujiwara, Kenichiro; Yamamoto, Takahiko; Hattori, Kazunari; Yamakawa, Hidekuni; Muto, Chie; Hosono, Motoko; Tanaka, Yoshikazu; Nakano, Toru; Takemoto, Hiroshi; Arisawa, Mitsuhiro; Shuto, Satoshi

    2013-11-01

    For further investigation of BACE1 inhibitors using conformational restriction with sp(3) hybridized carbon, we applied this approach to 6-substituted aminopyrimidone derivatives 3 to improve the inhibitory activity by reducing the entropic energy loss upon binding to BACE1. Among eight stereoisomers synthesized, [trans-(1'R,2'R),6S] isomer 6 exhibited the best BACE1 inhibitory activity, which was statistically superior to that of the corresponding ethylene linker compound (R)-3. Combinational examinations of the binding mode of 6 were performed, which included isothermal titration calorimetry (ITC), X-ray crystallographic structure analysis and theoretical calculations, to clarify the effect of our conformational restriction approach. From the ITC measurement, the binding entropy of 6 was found to be ∼0.5kcal larger than that of (R)-3, which is considered to be affected by conformational restriction with a cyclopropane ring.

  18. The Utility of Cognitive Plausibility in Language Acquisition Modeling: Evidence From Word Segmentation

    National Research Council Canada - National Science Library

    Phillips, Lawrence; Pearl, Lisa

    2015-01-01

    The informativity of a computational model of language acquisition is directly related to how closely it approximates the actual acquisition task, sometimes referred to as the model's cognitive plausibility...

  19. Choosing diverse sets of plausible scenarios in multidimensional exploratory futures techniques

    NARCIS (Netherlands)

    Lord, Steven; Helfgott, Ariella; Vervoort, Joost M.

    2016-01-01

    Abstract Morphological analysis allows any number of dimensions to be retained when framing future conditions, and techniques within morphological analysis determine which combinations of those dimensions represent plausible futures. However, even a relatively low number of dimensions in future cond

  20. A new, model-free calculation method to determine the coordination modes and distribution of copper(II) among the metal binding sites of multihistidine peptides using circular dichroism spectroscopy.

    Science.gov (United States)

    Osz, Katalin

    2008-12-01

    A new calculation method to determine microscopic protonation processes from CD spectra measured at different pH and Cu(II):ligand ratios was developed and used to give the relative binding strengths for the three histidines of hsPrP(84-114), a 31-mer polypeptide modeling the N-terminal copper(II) binding region of human (homo sapiens) prion protein. Mutants of hsPrP(84-114) with two or one histidyl residues have also been synthesized and their copper(II) complexes studied by CD spectroscopy. The 1-His models were analyzed first, and the molar CD spectra for the different coordination modes on the different histidines were calculated using the general computational program PSEQUAD. These spectra were deconvoluted into the sum of Gaussian curves and used as a first parameter set to calculate the molar spectra for the different coordination modes (3N and 4N coordination) and coordination positions (His85, His96 and His111) of the 2-His peptides. The calculation method therefore does not require the direct use of CD spectra measured in the smaller peptide models. This is a significant improvement over earlier calculation methods. In the same runs, the stepwise deprotonation pK(mic) values were refined and the pH-dependent distribution of copper(II) between the two histidines was determined. The results revealed the high, but different copper(II) binding affinities of the three separate histidines in the following order: His85 copper(II) binding preferences are transferable from the 2-His peptides to the 3-His hsPrP(84-114).

  1. Tyrosine 105 and threonine 212 at outermost substrate binding subsites -6 and +4 control substrate specificity, oligosaccharide cleavage patterns, and multiple binding modes of barley alpha-amylase 1

    DEFF Research Database (Denmark)

    Bak-Jensen, K.S.; André, G.; Gottschalk, T.E.;

    2004-01-01

    The role in activity of outer regions in the substrate binding cleft in alpha-amylases is illustrated by mutational analysis of Tyr(105) and Thr(212) localized at subsites - 6 and +4 ( substrate cleavage occurs between subsites -1 and +1) in barley alpha-amylase 1 (AMY1). Tyr(105) is conserved in...

  2. The Utility of Cognitive Plausibility in Language Acquisition Modeling: Evidence From Word Segmentation.

    Science.gov (United States)

    Phillips, Lawrence; Pearl, Lisa

    2015-11-01

    The informativity of a computational model of language acquisition is directly related to how closely it approximates the actual acquisition task, sometimes referred to as the model's cognitive plausibility. We suggest that though every computational model necessarily idealizes the modeled task, an informative language acquisition model can aim to be cognitively plausible in multiple ways. We discuss these cognitive plausibility checkpoints generally and then apply them to a case study in word segmentation, investigating a promising Bayesian segmentation strategy. We incorporate cognitive plausibility by using an age-appropriate unit of perceptual representation, evaluating the model output in terms of its utility, and incorporating cognitive constraints into the inference process. Our more cognitively plausible model shows a beneficial effect of cognitive constraints on segmentation performance. One interpretation of this effect is as a synergy between the naive theories of language structure that infants may have and the cognitive constraints that limit the fidelity of their inference processes, where less accurate inference approximations are better when the underlying assumptions about how words are generated are less accurate. More generally, these results highlight the utility of incorporating cognitive plausibility more fully into computational models of language acquisition.

  3. Two Distinct Binding Modes Define the Interaction of Brox with the C-Terminal Tails of CHMP5 and CHMP4B

    Energy Technology Data Exchange (ETDEWEB)

    Mu, Ruiling; Dussupt, Vincent; Jiang, Jiansheng; Sette, Paola; Rudd, Victoria; Chuenchor, Watchalee; Bello, Nana F.; Bouamr, Fadila; Xiao, Tsan Sam (NIH)

    2012-05-21

    Interactions of the CHMP protein carboxyl terminal tails with effector proteins play important roles in retroviral budding, cytokinesis, and multivesicular body biogenesis. Here we demonstrate that hydrophobic residues at the CHMP4B C-terminal amphipathic {alpha} helix bind a concave surface of Brox, a mammalian paralog of Alix. Unexpectedly, CHMP5 was also found to bind Brox and specifically recruit endogenous Brox to detergent-resistant membrane fractions through its C-terminal 20 residues. Instead of an {alpha} helix, the CHMP5 C-terminal tail adopts a tandem {beta}-hairpin structure that binds Brox at the same site as CHMP4B. Additional Brox:CHMP5 interface is furnished by a unique CHMP5 hydrophobic pocket engaging the Brox residue Y348 that is not conserved among the Bro1 domains. Our studies thus unveil a {beta}-hairpin conformation of the CHMP5 protein C-terminal tail, and provide insights into the overlapping but distinct binding profiles of ESCRT-III and the Bro1 domain proteins.

  4. Oxygen equilibria and ligand binding kinetics of erythrocruorins from two burrowing polychaetes of different modes of life, Marphysa sanguinea and Diopatra cuprea

    DEFF Research Database (Denmark)

    Weber, Roy E.; Bonaventura, J.; Sullivan, B.;

    1978-01-01

    Oxygen equilibria, ligand-binding kinetics and some other physicochemical properties are reported for erythrocruorins of two intertidal polychaetes:Marphysa sanguinea, which inhabits simple, relatively stagnant burrows, andDiopatra cuprea, which inhabits impermeable, parchment-like tubes that are...

  5. Epistatic mutations in PUMA BH3 drive an alternate binding mode to potently and selectively inhibit anti-apoptotic Bfl-1

    Energy Technology Data Exchange (ETDEWEB)

    Jenson, Justin M.; Ryan, Jeremy A.; Grant, Robert A.; Letai, Anthony; Keating, Amy E. (DFCI); (MIT)

    2017-06-08

    Overexpression of anti-apoptotic Bcl-2 family proteins contributes to cancer progression and confers resistance to chemotherapy. Small molecules that target Bcl-2 are used in the clinic to treat leukemia, but tight and selective inhibitors are not available for Bcl-2 paralog Bfl-1. Guided by computational analysis, we designed variants of the native BH3 motif PUMA that are > 150-fold selective for Bfl-1 binding. The designed peptides potently trigger disruption of the mitochondrial outer membrane in cells dependent on Bfl-1, but not in cells dependent on other anti-apoptotic homologs. High-resolution crystal structures show that designed peptide FS2 binds Bfl-1 in a shifted geometry, relative to PUMA and other binding partners, due to a set of epistatic mutations. FS2 modified with an electrophile reacts with a cysteine near the peptide-binding groove to augment specificity. Designed Bfl-1 binders provide reagents for cellular profiling and leads for developing enhanced and cell-permeable peptide or small-molecule inhibitors.

  6. Using critical evaluation to reappraise plausibility judgments: A critical cognitive component of conceptual change

    Science.gov (United States)

    Lombardi, D.

    2011-12-01

    Plausibility judgments-although well represented in conceptual change theories (see, for example, Chi, 2005; diSessa, 1993; Dole & Sinatra, 1998; Posner et al., 1982)-have received little empirical attention until our recent work investigating teachers' and students' understanding of and perceptions about human-induced climate change (Lombardi & Sinatra, 2010, 2011). In our first study with undergraduate students, we found that greater plausibility perceptions of human-induced climate accounted for significantly greater understanding of weather and climate distinctions after instruction, even after accounting for students' prior knowledge (Lombardi & Sinatra, 2010). In a follow-up study with inservice science and preservice elementary teachers, we showed that anger about the topic of climate change and teaching about climate change was significantly related to implausible perceptions about human-induced climate change (Lombardi & Sinatra, 2011). Results from our recent studies helped to inform our development of a model of the role of plausibility judgments in conceptual change situations. The model applies to situations involving cognitive dissonance, where background knowledge conflicts with an incoming message. In such situations, we define plausibility as a judgment on the relative potential truthfulness of incoming information compared to one's existing mental representations (Rescher, 1976). Students may not consciously think when making plausibility judgments, expending only minimal mental effort in what is referred to as an automatic cognitive process (Stanovich, 2009). However, well-designed instruction could facilitate students' reappraisal of plausibility judgments in more effortful and conscious cognitive processing. Critical evaluation specifically may be one effective method to promote plausibility reappraisal in a classroom setting (Lombardi & Sinatra, in progress). In science education, critical evaluation involves the analysis of how evidentiary

  7. Tyrosine 105 and threonine 212 at outermost substrate binding subsites -6 and +4 control substrate specificity, oligosaccharide cleavage patterns, and multiple binding modes of barley alpha-amylase 1

    DEFF Research Database (Denmark)

    Bak-Jensen, K.S.; André, G.; Gottschalk, T.E.

    2004-01-01

    The role in activity of outer regions in the substrate binding cleft in alpha-amylases is illustrated by mutational analysis of Tyr(105) and Thr(212) localized at subsites - 6 and +4 ( substrate cleavage occurs between subsites -1 and +1) in barley alpha-amylase 1 (AMY1). Tyr(105) is conserved...... in plant alpha-amylases whereas Thr(212) varies in these and related enzymes. Compared with wild-type AMY1, the subsite -6 mutant Y105A has 140, 15, and ...% activity, respectively. Thus engineering of aromatic stacking interactions at the ends of the 10-subsite long binding cleft affects activity very differently, dependent on the substrate. Y105A dominates in dual subsite -6/+4 [Y105A/T212(Y/W)] AMY1 mutants having almost retained and low activity on starch...

  8. Field-Evolved Mode 1 Resistance of the Fall Armyworm to Transgenic Cry1Fa-Expressing Corn Associated with Reduced Cry1Fa Toxin Binding and Midgut Alkaline Phosphatase Expression.

    Science.gov (United States)

    Jakka, Siva R K; Gong, Liang; Hasler, James; Banerjee, Rahul; Sheets, Joel J; Narva, Kenneth; Blanco, Carlos A; Jurat-Fuentes, Juan L

    2015-12-04

    Insecticidal protein genes from the bacterium Bacillus thuringiensis (Bt) are expressed by transgenic Bt crops (Bt crops) for effective and environmentally safe pest control. The development of resistance to these insecticidal proteins is considered the most serious threat to the sustainability of Bt crops. Resistance in fall armyworm (Spodoptera frugiperda) populations from Puerto Rico to transgenic corn producing the Cry1Fa insecticidal protein resulted, for the first time in the United States, in practical resistance, and Bt corn was withdrawn from the local market. In this study, we used a field-collected Cry1Fa corn-resistant strain (456) of S. frugiperda to identify the mechanism responsible for field-evolved resistance. Binding assays detected reduced Cry1Fa, Cry1Ab, and Cry1Ac but not Cry1Ca toxin binding to midgut brush border membrane vesicles (BBMV) from the larvae of strain 456 compared to that from the larvae of a susceptible (Ben) strain. This binding phenotype is descriptive of the mode 1 type of resistance to Bt toxins. A comparison of the transcript levels for putative Cry1 toxin receptor genes identified a significant downregulation (>90%) of a membrane-bound alkaline phosphatase (ALP), which translated to reduced ALP protein levels and a 75% reduction in ALP activity in BBMV from 456 compared to that of Ben larvae. We cloned and heterologously expressed this ALP from susceptible S. frugiperda larvae and demonstrated that it specifically binds with Cry1Fa toxin. This study provides a thorough mechanistic description of field-evolved resistance to a transgenic Bt crop and supports an association between resistance and reduced Cry1Fa toxin binding and levels of a putative Cry1Fa toxin receptor, ALP, in the midguts of S. frugiperda larvae.

  9. Structural insights into FGFR kinase isoform selectivity: diverse binding modes of AZD4547 and ponatinib in complex with FGFR1 and FGFR4.

    Science.gov (United States)

    Tucker, Julie A; Klein, Tobias; Breed, Jason; Breeze, Alexander L; Overman, Ross; Phillips, Chris; Norman, Richard A

    2014-12-02

    The fibroblast growth factor receptor (FGFR) family of receptor tyrosine kinases has been implicated in a wide variety of cancers. Despite a high level of sequence homology in the ATP-binding site, the majority of reported inhibitors are selective for the FGFR1-3 isoforms and display much reduced potency toward FGFR4, an exception being the Bcr-Abl inhibitor ponatinib. Here we present the crystal structure of the FGFR4 kinase domain and show that both FGFR1 and FGFR4 kinase domains in complex with ponatinib adopt a DFG-out activation loop conformation. Comparison with the structure of FGFR1 in complex with the candidate drug AZD4547, combined with kinetic characterization of the binding of ponatinib and AZD4547 to FGFR1 and FGFR4, sheds light on the observed differences in selectivity profiles and provides a rationale for developing FGFR4-selective inhibitors.

  10. Interactions between visual and motor areas during the recognition of plausible actions as revealed by magnetoencephalography.

    Science.gov (United States)

    Pavlidou, Anastasia; Schnitzler, Alfons; Lange, Joachim

    2014-02-01

    Several studies have shown activation of the mirror neuron system (MNS), comprising the temporal, posterior parietal, and sensorimotor areas when observing plausible actions, but far less is known on how these cortical areas interact during the recognition of a plausible action. Here, we recorded neural activity with magnetoencephalography while subjects viewed point-light displays of biologically plausible and scrambled versions of actions. We were interested in modulations of oscillatory activity and, specifically, in coupling of oscillatory activity between visual and motor areas. Both plausible and scrambled actions elicited modulations of θ (5-7 Hz), α (7-13 Hz), β (13-35 Hz), and γ (55-100 Hz) power within visual and motor areas. When comparing between the two actions, we observed sequential and spatially distinct increases of γ (∼65 Hz), β (∼25 Hz), and α (∼11 Hz) power between 0.5 and 1.3 s in parieto-occipital, sensorimotor, and left temporal areas. In addition, significant clusters of γ (∼65 Hz) and α/β (∼15 Hz) power decrease were observed in right temporal and parieto-occipital areas between 1.3 and 2.0 s. We found β-power in sensorimotor areas to be positively correlated on a trial-by-trial basis with parieto-occipital γ and left temporal α-power for the plausible but not for the scrambled condition. These results provide new insights in the neuronal oscillatory activity of the areas involved in the recognition of plausible action movements and their interaction. The power correlations between specific areas underscore the importance of interactions between visual and motor areas of the MNS during the recognition of a plausible action.

  11. Optical binding of cylinder photonic molecules in the near-field of partially coherent fluctuating Gaussian Schell model sources. A coherent mode representation

    CERN Document Server

    Auñón, Juan Miguel; Nieto-Vesperinas, Manuel

    2014-01-01

    We present a theory and computation method of radiation pressure from partially coherent light by establishing a coherent mode representation of the radiation forces. This is illustrated with the near field emitted from a Gaussian Schell model source, mechanically acting on a single cylinder with magnetodielectric behavior, or on a photonic molecule constituted by a pair of such cylinders. Thus after studying the force produced by a single particle, we address the effects of the spatial coherence on the bonding and anti-bonding states of two particles. The coherence length manifests the critical limitation of the contribution of evanescent modes to the scattered fields, and hence to the nature and strength of the electromagnetic fores, even when electric and/or magnetic partial wave resonances are excited.

  12. Stereotyping to infer group membership creates plausible deniability for prejudice-based aggression.

    Science.gov (United States)

    Cox, William T L; Devine, Patricia G

    2014-02-01

    In the present study, participants administered painful electric shocks to an unseen male opponent who was either explicitly labeled as gay or stereotypically implied to be gay. Identifying the opponent with a gay-stereotypic attribute produced a situation in which the target's group status was privately inferred but plausibly deniable to others. To test the plausible deniability hypothesis, we examined aggression levels as a function of internal (personal) and external (social) motivation to respond without prejudice. Whether plausible deniability was present or absent, participants high in internal motivation aggressed at low levels, and participants low in both internal and external motivation aggressed at high levels. The behavior of participants low in internal and high in external motivation, however, depended on experimental condition. They aggressed at low levels when observers could plausibly attribute their behavior to prejudice and aggressed at high levels when the situation granted plausible deniability. This work has implications for both obstacles to and potential avenues for prejudice-reduction efforts.

  13. Genetic Analysis of the Mode of Interplay between an ATPase Subunit and Membrane Subunits of the Lipoprotein-Releasing ATP-Binding Cassette Transporter LolCDE†

    OpenAIRE

    Ito, Yasuko; Matsuzawa, Hitomi; Matsuyama, Shin-ichi; Narita, Shin-ichiro; Tokuda, Hajime

    2006-01-01

    The LolCDE complex, an ATP-binding cassette (ABC) transporter, releases lipoproteins from the inner membrane, thereby initiating lipoprotein sorting to the outer membrane of Escherichia coli. The LolCDE complex is composed of two copies of an ATPase subunit, LolD, and one copy each of integral membrane subunits LolC and LolE. LolD hydrolyzes ATP on the cytoplasmic side of the inner membrane, while LolC and/or LolE recognize and release lipoproteins anchored to the periplasmic leaflet of the i...

  14. Investigation of the mode of binding of a novel series of N-benzyl-4-heteroaryl-1-(phenylsulfonyl)piperazine-2-carboxamides to the hepatitis C virus polymerase

    Energy Technology Data Exchange (ETDEWEB)

    Gentles, Robert G.; Sheriff, Steven; Beno, Brett R.; Wan, Changhong; Kish, Kevin; Ding, Min; Zheng, Xiaofan; Chupak, Louis; Poss, Michael A.; Witmer, Mark R.; Morin, Paul; Wang, Ying-Kai; Rigat, Karen; Lemm, Julie; Voss, Stacey; Liu, Mengping; Pelosi, Lenore; Roberts, Susan B.; Gao, Min; Kadow, John F. (BMS)

    2013-11-20

    Structure based rationales for the activities of potent N-benzyl-4-heteroaryl-1-(phenylsulfonyl)piperazine-2-carboxamide inhibitors of the hepatitis C viral polymerase are described herein. These compounds bind to the hepatitis C virus non-structural protein 5B (NS5B), and co-crystal structures of select examples from this series with NS5B are reported. Comparison of co-crystal structures of a potent analog with both NS5B genotype 1a and genotype 1b provides a possible explanation for the genotype-selectivity observed with this compound class and suggests opportunities for the further optimization of the series.

  15. Crystal Structure of Cockroach Allergen Bla g 2, an Unusual Zinc Binding Aspartic Protease with a Novel Mode of Self-inhibition

    Energy Technology Data Exchange (ETDEWEB)

    Gustchina, Alla; Li, Mi; Wunschmann, Sabina; Chapman, Martin D.; Pomes, Anna; Wlodawer, Alexander (INDOOR Bio.); (NIH)

    2010-07-19

    The crystal structure of Bla g 2 was solved in order to investigate the structural basis for the allergenic properties of this unusual protein. This is the first structure of an aspartic protease in which conserved glycine residues, in two canonical DTG triads, are substituted by different amino acid residues. Another unprecedented feature revealed by the structure is the single phenylalanine residue insertion on the tip of the flap, with the side-chain occupying the S1 binding pocket. This and other important amino acid substitutions in the active site region of Bla g 2 modify the interactions in the vicinity of the catalytic aspartate residues, increasing the distance between them to {approx}4 {angstrom} and establishing unique direct contacts between the flap and the catalytic residues. We attribute the absence of substantial catalytic activity in Bla g 2 to these unusual features of the active site. Five disulfide bridges and a Zn-binding site confer stability to the protein, which may contribute to sensitization at lower levels of exposure than other allergens.

  16. Crystal structures of yeast beta-alanine synthase complexes reveal the mode of substrate binding and large scale domain closure movements.

    Science.gov (United States)

    Lundgren, Stina; Andersen, Birgit; Piskur, Jure; Dobritzsch, Doreen

    2007-12-07

    Beta-alanine synthase is the final enzyme of the reductive pyrimidine catabolic pathway, which is responsible for the breakdown of uracil and thymine in higher organisms. The fold of the homodimeric enzyme from the yeast Saccharomyces kluyveri identifies it as a member of the AcyI/M20 family of metallopeptidases. Its subunit consists of a catalytic domain harboring a di-zinc center and a smaller dimerization domain. The present site-directed mutagenesis studies identify Glu(159) and Arg(322) as crucial for catalysis and His(262) and His(397) as functionally important but not essential. We determined the crystal structures of wild-type beta-alanine synthase in complex with the reaction product beta-alanine, and of the mutant E159A with the substrate N-carbamyl-beta-alanine, revealing the closed state of a dimeric AcyI/M20 metallopeptidase-like enzyme. Subunit closure is achieved by a approximately 30 degrees rigid body domain rotation, which completes the active site by integration of substrate binding residues that belong to the dimerization domain of the same or the partner subunit. Substrate binding is achieved via a salt bridge, a number of hydrogen bonds, and coordination to one of the zinc ions of the di-metal center.

  17. The Binding Mode Prediction and Similar Ligand Potency in the Active Site of Vitamin D Receptor with QM/MM Interaction, MESP, and MD Simulation.

    Science.gov (United States)

    Selvaraman, Nagamani; Selvam, Saravana Kumar; Muthusamy, Karthikeyan

    2016-08-01

    Non-secosteroidal ligands are well-known vitamin D receptor (VDR) agonists. In this study, we described a combined QM/MM to define the protein-ligand interaction energy a strong positive correlation in both QM-MM interaction energy and binding free energy against the biological activity. The molecular dynamics simulation study was performed, and specific interactions were extensively studied. The molecular docking results and surface analysis shed light on steric and electrostatic complementarities of these non-secosteroidal ligands to VDR. Finally, the drug likeness properties were also calculated and found within the acceptable range. The results show that bulky group substitutions in side chain decrease the VDR activity, whereas a small substitution increased it. Functional analyses of H393A and H301A mutations substantiate their roles in the VDR agonistic and antagonistic activities. Apart from the His393 and His301, two other amino acids in the hinge region viz. Ser233 and Arg270 acted as an electron donor/acceptor specific to the agonist in the distinct ligand potency. The results from this study disclose the binding mechanism of VDR agonists and structural modifications required to improve the selectivity.

  18. Lead-induced SCC of alloy 600 in plausible steam generator crevice environments

    Energy Technology Data Exchange (ETDEWEB)

    Wright, M.D. [Atomic Energy of Canada Limited, Chalk River, Ontario (Canada); Manolescu, A. [Ontario Hydro Technologies, Toronto, Ontario (Canada); Mirzai, M. [Ontario Hydro, Toronto, Ontario (Canada)

    1998-07-01

    Laboratory stress corrosion cracking (SCC) test environments developed to simulate representative BNGS-A steam generator (SG) crevice chemistries have been used to determine the susceptibility of Alloy 600 to lead-induced SCC under plausible SG conditions. Test environments were based on plant SG hideout return data and analysis of removed tubes and deposits. Deviations from the normal near neutral crevice pH environment were considered to simulate possible faulted excursion crevice chemistry and to bound the postulated crevice pH range of 3-9 (at temperature). The effect of lead contamination up to 1000 ppm, but with an emphasis on the 100 to 500 ppm range, was determined. SCC susceptibility was investigated using constant extension rate tensile (CERT) tests and encapsulated C-ring tests. CERT tests were performed at 305 degrees C on tubing representative of BNGS-A SG U-bends. The C-ring test method allowed a wider test matrix covering three temperatures (280, 304 and 315 degrees C), three strain levels (0.2%, 2% and 4%) and tubing representative of U-bends plus tubing given a simulated stress relief to represent material at the tubesheet. The results of this test program confirmed that in the absence of lead contamination, cracking does not occur in these concentrated, 3.3 to 8.9 pH range, crevice environments. Also, it appears that the concentrated crevice environments suppress lead-induced cracking relative to that seen in all-volatile-treatment (AVT) water. For the (static) C-ring tests, lead-induced SCC was only produced in the near-neutral crevice environment and was more severe at 500 ppm than 100 ppm PbO. This trend was also observed in CERT tests but some cracking/grain boundary attack occurred in acidic (pH 3.3) and alkaline (pH 8.9) environments. The C-ring tests indicated that a certain amount of resistance to cracking was imparted by simulated stress relief of the tubing. This heat treatment, confirmed to have resulted in sensitization, promoted

  19. Lead-induced stress-corrosion cracking of alloy 600 in plausible steam generator crevice environments

    Energy Technology Data Exchange (ETDEWEB)

    Wright, M.D. [Atomic Energy of Canada Limited, Chalk River, Ontario (Canada); Manolescu, A. [Ontario Hydro Technologies, Toronto, Ontario (Canada); Mirzai, M. [Ontario Hydro, Toronto, Ontario (Canada)

    1999-03-01

    Laboratory stress-corrosion cracking (SCC) test environments were developed to simulate crevice chemistries representative of Bruce Nuclear Generating Station A (BNPD A) steam generators (SGs); these test environments were used to determine the susceptibility of Alloy 600 to lead-induced SCC under plausible SG conditions. Test environments were based on plant SG hideout return data and analysis of removed tubes and deposits. Deviations from the normal near-neutral crevice pH environment were considered to simulate possible faulted excursion crevice chemistry and to bound the postulated crevice pH range of 3 to 9 (at temperature). The effect of lead contamination up to 1000 ppm, but with an emphasis on the 100- to 500-ppm range, was determined. SCC susceptibility was investigated using constant extension rate tensile (CERT) tests and encapsulated C-ring tests. CERT tests were performed at 305 degrees C on tubing representative of BNPD A SG U-bends. The C-ring test method allowed a wider test matrix, covering 3 temperatures (280 degrees C, 304 degrees C and 315 degrees C), 3 strain levels (0.2%, 2% and 4%), and tubing representative of U-bends plus tubing given a simulated stress relief to represent material at the tube sheet. The results of this test program confirmed that in the absence of lead contamination, cracking does not occur in these concentrated, 3.3 to 8.9 pH range, crevice environments. Also, it appears that the concentrated crevice environments suppress lead-induced cracking relative to that seen in all-volatile-treatment (AVT) water. For the (static) C-ring tests, lead-induced SCC was only produced in the near-neutral crevice environment and was more severe at 500 ppm than at 100 ppm PbO. This trend was also observed in CERT tests, but some cracking-grain boundary attack occurred in acidic (pH 3.3) and alkaline (pH 8.9) environments. The C-ring tests indicated that a certain amount of resistance to cracking was imparted by simulated stress relief of

  20. Don't Plan for the Unexpected: Planning Based on Plausibility Models

    DEFF Research Database (Denmark)

    Andersen, Mikkel Birkegaard; Bolander, Thomas; Jensen, Martin Holm

    2015-01-01

    We present a framework for automated planning based on plausibility models, as well as algorithms for computing plans in this framework. Our plausibility models include postconditions, as ontic effects are essential for most planning purposes. The framework presented extends a previously developed...... framework based on dynamic epistemic logic (DEL), without plausibilities/beliefs. In the pure epistemic framework, one can distinguish between strong and weak epistemic plans for achieving some, possibly epistemic, goal. By taking all possible outcomes of actions into account, a strong plan guarantees...... that the agent achieves this goal. Conversely, a weak plan promises only the possibility of leading to the goal. In real-life planning scenarios where the planning agent is faced with a high degree of uncertainty and an almost endless number of possible exogenous events, strong epistemic planning...

  1. Inference and Plausible Reasoning in a Natural Language Understanding System Based on Object-Oriented Semantics

    CERN Document Server

    Ostapov, Yuriy

    2012-01-01

    Algorithms of inference in a computer system oriented to input and semantic processing of text information are presented. Such inference is necessary for logical questions when the direct comparison of objects from a question and database can not give a result. The following classes of problems are considered: a check of hypotheses for persons and non-typical actions, the determination of persons and circumstances for non-typical actions, planning actions, the determination of event cause and state of persons. To form an answer both deduction and plausible reasoning are used. As a knowledge domain under consideration is social behavior of persons, plausible reasoning is based on laws of social psychology. Proposed algorithms of inference and plausible reasoning can be realized in computer systems closely connected with text processing (criminology, operation of business, medicine, document systems).

  2. Biologically plausible and evidence-based risk intervals in immunization safety research.

    Science.gov (United States)

    Rowhani-Rahbar, Ali; Klein, Nicola P; Dekker, Cornelia L; Edwards, Kathryn M; Marchant, Colin D; Vellozzi, Claudia; Fireman, Bruce; Sejvar, James J; Halsey, Neal A; Baxter, Roger

    2012-12-17

    In immunization safety research, individuals are considered at risk for the development of certain adverse events following immunization (AEFI) within a specific period of time referred to as the risk interval. These intervals should ideally be determined based on biologic plausibility considering features of the AEFI, presumed or known pathologic mechanism, and the vaccine. Misspecification of the length and timing of these intervals may result in introducing bias in epidemiologic and clinical studies of immunization safety. To date, little work has been done to formally assess and determine biologically plausible and evidence-based risk intervals in immunization safety research. In this report, we present a systematic process to define biologically plausible and evidence-based risk interval estimates for two specific AEFIs, febrile seizures and acute disseminated encephalomyelitis. In addition, we review methodologic issues related to the determination of risk intervals for consideration in future studies of immunization safety.

  3. The semiosis of prayer and the creation of plausible fictional worlds

    Directory of Open Access Journals (Sweden)

    J. Peter Södergård

    1999-01-01

    Full Text Available Prayer and incantation can perhaps be said to be 'mechanisms' that promise that lack will be liquidated and that there is an unlimited signator, a father, or some other metaphysical creature, standing behind and legitimizing the discourse. A way of communicating with the Unlimited that is privileged by an interpretive community that read the prayers aloud and enacted the magical stage-scripts. These highly overlapping categories function as one of the most common subforms of religious discourse for the creation, actualization and maintenance of plausible fictional worlds. They are liminal and transitional mechanisms that manipulate an empirical reader to phase-shift from an actual world to a plausible, by being inscribed in a possible and fictional world, thus creating a model reader, that perceives and acts according to the plausible world outlined by a given interpretive community, and that hears god talking in voces magicae and in god-speaking silence.

  4. Don't Plan for the Unexpected: Planning Based on Plausibility Models

    DEFF Research Database (Denmark)

    Andersen, Mikkel Birkegaard; Bolander, Thomas; Jensen, Martin Holm

    2015-01-01

    that the agent achieves this goal. Conversely, a weak plan promises only the possibility of leading to the goal. In real-life planning scenarios where the planning agent is faced with a high degree of uncertainty and an almost endless number of possible exogenous events, strong epistemic planning......We present a framework for automated planning based on plausibility models, as well as algorithms for computing plans in this framework. Our plausibility models include postconditions, as ontic effects are essential for most planning purposes. The framework presented extends a previously developed...... framework based on dynamic epistemic logic (DEL), without plausibilities/beliefs. In the pure epistemic framework, one can distinguish between strong and weak epistemic plans for achieving some, possibly epistemic, goal. By taking all possible outcomes of actions into account, a strong plan guarantees...

  5. The crystal structure of a ternary complex of betaine aldehyde dehydrogenase from Pseudomonas aeruginosa Provides new insight into the reaction mechanism and shows a novel binding mode of the 2'-phosphate of NADP+ and a novel cation binding site.

    Science.gov (United States)

    González-Segura, Lilian; Rudiño-Piñera, Enrique; Muñoz-Clares, Rosario A; Horjales, Eduardo

    2009-01-16

    In the human pathogen Pseudomonas aeruginosa, the NAD(P)(+)-dependent betaine aldehyde dehydrogenase (PaBADH) may play the dual role of assimilating carbon and nitrogen from choline or choline precursors--abundant at infection sites--and producing glycine betaine and NADPH, potentially protective against the high-osmolarity and oxidative stresses prevalent in the infected tissues. Disruption of the PaBADH gene negatively affects the growth of bacteria, suggesting that this enzyme could be a target for antibiotic design. PaBADH is one of the few ALDHs that efficiently use NADP(+) and one of the even fewer that require K(+) ions for stability. Crystals of PaBADH were obtained under aerobic conditions in the presence of 2-mercaptoethanol, glycerol, NADP(+) and K(+) ions. The three-dimensional structure was determined at 2.1-A resolution. The catalytic cysteine (C286, corresponding to C302 of ALDH2) is oxidized to sulfenic acid or forms a mixed disulfide with 2-mercaptoethanol. The glutamyl residue involved in the deacylation step (E252, corresponding to E268 of ALDH2) is in two conformations, suggesting a proton relay system formed by two well-conserved residues (E464 and K162, corresponding to E476 and K178, respectively, of ALDH2) that connects E252 with the bulk water. In some active sites, a bound glycerol molecule mimics the thiohemiacetal intermediate; its hydroxyl oxygen is hydrogen bonded to the nitrogen of the amide groups of the side chain of the conserved N153 (N169 of ALDH2) and those of the main chain of C286, which form the "oxyanion hole." The nicotinamide moiety of the nucleotide is not observed in the crystal, and the adenine moiety binds in the usual way. A salt bridge between E179 (E195 of ALDH2) and R40 (E53 of ALDH2) moves the carboxylate group of the former away from the 2'-phosphate of the NADP(+), thus avoiding steric clashes and/or electrostatic repulsion between the two groups. Finally, the crystal shows two K(+) binding sites per subunit

  6. Structure and in silico substrate-binding mode of ADP-L-glycero-D-manno-heptose 6-epimerase from Burkholderia thailandensis.

