WorldWideScience

Sample records for platinum-vanadium oxide nanotube

  1. Photoinduced oxidation of carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Savage, T [Department of Physics and Astronomy, Clemson University, Clemson, SC 29634 (United States); Bhattacharya, S [Department of Physics and Astronomy, Clemson University, Clemson, SC 29634 (United States); Sadanadan, B [Department of Physics and Astronomy, Clemson University, Clemson, SC 29634 (United States); Gaillard, J [Department of Physics and Astronomy, Clemson University, Clemson, SC 29634 (United States); Tritt, T M [Department of Physics and Astronomy, Clemson University, Clemson, SC 29634 (United States); Sun, Y-P [Department of Chemistry, Clemson University, Clemson, SC 29634 (United States); Wu, Y [Department of Chemistry and PMI, Princeton University, Princeton, NJ 08544 (United States); Nayak, S [Department of Physics, Rensselaer Polytechnic Institute, Troy, NY 12180 (United States); Car, R [Department of Chemistry and PMI, Princeton University, Princeton, NJ 08544 (United States); Marzari, N [Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Ajayan, P M [Department of Materials Science and Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180 (United States); Rao, A M [Department of Physics and Astronomy, Clemson University, Clemson, SC 29634 (United States)

    2003-09-10

    Photoinduced phenomena are of general interest for new materials. Recently, photoinduced molecular desorption of oxygen has been reported in carbon nanotubes. Here we present, using thermopower measurements, that carbon nanotubes when exposed simultaneously to UV light and oxygen exhibit photoinduced oxidation of the nanotubes. At least two plausible mechanisms for the experimentally observed photoinduced oxidation are proposed: (i) a lower energy barrier for the adsorption of photo-generated singlet oxygen, or (ii) due to the presence of defects in carbon nanotubes that may facilitate the formation of locally electron-deficient and electron-rich regions on the nanotubes which facilitate the adsorption of oxygen molecules on the nanotubes.

  2. Fabrication of titanium oxide nanotube arrays by anodic oxidation

    Science.gov (United States)

    Zhao, Jianling; Wang, Xiaohui; Chen, Renzheng; Li, Longtu

    2005-06-01

    The formation of titanium oxide nanotube arrays on titanium substrates was investigated in HF electrolytes. Under optimized electrolyte and oxidation conditions, well-ordered nanotubes of titania were fabricated. Topologies of the anodized titanium change remarkably along with the changing of applied voltages, electrolyte concentration and oxidation time. Electrochemical determination and scanning electron microscope indicate the nanotubes are formed due to the competition of titania formation and dissolution under the assistance of electric field. A possible growth mechanism has also been presented.

  3. Silicon Carbide Nanotube Oxidation at High Temperatures

    Science.gov (United States)

    Ahlborg, Nadia; Zhu, Dongming

    2012-01-01

    Silicon Carbide Nanotubes (SiCNTs) have high mechanical strength and also have many potential functional applications. In this study, SiCNTs were investigated for use in strengthening high temperature silicate and oxide materials for high performance ceramic nanocomposites and environmental barrier coating bond coats. The high · temperature oxidation behavior of the nanotubes was of particular interest. The SiCNTs were synthesized by a direct reactive conversion process of multiwall carbon nanotubes and silicon at high temperature. Thermogravimetric analysis (TGA) was used to study the oxidation kinetics of SiCNTs at temperatures ranging from 800degC to1300degC. The specific oxidation mechanisms were also investigated.

  4. Nickel oxide nanotube synthesis using multiwalled carbon nanotubes as sacrificial templates for supercapacitor application

    Science.gov (United States)

    Abdalla, Ahmed M.; Sahu, Rakesh P.; Wallar, Cameron J.; Chen, Ri; Zhitomirsky, Igor; Puri, Ishwar K.

    2017-02-01

    A novel approach for the fabrication of nickel oxide nanotubes based on multiwalled carbon nanotubes as a sacrificial template is described. Electroless deposition is employed to deposit nickel onto carbon nanotubes. The subsequent annealing of the product in the presence of air oxidizes nickel to nickel oxide, and carbon is released as gaseous carbon dioxide, leaving behind nickel oxide nanotubes. Electron microscopy and elemental mapping confirm the formation of nickel oxide nanotubes. New chelating polyelectrolytes are used as dispersing agents to achieve high colloidal stability for both the nickel-coated carbon nanotubes and the nickel oxide nanotubes. A gravimetric specific capacitance of 245.3 F g-1 and an areal capacitance of 3.28 F cm-2 at a scan rate of 2 mV s-1 is achieved, with an electrode fabricated using nickel oxide nanotubes as the active element with a mass loading of 24.1 mg cm-2.

  5. Nickel oxide nanotube synthesis using multiwalled carbon nanotubes as sacrificial templates for supercapacitor application.

    Science.gov (United States)

    Abdalla, Ahmed M; Sahu, Rakesh P; Wallar, Cameron J; Chen, Ri; Zhitomirsky, Igor; Puri, Ishwar K

    2017-02-17

    A novel approach for the fabrication of nickel oxide nanotubes based on multiwalled carbon nanotubes as a sacrificial template is described. Electroless deposition is employed to deposit nickel onto carbon nanotubes. The subsequent annealing of the product in the presence of air oxidizes nickel to nickel oxide, and carbon is released as gaseous carbon dioxide, leaving behind nickel oxide nanotubes. Electron microscopy and elemental mapping confirm the formation of nickel oxide nanotubes. New chelating polyelectrolytes are used as dispersing agents to achieve high colloidal stability for both the nickel-coated carbon nanotubes and the nickel oxide nanotubes. A gravimetric specific capacitance of 245.3 F g(-1) and  an areal capacitance of 3.28 F cm(-2) at a scan rate of 2 mV s(-1) is achieved, with an electrode fabricated using nickel oxide nanotubes as the active element with a mass loading of 24.1 mg cm(-2).

  6. Oxide Nanotube Analogues: CuO Nanobarrels

    Energy Technology Data Exchange (ETDEWEB)

    H. H. Farrell; R. D. Parra

    2011-11-01

    The principle 'form follows function' which dominated much of twentieth century architechture and industrial design has its parallel on the nanolevel in the concept of 'function follows form'. This has been realized in many technologically valuable ways on this level via nanoparticles such as nanotubes and quantum dots, for example. Now, a new material, copper oxide (CuO) nanobarrels, offers still another opportunity to exploit unusual form to obtain new functionality. Recently, CuO 'rings' on the order of 100 nm diameter have been observed experimentally by El-Azab and Liang (2003). In a separate effort, we have used first principles density functional calculations to investigate smaller, single walled CuO structures that appear to be nanotubes or nanobarrels with a square unit mesh rather than the hexagonal mesh of carbon nanotubes. These structures are unique and novel, and almost certainly will yield fascinating results when studied experimentally.

  7. Purification of carbon nanotube by wet oxidation; Shisshiki sanka ni yoru carbon nanotube no seisei

    Energy Technology Data Exchange (ETDEWEB)

    Morishita, K.; Takarada, T. [Gunma University, Gunma (Japan)

    1997-07-10

    In order to efficiently recover carbon nanotubes, the purification method by wet oxidation with orthoperiodic acid and perchloric acid is investigated. The reactivity of the carbonaceous material toward the acids depends on the type of carbon. Carbon nanotubes are selectively recovered under the mild oxidation conditions. The degree of purification depends on the concentration of orthoperiodic acid. It is suggested that wet oxidation is an effective method for purification of carbon nanotubes. 17 refs., 6 figs.

  8. Catalytic systems of cumene oxidation based on multiwalled carbon nanotubes

    Science.gov (United States)

    Kobotaeva, N. S.; Skorokhodova, T. S.; Ryabova, N. V.

    2015-03-01

    Catalytic systems for cumene oxidation were prepared on the basis of silver-activated carbon nanotubes. Silver lies on the surface of the carbon nanotubes in the nanocrystalline state and has a size of 15-20 nm. The use of the obtained catalytic systems in cumene oxidation with molecular oxygen allowed a considerable decrease in the oxidation temperature and an increase in selectivity.

  9. Coating Carbon Nanotubes with Europium Oxide

    Institute of Scientific and Technical Information of China (English)

    Hui Qun CAO; Guang Yan HONG; Jing Hui YAN; Ji Lin ZHANG; Gui Xia LIU

    2003-01-01

    Carbon nanotubes (CNTS) coating with europium oxide by a simple method is reported in this letter for the first time. The CNTS were refluxed in a solution of nitric acid containing europium nitrate, and the pH value was subsequently ajusted with ammonia solution. At last, the mixture was filtered and annealed. The TEM micrograph showed that the CNTS were covered with a uniform thin layer with thickness of about 15 nm. The XRD results revealed that the CNTS were coated with europium oxide.

  10. Preparation and properties of magnetic iron oxide nanotubes

    Institute of Scientific and Technical Information of China (English)

    Baoliang Lv; Yao Xu; Dong Wu; Yuhan Sun

    2008-01-01

    Magnetite (Fe3O4) nanotubes were prepared by reducing synthesized hematite (α-Fe2O3) nanotubes in 5% H2+95% Ar atmosphere,and then maghemite (γ-Fe2O3) nanotubes were obtained by re-oxidizing the Fe3O4 nanotubes.The nanotube structure was kept from collapsing or sintering throughout the high temperature reducing and re-oxidizing processes.The coercivities of the Fe3O4 and γ-Fe2O3 nanotubes synthesized were found to be 340.22 Oe and 342.23 Oe,respectively,both higher than other nanostructures with the same phase and of similar size.Both adsorbed phosphate and the nanotube structure are considered responsible for this high coercivity.

  11. Platinum–Vanadium Oxide Nanotube Hybrids

    Directory of Open Access Journals (Sweden)

    Hernández EduardoPadrón

    2010-01-01

    Full Text Available Abstract The present contribution reports on the features of platinum-based systems supported on vanadium oxide nanotubes. The synthesis of nanotubes was carried out using a commercial vanadium pentoxide via hydrothermal route. The nanostructured hybrid materials were prepared by wet impregnation using two different platinum precursors. The formation of platinum nanoparticles was evaluated by applying distinct reduction procedures. All nanostructured samples were essentially analysed by X-ray diffraction and transmission electron microscopy. After reduction, transmission electron microscopy also made it possible to estimate particle size distribution and mean diameter calculations. It could be seen that all reduction procedures did not affect the nanostructure of the supports and that the formation of metallic nanoparticles is quite efficient with an indistinct distribution along the nanotubes. Nevertheless, the reduction procedure determined the diameter, dispersion and shape of the metallic particles. It could be concluded that the use of H2PtCl6 is more suitable and that the use of hydrogen as reducing agent leads to a nanomaterial with unagglomerated round-shaped metallic particles with mean size of 6–7 nm.

  12. Oxidation of Carbon Nanotubes in an Ionizing Environment.

    Science.gov (United States)

    Koh, Ai Leen; Gidcumb, Emily; Zhou, Otto; Sinclair, Robert

    2016-02-10

    In this work, we present systematic studies on how an illuminating electron beam which ionizes molecular gas species can influence the mechanism of carbon nanotube oxidation in an environmental transmission electron microscope (ETEM). We found that preferential attack of the nanotube tips is much more prevalent than for oxidation in a molecular gas environment. We establish the cumulative electron doses required to damage carbon nanotubes from 80 keV electron beam irradiation in gas versus in high vacuum. Our results provide guidelines for the electron doses required to study carbon nanotubes within or without a gas environment, to determine or ameliorate the influence of the imaging electron beam. This work has important implications for in situ studies as well as for the oxidation of carbon nanotubes in an ionizing environment such as that occurring during field emission.

  13. Carbon Nanotube/Graphene Supercapacitors Containing Manganese Oxide Nanoparticles

    Science.gov (United States)

    2012-12-01

    electrolytes : 0.5 M K2SO4, 1 M sodium chloride (NaCl), and 1 M calcium chloride (CaCl2). The qualitative CV behavior of the three electrolytes can be seen...Carbon Nanotube/ Graphene Supercapacitors Containing Manganese Oxide Nanoparticles by Matthew Ervin, Vinay Raju, Mary Hendrickson, and...Laboratory Adelphi, MD 20783-1197 ARL-TR-6289 December 2012 Carbon Nanotube/ Graphene Supercapacitors Containing Manganese Oxide

  14. Iron oxide nanotubes synthesized via template-based electrodeposition

    Science.gov (United States)

    Lim, Jin-Hee; Min, Seong-Gi; Malkinski, Leszek; Wiley, John B.

    2014-04-01

    Considerable effort has been invested in the development of synthetic methods for the preparation iron oxide nanostructures for applications in nanotechnology. While a variety of structures have been reported, only a few studies have focused on iron oxide nanotubes. Here, we present details on the synthesis and characterization of iron oxide nanotubes along with a proposed mechanism for FeOOH tube formation. The FeOOH nanotubes, fabricated via a template-based electrodeposition method, are found to exhibit a unique inner-surface. Heat treatment of these tubes under oxidizing or reducing atmospheres can produce either hematite (α-Fe2O3) or magnetite (Fe3O4) structures, respectively. Hematite nanotubes are composed of small nanoparticles less than 20 nm in diameter and the magnetization curves and FC-ZFC curves show superparamagnetic properties without the Morin transition. In the case of magnetite nanotubes, which consist of slightly larger nanoparticles, magnetization curves show ferromagnetism with weak coercivity at room temperature, while FC-ZFC curves exhibit the Verwey transition at 125 K.Considerable effort has been invested in the development of synthetic methods for the preparation iron oxide nanostructures for applications in nanotechnology. While a variety of structures have been reported, only a few studies have focused on iron oxide nanotubes. Here, we present details on the synthesis and characterization of iron oxide nanotubes along with a proposed mechanism for FeOOH tube formation. The FeOOH nanotubes, fabricated via a template-based electrodeposition method, are found to exhibit a unique inner-surface. Heat treatment of these tubes under oxidizing or reducing atmospheres can produce either hematite (α-Fe2O3) or magnetite (Fe3O4) structures, respectively. Hematite nanotubes are composed of small nanoparticles less than 20 nm in diameter and the magnetization curves and FC-ZFC curves show superparamagnetic properties without the Morin transition

  15. Magnetocaloric effect at cryogenic temperature in gadolinium oxide nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Paul, Rima, E-mail: rima.paul@saha.ac.in [Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700064 (India); Paramanik, Tapas; Das, Kalipada [Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700064 (India); Sen, Pintu [Variable Energy Cyclotron Centre, 1/AF Bidhannagar, Kolkata 700064 (India); Satpati, B.; Das, I. [Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700064 (India)

    2016-11-01

    We have synthesized fascinating nano-structure of Gadolinium oxide (Gd{sub 2}O{sub 3}) using controlled template-assisted electrochemical deposition technique which showed interesting anisotropic magnetic behavior. The nanotubes of Gd{sub 2}O{sub 3} with average diameter 200 nm, length 10 µm and wall thickness 20 nm are constituted of nanoclusters with average diameter 7.5 nm. The tubes are aligned and are almost uniform throughout their length. Detailed magnetic measurements of aligned Gd{sub 2}O{sub 3} nanotubes have been performed for both parallel and perpendicular magnetic field orientations with respect to the axis of the Gd{sub 2}O{sub 3} nanotube array. Significant differences in magnetization values have been observed between the parallel and perpendicular orientations. Experimental results indicate the superparamagnetic nature of the nanomaterial. Large magnetocaloric effect, associated with the sharp change in magnetization of the Gd{sub 2}O{sub 3} nanotubes, has been observed in the cryogenic temperature regime that shows anisotropic behavior. - Highlights: • Gd{sub 2}O{sub 3} nanotubes of diameter ~200 nm synthesized through electrochemical technique. • The nanotubes are superparamagnetic in nature. • At cryogenic temperature, the nanotubes exhibit large magnetocaloric anisotropic effect.

  16. Oxidation behavior of multiwalled carbon nanotubes fluidized with ozone.

    Science.gov (United States)

    Vennerberg, Danny C; Quirino, Rafael L; Jang, Youngchan; Kessler, Michael R

    2014-02-12

    Multiwalled carbon nanotubes (MWCNTs) were simultaneously fluidized and oxidized with gaseous ozone in a vertical reactor. Two different varieties of MWCNTs were compared to determine the versatility of the treatment and to elucidate the effect of defects on the oxidation behavior of MWCNTs. The extent of oxidation and nature of functional groups introduced on the nanotube surfaces were determined using Fourier-transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), and Boehm titration, and structural changes were monitored with Raman spectroscopy, scanning electron microscopy (SEM), and transmission electron microscopy (TEM). After only a few minutes of treatment, nongraphitic impurities were removed from the MWCNTs, and significant levels of oxidation (∼8 atom % O) were achieved with very little damage to the nanotube sidewalls. Short O3 exposure resulted in primarily hydroxyl functionalities, whereas longer exposure led to the formation of mainly carboxylic acid groups. Aliphatic defects present in the commercially produced MWCNTs were found to play an important role in the oxidation mechanism. Because of its ability to remove impurities and to evenly oxidize the sidewalls of nanotubes without the use of any solvents, the fluidized O3 reaction developed in this study was found to be an attractive option for industrial-scale MWCNT functionalization.

  17. Magnetocaloric effect at cryogenic temperature in gadolinium oxide nanotubes

    Science.gov (United States)

    Paul, Rima; Paramanik, Tapas; Das, Kalipada; Sen, Pintu; Satpati, B.; Das, I.

    2016-11-01

    We have synthesized fascinating nano-structure of Gadolinium oxide (Gd2O3) using controlled template-assisted electrochemical deposition technique which showed interesting anisotropic magnetic behavior. The nanotubes of Gd2O3 with average diameter 200 nm, length 10 μm and wall thickness 20 nm are constituted of nanoclusters with average diameter 7.5 nm. The tubes are aligned and are almost uniform throughout their length. Detailed magnetic measurements of aligned Gd2O3 nanotubes have been performed for both parallel and perpendicular magnetic field orientations with respect to the axis of the Gd2O3 nanotube array. Significant differences in magnetization values have been observed between the parallel and perpendicular orientations. Experimental results indicate the superparamagnetic nature of the nanomaterial. Large magnetocaloric effect, associated with the sharp change in magnetization of the Gd2O3 nanotubes, has been observed in the cryogenic temperature regime that shows anisotropic behavior.

  18. Enhancing the crystalline degree of carbon nanotubes by acid treatment, air oxidization and heat treatment

    Institute of Scientific and Technical Information of China (English)

    Chensha Li; Baoyou Zhang; Xingjuan Chen; Xiaoqing Hu; Ji Liang

    2005-01-01

    Three approaches of treating carbon nanotubes (CNTs) including acid treatment, air oxidization and heat treatment at high temperature were studied to enhance the crystalline degree of carbon nanotubes. High temperature heat-treatment elevates the crystalline degree of carbon nanotubes. Acid treatment removes parts of amorphous carbonaceous matter through its oxidization effect.Air oxidization disperses carbon nanotubes and amorphous carbonaceous matter. The treatment of combining acid treatment with heat-treatment further elevates the crystalline degree of carbon nanotubes comparing with acid treatment or heat-treatment. The combination of the three treatments creates the thorough effects of enhancing the crystalline degree of carbon nanotubes.

  19. Seed growth of tungsten diselenide nanotubes from tungsten oxides.

    Science.gov (United States)

    Kim, Hyun; Yun, Seok Joon; Park, Jin Cheol; Park, Min Ho; Park, Ji-Hoon; Kim, Ki Kang; Lee, Young Hee

    2015-05-13

    We report growth of tungsten diselenide (WSe2) nanotubes by chemical vapor deposition with a two-zone furnace. WO3 nanowires were first grown by annealing tungsten thin films under argon ambient. WSe2 nanotubes were then grown at the tips of WO3 nanowires through selenization via two steps: (i) formation of tubular WSe2 structures on the outside of WO3 nanowires, resulting in core (WO3)-shell (WSe2) and (ii) growth of WSe2 nanotubes at the tips of WO3 nanowires. The observed seed growth is markedly different from existing substitutional growth of WSe2 nanotubes, where oxygen atoms are replaced by selenium atoms in WO3 nanowires to form WSe2 nanotubes. Another advantage of our growth is that WSe2 film was grown by simply supplying hydrogen gas, where the native oxides were reduced to thin film instead of forming oxide nanowires. Our findings will contribute to engineer other transition metal dichacogenide growth such as MoS2, WS2, and MoSe2.

  20. Photocatalytic Oxidation of a Volatile Organic Component of Acetaldehyde Using Titanium Oxide Nanotubes

    Directory of Open Access Journals (Sweden)

    Yifeng Wang

    2007-01-01

    Full Text Available Titanium oxide nanotubes are prepared and treated with Au (Au/nanotube sample and Pt (Pt/nanotube sample, and the photoactivity of these catalysts compared to a standard Degussa P25 photocatalyst is investigated. The samples were analyzed using X-ray diffraction, field emission gun scanning transmission electron microscopy (STEM. Both high-resolution TEM images and high-angle annular dark-field (HAAD images were recorded for the specimens. Oxidation of acetaldehyde was used to test the efficiency of the catalysts. Nanotube samples showed better photoactivity than the standard P25, because the P25 titania deactivates quickly. Enhanced reactivity of the nanotube is related to surface charge polarity developed on outer and inner surfaces due to the difference in overlap of oxygen anions that resulted from curving of octahedral sheets. A tentative and qualitative surface polarity model is proposed for enhancing electron-hole pair separation. The inner surface benefits reduction; whereas, the outer surface benefits oxidation reactions. Both the metal identity and the size of the metal particles in the nanotubes affected the photocatalytic activity. Specifically, the addition of platinum increased the activity significantly, and increased the total yield. The addition of gold had lesser impact compared to the platinum. Formation of Pt large nanoparticles on the nanotube surfaces reduces the oxidation reactivity.

  1. Synthesis of silver nanotubes by electroless deposition in porous anodic aluminium oxide templates.

    Science.gov (United States)

    Zhang, Shu-Hong; Xie, Zhao-Xiong; Jiang, Zhi-Yuan; Xu, Xin; Xiang, Juan; Huang, Rong-Bin; Zheng, Lan-Sun

    2004-05-07

    An electroless deposition method has been employed for the synthesis of silver nanotubes using porous anodic aluminium oxide as templates, by which high-yield silver nanotubes with length over ten microns have been synthesized.

  2. Nickel Oxide/Carbon Nanotubes Nanocomposite for Electrochemical Capacitance

    Institute of Scientific and Technical Information of China (English)

    Kui LIANG; Kayhyeok AN; Younghee LEE

    2005-01-01

    A nanocomposite of nickel oxide/carbon nanotubes was prepared through a simple chemical precipitation followed by thermal annealing. The electrochemical capacitance of this electrode material was studied. When the mass fraction of CNTs (carbon nanotubes) in NiO/CNT composites increases, the electrical resistivity of nanocomposites decreases and becomes similar to that of pure CNTs when it reaches 30%. The specific surface area of composites increases with increasing CNT mass fraction and the specific capacitance reaches 160 F/g under 10 mA/g discharge current density at CNT mass fraction of 10%.

  3. Multiwalled Carbon Nanotubes Decorated with Cobalt Oxide Nanoparticles

    Directory of Open Access Journals (Sweden)

    D. G. Larrude

    2012-01-01

    Full Text Available Multiwalled carbon nanotubes (MWCNTs synthesized by spray pyrolysis were decorated with cobalt oxide nanoparticles using a simple synthesis route. This wet chemistry method yielded nanoparticles randomly anchored to the surface of the nanotubes by decomposition of cobalt nitrate hexahydrate diluted in acetone. Electron microscopy analysis indicated that dispersed particles were formed on the MWCNTs walls. The average size increased with the increasing concentration of cobalt nitrate in acetone in the precursor mixture. TEM images indicated that nanoparticles were strongly attached to the tube walls. The Raman spectroscopy results suggested that the MWCNT structure was slightly damaged after the nanoparticle growth.

  4. Comparative temporal analysis of multiwalled carbon nanotube oxidation reactions: Evaluating chemical modifications on true nanotube surface

    Science.gov (United States)

    Pacheco, Flávia G.; Cotta, Alexandre A. C.; Gorgulho, Honória F.; Santos, Adelina P.; Macedo, Waldemar A. A.; Furtado, Clascídia A.

    2015-12-01

    The influence of extensive purification on oxidized multiwalled carbon nanotube surface composition was studied through the characterization and differentiation of the actual surface submitted to three oxidation methods: microwave-assisted acid oxidation, hydrogen peroxide reflux, and Fenton reaction. The oxidized samples were purified by a multi-step procedure including the sequential use of basic reflux and dispersion in dimethylformamide (DMF). The results showed a significant increase in the amount of oxidation debris with hydrogen peroxide and Fenton reaction times longer than 8 h and strong surface characteristic modification. With regard to sample purification, basic reflux led to a reduction in oxygenated group concentration of only 10% in the samples treated by acid oxidation. On the other hand, the subsequent use of DMF led to a further decrease in concentration of 39%, proving to be a more efficient method for the removal of oxidation debris.

  5. Adsorption of nitrous oxide on the (6,0) magnesium oxide nanotube

    Institute of Scientific and Technical Information of China (English)

    Ali Ahmadi Peyghan; Mohammad T.Baei; Saeedeh Hashemian; Masoumeh Moghimi

    2012-01-01

    Nitrous oxide adsorption on the pristine (6,0) magnesium oxide nanotube was studied by using density functional theory calculations.We present the nature of the N2O interaction in selected sites of the nanotube.Adsorption energies corresponding to adsorption of the N2O on the nanotube were calculated to be in the range-11.67 to-22.21 kJ mo1-1.Our results indicate that the N2O molecule has a weak physical adsorption on the pristine models due to weak Van der Waals interaction between the nanotubes and N2O molecule.The important results can be useful in production of the N2O sensors.

  6. Trends in Metal Oxide Stability for Nanorods, Nanotubes, and Surfaces

    DEFF Research Database (Denmark)

    Mowbray, Duncan; Martinez, Jose Ignacio; Vallejo, Federico Calle;

    2011-01-01

    The formation energies of nanostructures play an important role in determining their properties, including their catalytic activity. For the case of 15 different rutile and 8 different perovskite metal oxides, we used density functional theory (DFT) to calculate the formation energies of (2......,2) nanorods, (3,3) nanotubes, and the (110) and (100) surfaces. These formation energies can be described semiquantitatively (mean absolute error ≈ 0.12 eV) by the fraction of metal−oxygen bonds broken and the metal d-band and p-band centers in the bulk metal oxide....

  7. Tailoring oxidation of aluminum nanoparticles reinforced with carbon nanotubes

    Science.gov (United States)

    Sharma, Manjula; Sharma, Vimal

    2016-05-01

    In this report, the oxidation temperature and reaction enthalpy of Aluminum (Al) nanoparticles has been controlled by reinforcing with carbon nanotubes. The physical mixing method with ultrasonication was employed to synthesize CNT/Al nanocomposite powders. The micro-morphology of nanoconmposite powders has been analysed by scanning electron microscopy, energy dispersive spectroscopy, raman spectroscopy and X-ray diffraction techniques. The oxidation behavior of nanocomposite powders analyzed by thermogravimetry/differential scanning calorimertry showed improvement in the exothermic enthalpy. Largest exothermic enthalpy of-1251J/g was observed for CNT (4 wt%)/Al nanocomposite.

  8. Controlling nanotube dimensions: correlation between composition, diameter, and internal energy of single-walled mixed oxide nanotubes.

    Science.gov (United States)

    Konduri, Suchitra; Mukherjee, Sanjoy; Nair, Sankar

    2007-12-01

    Control over the diameter of nanotubes is of significance in manipulating their properties, which depend on their dimensions in addition to their structure and composition. This aspect has remained a challenge in both carbon and inorganic nanotubes, since there is no obvious aspect of the formation mechanism that allows facile control over nanotube curvature. Here we develop and analyze a quantitative correlation between the composition, diameter, and internal energy of a class of single-walled mixed oxide aluminosilicogermanate (AlSiGeOH) nanotubes. A series of synthetic AlSiGeOH nanotubes with varying Si/Ge ratio are characterized by X-ray photoelectron spectroscopy, vibrational spectroscopy, energy dispersive X-ray spectroscopy, and X-ray diffraction to relate their compositions and diameters. We then study these nanotubes computationally by first parametrizing and validating a suitable interatomic potential model, and then using this potential model to investigate the internal energy of the nanotube as a function of diameter and composition via molecular dynamics simulations. There are minima in the internal energy as a function of diameter which progressively shift to larger nanotube diameters with increasing Ge content. An approximate analytical theory of nanotube diameter control, which contains a small number of physically significant fitted parameters, well describes the computational data by relating the composition and geometry to the strain energy of bending into a nanotube. The predicted composition-dependent shift in the energetically favored diameter follows the experimental trends. We suggest related methods of controlling nanotube energetics and their role in engineering nanotubes of controlled dimensions by liquid-phase chemistry.

  9. Enhancement of field emission characteristics of carbon nanotubes on oxidation.

    Science.gov (United States)

    Mathur, Ashish; Roy, Susanta Sinha; Ray, Sekhar Chandra; Hazra, Kiran Shankar; Hamilton, Jeremy; Dickinson, Calum; McLaughlin, James; Misra, Devi Shankar

    2011-08-01

    Vertically aligned multi-walled carbon nanotubes (CNTs) were grown on p-type silicon wafer using thermal chemical vapor deposition process and subsequently treated with oxygen plasma for oxidation. It was observed that the electron field emission (EFE) characteristics are enhanced. It showed that the turn-on electric field (E(TOE)) of CNTs decreased from 0.67 (untreated) to 0.26 V/microm (oxygen treated). Raman spectra showed that the numbers of defects are increased, which are generated by oxygen-treatment, and absorbed molecules on the CNTs are responsible for the enhancement of EFE. Scanning electron microscopy and Transmission electron microscopy images were used to identify the quality and physical changes of the nanotube morphology and surfaces; revealing the evidence of enhancement in the field emission properties after oxygen-plasma treatment.

  10. Room temperature synthesis of indium tin oxide nanotubes with high precision wall thickness by electroless deposition

    OpenAIRE

    Mario Boehme; Emanuel Ionescu; Ganhua Fu; Wolfgang Ensinger

    2011-01-01

    Conductive nanotubes consisting of indium tin oxide (ITO) were fabricated by electroless deposition using ion track etched polycarbonate templates. To produce nanotubes (NTs) with thin walls and small surface roughness, the tubes were generated by a multi-step procedure under aqueous conditions. The approach reported below yields open end nanotubes with well defined outer diameter and wall thickness. In the past, zinc oxide films were mostly preferred and were synthesized using electroless de...

  11. Nanostructured manganese oxide/carbon nanotubes, graphene and graphene oxide as water-oxidizing composites in artificial photosynthesis.

    Science.gov (United States)

    Najafpour, Mohammad Mahdi; Rahimi, Fahime; Fathollahzadeh, Maryam; Haghighi, Behzad; Hołyńska, Małgorzata; Tomo, Tatsuya; Allakhverdiev, Suleyman I

    2014-07-28

    Herein, we report on nano-sized Mn oxide/carbon nanotubes, graphene and graphene oxide as water-oxidizing compounds in artificial photosynthesis. The composites are synthesized by different and simple procedures and characterized by a number of methods. The water-oxidizing activities of these composites are also considered in the presence of cerium(IV) ammonium nitrate. Some composites are efficient Mn-based catalysts with TOF (mmol O2 per mol Mn per second) ~ 2.6.

  12. Controlled three-dimensional manipulation of vanadium oxide nanotubes with optical tweezers

    Science.gov (United States)

    Hernández-Pozos, Jose Luis; Lee, Woei Ming; Vera-Robles, Liliana Irais; Campero, Antonio; Dholakia, Kishan

    2008-12-01

    We present a direct nanotube-microsphere tagging technique for the controlled three-dimensional (3D) manipulation and transportation of vanadium oxide nanotubes (VOx-NTs) with optical tweezers. The high scattering and absorptive nature of the VOx-NTs preclude the 3D optical trapping of such nanostructures. VOx-NTs are adhered to 3-aminopropyl-triethoxysilane functionalized silica microspheres, which act as handles for indirectly manipulating and transporting the nanotubes in three dimensions with optical tweezers. The optical tweezers can also operate as optical scissors that can remove the dielectric handles and trim these nanotubes. This technique may be extended to the optical manipulation of nanotubes of any material.

  13. New nanotube synthesis strategy--application of sodium nanotubes formed inside anodic aluminium oxide as a reactive template.

    Science.gov (United States)

    Wang, Lung-Shen; Lee, Chi-Young; Chiu, Hsin-Tien

    2003-08-07

    Formation of Na nanotubes inside the channels of anodic aluminium oxide (AAO) membranes has been achieved by decomposing NaH thermally on AAO. The as-produced material, Na@AAO, is applied as a reactive template to prepare other tubular materials. Reacting Na@AAO with gaseous C6Cl6 generates carbon nanotubes (ca. 250 nm, wall thickness of 20 nm, tube length of 60 microm) inside the AAO channels. Highly aligned bundles of nearly amorphous carbon nanotubes are isolated after AAO is removed.

  14. Synthesis and characterization of anodized titanium-oxide nanotube arrays

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Michael Z. [ORNL; Lai, Peng [University of Cincinnati; Bhuiyan, Md S [ORNL; Tsouris, Costas [ORNL; Gu, Baohua [ORNL; Paranthaman, Mariappan Parans [ORNL; Gabitto, Jorge [Prairie View A& M University; Harrison, L. D. [Prairie View A& M University

    2009-01-01

    Anodized titanium-oxide containing highly ordered, vertically oriented TiO2 nanotube arrays is a nanomaterial architecture that shows promise for diverse applications. In this paper, an anodization synthesis using HF-free aqueous solution is described. The anodized TiO2 film samples (amorphous, anatase, and rutile) on titanium foils were characterized with scanning electron microscopy, X-ray diffraction, and Raman spectroscopy. Additional characterization in terms of photocurrent generated by an anode consisting of a titanium foil coated by TiO2 nanotubes was performed using an electrochemical cell. A platinum cathode was used in the electrochemical cell. Results were analyzed in terms of the efficiency of the current generated, defined as the ratio of the difference between the electrical energy output and the electrical energy input divided by the input radiation energy, with the goal of determining which phase of TiO2 nanotubes leads to more efficient hydrogen production. It was determined that the anatase crystalline structure converts light into current more efficiently and is therefore a better photocatalytic material for hydrogen production via photoelectrochemical splitting of water.

  15. Air-pressure tunable depletion width, rectification behavior, and charge conduction in oxide nanotubes.

    Science.gov (United States)

    Alivov, Yahya; Funke, Hans H; Singh, Vivek; Nagpal, Prashant

    2015-02-01

    Metal-oxide nanotubes provide large surface areas and functionalizable surfaces for a variety of optical and electronic applications. Here we report air-tunable rectifying behavior, depletion width modulation, and two-dimensional (2D) charge conduction in hollow titanium-dioxide nanotubes. The metal contact forms a Schottky-diode in the nanotubes, and the rectification factor (on/off ratio) can be varied by more than 3 orders of magnitude (1-2 × 10(3)) as the air pressure is increased from 2 mTorr to atmospheric pressure. This behavior is explained using a change in depletion width of these thin nanotubes by adsorption of water vapor on both surfaces of a hollow nanotube, and the resulting formation of a metal-insulator-semiconductor (MIS) junction, which controls the 2D charge conduction properties in thin oxide nanotubes.

  16. Purification of carbon nanotubes from cathode deposit by means of different oxidation rates

    Energy Technology Data Exchange (ETDEWEB)

    Ikazaki, Fumikazu; Uchida, Kunio; Ohshima, Satoshi; Kuriki, Yasunori [National Inst. of Materials and Chemical Research, Ibaraki (Japan)] [and others

    1996-10-01

    Two purification methods of nanotubes from a cathode deposit by an arc plasma were conducted by means of different oxidation rates of various graphites. One was chemical and the other physical method. Both could purify nanotubes at their optimum conditions. In the former, the catalytic oxidation was used of graphitic materials by copper. Copper supported graphite was prepared by the intercalation of copper chloride and by the reduction to metal copper. The catalytic oxidation decomposed the graphite at 773 K. The temperature was 200 K lower than the oxidation temperature of graphite, which enabled purification. In the latter, dispersion, comminution and filtration of a cathode deposit in ethanol were used to separate coarse graphite. The rate of weight loss by oxidation increased with the decrease of size of the graphite. Nanotubes were more slowly oxidized from the edges than the graphite of the same size. This could purify nanotubes.

  17. Purification of carbon nanotubes from cathode deposit by means of different oxidation rates

    Energy Technology Data Exchange (ETDEWEB)

    Ikazaki, F.; Uchida, K.; Ohshima, S. [National Institute of Materials and Chemical Research, Tsukuba, Ibaraki (Japan)] [and others

    1996-12-31

    Two purification methods of nanotubes from a cathode deposit by an arc plasma were conducted by means of different oxidation rates of various graphites. One was chemical and the other physical method. Both could purify nanotubes at their optimum conditions. In the former, the catalytic oxidation was used of graphite materials by copper. Copper supported graphite was prepared by the intercalation of copper chloride and by the reduction to metal copper. The catalytic oxidation decomposed the graphite at 773 K and less. The temperature was significantly lower than the oxidation temperature former reported of graphite, which enabled purification. In the latter, dispersion, comminution and filtration of a cathode deposit in ethanol were used to separate coarse graphite. The rate of weight loss by oxidation increased with the decrease of size of the graphite. Nanotubes were more slowly oxidized from the edges than the graphite of the same size. This could purify nanotubes.

  18. Carbon nanotube transistors with graphene oxide films as gate dielectrics

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Carbon nanomaterials,including the one-dimensional(1-D) carbon nanotube(CNT) and two-dimensional(2-D) graphene,are heralded as ideal candidates for next generation nanoelectronics.An essential component for the development of advanced nanoelectronics devices is processing-compatible oxide.Here,in analogy to the widespread use of silicon dioxide(SiO2) in silicon microelectronic industry,we report the proof-of-principle use of graphite oxide(GO) as a gate dielectrics for CNT field-effect transistor(FET) via a fast and simple solution-based processing in the ambient condition.The exceptional transistor characteristics,including low operation voltage(2 V),high carrier mobility(950 cm2/V-1 s-1),and the negligible gate hysteresis,suggest a potential route to the future all-carbon nanoelectronics.

  19. Structure and photocatalysis activity of silver doped titanium oxide nanotubes array for degradation of pollutants

    Science.gov (United States)

    Al-Arfaj, E. A.

    2013-10-01

    Semiconductor titanium oxide showed a wonderful performance as a photocatalysis for environmental remediation. Owing to high stability and promising physicochemical properties, titanium oxide nanostructures are used in various applications such as wastewater treatment, antimicrobial and air purification. In the present study, titanium oxide nanotubes and silver doped titanium oxide nanotubes were synthesized via anodic oxidation method. The morphology and composition structure were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The results depicted that nanotubes possess anatase phase with average tube diameter of 65 nm and 230 ± 12 nm in length. The band gap of the un-doped and silver doped titanium dioxide nanotubes was determined using UV-Vis. spectrophotometer. The results showed that the band gap of titanium dioxide nanotubes is decreased when doped with silver ions. The photocatalysis activity of un-doped and silver doped TiO2 nanotubes were evaluated in terms of degradation of phenol in the presence of ultra violet irradiation. It was found that silver doped TiO2 nanotubes exhibited much higher photocatalysis activity than un-doped TiO2 nanotubes.

  20. On the elastic properties of single-walled carbon nanotubes/poly(ethylene oxide) nanocomposites using molecular dynamics simulations.

    Science.gov (United States)

    Rouhi, S; Alizadeh, Y; Ansari, R

    2016-01-01

    Molecular dynamics simulations are used to study the physical and mechanical properties of single-walled carbon nanotubes/poly(ethylene oxide) nanocomposites. The effects of nanotube atomic structure, diameter, and volume fraction on the polymer density distribution, polymer atom distribution, stress-strain curves of nanocomposites and Young's, and shear moduli of single-walled carbon nanotubes/poly(ethylene oxide) nanocomposites are explored. It is shown that the density of polymer, surrounding the nanotube surface, has a peak near the nanotube surface. However, increasing distance leads to dropping it to the value near the density of pure polymer. It is seen that for armchair nanotubes, the average polymer atoms distances from the single-walled carbon nanotubes are larger than the polymer atom distance from zigzag nanotubes. It further is shown that zigzag nanotubes are better candidates to reinforce poly (ethylene oxide) than their armchair counterparts.

  1. Spectroscopic investigations on oxidized multi-walled carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Anandhi, C. M. S.; Premkumar, S.; Asath, R. Mohamed; Mathavan, T.; Benial, A. Milton Franklin, E-mail: miltonfranklin@yahoo.com [Department of Physics, N.M.S.S.V.N. College, Madurai-625 019, Tamil Nadu (India)

    2016-05-06

    The pristine multi-walled carbon nanotubes (MWCNTs) were oxidized by the ultrasonication process. The oxidized MWCNTs were characterized by the X-ray diffraction (XRD), ultraviolet–visible (UV-Vis) and Fourier transform -Raman (FT-Raman) spectroscopic techniques. The XRD analysis confirms that the oxidized MWCNTs exist in a hexagonal structure and the sharp XRD peak corresponds to the (002) Bragg’s reflection plane, which indicates that the MWCNTs have higher crystalline nature. The UV-Vis analysis confirms that the MWCNTs functionalized with the carboxylic acid. The red shift was observed corresponds to the D band in the Raman spectrum, which reveals that the reduced disordered graphitic structure of oxidized MWCNTs. The strong Raman peak was observed at 2563 cm{sup -1} corresponds to the overtone of the D band, which is the characteristic vibrational mode of oxidized MWCNTs. The carboxylic acid functionalization of MWCNTs enhances the dispersibility, which paves the way for potential applications in the field of biosensors and targeted drug delivery.

  2. Spectroscopic investigations on oxidized multi-walled carbon nanotubes

    Science.gov (United States)

    Anandhi, C. M. S.; Premkumar, S.; Asath, R. Mohamed; Mathavan, T.; Benial, A. Milton Franklin

    2016-05-01

    The pristine multi-walled carbon nanotubes (MWCNTs) were oxidized by the ultrasonication process. The oxidized MWCNTs were characterized by the X-ray diffraction (XRD), ultraviolet-visible (UV-Vis) and Fourier transform -Raman (FT-Raman) spectroscopic techniques. The XRD analysis confirms that the oxidized MWCNTs exist in a hexagonal structure and the sharp XRD peak corresponds to the (002) Bragg's reflection plane, which indicates that the MWCNTs have higher crystalline nature. The UV-Vis analysis confirms that the MWCNTs functionalized with the carboxylic acid. The red shift was observed corresponds to the D band in the Raman spectrum, which reveals that the reduced disordered graphitic structure of oxidized MWCNTs. The strong Raman peak was observed at 2563 cm-1 corresponds to the overtone of the D band, which is the characteristic vibrational mode of oxidized MWCNTs. The carboxylic acid functionalization of MWCNTs enhances the dispersibility, which paves the way for potential applications in the field of biosensors and targeted drug delivery.

  3. Titania nanotubes from weak organic acid electrolyte: Fabrication, characterization and oxide film properties

    Energy Technology Data Exchange (ETDEWEB)

    Munirathinam, Balakrishnan, E-mail: blkrish88@gmail.com; Neelakantan, Lakshman

    2015-04-01

    In this study, TiO{sub 2} nanotubes were fabricated using anodic oxidation in fluoride containing weak organic acid for different durations (0.5 h, 1 h, 2 h and 3 h). Scanning electron microscope (SEM) micrographs reveal that the morphology of titanium oxide varies with anodization time. Raman spectroscopy and X-ray diffraction (XRD) results indicate that the as-formed oxide nanotubes were amorphous in nature, yet transform into crystalline phases (anatase and rutile) upon annealing at 600 °C. Wettability measurements show that both as-formed and annealed nanotubes exhibited hydrophilic behavior. The electrochemical behavior was ascertained by DC polarization and AC electrochemical impedance spectroscopy (EIS) measurements in 0.9% NaCl solution. The results suggest that the annealed nanotubes showed higher impedance (10{sup 5}–10{sup 6} Ω cm{sup 2}) and lower passive current density (10{sup −7} A cm{sup −2}) than the as-formed nanotubes. In addition, we investigated the influence of post heat treatment on the semiconducting properties of the oxides by capacitance measurements. In vitro bioactivity test in simulated body fluid (SBF) showed that precipitation of Ca/P is easier in crystallized nanotubes than the amorphous structure. Our study uses a simple strategy to prepare nano-structured titania films and hints the feasibility of tailoring the oxide properties by thermal treatment, producing surfaces with better bioactivity. - Highlights: • TiO{sub 2} nanotubes were synthesized in a citric acid and sodium fluoride environment. • Wettability measurements show that both as-formed and annealed nanotubes exhibited hydrophilic behavior. • TiO{sub 2} nanotube layer behaves as an n-type semiconductor. • Annealed TiO{sub 2} nanotubes had a higher impedance magnitude compared to as-formed nanotubes.

  4. Influence of the nanotube oxidation on the rheological and electrical properties of CNT/HDPE composites

    Science.gov (United States)

    Nobile, Maria Rossella; Somma, Elvira; Valentino, Olga; Simon, George; Neitzert, Heinz-Christoph

    2016-05-01

    Rheological and electrical properties of nanocomposites based on multi-walled carbon nanotubes (MWNTs) and high density polyethylene (HDPE), prepared by melt mixing in a micro-twin screw extruder, have been investigated. The effect of MWNT concentration (0.5 and 2.5 wt %) and nanotube surface treatment (oxidative treatment in a tubular furnace at 500°C for 1 hr in a 95% nitrogen, 5% oxygen atmosphere) has been analyzed. It has been found that the sample conductivity with oxidation of the nanotubes decreases more than 2 orders of magnitude. Scanning electron microscopy showed good adhesion and dispersion of nanotubes in the matrix, independently of the surface treatment. Electrical and rheological measurements revealed that the oxidative treatment, causing some reduction of the MWNT quality, decreases the efficiency of the nanotube matrix interaction.

  5. Decorating multiwalled carbon nanotubes with zinc oxide nano-crystallines through hydrothermal growth process

    Institute of Scientific and Technical Information of China (English)

    LI ChenSha; QIAO YingJie; LI YuMing

    2012-01-01

    Multiwalled-carbon nanotubes coated with nano-crystalline zinc oxide (ZnO) was prepared by in situ growth of nano zinc oxide on the surfaces of carbon nanotubes through hydrothermal method.X-ray diffraction,transmission electron microscopy and scanning electron microscopy analysis techniques were used to characterize the samples.It was observed that a layer of nano-crystalline ZnO with the wurtzite hexagonal crystal structure was uniformly coated on the nanotube surfaces with good adhesion,which resulted in the formation of a novel ZnO-nanotube nano composite.In this work,the carbon nanotubes decorated by metal oxide nanoparticles were synthesized by a simple chemical-solution route which is suitable for the large-scale production with low cost.

  6. Interactions between the glass fiber coating and oxidized carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Ku-Herrera, J.J., E-mail: jesuskuh@live.com.mx [Centro de Investigación Científica de Yucatán A.C., Unidad de Materiales, Calle 43 No.130, Col. Chuburná de Hidalgo. C.P., 97200 Mérida, Yucatán (Mexico); Avilés, F., E-mail: faviles@cicy.mx [Centro de Investigación Científica de Yucatán A.C., Unidad de Materiales, Calle 43 No.130, Col. Chuburná de Hidalgo. C.P., 97200 Mérida, Yucatán (Mexico); Nistal, A. [Instituto de Cerámica y Vidrio (ICV-CSIC), Kelsen 5, 28049 Madrid (Spain); Cauich-Rodríguez, J.V. [Centro de Investigación Científica de Yucatán A.C., Unidad de Materiales, Calle 43 No.130, Col. Chuburná de Hidalgo. C.P., 97200 Mérida, Yucatán (Mexico); Rubio, F.; Rubio, J. [Instituto de Cerámica y Vidrio (ICV-CSIC), Kelsen 5, 28049 Madrid (Spain); Bartolo-Pérez, P. [Departamento de Física Aplicada, Cinvestav, Unidad Mérida, C.P., 97310 Mérida, Yucatán (Mexico)

    2015-03-01

    Graphical abstract: - Highlights: • Oxidized multiwall carbon nanotubes (MWCNTs) were deposited onto E-glass fibers. • The role of the fiber coating on the deposition of MWCNTs on the fibers is studied. • A rather homogeneous deposition of MWCNTs is achieved if the coating is maintained. • Multiple oxygen-containing groups were found in the analysis of the fiber coating. • Evidence of chemical interaction between MWCNTs and the fiber coating was found. - Abstract: Chemically oxidized multiwall carbon nanotubes (MWCNTs) were deposited onto commercial E-glass fibers using a dipping procedure assisted by ultrasonic dispersion. In order to investigate the role of the fiber coating (known as “sizing”), MWCNTs were deposited on the surface of as-received E-glass fibers preserving the proprietary coating as well as onto glass fibers which had the coating deliberately removed. Scanning electron microscopy and Raman spectroscopy were used to assess the distribution of MWCNTs onto the fibers. A rather homogeneous coverage with high density of MWCNTs onto the glass fibers is achieved when the fiber coating is maintained. Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS) and nuclear magnetic resonance (NMR) analyses of the chemical composition of the glass fiber coating suggest that such coating is a complex mixture with multiple oxygen-containing functional groups such as hydroxyl, carbonyl and epoxy. FTIR and XPS of MWCNTs over the glass fibers and of a mixture of MWCNTs and fiber coating provided evidence that the hydroxyl and carboxyl groups of the oxidized MWCNTs react with the oxygen-containing functional groups of the glass fiber coating, forming hydrogen bonding and through epoxy ring opening. Hydrogen bonding and ester formation between the functional groups of the MWCNTs and the silane contained in the coating are also possible.

  7. Benzene Removal by Iron Oxide Nanoparticles Decorated Carbon Nanotubes

    Directory of Open Access Journals (Sweden)

    Aamir Abbas

    2016-01-01

    Full Text Available In this paper, carbon nanotubes (CNTs impregnated with iron oxide nanoparticles were employed for the removal of benzene from water. The adsorbents were characterized using scanning electron microscope, X-ray diffraction, BET surface area, and thermogravimetric analysis. Batch adsorption experiments were carried out to study the adsorptive removal of benzene and the effect of parameters such as pH, contact time, and adsorbent dosage. The maximum removal of benzene was 61% with iron oxide impregnated CNTs at an adsorbent dosage 100 mg, shaking speed 200 rpm, contact time 2 hours, initial concentration 1 ppm, and pH 6. However, raw CNTs showed only 53% removal under same experimental conditions. Pseudo-first-order kinetic model was found well to describe the obtained data on benzene removal from water. Initial concentration was varied from 1 to 200 mg/L for isotherms study. Langmuir isotherm model was observed to best describe the adsorption data. The maximum adsorption capacities were 987.58 mg/g and 517.27 mg/g for iron oxide impregnated CNTs and raw CNTs, respectively. Experimental results revealed that impregnation with iron oxide nanoparticles significantly increased the removal efficiency of CNTs.

  8. Synthesis of self-ordered titanium oxide nanotubes by anodization of titanium

    Science.gov (United States)

    Krishnan, A. Yaadhav; Sivabalan, S.; Subhachandhar, S.; Balakrishnan, M.; Narayanan, R.

    2012-07-01

    Self-ordered arrays of titanium oxide nanotubes were prepared by anodization of Ti in sodium sulphate solution containing sodium fluoride. The dimensions of the nanotubes (diameter: 20-100 nm and length: 1000-1500 nm) could be tuned by changing the synthesis parameters. The as-anodized nanotubes showed amorphous structure which upon annealing at 500°C in oxygen atmosphere turned crystalline, according to XRD analysis. The pit morphologies show that pit initiation occurs due to NaF content in the electrolyte and nanotube formation starts after pit growth terminates.

  9. Gold-platinum bimetallic nanotubes templated from tellurium nanowires as efficient electrocatalysts for methanol oxidation reaction

    Science.gov (United States)

    Lu, Chenchen; Kong, Wei; Zhang, Huying; Song, Bo; Wang, Zhenghua

    2015-11-01

    In this paper, gold-platinum (Au-Pt) bimetallic nanotubes with different Au/Pt ratio are successfully synthesized through a simple wet-chemical reduction route in which tellurium (Te) nanowires serve as both sacrificial template and reducing agent. The hollow nanostructure of Au-Pt nanotubes is formed due to Kirkendall effect. The as-prepared Au-Pt nanotubes can be applied as catalyst for methanol oxidation reaction, and the results indicate that the Au-Pt nanotubes with an Au/Pt ratio of 1:1 show the best electrochemical catalytic performances. Furthermore, the catalytic activity of the Au-Pt nanotubes is also better than Pt nanotubes and commercial Pt/C catalyst.

  10. Electropolymerization of polyaniline on titanium oxide nanotubes for supercapacitor application

    Energy Technology Data Exchange (ETDEWEB)

    Mujawar, Sarfraj H.; Ambade, Swapnil B.; Battumur, T.; Ambade, Rohan B. [Organic Optoelectronic Materials Laboratory, Division of Semiconductor and Chemical Engineering, Nanomaterials Processing Research Center, Chonbuk National University, Jeonju 561-756 (Korea, Republic of); Lee, Soo-Hyoung, E-mail: shlee66@chonbuk.ac.k [Organic Optoelectronic Materials Laboratory, Division of Semiconductor and Chemical Engineering, Nanomaterials Processing Research Center, Chonbuk National University, Jeonju 561-756 (Korea, Republic of)

    2011-04-30

    Highlights: {yields} Polyaniline (PANI)-Titanium nanotube template (TNT) composite for supercapacitors. {yields} The mechanism of the controlled growth of hollow open ended PANI nanotubes using a TNT template is studied. {yields} A rare effort to electropolymerise PANI on TNTs resulting into an appreciable capacitance of 740 F g{sup -1}. - Abstract: Vertically aligned polyaniline (PANI) nanotubes have great potential application in supercapacitor electrode material. In this paper we have investigated facile growth of PANI nanotubes on a titanium nanotube template (TNT) using electrochemical polymerization. The morphology of PANI nanostructures grown over TNT is strongly influenced by the scan rate in the electrochemical polymerization. The growth morphology of PANI nanotubes has been carefully analyzed by field emission scanning electron microscopy. The detailed growth mechanism of PANI nanotubes has been put forward. Specific capacitance value of 740 F g{sup -1} was obtained for PANI nanotube structures (measured at charge-discharge rate of 3 A g{sup -1}).

  11. Considerably improved photovoltaic performance of carbon nanotube-based solar cells using metal oxide layers.

    Science.gov (United States)

    Wang, Feijiu; Kozawa, Daichi; Miyauchi, Yuhei; Hiraoka, Kazushi; Mouri, Shinichiro; Ohno, Yutaka; Matsuda, Kazunari

    2015-02-18

    Carbon nanotube-based solar cells have been extensively studied from the perspective of potential application. Here we demonstrated a significant improvement of the carbon nanotube solar cells by the use of metal oxide layers for efficient carrier transport. The metal oxides also serve as an antireflection layer and an efficient carrier dopant, leading to a reduction in the loss of the incident solar light and an increase in the photocurrent, respectively. As a consequence, the photovoltaic performance of both p-single-walled carbon nanotube (SWNT)/n-Si and n-SWNT/p-Si heterojunction solar cells using MoOx and ZnO layers is improved, resulting in very high photovoltaic conversion efficiencies of 17.0 and 4.0%, respectively. These findings regarding the use of metal oxides as multifunctional layers suggest that metal oxide layers could improve the performance of various electronic devices based on carbon nanotubes.

  12. Nickel supported on nitrogen-doped carbon nanotubes as hydrogen oxidation reaction catalyst in alkaline electrolyte

    National Research Council Canada - National Science Library

    Zhuang, Zhongbin; Giles, Stephen A; Zheng, Jie; Jenness, Glen R; Caratzoulas, Stavros; Vlachos, Dionisios G; Yan, Yushan

    2016-01-01

    .... Here we report that a composite catalyst, nickel nanoparticles supported on nitrogen-doped carbon nanotubes, has hydrogen oxidation activity similar to platinum-group metals in alkaline electrolyte...

  13. Carbon nanotube/nickel oxide nanocomposite thin films for selective solar absorber

    CSIR Research Space (South Africa)

    Roro, Kittessa T

    2010-09-01

    Full Text Available Multi-walled carbon nanotube (MWCNT)/Nickel oxide nanocomposites were prepared on aluminum substrates for selective solar absorber applications. MWCNTs are functionalized in order to disperse in water and ethanol. Results from the characterization...

  14. Multiwall carbon nanotube/nickel oxide nanocompositecoatings: Sol-gel deposition and characterization

    CSIR Research Space (South Africa)

    Roro, Kittessa T

    2011-09-01

    Full Text Available Due to their unique electronic and optical properties nanocomposite materials have wide range of applications in solar energy conversion. In this study, multiwalled carbon nanotubes (MWCNTs)/Nickel oxide (NiO) nanocomposites were successfully...

  15. Study of the tunnelling initiated leakage current through the carbon nanotube embedded gate oxide in metal oxide semiconductor structures

    Energy Technology Data Exchange (ETDEWEB)

    Chakraborty, Gargi; Sarkar, C K [Department of Electronics and Telecommunication Engineering, Jadavpur University, Kolkata (India); Lu, X B; Dai, J Y [Department of Applied Physics and Materials Research Center, Hong Kong Polytechnic University, Hong Kong (China)], E-mail: gargichakraborty0@yahoo.co.in, E-mail: phyhod@yahoo.co.in

    2008-06-25

    The tunnelling currents through the gate dielectric partly embedded with semiconducting single-wall carbon nanotubes in a silicon metal-oxide-semiconductor (MOS) structure have been investigated. The application of the gate voltage to such an MOS device results in the band bending at the interface of the partly embedded oxide dielectric and the surface of the silicon, initiating tunnelling through the gate oxide responsible for the gate leakage current whenever the thickness of the oxide is scaled. A model for silicon MOS structures, where carbon nanotubes are confined in a narrow layer embedded in the gate dielectric, is proposed to investigate the direct and the Fowler-Nordheim (FN) tunnelling currents of such systems. The idea of embedding such elements in the gate oxide is to assess the possibility for charge storage for memory device applications. Comparing the FN tunnelling onset voltage between the pure gate oxide and the gate oxide embedded with carbon nanotubes, it is found that the onset voltage decreases with the introduction of the nanotubes. The direct tunnelling current has also been studied at very low gate bias, for the thin oxide MOS structure which plays an important role in scaling down the MOS transistors. The FN tunnelling current has also been studied with varying nanotube diameter.

  16. Effect of oxide nanoparticles on structural properties of multiwalled carbon nanotubes

    Science.gov (United States)

    Dhall, Shivani; Jaggi, Neena

    2016-03-01

    A simple chemical precipitation route is reported to partially decorate mutliwalled carbon nanotubes (MWCNTs) with oxide nanoparticles in the present study. X-ray diffraction (XRD), Raman spectroscopy and Scanning electron microscopy (SEM) are used to investigate the structural properties of MWCNTs composite with nickel, cuprous, zinc and tin oxides nanoparticles. Raman analysis confirms that, ZnO nanoparticles attached nanotubes show more ordering of graphene layers as compared to the others because of uniform dispersion of nanoparticles. It is investigated that, adopted route proved helpful to improve the structural properties of the nanotubes.

  17. Nanotubes of rare earth cobalt oxides for cathodes of intermediate-temperature solid oxide fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Sacanell, Joaquin [Departamento de Fisica, Centro Atomico Constituyentes, CNEA, Av. Gral. Paz 1499, 1650 San Martin, Buenos Aires (Argentina); CINSO (Centro de Investigaciones en Solidos), CITEFA-CONICET, J.B. de La Salle 4397, 1603 Villa Martelli, Buenos Aires (Argentina); Leyva, A. Gabriela [Departamento de Fisica, Centro Atomico Constituyentes, CNEA, Av. Gral. Paz 1499, 1650 San Martin, Buenos Aires (Argentina); Escuela de Ciencia y Tecnologia, UNSAM. Av. Gral. Paz 1499, 1650 San Martin, Buenos Aires (Argentina); Bellino, Martin G.; Lamas, Diego G. [CINSO (Centro de Investigaciones en Solidos), CITEFA-CONICET, J.B. de La Salle 4397, 1603 Villa Martelli, Buenos Aires (Argentina)

    2010-04-02

    In this work we studied the electrochemical properties of cathodes for intermediate-temperature solid oxide fuel cells (IT-SOFCs) prepared with nanotubes of La{sub 0.6}Sr{sub 0.4}CoO{sub 3} (LSCO). Their nanostructures consist of agglomerated nanoparticles in tubular structures of sub-micrometric diameter. The resulting cathodes are highly porous both at the micro- and the nanoscale. This fact increases significantly the access to active sites for the oxygen reduction. We investigated the influence of the diameter of the precursor nanotubes on the polarization resistance of the LSCO cathodes on CeO{sub 2}-10 mol.% Sm{sub 2}O{sub 3} (SDC) electrolytes under air atmosphere, evaluated in symmetrical [LSCO/SDC/LSCO] cells. Our results indicate an optimized performance when the diameter of precursor nanotubes is sufficiently small to become dense nanorods after cathode sintering. We present a phenomenological model that successfully explains the behavior observed and considers that a small starting diameter acts as a barrier that prevents grains growth. This is directly related with the lack of contact points between nanotubes in the precursor, which are the only path for the growth of ceramic grains. We also observed that a conventional sintering process (of 1 h at 1000 C with heating and cooling rates of 10 C min{sup -1}) has to be preferred against a fast firing one (1 or 2 min at 1100 C with heating and cooling rates of 100 C min{sup -1}) in order to reach a higher performance. However, a good adhesion of the cathode can be achieved with both methods. Our results suggest that oxygen vacancy diffusion is enhanced while decreasing LSCO particle size. This indicates that the high performance of our nanostructured cathodes is not only related with the increase of the number of active sites for oxygen reduction but also to the fact that the nanotubes are formed by nanoparticles. (author)

  18. Graphene oxide modified TiO2 nanotube arrays: enhanced visible light photoelectrochemical properties

    Science.gov (United States)

    Song, Peng; Zhang, Xiaoyan; Sun, Mingxuan; Cui, Xiaoli; Lin, Yuehe

    2012-02-01

    Novel nanocomposite films, based on graphene oxide (GO) and TiO2 nanotube arrays, were synthesized by assembling GO on the surface of self-organized TiO2 nanotube arrays through a simple impregnation method. The composite films were characterized with field emission scanning electron microscopy, X-ray diffraction, Raman spectroscopy and UV-vis diffuse reflectance spectroscopy. The photoelectrochemical properties of the composite nanotube arrays were investigated under visible light illumination. Remarkably enhanced visible light photoelectrochemical response was observed for the GO decorated TiO2 nanotube composite electrode compared with pristine TiO2 nanotube arrays. The sensitizing effect of GO on the photoelectrochemical response of the TiO2 nanotube arrays was demonstrated and about 15 times enhanced maximum photoconversion efficiency was obtained with the presence of GO. An enhanced photocatalytic activity of the TiO2 nanotube arrays towards the degradation of methyl blue was also demonstrated after modification with GO. The results presented here demonstrate GO to be efficient for the improved utilization of visible light for TiO2 nanotube arrays.