    Science.gov (United States)

    Kim, Mi-Sun; Lim, Areum; Yang, Seung Won; Park, Jimin; Lee, Daeun; Shin, Dong Hae

    2013-04-01

    ADP-L-glycero-D-manno-heptose 6-epimerase (AGME), the product of the rfaD gene, is the last enzyme in the heptose-biosynthesis pathway; it converts ADP-D-glycero-D-manno-heptose (ADP-D,D-Hep) to ADP-L-glycero-D-manno-heptose (ADP-L,D-Hep). AGME contains a catalytic triad involved in catalyzing hydride transfer with the aid of NADP(+). Defective lipopolysaccharide is found in bacterial mutants lacking this gene. Therefore, it is an interesting target enzyme for a novel epimerase inhibitor for use as a co-therapy with antibiotics. The crystal structure of AGME from Burkholderia thailandensis (BtAGME), a surrogate organism for studying the pathogenicity of melioidosis caused by B. pseudomallei, has been determined. The crystal structure determined with co-purified NADP(+) revealed common as well as unique structural properties of the AGME family when compared with UDP-galactose 4-epimerase homologues. They form a similar architecture with conserved catalytic residues. Nevertheless, there are differences in the substrate- and cofactor-binding cavities and the oligomerization domains. Structural comparison of BtAGME with AGME from Escherichia coli indicates that they may recognize their substrate in a `lock-and-key' fashion. Unique structural features of BtAGME are found in two regions. The first region is the loop between β8 and β9, affecting the binding affinity of BtAGME for the ADP moiety of ADP-D,D-Hep. The second region is helix α8, which induces decamerization at low pH that is not found in other AGMEs. With the E210G mutant, it was observed that the resistance of the wild type to acid-induced denaturation is related to the decameric state. An in silico study was performed using the Surflex-Dock GeomX module of the SYBYL-X 1.3 software to predict the catalytic mechanism of BtAGME with its substrate, ADP-D,D-Hep. In the in silico study, the C7'' hydroxymethyl group of ADP-D,D-Hep is predicted to form hydrogen bonds to Ser116 and Gln293. With the aid of these

  7. The Utility of Cognitive Plausibility in Language Acquisition Modeling: Evidence from Word Segmentation

    Science.gov (United States)

    Phillips, Lawrence; Pearl, Lisa

    2015-01-01

    The informativity of a computational model of language acquisition is directly related to how closely it approximates the actual acquisition task, sometimes referred to as the model's "cognitive plausibility." We suggest that though every computational model necessarily idealizes the modeled task, an informative language acquisition…

  8. The Utility of Cognitive Plausibility in Language Acquisition Modeling: Evidence from Word Segmentation

    Science.gov (United States)

    Phillips, Lawrence; Pearl, Lisa

    2015-01-01

    The informativity of a computational model of language acquisition is directly related to how closely it approximates the actual acquisition task, sometimes referred to as the model's "cognitive plausibility." We suggest that though every computational model necessarily idealizes the modeled task, an informative language acquisition…

  9. Plausible Explanation of Quantization of Intrinsic Redshift from Hall Effect and Weyl Quantization

    Directory of Open Access Journals (Sweden)

    Smarandache F.

    2006-10-01

    Full Text Available Using phion condensate model as described by Moffat [1], we consider a plausible explanation of (Tifft intrinsic redshift quantization as described by Bell [6] as result of Hall effect in rotating frame. We also discuss another alternative to explain redshift quantization from the viewpoint of Weyl quantization, which could yield Bohr- Sommerfeld quantization.

  10. “合情推理”辨析%Analysis of Plausible Reasoning

    Institute of Scientific and Technical Information of China (English)

    连四清; 方运加

    2012-01-01

    波利亚的“合情推理”模式引进我国数学课程标准后,就成了我国数学教育研究的关键词。然而,“合情推理”的科学性尚需考证:(1)它的中文意义不明确;(2)它不满足推理模式的客观性要求,存在明显的缺陷;(3)过分强调“合情推理模式”则是过分强调归纳推理和演绎推理的区别,容易割裂它们之间的关系。%After the model of "plausible inference" being introduced into the mathematics curriculum standards, it became a key word of the research on mathematics education in China. However, there are doubts on whether it is scientific. (1) Chinese meaning of plausible inference is ambiguous. (2) The plausible inference can not meet the objective requirement of the reasoning, which has obvious defects. (3) Overemphasizing the model of plausible inference would overemphasize the difference between deductive inference and inductive inference, and would dispart them.

  11. Studies on the mode of action of calciferol. XIII. Development of a radioimmunoassay for vitamin D-dependent chick intestinal calcium-binding protein and tissue distribution

    Energy Technology Data Exchange (ETDEWEB)

    Christakos, S.; Friedlander, E.J.; Frandsen, B.R.; Norman, A.W.

    1979-05-01

    A RIA for chick intestinal calcium-binding protein (CaBP) has been developed with a sensitivity of 1 ng. The antiserum was generated in rabbits injected with highly purified vitamin D-dependent chick intestinal CaBP. The assay employs the double antibody technique, and /sup 125/I-labeled CaBP was prepared using chloramine T. Low molecular weight peptide hormones and normal rabbit, rat, and human serum proteins show no cross-reactivity in the assay. Measurements of chick intestinal and kidney CaBP by RIA showed a good correlation with measurements of CaBP by the radial immunodiffusion method. The assay is reproducible (interassay variability, 16.3%) and precise (intraassay variability, 4.0%). The concentration of immunoreactive CaBP (iCaBP) in chick serum (2.7 ng/ml serum) can now be measured as early as 8 h after the administration of 6.5 nmol 1,25-dihydroxyvitamin D/sub 3/; a maximum of 11 ng/ml is reached at 20 h. The level of CaBP in chick serum was found to be dependent on the dose of vitamin D/sub 3/ or 1,25-dihydroxyvitamin D/sub 3/ administered to the animal.

  12. Elucidation of the CCR1- and CCR5-binding modes of MIP-1α by application of an NMR spectra reconstruction method to the transferred cross-saturation experiments

    Energy Technology Data Exchange (ETDEWEB)

    Yoshiura, Chie; Ueda, Takumi; Kofuku, Yutaka; Matsumoto, Masahiko; Okude, Junya; Kondo, Keita; Shiraishi, Yutaro; Shimada, Ichio, E-mail: shimada@iw-nmr.f.u-tokyo.ac.jp [The University of Tokyo, Graduate School of Pharmaceutical Sciences (Japan)

    2015-12-15

    C–C chemokine receptor 1 (CCR1) and CCR5 are involved in various inflammation and immune responses, and regulate the progression of the autoimmune diseases differently. However, the number of residues identified at the binding interface was not sufficient to clarify the differences in the CCR1- and CCR5-binding modes to MIP-1α, because the NMR measurement time for CCR1 and CCR5 samples was limited to 24 h, due to their low stability. Here we applied a recently developed NMR spectra reconstruction method, Conservation of experimental data in ANAlysis of FOuRier, to the amide-directed transferred cross-saturation experiments of chemokine receptors, CCR1 and CCR5, embedded in lipid bilayers of the reconstituted high density lipoprotein, and MIP-1α. Our experiments revealed that the residues on the N-loop and β-sheets of MIP-1α are close to both CCR1 and CCR5, and those in the C-terminal helix region are close to CCR5. These results suggest that the genetic influence of the single nucleotide polymorphisms of MIP-1α that accompany substitution of residues in the C-terminal helix region, E57 and V63, would provide clues toward elucidating how the CCR5–MIP-1α interaction affects the progress of autoimmune diseases.

  13. Delineating binding modes of Gal/GalNAc and structural elements of the molecular recognition of tumor-associated mucin glycopeptides by the human macrophage galactose-type lectin.

    Science.gov (United States)

    Marcelo, Filipa; Garcia-Martin, Fayna; Matsushita, Takahiko; Sardinha, João; Coelho, Helena; Oude-Vrielink, Anneloes; Koller, Christiane; André, Sabine; Cabrita, Eurico J; Gabius, Hans-Joachim; Nishimura, Shin-Ichiro; Jiménez-Barbero, Jesús; Cañada, F Javier

    2014-12-01

    The human macrophage galactose-type lectin (MGL) is a key physiological receptor for the carcinoma-associated Tn antigen (GalNAc-α-1-O-Ser/Thr) in mucins. NMR and modeling-based data on the molecular recognition features of synthetic Tn-bearing glycopeptides by MGL are presented. Cognate epitopes on the sugar and matching key amino acids involved in the interaction were identified by saturation transfer difference (STD) NMR spectroscopy. Only the amino acids close to the glycosylation site in the peptides are involved in lectin contact. Moreover, control experiments with non-glycosylated MUC1 peptides unequivocally showed that the sugar residue is essential for MGL binding, as is Ca(2+) . NMR data were complemented with molecular dynamics simulations and Corcema-ST to establish a 3D view on the molecular recognition process between Gal, GalNAc, and the Tn-presenting glycopeptides and MGL. Gal and GalNAc have a dual binding mode with opposite trend of the main interaction pattern and the differences in affinity can be explained by additional hydrogen bonds and CH-π contacts involving exclusively the NHAc moiety.

  14. Elucidation of the CCR1- and CCR5-binding modes of MIP-1α by application of an NMR spectra reconstruction method to the transferred cross-saturation experiments.

    Science.gov (United States)

    Yoshiura, Chie; Ueda, Takumi; Kofuku, Yutaka; Matsumoto, Masahiko; Okude, Junya; Kondo, Keita; Shiraishi, Yutaro; Shimada, Ichio

    2015-12-01

    C-C chemokine receptor 1 (CCR1) and CCR5 are involved in various inflammation and immune responses, and regulate the progression of the autoimmune diseases differently. However, the number of residues identified at the binding interface was not sufficient to clarify the differences in the CCR1- and CCR5-binding modes to MIP-1α, because the NMR measurement time for CCR1 and CCR5 samples was limited to 24 h, due to their low stability. Here we applied a recently developed NMR spectra reconstruction method, Conservation of experimental data in ANAlysis of FOuRier, to the amide-directed transferred cross-saturation experiments of chemokine receptors, CCR1 and CCR5, embedded in lipid bilayers of the reconstituted high density lipoprotein, and MIP-1α. Our experiments revealed that the residues on the N-loop and β-sheets of MIP-1α are close to both CCR1 and CCR5, and those in the C-terminal helix region are close to CCR5. These results suggest that the genetic influence of the single nucleotide polymorphisms of MIP-1α that accompany substitution of residues in the C-terminal helix region, E57 and V63, would provide clues toward elucidating how the CCR5-MIP-1α interaction affects the progress of autoimmune diseases.

  15. Exploring the strength, mode, dynamics, and kinetics of binding interaction of a cationic biological photosensitizer with DNA: implication on dissociation of the drug-DNA complex via detergent sequestration.

    Science.gov (United States)

    Paul, Bijan Kumar; Guchhait, Nikhil

    2011-10-20

    The present study aims at exploring a detailed characterization of the binding interaction of a promising cancer cell photosensitizer, harmane (HM), with DNA extracted from herring sperm. The polarity-sensitive prototropic transformation of HM, a naturally occurring, fluorescent, drug-binding alkaloid, β-carboline, is remarkably modified upon interaction with DNA and is manifested through significant modulations on the absorption and emission profiles of HM. From the series of studies undertaken in the present program, for example, absorption; steady-state emission; the effect of chaotrope (urea); iodide ion-induced steady-state fluorescence quenching; circular dichroism (CD); and helix melting from absorption spectroscopy; the mode of binding of HM into the DNA helix has been substantiated to be principally intercalative. Concomitantly, a discernible dependence of the photophysics of the DNA-bound drug on the medium ionic strength indicates that electrostatic attraction should not be ignored in the interaction. Efforts have also been delivered to delineate the dynamical aspects of the interaction, such as modulation in time-resolved fluorescence decay and rotational relaxation dynamics of the drug within the DNA environment. In view of the prospective biological applications of HM, the issue of facile dissociation of intercalated HM from the DNA helix also comprises a crucial prerequisite for the functioning as an effective therapeutic agent. In this context, our results imply that the concept of detergent-sequestered dissociation of the drug from the drug-DNA complex can be a prospective strategy through an appropriate choice of the detergent molecule. The utility of the present work resides in exploring the potential applicability of the fluorescence property of HM for studying its interactions with a relevant biological target, for example, DNA. In addition, the methods and techniques used in the present work can also be exploited to study the interaction of

  16. From bone to plausible bipedal locomotion. Part II: Complete motion synthesis for bipedal primates.

    Science.gov (United States)

    Nicolas, Guillaume; Multon, Franck; Berillon, Gilles

    2009-05-29

    This paper addresses the problem of synthesizing plausible bipedal locomotion according to 3D anatomical reconstruction and general hypotheses on human motion control strategies. In a previous paper [Nicolas, G., Multon, F., Berillon, G., Marchal, F., 2007. From bone to plausible bipedal locomotion using inverse kinematics. Journal of Biomechanics 40 (5) 1048-1057], we have validated a method based on using inverse kinematics to obtain plausible lower-limb motions knowing the trajectory of the ankle. In this paper, we propose a more general approach that also involves computing a plausible trajectory of the ankles for a given skeleton. The inputs are the anatomical descriptions of the bipedal species, imposed footprints and a rest posture. This process is based on optimizing a reference ankle trajectory until a set of criteria is minimized. This optimization loop is based on the assumption that a plausible motion is supposed to have little internal mechanical work and should be as less jerky as possible. For each tested ankle trajectory, inverse kinematics is used to compute a lower-body motion that enables us to compute the resulting mechanical work and jerk. This method was tested on a set of modern humans (male and female, with various anthropometric properties). We show that the results obtained with this method are close to experimental data for most of the subjects. We also demonstrate that the method is not sensitive to the choice of the reference ankle trajectory; any ankle trajectory leads to very similar result. We finally apply the method to a skeleton of Pan paniscus (Bonobo), and compare the resulting motion to those described by zoologists.

  17. An Unexpected Mode Of Binding Defines BMS948 as A Full Retinoic Acid Receptor β (RARβ, NR1B2 Selective Agonist.

    Directory of Open Access Journals (Sweden)

    Eswarkumar Nadendla

    Full Text Available Retinoic acid is an important regulator of cell differentiation which plays major roles in embryonic development and tissue remodeling. The biological action of retinoic acid is mediated by three nuclear receptors denoted RARα, β and γ. Multiple studies support that RARβ possesses functional characteristics of a tumor suppressor and indeed, its expression is frequently lost in neoplastic tissues. However, it has been recently reported that RARβ could also play a role in mammary gland tumorigenesis, thus demonstrating the important but yet incompletely understood function of this receptor in cancer development. As a consequence, there is a great need for RARβ-selective agonists and antagonists as tools to facilitate the pharmacological analysis of this protein in vitro and in vivo as well as for potential therapeutic interventions. Here we provide experimental evidences that the novel synthetic retinoid BMS948 is an RARβ-selective ligand exhibiting a full transcriptional agonistic activity and activating RARβ as efficiently as the reference agonist TTNPB. In addition, we solved the crystal structures of the RARβ ligand-binding domain in complex with BMS948 and two related compounds, BMS641 and BMS411. These structures provided a rationale to explain how a single retinoid can be at the same time an RARα antagonist and an RARβ full agonist, and revealed the structural basis of partial agonism. Finally, in addition to revealing that a flip by 180° of the amide linker, that usually confers RARα selectivity, accounts for the RARβ selectivity of BMS948, the structural analysis uncovers guidelines for the rational design of RARβ-selective antagonists.

  18. Production in Pichia pastoris, antifungal activity and crystal structure of a class I chitinase from cowpea (Vigna unguiculata): Insights into sugar binding mode and hydrolytic action.

    Science.gov (United States)

    Landim, Patrícia G Castro; Correia, Tuana O; Silva, Fredy D A; Nepomuceno, Denise R; Costa, Helen P S; Pereira, Humberto M; Lobo, Marina D P; Moreno, Frederico B M B; Brandão-Neto, José; Medeiros, Suelen C; Vasconcelos, Ilka M; Oliveira, José T A; Sousa, Bruno L; Barroso-Neto, Ito L; Freire, Valder N; Carvalho, Cristina P S; Monteiro-Moreira, Ana C O; Grangeiro, Thalles B

    2017-04-01

    A cowpea class I chitinase (VuChiI) was expressed in the methylotrophic yeast P. pastoris. The recombinant protein was secreted into the culture medium and purified by affinity chromatography on a chitin matrix. The purified chitinase migrated on SDS-polyacrylamide gel electrophoresis as two closely-related bands with apparent molecular masses of 34 and 37 kDa. The identity of these bands as VuChiI was demonstrated by mass spectrometry analysis of tryptic peptides and N-terminal amino acid sequencing. The recombinant chitinase was able to hydrolyze colloidal chitin but did not exhibit enzymatic activity toward synthetic substrates. The highest hydrolytic activity of the cowpea chitinase toward colloidal chitin was observed at pH 5.0. Furthermore, most VuChiI activity (approximately 92%) was retained after heating to 50 °C for 30 min, whereas treatment with 5 mM Cu(2+) caused a reduction of 67% in the enzyme's chitinolytic activity. The recombinant protein had antifungal activity as revealed by its ability to inhibit the spore germination and mycelial growth of Penicillium herquei. The three-dimensional structure of VuChiI was resolved at a resolution of 1.55 Å by molecular replacement. The refined model had 245 amino acid residues and 381 water molecules, and the final R-factor and Rfree values were 14.78 and 17.22%, respectively. The catalytic domain of VuChiI adopts an α-helix-rich fold, stabilized by 3 disulfide bridges and possessing a wide catalytic cleft. Analysis of the crystallographic model and molecular docking calculations using chito-oligosaccharides provided evidences about the VuChiI residues involved in sugar binding and catalysis, and a possible mechanism of antifungal action is suggested.

  19. Prediction of binding modes between protein L-isoaspartyl (D-aspartyl) O-methyltransferase and peptide substrates including isomerized aspartic acid residues using in silico analytic methods for the substrate screening.

    Science.gov (United States)

    Oda, Akifumi; Noji, Ikuhiko; Fukuyoshi, Shuichi; Takahashi, Ohgi

    2015-12-10

    Because the aspartic acid (Asp) residues in proteins are occasionally isomerized in the human body, not only l-α-Asp but also l-β-Asp, D-α-Asp and D-β-Asp are found in human proteins. In these isomerized aspartic acids, the proportion of D-β-Asp is the largest and the proportions of l-β-Asp and D-α-Asp found in human proteins are comparatively small. To explain the proportions of aspartic acid isomers, the possibility of an enzyme able to repair l-β-Asp and D-α-Asp is frequently considered. The protein L-isoaspartyl (D-aspartyl) O-methyltransferase (PIMT) is considered one of the possible repair enzymes for l-β-Asp and D-α-Asp. Human PIMT is an enzyme that recognizes both l-β-Asp and D-α-Asp, and catalyzes the methylation of their side chains. In this study, the binding modes between PIMT and peptide substrates containing l-β-Asp or D-α-Asp residues were investigated using computational protein-ligand docking and molecular dynamics simulations. The results indicate that carboxyl groups of both l-β-Asp and D-α-Asp were recognized in similar modes by PIMT and that the C-terminal regions of substrate peptides were located in similar positions on PIMT for both the l-β-Asp and D-α-Asp peptides. In contrast, for peptides containing l-α-Asp or D-β-Asp residues, which are not substrates of PIMT, the computationally constructed binding modes between PIMT and peptides greatly differed from those between PIMT and substrates. In the nonsubstrate peptides, not inter- but intra-molecular hydrogen bonds were observed, and the conformations of peptides were more rigid than those of substrates. Thus, the in silico analytical methods were able to distinguish substrates from nonsubstrates and the computational methods are expected to complement experimental analytical methods.

  20. Bipolar-pulses observed by the LRS/WFC-L onboard KAGUYA - Plausible evidence of lunar dust impact -

    Science.gov (United States)

    Kasahara, Yoshiya; Horie, Hiroki; Hashimoto, Kozo; Omura, Yoshiharu; Goto, Yoshitaka; Kumamoto, Atsushi; Ono, Takayuki; Tsunakawa, Hideo; Lrs/Wfc Team; Map/Lmag Team

    2010-05-01

    same) and thus most of bipolar-pulses which can be detected in MONO mode are cancelled in DIFF mode. This fact suggests that these bipolar pulses are not a kind of natural wave but these are caused by instantaneous potential changes of the KAGUYA spacecraft. Discussion: Similar type of bipolar-pulses has been observed by the monopole antenna measurements using Radio and Plasma Wave Science (RPWS) instruments on-board Cassini around Saturn [4]. They demonstrated that these bipolar pulses are caused by impacts of dusts floating around the Saturn. It is well-known that lunar dusts are widely dis-tributed in higher altitude range around the moon and it is plausible that these bipolar pulses are caused by the lunar dust impacts. In the presentation, we show the detailed charac-teristics of bipolar pulses detected by the WFC-L onboard KAGUYA. References: [1] Y. Kasahara et al., Earth, Planets and Space, 60(4), 341-351, 2008. [2] T. Ono et al., Earth, Planets and Space, 60(4), 321-332, 2008. [3] K. Hashimoto et al., The 4th SELENE (KAGUYA) Science Working Team Meeting, (this issue), 2010. [4] W.S. Kurth et al, Planetary and Space Science, 54(9-10), 988-998, 2006.

  1. Concepts for measuring maintenance performance and methods for analysing competing failure modes

    DEFF Research Database (Denmark)

    Cooke, R.; Paulsen, J.L.

    1997-01-01

    competing failure modes. This article examines ways to assess maintenance performance without introducing statistical assumptions, then introduces a plausible statistical model for describing the interaction of preventive and corrective maintenance, and finally illustrates these with examples from...

  2. Preferential selection of isomer binding from chiral mixtures: alternate binding modes observed for the E and Z isomers of a series of 5-substituted 2,4-diaminofuro[2,3-d]pyrimidines as ternary complexes with NADPH and human dihydrofolate reductase

    Energy Technology Data Exchange (ETDEWEB)

    Cody, Vivian, E-mail: cody@hwi.buffalo.edu [Structural Biology Department, Hauptman-Woodward Medical Research Institute, 700 Ellicott Street, Buffalo, NY 14203 (United States); University of Buffalo, 700 Ellicott Street, Buffalo, NY 14203 (United States); Piraino, Jennifer; Pace, Jim [Structural Biology Department, Hauptman-Woodward Medical Research Institute, 700 Ellicott Street, Buffalo, NY 14203 (United States); Li, Wei; Gangjee, Aleem [Graduate Division, Medicinal Chemistry, Duquesne University, Pittsburgh, PA 15213 (United States); Structural Biology Department, Hauptman-Woodward Medical Research Institute, 700 Ellicott Street, Buffalo, NY 14203 (United States)

    2010-12-01

    The structures of six chirally mixed E/Z-isomers of 5-substituted 2,4-diaminofuro[2,3-d]pyrimidines reveals only one isomer is bound in the active site of human DHFR. The configuration of all but one C9-analogue is observed as the E-isomer. The crystal structures of six human dihydrofolate reductase (hDHFR) ternary complexes with NADPH and a series of mixed E/Z isomers of 5-substituted 5-[2-(2-methoxyphenyl)-prop-1-en-1-yl]furo[2,3-d]pyrimidine-2,4-diamines substituted at the C9 position with propyl, isopropyl, cyclopropyl, butyl, isobutyl and sec-butyl (E2–E7, Z3) were determined and the results were compared with the resolved E and Z isomers of the C9-methyl parent compound. The configuration of all of the inhibitors, save one, was observed as the E isomer, in which the binding of the furopyrimidine ring is flipped such that the 4-amino group binds in the 4-oxo site of folate. The Z3 isomer of the C9-isopropyl analog has the normal 2,4-diaminopyrimidine ring binding geometry, with the furo oxygen near Glu30 and the 4-amino group interacting near the cofactor nicotinamide ring. Electron-density maps for these structures revealed the binding of only one isomer to hDHFR, despite the fact that chiral mixtures (E:Z ratios of 2:1, 3:1 and 3:2) of the inhibitors were incubated with hDHFR prior to crystallization. Superposition of the hDHFR complexes with E2 and Z3 shows that the 2′-methoxyphenyl ring of E2 is perpendicular to that of Z3. The most potent inhibitor in this series is the isopropyl analog Z3 and the least potent is the isobutyl analog E6, consistent with data that show that the Z isomer makes the most favorable interactions with the active-site residues. The isobutyl moiety of E6 is observed in two orientations and the resultant steric crowding of the E6 analog is consistent with its weaker activity. The alternative binding modes observed for the furopyrimidine ring in these E/Z isomers suggest that new templates can be designed to probe these binding

  3. Non-canonical 3'-5' extension of RNA with prebiotically plausible ribonucleoside 2',3'-cyclic phosphates.

    Science.gov (United States)

    Mutschler, Hannes; Holliger, Philipp

    2014-04-09

    Ribonucleoside 2',3'-cyclic phosphates (N>p's) are generated by multiple prebiotically plausible processes and are credible building blocks for the assembly of early RNA oligomers. While N>p's can be polymerized into short RNAs by non-enzymatic processes with variable efficiency and regioselectivity, no enzymatic route for RNA synthesis had been described. Here we report such a non-canonical 3'-5' nucleotidyl transferase activity. We engineered a variant of the hairpin ribozyme to catalyze addition of all four N>p's (2',3'-cyclic A-, G-, U-, and CMP) to the 5'-hydroxyl termini of RNA strands with 5' nucleotide addition enhanced in all cases by eutectic ice phase formation at -7 °C. We also observed 5' addition of 2',3'-cyclic phosphate-activated β-nicotinamide adenine dinucleotide (NAD>p) and ACA>p RNA trinucleotide, and multiple additions of GUCCA>p RNA pentamers. Our results establish a new mode of RNA 3'-5' extension with implications for RNA oligomer synthesis from prebiotic nucleotide pools.

  4. Biologically plausible learning in recurrent neural networks reproduces neural dynamics observed during cognitive tasks.

    Science.gov (United States)

    Miconi, Thomas

    2017-02-23

    Neural activity during cognitive tasks exhibits complex dynamics that flexibly encode task-relevant variables. Chaotic recurrent networks, which spontaneously generate rich dynamics, have been proposed as a model of cortical computation during cognitive tasks. However, existing methods for training these networks are either biologically implausible, and/or require a continuous, real-time error signal to guide learning. Here we show that a biologically plausible learning rule can train such recurrent networks, guided solely by delayed, phasic rewards at the end of each trial. Networks endowed with this learning rule can successfully learn nontrivial tasks requiring flexible (context-dependent) associations, memory maintenance, nonlinear mixed selectivities, and coordination among multiple outputs. The resulting networks replicate complex dynamics previously observed in animal cortex, such as dynamic encoding of task features and selective integration of sensory inputs. We conclude that recurrent neural networks offer a plausible model of cortical dynamics during both learning and performance of flexible behavior.

  5. Identifying plausible genetic models based on association and linkage results: application to type 2 diabetes.

    Science.gov (United States)

    Guan, Weihua; Boehnke, Michael; Pluzhnikov, Anna; Cox, Nancy J; Scott, Laura J

    2012-12-01

    When planning resequencing studies for complex diseases, previous association and linkage studies can constrain the range of plausible genetic models for a given locus. Here, we explore the combinations of causal risk allele frequency (RAFC ) and genotype relative risk (GRRC ) consistent with no or limited evidence for affected sibling pair (ASP) linkage and strong evidence for case-control association. We find that significant evidence for case-control association combined with no or moderate evidence for ASP linkage can define a lower bound for the plausible RAFC . Using data from large type 2 diabetes (T2D) linkage and genome-wide association study meta-analyses, we find that under reasonable model assumptions, 23 of 36 autosomal T2D risk loci are unlikely to be due to causal variants with combined RAFC < 0.005, and four of the 23 are unlikely to be due to causal variants with combined RAFC < 0.05.

  6. Acquiring Plausible Predications from MEDLINE by Clustering MeSH Annotations.

    Science.gov (United States)

    Miñarro-Giménez, Jose Antonio; Kreuzthaler, Markus; Bernhardt-Melischnig, Johannes; Martínez-Costa, Catalina; Schulz, Stefan

    2015-01-01

    The massive accumulation of biomedical knowledge is reflected by the growth of the literature database MEDLINE with over 23 million bibliographic records. All records are manually indexed by MeSH descriptors, many of them refined by MeSH subheadings. We use subheading information to cluster types of MeSH descriptor co-occurrences in MEDLINE by processing co-occurrence information provided by the UMLS. The goal is to infer plausible predicates to each resulting cluster. In an initial experiment this was done by grouping disease-pharmacologic substance co-occurrences into six clusters. Then, a domain expert manually performed the assignment of meaningful predicates to the clusters. The mean accuracy of the best ten generated biomedical facts of each cluster was 85%. This result supports the evidence of the potential of MeSH subheadings for extracting plausible medical predications from MEDLINE.

  7. Spelling in oral deaf and hearing dyslexic children: A comparison of phonologically plausible errors.

    Science.gov (United States)

    Roy, P; Shergold, Z; Kyle, F E; Herman, R

    2014-11-01

    A written single word spelling to dictation test and a single word reading test were given to 68 severe-profoundly oral deaf 10-11-year-old children and 20 hearing children with a diagnosis of dyslexia. The literacy scores of the deaf children and the hearing children with dyslexia were lower than expected for children of their age and did not differ from each other. Three quarters of the spelling errors of hearing children with dyslexia compared with just over half the errors of the oral deaf group were phonologically plausible. Expressive vocabulary and speech intelligibility predicted the percentage of phonologically plausible errors in the deaf group only. Implications of findings for the phonological decoding self-teaching model and for supporting literacy development are discussed.

  8. Of paradox and plausibility: the dynamic of change in medical law.

    Science.gov (United States)

    Harrington, John

    2014-01-01

    This article develops a model of change in medical law. Drawing on systems theory, it argues that medical law participates in a dynamic of 'deparadoxification' and 'reparadoxification' whereby the underlying contingency of the law is variously concealed through plausible argumentation, or revealed by critical challenge. Medical law is, thus, thoroughly rhetorical. An examination of the development of the law on abortion and on the sterilization of incompetent adults shows that plausibility is achieved through the deployment of substantive common sense and formal stylistic devices. It is undermined where these elements are shown to be arbitrary and constructed. In conclusion, it is argued that the politics of medical law are constituted by this antagonistic process of establishing and challenging provisionally stable normative regimes.

  9. On the plausible association between environmental conditions and human eye damage.

    Science.gov (United States)

    Feretis, Elias; Theodorakopoulos, Panagiotis; Varotsos, Costas; Efstathiou, Maria; Tzanis, Christos; Xirou, Tzina; Alexandridou, Nancy; Aggelou, Michael

    2002-01-01

    The increase in solar ultraviolet radiation can have various direct and indirect effects on human health, like the incidence of ocular damage. Data of eye damage in residents of three suburban regions in Greece and in two groups of monks/nuns and fishermen are examined here. The statistics performed on these data provides new information about the plausible association between increased levels of solar ultraviolet radiation, air-pollution at ground level, and the development of ocular defects.

  10. Families of Plausible Solutions to the Puzzle of Boyajian’s Star

    Science.gov (United States)

    Wright, Jason T.; Sigurd̵sson, Steinn

    2016-09-01

    Good explanations for the unusual light curve of Boyajian's Star have been hard to find. Recent results by Montet & Simon lend strength and plausibility to the conclusion of Schaefer that in addition to short-term dimmings, the star also experiences large, secular decreases in brightness on decadal timescales. This, combined with a lack of long-wavelength excess in the star's spectral energy distribution, strongly constrains scenarios involving circumstellar material, including hypotheses invoking a spherical cloud of artifacts. We show that the timings of the deepest dimmings appear consistent with being randomly distributed, and that the star's reddening and narrow sodium absorption is consistent with the total, long-term dimming observed. Following Montet & Simon's encouragement to generate alternative hypotheses, we attempt to circumscribe the space of possible explanations with a range of plausibilities, including: a cloud in the outer solar system, structure in the interstellar medium (ISM), natural and artificial material orbiting Boyajian's Star, an intervening object with a large disk, and variations in Boyajian's Star itself. We find the ISM and intervening disk models more plausible than the other natural models.

  11. What happened (and what didn't): Discourse constraints on encoding of plausible alternatives.

    Science.gov (United States)

    Fraundorf, Scott H; Benjamin, Aaron S; Watson, Duane G

    2013-10-01

    Three experiments investigated how font emphasis influences reading and remembering discourse. Although past work suggests that contrastive pitch contours benefit memory by promoting encoding of salient alternatives, it is unclear both whether this effect generalizes to other forms of linguistic prominence and how the set of alternatives is constrained. Participants read discourses in which some true propositions had salient alternatives (e.g., British scientists found the endangered monkey when the discourse also mentioned French scientists) and completed a recognition memory test. In Experiments 1 and 2, font emphasis in the initial presentation increased participants' ability to later reject false statements about salient alternatives but not about unmentioned items (e.g., Portuguese scientists). In Experiment 3, font emphasis helped reject false statements about plausible alternatives, but not about less plausible alternatives that were nevertheless established in the discourse. These results suggest readers encode a narrow set of only those alternatives plausible in the particular discourse. They also indicate that multiple manipulations of linguistic prominence, not just prosody, can lead to consideration of alternatives.

  12. A biologically plausible model of time-scale invariant interval timing.

    Science.gov (United States)

    Almeida, Rita; Ledberg, Anders

    2010-02-01

    The temporal durations between events often exert a strong influence over behavior. The details of this influence have been extensively characterized in behavioral experiments in different animal species. A remarkable feature of the data collected in these experiments is that they are often time-scale invariant. This means that response measurements obtained under intervals of different durations coincide when plotted as functions of relative time. Here we describe a biologically plausible model of an interval timing device and show that it is consistent with time-scale invariant behavior over a substantial range of interval durations. The model consists of a set of bistable units that switch from one state to the other at random times. We first use an abstract formulation of the model to derive exact expressions for some key quantities and to demonstrate time-scale invariance for any range of interval durations. We then show how the model could be implemented in the nervous system through a generic and biologically plausible mechanism. In particular, we show that any system that can display noise-driven transitions from one stable state to another can be used to implement the timing device. Our work demonstrates that a biologically plausible model can qualitatively account for a large body of data and thus provides a link between the biology and behavior of interval timing.

  13. Understanding Karma Police: The Perceived Plausibility of Noun Compounds as Predicted by Distributional Models of Semantic Representation

    Science.gov (United States)

    Günther, Fritz; Marelli, Marco

    2016-01-01

    Noun compounds, consisting of two nouns (the head and the modifier) that are combined into a single concept, differ in terms of their plausibility: school bus is a more plausible compound than saddle olive. The present study investigates which factors influence the plausibility of attested and novel noun compounds. Distributional Semantic Models (DSMs) are used to obtain formal (vector) representations of word meanings, and compositional methods in DSMs are employed to obtain such representations for noun compounds. From these representations, different plausibility measures are computed. Three of those measures contribute in predicting the plausibility of noun compounds: The relatedness between the meaning of the head noun and the compound (Head Proximity), the relatedness between the meaning of modifier noun and the compound (Modifier Proximity), and the similarity between the head noun and the modifier noun (Constituent Similarity). We find non-linear interactions between Head Proximity and Modifier Proximity, as well as between Modifier Proximity and Constituent Similarity. Furthermore, Constituent Similarity interacts non-linearly with the familiarity with the compound. These results suggest that a compound is perceived as more plausible if it can be categorized as an instance of the category denoted by the head noun, if the contribution of the modifier to the compound meaning is clear but not redundant, and if the constituents are sufficiently similar in cases where this contribution is not clear. Furthermore, compounds are perceived to be more plausible if they are more familiar, but mostly for cases where the relation between the constituents is less clear. PMID:27732599

  14. A Novel Discovery of Growth Process for Ag Nanowires and Plausible Mechanism

    Directory of Open Access Journals (Sweden)

    Jiejun Zhu

    2016-01-01

    Full Text Available A novel growth process of silver nanowires was revealed by tracing the morphology evolution of Ag nanostructures fabricated by an improved polyol process. A mixture of Ag nanowires and nanoparticles was obtained with the usage of PVP-K25 (MW = 38,000. The products sampled at different reaction time were studied in detail using UV-visible absorption spectra and transmission electron microscopy (TEM. An interesting phenomenon unknown in the past was observed where Ag nanoparticles undergo an important dissolution-recrystallization process and Ag nanowires are formed at the expense of the preformed Ag nanoparticles. A plausible novel growth mechanism for the silver nanowires was proposed.

  15. ‘One of the Challenges that Can Plausibly Be Raised Against Them’?

    DEFF Research Database (Denmark)

    Holtermann, Jakob v. H.

    2017-01-01

    International criminal tribunals (ICTs) are epistemic engines in the sense that they find (or claim to find) factual truths about such past events that qualify as genocide, crimes against humanity and war crimes. The value of this kind of knowledge would seem to be beyond dispute. Yet, in general...... in law is intimately connected to ordinary truth. Truth-finding capacity therefore does belong in legitimacy debates as a challenge that can plausibly be raised against them. This, in turn makes it relevant, in future research, to map, analyse and interrelate the various critiques that have been launched...

  16. A biological plausible Generalized Leaky Integrate-and-Fire neuron model.

    Science.gov (United States)

    Wang, Zhenzhong; Guo, Lilin; Adjouadi, Malek

    2014-01-01

    This study introduces a new Generalized Leaky Integrate-and-Fire (GLIF) neuron model. Unlike Normal Leaky Integrate-and-Fire (NLIF) models, the leaking resistor in the GLIF model equation is assumed to be variable, and an additional term would have the bias current added to the model equation in order to improve the accuracy. Adjusting the parameters defined for the leaking resistor and bias current, a GLIF model could be accurately matched to any Hodgkin-Huxley (HH) model and be able to reproduce plausible biological neuron behaviors.

  17. Higher Data Quality by Online Data-Entry and Automated Plausibility Checks

    Science.gov (United States)

    Pietragalla, Barbara; Sigg, Christian; Güsewell, Sabine; Clot, Bernard

    2014-05-01

    Long-term phenological observations are now recognized as important indicators for climate change impact studies. With the increased need for phenological data, there is also an increased need for higher data quality. Since 1951 MeteoSwiss has been operating a national phenological observation network. Currently the network consists of about 150 active stations observing up to 69 different phenophases. An important aim of a running three years project at MeteoSwiss is a further increase of the quality of the collected data. The higher data quality will be achieved by an automated procedure performing plausibility checks on the data and by online data-entry. Further measures such as intensified observer instructions and collection of more detailed metadata also contribute to a high data quality standard. The plausibility checks include the natural order of the phenophases within a species and also between different species (with regard to possible natural deviation). Additionally it will be checked if the observed date differs by less than two standard deviations from the average for this phenophase at the altitude of the station. A value outside of these limits is not necessarily a false value, since occurrences of extreme values will be beyond these limits. Therefore, within this check of the limits, the timing of the season of the respective year will also be taken into account. In case of an implausible value a comparison with other stations of the same region and sea level is proposed. A further possibility of data quality control could be to model the different phenophases statistically and to use this model for estimating the likelihood of observed values. An overall exploratory data analysis is currently performed providing a solid basis to implement the best possible methods for the plausibility checks. Important advantages of online data-entry are the near real-time availability of the data as well as the avoidance of various kinds of typical mistakes

  18. Exploring discrepancies between quantitative validation results and the geomorphic plausibility of statistical landslide susceptibility maps

    Science.gov (United States)

    Steger, Stefan; Brenning, Alexander; Bell, Rainer; Petschko, Helene; Glade, Thomas

    2016-06-01

    Empirical models are frequently applied to produce landslide susceptibility maps for large areas. Subsequent quantitative validation results are routinely used as the primary criteria to infer the validity and applicability of the final maps or to select one of several models. This study hypothesizes that such direct deductions can be misleading. The main objective was to explore discrepancies between the predictive performance of a landslide susceptibility model and the geomorphic plausibility of subsequent landslide susceptibility maps while a particular emphasis was placed on the influence of incomplete landslide inventories on modelling and validation results. The study was conducted within the Flysch Zone of Lower Austria (1,354 km2) which is known to be highly susceptible to landslides of the slide-type movement. Sixteen susceptibility models were generated by applying two statistical classifiers (logistic regression and generalized additive model) and two machine learning techniques (random forest and support vector machine) separately for two landslide inventories of differing completeness and two predictor sets. The results were validated quantitatively by estimating the area under the receiver operating characteristic curve (AUROC) with single holdout and spatial cross-validation technique. The heuristic evaluation of the geomorphic plausibility of the final results was supported by findings of an exploratory data analysis, an estimation of odds ratios and an evaluation of the spatial structure of the final maps. The results showed that maps generated by different inventories, classifiers and predictors appeared differently while holdout validation revealed similar high predictive performances. Spatial cross-validation proved useful to expose spatially varying inconsistencies of the modelling results while additionally providing evidence for slightly overfitted machine learning-based models. However, the highest predictive performances were obtained for

  19. A biologically plausible transform for visual recognition that is invariant to translation, scale and rotation

    Directory of Open Access Journals (Sweden)

    Pavel eSountsov

    2011-11-01

    Full Text Available Visual object recognition occurs easily despite differences in position, size, and rotation of the object, but the neural mechanisms responsible for this invariance are not known. We have found a set of transforms that achieve invariance in a neurally plausible way. We find that a transform based on local spatial frequency analysis of oriented segments and on logarithmic mapping, when applied twice in an iterative fashion, produces an output image that is unique to the object and that remains constant as the input image is shifted, scaled or rotated.

  20. In Silico Structure Prediction of Human Fatty Acid Synthase-Dehydratase: A Plausible Model for Understanding Active Site Interactions.

    Science.gov (United States)

    John, Arun; Umashankar, Vetrivel; Samdani, A; Sangeetha, Manoharan; Krishnakumar, Subramanian; Deepa, Perinkulam Ravi

    2016-01-01

    Fatty acid synthase (FASN, UniProt ID: P49327) is a multienzyme dimer complex that plays a critical role in lipogenesis. Consequently, this lipogenic enzyme has gained tremendous biomedical importance. The role of FASN and its inhibition is being extensively researched in several clinical conditions, such as cancers, obesity, and diabetes. X-ray crystallographic structures of some of its domains, such as β-ketoacyl synthase, acetyl transacylase, malonyl transacylase, enoyl reductase, β-ketoacyl reductase, and thioesterase, (TE) are already reported. Here, we have attempted an in silico elucidation of the uncrystallized dehydratase (DH) catalytic domain of human FASN. This theoretical model for DH domain was predicted using comparative modeling methods. Different stand-alone tools and servers were used to validate and check the reliability of the predicted models, which suggested it to be a highly plausible model. The stereochemical analysis showed 92.0% residues in favorable region of Ramachandran plot. The initial physiological substrate β-hydroxybutyryl group was docked into active site of DH domain using Glide. The molecular dynamics simulations carried out for 20 ns in apo and holo states indicated the stability and accuracy of the predicted structure in solvated condition. The predicted model provided useful biochemical insights into the substrate-active site binding mechanisms. This model was then used for identifying potential FASN inhibitors using high-throughput virtual screening of the National Cancer Institute database of chemical ligands. The inhibitory efficacy of the top hit ligands was validated by performing molecular dynamics simulation for 20 ns, where in the ligand NSC71039 exhibited good enzyme inhibition characteristics and exhibited dose-dependent anticancer cytotoxicity in retinoblastoma cancer cells in vitro.

  1. A Biomass-based Model to Estimate the Plausibility of Exoplanet Biosignature Gases

    CERN Document Server

    Seager, S; Hu, R

    2013-01-01

    Biosignature gas detection is one of the ultimate future goals for exoplanet atmosphere studies. We have created a framework for linking biosignature gas detectability to biomass estimates, including atmospheric photochemistry and biological thermodynamics. The new framework is intended to liberate predictive atmosphere models from requiring fixed, Earth-like biosignature gas source fluxes. New biosignature gases can be considered with a check that the biomass estimate is physically plausible. We have validated the models on terrestrial production of NO, H2S, CH4, CH3Cl, and DMS. We have applied the models to propose NH3 as a biosignature gas on a "cold Haber World," a planet with a N2-H2 atmosphere, and to demonstrate why gases such as CH3Cl must have too large of a biomass to be a plausible biosignature gas on planets with Earth or early-Earth-like atmospheres orbiting a Sun-like star. To construct the biomass models, we developed a functional classification of biosignature gases, and found that gases (such...

  2. Self-assembly of phosphate amphiphiles in mixtures of prebiotically plausible surfactants.

    Science.gov (United States)

    Albertsen, A N; Duffy, C D; Sutherland, J D; Monnard, P-A

    2014-06-01

    The spontaneous formation of closed bilayer structures from prebiotically plausible amphiphiles is an essential requirement for the emergence of early cells on prebiotic Earth. The sources of amphiphiles could have been both endo- and exogenous (accretion of meteorite carbonaceous material or interstellar dust particles). Among all prebiotic possible amphiphile candidates, those containing phosphate are the least investigated species because their self-assembly occurs in a seemingly too narrow range of conditions. The self-assembly of simple phosphate amphiphiles should, however, be of great interest, as contemporary membranes predominantly contain phospholipids. In contrast to common expectations, we show that these amphiphiles can be easily synthesized under prebiotically plausible environmental conditions and can efficiently form bilayer structures in the presence of various co-surfactants across a large range of pH values. Vesiculation was even observed in crude reaction mixtures that contained 1-decanol as the amphiphile precursor. The two best co-surfactants promoted vesicle formation over the entire pH range in aqueous solutions. Expanding the pH range where bilayer membranes self-assemble and remain intact is a prerequisite for the emergence of early cell-like compartments and their preservation under fluctuating environmental conditions. These mixed bilayers also retained small charged solutes, such as dyes. These results demonstrate that alkyl phosphate amphiphiles might have played a significant role as early compartment building blocks.

  3. A swarm intelligence framework for reconstructing gene networks: searching for biologically plausible architectures.

    Science.gov (United States)

    Kentzoglanakis, Kyriakos; Poole, Matthew

    2012-01-01

    In this paper, we investigate the problem of reverse engineering the topology of gene regulatory networks from temporal gene expression data. We adopt a computational intelligence approach comprising swarm intelligence techniques, namely particle swarm optimization (PSO) and ant colony optimization (ACO). In addition, the recurrent neural network (RNN) formalism is employed for modeling the dynamical behavior of gene regulatory systems. More specifically, ACO is used for searching the discrete space of network architectures and PSO for searching the corresponding continuous space of RNN model parameters. We propose a novel solution construction process in the context of ACO for generating biologically plausible candidate architectures. The objective is to concentrate the search effort into areas of the structure space that contain architectures which are feasible in terms of their topological resemblance to real-world networks. The proposed framework is initially applied to the reconstruction of a small artificial network that has previously been studied in the context of gene network reverse engineering. Subsequently, we consider an artificial data set with added noise for reconstructing a subnetwork of the genetic interaction network of S. cerevisiae (yeast). Finally, the framework is applied to a real-world data set for reverse engineering the SOS response system of the bacterium Escherichia coli. Results demonstrate the relative advantage of utilizing problem-specific knowledge regarding biologically plausible structural properties of gene networks over conducting a problem-agnostic search in the vast space of network architectures.

  4. The Sarrazin effect: the presence of absurd statements in conspiracy theories makes canonical information less plausible.

    Science.gov (United States)

    Raab, Marius Hans; Auer, Nikolas; Ortlieb, Stefan A; Carbon, Claus-Christian

    2013-01-01

    Reptile prime ministers and flying Nazi saucers-extreme and sometimes off-wall conclusion are typical ingredients of conspiracy theories. While individual differences are a common research topic concerning conspiracy theories, the role of extreme statements in the process of acquiring and passing on conspiratorial stories has not been regarded in an experimental design so far. We identified six morphological components of conspiracy theories empirically. On the basis of these content categories a set of narrative elements for a 9/11 story was compiled. These elements varied systematically in terms of conspiratorial allegation, i.e., they contained official statements concerning the events of 9/11, statements alleging to a conspiracy limited in time and space as well as extreme statements indicating an all-encompassing cover-up. Using the method of narrative construction, 30 people were given a set of cards with these statements and asked to construct the course of events of 9/11 they deem most plausible. When extreme statements were present in the set, the resulting stories were more conspiratorial; the number of official statements included in the narrative dropped significantly, whereas the self-assessment of the story's plausibility did not differ between conditions. This indicates that blatant statements in a pool of information foster the synthesis of conspiracy theories on an individual level. By relating these findings to one of Germany's most successful (and controversial) non-fiction books, we refer to the real-world dangers of this effect.

  5. The structure of an LIM-only protein 4 (LMO4 and Deformed epidermal autoregulatory factor-1 (DEAF1 complex reveals a common mode of binding to LMO4.

    Directory of Open Access Journals (Sweden)

    Soumya Joseph

    Full Text Available LIM-domain only protein 4 (LMO4 is a widely expressed protein with important roles in embryonic development and breast cancer. It has been reported to bind many partners, including the transcription factor Deformed epidermal autoregulatory factor-1 (DEAF1, with which LMO4 shares many biological parallels. We used yeast two-hybrid assays to show that DEAF1 binds both LIM domains of LMO4 and that DEAF1 binds the same face on LMO4 as two other LMO4-binding partners, namely LIM domain binding protein 1 (LDB1 and C-terminal binding protein interacting protein (CtIP/RBBP8. Mutagenic screening analysed by the same method, indicates that the key residues in the interaction lie in LMO4LIM2 and the N-terminal half of the LMO4-binding domain in DEAF1. We generated a stable LMO4LIM2-DEAF1 complex and determined the solution structure of that complex. Although the LMO4-binding domain from DEAF1 is intrinsically disordered, it becomes structured on binding. The structure confirms that LDB1, CtIP and DEAF1 all bind to the same face on LMO4. LMO4 appears to form a hub in protein-protein interaction networks, linking numerous pathways within cells. Competitive binding for LMO4 therefore most likely provides a level of regulation between those different pathways.

  6. A neurophysiologically plausible population code model for feature integration explains visual crowding.

    Directory of Open Access Journals (Sweden)

    Ronald van den Berg

    2010-01-01

    Full Text Available An object in the peripheral visual field is more difficult to recognize when surrounded by other objects. This phenomenon is called "crowding". Crowding places a fundamental constraint on human vision that limits performance on numerous tasks. It has been suggested that crowding results from spatial feature integration necessary for object recognition. However, in the absence of convincing models, this theory has remained controversial. Here, we present a quantitative and physiologically plausible model for spatial integration of orientation signals, based on the principles of population coding. Using simulations, we demonstrate that this model coherently accounts for fundamental properties of crowding, including critical spacing, "compulsory averaging", and a foveal-peripheral anisotropy. Moreover, we show that the model predicts increased responses to correlated visual stimuli. Altogether, these results suggest that crowding has little immediate bearing on object recognition but is a by-product of a general, elementary integration mechanism in early vision aimed at improving signal quality.

  7. A neurophysiologically plausible population code model for feature integration explains visual crowding.

    Science.gov (United States)

    van den Berg, Ronald; Roerdink, Jos B T M; Cornelissen, Frans W

    2010-01-22

    An object in the peripheral visual field is more difficult to recognize when surrounded by other objects. This phenomenon is called "crowding". Crowding places a fundamental constraint on human vision that limits performance on numerous tasks. It has been suggested that crowding results from spatial feature integration necessary for object recognition. However, in the absence of convincing models, this theory has remained controversial. Here, we present a quantitative and physiologically plausible model for spatial integration of orientation signals, based on the principles of population coding. Using simulations, we demonstrate that this model coherently accounts for fundamental properties of crowding, including critical spacing, "compulsory averaging", and a foveal-peripheral anisotropy. Moreover, we show that the model predicts increased responses to correlated visual stimuli. Altogether, these results suggest that crowding has little immediate bearing on object recognition but is a by-product of a general, elementary integration mechanism in early vision aimed at improving signal quality.

  8. Quantum theory as plausible reasoning applied to data obtained by robust experiments.

    Science.gov (United States)

    De Raedt, H; Katsnelson, M I; Michielsen, K

    2016-05-28

    We review recent work that employs the framework of logical inference to establish a bridge between data gathered through experiments and their objective description in terms of human-made concepts. It is shown that logical inference applied to experiments for which the observed events are independent and for which the frequency distribution of these events is robust with respect to small changes of the conditions under which the experiments are carried out yields, without introducing any concept of quantum theory, the quantum theoretical description in terms of the Schrödinger or the Pauli equation, the Stern-Gerlach or Einstein-Podolsky-Rosen-Bohm experiments. The extraordinary descriptive power of quantum theory then follows from the fact that it is plausible reasoning, that is common sense, applied to reproducible and robust experimental data.

  9. Plausible families of compact objects with a Non Local Equation of State

    CERN Document Server

    Hernández, H

    2012-01-01

    We investigate the plausibility of some models emerging from an algorithm devised to generate a one-parameter family of interior solutions for the Einstein equations. It is explored how their physical variables change as the family-parameter varies. The models studied correspond to anisotropic spherical matter configurations having a non local equation of state. This particular type of equation of state with no causality problems provides, at a given point, the radial pressure not only as a function of the density but as a functional of the enclosed matter distribution. We have found that there are several model-independent tendencies as the parameter increases: the equation of state tends to be stiffer and the total mass becomes half of its external radius. Profiting from the concept of cracking of materials in General Relativity, we obtain that those models become more stable as the family parameter increases.

  10. Signature of Plausible Accreting Supermassive Black Holes in Mrk 261/262 and Mrk 266

    Directory of Open Access Journals (Sweden)

    Gagik Ter-Kazarian

    2013-01-01

    Full Text Available We address the neutrino radiation of plausible accreting supermassive black holes closely linking to the 5 nuclear components of galaxy samples of Mrk 261/262 and Mrk 266. We predict a time delay before neutrino emission of the same scale as the age of the Universe. The ultrahigh energy neutrinos are produced in superdense protomatter medium via simple (quark or pionic reactions or modified URCA processes (G. Gamow was inspired to name the process URCA after the name of a casino in Rio de Janeiro. The resulting neutrino fluxes for quark reactions are ranging from to , where is the opening parameter. For pionic and modified URCA reactions, the fluxes are and , respectively. These fluxes are highly beamed along the plane of accretion disk, peaked at ultrahigh energies, and collimated in smaller opening angle .

  11. Plausible role of nanoparticle contamination in the synthesis and properties of organic electronic materials

    Science.gov (United States)

    Ananikov, Valentine P.

    2016-12-01

    Traceless transition metal catalysis (Pd, Ni, Cu, etc.) is very difficult to achieve. Metal contamination in the synthesized products is unavoidable and the most important questions are: How to control metal impurities? What amount of metal impurities can be tolerated? What is the influence of metal impurities? In this brief review, the plausible origins of nanoparticle contamination are discussed in the framework of catalytic synthesis of organic electronic materials. Key factors responsible for increasing the probability of contamination are considered from the point of view of catalytic reaction mechanisms. The purity of the catalyst may greatly affect the molecular weight of a polymer, reaction yield, selectivity and several other parameters. Metal contamination in the final polymeric products may induce some changes in the electric conductivity, charge transport properties, photovoltaic performance and other important parameters.

  12. Spontaneous formation and base pairing of plausible prebiotic nucleotides in water.

    Science.gov (United States)

    Cafferty, Brian J; Fialho, David M; Khanam, Jaheda; Krishnamurthy, Ramanarayanan; Hud, Nicholas V

    2016-04-25

    The RNA World hypothesis presupposes that abiotic reactions originally produced nucleotides, the monomers of RNA and universal constituents of metabolism. However, compatible prebiotic reactions for the synthesis of complementary (that is, base pairing) nucleotides and mechanisms for their mutual selection within a complex chemical environment have not been reported. Here we show that two plausible prebiotic heterocycles, melamine and barbituric acid, form glycosidic linkages with ribose and ribose-5-phosphate in water to produce nucleosides and nucleotides in good yields. Even without purification, these nucleotides base pair in aqueous solution to create linear supramolecular assemblies containing thousands of ordered nucleotides. Nucleotide anomerization and supramolecular assemblies favour the biologically relevant β-anomer form of these ribonucleotides, revealing abiotic mechanisms by which nucleotide structure and configuration could have been originally favoured. These findings indicate that nucleotide formation and selection may have been robust processes on the prebiotic Earth, if other nucleobases preceded those of extant life.

  13. Complex adaptive HIV/AIDS risk reduction: Plausible implications from findings in Limpopo Province, South Africa.

    Science.gov (United States)

    Burman, Chris J; Aphane, Marota A

    2016-05-16

    This article emphasises that when working with complex adaptive systems it is possible to stimulate new social practices and/or cognitive perspectives that contribute to risk reduction, associated with reducing aggregate community viral loads. The process of achieving this is highly participatory and is methodologically possible because evidence of 'attractors' that influence the social practices can be identified using qualitative research techniques. Using findings from Limpopo Province, South Africa, we argue that working with 'wellness attractors' and increasing their presence within the HIV/AIDS landscape could influence aggregate community viral loads. While the analysis that is presented is unconventional, it is plausible that this perspective may hold potential to develop a biosocial response - which the Joint United Nations Programme on HIV and AIDS (UNAIDS) has called for - that reinforces the biomedical opportunities that are now available to achieve the ambition of ending AIDS by 2030.

  14. Reciprocity-based reasons for benefiting research participants: most fail, the most plausible is problematic.

    Science.gov (United States)

    Sofaer, Neema

    2014-11-01

    A common reason for giving research participants post-trial access (PTA) to the trial intervention appeals to reciprocity, the principle, stated most generally, that if one person benefits a second, the second should reciprocate: benefit the first in return. Many authors consider it obvious that reciprocity supports PTA. Yet their reciprocity principles differ, with many authors apparently unaware of alternative versions. This article is the first to gather the range of reciprocity principles. It finds that: (1) most are false. (2) The most plausible principle, which is also problematic, applies only when participants experience significant net risks or burdens. (3) Seldom does reciprocity support PTA for participants or give researchers stronger reason to benefit participants than equally needy non-participants. (4) Reciprocity fails to explain the common view that it is bad when participants in a successful trial have benefited from the trial intervention but lack PTA to it.

  15. Oxidation of cefazolin by potassium permanganate: Transformation products and plausible pathways.

    Science.gov (United States)

    Li, Liping; Wei, Dongbin; Wei, Guohua; Du, Yuguo

    2016-04-01

    Cefazolin was demonstrated to exert high reactivity toward permanganate (Mn(VII)), a common oxidant in water pre-oxidation treatment. In this study, five transformation products were found to be classified into three categories according to the contained characteristic functional groups: three (di-)sulfoxide products, one sulfone product and one di-ketone product. Products analyses showed that two kinds of reactions including oxidation of thioether and the cleavage of unsaturated CC double bond occurred during transformation of cefazolin by Mn(VII). Subsequently, the plausible transformation pathways under different pH conditions were proposed based on the identified products and chemical reaction principles. More importantly, the simulation with real surface water matrix indicated that the proposed transformation pathways of cefazolin could be replayed in real water treatment practices.

  16. Plausible authentication of manuka honey and related products by measuring leptosperin with methyl syringate.

    Science.gov (United States)

    Kato, Yoji; Fujinaka, Rie; Ishisaka, Akari; Nitta, Yoko; Kitamoto, Noritoshi; Takimoto, Yosuke

    2014-07-01

    Manuka honey, obtained from Leptospermum scoparium flowers in New Zealand, has strong antibacterial properties. In this study, plausible authentication of the manuka honey was inspected by measuring leptosperin, methyl syringate 4-O-β-D-gentiobiose, along with methyl syringate. Despite a gradual decrease in methyl syringate content over 30 days at 50 °C, even at moderate 37 °C, leptosperin remained stable. A considerable correlation between nonperoxide antibacterial activity and leptosperin content was observed in 20 certified manuka honey samples. Leptosperin and methyl syringate in manuka honey and related products were analyzed using HPLC connected with mass spectrometry. One noncertified brand displayed significant variations in the leptosperin and methyl syringate contents between two samples obtained from different regions. Therefore, certification is clearly required to protect consumers from disguised and/or low-quality honey. Because leptosperin is stable during storage and specific to manuka honey, its measurement may be applicable for manuka honey authentication.

  17. A plausible simultaneous synthesis of amino acids and simple peptides on the primordial Earth.

    Science.gov (United States)

    Parker, Eric T; Zhou, Manshui; Burton, Aaron S; Glavin, Daniel P; Dworkin, Jason P; Krishnamurthy, Ramanarayanan; Fernández, Facundo M; Bada, Jeffrey L

    2014-07-28

    Following his seminal work in 1953, Stanley Miller conducted an experiment in 1958 to study the polymerization of amino acids under simulated early Earth conditions. In the experiment, Miller sparked a gas mixture of CH4, NH3, and H2O, while intermittently adding the plausible prebiotic condensing reagent cyanamide. For unknown reasons, an analysis of the samples was not reported. We analyzed the archived samples for amino acids, dipeptides, and diketopiperazines by liquid chromatography, ion mobility spectrometry, and mass spectrometry. A dozen amino acids, 10 glycine-containing dipeptides, and 3 glycine-containing diketopiperazines were detected. Miller's experiment was repeated and similar polymerization products were observed. Aqueous heating experiments indicate that Strecker synthesis intermediates play a key role in facilitating polymerization. These results highlight the potential importance of condensing reagents in generating diversity within the prebiotic chemical inventory.

  18. Evaluation and integration of cancer gene classifiers: identification and ranking of plausible drivers.

    Science.gov (United States)

    Liu, Yang; Tian, Feng; Hu, Zhenjun; DeLisi, Charles

    2015-05-11

    The number of mutated genes in cancer cells is far larger than the number of mutations that drive cancer. The difficulty this creates for identifying relevant alterations has stimulated the development of various computational approaches to distinguishing drivers from bystanders. We develop and apply an ensemble classifier (EC) machine learning method, which integrates 10 classifiers that are publically available, and apply it to breast and ovarian cancer. In particular we find the following: (1) Using both standard and non-standard metrics, EC almost always outperforms single method classifiers, often by wide margins. (2) Of the 50 highest ranked genes for breast (ovarian) cancer, 34 (30) are associated with other cancers in either the OMIM, CGC or NCG database (P plausible. Biological implications are briefly discussed. Source codes and detailed results are available at http://www.visantnet.org/misi/driver_integration.zip.

  19. Probability, plausibility, and adequacy evaluations of the Oriente Study demonstrate that supplementation improved child growth.

    Science.gov (United States)

    Habicht, Jean-Pierre; Martorell, Reynaldo

    2010-02-01

    This article presents evidence that the high-nutrient supplement in the Oriente study (Atole) improved child growth. The evidence is presented at 4 levels. There was a causal effect of the intervention on child length, as assessed by probability analyses of the randomized, controlled trial (P < 0.05). The plausibility analyses, which included an examination of wasting, showed that the nutritional impact was due to the Atole, especially in those who were <3 y old and who suffered from diarrhea. The adequacy analyses revealed excellent biological efficacy of the Atole at the individual level. At the level of the whole population, the efficacy of impact was much less, because many children did not participate fully in the supplementation program. The external validity of the biological impact is likely to be good for populations with similar diets and medical care.

  20. The Sarrazin effect: the presence of absurd statements in conspiracy theories makes canonical information less plausible

    Directory of Open Access Journals (Sweden)

    Marius Hans Raab

    2013-07-01

    Full Text Available Reptile prime ministers and flying Nazi saucers—extreme and sometimes off-wall conclusion are common ingredients of conspiracy theories. While individual differences are a common research topic concerning conspiracy theories, the role of extreme statements in the process of acquiring and passing on conspiratorial stories has not been regarded in an experimental design so far. We identified six morphological components of conspiracy theories empirically. On the basis of these content categories a set of narrative elements for a 9/11 story was compiled. These elements varied systematically in terms of conspiratorial allegation, i.e., they contained official statements concerning the events of 9/11, statements alleging to a conspiracy limited in time and space as well as extreme statements indicating an all-encompassing cover-up. Using the method of narrative construction, 30 people were given a set of cards with these statements and asked to construct the course of events of 9/11 they deem most plausible. When extreme statements were present in the set, the resulting stories were more conspiratorial; the number of official statements included in the narrative dropped significantly, whereas the self-assessment of the story’s plausibility did not differ between conditions. This indicates that blatant statements in a pool of information foster the synthesis of conspiracy theories on an individual level. By relating these findings to one of Germany’s most successful (and controversial non-fiction books, we refer to the real-world dangers of this effect.

  1. Insights into the binding specificity of wild type and mutated wheat germ agglutinin towards Neu5Acα(2-3)Gal: a study by in silico mutations and molecular dynamics simulations.

    Science.gov (United States)

    Parasuraman, Ponnusamy; Murugan, Veeramani; Selvin, Jeyasigamani F A; Gromiha, M Michael; Fukui, Kazuhiko; Veluraja, Kasinadar

    2014-08-01

    Wheat germ agglutinin (WGA) is a plant lectin, which specifically recognizes the sugars NeuNAc and GlcNAc. Mutated WGA with enhanced binding specificity can be used as biomarkers for cancer. In silico mutations are performed at the active site of WGA to enhance the binding specificity towards sialylglycans, and molecular dynamics simulations of 20 ns are carried out for wild type and mutated WGAs (WGA1, WGA2, and WGA3) in complex with sialylgalactose to examine the change in binding specificity. MD simulations reveal the change in binding specificity of wild type and mutated WGAs towards sialylgalactose and bound conformational flexibility of sialylgalactose. The mutated polar amino acid residues Asn114 (S114N), Lys118 (G118K), and Arg118 (G118R) make direct and water mediated hydrogen bonds and hydrophobic interactions with sialylgalactose. An analysis of possible hydrogen bonds, hydrophobic interactions, total pair wise interaction energy between active site residues and sialylgalactose and MM-PBSA free energy calculation reveals the plausible binding modes and the role of water in stabilizing different binding modes. An interesting observation is that the binding specificity of mutated WGAs (cyborg lectin) towards sialylgalactose is found to be higher in double point mutation (WGA3). One of the substituted residues Arg118 plays a crucial role in sugar binding. Based on the interactions and energy calculations, it is concluded that the order of binding specificity of WGAs towards sialylgalactose is WGA3 > WGA1 > WGA2 > WGA. On comparing with the wild type, double point mutated WGA (WGA3) exhibits increased specificity towards sialylgalactose, and thus, it can be effectively used in targeted drug delivery and as biological cell marker in cancer therapeutics. Copyright © 2014 John Wiley & Sons, Ltd.

  2. Copper complexes relevant to the catalytic cycle of copper nitrite reductase: electrochemical detection of NO(g) evolution and flipping of NO2 binding mode upon Cu(II) → Cu(I) reduction.