  19. Room temperature synthesis of indium tin oxide nanotubes with high precision wall thickness by electroless deposition.

    Science.gov (United States)

    Boehme, Mario; Ionescu, Emanuel; Fu, Ganhua; Ensinger, Wolfgang

    2011-01-01

    Conductive nanotubes consisting of indium tin oxide (ITO) were fabricated by electroless deposition using ion track etched polycarbonate templates. To produce nanotubes (NTs) with thin walls and small surface roughness, the tubes were generated by a multi-step procedure under aqueous conditions. The approach reported below yields open end nanotubes with well defined outer diameter and wall thickness. In the past, zinc oxide films were mostly preferred and were synthesized using electroless deposition based on aqueous solutions. All these methods previously developed, are not adaptable in the case of ITO nanotubes, even with modifications. In the present work, therefore, we investigated the necessary conditions for the growth of ITO-NTs to achieve a wall thickness of around 10 nm. In addition, the effects of pH and reductive concentrations for the formation of ITO-NTs are also discussed.

  20. Room temperature synthesis of indium tin oxide nanotubes with high precision wall thickness by electroless deposition

    Directory of Open Access Journals (Sweden)

    Mario Boehme

    2011-02-01

    Full Text Available Conductive nanotubes consisting of indium tin oxide (ITO were fabricated by electroless deposition using ion track etched polycarbonate templates. To produce nanotubes (NTs with thin walls and small surface roughness, the tubes were generated by a multi-step procedure under aqueous conditions. The approach reported below yields open end nanotubes with well defined outer diameter and wall thickness. In the past, zinc oxide films were mostly preferred and were synthesized using electroless deposition based on aqueous solutions. All these methods previously developed, are not adaptable in the case of ITO nanotubes, even with modifications. In the present work, therefore, we investigated the necessary conditions for the growth of ITO-NTs to achieve a wall thickness of around 10 nm. In addition, the effects of pH and reductive concentrations for the formation of ITO-NTs are also discussed.

  1. Fabrication of Vertically Aligned Carbon Nanotube or Zinc Oxide Nanorod Arrays for Optical Diffraction Gratings.

    Science.gov (United States)

    Kim, Jeong; Kim, Sun Il; Cho, Seong-Ho; Hwang, Sungwoo; Lee, Young Hee; Hur, Jaehyun

    2015-11-01

    We report on new fabrication methods for a transparent, hierarchical, and patterned electrode comprised of either carbon nanotubes or zinc oxide nanorods. Vertically aligned carbon nanotubes or zinc oxide nanorod arrays were fabricated by either chemical vapor deposition or hydrothermal growth, in combination with photolithography. A transparent conductive graphene layer or zinc oxide seed layer was employed as the transparent electrode. On the patterned surface defined using photoresist, the vertically grown carbon nanotubes or zinc oxides could produce a concentrated electric field under applied DC voltage. This periodic electric field was used to align liquid crystal molecules in localized areas within the optical cell, effectively modulating the refractive index. Depending on the material and morphology of these patterned electrodes, the diffraction efficiency presented different behavior. From this study, we established the relationship between the hierarchical structure of the different electrodes and their efficiency for modulating the refractive index. We believe that this study will pave a new path for future optoelectronic applications.

  2. Gold supported on ceria nanotubes for CO oxidation

    Science.gov (United States)

    Zhang, Rongbin; Lu, Kun; Zong, Lijuan; Tong, Sai; Wang, Xuewen; Feng, Gang

    2017-09-01

    CeO2 is a typical of fluorite structure, semiconductor material, has high oxygen storage capability as well as unique redox property, which is widely used as catalysts supports in catalysis. Ceria nanotubes and nanocubes are prepared via hydrothermal method in the present work, and Au/CeO2 catalysts are prepared using deposition-precipitation technique with HAuCl4 as gold precursor. The prepared samples were used as catalysts for the CO oxidation reaction using a fix-bed reactor at 50-130 °C and characterized by XRD, BET, SEM, TEM, XPS, TPR and ICP. It is found that CeO2-NT and CeO2-NC expose different surface planes. The XPS and H2-TPR results illustrates that the {110} surface exposed by CeO2-NT has stronger interaction with gold particles, which benefits the electron and oxygen transfer between Au and ceria. All these characters of the Au/CeO2-NT(3%) result in the better activity and stability than the Au/CeO2-NC(3%).

  3. Anodic aluminium oxide membranes used for the growth of carbon nanotubes.

    Science.gov (United States)

    López, Vicente; Morant, Carmen; Márquez, Francisco; Zamora, Félix; Elizalde, Eduardo

    2009-11-01

    The suitability of anodic aluminum oxide (AAO) membranes as template supported on Si substrates for obtaining organized iron catalyst for carbon nanotube (CNT) growth has been investigated. The iron catalyst was confined in the holes of the AAO membrane. CVD synthesis with ethylene as carbon source led to a variety of carbon structures (nanotubes, helices, bamboo-like, etc). In absence of AAO membrane the catalyst was homogeneously distributed on the Si surface producing a high density of micron-length CNTs.

  4. Fabrication of Arrays of Metal and Metal Oxide Nanotubes by Shadow Evaporation

    NARCIS (Netherlands)

    Dickey, Michael D.; Weiss, Emily A.; Smythe, Elizabeth J.; Chiechi, Ryan C.; Capasso, Federico; Whitesides, George M.

    2008-01-01

    This paper describes a simple technique for fabricating uniform arrays of metal and metal oxide nanotubes with controlled heights and diameters. The technique involves depositing material onto an anodized aluminum oxide (AAO) membrane template using a collimated electron beam evaporation source. The

  5. Effect of microstructure on the nanotube growth by anodic oxidation on Ti-10Nb alloy

    Science.gov (United States)

    Luz, A. R.; Lepienski, C. M.; Henke, S. L.; Grandini, C. R.; Kuromoto, N. K.

    2017-07-01

    Several papers have reported the grown self-organized nanotube arrays on pure Ti and its alloys to improve the surface of these materials for biomedical applications. The growth of nanotubes can be influenced by microstructure of material; however, few papers concerning this topic have been published. The aim of this work was to investigate the morphology, the cross-section view and the oxides in nanotube arrays in relationship to the microstructure of the Ti-10Nb alloy. The growth of nanotubes on the Ti-10Nb alloy obtained by anodic oxidation (AO). The Ti-10Nb alloy is composed by alfa and beta phases that were investigated by metallographic analysis, patterns of x-ray diffraction and EDS analysis. SEM images and EDS analysis revealed the morphology was composed by self-organized nanotube arrays on the alpha phase and walls with transversal holes on beta phase. X-ray patterns show crystalline oxides formation. Raman spectrum confirms the presence of anatase and Nb2O5 oxides. A significant contribution of the Nb2O5 was observed by bi-dimensional (x, y) Raman mapping, which also showed that the all oxide film was homogeneous oxide distributed on Ti-10Nb alloy. The nanostructured films have higher thickness in the beta than in the alpha phase, and have a small different in structure and oxide composition; as observed by SEM and Raman mapping. The results indicate that the microstructure of the Ti-10Nb affects the nanotubes morphology and the cross-section view, but the oxide formation was similar for all regions analyzed.

  6. Structural and proactive safety aspects of oxidation debris from multiwalled carbon nanotubes.

    Science.gov (United States)

    Stéfani, Diego; Paula, Amauri J; Vaz, Boniek G; Silva, Rodrigo A; Andrade, Nádia F; Justo, Giselle Z; Ferreira, Carmen V; Filho, Antonio G Souza; Eberlin, Marcos N; Alves, Oswaldo L

    2011-05-15

    The removal of oxidation debris from the oxidized carbon nanotube surface with a NaOH treatment is a key step for an effective functionalization and quality improvement of the carbon nanotube samples. In this work, we show via infrared spectroscopy and ultrahigh resolution and accuracy mass spectrometry that oxidation debris obtained from HNO(3)-treated multiwalled carbon nanotubes is a complex mixture of highly condensed aromatic oxygenated carbonaceous fragments. We have also evaluated their cytotoxicity by using BALB/c 3T3 mouse fibroblasts and HaCaT human keratinocytes as models. By knowing the negative aspects of dissolved organic carbon (DOC) to the water quality, we have demonstrated the removal of these carbon nanotube residues from the NaOH solution (wastewater) by using aluminium sulphate, which is a standard coagulant agent used in conventional drinking water purification and wastewater treatment plants. Our results contribute to elucidate the structural and proactive safety aspects of oxidation debris from oxidized carbon nanotubes towards a greener nanotechnology. Copyright © 2011 Elsevier B.V. All rights reserved.

  7. Structural and proactive safety aspects of oxidation debris from multiwalled carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Stefani, Diego, E-mail: diegostefani.br@gmail.com [Solid State Chemistry Laboratory, Institute of Chemistry, University of Campinas - UNICAMP, P.O. Box 6154, Campinas-SP 13083-970 (Brazil); Paula, Amauri J. [Solid State Chemistry Laboratory, Institute of Chemistry, University of Campinas - UNICAMP, P.O. Box 6154, Campinas-SP 13083-970 (Brazil); Vaz, Boniek G. [ThoMSon Mass Spectrometry Laboratory, Institute of Chemistry, University of Campinas - UNICAMP, P.O. Box 6154, Campinas-SP 13083-970 (Brazil); Silva, Rodrigo A. [Laboratory of Bioassays and Signal Transduction, Department of Biochemistry, Institute of Biology, University of Campinas - UNICAMP, P.O. Box 6109, Campinas-SP 13083-862 (Brazil); Andrade, Nadia F. [Department of Physics, Universidade Federal do Ceara - UFC, P.O. Box 6030, Fortaleza-CE 60455-900 (Brazil); Justo, Giselle Z. [Laboratory of Bioassays and Signal Transduction, Department of Biochemistry, Institute of Biology, University of Campinas - UNICAMP, P.O. Box 6109, Campinas-SP 13083-862 (Brazil); Department of Biochemistry, Universidade Federal de Sao Paulo - UNIFESP, Sao Paulo-SP 04044-020 (Brazil); Ferreira, Carmen V. [Laboratory of Bioassays and Signal Transduction, Department of Biochemistry, Institute of Biology, University of Campinas - UNICAMP, P.O. Box 6109, Campinas-SP 13083-862 (Brazil); Filho, Antonio G. Souza, E-mail: agsf@fisica.ufc.br [Department of Physics, Universidade Federal do Ceara - UFC, P.O. Box 6030, Fortaleza-CE 60455-900 (Brazil); Eberlin, Marcos N. [ThoMSon Mass Spectrometry Laboratory, Institute of Chemistry, University of Campinas - UNICAMP, P.O. Box 6154, Campinas-SP 13083-970 (Brazil); Alves, Oswaldo L., E-mail: oalves@iqm.unicamp.br [Solid State Chemistry Laboratory, Institute of Chemistry, University of Campinas - UNICAMP, P.O. Box 6154, Campinas-SP 13083-970 (Brazil)

    2011-05-15

    The removal of oxidation debris from the oxidized carbon nanotube surface with a NaOH treatment is a key step for an effective functionalization and quality improvement of the carbon nanotube samples. In this work, we show via infrared spectroscopy and ultrahigh resolution and accuracy mass spectrometry that oxidation debris obtained from HNO{sub 3}-treated multiwalled carbon nanotubes is a complex mixture of highly condensed aromatic oxygenated carbonaceous fragments. We have also evaluated their cytotoxicity by using BALB/c 3T3 mouse fibroblasts and HaCaT human keratinocytes as models. By knowing the negative aspects of dissolved organic carbon (DOC) to the water quality, we have demonstrated the removal of these carbon nanotube residues from the NaOH solution (wastewater) by using aluminium sulphate, which is a standard coagulant agent used in conventional drinking water purification and wastewater treatment plants. Our results contribute to elucidate the structural and proactive safety aspects of oxidation debris from oxidized carbon nanotubes towards a greener nanotechnology.

  8. Enhanced Strain-Dependent Electrical Resistance of Polyurethane Composites with Embedded Oxidized Multiwalled Carbon Nanotube Networks

    Directory of Open Access Journals (Sweden)

    R. Benlikaya

    2013-01-01

    Full Text Available The effect of different chemical oxidation of multiwalled carbon nanotubes with H2O2, HNO3, and KMnO4 on the change of electrical resistance of polyurethane composites with embedded oxidized nanotube networks subjected to elongation and bending has been studied. The testing has shown about twenty-fold increase in the electrical resistance for the composite prepared from KMnO4 oxidized nanotubes in comparison to the composites prepared from the pristine and other oxidized nanotubes. The evaluated sensitivity of KMnO4 treated composite in terms of the gauge factor increases with strain to nearly 175 at the strain 11%. This is a substantial increase, which ranks the composite prepared from KMnO4 oxidized nanotubes among materials as strain gauges with the highest electromechanical sensitivity. The observed differences in electromechanical properties of the composites are discussed on basis of their structure which is examined by the measurements of Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, and scanning electron microscope. The possible practical use of the composites is demonstrated by monitoring of elbow joint flexion during two different physical exercises.

  9. Synergistic toughening of composite fibres by self-alignment of reduced graphene oxide and carbon nanotubes

    Science.gov (United States)

    Shin, Min Kyoon; Lee, Bommy; Kim, Shi Hyeong; Lee, Jae Ah; Spinks, Geoffrey M.; Gambhir, Sanjeev; Wallace, Gordon G.; Kozlov, Mikhail E.; Baughman, Ray H.; Kim, Seon Jeong

    2012-01-01

    The extraordinary properties of graphene and carbon nanotubes motivate the development of methods for their use in producing continuous, strong, tough fibres. Previous work has shown that the toughness of the carbon nanotube-reinforced polymer fibres exceeds that of previously known materials. Here we show that further increased toughness results from combining carbon nanotubes and reduced graphene oxide flakes in solution-spun polymer fibres. The gravimetric toughness approaches 1,000 J g-1, far exceeding spider dragline silk (165 J g-1) and Kevlar (78 J g-1). This toughness enhancement is consistent with the observed formation of an interconnected network of partially aligned reduced graphene oxide flakes and carbon nanotubes during solution spinning, which act to deflect cracks and allow energy-consuming polymer deformation. Toughness is sensitive to the volume ratio of the reduced graphene oxide flakes to the carbon nanotubes in the spinning solution and the degree of graphene oxidation. The hybrid fibres were sewable and weavable, and could be shaped into high-modulus helical springs.

  10. Langmuir hydrogen dissociation approach in radiolabeling carbon nanotubes and graphene oxide

    Energy Technology Data Exchange (ETDEWEB)

    Badun, Gennadii A.; Chernysheva, Maria G.; Eremina, Elena A.; Egorov, Alexander V. [Lomonosov Moscow State Univ. (Russian Federation). Dept. of Chemistry; Grigorieva, Anastasia V. [Lomonosov Moscow State Univ., Moscow (Russian Federation). Dept. of Materials Science

    2016-11-01

    Carbon-based nanomaterials have piqued the interest of several researchers. At the same time, radioactive labeling is a powerful tool for studying processes in different systems, including biological and organic; however, the introduction of radioactive isotopes into carbon-based nanomaterial remains a great challenge. We have used the Langmuir hydrogen dissociation method to introduce tritium in single-walled carbon nanotubes and graphene oxide. The technique allows us to achieve a specific radioactivity of 107 and 27 Ci/g for single-layer graphene oxide and single-walled carbon nanotubes, respectively. Based on the analysis of characteristic Raman modes at 1350 and 1580 cm{sup -1}, a minimal amount of structural changes to the nanomaterials due to radiolabeling was observed. The availability of a simple, nondestructive, and economic technique for the introduction of radiolabels to single-walled carbon nanotubes and graphene oxide will ultimately expand the applicability of these materials.

  11. Synthesis of Tin Oxide/Carbon Nanotube Composite by Homogeneous Precipitation and Characterizations

    Science.gov (United States)

    Xie, Jining; Varadan, Vijay K.

    2004-07-01

    Nanosized tin oxide particles have shown excellent performance when used as anode material in lithium ion batteries. To further improve their electrochemical properties, functionalized carbon nanotubes were introduced during the homogenous precipitation synthesis. Various material characterization techniques such as XRD, SEM, TEM, TGA and BET were performed to check their crystalline, micro- and nano-structure, thermal stability and surface area. Compared with blank tin oxide nanoparticles, much finer tin oxide nanoparticles with higher surface area were observed with the presence of functional carbon nanotubes. It is proposed that functional carbon nanotubes play an important role for nanoparticles' nucleation, growth, coagulation processes. The potential application of this composite in lithium ion batteries is discussed.

  12. Porous Pt Nanotubes with High Methanol Oxidation Electrocatalytic Activity Based on Original Bamboo-Shaped Te Nanotubes.

    Science.gov (United States)

    Lou, Yue; Li, Chunguang; Gao, Xuedong; Bai, Tianyu; Chen, Cailing; Huang, He; Liang, Chen; Shi, Zhan; Feng, Shouhua

    2016-06-29

    In this report, a facile and general strategy was developed to synthesize original bamboo-shaped Te nanotubes (NTs) with well-controlled size and morphology. On the basis of the as-prepared Te NTs, porous Pt nanotubes (NTs) with excellent property and structural stability have been designed and manufactured. Importantly, we avoided the use of surface stabilizing agents, which may affect the catalytic properties during the templated synthesis process. Furthermore, Pt NTs with different morphology were successfully prepared by tuning the experimental parameters. As a result, transmission electron microscopy (TEM) study shows that both Te NTs and Pt NTs have uniform size and morphology. Following cyclic voltammogram (CV) testing, the as-prepared porous Pt NTs and macroporous Pt NTs exhibited excellent catalytic activities toward electrochemical methanol oxidation reactions due to their tubiform structure with nanoporous framework. Thus, the as-prepared Pt NTs with specific porous structure hold potential usage as alternative anode catalysts for direct methanol fuel cells (DMFCs).

  13. Functionalization of Single-Wall Carbon Nanotubes by Photo-Oxidation

    Science.gov (United States)

    Lebron-Colon, Marisabel; Meador, Michael A.

    2010-01-01

    new technique for carbon nanotube oxidation was developed based upon the photo-oxidation of organic compounds. The resulting method is more benign than conventional oxidation approaches and produces single-wall carbon nanotubes (SWCNTs) with higher levels of oxidation. In this procedure, an oxygen saturated suspension of SWNTs in a suitable solvent containing a singlet oxygen sensitizer, such as Rose Bengal, is irradiated with ultraviolet light. The resulting oxidized tubes are recovered by filtering the suspension, followed by washing to remove any adsorbed solvent and sensitizer, and drying in a vacuum oven. Chemical analysis by FT-infrared and x-ray photoelectron spectroscopy revealed that the oxygen content of the photo-oxidized SWCNT was 11.3 atomic % compared to 6.7 atomic % for SWCNT that had been oxidized by standard treatment in refluxing acid. The photo-oxidized SWCNT produced by this method can be used directly in various polymer matrixes, or can be further modified by chemical reactions at the oxygen functional groups and then used as additives. This method may also be suitable for use in oxidation of multiwall carbon nanotubes and graphenes.

  14. PEGylated single-walled carbon nanotubes activate neutrophils to increase production of hypochlorous acid, the oxidant capable of degrading nanotubes.

    Science.gov (United States)

    Vlasova, Irina I; Vakhrusheva, Tatyana V; Sokolov, Alexey V; Kostevich, Valeria A; Gusev, Alexandr A; Gusev, Sergey A; Melnikova, Viktoriya I; Lobach, Anatolii S

    2012-10-01

    Perspectives for the use of carbon nanotubes in biomedical applications depend largely on their ability to degrade in the body into products that can be easily cleared out. Carboxylated single-walled carbon nanotubes (c-SWCNTs) were shown to be degraded by oxidants generated by peroxidases in the presence of hydrogen peroxide. In the present study we demonstrated that conjugation of poly(ethylene glycol) (PEG) to c-SWCNTs does not interfere with their degradation by peroxidase/H(2)O(2) system or by hypochlorite. Comparison of different heme-containing proteins for their ability to degrade PEG-SWCNTs has led us to conclude that the myeloperoxidase (MPO) product hypochlorous acid (HOCl) is the major oxidant that may be responsible for biodegradation of PEG-SWCNTs in vivo. MPO is secreted mainly by neutrophils upon activation. We hypothesize that SWCNTs may enhance neutrophil activation and therefore stimulate their own biodegradation due to MPO-generated HOCl. PEG-SWCNTs at concentrations similar to those commonly used in in vivo studies were found to activate isolated human neutrophils to produce HOCl. Both PEG-SWCNTs and c-SWCNTs enhanced HOCl generation from isolated neutrophils upon serum-opsonized zymosan stimulation. Both types of nanotubes were also found to activate neutrophils in whole blood samples. Intraperitoneal injection of a low dose of PEG-SWCNTs into mice induced an increase in percentage of circulating neutrophils and activation of neutrophils and macrophages in the peritoneal cavity, suggesting the evolution of an inflammatory response. Activated neutrophils can produce high local concentrations of HOCl, thereby creating the conditions favorable for degradation of the nanotubes.

  15. A Ni-Fe Layered Double Hydroxide-Carbon Nanotube Complex for Water Oxidation

    CERN Document Server

    Gong, Ming; Wang, Hailiang; Liang, Yongye; Wu, Justin Zachary; Zhou, Jigang; Wang, Jian; Regier, Tom; Wei, Fei; Dai, Hongjie

    2013-01-01

    Highly active, durable and cost-effective electrocatalysts for water oxidation to evolve oxygen gas hold a key to a range of renewable energy solutions including water splitting and rechargeable metal-air batteries. Here, we report the synthesis of ultrathin nickel iron layered double hydroxide nanoplates on mildly oxidized multi-walled carbon nanotubes. Incorporation of Fe into the nickel hydroxide induced the formation of NiFe-layered double hydroxide. The nanoplates were covalently attached to a network of nanotubes, affording excellent electrical wiring to the nanoplates. The ultra-thin Ni-Fe layered double hydroxide nanoplates/carbon nanotube complex was found to exhibit unusually high electro-catalytic activity and stability for oxygen evolution and outperformed commercial precious metal Ir catalysts.

  16. CuInS2 nanotube array on indium tin oxide: synthesis and photoelectrochemical properties.

    Science.gov (United States)

    Wu, Jih-Jen; Jiang, Wan-Ting; Liao, Wen-Pin

    2010-08-28

    CuInS(2) nanotube (NT) arrays were synthesized on indium tin oxide (ITO) substrates for the first time using a successive ionic layer absorption and reaction (SILAR) process with self-dissolved ZnO nanowire (NW) templates. The p-type CuInS(2) NT array shows promising conversion efficiency in a photoelectrochemical cell with polysulfide electrolyte.

  17. Highly water-soluble multi-walled carbon nanotubes amine-functionalized by supercritical water oxidation.

    Science.gov (United States)

    Chun, Kyoung-Yong; Moon, In-Kyu; Han, Joo-Hee; Do, Seung-Hoe; Lee, Jin-Seo; Jeon, Seong-Yun

    2013-11-07

    Multi-walled carbon nanotubes (MWNTs) have been amine-functionalized by eco-friendly supercritical water oxidation. The facilely functionalized MWNTs have high solubility (~84 mg L(-1)) in water and 78% transmittance at 30-fold dilution. The Tyndall effect is also shown for several liquids.

  18. Toxicity of Multi-Walled Carbon Nanotubes, Graphene Oxide, and Reduced Graphene Oxide to Zebrafish Embryos

    Institute of Scientific and Technical Information of China (English)

    LIU Xiao Tong; MU Xi Yan; WU Xiao Li; MENG Li Xuan; GUAN Wen Bi; MA Yong Qiang; SUN Hua; WANG Cheng Ju; LI Xue Feng

    2014-01-01

    Objective This study was aimed to investigate the toxic effects of 3 nanomaterials, i.e. multi-walled carbon nanotubes (MWCNTs), graphene oxide (GO), and reduced graphene oxide (RGO), on zebrafish embryos. Methods The 2-h post-fertilization (hpf) zebrafish embryos were exposed to MWCNTs, GO, and RGO at different concentrations (1, 5, 10, 50, 100 mg/L) for 96 h. Afterwards, the effects of the 3 nanomateria on spontaneous movement, heart rate, hatching rate, length of larvae, mortality, and malformations ls were evaluated. Results Statistical analysis indicated that RGO significantly inhibited the hatching of zebrafish embryos. Furthermore, RGO and MWCNTs decreased the length of the hatched larvae at 96 hpf. No obvious morphological malformation or mortality was observed in the zebrafish embryos after exposure to the three nanomaterials. Conclusion MWCNTs, GO, and RGO were all toxic to zebrafish embryos to influence embryos hatching and larvae length. Although no obvious morphological malformation and mortality were observed in exposed zebrafish embryos, further studies on the toxicity of the three nanomaterials are still needed.

  19. VLSI-compatible carbon nanotube doping technique with low work-function metal oxides.

    Science.gov (United States)

    Suriyasena Liyanage, Luckshitha; Xu, Xiaoqing; Pitner, Greg; Bao, Zhenan; Wong, H-S Philip

    2014-01-01

    Single-wall carbon nanotubes (SWCNTs) have great potential to become the channel material for future high-speed transistor technology. However, as-made carbon nanotube field effect transistors (CNFETs) are p-type in ambient, and a consistent and reproducible n-type carbon nanotube (CNT) doping technique has yet to be realized. In addition, for very large scale integration (VLSI) of CNT transistors, it is imperative to use a solid-state method that can be applied on the wafer scale. Herein we present a novel, VLSI-compatible doping technique to fabricate n-type CNT transistors using low work-function metal oxides as gate dielectrics. Using this technique we demonstrate wafer-scale, aligned CNT transistors with yttrium oxide (Y2Ox) gate dielectrics that exhibit n-type behavior with Ion/Ioff of 10(6) and inverse subthreshold slope of 95 mV/dec. Atomic force microscopy (AFM) and transmission electron microscopy (TEM) analyses confirm that slow (∼1 Å/s) evaporation of yttrium on the CNTs can form a smooth surface that provides excellent wetting to CNTs. Further analysis of the yttrium oxide gate dielectric using X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD) techniques revealed that partially oxidized elemental yttrium content increases underneath the surface where it acts as a reducing agent on nanotubes by donating electrons that gives rise to n-type doping in CNTs. We further confirm the mechanism for this technique with other low work-function metals such as lanthanum (La), erbium (Er), and scandium (Sc) which also provide similar CNT NFET behavior after transistor fabrication. This study paves the way to exploiting a wide range of materials for an effective n-type carbon nanotube transistor for a complementary (p- and n-type) transistor technology.

  20. Iridium Oxide Nanotube Electrodes for Highly Sensitive and Prolonged Intracellular Measurement of Action Potentials

    Science.gov (United States)

    Lin, Ziliang Carter; Xie, Chong; Osakada, Yasuko; Cui, Yi; Cui, Bianxiao

    2014-01-01

    Intracellular recording of action potentials is important to understand electrically-excitable cells. Recently, vertical nanoelectrodes have been developed to achieve highly sensitive, minimally invasive, and large scale intracellular recording. It has been demonstrated that the vertical geometry is crucial for the enhanced signal detection. Here we develop nanoelectrodes made up of nanotubes of iridium oxide. When cardiomyocytes are cultured upon those nanotubes, the cell membrane not only wraps around the vertical tubes but also protrudes deep into the hollow center. We show that this geometry enhances cell-electrode coupling and results in measuring much larger intracellular action potentials. The nanotube electrodes afford much longer intracellular access and are minimally invasive, making it possible to achieve stable recording up to an hour in a single session and more than 8 days of consecutive daily recording. This study suggests that the electrode performance can be significantly improved by optimizing the electrode geometry. PMID:24487777

  1. Ultrafast and scalable laser liquid synthesis of tin oxide nanotubes and its application in lithium ion batteries.

    Science.gov (United States)

    Liu, Zhikun; Cao, Zeyuan; Deng, Biwei; Wang, Yuefeng; Shao, Jiayi; Kumar, Prashant; Liu, C Richard; Wei, Bingqing; Cheng, Gary J

    2014-06-07

    Laser-induced photo-chemical synthesis of SnO2 nanotubes has been demonstrated by employing a nanoporous polycarbonate membrane as a template. The SnO2 nanotube diameter can be controlled by the nanoporous template while the nanotube length can be tuned by laser parameters and reaction duration. The microstructure characterization of the nanotubes indicates that they consist of mesoporous structures with sub 5 nm size nanocrystals connected by the twinning structure. The application of SnO2 nanotubes as an anode material in lithium ion batteries has also been explored, and they exhibited high capacity and excellent cyclic stability. The laser based emerging technique for scalable production of crystalline metal oxide nanotubes in a matter of seconds is remarkable. The compliance of the laser based technique with the existing technologies would lead to mass production of novel nanomaterials that would be suitable for several emerging applications.

  2. Thermally oxidized titania nanotubes enhance the corrosion resistance of Ti6Al4V.

    Science.gov (United States)

    Grotberg, John; Hamlekhan, Azhang; Butt, Arman; Patel, Sweetu; Royhman, Dmitry; Shokuhfar, Tolou; Sukotjo, Cortino; Takoudis, Christos; Mathew, Mathew T

    2016-02-01

    The negative impact of in vivo corrosion of metallic biomedical implants remains a complex problem in the medical field. We aimed to determine the effects of electrochemical anodization (60V, 2h) and thermal oxidation (600°C) on the corrosive behavior of Ti-6Al-4V, with serum proteins, at physiological temperature. Anodization produced a mixture of anatase and amorphous TiO2 nanopores and nanotubes, while the annealing process yielded an anatase/rutile mixture of TiO2 nanopores and nanotubes. The surface area was analyzed by the Brunauer-Emmett-Teller method and was estimated to be 3 orders of magnitude higher than that of polished control samples. Corrosion resistance was evaluated on the parameters of open circuit potential, corrosion potential, corrosion current density, passivation current density, polarization resistance and equivalent circuit modeling. Samples both anodized and thermally oxidized exhibited shifts of open circuit potential and corrosion potential in the noble direction, indicating a more stable nanoporous/nanotube layer, as well as lower corrosion current densities and passivation current densities than the smooth control. They also showed increased polarization resistance and diffusion limited charge transfer within the bulk oxide layer. The treatment groups studied can be ordered from greatest corrosion resistance to least as Anodized+Thermally Oxidized > Anodized > Smooth > Thermally Oxidized for the conditions investigated. This study concludes that anodized surface has a potential to prevent long term implant failure due to corrosion in a complex in-vivo environment.

  3. PEGylated single-walled carbon nanotubes activate neutrophils to increase production of hypochlorous acid, the oxidant capable of degrading nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Vlasova, Irina I., E-mail: irina.vlasova@yahoo.com [Research Institute for Physico-Chemical Medicine, Federal Medico-Biological Agency, Moscow (Russian Federation); Vakhrusheva, Tatyana V. [Research Institute for Physico-Chemical Medicine, Federal Medico-Biological Agency, Moscow (Russian Federation); Sokolov, Alexey V.; Kostevich, Valeria A. [Research Institute for Physico-Chemical Medicine, Federal Medico-Biological Agency, Moscow (Russian Federation); Research Institute for Experimental Medicine, Russian Academy of Medical Science, Saint Petersburg (Russian Federation); Gusev, Alexandr A.; Gusev, Sergey A. [Research Institute for Physico-Chemical Medicine, Federal Medico-Biological Agency, Moscow (Russian Federation); Melnikova, Viktoriya I. [Institute of Developmental Biology, Russian Academy of Science, Moscow (Russian Federation); Lobach, Anatolii S. [Institute of Problems of Chemical Physics, Russian Academy of Science, Chernogolovka (Russian Federation)

    2012-10-01

    Perspectives for the use of carbon nanotubes in biomedical applications depend largely on their ability to degrade in the body into products that can be easily cleared out. Carboxylated single-walled carbon nanotubes (c-SWCNTs) were shown to be degraded by oxidants generated by peroxidases in the presence of hydrogen peroxide. In the present study we demonstrated that conjugation of poly(ethylene glycol) (PEG) to c-SWCNTs does not interfere with their degradation by peroxidase/H{sub 2}O{sub 2} system or by hypochlorite. Comparison of different heme-containing proteins for their ability to degrade PEG-SWCNTs has led us to conclude that the myeloperoxidase (MPO) product hypochlorous acid (HOCl) is the major oxidant that may be responsible for biodegradation of PEG-SWCNTs in vivo. MPO is secreted mainly by neutrophils upon activation. We hypothesize that SWCNTs may enhance neutrophil activation and therefore stimulate their own biodegradation due to MPO-generated HOCl. PEG-SWCNTs at concentrations similar to those commonly used in in vivo studies were found to activate isolated human neutrophils to produce HOCl. Both PEG-SWCNTs and c-SWCNTs enhanced HOCl generation from isolated neutrophils upon serum-opsonized zymosan stimulation. Both types of nanotubes were also found to activate neutrophils in whole blood samples. Intraperitoneal injection of a low dose of PEG-SWCNTs into mice induced an increase in percentage of circulating neutrophils and activation of neutrophils and macrophages in the peritoneal cavity, suggesting the evolution of an inflammatory response. Activated neutrophils can produce high local concentrations of HOCl, thereby creating the conditions favorable for degradation of the nanotubes. -- Highlights: ► Myeloperoxidase (MPO) product hypochlorous acid is able to degrade CNTs. ► PEGylated SWCNTs stimulate isolated neutrophils to produce hypochlorous acid. ► SWCNTs are capable of activating neutrophils in blood samples. ► Activation of

  4. Multi wall carbon nanotubes induce oxidative stress and cytotoxicity in human embryonic kidney (HEK293) cells.

    Science.gov (United States)

    Reddy, Anreddy Rama Narsimha; Reddy, Yellu Narsimha; Krishna, Devarakonda Rama; Himabindu, Vurimindi

    2010-06-04

    The present study was aimed at evaluating the potential toxicity and the general mechanism involved in multi wall carbon nanotubes (MWCNT)-induced cytotoxicity using human embryonic kidney cell line (HEK293) cells. Two multi wall carbon nanotubes (coded as MWCNT1, size: 90-150nm and MWCNT2, size: 60-80nm) used in this study are MWCNT1 (produced by the electric arc method and size of the nanotubes was 90-150nm) and MWCNT2 (produced by the chemical vapor deposition method with size of 60-80nm). To elucidate the possible mechanisms of MWCNT induced cytotoxicity, cell viability, mitochondrial function (MTT assay), cell membrane damage (LDH assay), reduced glutathione (GSH), interleukin-8 (IL-8) and lipid peroxidation levels were quantitatively assessed under carbon nanotubes exposed (48h) conditions. Exposure of different sizes of two carbon nanotubes at dosage levels between 3 and 300mug/ml decreased cell viability in a concentration dependent manner. The IC(50) values (concentration of nanoparticles to induce 50% cell mortality) of two (MWCNT1, MWCNT2) nanoparticles were found as 42.10 and 36.95mug/ml. Exposure of MWCNT (10-100mug/ml) to HEK cells resulted in concentration dependent cell membrane damage (as indicated by the increased levels of LDH), increased production of IL-8, increased TBARS and decreased intracellular glutathione levels. The cytotoxicity and oxidative stress was significantly more in MWCNT2 exposed cells than MWCNT1. In summary, exposure of carbon nanotubes resulted in a concentration dependent cytotoxicity in cultured HEK293 cells that was associated with increased oxidative stress.

  5. Biomarker analysis of liver cells exposed to surfactant-wrapped and oxidized multi-walled carbon nanotubes (MWCNTs)

    Science.gov (United States)

    Carbon nanotubes (CNTs) have great potential in industrial, consumer, and mechanical applications, based partly on their unique structural, optical and electronic properties. CNTs are commonly oxidized or treated with surfactants to facilitate aqueous solution processing, and the...

  6. Compression Molded Ultra High Molecular Weight Polyethylene-- Hydroxyapatite-Aluminum Oxide-Carbon Nanotube Hybrid Composites for Hard Tissue Replacement

    National Research Council Canada - National Science Library

    Ankur Gupta Garima Tripathi Debrupa Lahiri Kantesh Balani

    2013-01-01

    ...), bioinert aluminum oxide (Al2O3), and carbon nanotubes (CNTs) using compression molding. Phase and microstructural analysis suggests retention of UHMWPE and reinforcing phases in the compression molded composites...

  7. Tuning the Outward to Inward Swelling in Lithiated Silicon Nanotubes via Surface Oxide Coating

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jiangwei; Luo, Hao; Liu, Yang; He, Yang; Fan, Feifei; Zhang, Ze; Mao, Scott X.; Wang, Chongmin; Zhu, Ting

    2016-09-14

    The electrochemically-induced mechanical degradation hinders the application of Si anodes in advanced lithium-ion batteries. Hollow structures and surface coatings have been often used to mitigate the degradation of Si-based anodes. However, the structural change and degradation mechanism during lithiation/delithiation of hollow Si structures with coatings remain unclear. Here, we combine in situ TEM experiment and chemomechanical modeling to study the electrochemically induced swelling of amorphous-Si (a-Si) nanotubes with different thicknesses of surface SiOx layers. Surprisingly, we find that no inward expansion occurs at the inner surface during lithiation of a-Si nanotubes with native oxides. In contrast, inward expansion can be induced by increasing the thickness of SiOx on the outer surface. Moreover, both the sandwich lithiation mechanism and two-stage lithiation process in a-Si nanotubes remain unchanged with the increasing thickness of surface coatings. Our chemomechanical modeling reveals the mechanical confinement effects in lithiated a-Si nanotubes with and without SiOx coatings. This work not only provides insights into the degradation of nanotube anodes with surface coatings, but also sheds light onto the optimal design of hollow anodes for high-performance lithium-ion batteries.

  8. Titanium oxide nanotubes: Synthesis, properties and applications for solar energy harvesting

    Science.gov (United States)

    Panaitescu, Eugen

    Titanium oxide (titania) nanotubes, although relatively recently discovered (less than 15 years ago), have already shown great promise regarding solar energy harvesting applications, exhibiting very good photocatalytic and photovoltaic properties. An alternative anodization route for production of titania nanotubes at the surface of a titanium foil using chloride ions as catalyst instead of the routinely used highly toxic fluorides, is presented in this work. Moreover, the fabrication parameters are extensively studied, thus providing both an insight into the synthesis mechanism and hints towards possible process optimization routes. Although not forming uniformly over the sample surface and lacking long range ordering, very high aspect ratio (over 1000:1) nanotubes are rapidly formed (in minutes) by a self assembling mechanism. Thus, the method is a viable alternative route for the fast production of partially ordered titania nanotubes, both as films on top of a titanium foil, or as microscopic grains (powders or suspended in solutions). Since the as formed nanotubes are amorphous, attention is also given to the crystallization process, especially in the case of poorly studied powders. Attachment of other nanostructures such as cadmium telluride quantum dots, bio-composites (proteins), or gold nanoparticles for the synthesis of hybrid materials combining properties of both composites have been studied too. Also, possible applications of these new materials in two solar energy technologies: photovoltaic electricity generation using dye sensitized solar cells (DSSC's), and hydrogen production by the photoelectrochemical (PEC) splitting of water are investigated.

  9. Adsorption mechanism and kinetics of azo dye chemicals on oxide nanotubes: a case study using porous CeO2 nanotubes

    Science.gov (United States)

    Wu, Junshu; Wang, Jinshu; Du, Yucheng; Li, Hongyi; Jia, Xinjian

    2016-07-01

    Metal oxide nanotubes are believed to be promising materials with adsorption functionality for water purification due to their synergistic effect of the overall microscale morphology for easy separation and nanoscale surface characters providing enough surface active absorption sites. This work shows the synthesis of uniform hierarchical porous CeO2 nanotubes via nanowire-directed templating method and describes the adsorption behavior of CeO2 nanotubes for a typical azo dye Congo red which has resistance to oxidation and decoloration in natural conditions. Fourier transform infrared spectroscopy spectra provided the evidence that Congo red was successfully coated on the surface of CeO2 nanotubes by both bidentate-type bridge link of Ce4+ cations from sulfonate SO3 - groups and the electrostatic attraction between the protonated surface generated by oxygen vacancies and dissociated sulfonate groups. The adsorption kinetic data fitted well to the pseudo-second-order kinetic equation, whereas the Langmuir isotherm equation exhibited better correlation with the experimental data. The calculated maximum adsorption capacity from the isothermal model was 362.32 mg/g. In addition, the prepared CeO2 nanotubes exhibited good recyclability and reusability as highly efficient adsorbents for Congo red removal after regeneration. These favorable performances enable the obtained CeO2 nanotubes to be promising materials for dye removal from aqueous solution.

  10. Effect of acid oxidization of carbon nanotube electrode on the capacitances of double layer capacitors

    Institute of Scientific and Technical Information of China (English)

    LI; Chensha; WANG; Dazhi; LIANG; Tongxiang; WANG; Xiaofen

    2004-01-01

    Polarizable electrode of electric double layer capacitor was made from carbon nanotubes. The effect of acid oxidation of electrode on the specific capacitance was studied. Oxidation removed the redundant carbon, expanded the pore size and introduced some kinds of functional groups on the surface of CNTs. The specific capacit ance of the electrodes with organic electrolyte was increased from 21.4 to 49.6 F/gafter being oxidized at a volume ratio of H2SO4 to HNO3 of 3:1.

  11. Confinement effects on the crystallization of poly(ethylene oxide) nanotubes.

    Science.gov (United States)

    Maiz, Jon; Martin, Jaime; Mijangos, Carmen

    2012-08-21

    In this work, we show the effects of nanoconfinement on the crystallization of poly(ethylene oxide) (PEO) nanotubes embedded in anodized aluminum oxide (AAO) templates. The morphological characteristics of the hollow 1D PEO nanostructures were evaluated by scanning electron microscopy (SEM). The crystallization of the PEO nanostructures and bulk was studied with differential scanning calorimetry (DSC) and wide-angle X-ray diffraction (WAXD). The crystallization of PEO nanotubes studied by DSC is strongly influenced by the confinement showing a strong reduction in the crystallization temperature of the polymer. X-ray diffraction (XRD) experiments confirmed the isothermal crystallization results obtained by DSC, and studies carried out at low temperatures showed the absence of crystallites oriented with the extended chains perpendicular to the pore wall within the PEO nanotubes, which has been shown to be the typical crystal orientation for one-dimensional polymer nanostructures. In contrast, only planes oriented 33, 45, and 90° with respect to the plane (120) are arranged parallel to the pore's main axis, indicating preferential crystal growth in the direction of the radial component. Calculations based on classical nucleation theory suggest that heterogeneous nucleation prevails in the bulk PEO whereas for the PEO nanotubes a surface nucleation mechanism is more consistent with the obtained results.

  12. Investigation of photo-induced diffusion of oxygen into carbon nanotube for oxidation process

    Science.gov (United States)

    Hussain, Shahir; Khamaj, Jabril A.

    2015-11-01

    A controlled and less destructive way of purification of as-grown carbon nanotube (CNT) is a challenging task for the scientific community. A new approach for oxidation of as-grown CNTs using ultraviolet (UV) light lamp is investigated in this paper. For this purpose, the experiment was conducted in a UV lamp chamber consists of a layer of reflective aluminum foil inside to ensure the entire sample would have an even exposure to UV. The experiments were performed under ambient condition. In this study, we vary the exposure time of oxidation. The removal of non-nanotube material after UV light exposure is confirmed by field emission scanning electron microscopy and Raman spectroscopy. Raman spectra show that D band becomes narrow which is consistent with highly purified nanotube. We observed that the intensity of G and D* bands increased rapidly with increasing the UV light exposure time for oxidation. Intensity ratio I D*/ I D increases continually with increasing the oxidation time which confirms the reduction of impurities from the MWNTs. Fourier transform infrared spectroscopy confirms the presence of defect sites where some oxygenated functional groups are attached.

  13. Synthesis, characterization and catalytic activity of birnessite type potassium manganese oxide nanotubes and nanorods

    Energy Technology Data Exchange (ETDEWEB)

    Ahmed, Khalid Abdelazez Mohamed, E-mail: khalidgnad@hotmail.com [School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074 (China); Department of Chemistry, School of Chemistry and Chemical Technology, Faculty of Science and Technology, Al-Neelain University, P.O. Box 12702, Khartoum (Sudan); Huang Kaixun, E-mail: hxxzrf@mail.hust.edu.cn [School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074 (China)

    2012-04-16

    Highlights: Black-Right-Pointing-Pointer Birnessite type manganese oxides nanotubes and nanorods were prepared by calcination route. Black-Right-Pointing-Pointer The transition from tube to rod structure is described by an oriented attachment-thermodynamical (OA-TD) process. Black-Right-Pointing-Pointer The catalytic degradation efficiency of safranin O by as-prepared products was compared. - Abstract: Birnessite-type manganese oxide nanotubes and nanorods were synthesized via a calcination process using manganese acetate and potassium hydroxide as precursors in presence of polyethylene glycol-melamine-formaldehyde. As-prepared products were characterized by XRD, FT-IR, FE-SEM, TEM, SA-ED, HR-TEM, Brunauer-Emmett-Teller (BET) and TGA analyses. The influences of reaction temperature and time on the morphology of manganese oxide nanocrystals were investigated. The oriented attachment-thermodynamical (OA-TD) process is suggested to describe the transition from tube to rod structure. Their capability of catalytic degradation of safranin O was compared. The results indicate that birnessite-type manganese oxide nanotube has higher catalytic activity for than nanorod crystal in aqueous solution, because it has a larger surface area. The decomposition of safranin O follows pseudo-first order kinetics and is markedly affected by pH.

  14. Three-dimensional nanostructures of multiwalled carbon nanotubes/graphene oxide/TiO2 nanotubes for supercapacitor applications

    Science.gov (United States)

    Faraji, Masoud

    2016-07-01

    R(fMWCNT-GO)/TiO2NTs/Ti electrodes with three-dimensional nanostructures were prepared by co-electrochemical reduction of functionalized multiwalled carbon nanotubes (fMWCNTs) and graphene oxide (GO) onto TiO2 nanotubes/Ti. SEM studies revealed that the reduced fMWCNT-GO hybrid with highly network structures has been uniformly deposited onto the TiO2NTs arrays. The storage energy performance was investigated by cyclic voltammetry, galvanostatic charge/discharge and electrochemical impedance spectroscopy techniques in 1.0 M H2SO4 aqueous solution. The R(fMWCNT-GO)/TiO2NTs/Ti electrodes exhibit a high specific capacitance up to 600 F g-1 at 12 A g-1 in 1 M H2SO4 and a long cyclic durability with 90 % capacitance retention over 500 cycling, indicating a potential application in electrode material of supercapacitors. The high capacitance of R(GO-fMWCNT)/TiO2NTs electrode could be attributed to the functional groups of GO-fMWCNT, the 3D structures of the electrode and the highly electrical conductivity fMWCNT.

  15. Decorating multiwalled carbon nanotubes with zinc oxide nanoparticles by thermally decomposing Zn-oleate in an organic medium

    Institute of Scientific and Technical Information of China (English)

    LI ChenSha; QIAO YingJie; LI YuNing; WU YiLiang

    2009-01-01

    Carbon nanotubes decorated with zinc oxide nanoparticles were produced by thermally decomposing a Zn-oleate complex in an octadecene medium. The structure of the ZnO decorating nanotube surfaces was characterized by transmission electron microscopy, scanning electron microscopy and X-ray dif-fraction. The surfaces were shown to be densely and homogeneously covered by ZnO nanoparticles with a size below 10 nm. The nanoparticles had the wurtzite hexagonal crystal structure and showed good adhesion to the nanotubes. The carbon nanotubes decorated by metal oxide nanoparticles were synthesized at relatively low temperature and non-oxidation environment. Moreover, the large-scale production with low cost can be realized.

  16. Decorating multiwalled carbon nanotubes with zinc oxide nanoparticles by thermally decomposing Zn-oleate in an organic medium

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Carbon nanotubes decorated with zinc oxide nanoparticles were produced by thermally decomposing a Zn-oleate complex in an octadecene medium.The structure of the ZnO decorating nanotube surfaces was characterized by transmission electron microscopy,scanning electron microscopy and X-ray dif-fraction.The surfaces were shown to be densely and homogeneously covered by ZnO nanoparticles with a size below 10 nm.The nanoparticles had the wurtzite hexagonal crystal structure and showed good adhesion to the nanotubes.The carbon nanotubes decorated by metal oxide nanoparticles were synthesized at relatively low temperature and non-oxidation environment.Moreover,the large-scale production with low cost can be realized.

  17. Carbon nanotube-cuprous oxide composite based pressure sensors

    Institute of Scientific and Technical Information of China (English)

    Kh. S. Karimov; Muhammad Tariq Saeed Chani; Fazal Ahmad Khalid; Adam Khan; Rahim Khan

    2012-01-01

    In this paper,we present the design,the fabrication,and the experimental results of carbon nanotube (CNT) and Cu2O composite based pressure sensors.The pressed tablets of the CNT-Cu2O composite are fabricated at a pressure of 353 MPa.The diameters of the multiwalled nanotubes (MWNTs) are between 10 nm and 30 nm.The sizes of the Cu2O micro particles are in the range of 3-4 μrn.The average diameter and the average thickness of the pressed tablets are 10 mm and 4.0 mm,respectively.In order to make low resistance electric contacts,the two sides of the pressed tablet are covered by silver pastes.The direct current resistance of the pressure sensor decreases by 3.3 times as the pressure increases up to 37 kN/m2.The simulation result of the resistance-pressure relationship is in good agreement with the experimental result within a variation of ±2%.

  18. Toxicology Study of Single-walled Carbon Nanotubes and Reduced Graphene Oxide in Human Sperm

    OpenAIRE

    2016-01-01

    Carbon-based nanomaterials such as single-walled carbon nanotubes and reduced graphene oxide are currently being evaluated for biomedical applications including in vivo drug delivery and tumor imaging. Several reports have studied the toxicity of carbon nanomaterials, but their effects on human male reproduction have not been fully examined. Additionally, it is not clear whether the nanomaterial exposure has any effect on sperm sorting procedures used in clinical settings. Here, we show that ...

  19. Biocatalytic anode for glucose oxidation utilizing carbon nanotubes for direct electron transfer with glucose oxidase

    Energy Technology Data Exchange (ETDEWEB)

    Vaze, Abhay; Hussain, Nighat; Tang, Chi [Department of Chemistry, University of Connecticut, Storrs, CT 06269-3060 (United States); Leech, Donal [School of Chemistry, National University of Ireland, Galway (Ireland); Rusling, James [Department of Chemistry, University of Connecticut, Storrs, CT 06269-3060 (United States); Department of Cell Biology, University of Connecticut Health Center, Farmington, CT 06032 (United States); School of Chemistry, National University of Ireland, Galway (Ireland)

    2009-10-15

    Covalently linked layers of glucose oxidase, single-wall carbon nanotubes and poly-L-lysine on pyrolytic graphite resulted in a stable biofuel cell anode featuring direct electron transfer from the enzyme. Catalytic response observed upon addition of glucose was due to electrochemical oxidation of FADH{sub 2} under aerobic conditions. The electrode potential depended on glucose concentration. This system has essential attributes of an anode in a mediator-free biocatalytic fuel cell. (author)

  20. Interface-modulated approach toward multilevel metal oxide nanotubes for lithium-ion batteries and oxygen reduction reaction

    Institute of Scientific and Technical Information of China (English)

    Jiashen Meng; Chaojiang Niu; Xiong Liu; Ziang Liu; Hongliang Chen; Xuanpeng Wang; Jiantao Li

    2016-01-01

    Metal oxide hollow structures with multilevel interiors are of great interest for potential applications such as catalysis,chemical sensing,drug delivery,and energy storage.However,the controlled synthesis of multilevel nanotubes remains a great challenge.Here we develop a facile interface-modulated approach toward the synthesis of complex metal oxide multilevel nanotubes with tunable interior structures through electrospinning followed by controlled heat treatment.This versatile strategy can be effectively applied to fabricate wire-in-tube and tubein-tube nanotubes of various metal oxides.These multilevel nanotubes possess a large specific surface area,fast mass transport,good strain accommodation,and high packing density,which are advantageous for lithium-ion batteries (LIBs)and the oxygen reduction reaction (ORR).Specifically,shrinkable CoMn2O4 tube-in-tube nanotubes as a lithium-ion battery anode deliver a high discharge capacity of ~565 mAh.g-1 at a high rate of 2 A.g-1,maintaining 89% of the latter after 500 cycles.Further,as an oxygen reduction reaction catalyst,these nanotubes also exhibit excellent stability with about 92% current retention after 30,000 s,which is higher than that of commercial Pt/C (81%).Therefore,this feasible method may push the rapid development of one-dimensional (1D) nanomaterials.These multifunctional nanotubes have great potential in many frontier fields.

  1. The Microstructure and Capacitance Characterizations of Anodic Titanium Based Alloy Oxide Nanotube

    Directory of Open Access Journals (Sweden)

    Po Chun Chen

    2013-01-01

    Full Text Available This paper presents a simple anodization process to fabricate ordered nanotubes (NTs of titanium and its alloys (Ti-Mo and Ti-Ta. TiO2, MoO3, and Ta2O5 are high dielectric constant materials for ultracapacitor application. The anodic titanium oxide contains a compact layer on the NT film and a barrier layer under the NT film. However, the microstructure of oxide films formed by anodic Ti-Mo and Ti-Ta alloys contains six layers, including a continuous compact layer, a continuous partial porous layer, a porous layer, a net layer, an ordering NT film, and an ordering compact barrier layer. There are extra layers, which are a partial porous layer and a porous layer, not presented on the TiO2 NT film. In this paper, we fabricated very high surface area ordered nanotubes from Ti and its alloys. Based on the differences of alloys elements and compositions, we investigated and calculated the specific capacitance of these alloys oxide nanotubes.

  2. Carbon-Nanotubes-Supported Pd Nanoparticles for Alcohol Oxidations in Fuel Cells: Effect of Number of Nanotube Walls on Activity.

    Science.gov (United States)

    Zhang, Jin; Lu, Shanfu; Xiang, Yan; Shen, Pei Kang; Liu, Jian; Jiang, San Ping

    2015-09-07

    Carbon nanotubes (CNTs) are well known electrocatalyst supports due to their high electrical conductivity, structural stability, and high surface area. Here, we demonstrate that the number of inner tubes or walls of CNTs also have a significant promotion effect on the activity of supported Pd nanoparticles (NPs) for alcohol oxidation reactions of direct alcohol fuel cells (DAFCs). Pd NPs with similar particle size (2.1-2.8 nm) were uniformly assembled on CNTs with different number of walls. The results indicate that Pd NPs supported on triple-walled CNTs (TWNTs) have the highest mass activity and stability for methanol, ethanol, and ethylene glycol oxidation reactions, as compared to Pd NPs supported on single-walled and multi-walled CNTs. Such a specific promotion effect of TWNTs on the electrocatalytic activity of Pd NPs is not related to the contribution of metal impurities in CNTs, oxygen-functional groups of CNTs or surface area of CNTs and Pd NPs. A facile charge transfer mechanism via electron tunneling between the outer wall and inner tubes of CNTs under electrochemical driving force is proposed for the significant promotion effect of TWNTs for the alcohol oxidation reactions in alkaline solutions. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Improvement in structural and electrical properties of cuprous oxide-coated multiwalled carbon nanotubes

    Indian Academy of Sciences (India)

    Shivani Dhall; Neena Jaggi

    2014-10-01

    In the present work, cuprous oxide (Cu2O) nanoparticles are coated on multi-walled carbon nanotubes (MWCNTs) using Fehling’s reaction. The coating of Cu2O nanoparticles on the nanotubes was confirmed by SEM and X-ray diffraction (XRD) spectra. The calculated D/G ratio of Cu2O (using 3% CuSO4 by wt)-coated MWCNTs by Raman spectra is found to decrease to 0.94 as compared to 1.14 for pristine MWCNTs. It shows that the presence of Cu2O nanoparticles on nanotubes decreases the inherent defects present in the form of some pentagons/heptagons in the honeycomb hexagonal carbon atoms in the structure of graphene sheets of MWCNTs and increases the crystalline nature of MWCNTs, which is also confirmed by the XRD peaks. Whereas the value of D/G ratio increases to 1.39 for sample 2 (using 5% CuSO4 by wt), which represents the structural deformation. Moreover, the electrical conductivity of MWCNTs was increased by 3 times after coating the nanotubes with Cu2O (using 3% CuSO4 by wt).

  4. Titanate nanotubes for reinforcement of a poly(ethylene oxide)/chitosan polymer matrix

    Science.gov (United States)

    Porras, R.; Bavykin, D. V.; Zekonyte, J.; Walsh, F. C.; Wood, R. J.

    2016-05-01

    Soft polyethylene oxide (PEO)/chitosan mixtures, reinforced with hard titanate nanotubes (TiNTs) by co-precipitation from aqueous solution, have been used to produce compact coatings by the ‘drop-cast’ method, using water soluble PEO polymer and stable, aqueous colloidal solutions of TiNTs. The effects of the nanotube concentration and their length on the hardness and modulus of the prepared composite have been studied using nanoindentation and nanoscratch techniques. The uniformity of TiNT dispersion within the polymer matrix has been studied using transmission electron microscopy (TEM). A remarkable increase in hardness and reduced Young’s modulus of the composites, compared to pure polymer blends, has been observed at a TiNT concentration of 25 wt %. The short (up to 30 min) ultrasound treatment of aqueous solutions containing polymers and a colloidal TiNT mixture prior to drop casting has resulted in some improvements in both hardness and reduced Young’s modulus of dry composite films, probably due to a better dispersion of ceramic nanotubes within the matrix. However, further (more than 1 h) treatment of the mixture with ultrasound resulted in a deterioration of the mechanical properties of the composite accompanied by a shortening of the nanotubes, as observed by the TEM.

  5. Flow Field Induced Steady Alignment of Oxidized Multi-walled Carbon Nanotubes

    Institute of Scientific and Technical Information of China (English)

    Ai Zhong XU; Ming Shu YANG; Qiang WU; Xiao Ming HU; Lei JIANG

    2005-01-01

    The steady ordered micro-ribbons of oxidized multi-walled carbon nanotubes (MWNTs)were obtained through micro-aperture PTFE membrane by vacuum filtration. After treatment by mixture of concentrated nitric acid and sulfuric acid, the surface functional groups modified MWNTs can be easily dispersed to form a homogeneous suspension. It is found that the steady micro-ribbons existed in the films obtained by vacuum filtration of the suspension. The filtration formed steady flow field and induced steady alignment of oxidized MWNTs. The chemical treatment of MWNTs forming strong interaction between MWNTs is necessity to keep steady of the micro-ribbons microstructure.

  6. Comparative electrochemical analysis of crystalline and amorphous anodized iron oxide nanotube layers as negative electrode for LIB.

    Science.gov (United States)

    Pervez, Syed Atif; Kim, Doohun; Farooq, Umer; Yaqub, Adnan; Choi, Jung-Hee; Lee, You-Jin; Doh, Chil-Hoon

    2014-07-23

    This work is a comparative study of the electrochemical performance of crystalline and amorphous anodic iron oxide nanotube layers. These nanotube layers were grown directly on top of an iron current collector with a vertical orientation via a simple one-step synthesis. The crystalline structures were obtained by heat treating the as-prepared (amorphous) iron oxide nanotube layers in ambient air environment. A detailed morphological and compositional characterization of the resultant materials was performed via transmission electron microscopy (TEM), field-emission scanning electron microscopy (FE-SEM), X-ray diffraction (XRD), and Raman spectroscopy. The XRD patterns were further analyzed using Rietveld refinements to gain in-depth information on their quantitative phase and crystal structures after heat treatment. The results demonstrated that the crystalline iron oxide nanotube layers exhibit better electrochemical properties than the amorphous iron oxide nanotube layers when evaluated in terms of the areal capacity, rate capability, and cycling performance. Such an improved electrochemical response was attributed to the morphology and three-dimensional framework of the crystalline nanotube layers offering short, multidirectional transport lengths, which favor rapid Li(+) ions diffusivity and electron transport.

  7. Electrical transport through single-wall carbon nanotube-anodic aluminum oxide-aluminum heterostructures

    Science.gov (United States)

    Kukkola, Jarmo; Rautio, Aatto; Sala, Giovanni; Pino, Flavio; Tóth, Géza; Leino, Anne-Riikka; Mäklin, Jani; Jantunen, Heli; Uusimäki, Antti; Kordás, Krisztián; Gracia, Eduardo; Terrones, Mauricio; Shchukarev, Andrey; Mikkola, Jyri-Pekka

    2010-01-01

    Aluminum foils were anodized in sulfuric acid solution to form thick porous anodic aluminum oxide (AAO) films of thickness ~6 µm. Electrodes of carboxyl-functionalized single-wall carbon nanotube (SWCNT) thin films were inkjet printed on the anodic oxide layer and the electrical characteristics of the as-obtained SWCNT-AAO-Al structures were studied. Nonlinear current-voltage transport and strong temperature dependence of conduction through the structure was measured. The microstructure and chemical composition of the anodic oxide layer was analyzed using transmission and scanning electron microscopy as well as x-ray photoelectron spectroscopy. Schottky emission at the SWCNT-AAO and AAO-Al interfaces allowed by impurity states in the anodic aluminum oxide film together with ionic surface conduction on the pore walls of AAO gives a reasonable explanation for the measured electrical conduction. Calcined AAO is proposed as a dielectric material for SWCNT-field effect transistors.

  8. Plasma-induced synthesis of Pt nanoparticles supported on TiO2 nanotubes for enhanced methanol electro-oxidation

    Science.gov (United States)

    Su, Nan; Hu, Xiulan; Zhang, Jianbo; Huang, Huihong; Cheng, Jiexu; Yu, Jinchen; Ge, Chao

    2017-03-01

    A Pt/C/TiO2 nanotube composite catalyst was successfully prepared for enhanced methanol electro-oxidation. Pt nanoparticles with a particle size of 2 nm were synthesized by plasma sputtering in water, and anatase TiO2 nanotubes with an inner diameter of approximately 100 nm were prepared by a simple two-step anodization method and annealing process. Field-emission scanning electron microscopy images indicated that the different morphologies of TiO2 synthesized on the surface of Ti foils were dependent on the different anodization parameters. The electrochemical performance of Pt/C/TiO2 catalysts for methanol oxidation showed that TiO2 nanotubes were more suitable for use as Pt nanoparticle support materials than irregular TiO2 short nanorods due to their tubular morphology and better electronic conductivity. X-ray photoelectron spectroscopy characterization showed that the binding energies of the Pt 4f of the Pt/C/TiO2 nanotubes exhibited a slightly positive shift caused by the relatively strong interaction between Pt and the TiO2 nanotubes, which could mitigate the poisoning of the Pt catalyst by COads, and further enhance the electrocatalytic performance. Thus, the as-obtained Pt/C/TiO2 nanotubes composites may become a promising catalyst for methanol electro-oxidation.

  9. Toxicology Study of Single-walled Carbon Nanotubes and Reduced Graphene Oxide in Human Sperm

    Science.gov (United States)

    Asghar, Waseem; Shafiee, Hadi; Velasco, Vanessa; Sah, Vasu R.; Guo, Shirui; El Assal, Rami; Inci, Fatih; Rajagopalan, Adhithi; Jahangir, Muntasir; Anchan, Raymond M.; Mutter, George L.; Ozkan, Mihrimah; Ozkan, Cengiz S.; Demirci, Utkan

    2016-08-01

    Carbon-based nanomaterials such as single-walled carbon nanotubes and reduced graphene oxide are currently being evaluated for biomedical applications including in vivo drug delivery and tumor imaging. Several reports have studied the toxicity of carbon nanomaterials, but their effects on human male reproduction have not been fully examined. Additionally, it is not clear whether the nanomaterial exposure has any effect on sperm sorting procedures used in clinical settings. Here, we show that the presence of functionalized single walled carbon nanotubes (SWCNT-COOH) and reduced graphene oxide at concentrations of 1–25 μg/mL do not affect sperm viability. However, SWCNT-COOH generate significant reactive superoxide species at a higher concentration (25 μg/mL), while reduced graphene oxide does not initiate reactive species in human sperm. Further, we demonstrate that exposure to these nanomaterials does not hinder the sperm sorting process, and microfluidic sorting systems can select the sperm that show low oxidative stress post-exposure.

  10. Raman and electrochemical impedance studies of sol-gel titanium oxide and single walled carbon nanotubes composite films.

    Science.gov (United States)

    Rincón, M E; Trujillo-Camacho, M E; Miranda-Hernández, M; Cuentas-Gallegos, A K; Orozco, G

    2007-01-01

    Titanium oxide grown by a sol-gel route on single-walled carbon nanotubes was studied by Raman and Electrochemical Impedance techniques and compared with mixtures obtained by mechanical grinding. In spite of the superior dispersion of single-walled carbon nanotubes bundles in sol-gel composites, the lost of the small-diameter carbon nanotubes in the oxidizing sol-gel bath was inferred from their Raman spectra and the lower capacitive current of the voltammograms in 0.1 M H2SO4. We proposed proton electrosorption as the main charge storage mechanism for sol-gel composites, favoured by the hydroxylation and n-type conductivity of the oxide, while electrodes based on mixtures were dominated by double-layer charging, developing some pseudocapacitance with potential cycling due to the reversible oxidation of carbon nanotubes. Comparsion with TiO2/Carbon Blacks composites shows the effective role of single-walled carbon nanotubes as templates to control the mesoporous nature of sol-gel composite electrodes.

  11. Silylesterification of oxidized multi-wall carbon nanotubes by catalyzed dehydrogenative cross-coupling between carboxylic and hydrosilane functions

    Science.gov (United States)

    Seffer, J.-F.; Detriche, S.; Nagy, J. B.; Delhalle, J.; Mekhalif, Z.

    2014-06-01

    Surface modification of oxidized carbon nanotubes (O-CNTs) with silicon based anchoring groups (R-SiR3) is a relatively uncommon approach of the CNTs functionalization. Hydrosilane derivatives constitute an attractive subclass of compounds for silanization reactions on the CNTs surface. In this work, we report on the ZnCl2 catalytically controlled reaction (hydrosilane dehydrogenative cross-coupling, DHCC) of fluorinated hydrosilane probes with the carboxylic functions present on the surface of oxidized multi-wall carbon nanotubes. Carbon nanotubes functionalized with essentially alcohol groups are also used to compare the selectivity of zinc chloride toward carboxylic groups. To assess the efficiency of functionalization, X-ray Photoelectron Spectroscopy is used to determine the qualitative and quantitative composition of the different samples. Solubility tests on the oxidized and silanized MWNTs are also carried out in the framework of the Hansen Solubility Parameters (HSP) theory to apprehend at another scale the effect of DHCC.

  12. Silylesterification of oxidized multi-wall carbon nanotubes by catalyzed dehydrogenative cross-coupling between carboxylic and hydrosilane functions

    Energy Technology Data Exchange (ETDEWEB)

    Seffer, J.-F., E-mail: jean-francois.seffer@unamur.be; Detriche, S.; Nagy, J.B.; Delhalle, J.; Mekhalif, Z.

    2014-06-01

    Surface modification of oxidized carbon nanotubes (O-CNTs) with silicon based anchoring groups (R-SiR{sup ′}{sub 3}) is a relatively uncommon approach of the CNTs functionalization. Hydrosilane derivatives constitute an attractive subclass of compounds for silanization reactions on the CNTs surface. In this work, we report on the ZnCl{sub 2} catalytically controlled reaction (hydrosilane dehydrogenative cross-coupling, DHCC) of fluorinated hydrosilane probes with the carboxylic functions present on the surface of oxidized multi-wall carbon nanotubes. Carbon nanotubes functionalized with essentially alcohol groups are also used to compare the selectivity of zinc chloride toward carboxylic groups. To assess the efficiency of functionalization, X-ray Photoelectron Spectroscopy is used to determine the qualitative and quantitative composition of the different samples. Solubility tests on the oxidized and silanized MWNTs are also carried out in the framework of the Hansen Solubility Parameters (HSP) theory to apprehend at another scale the effect of DHCC.

  13. [Preparation, characterization of Si doped TiO2 nanotubes and its application in photocatalytic oxidation of VOCs].

    Science.gov (United States)

    Zou, Xue-Jun; Li, Xin-Yong; Qu, Zhen-Ping; Wang, Jiang-Jiang

    2011-12-01

    The Si-doped TiO2 nanotubes photocatalysts was synthesized by anodic oxidation method, which used Na2SiF6/HF as an electrolyte, and was characterized by means of SEM, XRD, DRS and EDX. TiO2 nanotubes composed of anatase phase and rutile phase, and Si was highly dispersed on the wall of TiO2 nanotubes. The photocatalytic activity of the Si-doped TiO2 nanotubes was investigated for photocatalytic degradation of gaseous toluene. It was found that the photocatalytic activity of Si-doped TiO2 nanotubes, which prepared by 0.03 mol x L x (-1) Na2SiF6/HF and calcined at 400 degrees C for 1 h, was the highest. The conversion of toluene was 60% over the prepared Si doped TiO2 nanotubes under UV light, which was one times higher than that of pure TiO2 nanotubes.

  14. Vanadium oxide nanotubes as cathode material for Mg-ion batteries

    DEFF Research Database (Denmark)

    Christensen, Christian Kolle; Sørensen, Daniel Risskov; Bøjesen, Espen Drath

    Vanadium oxide compounds as cathode material for secondary Li-ion batteries gained interest in the 1970’s due to high specific capacity (>250mAh/g), but showed substantial capacity fading.1 Developments in the control of nanostructured morphologies have led to more advanced materials, and recently...... vanadium oxide nanotubes (VOx-NT) were shown to perform well as a cathode material for Mg-ion batteries.2 The VOx-NTs are easily prepared via a hydrothermal process to form multiwalled scrolls of VO layer with primary amines interlayer spacer molecules.3 The tunable and relative large layer spacing 1-3 nm...... synchrotron powder X-ray diffraction measured during battery operation. These results indicate Mg-intercalation in the multiwalled VOx-NTs occurs within the space between the individual vanadium oxide layers while the underlying VOx frameworks constructing the walls are affected only to a minor degree...

  15. Sol-gel synthesis of tantalum oxide and phosphonic acid-modified carbon nanotubes composite coatings on titanium surfaces.

    Science.gov (United States)

    Maho, Anthony; Detriche, Simon; Delhalle, Joseph; Mekhalif, Zineb

    2013-07-01

    Carbon nanotubes used as fillers in composite materials are more and more appreciated for the outstanding range of accessible properties and functionalities they generate in numerous domains of nanotechnologies. In the framework of biological and medical sciences, and particularly for orthopedic applications and devices (prostheses, implants, surgical instruments, …), titanium substrates covered by tantalum oxide/carbon nanotube composite coatings have proved to constitute interesting and successful platforms for the conception of solid and biocompatible biomaterials inducing the osseous regeneration processes (hydroxyapatite growth, osteoblasts attachment). This paper describes an original strategy for the conception of resistant and homogeneous tantalum oxide/carbon nanotubes layers on titanium through the introduction of carbon nanotubes functionalized by phosphonic acid moieties (-P(=O)(OH)2). Strong covalent C-P bonds are specifically inserted on their external sidewalls with a ratio of two phosphonic groups per anchoring point. Experimental results highlight the stronger "tantalum capture agent" effect of phosphonic-modified nanotubes during the sol-gel formation process of the deposits compared to nanotubes bearing oxidized functions (-OH, -C=O, -C(=O)OH). Particular attention is also paid to the relative impact of the rate of functionalization and the dispersion degree of the carbon nanotubes in the coatings, as well as their wrapping level by the tantalum oxide matrix material. The resulting effect on the in vitro growth of hydroxyapatite is also evaluated to confirm the primary osseous bioactivity of those materials. Chemical, structural and morphological features of the different composite deposits described herein are assessed by X-ray photoelectron spectroscopy (XPS), scanning (SEM) and transmission (TEM) electronic microscopies, energy dispersive X-rays analysis (EDX) and peeling tests.

  16. Heterogeneous catalytic ozonation of ciprofloxacin in water with carbon nanotube supported manganese oxides as catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Sui, Minghao, E-mail: suiminghao.sui@gmail.com [State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092 (China); Xing, Sichu; Sheng, Li; Huang, Shuhang; Guo, Hongguang [State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092 (China)

    2012-08-15

    Highlights: Black-Right-Pointing-Pointer Ciprofloxacin in water was degraded by heterogeneous catalytic ozonation. Black-Right-Pointing-Pointer MnOx were supported on MWCNTs to serve as catalyst for ozonation. Black-Right-Pointing-Pointer MnOx/MWCNT exhibited highly catalytic activity on ozonation of ciprofloxacin in water. Black-Right-Pointing-Pointer MnOx/MWCNT resulted in effective antibacterial activity inhibition on ciprofloxacin. Black-Right-Pointing-Pointer MnOx/MWCNT promoted the generation of hydroxyl radicals. - Abstract: Carbon nanotube-supported manganese oxides (MnOx/MWCNT) were used as catalysts to assist ozone in degrading ciprofloxacin in water. Manganese oxides were successfully loaded on multi-walled carbon nanotube surfaces by simply impregnating the carbon nanotube with permanganate solution. The catalytic activities of MnOx/MWCNT in ciprofloxacin ozonation, including degradation, mineralization effectiveness, and antibacterial activity change, were investigated. The presence of MnOx/MWCNT significantly elevated the degradation and mineralization efficiency of ozone on ciprofloxacin. The microbiological assay with a reference Escherichia coli strain indicated that ozonation with MnOx/MWCNT results in more effective antibacterial activity inhibition of ciprofloxacin than that in ozonation alone. The effects of catalyst dose, initial ciprofloxacin concentration, and initial pH conditions on ciprofloxacin ozonation with MnOx/MWCNT were surveyed. Electron spin resonance trapping was applied to assess the role of MnOx/MWCNT in generating hydroxyl radicals (HO{center_dot}) during ozonation. Stronger 5,5-dimethyl-1-pyrroline-N-oxide-OH signals were observed in the ozonation with MnOx/MWCNT compared with those in ozonation alone, indicating that MnOx/MWCNT promoted the generation of hydroxyl radicals. The degradation of ciprofloxacin was studied in drinking water and wastewater process samples to gauge the potential effects of water background matrix on

  17. Self-organized double-wall oxide nanotube layers on glass-forming Ti-Zr-Si(-Nb) alloys.

    Science.gov (United States)

    Sopha, Hanna; Pohl, Darius; Damm, Christine; Hromadko, Ludek; Rellinghaus, Bernd; Gebert, Annett; Macak, Jan M

    2017-01-01

    In this work, we report for the first time on the use of melt spun glass-forming alloys - Ti75Zr10Si15 (TZS) and Ti60Zr10Si15Nb15 (TZSN) - as substrates for the growth of anodic oxide nanotube layers. Upon their anodization in ethylene glycol based electrolytes, highly ordered nanotube layers were achieved. In comparison to TiO2 nanotube layers grown on Ti foils, under the same conditions for reference, smaller diameter nanotubes (~116nm for TZS and ~90nm for TZSN) and shorter nanotubes (~11.5μm and ~6.5μm for TZS and TZSN, respectively) were obtained for both amorphous alloys. Furthermore, TEM and STEM studies, coupled with EDX analysis, revealed a double-wall structure of the as-grown amorphous oxide nanotubes with Ti species being enriched in the inner wall, and Si species in the outer wall, whereby Zr and Nb species were homogeneously distributed. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Removal of Trace Arsenic to Meet Drinking Water Standards Using Iron Oxide Coated Multiwall Carbon Nanotubes.

    Science.gov (United States)

    Ntim, Susana Addo; Mitra, Somenath

    2011-05-12

    This study presents the removal of trace level arsenic to meet drinking water standards using an iron oxide-multi-walled carbon nanotube (Fe-MWCNT) hybrid as a sorbent. The synthesis was facilitated by the high degree of nanotube functionalization using a microwave assisted process, and a controlled assembly of iron oxide was possible where the MWCNT served as an effective support for the oxide. In the final product, 11 % of the carbon atoms were attached to Fe. The Fe-MWCNT was effective in arsenic removal to below the drinking water standard levels of 10 µg L(-1). The absorption capacity of the composite was 1723 µg g(-1) and 189 µg g(-1) for As(III) and As(V) respectively. The adsorption of As(V) on Fe-MWCNT was faster than that of As(III). The pseudo-second order rate equation was found to effectively describe the kinetics of arsenic adsorption. The adsorption isotherms for As(III) and As(V) fitted both the Langmuir and Freundlich models.

  19. Synthesis and characterization of cobaltite nanotubes for solid-oxide fuel cell cathodes

    Energy Technology Data Exchange (ETDEWEB)

    Napolitano, F; Baque, L; Troiani, H; Granada, M; Serquis, A, E-mail: aserquis@cab.cnea.gov.a [Instituto Balseiro-Centro Atomico Bariloche and CONICET, San Carlos de Bariloche (Argentina)

    2009-05-01

    La{sub 1-x}Sr{sub x}Co{sub 1-y}FeyO{sub 3-d}elta oxides are good candidates for solid oxide fuel cell (SOFC) cathodes because these materials present high ionic and electronic conductivity, and compatibility with Cerium Gadolinium Oxide (CGO) electrolytes allowing a lower operation temperature. In this work, we report the synthesis of La{sub 0.4}Sr{sub 0.6}Co{sub 0.8}Fe{sub 0.2}O{sub 3-d}elta (LSCF) nanotubes prepared by a porous polycarbonate membrane approach, obtaining different microstructures depending on sintering conditions. The structure and morphology of the nanotubes and deposited films were characterized by X-ray diffraction, transmission and scanning microscopy. Finally, we obtained nanostructured films of vertically aligned LSCF tubes deposited over the whole surface of CGO pellets with diameter up to 2.5cm in a direct and single step process.

  20. Facile radiolytic synthesis of ruthenium nanoparticles on graphene oxide and carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Rojas, J.V., E-mail: jvrojas@vcu.edu [Mechanical and Nuclear Engineering Department, Virginia Commonwealth University, 401 West Main Street, Richmond, Virginia, 23284 (United States); Toro-Gonzalez, M.; Molina-Higgins, M.C. [Mechanical and Nuclear Engineering Department, Virginia Commonwealth University, 401 West Main Street, Richmond, Virginia, 23284 (United States); Castano, C.E., E-mail: cecastanolond@vcu.edu [Nanomaterials Core Characterization Facility, Chemical and Life Science Engineering Department, Virginia Commonwealth University, 601 West Main Street, Richmond, Virginia, 23284 (United States)

    2016-03-15

    Graphical abstract: - Highlights: • Facile radiolytic synthesis of Ru nanoparticles on graphene oxide and carbon nanotubes. • Homogeneously distributed Rh nanoparticles on supports are ∼2.5 nm in size. • Simultaneous reduction of graphene oxide and Ru ions occurs during the synthesis. • Ru-O bonds evidenced the interaction of the nanoparticles with the support. - Abstract: Ruthenium nanoparticles on pristine (MWCNT) and functionalized carbon nanotubes (f-MWCNT), and graphene oxide have been prepared through a facile, single step radiolytic method at room temperature, and ambient pressure. This synthesis process relies on the interaction of high energy gamma rays from a {sup 60}Co source with the water in the aqueous solutions containing the Ru precursor, leading to the generation of highly reducing species that further reduce the Ru metal ions to zero valence state. Transmission electron microscopy and X-Ray diffraction revealed that the nanoparticles were homogeneously distributed on the surface of the supports with an average size of ∼2.5 nm. X-ray Photoelectron spectroscopy analysis showed that the interaction of the Ru nanoparticles with the supports occurred through oxygenated functionalities, creating metal-oxygen bonds. This method demonstrates to be a simple and clean approach to produce well dispersed nanoparticles on the aforementioned supports without the need of any hazardous chemical.

  1. Electrocatalytic oxidation of deferiprone and its determination on a carbon nanotube-modified glassy carbon electrode

    Energy Technology Data Exchange (ETDEWEB)

    Yadegari, H. [Department of Chemistry, Faculty of Science, K.N. Toosi University of Technology, P.O. Box 16315-1618, Tehran (Iran, Islamic Republic of); Jabbari, A. [Department of Chemistry, Faculty of Science, K.N. Toosi University of Technology, P.O. Box 16315-1618, Tehran (Iran, Islamic Republic of)], E-mail: jabbari@kntu.ac.ir; Heli, H.; Moosavi-Movahedi, A.A. [Institute of Biochemistry and Biophysics, University of Tehran, Tehran (Iran, Islamic Republic of); Karimian, K. [Arasto Pharmaceutical Chemicals Inc., Tehran (Iran, Islamic Republic of); Khodadadi, A. [Department of Chemical Engineering, Faculty of Engineering, University of Tehran, Tehran (Iran, Islamic Republic of)

    2008-02-15

    The electrochemical behavior of the anti-thalassemia and anti-HIV replication drug, deferiprone, was investigated on a carbon nanotube-modified glassy carbon (GC-CNT) electrode in phosphate buffer solution, pH 7.40 (PBS). During oxidation of deferiprone, two irreversible anodic peaks, with E{sub 1}{sup 0}=452 and E{sub 2}{sup 0}=906mV, appeared, using GC-CNT. Cyclic voltammetric study indicated that the oxidation process is irreversible and diffusion controlled. The number of exchanged electrons in the electro-oxidation process was obtained, and the data indicated that deferiprone is oxidized via two two-electron steps. The results revealed that carbon nanotube (CNT) promotes the rate of oxidation by increasing the peak current, so that deferiprone is oxidized at lower potentials, which thermodynamically is more favorable. This result was confirmed by impedance measurements. The diffusion coefficient, electron-transfer coefficient and heterogeneous electron-transfer rate constant of deferiprone were found to be 1.49 x 10{sup -6} cm{sup 2} s{sup -1}, 0.44, and 3.83 x 10{sup -3} cm s{sup -1}, respectively. A sensitive, simple and time-saving differential-pulse voltammetric procedure was developed for the analysis of deferiprone. Using the proposed method, deferiprone can be determined with a detection limit of 5.25 x 10{sup -7} M. The applicability of the method to direct assays of spiked human serum and urine fluids is described.

  2. Density control and wettability enhancement by functionalizing carbon nanotubes with nickel oxide in aluminum-carbon nanotube system.

    Science.gov (United States)

    Kim, Tae-Hoon; Park, Min-Ho; Song, Kwan-Woo; Bae, Jee-Hwan; Lee, Jae-Wook; Lee, Choong Do; Yang, Cheol-Woong

    2013-11-01

    Excellent mechanical properties of carbon nanotubes (CNTs) make them ideal reinforcements for synthesizing light weight, high strength metal matrix composite. Aluminum is attractive matrix due to its light weight and Al/CNT composites are promising materials for various industrial applications. Powder metallurgy and casting techniques are normally used for bulk fabrications of composites. Casting process which can mass-produce delicate product is more suitable than existing powder metallurgy in view point of application in industries. In CNT-metal matrix composites, however, composite bulk fabrication has been limited because of the large density gap and poor wettability between the metal and CNTs. This study suggests a method for alleviating such problems. It was found that the wettability between aluminum and CNT could be enhanced by functionalizing the CNTs with nickel oxide. This functionalization of CNTs with heavier element also reduces the density gap between the matrix and reinforcements. It is suggested that this method could possibly be used in a casting process to enable mass fabrication of CNT-metal matrix composites.

  3. Sheet resistances of composite films prepared from chemically-reduced graphite oxides and multiwalled carbon nanotubes

    Science.gov (United States)

    Oh, Weontae; Kim, Daehan; Jeong, Euh Duck; Bae, Jong-Seong

    2013-12-01

    Graphite oxides (GOs) were spray-coated on a glass substrate to prepare the GO film, and the film was soaked in a HI aqueous solution to make a chemically-reduced GO (rGO) film. The rGOs were successfully prepared by using a chemical reduction of as-made GOs, but their surfaces were seriously damaged during the chemical treatments. The Sheet resistances of rGO and rGO/multiwalled carbon nanotube (MWNT) films were characterized as functions of the film's thickness and the number of MWNTs added to the rGO films.

  4. Aligned carbon nanotube, graphene and graphite oxide thin films via substrate-directed rapid interfacial deposition.

    Science.gov (United States)

    D'Arcy, Julio M; Tran, Henry D; Stieg, Adam Z; Gimzewski, James K; Kaner, Richard B

    2012-05-21

    A procedure for depositing thin films of carbon nanostructures is described that overcomes the limitations typically associated with solution based methods. Transparent and conductively continuous carbon coatings can be grown on virtually any type of substrate within seconds. Interfacial surface tension gradients result in directional fluid flow and film spreading at the water/oil interface. Transparent films of carbon nanostructures are produced including aligned ropes of single-walled carbon nanotubes and assemblies of single sheets of chemically converted graphene and graphite oxide. Process scale-up, layer-by-layer deposition, and a simple method for coating non-activated hydrophobic surfaces are demonstrated.

  5. Pt modified TiO{sub 2} nanotubes electrode: Preparation and electrocatalytic application for methanol oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Xing, Li; Jia, Jianbo; Wang, Yizhe; Zhang, Bailin; Dong, Shaojun [State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Graduate School of the Chinese Academy of Sciences, Chinese Academy of Sciences, Changchun 130022 (China)

    2010-11-15

    Pt nanoparticles decorated TiO{sub 2} nanotubes (Pt/TiO{sub 2}NTs) modified electrode has been successfully synthesized by depositing Pt in TiO{sub 2}NTs, which were prepared by anodization of the Ti foil. Scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), and electrochemical methods were adopted to characterize their structures and properties. The Pt/TiO{sub 2}NTs electrode shows excellent electrocatalytic activity toward methanol oxidation reaction (MOR) in alkaline electrolyte without UV irradiation. (author)

  6. Multi-Walled Carbon Nanotube-Doped Tungsten Oxide Thin Films for Hydrogen Gas Sensing

    OpenAIRE

    2010-01-01

    In this work we have fabricated hydrogen gas sensors based on undoped and 1 wt% multi-walled carbon nanotube (MWCNT)-doped tungsten oxide (WO3) thin films by means of the powder mixing and electron beam (E-beam) evaporation technique. Hydrogen sensing properties of the thin films have been investigated at different operating temperatures and gas concentrations ranging from 100 ppm to 50,000 ppm. The results indicate that the MWCNT-doped WO3 thin film exhibits high sensitivity and selectivity ...

  7. Active and stable platinum/ionic liquid/carbon nanotube electrocatalysts for oxidation of methanol

    OpenAIRE

    Guan-Lin Lin; Arun Prakash Periasamy; Zih-Yu Shih; Huan-Tsung Chang

    2014-01-01

    Platinum (Pt) nanoparticles (NPs) on carbon nanotubes (CNTs) from PtCl62− ions through a facile ionic liquid (IL)-assisted method has been developed and used for methanol oxidation. 1-Butyl-3-methylimidazolium (BMIM) with four different counter ions (PF6−, Cl–, Br–, and I–) have been tested for the preparation of Pt/IL/CNT nanohybrids, showing the counterions of ILs play an important role in the formation of small sizes of Pt NPs. Only [BMIM][PF6] and [BMIM][Cl] allow reproducible preparation...

  8. Powerful greenhouse gas nitrous oxide adsorption onto intrinsic and Pd doped Single walled carbon nanotube

    Science.gov (United States)

    Yoosefian, Mehdi

    2017-01-01

    Density functional studies on the adsorption behavior of nitrous oxide (N2O) onto intrinsic carbon nanotube (CNT) and Pd-doped (5,5) single-walled carbon nanotube (Pd-CNT) have been reported. Introduction of Pd dopant facilitates in adsorption of N2O on the otherwise inert nanotube as observed from the adsorption energies and global reactivity descriptor values. Among three adsorption features of N2O onto CNT, the horizontal adsorption with Eads = -0.16 eV exhibits higher adsorption energy. On the other hand the Pd-CNT exhibit strong affinity toward gas molecule and would cause a huge increase in N2O adsorption energies. Chemical and electronic properties of CNT and Pd-CNT in the absence and presence of N2O were investigated. Adsorption of N2O gas molecule would affect the electronic conductance of Pd-CNT that can serve as a signal of gas sensors and the increased energy gaps demonstrate the formation of more stable systems. The atoms in molecules (AIM) theory and the natural bond orbital (NBO) calculations were performed to get more details about the nature and charge transfers in intermolecular interactions within adsorption process. As a final point, the density of states (DOSs) calculations was achieved to confirm previous results. According to our results, intrinsic CNT cannot act as a suitable adsorbent while Pd-CNT can be introduced as novel detectable complex for designing high sensitive, fast response and high efficient carbon nanotube based gas sensor to detect N2O gas as an air pollutant. Our results could provide helpful information for the design and fabrication of the N2O sensors.

  9. Electrical and optical properties of reduced graphene oxide and multi-walled carbon nanotubes based nanocomposites: A comparative study

    Science.gov (United States)

    Goumri, Meryem; Lucas, Bruno; Ratier, Bernard; Baitoul, Mimouna

    2016-10-01

    Graphene and multi-walled carbon nanotubes have attracted interest for a number of potential applications. One of the most actively pursued applications uses graphene and carbon nanotubes as a transparent conducting electrode in solar cells, displays or touch screens. In this work, in situ reduced graphene oxide/Poly (vinyl alcohol) and multi-walled carbon nanotubes/Sodium Dodecyl Sulfate/Poly (vinyl alcohol) composites were prepared by water dispersion and different reduction treatments. Comparative studies were conducted to explore the electrical and optical properties of nanocomposites based on graphene and multi-walled carbon nanotubes. A thermal reduction of graphene oxide was more effective, producing films with sheet resistances as low as 102-103 Ω/square with 80% transmittance for 550 nm light. The percolation threshold of the thermally reduced graphene oxide composites (0.35 vol%) was much lower than that of the chemically reduced graphene oxide composites (0.57 vol%), and than that of the carbon nanotubes composites (0.47 vol%). The Seebeck coefficient of graphene oxide films changes from about 40 μV/K to -30 μV/K after an annealing of three hours at 200 °C. The optical absorption of the nanocomposites showed a high absorbance in near UV regions and the photoluminescence enhancement was achieved at 1 wt% graphene loading, while the carbon nanotubes based composite presents a significant emission at 0.7 wt% followed with a photoluminescence quenching at higher fraction of the nanofillers 1.6 wt% TRGO and 1 wt% MWCNTs.

  10. Efficient photo-assisted Fenton oxidation treatment of multi-walled carbon nanotubes

    Institute of Scientific and Technical Information of China (English)

    FAN CaiLing; LI Wei; LI Xin; ZHAO ShiJu; ZHANG Ling; MO YuJun; CHENG RongMing

    2007-01-01

    In this paper, a new and efficient way to oxidize and functionalize the multi-walled carbon nanotubes (MWNTs) has been developed by using a combination of ultraviolet (UV) irradiation and Fenton oxidation process, namely UV/Fenton oxidation treatment. Comparing with conventionally individual Fenton oxidation treatment of MWNTs, UV/Fenton combined treatment improved the etching rates and efficiencies and hence reduced the time for surface modification of MWNTs, which was proved to be an effective method in etching and functionalizing CNTs. The formation of new functional groups, structural changes and thermal stability during oxidation period were characterized by Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy and could be clarified by thermogravimetric analysis (TGA), which showed that it was under UV irradiation conditions that MWNTs could be rapidly functionalized with hydroxyl, carbonyl and carboxyl groups in the presence of Fenton reagents, originating from the increase in the gross HO·concentration and the existent synergetic effect when using UV irradiation combing with Fenton oxidation process. Introduction of such new oxygen-containing functional groups was attributed to attacks of HO·on defect sites and unsaturated bonds of C=C in the MWNTs sample, which should play an important role in accounting for the FTIR and Raman spectral changes.

  11. Three-dimensional Nitrogen-Doped Reduced Graphene Oxide/Carbon Nanotube Composite Catalysts for Vanadium Flow Batteries

    Energy Technology Data Exchange (ETDEWEB)

    Fu, Shaofang [School of Mechanical and Materials Engineering, Washington State University, WA, 99164 USA.; Zhu, Chengzhou [School of Mechanical and Materials Engineering, Washington State University, WA, 99164 USA.; Song, Junhua [School of Mechanical and Materials Engineering, Washington State University, WA, 99164 USA.; Engelhard, Mark H. [Environmental Molecular Science Laboratory, Pacific Northwest National Laboratory, Richland, WA 99354 USA.; Du, Dan [School of Mechanical and Materials Engineering, Washington State University, WA, 99164 USA.; Lin, Yuehe [School of Mechanical and Materials Engineering, Washington State University, WA, 99164 USA.; Environmental Molecular Science Laboratory, Pacific Northwest National Laboratory, Richland, WA 99354 USA.

    2017-02-22

    The development of vanadium redox flow battery is limited by the sluggish kinetics of the reaction, especially the cathodic VO2+/VO2+ redox couples. Therefore, it is vital to develop new electrocatalyst with enhanced activity to improve the battery performance. Herein, we first synthesized the hydrogel precursor by a facile hydrothermal method. After the following carbonization, nitrogen-doped reduced graphene oxide/carbon nanotube composite was obtained. By virtue of the large surface area and good conductivey, which are ensured by the unique hybrid structure, as well as the proper nitrogen doping, the as-prepared composite presents enhanced catalytic performance toward the VO2+/VO2+ redox reaction. We also demonstrated the composite with carbon nanotube loading of 2 mg/mL exhibits the highest activity and remarkable stability in aqueous solution due to the strong synergy between reduced graphene oxide and carbon nanotubes, indicating that this composite might show promising applications in vanadium redox flow battery.

  12. Magnesium-doped zinc oxide nanorod-nanotube semiconductor/p-silicon heterojunction diodes

    Science.gov (United States)

    Caglar, Yasemin; Görgün, Kamuran; Ilican, Saliha; Caglar, Mujdat; Yakuphanoğlu, Fahrettin

    2016-08-01

    Nanostructured zinc oxide material is usable in electronic device applications such as light-emitting diodes, heterojunction diode, sensors, solar cell due to its interesting electrical conductivity and optical properties. Magnesium-doped zinc oxide nanorod (NR)-nanotube (NT) films were grown by microwave-assisted chemical bath deposition to fabricate ZnO-based heterojunction diode. It is found that ZnO hexagonal nanorods turn into hexagonal nanotubes when the Mg doping ratio is increased from 1 to 10 %. The values of the optical band gap for 1 % Mg-doped ZnO NR and 10 % Mg-doped ZnO NT films are found to be 3.14 and 3.22 eV, respectively. The n-ZnO:Mg/p-Si heterojunction diodes were fabricated. The diodes exhibited a rectification behavior with ideality factor higher than unity due to the presence of surface states in the junction and series resistance. The obtained results indicate that Mg doping improves the electrical and optical properties of ZnO.

  13. Photoassisted enhancement of the electrocatalytic oxidation of formic acid on platinized TiO₂ nanotubes.

    Science.gov (United States)

    Mojumder, Nazrul; Sarker, Swagotom; Abbas, Syed Arslan; Tian, Zong; Subramanian, Vaidyanathan Ravi

    2014-04-23

    A solvothermal method is used to deposit Pt nanoparticles on anodized TiO2 nanotubes (T_NT). Surface characterization using SEM, EDX, and XRD indicates the formation of polycrystalline TiO2 nanotubes of 110 ± 10 nm diameter with Pt nanoparticle islands. The application of the T_NT/Pt photoanode has been examined toward simultaneous electrooxidation and photo(electro)oxidation of formic acid (HCOOH). Upon UV-vis photoillumination, the T_NT/Pt photoelectrode generates a current density of 72 mA/cm(2), which is significantly higher (∼39-fold) than that of the T_NT electrode (1.85 mA/cm(2)). This boosting in the overall current is attributable to the enhanced oxidation of formic acid at the T_NT/Pt-electrolyte interface. Further, a series of cyclic voltammetric (CV) responses, of which each anodic scan is switched to photoillumination at a certain applied bias (i.e., 0.2 V, 0.4 V, etc.), is used to identify the role of T_NT/Pt as a promoter for the photoelectrooxidation of formic acid and understand a carbon monoxide (CO)-free pathway. Chronoamperometric (j/t) measurements demonstrate the evidence of an external bias dependent variation in the time lag during the current stabilization. An analysis of the CV plots and j/t profiles suggests the existence of both the charge-transfer controlled process and the diffusion-controlled process during formic acid photoelectrooxidation.

  14. High adhesion transparent conducting films using graphene oxide hybrid carbon nanotubes

    Science.gov (United States)

    Da, Shi-Xun; Wang, Jie; Geng, Hong-Zhang; Jia, Song-Lin; Xu, Chun-Xia; Li, Lin-Ge; Shi, Pei-Pei; Li, Guangfen

    2017-01-01

    Flexible transparent conducting films (TCFs) with carbon nanotubes (CNTs) have attracted more and more attention for their wide range of potential applications. While, there are still some problems to be solved on several aspects. In this study, a graphene oxide/carbon nanotube (GO/CNT) hybrid TCF was fabricated through the simple spray coating method. GO sheets were introduced to form new electron transporting channels. It was found that the best optoelectronic property films were fabricated when the ratio of GO/CNT is 1.5:1.0, which the sheet resistance of the film was found to be 146 Ω/sq at the transmittance of 86.0%. Due to the two-dimensional structure and the oxidation groups of GO sheets, flatness and wettability of the electrode surface was improved obviously. Adhesion factor of the TCFs was calculated by the change of transparent and sheet resistance after trial test, the addition of GO sheets enhanced the adhesion dramatically and the mechanism was analyzed. Improvements of conductivity, flatness, wettability and adhesion above are all advantageous for the solution-based processing of organic electronics for spraying and printing.

  15. Zirconium oxide nanotube-Nafion composite as high performance membrane for all vanadium redox flow battery

    Science.gov (United States)

    Aziz, Md. Abdul; Shanmugam, Sangaraju

    2017-01-01

    A high-performance composite membrane for vanadium redox flow battery (VRB) consisting of ZrO2 nanotubes (ZrNT) and perfluorosulfonic acid (Nafion) was fabricated. The VRB operated with a composite (Nafion-ZrNT) membrane showed the improved ion-selectivity (ratio of proton conductivity to permeability), low self-discharge rate, high discharge capacity and high energy efficiency in comparison with a pristine commercial Nafion-117 membrane. The incorporation of zirconium oxide nanotubes in the Nafion matrix exhibits high proton conductivity (95.2 mS cm-1) and high oxidative stability (99.9%). The Nafion-ZrNT composite membrane exhibited low vanadium ion permeability (3.2 × 10-9 cm2 min-1) and superior ion selectivity (2.95 × 107 S min cm-3). The VRB constructed with a Nafion-ZrNT composite membrane has lower self-discharge rate maintaining an open-circuit voltage of 1.3 V for 330 h relative to a pristine Nafion membrane (29 h). The discharge capacity of Nafion-ZrNT membrane (987 mAh) was 3.5-times higher than Nafion-117 membrane (280 mAh) after 100 charge-discharge cycles. These superior properties resulted in higher coulombic and voltage efficiencies with Nafion-ZrNT membranes compared to VRB with Nafion-117 membrane at a 40 mA cm-2 current density.

  16. Growth of copper oxide nanocrystals in metallic nanotubes for high performance battery anodes.

    Science.gov (United States)

    Zhao, Yuxin; Mu, Shanjun; Sun, Wanfu; Liu, Quanzhen; Li, Yanpeng; Yan, Zifeng; Huo, Ziyang; Liang, Wenjie

    2016-12-08

    A rational integration of 1D metallic nanotubes and oxide nanoparticles has been demonstrated as a viable strategy for the production of both highly stable and efficient anodes for lithium ion batteries. We encapsulated copper oxide (CuO) nanoparticles in ultra-long metallic copper nanotubes with engineered interspaces, and explored their electrochemical properties. Such a hierarchical architecture provides three important features: (i) a continuous nanoscale metallic Cu shell to minimize electronic/ionic transmitting impedance; (ii) a unique quasi-one-dimensional structure with a large aspect ratio to reduce self-aggregation; (iii) free space for volume expansion of CuO nanoparticles and stable solid-electrolyte interphase (SEI) formation. The anode materials with such hierarchical structures have high specific capacity (around 600 mA h g(-1) at a current density of 0.1 A g(-1)), excellent cycling stability (over 94% capacity retention after 200 cycles) and superb reversible capacity of 175 mA h g(-1) at a high charging rate of 15 A g(-1).

  17. Electro-Deposition Pt Catalysts Supported on Carbon-Nanotubes for Methanol Oxidation

    Institute of Scientific and Technical Information of China (English)

    Hailin Song; Peixia Yang; Xiaoyu Wen; Maozhong An; Jinqiu Zhang

    2015-01-01

    In order to study the properties of supporting Pt catalysts for methanol oxidation, carbon⁃nanotubes are used by electrochemical deposition method. Different deposition turns, different cyclic voltammetry scanning speeds and processing time with ascorbic acid are investigated in this paper. The micrographs of Pt/CNTs catalysts are characterized by scanning electron microscopy, the electro⁃catalytic properties of Pt/CNTs catalysts for methanol oxidation are investigated by cycle voltammetry and chronoamperometry. The results show that the size of platinum will be greater with the faster scanning speed. After dissolution in ascorbic acid, Pt nano⁃particles disperse uniformly. The obtained Pt/CNTs catalysts show a high electro⁃catalytic activity and stability.

  18. Electrocatalytic oxidation of methanol on Pt modified single-walled carbon nanotubes

    Science.gov (United States)

    Guo, Dao-Jun; Li, Hu-Lin

    Platinum nanoparticles on modified single-walled carbon nanotubes (SWNT) were investigated by a completely new electrochemical method. A Pt(IV) complex was formed on the SWNT surface through coordination to the oxygen atom of an oxide functional group on the SWNT surface and then converted to platinum nanoparticles by a potential pulse method. The structure and chemical nature of Pt nanoparticles on SWNTs have been investigated by transmission electron microscopy and X-ray diffraction, the mean diameter of Pt nanoparticles was 5-8 nm. The electrocatalytic properties of the Pt/SWNT electrode for methanol oxidation and its kinetic characterization were investigated by cyclic voltammetry (CV) and excellent electrocatalytic activity was observed.

  19. Phosphate-modified carbon nanotubes in the oxidative dehydrogenation of isopentanes.

    Science.gov (United States)

    Huang, Rui; Liu, Hong Yang; Zhang, Bing Sen; Sun, Xiao Yan; Liang, Chang Hai; Su, Dang Sheng; Zong, Bao Ning; Rong, Jun Feng

    2014-12-01

    Ketonic/quinonic C=O groups on the surface of a carbon matrix are capable of abstracting hydrogen in C=H bonds from hydrocarbons and enable them to selectively convert into corresponding unsaturated hydrocarbons; this process is the oxidative dehydrogenation (ODH) reaction. However, a variety of inevitable defects or graphene edges and other oxygen-containing groups on the carbon matrix are detrimental to the selective production of alkenes due to their high activity towards overoxidation. Herein, we show that phosphate can not only impede the total oxidation but also cover the selective C=O groups, hence allowing its use as a modulator to defects and oxygen-containing functional groups on the multiwalled carbon nanotubes, regulating the distribution of active sites and related catalytic targets.

  20. Cellulose nanofibril/reduced graphene oxide/carbon nanotube hybrid aerogels for highly flexible and all-solid-state supercapacitors

    Science.gov (United States)

    Qifeng Zheng; Zhiyong Cai; Zhenqiang Ma; Shaoqin Gong

    2015-01-01

    A novel type of highly flexible and all-solid-state supercapacitor that uses cellulose nanofibril (CNF)/reduced graphene oxide (RGO)/carbon nanotube (CNT) hybrid aerogels as electrodes and H2SO4 poly (vinyl alcohol) PVA gel as the electrolyte was developed and is reported here. These flexible solid-state supercapacitors...

  1. Removal of Pb(II) from aqueous solution by oxidized multiwalled carbon nanotubes.

    Science.gov (United States)

    Xu, Di; Tan, Xiaoli; Chen, Changlun; Wang, Xiangke

    2008-06-15

    Oxidized multiwalled carbon nanotubes (MWCNTs) were employed as sorbent to study the sorption characteristic of Pb(II) from aqueous solution as a function of contact time, pH, ionic strength, foreign ions, and oxidized MWCNTs' contents under ambient conditions using batch technique. The results indicate that sorption of Pb(II) on oxidized MWCNTs is strongly dependent on pH values, and independent of ionic strength and the type of foreign ions. The removal of Pb(II) to oxidized MWCNTs is rather quickly and the kinetic sorption can be described by a pseudo-second-order model very well. Sorption of Pb(II) is mainly dominated by surface complexation rather than ion exchange. The efficient removal of Pb(II) from aqueous solution is limited at pH 7-10. X-ray photoelectron spectroscopy (XPS) is performed to study the sorption mechanism at a molecular level and thereby to identify the species of the sorption processes. The 3-D relationship of pH, Ceq and q indicates that all the data of Ceq-q lie in a straight line with slope -V/m and intercept C0V/m for the same initial concentration of Pb(II) and same content of oxidized MWCNTs of each experimental data.

  2. Mechanisms of carbon nanotube-induced toxicity: Focus on oxidative stress

    Energy Technology Data Exchange (ETDEWEB)

    Shvedova, Anna A., E-mail: ats1@cdc.gov [Pathology and Physiology Research Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, University of Rome “Tor Vergata”, Rome (Italy); Department of Physiology and Pharmacology, West Virginia University, Morgantown, WV, University of Rome “Tor Vergata”, Rome (Italy); Pietroiusti, Antonio [Department of Biopathology, University of Rome “Tor Vergata”, Rome (Italy); Fadeel, Bengt [Division of Molecular Toxicology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm (Sweden); Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA (United States); Kagan, Valerian E. [Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA (United States)

    2012-06-01

    Nanotechnologies are emerging as highly promising technologies in many sectors in the society. However, the increasing use of engineered nanomaterials also raises concerns about inadvertent exposure to these materials and the potential for adverse effects on human health and the environment. Despite several years of intensive investigations, a common paradigm for the understanding of nanoparticle-induced toxicity remains to be firmly established. Here, the so-called oxidative stress paradigm is scrutinized. Does oxidative stress represent a secondary event resulting inevitably from disruption of biochemical processes and the demise of the cell, or a specific, non-random event that plays a role in the induction of cellular damage e.g. apoptosis? The answer to this question will have important ramifications for the development of strategies for mitigation of adverse effects of nanoparticles. Recent examples of global lipidomics studies of nanoparticle-induced tissue damage are discussed along with proteomics and transcriptomics approaches to achieve a comprehensive understanding of the complex and interrelated molecular changes in cells and tissues exposed to nanoparticles. We also discuss instances of non-oxidative stress-mediated cellular damage resulting from direct physical interference of nanomaterials with cellular structures. -- Highlights: ► CNT induced non-random oxidative stress associated with apoptosis. ► Non-oxidative mechanisms for cellular toxicity of carbon nanotubes. ► Biodegradation of CNT by cells of innate immune system. ► “Omics”-based biomarkers of CNT exposures.

  3. Preparation and electrochemical capacitance of cobalt oxide (Co{sub 3}O{sub 4}) nanotubes as supercapacitor material

    Energy Technology Data Exchange (ETDEWEB)

    Xu Juan [Jiangsu Polytechnic University, Changzhou 213164 (China); Qualtec Co., Ltd., Changzhou 213164 (China); Gao Lan; Cao Jianyu; Wang Wenchang [Jiangsu Polytechnic University, Changzhou 213164 (China); Chen Zhidong, E-mail: cjytion3@163.co [Jiangsu Polytechnic University, Changzhou 213164 (China) and Qualtec Co., Ltd., Changzhou 213164 (China)

    2010-12-30

    Cobalt oxide (Co{sub 3}O{sub 4}) nanotubes have been successfully synthesized by chemically depositing cobalt hydroxide in anodic aluminum oxide (AAO) templates and thermally annealing at 500 {sup o}C. The synthesized nanotubes have been characterized by scanning electron microscope (SEM), transmission electron microscope (TEM) and X-ray diffraction (XRD). The electrochemical capacitance behavior of the Co{sub 3}O{sub 4} nanotubes electrode was investigated by cyclic voltammetry, galvanostatic charge-discharge studies and electrochemical impedance spectroscopy in 6 mol L{sup -1} KOH solution. The electrochemical data demonstrate that the Co{sub 3}O{sub 4} nanotubes display good capacitive behavior with a specific capacitance of 574 F g{sup -1} at a current density of 0.1 A g{sup -1} and a good specific capacitance retention of ca. 95% after 1000 continuous charge-discharge cycles, indicating that the Co{sub 3}O{sub 4} nanotubes can be promising electroactive materials for supercapacitor.

  4. Electrocatalytic oxidation of methanol on carbon-nanotubes/graphite electrode modified with platinum and molybdenum oxide nanoparticles

    Institute of Scientific and Technical Information of China (English)

    GAN Yong-ping; HUANG Hui; ZHANG Wen-kui

    2007-01-01

    Electrochemical codeposition and electrocatalytic properties of platinum and molybdenum oxide nanoparticles (Pt-MoOx) on carbon-nanotubes/graphite electrode for methanol oxidation were investigated. The micrograph and elemental composition of the resulting Pt-MoOx/CNTs/graphite electrode were characterized by scanning electron microscopy(SEM) and energy dispersive X-ray spectroscopy(EDS). The results show that the Pt-MoOx particles with the average size of about 50 nm are highly dispersed on the CNTs surface. The Pt-MoOx/CNTs/graphite electrode delivers excellent electrocatalytic properties for methanol oxidation. The highest mass activity(Am) reaches 264.8 A/g at the loading mass of 159.3 (g/cm2. This may be attributed to the small particle size and high dispersion of Pt-MoOx catalysts deposited on the CNTs surface. The kinetic analysis from electrochemical impedance spectroscopy(EIS) reveals that the existed MoOx phase can improve the chemisorptive and catalytic properties for methanol oxidation.

  5. Gas Transport Properties of Polybenzimidazole and Poly(Phenylene Oxide) Mixed Matrix Membranes Incorporated with PDA-Functionalised Titanate Nanotubes

    OpenAIRE

    Giel, V.; Perchacz, M.; Kredatusová, J.; Pientka, Z.

    2017-01-01

    Functionalised titanate nanotubes (TiNTs) were incorporated to poly(5,5-bisbenzimidazole-2,2-diyl-1,3-phenylene) (PBI) or poly(2,6-dimethyl-1,4-phenylene oxide) (PPO) for improving the interfacial compatibility between the polymer matrix and inorganic material and for altering the gas separation performance of the neat polymer membranes. Functionalisation consisted in oxidative polymerisation of dopamine-hydrochloride on the surface of non-functionalised TiNTs. Transmission electron microscop...

  6. A Novel Investigation of the Formation of Titanium Oxide Nanotubes on Thermally Formed Oxide of Ti-6Al-4V.

    Science.gov (United States)

    Butt, Arman; Hamlekhan, Azhang; Patel, Sweetu; Royhman, Dmitry; Sukotjo, Cortino; Mathew, Mathew T; Shokuhfar, Tolou; Takoudis, Christos

    2015-10-01

    Traditionally, titanium oxide (TiO2) nanotubes (TNTs) are anodized on Ti-6Al-4V alloy (Ti-V) surfaces with native TiO2 (amorphous TiO2); subsequent heat treatment of anodized surfaces has been observed to enhance cellular response. As-is bulk Ti-V, however, is often subjected to heat treatment, such as thermal oxidation (TO), to improve its mechanical properties. Thermal oxidation treatment of Ti-V at temperatures greater than 200°C and 400°C initiates the formation of anatase and rutile TiO2, respectively, which can affect TNT formation. This study aims at understanding the TNT formation mechanism on Ti-V surfaces with TO-formed TiO2 compared with that on as-is Ti-V surfaces with native oxide. Thermal oxidation-formed TiO2 can affect TNT formation and surface wettability because TO-formed TiO2 is expected to be part of the TNT structure. Surface characterization was carried out with field emission scanning electron microscopy, energy dispersive x-ray spectroscopy, water contact angle measurements, and white light interferometry. The TNTs were formed on control and 300°C and 600°C TO-treated Ti-V samples, and significant differences in TNT lengths and surface morphology were observed. No difference in elemental composition was found. Thermal oxidation and TO/anodization treatments produced hydrophilic surfaces, while hydrophobic behavior was observed over time (aging) for all samples. Reduced hydrophobic behavior was observed for TO/anodized samples when compared with control, control/anodized, and TO-treated samples. A method for improved surface wettability and TNT morphology is therefore discussed for possible applications in effective osseointegration of dental and orthopedic implants.

  7. Coral reef-like polyanaline nanotubes prepared by a reactive template of manganese oxide for supercapacitor electrode

    Institute of Scientific and Technical Information of China (English)

    Ling Ren Wang; Fen Ran; Yong Tao Tan; Lei Zhao; Ling Bin Kong; Long Kang

    2011-01-01

    Coral reef-like PANI nanotubes composed of nanopaticles were successfully synthesized by a reactive template of manganese oxide. The structure was characterized by using SEM, TEM, and FT-IR, and the supercapacitive behaviors of these nanotubes were investigated with cyclic voltammetry (CV), and charge-discharge tests, respectively. A maximum specific capacitance of 533 F/g could be achieved in 1 mol/L aqueous H2SO4 with the potential range of -0.2 to 0.8 V (vs. the saturated calomel electrode) in a half-cell setup configuration for PANI electrode, suggesting its potential application in the electrode material for electrochemical capacitors.

  8. Enhanced Adsorption and Removal of Ciprofloxacin on Regenerable Long TiO2 Nanotube/Graphene Oxide Hydrogel Adsorbents

    OpenAIRE

    Yuan Zhuang; Fei Yu; Jie Ma

    2015-01-01

    To improve the adsorption performance and regeneration ability of adsorbent, a simple method was designed to synthesize long TiO2 nanotube/reduced graphene oxide (rGO-TON) hydrogel, which has good adsorption and regeneration capacity toward ciprofloxacin. rGO-TON hydrogel could form 3D structure, which makes the separation and regeneration of adsorbent easy. For comparison, commercial P25 particle is used to prepare composite hydrogel with rGO; the results showed that TiO2 nanotube supports t...

  9. Suppression of Polyfluorene Photo-Oxidative Degradation via Encapsulation of Single-Walled Carbon Nanotubes.

    Science.gov (United States)

    Luck, Kyle A; Arnold, Heather N; Shastry, Tejas A; Marks, Tobin J; Hersam, Mark C

    2016-10-10

    Polyfluorenes have achieved noteworthy performance in organic electronic devices, but exhibit undesired green band emission under photo-oxidative conditions that have limited their broad utility in optoelectronic applications. In addition, polyfluorenes are well-known dispersants of single-walled carbon nanotubes (SWCNTs), although the influence of SWCNTs on polyfluorene photo-oxidative stability has not yet been defined. Here we quantitatively explore the photophysical properties of poly[(9,9-bis(3/-(N,N-dimethylamino)propyl)-2,7-fluorene)-alt-2,7-(9,9-dioctylfluorene)] (PFN) under photo-oxidative conditions when it is in van der Waals contact with SWCNTs. Photoluminescence spectroscopy tracks the spectral evolution of the polymer emission following ambient ultraviolet (UV) exposure, confirming that PFN exhibits green band emission. In marked contrast, PFN-wrapped SWCNTs possess high spectral stability without green band emission under the same ambient UV exposure conditions. By investigating a series of PFN thin films as a function of SWCNT content, it is shown that SWCNT loadings as low as ~23 wt% suppress photo-oxidative degradation. These findings suggest that PFN-SWCNT composites provide an effective pathway toward utilizing polyfluorenes in organic optoelectronics.

  10. A Method for Determination of Metals in Hybrid Metal Oxide/Metal-Carbon Nanotubes Catalysts

    Directory of Open Access Journals (Sweden)

    Joanna Bok-Badura

    2017-01-01

    Full Text Available Carbon nanotubes (CNTs, due to their special structure and unique properties, are still one of the most interesting materials for scientists. Recently, carbon nanotubes were proposed as a new type of carbon support for catalysts. Fe, Pt, Ni, Co, and other metals anchored to CNTs are used in various reactions. Due to the fact that production processes are usually unpredictable and the total amount of metal/metal oxide deposited on the CNTs may only be estimated, the methods for examining the chemical composition are necessary. In this study, fast and simple inductively coupled plasma atomic emission spectrometry (ICP-AES with slurry nebulization was proposed for metal content determination in hybrid CeZrO2/CNT, Ni-CeZrO2/CNT, and Ni/CNT materials. Slurries were prepared by 30 min ultrasonication of appropriate amount of investigated material in 1% Triton X-100 solution. Optimal range of slurry concentration and optimal RF plasma power were established (40–400 mg L−1, 1.2 kW, resp.. Obtained results proved that this method may be applied for determination of Ce, Zr, and Ni in hybrid CNT-based materials.

  11. Wet adhesion of buckypaper produced from oxidized multiwalled carbon nanotubes on soft animal tissue.

    Science.gov (United States)

    Martinelli, Andrea; Carru, Giovanna A; D'Ilario, Lucio; Caprioli, Fabrizio; Chiaretti, Massimo; Crisante, Fernanda; Francolini, Iolanda; Piozzi, Antonella

    2013-05-22

    Buckypaper (BP) is the general definition of a macroscopic assembly of entangled carbon nanotubes. In this paper, a new property of a BP film produced from oxidized multiwalled carbon nanotubes was investigated. In particular, BP shows to be able to promptly and strongly adhere to animal internal soft and wet tissues, as evaluated by peeling and shear tests. BP adhesion strength is higher than that recorded for a commercial prosthetic fabric (sealed to the tissue by fibrin glue) and comparable with that of other reported optimized nanopatterned surfaces. In order to give an interpretation of the observed behavior, the BP composition, morphology, porosity, water wettability, and mechanical properties were analyzed by AFM, X-ray photoelectron spectroscopy, wicking tests, contact angle, and stress-strain measurements. Although further investigations are needed to assess the biocompatibility and safety of the BP film used in this work, the obtained results pave the way for a possible future use of buckypaper as adhesive tape in abdominal prosthetic surgery. This would allow the substitution of conventional sealants or the reduction in the use of perforating fixation.

  12. Thermal Conductivity of Epoxy Resin Reinforced with Magnesium Oxide Coated Multiwalled Carbon Nanotubes

    Directory of Open Access Journals (Sweden)

    Fei-Peng Du

    2013-01-01

    Full Text Available Magnesium oxide coated multiwalled carbon nanotubes (MgO@MWNT were fabricated and dispersed into epoxy matrix. The microstructures of MgO@MWNT and epoxy/MgO@MWNT nanocomposites were characterized by TEM and SEM. Electrical resistivity and thermal conductivity of epoxy nanocomposites were investigated with high resistance meter and thermal conductivity meter, respectively. MgO@MWNT has core-shell structure with MgO as shell and nanotube as core, and the thickness of MgO shell is ca. 15 nm. MgO@MWNT has been dispersed well in the epoxy matrix. MgO@MWNT loaded epoxy nanocomposites still retain electrical insulation inspite of the filler content increase. However, thermal conductivity of epoxy was increased with the MgO@MWNT content increasing. When MgO@MWNT content reached 2.0 wt.%, thermal conductivity was increased by 89% compared to neat epoxy, higher than that of unmodified MWNT nanocomposites with the same loading content.

  13. Low-temperature synthesis of carbon nanotubes on indium tin oxide electrodes for organic solar cells

    Science.gov (United States)

    Salamandra, Luigi; Di Carlo, Aldo; Bell, John Marcus; Motta, Nunzio

    2012-01-01

    Summary The electrical performance of indium tin oxide (ITO) coated glass was improved by including a controlled layer of carbon nanotubes directly on top of the ITO film. Multiwall carbon nanotubes (MWCNTs) were synthesized by chemical vapor deposition, using ultrathin Fe layers as catalyst. The process parameters (temperature, gas flow and duration) were carefully refined to obtain the appropriate size and density of MWCNTs with a minimum decrease of the light harvesting in the cell. When used as anodes for organic solar cells based on poly(3-hexylthiophene) (P3HT) and phenyl-C61-butyric acid methyl ester (PCBM), the MWCNT-enhanced electrodes are found to improve the charge-carrier extraction from the photoactive blend, thanks to the additional percolation paths provided by the CNTs. The work function of as-modified ITO surfaces was measured by the Kelvin probe method to be 4.95 eV, resulting in an improved matching to the highest occupied molecular orbital level of the P3HT. This is in turn expected to increase the hole transport and collection at the anode, contributing to the significant increase of current density and open-circuit voltage observed in test cells created with such MWCNT-enhanced electrodes. PMID:23019547

  14. Low-temperature synthesis of carbon nanotubes on indium tin oxide electrodes for organic solar cells.

    Science.gov (United States)

    Capasso, Andrea; Salamandra, Luigi; Di Carlo, Aldo; Bell, John Marcus; Motta, Nunzio

    2012-01-01

    The electrical performance of indium tin oxide (ITO) coated glass was improved by including a controlled layer of carbon nanotubes directly on top of the ITO film. Multiwall carbon nanotubes (MWCNTs) were synthesized by chemical vapor deposition, using ultrathin Fe layers as catalyst. The process parameters (temperature, gas flow and duration) were carefully refined to obtain the appropriate size and density of MWCNTs with a minimum decrease of the light harvesting in the cell. When used as anodes for organic solar cells based on poly(3-hexylthiophene) (P3HT) and phenyl-C61-butyric acid methyl ester (PCBM), the MWCNT-enhanced electrodes are found to improve the charge-carrier extraction from the photoactive blend, thanks to the additional percolation paths provided by the CNTs. The work function of as-modified ITO surfaces was measured by the Kelvin probe method to be 4.95 eV, resulting in an improved matching to the highest occupied molecular orbital level of the P3HT. This is in turn expected to increase the hole transport and collection at the anode, contributing to the significant increase of current density and open-circuit voltage observed in test cells created with such MWCNT-enhanced electrodes.

  15. Novel Aluminum Oxide-Impregnated Carbon Nanotube Membrane for the Removal of Cadmium from Aqueous Solution

    Directory of Open Access Journals (Sweden)

    Ihsanullah

    2017-09-01

    Full Text Available An aluminum oxide-impregnated carbon nanotube (CNT-Al2O3 membrane was developed via a novel approach and used in the removal of toxic metal cadmium ions, Cd(II. The membrane did not require any binder to hold the carbon nanotubes (CNTs together. Instead, the Al2O3 particles impregnated on the surface of the CNTs were sintered together during heating at 1400 °C. Impregnated CNTs were characterized using XRD, while the CNT-Al2O3 membrane was characterized using scanning electron microscopy (SEM. Water flux, contact angle, and porosity measurements were performed on the membrane prior to the Cd(II ion removal experiment, which was conducted in a specially devised continuous filtration system. The results demonstrated the extreme hydrophilic behavior of the developed membrane, which yielded a high water flux through the membrane. The filtration system removed 84% of the Cd(II ions at pH 7 using CNT membrane with 10% Al2O3 loading. A maximum adsorption capacity of 54 mg/g was predicted by the Langmuir isotherm model for the CNT membrane with 10% Al2O3 loading. This high adsorption capacity indicated that adsorption was the main mechanism involved in the removal of Cd(II ions.

  16. Low-temperature synthesis of carbon nanotubes on indium tin oxide electrodes for organic solar cells

    Directory of Open Access Journals (Sweden)

    Andrea Capasso

    2012-07-01

    Full Text Available The electrical performance of indium tin oxide (ITO coated glass was improved by including a controlled layer of carbon nanotubes directly on top of the ITO film. Multiwall carbon nanotubes (MWCNTs were synthesized by chemical vapor deposition, using ultrathin Fe layers as catalyst. The process parameters (temperature, gas flow and duration were carefully refined to obtain the appropriate size and density of MWCNTs with a minimum decrease of the light harvesting in the cell. When used as anodes for organic solar cells based on poly(3-hexylthiophene (P3HT and phenyl-C61-butyric acid methyl ester (PCBM, the MWCNT-enhanced electrodes are found to improve the charge-carrier extraction from the photoactive blend, thanks to the additional percolation paths provided by the CNTs. The work function of as-modified ITO surfaces was measured by the Kelvin probe method to be 4.95 eV, resulting in an improved matching to the highest occupied molecular orbital level of the P3HT. This is in turn expected to increase the hole transport and collection at the anode, contributing to the significant increase of current density and open-circuit voltage observed in test cells created with such MWCNT-enhanced electrodes.