    Science.gov (United States)

    Maji, Ram Chandra; Barman, Suman Kumar; Roy, Suprakash; Chatterjee, Sudip K; Bowles, Faye L; Olmstead, Marilyn M; Patra, Apurba K

    2013-10-07

    Copper complexes of the deprotonated tridentate ligand, N-2-methylthiophenyl-2'-pyridinecarboxamide (HL1), were synthesized and characterized as part of our investigation into the reduction of copper(II) o-nitrito complexes into the related copper nitric oxide complexes and subsequent evolution of NO(g) such as occurs in the enzyme copper nitrite reductase. Our studies afforded the complexes [(L1)Cu(II)Cl]n (1), [(L1)Cu(II)(ONO)] (2), [(L1)Cu(II)(H2O)](ClO4)·H2O (3·H2O), [(L1)Cu(II)(CH3OH)](ClO4) (4), [(L1)Cu(II)(CH3CO2)]·H2O (5·H2O), and [Co(Cp)2][(L1)Cu(I)(NO2)(CH3CN)] (6). X-ray crystal structure determinations revealed distorted square-pyramidal coordination geometry around Cu(II) ion in 1-5. Substitution of the H2O of 3 by nitrite quantitatively forms 2, featuring the κ(2)-O,O binding mode of NO2(-) to Cu(II). Reduction of 2 generates two Cu(I) species, one with κ(1)-O and other with the κ(1)-N bonded NO2(-) group. The Cu(I) analogue of 2, compound 6, was synthesized. The FTIR spectrum of 6 reveals the presence of κ(1)-N bonded NO2(-). Constant potential electrolysis corresponding to Cu(II) → Cu(I) reduction of a CH3CN solution of 2 followed by reaction with acids, CH3CO2H or HClO4 generates 5 or 3, and NO(g), identified electrochemically. The isolated Cu(I) complex 6 independently evolves one equivalent of NO(g) upon reaction with acids. Production of NO(g) was confirmed by forming [Co(TPP)NO] in CH2Cl2 (λ(max) in CH2Cl2: 414 and 536 nm, ν(NO) = 1693 cm(-1)).

  3. Molecular docking and dynamic simulation studies evidenced plausible immunotherapeutic anticancer property by Withaferin A targeting indoleamine 2,3-dioxygenase.

    Science.gov (United States)

    Reddy, S V G; Reddy, K Thammi; Kumari, V Valli; Basha, Syed Hussain

    2015-01-01

    Indoleamine 2,3-dioxygenase (IDO) is emerging as an important new therapeutic drug target for the treatment of cancer characterized by pathological immune suppression. IDO catalyzes the rate-limiting step of tryptophan degradation along the kynurenine pathway. Reduction in local tryptophan concentration and the production of immunomodulatory tryptophan metabolites contribute to the immunosuppressive effects of IDO. Presence of IDO on dentritic cells in tumor-draining lymph nodes leading to the activation of T cells toward forming immunosuppressive microenvironment for the survival of tumor cells has confirmed the importance of IDO as a promising novel anticancer immunotherapy drug target. On the other hand, Withaferin A (WA) - active constituent of Withania Somnifera ayurvedic herb has shown to be having a wide range of targeted anticancer properties. In the present study conducted here is an attempt to explore the potential of WA in attenuating IDO for immunotherapeutic tumor arresting activity and to elucidate the underlying mode of action in a computational approach. Our docking and molecular dynamic simulation results predict high binding affinity of the ligand to the receptor with up to -11.51 kcal/mol of energy and 3.63 nM of IC50 value. Further, de novo molecular dynamic simulations predicted stable ligand interactions with critically important residues SER167; ARG231; LYS377, and heme moiety involved in IDO's activity. Conclusively, our results strongly suggest WA as a valuable small ligand molecule with strong binding affinity toward IDO.

  4. Semantics-based plausible reasoning to extend the knowledge coverage of medical knowledge bases for improved clinical decision support.

    Science.gov (United States)

    Mohammadhassanzadeh, Hossein; Van Woensel, William; Abidi, Samina Raza; Abidi, Syed Sibte Raza

    2017-01-01

    Capturing complete medical knowledge is challenging-often due to incomplete patient Electronic Health Records (EHR), but also because of valuable, tacit medical knowledge hidden away in physicians' experiences. To extend the coverage of incomplete medical knowledge-based systems beyond their deductive closure, and thus enhance their decision-support capabilities, we argue that innovative, multi-strategy reasoning approaches should be applied. In particular, plausible reasoning mechanisms apply patterns from human thought processes, such as generalization, similarity and interpolation, based on attributional, hierarchical, and relational knowledge. Plausible reasoning mechanisms include inductive reasoning, which generalizes the commonalities among the data to induce new rules, and analogical reasoning, which is guided by data similarities to infer new facts. By further leveraging rich, biomedical Semantic Web ontologies to represent medical knowledge, both known and tentative, we increase the accuracy and expressivity of plausible reasoning, and cope with issues such as data heterogeneity, inconsistency and interoperability. In this paper, we present a Semantic Web-based, multi-strategy reasoning approach, which integrates deductive and plausible reasoning and exploits Semantic Web technology to solve complex clinical decision support queries. We evaluated our system using a real-world medical dataset of patients with hepatitis, from which we randomly removed different percentages of data (5%, 10%, 15%, and 20%) to reflect scenarios with increasing amounts of incomplete medical knowledge. To increase the reliability of the results, we generated 5 independent datasets for each percentage of missing values, which resulted in 20 experimental datasets (in addition to the original dataset). The results show that plausibly inferred knowledge extends the coverage of the knowledge base by, on average, 2%, 7%, 12%, and 16% for datasets with, respectively, 5%, 10%, 15%, and

  5. Biologic plausibility, cellular effects, and molecular mechanisms of eicosapentaenoic acid (EPA) in atherosclerosis.

    Science.gov (United States)

    Borow, Kenneth M; Nelson, John R; Mason, R Preston

    2015-09-01

    Residual cardiovascular (CV) risk remains in dyslipidemic patients despite intensive statin therapy, underscoring the need for additional intervention. Eicosapentaenoic acid (EPA), an omega-3 polyunsaturated fatty acid, is incorporated into membrane phospholipids and atherosclerotic plaques and exerts beneficial effects on the pathophysiologic cascade from onset of plaque formation through rupture. Specific salutary actions have been reported relating to endothelial function, oxidative stress, foam cell formation, inflammation, plaque formation/progression, platelet aggregation, thrombus formation, and plaque rupture. EPA also improves atherogenic dyslipidemia characterized by reduction of triglycerides without raising low-density lipoprotein cholesterol. Other beneficial effects of EPA include vasodilation, resulting in blood pressure reductions, as well as improved membrane fluidity. EPA's effects are at least additive to those of statins when given as adjunctive therapy. In this review, we present data supporting the biologic plausibility of EPA as an anti-atherosclerotic agent with potential clinical benefit for prevention of CV events, as well as its cellular effects and molecular mechanisms of action. REDUCE-IT is an ongoing, randomized, controlled study evaluating whether the high-purity ethyl ester of EPA (icosapent ethyl) at 4 g/day combined with statin therapy is superior to statin therapy alone for reducing CV events in high-risk patients with mixed dyslipidemia. The results from this study are expected to clarify the role of EPA as adjunctive therapy to a statin for reduction of residual CV risk.

  6. Mindfulness and Cardiovascular Disease Risk: State of the Evidence, Plausible Mechanisms, and Theoretical Framework.

    Science.gov (United States)

    Loucks, Eric B; Schuman-Olivier, Zev; Britton, Willoughby B; Fresco, David M; Desbordes, Gaelle; Brewer, Judson A; Fulwiler, Carl

    2015-12-01

    The purpose of this review is to provide (1) a synopsis on relations of mindfulness with cardiovascular disease (CVD) and major CVD risk factors, and (2) an initial consensus-based overview of mechanisms and theoretical framework by which mindfulness might influence CVD. Initial evidence, often of limited methodological quality, suggests possible impacts of mindfulness on CVD risk factors including physical activity, smoking, diet, obesity, blood pressure, and diabetes regulation. Plausible mechanisms include (1) improved attention control (e.g., ability to hold attention on experiences related to CVD risk, such as smoking, diet, physical activity, and medication adherence), (2) emotion regulation (e.g., improved stress response, self-efficacy, and skills to manage craving for cigarettes, palatable foods, and sedentary activities), and (3) self-awareness (e.g., self-referential processing and awareness of physical sensations due to CVD risk factors). Understanding mechanisms and theoretical framework should improve etiologic knowledge, providing customized mindfulness intervention targets that could enable greater mindfulness intervention efficacy.

  7. A plausible (overlooked) super-luminous supernova in the SDSS Stripe 82 data

    CERN Document Server

    Kostrzewa-Rutkowska, Zuzanna; Wyrzykowski, Lukasz; Djorgovski, S George; Glikman, Eilat; Mahabal, Ashish A

    2013-01-01

    We present the discovery of a plausible super-luminous supernova (SLSN), found in the archival data of Sloan Digital Sky Survey (SDSS) Stripe 82, called PSN 000123+000504. The supernova peaked at M_g<-21.3 mag in the second half of September 2005, but was missed by the real-time supernova hunt. The observed part of the light curve (17 epochs) showed that the rise to the maximum took over 30 days, while the decline time lasted at least 70 days (observed frame), closely resembling other SLSNe of SN2007bi type. Spectrum of the host galaxy reveals a redshift of z=0.281 and the distance modulus of \\mu=40.77 mag. Combining this information with the SDSS photometry, we found the host galaxy to be an LMC-like irregular dwarf galaxy with the absolute magnitude of M_B=-18.2+/-0.2 mag and the oxygen abundance of 12+log[O/H]=8.3+/-0.2. Our SLSN follows the relation for the most energetic/super-luminous SNe exploding in low-metallicity environments, but we found no clear evidence for SLSNe to explode in low-luminosity ...

  8. Event-based plausibility immediately influences on-line language comprehension.

    Science.gov (United States)

    Matsuki, Kazunaga; Chow, Tracy; Hare, Mary; Elman, Jeffrey L; Scheepers, Christoph; McRae, Ken

    2011-07-01

    In some theories of sentence comprehension, linguistically relevant lexical knowledge, such as selectional restrictions, is privileged in terms of the time-course of its access and influence. We examined whether event knowledge computed by combining multiple concepts can rapidly influence language understanding even in the absence of selectional restriction violations. Specifically, we investigated whether instruments can combine with actions to influence comprehension of ensuing patients of (as in Rayner, Warren, Juhuasz, & Liversedge, 2004; Warren & McConnell, 2007). Instrument-verb-patient triplets were created in a norming study designed to tap directly into event knowledge. In self-paced reading (Experiment 1), participants were faster to read patient nouns, such as hair, when they were typical of the instrument-action pair (Donna used the shampoo to wash vs. the hose to wash). Experiment 2 showed that these results were not due to direct instrument-patient relations. Experiment 3 replicated Experiment 1 using eyetracking, with effects of event typicality observed in first fixation and gaze durations on the patient noun. This research demonstrates that conceptual event-based expectations are computed and used rapidly and dynamically during on-line language comprehension. We discuss relationships among plausibility and predictability, as well as their implications. We conclude that selectional restrictions may be best considered as event-based conceptual knowledge rather than lexical-grammatical knowledge.

  9. From ether to acid: A plausible degradation pathway of glycerol dialkyl glycerol tetraethers

    Science.gov (United States)

    Liu, Xiao-Lei; Birgel, Daniel; Elling, Felix J.; Sutton, Paul A.; Lipp, Julius S.; Zhu, Rong; Zhang, Chuanlun; Könneke, Martin; Peckmann, Jörn; Rowland, Steven J.; Summons, Roger E.; Hinrichs, Kai-Uwe

    2016-06-01

    Glycerol dialkyl glycerol tetraethers (GDGTs) are ubiquitous microbial lipids with extensive demonstrated and potential roles as paleoenvironmental proxies. Despite the great attention they receive, comparatively little is known regarding their diagenetic fate. Putative degradation products of GDGTs, identified as hydroxyl and carboxyl derivatives, were detected in lipid extracts of marine sediment, seep carbonate, hot spring sediment and cells of the marine thaumarchaeon Nitrosopumilus maritimus. The distribution of GDGT degradation products in environmental samples suggests that both biotic and abiotic processes act as sinks for GDGTs. More than a hundred newly recognized degradation products afford a view of the stepwise degradation of GDGT via (1) ether bond hydrolysis yielding hydroxyl isoprenoids, namely, GDGTol (glycerol dialkyl glycerol triether alcohol), GMGD (glycerol monobiphytanyl glycerol diether), GDD (glycerol dibiphytanol diether), GMM (glycerol monobiphytanol monoether) and bpdiol (biphytanic diol); (2) oxidation of isoprenoidal alcohols into corresponding carboxyl derivatives and (3) chain shortening to yield C39 and smaller isoprenoids. This plausible GDGT degradation pathway from glycerol ethers to isoprenoidal fatty acids provides the link to commonly detected head-to-head linked long chain isoprenoidal hydrocarbons in petroleum and sediment samples. The problematic C80 to C82 tetraacids that cause naphthenate deposits in some oil production facilities can be generated from H-shaped glycerol monoalkyl glycerol tetraethers (GMGTs) following the same process, as indicated by the distribution of related derivatives in hydrothermally influenced sediments.

  10. Plausible molecular and crystal structures of chitosan/HI type II salt.

    Science.gov (United States)

    Lertworasirikul, Amornrat; Noguchi, Keiichi; Ogawa, Kozo; Okuyama, Kenji

    2004-03-15

    Chitosan/HI type II salt prepared from crab tendon was investigated by X-ray fiber diffraction. Two polymer chains and 16 iodide ions (I(-)) crystallized in a tetragonal unit cell with lattice parameters of a = b = 10.68(3), c (fiber axis) = 40.77(13) A, and a space group P4(1). Chitosan forms a fourfold helix with a 40.77 A fiber period having a disaccharide as the helical asymmetric unit. One of the O-3... O-5 intramolecular hydrogen bonds at the glycosidic linkage is weakened by interacting with iodide ions, which seems to cause the polymer to take the 4/1-helical symmetry rather than the extended 2/1-helix. The plausible orientations of two O-6 atoms in the helical asymmetric unit were found to be gt and gg. Two chains are running through at the corner and the center of the unit cell along the c-axis. They are linked by hydrogen bonds between N-21 and O-61 atoms. Two out of four independent iodide ions are packed between the corner chains while the other two are packed between the corner and center chains when viewing through the ab-plane. The crystal structure of the salt is stabilized by hydrogen bonds between these iodide ions and N-21, N-22, O-32, O-61, O-62 of the polymer chains.

  11. Solvent effects on the photochemistry of 4-aminoimidazole-5-carbonitrile, a prebiotically plausible precursor of purines.

    Science.gov (United States)

    Szabla, Rafał; Sponer, Judit E; Sponer, Jiří; Sobolewski, Andrzej L; Góra, Robert W

    2014-09-01

    4-Aminoimidazole-5-carbonitrile (AICN) was suggested as a prebiotically plausible precursor of purine nucleobases and nucleotides. Although it can be formed in a sequence of photoreactions, AICN is immune to further irradiation with UV-light. We present state-of-the-art multi-reference quantum-chemical calculations of potential energy surface cuts and conical intersection optimizations to explain the molecular mechanisms underlying the photostability of this compound. We have identified the N-H bond stretching and ring-puckering mechanisms that should be responsible for the photochemistry of AICN in the gas phase. We have further considered the photochemistry of AICN-water clusters, while including up to six explicit water molecules. The calculations reveal charge transfer to solvent followed by formation of an H3O(+) cation, both of which occur on the (1)πσ* hypersurface. Interestingly, a second proton transfer to an adjacent water molecule leads to a (1)πσ*/S0 conical intersection. We suggest that this electron-driven proton relay might be characteristic of low-lying (1)πσ* states in chromophore-water clusters. Owing to its nature, this mechanism might also be responsible for the photostability of analogous organic molecules in bulk water.

  12. A biologically plausible learning rule for the Infomax on recurrent neural networks.

    Science.gov (United States)

    Hayakawa, Takashi; Kaneko, Takeshi; Aoyagi, Toshio

    2014-01-01

    A fundamental issue in neuroscience is to understand how neuronal circuits in the cerebral cortex play their functional roles through their characteristic firing activity. Several characteristics of spontaneous and sensory-evoked cortical activity have been reproduced by Infomax learning of neural networks in computational studies. There are, however, still few models of the underlying learning mechanisms that allow cortical circuits to maximize information and produce the characteristics of spontaneous and sensory-evoked cortical activity. In the present article, we derive a biologically plausible learning rule for the maximization of information retained through time in dynamics of simple recurrent neural networks. Applying the derived learning rule in a numerical simulation, we reproduce the characteristics of spontaneous and sensory-evoked cortical activity: cell-assembly-like repeats of precise firing sequences, neuronal avalanches, spontaneous replays of learned firing sequences and orientation selectivity observed in the primary visual cortex. We further discuss the similarity between the derived learning rule and the spike timing-dependent plasticity of cortical neurons.

  13. Plausible ergogenic effects of vitamin D on athletic performance and recovery.

    Science.gov (United States)

    Dahlquist, Dylan T; Dieter, Brad P; Koehle, Michael S

    2015-01-01

    The purpose of this review is to examine vitamin D in the context of sport nutrition and its potential role in optimizing athletic performance. Vitamin D receptors (VDR) and vitamin D response elements (VDREs) are located in almost every tissue within the human body including skeletal muscle. The hormonally-active form of vitamin D, 1,25-dihydroxyvitamin D, has been shown to play critical roles in the human body and regulates over 900 gene variants. Based on the literature presented, it is plausible that vitamin D levels above the normal reference range (up to 100 nmol/L) might increase skeletal muscle function, decrease recovery time from training, increase both force and power production, and increase testosterone production, each of which could potentiate athletic performance. Therefore, maintaining higher levels of vitamin D could prove beneficial for athletic performance. Despite this situation, large portions of athletic populations are vitamin D deficient. Currently, the research is inconclusive with regards to the optimal intake of vitamin D, the specific forms of vitamin D one should ingest, and the distinct nutrient-nutrient interactions of vitamin D with vitamin K that affect arterial calcification and hypervitaminosis. Furthermore, it is possible that dosages exceeding the recommendations for vitamin D (i.e. dosages up to 4000-5000 IU/day), in combination with 50 to 1000 mcg/day of vitamin K1 and K2 could aid athletic performance. This review will investigate these topics, and specifically their relevance to athletic performance.

  14. A simple biophysically plausible model for long time constants in single neurons.

    Science.gov (United States)

    Tiganj, Zoran; Hasselmo, Michael E; Howard, Marc W

    2015-01-01

    Recent work in computational neuroscience and cognitive psychology suggests that a set of cells that decay exponentially could be used to support memory for the time at which events took place. Analytically and through simulations on a biophysical model of an individual neuron, we demonstrate that exponentially decaying firing with a range of time constants up to minutes could be implemented using a simple combination of well-known neural mechanisms. In particular, we consider firing supported by calcium-controlled cation current. When the amount of calcium leaving the cell during an interspike interval is larger than the calcium influx during a spike, the overall decay in calcium concentration can be exponential, resulting in exponential decay of the firing rate. The time constant of the decay can be several orders of magnitude larger than the time constant of calcium clearance, and it could be controlled externally via a variety of biologically plausible ways. The ability to flexibly and rapidly control time constants could enable working memory of temporal history to be generalized to other variables in computing spatial and ordinal representations.

  15. A plausible mechanism of biosorption in dual symbioses by vesicular-arbuscular mycorrhizal in plants.

    Science.gov (United States)

    Azmat, Rafia; Hamid, Neelofer

    2015-03-01

    Dual symbioses of vesicular-arbuscular mycorrhizal (VAM) fungi with growth of Momordica charantia were elucidated in terms of plausible mechanism of biosorption in this article. The experiment was conducted in green house and mixed inoculum of the VAM fungi was used in the three replicates. Results demonstrated that the starch contents were the main source of C for the VAM to builds their hyphae. The increased plant height and leaves surface area were explained in relation with an increase in the photosynthetic rates to produce rapid sugar contents for the survival of plants. A decreased in protein, and amino acid contents and increased proline and protease activity in VAM plants suggested that these contents were the main bio-indicators of the plants under biotic stress. The decline in protein may be due to the degradation of these contents, which later on converted into dextrose where it can easily be absorbed by for the period of symbioses. A mechanism of C chemisorption in relation with physiology and morphology of plant was discussed.

  16. Vitamin D in primary biliary cirrhosis, a plausible marker of advanced disease.

    Science.gov (United States)

    Agmon-Levin, Nancy; Kopilov, Ron; Selmi, Carlo; Nussinovitch, Udi; Sánchez-Castañón, María; López-Hoyos, Marcos; Amital, Howie; Kivity, Shaye; Gershwin, Eric M; Shoenfeld, Yehuda

    2015-02-01

    Vitamin D immune-modulating effects were extensively studied, and low levels have been linked with autoimmune diseases. The associations of vitamin D with autoimmune diseases of the liver, and particularly primary biliary cirrhosis (PBC), are yet to be defined. Hence, in this study, serum levels of vitamin D were determined in 79 patients with PBC and 70 age- and sex-matched controls by the LIAISON chemiluminescent immunoassays (DiaSorin-Italy). Clinical and serological parameters of patients were analyzed with respect to vitamin D status. Mean levels of vitamin D were significantly lower among patients with PBC compared with controls (16.8 ± 9 vs. 22.1 ± 9 ng/ml; p = 0.029), and vitamin D deficiency (≤10 ng/ml) was documented in 33% of patients with PBC versus 7% of controls (p plausible roles of vitamin D as a prognostic marker of PBC severity, and as a potential player in this disease pathogenesis. While further studies are awaited, monitoring vitamin D in patients with PBC and use of supplements may be advisable.

  17. Is the de Broglie-Bohm interpretation of quantum mechanics really plausible?

    Science.gov (United States)

    Jung, Kurt

    2013-06-01

    Bohmian mechanics also known as de Broglie-Bohm theory is the most popular alternative approach to quantum mechanics. Whereas the standard interpretation of quantum mechanics is based on the complementarity principle Bohmian mechanics assumes that both particle and wave are concrete physical objects. In 1993 Peter Holland has written an ardent account on the plausibility of the de Broglie-Bohm theory. He proved that it fully reproduces quantum mechanics if the initial particle distribution is consistent with a solution of the Schrödinger equation. Which may be the reasons that Bohmian mechanics has not yet found global acceptance? In this article it will be shown that predicted properties of atoms and molecules are in conflict with experimental findings. Moreover it will be demonstrated that repeatedly published ensembles of trajectories illustrating double slit diffraction processes do not agree with quantum mechanics. The credibility of a theory is undermined when recognizably wrong data presented frequently over years are finally not declared obsolete.

  18. Plausible futures of a social-ecological system: Yahara watershed, Wisconsin, USA

    Directory of Open Access Journals (Sweden)

    Stephen R. Carpenter

    2015-06-01

    Full Text Available Agricultural watersheds are affected by changes in climate, land use, agricultural practices, and human demand for energy, food, and water resources. In this context, we analyzed the agricultural, urbanizing Yahara watershed (size: 1345 km², population: 372,000 to assess its responses to multiple changing drivers. We measured recent trends in land use/cover and water quality of the watershed, spatial patterns of 10 ecosystem services, and spatial patterns and nestedness of governance. We developed scenarios for the future of the Yahara watershed by integrating trends and events from the global scenarios literature, perspectives of stakeholders, and models of biophysical drivers and ecosystem services. Four qualitative scenarios were created to explore plausible trajectories to the year 2070 in the watershed's social-ecological system under different regimes: no action on environmental trends, accelerated technological development, strong intervention by government, and shifting values toward sustainability. Quantitative time-series for 2010-2070 were developed for weather and land use/cover during each scenario as inputs to model changes in ecosystem services. Ultimately, our goal is to understand how changes in the social-ecological system of the Yahara watershed, including management of land and water resources, can build or impair resilience to shifting drivers, including climate.

  19. Plausible impact of global climate change on water resources in the Tarim River Basin

    Institute of Scientific and Technical Information of China (English)

    CHEN; Yaning; XU; Zongxue

    2005-01-01

    Combining the temperature and precipitation data from 77 climatological stations and the climatic and hydrological change data from three headstreams of the Tarim River: Hotan, Yarkant, and Aksu in the study area, the plausible association between climate change and the variability of water resources in the Tarim River Basin in recent years was investigated, the long-term trend of the hydrological time series including temperature, precipitation, and streamflow was detected, and the possible association between the El Ni(n)o/Southern Oscillation (ENSO) and these three kinds of time series was tested. The results obtained in this study show that during the past years, the temperature experienced a significant monotonic increase at the speed of 5%, nearly 1℃ rise; the precipitation showed a significant decrease in the 1970s, and a significant increase in the1980s and 1990s, the average annual precipitation was increased with the magnitude of 6.8 mm per decade. A step change occurred in both temperature and precipitation time series around 1986, which may be influenced by the global climate change. Climate change resulted in the increase of the streamflow at the headwater of the Tarim River, but the anthropogenic activities such as over-depletion of the surface water resulted in the decrease of the streamflow at the lower reaches of the Tarim River. The study result also showed that there is no significant association between the ENSO and the temperature, precipitation and streamflow.

  20. Binding Procurement

    Science.gov (United States)

    Rao, Gopalakrishna M.; Vaidyanathan, Hari

    2007-01-01

    This viewgraph presentation reviews the use of the binding procurement process in purchasing Aerospace Flight Battery Systems. NASA Engineering and Safety Center (NESC) requested NASA Aerospace Flight Battery Systems Working Group to develop a set of guideline requirements document for Binding Procurement Contracts.

  1. Cultural group selection is plausible, but the predictions of its hypotheses should be tested with real-world data.

    Science.gov (United States)

    Turchin, Peter; Currie, Thomas E

    2016-01-01

    The evidence compiled in the target article demonstrates that the assumptions of cultural group selection (CGS) theory are often met, and it is therefore a useful framework for generating plausible hypotheses. However, more can be said about how we can test the predictions of CGS hypotheses against competing explanations using historical, archaeological, and anthropological data.

  2. Flux-based transport enhancement as a plausible unifying mechanism for auxin transport in meristem development.

    Directory of Open Access Journals (Sweden)

    Szymon Stoma

    2008-10-01

    Full Text Available Plants continuously generate new organs through the activity of populations of stem cells called meristems. The shoot apical meristem initiates leaves, flowers, and lateral meristems in highly ordered, spiralled, or whorled patterns via a process called phyllotaxis. It is commonly accepted that the active transport of the plant hormone auxin plays a major role in this process. Current hypotheses propose that cellular hormone transporters of the PIN family would create local auxin maxima at precise positions, which in turn would lead to organ initiation. To explain how auxin transporters could create hormone fluxes to distinct regions within the plant, different concepts have been proposed. A major hypothesis, canalization, proposes that the auxin transporters act by amplifying and stabilizing existing fluxes, which could be initiated, for example, by local diffusion. This convincingly explains the organised auxin fluxes during vein formation, but for the shoot apical meristem a second hypothesis was proposed, where the hormone would be systematically transported towards the areas with the highest concentrations. This implies the coexistence of two radically different mechanisms for PIN allocation in the membrane, one based on flux sensing and the other on local concentration sensing. Because these patterning processes require the interaction of hundreds of cells, it is impossible to estimate on a purely intuitive basis if a particular scenario is plausible or not. Therefore, computational modelling provides a powerful means to test this type of complex hypothesis. Here, using a dedicated computer simulation tool, we show that a flux-based polarization hypothesis is able to explain auxin transport at the shoot meristem as well, thus providing a unifying concept for the control of auxin distribution in the plant. Further experiments are now required to distinguish between flux-based polarization and other hypotheses.

  3. Identifying and reducing potentially wrong immunoassay results even when plausible and "not-unreasonable".

    Science.gov (United States)

    Ismail, Adel A A

    2014-01-01

    The primary role of the clinical laboratory is to report accurate results for diagnosis of disease and management of illnesses. This goal has, to a large extent been achieved for routine biochemical tests, but not for immunoassays which remained susceptible to interference from endogenous immunoglobulin antibodies, causing false, and clinically misleading results. Clinicians regard all abnormal results including false ones as "pathological" necessitating further investigations, or concluding iniquitous diagnosis. Even more seriously, "false-negative" results may wrongly exclude pathology, thus denying patients' necessary treatment. Analytical error rate in immunoassays is relatively high, ranging from 0.4% to 4.0%. Because analytical interference from endogenous antibodies is confined to individuals' sera, it can be inconspicuous, pernicious, sporadic, and insidious because it cannot be detected by internal or external quality assessment procedures. An approach based on Bayesian reasoning can enhance the robustness of clinical validation in highlighting potentially erroneous immunoassay results. When this rational clinical/statistical approach is followed by analytical affirmative follow-up tests, it can help identifying inaccurate and clinically misleading immunoassay data even when they appear plausible and "not-unreasonable." This chapter is largely based on peer reviewed articles associated with and related to this approach. The first section underlines (without mathematical equations) the dominance and misuse of conventional statistics and the underuse of Bayesian paradigm and shows that laboratorians are intuitively (albeit unwittingly) practicing Bayesians. Secondly, because interference from endogenous antibodies is method's dependent (with numerous formats and different reagents), it is almost impossible to accurately assess its incidence in all differently formulated immunoassays and for each analytes/biomarkers. However, reiterating the basic concepts

  4. A plausible (overlooked) super-luminous supernova in the Sloan digital sky survey stripe 82 data

    Energy Technology Data Exchange (ETDEWEB)

    Kostrzewa-Rutkowska, Zuzanna; Kozłowski, Szymon; Wyrzykowski, Łukasz [Warsaw University Observatory, Al. Ujazdowskie 4, 00-478 Warszawa (Poland); Djorgovski, S. George; Mahabal, Ashish A. [California Institute of Technology, 1200 E California Blvd., Pasadena, CA 91125 (United States); Glikman, Eilat [Department of Physics and Yale Center for Astronomy and Astrophysics, Yale University, P.O. Box 208121, New Haven, CT 06520-8121 (United States); Koposov, Sergey, E-mail: zkostrzewa@astrouw.edu.pl, E-mail: simkoz@astrouw.edu.pl, E-mail: wyrzykow@astrouw.edu.pl [Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 0HA (United Kingdom)

    2013-12-01

    We present the discovery of a plausible super-luminous supernova (SLSN), found in the archival data of Sloan Digital Sky Survey (SDSS) Stripe 82, called PSN 000123+000504. The supernova (SN) peaked at m {sub g} < 19.4 mag in the second half of 2005 September, but was missed by the real-time SN hunt. The observed part of the light curve (17 epochs) showed that the rise to the maximum took over 30 days, while the decline time lasted at least 70 days (observed frame), closely resembling other SLSNe of SN 2007bi type. The spectrum of the host galaxy reveals a redshift of z = 0.281 and the distance modulus of μ = 40.77 mag. Combining this information with the SDSS photometry, we found the host galaxy to be an LMC-like irregular dwarf galaxy with an absolute magnitude of M{sub B} = –18.2 ± 0.2 mag and an oxygen abundance of 12+log [O/H]=8.3±0.2; hence, the SN peaked at M {sub g} < –21.3 mag. Our SLSN follows the relation for the most energetic/super-luminous SNe exploding in low-metallicity environments, but we found no clear evidence for SLSNe to explode in low-luminosity (dwarf) galaxies only. The available information on the PSN 000123+000504 light curve suggests the magnetar-powered model as a likely scenario of this event. This SLSN is a new addition to a quickly growing family of super-luminous SNe.

  5. Bio-physically plausible visualization of highly scattering fluorescent neocortical models for in silico experimentation

    KAUST Repository

    Abdellah, Marwan

    2017-02-15

    Background We present a visualization pipeline capable of accurate rendering of highly scattering fluorescent neocortical neuronal models. The pipeline is mainly developed to serve the computational neurobiology community. It allows the scientists to visualize the results of their virtual experiments that are performed in computer simulations, or in silico. The impact of the presented pipeline opens novel avenues for assisting the neuroscientists to build biologically accurate models of the brain. These models result from computer simulations of physical experiments that use fluorescence imaging to understand the structural and functional aspects of the brain. Due to the limited capabilities of the current visualization workflows to handle fluorescent volumetric datasets, we propose a physically-based optical model that can accurately simulate light interaction with fluorescent-tagged scattering media based on the basic principles of geometric optics and Monte Carlo path tracing. We also develop an automated and efficient framework for generating dense fluorescent tissue blocks from a neocortical column model that is composed of approximately 31000 neurons. Results Our pipeline is used to visualize a virtual fluorescent tissue block of 50 μm3 that is reconstructed from the somatosensory cortex of juvenile rat. The fluorescence optical model is qualitatively analyzed and validated against experimental emission spectra of different fluorescent dyes from the Alexa Fluor family. Conclusion We discussed a scientific visualization pipeline for creating images of synthetic neocortical neuronal models that are tagged virtually with fluorescent labels on a physically-plausible basis. The pipeline is applied to analyze and validate simulation data generated from neuroscientific in silico experiments.

  6. Failure Modes

    DEFF Research Database (Denmark)

    Jakobsen, K. P.; Burcharth, H. F.; Ibsen, Lars Bo;

    1999-01-01

    The present appendix contains the derivation of ten different limit state equations divided on three different failure modes. Five of the limit state equations can be used independently of the characteristics of the subsoil, whereas the remaining five can be used for either drained or undrained...

  7. A novel mode of ferric ion coordination by the periplasmic ferric ion-binding subunit FbpA of an ABC-type iron transporter from Thermus thermophilus HB8.

    Science.gov (United States)

    Wang, Shipeng; Ogata, Misaki; Horita, Shoichiro; Ohtsuka, Jun; Nagata, Koji; Tanokura, Masaru

    2014-01-01

    Crystal structures of FbpA, the periplasmic ferric ion-binding protein of an iron-uptake ABC transporter, from Thermus thermophilus HB8 (TtFbpA) have been solved in apo and ferric ion-bound forms at 1.8 and 1.7 Å resolution, respectively. The latter crystal structure shows that the bound ferric ion forms a novel six-coordinated complex with three tyrosine side chains, two bicarbonates and a water molecule in the metal-binding site. The results of gel-filtration chromatography and dynamic light scattering show that TtFbpA exists as a monomer in solution regardless of ferric ion binding and that TtFbpA adopts a more compact conformation in the ferric ion-bound state than in the apo state in solution.