  17. Fabrication of Nickel Nanotube Using Anodic Oxidation and Electrochemical Deposition Technologies and Its Hydrogen Storage Property

    Directory of Open Access Journals (Sweden)

    Yan Lv

    2016-01-01

    Full Text Available Electrochemical deposition technique was utilized to fabricate nickel nanotubes with the assistance of AAO templates. The topography and element component of the nickel nanotubes were characterized by TEM and EDS. Furthermore, the nickel nanotube was made into microelectrode and its electrochemical hydrogen storage property was studied using cyclic voltammetry. The results showed that the diameter of nickel nanotubes fabricated was around 20–100 mm, and the length of the nanotube could reach micron grade. The nickel nanotubes had hydrogen storage property, and the hydrogen storage performance was higher than that of nickel powder.

  18. Recent Trends in the Microwave-Assisted Synthesis of Metal Oxide Nanoparticles Supported on Carbon Nanotubes and Their Applications

    Directory of Open Access Journals (Sweden)

    Sarah C. Motshekga

    2012-01-01

    Full Text Available The study of coating carbon nanotubes with metal/oxides nanoparticles is now becoming a promising and challenging area of research. To optimize the use of carbon nanotubes in various applications, it is necessary to attach functional groups or other nanostructures to their surface. The combination of the distinctive properties of carbon nanotubes and metal/oxides is expected to be applied in field emission displays, nanoelectronic devices, novel catalysts, and polymer or ceramic reinforcement. The synthesis of these composites is still largely based on conventional techniques, such as wet impregnation followed by chemical reduction of the metal nanoparticle precursors. These techniques based on thermal heating can be time consuming and often lack control of particle size and morphology. Hence, there is interest in microwave technology recently, where using microwaves represents an alternative way of power input into chemical reactions through dielectric heating. This paper covers the synthesis and applications of carbon-nanotube-coated metal/oxides nanoparticles prepared by a microwave-assisted method. The reviewed studies show that the microwave-assisted synthesis of the composites allows processes to be completed within a shorter reaction time with uniform and well-dispersed nanoparticle formation.

  19. Electrocatalytic oxidation and determination of insulin at nickel oxide nanoparticles-multiwalled carbon nanotube modified screen printed electrode.

    Science.gov (United States)

    Rafiee, Banafsheh; Fakhari, Ali Reza

    2013-08-15

    Nickel oxide nanoparticles modified nafion-multiwalled carbon nanotubes screen printed electrode (NiONPs/Nafion-MWCNTs/SPE) were prepared using pulsed electrodeposition of NiONPs on the MWCNTs/SPE surface. The size, distribution and structure of the NiONPs/Nafion-MWCNTs were characterized by transmission electron microscopy (TEM) and x-ray diffraction (XRD) and also the results show that NiO nanoparticles were homogeneously electrodeposited on the surfaces of MWCNTs. Also, the electrochemical behavior of NiONPs/Nafion-MWCNTs composites in aqueous alkaline solutions of insulin was studied by cyclic voltammetry, chronoamperometry and electrochemical impedance spectroscopy (EIS). It was found that the prepared nanoparticles have excellent electrocatalytic activity towards insulin oxidation due to special properties of NiO nanoparticles. Cyclic voltammetric studies showed that the NiONPs/Nafion-MWCNTs film modified SPE, lowers the overpotentials and improves electrochemical behavior of insulin oxidation, as compared to the bare SPE. Amperometry was also used to evaluate the analytical performance of modified electrode in the quantitation of insulin. Excellent analytical features, including high sensitivity (1.83 μA/μM), low detection limit (6.1 nM) and satisfactory dynamic range (20.0-260.0 nM), were achieved under optimized conditions. Moreover, these sensors show good repeatability and a high stability after a while or successive potential cycling.

  20. Peroxidase-induced degradation of single-walled carbon nanotubes: hypochlorite is a major oxidant capable of in vivo degradation of carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Vlasova, I I; Vakhrusheva, T V; Sokolov, A V; Kostevich, V A [Research Institute for Physico-Chemical Medicine, FMBA, M. Pirogovskaya Str. 1a, Moscow (Russian Federation); Ragimov, A A, E-mail: irina.vlasova@yahoo.com [National Research Centre of Surgery, RAMS, Abrikosovskiy per. 2, Moscow (Russian Federation)

    2011-04-01

    Due to their extraordinary properties, single-walled carbon nanotubes (SWNTs) have a tremendous potential for medical applications such as clinical diagnostics, targeted drug (or gene) delivery and cancer therapy. Hence, effects of SWNTs on living systems as well as mechanisms for biodegradation of SWTNs are of great importance and must be studied before starting to explore SWNTs for medical use. This study was undertaken to compare the potential of different peroxidases in degrading carboxylated SWNT (c-SWNT) and to elucidate the role of peroxidase-generated reactive products in this process. A detailed study showed that neither reactive intermediate products nor free radicals generated via peroxidase cycle can considerably oxidize c-SWNT. Biodegradation of c-SWNT in model system can be induced by free radicals generated as a result of heme degradation. The latter explains why hemoglobin, which is a pseudo-peroxidase possessing low peroxidase activity, is able to oxidize carbon nanotubes with a higher efficiency than horseradish peroxidase. However, c-SWNT in the presence of blood plasma (15 vol %) demonstrated no degradation even at high concentrations of hemoglobin and H{sub 2}O{sub 2}. The comparison of the ability of various peroxidases to degrade SWNTs in vitro revealed that MPO, due to its ability to produce hypochlorite, and lactoperoxidase, due to its ability to produce hypobromite, are extremely efficient in degrading carbon nanotubes. Since neutrophils are a main source of human MPO, we tested the effect of SWNTs on these cells. SWNTs were unable to stimulate neutrophils. On the other hand, they dose-dependently enhanced opsonized zymosan-induced cell stimulation as detected by measuring the amount of hypochlorite produced. This finding may be relevant to the in vivo situation, for example, at inflammatory sites. In order to imitate conditions characteristic of phagosomes and inflammatory sites, we titrated the suspension of c-SWNT in the presence of

  1. Disinfection of titanium dioxide nanotubes using super-oxidized water decrease bacterial viability without disrupting osteoblast behavior

    Energy Technology Data Exchange (ETDEWEB)

    Beltrán-Partida, Ernesto [Department of Biomaterials, Dental Materials and Tissue Engineering, Faculty of Dentistry Mexicali, Autonomous University of Baja California, Av. Zotoluca and Chinampas St., 21040 Mexicali, Baja California (Mexico); Department of Corrosion and Materials, Engineering Institute, Autonomous University of Baja California, Blvd. Benito Juarez and Normal St., 21280 Mexicali, Baja California (Mexico); Valdez-Salas, Benjamín, E-mail: benval@uabc.edu.mx [Department of Corrosion and Materials, Engineering Institute, Autonomous University of Baja California, Blvd. Benito Juarez and Normal St., 21280 Mexicali, Baja California (Mexico); Escamilla, Alan; Curiel, Mario [Department of Corrosion and Materials, Engineering Institute, Autonomous University of Baja California, Blvd. Benito Juarez and Normal St., 21280 Mexicali, Baja California (Mexico); Valdez-Salas, Ernesto [Ixchel Medical Centre, Av. Bravo y Obregón, 21000 Mexicali, Baja California (Mexico); Nedev, Nicola [Department of Corrosion and Materials, Engineering Institute, Autonomous University of Baja California, Blvd. Benito Juarez and Normal St., 21280 Mexicali, Baja California (Mexico); Bastidas, Jose M. [National Centre for Metallurgical Research, CSIC, Av. Gregorio del Amo 8, 28040 Madrid (Spain)

    2016-03-01

    Amorphous titanium dioxide (TiO{sub 2}) nanotubes (NTs) on Ti6Al4V alloy were synthesized by anodization using a commercially available super-oxidized water (SOW). The NT surfaces were sterilized by ultraviolet (UV) irradiation and disinfected using SOW. The adhesion and cellular morphology of pig periosteal osteoblast (PPO) cells and the behavior of Staphylococcus aureus (S. aureus) cultured on the sterilized and disinfected surfaces were investigated. A non-anodized Ti6Al4V disc sterilized by UV irradiation (without SOW) was used as control. The results of this study reveal that the adhesion, morphology and filopodia development of PPO cells in NTs are dramatically improved, suggesting that SOW cleaning may not disrupt the benefits obtained by NTs. Significantly decreased bacterial viability in NTs after cleaning with SOW and comparing with non-cleaned NTs was seen. The results suggest that UV and SOW could be a recommendable method for implant sterilization and disinfection without altering osteoblast behavior while decreasing bacterial viability. - Highlights: • The effect of super-oxidized water cleaning was studied on Ti6Al4V nanotubes. • Super oxidized-water cleaning caused a decline in S. aureus viability. • Osteoblast behavior was not disrupted after super-oxidized water disinfection. • Super-oxidized water is suggested as a cleaning protocol for TiO{sub 2} nanotubes.

  2. Adsorption of cadmium and lead onto oxidized nitrogen-doped multiwall carbon nanotubes in aqueous solution: equilibrium and kinetics

    Energy Technology Data Exchange (ETDEWEB)

    Perez-Aguilar, Nancy Veronica [Environmental Sciences Department, Institute for Scientific and Technological Research of San Luis Potosi (Mexico); Munoz-Sandoval, Emilio [Advanced Materials Department, Institute for Scientific and Technological Research of San Luis Potosi (Mexico); Diaz-Flores, Paola Elizabeth; Rangel-Mendez, Jose Rene, E-mail: rene@ipicyt.edu.m [Environmental Sciences Department, Institute for Scientific and Technological Research of San Luis Potosi (Mexico)

    2010-02-15

    Nitrogen-doped multiwall carbon nanotubes (CNx) were chemically oxidized and tested to adsorb cadmium and lead from aqueous solution. Physicochemical characterization of carbon nanotubes included morphological analysis, textural properties, and chemical composition. In addition, the cadmium adsorption capacity of oxidized-CNx was compared with commercially available activated carbon and single wall carbon nanotubes. Carboxylic and nitro groups on the surface of oxidized CNx shifted the point of zero charge from 6.6 to 3.1, enhancing their adsorption capacity for cadmium and lead to 0.083 and 0.139 mmol/g, respectively, at pH 5 and 25 {sup o}C. Moreover, oxidized-CNx had higher selectivity for lead when both metal ions were in solution. Kinetic experiments for adsorption of cadmium showed that the equilibrium was reached at about 4 min. Finally, the small size, geometry, and surface chemical composition of oxidized-CNx are the key factors for their higher adsorption capacity than activated carbon.

  3. Structural and Morphological Investigation for Water-Processed Graphene Oxide/Single-Walled Carbon Nanotubes Hybrids

    Science.gov (United States)

    Muda, M. R.; Ramli, M. M.; Mat Isa, S. S.; Halin, D. S. C.; Talip, L. F. A.; Mazelan, N. S.; Anhar, N. A. M.; Danial, N. A.

    2017-06-01

    New group of materials derived from hybridization of single walled carbon nanotubes (SWCNTs) and graphene oxide (GO) which resulting novel three dimensional (3D) materials generates an outstanding properties compared to corresponding SWCNTs and GO/Graphene. In this paper, we describe a simple approach using water processing method to develop integrated rGO/GO-SWCNT hybrids with different hybrid ratios. The hybrid ratios were varied into three divided ratio and the results were compared between pristine SWCNTs and GO in order to investigate the structural density and morphology of these carbonaceous materials. With an optimized ratio of rGO/GO-SWCNT, the hybrid shows a well-organized hybrid film structures with less defects density sites. The optimized mixture ratio emphasized the important of both rGO and SWCNTs in the hybrid structures. Morphological structural and defects density degrees were examined by Field Emission Scanning Electron Microscopy (FESEM) and Raman spectroscopy.

  4. Functionalization of oxidized single-walled carbon nanotubes with 4-benzo-9-crown-3 ether

    Indian Academy of Sciences (India)

    Ardeshir Khazaei; Maryam Kiani Borazjani; Khadijeh Mansouri Moradian

    2012-09-01

    Functionalization of oxidized single-walled carbon nanotubes (SWCNTs) by a zwitterionic interaction (COO−NH$^{+}_{3}$) between protonated amine on crown ether and an oxyanion from a carboxylic acid group on SWCNT has been described. This ionic interaction has led to a considerable increase in the solubility of SWCNTs in both organic and aqueous solvents such as ethanol, dimethyl sulphoxide, dimethylformamide, and H2O. The highest solubility was attained in DMF and DMSO. The ionic bonded 4-benzo-9-crown-3 ether allowed the hosting of Li+. The ionic bond of crown ether (4-(benzo-9-crown-3)) to SWCNT was identified and confirmed by infrared spectroscopy, transmission electron-microscopy, atomic force microscopy and thermogravimetric analysis methods.

  5. High methanol oxidation activity of well-dispersed pt nanoparticles on carbon nanotubes using nitrogen doping.

    Science.gov (United States)

    Fang, Wei-Chuan

    2009-10-09

    Pt nanoparticles (NPs) with the average size of 3.14 nm well dispersed on N-doped carbon nanotubes (CNTs) without any pretreatment have been demonstrated. Structural properties show the characteristic N bonding within CNTs, which provide the good support for uniform distribution of Pt NPs. In electrochemical characteristics, N-doped CNTs covered with Pt NPs show superior current density due to the fact that the so-called N incorporation could give rise to the formation of preferential sites within CNTs accompanied by the low interfacial energy for immobilizing Pt NPs. Therefore, the substantially enhanced methanol oxidation activity performed by N-incorporation technique is highly promising in energy-generation applications.

  6. High Methanol Oxidation Activity of Well-Dispersed Pt Nanoparticles on Carbon Nanotubes Using Nitrogen Doping

    Directory of Open Access Journals (Sweden)

    Fang Wei-Chuan

    2009-01-01

    Full Text Available Abstract Pt nanoparticles (NPs with the average size of 3.14 nm well dispersed on N-doped carbon nanotubes (CNTs without any pretreatment have been demonstrated. Structural properties show the characteristic N bonding within CNTs, which provide the good support for uniform distribution of Pt NPs. In electrochemical characteristics, N-doped CNTs covered with Pt NPs show superior current density due to the fact that the so-called N incorporation could give rise to the formation of preferential sites within CNTs accompanied by the low interfacial energy for immobilizing Pt NPs. Therefore, the substantially enhanced methanol oxidation activity performed by N-incorporation technique is highly promising in energy-generation applications.

  7. Electrochemical Intercalation of Lithium into Raw and Mild Oxide-treated Carbon Nanotubes Prepared by CVD

    Institute of Scientific and Technical Information of China (English)

    LIN Ke-zhi; XU Yan-hui; WANG Xiao-lin; LUO Guo-hua

    2004-01-01

    The raw carbon nanotubes (CNTs) prepared by chemical vapor deposition (CVD) were used in electrochemical lithiation. To remove the impurity the mild oxidation was done on the samples. The electrochemical characteristics of the two samples are investigated by the galvanostatic charge-discharge measurements and cyclic voltammetry. The structural and interfacial changes of the CNTs electrode were analyzed by XRD and FT-IR. The samples show a reversibility of lithium intercalation and de-intercalation. The reversible capacities of the first five cycles are larger than 300 mAh/g and the irreversible capacity of the first cycle was much larger than that mentioned in literatures. There is no identical change in the structure during the charge and discharge. The reactions at the interface between electrode and the electrolyte are similar to those of other carbonaceous materials.

  8. Hydrogen peroxide biosensor based on electrodeposition of zinc oxide nanoflowers onto carbon nanotubes film electrode

    Institute of Scientific and Technical Information of China (English)

    Hui Ping Bai; Xu Xiao Lu; Guang Ming Yang; Yun Hui Yang

    2008-01-01

    A new amperometric biosensor for hydrogen peroxide was developed based on adsorption of horseradish peroxidase at the glassy carbon electrode modified with zinc oxide nanoflowers produced by electrodeposition onto multi-walled carbon nanotubes (MWNTs) firm. The morphology of the MWNTs/nano-ZnO electrode has been investigated by scanning electron microscopy (SEM), and the electrochemical performance of the electrode has also been studied by amperometric method. The resulting electrode offered an excellent detection for hydrogen peroxide at -0.11 V with a linear response range of 9.9 × 10(-7) to 2.9 × 10(-3) mol/L with a correlation coefficient of 0.991, and response time <5 s. The biosensor displays rapid response and expanded linear response range, and excellent stability.

  9. Aerosol assisted fabrication of carbon nanotube/zinc oxide arrays for a field emission device.

    Science.gov (United States)

    Byeon, Jeong Hoon; Kim, Jang-Woo

    2013-03-01

    Aerosol deposition of zinc oxide (ZnO) nanoparticles was used to catalyze a silicon substrate site-selectively for a carbon nanotube (CNT) growth. An ambient spark discharge was used to produce aerosol ZnO nanoparticles, and the particle deposition on the substrate through a shadow mask was enhanced by thermophoresis. The ZnO-deposited substrate was then loaded into a chemical vapor deposition chamber, resulting in the formation of CNT/ZnO arrays. The turn-on field of an emission device constructed with the CNT/ZnO arrays was 1.7 V μm(-1) at a current of 2 μA, which was lower than that of the common CNT arrays. Copyright © 2012 Elsevier Inc. All rights reserved.

  10. Cerium oxide dispersed multi walled carbon nanotubes as cathode material for flexible field emitters.

    Science.gov (United States)

    Baby, Tessy Theres; Rakhi, R B; Ravi, N; Ramaprabhu, S

    2012-08-01

    Nanomaterials based electron sources are omnipresent in modern flat panel displays. Multi walled carbon nanotubes (MWNT) are the well studied electron emitter among the carbon materials. Since the surface modification of MWNT with low work function materials would have a positive impact on the field emission property of MWNT, cerium oxide (CeO2) nanoparticles dispersed multi walled carbon nanotubes (CeO2/MWNT) were synthesized by catalytic chemical vapour deposition followed by chemical reduction and its field emission property was investigated. The high-purity MWNT as well as CeO2/MWNT showed crystalline structure conformed by X-ray diffraction (XRD) and thermogravimetric analysis (TGA). Further characterisation was done with Raman spectroscopy, UV-Visible absorption spectra and Fourier transform IR spectroscopy (FT-IR). The morphology and structural details of CeO2/MWNT composite was probed by field-emission scanning electron microscopy (FESEM) and energy dispersive X-ray analysis (EDX). The direct evidence of the formation of CeO2/MWNT composites was given by transmission electron microscopy (TEM). The synthesized sample was coated over a flexible carbon paper using spin coating technique. The experiment was performed under a vacuum of 1 x 10(-6) Torr and Fowler-Nordheim equation was used to analyse the data. The turn-on voltage for the cerium oxide dispersed MWNT was found for a current density of 10 microA/cm2. The emission current density from the CeO2 nanoparticles dispersed MWNT reached 0.2 mA/cm2 at a reasonable bias field of 2.58 V/microm. The results were compared with those of pure MWNT and pure CeO2 nanoparticles with literature values.

  11. Photocatalytic Oxidation of Propylene on Pd-Loaded Anatase TiO2 Nanotubes Under Visible Light Irradiation.

    Science.gov (United States)

    Li, Chen; Zong, Lanlan; Li, Qiuye; Zhang, Jiwei; Yang, Jianjun; Jin, Zhensheng

    2016-12-01

    TiO2 nanotubes attract much attention because of their high photoelectron-chemical and photocatalytic efficiency. But their large band gap leads to a low absorption of the solar light and limits the practical application. How to obtain TiO2 nanotubes without any dopant and possessing visible light response is a big challenge nowadays. Orthorhombic titanic acid nanotubes (TAN) are a special precursor of TiO2, which possess large Brunauer-Emmett-Teller (BET) surface areas and strong ion exchange and adsorption capacity. TAN can transform to a novel TiO2 with a large amount of single-electron-trapped oxygen vacancies (SETOV) during calcination, while their nanotubular structure would be destroyed, and a BET surface area would decrease remarkably. And interestingly, SETOV can lead to a visible light response for this kind of TiO2. Herein, glucose was penetrated into TAN by the vacuum inhalation method, and TAN would dehydrate to anatase TiO2, and glucose would undergo thermolysis completely in the calcination process. As a result, the pure TiO2 nanotubes with visible light response and large BET surface areas were obtained. For further improving the photocatalytic activity, Pd nanoparticles were loaded as the foreign electron traps on TiO2 nanotubes and the photocatalytic oxidation efficiency of propylene was as high as 71 % under visible light irradiation, and the photostability of the catalyst kept over 90 % after 4 cyclic tests.

  12. Electrochemical capacitance of iron oxide nanotube (Fe-NT): effect of annealing atmospheres

    Science.gov (United States)

    Sarma, Biplab; Jurovitzki, Abraham L.; Ray, Rupashree S.; Smith, York R.; Mohanty, Swomitra K.; Misra, Mano

    2015-07-01

    The effect of annealing atmosphere on the supercapacitance behavior of iron oxide nanotube (Fe-NT) electrodes has been explored and reported here. Iron oxide nanotubes were synthesized on a pure iron substrate through an electrochemical anodization process in an ethylene glycol solution containing 3% H2O and 0.5 wt.% NH4F. Subsequently, the annealing of the nanotubes was carried out at 500 °C for 2 h in various gas atmospheres such as air, oxygen (O2), nitrogen (N2), and argon (Ar). The morphology and crystal phases evolved after the annealing processes were examined via field emission scanning electron microscopy, x-ray diffraction, Raman spectroscopy, and x-ray photoelectron spectroscopy. The electrochemical capacitance properties of the annealed Fe-NT electrodes were evaluated by conducting cyclic voltammetry (CV), galvanostatic charge-discharge, and electrochemical impedance spectroscopy tests in the Li2SO4 electrolyte. Based on these experiments, it was found that the capacitance of the Fe-NT electrodes annealed in air and O2 atmospheres shows mixed behavior comprising both the electric double layer and pseudocapacitance. However, annealing in N2 and Ar environments resulted in well-defined redox peaks in the CV profiles of the Fe-NT electrodes, which are therefore attributed to the relatively higher pseudonature of the capacitance in these electrodes. Based on the galvanostatic charge-discharge studies, the specific capacitance achieved in the Fe-NT electrode after annealing in Ar was about 300 mF cm-2, which was about twice the value obtained for N2-annealed Fe-NTs and three times higher than those annealed in air and O2. The experiments also demonstrated excellent cycle stability for the Fe-NT electrodes with 83%-85% capacitance retention, even after many charge-discharge cycles, irrespective of the gas atmospheres used during annealing. The increase in the specific capacitance was discussed in terms of increased oxygen vacancies as a result of the

  13. Methanol Electro-Oxidation on Pt-Ru Alloy Nanoparticles Supported on Carbon Nanotubes

    Directory of Open Access Journals (Sweden)

    Yangchuan Xing

    2009-09-01

    Full Text Available Carbon nanotubes (CNTs have been investigated in recent years as a catalyst support for proton exchange membrane fuel cells. Improved catalyst activities were observed and attributed to metal-support interactions. We report a study on the kinetics of methanol electro-oxidation on CNT supported Pt-Ru alloy nanoparticles. Alloy catalysts with different compositions, Pt53Ru47/CNT, Pt69Ru31/CNT and Pt77Ru23/CNT, were prepared and investigated in detail. Experiments were conducted at various temperatures, electrode potentials, and methanol concentrations. It was found that the reaction order of methanol electro-oxidation on the PtRu/CNT catalysts was consistent with what has been reported for PtRu alloys with a value of 0.5 in methanol concentrations. However, the electro-oxidation reaction on the PtRu/CNT catalysts displayed much lower activation energies than that on the Pt-Ru alloy catalysts unsupported or supported on carbon black (PtRu/CB. This study provides an overall kinetic evaluation of the PtRu/CNT catalysts and further demonstrates the beneficial role of CNTs.

  14. Specifically Grafting Hematin on MPTS-Coated Carbon Nanotubes for Catalyzing the Oxidation of Aniline

    Directory of Open Access Journals (Sweden)

    Kunkun Zheng

    2016-08-01

    Full Text Available Catalysts supported on nanomaterials have been widely investigated for the treatment of hazardous materials. This work has developed a novel method for grafting hematin on nanomaterials for catalyzing the oxidation of aniline in order to remove aniline from wastewater. Magnetic multi-walled carbon nanotubes (M-MWCNTs were coated with a layer formed through the hydrolysis and condensation of 3-mercaptopropyltriethoxysilane (MPTS. Hematin was specifically grafted on the MPTS-coated M-MWCNTs through thiol-alkene reaction. Hematin-MPTS-M-MWCNTs were used to catalyze the oxidation of aniline, and a high efficiency has been obtained. Consecutive use of the conjugate of hematin-MPTS-M-MWCNTs has been investigated, and the activity has been retained to a significant extent after five reaction/cleaning cycles. The result demonstrates that hematin-MPTS-M-MWCNTs are efficient for catalyzing the oxidation of aniline. The methodology for the specific grafting of hematin is of general utility, it is an easy-to-operate method and can be extended to other supports. Potentially, hematin-MPTS-based conjugates have a widespread application in catalyzing the removal of aniline from wastewater.

  15. The decoration of multi-walled carbon nanotubes with nickel oxide nanoparticles using chemical method

    Science.gov (United States)

    Sahebian, S.; Zebarjad, S. M.; Vahdati Khaki, J.; Lazzeri, A.

    2016-07-01

    In this paper, nickel oxide (NiO) nanoparticles have been fabricated using wet method and deposited on the surface of multi-walled carbon nanotube (MWCNT). To do so, functional groups were introduced on the surface of MWCNTs by treating with concentrated nitric acid. Nickel oxide nanoparticles were formed on the surface of functionalized MWCNTs by incipient wetness impregnation of nickel nitrate, and the resultant product was calcinated in air atmosphere. Characteristics of the NiO/MWCNT were examined by various techniques, for example, Fourier transform spectroscopy (FTIR), X-ray diffraction analysis (XRD), transmission electron microscopy (TEM), thermogravimetric analyzer (TGA), and nitrogen adsorption-desorption isothermal as well as vibrating sample magnetometer (VSM). The FTIR spectra showed that carboxyl and hydroxyl functional groups existed on the surface of MWNTs after modification by concentrated nitric acid. The pattern of XRD indicated that MWNTs and nickel oxide nanoparticles coexisted in the NiO/MWCNT sample. The TEM images revealed that the NiO nanoparticles were distributed on the surface of the MWNTs, with the size ranging from 5 to 60 nm. Thermogravimetric analysis proved that NiO content decorated on MWCNTs was 80 and 15 wt%. The results of the Brunauer-Emmett-Teller (BET) data showed that the slight increment in the specific surface areas and porosities in the presence of the NiO nanoparticles on the surface of CNT.

  16. Temperature effects on the nitric acid oxidation of industrial grade multiwalled carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Andrade, Nadia F., E-mail: nadia@fisica.ufc.br [Universidade Federal do Ceara, Departamento de Fisica (Brazil); Martinez, Diego Stefani T., E-mail: diegostefani.br@gmail.com; Paula, Amauri J., E-mail: amaurijp@gmail.com [Universidade Estadual de Campinas (UNICAMP), Laboratorio de Quimica do Estado Solido (LQES), Instituto de Quimica (Brazil); Silveira, Jose V. [Universidade Federal do Ceara, Departamento de Fisica (Brazil); Alves, Oswaldo L., E-mail: oalves@iqm.unicamp.br [Universidade Estadual de Campinas (UNICAMP), Laboratorio de Quimica do Estado Solido (LQES), Instituto de Quimica (Brazil); Souza Filho, Antonio G., E-mail: agsf@fisica.ufc.br [Universidade Federal do Ceara, Departamento de Fisica (Brazil)

    2013-07-15

    In this study, we report an oxidative treatment of multiwalled carbon nanotubes (MWCNTs) by using nitric acid at different temperatures (25-175 Degree-Sign C). The analyzed materials have diameters varying from 10 to 40 nm and majority lengths between 3 and 6 {mu}m. The characterization results obtained by different techniques (e.g., field emission scanning electron microscopy, thermogravimetric analysis, energy-filtered transmission electron microscopy, Braunauer, Emmet and Teller method, {zeta}-potential and confocal Raman spectroscopy) allowed us to access the effects of temperature treatment on the relevant physico-chemical properties of the MWCNTs samples studied in view of an integrated perspective to use these samples in a bio-toxicological context. Analytical microbalance measurements were used to access the purity of samples (metallic residue) after thermogravimetric analysis. Confocal Raman spectroscopy measurements were used to evaluate the density of structural defects created on the surface of the tubes due to the oxidation process by using 2D Raman image. Finally, we have demonstrated that temperature is an important parameter in the generation of oxidation debris (a byproduct which has not been properly taken into account in the literature) in the industrial grade MWCNTs studied after nitric acid purification and functionalization.

  17. An electrochemical dopamine aptasensor incorporating silver nanoparticle, functionalized carbon nanotubes and graphene oxide for signal amplification.

    Science.gov (United States)

    Bahrami, Shokoh; Abbasi, Amir Reza; Roushani, Mahmoud; Derikvand, Zohreh; Azadbakht, Azadeh

    2016-10-01

    In this work, immobilization of a dopamine (DA) aptamer was performed at the surface of an amino functionalized silver nanoparticle-carbon nanotube graphene oxide (AgNPs/CNTs/GO) nanocomposite. A 58-mer DA-aptamer was immobilized through the formation of phosphoramidate bonds between the amino group of chitosan and the phosphate group of the aptamer at the 5' end. An AgNPs/CNTs/GO nanocomposite was employed as a highly catalytic label for electrochemical detection of DA based on electrocatalytic activity of the nanocomposite toward hydrogen peroxide (H2O2). Interaction of DA with the aptamer caused conformational changes of the aptamer which, in turn, decreased H2O2 oxidation and reduction peak currents. On the other hand, the presumed folding of the DA-aptamer complexes on the sensing interface inhibited the electrocatalytic activity of AgNPs/CNTs/GO toward H2O2. Sensitive quantitative detection of DA was carried out by monitoring the decrease of differential pulse voltammetric (DPV) responses of AgNPs/CNTs/GO nanocomposite toward H2O2 oxidation. The DPV signal linearly decreased with increased concentration of DA from 3 to 110nmolL(-1) with a detection limit of 700±19.23pmolL(-1). Simple preparation, low operation cost, speed and validity are the decisive factors of this method motivating its application to biosensing investigation.

  18. Chromium removal by combining the magnetic properties of iron oxide with adsorption properties of carbon nanotubes.

    Science.gov (United States)

    Gupta, V K; Agarwal, Shilpi; Saleh, Tawfik A

    2011-03-01

    The adsorption features of multiwall carbon nanotubes (MWCNTs) with the magnetic properties of iron oxides have been combined in a composite to produce a magnetic adsorbent. Composites of MWCNT/nano-iron oxide were prepared, and were characterized by X-ray diffraction (XRD), field emission scanning electron microscope (FESEM) and Fourier transform infrared spectroscopy (FTIR). XRD suggests that the magnetic phase formed is maghemite and/or magnetite. FESEM image shows nano-iron oxides attached to a network of MWCNTs. The adsorption capability of the composites was tested in batch and fixed bed modes. The composites have demonstrated a superior adsorption capability to that of activated carbon. The results also show that the adsorptions of Cr(III) on the composites is strongly dependent on contact time, agitation speed and pH, in the batch mode; and on flow rate and the bed thickness in the fixed bed mode. Along with the high surface area of the MWCNTs, the advantage of the magnetic composite is that it can be used as adsorbent for contaminants in water and can be subsequently controlled and removed from the medium by a simple magnetic process. Copyright © 2011 Elsevier Ltd. All rights reserved.

  19. Reversible oxygen scavenging at room temperature using electrochemically reduced titanium oxide nanotubes

    Science.gov (United States)

    Close, Thomas; Tulsyan, Gaurav; Diaz, Carlos A.; Weinstein, Steven J.; Richter, Christiaan

    2015-05-01

    A material capable of rapid, reversible molecular oxygen uptake at room temperature is desirable for gas separation and sensing, for technologies that require oxygen storage and oxygen splitting such as fuel cells (solid-oxide fuel cells in particular) and for catalytic applications that require reduced oxygen species (such as removal of organic pollutants in water and oil-spill remediation). To date, however, the lowest reported temperature for a reversible oxygen uptake material is in the range of 200-300 °C, achieved in the transition metal oxides SrCoOx (ref. 1) and LuFe2O4+x (ref. 2) via thermal cycling. Here, we report rapid and reversible oxygen scavenging by TiO2-x nanotubes at room temperature. The uptake and release of oxygen is accomplished by an electrochemical rather than a standard thermal approach. We measure an oxygen uptake rate as high as 14 mmol O2 g-1 min-1, ˜2,400 times greater than commercial, irreversible oxygen scavengers. Such a fast oxygen uptake at a remarkably low temperature suggests a non-typical mechanistic pathway for the re-oxidation of TiO2-x. Modelling the diffusion of oxygen, we show that a likely pathway involves ‘exceptionally mobile’ interstitial oxygen produced by the oxygen adsorption and decomposition dynamics, recently observed on the surface of anatase.

  20. Cerium (IV) oxide nanotubes prepared by low temperature deposition at normal pressure

    Energy Technology Data Exchange (ETDEWEB)

    Boehme, M; Fu, G; Ionescu, E; Ensinger, W, E-mail: mboehme@ca.tu-darmstadt.de [Department of Materials Science, Darmstadt University of Technology, D-64287 Darmstadt (Germany)

    2011-02-11

    This paper reports the synthesis of cerium dioxide nanotubes (CeNTs) by electroless deposition using ion-track-etched polycarbonate templates. To achieve nanotubes with thin walls and small surface roughness the tubes were generated by a several-step-containing procedure under aqueous conditions. The approach reported below will process open end nanotubes with well-defined outer diameter and wall thickness.

  1. Cerium (IV) oxide nanotubes prepared by low temperature deposition at normal pressure.

    Science.gov (United States)

    Boehme, M; Fu, G; Ionescu, E; Ensinger, W

    2011-02-11

    This paper reports the synthesis of cerium dioxide nanotubes (CeNTs) by electroless deposition using ion-track-etched polycarbonate templates. To achieve nanotubes with thin walls and small surface roughness the tubes were generated by a several-step-containing procedure under aqueous conditions. The approach reported below will process open end nanotubes with well-defined outer diameter and wall thickness.

  2. Deposition of nanocrystalline nonstoichiometric chromium oxide coatings on the surface of multiwalled carbon nanotubes by chromium acetylacetonate vapor pyrolysis

    Science.gov (United States)

    Kremlev, K. V.; Ob'edkov, A. M.; Ketkov, S. Yu.; Kaverin, B. S.; Semenov, N. M.; Gusev, S. A.; Andreev, P. V.

    2017-04-01

    Nanocrystalline coatings of nonstoichiometric chromium oxide have been obtained for the first time on the surface of multiwalled carbon nanotubes (MWCNTs) by the method of metalorganic chemical-vapor deposition using chromium acetylacetonate as a precursor. The new hybrid nanomaterial (Cr2O2.4/MWCNT) has been characterized by X-ray diffraction, scanning electron microscopy, and thermogravimetric analysis. It is established that oxidation of the hybrid nanomaterial in air under soft conditions (at 380°C) leads to the formation of nanocrystalline chromium oxide (Cr2O3) on the surface of MWCNTs.

  3. Theoretical study on the oxidation of zigzag silicon carbide nanotubes (SiCNTs) by singlet O2

    Science.gov (United States)

    Wang, Hong; Liu, Wei; Zhao, Jing-xiang

    2012-11-01

    Singlet O2 produced upon photoexcitation is a very important oxidative reagent. The study on its reaction with nanotube might be useful not only to evaluate the stability of the nanotube upon air exposure and sunlight, but also to modify the properties of the nanotube. Considering the unique properties and wide applications of silicon carbide nanotube (SiCNT), in this paper, we performed extensive density functional theory (DFT) calculations to study the oxidation of a series of zigzag (n,0) SiCNTs (n=6 to 12) by singlet O2. It is found that the reaction process contains two steps, namely, (i) [2+2] cycloaddition of a singlet O2 to the Si-C bond, followed by (ii) the dissociation of the O-O bond, leading to the formation of an epoxide configuration with a highly exothermicity (>4.00 eV). Compared with pure SiCNT, the cycloaddition of singlet O2 on tube leads to the decrease of the band gap, while the formation of the stable epoxy structure render band gap increase. Our results indicate that the SiCNT is more prone to be degraded after exposure to air and sunlight.

  4. Theoretical study on the oxidation of zigzag silicon carbide nanotubes (SiCNTs) by singlet O{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Wang Hong [School of Chemical and Environmental Engineering, Harbin University of Science and Technology, Harbin 150040 (China); Liu Wei [Academy of Environmental Science of Heilongjiang, Harbin, 150056 (China); Zhao Jingxiang, E-mail: xjz_hmily@yahoo.com.cn [Department of Chemistry, Harbin Normal University, Harbin 150080 (China)

    2012-11-01

    Singlet O{sub 2} produced upon photoexcitation is a very important oxidative reagent. The study on its reaction with nanotube might be useful not only to evaluate the stability of the nanotube upon air exposure and sunlight, but also to modify the properties of the nanotube. Considering the unique properties and wide applications of silicon carbide nanotube (SiCNT), in this paper, we performed extensive density functional theory (DFT) calculations to study the oxidation of a series of zigzag (n,0) SiCNTs (n=6 to 12) by singlet O{sub 2}. It is found that the reaction process contains two steps, namely, (i) [2+2] cycloaddition of a singlet O{sub 2} to the Si-C bond, followed by (ii) the dissociation of the O-O bond, leading to the formation of an epoxide configuration with a highly exothermicity (>4.00 eV). Compared with pure SiCNT, the cycloaddition of singlet O{sub 2} on tube leads to the decrease of the band gap, while the formation of the stable epoxy structure render band gap increase. Our results indicate that the SiCNT is more prone to be degraded after exposure to air and sunlight.

  5. A general strategy for the preparation of carbon nanotubes and graphene oxide decorated with PdO nanoparticles in water.

    Science.gov (United States)

    He, Hongkun; Gao, Chao

    2010-07-02

    The preparation of carbon nanotube (CNT)/PdO nanoparticles and graphene oxide (GO)/PdO nanoparticle hybrids via a general aqueous solution strategy is reported. The PdO nanoparticles are generated in situ on the CNTs and GO by a one-step "green" synthetic approach in aqueous Pd(NO(3))(2) solution under ambient conditions without adding any additional chemicals. The production of PdO is confirmed by energy dispersive X-ray spectroscopy, X-ray diffraction, X-ray photoelectron spectroscopy, Raman spectroscopy, and thermal gravimetric analysis. The morphologies of the resulting CNT/PdO and GO/PdO nanohybrids are characterized by transmission and/or scanning transmission electron microscopy. PdO nanoparticles with an average size of 2-3 nm in diameter are decorated evenly along the surfaces of CNTs and GO. This synthesis strategy is demonstrated to be compatible for 1) CNTs with different modifications, including pristine, oxidized, and polymer-functionalized CNTs; 2) different types of CNTs, including single-walled carbon nanotubes (SWCNTs), double-walled carbon nanotubes (DWCNTs), and multiwalled carbon nanotubes (MWCNTs); and 3) different shapes of carbon materials, including tubular CNTs and planar GO. The as-prepared CNT/PdO and GO/PdO nanohybrids can be transformed into CNT/Pd and GO/Pd nanohybrids by reduction with NaBH(4), and can then be used as a heterogeneous catalyst in the catalytic reduction of 4-nitrophenol.

  6. Ultrathin-walled Co9S8 nanotube/reduced graphene oxide composite as an efficient electrocatalyst for the reduction of triiodide

    Science.gov (United States)

    Yuan, Hong; Jiao, Qingze; Liu, Jia; Liu, Xiufeng; Yang, Haoyi; Zhao, Yun; Wu, Qin; Shi, Daxin; Li, Hansheng

    2016-12-01

    A novel ultrathin-walled Co9S8 nanotube/reduced graphene oxide electrocatalyst, for the first time, is successfully prepared by a simple hydrothermal process coupling with an ion exchange process for the reduction of triiodide in dye-sensitized solar cells (DSSC). Ultrathin-walled Co9S8 nanotubes have an average diameter of 20-30 nm and a wall thickness of 3-4 nm, and the reduced graphene oxide possessing high conductivity is well dispersed in the Co9S8 nanotubes simultaneously, which contributed to the high specific surface area, well exposed active sites and excellent electric conductivity. The electrochemical performances of ultrathin-walled Co9S8 nanotube/reduced graphene oxide are evaluated by the EIS, Tafel polarization and CV measurements, exhibiting the significant improvement of electrocatalytic performance for the triiodide reduction. Optimizing the film thickness of Co9S8 nanotube/reduced graphene oxide counter electrode, the optimum photovoltaic conversion efficiency of 7.58% is obtained, which is even higher than that of the DSSC with Pt counter electrode (7.45%). In addition, the DSSC with Co9S8/reduced graphene oxide electrode exhibits a good repeatability and long-term electrochemical stability. Therefore, the ultrathin-walled Co9S8 nanotube/reduced graphene oxide is a reliable material to replace Pt.

  7. Oxidative Unzipping and Transformation of High Aspect Ratio Boron Nitride Nanotubes into “White Graphene Oxide” Platelets

    Science.gov (United States)

    Nautiyal, Pranjal; Loganathan, Archana; Agrawal, Richa; Boesl, Benjamin; Wang, Chunlei; Agarwal, Arvind

    2016-07-01

    Morphological and chemical transformations in boron nitride nanotubes under high temperature atmospheric conditions is probed in this study. We report atmospheric oxygen induced cleavage of boron nitride nanotubes at temperatures exceeding 750 °C for the first time. Unzipping is then followed by coalescence of these densely clustered multiple uncurled ribbons to form stacks of 2D sheets. FTIR and EDS analysis suggest these 2D platelets to be Boron Nitride Oxide platelets, with analogous structure to Graphene Oxide, and therefore we term them as “White Graphene Oxide” (WGO). However, not all BNNTs deteriorate even at temperatures as high as 1000 °C. This leads to the formation of a hybrid nanomaterial system comprising of 1D BN nanotubes and 2D BN oxide platelets, potentially having advanced high temperature sensing, radiation shielding, mechanical strengthening, electron emission and thermal management applications due to synergistic improvement of multi-plane transport and mechanical properties. This is the first report on transformation of BNNT bundles to a continuous array of White Graphene Oxide nanoplatelet stacks.

  8. A Comparative Study on the Critical Heat Flux Characteristics of Oxidized Multi-Walled Carbon Nanotube and Graphene Nanofluids

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Young Hun; Park, Sung Seek; Kim, Woo Joong; Kim, Nam Jin [Jeju National University, Jeju (Korea, Republic of)

    2015-05-15

    Boiling heat transfer is one of the most important processes in the various industries such as power generation, heat exchangers, cooling of high-power electronics components and cooling of nuclear reactors. The critical heat flux (CHF) phenomenon is signified the thermal limit during a boiling heat transfer. The heat transfer coefficient before the CHF is high enough to attain a high heat flux at a relatively low surface heat. However, the heat transfer coefficient remarkably decreases after the CHF occurs therefore the heating surface temperature of heat-transfer apparatus should be greatly increased. This induces risk of physical failure of heat transfer apparatus. Therefore, enhancement of CHF is essential for safety and economic efficiency of heat transfer system. In this study, the CHF characteristics of oxidized carbon nanotube and graphene nanofluids under the pool boiling state were comparative analysis. The pool boiling CHF experiments of oxidized carbon nanotube and graphene nanofluids carried out by the various concentrations. All of the two types of nanofluids showed higher CHF than the pure water. The result shows that the CHF of oxidized graphene nanofluids is higher than the oxidized carbon nanotube nanfluids.

  9. Graphitic carbon nitride (g-C3N4) coated titanium oxide nanotube arrays with enhanced photo-electrochemical performance.

    Science.gov (United States)

    Sun, Mingxuan; Fang, Yalin; Kong, Yuanyuan; Sun, Shanfu; Yu, Zhishui; Umar, Ahmad

    2016-08-09

    Herein, we report the successful formation of graphitic carbon nitride coated titanium oxide nanotube array thin films (g-C3N4/TiO2) via the facile thermal treatment of anodized Ti sheets over melamine. The proportion of C3N4 and TiO2 in the composite can be adjusted by changing the initial addition mass of melamine. The as-prepared samples are characterized by several techniques in order to understand the morphological, structural, compositional and optical properties. UV-vis absorption studies exhibit a remarkable red shift for the g-C3N4/TiO2 thin films as compared to the pristine TiO2 nanotubes. Importantly, the prepared composites exhibit an enhanced photocurrent and photo-potential under both UV-vis and visible light irradiation. Moreover, the observed maximum photo-conversion efficiency of the prepared composites is 1.59 times higher than that of the pristine TiO2 nanotubes. The optical and electrochemical impedance spectra analysis reveals that the better photo-electrochemical performance of the g-C3N4/TiO2 nanotubes is mainly due to the wider light absorption and reduced impedance compared to the bare TiO2 nanotube electrode. The presented work demonstrates a facile and simple method to fabricate g-C3N4/TiO2 nanotubes and clearly revealed that the introduction of g-C3N4 is a new and innovative approach to improve the photocurrent and photo-potential efficiencies of TiO2.

  10. Oxidative carbonylation of phenol with a Pd-O/CeO2-nanotube catalyst

    Institute of Scientific and Technical Information of China (English)

    Ye Yuan; Zhimiao Wang; Hualiang An; Wei Xue; Yanji Wang

    2015-01-01

    CeO2 nanotubes (CeO2-NT) were synthesized using carbon nanotubes as template by a liquid phase deposition and hydrothermal method. X-ray diffraction, transmission electron microscopy, and N2 adsorption-desorption were used to characterize the CeO2-NT. The wall of CeO2-NT was composed of small interconnected nanocrystallites ranging from 4 to 9 nm in size. The specific surface area of CeO2-NT was 108.8 m2/g with an outer diameter of 25 nm and length > 300 nm. Supported Pd cata-lyst, Pd-O/CeO2-NT, was prepared using CeO2-NT as the support. Temperature-programmed reduc-tion analysis showed that the surface oxygen on Pd-O/CeO2-NT could be reduced at low tempera-ture, therefore it showed high activity in the reaction. Pd-O/CeO2-NT was used as the catalyst for the oxidative carbonylation of phenol. It has better activity and DPC selectivity than Pd-O/CeO2-P, which was prepared by supporting Pd on zero dimensional CeO2particles. Under the optimized conditions, phenol conversion was 67.7% with 93.3% DPC selectivity with Pd-O/CeO2-NT. However, its catalyt-ic activity decreased when the catalyst was used for the second time. This was attributed to the destruction of the tubular structure of Pd-O/CeO2-NT and Pd leaching during the reaction.

  11. Folic acid mediated solid lipid nanocarriers loaded with docetaxel and oxidized single-walled carbon nanotubes

    Science.gov (United States)

    Zhu, Xiali; Huang, Shengnan; Xie, Yingxia; Zhang, Huijuan; Hou, Lin; Zhang, Yingjie; Huang, Heqing; Shi, Jinjin; Wang, Lei; Zhang, Zhenzhong

    2014-01-01

    Single-walled carbon nanotubes (SWNT) possess high-near-infrared absorption coefficient, large surface area, and have great potential in drug delivery. In this study, we obtained ultrashort oxidized SWNT (OSWNT) using mixed acid oxidation method. Then, docetaxel (DTX) and folic acid (FA) are conjugated with OSWNT via π- π accumulation and amide linkage, respectively. A targeting and photothermal sensitive drug delivery system FA-DTX-OSWNT-SLN was prepared following a microemulsion technique. The size and zeta potential of FA-DTX-OSWNT-SLN were 182.8 ± 2.8 nm and -34.59 ± 1.50 mV, respectively. TEM images indicated that FA-DTX-OSWNT-SLN was spherical and much darker than general solid lipid nanoparticles (SLN). Furthermore, OSWNT may wind round, insert into or be encapsulated into the nanocarriers. Compared with free DTX, FA-DTX-OSWNT-SLN could efficiently cross cell membranes and afford higher antitumor efficacy in MCF-7 cells in vitro. Meanwhile, the combination of near-infrared laser (NIR) irradiation at 808 nm significantly enhanced cell inhibition. In conclusion, FA-DTX-OSWNT-SLN drug delivery system in combination with 808 nm NIR laser irradiation may be promising for targeting and photothermal cancer therapy with multiple mechanisms in future.

  12. Catalytic performance of heteroatom-modified carbon nanotubes in advanced oxidation processes

    Institute of Scientific and Technical Information of China (English)

    João Restivo; Raquel P. Rocha; Adrián M. T. Silva; José J. M. Órfão; Manuel F. R. Pereira; José L. Figueiredo

    2014-01-01

    Multi-walled carbon nanotubes (CNTs) were submitted to chemical and thermal treatments in or-der to incorporate different heteroatoms on the surface. O-, S-and N-containing groups were suc-cessfully introduced onto the CNTs without significant changes of the textural properties. The cata-lytic activity of these heteroatom-modified CNTs was studied in two liquid phase oxidation pro-cesses:catalytic ozonation and catalytic wet air oxidation (CWAO), using oxalic acid and phenol as model compounds. In both cases, the presence of strongly acidic O-containing groups was found to decrease the catalytic activity of the CNTs. On the other hand, the introduction of S species (mainly sulfonic acids) enhanced the removal rate of the model compounds, particularly in the CWAO of phenol. Additional experiments were performed with a radical scavenger and sodium persulfate, in order to clarify the reaction mechanism. Nitrogen functionalities improve the catalytic performance of the original CNTs, regardless of the process or of the pollutant.

  13. A Facile Route to Metal Oxides/Single-Walled Carbon Nanotube Macrofilm Nanocomposites for Energy Storage

    Directory of Open Access Journals (Sweden)

    Zeyuan eCao

    2015-05-01

    Full Text Available Nanocomposites consisting of transition-metal oxides and carbon nanomaterials with a desired size and structure are highly demanded for high performance energy storage devices. Here, a facile two-step and cost-efficient approach relying on directly thermal treatment of chemical-vapor-deposition products is developed as a general synthetic method to prepare a family of metal oxides (MxOy (M=Fe, Co, Ni/single-walled carbon nanotube (SWNT macrofilm nanocomposites. The MxOy nanoparticles obtained are of 3-17 nm in diameter and homogeneously anchor on the free-standing SWNT macrofilms. NiO/SWNT also exhibits a high specific capacitance of 400 F g-1 and fast charge-transfer Faradaic redox reactions to achieve asymmetric supercapacitors with a high power and energy density. All MxOy/SWNT nanocomposites could deliver a high capacity beyond 1000 mAh g-1 and show excellent cycling stability for lithium-ion batteries. The impressive results demonstrate the promise for energy storage devices and the general approach may pave the way to synthesize other functional nanocomposites.

  14. Electrocatalytic oxidation of formic acid and formaldehyde on nanoparticle decorated single walled carbon nanotubes.

    Science.gov (United States)

    Selvaraj, V; Grace, A Nirmala; Alagar, M

    2009-05-01

    A potent catalyst has been prepared consisting of platinum (Pt), and platinum-palladium (Pt-Pd) nanoparticles supported on purified single-walled carbon nanotubes (Pt/CNT and Pt-Pd/CNT). Electrochemical characteristics of formic acid and formaldehyde oxidation on these catalysts are investigated via cyclic voltammetric analysis in mixed 0.5 M HCOOH (or 0.5 M HCHO) and 0.5 M H(2)SO(4) solutions. The results imply that the Pt-Pd/CNT electrodes exhibit a better activity than the corresponding Pt nanoparticles modified SWCNT electrodes. The modified electrode exhibits significant electrocatalytic activity towards formic acid and formaldehyde oxidation, which may be attributed due to the uniform dispersion of nanoparticles on SWCNTs and the efficacy of Pd species in Pt-Pd system. Such nanoparticles modified CNT electrodes exhibit better catalytic behavior towards formic acid and formaldehyde than the corresponding carbon electrodes, indicating that the system studied in the present work is the more promising system for use in fuel cells.

  15. Graphene, carbon nanotubes, zinc oxide and gold as elite nanomaterials for fabrication of biosensors for healthcare.

    Science.gov (United States)

    Kumar, Sandeep; Ahlawat, Wandit; Kumar, Rajesh; Dilbaghi, Neeraj

    2015-08-15

    Technological advancements worldwide at rapid pace in the area of materials science and nanotechnology have made it possible to synthesize nanoparticles with desirable properties not exhibited by the bulk material. Among variety of available nanomaterials, graphene, carbon nanotubes, zinc oxide and gold nanopartilces proved to be elite and offered amazing electrochemical biosensing. This encourages us to write a review which highlights the recent achievements in the construction of genosensor, immunosensor and enzymatic biosensor based on the above nanomaterials. Carbon based nanomaterials offers a direct electron transfer between the functionalized nanomaterials and active site of bioreceptor without involvement of any mediator which not only amplifies the signal but also provide label free sensing. Gold shows affinity towards immunological molecules and is most routinely used for immunological sensing. Zinc oxide can easily immobilize proteins and hence offers a large group of enzyme based biosensor. Modification of the working electrode by introduction of these nanomaterials or combination of two/three of above nanomaterials together and forming a nanocomposite reflected the best results with excellent stability, reproducibility and enhanced sensitivity. Highly attractive electrochemical properties and electrocatalytic activity of these elite nanomaterials have facilitated achievement of enhanced signal amplification needed for the construction of ultrasensitive electrochemical affinity biosensors for detection of glucose, cholesterol, Escherichia coli, influenza virus, cancer, human papillomavirus, dopamine, glutamic acid, IgG, IgE, uric acid, ascorbic acid, acetlycholine, cortisol, cytosome, sequence specific DNA and amino acids. Recent researches for bedside biosensors are also discussed.

  16. Electrochemical investigation of electrodeposited platinum nanoparticles on multi walled carbon nanotubes for methanol electro-oxidation

    Indian Academy of Sciences (India)

    HAJAR MOKARAMI GHARTAVOL; ROOZBEH SIAVASH MOAKHAR; ABOLGHASEM DOLATI

    2017-09-01

    The electrodeposition of platinum nanoparticles (PtNPs) on multiwall carbon nanotubes (MWCNTs)/fluorine-doped tin oxide glass (FTO) was investigated. Nucleation and growth mechanisms were studied via Scharifker and Hills model. Chronoamperometry results clearly show that the electrodepositionprocesses are diffusion-controlled and the diffusion coefficient is 1.5×10 ⁻⁵ cm ²/s. The semi-spherical particles with lamellar morphology were observed in 1M H2SO4, while a petal shape was discerned in 0.5M H ₂SO ₄. Also, dispersion, size, and uniformity of PtNPs were investigated, where the finer distribution of PtNPs with the average size less than 100 nm was obtained in 0.5M H ₂SO ₄ solution, and the mean diameter of Pt crystals was 20 nm. Finally, the electro-oxidation of methanol and oxygen reduction studied via cyclic voltammetry showed that as-prepared PtNPs/MWCNTs electrodes had superb electrocatalytic activity.

  17. Oxidized multiwalled carbon nanotubes decorated with silver nanoparticles for fluorometric detection of dimethoate.

    Science.gov (United States)

    Hsu, Chun-Wei; Lin, Zhong-Yi; Chan, Tzu-Yi; Chiu, Tai-Chia; Hu, Cho-Chun

    2017-06-01

    A novel method for the detection of dimethoate based on the peroxidase-like activity of silver-nanoparticles-modified oxidized multiwalled carbon nanotubes (AgNPs/oxMWCNTs) has been developed. The synthesized AgNPs/oxMWCNTs showed excellent peroxidease-like catalytic activity in hydrogen peroxide-Amplex red (AR) system (AR is oxidized to resorufinat, with the resorufin fluorescence at 584nm being used to monitor the catalytic activity). After dimethoate was added to AgNPs/oxMWCNTs, the interaction between dimethoate and the AgNPs inhibited the catalytic activity of AgNPs/oxMWCNTs. The decrease in fluorescence was used for the detection of dimethoate in the range of 0.01-0.35μgmL(-1) (R(2)=0.998) with a detection limit of 0.003μgmL(-1) (signal/noise=3). This method exhibited good selectivity for the detection of dimethoate even in the presence of high concentration of other pesticides. Consequently, the method was applied to measure the concentration of dimethoate residue in lake water and fruit, thus obtaining satisfactory results.

  18. Ultrafine ferroferric oxide nanoparticles embedded into mesoporous carbon nanotubes for lithium ion batteries

    Science.gov (United States)

    Gao, Guo; Zhang, Qiang; Cheng, Xin-Bing; Shapter, Joseph G.; Yin, Ting; Sun, Rongjin; Cui, Daxiang

    2015-12-01

    An effective one-pot hydrothermal method for in situ filling of multi-wall carbon nanotubes (CNT, diameter of 20-40 nm, length of 30-100 μm) with ultrafine ferroferric oxide (Fe3O4) nanoparticles (8-10 nm) has been demonstrated. The synthesized Fe3O4@CNT exhibited a mesoporous texture with a specific surface area of 109.4 m2 g-1. The loading of CNT, in terms of the weight ratio of Fe3O4 nanoparticles, can reach as high as 66.5 wt%. Compared to the conventional method of using a Al2O3 membrane as template to fill CNT with iron oxides nanoparticles, our strategy is facile, effective, low cost and easy to scale up to large scale production (~1.42 g per one-pot). When evaluated for lithium storage at 1.0 C (1 C = 928 mA g-1), the mesoporous Fe3O4@CNT can retain at 358.9 mAh g-1 after 60 cycles. Even when cycled at high rate of 20 C, high capacity of 275.2 mAh g-1 could still be achieved. At high rate (10 C) and long life cycling (500 cycles), the cells still exhibit a good capacity of 137.5 mAhg-1.

  19. Active and stable platinum/ionic liquid/carbon nanotube electrocatalysts for oxidation of methanol

    Directory of Open Access Journals (Sweden)

    Guan-Lin Lin

    2014-10-01

    Full Text Available Platinum (Pt nanoparticles (NPs on carbon nanotubes (CNTs from PtCl62− ions through a facile ionic liquid (IL-assisted method has been developed and used for methanol oxidation. 1-Butyl-3-methylimidazolium (BMIM with four different counter ions (PF6−, Cl–, Br–, and I– have been tested for the preparation of Pt/IL/CNT nanohybrids, showing the counterions of ILs play an important role in the formation of small sizes of Pt NPs. Only [BMIM][PF6] and [BMIM][Cl] allow reproducible preparation of Pt/IL/CNT nanohybrids. The electroactive surface areas of Pt/[BMIM][PF6]/CNT, Pt/[BMIM][Cl]/CNT, Pt/CNT, and commercial Pt/C electrodes are 62.8, 101.5, 78.3, and 87.4 m2 g−1, respectively. The Pt/[BMIM][Cl]/CNT nanohybrid-modified electrodes provide higher catalytic activity (251.0 A g−1 at a negative onset potential of −0.60 V than commercial Pt/C-modified ones do (133.5 A g−1 at −0.46 V. The Pt/[BMIM][Cl]/CNT electrode provides the highest ratio (4.52 of forward/reverse oxidation current peak, revealing a little accumulation of carbonaceous residues.

  20. Responses of soil ammonia-oxidizing microorganisms to repeated exposure of single-walled and multi-walled carbon nanotubes.

    Science.gov (United States)

    Chen, Qinglin; Wang, Hui; Yang, Baoshan; He, Fei; Han, Xuemei; Song, Ziheng

    2015-02-01

    The impacts of carbon nanotubes (CNTs) including single-walled carbon nanotubes (SWNTs) and multi-walled carbon nanotubes (MWNTs) on soil microbial biomass and microbial community composition (especially on ammonium oxidizing microorganisms) have been evaluated. The first exposure of CNTs lowered the microbial biomass immediately, but the values recovered to the level of the control at the end of the experiment despite the repeated addition of CNTs. The abundance and diversity of ammonium-oxidizing archaea (AOA) were higher than that of ammonium-oxidizing bacteria (AOB) under the exposure of CNTs. The addition of CNTs decreased Shannon-Wiener diversity index of AOB and AOA. Two-way ANOVA analysis showed that CNTs had significant effects on the abundance and diversity of AOB and AOA. Dominant terminal restriction fragments (TRFs) of AOB exhibited a positive relationship with NH4(+), while AOA was on the contrary. It implied that AOB prefer for high-NH4(+) soils whereas AOA is favored in low NH4(+) soils in the CNT-contaminated soil. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Surveying and Comparing Thermal Conductivity and Physical Properties of Oil Base NanoFluids Containing Carbon and Metal Oxide Nanotubes

    Directory of Open Access Journals (Sweden)

    H. Ahmadi

    2012-12-01

    Full Text Available In this research, nano materials with tubular structures are added to SAE 20W50 engine oil to study the rate of their effects on the properties of engine oil. Multi-walled carbon nanotubes (MWCNTs and vanadium oxide nanotubes (VONTs has been used as two different additive materials, one of them is carbonic and the other is metallic oxides and their effect on  different parameters containing viscosity, thermal conductivity coefficient, flash point and pour point of engine oil as the quality properties of engine oil has been studied and compared. The samples of two concentrations 0.1 and 0.2 wt% with using planetary ball mill were made. The obtained results show that MWCNTs in all cases, which  have been evaluated, had better functionality with respect to vanadium oxide nanotubes. In the 0.1 wt% concentration, flash point of MWCNTs/oil and VONTs/oil increased about 9.3% and 5.8% respectively. In addition, thermal conductivity of them increased 13.2% and 10.2% respectively.

  2. Chemically Synthesised Pt Particles on Surface Oxidized Carbon Nanotubes as an Effective Catalyst for Direct Methanol Fuel Cell

    Institute of Scientific and Technical Information of China (English)

    Mohammad; yari; Sajjad; Sadaghat; Sharehjini

    2007-01-01

    1 Results The synthesis, physical characterization and electrochemical analysis of Pt particles prepared using the surface oxidized carbon nanotubes prepared by chemically anchoring Pt onto the surface of the CNTs with 2.0 mol/L HNO3 by refluxing for 10 h to introduce surface functional groups.The particles of Pt are synthesized by reduction with sodium borohydride of H2PtCl6. The electro-oxidation of liquid methanol of this catalyst as a thin layer on glassy carbon electrode is investigated at room te...

  3. Influence of annealing temperature on the morphology and the supercapacitance behavior of iron oxide nanotube (Fe-NT)

    Science.gov (United States)

    Sarma, Biplab; Jurovitzki, Abraham L.; Smith, York R.; Ray, Rupashree S.; Misra, Mano

    2014-12-01

    The article demonstrates the influence of annealing temperature on the supercapacitance behavior of iron oxide nanotube synthesized on pure iron substrate by electrochemical anodization process. Anodization was performed in an ethylene glycol solution containing 3% H2O and 0.5 wt. % NH4F. The as-anodized nanotubes were annealed in an ambient atmosphere at various temperatures ranging from 200 to 700 °C for a fixed duration of time (2 h). The morphology and crystal phases developed after anodization and subsequent annealing processes were examined using field emission scanning electron microscopy (FE-SEM), X-ray diffraction (XRD) and X-ray photospectroscopy (XPS). Cyclic voltammetry (CV), galvanostatic charge/discharge and electrochemical impedance spectroscopy (EIS) experiments were performed in 1 M Li2SO4 to evaluate the electrochemical capacitance properties of the oxide nanotube electrodes. It was found that the electrode annealed at 300 °C exhibited superior electrochemical capacitance compared to the electrodes annealed at other temperatures. The highest specific capacitance achieved after annealing at 300 °C was about 314 mF cm-2. The electrodes annealed at 200, 500, 600 and 700 °C displayed much lower specific capacitance compared to those annealed at 300 and 400 °C. Galvanostatic charge-discharge experiments conducted on some of the annealed electrodes demonstrated excellent cycle stability with more than 80% capacitance retention after 1000 charge-discharge cycles.

  4. Pulse electrodeposition of Pt and Pt–Ru methanol-oxidation nanocatalysts onto carbon nanotubes in citric acid aqueous solutions

    Energy Technology Data Exchange (ETDEWEB)

    Chou, Huei-Yu [Department of Engineering and System Science, National Tsing Hua University, Hsinchu 30013, Taiwan, ROC (China); Hsieh, Chien-Kuo [Department of Materials Engineering, Ming Chi University of Technology, New Taipei City 24301, Taiwan, ROC (China); Tsai, Ming-Chi; Wei, Yu-Hsuan; Yeh, Tsung-Kuang [Department of Engineering and System Science, National Tsing Hua University, Hsinchu 30013, Taiwan, ROC (China); Tsai, Chuen-Horng, E-mail: tsai@aec.gov.tw [Department of Engineering and System Science, National Tsing Hua University, Hsinchu 30013, Taiwan, ROC (China)

    2015-06-01

    In this study, platinum nanoparticle/carbon nanotube (Pt NP/CNT) and platinum–ruthenium nanoparticle (Pt–Ru NP/CNT) hybrid nanocatalysts were prepared by the pulse-electrodeposition method in different aqueous solutions containing citric acid (CA) or sulfuric acid (SA). The electrocatalytic properties of the Pt NP/CNT and Pt–Ru NP/CNT electrodes prepared using different aqueous solutions were investigated for methanol oxidation. The results show that the electrochemical mass activities of these hybrid nanocatalysts prepared in the CA aqueous solution were increased by factors of 1.46 and 2.77 for Pt NPs and Pt–Ru NPs, respectively, compared with those prepared in SA aqueous solutions using the same procedure. These increased mass activities are attributed to the CA playing dual roles as both a stabilizing agent and a particle size reducing agent in the aqueous solutions. The approach developed in this work enables further reductions in the particle sizes of noble-metal nanocatalysts. - Highlights: • Pulse-electrodeposition of Pt or Pt–Ru nanoparticles on carbon nanotubes • Carbon nanotubes used as a catalyst-supporting material • Citric acid used as reducing agent in the aqueous electrodeposition solutions • Electrochemical activity for methanol oxidation improved by a factor of 1.46 to 2.77.

  5. Ferric oxide nanoparticles decorated carbon nanotubes and carbon nanofibers: From synthesis to enhanced removal of phenol

    Directory of Open Access Journals (Sweden)

    Hamza A. Asmaly

    2015-09-01

    Full Text Available In this work, ferric oxide nanoparticle decorated carbon fibers and carbon nanotubes (CNF/Fe2O3 and CNT/Fe2O3 were synthesized and characterized by scanning electron microscopy (SEM, thermogravimetric analysis (TGA, energy dispersive X-ray spectroscopy (EDS, transmission electron microscopy (TEM, X-ray diffraction (XRD, zeta potential and BET surface area analyzer. The prepared nanocomposites were evaluated or the removal of phenol ions from aqueous solution. The effects of experimental parameters, such as shaking speed, pH, contact time, adsorbent dosage and initial concentration, were evaluated for the phenol removal efficiency. The adsorption experimental data were represented by both the Langmuir and Freundlich isotherm models. The Langmuir isotherm model best fitted the data on the adsorption of phenol, with a high correlation coefficient. The adsorption capacities, as determined by the Langmuir isotherm model were 0.842, 1.098, 1.684 and 2.778 mg/g for raw CNFs, raw CNTs, CNF–Fe2O3 and CNT–Fe2O3, respectively.

  6. Synthesis of benzimidazole-grafted graphene oxide/multi-walled carbon nanotubes composite for supercapacitance application

    Energy Technology Data Exchange (ETDEWEB)

    Srivastava, Rajesh Kr., E-mail: r05bhu@gmail.com [Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 637371 Singapore (Singapore); Xingjue, Wang [Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 637371 Singapore (Singapore); Kumar, Vinod [Department of Zoology, Banaras Hindu University, Varanasi (India); Srivastava, Anchal [Department of Physics, Banaras Hindu University, Varanasi (India); Singh, Vidya Nand [CSIR-National Physical Laboratory, New Delhi (India)

    2014-11-05

    Highlights: • We are reporting supercapacitance performance of BI-GO/MWCNTs composite. • The specific capacitance of BI-GO/MWCNTs is 275 and 460 F/g at 200 and 5 mV/s scan rate. • This composite has shown 224 F/g capacitance after 1300 cycles at 200 mV/s scan rate. - Abstract: We are reporting the fabrication, characterizations and supercapacitance performance of benzimidazole-grafted graphene oxide/multi-walled carbon nanotubes (BI-GO/MWCNTs) composite. The synthesis of BI-GO materials involves cyclization reaction of carboxylic groups on GO among the hydroxyl and amino groups on o-phenylenediamine. The BI-GO/MWCNTs composite has been fabricated via in situ reduction of BI-GO using hydrazine in presence of MWCNTs. Scanning electron microscopy (SEM), Transmission electron microscopy (TEM), Raman spectroscopy, X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR) have been used to characterize its surface and elemental composition. The uniform dispersion of MWCNTs with BI-GO helps to improve the charge transfer reaction during electrochemical process. The specific capacitance of BI-GO/MWCNTs composite is 275 and 460 F/g at 200 and 5 mV/s scan rate in 1 mol/L aqueous solution of H{sub 2}SO{sub 4}. This BI-GO/MWCNTs composite has shown 224 F/g capacitance after 1300 cycles at 200 mV/s scan rate, which represents its good electrochemical stability.

  7. Solid source growth of Si oxide nanowires promoted by carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Congxiang [CINTRA CNRS/NTU/THALES, Nanyang Technological University, Singapore 637553 (Singapore); Novitas, Nanoelectronics Centre of Excellence, School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798 (Singapore); Liu, Wen-wen; Wang, Xingli [Novitas, Nanoelectronics Centre of Excellence, School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798 (Singapore); Li, Xiaocheng [Laboratory of clean energy chemistry and materials, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, No. 18 Tianshui Middle Road, Lanzhou 730000 (China); Tan, Chong Wei [CINTRA CNRS/NTU/THALES, Nanyang Technological University, Singapore 637553 (Singapore); Novitas, Nanoelectronics Centre of Excellence, School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798 (Singapore); Tay, Beng Kang, E-mail: ebktay@ntu.edu.sg [CINTRA CNRS/NTU/THALES, Nanyang Technological University, Singapore 637553 (Singapore); Novitas, Nanoelectronics Centre of Excellence, School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798 (Singapore); Coquet, Philippe [CINTRA CNRS/NTU/THALES, Nanyang Technological University, Singapore 637553 (Singapore)

    2014-09-30

    Highlights: • An array of well aligned and uniform CNTs is successfully fabricated by PECVD. • SiONW growth utilizes Si substrate as the source, ruling out the usage of silane. • With CNT array on the substrate, SiONW growth is improved significantly. • CNTs help dispersion of the catalysts and diffusion of the Si atoms. - Abstract: We report a method to promote solid source growth of Si oxide nanowires (SiONWs) by using an array of vertically aligned carbon nanotubes (CNTs). It starts with the fabrication of CNT array by plasma enhanced chemical vapor deposition (PECVD) on Si wafers, followed by growth of SiONWs. Herein, CNTs serve as a scaffold, which helps the dispersion of catalysts for SiONWs and also provides space for hydrogen which boosts the diffusion of Si atoms and hence formation of SiONWs. As the result, a three dimensional (3D) hybrid network of densely packed SiONWs and CNTs can be produced rapidly.

  8. Striking multiple synergies created by combining reduced graphene oxides and carbon nanotubes for polymer nanocomposites

    Science.gov (United States)

    Song, Ping'an; Liu, Lina; Fu, Shenyuan; Yu, Youming; Jin, Chunde; Wu, Qiang; Zhang, Yan; Li, Qian

    2013-03-01

    The extraordinary properties of carbon nanotubes (CNTs) and graphene stimulate the development of advanced composites. Recently, several studies have reported significant synergies in the mechanical, electrical and thermal conductivity properties of polymer nanocomposites by incorporating their nanohybrids. In this work, we created polypropylene nanocomposites with homogeneous dispersion of CNTs and reduced graphene oxides via a facile polymer-latex-coating plus melt-mixing strategy, and investigated their synergistic effects in their viscoelastic, gas barrier, and flammability properties. Interestingly, the results show remarkable synergies, enhancing their melt modulus and viscosity, O2 barrier, and flame retardancy properties and respectively exhibiting a synergy percentage of 15.9%, 45.3%, and 20.3%. As previously reported, we also observed remarkable synergistic effects in their tensile strength (14.3%) and Young’s modulus (27.1%), electrical conductivity (32.3%) and thermal conductivity (34.6%). These impressive results clearly point towards a new strategy to create advanced materials by adding binary combinations of different types of nanofillers.

  9. Vanadium oxide-carbon nanotube composite films characterized by spectroscopic ellipsometry

    Science.gov (United States)

    He, Qiong; Xu, Xiangdong; Gu, Yu; Wang, Meng; Yao, Jie; Jiang, Yadong; Sun, Minghui; Ao, Tianhong; Lian, Yuxiang; Wang, Fu; Li, Xinrong

    2016-10-01

    Spectroscopic ellipsometry (SE) is utilized to characterize the vanadium oxide (VO x )-single walled carbon nanotube (SWCNT) composite films prepared by sol-gel. Five Tauc-Lorentz oscillators model is employed to describe the dispersions in the optical responses of VO x and VO x -SWCNT thin films. Results reveal that if the SWCNT concentration in the composite film is increased, the refractive index is decreased, while the extinction coefficient is increased. Moreover, higher SWCNT content leads to lower optical band gap (E g) but larger localized state (E e). Interestingly, both E g and E e values reach saturated at a SWCNT content of ~8 wt%. Particularly, the peak transition energies of the 5 Tauc-Lorentz oscillators have been assigned to the specific transitions according to the band structures of VO x . This work reveals the feasibility of investigating the optical properties and microstructures of VO x -SWCNT composite films by SE. These experimental results will be helpful for better understanding the VO x -SWCNT composite films, and promoting future characterizations of other SWCNT-based composites by SE.

  10. Enhanced dielectric performance in polymer composite films with carbon nanotube-reduced graphene oxide hybrid filler.

    Science.gov (United States)

    Kim, Jin-Young; Kim, TaeYoung; Suk, Ji Won; Chou, Harry; Jang, Ji-Hoon; Lee, Jong Ho; Kholmanov, Iskandar N; Akinwande, Deji; Ruoff, Rodney S

    2014-08-27

    The electrical conductivity and the specific surface area of conductive fillers in conductor-insulator composite films can drastically improve the dielectric performance of those films through changing their polarization density by interfacial polarization. We have made a polymer composite film with a hybrid conductive filler material made of carbon nanotubes grown onto reduced graphene oxide platelets (rG-O/CNT). We report the effect of the rG-O/CNT hybrid filler on the dielectric performance of the composite film. The composite film had a dielectric constant of 32 with a dielectric loss of 0.051 at 0.062 wt% rG-O/CNT filler and 100 Hz, while the neat polymer film gave a dielectric constant of 15 with a dielectric loss of 0.036. This is attributed to the increased electrical conductivity and specific surface area of the rG-O/CNT hybrid filler, which results in an increase in interfacial polarization density between the hybrid filler and the polymer.

  11. Electrochemical activity evaluation of chemically damaged carbon nanotube with palladium nanoparticles for ethanol oxidation

    Science.gov (United States)

    Ahmed, Mohammad Shamsuddin; Jeon, Seungwon

    2015-05-01

    The carbon nanotube (CNT) has unique electrical and structural properties due to it's sp2 π-conjugative structure that leads to the higher electrocatalysis. The π-conjugative structure, that allows the CNT interact with various compounds and metal nanoparticles (NPs) through π-π electronic interaction. However, the damage of π-conjugative sidewall of CNT that can be hinder the electrocatalytic activity has found. For this study, the CNT, as base material, has been prepared through a conventional acid treatment method up to 15 h; the higher degree of sidewall damage has been observed in last 5 h during treatment period. The short and long term acid treated (denoted as CNT and CNT-COOH, respectively) CNTs have been subsequently fabricated with palladium NPs (denoted as CNT/Pd and CNT-Pd, respectively) and employed as ethanol oxidation reaction (EOR) catalysts. The CNT-Pd displays a poor electrocatalytic performance towards EOR than that of CNT/Pd due to the damage of π-conjugative sidewall. The kinetic parameters including poisoning tolerance have also been hampered by the surface damage. The CNT/Pd (∼3.3 folds) and CNT-Pd (∼1.5 folds) are express higher electrocatalytic activity and poisoning tolerance than that of Pd/C while Pd mass loading remains in the same amount.

  12. Nitrite Oxidation with Copper-Cobalt Nanoparticles on Carbon Nanotubes Doped Conducting Polymer PEDOT Composite.

    Science.gov (United States)

    Wang, Junjie; Xu, Guiyun; Wang, Wei; Xu, Shenghao; Luo, Xiliang

    2015-09-01

    Copper-cobalt bimetal nanoparticles (Cu-Co) have been electrochemically prepared on glassy carbon electrodes (GCEs), which were electrodeposited with conducting polymer nanocomposites of poly(3,4-ethylenedioxythiophene) (PEDOT) doped with carbon nanotubes (CNTs). Owing to their good conductivity, high mechanical strength, and large surface area, the PEDOT/CNTs composites offered excellent substrates for the electrochemical deposition of Cu-Co nanoparticles. As a result of their nanostructure and the synergic effect between Cu and Co, the Cu-Co/PEDOT/CNTs composites exhibited significantly enhanced catalytic activity towards the electrochemical oxidation of nitrite. Under optimized conditions, the nanocomposite-modified electrodes had a fast response time within 2 s and a linear range from 0.5 to 430 μm for the detection of nitrite, with a detection limit of 60 nm. Moreover, the Cu-Co/PEDOT/CNTs composites were highly stable, and the prepared nitrite sensors could retain more than 96 % of their initial response after 30 days.

  13. Thermal sensitivity of carbon nanotube and graphene oxide containing responsive hydrogels

    Directory of Open Access Journals (Sweden)

    E. Manek

    2016-08-01

    Full Text Available Comparative investigations are reported on poly(N-isopropylacrylamide (PNIPA gels of various carbon nanotube (CNT and graphene oxide (GO contents synthesized under identical conditions. The kind and concentration of the incorporated carbon nanoparticles (CNPs influence the swelling and stress-strain behaviour of the composites. Practically independently of the filler content, incorporation of CNPs appreciably improves the fracture stress properties of the gels. The time constant and the swelling ratio of the shrinkage following an abrupt increase in temperature of the swelling medium from 20 to 50 °C can be adjusted by selecting both the type and the amount of nanoparticle loading. This offers a means of accurately controlling the deswelling kinetics of drug release with PNIPA systems, and could be employed in sensor applications where fast and excessive shrinkage are a significant drawback. Both CNTs and GO enhance the infrared sensitivity of the PNIPA gel, thus opening a route for the design of novel drug transport and actuator systems. It is proposed that the influence of the CNPs depends more on their surface reactivity during the gel synthesis rather than on their morphology. One of the important findings of this study is the existence of a thermally conducting network in the GO filled gels.

  14. Zinc Oxide-Multi Walled Carbon Nanotubes Nanocomposites for Carbon Monoxide Gas Sensor Application.

    Science.gov (United States)

    Alharbi, Najlaa D; Ansari, M Shahnawaze; Salah, Numan; Khayyat, Suzan A; Khan, Zishan H

    2016-01-01

    Zinc oxide (ZnO)/multi walled carbon nanotubes (MWCNTs) composites based sensors with different ZnO concentrations were fabricated to improve carbon monoxide (CO) gas sensing properties in comparison to the sensors based on bare MWCNTs. To study the structure, morphology and elemental composition of the resultant products, X-ray diffraction (XRD), Field emission scanning electron microscopy (FESEM) and Energy dispersive X-ray spectroscopy (EDS) were carried out. It has been observed that as the concentration of ZnO is increased more and more ZnO nanoparticles in the form of nodes get attached to MWCNTs resulting the reduction in average diameter of MWCNTs. The typical response of ZnO/MWCNTs composites based gas sensors for different CO concentrations (40, 100, 140 and 200 ppm) was studied by using very advanced sensing setup attached to I-V measurement system. Different sensing parameters such as: resistive response, sensitivity and response time were estimated at room temperature for all the fabricated sensors. The results indicated that the sensor based on nanocomposite which has 30 mg ZnO dispersed on 20 mg MWCNTs showing highest sensitivity and fastest response. All the sensors showed response times ranging from 8 to 23 seconds. The sensing mechanism behind the sensors based on ZnO/MWCNTs nanocomposites for CO gas at room temperature is also discussed in the present report.

  15. Growth control of carbon nanotubes using by anodic aluminum oxide nano templates.

    Science.gov (United States)

    Park, Yong Seob; Choi, Won Seek; Yi, Junsin; Lee, Jaehyeong

    2014-05-01

    Anodic Aluminum Oxide (AAO) template prepared in acid electrolyte possess regular and highly anisotropic porous structure with pore diameter range from five to several hundred nanometers, and with a density of pores ranging from 10(9) to 10(11) cm(-2). AAO can be used as microfilters and templates for the growth of CNTs and metal or semiconductor nanowires. Varying anodizing conditions such as temperature, electrolyte, applied voltage, anodizing and widening time, one can control the diameter, the length, and the density of pores. In this work, we deposited Al thin film by radio frequency magnetron sputtering method to fabricate AAO nano template and synthesized multi-well carbon nanotubes on a glass substrate by microwave plasma-enhanced chemical vapor deposition (MPECVD). AAO nano-porous templates with various pore sizes and depths were introduced to control the dimension and density of CNT arrays. The AAO nano template was synthesize on glass by two-step anodization technique. The average diameter and interpore distance of AAO nano template are about 65 nm and 82 nm. The pore density and AAO nano template thickness are about 2.1 x 10(10) pores/cm2 and 1 microm, respectively. Aligned CNTs on the AAO nano template were synthesized by MPECVD at 650 degrees C with the Ni catalyst layer. The length and diameter of CNTs were grown 2 microm and 50 nm, respectively.

  16. Carbon nanotubes loaded with vanadium oxide for reduction NO with NH3 at low temperature☆

    Institute of Scientific and Technical Information of China (English)

    Shuli Bai; Shengtao Jiang; Huanying Li; Yujiang Guan

    2015-01-01

    The catalytic activity of carbon nanotubes-supported vanadium oxide (V2O5/CNTs) catalysts in the selective catalytic reduction (SCR) of NO with NH3 at low temperatures (≤250 °C) was investigated. The effects of V2O5 loading, reaction temperature, and presence of SO2 on the SCR activity were evaluated. The results show that V2O5/CNTs catalysts exhibit high activity for NO reduction with NH3 at low-temperatures. The catalysts also show very high stability in the presence of SO2. More interestingly, their activities are significantly promoted in-stead of being poisoned by SO2. The promoting effect of SO2 is distinctly associated with V2O5 loading, particularly maximized at low V2O5 loading, which indicated the role of CNTs support in this effect. The promoting effect of SO2 at low temperatures suggests that V2O5/CNTs catalysts are promising catalytic materials for low-temperature SCR reactions.

  17. Multi-Walled Carbon Nanotube-Doped Tungsten Oxide Thin Films for Hydrogen Gas Sensing

    Directory of Open Access Journals (Sweden)

    Adisorn Tuantranont

    2010-08-01

    Full Text Available In this work we have fabricated hydrogen gas sensors based on undoped and 1 wt% multi-walled carbon nanotube (MWCNT-doped tungsten oxide (WO3 thin films by means of the powder mixing and electron beam (E-beam evaporation technique. Hydrogen sensing properties of the thin films have been investigated at different operating temperatures and gas concentrations ranging from 100 ppm to 50,000 ppm. The results indicate that the MWCNT-doped WO3 thin film exhibits high sensitivity and selectivity to hydrogen. Thus, MWCNT doping based on E-beam co-evaporation was shown to be an effective means of preparing hydrogen gas sensors with enhanced sensing and reduced operating temperatures. Creation of nanochannels and formation of p-n heterojunctions were proposed as the sensing mechanism underlying the enhanced hydrogen sensitivity of this hybridized gas sensor. To our best knowledge, this is the first report on a MWCNT-doped WO3 hydrogen sensor prepared by the E-beam method.

  18. Multi-walled carbon nanotube-doped tungsten oxide thin films for hydrogen gas sensing.

    Science.gov (United States)

    Wongchoosuk, Chatchawal; Wisitsoraat, Anurat; Phokharatkul, Ditsayut; Tuantranont, Adisorn; Kerdcharoen, Teerakiat

    2010-01-01

    In this work we have fabricated hydrogen gas sensors based on undoped and 1 wt% multi-walled carbon nanotube (MWCNT)-doped tungsten oxide (WO(3)) thin films by means of the powder mixing and electron beam (E-beam) evaporation technique. Hydrogen sensing properties of the thin films have been investigated at different operating temperatures and gas concentrations ranging from 100 ppm to 50,000 ppm. The results indicate that the MWCNT-doped WO(3) thin film exhibits high sensitivity and selectivity to hydrogen. Thus, MWCNT doping based on E-beam co-evaporation was shown to be an effective means of preparing hydrogen gas sensors with enhanced sensing and reduced operating temperatures. Creation of nanochannels and formation of p-n heterojunctions were proposed as the sensing mechanism underlying the enhanced hydrogen sensitivity of this hybridized gas sensor. To our best knowledge, this is the first report on a MWCNT-doped WO(3) hydrogen sensor prepared by the E-beam method.

  19. Sorption of La(III) and Ce(III) by oxidized carbon nanotubes

    Science.gov (United States)

    Lyu, Sh. T.; Rakov, E. G.

    2016-10-01

    The ion-exchange sorption of La(III) and Ce(III) from nitrate solutions using oxidized carbon nanotubes with a solubility of 4.2 g/L is studied at metal concentration C = 5-160 mg/L, pH 2.5-6.0, ratio S: L = 0.002-0.06, and room temperature. At C = 35 mg/L, the equilibrium capacity is shown to grow dramatically with pH rising from 3.0 to 4.0-4.5 and reaching 840 mg/g in La and 950 mg/g in Ce when S: L 4.0-4.5. The introduction of ionic salts is found to reduce the capacity (at pH > 4 and concentrations of 0.01 M and 0.1 M NaCl, the Ce capacity is reduced to ~500 and ~200 mg/g). It is concluded that the sorption equilibrium is better described by the Langmuir equation, while the process kinetics, by pseudo-first and pseudo-second order equations.

  20. Solution-processed zinc oxide nanoparticles/single-walled carbon nanotubes hybrid thin-film transistors

    Science.gov (United States)

    Liu, Fangmei; Sun, Jia; Qian, Chuan; Hu, Xiaotao; Wu, Han; Huang, Yulan; Yang, Junliang

    2016-09-01

    Solution-processed thin-film transistors (TFTs) are the essential building blocks for manufacturing the low-cost and large-area consumptive electronics. Herein, solution-processed TFTs based on the composites of zinc oxide (ZnO) nanoparticles and single-walled carbon nanotubes (SWCNTs) were fabricated by the methods of spin-coating and doctor-blading. Through controlling the weight of SWCNTs, the ZnO/SWCNTs TFTs fabricated by spin-coating demonstrated a field-effect mobility of 4.7 cm2/Vs and a low threshold voltage of 0.8 V, while the TFTs devices fabricated by doctor-blading technique showed reasonable electrical performance with a mobility of 0.22 cm2/Vs. Furthermore, the ion-gel was used as an efficient electrochemical gate dielectric because of its large electric double-layer capacitance. The operating voltage of all the TFTs devices is as low as 4.0 V. The research suggests that ZnO/SWCNTs TFTs have the potential applications in low-cost, large-area and flexible consumptive electronics, such as chemical-biological sensors and smart label.

  1. Photocatalytic effect of anodic titanium oxide nanotubes on various cell culture media

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Chun-Kang; Hu, Kan-Hung; Wang, Shing-Hoa [National Taiwan Ocean University, Center for Marine Bioenvironment and Biotechnology, Keelung (China); National Taiwan Ocean University, Department of Mechanical and Mechatronic Engineering, Keelung (China); Hsu, Todd [National Taiwan Ocean University, Center for Marine Bioenvironment and Biotechnology, Keelung (China); National Taiwan Ocean University, Institute of Bioscience and Biotechnology, Keelung (China); Tsai, Huei-Ting [National Taiwan Ocean University, Institute of Bioscience and Biotechnology, Keelung (China); Chen, Chien-Chon [National United University, Department of Energy and Resources, Miaoli (China); Liu, Shiu-Mei [National Taiwan Ocean University, Center for Marine Bioenvironment and Biotechnology, Keelung (China); National Taiwan Ocean University, Institute of Marine Biology, Keelung (China); Lin, Tai-Yuan [National Taiwan Ocean University, Institute of Optoelectronic Sciences, Keelung (China); Chen, Chin-Hsing [National Chiao Tong University, Department of Applied Chemistry, Hsinchu (China)

    2011-02-15

    The use of titanium dioxide (TiO{sub 2}) in photodynamic therapy for the treatment of cancer cells has been proposed following studies of cultured cancer cells. In this work, an ordered channel array of anodic titanium oxide (ATO) was fabricated by anodizing titanium foil. The ATO layer of nanotubes with diameters of 100 nm was made in NH{sub 4}F electrolyte by anodization. The photocatalytic effect of ATO was examined on various culture media by ultraviolet A (UV-A) (366 nm) irradiation. After UV-A irradiation of the ATO layer, redox potential of Tris-HCl buffer (pH 7.5) and dilute acrylamide solution increased instantaneously. The redox potential of the serum-containing RPMI1640 medium also increased dramatically, while that of serum-containing MEM and DMEM media increased slightly. The UVA-induced high redox potential was correlated with the greater ability to break down plasmid DNA strands. These phenomena suggest that a culture medium, such as RPMI1640, with a greater ability to produce free radical may be associated with a stronger photocatalytic effect of ATO on cultured cancer cells reported previously. (orig.)

  2. Facile synthesis of polyaniline nanotubes using reactive oxide templates for high energy density pseudocapacitors

    KAUST Repository

    Chen, Wei

    2013-01-01

    A remarkable energy density of 84 W h kg(cell) -1 and a power density of 182 kW kg(cell) -1 have been achieved for full-cell pseudocapacitors using conducting polymer nanotubes (polyaniline) as electrode materials and ionic liquid as electrolytes. The polyaniline nanotubes were synthesized by a one-step in situ chemical polymerization process utilizing MnO2 nanotubes as sacrificial templates. The polyaniline-nanotube pseudocapacitors exhibit much better electrochemical performance than the polyaniline-nanofiber pseudocapacitors in both acidic aqueous and ionic liquid electrolytes. Importantly, the incorporation of ionic liquid with polyaniline-nanotubes has drastically improved the energy storage capacity of the PAni-nanotube pseudocapacitors by a factor of ∼5 times compared to that of the PAni-nanotube pseudocapacitors in the acidic aqueous electrolyte. Furthermore, even after 10000 cycles, the PAni-nanotube pseudocapacitors in the ionic liquid electrolyte maintain sufficient high energy density and can light LEDs for several minutes, with only 30 s quick charge. © 2013 The Royal Society of Chemistry.

  3. Influence of the different oxidation treatment on the performance of multi-walled carbon nanotubes in the catalytic wet air oxidation of phenol.

    Science.gov (United States)

    Yang, Shaoxia; Wang, Xingang; Yang, Hongwei; Sun, Yu; Liu, Yunxia

    2012-09-30

    Multi-walled carbon nanotubes (MWCNTs) functionalized by different oxidants (HNO(3)/H(2)SO(4), H(2)O(2), O(3) and air) have been used as catalysts for the wet air oxidation of phenol. To investigate the effect of the oxidation conditions on the structure of the functionalized MWCNTs, various characterization techniques, e.g., scanning electron microscopy (SEM), transmission electron microscopy (TEM), Raman spectroscopy, Fourier-transform infrared spectroscopy (FT-IR) and X-ray photoelectron spectroscopy (XPS) have been used. The MWCNTs treated with O(3) and H(2)O(2) show higher amounts of oxygen-containing functional groups and carboxylic acid groups, and a weaker acidic nature, in comparison with those treated with other oxidizing agents. All the functionalized MWCNTs exhibit good activity in the catalytic wet air oxidation (CWAO) of phenol. However, the MWCNTs treated with O(3) show the highest activity with desirable stability in comparison with other functionalized MWCNTs, indicating that the functionalization of carbon nanotubes with O(3) is a very promising strategy in synthesizing efficient catalysts for CWAO.

  4. Ecotoxicity of single-wall carbon nanotubes to freshwater snail Lymnaea luteola L.: Impacts on oxidative stress and genotoxicity.

    Science.gov (United States)

    Ali, Daoud; Ahmed, Mukhtar; Alarifi, Saud; Ali, Huma

    2015-01-01

    Mammalian studies have raised concerns about the toxicity of carbon nanotubes, but there is very limited data on ecogenotoxicity to aquatic organisms. The aim of this study was to determine eco-geno toxic effects of single walled carbon nanotubes (SWCNTs) in fresh water snail, Lymnea luteola (L. luteola). A static test system was used to expose L. luteola to a freshwater control, 0.05, 0.15, 0.30, 0.46 mg/L SWCNTs for up to 4 days. SWCNTs changed a significant reduction in glutathione, glutathione-S-transferase, and glutathione peroxidase with in hepatopancreas of L. luteola. Lipid peroxidation (LPO) and catalase showed dose- and time-dependent and statistically significant increase in hepatopancreas during SWCNTs exposure compared with control. However, a significant (p snail L. luteola. The oxidative stress and comet assay can successfully be used as sensitive tools of aquatic pollution biomonitoring.

  5. Mechanisms of Multi-walled Carbon Nanotubes-Induced Oxidative Stress and Genotoxicity in Mouse Fibroblast Cells.

    Science.gov (United States)

    Alarifi, Saud; Ali, Daoud

    2015-01-01

    The extensive production and wide application of carbon nanotubes have made investigations of its toxic potentials necessary. In the present study, we explored the underlying mechanism through which multi-walled carbon nanotubes (MWCNTs) induce toxicity in mouse fibroblast cells (L929). 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide and neutral red uptake viability assays were used to examine mechanisms of cytotoxicity. Dose and time-dependent cytotoxicity was observed in L929 cells. The MWCNTs significantly increased the generation of reactive oxygen species, lipid peroxidation, superoxide dismutase, and decreased glutathione. It was observed that the MWCNTs induced caspase 3 activity. The highest DNA strand breakage was detected by comet assay at 300 µg/mL of MWCNTs. Thus, the data indicate that MWCNTs induced cytotoxicity and apoptosis in L929 cells via oxidative stress.

  6. High-performance hydrogen production and oxidation electrodes with hydrogenase supported on metallic single-wall carbon nanotube networks.

    Science.gov (United States)

    Svedružić, Draženka; Blackburn, Jeffrey L; Tenent, Robert C; Rocha, John-David R; Vinzant, Todd B; Heben, Michael J; King, Paul W

    2011-03-30

    We studied the electrocatalytic activity of an [FeFe]-hydrogenase from Clostridium acetobutylicum (CaH2ase) immobilized on single-wall carbon nanotube (SWNT) networks. SWNT networks were prepared on carbon cloth by ultrasonic spraying of suspensions with predetermined ratios of metallic and semiconducting nanotubes. Current densities for both proton reduction and hydrogen oxidation electrocatalytic activities were at least 1 order of magnitude higher when hydrogenase was immobilized onto SWNT networks with high metallic tube (m-SWNT) content in comparison to hydrogenase supported on networks with low metallic tube content or when SWNTs were absent. We conclude that the increase in electrocatalytic activities in the presence of SWNTs was mainly due to the m-SWNT fraction and can be attributed to (i) substantial increases in the active electrode surface area, and (ii) improved electronic coupling between CaH2ase redox-active sites and the electrode surface.

  7. Oxidative stress and inflammatory response in dermal toxicity of single-walled carbon nanotubes.

    Science.gov (United States)

    Murray, A R; Kisin, E; Leonard, S S; Young, S H; Kommineni, C; Kagan, V E; Castranova, V; Shvedova, A A

    2009-03-29

    Single-walled carbon nanotubes (SWCNT) represent a novel material with unique electronic and mechanical properties. The extremely small size ( approximately 1 nm diameter) renders their chemical and physical properties unique. A variety of different techniques are available for the production of SWCNT; however, the most common is via the disproportionation of gaseous carbon molecules supported on catalytic iron particles (high-pressure CO conversion, HiPCO). The physical nature of SWCNT may lead to dermal penetration following deposition on exposed skin. This dermal deposition provides a route of exposure which is important to consider when evaluating SWCNT toxicity. The dermal effects of SWCNT are largely unknown. We hypothesize that SWCNT may be toxic to the skin. We further hypothesize that SWCNT toxicity may be dependent upon the metal (particularly iron) content of SWCNT via the metal's ability to interact with the skin, initiate oxidative stress, and induce redox-sensitive transcription factors thereby affecting/leading to inflammation. To test this hypothesis, the effects of SWCNT were assessed both in vitro and in vivo using EpiDerm FT engineered skin, murine epidermal cells (JB6 P+), and immune-competent hairless SKH-1 mice. Engineered skin exposed to SWCNT showed increased epidermal thickness and accumulation and activation of dermal fibroblasts which resulted in increased collagen as well as release of pro-inflammatory cytokines. Exposure of JB6 P+ cells to unpurified SWCNT (30% iron) resulted in the production of ESR detectable hydroxyl radicals and caused a significant dose-dependent activation of AP-1. No significant changes in AP-1 activation were detected when partially purified SWCNT (0.23% iron) were introduced to the cells. However, NFkappaB was activated in a dose-dependent fashion by exposure to both unpurified and partially purified SWCNT. Topical exposure of SKH-1 mice (5 days, with daily doses of 40 microg/mouse, 80 microg/mouse, or 160

  8. A General Strategy for the Preparation of Carbon Nanotubes and Graphene Oxide Decorated with PdO Nanoparticles in Water

    Directory of Open Access Journals (Sweden)

    Hongkun He

    2010-07-01

    Full Text Available The preparation of carbon nanotube (CNT/PdO nanoparticles and graphene oxide (GO/PdO nanoparticle hybrids via a general aqueous solution strategy is reported. The PdO nanoparticles are generated in situ on the CNTs and GO by a one-step “green” synthetic approach in aqueous Pd(NO32 solution under ambient conditions without adding any additional chemicals. The production of PdO is confirmed by energy dispersive X-ray spectroscopy, X-ray diffraction, X-ray photoelectron spectroscopy, Raman spectroscopy, and thermal gravimetric analysis. The morphologies of the resulting CNT/PdO and GO/PdO nanohybrids are characterized by transmission and/or scanning transmission electron microscopy. PdO nanoparticles with an average size of 2–3 nm in diameter are decorated evenly along the surfaces of CNTs and GO. This synthesis strategy is demonstrated to be compatible for 1 CNTs with different modifications, including pristine, oxidized, and polymer-functionalized CNTs; 2 different types of CNTs, including single-walled carbon nanotubes (SWCNTs, double-walled carbon nanotubes (DWCNTs, and multiwalled carbon nanotubes (MWCNTs; and 3 different shapes of carbon materials, including tubular CNTs and planar GO. The as-prepared CNT/PdO and GO/PdO nanohybrids can be transformed into CNT/Pd and GO/Pd nanohybrids by reduction with NaBH4, and can then be used as a heterogeneous catalyst in the catalytic reduction of 4-nitrophenol.

  9. Role of iron oxide impurities in electrocatalysis by multiwall carbon nanotubes: An investigation using a novel magnetically modified ITO electrodes

    Indian Academy of Sciences (India)

    Kanchan M Samant; Vrushali S Joshi; Kashinath R Patil; Santosh K Haram

    2014-04-01

    The role of iron oxide impurities in the electrocatalytic properties of multiwall carbon nanotubes (MWCNTs) prepared by catalytic chemical vapour decomposition method (CCVD) is studied in detail. A novel magnetically modified electrodes have been developed by which MWCNTs were immobilized on indium-tin oxide (ITO) electrodes, without any chemical binders. The electro-catalytic oxidation of dopamine, and reduction of hydrogen peroxide have been studied by cyclic voltammetry on magnetically modified electrodes with (i) MWCNTs with occluded iron oxide impurities (Fe-MWCNTs), (ii) MWCNTs grown on iron oxide nanoparticle particulate films (Io-MWCNTs) and (iii) pristine iron oxide nanoparticle particulate film (Io-NPs). A shift towards less positive potentials for the oxidation of dopamine was observed which is in the order of Fe-MWCNTs < Io-MWCNTs < Io-NPs. Similarly, trend towards less negative potentials for the reduction of hydrogen peroxide was observed. Thus, the electrocatalytic activities displayed by MWCNTs have been attributed to the iron oxide impurities associated with it. The systematic variation was related to the nature of interaction of iron oxide nanoparticles with MWCNT surface.

  10. Adsorption of Toluene and Paraxylene from Aqueous Solution Using Pure and Iron Oxide Impregnated Carbon Nanotubes: Kinetics and Isotherms Study

    Science.gov (United States)

    Abbas, Aamir; Ihsanullah; Al-Baghli, Nadhir A. H.

    2017-01-01

    Multiwall carbon nanotubes (CNTs) and iron oxide impregnated carbon nanotubes (CNTs-iron oxide) were investigated for the adsorption of hazardous toluene and paraxylene (p-xylene) from aqueous solution. Pure CNTs were impregnated with iron oxides nanoparticles using wet impregnation technique. Various characterization techniques including thermogravimetric analysis, scanning electron microscopy, elemental dispersion spectroscopy, X-ray diffraction, and nitrogen adsorption analysis were used to study the thermal degradation, surface morphology, purity, and surface area of the materials. Batch adsorption experiments show that iron oxide impregnated CNTs have higher degree of removal of p-xylene (i.e., 90%) compared with toluene (i.e., 70%), for soaking time 2 h, with pollutant initial concentration 100 ppm, at pH 6 and shaking speed of 200 rpm at 25°C. Pseudo-second-order model provides better fitting for the toluene and p-xylene adsorption. Langmuir and Freundlich isotherm models demonstrate good fitting for the adsorption data of toluene and p-xylene. PMID:28386208

  11. Ion channel mimetic membranes and silica nanotubes prepared from porous aluminum oxide templates

    Science.gov (United States)

    Mitchell, David Tanner

    Chapter 1 provides background information on the template synthesis of nanomaterials. The template synthesis method is examined with special attention to the use of membranes containing monodisperse cylindrical pores as templates. Several examples of the utility of template-synthesized nanomaterials are given. The production of one type of template membrane, nanopore alumina, is reviewed. Reviews of sol-gel and silane chemistry are also provided. In Chapter 2, a sol-gel template synthesis process is used to produce silica nanotubes within the pores of alumina templates. The nanotubes can be modified using a variety of chemistries, typically via a silanization process. Because the nanotubes are formed in a template, the interior and exterior surface can be modified independently. Modified nanotubes can be used for drug detoxification or as extractants for the removal of metal ions. The nanotube surface can also be biotinylated, which causes binding to avidinated surfaces. Composite microtubes of silica and various polymers are also prepared. Additionally, Au nanowires are shown to assemble with colloidal Au particles using dithiols as linkers. Chapter 3 describes the attachment of proteins onto template-synthesized silica nanotubes. The proteins are covalently linked via an aldehyde silane bridge that binds to pendant primary amino moieties on the protein. Protein-modified nanotubes function as highly specific extractants. Avidin-modified nanotubes extract biotin-coated Au nanoparticles from solution with high extraction efficiency. Immunoprotein-modified nanotubes extract the corresponding antibody from solution with high specificity. Antibody-modified nanotubes extract one enantiomer from a racemic mix. Enzymes, including drug detoxification enzymes, were also attached to the nanotubes and were shown to retain their catalytic activity. Immunoproteins on the outside of nanotubes can be used to direct nanotube binding, creating specific labeling agents. Chapter 4

  12. Enhancing the capacitances of electric double layer capacitors based on carbon nanotube electrodes by carbon dioxide activation and acid oxidization

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Polarizable electrodes of electric double layer capacitors(EDLCs) were made from carbon nanotubes(CNTs).Effect of carbon dioxide activation together with acid oxidation for the electrodes on the characteristics and performances of electrodes and EDLCs was studied.Carbon dioxide activation changed the microstructure of the electrodes,increased the effective surface area of CNTs and optimized the distribution of apertures of the electrodes.Acid oxidization modified the surface characteristics of CNTs.Based on the polarizable electrodes treated by carbon dioxide activation and acid oxidization,the performances of EDLCs were greatly enhanced.The specific capacitance of the electrodes with organic electrolyte was increased from 21.8 F/g to 60.4 F/g.

  13. Advances in electrocatalysts for oxygen evolution reaction of water electrolysis-from metal oxides to carbon nanotubes

    Directory of Open Access Journals (Sweden)

    Yi Cheng

    2015-12-01

    Full Text Available The water electrolysis for hydrogen production is constrained by the thermodynamically unfavorable oxygen evolution reaction (OER, which requires input of a large amount of energy to drive the reaction. One of the key challenges to increase the efficiency of the water electrolysis system is to develop highly effective and robust electrocatalysts for the OER. In the past 20–30 years, significant progresses have been made in the development of efficient electrocatalysts, including metal oxides, metal oxide-carbon nanotubes (CNTs hybrid and metal-free CNTs based materials for the OER. In this critical review, the overall progress of metal oxides catalysts and the role of CNTs in the development of OER catalyst are summarized, and the latest development of new metal free CNTs-based OER catalyst is discussed.

  14. Enhanced Adsorption and Removal of Ciprofloxacin on Regenerable Long TiO2 Nanotube/Graphene Oxide Hydrogel Adsorbents

    Directory of Open Access Journals (Sweden)

    Yuan Zhuang

    2015-01-01

    Full Text Available To improve the adsorption performance and regeneration ability of adsorbent, a simple method was designed to synthesize long TiO2 nanotube/reduced graphene oxide (rGO-TON hydrogel, which has good adsorption and regeneration capacity toward ciprofloxacin. rGO-TON hydrogel could form 3D structure, which makes the separation and regeneration of adsorbent easy. For comparison, commercial P25 particle is used to prepare composite hydrogel with rGO; the results showed that TiO2 nanotube supports the graphene sheets better than P25 particles, which would reduce the agglomeration of graphene sheets. rGO-TON have larger specific surface area (138.2 m2/g than rGO-P25 (79.4 m2/g. In this paper, ciprofloxacin was chosen as target pollutants, the rGO-TON obtain excellent adsorption capacity, and the maximum adsorption capacities of rGO-TON for ciprofloxacin calculated from Langmuir model are 178.6 mg/g (R2=0.9929, 181.8 mg/g (R2=0.9954, and 108.7 mg/g (R2=0.9964 for graphene oxide (GO, GO-TON, and GO-P25, respectively. In regeneration, the adsorption capacity of rGO-TON and rGO-P25 has little reduced after 5 cycles, while the adsorption capacity of rGO decreases to below 100 mg/g. Results of this work are of great significance for environmental applications of regenerable long TiO2 nanotube/graphene oxide hydrogel as a promising adsorbent nanomaterial for antibiotic pollutants from aqueous solutions.

  15. Carbon nanotube filled with magnetic iron oxide and modified with polyamidoamine dendrimers for immobilizing lipase toward application in biodiesel production

    Science.gov (United States)

    Fan, Yanli; Su, Feng; Li, Kai; Ke, Caixia; Yan, Yunjun

    2017-01-01

    Superparamagnetic multi-walled carbon nanotubes (mMWCNTs) were prepared by filling multi-walled carbon nanotubes (MWCNTs) with iron oxide, and further modified by linking polyamidoamine (PAMAM) dendrimers (mMWCNTs-PAMAM) on the surface. Then, mMWCNTs-PAMAM was employed as the carrier and successfully immobilized Burkholderia cepacia lipase (BCL) via a covalent method (BCL-mMWCNTs-G3). The maximum activity recovery of the immobilized lipase was 1,716% and the specific activity increased to 77,460 U/g-protein, 17-fold higher than that of the free enzyme. The immobilized lipase displayed significantly enhanced thermostability and pH-resistance, and could efficiently catalyze transesterification to produce biodiesel at a conversion rate of 92.8%. Moreover, it possessed better recycling performance. After 20 cycles of repeated used, it still retained ca. 90% of its original activity, since the carbon nanotube−enzyme conjugates could be easily separated from the reaction mixture by using a magnet. This study provides a new perspective for biotechnological applications by adding a magnetic property to the unique intrinsic properties of nanotubes. PMID:28358395

  16. Synthesis of coaxial nanotubes of polyaniline and poly(hydroxyethyl methacrylate by oxidative/initiated chemical vapor deposition

    Directory of Open Access Journals (Sweden)

    Alper Balkan

    2017-04-01

    Full Text Available Vapor-phase synthesis techniques of polymeric nanostructures offer unique advantages over conventional, solution-based techniques because of their solventless nature. In this work, we report the fabrication of coaxial polymer nanotubes using two different chemical vapor deposition methods. The fabrication process involves the deposition of an outer layer of the conductive polyaniline (PANI by oxidative chemical vapor deposition, followed by the deposition of the inner layer of poly(2-hydroxyethyl methacrylate (pHEMA hydrogel by initiated chemical vapor deposition. The vapor-phase techniques allowed for fine-tuning of the thickness of the individual layers, keeping the functionalities of the polymers intact. The response of the single components and the coaxial nanotubes to changes in humidity was investigated for potential humidity sensor applications. For single-component conductive PANI nanotubes, the resistance changed parabolically with relative humidity because of competing effects of doping and swelling of the PANI polymer under humid conditions. Introducing a hydrogel inner layer increased the overall resistance, and enhanced swelling, which caused the resistance to continuously increase with relative humidity.

  17. Metabolomic Analysis of Liver Cells Exposed to Carbon Nanotubes and Graphene Oxide

    Science.gov (United States)

    Carbon nanotubes (CNTs) and other graphenic nanomaterials are being used extensively in industrial, consumer, and mechanical applications based in part on their unique structural, optical and electronic properties. Due to the widespread use of these nanoparticles (NPs), human and...

  18. Scanning and transmission electron microscopy investigation of multiwall carbon nanotube/nickel oxide nanocomposite thin films

    CSIR Research Space (South Africa)

    Roro, Kittessa T

    2011-12-01

    Full Text Available Owing to their unique electronic and optical properties, nanocomposite thin films are widely used for converting solar radiation therapy into other conventional energy forms, such as heat and electricity. Carbon nanotube-based composites which can...

  19. Rational design of coaxial structured carbon nanotube-manganese oxide (CNT-MnO2) for energy storage application

    Science.gov (United States)

    Salunkhe, Rahul R.; Ahn, Heejoon; Kim, Jung Ho; Yamauchi, Yusuke

    2015-05-01

    Recently, there has been great research interest in the development of composites (core-shell structures) of carbon nanotubes (CNTs) with metal oxides for improved electrochemical energy storage, photonics, electronics, catalysis, etc. Currently, the synthetic strategies for metal oxides/hydroxides are well established, but the development of core-shell structures by robust, cost-effective chemical methods is still a challenge. The main drawbacks for obtaining such electrodes are the very complex synthesis methods which ultimately result in high production costs. Alternatively, the solution based method offers the advantages of simple and cost effective synthesis, as well as being easy to scale up. Here, we report on the development of multi-walled carbon nanotube-manganese oxide (CNT-MnO2) core-shell structures. These samples were directly utilized for asymmetric supercapacitor (ASC) applications, where the CNT-MnO2 composite was used as the positive electrode and ZIF-8 (zeolitic imidazolate framework, ZIF) derived nanoporous carbon was used as the negative electrode. This unconventional ASC shows a high energy density of 20.44 W h kg-1 and high power density of 16 kW kg-1. The results demonstrate that these are efficient electrodes for supercapacitor application.

  20. Electrocatalytic oxidation and determination of homocysteine at carbon nanotubes modified paste electrode using dopamine as a mediator

    Directory of Open Access Journals (Sweden)

    Mohammadzadeh Safoora

    2013-01-01

    Full Text Available A carbon paste electrode modified with multiwall carbon nanotubes (MWCNTPE was prepared to study the electrocatalytic activity of dopamine (DP in the presence of homocysteine (HCy and it was used for determination of HCy. The diffusion coefficient of HCy (D = 6.79×10−6 cm2 s−1, and the kinetic parameters of its oxidation such as electron transfer coefficient (α = 0.46, and rate constant (kh = 7.44×102 dm3 mol-1 s-1 were also determined using electrochemical approaches. Under the optimum pH of 5.0, the peak current of oxidation of HCy at MWCNTPE in the presence of DP occurs at a potential about 530 mV and the results showed that the oxidation peak current of HCy at the modified carbon nanotubes electrode was higher than on unmodified electrode. The peak current of differential pulse voltammograms of HCy solutions increased linearly in the range of 3.0-600.0 μM HCy with the detection limit of 2.08 μM HCy. This method was also examined for determination of HCy in physiological serum and urine samples.

  1. Phenolic sensor development based on chromium oxide-decorated carbon nanotubes for environmental safety.

    Science.gov (United States)

    Rahman, Mohammed M; Balkhoyor, Hasan B; Asiri, Abdullah M

    2017-03-01

    A nanocomposite (NC) composed of chromium(III)oxide nanomaterials decorated carbon nanotubes (Cr2O3-CNT NC) was prepared via a simple solution method with reducing agents in an alkaline medium. The Cr2O3-CNT NC was characterized using ultraviolet-visible (UV/Vs.) spectroscopy, Fourier-transform infrared (FTIR) spectroscopy, energy-dispersive X-ray spectroscopy (XEDS), X-ray powder diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and field-emission scanning electron microscopy (FESEM). The Cr2O3-CNT composite was deposited on a flat glassy carbon electrode (GCE) with conducting nafion (5%) binders to produce a sensor that exhibited fast response and high selectivity toward 4-methoxyphenol (4MP) in phosphate buffer phase at pH 7. Furthermore, the sensor performance parameters, including the sensitivity, lower detection range, reliability, and reproducibility, ease of integration, long-term stability, and selectivity were investigated in detail. The calibration plot was found to be linear in the concentration range of 0.01 nM-0.1 μM. The sensitivity and detection limit were calculated as 1.4768 μA cm(-2) μM(-1) and 0.06428 ± 0.0002 nM (at a signal-to-noise ratio of 3), respectively. Thus, it was concluded that the proposed selective and efficient sensor represents a promising approach to effectively detect toxic phenolic compounds in the environment with acceptable and reliable results. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Layered double hydroxide-oxidized carbon nanotube hybrids as highly efficient flame retardant nanofillers for polypropylene

    Science.gov (United States)

    Gao, Yanshan; Zhang, Yu; Williams, Gareth R.; O’Hare, Dermot; Wang, Qiang

    2016-01-01

    Aqueous miscible organic layered double hydroxides (AMO-LDHs) can act as organophilic inorganic flame retardant nanofillers for unmodified non-polar polymers. In this contribution, AMO [Mg3Al(OH)8](CO3)0.5·yH2O LDH–oxidized carbon nanotube (AMO-LDH–OCNT) hybrids are shown to perform better than the equivalent pure AMO-LDH. A synergistic effect between the AMO-LDH and OCNT was observed; this endows the hybrid material with enhanced flame retardancy, thermal stability, and mechanical properties. The thermal stability of polypropylene (PP) was significantly enhanced by adding AMO-LDH–OCNT hybrids. For PP mixed with AMO-LDH–OCNT hybrids to produce a composite with 10 wt% LDH and 2 wt% OCNT, the 50% weight loss temperature was increased by 43 °C. Further, a system with 10 wt% of AMO-LDH and 1 wt% OCNT showed a peak heat release rate (PHRR) reduction of 40%, greater than the PHRR reduction with PP/20 wt% AMO-LDH (31%). The degree of dispersion (mixability) between AMO-LDH and OCNT has a significant effect on the flame retardant performance of the hybrids. In addition, the incorporation of AMO-LDH–OCNT hybrids led to better mechanical properties, such as higher tensile strength (27.5 MPa) and elongation at break (17.9%), than those composites containing only AMO-LDH (25.6 MPa and 7.5%, respectively). PMID:27752096

  3. Carbon nanotube/nanofiber embedded nanoporous anodized aluminium oxide surface and its tribological properties.

    Science.gov (United States)

    Kushwaha, M K; Sil, Anjan; Ray, S

    2008-08-01

    Nanoporous alumina has been prepared by anodization of pure aluminium using phosphoric acid electrolyte. Carbon nanotubes/nanofibres (CNTs/CNFs) are grown within the pores by chemical vapour deposition technique, using acetylene gas as carbon precursor. Such synthesis of nanostructured carbonaceous materials within the nanoporous oxide template has high potential for many applications (e.g., electronics, magnetic, etc.) in nanotechnology. Possibility of using such material combination for engineering systems where abrasion resistance coupled with self-lubrication (at comparatively higher loads) are the key requirements, has been explored through the present work. Pore structure has been characterized by SEM/FE-SEM in this study and CNTs/CNFs have been examined by TEM, FE-SEM and Raman spectroscopy. While the pore diameters are found to lie in the range of 180-220 nm, the CNTs/CNFs diameter are observed to be in the range of 50 to 220 nm. The CNTs/CNFs growing from bottom of the pores are found to replicate the pore diameter, while those grown above the surface are varying significantly in diameter and probably matching the diameter of the catalyst, which remains adsorbed on the top surface and inner walls of the pores. On comparing friction and wear properties of both materials (viz. anodized alumina and CNTs/CNFs embedded anodized alumina) as determined by pin-on-disc machine using hardened steel disc as counterface, it is found that wear rate and coefficient of friction of CNTs embedded composite surface is significantly lower which is attributed to formation of transfer layer of hard wear resistant alumina mechanically mixed with graphitic CNTs/CNFs.

  4. Cobalt oxide nanoparticle-modified carbon nanotubes as an electrocatalysts for electrocatalytic evolution of oxygen gas

    Indian Academy of Sciences (India)

    Jahan Bakhsh Raoof; Fereshteh Chekin; Vahid Ehsani

    2015-02-01

    A simple procedure was developed to prepare cobalt oxide nanoparticles (nano-CoO) on multiwall carbon nanotube-modified glassy carbon electrode (MWNT/GCE). Scanning electron microscopy revealed the electrodeposition of nano-CoO with an average particle size of 25 nm onto MWNT/GCE. Also, the presence of nano-CoO was revealed by energy dispersive X-ray spectra. The electrocatalytic activity of nano-CoO and MWNT composite-modified GCE (CoO–MWNT/GCE) has been examined towards the oxygen evolution reaction (OER) by linear sweep voltammetry. The OER is significantly enhanced at CoO–MWNT/GCE, as demonstrated by a negative shift in the polarization curves at the CoO–MWNT/GCE compared with that obtained at the CoO–GCE and GCE. Optimization of the operating experimental conditions (i.e., solution pH and loading level of nano-CoO) has been achieved to maximize the electrocatalytic activity of CoO–MWNT/GCE. The maximum electrocatalytic activity towards the OER was obtained in alkaline media (pH = 13). The electrocatalytic activity of CoO–MWNT/GCE increased with the number of potential cycles employed for the CoO deposition till a certain loading (20 cycles) beyond which an adverse effect is observed. The fabricated CoO–MWNT/GCE exhibited a good stability and durability. The value of energy saving per gram of oxygen gas at a current density of 10 mA cm-2 is 19.3 kWh kg-1.

  5. Layered double hydroxide-oxidized carbon nanotube hybrids as highly efficient flame retardant nanofillers for polypropylene

    Science.gov (United States)

    Gao, Yanshan; Zhang, Yu; Williams, Gareth R.; O'Hare, Dermot; Wang, Qiang

    2016-10-01

    Aqueous miscible organic layered double hydroxides (AMO-LDHs) can act as organophilic inorganic flame retardant nanofillers for unmodified non-polar polymers. In this contribution, AMO [Mg3Al(OH)8](CO3)0.5·yH2O LDH-oxidized carbon nanotube (AMO-LDH-OCNT) hybrids are shown to perform better than the equivalent pure AMO-LDH. A synergistic effect between the AMO-LDH and OCNT was observed; this endows the hybrid material with enhanced flame retardancy, thermal stability, and mechanical properties. The thermal stability of polypropylene (PP) was significantly enhanced by adding AMO-LDH-OCNT hybrids. For PP mixed with AMO-LDH-OCNT hybrids to produce a composite with 10 wt% LDH and 2 wt% OCNT, the 50% weight loss temperature was increased by 43 °C. Further, a system with 10 wt% of AMO-LDH and 1 wt% OCNT showed a peak heat release rate (PHRR) reduction of 40%, greater than the PHRR reduction with PP/20 wt% AMO-LDH (31%). The degree of dispersion (mixability) between AMO-LDH and OCNT has a significant effect on the flame retardant performance of the hybrids. In addition, the incorporation of AMO-LDH-OCNT hybrids led to better mechanical properties, such as higher tensile strength (27.5 MPa) and elongation at break (17.9%), than those composites containing only AMO-LDH (25.6 MPa and 7.5%, respectively).

  6. Electrocatalytic oxidation and determination of homocysteine at carbon nanotubes modified paste electrode using dopamine as a mediator

    OpenAIRE

    Mohammadzadeh Safoora; Fouladgar Masoud

    2013-01-01

    A carbon paste electrode modified with multiwall carbon nanotubes (MWCNTPE) was prepared to study the electrocatalytic activity of dopamine (DP) in the presence of homocysteine (HCy) and it was used for determination of HCy. The diffusion coefficient of HCy (D = 6.79×10−6 cm2 s−1), and the kinetic parameters of its oxidation such as electron transfer coefficient (α = 0.46), and rate constant (kh = 7.44×102 dm3 mol-1 s-1) were also determined using electroch...

  7. Transient oxidative stress and inflammation after intraperitoneal administration of multiwalled carbon nanotubes functionalized with single strand DNA in rats

    Energy Technology Data Exchange (ETDEWEB)

    Clichici, Simona, E-mail: simonaclichici@yahoo.com [Department of Physiology, University of Medicine and Pharmacy, Cluj-Napoca (Romania); Biris, Alexandru Radu [National R and D Institute of Isotopic and Molecular Technologies, Cluj-Napoca (Romania); Tabaran, Flaviu [University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca (Romania); Filip, Adriana [Department of Physiology, University of Medicine and Pharmacy, Cluj-Napoca (Romania)

    2012-03-15

    Multi-walled carbon nanotubes (MWCNTs) are widely used for nanotechnology. Their impact on living organisms is, however, not entirely clarified. Oxidative stress and inflammation seem to be the key mechanisms involved in MWCNTs' cytotoxicity. Until present, pulmonary and skin models were the main tested experimental designs to assess carbon nanotubes' toxicity. The systemic administration of MWCNTs is essential, with respect for future medical applications. Our research is performed on Wistar rats and is focused on the dynamics of oxidative stress parameters in blood and liver and pro-inflammatory cytokines in liver, after single dose (270 mg l{sup −1}) ip administration of MWCNTs (exterior diameter 15–25 nm, interior diameter 10–15 nm, surface 88 m{sup 2} g{sup −1}) functionalized with single strand DNA (ss-DNA). The presence of MWCNTs in blood was assessed by Raman spectroscopy, while in liver histological examination and confocal microscopy were used. It was found that ss-DNA-MWCNTs induce oxidative stress in plasma and liver, with the return of the tested parameters to normal values, 6 h after ip injection of nanotubes, with the exception of reduced glutathione in plasma. The inflammatory cytokines (TNF-α, IL-1β) had a similar pattern of evolution. We also assessed the level of ERK1/2 and the phosphorylation of p65 subunit of NF-kB in liver that had a transient increase and returned to normal at the end of the tested period. Our results demonstrate that ss-DNA-MWCNTs produce oxidative stress and inflammation, but with a transient pattern. Given the fact that antioxidants modify the profile not only for oxidative stress, but also of inflammation, the dynamics of these alterations may be of practical importance for future protective strategies. -- Highlights: ► ss-DNA-MWCNTs ip administration induce oxidative stress in plasma and liver. ► ss-DNA-MWCNTs ip administration determine liver inflammation. ► ERK1/2 and p65 phosphorylated NF

  8. Effects of substrate microstructure on the formation of oriented oxide nanotube arrays on Ti and Ti alloys

    Energy Technology Data Exchange (ETDEWEB)

    Ferreira, C.P. [State University of Campinas (Unicamp), Department of Materials Engineering (Dema/FEM), CP 6122, Campinas 13083-970, SP (Brazil); Gonçalves, M.C. [State University of Campinas (Unicamp), Instituto de Química, CP 6154, Cidade Universitária Zeferino Vaz, Campinas 13083-970, SP (Brazil); Caram, R. [State University of Campinas (Unicamp), Department of Materials Engineering (Dema/FEM), CP 6122, Campinas 13083-970, SP (Brazil); Bertazzoli, R., E-mail: rbertazzoli@fem.unicamp.br [State University of Campinas (Unicamp), Department of Materials Engineering (Dema/FEM), CP 6122, Campinas 13083-970, SP (Brazil); Rodrigues, C.A. [Federal University of São Paulo – Campus Diadema (UNIFESP – Campus Diadema), Departamento de Ciências Exatas e da Terra, Rua São Nicolau n° 210, 09913-030 Diadema, SP (Brazil)

    2013-11-15

    The formation of nanotubular oxide layers on Ti and Ti alloys has been widely investigated for the photocatalytic degradation of organic compounds due to their excellent catalytic efficiency, chemical stability, and low cost and toxicity. Aiming to improve the photocatalytic efficiency of this nanostructured oxide, this work investigated the influence of substrate grain size on the growth of nanotubular oxide layers. Ti and Ti alloys (Ti–6Al, Ti–6Al–7Nb) were produced by arc melting with non-consumable tungsten electrode and water-cooled copper hearth under argon atmosphere. Some of the ingots were heat-treated at 1000 °C for 12 and 24 h in argon atmosphere, followed by slow cooling rates to reduce crystalline defects and increase the grain size of their microstructures. Three types of samples were anodized: commercial substrate, as-prepared and heat-treated samples. The anodization was performed using fluoride solution and a cell potential of 20 V. The samples were characterized by optical microscopy, field-emission scanning electron microscopy and X-ray diffraction. The heat treatment preceding the anodization process increased the grain size of pure Ti and Ti alloys and promoted the formation of Widmanstätten structures in Ti{sub 6}Al{sub 7}Nb. The nanotubes layers grown on smaller grain and thermally untreated samples were more regular and homogeneous. In the case of Ti–6Al–7Nb alloy, which presents a α + β phase microstructure, the morphology of nanotubes nucleated on α matrix was more regular than those of nanotubes nucleated on β phase. After the annealing process, the Ti–6Al–7Nb alloy presented full diffusion process and the growth of equilibrium phases resulting in the appearance of regions containing higher concentrations of Nb, i.e. beta phase. In those regions the dissolution rate of Nb{sub 2}O{sub 5} is lower than that of TiO{sub 2}, resulting in a nanoporous layer. In general, heat treating reduces crystalline defects and promotes

  9. Hydrothermal synthesis of graphene oxide/multiwalled carbon nanotube/Fe3O4 ternary nanocomposite for removal of Cu (II) and methylene blue

    Science.gov (United States)

    Long, Zhihang; Zhan, Yingqing; Li, Fei; Wan, Xinyi; He, Yi; Hou, Chunyan; Hu, Hai

    2017-09-01

    In this work, highly activated graphene oxide/multiwalled carbon nanotube/Fe3O4 ternary nanocomposite adsorbent was prepared from a simple hydrothermal route by using ferrous sulfate as precursor. For this purpose, the graphene oxide/multiwalled carbon nanotube architectures were formed through the π-π attractions between them, followed by attaching Fe3O4 nanoparticles onto their surface. The structure and composition of as-prepared ternary nanocomposite were characterized by XRD, FTIR, XPS, SEM, TEM, Raman, TGA, and BET. It was found that the resultant porous graphene oxide/multiwalled carbon nanotube/Fe3O4 ternary nanocomposite with large surface area could effectively prevent the π-π stacking interactions between graphene oxide nanosheets and greatly improve sorption sites on the surfaces. Thus, owing to the unique ternary nanocomposite architecture and synergistic effect among various components, as-prepared ternary nanocomposite exhibited high separation efficiency when they were used to remove the Cu (II) and methylene blue from aqueous solutions. Furthermore, the adsorption isotherms of ternary nanocomposite structures for Cu (II) and methylene blue removal fitted the Langmuir isotherm model. This work demonstrated that the graphene oxide/multiwalled carbon nanotube/Fe3O4 ternary nanocomposite was promising as an efficient adsorbent for heavy metal ions and organic dye removal from wastewater in low concentration.