  8. The structure of Prp40 FF1 domain and its interaction with the crn-TPR1 motif of Clf1 gives a new insight into the binding mode of FF domains.

    Science.gov (United States)

    Gasch, Alexander; Wiesner, Silke; Martin-Malpartida, Pau; Ramirez-Espain, Ximena; Ruiz, Lidia; Macias, Maria J

    2006-01-06

    The yeast splicing factor Prp40 (pre-mRNA processing protein 40) consists of a pair of WW domains followed by several FF domains. The region comprising the FF domains has been shown to associate with the 5' end of U1 small nuclear RNA and to interact directly with two proteins, the Clf1 (Crooked neck-like factor 1) and the phosphorylated repeats of the C-terminal domain of RNA polymerase II (CTD-RNAPII). In this work we reported the solution structure of the first FF domain of Prp40 and the identification of a novel ligand-binding site in FF domains. By using chemical shift assays, we found a binding site for the N-terminal crooked neck tetratricopeptide repeat of Clf1 that is distinct and structurally separate from the previously identified CTD-RNAPII binding pocket of the FBP11 (formin-binding protein 11) FF1 domain. No interaction, however, was observed between the Prp40 FF1 domain and three different peptides derived from the CTD-RNAPII protein. Indeed, the equivalent CTD-RNAPII-binding site in the Prp40 FF1 domain is predominantly negatively charged and thus unfavorable for an interaction with phosphorylated peptide sequences. Sequence alignments and phylogenetic tree reconstructions using the FF domains of three functionally related proteins, Prp40, FBP11, and CA150, revealed that Prp40 and FBP11 are not orthologous proteins and supported the different ligand specificities shown by their respective FF1 domains. Our results also revealed that not all FF domains in Prp40 are functionally equivalent. We proposed that at least two different interaction surfaces exist in FF domains that have evolved to recognize distinct binding motifs.

  9. Dispersion of coupled mode-gap cavities

    CERN Document Server

    Lian, Jin; Yüce, Emre; De Rossi, Sylvain Combrié Alfredo; Mosk, Allard P

    2015-01-01

    The dispersion of a CROW made of photonic crystal mode-gap cavities is pronouncedly asymmetric. This asymmetry cannot be explained by the standard tight binding model. We show that the fundamental cause of the asymmetric dispersion is the fact that the cavity mode profile itself is dispersive, i.e., the mode wave function depends on the driving frequency, not the eigenfrequency. This occurs because the photonic crystal cavity resonances do not form a complete set. By taking into account the dispersive mode profile, we formulate a mode coupling model that accurately describes the asymmetric dispersion without introducing any new free parameters.

  10. Plausible antioxidant biomechanics and anticonvulsant pharmacological activity of brain-targeted β-carotene nanoparticles.

    Science.gov (United States)

    Yusuf, Mohammad; Khan, Riaz A; Khan, Maria; Ahmed, Bahar

    2012-01-01

    increased in P-80-BCNP to 231.0 ± 16.30 seconds, as compared to PTZ (120.10 ± 4.50 seconds) and placebo control (120.30 ± 7.4 seconds). The results of this study demonstrate a plausible novel anticonvulsant activity of β-carotene at a low dose of 2 mg/kg, with brain-targeted nanodelivery, thus increasing its bioavailability and stability.

  11. Plausibility check of a redesigned rain-on-snow simulator (RASA)

    Science.gov (United States)

    Rössler, Ole; Probst, Sabine; Weingartner, Rolf

    2016-04-01

    Rain-on-snow events are fascinating but still not completely understood processes. Although, several studies and equations have been published since decades that describe past events and theoretical descriptions, empirical data of what is happening in the snow cover is far less available. A way to fill this gap of empirical data, rain-on-snow-simulators might be of help. In 2013, Juras et al. published their inspiring idea of a portable rain-on-snow simulator. The huge advantage of this devise - in contrast to other purely field-based experiments - are their fixed, and mostly standardized conditions and the possibility to measure all required data to monitor the water fluxes and melting processes at a time. Mounted in a convenient location, a large number of experiments are relatively easy conductible. We applied and further developed the original device and plausified the results of this redesigned version, called RASA. The principal design was borrowed from the original version being a frame with a sprinkler on top and a snow sample in a box at the bottom, from which the outflow is measured with a tipping gauge. We added a moving sprinkling plate to ensure a uniform distribution of raindrops on the snow, and - most importantly - we suspended the watered snow sampled on weighting cells. The latter enables to continuous measurement of the snow sample throughout the experiment and thus the indirect quantification of liquid water saturation, water holding capacity, and snowmelt amount via balance equations. As it is remains unclear if this device is capable to reproduce known processes, a hypothesis based plausibility check was accomplished. Thus, eight hypothesizes were derived from literature and tested in 28 experiments with the RASA mounted at 2000 m elevation. In general, we were able to reproduce most of the hypotheses. The RASA proved to be a very valuable device that can generate suitable results and has the potential to extend the empirical-experimental data

  12. Exploring apposite therapeutic target for apoptosis in filarial parasite: a plausible hypothesis.

    Science.gov (United States)

    Hande, Sneha; Goswami, Kalyan; Jena, Lingaraj; Reddy, Maryada Venkata Rami

    2014-03-01

    Human lymphatic filariasis is a parasitic disease with profound socioeconomic encumbrance owing to its associated disability, affecting predominantly but not limited to the developing nations of tropics and subtropics. There are several technical issues like poor therapeutic and preventive repertoire as well as administrative and infrastructural limitations which jeopardize the salvage measures and further complicate the plight. Therefore, considering the gravity of the problem, WHO has mandated (under tropical disease research scheme) for placing emphasis on validation of novel therapeutic targets against this disease with the unfortunate tag of 'neglected tropical disease'. However, dearth of knowledge of parasite biology viciously coupled with difficulty of access to parasitic material from suitable animal model along with growing cost burden of high end research poses formidable challenge. Based on the recent research evidences, here we propose a premise with targeted apoptotic impact as a novel rationale to be exploited towards anti-parasitic drug development. The new era of bioinformatics ushers in new optimism with a wide range of genomic and proteomic database in public domain. Such platform might offer wonders for drug research, but needs highly selective criterion specificity. In order to test our hypothesis presumptively, we deployed a scheme for identification of target proteins from filarial parasitic origin through wide database search with precise criteria of non-homology against the host along with functional essentiality for the parasite. Further screening for proteins with growth potential from such list of essential non-homologous proteins was undertaken to mine out suitable representative target for ensuing apoptotic impact though effective inhibitors. A unique protein enzyme, RNA dependent RNA polymerase, which besides its vital role in RNA virus is believed to have regulatory role in gene expression, emerged as a plausible target. This protein

  13. Is air pollution a plausible candidate for prenatal exposure in autism spectrum disorder (ASD)? : a systematic review / y Dhanashree Vernekar

    OpenAIRE

    Vernekar, Dhanashree

    2013-01-01

    Objective: To present a systematic review of existing literature that investigates biological plausibility of prenatal hazardous air pollutants’ (HAPs) exposure, in the etiology of autism spectrum disorder (ASD) and related outcomes. Method: Electronic databases Pubmed, Biomed Central and National Database for Autism Research, and grey literature pertaining to air pollution association with ASD and related outcomes were searched using specific keywords. The search included 190 HAPs as defi...

  14. Secondary organic aerosol formation in cloud and fog droplets: a literature evaluation of plausibility

    Science.gov (United States)

    Blando, James D.; Turpin, Barbara J.

    This paper investigates the hypothesis that cloud and fog processes produce fine organic particulate matter in the atmosphere. The evidence provided suggests that cloud and fog processes could be important contributors to secondary organic aerosol formation, and the contribution of this formation pathway should be further investigated. This conclusion is based on the following observations: (1) many organic vapors present in the atmosphere are sorbed by suspended droplets and have been measured in cloud and fog water, (2) organics participate in aqueous-phase reactions, and (3) organic particulate matter is sometimes found in the size mode attributed to cloud processing (i.e. the droplet mode). Specific compounds identified as potential precursors include aldehydes (e.g. formaldehyde, acetaldehyde, and propionaldehyde), acetone, alcohols (e.g. methanol, ethanol, 2-propanol, and phenol), monocarboxylic acids, and organic peroxides. Carboxylic acids (e.g. diacids and oxo-acids), glyoxal, esters, organosulfur compounds, polyols, amines and amino acids are potential products of cloud and fog processing.

  15. Effective Teacher Practice on the Plausibility of Human-Induced Climate Change

    Science.gov (United States)

    Niepold, F.; Sinatra, G. M.; Lombardi, D.

    2013-12-01

    Climate change education programs in the United States seek to promote a deeper understanding of the science of climate change, behavior change and stewardship, and support informed decision making by individuals, organizations, and institutions--all of which are summarized under the term 'climate literacy.' The ultimate goal of climate literacy is to enable actors to address climate change, both in terms of stabilizing and reducing emissions of greenhouse gases, but also an increased capacity to prepare for the consequences and opportunities of climate change. However, the long-term nature of climate change and the required societal response involve the changing students' ideas about controversial scientific issues which presents unique challenges for educators (Lombardi & Sinatra, 2010; Sinatra & Mason, 2008). This session will explore how the United States educational efforts focus on three distinct, but related, areas: the science of climate change, the human-climate interaction, and using climate education to promote informed decision making. Each of these approaches are represented in the Atlas of Science Literacy (American Association for the Advancement of Science, 2007) and in the conceptual framework for science education developed at the National Research Council (NRC) in 2012. Instruction to develop these fundamental thinking skills (e.g., critical evaluation and plausibility reappraisal) has been called for by the Next Generation Science Standards (NGSS) (Achieve, 2013), an innovative and research based way to address climate change education within the decentralized U.S. education system. However, the promise of the NGSS is that students will have more time to build mastery on the subjects, but the form of that instructional practice has been show to be critical. Research has show that effective instructional activities that promote evaluation of evidence improve students' understanding and acceptance toward the scientifically accepted model of human

  16. Plausible antioxidant biomechanics and anticonvulsant pharmacological activity of brain-targeted β-carotene nanoparticles

    Directory of Open Access Journals (Sweden)

    Yusuf M

    2012-08-01

    general tonic–clonic seizures reduced significantly to 2.90 ± 0.98 seconds by the use of BCNP and was further reduced on P-80-BCNP to 1.20 ± 0.20 seconds as compared to PTZ control and PTZ-placebo control (8.09 ± 0.26 seconds. General tonic–clonic seizures latency was increased significantly to 191.0 ± 9.80 seconds in BCNP and was further increased in P-80-BCNP to 231.0 ± 16.30 seconds, as compared to PTZ (120.10 ± 4.50 seconds and placebo control (120.30 ± 7.4 seconds. The results of this study demonstrate a plausible novel anticonvulsant activity of β-carotene at a low dose of 2 mg/kg, with brain-targeted nanodelivery, thus increasing its bioavailability and stability.Keywords: anticonvulsant, blood–brain barrier (BBB, targeted brain delivery, polysorbate-80-coated β-carotene nanoparticles (P-80-BCNP, maximal electroshock seizure (MES, pentylenetetrazole (PTZ

  17. Vulnerabilities to agricultural production shocks: An extreme, plausible scenario for assessment of risk for the insurance sector

    Directory of Open Access Journals (Sweden)

    Tobias Lunt

    2016-01-01

    Full Text Available Climate risks pose a threat to the function of the global food system and therefore also a hazard to the global financial sector, the stability of governments, and the food security and health of the world’s population. This paper presents a method to assess plausible impacts of an agricultural production shock and potential materiality for global insurers. A hypothetical, near-term, plausible, extreme scenario was developed based upon modules of historical agricultural production shocks, linked under a warm phase El Niño-Southern Oscillation (ENSO meteorological framework. The scenario included teleconnected floods and droughts in disparate agricultural production regions around the world, as well as plausible, extreme biotic shocks. In this scenario, global crop yield declines of 10% for maize, 11% for soy, 7% for wheat and 7% for rice result in quadrupled commodity prices and commodity stock fluctuations, civil unrest, significant negative humanitarian consequences and major financial losses worldwide. This work illustrates a need for the scientific community to partner across sectors and industries towards better-integrated global data, modeling and analytical capacities, to better respond to and prepare for concurrent agricultural failure. Governments, humanitarian organizations and the private sector collectively may recognize significant benefits from more systematic assessment of exposure to agricultural climate risk.

  18. Molecular Recognition of the Catalytic Zinc(II) Ion in MMP-13: Structure-Based Evolution of an Allosteric Inhibitor to Dual Binding Mode Inhibitors with Improved Lipophilic Ligand Efficiencies.

    Science.gov (United States)

    Fischer, Thomas; Riedl, Rainer

    2016-03-01

    Matrix metalloproteinases (MMPs) are a class of zinc dependent endopeptidases which play a crucial role in a multitude of severe diseases such as cancer and osteoarthritis. We employed MMP-13 as the target enzyme for the structure-based design and synthesis of inhibitors able to recognize the catalytic zinc ion in addition to an allosteric binding site in order to increase the affinity of the ligand. Guided by molecular modeling, we optimized an initial allosteric inhibitor by addition of linker fragments and weak zinc binders for recognition of the catalytic center. Furthermore we improved the lipophilic ligand efficiency (LLE) of the initial inhibitor by adding appropriate zinc binding fragments to lower the clogP values of the inhibitors, while maintaining their potency. All synthesized inhibitors showed elevated affinity compared to the initial hit, also most of the novel inhibitors displayed better LLE. Derivatives with carboxylic acids as the zinc binding fragments turned out to be the most potent inhibitors (compound 3 (ZHAWOC5077): IC50 = 134 nM) whereas acyl sulfonamides showed the best lipophilic ligand efficiencies (compound 18 (ZHAWOC5135): LLE = 2.91).

  19. Preliminary Study on Plausible Reasoning in Chemistry Teaching of Senior Middle School%高中化学合情推理教学的初步研究

    Institute of Scientific and Technical Information of China (English)

    杨健; 吴俊明; 骆红山

    2009-01-01

    合情推理(Plausible reasoning)对科学教育具重要意义.通过科学哲学、逻辑学讨论以及历史实例说明科学发现离不开合情推理,科学教育必须重视合情推理能力的培养,并对高中化学合情推理教学的可能性、对象和内容等问题进行了讨论.%Plausible reasoning is significant to science education. Scientific philosophy, logic and historical examples prove that plausible reasoning is indispensable to scientific discoveries,so science education must pay attention to the development of plausible reasoning ability of students. Moreover, it discusses the possibility, object and content of plausible reasoning teaching in chemistry of senior middle school.

  20. MicroRNA-378 regulates adiponectin expression in adipose tissue: a new plausible mechanism.

    Directory of Open Access Journals (Sweden)

    Masayoshi Ishida

    Full Text Available AIMS: Mechanisms regulating adiponectin expression have not been fully clarified. MicroRNAs (miRNAs, small non-coding RNAs that regulate gene expression, are involved in biological processes, including obesity and insulin resistance. We evaluated whether the miRNA-378 pathway is involved in regulating adiponectin expression. METHODS AND RESULTS: First, we determined a putative target site for miRNA-378 in the 3 prime untranslated region (3'UTR of the adiponectin gene by in silico analysis. The levels of adiponectin mRNA and protein were decreased in 3T3-L1 cells overexpressing the mimic of miRNA-378. Luminescence activity in HEK293T cells expressing a renilla-luciferase-adiponectin-3'UTR sequence was inhibited by overexpressing the mimic of miRNA-378, and the decrease was reversed by adding the inhibitor of miRNA-378. Moreover, we confirmed the inhibitory effects of the mimic were cancelled in a deleted mutant of the miR-378 3'-UTR binding site. Addition of tumor necrosis factor-α (TNFα led a upregulation of miR-378 and downregulation of adiponectin at mRNA and protein levels in 3T3-L1 cells. Level of miR-378 was higher and mRNA level of adiponectin was lower in diabetic ob/ob mice than those of normal C57BL/6 mice and levels of miR378 and adiponectin were negatively well correlated (r = -0.624, p = 0.004. CONCLUSIONS: We found that levels of miRNA-378 could modulate adiponectin expression via the 3'UTR sequence-binding site. Our findings warrant further investigations into the role of miRNAs in regulating the adiponectin expression.

  1. Retinoid-binding proteins: similar protein architectures bind similar ligands via completely different ways.

    Directory of Open Access Journals (Sweden)

    Yu-Ru Zhang

    Full Text Available BACKGROUND: Retinoids are a class of compounds that are chemically related to vitamin A, which is an essential nutrient that plays a key role in vision, cell growth and differentiation. In vivo, retinoids must bind with specific proteins to perform their necessary functions. Plasma retinol-binding protein (RBP and epididymal retinoic acid binding protein (ERABP carry retinoids in bodily fluids, while cellular retinol-binding proteins (CRBPs and cellular retinoic acid-binding proteins (CRABPs carry retinoids within cells. Interestingly, although all of these transport proteins possess similar structures, the modes of binding for the different retinoid ligands with their carrier proteins are different. METHODOLOGY/PRINCIPAL FINDINGS: In this work, we analyzed the various retinoid transport mechanisms using structure and sequence comparisons, binding site analyses and molecular dynamics simulations. Our results show that in the same family of proteins and subcellular location, the orientation of a retinoid molecule within a binding protein is same, whereas when different families of proteins are considered, the orientation of the bound retinoid is completely different. In addition, none of the amino acid residues involved in ligand binding is conserved between the transport proteins. However, for each specific binding protein, the amino acids involved in the ligand binding are conserved. The results of this study allow us to propose a possible transport model for retinoids. CONCLUSIONS/SIGNIFICANCE: Our results reveal the differences in the binding modes between the different retinoid-binding proteins.

  2. Discovery of Highly Selective and Nanomolar Carbamate-Based Butyrylcholinesterase Inhibitors by Rational Investigation into Their Inhibition Mode.

    Science.gov (United States)

    Sawatzky, Edgar; Wehle, Sarah; Kling, Beata; Wendrich, Jan; Bringmann, Gerhard; Sotriffer, Christoph A; Heilmann, Jörg; Decker, Michael

    2016-03-10

    Butyrylcholinesterase (BChE) is a promising target for the treatment of later stage cognitive decline in Alzheimer's disease. A set of pseudo-irreversible BChE inhibitors with high selectivity over hAChE was synthesized based on carbamates attached to tetrahydroquinazoline scaffolds with the 2-thiophenyl compound 2p as the most potent inhibitor of eqBChE (KC = 14.3 nM) and also of hBChE (KC = 19.7 nM). The inhibitors transfer the carbamate moiety onto the active site under release of the phenolic tetrahydroquinazoline scaffolds that themselves act as neuroprotectants. By combination of kinetic data with molecular docking studies, a plausible binding model was probed describing how the tetrahydroquinazoline scaffold guides the carbamate into a close position to the active site. The model explains the influence of the carrier scaffold onto the affinity of an inhibitor just before carbamate transfer. This strategy can be used to utilize the binding mode of other carbamate-based inhibitors.

  3. Do N-arachidonyl-glycine (NA-glycine and 2-arachidonoyl glycerol (2-AG share mode of action and the binding site on the β2 subunit of GABAA receptors?

    Directory of Open Access Journals (Sweden)

    Roland Baur

    2013-09-01

    Full Text Available NA-glycine is an endogenous lipid molecule with analgesic properties, which is structurally similar to the endocannabinoids 2-AG and anandamide but does not interact with cannabinoid receptors. NA-glycine has been suggested to act at the G-protein coupled receptors GPR18 and GPR92. Recently, we have described that NA-glycine can also modulate recombinant α1β2γ2 GABAA receptors. Here we characterize in more detail this modulation and investigate the relationship of its binding site with that of the endocannabinoid 2-AG.

  4. Hardware Assisted ROP Detection Mode (HARD Mode)

    Science.gov (United States)

    2013-08-01

    Distribution A. Cleared for public release; unlimited distribution. USAFA-CN-2013-457 Hardware Assisted ROP Detection Mode (HARD Mode) NATHANIEL HART...457 This report, "Hardware Assisted ROP Detection Mode (HARD Mode)" is presented as a competent treatment of the subj ect, worthy of publication. The...Technical 20120810-20121215 Hardware Assisted ROP Detection Mode (HARD Mode) NATHANIEL HART MICHAEL WINSTEAD MARTIN CARLISLE RODNEY LYKINS MICHAEL

  5. Effects of Mode Shares on Mode Choice

    OpenAIRE

    Carlos Carrion; Nebiyou Tilahun; David Levinson

    2011-01-01

    This study considers the influence of the knowledge of existing mode shares on travelers mode choice. This contrasts with traditional mode choice models, where the main objective is to predict the overall mode shares as the aggregate of individual mode choices according to variables encompassing attributes of the modes, and characteristics of the travelers. In this study, a computer-administered adaptive stated preference survey is developed and applied to a sample of subjects selected from t...

  6. Spiral modes and the Milky Way

    Science.gov (United States)

    Lin, C. C.

    Recent refinements of the density-wave theory of galactic spiral modes are reviewed, and their implications for models of the structure of the Milky Way are investigated. The quasi-stationary-spiral-structure hypothesis, the structure of D100, the WASER excitation mechanisms of pure trailing spirals and rudimentary barred spirals, and modal calculations are discussed. For the Milky Way, the finding of a one-armed spiral mode causing kinematical-distance asymmetry, and some observational verifications of the spiral-gravitational-field (SGF) model for the region within about 3 kpc of the sun are reported. The importance of constructing a plausible SGF model, rather than using a circular model, for the study of the outer regions of the Milky Way is stressed. The addition of a large halo or corona to the Galactic-mass-distribution model is found to imply only scale changes in the density-wave SGF model.

  7. Hapten-Induced Contact Hypersensitivity, Autoimmune Reactions, and Tumor Regression: Plausibility of Mediating Antitumor Immunity

    Directory of Open Access Journals (Sweden)

    Dan A. Erkes

    2014-01-01

    Full Text Available Haptens are small molecule irritants that bind to proteins and elicit an immune response. Haptens have been commonly used to study allergic contact dermatitis (ACD using animal contact hypersensitivity (CHS models. However, extensive research into contact hypersensitivity has offered a confusing and intriguing mechanism of allergic reactions occurring in the skin. The abilities of haptens to induce such reactions have been frequently utilized to study the mechanisms of inflammatory bowel disease (IBD to induce autoimmune-like responses such as autoimmune hemolytic anemia and to elicit viral wart and tumor regression. Hapten-induced tumor regression has been studied since the mid-1900s and relies on four major concepts: (1 ex vivo haptenation, (2 in situ haptenation, (3 epifocal hapten application, and (4 antigen-hapten conjugate injection. Each of these approaches elicits unique responses in mice and humans. The present review attempts to provide a critical appraisal of the hapten-mediated tumor treatments and offers insights for future development of the field.

  8. A Note on Unified Statistics Including Fermi-Dirac, Bose-Einstein, and Tsallis Statistics, and Plausible Extension to Anisotropic Effect

    Directory of Open Access Journals (Sweden)

    Christianto V.

    2007-04-01

    Full Text Available In the light of some recent hypotheses suggesting plausible unification of thermostatistics where Fermi-Dirac, Bose-Einstein and Tsallis statistics become its special subsets, we consider further plausible extension to include non-integer Hausdorff dimension, which becomes realization of fractal entropy concept. In the subsequent section, we also discuss plausible extension of this unified statistics to include anisotropic effect by using quaternion oscillator, which may be observed in the context of Cosmic Microwave Background Radiation. Further observation is of course recommended in order to refute or verify this proposition.

  9. Immune hierarchy among HIV-1 CD8+ T cell epitopes delivered by dendritic cells depends on MHC-I binding irrespective of mode of loading and immunization in HLA-A*0201 mice

    DEFF Research Database (Denmark)

    Kloverpris, Henrik N; Karlsson, Ingrid; Thorn, Mette

    2009-01-01

    Recent human immunodeficiency virus type 1 (HIV-1) vaccination strategies aim at targeting a broad range of cytotoxic T lymphocyte (CTL) epitopes from different HIV-1 proteins by immunization with multiple CTL epitopes simultaneously. However, this may establish an immune hierarchical response......, where the immune system responds to only a small number of the epitopes administered. To evaluate the feasibility of such vaccine strategies, we used the human leukocyte antigen (HLA)-A*0201 transgenic (tg) HHD murine in vivo model and immunized with dendritic cells pulsed with seven HIV-1-derived HLA......-A*0201 binding CTL epitopes. The seven peptides were simultaneously presented on the same dendritic cell (DC) or on separate DCs before immunization to one or different lymphoid compartments. Data from this study showed that the T-cell response, as measured by cytolytic activity and gamma-interferon (IFN...

  10. Indirect evidence for substantial damping of low-mode internal tides in the open ocean

    Science.gov (United States)

    2015-09-12

    scenarios (a)–(e) are not an exhaustive list of potential low-mode internal tide damping mechanisms. Damp- ing by upper- ocean wave - wave interactions...simulations with bottom wave drag (especially simulation E051) compare reasonably well with TPXO8. Scenarios without a wave drag in the open ocean ... ocean circulation model forced by atmospheric fields and the M2 tidal constituent is used to explore plausible scenarios for the damping of low-mode

  11. Structure prediction of LDLR-HNP1 complex based on docking enhanced by LDLR binding 3D motif.

    Science.gov (United States)

    Esmaielbeiki, Reyhaneh; Naughton, Declan P; Nebel, Jean-Christophe

    2012-04-01

    Human antimicrobial peptides (AMPs), including defensins, have come under intense scrutiny owing to their key multiple roles as antimicrobial agents. Not only do they display direct action on microbes, but also recently they have been shown to interact with the immune system to increase antimicrobial activity. Unfortunately, since mechanisms involved in the binding of AMPs to mammalian cells are largely unknown, their potential as novel anti-infective agents cannot be exploited yet. Following the reported interaction of Human Neutrophil Peptide 1 dimer (HNP1) with a low density lipoprotein receptor (LDLR), a computational study was conducted to discover their putative mode of interaction. State-of-the-art docking software produced a set of LDLR-HNP1 complex 3D models. Creation of a 3D motif capturing atomic interactions of the LDLR binding interface allowed selection of the most plausible configurations. Eventually, only two models were in agreement with the literature. Binding energy estimations revealed that only one of them is particularly stable, but also interaction with LDLR weakens significantly bonds within the HNP1 dimer. This may be significant since it suggests a mechanism for internalisation of HNP1 in mammalian cells. In addition to a novel approach for complex structure prediction, this study proposes a 3D model of the LDLR-HNP1 complex which highlights the key residues which are involved in the interactions. The putative identification of the receptor binding mechanism should inform the future design of synthetic HNPs to afford maximum internalisation, which could lead to novel anti-infective drugs.

  12. Ionic liquid pretreatment of biomass for sugars production: Driving factors with a plausible mechanism for higher enzymatic digestibility.

    Science.gov (United States)

    Raj, Tirath; Gaur, Ruchi; Dixit, Pooja; Gupta, Ravi P; Kagdiyal, V; Kumar, Ravindra; Tuli, Deepak K

    2016-09-20

    In this study, five ionic liquids (ILs) have been explored for biomass pretreatment for the production of fermentable sugar. We also investigated the driving factors responsible for improved enzymatic digestibility of various ILs treated biomass along with postulating the plausible mechanism thereof. Post pretreatment, mainly two factors impacted the enzymatic digestibility (i) structural deformation (cellulose I to II) along with xylan/lignin removal and (ii) properties of ILs; wherein, K-T parameters, viscosity and surface tension had a direct influence on pretreatment. A systematic investigation of these parameters and their impact on enzymatic digestibility is drawn. [C2mim][OAc] with β-value 1.32 resulted 97.7% of glucose yield using 10 FPU/g of biomass. A closer insight into the cellulose structural transformation has prompted a plausible mechanism explaining the better digestibility. The impact of these parameters on the digestibility can pave the way to customize the process to make biomass vulnerable to enzymatic attack.

  13. Antimicrobial drug use in Austrian pig farms: plausibility check of electronic on-farm records and estimation of consumption.

    Science.gov (United States)

    Trauffler, M; Griesbacher, A; Fuchs, K; Köfer, J

    2014-10-25

    Electronic drug application records from farmers from 75 conventional pig farms were revised and checked for their plausibility. The registered drug amounts were verified by comparing the farmers' records with veterinarians' dispensary records. The antimicrobial consumption was evaluated from 2008 to 2011 and expressed in weight of active substance(s), number of used daily doses (nUDD), number of animal daily doses (nADD) and number of product-related daily doses (nPrDD). All results were referred to one year and animal bodyweight (kg biomass). The data plausibility proof revealed about 14 per cent of unrealistic drug amount entries in the farmers' records. The annual antimicrobial consumption was 33.9 mg/kg/year, 4.9 UDDkg/kg/year, 1.9 ADDkg/kg/year and 2.5 PrDDkg/kg/year (average). Most of the antimicrobials were applied orally (86 per cent) and at group-level. Main therapy indications were metaphylactic/prophylactic measures (farrow-to-finish and fattening farms) or digestive tract diseases (breeding farms). The proportion of the 'highest priority critically important antimicrobials' was low (12 per cent). After determination of a threshold value, farms with a high antimicrobial use could be detected. Statistical tests showed that the veterinarian had an influence on the dosage, the therapy indication and the active substance. Orally administered antimicrobials were mostly underdosed, parenterally administered antimicrobials rather correctly or overdosed.

  14. Insight into binding mode of inhibitor 8 CA to A-FABP based on molecular dynamics simulation%抑制剂8 CA与脂肪细胞脂肪酸结合蛋白(A-FABP)结合模式的分子动力学研究

    Institute of Scientific and Technical Information of China (English)

    尹妍妍; 梁志强; 王伟; 伊长虹; 李洪云; 赵娟; 张庆刚

    2016-01-01

    脂肪细胞脂肪酸结合蛋白A-FABP(Adipocyte fatty-acid binding protein)是治疗脂质调节生物过程相关疾病的重要靶标.采用分子动力学模拟和MM-PBSA方法研究抑制剂8CA与A-FABP结合模式,结果表明静电相互作用和范德华作用驱动了抑制剂8CA与A-FABP的结合.基于残基的能量分解表明抑制剂8CA与R126间的极性相互作用为抑制剂与A-FABP的结合提供了重要贡献,该残基与8CA的相互作用较好地稳定了抑制剂与A-FABP复合物的稳定性.期望该研究可为治疗炎症、动脉硬化和代谢病药物设计提供一定的理论指导.%Adipocyte fatty -acid binding protein ( A -FABP ) is an important target of drug designs treating some diseases related to lipid-mediated biology. Molecular dynamics ( MD) simulations coupled with molecular mechanics Poisson -Boltzmann surface area ( MM -PBSA ) calculation were carried out to study the binding mode of 8 CA to A-FABP. The results show that electrostatics and van der Waals interactions drive the binding of 8 CA to A-FABP. The calculation from residue-based free energy decomposition suggests that the polar in-teraction of 8 CA with the residue R126 provides an important contribution to the 8 CA binding. This polar interac-tion plays a key role in the stabilization of 8 CA/A-FABP complex. We expect that this study can contribute some theoretical guidance for design of potent inhibitors within the fields of metabolic disease, inflammation and atherosclerosis.

  15. Plausibility, necessity and identity: A logic of relative plausibility%似然性、必然性和恒等:一种相对似然性逻辑

    Institute of Scientific and Technical Information of China (English)

    李小五; 文学锋

    2007-01-01

    构造一个希尔伯特型的系统RPL, 来刻画由J·哈尔彭提出的似然性测度概念, 证明RPL相对一个邻域型语义是可靠和完全的.运用表述RPL的语言, 证明它可以定义已经得到深入研究的必然性、条件句和命题恒等这样的概念.%We construct a Hilbert style system RPL for the notion of plausibility measure introduced by Halpern J, and we prove the soundness and completeness with respect to a neighborhood style semantics.Using the language of RPL, we demonstrate that it can define well-studied notions of necessity,conditionals and propositional identity.

  16. Evidence-based Medicine PICOS Mode Binding Studies of PBL in Clinical Teaching of Encephalopathy%循证医学PICOS模式结合PBL教学法在脑病科临床教学中的研究

    Institute of Scientific and Technical Information of China (English)

    江颖; 陆晖; 方兴; 冯原; 蒋媛静; 欧利羽

    2015-01-01

    ObjectiveAfter the guided-learning teaching method (PBL) model combined with evidence-based medicine PICOS, and put them into encephalopathy clinical teaching, then explore the differences with LBL(traditional teaching)in clinical teaching.Methods 80 cases of 2011 interns from Guangxi Medical University School of Medicine, Department of Neurology, who were Integrative Medicine Specialty and five years undergraduate, then they were randomly divided into study group (evidence-based medicine PICOS mode + PBL method)and control group(LBL traditional teaching). After teaching and internship, the two groups accepted exactly the same content examination and assessment, then compared their ability to test theory courses, clinical case analysis capabilities, and comprehensive capabilities.Results The two groups of students' test scores, the difference between the theoretical test scores was no statistically significant (P>0.05). But the difference was the presence of clinical case analysis capabilities statistically signiifcant (P<0.05), the individual assessment of capacity study group was significantly higher (P<0.05).Conclusion The combination of evidence-based medicine PICOS mode and PBL teaching is signiifcantly better than LBL traditional teaching, put this model into encephalopathy clinical teaching, can help improve clinical interns comprehensive analysis of disease and clinical thinking capacity.%目的:探究导学式教学法(PBL)结合循证医学PICOS模式引入脑病科的临床教学中后与LBL(传统教学法)在临床教学中的差别。方法80例广西中医药大学瑞康临床医学院神经内科实习的2011级中西医结合临床医学专业五年制本科实习生被随机分为研究组(循证医学PICOS模式+PBL法)及对照组(LBL传统教学法)。在教学及实习结束后对两组同学均进行内容完全相同的考试及考核,并对比分析两组学生的理论课考试能力,临床病案分析能力以及

  17. Climate Change Impacts on Agriculture and Food Security in 2050 under a Range of Plausible Socioeconomic and Emissions Scenarios

    Science.gov (United States)

    Wiebe, K.; Lotze-Campen, H.; Bodirsky, B.; Kavallari, A.; Mason-d'Croz, D.; van der Mensbrugghe, D.; Robinson, S.; Sands, R.; Tabeau, A.; Willenbockel, D.; Islam, S.; van Meijl, H.; Mueller, C.; Robertson, R.