  10. Gas Transport Properties of Polybenzimidazole and Poly(Phenylene Oxide) Mixed Matrix Membranes Incorporated with PDA-Functionalised Titanate Nanotubes

    Science.gov (United States)

    Giel, V.; Perchacz, M.; Kredatusová, J.; Pientka, Z.

    2017-01-01

    Functionalised titanate nanotubes (TiNTs) were incorporated to poly(5,5-bisbenzimidazole-2,2-diyl-1,3-phenylene) (PBI) or poly(2,6-dimethyl-1,4-phenylene oxide) (PPO) for improving the interfacial compatibility between the polymer matrix and inorganic material and for altering the gas separation performance of the neat polymer membranes. Functionalisation consisted in oxidative polymerisation of dopamine-hydrochloride on the surface of non-functionalised TiNTs. Transmission electron microscopy (TEM) confirmed that a thin polydopamine (PDA) layer was created on the surface of TiNTs. 1.5, 3, 6, and 9 wt.% of PDA-functionalised TiNTs (PDA-TiNTs) were dispersed to each type of polymer matrix to create so-called mixed matrix membranes (MMMs). Infrared spectroscopy confirmed that -OH and -NH groups exist on the surface of PDA-TiNTs and that the nanotubes interact via H-bonding with PBI but not with PPO. The distribution of PDA-TiNTs in the MMMs was to some extent uniform as scanning electron microscope (SEM) studies showed. Beyond, PDA-TiNTs exhibit positive effect on gas transport properties, resulting in increased selectivities of MMMs. The addition of nanotubes caused a decrease in permeabilities but an increase in selectivities. It is shown that 9 wt.% of PDA-TiNTs in PBI gave a rise to CO2/N2 and CO2/CH4 selectivities of 112 and 63 %, respectively. In case of PPO-PDA-TiNT MMMs, CO2/N2 and CO2/CH4 selectivity increased about 25 and 17 %, respectively. Sorption measurement showed that the presence of PDA-TiNTs in PBI caused an increase in CO2 sorption, whereas the influence on other gases is less noticeable.

  11. One step biofunctionalized electrospun multiwalled carbon nanotubes embedded zinc oxide nanowire interface for highly sensitive detection of carcinoma antigen-125.

    Science.gov (United States)

    Paul, K Brince; Singh, Vikrant; Vanjari, Siva Rama Krishna; Singh, Shiv Govind

    2017-02-15

    Ovarian cancer is the most leading cause of cancer-related death in women . The carcinoma antigen-125, which is found on the surface of many ovarian cancer cells is known to be a gold standard clinical biomarker associated with life-threatening gynecological malignancy. In this work, we demonstrate a novel biosensor platform based on multiwalled carbon nanotubes embedded zinc oxide nanowire for the ultrasensitive detection of carcinoma antigen-125. Label free detection of the carcinoma antigen-125 was accomplished by differential voltammetry technique that demonstrated excellent sensitivity (90.14µA/(U/mL)/cm(2)) with a detection limit of 0.00113UmL(-1) concentration. The fabricated immunosensor exhibits good performance with wider detection range (0.001UmL(-1)-1kUmL(-1)), reproducibility, selectivity, acceptable stability, and thus is a potential cost-effective methodology for point-of-care diagnosis. The multiwalled carbon nanotubes (MWCNTs) embedded highly oriented zinc oxide (ZnO) nanowires were synthesized by simple, low cost electrospinning technique. Compared to pure ZnO nanowires, electrochemical activity of MWCNTs embedded ZnO nanowires was found to be much higher. The calcination temperature was optimized to avoid any decomposition of the CNTs and to obtain multiwalled carbon nanotubes embedded highly crystalline ZnO nanowires. The salient feature of this biosensing platform is that one step calcination process is enough to create the functional groups on MWCNT-ZnO nanowire surface that are effective for the covalent conjugation of antibody without further surface modification. To the best of our knowledge, this is the first report on MWCNT-ZnO nanowire based immunosensor explored for the detection of cancer biomarker.

  12. Comparative electron paramagnetic resonance investigation of reduced graphene oxide and carbon nanotubes with different chemical functionalities for quantum dot attachment

    Science.gov (United States)

    Pham, Chuyen V.; Krueger, Michael; Eck, Michael; Weber, Stefan; Erdem, Emre

    2014-03-01

    Electron paramagnetic resonance (EPR) spectroscopy has been applied to different chemically treated reduced graphene oxide (rGO) and multiwalled carbon nanotubes (CNTs). A narrow EPR signal is visible at g = 2.0029 in both GO and CNT-Oxide from carbon-related dangling bonds. EPR signals became broader and of lower intensity after oxygen-containing functionalities were reduced and partially transformed into thiol groups to obtain thiol-functionalized reduced GO (TrGO) and thiol-functionalized CNT (CNT-SH), respectively. Additionally, EPR investigation of CdSe quantum dot-TrGO hybrid material reveals complete quenching of the TrGO EPR signal due to direct chemical attachment and electronic coupling. Our work confirms that EPR is a suitable tool to detect spin density changes in different functionalized nanocarbon materials and can contribute to improved understanding of electronic coupling effects in nanocarbon-nanoparticle hybrid nano-composites promising for various electronic and optoelectronic applications.

  13. Fabrication of polypyrrole/vanadium oxide nanotube composite with enhanced electrochemical performance as cathode in rechargeable batteries

    Science.gov (United States)

    Zhou, Xiaowei; Chen, Xu; He, Taoling; Bi, Qinsong; Sun, Li; Liu, Zhu

    2017-05-01

    Vanadium oxide nanotubes (VOxNTs) with hollow as well as multi-walled features were fabricated under hydrothermal condition by soft-template method. This novel VOxNTs can be used as cathode material for lithium ion batteries (LIBs), but displaying low specific capacity and poor cycling performance owing to the residual of a mass of soft-template (C12H27N) and intrinsic low conductivity of VOx. Cation exchange technique and oxidative polymerization process of pyrrole monomers were conducted to wipe off partial soft-template without electrochemical activity within VOxNTs and simultaneously form polypyrrole coating on VOxNTs, respectively. The resulting polypyrrole/VOxNTs nanocomposite delivers much improved capacity and cyclic stability. Further optimizations, such as complete elimination of organic template and enhancing the crystallinity, can make this unique nanostructure a promising cathode for LIBs.

  14. Carbon nanotubes-Nafion composites as Pt-Ru catalyst support for methanol electro-oxidation in acid media

    Institute of Scientific and Technical Information of China (English)

    Shengzhou Chen; Fei Ye; Weiming Lin

    2009-01-01

    Carbon nanotubes-Nafion (CNTs-Nafion) composites were prepared by impregnated CNTs with Nafion in ethanol solution and characterized by FT-IR. Pt-Ru catalysts supported on CNTs-Nafion composites were synthesized by microwave-assisted polyol process. The physical and electrochemical properties of the catalysts were characterized by X-ray diffraction (XRD), transmission electron microscope (TEM), CO stripping voltammetry, cyclic voltammetry (CV) and chronoamperometry (CA). The results showed that the Nafion incorporation in CNTs-Nafion composites did not significantly alter the oxygen-containing groups on the CNTs surface. The Pt-Ru catalyst supported on CNTs-Nafion composites with 2 wt% Nafion showed good dispersion and the best CO oxidation and methanol electro-oxidation activities.

  15. Electrochemical study of oxidation process of promethazine using sensor based on carbon nanotubes paste containing immobilized DNA on inorganic matrix

    Directory of Open Access Journals (Sweden)

    João Paulo Marco

    2014-10-01

    Full Text Available In the present work the voltammetric behavior and the oxidation process of promethazine (PHZ in electrochemical sensor based on carbon nanotubes paste containing DNA immobilized on the inorganic matrix prepared by sol-gel process (SiO2/Al2O3/Nb2O5. The method of Laviron verified that the system is irreversible and high speed of electron transfer between the electrode and DNA. The study of the oxidation of PHZ and influence of pH showed slope of 0.054 V / pH (near the nernstian system: 0.0592 V / pH suggesting that it involves the transfer of two protons and two electrons.

  16. Polydopamine-Coated TiO2 Nanotubes for Selective Photocatalytic Oxidation of Benzyl Alcohol to Benzaldehyde Under Visible Light.

    Science.gov (United States)

    Tripathy, Jyotsna; Loget, Gabriel; Altomare, Marco; Schmuki, Patrik

    2016-05-01

    TiO2 nanotube arrays grown by anodization were coated with thin layers of polydopamine as visible light sensitizer. The PDA-coated TiO2 scaffolds were used as photocatalyst for selective oxidation of benzyl alcohol under monochromatic irradiation at 473 nm. Benzaldehyde was selectively formed and no by-products could be detected. A maximized reaction yield was obtained in O2-saturated acetonitrile. A mechanism is proposed that implies firstly the charge carrier generation in polydopamine as a consequence of visible light absorption. Secondly, photo-promoted electrons are injected in TiO2 conduction band, and subsequently transferred to dissolved O2 to form O*2- radicals. These radicals react with benzyl alcohol and lead to its selective dehydrogenation oxidation towards benzaldehyde.

  17. Hollow Ag@Pd core-shell nanotubes as highly active catalysts for the electro-oxidation of formic acid.

    Science.gov (United States)

    Jiang, Yuanyuan; Lu, Yizhong; Han, Dongxue; Zhang, Qixian; Niu, Li

    2012-03-16

    Ag nanowires are prepared as templates by a polyol reduction process. Then Ag nanotubes coated with a thin layer of Pd are synthesized through sequential reduction accompanied with the galvanic displacement reaction. The products show a hollow core-shell nanotubular structure, as demonstrated by detailed characterizations. The Ag@Pd can significantly improve the electrocatalytic activity towards the electro-oxidation of formic acid and enhance the stability of the Pd component. It is proposed that the enhanced electrochemically active surface area and modulated electron structure of Pd by Ag are responsible for the improvement of electrocatalytic activity and durability. The results obtained in this work are different from those previous reports, in which alloy walls with hollow interiors are usually formed. This work provides a new and simple method for synthesizing novel bimetallic core-shell structure with a hollow interior, which can be applied as high-performance catalysts for the electro-oxidation of formic acid.

  18. Hollow Ag@Pd core-shell nanotubes as highly active catalysts for the electro-oxidation of formic acid

    Science.gov (United States)

    Jiang, Yuanyuan; Lu, Yizhong; Han, Dongxue; Zhang, Qixian; Niu, Li

    2012-03-01

    Ag nanowires are prepared as templates by a polyol reduction process. Then Ag nanotubes coated with a thin layer of Pd are synthesized through sequential reduction accompanied with the galvanic displacement reaction. The products show a hollow core-shell nanotubular structure, as demonstrated by detailed characterizations. The Ag@Pd can significantly improve the electrocatalytic activity towards the electro-oxidation of formic acid and enhance the stability of the Pd component. It is proposed that the enhanced electrochemically active surface area and modulated electron structure of Pd by Ag are responsible for the improvement of electrocatalytic activity and durability. The results obtained in this work are different from those previous reports, in which alloy walls with hollow interiors are usually formed. This work provides a new and simple method for synthesizing novel bimetallic core-shell structure with a hollow interior, which can be applied as high-performance catalysts for the electro-oxidation of formic acid.

  19. Nanotubes and nanowires

    Indian Academy of Sciences (India)

    C N R Rao; A Govindaraj

    2001-10-01

    Synthesis and characterization of nanotubes and nanowires constitute an important part of nanoscience since these materials are essential bui lding units for several devices. We have prepared aligned carbon nanotube bundles and Y-junction nanotubes by the pyrolysis of appropriate organic precursors. The aligned bundles are useful for field emission display while the Y-junction nanotubes are likely to be useful as nanochips since they exhibit diode properties at the junction. By making use of carbon nanotubes, nanowires of metals, metal oxides and GaN have be en obt a ined. Both the oxide and GaN nanowires are single crystalline. Gold nanowires exhibit plasmon bands varying markedly with the aspect ratio. GaN nanowires show excellent photoluminescence characteristics. It has been possible to synthesise nanotubes and nanowires of metal chalcogenides by employing different strategies.

  20. Pulmonary exposure to particles from diesel exhaust, urban dust or single-walled carbon nanotubes and oxidatively damaged DNA and vascular function in apoE(-/-)mice

    DEFF Research Database (Denmark)

    Vesterdal, Lise K; Jantzen, Kim; Sheykhzade, Majid

    2012-01-01

    Abstract This study compared the oxidative stress level and vasomotor dysfunction after exposure to urban dust, diesel exhaust particles (DEP) or single-walled carbon nanotubes (SWCNT). DEP and SWCNT increased the production of reactive oxygen species (ROS) in cultured endothelial cells and acell...

  1. Solar absorption and thermal emission properties of multiwall carbon nanotube/nickel oxide nanocomposite thin films synthesized by sol-gel process

    CSIR Research Space (South Africa)

    Roro, Kittessa T

    2012-05-01

    Full Text Available Multiwall carbon nanotubes (MWCNTs)/nickel oxide (NiO) nanocomposites were successfully prepared by a sol–gel process and coated on an aluminium substrate. The MWCNTs were chemically functionalized and then added into NiO alcogels, and magnetic...

  2. Electrocatalytic oxidation of ethylene glycol at palladium-bimetallic nanocatalysts (PdSn and PdNi) supported on sulfonate-functionalised multi-walled carbon nanotubes

    CSIR Research Space (South Africa)

    Ramulifho, T

    2013-04-01

    Full Text Available Electrocatalytic oxidation of ethylene glycol (EG) in alkaline medium using nano-scaled palladium-based bimetallic catalysts (PdM, where M = Ni and Sn) supported on sulfonated multi-walled carbon nanotubes (SF-MWCNTs) is compared. The bimetallic...

  3. Formation of carbon nanotubes on iron/cobalt oxides supported on zeolite-Y : Effect of zeolite textural properties and particle morphology

    NARCIS (Netherlands)

    Triantafyllidis, K. S.; Karakoulia, S. A.; Gournis, D.; Delimitis, A.; Nalbandian, L.; Maccallini, E.; Rudolf, P.

    2008-01-01

    The effect of the textural properties and morphology of zeolite Y, used as support of iron (Fe) or cobalt (Co) oxides, on the quantity and quality of the multi-wall carbon nanotubes (MWNTs) synthesized by catalytic chemical vapour deposition (CCVD) of acetylene was studied. The parent zeolite Y was

  4. Formation of carbon nanotubes on iron/cobalt oxides supported on zeolite-Y : Effect of zeolite textural properties and particle morphology

    NARCIS (Netherlands)

    Triantafyllidis, K. S.; Karakoulia, S. A.; Gournis, D.; Delimitis, A.; Nalbandian, L.; Maccallini, E.; Rudolf, P.

    2008-01-01

    The effect of the textural properties and morphology of zeolite Y, used as support of iron (Fe) or cobalt (Co) oxides, on the quantity and quality of the multi-wall carbon nanotubes (MWNTs) synthesized by catalytic chemical vapour deposition (CCVD) of acetylene was studied. The parent zeolite Y was

  5. A novel method of synthesizing cyclodextrin grafted multiwall carbon nanotubes/iron oxides and its adsorption of organic pollutant

    Science.gov (United States)

    Liu, Wei; Jiang, Xinyu; Chen, Xiaoqing

    2014-11-01

    A novel methodology for the synthesis of the multiwalled carbon nanotubes/iron oxides modified by β-cyclodextrin (denoted as MWCNTs/iron oxides/β-CD) was proposed using 1,6-diisocyanatohexane as cross-linker in N,N-dimethyl formamide, which avoided complex steps in the link of β-cyclodextrin and MWCNTs/iron oxides via conventional synthetic methods. The characteristic results of Fourier transform infrared (FT-IR) spectroscopy, scanning electron microscopy (SEM), powder X-ray diffraction (XRD), and thermogravimetric analysis (TGA) showed that β-CD was grafted onto the MWCNTs/iron oxides successfully. In addition, vibrating sample magnetometer (VSM) and magnetic separation experiment suggested that the prepared composite exhibited preferable magnetic property and good dispersion property in aqueous solution. The effects of contact time, initial adsorbent content, solution pH and temperature on the adsorption of p-nitrophenol (PNP) were studied systematically. The adsorption kinetics and equilibrium isotherms data fitted well with pseudo-second-order kinetic equation and Langmuir isotherm model, respectively. Furthermore, the adsorption-desorption experiment of PNP demonstrated that MWCNTs/iron oxides/β-CD is a cost-effective material with high regeneration efficiency.

  6. A novel method of synthesizing cyclodextrin grafted multiwall carbon nanotubes/iron oxides and its adsorption of organic pollutant

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Wei; Jiang, Xinyu [School of Chemistry and Chemical Engineering, Central South University, Changsha 410083 (China); Chen, Xiaoqing, E-mail: xqchen@csu.edu.cn [School of Chemistry and Chemical Engineering, Central South University, Changsha 410083 (China); Collaborative Innovation Center of Resource-conserving and Environment-friendly Society and Ecological Civilization (China)

    2014-11-30

    Highlights: • A cost-effective and one-step method for grafting cyclodextrin onto magnetic material. • Relatively good separation and regeneration properties as adsorbent. • The adsorption capacities are comparable with other adsorbents reported previously. - Abstract: A novel methodology for the synthesis of the multiwalled carbon nanotubes/iron oxides modified by β-cyclodextrin (denoted as MWCNTs/iron oxides/β-CD) was proposed using 1,6-diisocyanatohexane as cross-linker in N,N-dimethyl formamide, which avoided complex steps in the link of β-cyclodextrin and MWCNTs/iron oxides via conventional synthetic methods. The characteristic results of Fourier transform infrared (FT-IR) spectroscopy, scanning electron microscopy (SEM), powder X-ray diffraction (XRD), and thermogravimetric analysis (TGA) showed that β-CD was grafted onto the MWCNTs/iron oxides successfully. In addition, vibrating sample magnetometer (VSM) and magnetic separation experiment suggested that the prepared composite exhibited preferable magnetic property and good dispersion property in aqueous solution. The effects of contact time, initial adsorbent content, solution pH and temperature on the adsorption of p-nitrophenol (PNP) were studied systematically. The adsorption kinetics and equilibrium isotherms data fitted well with pseudo-second-order kinetic equation and Langmuir isotherm model, respectively. Furthermore, the adsorption-desorption experiment of PNP demonstrated that MWCNTs/iron oxides/β-CD is a cost-effective material with high regeneration efficiency.

  7. Two kinds of composite films: Graphene oxide/carbon nanotube film and graphene oxide/activated carbon film via a self-assemble preparation process

    Science.gov (United States)

    Zou, Li-feng; Ma, Nan; Sun, Mei; Ji, Tian-hao

    2014-11-01

    Two kinds of free-standing composite films, including graphene oxide and activated carbon film as well as graphene oxide and carbon nanotube film, were fabricated through a simple suspension mixing and then natural deposition process. The films were characterized by various measurement techniques in detail. The results show that the composite films without any treatment almost still remain the original properties of the corresponding precursors, and exhibit loose structure, which can be easily broken in water; whereas after treated at 200 °C in air, the films become relatively more dense, and even if immersed into concentrated strong alkali or acid for five days, they still keep the film-morphologies, but regretfully, they show obvious brittleness and slight hydrophilicity. As soon as the treated films are performed in high concentrated strong alkali for about one day, their brittleness and wettability can be improved and became good flexibility and complete hydrophilicity.

  8. Electrochemical Deposition of Platinum and Palladium on Gold Nanoparticles Loaded Carbon Nanotube Support for Oxidation Reactions in Fuel Cell

    Directory of Open Access Journals (Sweden)

    Surin Saipanya

    2014-01-01

    Full Text Available Pt and Pd sequentially electrodeposited Au nanoparticles loaded carbon nanotube (Au-CNT was prepared for the electrocatalytic study of methanol, ethanol, and formic acid oxidations. All electrochemical measurements were carried out in a three-electrode cell. A platinum wire and Ag/AgCl were used as auxiliary and reference electrodes, respectively. Suspension of the Au-CNT, phosphate buffer, isopropanol, and Nafion was mixed and dropped on glassy carbon as a working electrode. By sequential deposition method, PdPtPt/Au-CNT, PtPdPd/Au-CNT, and PtPdPt/Au-CNT catalysts were prepared. Cyclic voltammograms (CVs of those catalysts in 1 M H2SO4 solution showed hydrogen adsorption and hydrogen desorption reactions. CV responses for those three catalysts in methanol, ethanol, and formic acid electrooxidations studied in 2 M CH3OH, CH3CH2OH, and HCOOH in 1 M H2SO4 show characteristic oxidation peaks. The oxidation peaks at anodic scan contribute to those organic substance oxidations while the peaks at cathodic scan are related with the reoxidation of the adsorbed carbonaceous species. Comparing all those three catalysts, it can be found that the PdPtPt/Au-CNT catalyst is good at methanol oxidation; the PtPdPt/Au-CNT effectively enhances ethanol oxidation while the PtPdPd/Au-CNT exceptionally catalyzes formic acid oxidation. Therefore, a different stoichiometry affects the electrochemical active surface area of the catalysts to achieve the catalytic oxidation reactions.

  9. Efficient photocatalytic removal of nitric oxide with hydrothermal synthesized Na{sub 0.5}Bi{sub 0.5}TiO{sub 3} nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Ai, Zhihui, E-mail: jennifer.ai@mail.ccnu.edu.cn; Lu, Gang; Lee, Shuncheng

    2014-11-15

    Highlights: • Na{sub 0.5}Bi{sub 0.5}TiO{sub 3} nanotubes were prepared via a facile hydrothermal route. • The Na{sub 0.5}Bi{sub 0.5}TiO{sub 3} nanotubes exhibited superior photocatalytic performances for the removal of nitric oxide. • The Na{sub 0.5}Bi{sub 0.5}TiO{sub 3} nanotubes show potential for indoor and outdoor air purification. - Abstract: In this study, Na{sub 0.5}Bi{sub 0.5}TiO{sub 3} nanotubes were synthesized with a facile hydrothermal method using TiO{sub 2} P25 (Degussa) and bismuth citrate (BiC{sub 5}H{sub 6}O{sub 7}) as precursors in concentrated NaOH and ammonia alkali solution. The samples were systematically characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS). The as-prepared Na{sub 0.5}Bi{sub 0.5}TiO{sub 3} nanotubes exhibited superior activity for photocatalytic removal of gaseous nitric oxide (NO) over TiO{sub 2} P25 (Degussa) under simulated solar-light irradiation, the NO removal rate can reach as high as ca. 200 ppb·min{sup −1} over the Na{sub 0.5}Bi{sub 0.5}TiO{sub 3} nanotubes in a continuous reactor with an initial NO concentration of 400 ppb. The intrinsic hollow-nanotube structure of the Na{sub 0.5}Bi{sub 0.5}TiO{sub 3} photocatalysts contributes to its superior activity under simulated solar light. This work provides a facile route to prepare Na{sub 0.5}Bi{sub 0.5}TiO{sub 3} nanotubes and suggests that the Na{sub 0.5}Bi{sub 0.5}TiO{sub 3} nanotubes are ideal candidates for efficient removal of nitric oxide in indoor/outdoor air.

  10. Microstructure development in zinc oxide nanowires and iron oxohydroxide nanotubes by cathodic electrodeposition in nanopores

    NARCIS (Netherlands)

    Maas, Michiel G.; Rodijk, Eddy J.B.; Maijenburg, A. Wouter; Blank, Dave H.A.; Elshof, ten Johan E.

    2011-01-01

    The cathodic electrodeposition of crystalline ZnO nanowires and amorphous FeO(OH) nanotubes in polycarbonate track-etched membranes with pore diameters of 50–200 nm is reported. Nitrate was used as a sacrificial precursor for the electrochemical generation of hydroxyl ions that raised the pH of the

  11. Biomarker analysis of liver cells exposed to surfactant-wrapped and oxidized multi-walled carbon nanotubes (MWCNTs)

    Energy Technology Data Exchange (ETDEWEB)

    Henderson, W. Matthew, E-mail: Henderson.Matt@epa.gov [U.S. Environmental Protection Agency, Office of Research and Development, National Exposure Research Laboratory, 960 College Station Road, Athens 30605, GA (United States); Bouchard, Dermont [U.S. Environmental Protection Agency, Office of Research and Development, National Exposure Research Laboratory, 960 College Station Road, Athens 30605, GA (United States); Chang, Xiaojun [Grantee to U.S. Environmental Protection Agency via National Research Council Cooperative Agreement, Athens 30605, GA (United States); Al-Abed, Souhail R. [U.S. Environmental Protection Agency, Office of Research and Development, National Risk Management Research Laboratory, 26 Martin Luther King Dr. W, Cincinnati, OH 45268 (United States); Teng, Quincy [U.S. Environmental Protection Agency, Office of Research and Development, National Exposure Research Laboratory, 960 College Station Road, Athens 30605, GA (United States)

    2016-09-15

    Carbon nanotubes (CNTs) have great potential in industrial, consumer, and mechanical applications, based partly on their unique structural, optical and electronic properties. CNTs are commonly oxidized or treated with surfactants to facilitate aqueous solution processing, and these CNT surface modifications also increase possible human and ecological exposures to nanoparticle-contaminated waters. To determine the exposure outcomes of oxidized and surfactant-wrapped multiwalled carbon nanotubes (MWCNTs) on biochemical processes, metabolomics-based profiling of human liver cells (C3A) was utilized. Cells were exposed to 0, 10, or 100 ng/mL of MWCNTs for 24 and 48 h; MWCNT particle size distribution, charge, and aggregation were monitored concurrently during exposures. Following MWCNT exposure, cellular metabolites were extracted, lyophilized, and buffered for {sup 1}H NMR analysis. Acquired spectra were subjected to both multivariate and univariate analysis to determine the consequences of nanotube exposure on the metabolite profile of C3A cells. Resulting scores plots illustrated temporal and dose-dependent metabolite responses to all MWCNTs tested. Loadings plots coupled with t-test filtered spectra identified metabolites of interest. XPS analysis revealed the presence of hydroxyl and carboxyl functionalities on both MWCNTs surfaces. Metal content analysis by ICP-AES indicated that the total mass concentration of the potentially toxic impurities in the exposure experiments were extremely low (i.e. [Ni] ≤ 2 × 10{sup −10} g/mL). Preliminary data suggested that MWCNT exposure causes perturbations in biochemical processes involved in cellular oxidation as well as fluxes in amino acid metabolism and fatty acid synthesis. Dose-response trajectories were apparent and spectral peaks related to both dose and MWCNT dispersion methodologies were determined. Correlations of the significant changes in metabolites will help to identify potential biomarkers associated with

  12. A multiwall carbon nanotubes film-modified carbon fiber ultramicroelectrode for the determination of nitric oxide radical in liver mitochondria.

    Science.gov (United States)

    Wang, Yazhen; Li, Qing; Hu, Shengshui

    2005-02-01

    A novel chemically modified electrode based on the multiwall carbon nanotubes (MWNTs) film-coated carbon fiber ultramicroelectrode (CFUE) has been described for the determination of nitric oxide radical (.NO). The electrochemical behaviors of MWNTs-modified CFUE have been characterized in 0.2 mmol L(-1) K(4)Fe(CN)(6) and 0.1 mol L(-1) KCl solution. The Nafion film was used to avoid some electroactive interferences. The amount of Nafion was optimized, and some possible interferents [such as nitrite (NO(2)(-)), nitrate (NO(3)(-)), ascorbate, dopamine (DA), l-arginine (l-Arg), etc.] were tested and evaluated. The oxidation peak current of .NO increases significantly at the MWNT/Nafion-modified CFUE, in contrast to that at the bare and the Nafion-modified CFUE, and the oxidation peak potential is at 0.78 V (vs. SCE), which can be used for the detection of .NO. The oxidation peak current is linearly with the concentration of .NO from 2x10(-7) to 8.6x10(-5) mol L(-1), and the detection limit is 2x10(-8) mol L(-1). The liver mitochondria in Carassius auratus were isolated and .NO release from mitochondria was monitored by using this ultramicroelectrode system.

  13. Simultaneous electrochemical determination of dopamine and paracetamol on multiwalled carbon nanotubes/graphene oxide nanocomposite-modified glassy carbon electrode.

    Science.gov (United States)

    Cheemalapati, Srikanth; Palanisamy, Selvakumar; Mani, Veerappan; Chen, Shen-Ming

    2013-12-15

    In the present study, multiwalled carbon nanotubes (MWCNT)/graphene oxide (GO) nanocomposite was prepared by homogenous dispersion of MWCNT and GO and used for the simultaneous voltammetric determination of dopamine (DA) and paracetamol (PA). The TEM results confirmed that MWCNT walls were wrapped well with GO sheets. The MWCNT/GO nanocomposite showed superior electrocatalytic activity towards the oxidation of DA and PA, when compared with either pristine MWCNT or GO. The major reason for the efficient simultaneous detection of DA and PA at nanocomposite was the synergistic effect between MWCNT and GO. The electrochemical oxidation of DA and PA was investigated by cyclic voltammetry, differential pulse voltammetry and amperometry. The nanocomposite modified electrode showed electrocatalytic oxidation of DA and PA in the linear response range from 0.2 to 400 µmol L(-1) and 0.5 to 400 µmol L(-1) with the detection limit of 22 nmol L(-1) and 47 nmol L(-1) respectively. The proposed sensor displayed good selectivity, sensitivity, stability with appreciable consistency and precision.

  14. Adsorption behavior of multiwall carbon nanotube/iron oxide magnetic composites for Ni(II) and Sr(II).

    Science.gov (United States)

    Chen, Changlun; Hu, Jun; Shao, Dadong; Li, Jiaxing; Wang, Xiangke

    2009-05-30

    Multiwall carbon nanotube (MWCNT)/iron oxide magnetic composites were prepared, and were characterized by scan electron microscopy using a field emission scanning electron microscope, X-ray diffraction and vibrating sample magnetometer. The adsorptions of Ni(II) and Sr(II) onto MWCNT/iron oxide magnetic composites were studied as a function of pH and ionic strength. The results show that the adsorptions of Ni(II) and Sr(II) on the magnetic composites is strongly dependent on pH and ionic strength. The adsorption capacity of the magnetic composites is much higher than that of MWCNTs and iron oxides. The solid magnetic composites can be separated from the solution by a magnetic process. The Langmuir model fits the adsorption isotherm data of Ni(II) better than the Freundlich model. Results of desorption study shows that Ni(II) adsorbed onto the magnetic composites can be easily desorbed at pH<2.0. MWCNT/iron oxide magnetic composites may be a promising candidate for pre-concentration and solidification of heavy metal ions and radionuclides from large volumes of aqueous solution, as required for remediation purposes.

  15. Barrier-oxide layer engineering of TiO{sub 2} nanotube arrays to get single- and multi-stage Y-branched nanotubes: Effect of voltage ramping and electrolyte conductivity

    Energy Technology Data Exchange (ETDEWEB)

    Anitha, V.C. [School of Mechanical Engineering, Yeungnam University, Gyeongsan 712-749 (Korea, Republic of); Banerjee, Arghya Narayan, E-mail: arghya@ynu.ac.kr [School of Mechanical Engineering, Yeungnam University, Gyeongsan 712-749 (Korea, Republic of); Joo, Sang Woo, E-mail: swjoo@yu.ac.kr [School of Mechanical Engineering, Yeungnam University, Gyeongsan 712-749 (Korea, Republic of); Min, Bong Ki [Center for Research Facilities, Yeungnam University, Gyeongsan 712-749 (Korea, Republic of)

    2015-05-15

    Highlights: • Single and multi-stage Y-branched TiO{sub 2} nanotube arrays fabricated successfully. • Effect of voltage ramping down process on the branching of nanotube revealed. • Unequal interfacial movement across barrier layer of nanotubes manifests branching. • By controlling thinning of barrier oxide layer different morphologies of TNAs fabricated. • Y-branched, stacked double layer, mixture of broken/branched and multi-branched TNAs formed. - Abstract: Single and multi-stage Y-branched TiO{sub 2} nanotube arrays (TNAs) have been fabricated by a voltage ramping down process using potentiostatic two-step anodization in 0.5 wt% hydrofluoric acid (HF)/glycerol (1:2 volume ratio) electrolyte. Initially, the voltage is kept at 40 V for 3 h and then it is ramped down to different voltages (e.g. 30 V, 34 V, 36 V, 38 V and 39 V) at a ramping rate of either −1.0 V s{sup −1} or −0.5 V s{sup −1} in one time and two-time aged electrolytes. The growth mechanism of Y-branching of TNAs is modeled and explained in terms of unequal interfacial movements of the two interfaces across the barrier oxide layer (BOL) under non-steady-state growth regime. The ‘pinched off’ area of the BOL at the nanotube propagation front can be controlled effectively with the relative ramping voltage levels and electrolyte's conductivity to obtain Y-branched TNAs.

  16. Synthesis and Photocatalytic Properties of Ce-Doped TiO2 Nanotube Arrays via Anodic Oxidation

    Science.gov (United States)

    Kong, Junhan; Wang, Yongqian; Sun, Qimeng; Meng, Dawei

    2017-03-01

    Ce-doped TiO2 nanotube arrays (TNAs) were prepared successfully through one-step anodic oxidation methods. The structural and morphological features of the TNAs were monitored by x-ray diffraction and field emission scanning electron microscopy with energy dispersive spectroscopy. Ultraviolet-visible light absorption spectra showed the light absorption performances of TiO2 nanotubes in both ultraviolet (UV) and visible light regions. Also, the photocatalytic activities of these samples were measured by the photodegradation rate of methylene blue (MB). The result indicated that doping a moderate amount of cerium ions into TNAs increased the absorption of both ultraviolet light and visible light obviously. However, the excess amount of doping ions would destroy the tubular structure severely and decrease the specific surface area of TNAs sharply. It could directly lead to the decreasing of photocatalytic activitity of TNAs. Furthermore, the best photodegradation rate of the Ce-doped TNAs on MB reached to 95.6%, which had a huge improvement comparing with pure TNAs.

  17. Graphene oxide-encapsulated carbon nanotube hybrids for high dielectric performance nanocomposites with enhanced energy storage density.

    Science.gov (United States)

    Wu, Chao; Huang, Xingyi; Wu, Xinfeng; Xie, Liyuan; Yang, Ke; Jiang, Pingkai

    2013-05-07

    Polymer-based materials with a high dielectric constant show great potential for energy storage applications. Since the intrinsic dielectric constant of most polymers is very low, the integration of carbon nanotubes (CNTs) into the polymers provides an attractive and promising way to reach a high dielectric constant owing to their outstanding intrinsic physical performances. However, these CNT-based composites usually suffer from high dielectric loss, low breakdown strength and the difficulty to tailor the dielectric constant. Herein, we have designed and fabricated a new class of candidates composed of graphene oxide-encapsulated carbon nanotube (GO-e-CNT) hybrids. The obtained GO-e-CNT-polymer composites not only exhibit a high dielectric constant and low dielectric loss, but also have a highly enhanced breakdown strength and maximum energy storage density. Moreover, the dielectric constant of the composites can be tuned easily by tailoring the loading of GO-e-CNTs. It is believed that the GO shells around CNTs play an important role in realizing the high dielectric performances of the composites. GO shells can not only effectively improve the dispersion of CNTs, but also act as insulation barriers for suppressing leakage current and increasing breakdown strength. Our strategy provides a new pathway to achieve CNT-based polymer composites with high dielectric performances for energy storage applications.

  18. Synthesis and Photocatalytic Properties of Ce-Doped TiO2 Nanotube Arrays via Anodic Oxidation

    Science.gov (United States)

    Kong, Junhan; Wang, Yongqian; Sun, Qimeng; Meng, Dawei

    2017-08-01

    Ce-doped TiO2 nanotube arrays (TNAs) were prepared successfully through one-step anodic oxidation methods. The structural and morphological features of the TNAs were monitored by x-ray diffraction and field emission scanning electron microscopy with energy dispersive spectroscopy. Ultraviolet-visible light absorption spectra showed the light absorption performances of TiO2 nanotubes in both ultraviolet (UV) and visible light regions. Also, the photocatalytic activities of these samples were measured by the photodegradation rate of methylene blue (MB). The result indicated that doping a moderate amount of cerium ions into TNAs increased the absorption of both ultraviolet light and visible light obviously. However, the excess amount of doping ions would destroy the tubular structure severely and decrease the specific surface area of TNAs sharply. It could directly lead to the decreasing of photocatalytic activitity of TNAs. Furthermore, the best photodegradation rate of the Ce-doped TNAs on MB reached to 95.6%, which had a huge improvement comparing with pure TNAs.

  19. Electrophoretic deposition of multi-walled carbon nanotubes on porous anodic aluminum oxide using ionic liquid as a dispersing agent

    Science.gov (United States)

    Hekmat, F.; Sohrabi, B.; Rahmanifar, M. S.; Jalali, A.

    2015-06-01

    Multi-wall carbon nanotubes (MW-CNTs) have been arranged in nanochannels of anodic aluminum oxide template (AAO) by electrophoretic deposition (EPD) to make a vertically-aligned carbon nanotube (VA-CNT) based electrode. Well ordered AAO templates were prepared by a two-step anodizing process by applying a constant voltage of 45 V in oxalic acid solution. The stabilized CNTs in a water-soluble room temperature ionic liquid (1-methyl-3-octadecylimidazolium bromide), were deposited in the pores of AAO templates which were conductive by deposition of Ni nanoparticles in the bottom of pores. In order to obtain ideal results, different EPD parameters, such as concentration of MWCNTs and ionic liquid on stability of MWCNT suspensions, deposition time and voltage which are applied in EPD process and also optimal conditions for anodizing of template were investigated. The capacitive performance of prepared electrodes was analyzed by measuring the specific capacitance from cyclic voltammograms and the charge-discharge curves. A maximum value of 50 Fg-1 at the scan rate of 20 mV s-1was achieved for the specific capacitance.

  20. Preparation of Aligned Ultra-long and Diameter-controlled Silicon Oxide Nanotubes by Plasma Enhanced Chemical Vapor Deposition Using Electrospun PVP Nanofiber Template

    Directory of Open Access Journals (Sweden)

    Zhou Ming

    2009-01-01

    Full Text Available Abstract Well-aligned and suspended polyvinyl pyrrolidone (PVP nanofibers with 8 mm in length were obtained by electrospinning. Using the aligned suspended PVP nanofibers array as template, aligned ultra-long silicon oxide (SiOx nanotubes with very high aspect ratios have been prepared by plasma-enhanced chemical vapor deposition (PECVD process. The inner diameter (20–200 nm and wall thickness (12–90 nm of tubes were controlled, respectively, by baking the electrospun nanofibers and by coating time without sacrificing the orientation degree and the length of arrays. The micro-PL spectrum of SiOx nanotubes shows a strong blue–green emission with a peak at about 514 nm accompanied by two shoulders around 415 and 624 nm. The blue–green emission is caused by the defects in the nanotubes.

  1. Ab initio studies of the interaction of formaldehyde with beryllium oxide nanotube

    Science.gov (United States)

    Rastegar, Somayeh F.; Ahmadi Peyghan, Ali; Soleymanabadi, Hamed

    2015-04-01

    The interaction of a formaldehyde molecule with a BeO nanotube was explored by means of density functional calculations. It was found that formaldehyde prefers to be adsorbed on a Be-O bond of the tube wall with the change of Gibbs free energy of 18.9 kcal/mol at 1 atm and 298 K. This adsorption process significantly shifts the lowest unoccupied molecular orbital of the tube to lower energies, thereby reducing the gap of the tube from 7.04 to 4.19 eV. It suggests that BeO nanotube may generate an electrical signal in the presence of formaldehyde molecule because of the conductance change. Also, we investigated the effect of humidity on this sensor.

  2. Reduction of harmful nitrogen oxide emission from low heat rejection diesel engine using carbon nanotubes

    Directory of Open Access Journals (Sweden)

    Thulasi Gopinathan

    2016-01-01

    Full Text Available In this study, lanthanum aluminate is used as thermal barrier coating material for the first time in the internal combustion engine to convert the standard engine into low heat rejection engine. Initially, the biodiesel is prepared from sunflower oil by using trans-esterification process. The piton crown, cylinder head and valves of the engine is coated with lanthanum aluminate for a thickness of around 200 microns. However, the analysis of performance and emission characteristics of a standard diesel is carried out with diesel/biodiesel to compare with the low heat rejection engine. The lanthanum aluminate coated engine fueled with sunflower methyl ester shows better performance and emission. But the emission of NOx founds to be higher in the coated engine. Further, a small quantity of carbon nanotubes is added onto the biodiesel to carry out the experiments. Based on the results, the carbon nanotubes are added with the biodiesel to reduce the emission of NOx.

  3. An Overview: Recent Development of Titanium Oxide Nanotubes as Photocatalyst for Dye Degradation

    Directory of Open Access Journals (Sweden)

    Chin Wei Lai

    2014-01-01

    Full Text Available Today, organic dyes are one of the largest groups of pollutants release into environment especially from textile industry. It is highly toxic and hazardous to the living organism; thus, the removal of these dyes prior to discharge into the environment is essential. Varieties of techniques have been employed to degrade organic dyes and heterogeneous photocatalysis involving titanium dioxide (TiO2 appears to be the most promising technology. In recent years, TiO2 nanotubes have attracted much attention due to their high surface area and extraordinary characteristics. This paper presents a critical review of recent achievements in the modification of TiO2 nanotubes for dye degradation. The photocatalytic activity on dye degradation can be further enhanced by doping with cationic or anionic dopant.

  4. Removal of 1-naphthylamine from aqueous solution by multiwall carbon nanotubes/iron oxides/cyclodextrin composite.

    Science.gov (United States)

    Hu, Jun; Shao, Dadong; Chen, Changlun; Sheng, Guodong; Ren, Xuemei; Wang, Xiangke

    2011-01-15

    The adsorption of 1-naphthylamine on multiwall carbon nanotubes/iron oxides/β-cyclodextrin composite (denoted by MWCNTs/iron oxides/CD) prepared by using plasma-induced grafting technique was investigated by batch technique under ambient conditions. The effect of contact time, pH, adsorbent content, temperature and initial 1-naphthylamine concentration, on 1-naphthylamine adsorption to MWCNTs/iron oxides/CD was examined. The adsorption of 1-naphthylamine on MWCNTs/iron oxides/CD was dependent on pH, adsorbent content, and temperature. The 1-napthylamien was adsorbed rapidly at the first 50h, and thereafter attained the adsorption saturation at 80h. The adsorption kinetic data were well described by the pseuso-second-order rate model. The adsorption isotherms were fitted by the Langmuir model better than by the Freundlich model. The maximum adsorption capacity of 1-naphthylamine was 200.0mg/g. The adsorption thermodynamic parameters of standard enthalpy (ΔH(0)), standard entropy changes (ΔS(0)), and standard free energy (ΔG(0)) were calculated from temperature dependent adsorption isotherms. The values of ΔH(0) and ΔG(0) suggested that the adsorption of 1-naphthylamine on MWCNTs/iron oxides/CD was endothermic and spontaneous. The electron-donor-acceptor interaction, Hydrophobic interaction, and Lewis acid-base interaction may play an important role in 1-naphthylamine adsorption. The results show that MWCNTs/iron oxides/CD is a promising magnetic nanomaterial for the preconcentration and separation of organic pollutants from aqueous solutions in environmental pollution cleanup. Copyright © 2010 Elsevier B.V. All rights reserved.

  5. Removal of 1-naphthylamine from aqueous solution by multiwall carbon nanotubes/iron oxides/cyclodextrin composite

    Energy Technology Data Exchange (ETDEWEB)

    Hu Jun; Shao Dadong [Key Laboratory of Novel Thin Film Solar Cells, Institute of Plasma Physics, Chinese Academy of Sciences, P.O. Box 1126, 230031 Hefei (China); Chen Changlun, E-mail: clchen@ipp.ac.cn [Key Laboratory of Novel Thin Film Solar Cells, Institute of Plasma Physics, Chinese Academy of Sciences, P.O. Box 1126, 230031 Hefei (China); Sheng Guodong; Ren Xuemei [Key Laboratory of Novel Thin Film Solar Cells, Institute of Plasma Physics, Chinese Academy of Sciences, P.O. Box 1126, 230031 Hefei (China); Wang Xiangke, E-mail: xkwang@ipp.ac.cn [Key Laboratory of Novel Thin Film Solar Cells, Institute of Plasma Physics, Chinese Academy of Sciences, P.O. Box 1126, 230031 Hefei (China)

    2011-01-15

    The adsorption of 1-naphthylamine on multiwall carbon nanotubes/iron oxides/{beta}-cyclodextrin composite (denoted by MWCNTs/iron oxides/CD) prepared by using plasma-induced grafting technique was investigated by batch technique under ambient conditions. The effect of contact time, pH, adsorbent content, temperature and initial 1-naphthylamine concentration, on 1-naphthylamine adsorption to MWCNTs/iron oxides/CD was examined. The adsorption of 1-naphthylamine on MWCNTs/iron oxides/CD was dependent on pH, adsorbent content, and temperature. The 1-napthylamien was adsorbed rapidly at the first 50 h, and thereafter attained the adsorption saturation at 80 h. The adsorption kinetic data were well described by the pseuso-second-order rate model. The adsorption isotherms were fitted by the Langmuir model better than by the Freundlich model. The maximum adsorption capacity of 1-naphthylamine was 200.0 mg/g. The adsorption thermodynamic parameters of standard enthalpy ({Delta}H{sup 0}), standard entropy changes ({Delta}S{sup 0}), and standard free energy ({Delta}G{sup 0}) were calculated from temperature dependent adsorption isotherms. The values of {Delta}H{sup 0} and {Delta}G{sup 0} suggested that the adsorption of 1-naphthylamine on MWCNTs/iron oxides/CD was endothermic and spontaneous. The electron-donor-acceptor interaction, Hydrophobic interaction, and Lewis acid-base interaction may play an important role in 1-naphthylamine adsorption. The results show that MWCNTs/iron oxides/CD is a promising magnetic nanomaterial for the preconcentration and separation of organic pollutants from aqueous solutions in environmental pollution cleanup.

  6. Carbon Nanotubes Supported Pt-Ru-Ni as Methanol Electro-Oxidation Catalyst for Direct Methanol Fuel Cells

    Institute of Scientific and Technical Information of China (English)

    Fei Ye; Shengzhou Chen; Xinfa Dong; Weiming Lin

    2007-01-01

    Carbon nanotubes (CNTs) supported Pt-Ru and Pt-Ru-Ni catalysts were prepared by chemical reduction of metal precursors with sodium borohydride at room temperature. The crystallographic properties and composition of the catalysts were characterized by X-ray diffraction (XRD) and energy dispersive X-ray (EDX) analysis, and the catalytic activity and stability for methanol electro-oxidation were measured by electrochemical impedance spectroscopy (EIS), linear sweep voltammetries (LSV), and chronoamperometry (CA). The results show that the catalysts exhibit face-centered cubic (fcc) structure.The particle size of Pt-Ru-Ni/CNTs catalyst is about 4.8 nm. The catalytic activity and stability of the Pt-Ru-Ni/CNTs catalyst are higher than those of Pt-Ru/CNTs catalyst.

  7. Biocompatibility and in vitro antineoplastic drug-loaded trial of titania nanotubes prepared by anodic oxidation of a pure titanium

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    TiO2 nanotube (NT) arrays have been prepared by anodic oxidation of a Ti sheet,and carbon-deposited TiO2 NT arrays have been prepared by annealing TiO2 NT arrays in carbon atmosphere. The biocompatibility of the as-prepared NT arrays was investigated by observing the growth of osteosarcoma (MG-63) cells on the NT arrays. The application of the TiO2 NT arrays as a drug delivery vehicle was investigated. Both the TiO2 NTs and the carbon-modified TiO2 NTs have good biocompatibility supporting the normal growth and adhesion of MG-63 cells with no need of extracellular matrix protein coating. The one end-opened TiO2 NTs can be easily filled with drugs,working as an efficient drug delivery vehicle.

  8. Direct Electrochemical Oxidation of NADPH at a Low Potential on the Carbon Nanotube Modified Glassy Carbon Electrode

    Institute of Scientific and Technical Information of China (English)

    CHEN, Jing(陈静); CAI, Chen-Xin(蔡称心)

    2004-01-01

    NADPH can be directly oxidized on a carbon nanotube modified glassy carbon (CNT/GC) electrode in phosphate buffer solution (pH=6.0) with a diminution of the overpotential of more than 700 mV. The anodic peak currents increase linearly with the increase of concentration of NADPH in the range of 5×10-7 to 1×10-3 mol/L with a detection limit of about 1×10-7 mol/L. The CNT/GC electrode exhibits high sensitivity, low potential and stability in detecting NADPH and thus might be used in biosensors to study the electrocatalytic reaction of important dehydrogenase-based biological systems.

  9. Hollow Ag@Pd core-shell nanotubes as highly active catalysts for the electro-oxidation of formic acid

    DEFF Research Database (Denmark)

    Jiang, Yuanyuan; Lu, Yizhong; Han, Dongxue

    2012-01-01

    Ag nanowires are prepared as templates by a polyol reduction process. Then Ag nanotubes coated with a thin layer of Pd are synthesized through sequential reduction accompanied with the galvanic displacement reaction. The products show a hollow core-shell nanotubular structure, as demonstrated...... by detailed characterizations. The Ag@Pd can significantly improve the electrocatalytic activity towards the electro-oxidation of formic acid and enhance the stability of the Pd component. It is proposed that the enhanced electrochemically active surface area and modulated electron structure of Pd by Ag...... are responsible for the improvement of electrocatalytic activity and durability. The results obtained in this work are different from those previous reports, in which alloy walls with hollow interiors are usually formed. This work provides a new and simple method for synthesizing novel bimetallic core...

  10. Uniformly embedded metal oxide nanoparticles in vertically aligned carbon nanotube forests as pseudocapacitor electrodes for enhanced energy storage.

    Science.gov (United States)

    Jiang, Yingqi; Wang, Pengbo; Zang, Xining; Yang, Yang; Kozinda, Alina; Lin, Liwei

    2013-08-14

    Carbon nanotube (CNT) forests were grown directly on a silicon substrate using a Fe/Al/Mo stacking layer which functioned as both the catalyst material and subsequently a conductive current collecting layer in pseudocapacitor applications. A vacuum-assisted, in situ electrodeposition process has been used to achieve the three-dimensional functionalization of CNT forests with inserted nickel nanoparticles as pseudocapacitor electrodes. Experimental results have shown the measured specific capacitance of 1.26 F/cm(3), which is 5.7 times higher than pure CNT forest samples, and the oxidized nickel nanoparticle/CNT supercapacitor retained 94.2% of its initial capacitance after 10,000 cyclic voltammetry tests.

  11. Compression Molded Ultra High Molecular Weight Polyethylene-Hydroxyapatite-Aluminum Oxide-Carbon Nanotube Hybrid Composites for Hard Tissue Replacement

    Institute of Scientific and Technical Information of China (English)

    Ankur Gupta; Garima Tripathi; Debrupa Lahiri; Kantesh Balani

    2013-01-01

    Ultra high molecular weight polyethylene (UHMWPE) is widely used for articulating surfaces in total hip and knee replacements.In the present work,UHMWPE based polymer composites were synthesized by synergistic reinforcing of bioactive hydroxyapatite (HA),bioinert aluminum oxide (Al2O3),and carbon nanotubes (CNTs) using compression molding.Phase and microstructural analysis suggests retention of UHMWPE and reinforcing phases in the compression molded composites.Microstructural analysis elicited variation in densification due to the size effect of the reinforcing particles.The hybrid composites exhibited hardness,elastic modulus and toughness comparable to that of UHMWPE.The interfacial effect of reinforcement phases has evinced the effectiveness of Al2O3 over HA and CNT reinforcements,depicting synergistic enhancement in hardness and elastic modulus.Weak interfacial bonding of polymer matrix with HA and CNT requires utilization of coupling agents to achieve enhanced mechanical properties without deteriorating cytocompatible properties.

  12. A facile synthesis of zinc oxide/multiwalled carbon nanotube nanocomposite lithium ion battery anodes by sol-gel method

    Science.gov (United States)

    Köse, Hilal; Karaal, Şeyma; Aydın, Ali Osman; Akbulut, Hatem

    2015-11-01

    Free standing zinc oxide (ZnO) and multiwalled carbon nanotube (MWCNT) nanocomposite materials are prepared by a sol gel technique giving a new high capacity anode material for lithium ion batteries. Free-standing ZnO/MWCNT nanocomposite anodes with two different chelating agent additives, triethanolamine (TEA) and glycerin (GLY), yield different electrochemical performances. Field emission gun scanning electron microscopy (FEG-SEM), energy dispersive X-ray spectrometer (EDS), high resolution transmission electron microscopy (HRTEM) and X-ray diffraction (XRD) analyses reveal the produced anode electrodes exhibit a unique structure of ZnO coating on the MWCNT surfaces. Li-ion cell assembly using a ZnO/MWCNT/GLY free-standing anode and Li metal cathode possesses the best discharge capacity, remaining as high as 460 mAh g-1 after 100 cycles. This core-shell structured anode can offer increased energy storage and performance over conventional anodes in Li-ion batteries.

  13. Carbon nanotube/raspberry hollow Pd nanosphere hybrids for methanol, ethanol, and formic acid electro-oxidation in alkaline media.

    Science.gov (United States)

    Liu, Zhelin; Zhao, Bo; Guo, Cunlan; Sun, Yujing; Shi, Yan; Yang, Haibin; Li, Zhuang

    2010-11-01

    In this paper, raspberry hollow Pd nanospheres (HPNs)-decorated carbon nanotube (CNT) was developed for electro-oxidation of methanol, ethanol, and formic acid in alkaline media. The electrocatalyst was fabricated simply by attaching HPNs onto the surface of CNT which had been functionalized by polymer wrapping. The as-prepared HPN-CNTs (CHPNs) were characterized by transmission electron microscopy (TEM), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), and X-ray photoelectron spectroscopy (XPS). The increasing interest and intensive research on fuel cell inspire us to investigate the electrocatalytic properties of the prepared nanostructures. Besides that, previous reports about alkaline other than acidic media could supply a more active environment guide us to examine the electrocatalytic properties in alkaline electrolyte. It is found that this novel hybrid electrocatalyst exhibits excellent electrocatalytic properties and can be further applied in fuel cells, catalysts, and sensors. Copyright 2010 Elsevier Inc. All rights reserved.

  14. Hybrid nanostructure heterojunction solar cells fabricated using vertically aligned ZnO nanotubes grown on reduced graphene oxide

    Energy Technology Data Exchange (ETDEWEB)

    Yang Kaikun; Huang Liwei; Zou Lianfeng; Wang, Howard [Institute for Materials Research, Binghamton University, State University of New York, Binghamton, NY 13902 (United States); Xu Congkang, E-mail: wangh@binghamton.edu [Department of Mechanical Engineering, Binghamton University, State University of New York, Binghamton, NY 13902 (United States)

    2011-10-07

    Using reduced graphene oxide (rGO) films as the transparent conductive coating, inorganic/organic hybrid nanostructure heterojunction photovoltaic devices have been fabricated through hydrothermal synthesis of vertically aligned ZnO nanorods (ZnO-NRs) and nanotubes (ZnO-NTs) on rGO films followed by the spin casting of a poly(3-hexylthiophene) (P3HT) film. The data show that larger interfacial area in ZnO-NT/P3HT composites improves the exciton dissociation and the higher electrode conductance of rGO films helps the power output. This study offers an alternative to manufacturing nanostructure heterojunction solar cells at low temperatures using potentially low cost materials.

  15. Integrated ternary artificial nacre via synergistic toughening of reduced graphene oxide/double-walled carbon nanotubes/poly(vinyl alcohol)

    Science.gov (United States)

    Gong, Shanshan; Wu, Mengxi; Jiang, Lei; Cheng, Qunfeng

    2016-07-01

    The synergistic toughening effect of building blocks and interface interaction exists in natural materials, such as nacre. Herein, inspired by one-dimensional (1D) nanofibrillar chitin and two-dimensional (2D) calcium carbonate platelets of natural nacre, we have fabricated integrated strong and tough ternary bio-inspired nanocomposites (artificial nacre) successfully via the synergistic effect of 2D reduced graphene oxide (rGO) nanosheets and 1D double-walled carbon nanotubes (DWNTs) and hydrogen bonding cross-linking with polyvinyl alcohol (PVA) matrix. Moreover, the crack mechanics model with crack deflection by 2D rGO nanosheets and crack bridging by 1D DWNTs and PVA chains induces resultant artificial nacre exhibiting excellent fatigue-resistance performance. These outstanding characteristics enable the ternary bioinspired nanocomposites have many promising potential applications, for instance, aerospace, flexible electronics devices and so forth. This synergistic toughening strategy also provides an effective way to assemble robust graphene-based nanocomposites.

  16. Langmuir-Blodgett assembly of visible light responsive TiO2 nanotube arrays/graphene oxide heterostructure

    Science.gov (United States)

    Chen, Ying; Gao, Hongyan; Wei, Danming; Dong, Xinju; Cao, Yan

    2017-01-01

    The hybrid nanocomposites of titanium dioxide (TiO2) with graphene oxide (GO) have recently garnered much attention as electronic devices, energy conversion devices, photocatalysts and other applications. In this study, Langmuir-Blodgett (LB) assembly method was firstly reported to prepare a TiO2 nanotube arrays (TNA)-GO heterostructure. The as-prepared TNA-GO sample was characterized by X-ray diffraction, Raman spectra, scanning electron microscopy, transmission electron microscopy, energy dispersive X-ray spectroscopy and X-ray photoelectron spectroscopy. The promising characteristics of this TNA-GO material, the inexpensive, nontoxic and highly visible-light responsiveness, may raise the potential uses in many, various photocatalytic applications.

  17. Self-Decoration of PtNi Alloy Nanoparticles on Multiwalled Carbon Nanotubes for Highly Efficient Methanol Electro-Oxidation

    Institute of Scientific and Technical Information of China (English)

    Yu-Yan Zhou; Chang-Hai Liu; Jie Liu; Xin-Lei Cai; Ying Lu; Hui Zhang; Xu-Hui Sun; Sui-Dong Wang

    2016-01-01

    A simple one-pot method was developed to prepare PtNi alloy nanoparticles, which can be self-decorated on multiwalled carbon nanotubes in [BMIm][BF4] ionic liquid. The nanohybrids are targeting stable nanocatalysts for fuel cell applications. The sizes of the supported PtNi nanoparticles are uniform and as small as 1–2 nm. Pt-to-Ni ratio was controllable by simply selecting a PtNi alloy target. The alloy nanoparticles with Pt-to-Ni ratio of 1:1 show high catalytic activity and stability for methanol electro-oxidation. The performance is much higher compared with those of both Pt-only nanoparticles and commercial Pt/C catalyst. The electronic structure characterization on the PtNi nanoparticles demon-strates that the electrons are transferred from Ni to Pt, which can suppress the CO poisoning effect.

  18. Electrochemical sensing of DNA immobilization and hybridization based on carbon nanotubes/nano zinc oxide/chitosan composite film

    Institute of Scientific and Technical Information of China (English)

    Wei Zhang; Tao Yang; Da Ming Huang; Kui Jiao

    2008-01-01

    A novel electrochemical DNA biosensor based on zinc oxide (ZnO) nanoparticles and multi-walled carbon nanotubes (MWNTs)for DNA immobilization and enhanced hybridization detection is presented. The MWNTs/nano ZnO/chitosan composite filmmodified glassy carbon electrode (MWNTs/ZnO/CHIT/GCE) was fabricated and DNA probes were immobilized on the electrodesurface. The hybridization events were monitored by differential pulse voltammetry (DPV) using methylene blue (MB) as anindicator. The sensor can effectively discriminate different DNA sequences related to PAT gene in the.transgenic corn, with adetection limit of 2.8×10-12 mol/L of target sequence.2008 Kui Jiao. Published by Elsevier B.V. on behalf of Chinese Chemical Society. All rights reserved.

  19. Development of Novel Magnetic Metal Oxide Thin Films and Carbon Nanotube Materials for Potential Device Applications

    Science.gov (United States)

    2016-05-09

    materials with applications in areas such as magnetic recording, magnetic sensing devices and high frequency planar microwave devices. Emphasis has been... emission SEM/STEM. For STEM imaging, some nanotubes were scrapped off SiO2 substrate and dispersed in dimethylformamide the resulting solution was dripped...on holey carbon coated carbon TEM grid for SEM and STEM analysis. VSM measurements were carried out using Vector Magnetometer Model 10 VSM system

  20. Supportless, bismuth-modified palladium nanotubes with improved activity and stability for formic acid oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Atkinson III, Robert [University of Tennessee (UT); ST John, Samuel [ORNL; Dyck, OndrejK [University of Tennessee, Knoxville (UTK); Unocic, Kinga A [ORNL; Unocic, Raymond R [ORNL; Burke, Colten [Tennessee Technological University (TTU); Cisco, Joshua [Tennessee Technological University (TTU); Rice, Cynthia [Tennessee Technological University (TTU); Zawodzinski, Thomas A [ORNL; Papandrew, Alexander B [ORNL

    2015-07-22

    Palladium nanotubes (PdNTs) were synthesized by templated vapor deposition and investigated for formic acid electrooxidation. Annealed PdNTs are 2.4 times more active (2.19 mA/cm2) than commercial carbon-supported palladium (0.91 mA/cm2) at 0.3 V vs RHE. Bismuth modification improved nanotube performance over 4 times (3.75 mA/cm2) vs Pd/C and nearly 2 times vs unmodified PdNTs. A surface Bi coverage of 80% results in optimal site-specific activity by drastically reducing surface-poisoning CO generation during formic acid electrooxidation. The Bi-modified PdNTs are exceptionally stable, maintaining 2 times the area-normalized current density as Pd/C after 24 h at 0.2 V vs RHE. As a result, we attribute the enhanced activity and stability of the nanotube catalysts to the presence of highly coordinated surfaces, mimicking a flat polycrystal while retaining high surface area geometry.

  1. Performance of a combined capacitor based on ultrafine nickel oxide/carbon nanotubes composite electrodes

    Institute of Scientific and Technical Information of China (English)

    Xiaofeng Wang; Yanqiu Cao; Yiqiang Lu; Qiqian Sha; Ji Liang

    2004-01-01

    A new sol-gel process for the preparation of ultrafine nickel hydroxide electrode materials was developed. The composite electrodes consisting of carbon nanotubes and Ni(OH)2 were developed by mixing the hydroxide and carbon nanotubes together in different mass ratios. In order to enhance energy density, a combined type pseudocapacitor/electric double layer capacitor was considered and its electrochemical properties were characterized by cyclic voltammetry and dc charge/discharge test. The combined capacitor shows excellent capacitor behavior with an operating voltage up to 1.6 V in KOH aqueous electrolyte. Stable charge/discharge behaviors were observed with much higher specific capacitance values of 24 F/g compared with that of EDLC (12F/g) by introducing 60% Ni(OH)2 in the anode material. By using the modified anode of a Ni(OH)2/carbon nanotubes composite electrode, the specific capacitance of the cell was less sensitive to discharge current density compared with that of the capacitor employing pure nickel hydroxide as anode. The combined capacitor in this study exhibits high energy density and stable power characteristics.

  2. A miniaturized electrochemical toxicity biosensor based on graphene oxide quantum dots/carboxylated carbon nanotubes for assessment of priority pollutants

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Xiaolin; Wu, Guanlan; Lu, Nan [School of Environment, Northeast Normal University, Changchun 130117 (China); Yuan, Xing, E-mail: yuanx@nenu.edu.cn [School of Environment, Northeast Normal University, Changchun 130117 (China); Li, Baikun, E-mail: baikun@engr.uconn.edu [Department of Civil and Environmental Engineering, University of Connecticut, Storrs, CT 06269 (United States)

    2017-02-15

    Highlights: • Graphene oxide quantum dots/carboxylated carbon nanotubes hybrid was developed. • The cytotoxicity detection vessel was miniaturized to the 96-well plate. • The electrochemical behavior of HepG2 cell was investigated for the first time. • The mixture signal of adenine and hypoxanthine was separated successfully. • The biosensor was used to assess the toxicity of heavy metals and phenols. - Abstract: The study presented a sensitive and miniaturized cell-based electrochemical biosensor to assess the toxicity of priority pollutants in the aquatic environment. Human hepatoma (HepG2) cells were used as the biological recognition agent to measure the changes of electrochemical signals and reflect the cell viability. The graphene oxide quantum dots/carboxylated carbon nanotubes hybrid was developed in a facile and green way. Based on the hybrid composite modified pencil graphite electrode, the cell culture and detection vessel was miniaturized to a 96-well plate instead of the traditional culture dish. In addition, three sensitive electrochemical signals attributed to guanine/xanthine, adenine, and hypoxanthine were detected simultaneously. The biosensor was used to evaluate the toxicity of six priority pollutants, including Cd, Hg, Pb, 2,4-dinitrophenol, 2,4,6-trichlorophenol, and pentachlorophenol. The 24 h IC{sub 50} values obtained by the electrochemical biosensor were lower than those of conventional MTT assay, suggesting the enhanced sensitivity of the electrochemical assay towards heavy metals and phenols. This platform enables the label-free and sensitive detection of cell physiological status with multi-parameters and constitutes a promising approach for toxicity detection of pollutants. It makes possible for automatical and high-throughput analysis on nucleotide catabolism, which may be critical for life science and toxicology.

  3. A Comparative Study on Graphene Oxide and Carbon Nanotube Reinforcement of PMMA-Siloxane-Silica Anticorrosive Coatings.

    Science.gov (United States)

    Harb, Samarah V; Pulcinelli, Sandra H; Santilli, Celso V; Knowles, Kevin M; Hammer, Peter

    2016-06-29

    Carbon nanotubes (CNTs) and graphene oxide (GO) have been used to reinforce PMMA-siloxane-silica nanocomposites considered to be promising candidates for environmentally compliant anticorrosive coatings. The organic-inorganic hybrids were prepared by benzoyl peroxide (BPO)-induced polymerization of methyl methacrylate (MMA) covalently bonded through 3-(trimethoxysilyl)propyl methacrylate (MPTS) to silica domains formed by hydrolytic condensation of tetraethoxysilane (TEOS). Single-walled carbon nanotubes and graphene oxide nanosheets were dispersed by surfactant addition and in a water/ethanol solution, respectively. These were added to PMMA-siloxane-silica hybrids at a carbon (CNT or GO) to silicon (TEOS and MPTS) molar ratio of 0.05% in two different matrices, both prepared at BPO/MMA molar ratios of 0.01 and 0.05. Atomic force microscopy and scanning electron microscopy showed very smooth, homogeneous, and defect-free surfaces of approximately 3-7 μm thick coatings deposited onto A1020 carbon steel by dip coating. Mechanical testing and thermogravimetric analysis confirmed that both additives CNT and GO improved the scratch resistance, adhesion, wear resistance, and thermal stability of PMMA-siloxane-silica coatings. Results of electrochemical impedance spectroscopy in 3.5% NaCl solution, discussed in terms of equivalent circuits, showed that the reinforced hybrid coatings act as a very efficient anticorrosive barrier with an impedance modulus up to 1 GΩ cm(2), approximately 5 orders of magnitude higher than that of bare carbon steel. In the case of GO addition, the high corrosion resistance was maintained for more than 6 months in saline medium. These results suggest that both carbon nanostructures can be used as structural reinforcement agents, improving the thermal and mechanical resistance of high performance anticorrosive PMMA-siloxane-silica coatings and thus extending their application range to abrasive environments.

  4. Method for producing and controlling the morphology of metal-oxide nanofiber and/or nanotube catalysts

    DEFF Research Database (Denmark)

    2015-01-01

    Disclosed herein is a process for the controlled production of metal-containing nanofibers and/or nanotubes, where the morphology of the nanofibers and/or nanotubes is followed in real time by TEM measurements.......Disclosed herein is a process for the controlled production of metal-containing nanofibers and/or nanotubes, where the morphology of the nanofibers and/or nanotubes is followed in real time by TEM measurements....

  5. Oxidatively damaged DNA in rats exposed by oral gavage to C60 fullerenes and single-walled carbon nanotubes

    DEFF Research Database (Denmark)

    Folkmann, Janne K; Risom, Lotte; Jacobsen, Nicklas R

    2009-01-01

    BACKGROUND: C60 fullerenes and single-walled carbon nanotubes (SWCNT) are projected to be used in medicine and consumer products with potential human exposure. The hazardous effects of these particles are expected to involve oxidative stress with generation of oxidatively damaged DNA that might...... be the initiating event in the development of cancer. OBJECTIVE: In this study we investigated the effect of a single oral administration of C60 fullerenes and SWCNT. METHODS: We measured the level of oxidative damage to DNA as the premutagenic 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG) in the colon mucosa...... the levels of 8-oxodG in liver and lung. Administration of C60 fullerenes increased the hepatic level of 8-oxodG, whereas only the high dose generated 8-oxodG in the lung. We detected no effects on 8-oxodG in colon mucosa. Suspension of particles in saline solution or corn oil yielded a similar extent...

  6. Integrated Ternary Bioinspired Nanocomposites via Synergistic Toughening of Reduced Graphene Oxide and Double-Walled Carbon Nanotubes.

    Science.gov (United States)

    Gong, Shanshan; Cui, Wei; Zhang, Qi; Cao, Anyuan; Jiang, Lei; Cheng, Qunfeng

    2015-12-22

    With its synergistic toughening effect and hierarchical micro/nanoscale structure, natural nacre sets a "gold standard" for nacre-inspired materials with integrated high strength and toughness. We demonstrated strong and tough ternary bioinspired nanocomposites through synergistic toughening of reduced graphene oxide and double-walled carbon nanotube (DWNT) and covalent bonding. The tensile strength and toughness of this kind of ternary bioinspired nanocomposites reaches 374.1 ± 22.8 MPa and 9.2 ± 0.8 MJ/m(3), which is 2.6 and 3.3 times that of pure reduced graphene oxide film, respectively. Furthermore, this ternary bioinspired nanocomposite has a high conductivity of 394.0 ± 6.8 S/cm and also shows excellent fatigue-resistant properties, which may enable this material to be used in aerospace, flexible energy devices, and artificial muscle. The synergistic building blocks with covalent bonding for constructing ternary bioinspired nanocomposites can serve as the basis of a strategy for the construction of integrated, high-performance, reduced graphene oxide (rGO)-based nanocomposites in the future.

  7. A novel voltammetric sensor based on carbon nanotubes and nanoparticles of antimony tin oxide for the determination of ractopamine.

    Science.gov (United States)

    Baytak, Aysegul Kutluay; Teker, Tugce; Duzmen, Sehriban; Aslanoglu, Mehmet

    2016-02-01

    An electrochemical sensor was prepared by the modification of a glassy carbon electrode (GCE) with carbon nanotubes (CNTs) and nanoparticles of antimony tin oxide (ATO). The surface layer was characterized by scanning electronmicroscopy (SEM), energy dispersive X-ray diffraction method (EDX) and ATR FT-IR spectroscopy. The proposed electrode was assessed in respect to the electro-oxidation of ractopamine. Compared with a bare GCE and a GCE electrode modified with CNTs, the ATONPs/CNTs/GCE exhibited a great catalytic activity towards the oxidation of ractopamine with a well-defined anodic peak at 600 mV. The current response was linear with the concentration of ractopamine over the range from 10 to 240 nM with a detection limit of 3.3 nM. The proposed electrode enabled the selective determination of ractopamine in the presence of high concentrations of ascorbic acid (AA), dopamine (DA) and uric acid (UA). The proposed electrode was successfully applied for the determination of ractopamine in feed and urine samples. The sensitive and selective determination of ractopamine makes the developed method of great interest for monitoring its therapeutic use and doping control purposes.

  8. Ethylene glycol oxidation on Pt and Pt-Ru nanoparticle decorated polythiophene/multiwalled carbon nanotube composites for fuel cell applications.

    Science.gov (United States)

    Selvaraj, Vaithilingam; Alagar, Muthukaruppan

    2008-01-30

    A novel supporting material containing polythiophene (PTh) and multiwalled carbon nanotubes (MWCNTs) (PTh-CNTs) is prepared by in situ polymerization of thiophene on carbon nanotubes using FeCl(3) as oxidizing agent under sonication. The prepared polythiophene/CNT composites are further decorated with Pt and Pt-Ru nanoparticles by chemical reduction of the corresponding metal salts using HCHO as reducing agent at pH = 11 (Pt/PTh-CNT and Pt-Ru/PTh-CNT). The fabricated composite films decorated with nanoparticles were investigated towards the electrochemical oxidation of ethylene glycol (EG). The presence of carbon nanotubes in conjugation with a conducting polymer produces a good catalytic effect, which might be due to the higher electrochemically accessible surface areas, electronic conductivity and easier charge-transfer at polymer/electrolyte interfaces, which allows higher dispersion of Pt and Pt-Ru nanoparticles. Such nanoparticle modified PTh-CNT electrodes exhibit better catalytic behavior towards ethylene glycol oxidation. Results show that Pt/PTh-CNT and Pt-Ru/PTh-CNT modified electrodes show enhanced electrocatalytic activity and stability towards the electro-oxidation of ethylene glycol than the Pt/PTh electrodes, which shows that the composite film is more promising for applications in fuel cells.

  9. Ethylene glycol oxidation on Pt and Pt-Ru nanoparticle decorated polythiophene/multiwalled carbon nanotube composites for fuel cell applications

    Energy Technology Data Exchange (ETDEWEB)

    Selvaraj, Vaithilingam; Alagar, Muthukaruppan [Department of Chemical Engineering, Alagappa College of Technology, Anna University, Chennai 600025 (India)

    2008-01-30

    A novel supporting material containing polythiophene (PTh) and multiwalled carbon nanotubes (MWCNTs) (PTh-CNTs) is prepared by in situ polymerization of thiophene on carbon nanotubes using FeCl{sub 3} as oxidizing agent under sonication. The prepared polythiophene/CNT composites are further decorated with Pt and Pt-Ru nanoparticles by chemical reduction of the corresponding metal salts using HCHO as reducing agent at pH = 11 (Pt/PTh-CNT and Pt-Ru/PTh-CNT). The fabricated composite films decorated with nanoparticles were investigated towards the electrochemical oxidation of ethylene glycol (EG). The presence of carbon nanotubes in conjugation with a conducting polymer produces a good catalytic effect, which might be due to the higher electrochemically accessible surface areas, electronic conductivity and easier charge-transfer at polymer/electrolyte interfaces, which allows higher dispersion of Pt and Pt-Ru nanoparticles. Such nanoparticle modified PTh-CNT electrodes exhibit better catalytic behavior towards ethylene glycol oxidation. Results show that Pt/PTh-CNT and Pt-Ru/PTh-CNT modified electrodes show enhanced electrocatalytic activity and stability towards the electro-oxidation of ethylene glycol than the Pt/PTh electrodes, which shows that the composite film is more promising for applications in fuel cells.

  10. Probing Photosensitization by Functionalized Carbon Nanotubes

    Science.gov (United States)

    Carbon nanotubes (CNTs) photosensitize the production of reactive oxygen species that can damage organisms by biomembrane oxidation or mediate CNTs' environmental transformations. The photosensitized nature of derivatized carbon nanotubes from various synthetic methods, and thus ...

  11. The effects of liquid-phase oxidation of multiwall carbon nanotubes on their surface characteristics

    Science.gov (United States)

    Burmistrov, I. N.; Muratov, D. S.; Ilinykh, I. A.; Kolesnikov, E. A.; Godymchuk, A. Yu; Kuznetsov, D. V.

    2016-01-01

    The development of new sorbents based on nanostructured carbon materials recently became a perspective field of research. Main topic of current study is to investigate the effect of different regimes of multiwall carbon nanotubes (MWCNT) surface modification process on their structural characteristics. MWCNT samples were treated with nitric acid at high temperature. Structural properties were studied using low temperature nitrogen adsorption and acid-base back titration methods. The study showed that diluted nitric acid does not affect MWCNT structure. Concentrated nitric acid treatment leads to formation of 2.8 carboxylic groups per 1 nm2 of the sample surface.

  12. Adsorption kinetics, isotherms and thermodynamics of atrazine on surface oxidized multiwalled carbon nanotubes.

    Science.gov (United States)

    Chen, Guang-Cai; Shan, Xiao-Quan; Zhou, Yi-Quan; Shen, Xiu-e; Huang, Hong-Lin; Khan, Shahamat U

    2009-09-30

    The adsorption kinetics, isotherms and thermodynamic of atrazine on multiwalled carbon nanotubes (MWCNTs) containing 0.85%, 2.16%, and 7.07% oxygen was studied. Kinetic analyses were performed using pseudo-first-order, pseudo-second-order and intraparticle diffusion models. The regression results showed that the pseudo-second-order law fit the adsorption kinetics. The calculated thermodynamic parameters indicated that adsorption of atrazine on MWCNTs was spontaneous and exothermic. Standard free energy (DeltaG(0)) became less negative when the oxygen content of MWCNTs increased from 0.85% to 7.07% which is consistent with the low adsorption affinity of MWCNTs for atrazine.

  13. Well-dispersed NiO nanoparticles supported on nitrogen-doped carbon nanotube for methanol electrocatalytic oxidation in alkaline media

    Science.gov (United States)

    Wang, Pengcheng; Zhou, Yingke; Hu, Min; Chen, Jian

    2017-01-01

    Nitrogen-doped carbon nanotube supporting NiO nanoparticles were synthesized by a chemical precipitation process coupled with subsequent calcination. The morphology and structure of the composites were characterized by transmission electron microscopy (TEM), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS), and the electrochemical performance was evaluated using cyclic voltammetry and chronoamperometric technique. The effects of nitrogen doping, calcination temperature and content of NiO nanoparticles on the electrocatalytic activity toward methanol oxidation were systematically studied. The results show that the uniformly dispersed ultrafine NiO nanoparticles supported on nitrogen-doped carbon nanotube are obtained after calcination at 400 °C. The optimized composite catalysts present high electrocatalytic activity, fast charge-transfer process, excellent accessibility and stability for methanol oxidation reaction, which are promising for application in the alkaline direct methanol fuel cells.

  14. Catalytic wet air oxidation of bisphenol A solution in a batch-recycle trickle-bed reactor over titanate nanotube-based catalysts.

    Science.gov (United States)

    Kaplan, Renata; Erjavec, Boštjan; Senila, Marin; Pintar, Albin

    2014-10-01

    Catalytic wet air oxidation (CWAO) is classified as an advanced oxidation process, which proved to be highly efficient for the removal of emerging organic pollutant bisphenol A (BPA) from water. In this study, BPA was successfully removed in a batch-recycle trickle-bed reactor over bare titanate nanotube-based catalysts at very short space time of 0.6 min gCAT g(-1). The as-prepared titanate nanotubes, which underwent heat treatment at 600 °C, showed high activity for the removal of aqueous BPA. Liquid-phase recycling (5- or 10-fold recycle) enabled complete BPA conversion already at 200 °C, together with high conversion of total organic carbon (TOC), i.e., 73 and 98 %, respectively. The catalyst was chemically stable in the given range of operating conditions for 189 h on stream.

  15. Characterization and in vitro studies of the anticancer effect of oxidized carbon nanotubes functionalized with betulinic acid

    Directory of Open Access Journals (Sweden)

    Tan JM

    2014-11-01

    Full Text Available Julia M Tan,1 Govindarajan Karthivashan,2 Palanisamy Arulselvan,2 Sharida Fakurazi,2,3 Mohd Zobir Hussein1 1Materials Synthesis and Characterization Laboratory, Institute of Advanced Technology (ITMA, Universiti Putra Malaysia, Serdang, Selangor, Malaysia; 2Laboratory of Vaccine and Immunotherapeutics, Institute of Bioscience (IBS, Universiti Putra Malaysia, Serdang, Selangor, Malaysia; 3Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia Abstract: Among the array of nanomaterials, carbon nanotubes have shown great potential as drug carriers in the field of nanomedicine, owing to their attractive physicochemical structure, which facilitates functionalization of therapeutic molecules onto their external walls or being encapsulated inside the tubes. The aim of this preliminary study was to formulate betulinic acid (BA, a poorly water-soluble drug, in oxidized multiwalled carbon nanotubes (MWCNT-COOH for enhanced delivery efficiency into cancer cells with reduced cytotoxicity. The synthesized MWCNT-BA nanocomposite was characterized using ultraviolet-visible, Fourier transform infrared, thermogravimetric analysis, powder X-ray diffraction, and field emission scanning electron microscopy techniques. The loading of BA in MWCNT-COOH nanocarrier was estimated to be about 14.5%–14.8% (w/w, as determined by ultraviolet-visible and thermogravimetric analysis. Fourier transform infrared study shows that the peaks of the resulting MWCNT-BA nanocomposite correlate to the characteristic functional groups of BA and MWCNT-COOH. The powder X-ray diffraction results confirmed that the tubular structures of MWCNT-COOH were not affected by the drug loading mechanism of BA. The release profiles demonstrated that approximately 98% of BA could be released within 22 hours by phosphate-buffered saline solution at pH 7.4 compared with about 22% within 24 hours at pH 4.8. The biocompatibility

  16. High-Performance Supercapacitor Electrode Based on Cobalt Oxide-Manganese Dioxide-Nickel Oxide Ternary 1D Hybrid Nanotubes.

    Science.gov (United States)

    Singh, Ashutosh K; Sarkar, Debasish; Karmakar, Keshab; Mandal, Kalyan; Khan, Gobinda Gopal

    2016-08-17

    We report a facile method to design Co3O4-MnO2-NiO ternary hybrid 1D nanotube arrays for their application as active material for high-performance supercapacitor electrodes. This as-prepared novel supercapacitor electrode can store charge as high as ∼2020 C/g (equivalent specific capacitance ∼2525 F/g) for a potential window of 0.8 V and has long cycle stability (nearly 80% specific capacitance retains after successive 5700 charge/discharge cycles), significantly high Coulombic efficiency, and fast response time (∼0.17s). The remarkable electrochemical performance of this unique electrode material is the outcome of its enormous reaction platform provided by its special nanostructure morphology and conglomeration of the electrochemical properties of three highly redox active materials in a single unit.

  17. Characterization and in vitro studies of the anticancer effect of oxidized carbon nanotubes functionalized with betulinic acid.

    Science.gov (United States)

    Tan, Julia M; Karthivashan, Govindarajan; Arulselvan, Palanisamy; Fakurazi, Sharida; Hussein, Mohd Zobir

    2014-01-01

    Among the array of nanomaterials, carbon nanotubes have shown great potential as drug carriers in the field of nanomedicine, owing to their attractive physicochemical structure, which facilitates functionalization of therapeutic molecules onto their external walls or being encapsulated inside the tubes. The aim of this preliminary study was to formulate betulinic acid (BA), a poorly water-soluble drug, in oxidized multiwalled carbon nanotubes (MWCNT-COOH) for enhanced delivery efficiency into cancer cells with reduced cytotoxicity. The synthesized MWCNT-BA nanocomposite was characterized using ultraviolet-visible, Fourier transform infrared, thermogravimetric analysis, powder X-ray diffraction, and field emission scanning electron microscopy techniques. The loading of BA in MWCNT-COOH nanocarrier was estimated to be about 14.5%-14.8% (w/w), as determined by ultraviolet-visible and thermogravimetric analysis. Fourier transform infrared study shows that the peaks of the resulting MWCNT-BA nanocomposite correlate to the characteristic functional groups of BA and MWCNT-COOH. The powder X-ray diffraction results confirmed that the tubular structures of MWCNT-COOH were not affected by the drug loading mechanism of BA. The release profiles demonstrated that approximately 98% of BA could be released within 22 hours by phosphate-buffered saline solution at pH 7.4 compared with about 22% within 24 hours at pH 4.8. The biocompatibility studies revealed that MWCNT-BA at concentrations <50μg/mL expressed no cytotoxicity effects for mouse embryo fibroblast cells after 72 hours of treatment. The anticancer activity of MWCNT-BA was observed to be more sensitive to human lung cancer cell line when compared with human liver cancer cell line, with half maximal inhibitory concentration values of 2.7 and 11.0μg/mL, respectively. Our findings form a fundamental platform for further investigation of the MWCNT-BA formulation against different types of cancer cells.

  18. Binding of human serum albumin to single-walled carbon nanotubes activated neutrophils to increase production of hypochlorous acid, the oxidant capable of degrading nanotubes.

    Science.gov (United States)

    Lu, Naihao; Li, Jiayu; Tian, Rong; Peng, Yi-Yuan

    2014-06-16

    Previous studies have shown that carboxylated single-walled carbon nanotubes (SWCNTs) can be catalytically biodegraded by hypochlorite (OCl-) and reactive radical intermediates of the human neutrophil enzyme myeloperoxidase (MPO). However, the importance of protein-SWCNT interactions in the biodegradation of SWCNTs was not stressed. Here, we used both experimental and theoretical approaches to investigate the interactions of SWCNTs with human serum albumin (HSA, one of the most abundant proteins in blood circulation) and found that the binding was involved in the electrostatic interactions of positively charged Arg residues of HSA with the carboxyls on the nanotubes, along with the π-π stacking interactions between SWCNTs and aromatic Tyr residues in HSA. Compared with SWCNTs, the binding of HSA could result in a reduced effect for OCl- (or the human MPO system)-induced SWCNTs degradation in vitro. However, the HSA-SWCNT interactions would enhance cellular uptake of nanotubes and stimulate MPO release and OCl- generation in neutrophils, thereby creating the conditions favorable for the degradation of the nanotubes. Upon zymosan stimulation, both SWCNTs and HSA-SWCNTs were significantly biodegraded in neutrophils, and the degree of biodegradation was more for HSA-SWCNTs under these relevant in vivo conditions. Our findings suggest that the binding of HSA may be an important determinant for MPO-mediated SWCNT biodegradation in human inflammatory cells and therefore shed light on the biomedical and biotechnological applications of safe carbon nanotubes by comprehensive preconsideration of their interactions with human serum proteins.

  19. Methanol Oxidation over TiO2-modified Multi-walled Carbon Nanotubes Supported Pt-Mo Electrocatalyst

    Institute of Scientific and Technical Information of China (English)

    WANG Xiu-yu; JIANG Yuan-sheng; ZHU Hong; ZHANG Jing-chang

    2011-01-01

    In order to develop a novel and high-performance catalytic material for direct methanol fuel cells(DMFC),molybdenum oxide as a co-catalyst with Pt on multi-walled carbon nanotubes which were modified by titanium dioxide(denoted as CNTs@TiO2) was investigated. The physicochemical characterizations of the catalysts were carried out via X-ray diffraction(XRD), transmission electron microscopy(TEM) and X-ray photoelectron spectroscopy(XPS).Cyclic voltammetry(CV) showed that the CO-tolerance performance increased in the sequence of Pt/CNTs<Pt/CNTs@TiO2<Pt-Mo/CNTs@TiO2. The improved CO-tolerance performance of the Pt-Mo/CNTs@TiO2 catalyst can be attributed to the combined beneficial effects of highly dispersed Pt nanoparticles on the CNTs, the existence of oxygen holes in the MoO3 layer structure and the oxidation capability of TiO2.

  20. Color purity in polymer electrochromic window devices on indium-tin oxide and single-walled carbon nanotube electrodes.

    Science.gov (United States)

    Vasilyeva, Svetlana V; Unur, Ece; Walczak, Ryan M; Donoghue, Evan P; Rinzler, Andrew G; Reynolds, John R

    2009-10-01

    Dual polymer absorptive/transmissive electrochromic (EC) window devices have been assembled using the solution-processable and high-EC-contrast polymer PProDOT-(CH(2)OEtHx)(2) as the EC material, along with a non-color-changing electroactive polymer, poly(2,2,6,6-tetramethylpiperidinyloxy-4-yl methacrylate) (PTMA), as the counter electrode material. Indium-tin oxide (ITO) and highly transmissive single-walled carbon nanotube (SWNT) film coated glass electrodes are used as electrode substrates. The use of the EC/non-color-changing polymer combination allowed us to construct window devices that rapidly switch between magenta and highly transmissive (>95% T for ITO and approximately 79% T for SWNT) states with large optical modulation (>71% DeltaT for ITO and 66% DeltaT for SWNT). The devices showed effective coloration and bleaching: the lightness parameter (L*) changing from 67 to 95 for ITO (approximately 50-92 for SWNT), essentially reaching a diffuse white upon oxidation. The color modulates from highly pure magenta with a* = 28 (red hue) and b* = -28 (blue chroma) for ITO (a* = 40 and b* = -36 for SWNT) to nearly colorless with a* = 1 and b* = -1 for ITO (a* = -2 and b* = -3 for SWNT) devices. Increasing the switching voltage from 2.55 V up to 3.5 V resulted in faster SWNT-based window device performance.

  1. Carbon nanotube surface modification with polyelectrolyte brushes endowed with quantum dots and metal oxide nanoparticles through in situ synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Llarena, Irantzu; Romero, Gabriela; Moya, Sergio E [CIC biomaGUNE Paseo Miramon, 182 Edificio Empresarial C, E-20009 San Sebastian, Gipuzkoa (Spain); Ziolo, Ronald F, E-mail: smoya@cicbiomagune.es [Centro de Investigacion en Quimica Aplicada, Blv. Enrique Reyna No. 140, Saltillo, Coahuila 25253 (Mexico)

    2010-02-05

    Carbon nanotubes (CNTs) have been successfully coated with a covalently bonded polymer brush of negatively charged poly(3-sulfopropylamino methacrylate) (PSPM) by in situ polymerization employing atomic transfer radical polymerization (ATRP) from initiating silanes attached to the CNTs before the polymerization. The CNT-bonded brush forms a polymer layer or shell-like structure around the CNTs and provides colloidal stabilization for the CNTs in aqueous media. In situ syntheses of nanocrystalline CdS and magnetic iron oxide in the polymer brushes lead to the formation of hybrid nanocomposites consisting of nanoparticle-containing PSPM-coated CNTs that remain readily dispersible and stable in aqueous media. The hybrid nanostructures are synthesized by ion exchange with the cations of the sulfonate groups of the PSPM followed by precipitation and were followed by stepwise zeta potential measurements and TEM. Such structures could have applications in the design of more complex structures and devices. The general synthetic scheme can be extended to include other nanoparticles as brush cargo to broaden the utility or functionality of the CNTs. TEM data shows nanocrystalline CdS in the range of 5-8 nm embedded in the PSPM brush and nanocrystalline iron oxide with a size between 2 and 4 nm, with the former consistent with UV-vis spectroscopy and fluorescence measurements.

  2. New Modified-Multiwall Carbon Nanotubes Paste Electrode for Electrocatalytic Oxidation and Determination of Hydrazine Using Square Wave Voltammetry

    Institute of Scientific and Technical Information of China (English)

    Ali A. ENSAF; Mahsa LOTFI; Hassan KARIMI-MALEH

    2012-01-01

    The application of p-aminophenol as a suitable mediator, as a sensitive and selective voltammetric sensor for the determination of hydrazine using square wave voltammetric method were described. The modified multiwall carbon nanotubes paste electrode exhibited a good electrocatalytic activity for the oxidation of hydrazine at pH = 7.0. The catalytic oxidation peak currents showed a linear dependence of the peaks current to the hydrazine concentrations in the range of 0.5–175 μmol/L with a correlation coefficient of 0.9975. The detection limit (S/N = 3) was estimated to be 0.3 μmol/L of hydrazine. The relative standard deviations for 0.7 and 5.0 μmol/L hydrazine were 1.7 and 1.1%, respectively. The modified electrode showed good sensitivity and selectivity. The diffusion coefficient (D = 9.5 × 10–4 cm2/s) and the kinetic parameters such as the electron transfer coefficient (α = 0.7) of hydrazine at the surface of the modified electrode were determined using electrochemical approaches. The electrode was successfully applied for the determination of hydrazine in real samples with satisfactory results.

  3. Photoelectrocatalytic properties of a vertically aligned Ti-W alloy oxide nanotubes array and its applications in dye wastewater degradation.

    Science.gov (United States)

    Li, Mingfang; Zhao, Guohua; Li, Peiqiang; Zhang, Yanan; Wu, Meifen

    2012-01-01

    A highly ordered and vertically oriented array of nanotubes (NTs) of mixed oxide was prepared in situ by Ti-W alloy anodization. Compared with the traditional TiO2 NTs, the photoelectrocatalytic activity of the resulting Ti-W-O NTs was greatly enhanced. Results indicated a narrowing of the band gap from 3.2 eV for pristine TiO2 to 2.7 eV for Ti-W-O NTs. Under irradiation with 254 and 365 nm UV lights, Ti-W-O NTs showed much higher photoelectroconversion efficiency (eta) than TiO2 NTs and TiO2-WO3 coating. The eta254 and eta365 on Ti-W-O NTs reached as high as 51.8% and 57.0% respectively, four to five times those on TiO2 NTs and TiO2-WO3 coating. As a result of its narrow band gap energy and fast electron-hole separation, Ti-W-O NTs presented outstanding photoelectrocatalytic features. The electrochemically assisted photocatalytic degradation of highly concentrated Rhodamine 6G wastewaters was studied. The results showed that the rates of colour and TOC removal were much higher on Ti-W-O NTs than on TiO2 NTs and TiO2-WO3 coating. The photocatalytic material obtained by alloy anodization is of significance in the advanced oxidation of environmental pollutants.

  4. Electrocatalytic oxidation of formic acid by poly(diallyldimethylammonium chloride) and Pt/Pd-functionalized carbon nanotubes mixtures.

    Science.gov (United States)

    Kim, Min-Su; Kim, Daekun; Lee, Hyo Kyoung; Jeon, Seungwon

    2012-12-01

    Improving the catalytic activity of the anode catalyst is an important task in the direct formic acid fuel cell (DFAFC). In this study, the catalysts were prepared by dispersing either platinum or palladium metal on the surface of thiolated multi-walled carbon nanotubes (t-MWCNTs), denoted as t-MWCNT-Pt and t-MWCNT-Pd, respectively. These modified t-MWCNT and poly(diallyldimethylammonium chloride) (PDDA) were ultrasonically mixed and loading on a glassy carbon electrode (GCE) for formic acid (FA) oxidation and the catalytic activities were then investigated by using cyclic voltammetry (CV) and chronoamperometry (CA) methods. The as-formed catalysts were characterized by several methods. To optimize the catalytic performance, we investigated the catalysts separately and together (in different ratios) for FA oxidation. The PDDA mixed catalyst demonstrated a slightly better performance. These results indicated that the PDDA/(t-MWCNT-Pt + t-MWCNT-Pd) catalyst exhibited better activity than that of the corresponding other catalysts.

  5. In Situ Synthesis and Characterization of Polyethyleneimine-Modified Carbon Nanotubes Supported PtRu Electrocatalyst for Methanol Oxidation

    Directory of Open Access Journals (Sweden)

    Xi Geng

    2015-01-01

    Full Text Available PtRu bimetallic nanoparticles were successfully synthesized on polyethyleneimine- (PEI- functionalized multiwalled carbon nanotubes (MWCNTs via an effective and facile polyol reduction approach. Noncovalent surface modification of MWCNTs with PEI was confirmed by FTIR and zeta potential measurements. The morphology, crystalline structure, and composition of the hybrid material were characterized by transmission electron microscopy (TEM, scanning electron microscopy (SEM, X-ray powder diffraction (XRD, and energy dispersive X-ray spectroscopy (EDX, respectively. According to SEM and TEM observations, PtRu nanoparticles with narrow size distribution were homogeneously deposited on PEI-MWCNTs. Cyclic voltammetry tests demonstrated that the as-prepared PtRu/PEI-MWCNTs nanocomposite had a large electrochemical surface area and exhibited enhanced electrocatalytic activity towards methanol oxidation in comparison with oxidized MWCNTs as catalyst support. PEI-functionalized CNTs, as useful building blocks for the assembly of Pt-based electrocatalyst, may have great potential for applications such as direct methanol fuel cell (DMFC.

  6. Comparative electron paramagnetic resonance investigation of reduced graphene oxide and carbon nanotubes with different chemical functionalities for quantum dot attachment

    Energy Technology Data Exchange (ETDEWEB)

    Pham, Chuyen V.; Krueger, Michael, E-mail: michael.krueger@fmf.uni-freiburg.de, E-mail: emre.erdem@physchem.uni-freiburg.de; Eck, Michael [Freiburg Materials Research Center (FMF), University of Freiburg, Stefan-Meier-Str. 21, 79104 Freiburg (Germany); Department of Microsystems Engineering (IMTEK), University of Freiburg, Georges-Köhler-Allee 103, 79110 Freiburg (Germany); Weber, Stefan; Erdem, Emre, E-mail: michael.krueger@fmf.uni-freiburg.de, E-mail: emre.erdem@physchem.uni-freiburg.de [Institute of Physical Chemistry, University of Freiburg, Albertstr. 21, 79104 Freiburg (Germany)

    2014-03-31

    Electron paramagnetic resonance (EPR) spectroscopy has been applied to different chemically treated reduced graphene oxide (rGO) and multiwalled carbon nanotubes (CNTs). A narrow EPR signal is visible at g = 2.0029 in both GO and CNT-Oxide from carbon-related dangling bonds. EPR signals became broader and of lower intensity after oxygen-containing functionalities were reduced and partially transformed into thiol groups to obtain thiol-functionalized reduced GO (TrGO) and thiol-functionalized CNT (CNT-SH), respectively. Additionally, EPR investigation of CdSe quantum dot-TrGO hybrid material reveals complete quenching of the TrGO EPR signal due to direct chemical attachment and electronic coupling. Our work confirms that EPR is a suitable tool to detect spin density changes in different functionalized nanocarbon materials and can contribute to improved understanding of electronic coupling effects in nanocarbon-nanoparticle hybrid nano-composites promising for various electronic and optoelectronic applications.

  7. Nafion-porous cerium oxide nanotubes composite membrane for polymer electrolyte fuel cells operated under dry conditions

    Science.gov (United States)

    Ketpang, Kriangsak; Oh, Kwangjin; Lim, Sung-Chul; Shanmugam, Sangaraju

    2016-10-01

    A composite membrane operated in polymer electrolyte fuel cells (PEFCs) under low relative humidity (RH) is developed by incorporating cerium oxide nanotubes (CeNT) into a perfluorosulfonic acid (Nafion®) membrane. Porous CeNT is synthesized by direct heating a precursor impregnated polymer fibers at 500 °C under an air atmosphere. Compared to recast Nafion and commercial Nafion (NRE-212) membranes, the Nafion-CeNT composite membrane generates 1.1 times higher power density at 0.6 V, operated at 80 °C under 100% RH. Compared to Nafion-cerium oxide nanoparticles (Nafion-CeNP) membrane, the Nafion-CeNT provides 1.2 and 1.7 times higher PEFC performance at 0.6 V when operated at 80 °C under 100% and 18% RH, respectively. Additionally, the Nafion-CeNT composite membrane exhibits a good fuel cell operation under 18% RH at 80 °C. Specifically, the fluoride emission rate of Nafion-CeNT composite membrane is 20 times lower than that of the commercial NRE-212 membrane when operated under 18% RH at 80 °C for 96 h. The outstanding PEFC performance and durability operated under dry conditions is mainly attributed to the facile water diffusion capability as well as the effective hydroxyl radical scavenging property of the CeNT filler, resulting in significantly mitigating both the ohmic resistance and Nafion membrane degradation.

  8. Electrochemical characteristics of the reduced graphene oxide/carbon nanotube/polypyrrole composites for aqueous asymmetric supercapacitors

    Science.gov (United States)

    Peng, Yu-Jung; Wu, Tzu-Ho; Hsu, Chun-Tsung; Li, Shin-Ming; Chen, Ming-Guan; Hu, Chi-Chang

    2014-12-01

    Polypyrrole (PPy) has been polymerized onto reduced graphene oxide/carbon nanotube (rGO/CNT) to form an rGO/CNT/PPy composite using the chemical oxidation method. The electrochemical characteristics of the above composite in various aqueous electrolytes are systematically compared for the asymmetric supercapacitor application. The electrochemical characteristics of rGO/CNT/PPy in the electrolytes containing K+ show improved reversibility and higher stability. Introducing XC-72 in preparing the electrode has been found to enhance the specific capacitance and the cycle stability of rGO/CNT/PPy. The charge storage stability of rGO/CNT/PPy + XC-72 in various potential windows has been evaluated through the potential bias stress test. An asymmetric supercapacitor (ASC) with a positive electrode of Mn3O4 and a negative electrode of rGO/CNT/PPy + XC-72 is successfully demonstrated, which shows specific energy and power of 14. Wh kg-1 and 6.62 kW kg-1 with a cell voltage of 1.6 V. This ASC with a cell voltage of 1.6 V shows excellent charge-discharge cycle stability and ideal capacitive behavior in NaNO3 even after the application of 3250 charge-discharge cycles.

  9. Synthesis of palladium nanoparticles over graphite oxide and carbon nanotubes by reduction in ethylene glycol and their catalytic performance on the chemoselective hydrogenation of para-chloronitrobenzene

    OpenAIRE

    2016-01-01

    Pd nanoparticles have been synthesized over carbon nanotubes (CNT) and graphite oxide (GO) by reduction with ethylene glycol and by conventional impregnation method. The catalysts were tested on the chemoselective hydrogenation of p-chloronitrobenzene and the effect of the synthesis method and surface chemistry on their catalytic performance was evaluated. The catalysts were characterized by N2 adsorption/desorption isotherms at 77 K, TEM, powder X-ray diffraction, thermogravimetry, infrared ...

  10. Synthesis of palladium nanoparticles over graphite oxide and carbon nanotubes by reduction in ethylene glycol and their catalytic performance on the chemoselective hydrogenation of para-chloronitrobenzene

    OpenAIRE

    Dongil, Ana Belén; Pastor Pérez, Laura; Fierro, Jose L. G.; Escalona, Néstor; Sepúlveda Escribano, Antonio

    2016-01-01

    Pd nanoparticles have been synthesized over carbon nanotubes (CNT) and graphite oxide (GO) by reduction with ethylene glycol and by conventional impregnation method. The catalysts were tested on the chemoselective hydrogenation of p-chloronitrobenzene and the effect of the synthesis method and surface chemistry on their catalytic performance was evaluated. The catalysts were characterized by N2 adsorption/desorption isotherms at 77 K, TEM, powder X-ray diffraction, thermogravimetry, infrared ...

  11. Synthesis of free-standing carbon nanohybrid by directly growing carbon nanotubes on air-sprayed graphene oxide paper and its application in supercapacitor

    Energy Technology Data Exchange (ETDEWEB)

    Wei, Li; Jiang, Wenchao; Yuan, Yang; Goh, Kunli; Yu, Dingshan [School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore 637459 (Singapore); Wang, Liang [School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin 300384 (China); Chen, Yuan, E-mail: chenyuan@ntu.edu.sg [School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore 637459 (Singapore)

    2015-04-15

    We report the synthesis of a free-standing two dimensional carbon nanotube (CNT)-reduced graphene oxide (rGO) hybrid by directly growing CNTs on air-sprayed GO paper. As a result of the good integration between CNTs and thermally reduced GO film during chemical vapor deposition, excellent electrical conductivity (2.6×10{sup 4} S/m), mechanical flexibility (electrical resistance only increases 1.1% after bent to 90° for 500 times) and a relatively large surface area (335.3 m{sup 2}/g) are achieved. Two-electrode supercapacitor assembled using the CNT–rGO hybrids in ionic liquid electrolyte (1-ethyl-3-methylimidazolium tetrafluoroborate) shows excellent stability upon 500 bending cycles with the gravimetric energy density measuring 23.7 Wh/kg and a power density of 2.0 kW/kg. Furthermore, it shows an impedance phase angle of −64.4° at a frequency of 120 Hz, suggesting good potentials for 120 Hz alternating current line filtering applications. - Graphical abstract: Flexible and highly conductive carbon nanotube-reduced graphene oxide nanohybrid. - Highlights: • Direct growth of carbon nanotubes by chemical vapor deposition on air-sprayed graphene oxide paper. • Two-dimensional carbon nanohybrid with excellent conductivity and mechanical flexibility. • Supercapacitor with excellent performance stability upon mechanical deformation for flexible electronics applications. • Supercapacitor with high impedance phase angle for 120 Hz alternating current line filtering applications.

  12. Mild in situ growth of platinum nanoparticles on multiwalled carbon nanotube-poly (vinyl alcohol) hydrogel electrode for glucose electrochemical oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Shumin; Zheng, Yudong, E-mail: zhengyudong@mater.ustb.edu.cn; Qiao, Kun [University of Science and Technology Beijing, School of Material Science and Engineering (China); Su, Lei [University of Science and Technology Beijing, School of Chemistry and Biological Engineering (China); Sanghera, Amendeep; Song, Wenhui [University College London, UCL Centre for Nanotechnology & Regenerative Medicine, Division of Surgery and Interventional Science (United Kingdom); Yue, Lina; Sun, Yi [University of Science and Technology Beijing, School of Material Science and Engineering (China)

    2015-12-15

    This investigation describes an effective strategy to fabricate an electrochemically active hybrid hydrogel made from platinum nanoparticles that are highly dense, uniformly dispersed, and tightly embedded throughout the conducting hydrogel network for the electrochemical oxidation of glucose. A suspension of multiwalled carbon nanotubes and polyvinyl alcohol aqueous was coated on glassy carbon electrode by electrophoretic deposition and then physically crosslinked to form a three-dimensional porous conductive hydrogel network by a process of freezing and thawing. The network offered 3D interconnected mass-transport channels (around 200 nm) and confined nanotemplates for in situ growth of uniform platinum nanoparticles via the moderate reduction agent, ascorbic acid. The resulting hybrid hydrogel electrode membrane demonstrates an effective method for loading platinum nanoparticles on multiwalled carbon nanotubes by the electrostatic adsorption between multiwalled carbon nanotubes and platinum ions within porous hydrogel network. The average diameter of platinum nanoparticles is 37 ± 14 nm, which is less than the particle size by only using the moderate reduction agent. The hybrid hydrogel electrode membrane-coated glassy carbon electrode showed excellent electrocatalytic activity and good long-term stability toward glucose electrochemical oxidation. The glucose oxidation current exhibited a linear relationship with the concentration of glucose in the presence of chloride ions, promising for potential applications of implantable biofuel cells, biosensors, and electronic devices.

  13. Free-standing reduced graphene oxide/MnO2-reduced graphene oxide-carbon nanotube nanocomposite flexible membrane as an anode for improving lithium-ion batteries.

    Science.gov (United States)

    Li, Yong; Ye, Daixin; Shi, Bin; Liu, Wen; Guo, Rui; Pei, Haijuan; Xie, Jingying

    2017-01-09

    To solve the barriers of poor rate capability and inferior cycling stability for the MnO2 anode in lithium ion batteries, we present a highly flexible membrane anode employing two-dimensional (2D) reduced graphene oxide sheets (rGO) and a three-dimensional (3D) MnO2-reduced graphene oxide-carbon nanotube nanocomposite (MGC) by a vacuum filtration and thermal annealing approach. All the components in the 2D/3D thin film anode have a synergistic effect on the improved performance. The initial discharge specific capacity of the electrode with the MnO2 content of 56 wt% was 1656.8 mA h g(-1) and remains 1172.5 mA h g(-1) after 100 cycles at a density of 100 mA g(-1). On enhancing the density to 200 mA g(-1), the membrane-electrode still exhibits a large reversible discharging capacity of ∼948.9 mA h g(-1) after 300 cycles. Moreover, the flexible Li-ion battery with a large area also shows excellent electrochemical performance in different bending positions, which provides the potential for wearable energy storage devices.

  14. Behavior of oxidized platinum nanoparticles on an aligned carbon nanotube forest

    Science.gov (United States)

    Matsuda, Keita; Norimatsu, Wataru; Arai, Shigeo; Kusunoki, Michiko

    2016-10-01

    We observed and analyzed the behavior of platinum nanoparticles (PtNPs) supported on aligned-carbon nanotubes (CNTs) at high temperatures by X-ray photoelectron spectroscopy and high-resolution transmission electron microscope observations. We found that the PtNPs moved toward the inner-side along each CNT on which they were deposited. The mechanism of this behavior is related to the redox reaction of Pt with the carbon atoms in the CNT. We also performed in-situ observation of this process at a high temperature using an environmental transmission electron microscope under an oxygen atmosphere. We found that the PtNPs penetrated down into a high-density aligned CNT forest along the tube axis and that the PtNPs changed their shape to fit the structure of the CNTs during their movement.

  15. Hybrid Electrodes of Carbon Nanotube and Reduced Graphene Oxide for Energy Storage Applications.

    Science.gov (United States)

    Choi, Eunmi; Chae, Su Jin; Kim, Areum; Kang, Keun Won; Oh, Min Seok; Kwon, Soon Hyeong; Yoon, Sung Pil; Pyo, Sung Gyu

    2015-11-01

    The choice of electrode materials in lithium ion batteries and supercapacitors is important for the stability, capacity, and cycle life of the device. Despite its low capacity, graphite has often been used as an electrode material due to its inherent stability. Due to an increasing demand for large-capacity energy storage systems, there is also a demand for the development of large-capacity Li ion batteries and supercapacitors. Therefore, carbonaceous materials like graphene and carbon nanotubes (CNTs), which have high stability as well as excellent electrical conductivity and mechanical strength, are receiving attention as new electrode materials. Recently, starting from simply applying graphene and CNTs as electrode materials and progressing to the development of hybrid materials, there have been increasing research efforts in enhancing the performance of Li ion batteries and supercapacitors through the use of carbonaceous materials. This paper will discuss new composite materials and electrode structures that use graphene and CNTs for applications in Li ion batteries and supercapacitors.

  16. A novel voltammetric sensor based on carbon nanotubes and nanoparticles of antimony tin oxide for the determination of ractopamine

    Energy Technology Data Exchange (ETDEWEB)

    Baytak, Aysegul Kutluay; Teker, Tugce; Duzmen, Sehriban; Aslanoglu, Mehmet, E-mail: maslanoglu@harran.edu.tr

    2016-02-01

    An electrochemical sensor was prepared by the modification of a glassy carbon electrode (GCE) with carbon nanotubes (CNTs) and nanoparticles of antimony tin oxide (ATO). The surface layer was characterized by scanning electron microscopy (SEM), energy dispersive X-ray diffraction method (EDX) and ATR FT-IR spectroscopy. The proposed electrode was assessed in respect to the electro-oxidation of ractopamine. Compared with a bare GCE and a GCE electrode modified with CNTs, the ATONPs/CNTs/GCE exhibited a great catalytic activity towards the oxidation of ractopamine with a well-defined anodic peak at 600 mV. The current response was linear with the concentration of ractopamine over the range from 10 to 240 nM with a detection limit of 3.3 nM. The proposed electrode enabled the selective determination of ractopamine in the presence of high concentrations of ascorbic acid (AA), dopamine (DA) and uric acid (UA). The proposed electrode was successfully applied for the determination of ractopamine in feed and urine samples. The sensitive and selective determination of ractopamine makes the developed method of great interest for monitoring its therapeutic use and doping control purposes. - Highlights: • A novel voltammetric sensor was prepared using nanoparticles of ATO and CNTs. • The ATONPs/CNTs/GCE has greatly improved the voltammetry of ractopamine. • The proposed electrode enabled a detection limit of 3.3 nM. • AA, DA and UA did not interfere with the selective detection of ractopamine. • Measurements were precise and accurate.

  17. Selection, characterisation and mapping of complex electrochemical processes at individual single-walled carbon nanotubes: the case of serotonin oxidation.

    Science.gov (United States)

    Güell, Aleix G; Meadows, Katherine E; Dudin, Petr V; Ebejer, Neil; Byers, Joshua C; Macpherson, Julie V; Unwin, Patrick R

    2014-01-01

    The electrochemical (EC) oxidation of the neurotransmitter, serotonin, at individual single-walled carbon nanotubes (SWNTs) is investigated at high resolution using a novel platform that combines flow-aligned SWNTs with atomic force microscopy, Raman microscopy, electronic conductance measurements, individual SWNT electrochemistry and high-resolution scanning electrochemical cell microscopy (SECCM). SECCM has been used to visualise the EC activity along side-wall sections of metallic SWNTs to assess the extent to which side-walls promote the electrochemistry of this complex multi-step process. Uniform and high EC activity is observed that is consistent with significant reaction at the side-wall, rather than electrochemistry being driven by defects alone. By scanning forward and reverse (trace and retrace) over the same region of a SWNT, it is also possible to assess any blocking of EC activity by serotonin oxidation reaction products. At a physiologically relevant concentration (5 μM), there is no detectable blocking of SWNTs, which can be attributed, at least in part, to the high diffusion rate to an individual, isolated SWNT in the SECCM format. At higher serotonin concentration (2 mM), oligomer formation from oxidation products is much more significant and major blocking of the EC process is observed from line profiles recorded as the SECCM meniscus moves over an SWNT. The SECCM line profile morphology is shown to be highly diagnostic of whether blocking occurs during EC processes. The studies herein add to a growing body of evidence that various EC processes at SWNTs, from simple outer sphere redox reactions to complex multi-step processes, occur readily at pristine SWNTs. The platform described is of general applicability to various types of nanostructures and nanowires.

  18. Nanodiamond decorated liposomes as highly biocompatible delivery vehicles and a comparison with carbon nanotubes and graphene oxide

    Science.gov (United States)

    Wang, Feng; Liu, Juewen

    2013-11-01

    Studying interactions between nano-carbons and lipid membranes is important for multiplexed drug delivery, device fabrication and for understanding toxicity. Herein, we report that nanodiamond (ND, sp3 carbon) forms a complex with highly biocompatible zwitterionic liposomes based on hydrogen bonding, which is confirmed by pH-dependent and urea-dependent assays. Despite such weak interaction, the complex is highly stable. Comparisons were made with two sp2 carbons: nanoscale graphene oxide (NGO) and carbon nanotubes (CNTs), where CNT adsorption is the weakest. Adsorption of the nano-carbons does not induce liposome leakage or affect lipid phase transition temperature. Therefore, the potential toxicity of nano-carbons is unlikely to be related to direct membrane damage. ND facilitates cellular uptake of liposomes and co-delivery of negatively charged calcein and positively charged doxorubicin has been demonstrated. ND has the lowest toxicity, while CNTs and NGO are slightly more toxic. The effect of introducing fusogenic lipids and cholesterol was further studied to understand the effect of lipid formulation.Studying interactions between nano-carbons and lipid membranes is important for multiplexed drug delivery, device fabrication and for understanding toxicity. Herein, we report that nanodiamond (ND, sp3 carbon) forms a complex with highly biocompatible zwitterionic liposomes based on hydrogen bonding, which is confirmed by pH-dependent and urea-dependent assays. Despite such weak interaction, the complex is highly stable. Comparisons were made with two sp2 carbons: nanoscale graphene oxide (NGO) and carbon nanotubes (CNTs), where CNT adsorption is the weakest. Adsorption of the nano-carbons does not induce liposome leakage or affect lipid phase transition temperature. Therefore, the potential toxicity of nano-carbons is unlikely to be related to direct membrane damage. ND facilitates cellular uptake of liposomes and co-delivery of negatively charged calcein and

  19. An ultrasensitive electrochemical DNA biosensor based on a copper oxide nanowires/single-walled carbon nanotubes nanocomposite

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Mei [Key Laboratory of Biorheology Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044 (China); Hou, Changjun, E-mail: houcj@cqu.edu.cn [Key Laboratory of Biorheology Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044 (China); National Key Laboratory of Fundamental Science of Micro/Nano-Device and System Technology, Chongqing University, Chongqing 400044 (China); Huo, Danqun [Key Laboratory of Biorheology Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044 (China); National Key Laboratory of Fundamental Science of Micro/Nano-Device and System Technology, Chongqing University, Chongqing 400044 (China); Yang, Mei [Key Laboratory of Biorheology Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044 (China); Fa, Huanbao [College of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044 (China)

    2016-02-28

    Graphical abstract: A novel and sensitive electrochemical biosensor based on hybrid nanocomposite consisting of copper oxide nanowires (CuO NWs) and carboxyl-functionalized single-walled carbon nanotubes (SWCNTs-COOH) was first developed for the detection of the specific-sequence target DNA. This schematic represents the fabrication procedure of our DNA biosensor. - Highlights: • An ultrasensitive DNA electrochemical biosensor was developed. • CuO NWs entangled with the SWCNTs formed a mesh structure with good conductivity. • It is the first time use of CuONWs-SWCNTs hybrid nanocomposite for DNA detection. • The biosensor is simple, selective, stable, and sensitive. • The biosensor has great potential for use in analysis of real samples. - Abstract: Here, we developed a novel and sensitive electrochemical biosensor to detect specific-sequence target DNA. The biosensor was based on a hybrid nanocomposite consisting of copper oxide nanowires (CuO NWs) and carboxyl-functionalized single-walled carbon nanotubes (SWCNTs-COOH). The resulting CuO NWs/SWCNTs layers exhibited a good differential pulse voltammetry (DPV) current response for the target DNA sequences, which we attributed to the properties of CuO NWs and SWCNTs. CuO NWs and SWCNTs hybrid composites with highly conductive and biocompatible nanostructure were characterized by transmission electron microscopy (TEM), scanning electron microscopy (SEM), and cyclic voltammetry (CV). Immobilization of the probe DNA on the electrode surface was largely improved due to the unique synergetic effect of CuO NWs and SWCNTs. DPV was applied to monitor the DNA hybridization event, using adriamycin as an electrochemical indicator. Under optimal conditions, the peak currents of adriamycin were linear with the logarithm of target DNA concentrations (ranging from 1.0 × 10{sup −14} to 1.0 × 10{sup −8} M), with a detection limit of 3.5 × 10{sup −15} M (signal/noise ratio of 3). The biosensor also showed high

  20. Biomarker analysis of liver cells exposed to surfactant-wrapped and oxidized multi-walled carbon nanotubes (MWCNTs)

    Data.gov (United States)

    U.S. Environmental Protection Agency — Carbon nanotubes (CNTs) have great potential in industrial, consumer, and mechanical applications, based partly on their unique structural, optical and electronic...

  1. Pulmonary exposure to particles from diesel exhaust, urban dust or single-walled carbon nanotubes and oxidatively damaged DNA and vascular function in apoE(-/-)mice

    DEFF Research Database (Denmark)

    Vesterdal, Lise K; Jantzen, Kim; Sheykhzade, Majid;

    2012-01-01

    Abstract This study compared the oxidative stress level and vasomotor dysfunction after exposure to urban dust, diesel exhaust particles (DEP) or single-walled carbon nanotubes (SWCNT). DEP and SWCNT increased the production of reactive oxygen species (ROS) in cultured endothelial cells......, Hmox-1 and Ogg1. The levels of oxidatively damaged DNA were unchanged in lung tissue. The exposure to SWCNT significantly increased the expression of Ccl-2 in the lung tissue of the mice. The exposure to DEP and SWCNT was associated with elevated ROS production in cultured cells, whereas intratracheal...

  2. Role of oxidative stress in carbon nanotube-generated health effects

    DEFF Research Database (Denmark)

    Møller, Peter; Christophersen, Daniel Vest; Jensen, Ditte Marie

    2014-01-01

    changes in the lungs, and cardiovascular disease. As oxidative stress and inflammation responses are implicated in the development of these diseases, converging lines of evidence indicate that exposure to CNTs is associated with increased risk of cardiopulmonary diseases through generation of a pro...... of antioxidants, increased intracellular production of reactive oxygen species and pro-inflammatory signaling in cultured cells with primary function in the immune system as well as epithelial, endothelial and stromal cells. Pre-treatment with antioxidants has been shown to attenuate these effects, indicating...... a dependency of oxidative stress on cellular responses to CNT exposure. CNT-mediated oxidative stress in cell cultures has been associated with elevated levels of lipid peroxidation products and oxidatively damaged DNA. Investigations of oxidative stress endpoints in animal studies have utilized pulmonary...

  3. New Effective Material Couple--Oxide Ceramic and Carbon Nanotube-- Developed for Aerospace Microsystem and Micromachine Technologies

    Science.gov (United States)

    Miyoshi, Kazuhisa; VanderWal, Randall L.; Tomasek, Aaron J.; Sayir, Ali; Farmer, Serene C.

    2004-01-01

    The prime driving force for using microsystem and micromachine technologies in transport vehicles, such as spacecraft, aircraft, and automobiles, is to reduce the weight, power consumption, and volume of components and systems to lower costs and increase affordability and reliability. However, a number of specific issues need to be addressed with respect to using microsystems and micromachines in aerospace applications--such as the lack of understanding of material characteristics; methods for producing and testing the materials in small batches; the limited proven durability and lifetime of current microcomponents, packaging, and interconnections; a cultural change with respect to system designs; and the use of embedded software, which will require new product assurance guidelines. In regards to material characteristics, there are significant adhesion, friction, and wear issues in using microdevices. Because these issues are directly related to surface phenomena, they cannot be scaled down linearly and they become increasingly important as the devices become smaller. When microsystems have contacting surfaces in relative motion, the adhesion and friction affect performance, energy consumption, wear damage, maintenance, lifetime and catastrophic failure, and reliability. Ceramics, for the most part, do not have inherently good friction and wear properties. For example, coefficients of friction in excess of 0.7 have been reported for ceramics and ceramic composite materials. Under Alternate Fuels Foundation Technologies funding, two-phase oxide ceramics developed for superior high-temperature wear resistance in NASA's High Operating Temperature Propulsion Components (HOTPC) project and new two-layered carbon nanotube (CNT) coatings (CNT topcoat/iron bondcoat/quartz substrate) developed in NASA's Revolutionary Aeropropulsion Concepts (RAC) project have been chosen as a materials couple for aerospace applications, including micromachines, in the nanotechnology

  4. Concentration and temperature controlled oxidation and cutting of single-walled carbon nanotubes by ammonium persulfate

    Institute of Scientific and Technical Information of China (English)

    AHMAD; Mirza; Nadeem

    2010-01-01

    SWNTs were oxidized by a simple wet chemical method involving treatment in aqueous ammonium persulfate(APS) solution at a certain temperature.Fourier transform infrared spectroscopy(FTIR) and X-ray photoelectron spectroscopy(XPS) demonstrated that a large amount of oxygen containing groups such as hydroxyl groups and carbonyl groups was attached to the sidewall of SWNTs.The oxidized SWNTs showed good solubility in polar solvents including water and DMF.Atomic force microscopic images showed that SWNTs could be cut into short pipes by the highly concentrated APS solution at 80℃.With the decrease of reaction temperature or APS concentration,the oxidized SWNTs remained uncut.