    2014-12-01

    Previous studies have combined climate, crop and economic models to examine the impact of climate change on agricultural production and food security, but results have varied widely due to differences in models, scenarios and data. Recent work has examined (and narrowed) these differences through systematic model intercomparison using a high-emissions pathway to highlight the differences. New work extends that analysis to cover a range of plausible socioeconomic scenarios and emission pathways. Results from three general circulation models are combined with one crop model and five global economic models to examine the global and regional impacts of climate change on yields, area, production, prices and trade for coarse grains, rice, wheat, oilseeds and sugar to 2050. Results show that yield impacts vary with changes in population, income and technology as well as emissions, but are reduced in all cases by endogenous changes in prices and other variables.

  18. Gene-ontology enrichment analysis in two independent family-based samples highlights biologically plausible processes for autism spectrum disorders.

    LENUS (Irish Health Repository)

    Anney, Richard J L

    2012-02-01

    Recent genome-wide association studies (GWAS) have implicated a range of genes from discrete biological pathways in the aetiology of autism. However, despite the strong influence of genetic factors, association studies have yet to identify statistically robust, replicated major effect genes or SNPs. We apply the principle of the SNP ratio test methodology described by O\\'Dushlaine et al to over 2100 families from the Autism Genome Project (AGP). Using a two-stage design we examine association enrichment in 5955 unique gene-ontology classifications across four groupings based on two phenotypic and two ancestral classifications. Based on estimates from simulation we identify excess of association enrichment across all analyses. We observe enrichment in association for sets of genes involved in diverse biological processes, including pyruvate metabolism, transcription factor activation, cell-signalling and cell-cycle regulation. Both genes and processes that show enrichment have previously been examined in autistic disorders and offer biologically plausibility to these findings.

  19. The role of adverse childhood experiences in cardiovascular disease risk: a review with emphasis on plausible mechanisms.

    Science.gov (United States)

    Su, Shaoyong; Jimenez, Marcia P; Roberts, Cole T F; Loucks, Eric B

    2015-10-01

    Childhood adversity, characterized by abuse, neglect, and household dysfunction, is a problem that exerts a significant impact on individuals, families, and society. Growing evidence suggests that adverse childhood experiences (ACEs) are associated with health decline in adulthood, including cardiovascular disease (CVD). In the current review, we first provide an overview of the association between ACEs and CVD risk, with updates on the latest epidemiological evidence. Second, we briefly review plausible pathways by which ACEs could influence CVD risk, including traditional risk factors and novel mechanisms. Finally, we highlight the potential implications of ACEs in clinical and public health. Information gleaned from this review should help physicians and researchers in better understanding potential long-term consequences of ACEs and considering adapting current strategies in treatment or intervention for patients with ACEs.

  20. A hitherto undescribed case of cerebellar ataxia as the sole presentation of thyrotoxicosis in a young man: a plausible association.

    Science.gov (United States)

    Elhadd, Tarik Abdelkareim; Linton, Kathryn; McCoy, Caoihme; Saha, Subrata; Holden, Roger

    2014-01-01

    A 16-year-old male presented to hospital following an episode of unusual behavior on the football pitch, where he was witnessed as grossly ataxic by his teammates. The assessment demonstrated marked cerebellar signs on examination but no other neurological deficit. The investigation showed the evidence of biochemical thyrotoxicosis with free T4 at 37 pmol/L (normal reference range: 11-27) and thyrotropin (TSH) plausible because alternative etiologies were excluded, and the normalization of thyroid function with treatment was coupled with complete resolution of the neurological syndrome. Cerebellar syndromes may well be one of the presenting features of thyrotoxicosis, and this should be in the list of its differential diagnosis.

  1. Influence of the Aqueous Environment on Protein Structure—A Plausible Hypothesis Concerning the Mechanism of Amyloidogenesis

    Directory of Open Access Journals (Sweden)

    Irena Roterman

    2016-09-01

    Full Text Available The aqueous environment is a pervasive factor which, in many ways, determines the protein folding process and consequently the activity of proteins. Proteins are unable to perform their function unless immersed in water (membrane proteins excluded from this statement. Tertiary conformational stabilization is dependent on the presence of internal force fields (nonbonding interactions between atoms, as well as an external force field generated by water. The hitherto the unknown structuralization of water as the aqueous environment may be elucidated by analyzing its effects on protein structure and function. Our study is based on the fuzzy oil drop model—a mechanism which describes the formation of a hydrophobic core and attempts to explain the emergence of amyloid-like fibrils. A set of proteins which vary with respect to their fuzzy oil drop status (including titin, transthyretin and a prion protein have been selected for in-depth analysis to suggest the plausible mechanism of amyloidogenesis.

  2. Estimation of the binding modes with important human cytochrome P450 enzymes, drug interaction potential, pharmacokinetics, and hepatotoxicity of ginger components using molecular docking, computational, and pharmacokinetic modeling studies.

    Science.gov (United States)

    Qiu, Jia-Xuan; Zhou, Zhi-Wei; He, Zhi-Xu; Zhang, Xueji; Zhou, Shu-Feng; Zhu, Shengrong

    2015-01-01

    Ginger is one of the most commonly used herbal medicines for the treatment of numerous ailments and improvement of body functions. It may be used in combination with prescribed drugs. The coadministration of ginger with therapeutic drugs raises a concern of potential deleterious drug interactions via the modulation of the expression and/or activity of drug-metabolizing enzymes and drug transporters, resulting in unfavorable therapeutic outcomes. This study aimed to determine the molecular interactions between 12 main active ginger components (6-gingerol, 8-gingerol, 10-gingerol, 6-shogaol, 8-shogaol, 10-shogaol, ar-curcumene, β-bisabolene, β-sesquiphelandrene, 6-gingerdione, (-)-zingiberene, and methyl-6-isogingerol) and human cytochrome P450 (CYP) 1A2, 2C9, 2C19, 2D6, and 3A4 and to predict the absorption, distribution, metabolism, excretion, and toxicity (ADMET) of the 12 ginger components using computational approaches and comprehensive literature search. Docking studies showed that ginger components interacted with a panel of amino acids in the active sites of CYP1A2, 2C9, 2C19, 2D6, and 3A4 mainly through hydrogen bond formation, to a lesser extent, via π-π stacking. The pharmacokinetic simulation studies showed that the [I]/[Ki ] value for CYP2C9, 2C19, and 3A4 ranged from 0.0002 to 19.6 and the R value ranged from 1.0002 to 20.6 and that ginger might exhibit a high risk of drug interaction via inhibition of the activity of human CYP2C9 and CYP3A4, but a low risk of drug interaction toward CYP2C19-mediated drug metabolism. Furthermore, it has been evaluated that the 12 ginger components possessed a favorable ADMET profiles with regard to the solubility, absorption, permeability across the blood-brain barrier, interactions with CYP2D6, hepatotoxicity, and plasma protein binding. The validation results showed that there was no remarkable effect of ginger on the metabolism of warfarin in humans, whereas concurrent use of ginger and nifedipine exhibited a

  3. Charting plausible futures for diabetes prevalence in the United States: a role for system dynamics simulation modeling.

    Science.gov (United States)

    Milstein, Bobby; Jones, Andrew; Homer, Jack B; Murphy, Dara; Essien, Joyce; Seville, Don

    2007-07-01

    Healthy People 2010 (HP 2010) objectives call for a 38% reduction in the prevalence of diagnosed diabetes mellitus, type 1 and type 2, by the year 2010. The process for setting this objective, however, did not focus on the achievability or the compatibility of this objective with other national public health objectives. We used a dynamic simulation model to explore plausible trajectories for diabetes prevalence in the wake of rising levels of obesity in the U.S. population. The model helps to interpret historic trends in diabetes prevalence in the United States and to anticipate plausible future trends through 2010. We conducted simulation experiments using a computer model of diabetes population dynamics to 1) track the rates at which people develop diabetes, are diagnosed with the disease, and die, and 2) assess the effects of various preventive-care interventions. System dynamics modeling methodology based on data from multiple sources guided the analyses. With the number of new cases of diabetes being much greater than the number of deaths among those with the disease, the prevalence of diagnosed diabetes in the United States is likely to continue to increase. Even a 29% reduction in the number of new cases (the HP 2010 objective) would only slow the growth, not reverse it. Increased diabetes detection rates or decreased mortality rates--also HP 2010 objectives--would further increase diagnosed prevalence. The HP 2010 objective for reducing diabetes prevalence is unattainable given the historical processes that are affecting incidence, diagnosis, and mortality, and even a zero-growth future is unlikely. System dynamics modeling shows why interventions to protect against chronic diseases have only gradual effects on their diagnosed prevalence.

  4. Voltage Mode-to-Current Mode Transformation

    Directory of Open Access Journals (Sweden)

    Tejmal S. Rathore

    2012-10-01

    Full Text Available This paper proposes a procedure for converting a class of Op Amp-, FTFN-, CC- and CFAbased voltage mode circuits to corresponding current mode circuits without requiring any additional circuit elements and finally from Op Amp-based voltage mode circuits to any of the FTFN, CC and CFA current mode circuits. The latter circuits perform better at high frequency than the former ones. The validity of the transformation has been checked on simulated circuits with PSPICE.

  5. The Crystal Structure of a Ternary Complex of Betaine Aldehyde Dehydrogenase from Pseudomonas aeruginosa Provides New Insight Into the Reaction Mechansim and Shows A Novel Binding Mode of the 2'-Phosphate of NADP+ and A Novel Cation Binding Site

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez-Segura, L.; Rudino-Pinera, E; Munoz-Clares, R; Horjales, E

    2009-01-01

    In the human pathogen Pseudomonas aeruginosa, the NAD(P)+-dependent betaine aldehyde dehydrogenase (PaBADH) may play the dual role of assimilating carbon and nitrogen from choline or choline precursors-abundant at infection sites-and producing glycine betaine and NADPH, potentially protective against the high-osmolarity and oxidative stresses prevalent in the infected tissues. Disruption of the PaBADH gene negatively affects the growth of bacteria, suggesting that this enzyme could be a target for antibiotic design. PaBADH is one of the few ALDHs that efficiently use NADP+ and one of the even fewer that require K+ ions for stability. Crystals of PaBADH were obtained under aerobic conditions in the presence of 2-mercaptoethanol, glycerol, NADP+ and K+ ions. The three-dimensional structure was determined at 2.1-A resolution. The catalytic cysteine (C286, corresponding to C302 of ALDH2) is oxidized to sulfenic acid or forms a mixed disulfide with 2-mercaptoethanol. The glutamyl residue involved in the deacylation step (E252, corresponding to E268 of ALDH2) is in two conformations, suggesting a proton relay system formed by two well-conserved residues (E464 and K162, corresponding to E476 and K178, respectively, of ALDH2) that connects E252 with the bulk water. In some active sites, a bound glycerol molecule mimics the thiohemiacetal intermediate; its hydroxyl oxygen is hydrogen bonded to the nitrogen of the amide groups of the side chain of the conserved N153 (N169 of ALDH2) and those of the main chain of C286, which form the 'oxyanion hole.' The nicotinamide moiety of the nucleotide is not observed in the crystal, and the adenine moiety binds in the usual way. A salt bridge between E179 (E195 of ALDH2) and R40 (E53 of ALDH2) moves the carboxylate group of the former away from the 2?-phosphate of the NADP+, thus avoiding steric clashes and/or electrostatic repulsion between the two groups. Finally, the crystal shows two K+ binding sites per subunit. One is

  6. A Solar Model with g-Modes

    Science.gov (United States)

    Wolff, Charles L.; Niemann, Hasso (Technical Monitor)

    2002-01-01

    Good evidence is assembled showing that the Suit's core arid surface vary on time scales from a month to a decade arid that a number of scales are similar. The most plausible source for numerous long time scales and periodicities is long-lived global oscillations. This suggests g-modes (oscillations restored mainly by buoyancy) because they particularly affect the core and base of the convective envelope, which then indirectly modulates the surface. Also, standing g-modes have rotational properties that match many observed periodicities. But the standard solar model (SSM) has a static core and excites few if any g-modes. making new interior structures worth exploring. The model outlined here assumes two well mixed shells near 0.18 and 0.68 R, (13 = solar radius) where sound speed data shows sharp deviations from the SSM. Mixing is sustained by flows driven by the oscillations. The shells form a cavity that excludes g-modes from their main damping region below 0.1 R, assisting their net excitation and increasing their oscillation periods by at least a factor of two and probably much more. In terms of the solar luminosity L, the modes transport up through the cavity a power approx. 0.004 L as a lower limit and 0.11 L as all upper limit. The modes dissipate energy in the outer shell and cool the inner shell, asymmetrically in each case, and this stimulates occasional convective events whose response time is typically 0.8 years longer near the inner shell. Such events cool the core and reduce neutrino flux while heating the envelope and increasing solar activity. This gives a physical basis for a well mixed Sun with low neutrino flux and basis for the observed anticorrelation and lag of neutrino behind surface activity.

  7. Emergency Linkage Mode of Power Enterprise

    Directory of Open Access Journals (Sweden)

    Feng Jie

    2016-01-01

    Full Text Available Power emergency disposal needs take full advantage of the power enterprise within the external emergency power and resources. Based on analyzing and summarizing the relevant experience of domestic and foreign emergency linkage, this paper draws the Emergency Linkage subjects, Emergency Linkage contents, Emergency Linkage level, which are three key elements if power enterprise Emergency Linkage. Emergency Linkage subjects are divided into the two types of inner subjects and the external body; Emergency Linkage contents are in accordance with four phases of prevention, preparedness, response and recovery; Emergency Linkage level is divided into three levels of enterprise headquarter, provincial enterprise and incident unite. Binding power enterprise emergency management practice, this paper studies the internal Emergency Linkage modes (including horizontal mode and vertical mode, external Emergency Linkage mode and comprehensive Emergency Linkage Mode of power enterprise based on Fishbone Diagram and Process Management Technology.

  8. Pathways to plausibility

    DEFF Research Database (Denmark)

    Wahlberg, Ayo

    2008-01-01

    Herbal medicine has long been contrasted to modern medicine in terms of a holistic approach to healing, vitalistic theories of health and illness and an emphasis on the body’s innate self-healing capacities. At the same time, since the early 20th century, the cultivation, preparation and mass...

  9. Pathways to plausibility

    DEFF Research Database (Denmark)

    Wahlberg, Ayo

    2008-01-01

    Herbal medicine has long been contrasted to modern medicine in terms of a holistic approach to healing, vitalistic theories of health and illness and an emphasis on the body’s innate self-healing capacities. At the same time, since the early 20th century, the cultivation, preparation and mass pro...... as normalised, with herbalists, phytochemists and pharmacologists working to develop standardised production procedures as well as to identify ‘plausible’ explanations for the efficacy of these remedies....

  10. The respiratory area of the gills of some teleost fishes in relation to their mode of life

    NARCIS (Netherlands)

    Jager, de S.; Smit-Onel, M.E.; Videler, J.J.; Gils, van B.J.M.; Uffink, E.M.

    1977-01-01

    From computations (by means of graphic interpolation and graphic integration) of the respiratory area, and transposition of these values to a respiratory area of a standard fish of 200 g (A200 value), it could be made plausible that the relation between respiratory area and mode of life of the fishe

  11. Analyzing binding data.

    Science.gov (United States)

    Motulsky, Harvey J; Neubig, Richard R

    2010-07-01

    Measuring the rate and extent of radioligand binding provides information on the number of binding sites, and their affinity and accessibility of these binding sites for various drugs. This unit explains how to design and analyze such experiments.

  12. The induction ability of qualitative plausibility measures in default reasoning%量化plausibility测度在默认推理系统中的推理能力

    Institute of Scientific and Technical Information of China (English)

    霍旭辉; 寇辉

    2011-01-01

    作者讨论了量化plausibility测度在默认推理逻辑系统(P系统)中的推理能力,给出了一般量化plausibility测度与possibility测度具有相同推理能力的条件.%In this paper,the authors investigate the induction ability of qualitative plausibility measures in default reasoning,and obtain the conditions such that the general qualitative plausibility measures and the possibilty measures have the same induction in default reasoning.

  13. Plausible Drug Targets in the Streptococcus mutans Quorum Sensing Pathways to Combat Dental Biofilms and Associated Risks.

    Science.gov (United States)

    Kaur, Gurmeet; Rajesh, Shrinidhi; Princy, S Adline

    2015-12-01

    Streptococcus mutans, a Gram positive facultative anaerobe, is one among the approximately seven hundred bacterial species to exist in human buccal cavity and cause dental caries. Quorum sensing (QS) is a cell-density dependent communication process that respond to the inter/intra-species signals and elicit responses to show behavioral changes in the bacteria to an aggressive forms. In accordance to this phenomenon, the S. mutans also harbors a Competing Stimulating Peptide (CSP)-mediated quorum sensing, ComCDE (Two-component regulatory system) to regulate several virulence-associated traits that includes the formation of the oral biofilm (dental plaque), genetic competence and acidogenicity. The QS-mediated response of S. mutans adherence on tooth surface (dental plaque) imparts antibiotic resistance to the bacterium and further progresses to lead a chronic state, known as periodontitis. In recent years, the oral streptococci, S. mutans are not only recognized for its cariogenic potential but also well known to worsen the infective endocarditis due to its inherent ability to colonize and form biofilm on heart valves. The review significantly appreciate the increasing complexity of the CSP-mediated quorum-sensing pathway with a special emphasis to identify the plausible drug targets within the system for the development of anti-quorum drugs to control biofilm formation and associated risks.

  14. Three-layered metallodielectric nanoshells: plausible meta-atoms for metamaterials with isotropic negative refractive index at visible wavelengths.

    Science.gov (United States)

    Wu, DaJian; Jiang, ShuMin; Cheng, Ying; Liu, XiaoJun

    2013-01-14

    A three-layered Ag-low-permittivity (LP)-high-permittivity (HP) nanoshell is proposed as a plausible meta-atom for building the three-dimensional isotropic negative refractive index metamaterials (NIMs). The overlap between the electric and magnetic responses of Ag-LP-HP nanoshell can be realized by designing the geometry of the particle, which can lead to the negative electric and magnetic polarizabilities. Then, the negative refractive index is found in the random arrangement of Ag-LP-HP nanoshells. Especially, the modulation of the middle LP layer can move the negative refractive index range into the visible region. Because the responses arise from the each meta-atom, the metamaterial is intrinsically isotropic and polarization independent. It is further found with the increase of the LP layer thickness that the negative refractive index range of the random arrangement shows a large blue-shift and becomes narrow. With the decrease of the filling fraction, the negative refractive index range shows a blue-shift and becomes narrow while the maximum of the negative refractive index decreases.

  15. Plausibility of stromal initiation of epithelial cancers without a mutation in the epithelium: a computer simulation of morphostats

    Directory of Open Access Journals (Sweden)

    Cappuccio Antonio

    2009-03-01

    Full Text Available Abstract Background There is experimental evidence from animal models favoring the notion that the disruption of interactions between stroma and epithelium plays an important role in the initiation of carcinogenesis. These disrupted interactions are hypothesized to be mediated by molecules, termed morphostats, which diffuse through the tissue to determine cell phenotype and maintain tissue architecture. Methods We developed a computer simulation based on simple properties of cell renewal and morphostats. Results Under the computer simulation, the disruption of the morphostat gradient in the stroma generated epithelial precursors of cancer without any mutation in the epithelium. Conclusion The model is consistent with the possibility that the accumulation of genetic and epigenetic changes found in tumors could arise after the formation of a founder population of aberrant cells, defined as cells that are created by low or insufficient morphostat levels and that no longer respond to morphostat concentrations. Because the model is biologically plausible, we hope that these results will stimulate further experiments.

  16. Bilinguals' Plausibility Judgments for Phrases with a Literal vs. Non-literal Meaning: The Influence of Language Brokering Experience

    Directory of Open Access Journals (Sweden)

    Belem G. López

    2017-09-01

    Full Text Available Previous work has shown that prior experience in language brokering (informal translation may facilitate the processing of meaning within and across language boundaries. The present investigation examined the influence of brokering on bilinguals' processing of two word collocations with either a literal or a figurative meaning in each language. Proficient Spanish-English bilinguals classified as brokers or non-brokers were asked to judge if adjective+noun phrases presented in each language made sense or not. Phrases with a literal meaning (e.g., stinging insect were interspersed with phrases with a figurative meaning (e.g., stinging insult and non-sensical phrases (e.g., stinging picnic. It was hypothesized that plausibility judgments would be facilitated for literal relative to figurative meanings in each language but that experience in language brokering would be associated with a more equivalent pattern of responding across languages. These predictions were confirmed. The findings add to the body of empirical work on individual differences in language processing in bilinguals associated with prior language brokering experience.

  17. Synchronous volcanic eruptions and abrupt climate change ∼17.7 ka plausibly linked by stratospheric ozone depletion.

    Science.gov (United States)

    McConnell, Joseph R; Burke, Andrea; Dunbar, Nelia W; Köhler, Peter; Thomas, Jennie L; Arienzo, Monica M; Chellman, Nathan J; Maselli, Olivia J; Sigl, Michael; Adkins, Jess F; Baggenstos, Daniel; Burkhart, John F; Brook, Edward J; Buizert, Christo; Cole-Dai, Jihong; Fudge, T J; Knorr, Gregor; Graf, Hans-F; Grieman, Mackenzie M; Iverson, Nels; McGwire, Kenneth C; Mulvaney, Robert; Paris, Guillaume; Rhodes, Rachael H; Saltzman, Eric S; Severinghaus, Jeffrey P; Steffensen, Jørgen Peder; Taylor, Kendrick C; Winckler, Gisela

    2017-09-05

    Glacial-state greenhouse gas concentrations and Southern Hemisphere climate conditions persisted until ∼17.7 ka, when a nearly synchronous acceleration in deglaciation was recorded in paleoclimate proxies in large parts of the Southern Hemisphere, with many changes ascribed to a sudden poleward shift in the Southern Hemisphere westerlies and subsequent climate impacts. We used high-resolution chemical measurements in the West Antarctic Ice Sheet Divide, Byrd, and other ice cores to document a unique, ∼192-y series of halogen-rich volcanic eruptions exactly at the start of accelerated deglaciation, with tephra identifying the nearby Mount Takahe volcano as the source. Extensive fallout from these massive eruptions has been found >2,800 km from Mount Takahe. Sulfur isotope anomalies and marked decreases in ice core bromine consistent with increased surface UV radiation indicate that the eruptions led to stratospheric ozone depletion. Rather than a highly improbable coincidence, circulation and climate changes extending from the Antarctic Peninsula to the subtropics-similar to those associated with modern stratospheric ozone depletion over Antarctica-plausibly link the Mount Takahe eruptions to the onset of accelerated Southern Hemisphere deglaciation ∼17.7 ka.

  18. X-ray investigation of the diffuse emission around plausible gamma-ray emitting pulsar wind nebulae in Kookaburra region

    CERN Document Server

    Kishishita, Tetsuichi; Uchiyama, Yasunobu; Tanaka, Yasuyuki; Takahashi, Tadayuki

    2012-01-01

    We report on the results from {\\it Suzaku} X-ray observations of the radio complex region called Kookaburra, which includes two adjacent TeV $\\gamma$-ray sources HESS J1418-609 and HESS J1420-607. The {\\it Suzaku} observation revealed X-ray diffuse emission around a middle-aged pulsar PSR J1420-6048 and a plausible PWN Rabbit with elongated sizes of $\\sigma_{\\rm X}=1^{\\prime}.66$ and $\\sigma_{\\rm X}=1^{\\prime}.49$, respectively. The peaks of the diffuse X-ray emission are located within the $\\gamma$-ray excess maps obtained by H.E.S.S. and the offsets from the $\\gamma$-ray peaks are $2^{\\prime}.8$ for PSR J1420-6048 and $4^{\\prime}.5$ for Rabbit. The X-ray spectra of the two sources were well reproduced by absorbed power-law models with $\\Gamma=1.7-2.3$. The spectral shapes tend to become softer according to the distance from the X-ray peaks. Assuming the one zone electron emission model as the first order approximation, the ambient magnetic field strengths of HESS J1420-607 and HESS J1418-609 can be estimate...

  19. Bethe-Heitler cascades as a plausible origin of hard spectra in distant TeV blazars

    CERN Document Server

    Zheng, Y G; Kang, S J

    2016-01-01

    Context. Very high-energy (VHE) $\\gamma$-ray measurements of distant TeV blazars can be nicely explained by TeV spectra induced by ultra high-energy cosmic rays. Aims. We develop a model for a plausible origin of hard spectra in distant TeV blazars. Methods. In the model, the TeV emission in distant TeV blazars is dominated by two mixed components. The first is the internal component with the photon energy around 1 TeV produced by inverse Compton scattering of the relativistic electrons on the synchrotron photons (SSC) with a correction for extragalactic background light absorbtion and the other is the external component with the photon energy more than 1 TeV produced by the cascade emission from high-energy protons propagating through intergalactic space. Results. Assuming suitable model parameters, we apply the model to observed spectra of distant TeV blazars of 1ES 0229+200. Our results show that 1) the observed spectrum properties of 1ES 0229+200, especially the TeV $\\gamma$-ray tail of the observed spect...

  20. Simultaneous observations of a pair of kilohertz QPOs and a plausible 1860 Hz QPO from an accreting neutron star system

    CERN Document Server

    Bhattacharyya, Sudip

    2009-01-01

    We report an indication (3.22 sigma) of ~ 1860 Hz quasi-periodic oscillations from a neutron star low-mass X-ray binary 4U 1636-536. If confirmed, this will be by far the highest frequency feature observed from an accreting neutron star system, and hence could be very useful to understand such systems. This plausible timing feature was observed simultaneously with lower (~ 585 Hz) and upper (~ 904 Hz) kilohertz quasi-periodic oscillations. The two kilohertz quasi-periodic oscillation frequencies had the ratio of ~ 1.5, and the frequency of the alleged ~ 1860 Hz feature was close to the triple and the double of these frequencies. This can be useful to constrain the models of all the three features. In particular, the ~ 1860 Hz feature could be (1) from a new and heretofore unknown class of quasi-periodic oscillations, or (2) the first observed overtone of lower or upper kilohertz quasi-periodic oscillations. Finally we note that, although the relatively low significance of the ~ 1860 Hz feature argues for caut...

  1. Synchronous volcanic eruptions and abrupt climate change ˜17.7 ka plausibly linked by stratospheric ozone depletion

    Science.gov (United States)

    McConnell, Joseph R.; Burke, Andrea; Dunbar, Nelia W.; Köhler, Peter; Thomas, Jennie L.; Arienzo, Monica M.; Chellman, Nathan J.; Maselli, Olivia J.; Sigl, Michael; Adkins, Jess F.; Baggenstos, Daniel; Burkhart, John F.; Brook, Edward J.; Buizert, Christo; Cole-Dai, Jihong; Fudge, T. J.; Knorr, Gregor; Graf, Hans-F.; Grieman, Mackenzie M.; Iverson, Nels; McGwire, Kenneth C.; Mulvaney, Robert; Paris, Guillaume; Rhodes, Rachael H.; Saltzman, Eric S.; Severinghaus, Jeffrey P.; Steffensen, Jørgen Peder; Taylor, Kendrick C.; Winckler, Gisela

    2017-09-01

    Glacial-state greenhouse gas concentrations and Southern Hemisphere climate conditions persisted until ˜17.7 ka, when a nearly synchronous acceleration in deglaciation was recorded in paleoclimate proxies in large parts of the Southern Hemisphere, with many changes ascribed to a sudden poleward shift in the Southern Hemisphere westerlies and subsequent climate impacts. We used high-resolution chemical measurements in the West Antarctic Ice Sheet Divide, Byrd, and other ice cores to document a unique, ˜192-y series of halogen-rich volcanic eruptions exactly at the start of accelerated deglaciation, with tephra identifying the nearby Mount Takahe volcano as the source. Extensive fallout from these massive eruptions has been found >2,800 km from Mount Takahe. Sulfur isotope anomalies and marked decreases in ice core bromine consistent with increased surface UV radiation indicate that the eruptions led to stratospheric ozone depletion. Rather than a highly improbable coincidence, circulation and climate changes extending from the Antarctic Peninsula to the subtropics—similar to those associated with modern stratospheric ozone depletion over Antarctica—plausibly link the Mount Takahe eruptions to the onset of accelerated Southern Hemisphere deglaciation ˜17.7 ka.

  2. Removal of hazardous organics from water using metal-organic frameworks (MOFs): plausible mechanisms for selective adsorptions.

    Science.gov (United States)

    Hasan, Zubair; Jhung, Sung Hwa

    2015-01-01

    Provision of clean water is one of the most important issues worldwide because of continuing economic development and the steady increase in the global population. However, clean water resources are decreasing everyday, because of contamination with various pollutants including organic chemicals. Pharmaceutical and personal care products, herbicides/pesticides, dyes, phenolics, and aromatics (from sources such as spilled oil) are typical organics that should be removed from water. Because of their huge porosities, designable pore structures, and facile modification, metal-organic frameworks (MOFs) are used in various adsorption, separation, storage, and delivery applications. In this review, the adsorptive purifications of contaminated water with MOFs are discussed, in order to understand possible applications of MOFs in clean water provision. More importantly, plausible adsorption or interaction mechanisms and selective adsorptions are summarized. The mechanisms of interactions such as electrostatic interaction, acid-base interaction, hydrogen bonding, π-π stacking/interaction, and hydrophobic interaction are discussed for the selective adsorption of organics over MOFs. The adsorption mechanisms will be very helpful not only for understanding adsorptions but also for applications of adsorptions in selective removal, storage, delivery and so on.

  3. On Matrix Sampling and Imputation of Context Questionnaires with Implications for the Generation of Plausible Values in Large-Scale Assessments

    Science.gov (United States)

    Kaplan, David; Su, Dan

    2016-01-01

    This article presents findings on the consequences of matrix sampling of context questionnaires for the generation of plausible values in large-scale assessments. Three studies are conducted. Study 1 uses data from PISA 2012 to examine several different forms of missing data imputation within the chained equations framework: predictive mean…

  4. World Literacy Prospects at the Turn of the Century: Is the Objective of Literacy for All by the Year 2000 Statistically Plausible?

    Science.gov (United States)

    Carceles, Gabriel

    1990-01-01

    Describes status and challenge of worldwide illiteracy. Discusses statistical plausibility of universal literacy by 2000. Predicts literacy universalization will take from 14 to 21 years, depending on region, if 1980s trends continue. Implies literacy work requires action strategies commensurate with problem, including national programs and mass…

  5. Developing spatially explicit footprints of plausible land-use scenarios in the Santa Cruz Watershed, Arizona and Sonora

    Science.gov (United States)

    Norman, Laura M.; Feller, Mark; Villarreal, Miguel L.

    2012-01-01

    The SLEUTH urban growth model is applied to a binational dryland watershed to envision and evaluate plausible future scenarios of land use change into the year 2050. Our objective was to create a suite of geospatial footprints portraying potential land use change that can be used to aid binational decision-makers in assessing the impacts relative to sustainability of natural resources and potential socio-ecological consequences of proposed land-use management. Three alternatives are designed to simulate different conditions: (i) a Current Trends Scenario of unmanaged exponential growth, (ii) a Conservation Scenario with managed growth to protect the environment, and (iii) a Megalopolis Scenario in which growth is accentuated around a defined international trade corridor. The model was calibrated with historical data extracted from a time series of satellite images. Model materials, methodology, and results are presented. Our Current Trends Scenario predicts the footprint of urban growth to approximately triple from 2009 to 2050, which is corroborated by local population estimates. The Conservation Scenario results in protecting 46% more of the Evergreen class (more than 150,000 acres) than the Current Trends Scenario and approximately 95,000 acres of Barren Land, Crops, Deciduous Forest (Mesquite Bosque), Grassland/Herbaceous, Urban/Recreational Grasses, and Wetlands classes combined. The Megalopolis Scenario results also depict the preservation of some of these land-use classes compared to the Current Trends Scenario, most notably in the environmentally important headwaters region. Connectivity and areal extent of land cover types that provide wildlife habitat were preserved under the alternative scenarios when compared to Current Trends.

  6. Testing the physiological plausibility of conflicting psychological models of response inhibition: A forward inference fMRI study.

    Science.gov (United States)

    Criaud, Marion; Longcamp, Marieke; Anton, Jean-Luc; Nazarian, Bruno; Roth, Muriel; Sescousse, Guillaume; Strafella, Antonio P; Ballanger, Bénédicte; Boulinguez, Philippe

    2017-08-30

    The neural mechanisms underlying response inhibition and related disorders are unclear and controversial for several reasons. First, it is a major challenge to assess the psychological bases of behaviour, and ultimately brain-behaviour relationships, of a function which is precisely intended to suppress overt measurable behaviours. Second, response inhibition is difficult to disentangle from other parallel processes involved in more general aspects of cognitive control. Consequently, different psychological and anatomo-functional models coexist, which often appear in conflict with each other even though they are not necessarily mutually exclusive. The standard model of response inhibition in go/no-go tasks assumes that inhibitory processes are reactively and selectively triggered by the stimulus that participants must refrain from reacting to. Recent alternative models suggest that action restraint could instead rely on reactive but non-selective mechanisms (all automatic responses are automatically inhibited in uncertain contexts) or on proactive and non-selective mechanisms (a gating function by which reaction to any stimulus is prevented in anticipation of stimulation when the situation is unpredictable). Here, we assessed the physiological plausibility of these different models by testing their respective predictions regarding event-related BOLD modulations (forward inference using fMRI). We set up a single fMRI design which allowed for us to record simultaneously the different possible forms of inhibition while limiting confounds between response inhibition and parallel cognitive processes. We found BOLD dynamics consistent with non-selective models. These results provide new theoretical and methodological lines of inquiry for the study of basic functions involved in behavioural control and related disorders. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Combination of monoclonal antibodies and DPP-IV inhibitors in the treatment of type 1 diabetes: a plausible treatment modality?

    Science.gov (United States)

    Dubala, Anil; Gupta, Ankur; Samanta, Malay K

    2014-07-01

    Regulatory T cells (Tregs) are crucial for the maintenance of immunological tolerance. Type 1 diabetes (T1D) occurs when the immune-regulatory mechanism fails. In fact, T1D is reversed by islet transplantation but is associated with hostile effects of persistent immune suppression. T1D is believed to be dependent on the activation of type-1 helper T (Th1) cells. Immune tolerance is liable for the activation of the Th1 cells. The important role of Th1 cells in pathology of T1D entails the depletion of CD4(+) T cells, which initiated the use of monoclonal antibodies (mAbs) against CD4(+) T cells to interfere with induction of T1D. Prevention of autoimmunity is not only a step forward for the treatment of T1D, but could also restore the β-cell mass. Glucagon-like peptide (GLP)-1 stimulates β-cell proliferation and also has anti-apoptotic effects on them. However, the potential use of GLP-1 as a possible method to restore pancreatic β-cells is limited due to rapid degradation by dipeptidyl peptidase (DPP)-IV. We hypothesize that treatment with combination of CD4 mAbs and DPP-IV inhibitors could prevent/reverse T1D. CD4 mAbs have the ability to induce immune tolerance, thereby arresting further progression of T1D; DPP-IV inhibitors have the capability to regenerate the β-cell mass. Consequently, the combination of CD4 mAbs and DPP-IV inhibitor could avoid or at least minimize the constraints of intensive subcutaneous insulin therapy. We presume that if this hypothesis proves correct, it may become one of the plausible therapeutic options for T1D.

  8. Assessing the Sensitivity of a Reservoir Management System Under Plausible Assumptions About Future Climate Over Seasons to Decades

    Science.gov (United States)

    Ward, M. N.; Brown, C. M.; Baroang, K. M.; Kaheil, Y. H.

    2011-12-01

    We illustrate an analysis procedure that explores the robustness and overall productivity of a reservoir management system under plausible assumptions about climate fluctuation and change. Results are presented based on a stylized version of a multi-use reservoir management model adapted from Angat Dam, Philippines. It represents a modest-sized seasonal storage reservoir in a climate with a pronounced dry season. The reservoir management model focuses on October-March, during which climatological inflow declines due to the arrival of the dry season, and reservoir management becomes critical and challenging. Inflow is assumed to be impacted by climate fluctuations representing interannal variation (white noise), decadal to multidecadal variation (MDV, here represented by a stochastic autoregressive process) and global change (GC), here represented by a systematic linear trend in seasonal inflow total over the simulation period of 2008-2047. Reservoir reliability, and risk of extreme persistent water shortfall, is assessed under different combinations and magnitudes of GC and MDV. We include an illustration of adaptive management, using seasonal forecasts and updated climate normals. A set of seasonal forecast and observed inflow values are generated for 2008-2047 by randomly rearranging the forecast-observed pairs for 1968-2007. Then, trends are imposed on the observed series, with differing assumptions about the extent to which the seasonal forecasts can be expected to track the trend. We consider the framework presented here well-suited to providing insights about managing the climate risks in reservoir operations, providing guidance on expected benefits and risks of different strategies and climate scenarios.

  9. Few-mode fibers for mode division multiplexing transmission

    Science.gov (United States)

    Kubota, Hirokazu; Morioka, Toshio

    2012-01-01

    A study is presented of the fiber properties needed to achieve 10-mode multiplexing transmission. A combination of MIMO processing with optical LP mode separation is proposed to prevent the need for massive MIMO computation. The impact of mode crosstalk, differential mode delay, and the mode dependent loss of the few-mode fibers on mode multiplexing are discussed.

  10. Emergence of nonlinearity and plausible turbulence in accretion disks via hydromagnetic transient growth faster than magnetorotational instability

    CERN Document Server

    Nath, Sujit K

    2016-01-01

    We investigate the evolution of hydromagnetic perturbations in a small section of accretion disks. It is known that molecular viscosity is negligible in accretion disks. Hence, it has been argued that Magnetorotational Instability (MRI) is responsible for transporting matter in the presence of weak magnetic field. However, there are some shortcomings, which question effectiveness of MRI. Now the question arises, whether other hydromagnetic effects, e.g. transient growth (TG), can play an important role to bring nonlinearity in the system, even at weak magnetic fields. Otherwise, whether MRI or TG, which is primarily responsible to reveal nonlinearity to make the flow turbulent? Our results prove explicitly that the flows with high Reynolds number (Re), which is the case of realistic astrophysical accretion disks, exhibit nonlinearity by best TG of perturbation modes faster than that by best modes producing MRI. For a fixed wavevector, MRI dominates over transient effects, only at low Re, lower than its value ...

  11. Streaming tearing mode

    Science.gov (United States)

    Shigeta, M.; Sato, T.; Dasgupta, B.

    1985-01-01

    The magnetohydrodynamic stability of streaming tearing mode is investigated numerically. A bulk plasma flow parallel to the antiparallel magnetic field lines and localized in the neutral sheet excites a streaming tearing mode more strongly than the usual tearing mode, particularly for the wavelength of the order of the neutral sheet width (or smaller), which is stable for the usual tearing mode. Interestingly, examination of the eigenfunctions of the velocity perturbation and the magnetic field perturbation indicates that the streaming tearing mode carries more energy in terms of the kinetic energy rather than the magnetic energy. This suggests that the streaming tearing mode instability can be a more feasible mechanism of plasma acceleration than the usual tearing mode instability.

  12. Mode selection laser

    DEFF Research Database (Denmark)

    2014-01-01

    The invention relates to a semiconductor mode selection laser, particularly to a VCSEL laser (200) having mode selection properties. The mode selection capability of the laser is achieved by configuring one of the reflectors (15,51) in the resonance cavity so that a reflectivity of the reflector...... (15) varies spatially in one dimension or two dimensions. Accordingly, the reflector (15) with spatially varying reflectivity is part both of the resonance cavity and the mode selection functionality of the laser. A plurality of the lasers configured with different mode selectors, i.e. different...... spatial reflector variations, may be combined to generate a laser beam containing a plurality of orthogonal modes. The laser beam may be injected into a few- mode optical fiber, e.g. for the purpose of optical communication. The VCSEL may have intra-cavity contacts (31,37) and a Tunnel junction (33...

  13. Streaming tearing mode

    Science.gov (United States)

    Shigeta, M.; Sato, T.; Dasgupta, B.

    1985-01-01

    The magnetohydrodynamic stability of streaming tearing mode is investigated numerically. A bulk plasma flow parallel to the antiparallel magnetic field lines and localized in the neutral sheet excites a streaming tearing mode more strongly than the usual tearing mode, particularly for the wavelength of the order of the neutral sheet width (or smaller), which is stable for the usual tearing mode. Interestingly, examination of the eigenfunctions of the velocity perturbation and the magnetic field perturbation indicates that the streaming tearing mode carries more energy in terms of the kinetic energy rather than the magnetic energy. This suggests that the streaming tearing mode instability can be a more feasible mechanism of plasma acceleration than the usual tearing mode instability.

  14. Quasilinear saturation of the aperiodic ordinary mode streaming instability

    Energy Technology Data Exchange (ETDEWEB)

    Stockem Novo, A., E-mail: anne@tp4.rub.de; Schlickeiser, R. [Institut für Theoretische Physik, Lehrstuhl IV: Weltraum-und Astrophysik, Ruhr-Universität Bochum, D-44780 Bochum (Germany); Yoon, P. H. [Institute for Physical Science & Technology, University of Maryland, College Park, Maryland 20742 (United States); School of Space Research, Kyung Hee University, Yongin-Si, Gyeonggi-Do 446-701 (Korea, Republic of); Lazar, M. [Institut für Theoretische Physik, Lehrstuhl IV: Weltraum-und Astrophysik, Ruhr-Universität Bochum, D-44780 Bochum (Germany); Centre for Mathematical Plasma Astrophysics, Celestijnenlaan 200B, 3001 Leuven (Belgium); Poedts, S. [Centre for Mathematical Plasma Astrophysics, Celestijnenlaan 200B, 3001 Leuven (Belgium); Seough, J. [Faculty of Human Development, University of Toyama, 3190, Gofuku, Toyama City, Toyama 930-8555 (Japan); International Research Fellow of the Japan Society for the Promotion of Science, Tokyo (Japan)

    2015-09-15

    In collisionless plasmas, only kinetic instabilities and fluctuations are effective in reducing the free energy and scatter plasma particles, preventing an increase of their anisotropy. Solar energetic outflows into the interplanetary plasma give rise to important thermal anisotropies and counterstreaming motions of plasma shells, and the resulting instabilities are expected to regulate the expansion of the solar wind. The present paper combines quasilinear theory and kinetic particle-in-cell simulations in order to study the weakly nonlinear saturation of the ordinary mode in hot counter-streaming plasmas with a temperature anisotropy as a follow-up of the paper by Seough et al. [Phys. Plasmas 22, 082122 (2015)]. This instability provides a plausible mechanism for the origin of dominating, two-dimensional spectrum of transverse magnetic fluctuations observed in the solar wind. Stimulated by the differential motion of electron counterstreams the O mode instability may convert their free large-scale energy by nonlinear collisionless dissipation on plasma particles.

  15. Membrane binding domains

    OpenAIRE

    Hurley, James H.

    2006-01-01

    Eukaryotic signaling and trafficking proteins are rich in modular domains that bind cell membranes. These binding events are tightly regulated in space and time. The structural, biochemical, and biophysical mechanisms for targeting have been worked out for many families of membrane binding domains. This review takes a comparative view of seven major classes of membrane binding domains, the C1, C2, PH, FYVE, PX, ENTH, and BAR domains. These domains use a combination of specific headgroup inter...

  16. DNA binding studies of tartrazine food additive.

    Science.gov (United States)

    Kashanian, Soheila; Zeidali, Sahar Heidary

    2011-07-01

    The interaction of native calf thymus DNA with tartrazine in 10 mM Tris-HCl aqueous solution at neutral pH 7.4 was investigated. Tartrazine is a nitrous derivative and may cause allergic reactions, with a potential of toxicological risk. Also, tartrazine induces oxidative stress and DNA damage. Its DNA binding properties were studied by UV-vis and circular dichroism spectra, competitive binding with Hoechst 33258, and viscosity measurements. Tartrazine molecules bind to DNA via groove mode as illustrated by hyperchromism in the UV absorption band of tartrazine, decrease in Hoechst-DNA solution fluorescence, unchanged viscosity of DNA, and conformational changes such as conversion from B-like to C-like in the circular dichroism spectra of DNA. The binding constants (K(b)) of DNA with tartrazine were calculated at different temperatures. Enthalpy and entropy changes were calculated to be +37 and +213 kJ mol(-1), respectively, according to the Van't Hoff equation, which indicated that the reaction is predominantly entropically driven. Also, tartrazine does not cleave plasmid DNA. Tartrazine interacts with calf thymus DNA via a groove interaction mode with an intrinsic binding constant of 3.75 × 10(4) M(-1).

  17. Oligosaccharide binding to barley alpha-amylase 1

    DEFF Research Database (Denmark)

    Robert, X.; Haser, R.; Mori, H.;

    2005-01-01

    Enzymatic subsite mapping earlier predicted 10 binding subsites in the active site substrate binding cleft of barley alpha-amylase isozymes. The three-dimensional structures of the oligosaccharide complexes with barley alpha-amylase isozyme 1 (AMY1) described here give for the first time a thorough...... insight into the substrate binding by describing residues defining 9 subsites, namely -7 through +2. These structures support that the pseudotetrasaccharide inhibitor acarbose is hydrolyzed by the active enzymes. Moreover, sugar binding was observed to the starch granule-binding site previously determined...... in barley alpha-amylase isozyme 2 (AMY2), and the sugar binding modes are compared between the two isozymes. The "sugar tongs" surface binding site discovered in the AMY1-thio-DP4 complex is confirmed in the present work. A site that putatively serves as an entrance for the substrate to the active site...

  18. Single-Mode VCSELs

    Science.gov (United States)

    Larsson, Anders; Gustavsson, Johan S.

    The only active transverse mode in a truly single-mode VCSEL is the fundamental mode with a near Gaussian field distribution. A single-mode VCSEL produces a light beam of higher spectral purity, higher degree of coherence and lower divergence than a multimode VCSEL and the beam can be more precisely shaped and focused to a smaller spot. Such beam properties are required in many applications. In this chapter, after discussing applications of single-mode VCSELs, we introduce the basics of fields and modes in VCSELs and review designs implemented for single-mode emission from VCSELs in different materials and at different wavelengths. This includes VCSELs that are inherently single-mode as well as inherently multimode VCSELs where higher-order modes are suppressed by mode selective gain or loss. In each case we present the current state-of-the-art and discuss pros and cons. At the end, a specific example with experimental results is provided and, as a summary, the most promising designs based on current technologies are identified.

  19. The SAFRR Tsunami Scenario: Improving Resilience for California from a Plausible M9 Earthquake near the Alaska Peninsula

    Science.gov (United States)

    Ross, S.; Jones, L.; Wilson, R. I.; Bahng, B.; Barberopoulou, A.; Borrero, J. C.; Brosnan, D.; Bwarie, J.; Geist, E. L.; Johnson, L.; Kirby, S. H.; Knight, W.; Long, K.; Lynett, P. J.; Miller, K.; Mortensen, C. E.; Nicolsky, D.; Oglesby, D. D.; Perry, S. C.; Plumlee, G. S.; Porter, K. A.; Real, C. R.; Ryan, K. J.; Suleimani, E.; Thio, H. K.; Titov, V.; Wein, A. M.; Whitmore, P.; Wood, N. J.

    2013-12-01

    The SAFRR Tsunami Scenario models a hypothetical but plausible tsunami, created by an Mw9.1 earthquake occurring offshore from the Alaskan peninsula, and its impacts on the California coast. We present the likely inundation areas, current velocities in key ports and harbors, physical damage and repair costs, economic consequences, environmental impacts, social vulnerability, emergency management, and policy implications for California associated with the tsunami scenario. The intended users are those who must make mitigation decisions before and rapid decisions during future tsunamis. Around a half million people would be present in the scenario's inundation area in residences, businesses, public venues, parks and beaches. Evacuation would likely be ordered for the State of California's maximum mapped tsunami inundation zone, evacuating an additional quarter million people from residences and businesses. Some island and peninsula communities would face particular evacuation challenges because of limited access options and short warning time, caused by the distance between Alaska and California. Evacuations may also be a challenge for certain dependent-care populations. One third of the boats in California's marinas could be damaged or sunk, costing at least 700 million in repairs to boats and docks, and potentially much more to address serious issues due to sediment transport and environmental contamination. Fires would likely start at many sites where fuel and petrochemicals are stored in ports and marinas. Tsunami surges and bores may travel several miles inland up coastal rivers. Debris clean-up and recovery of inundated and damaged areas will take days, months, or years depending on the severity of impacts and the available resources for recovery. The Ports of Los Angeles and Long Beach (POLA/LB) would be shut down for a miniμm of two days due to strong currents. Inundation of dry land in the ports would result in 100 million damages to cargo and additional

  20. Interaction of zinc and cobalt with dipeptides and their DNA binding studies

    Indian Academy of Sciences (India)

    P Rabindra Reddy; M Radhika; K Srinivas Rao

    2004-06-01

    Interactions of zinc and cobalt with peptides cysteinylglycine and histidylglycine have been studied. The binding modes were identified and geometry assigned. Stabilities of these complexes and their ability to bind DNA have been investigated. It is demonstrated that only zinc complexes bind DNA as compared to cobalt complexes.

  1. Analyzing radioligand binding data.

    Science.gov (United States)

    Motulsky, Harvey; Neubig, Richard

    2002-08-01

    Radioligand binding experiments are easy to perform, and provide useful data in many fields. They can be used to study receptor regulation, discover new drugs by screening for compounds that compete with high affinity for radioligand binding to a particular receptor, investigate receptor localization in different organs or regions using autoradiography, categorize receptor subtypes, and probe mechanisms of receptor signaling, via measurements of agonist binding and its regulation by ions, nucleotides, and other allosteric modulators. This unit reviews the theory of receptor binding and explains how to analyze experimental data. Since binding data are usually best analyzed using nonlinear regression, this unit also explains the principles of curve fitting with nonlinear regression.

  2. Oligosaccharide binding to barley alpha-amylase 1

    DEFF Research Database (Denmark)

    Robert, X.; Haser, R.; Mori, H.

    2005-01-01

    Enzymatic subsite mapping earlier predicted 10 binding subsites in the active site substrate binding cleft of barley alpha-amylase isozymes. The three-dimensional structures of the oligosaccharide complexes with barley alpha-amylase isozyme 1 (AMY1) described here give for the first time a thorough...... in barley alpha-amylase isozyme 2 (AMY2), and the sugar binding modes are compared between the two isozymes. The "sugar tongs" surface binding site discovered in the AMY1-thio-DP4 complex is confirmed in the present work. A site that putatively serves as an entrance for the substrate to the active site...

  3. Mediaeval manuscript bindings

    Directory of Open Access Journals (Sweden)

    Jedert Vodopivec

    1999-01-01

    Full Text Available The present article represents an excerpt from the final chapters of the research study titled "The development of structures in mediaeval manuscript bindings - interdependence with conservatory methods". In it, aims, methods of work, archive and library materials used and directions for conservatory methods are presented. Besides, the research study includes also a historcial overview of book bindings, detailed analysis of separate structural elements in Slovenian mediaeval bindings, comprehensive presentation of separate structures, the techniques of binding and materials of the preserved mediaeval bindings in Slovenian public archives and libraries, terminological dictionary of specific professional terms related to binding as a segment of a book, and a catalogue of all analysed bindings, containing a survey of ajI detectable data, sketches,graphite prints and photographs.

  4. Asymmetric Bessel modes.

    Science.gov (United States)

    Kotlyar, V V; Kovalev, A A; Soifer, V A

    2014-04-15

    We propose a new, three-parameter family of diffraction-free asymmetric elegant Bessel modes (aB-modes) with an integer and fractional orbital angular momentum (OAM). The aB-modes are described by the nth-order Bessel function of the first kind with complex argument. The asymmetry degree of the nonparaxial aB-mode is shown to depend on a real parameter c≥0: when c=0, the aB-mode is identical to a conventional radially symmetric Bessel mode; with increasing c, the aB-mode starts to acquire a crescent form, getting stretched along the vertical axis and shifted along the horizontal axis for c≫1. On the horizontal axis, the aB-modes have a denumerable number of isolated intensity zeros that generate optical vortices with a unit topological charge of opposite sign on opposite sides of 0. At different values of the parameter c, the intensity zeros change their location on the horizontal axis, thus changing the beam's OAM. An isolated intensity zero on the optical axis generates an optical vortex with topological charge n. The OAM per photon of an aB-mode depends near-linearly on c, being equal to ℏ(n+cI1(2c)/I0(2c)), where ℏ is the Planck constant and In(x) is a modified Bessel function.

  5. How to deal with multiple binding poses in alchemical relative protein-ligand binding free energy calculations.

    Science.gov (United States)

    Kaus, Joseph W; Harder, Edward; Lin, Teng; Abel, Robert; McCammon, J Andrew; Wang, Lingle

    2015-06-09

    Recent advances in improved force fields and sampling methods have made it possible for the accurate calculation of protein–ligand binding free energies. Alchemical free energy perturbation (FEP) using an explicit solvent model is one of the most rigorous methods to calculate relative binding free energies. However, for cases where there are high energy barriers separating the relevant conformations that are important for ligand binding, the calculated free energy may depend on the initial conformation used in the simulation due to the lack of complete sampling of all the important regions in phase space. This is particularly true for ligands with multiple possible binding modes separated by high energy barriers, making it difficult to sample all relevant binding modes even with modern enhanced sampling methods. In this paper, we apply a previously developed method that provides a corrected binding free energy for ligands with multiple binding modes by combining the free energy results from multiple alchemical FEP calculations starting from all enumerated poses, and the results are compared with Glide docking and MM-GBSA calculations. From these calculations, the dominant ligand binding mode can also be predicted. We apply this method to a series of ligands that bind to c-Jun N-terminal kinase-1 (JNK1) and obtain improved free energy results. The dominant ligand binding modes predicted by this method agree with the available crystallography, while both Glide docking and MM-GBSA calculations incorrectly predict the binding modes for some ligands. The method also helps separate the force field error from the ligand sampling error, such that deviations in the predicted binding free energy from the experimental values likely indicate possible inaccuracies in the force field. An error in the force field for a subset of the ligands studied was identified using this method, and improved free energy results were obtained by correcting the partial charges assigned to the

  6. Mutations in the KDM5C ARID Domain and Their Plausible Association with Syndromic Claes-Jensen-Type Disease

    Directory of Open Access Journals (Sweden)

    Yunhui Peng

    2015-11-01

    Full Text Available Mutations in KDM5C gene are linked to X-linked mental retardation, the syndromic Claes-Jensen-type disease. This study focuses on non-synonymous mutations in the KDM5C ARID domain and evaluates the effects of two disease-associated missense mutations (A77T and D87G and three not-yet-classified missense mutations (R108W, N142S, and R179H. We predict the ARID domain’s folding and binding free energy changes due to mutations, and also study the effects of mutations on protein dynamics. Our computational results indicate that A77T and D87G mutants have minimal effect on the KDM5C ARID domain stability and DNA binding. In parallel, the change in the free energy unfolding caused by the mutants A77T and D87G were experimentally measured by urea-induced unfolding experiments and were shown to be similar to the in silico predictions. The evolutionary conservation analysis shows that the disease-associated mutations are located in a highly-conserved part of the ARID structure (N-terminal domain, indicating their importance for the KDM5C function. N-terminal residues’ high conservation suggests that either the ARID domain utilizes the N-terminal to interact with other KDM5C domains or the N-terminal is involved in some yet unknown function. The analysis indicates that, among the non-classified mutations, R108W is possibly a disease-associated mutation, while N142S and R179H are probably harmless.

  7. Molecular Mechanisms of Pharmaceutical Drug Binding into Calsequestrin

    Directory of Open Access Journals (Sweden)

    ChulHee Kang

    2012-11-01

    Full Text Available Calsequestrin (CASQ is a major Ca2+-storage/buffer protein present in the sarcoplasmic reticulum of both skeletal (CASQ1 and cardiac (CASQ2 muscles. CASQ has significant affinity for a number of pharmaceutical drugs with known muscular toxicities. Our approach, with in silico molecular docking, single crystal X-ray diffraction, and isothermal titration calorimetry (ITC, identified three distinct binding pockets on the surface of CASQ2, which overlap with 2-methyl-2,4-pentanediol (MPD binding sites observed in the crystal structure. Those three receptor sites based on canine CASQ1 crystal structure gave a high correlation (R2 = 0.80 to our ITC data. Daunomycin, doxorubicin, thioridazine, and trifluoperazine showed strong affinity to the S1 site, which is a central cavity formed between three domains of CASQ2. Some of the moderate-affinity drugs and some high-affinity drugs like amlodipine and verapamil displayed their binding into S2 sites, which are the thioredoxin-like fold present in each CASQ domain. Docking predictions combined with dissociation constants imply that presence of large aromatic cores and less flexible functional groups determines the strength of binding affinity to CASQ. In addition, the predicted binding pockets for both caffeine and epigallocatechin overlapped with the S1 and S2 sites, suggesting competitive inhibition by these natural compounds as a plausible explanation for their antagonistic effects on cardiotoxic side effects.

  8. Ureaplasma urealyticum binds mannose-binding lectin.

    Science.gov (United States)

    Benstein, Barbara D; Ourth, Donald D; Crouse, Dennis T; Shanklin, D Radford

    2004-10-01

    Mannose-binding C-type lectin (MBL) is an important component of innate immunity in mammals. Mannose-binding lectin (MBL), an acute phase protein, acts as an opsonin for phagocytosis and also activates the mannan-binding lectin complement pathway. It may play a particularly significant role during infancy before adequate specific protection can be provided by the adaptive immune system. Ureaplasma urealyticum has been linked to several diseases including pneumonia and chronic lung disease (CLD) in premature infants. We therefore investigated the ability of U. urealyticum to bind MBL. A guinea pig IgG anti-rabbit-MBL antiserum was produced. An immunoblot (dot-blot) assay done on nitrocellulose membrane determined that the anti-MBL antibody had specificity against both rabbit and human MBL. Pure cultures of U. urealyticum, serotype 3, were used to make slide preparations. The slides containing the organisms were then incubated with nonimmune rabbit serum containing MBL. Ureaplasma was shown to bind rabbit MBL with an immunocytochemical assay using the guinea pig IgG anti-rabbit MBL antiserum. Horseradish peroxidase (HRP)-labeled anti-guinea pig IgG was used to localize the reaction. The anti-MBL antiserum was also used in an immunocytochemical assay to localize U. urealyticum in histological sections of lungs from mice specifically infected with this organism. The same method also indicated binding of MBL by ureaplasma in human lung tissue obtained at autopsy from culture positive infants. Our results demonstrate that ureaplasma has the capacity to bind MBL. The absence of MBL may play a role in the predisposition of diseases related to this organism.

  9. Ligand binding mechanics of maltose binding protein.

    Science.gov (United States)

    Bertz, Morten; Rief, Matthias

    2009-11-13

    In the past decade, single-molecule force spectroscopy has provided new insights into the key interactions stabilizing folded proteins. A few recent studies probing the effects of ligand binding on mechanical protein stability have come to quite different conclusions. While some proteins seem to be stabilized considerably by a bound ligand, others appear to be unaffected. Since force acts as a vector in space, it is conceivable that mechanical stabilization by ligand binding is dependent on the direction of force application. In this study, we vary the direction of the force to investigate the effect of ligand binding on the stability of maltose binding protein (MBP). MBP consists of two lobes connected by a hinge region that move from an open to a closed conformation when the ligand maltose binds. Previous mechanical experiments, where load was applied to the N and C termini, have demonstrated that MBP is built up of four building blocks (unfoldons) that sequentially detach from the folded structure. In this study, we design the pulling direction so that force application moves the two MBP lobes apart along the hinge axis. Mechanical unfolding in this geometry proceeds via an intermediate state whose boundaries coincide with previously reported MBP unfoldons. We find that in contrast to N-C-terminal pulling experiments, the mechanical stability of MBP is increased by ligand binding when load is applied to the two lobes and force breaks the protein-ligand interactions directly. Contour length measurements indicate that MBP is forced into an open conformation before unfolding even if ligand is bound. Using mutagenesis experiments, we demonstrate that the mechanical stabilization effect is due to only a few key interactions of the protein with its ligand. This work illustrates how varying the direction of the applied force allows revealing important details about the ligand binding mechanics of a large protein.

  10. Mixed-mode sorption of hydroxylated atrazine degradation products to sell: A mechanism for bound residue

    Science.gov (United States)

    Lerch, R.N.; Thurman, E.M.; Kruger, E.L.

    1997-01-01

    This study tested the hypothesis that sorption of hydroxylated atrazine degradation products (HADPs: hydroxyatrazine, HA; deethylhydroxyatrazine, DEHA; and deisopropylhydroxyatrazine, DIHA) to soils occurs by mixed-mode binding resulting from two simultaneous mechanisms: (1) cation exchange and (2) hydrophobic interaction. The objective was to use liquid chromatography and soil extraction experiments to show that mixed-mode binding is the mechanism controlling HADP sorption to soils and is also a mechanism for bound residue. Overall, HADP binding to solid-phase extraction (SPE) sorbents occurred in the order: cation exchange >> octadecyl (C18) >> cyanopropyl. Binding to cation exchange SPE and to a high-performance liquid chromatograph octyl (C8) column showed evidence for mixed-mode binding. Comparison of soil extracted by 0.5 M KH2P04, pH 7.5, or 25% aqueous CH3CN showed that, for HA and DIHA, cation exchange was a more important binding mechanism to soils than hydrophobic interaction. Based on differences between several extractants, the extent of HADP mixed-mode binding to soil occurred in the following order: HA > DIHA > DEHA. Mixed-mode extraction recovered 42.8% of bound atrazine residues from aged soil, and 88% of this fraction was identified as HADPs. Thus, a significant portion of bound atrazine residues in soils is sorbed by the mixed-mode binding mechanisms.

  11. Protein Binding Pocket Dynamics.

    Science.gov (United States)

    Stank, Antonia; Kokh, Daria B; Fuller, Jonathan C; Wade, Rebecca C

    2016-05-17

    The dynamics of protein binding pockets are crucial for their interaction specificity. Structural flexibility allows proteins to adapt to their individual molecular binding partners and facilitates the binding process. This implies the necessity to consider protein internal motion in determining and predicting binding properties and in designing new binders. Although accounting for protein dynamics presents a challenge for computational approaches, it expands the structural and physicochemical space for compound design and thus offers the prospect of improved binding specificity and selectivity. A cavity on the surface or in the interior of a protein that possesses suitable properties for binding a ligand is usually referred to as a binding pocket. The set of amino acid residues around a binding pocket determines its physicochemical characteristics and, together with its shape and location in a protein, defines its functionality. Residues outside the binding site can also have a long-range effect on the properties of the binding pocket. Cavities with similar functionalities are often conserved across protein families. For example, enzyme active sites are usually concave surfaces that present amino acid residues in a suitable configuration for binding low molecular weight compounds. Macromolecular binding pockets, on the other hand, are located on the protein surface and are often shallower. The mobility of proteins allows the opening, closing, and adaptation of binding pockets to regulate binding processes and specific protein functionalities. For example, channels and tunnels can exist permanently or transiently to transport compounds to and from a binding site. The influence of protein flexibility on binding pockets can vary from small changes to an already existent pocket to the formation of a completely new pocket. Here, we review recent developments in computational methods to detect and define binding pockets and to study pocket dynamics. We introduce five

  12. Mode decomposition evolution equations.

    Science.gov (United States)

    Wang, Yang; Wei, Guo-Wei; Yang, Siyang

    2012-03-01

    Partial differential equation (PDE) based methods have become some of the most powerful tools for exploring the fundamental problems in signal processing, image processing, computer vision, machine vision and artificial intelligence in the past two decades. The advantages of PDE based approaches are that they can be made fully automatic, robust for the analysis of images, videos and high dimensional data. A fundamental question is whether one can use PDEs to perform all the basic tasks in the image processing. If one can devise PDEs to perform full-scale mode decomposition for signals and images, the modes thus generated would be very useful for secondary processing to meet the needs in various types of signal and image processing. Despite of great progress in PDE based image analysis in the past two decades, the basic roles of PDEs in image/signal analysis are only limited to PDE based low-pass filters, and their applications to noise removal, edge detection, segmentation, etc. At present, it is not clear how to construct PDE based methods for full-scale mode decomposition. The above-mentioned limitation of most current PDE based image/signal processing methods is addressed in the proposed work, in which we introduce a family of mode decomposition evolution equations (MoDEEs) for a vast variety of applications. The MoDEEs are constructed as an extension of a PDE based high-pass filter (Europhys. Lett., 59(6): 814, 2002) by using arbitrarily high order PDE based low-pass filters introduced by Wei (IEEE Signal Process. Lett., 6(7): 165, 1999). The use of arbitrarily high order PDEs is essential to the frequency localization in the mode decomposition. Similar to the wavelet transform, the present MoDEEs have a controllable time-frequency localization and allow a perfect reconstruction of the original function. Therefore, the MoDEE operation is also called a PDE transform. However, modes generated from the present approach are in the spatial or time domain and can be

  13. Excursions through KK modes

    Science.gov (United States)

    Furuuchi, Kazuyuki

    2016-07-01

    In this article we study Kaluza-Klein (KK) dimensional reduction of massive Abelian gauge theories with charged matter fields on a circle. Since local gauge transformations change position dependence of the charged fields, the decomposition of the charged matter fields into KK modes is gauge dependent. While whole KK mass spectrum is independent of the gauge choice, the mode number depends on the gauge. The masses of the KK modes also depend on the field value of the zero-mode of the extra dimensional component of the gauge field. In particular, one of the KK modes in the KK tower of each massless 5D charged field becomes massless at particular values of the extra-dimensional component of the gauge field. When the extra-dimensional component of the gauge field is identified with the inflaton, this structure leads to recursive cosmological particle productions.

  14. Ligand photo-isomerization triggers conformational changes in iGluR2 ligand binding domain.

    Directory of Open Access Journals (Sweden)

    Tino Wolter

    Full Text Available Neurological glutamate receptors bind a variety of artificial ligands, both agonistic and antagonistic, in addition to glutamate. Studying their small molecule binding properties increases our understanding of the central nervous system and a variety of associated pathologies. The large, oligomeric multidomain membrane protein contains a large and flexible ligand binding domains which undergoes large conformational changes upon binding different ligands. A recent application of glutamate receptors is their activation or inhibition via photo-switchable ligands, making them key systems in the emerging field of optochemical genetics. In this work, we present a theoretical study on the binding mode and complex stability of a novel photo-switchable ligand, ATA-3, which reversibly binds to glutamate receptors ligand binding domains (LBDs. We propose two possible binding modes for this ligand based on flexible ligand docking calculations and show one of them to be analogues to the binding mode of a similar ligand, 2-BnTetAMPA. In long MD simulations, it was observed that transitions between both binding poses involve breaking and reforming the T686-E402 protein hydrogen bond. Simulating the ligand photo-isomerization process shows that the two possible configurations of the ligand azo-group have markedly different complex stabilities and equilibrium binding modes. A strong but slow protein response is observed after ligand configuration changes. This provides a microscopic foundation for the observed difference in ligand activity upon light-switching.

  15. Comparative analyses of the thermodynamic RNA binding signatures of different types of RNA recognition motifs

    Science.gov (United States)

    Cléry, Antoine; Allain, Frédéric H-T

    2017-01-01

    Abstract RNA recognition motifs (RRMs) are structurally versatile domains important in regulation of alternative splicing. Structural mechanisms of sequence-specific recognition of single-stranded RNAs (ssRNAs) by RRMs are well understood. The thermodynamic strategies are however unclear. Therefore, we utilized microcalorimetry and semi-empirical analyses to comparatively analyze the cognate ssRNA binding thermodynamics of four different RRM domains, each with a different RNA binding mode. The different binding modes are: canonical binding to the β-sheet surface; canonical binding with involvement of N- and C-termini; binding to conserved loops; and binding to an α-helix. Our results identify enthalpy as the sole and general force driving association at physiological temperatures. Also, networks of weak interactions are a general feature regulating stability of the different RRM–ssRNA complexes. In agreement, non-polyelectrolyte effects contributed between ∼75 and 90% of the overall free energy of binding in the considered complexes. The various RNA binding modes also displayed enormous heat capacity differences, that upon dissection revealed large differential changes in hydration, conformations and dynamics upon binding RNA. Altogether, different modes employed by RRMs to bind cognate ssRNAs utilize various thermodynamics strategies during the association process. PMID:28334819

  16. Python bindings for libcloudph++

    OpenAIRE

    Jarecka, Dorota; Arabas, Sylwester; Del Vento, Davide

    2015-01-01

    This technical note introduces the Python bindings for libcloudph++. The libcloudph++ is a C++ library of algorithms for representing atmospheric cloud microphysics in numerical models. The bindings expose the complete functionality of the library to the Python users. The bindings are implemented using the Boost.Python C++ library and use NumPy arrays. This note includes listings with Python scripts exemplifying the use of selected library components. An example solution for using the Python ...

  17. DNS & Bind Cookbook

    CERN Document Server

    Liu, Cricket

    2011-01-01

    The DNS & BIND Cookbook presents solutions to the many problems faced by network administrators responsible for a name server. Following O'Reilly's popular problem-and-solution cookbook format, this title is an indispensable companion to DNS & BIND, 4th Edition, the definitive guide to the critical task of name server administration. The cookbook contains dozens of code recipes showing solutions to everyday problems, ranging from simple questions, like, "How do I get BIND?" to more advanced topics like providing name service for IPv6 addresses. It's full of BIND configuration files that yo

  18. Python bindings for libcloudph++

    CERN Document Server

    Jarecka, Dorota; Del Vento, Davide

    2015-01-01

    This technical note introduces the Python bindings for libcloudph++. The libcloudph++ is a C++ library of algorithms for representing atmospheric cloud microphysics in numerical models. The bindings expose the complete functionality of the library to the Python users. The bindings are implemented using the Boost.Python C++ library and use NumPy arrays. This note includes listings with Python scripts exemplifying the use of selected library components. An example solution for using the Python bindings to access libcloudph++ from Fortran is presented.

  19. Insights into distinct regulatory modes of nucleosome positioning

    Directory of Open Access Journals (Sweden)

    Feng Jihua

    2009-12-01

    Full Text Available Abstract Background The nucleosome is the fundamental unit of eukaryotic genomes. Experimental evidence suggests that the genomic DNA sequence and a variety of protein factors contribute to nucleosome positioning in vivo. However, how nucleosome positioning is determined locally is still largely unknown. Results We found that transcription factor binding sites (TFBSs with particular nucleosomal contexts show a preference to reside on specific chromosomes. We identified four typical gene classes associated with distinct regulatory modes of nucleosome positioning, and further showed that they are distinguished by transcriptional regulation patterns. The first mode involves the cooperativity between chromatin remodeling and stable transcription factor (TF-DNA binding that is linked to high intrinsic DNA binding affinities, evicting nucleosomes from favorable DNA sequences. The second is the DNA-encoded low nucleosome occupancy that is associated with high gene activity. The third is through chromatin remodeling and histone acetylation, sliding nucleosomes along DNA. This mode is linked to more cryptic sites for TF binding. The last consists of the nucleosome-enriched organization driven by other factors that overrides nucleosome sequence preferences. In addition, we showed that high polymerase II (Pol II occupancy is associated with high nucleosome occupancy around the transcription start site (TSS. Conclusions We identified four different regulatory modes of nucleosome positioning and gave insights into mechanisms that specify promoter nucleosome location. We suggest two distinct modes of recruitment of Pol II, which are selectively employed by different genes.

  20. RNA recognition by the DNA end-binding Ku heterodimer.

    Science.gov (United States)

    Dalby, Andrew B; Goodrich, Karen J; Pfingsten, Jennifer S; Cech, Thomas R

    2013-06-01

    Most nucleic acid-binding proteins selectively bind either DNA or RNA, but not both nucleic acids. The Saccharomyces cerevisiae Ku heterodimer is unusual in that it has two very different biologically relevant binding modes: (1) Ku is a sequence-nonspecific double-stranded DNA end-binding protein with prominent roles in nonhomologous end-joining and telomeric capping, and (2) Ku associates with a specific stem-loop of TLC1, the RNA subunit of budding yeast telomerase, and is necessary for proper nuclear localization of this ribonucleoprotein enzyme. TLC1 RNA-binding and dsDNA-binding are mutually exclusive, so they may be mediated by the same site on Ku. Although dsDNA binding by Ku is well studied, much less is known about what features of an RNA hairpin enable specific recognition by Ku. To address this question, we localized the Ku-binding site of the TLC1 hairpin with single-nucleotide resolution using phosphorothioate footprinting, used chemical modification to identify an unpredicted motif within the hairpin secondary structure, and carried out mutagenesis of the stem-loop to ascertain the critical elements within the RNA that permit Ku binding. Finally, we provide evidence that the Ku-binding site is present in additional budding yeast telomerase RNAs and discuss the possibility that RNA binding is a conserved function of the Ku heterodimer.

  1. Plausibility of the implausible: is it possible that ultra-high dilutions ‘without biological activity’ cause adverse effects?

    Directory of Open Access Journals (Sweden)

    Marcus Zulian Teixeira

    2013-06-01

    .7% of cases the potencies were described as below of the 12ª Centesimal, the point beyond which the likelihood of a single molecule being present in the remedy approaches zero”, the authors claim that “in the majority of cases, the possible mechanism of action involved allergic reactions or ingestion of toxic substances”. With this approach, the authors seek to dismiss the biological effects of ultra-high dilutions, because if they cause AEs would be confirming the plausibility of its possible therapeutic effects. However, toxicological tests are required to affirm that AEs are a consequence of toxic (allergic effects of the substances or of ‘imponderable’ effects of ultra-high dilutions. In view of the recent report cited in the review [12] in which a complex homeopathic medicine indicated for treating infant colic (Gali-col Baby, GCB caused apparent life-threatening events (ALTEs were described by the National Institutes of Health consensus group in 1986 as “an episode that is frightening to the observer and that is characterized by some combination of apnea (central or occasionally obstructive, color change (usually cyanotic or pallid but occasionally erythematous or plethoric, a marked change in muscle tone (usually marked limpness, choking or gagging” [13] in consequence of the ‘toxicity of active ingredients’ (Citrullus colocynthis, Matricaria chamomilla, Bryonia alba, Nux vomica, Veratrum album, Magnesia phosphorica and Cuprum metallicum at potencies between 4C and 5C, Oberbaum et al. [14] performed a toxicological study of these components showing that “doses ingested in the GCB series were 10-13 orders of magnitude smaller than those reported to cause toxic reactions in humans” and that “there was poor correlation between symptoms with GCB and toxic profiles of the components”. As alternative explanation, they suggest that “four components (Veratrum album, Cuprum metallicum, Bryonia alba and Matricaria chamomilla have an

  2. Mode choice model parameters estimation

    OpenAIRE

    Strnad, Irena

    2010-01-01

    The present work focuses on parameter estimation of two mode choice models: multinomial logit and EVA 2 model, where four different modes and five different trip purposes are taken into account. Mode choice model discusses the behavioral aspect of mode choice making and enables its application to a traffic model. Mode choice model includes mode choice affecting trip factors by using each mode and their relative importance to choice made. When trip factor values are known, it...

  3. Particle compositions with a pre-selected cell internalization mode

    Science.gov (United States)

    Decuzzi, Paolo (Inventor); Ferrari, Mauro (Inventor)

    2012-01-01

    A method of formulating a particle composition having a pre-selected cell internalization mode involves selecting a target cell having surface receptors and obtaining particles that have i) surface moieties, that have an affinity for or are capable of binding to the surface receptors of the cell and ii) a preselected shape, where a surface distribution of the surface moieties on the particles and the shape of the particles are effective for the pre-selected cell internalization mode.

  4. Surface modes in physics

    CERN Document Server

    Sernelius, Bo E

    2011-01-01

    Electromagnetic surface modes are present at all surfaces and interfaces between material of different dielectric properties. These modes have very important effects on numerous physical quantities: adhesion, capillary force, step formation and crystal growth, the Casimir effect etc. They cause surface tension and wetting and they give rise to forces which are important e.g. for the stability of colloids.This book is a useful and elegant approach to the topic, showing how the concept of electromagnetic modes can be developed as a unifying theme for a range of condensed matter physics. The

  5. Higher Order Mode Fibers

    DEFF Research Database (Denmark)

    Israelsen, Stine Møller

    . The research presented in this thesis falls in three parts. In the first part, a first time demonstration of the break of the azimuthal symmetry of the Bessel-like LP0X modes is presented. This effect, known as the bowtie effect, causes the mode to have an azimuthal dependence as well as a quasi...... and polarization state are investigated. For this fiber, the onset of the bowtie effect is shown numerically to be LP011. The characteristics usually associated with Bessel-likes modes such as long diffraction free length and selfhealing are shown to be conserved despite the lack of azimuthal symmetry...

  6. Graphene with vacancies: Supernumerary zero modes

    Science.gov (United States)

    Weik, Norman; Schindler, Johannes; Bera, Soumya; Solomon, Gemma C.; Evers, Ferdinand

    2016-08-01

    The density of states ϱ (E ) of graphene is investigated within the tight-binding (Hückel) approximation in the presence of vacancies. They introduce a nonvanishing density of zero modes nzm that act as midgap states, ϱ (E ) =nzmδ (E ) +smooth . As is well known, the actual number of zero modes per sample can, in principle, exceed the sublattice imbalance, Nzm≥|NA-NB| , where NA,NB denote the number of carbon atoms in each sublattice. In this paper, we establish a stronger relation that is valid in the thermodynamic limit and that involves the concentration of zero modes, nzm>|cA-cB| , where cA and cB denote the concentration of vacancies per sublattice; in particular, nzm is nonvanishing even in the case of balanced disorder, NA/NB=1 . Adopting terminology from benzoid graph theory, the excess modes associated with the current carrying backbone (percolation cluster) are called supernumerary. In the simplest cases, such modes can be associated with structural elements such as carbon atoms connected with a single bond, only. Our result suggests that the continuum limit of bipartite hopping models supports nontrivial "supernumerary" terms that escape the present continuum descriptions.

  7. BindUP: a web server for non-homology-based prediction of DNA and RNA binding proteins.

    Science.gov (United States)

    Paz, Inbal; Kligun, Efrat; Bengad, Barak; Mandel-Gutfreund, Yael

    2016-07-08

    Gene expression is a multi-step process involving many layers of regulation. The main regulators of the pathway are DNA and RNA binding proteins. While over the years, a large number of DNA and RNA binding proteins have been identified and extensively studied, it is still expected that many other proteins, some with yet another known function, are awaiting to be discovered. Here we present a new web server, BindUP, freely accessible through the website http://bindup.technion.ac.il/, for predicting DNA and RNA binding proteins using a non-homology-based approach. Our method is based on the electrostatic features of the protein surface and other general properties of the protein. BindUP predicts nucleic acid binding function given the proteins three-dimensional structure or a structural model. Additionally, BindUP provides information on the largest electrostatic surface patches, visualized on the server. The server was tested on several datasets of DNA and RNA binding proteins, including proteins which do not possess DNA or RNA binding domains and have no similarity to known nucleic acid binding proteins, achieving very high accuracy. BindUP is applicable in either single or batch modes and can be applied for testing hundreds of proteins simultaneously in a highly efficient manner.

  8. Design Gradient Descent Optimal Sliding Mode Control of Continuum Robots

    Directory of Open Access Journals (Sweden)

    Farzin Piltan

    2012-08-01

    Full Text Available In this research, a new approach for gradient descent optimal sliding mode controller for continuum robots is proposed. Based on the new dynamic models developed, a novel technique for nonlinear control of continuum manipulators to be employed in various situations has also been proposed and developed. A section of a continuum arm is modeled using lumped model elements (masses, springs and dampers and control by nonlinear methodology (sliding mode method and optimization the sliding surface slope by gradient descent method. It is shown that this type of control methodology, although used to a certain model, can be used to conveniently control the dynamics of the arm with suitable tradeoff in accuracy of modeling. This relatively controller is more plausible to implement in an actual real-time when compared to other techniques of nonlinear controller methodology of continuum arms. Principles of sliding mode methodology is based on derive the sliding surface slope and nonlinear dynamic model and applied in the system. Based on the gradient descent optimization method, the sliding surface slope and gain updating factor has been developed in certain and partly uncertain continuum robots. This methodology is represented in certain and uncertain area whose only optimization for certain area and test this optimization for uncertainty. The new techniques proposed and methodologies adopted in this paper supported by MATLAB/SIMULINK results represent a significant contribution to the field of design an optimized nonlinear sliding mode controller for continuum robots.

  9. One-pot synthesis of tetrazole-1,2,5,6-tetrahydronicotinonitriles and cholinesterase inhibition: Probing the plausible reaction mechanism via computational studies.

    Science.gov (United States)

    Hameed, Abdul; Zehra, Syeda Tazeen; Abbas, Saba; Nisa, Riffat Un; Mahmood, Tariq; Ayub, Khurshid; Al-Rashida, Mariya; Bajorath, Jürgen; Khan, Khalid Mohammed; Iqbal, Jamshed

    2016-04-01

    In the present study, one-pot synthesis of 1H-tetrazole linked 1,2,5,6-tetrahydronicotinonitriles under solvent-free conditions have been carried out in the presence of tetra-n-butyl ammonium fluoride trihydrated (TBAF) as catalyst and solvent. Computational studies have been conducted to elaborate two plausible mechanistic pathways of this one-pot reaction. Moreover, the synthesized compounds were screened for cholinesterases (acetylcholinesterase and butyrylcholinesterase) inhibition which are consider to be major malefactors of Alzheimer's disease (AD) to find lead compounds for further research in AD therapy.

  10. Phylogenetic analysis of NS5B gene of classical swine fever virus isolates indicates plausible Chinese origin of Indian subgroup 2.2 viruses.

    Science.gov (United States)

    Patil, S S; Hemadri, D; Veeresh, H; Sreekala, K; Gajendragad, M R; Prabhudas, K

    2012-02-01

    Twenty-three CSFV isolates recovered from field outbreaks in various parts of India during 2006-2009 were used for genetic analysis in the NS5B region (409 nts). Seventeen of these were studied earlier [16] in the 5'UTR region. Phylogenetic analysis indicated the continued dominance of subgroup 1.1 strains in the country. Detailed analysis of a subgroup 2.2 virus indicated the plausible Chinese origin of this subgroup in India and provided indirect evidence of routes of CSFV movement within South East Asia region.

  11. Expression of the System N transporter (SNAT5/SN2) during development indicates its plausible role in glutamatergic neurotransmission.

    Science.gov (United States)

    Rodríguez, Angelina; Ortega, Arturo; Berumen, Laura C; García-Alcocer, María G; Giménez, Cecilio; Zafra, Francisco

    2014-07-01

    Solute neutral amino acid transporter 5 (SNAT5/SN2) is a member of the System N family, expressed in glial cells in the adult brain, able to transport glutamine, histidine or glycine among other substrates. Its tight association with synapses and its electroneutral mode of operation that allows the bidirectional movement of substrates, supports the idea that this transporter participates in the function of the glutamine-glutamate cycle between neurons and glia. Moreover, SNAT5/SN2 might contribute to the regulation of glycine concentration in glutamatergic synapses and, therefore, to the functioning of the N-methyl-d-aspartate (NMDA) subtype of glutamate receptors. Ontogenic maturation of these synapses occurs postnatally through the coordinate expression of a large number of receptors, transporters, structural and regulatory proteins that ensure the correct operation of the excitatory pathways in the central nervous system. Since the temporal pattern of expression of SNAT5/SN2 is unknown, we analyzed it by immunoblot and immunohistochemical techniques. Results indicate that the expression of SNAT5/SN2 is triggered between the second and third postnatal week in the cerebral cortex, in parallel to the expression of the vesicular glutamate transporter vGLUT1 and the glial glutamate transporter GLT1/EAAT2. In the cerebellum, this process occurs about one week later than in the cerebral cortex. Immunohistochemical staining of cortical sections shows that from postnatal day 14 to adulthood the transporter was expressed exclusively in glial cells. Our results are consistent with the idea that SNAT5/SN2 expression is coordinated with that of other proteins necessary for the operation of glutamatergic synapses and reinforce the existence of a regulatory cross-talk between neurons and glia that orchestrates the building up of these synapses.

  12. Objective models for steroid binding sites of human globulins

    Science.gov (United States)

    Schnitker, Jurgen; Gopalaswamy, Ramesh; Crippen, Gordon M.

    1997-01-01

    We report the application of a recently developed alignment-free 3D QSAR method [Crippen,G.M., J. Comput. Chem., 16 (1995) 486] to a benchmark-type problem. The test systeminvolves the binding of 31 steroid compounds to two kinds of human carrier protein. Themethod used not only allows for arbitrary binding modes, but also avoids the problems oftraditional least-squares techniques with regard to the implicit neglect of informative outlyingdata points. It is seen that models of considerable predictive power can be obtained even witha very vague binding site description. Underlining a systematic, but usually ignored, problemof the QSAR approach, there is not one unique type of model but, rather, an entire manifoldof distinctly different models that are all compatible with the experimental information. Fora given model, there is also a considerable variation in the found binding modes, illustratingthe problems that are inherent in the need for 'correct` molecular alignment in conventional3D QSAR methods.

  13. On Binding Domains

    NARCIS (Netherlands)

    Everaert, M.B.H.

    2005-01-01

    In this paper I want to explore reasons for replacing Binding Theory based on the anaphor-pronoun dichotomy by a Binding Theory allowing more domains restricting/defining anaphoric dependencies. This will, thus, have consequences for the partitioning of anaphoric elements, presupposing more types of

  14. Melanin-binding radiopharmaceuticals

    Energy Technology Data Exchange (ETDEWEB)

    Packer, S; Fairchild, R G; Watts, K P; Greenberg, D; Hannon, S J

    1980-01-01

    The scope of this paper is limited to an analysis of the factors that are important to the relationship of radiopharmaceuticals to melanin. While the authors do not attempt to deal with differences between melanin-binding vs. melanoma-binding, a notable variance is assumed. (PSB)

  15. DNS BIND Server Configuration

    Directory of Open Access Journals (Sweden)

    Radu MARSANU

    2011-01-01

    Full Text Available After a brief presentation of the DNS and BIND standard for Unix platforms, the paper presents an application which has a principal objective, the configuring of the DNS BIND 9 server. The general objectives of the application are presented, follow by the description of the details of designing the program.

  16. Binding characteristics of salbutamol with DNA by spectral methods

    Science.gov (United States)

    Bi, Shuyun; Pang, Bo; Zhao, Tingting; Wang, Tianjiao; Wang, Yu; Yan, Lili

    2013-07-01

    Salbutamol interacting with deoxyribonucleic acid (DNA) was examined by fluorescence, UV absorption, viscosity measurements, and DNA melting techniques. The binding constants and binding sites were obtained at different temperatures by fluorescence quenching. The Stern-Volmer plots showed that the quenching of fluorescence of salbutamol by DNA was a static quenching. To probe the binding mode, various analytical methods were performed and the results were as follows: hyperchromic effect was shown in the absorption spectra of salbutamol upon addition of DNA; there was no appreciable increase in melting temperature of DNA when salbutamol was presented in DNA solution; the fluorescence intensity of salbutamol-DNA decrease with the increasing ionic strength; the relative viscosity of DNA did not change in the presence of salbutamol; the binding constant of salbutamol with double strand DNA (dsDNA) was much higher than that of it with single strand DNA (ssDNA). All these results indicated that the binding mode of salbutamol to DNA should be groove binding. The thermodynamic parameters suggested that hydrogen bond or van der Waals force might play an important role in salbutamol binding to DNA. According to the Förster energy transference theory, the binding distance between the acceptor and donor was 3.70 nm.

  17. Resonance vector mode locking

    CERN Document Server

    Kolpakov, Stanislav A; Loika, Yuri; Tarasov, Nikita; Kalashnikov, Vladimir; Agrawal, Govind P

    2015-01-01

    A mode locked fibre laser as a source of ultra-stable pulse train has revolutionised a wide range of fundamental and applied research areas by offering high peak powers, high repetition rates, femtosecond range pulse widths and a narrow linewidth. However, further progress in linewidth narrowing seems to be limited by the complexity of the carrier-envelope phase control. Here for the first time we demonstrate experimentally and theoretically a new mechanism of resonance vector self-mode locking where tuning in-cavity birefringence leads to excitation of the longitudinal modes sidebands accompanied by the resonance phase locking of sidebands with the adjacent longitudinal modes. An additional resonance with acoustic phonons provides the repetition rate tunability and linewidth narrowing down to Hz range that drastically reduces the complexity of the carrier-envelope phase control and so will open the way to advance lasers in the context of applications in metrology, spectroscopy, microwave photonics, astronomy...

  18. Supersymmetric mode converters

    Science.gov (United States)

    Heinrich, Matthias; Miri, Mohammad-Ali; Stützer, Simon; Nolte, Stefan; Szameit, Alexander; Christodoulides, Demetrios N.

    2015-08-01

    In recent years, the ever-increasing demand for high-capacity transmission systems has driven remarkable advances in technologies that encode information on an optical signal. Mode-division multiplexing makes use of individual modes supported by an optical waveguide as mutually orthogonal channels. The key requirement in this approach is the capability to selectively populate and extract specific modes. Optical supersymmetry (SUSY) has recently been proposed as a particularly elegant way to resolve this design challenge in a manner that is inherently scalable, and at the same time maintains compatibility with existing multiplexing strategies. Supersymmetric partners of multimode waveguides are characterized by the fact that they share all of their effective indices with the original waveguide. The crucial exception is the fundamental mode, which is absent from the spectrum of the partner waveguide. Here, we demonstrate experimentally how this global phase-matching property can be exploited for efficient mode conversion. Multimode structures and their superpartners are experimentally realized in coupled networks of femtosecond laser-written waveguides, and the corresponding light dynamics are directly observed by means of fluorescence microscopy. We show that SUSY transformations can readily facilitate the removal of the fundamental mode from multimode optical structures. In turn, hierarchical sequences of such SUSY partners naturally implement the conversion between modes of adjacent order. Our experiments illustrate just one of the many possibilities of how SUSY may serve as a building block for integrated mode-division multiplexing arrangements. Supersymmetric notions may enrich and expand integrated photonics by versatile optical components and desirable, yet previously unattainable, functionalities.

  19. Mode Gaussian beam tracing

    Science.gov (United States)

    Trofimov, M. Yu.; Zakharenko, A. D.; Kozitskiy, S. B.

    2016-10-01

    A mode parabolic equation in the ray centered coordinates for 3D underwater sound propagation is developed. The Gaussian beam tracing in this case is constructed. The test calculations are carried out for the ASA wedge benchmark and proved an excellent agreement with the source images method in the case of cross-slope propagation. But in the cases of wave propagation at some angles to the cross-slope direction an account of mode interaction becomes necessary.

  20. Thermodynamics of fragment binding.

    Science.gov (United States)

    Ferenczy, György G; Keserű, György M

    2012-04-23

    The ligand binding pockets of proteins have preponderance of hydrophobic amino acids and are typically within the apolar interior of the protein; nevertheless, they are able to bind low complexity, polar, water-soluble fragments. In order to understand this phenomenon, we analyzed high resolution X-ray data of protein-ligand complexes from the Protein Data Bank and found that fragments bind to proteins with two near optimal geometry H-bonds on average. The linear extent of the fragment binding site was found not to be larger than 10 Å, and the H-bonding region was found to be restricted to about 5 Å on average. The number of conserved H-bonds in proteins cocrystallized with multiple different fragments is also near to 2. These fragment binding sites that are able to form limited number of strong H-bonds in a hydrophobic environment are identified as hot spots. An estimate of the free-energy gain of H-bond formation versus apolar desolvation supports that fragment sized compounds need H-bonds to achieve detectable binding. This suggests that fragment binding is mostly enthalpic that is in line with their observed binding thermodynamics documented in Isothermal Titration Calorimetry (ITC) data sets and gives a thermodynamic rationale for fragment based approaches. The binding of larger compounds tends to more rely on apolar desolvation with a corresponding increase of the entropy content of their binding free-energy. These findings explain the reported size-dependence of maximal available affinity and ligand efficiency both behaving differently in the small molecule region featured by strong H-bond formation and in the larger molecule region featured by apolar desolvation.

  1. Identification of the bkdAB gene cluster, a plausible source of the starter-unit for virginiamycin M production in Streptomyces virginiae.

    Science.gov (United States)

    Pulsawat, Nattika; Kitani, Shigeru; Kinoshita, Hiroshi; Lee, Chang Kwon; Nihira, Takuya

    2007-06-01

    The bkdAB gene cluster, which encodes plausible E1 and E2 components of the branched-chain alpha-keto acid dehydrogenase (BCDH) complex, was isolated from Streptomyces virginiae in the vicinity of a regulatory island for virginiamycin production. Gene disruption of bkdA completely abolished the production of virginiamycin M (a polyketide-peptide antibiotic), while the production of virginiamycin S (a cyclodepsipeptide antibiotic) was unaffected. Complementation of the bkdA disruptant by genome-integration of intact bkdA completely restored the virginiamycin M production, indicating that the bkdAB cluster is essential for virginiamycin M biosynthesis, plausibly via the provision of isobutyryl-CoA as a primer unit. In contrast to a feature usually seen in the Streptomyces E1 component, namely, the separate encoding of the alpha and beta subunits, S. virginiae bkdA seemed to encode the fused form of the alpha and beta subunits, which was verified by the actual catalytic activity of the fused protein in vitro using recombinant BkdA overexpressed in Escherichia coli. Supply of an additional bkdA gene under the strong and constitutive promoter ermE* in the wild-type strain of S. virginiae resulted in enhanced production of virginiamycin M, suggesting that the supply of isobutyryl-CoA is one of the rate-limiting factors in the biosynthesis of virginiamycin M.

  2. Analysis of multi-domain hypothetical proteins containing iron-sulphur clusters and fad ligands reveal rieske dioxygenase activity suggesting their plausible roles in bioremediation.

    Science.gov (United States)

    Sathyanarayanan, Nitish; Nagendra, Holenarasipur Gundurao

    2012-01-01

    'Conserved hypothetical' proteins pose a challenge not just for functional genomics, but also to biology in general. As long as there are hundreds of conserved proteins with unknown function in model organisms such as Escherichia coli, Bacillus subtilis or Saccharomyces cerevisiae, any discussion towards a 'complete' understanding of these biological systems will remain a wishful thinking. Insilico approaches exhibit great promise towards attempts that enable appreciating the plausible roles of these hypothetical proteins. Among the majority of genomic proteins, two-thirds in unicellular organisms and more than 80% in metazoa, are multi-domain proteins, created as a result of gene duplication events. Aromatic ring-hydroxylating dioxygenases, also called Rieske dioxygenases (RDOs), are class of multi-domain proteins that catalyze the initial step in microbial aerobic degradation of many aromatic compounds. Investigations here address the computational characterization of hypothetical proteins containing Ferredoxin and Flavodoxin signatures. Consensus sequence of each class of oxidoreductase was obtained by a phylogenetic analysis, involving clustering methods based on evolutionary relationship. A synthetic sequence was developed by combining the consensus, which was used as the basis to search for their homologs via BLAST. The exercise yielded 129 multidomain hypothetical proteins containing both 2Fe-2S (Ferredoxin) and FNR (Flavodoxin) domains. In the current study, 40 proteins with N-terminus 2Fe-2S domain and C-terminus FNR domain are characterized, through homology modelling and docking exercises which suggest dioxygenase activity indicating their plausible roles in degradation of aromatic moieties.

  3. Dying or living?: The double bind.

    Science.gov (United States)

    Longhofer, J

    1980-06-01

    Describing the behaviors of terminally ill patients, their families and those charged with their care has received considerable attention during the past decade. This study of comprehensive cancer treatment and research facility indicates that the prevailing theory is limited to explanation at the intra-psychic level. In her work with hundreds of terminal cases, Dr. Elizabeth Kubler-Ross found that patients typically progress through five stages: 1) denial, 2) anger, 3) bargaining, 4) depression, and 5) acceptance. She concludes that the majority of her patients die in a stage of acceptance--a state of equanimity. Recently, scholars have claimed that this five stage scheme has limited applicability and may in fact contribute to the formalization of a dying person's behavior. This preliminary report proposes that the stage theory, if it has any descriptive validity, becomes meaningful only when used to describe behaviors occurring among patients, families, and medical practitioners. A plausible explanation of these behaviors is accomplished by examination of communication patterns containing the structure of paradox or double bind. Patients are forced to perceive realities about their physical conditions not as they appear to them, but as they are defined by those in their environment. This paper explores these communication patterns in relation to the structure of social relationships and the specific contents of messages being transmitted and received.

  4. Unusual coordination mode of tetradentate Schiff base cobalt(III) complexes.

    Science.gov (United States)

    Cyriac, Anish; Jeon, Jong Yeob; Varghese, Jobi Kodiyan; Park, Ji Hae; Choi, Soo Young; Chung, Young Keun; Lee, Bun Yeoul

    2012-02-07

    Contrary to the stereotype, Jacobsen's catalyst, chiral (salcy)Co(III)OAc adopts an unusual binding mode. The tetradentate {ONNO} ligand does not form a square plane but wraps cobalt in a cis-β fashion while acetate is chelating.

  5. Retinoblastoma-binding protein 1 has an interdigitated double Tudor domain with DNA binding activity.

    Science.gov (United States)

    Gong, Weibin; Wang, Jinfeng; Perrett, Sarah; Feng, Yingang

    2014-02-21

    Retinoblastoma-binding protein 1 (RBBP1) is a tumor and leukemia suppressor that binds both methylated histone tails and DNA. Our previous studies indicated that RBBP1 possesses a Tudor domain, which cannot bind histone marks. In order to clarify the function of the Tudor domain, the solution structure of the RBBP1 Tudor domain was determined by NMR and is presented here. Although the proteins are unrelated, the RBBP1 Tudor domain forms an interdigitated double Tudor structure similar to the Tudor domain of JMJD2A, which is an epigenetic mark reader. This indicates the functional diversity of Tudor domains. The RBBP1 Tudor domain structure has a significant area of positively charged surface, which reveals a capability of the RBBP1 Tudor domain to bind nucleic acids. NMR titration and isothermal titration calorimetry experiments indicate that the RBBP1 Tudor domain binds both double- and single-stranded DNA with an affinity of 10-100 μM; no apparent DNA sequence specificity was detected. The DNA binding mode and key interaction residues were analyzed in detail based on a model structure of the Tudor domain-dsDNA complex, built by HADDOCK docking using the NMR data. Electrostatic interactions mediate the binding of the Tudor domain with DNA, which is consistent with NMR experiments performed at high salt concentration. The DNA-binding residues are conserved in Tudor domains of the RBBP1 protein family, resulting in conservation of the DNA-binding function in the RBBP1 Tudor domains. Our results provide further insights into the structure and function of RBBP1.

  6. Topological edge modes in multilayer graphene systems

    KAUST Repository

    Ge, Lixin

    2015-08-10

    Plasmons can be supported on graphene sheets as the Dirac electrons oscillate collectively. A tight-binding model for graphene plasmons is a good description as the field confinement in the normal direction is strong. With this model, the topological properties of plasmonic bands in multilayer graphene systems are investigated. The Zak phases of periodic graphene sheet arrays are obtained for different configurations. Analogous to Su-Schrieffer-Heeger (SSH) model in electronic systems, topological edge plasmon modes emerge when two periodic graphene sheet arrays with different Zak phases are connected. Interestingly, the dispersion of these topological edge modes is the same as that in the monolayer graphene and is invariant as the geometric parameters of the structure such as the separation and period change. These plasmonic edge states in multilayer graphene systems can be further tuned by electrical gating or chemical doping. © 2015 Optical Society of America.

  7. Sliding mode control and observation

    CERN Document Server

    Shtessel, Yuri; Fridman, Leonid; Levant, Arie

    2014-01-01

    The sliding mode control methodology has proven effective in dealing with complex dynamical systems affected by disturbances, uncertainties and unmodeled dynamics. Robust control technology based on this methodology has been applied to many real-world problems, especially in the areas of aerospace control, electric power systems, electromechanical systems, and robotics. Sliding Mode Control and Observation represents the first textbook that starts with classical sliding mode control techniques and progresses toward newly developed higher-order sliding mode control and observation algorithms and their applications. The present volume addresses a range of sliding mode control issues, including: *Conventional sliding mode controller and observer design *Second-order sliding mode controllers and differentiators *Frequency domain analysis of conventional and second-order sliding mode controllers *Higher-order sliding mode controllers and differentiators *Higher-order sliding mode observers *Sliding mode disturbanc...

  8. Thermodynamics of radiation modes

    Energy Technology Data Exchange (ETDEWEB)

    Pina, Eduardo; De la Selva, Sara Maria Teresa [Departamento de Fisica, Universidad Autonoma Metropolitana - Iztapalapa, PO Box 55 534, Mexico, D F, 09340 (Mexico)], E-mail: pge@xanum.uam.mx, E-mail: tere@xanum.uam.mx

    2010-03-15

    We study the equilibrium thermodynamics of the electromagnetic radiation in a cavity of a given volume and temperature. We found three levels of description, the thermodynamics of one mode, the thermodynamics of the distribution of frequencies in a band by summing over the frequencies in it and the global thermodynamics by summing over all the frequencies. One equation relating frequency and volume is used to define the thermodynamics of one mode, and to explain the mystery of the frequency-dependent quantities having a similar behaviour to the non-frequency-dependent quantities for some thermodynamic equations and different behaviour for others. Besides, this frequency-volume relation is used to count the number of modes in a band of frequency.