  5. Conjugated assembly of colloidal zinc oxide quantum dots and multiwalled carbon nanotubes for an excellent photosensitive ultraviolet photodetector

    Science.gov (United States)

    Deka Boruah, Buddha; Misra, Abha

    2016-09-01

    Conjugation of highly dense colloidal zinc oxide quantum dots (ZnO QDs) on multiwalled carbon nanotubes (ZnO QDs@MWCNTs) is achieved for high performance ultraviolet (UV) photodetection. Significant improvement in the photoresponse of the ZnO QDs@MWCNTs photodetector (PD) is established as compared to a pristine ZnO QDs PD. The conjugation of two constituents allows the direct transfer of photoinduced charge carriers in ZnO QDs to MWCNTs for an efficient electrical path that considerably reduces charge recombination during UV exposure. Linearity in the response current with both the UV illumination intensity as well as external bias voltage reveals the photoelastic behavior of the ZnO QDs@MWCNTs PD. Moreover, the PD displays faster response and recovery times of 1.6 s and 1.9 s, respectively, than the most conventional PDs. In addition, spectral photoresponse analysis of the PD presents visible-blind behavior. Overall, conjugation of the hybrid heterostructure presented excellent photoelastic, high performance and visible-blind UV photodetection.

  6. Carbon nanotubes-ionic liquid nanocomposites sensing platform for NADH oxidation and oxygen, glucose detection in blood.

    Science.gov (United States)

    Bai, Lu; Wen, Dan; Yin, Jianyuan; Deng, Liu; Zhu, Chengzhou; Dong, Shaojun

    2012-03-15

    An excellent electrochemical sensing platform has been designed by combining the huge specific surface area of carbon nanotubes (CNTs) and the remarkable conductivity of ionic liquid (IL). IL can easily untangle CNTs bundles and disperse CNTs by itself under grinding condition due to the π-π interaction between CNTs and IL. The resulting nanocomposites showed an augmentation on the voltammetric and amperometric behaviors of electrocatalytic activity toward O(2) and NADH. Therefore, such an efficient platform was developed to fabricate mediator-free oxygen sensor and glucose biosensor based on glucose dehydrogenase (GDH). O(2) could be determined in the range of zero to one hundred percent of O(2) content with the detection limit of 126 μg L(-1) (S/N=3). The glucose biosensor which was constructed by entrapping GDH into chitosan on the nanocomposites modified glassy carbon electrode surface, exhibited good electrocatalytic oxidation toward glucose with a detection limit of 9 μM in the linear range of 0.02-1mM. We also applied the as-prepared sensors to detect oxygen and glucose in real blood samples and acquired satisfied results. Copyright © 2012 Elsevier B.V. All rights reserved.

  7. Amperometric choline biosensor based on multiwalled carbon nanotubes/zirconium oxide nanoparticles electrodeposited on glassy carbon electrode.

    Science.gov (United States)

    Pundir, S; Chauhan, N; Narang, J; Pundir, C S

    2012-08-01

    A bienzymatic choline biosensor was constructed by coimmobilizing acetylcholinesterase (AChE) and choline oxidase (ChO) onto nanocomposite of carboxylated multiwalled carbon nanotubes (c-MWCNTs) and zirconium oxide nanoparticles (ZrO(2)NPs) electrodeposited on the surface of a glassy carbon electrode (GCE) and using it (AChE-ChO/c-MWCNT/ZrO(2)NPs/GCE) as working electrode, Ag/AgCl as reference electrode, and Pt wire as auxiliary electrode connected through a potentiostat. The enzyme electrode was characterized by scanning electron microscopy (SEM), Fourier transform infrared (FTIR) spectroscopy, and cyclic voltammetry (CV) studies, optimized, and evaluated. The biosensor exhibited optimum response within 4 s at +0.2V, pH 7.4, and 25 °C. The detection limit and working range of the biosensor were 0.01 μM and 0.05 to 200 μM, respectively. The half-life of the enzyme electrode was 60 days at 4 °C. The serum choline level, as measured by the biosensor, was 9.0 to 12.8 μmol/L (with a mean of 10.81 μmol/L) in apparently healthy persons and 5.0 to 8.4 μmol/L (with a mean of 6.53 μmol/L) in persons suffering from Alzheimer's disease. The enzyme electrode was unaffected by a number of serum substances.

  8. Virtual electrochemical nitric oxide analyzer using copper, zinc superoxide dismutase immobilized on carbon nanotubes in polypyrrole matrix.

    Science.gov (United States)

    Madasamy, Thangamuthu; Pandiaraj, Manickam; Balamurugan, Murugesan; Karnewar, Santosh; Benjamin, Alby Robson; Venkatesh, Krishna Arun; Vairamani, Kanagavel; Kotamraju, Srigiridhar; Karunakaran, Chandran

    2012-10-15

    In this work, we have designed and developed a novel and cost effective virtual electrochemical analyzer for the measurement of NO in exhaled breath and from hydrogen peroxide stimulated endothelial cells using home-made potentiostat. Here, data acquisition system (NI MyDAQ) was used to acquire the data from the electrochemical oxidation of NO mediated by copper, zinc superoxide dismutase (Cu,ZnSOD). The electrochemical control programs (graphical user-interface software) were developed using LabVIEW 10.0 to sweep the potential, acquire the current response and process the acquired current signal. The Cu,ZnSOD (SOD1) immobilized on the carbon nanotubes in polypyrrole modified platinum electrode was used as the NO biosensor. The electrochemical behavior of the SOD1 modified electrode exhibited the characteristic quasi-reversible redox peak at the potential, +0.06 V vs. Ag/AgCl. The biological interferences were eliminated by nafion coated SOD1 electrode and then NO was measured selectively. Further, this biosensor showed a wide linear range of response over the concentration of NO from 0.1 μM to 1 mM with a detection limit of 0.1 μM and high sensitivity of 1.1 μA μM(-1). The electroanalytical results obtained here using the developed virtual electrochemical instrument were also compared with the standard cyclic voltammetry instrument and found in agreement with each other.

  9. An ultrasensitive electrochemical DNA biosensor based on a copper oxide nanowires/single-walled carbon nanotubes nanocomposite

    Science.gov (United States)

    Chen, Mei; Hou, Changjun; Huo, Danqun; Yang, Mei; Fa, Huanbao

    2016-02-01

    Here, we developed a novel and sensitive electrochemical biosensor to detect specific-sequence target DNA. The biosensor was based on a hybrid nanocomposite consisting of copper oxide nanowires (CuO NWs) and carboxyl-functionalized single-walled carbon nanotubes (SWCNTs-COOH). The resulting CuO NWs/SWCNTs layers exhibited a good differential pulse voltammetry (DPV) current response for the target DNA sequences, which we attributed to the properties of CuO NWs and SWCNTs. CuO NWs and SWCNTs hybrid composites with highly conductive and biocompatible nanostructure were characterized by transmission electron microscopy (TEM), scanning electron microscopy (SEM), and cyclic voltammetry (CV). Immobilization of the probe DNA on the electrode surface was largely improved due to the unique synergetic effect of CuO NWs and SWCNTs. DPV was applied to monitor the DNA hybridization event, using adriamycin as an electrochemical indicator. Under optimal conditions, the peak currents of adriamycin were linear with the logarithm of target DNA concentrations (ranging from 1.0 × 10-14 to 1.0 × 10-8 M), with a detection limit of 3.5 × 10-15 M (signal/noise ratio of 3). The biosensor also showed high selectivity to single-base mismatched target DNA. Compared with other electrochemical DNA biosensors, we showed that the proposed biosensor is simple to implement, with good stability and high sensitivity.

  10. Gel spinning of PVA composite fibers with high content of multi-walled carbon nanotubes and graphene oxide hybrids

    Science.gov (United States)

    Wei, Yizhe; Lai, Dengpan; Zou, Liming; Ling, Xinlong; Lu, Hongwei; Xu, Yongjing

    2015-07-01

    In this report, poly (vinyl alcohol) (PVA) composite fibers with high content of multi-walled carbon nanotubes and graphene oxide (MWCNTs-GO) hybrids were prepared by gel spinning, and were characterized by TGA, DSC, SEM, XL-2 yarn strength tester and electrical conductivity measurement. The total content of MWCNTs-GO hybrids in the PVA composite fibers, which is up to 25 wt%, was confirmed by TGA analysis. The DSC measurement shows that the melting and crystallization peaks decreased after the addition of nano-fillers. This is due to the reason that the motion of PVA chains is completely confined by strong hydrogen bonding interaction between PVA and nano-fillers. After the addtion of GO, the dispersibility of MWCNTs in composite fibers improved slightly. And the tensile strength and Young's modulus increased by 38% and 67%, respectively. This is caused by the increased hydrogen bonding interaction and synergistic effect through hybridization of MWCNTs and GO. More significantly, the electrical conductivity of PVA/MWCNTs/GO composite fibers enhanced by three orders of magnitude with the addition of GO.

  11. Analysis of pulmonary surfactant in rat lungs after inhalation of nanomaterials: Fullerenes, nickel oxide and multi-walled carbon nanotubes.

    Science.gov (United States)

    Kadoya, Chikara; Lee, Byeong-Woo; Ogami, Akira; Oyabu, Takako; Nishi, Ken-ichiro; Yamamoto, Makoto; Todoroki, Motoi; Morimoto, Yasuo; Tanaka, Isamu; Myojo, Toshihiko

    2016-01-01

    The health risks of inhalation exposure to engineered nanomaterials in the workplace are a major concern in recent years, and hazard assessments of these materials are being conducted. The pulmonary surfactant of lung alveoli is the first biological entity to have contact with airborne nanomaterials in inhaled air. In this study, we retrospectively evaluated the pulmonary surfactant components of rat lungs after a 4-week inhalation exposure to three different nanomaterials: fullerenes, nickel oxide (NiO) nanoparticles and multi-walled carbon nanotubes (MWCNT), with similar levels of average aerosol concentration (0.13-0.37 mg/m(3)). Bronchoalveolar lavage fluid (BALF) of the rat lungs stored after previous inhalation studies was analyzed, focusing on total protein and the surfactant components, such as phospholipids and surfactant-specific SP-D (surfactant protein D) and the BALF surface tension, which is affected by SP-B and SP-C. Compared with a control group, significant changes in the BALF surface tension and the concentrations of phospholipids, total protein and SP-D were observed in rats exposed to NiO nanoparticles, but not in those exposed to fullerenes. Surface tension and the levels of surfactant phospholipids and proteins were also significantly different in rats exposed to MWCNTs. The concentrations of phospholipids, total protein and SP-D and BALF surface tension were correlated significantly with the polymorphonuclear neutrophil counts in the BALF. These results suggest that pulmonary surfactant components can be used as measures of lung inflammation.

  12. THE EFFECT OF THE TYPE OF ADMIXTURE ON THE PROPERTIES OF POLYACRYLONITRILE MEMBRANES MODIFIED WITH NANOTUBES, GRAPHENE OXIDE AND GRAPHENE

    Directory of Open Access Journals (Sweden)

    Beata Fryczkowska

    2017-09-01

    Full Text Available This paper presents the results of research on the production of composite polyacrylonitrile (PAN membranes with nanotubes (MWCNT, graphene (RG and graphene oxide (GO addition. All of the specified additions differ diametrically in terms of properties, starting from the spatial structure of the particles, up to the chemical properties. Membranes were obtained using phase inversion method from a solution of N,N-dimethylformamide (DMF. Subsequently, the impact of the nano-addition on the transport and separation properties of the membranes were investigated using Millipore AMICON ultrafiltration kit. Membranes with graphene addition (PAN/RG are characterized by the best transport properties and the highest specific permeate flux values in the range of ~913÷1006 [dm3/m2×h] for working pressure of 2.0 MPa. To test the separation properties, electroplating waste water generated in one of the Silesian galvanizing plants was used. The qualitative and quantitative composition of the waste water was tested by UV-Vis spectrophotometer (HACH and absorption atomic spectrometry (AAS. The ultrafiltration process carried out on composite membranes allows for the complete removal of phosphate ions and ~88÷94% of iron from the waste water. The rejection coefficient of the remaining metals is high: ~ 35 ÷ 85% for copper and ~ 17 ÷ 100% for cadmium.

  13. Carbon nanotubes on fluorine-doped tin oxide for fabrication of dye-sensitized solar cells at low temperature condition.

    Science.gov (United States)

    Nath, Narayan Chandra Deb; Ahammad, A J Saleh; Sarker, Subrata; Rahman, M Mahbubur; Lim, Sung-Su; Choi, Won-Youl; Lee, Jae-Joon

    2012-07-01

    The multi-walled carbon nanotubes (MWCNTs), electrophoretically deposited on fluorine-doped tin oxide (FTO), were employed as charge-collecting channels in the TiO2 photoelectrode of dye-sensitized solar cells (DSSCs) fabricated at 200 degrees C. The CNT-networks at the conducting substrate increased the charge collection efficiency of the porous TiO2 film, while the short circuit current increased up to ca. 43% under optimized condition. However, the significant decrease in the open-circuit voltage (Voc) up to ca. 132 mV resulted in the failure of the overall cell efficiency improvement. Findings reveal that the transfer process for the back electron is mainly responsible for the significant Voc drop when the MWCNTs were deposited at the electron-collecting substrate of the photoelectrode. The study demonstrates that electrophoretic deposition of MWCNTs on charge collecting substrate would be applicable to introduce an effective charge-collecting channel for the fabrication of flexible DSSCs under low temperature sintering condition.

  14. Disinfection of titanium dioxide nanotubes using super-oxidized water decrease bacterial viability without disrupting osteoblast behavior.

    Science.gov (United States)

    Beltrán-Partida, Ernesto; Valdez-Salas, Benjamín; Escamilla, Alan; Curiel, Mario; Valdez-Salas, Ernesto; Nedev, Nicola; Bastidas, Jose M

    2016-03-01

    Amorphous titanium dioxide (TiO2) nanotubes (NTs) on Ti6Al4V alloy were synthesized by anodization using a commercially available super-oxidized water (SOW). The NT surfaces were sterilized by ultraviolet (UV) irradiation and disinfected using SOW. The adhesion and cellular morphology of pig periosteal osteoblast (PPO) cells and the behavior of Staphylococcus aureus (S. aureus) cultured on the sterilized and disinfected surfaces were investigated. A non-anodized Ti6Al4V disc sterilized by UV irradiation (without SOW) was used as control. The results of this study reveal that the adhesion, morphology and filopodia development of PPO cells in NTs are dramatically improved, suggesting that SOW cleaning may not disrupt the benefits obtained by NTs. Significantly decreased bacterial viability in NTs after cleaning with SOW and comparing with non-cleaned NTs was seen. The results suggest that UV and SOW could be a recommendable method for implant sterilization and disinfection without altering osteoblast behavior while decreasing bacterial viability.

  15. Platinum nanocatalysts loaded on graphene oxide-dispersed carbon nanotubes with greatly enhanced peroxidase-like catalysis and electrocatalysis activities.

    Science.gov (United States)

    Wang, Hua; Li, Shuai; Si, Yanmei; Zhang, Ning; Sun, Zongzhao; Wu, Hong; Lin, Yuehe

    2014-07-21

    A powerful enzymatic mimetic has been fabricated by employing graphene oxide (GO) nanocolloids to disperse conductive carbon supports of hydrophobic carbon nanotubes (CNTs) before and after the loading of Pt nanocatalysts. The resulting GOCNT-Pt nanocomposites could present improved aqueous dispersion stability and Pt spatial distribution. Unexpectedly, they could show greatly enhanced peroxidase-like catalysis and electrocatalysis activities in water, as evidenced in the colorimetric and electrochemical investigations in comparison to some inorganic nanocatalysts commonly used. Moreover, it is found that the new enzyme mimetics could exhibit peroxidase-like catalysis activity comparable to natural enzymes; yet, they might circumvent some of their inherent problems in terms of catalysis efficiency, electron transfer, environmental stability, and cost effectiveness. Also, sandwiched electrochemical immunoassays have been successfully conducted using GOCNT-Pt as enzymatic tags. Such a fabrication avenue of noble metal nanocatalysts loaded on well-dispersed conductive carbon supports should be tailored for the design of different enzyme mimics promising the extensive catalysis applications in environmental, medical, industrial, and particularly aqueous biosensing fields.

  16. A new one-step synthesis method for coating multi-walled carbon nanotubes with iron oxide nanorods

    Energy Technology Data Exchange (ETDEWEB)

    Song Haojie, E-mail: songhj@ujs.edu.cn; Qian Jing [Jiangsu University, School of Material Science and Engineering (China); Jia Xiaohua [Jiangsu University, School of the Environment (China); Yang Xiaofei; Tang Hua; Min Chunying [Jiangsu University, School of Material Science and Engineering (China)

    2012-01-15

    A facile solution-chemical method has been developed to be capable of covering a multiwalled carbon nanotube (MWNTs) with iron oxide nanorods without using any bridging species. MWNTs in this composite were decorated randomly by {alpha}-Fe{sub 2}O{sub 3} nanorods with diameters in the range of 3-5 nm and lengths of 15-30 nm. The formation route to anchor {alpha}-Fe{sub 2}O{sub 3} nanorods onto MWNTs was proposed as the intercalation and adsorption of iron ions onto the wall of MWNTs, followed by the nucleation and growth of {alpha}-Fe{sub 2}O{sub 3} nanorods. {alpha}-Fe{sub 2}O{sub 3}/MWNTs nanocomposites show specific high Brunauer-Emmett-Teller surface areas. The photocatalytic activity experiment indicated that the prepared {alpha}-Fe{sub 2}O{sub 3}/MWNTs nanocomposites exhibited a higher photocatalytic activity for the photocatalytic decolorization of rhodamine B aqueous solution under the visible-light illumination than the single phase {alpha}-Fe{sub 2}O{sub 3} samples. This methodology made the synthesis of MWNTs-nanorods composites possible and may be further extended to prepare more complicated nanocomposites based on MWNTs for technological applications.

  17. Biomimetic sensor based on hemin/carbon nanotubes/chitosan modified microelectrode for nitric oxide measurement in the brain.

    Science.gov (United States)

    Santos, Ricardo M; Rodrigues, Marcelo S; Laranjinha, João; Barbosa, Rui M

    2013-06-15

    A novel biomimetic microsensor for measuring nitric oxide (NO) in the brain in vivo was developed. The sensor consists of hemin and functionalized multi-wall carbon nanotubes covalently attached to chitosan via the carbodiimide crosslinker EDC followed by chitosan electrodeposition on the surface of carbon fiber microelectrodes. Cyclic voltammetry supported direct electron transfer from the Fe(III)/Fe(II) couple of hemin to the carbon surface at -0.370 V and -0.305 V vs. Ag/AgCl for cathodic and anodic peaks, respectively. Square wave voltammetry revealed a NO reduction peak at -0.762 V vs. Ag/AgCl that increased linearly with NO concentration between 0.25 and 1 μM. The average sensitivity of the microsensors was 1.72 nA/μM and the limit of detection was 25 nM. Oxygen and hydrogen peroxide reduction peaks were observed at -0.269 V and -0.332 V vs. Ag/AgCl, respectively and no response was observed for other relevant interferents, namely ascorbate, nitrite and dopamine. The microsensor was successfully applied to the measurement of exogenously applied NO in the rat brain in vivo.

  18. Adsorption isotherms and kinetics for dibenzothiophene on activated carbon and carbon nanotube doped with nickel oxide nanoparticles

    Indian Academy of Sciences (India)

    MAZEN K NAZAL; GHASSAN A OWEIMREEN; MAZEN KHALED; MUATAZ A ATIEH; ISAM H ALJUNDI; ABDALLA M ABULKIBASH

    2016-04-01

    Activated carbon (AC) and multiwall carbon nanotubes (CNT) doped with 1, 5 and 10% Ni in the form of nickel oxide nanoparticles were prepared using the wetness impregnation method. These percentages were denoted by the endings NI1, NI5 and NI10 in the notations ACNI1, ACNI5, ACNI10 and CNTNI1, CNTNI5, CNTNIL10, respectively. The physicochemical properties for these adsorbents were characterized using N$_2$ adsorption–desorption surface area analyzer, thermal gravimetric analysis (TGA), scanning electron microscopy, energy-dispersive X-ray spectroscopy, field-emission transmission electron microscopy, X-ray diffraction and X-ray photoelectron spectrometre. Adsorption isotherms were obtained and desulphurization kinetics were carried out on solutions of dibenzothiophene (DBT) and thiophene in a model fuel. The efficiencies of DBT and thiophene removal were reported. The adsorption isotherms fitted the Langmuir and Freundlich models. The highest adsorption capacity for DBT was $74\\pm 5$ mg g$^{−1}$ on ACNI5; the maximum adsorption capacities of the other adsorbents followed the trend ${\\rm ACNI1 > ACNI10 > AC > CNTNI5 > CNTNI1 > CNTNI10 > CNT}$. The adsorption rates for DBT and thiophene followed pseudo-second-order kinetics. The selective removal by these adsorbents of DBT relative to thiophene and naphthalene was evaluated. The adsorbents’ reusability and the effect of the percentage of aromaticcompounds on their adsorption capacity were also reported.

  19. Infrared-actuated recovery of polyurethane filled by reduced graphene oxide/carbon nanotube hybrids with high energy density.

    Science.gov (United States)

    Feng, Yiyu; Qin, Mengmeng; Guo, Haiqiang; Yoshino, Katsumi; Feng, Wei

    2013-11-13

    Optically actuated shape recovery materials receive much interest because of their great ability to control the creation of mechanical motion remotely and precisely. An infrared (IR) triggered actuator based on shape recovery was fabricated using polyurethane (TPU) incorporated by sulfonated reduced graphene oxide (SRGO)/sulfonated carbon nanotube (SCNT) hybrid nanofillers. Interconnected SRGO/SCNT hybrid nanofillers at a low weight loading of 1% dispersed in TPU showed good IR absorption and improved the crystallization of soft segments for a large shape deformation. The output force, energy density and recovery time of IR-triggered actuators were dependent on weight ratios of SRGO to SCNT (SRGO:SCNT). TPU nanocomposites filled by a hybrid nanofiller with SRGO:SCNT of 3:1 showed the maximum IR-actuated stress recovery of lifting a 107.6 g weight up 4.7 cm in 18 s. The stress recovery delivered a high energy density of 0.63 J/g and shape recovery force up to 1.2 MPa due to high thermal conductivity (1.473 W/mK) and Young's modulus of 23.4 MPa. Results indicate that a trade-off between the stiffness and efficient heat transfer controlled by synergistic effect between SRGO and SCNT is critical for high mechanical power output of IR-triggered actuators. IR-actuated shape recovery of SRGO/SCNT/TPU nanocomposites combining high energy density and output forces can be further developed for advanced optomechanical systems.

  20. Effects of carbon nanotubes and graphene oxide absorbers on the noise of mode-locked fiber lasers

    CERN Document Server

    Li, Xiaohui; Yu, Xuechao; Wang, Yonggang; Wang, Yishan; Meng, Bo; Tang, Yulong; Yu, Xia; Zhang, Ying; Sun, Zhipei; Shum, Perry Ping; Wang, Qi Jie

    2014-01-01

    Phase noise is very important for the ultrafast pulse application in telecommunication, ultrafast diagnose, material science, and biology. In this paper, two types of carbon nano-materials, single-wall carbon nanotube and graphene oxide, are investigated for noise suppression in ultrafast photonics. Various properties of the wall-paper SAs, such as saturable intensity, optical absorption and degree of purity, are found to be key factors determining the phase noise of the ultrafast pulses. A reduced-noise femtosecond fiber laser is experimentally demonstrated by optimizing the above parameters of carbon material based SAs. The phase noise reduction more than 10 dB at 10 kHz can be obtained in the experiments. To our knowledge, this is the first time that the relationship between different carbon material based SAs and the phase noise of mode-locked lasers has been investigated. This work will pave the way to get a high-quality ultrashort pulse in passively mode-locked fiber lasers.

  1. Manganese Oxide-Coated Carbon Nanotubes As Dual-Modality Lymph Mapping Agents for Photothermal Therapy of Tumor Metastasis.

    Science.gov (United States)

    Wang, Sheng; Zhang, Qin; Yang, Peng; Yu, Xiangrong; Huang, Li-Yong; Shen, Shun; Cai, Sanjun

    2016-02-17

    Lymph node (LN) status is a major indicator of stage and survival of lung cancer patients. LN dissection is a primary option for lung cancer LN metastasis; however, this strategy elicits adverse effects and great trauma. Therefore, developing a minimally invasive technique to cure LN metastasis of lung cancer is desired. In this study, multiwalled carbon nanotubes (MWNTs) coated with manganese oxide (MnO) and polyethylene glycol (PEG) (namely MWNTs-MnO-PEG) was employed as a lymphatic theranostic agent to diagnose and treat metastatic LNs. After single local injection and lymph drainage were performed, regional LNs were clearly mapped by T1-weighted magnetic resonance (MR) of MnO and dark dye imaging of MWNTs. Meanwhile, metastatic LNs could be simultaneously ablated by near-infrared (NIR) irradiation under the guidance of dual-modality mapping. The excellent result was obtained in mice bearing LNs metastasis models, showing that MWNTs-MnO-PEG as a multifunctional theranostic agent was competent for dual-modality mapping guided photothermal therapy of metastatic LNs.

  2. Surface structure and field emission properties of cost effectively synthesized zinc oxide nanowire/multiwalled carbon nanotube heterojunction arrays

    Science.gov (United States)

    Dehghan Nayeri, F.; Darbari, S.; Soleimani, E. A.; Mohajerzadeh, S.

    2012-07-01

    A cost-effective and efficient approach for the synthesis of single-crystalline zinc oxide nanowires on vertically aligned multiwalled carbon nanotube (CNT) array is presented. ZnO nanowires are grown on the base of individual CNT through the low-temperature wet-chemical batch deposition technique, while the size and interspacing of the nanowires can be controlled by precursor concentration, growth temperature and time duration. The scanning electron microscopy image showed that the ZnO nanostructures are successfully grown on the CNT's surface uniformly. The produced nanostructures are characterized by x-ray diffraction, x-ray photoelectron spectroscopy and Raman spectroscopy. Also, field emission characteristics of the fabricated double-stage ZnO nanowire/CNT array are investigated and compared with the emission behaviour of CNT and ZnO nanowire arrays. The ZnO nanowire/CNT heterojunction array resulted in a low turn-on field of 1.5 V µm-1 and a threshold field of 4.5 V µm-1, which were lower than both the vertical CNT and ZnO arrays. The field emission properties and stability of the fabricated nanostructures also demonstrated great potential for field emission applications.

  3. Synthesis of palladium nanoparticle modified reduced graphene oxide and multi-walled carbon nanotube hybrid structures for electrochemical applications

    Science.gov (United States)

    Hu, Jie; Zhao, Zhenting; Zhang, Jun; Li, Gang; Li, Pengwei; Zhang, Wendong; Lian, Kun

    2017-02-01

    In this work, palladium (Pd) nanoparticles functionalized reduced graphene oxide (rGO) and multi-walled carbon nanotubes (MWCNTs) hybrid structures (Pd/rGO-MWCNTs) were successfully prepared by a combination of electrochemical reduction with electrodeposition method. The morphology, structure, and composition of the Pd/rGO-MWCNTs hybrid were characterized by scanning electron microscopy, transmission electron microscopy and energy dispersive spectroscopy. The as-synthesized hybrid structures were modified on the glassy carbon electrode (GCE) and further utilized for hydrazine sensing. Electrochemical impedance spectroscopic, cyclic voltammetry and single-potential amperometry experiments were carried out on Pd/rGO-MWCNTs hybrid structures to investigate the interface properties and sensing performance. The measured results demonstrate that the fabricated Pd/rGO-MWCNTs/GCE sensor show a high sensitivity of 7.09 μA μM-1 cm-2 in a large concentration range of 1.0 to 1100 μM and a low detection limit of 0.15 μM. Moreover, the as-prepared sensor exhibits good selectivity and stability for the determination of hydrazine under interference conditions.

  4. Designed synthesis of tunable amorphous carbon nanotubes (a-CNTs) by a novel route and their oxidation resistance properties

    Indian Academy of Sciences (India)

    Longlong Xu; Yifu Zhang; Xiongzhi Zhang; Yu Huang; Xiaoyu Tan; Chi Huang; Xiao Mei; Fei Niu; Changgong Meng; Gongzhen Cheng

    2014-10-01

    Tunable amorphous carbon nanotubes (a-CNTs) were successfully synthesized using V3O7.H2O and glucose solution as the starting materials by a novel route for the first time. The as-obtained samples were separately characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray powder diffraction (XRD), energy-dispersive spectrometer (EDS), elemental analysis (EA), Fourier transform infrared spectroscopy (FT–IR) and Raman spectrum. The results showed that the as-obtained a-CNTs had uniform diameters with outer diameter ranging from 140 to 250 nm and inner diameter about 28 nm on an average, and their length was up to several micrometres. No VO residues remaining in a-CNTs showed the as-obtained a-CNTs with high purity. The as-prepared a-CNTs were a kind of hydrogenated a-CNTs containing both the 3- and 2-type carbons. Furthermore, the thermal stability of the as-obtained a-CNTs in the air atmosphere were investigated by thermo-gravimetric/differential thermal analyser (TG-DTA), revealing that the as-obtained a-CNTs had good thermal stability and oxidation resistance below 300 °C in air.

  5. Cerium oxide nanoparticles/multi-wall carbon nanotubes composites: Facile synthesis and electrochemical performances as supercapacitor electrode materials

    Science.gov (United States)

    Deng, Dongyang; Chen, Nan; Li, Yuxiu; Xing, Xinxin; Liu, Xu; Xiao, Xuechun; Wang, Yude

    2017-02-01

    Cerium oxide nanoparticles/multi-wall carbon nanotubes (MWCNTs) composites are synthesized by a facile hydrothermal method without any surfactant or template. The morphology and microstructure of samples are examined by scanning electron microscopy (SEM), transition electron microscopy (TEM), X-ray diffraction (XRD), Raman spectrum and X-ray photoelectron spectroscopy (XPS). Electrochemical properties of the MWCNTs, the pure CeO2, and the CeO2/MWCNTs nanocomposites electrodes are investigated by cyclic voltammetry (CV), galvanostatic charge/discharge (GDC) and electrochemical impedance spectroscopy (EIS) measurements. The CeO2/MWCNTs nanocomposite (at the mole ratio of 1:1) electrode exhibits much larger specific capacitance compared with both the MWCNTs electrode and the pure CeO2 electrode and significantly improves cycling stability compared to the pure CeO2 electrode. The CeO2/MWCNTs nanocomposite (at the mole ratio of 1:1) achieves a specific capacitance of 455.6 F g-1 at the current density of 1 A g-1. Therefore, the as prepared CeO2/MWCNTs nanocomposite is a promising electrode material for high-performance supercapacitors.

  6. Pr and Cr co-doped BiFeO3 nanotubes: an advance multiferroic oxide material

    Directory of Open Access Journals (Sweden)

    Mandal Kalyan

    2013-01-01

    Full Text Available Arrays of single phase pure and Pr-Cr co-doped BiFeO3 (BFO nanotubes (NTs with compositions BiFeO3 and Bi0.9Pr0.1Fe0.9Cr0.1O3 have been synthesized using Anodic Aluminium Oxide (AAO template (pore diameter ~250 nm by wet chemical liquid phase deposition technique. All the NTs show ferromagnetic nature at room temperature (RT. Better magnetic properties are observed in the co-doped BFO NTs with the value of saturation magnetization (MS ~49 memu/g, magnetization at the remanence (MR ~12 memu/g and coercive field (HC ~103 Oe. Increase of ferromagnetic signature in the co-doped BFO NTs is believed to be due to the collapse of the space-modulated spin structure. Significant increase in the dielectric characteristics in co-doped BFO NTs suggests lowering of leakage current due to the reduction of the oxygen vacancies in the structure. Strong Magnetodielectric effect (MD, expressed by [εr(H-εr(0]/εr(0 is observed in doped BFO NTs, where the increase of the dielectric constant is noticeable with the increase in the applied magnetic field. The codoped BFO NTs show noticeable increase in MD effect at a lower field (1-2 kOe.

  7. Graphite coated with manganese oxide/multiwall carbon nanotubes composites as anodes in marine benthic microbial fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Fu, Yubin, E-mail: ffyybb@ouc.edu.cn; Yu, Jian; Zhang, Yelong; Meng, Yao

    2014-10-30

    Highlights: • MnO{sub 2}/MWCNTs composites anode exhibits faster reaction kinetics. • The surfaces of MnO{sub 2}/MWCNTs composites anode exhibits better wettability. • A BMFC using the modified anode have excellent power output. - Abstract: Improving anode performance is of great significance to scale up benthic microbial fuel cells (BMFCs) for its marine application to drive oceanography instruments. In this study, manganese oxide (MnO{sub 2})/multiwall carbon nanotubes (MWCNTs) composites are prepared to be as novel anodes in the BMFCs via a direct redox reaction between permanganate ions (MnO{sub 4}{sup −}) and MWCNTs. The results indicate that the MnO{sub 2}/MWCNTs anode has a better wettability, greater kinetic activity and higher power density than that of the plain graphite (PG) anode. It is noted that the MnO{sub 2} (50% weight percent)/MWCNTs anode shows the highest electrochemical performance among them and will be a promising material for improving bioelectricity production of the BMFCs. Finally, a synergistic mechanism of electron transfer shuttle of Mn ions and their redox reactions in the interface between modified anode and bacteria biofilm are proposed to explain its excellent electrochemical performance.

  8. Fabrication of water-dispersible single-walled carbon nanotube powder using N-methylmorpholine N-oxide.

    Science.gov (United States)

    Choi, Hyejun; Woo, Jong Seok; Han, Joong Tark; Park, Soo-Young

    2017-09-13

    Dispersion of nanocarbon materials in liquid media is one of prerequisites for practical applications via solution processing such as spraying, printing, spinning, etc. Here we report that water-dispersible single-walled carbon nanotubes (SWCNTs) were prepared through successive treatments with chlorosulfuric acid (CSA)/H2O2 and N-methylmorpholine N-oxide (NMO) monohydrate. The powder of the CSA/H2O2- and NMO-treated SWCNTs (N-SWCNTs) could be readily redispersed in water in concentrations as high as 1 g L-1 without requiring a dispersant. The mechanism responsible for the high dispersity of the N-SWCNT powder in polar solvents, including water, was elucidated based on the high polarity of the NMO molecule. In order to highlight the wide applicability of the N-SWCNTs, they were used successfully to prepare conducting thin films by spray-coating plastic substrates with an aqueous hybrid solution containing the N-SWCNTs and Ag nanowires (NWs). In addition, a flexible, large-area thin-film heater was prepared based on the N-SWCNT/AgNW hybrid film with a transmittance of 93% and sheet resistance of 30 Ω sq-1. © 2017 IOP Publishing Ltd.

  9. PEGylated Carbon Nanotubes Impair Retrieval of Contextual Fear Memory and Alter Oxidative Stress Parameters in the Rat Hippocampus

    Directory of Open Access Journals (Sweden)

    Lidiane Dal Bosco

    2015-01-01

    Full Text Available Carbon nanotubes (CNT are promising materials for biomedical applications, especially in the field of neuroscience; therefore, it is essential to evaluate the neurotoxicity of these nanomaterials. The present work assessed the effects of single-walled CNT functionalized with polyethylene glycol (SWCNT-PEG on the consolidation and retrieval of contextual fear memory in rats and on oxidative stress parameters in the hippocampus. SWCNT-PEG were dispersed in water at concentrations of 0.5, 1.0, and 2.1 mg/mL and infused into the rat hippocampus. The infusion was completed immediately after training and 30 min before testing of a contextual fear conditioning task, resulting in exposure times of 24 h and 30 min, respectively. The results showed that a short exposure to SWCNT-PEG impaired fear memory retrieval and caused lipid peroxidation in the hippocampus. This response was transient and overcome by the mobilization of antioxidant defenses at 24 h. These effects occurred at low and intermediate but not high concentration of SWCNT-PEG, suggesting that the observed biological response may be related to the concentration-dependent increase in particle size in SWCNT-PEG dispersions.

  10. Cellulose nanofibril/reduced graphene oxide/carbon nanotube hybrid aerogels for highly flexible and all-solid-state supercapacitors.

    Science.gov (United States)

    Zheng, Qifeng; Cai, Zhiyong; Ma, Zhenqiang; Gong, Shaoqin

    2015-02-11

    A novel type of highly flexible and all-solid-state supercapacitor that uses cellulose nanofibril (CNF)/reduced graphene oxide (RGO)/carbon nanotube (CNT) hybrid aerogels as electrodes and H2SO4/poly(vinyl alcohol) (PVA) gel as the electrolyte was developed and is reported here. These flexible solid-state supercapacitors were fabricated without any binders, current collectors, or electroactive additives. Because of the porous structure of the CNF/RGO/CNT aerogel electrodes and the excellent electrolyte absorption properties of the CNFs present in the aerogel electrodes, the resulting flexible supercapacitors exhibited a high specific capacitance (i.e., 252 F g(-1) at a discharge current density of 0.5 A g(-1)) and a remarkable cycle stability (i.e., more than 99.5% of the capacitance was retained after 1000 charge-discharge cycles at a current density of 1 A g(-1)). Furthermore, the supercapacitors also showed extremely high areal capacitance, areal power density, and energy density (i.e., 216 mF cm(-2), 9.5 mW cm(-2), and 28.4 μWh cm(-2), respectively). In light of its excellent electrical performance, low cost, ease of large-scale manufacturing, and environmental friendliness, the CNF/RGO/CNT aerogel electrodes may have a promising application in the development of flexible energy-storage devices.

  11. A novel composite electrode based on tungsten oxide nanoparticles and carbon nanotubes for the electrochemical determination of paracetamol.

    Science.gov (United States)

    Baytak, Aysegul Kutluay; Duzmen, Sehriban; Teker, Tugce; Aslanoglu, Mehmet

    2015-12-01

    An electrochemical sensor was prepared by the modification of a glassy carbon electrode (GCE) with a composite of nanoparticles of tungsten oxide (WO3) and carbon nanotubes (CNTs) for the quantification of paracetamol (PR). Energy dispersive X-ray analysis (EDX) and scanning electron microscopy (SEM) were performed for the characterization of the nanocomposite layer. Compared with a bare GCE and a GCE modified with CNTs, the proposed electrode (WO3NPs/CNTs/GCE) exhibited a well-defined redox couple for PR and a marked enhancement of the current response. The experimental results also showed that ascorbic acid (AA) did not interfere with the selective determination of PR. The proposed electrode was used for the determination of PR in 0.1M phosphate buffer solution (PBS) at pH7.0 using square wave voltammetry (SWV). The peak current increased linearly with the concentration of PR in the range of 1.0×10(-9)-2.0×10(-7)M. The detection limit (LOD) was 5.54×10(-11)M (based on 3Sb/m). The proposed voltammetric sensor provided long-time stability, improved voltammetric behavior and good reproducibility for PR. The selective, accurate and precise determination of PR makes the proposed electrode of great interest for monitoring its therapeutic use.

  12. The Synthesis and Photocatalytic Properties of TiO2 Nanotube Array by Starch-Modified Anodic Oxidation.

    Science.gov (United States)

    Zhang, Fengjun; Liu, Zijian; Lu, Wei; Lyu, Cong; Lyu, Chuan; Wang, Xiansheng

    2015-11-01

    In this study, the characterization and photocatalytic activity of TiO2 nanotube arrays prepared by anodization process with starch addition were investigated in detail. The results suggested that the optimum mass fraction of starch added in anodization process was 0.1%, with which TiO2 nanotube arrays owning good tubular structure were synthesized. The tube length and average inner diameter of nanotubes were approximately 4 μm and 30 nm, respectively. Through the characterization of TiO2 nanotube arrays by energy dispersive spectrometer, scanning electron microscopy, transmission electron microscopy, X-ray diffraction, Fourier Transform Infrared (FTIR) spectroscopy, it was found that the as-prepared nanotubes possessed well uniformed and higher photodegradation responsive than the pure TiO2 . Moreover, it was expected that the as-prepared nanotubes exhibited good photocatalytic activity for the degradation of RhB under UV-light irradiation, which could be ascribed to their good morphology, enhanced UV-light absorption property and electron transmission ability during the photocatalytic reaction. In addition, the nanotubes were not significantly regenerated during the cycling runs experiment. Overall, this study could provide a principle method to synthesize TiO2 nanotube arrays with enhanced photocatalytic activity by anodization process with starch addition for environmental purification.

  13. A reduced graphene oxide nanofiltration membrane intercalated by well-dispersed carbon nanotubes for drinking water purification

    Science.gov (United States)

    Chen, Xianfu; Qiu, Minghui; Ding, Hao; Fu, Kaiyun; Fan, Yiqun

    2016-03-01

    In this study, we report a promising rGO-CNT hybrid nanofiltration (NF) membrane that was fabricated by loading reduced graphene oxide that was intercalated with carbon nanotubes (rGO-CNTs) onto an anodic aluminum oxide (AAO) microfiltration membrane via a facile vacuum-assisted filtration process. To create this NF membrane, the CNTs were first dispersed using block copolymers (BCPs); the effects of the types and contents of BCPs used on the dispersion of CNTs have been investigated. The as-prepared rGO-CNT hybrid NF membranes were then used for drinking water purification to retain the nanoparticles, dyes, proteins, organophosphates, sugars, and particularly humic acid. Experimentally, it is shown that the rGO-CNT hybrid NF membranes have high retention efficiency, good permeability and good anti-fouling properties. The retention was above 97.3% even for methyl orange (327 Da); for other objects, the retention was above 99%. The membrane's permeability was found to be as high as 20-30 L m-2 h-1 bar-1. Based on these results, we can conclude that (i) the use of BCPs as a surfactant can enhance steric repulsion and thus disperse CNTs effectively; (ii) placing well-dispersed 1D CNTs within 2D graphene sheets allows an uniform network to form, which can provide many mass transfer channels through the continuous 3D nanostructure, resulting in the high permeability and separation performance of the rGO-CNT hybrid NF membranes.In this study, we report a promising rGO-CNT hybrid nanofiltration (NF) membrane that was fabricated by loading reduced graphene oxide that was intercalated with carbon nanotubes (rGO-CNTs) onto an anodic aluminum oxide (AAO) microfiltration membrane via a facile vacuum-assisted filtration process. To create this NF membrane, the CNTs were first dispersed using block copolymers (BCPs); the effects of the types and contents of BCPs used on the dispersion of CNTs have been investigated. The as-prepared rGO-CNT hybrid NF membranes were then used for

  14. Self-Climbed Amorphous Carbon Nanotubes Filled with Transition Metal Oxide Nanoparticles for Large Rate and Long Lifespan Anode Materials in Lithium Ion Batteries.

    Science.gov (United States)

    Li, Shuoyu; Liu, Yuyi; Guo, Peisheng; Wang, Chengxin

    2017-08-16

    A composed material of amorphous carbon nanotubes (ACNTs) and encapsulated transition metal oxide (TMOs) nanoparticles was prepared by a common thermophysics effect, which is named the Marangoni effect, and a simple anneal process. The prepared ropy solution would form a Marangoni convection and climb into the channel of anodic aluminum oxide template (AAO) spontaneously. The ingenious design of the preparation method determined a distinctive structure of TMOs nanoparticles with a size of ∼5 nm and amorphous carbon coated outside full in the ACNTs. Here we prepared the ferric oxide (Fe2O3) nanoparticles and Fe2O3 mixed with manganic oxide (Fe2O3&Mn2O3) nanoparticles encapsulated in ACNTs as two anode materials of lithium ion batteries' the TMOs-filled ACNTs presented an evolutionary electrochemical performance in some respects of highly reversible capacity and excellent cycling stability (880 mA h g(-1) after 150 cycles).

  15. [Catalytic wet air oxidation of phenol and aniline over multi-walled carbon nanotubes].

    Science.gov (United States)

    Li, Xiang; Yang, Shao-xi; Zhu, Wan-peng; Wang, Jian-bing; Wang, Li

    2008-09-01

    Multi-walled carbon nanotubes (MWNTs) without any metal ions were used as the catalyst, and investigated in the CWAO of phenol and aniline in a batch reactor. The structures of the MWNTs were characterized by means of SEM and TEM. It showed that the MWNTs, treated with the mixed acid (HNO3-H2SO4), displayed excellent activity and stability in the CWAO. Under the reaction temperature of 160 degrees C, the total pressure of 2.5 MPa, the initial concentration of 1000 mg/L and loading the catalyst of 1.6 g/L, 100% phenol and 86% COD were removed after 120 min reaction in CWAO of phenol. At the same operating conditions, 83% aniline and 68% COD removals were obtained in the CWAO of aniline solution when the initial concentration of aniline was 2 000 mg/L. The surface functional groups played the important role for the high activity of the MWNTs in CWAO of organic compounds.

  16. Aerosol-Assisted Heteroassembly of Oxide Nanocrystals and Carbon Nanotubes into 3D Mesoporous Composites for High-Rate Electrochemical Energy Storage.

    Science.gov (United States)

    Jia, Xilai; Zhu, Xiao; Cheng, Yanhua; Chen, Zheng; Ning, Guoqing; Lu, Yunfeng; Wei, Fei

    2015-07-01

    Nanostructured composites built from ordinary building units have attracted much attention because of their collective properties for critical applications. Herein, we have demonstrated the heteroassembly of carbon nanotubes and oxide nanocrystals using an aerosol spray method to prepare nanostructured mesoporous composites for electrochemical energy storage. The designed composite architectures show high conductivity and hierarchically structured mesopores, which achieve rapid electron and ion transport in electrodes. Therefore, as-synthesized carbon nanotube/TiO2 electrodes exhibit high rate performance through rapid Li(+) intercalation, making them suitable for ultrafast energy storage devices. Moreover, the synthesis process provides a broadly applicable method to achieve the heteroassembly of vast low-dimensional building blocks for many important applications. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Highly air- and moisture-stable hole-doped carbon nanotube films achieved using boron-based oxidant

    Science.gov (United States)

    Funahashi, Kazuma; Tanaka, Naoki; Shoji, Yoshiaki; Imazu, Naoki; Nakayama, Ko; Kanahashi, Kaito; Shirae, Hiroyuki; Noda, Suguru; Ohta, Hiromichi; Fukushima, Takanori; Takenobu, Taishi

    2017-03-01

    Hole doping into carbon nanotubes can be achieved. However, the doped nanotubes usually suffer from the lack of air and moisture stability, thus, they eventually lose their improved electrical properties. Here, we report that a salt of the two-coordinate boron cation Mes2B+ (Mes: 2,4,6-trimethylphenyl group) can serve as an efficient hole-doping reagent to produce nanotubes with markedly high stability in the presence of air and moisture. Upon doping, the resistances of the nanotubes decreased, and these states were maintained for one month in air. The hole-doped nanotube films showed a minimal increase in resistance even upon humidification with a relative humidity of 90%.

  18. Synthesis of fullerene-, carbon nanotube-, and graphene-TiO₂ nanocomposite photocatalysts for selective oxidation: a comparative study.

    Science.gov (United States)

    Yang, Min-Quan; Zhang, Nan; Xu, Yi-Jun

    2013-02-01

    A series of TiO(2)-graphene (GR), -carbon nanotube (CNT), and -fullerene (C(60)) nanocomposite photocatalysts with different weight addition ratios of carbon contents are synthesized via a combination of sol-gel and hydrothermal methods. Their structures and properties are determined by the X-ray diffraction (XRD), UV-vis diffuse reflectance spectra (DRS), transmission electron microscopy (TEM), nitrogen adsorption-desorption, and photoelectrochemical measurements. Photocatalytic selective oxidation of benzyl alcohol to benzaldehyde is employed as a model reaction to evaluate the photocatalytic activity of the TiO(2)-carbon (GR, CNT, and C(60)) nanocomposites under visible light irradiation. The results reveal that incorporating TiO(2) with carbon materials can extend the adsorption edge of all the TiO(2)-carbon nanocomposites to the visible light region. For TiO(2)-GR, TiO(2)-CNT, and TiO(2)-C(60) nanocomposites, the photocatalytic activities of the composites with optimum ratios, TiO(2)-0.1% GR, TiO(2)-0.5% CNT, and TiO(2)-1.0% C(60), are very close to each other along with the irradiation time. Furthermore, the underlying reaction mechanism for the photocatalytic selective oxidation of benzyl alcohol to benzaldehyde over TiO(2)-carbon nanocomposites has been explored using different radical scavenger techniques, suggesting that TiO(2)-carbon photocatalysts follow the analogous oxidation mechanism toward selective oxidation of benzyl alcohol. The addition of different carbon materials has no significant influence on the crystal phase, particle size, and the morphology of TiO(2). Therefore, it can be concluded, at least for nanocomposites of TiO(2)-carbon (GR, CNT, and C(60)) obtained by the present approach, that there is no much difference in essence on affecting the photocatalytic performance of semiconductor TiO(2) among these three different carbon allotropes, GR, CNT, and C(60). Our findings point to the importance of a comparative study of semiconductor

  19. Magnetic nanotubes

    Science.gov (United States)

    Matsui, Hiroshi; Matsunaga, Tadashi

    2010-11-16

    A magnetic nanotube includes bacterial magnetic nanocrystals contacted onto a nanotube which absorbs the nanocrystals. The nanocrystals are contacted on at least one surface of the nanotube. A method of fabricating a magnetic nanotube includes synthesizing the bacterial magnetic nanocrystals, which have an outer layer of proteins. A nanotube provided is capable of absorbing the nanocrystals and contacting the nanotube with the nanocrystals. The nanotube is preferably a peptide bolaamphiphile. A nanotube solution and a nanocrystal solution including a buffer and a concentration of nanocrystals are mixed. The concentration of nanocrystals is optimized, resulting in a nanocrystal to nanotube ratio for which bacterial magnetic nanocrystals are immobilized on at least one surface of the nanotubes. The ratio controls whether the nanocrystals bind only to the interior or to the exterior surfaces of the nanotubes. Uses include cell manipulation and separation, biological assay, enzyme recovery, and biosensors.

  20. Hydroxyapatite/gelatin functionalized graphene oxide composite coatings deposited on TiO{sub 2} nanotube by electrochemical deposition for biomedical applications

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Yajing [Institute of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054 (China); Zhang, Xuejiao [Medical Informatics, Hebei North University, Zhangjiakou 075000 (China); Mao, Huanhuan [Institute of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054 (China); Huang, Yong [Institute of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054 (China); College of Lab Medicine, Hebei North University, Zhangjiakou 075000 (China); Ding, Qiongqiong [Institute of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054 (China); Pang, Xiaofeng, E-mail: xfpang@aliyun.com [Institute of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054 (China)

    2015-02-28

    Highlights: • Graphene oxide cross-linked gelatin was firstly employed as reinforcement fillers in hydroxyapatite coatings by electrochemical deposition process on TiO{sub 2} nanotube arrays. • Gelatin functionalized graphene oxide induced the formation of hydroxyapatite coatings. • The success of gelatin and graphene oxide incorporation was evidenced with FTIR and XPS. • The synthesized composite coatings showed good biocompatibility and no adverse effect in cell culture tests. - Abstract: Graphene oxide cross-linked gelatin was employed as reinforcement fillers in hydroxyapatite coatings by electrochemical deposition process on TiO{sub 2} nanotube arrays (TNs). The TNs were grown on titanium by electrochemical anodization in hydrofluoric electrolyte using constant voltage. Fourier transform infrared spectroscopy, X-ray diffraction, X-ray photoelectron spectroscopy, Field emission scanning electron microscopy equipped with energy dispersive X-ray analysis and biological studies were used to characterize the coatings. The corrosion resistance of the coatings was also investigated by electrochemical method in simulated body fluid solution.

  1. Effect of gold nanoparticle attached multi-walled carbon nanotube-layered indium tin oxide in monitoring the effect of paracetamol on the release of epinephrine

    Energy Technology Data Exchange (ETDEWEB)

    Goyal, Rajendra N., E-mail: rngcyfcy@iitr.ernet.in [Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee 247667 (India); Rana, Anoop Raj Singh [Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee 247667 (India); Aziz, Md. Abdul; Oyama, Munetaka [Department of Materials Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8520 (Japan)

    2011-05-05

    A gold nanoparticle attached multi-walled carbon nanotube-layered indium tin oxide (AuNP/MWNT/ITO) electrode has been used for monitoring the effect of paracetamol (PAR) on the release of epinephrine (EPI) in human urine. The modified electrode shows an excellent electrocatalytic activity for the oxidation of EPI and PAR with acceleration of electron transfer rate as compared to MWNT/ITO and AuNP/ITO. An apparent shift of the oxidative potential towards less positive potential with a marked increase in peak currents is observed in square wave voltammetry at AuNP/MWNT/ITO electrode. The calibration curves for the simultaneous determination of PAR and EPI showed an excellent linear response, ranging from 5.0 x 10{sup -9} mol L{sup -1} to 80.0 x 10{sup -9} mol L{sup -1} for both the compounds. The detection limits for the simultaneous determination of PAR and EPI were found to be 46 x 10{sup -10} mol L{sup -1} and 42 x 10{sup -10} mol L{sup -1} respectively. The proposed method has been successfully applied for the simultaneous determination of PAR and EPI in human urine. It is observed that gold nanoparticles attached with multi-wall carbon nanotube catalyze the oxidation of EPI and PAR.

  2. 纳米管稀土氧化物的制备及应用%The preparation and applications of rare earth oxide nanotubes

    Institute of Scientific and Technical Information of China (English)

    莫尊理; 蒲斌; 蒋彩弟; 郭瑞斌

    2013-01-01

    Rare earth oxide has many excellent properties and great application value,because of its unique opti-cal,electric and chemical properties,making it has great application prospects in catalysis,luminescence,mag-netism.If the rare earth oxide was prepared into a lower dimension and high specific surface area of one dimen-sional nanotubes,it was possible to enhance the performance in various aspects,the development and applica-tion prospect was very fascinated.This article summarized an overview of the preparation method of rare earth oxide nanotubes,and introduces the progress of rare earth oxide nanotubes in catalysis,luminescence and mag-netic applications.Finally discussed the need study problems and direction.%稀土氧化物具有其独特的光、电等化学性质,在催化、发光、磁性等方面有很大的应用前景。如果将稀土氧化物制备成具有低的维数和高的比表面积的一维纳米管状,有可能增强其各方面的性能,它的开发和应用前景十分喜人。综述了稀土氧化物纳米管的制备方法,并介绍了稀土氧化物纳米管在催化、发光和磁性方面应用的进展,最后论述了还需要研究的问题和方向。

  3. Graphene oxide/multi-walled carbon nanotubes as nanofeatured scaffolds for the assisted deposition of nanohydroxyapatite: characterization and biological evaluation

    Directory of Open Access Journals (Sweden)

    Rodrigues BV

    2016-06-01

    Full Text Available Bruno VM Rodrigues,1,* Nelly CS Leite,1,* Bruno das Neves Cavalcanti,2 Newton S da Silva,3 Fernanda R Marciano,1 Evaldo J Corat,4 Thomas J Webster,5,6 Anderson O Lobo11Laboratory of Biomedical Nanotechnology, Institute of Research and Development (IP&D, University of Vale do Paraiba (UNIVAP, Sao Jose dos Campos, Brazil; 2Department of Cardiology, Restorative Sciences and Endodontics, School of Dentistry, University of Michigan, Ann Arbor, MI, USA; 3Laboratory of Cell Biology and Tissue, Institute of Research and Development (IP&D, University of Vale Do Paraiba (UNIVAP, 4Associated Laboratory of Sensors and Materials, National Institute for Space Research, Sao Jose dos Campos, Brazil; 5Department of Chemical Engineering, Northeastern University, Boston, MA, USA; 6Center of Excellence for Advanced Materials Research, King Abdulaziz University, Jeddah, Saudi Arabia*These authors contributed equally to this workAbstract: Nanohydroxyapatite (nHAp is an emergent bioceramic that shows similar chemical and crystallographic properties as the mineral phase present in bone. However, nHAp presents low fracture toughness and tensile strength, limiting its application in bone tissue engineering. Conversely, multi-walled carbon nanotubes (MWCNTs have been widely used for composite applications due to their excellent mechanical and physicochemical properties, although their hydrophobicity usually impairs some applications. To improve MWCNT wettability, oxygen plasma etching has been applied to promote MWCNT exfoliation and oxidation and to produce graphene oxide (GO at the end of the tips. Here, we prepared a series of nHAp/MWCNT-GO nanocomposites aimed at producing materials that combine similar bone characteristics (nHAp with high mechanical strength (MWCNT-GO. After MWCNT production and functionalization to produce MWCNT-GO, ultrasonic irradiation was employed to precipitate nHAp onto the MWCNT-GO scaffolds (at 1–3 wt%. We employed various techniques to

  4. Titanium Oxide Nanotubes Prepared by Anodic Oxidation and Their Application in Solar Cells%阳极氧化法制备二氧化钛纳米管及其在太阳能电池中的应用

    Institute of Scientific and Technical Information of China (English)

    李欢欢; 陈润锋; 马琮; 张胜兰; 安众福; 黄维

    2011-01-01

    We review the history, fabrication procedures, and mechanisms of TiO2 nanotubes prepared by the anodic oxidation of titanium.The influence of various preparation factors, such as electrolytes, pH value, voltage, bath temperature, and post treatment, on the structure and morphology of the TiO2 nanotubes are discussed.This review also summarizes the application of TiO2 nanotubes to dye-sensitized solar cells, quantum dot solar cells, and bulk heterojunction solar cells.A perspective on the future development of TiO2nanotubes and their applications is tentatively discussed.%介绍了阳极氧化法制备二氧化钛纳米管的技术发展历程,论述了其制备过程及生长机理,探讨了电解液、pH值、氧化电压、氧化时间、氧化温度和后处理方法等因素对TiO2纳米管结构和形态的影响,综述了近几年来利用TiO2纳米管组装染料敏化、量子点和本体异质结等太阳能电池所取得的进展,展望了其未来发展趋势和应用前景.

  5. Periodic density functional theory study of structural and electronic properties of single-walled zinc oxide and carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Marana, Naiara L. [Modeling and Molecular Simulations Group, São Paulo State University, UNESP, 17033-360 Bauru, SP (Brazil); Albuquerque, Anderson R. [Federal Institute of Education, Science and Technology of Sertão Pernambucano, 56400-000 Floresta, PE (Brazil); La Porta, Felipe A. [Chemistry Department, Federal Technological University of Paraná, 86036-370 Londrina, PR (Brazil); Longo, Elson [São Paulo State University, Chemistry Institute, UNESP, 14801-907 Araraquara, SP (Brazil); Sambrano, Julio R. [Modeling and Molecular Simulations Group, São Paulo State University, UNESP, 17033-360 Bauru, SP (Brazil)

    2016-05-15

    Periodic density functional theory calculations with the B3LYP hybrid functional and all-electron Gaussian basis set were performed to simulate the structural and electronic properties as well as the strain and formation energies of single-walled ZnO nanotubes (SWZnONTs) and Carbon nanotubes (SWCNTs) with different chiralities as functions of their diameters. For all SWZnONTs, the band gap, strain energy, and formation energy converge to ~4.5 eV, 0.0 eV/atom, and 0.40 eV/atom, respectively. This result suggests that the nanotubes are formed more easily from the surface than from the bulk. For SWCNTs, the strain energy is always positive, while the formation energy is negative for armchair and zigzag nanotubes, therefore suggesting that these types of nanotubes can be preferentially formed from the bulk. The electronic properties of SWCNTs depend on the chirality; all armchair nanotubes are metallic, while zigzag and chiral nanotubes can be metallic or semiconducting, depending on the n and m vectors. - Graphical abstract: DFT/B3LYP were performed to simulate the structural and electronic properties as well as the strain and formation energies of SWZnONTs and SWCNTs with different chiralities as functions of their diameters. - Highlights: • The energies of SWZnONTs converge for chirality with diameters up 20 Å. • SWCNTs electronic properties depend on the chirality. • The properties of SWZnONTs are very similar to those of monolayer surface.

  6. Phthalocyanine Doped Metal Oxide Nanoparticles on Multiwalled Carbon Nanotubes Platform for the detection of Dopamine

    Science.gov (United States)

    Mphuthi, Ntsoaki G.; Adekunle, Abolanle S.; Fayemi, Omolola E.; Olasunkanmi, Lukman O.; Ebenso, Eno E.

    2017-03-01

    The electrocatalytic properties of metal oxides (MO = Fe3O4, ZnO) nanoparticles doped phthalocyanine (Pc) and functionalized MWCNTs, decorated on glassy carbon electrode (GCE) was investigated. Successful synthesis of the metal oxide nanoparticles and the MO/Pc/MWCNT composite were confirmed using UV-Vis, EDX, XRD and TEM techniques. Successful modification of GCE with the MO and their composite was also confirmed using cyclic voltammetry (CV) technique. GCE-MWCNT/ZnO/29H,31H-Pc was the best electrode towards DA detection with very low detection limit (0.75 μM) which compared favourably with literature, good sensitivity (1.45 μA/μM), resistance to electrode fouling, and excellent ability to detect DA without interference from AA signal. Electrocatalytic oxidation of DA on GCE-MWCNT/ZnO/29H,31H-Pc electrode was diffusion controlled but characterized with some adsorption of electro-oxidation reaction intermediates products. The fabricated sensors are easy to prepare, cost effective and can be applied for real sample analysis of dopamine in drug composition. The good electrocatalytic properties of 29H,31H-Pc and 2,3-Nc were related to their (quantum chemically derived) frontier molecular orbital energies and global electronegativities. The better performance of 29H,31H-Pc than 2,3-Nc in aiding electrochemical oxidation of DA might be due to its better electron accepting ability, which is inferred from its lower ELUMO and higher χ.

  7. Phthalocyanine Doped Metal Oxide Nanoparticles on Multiwalled Carbon Nanotubes Platform for the detection of Dopamine

    Science.gov (United States)

    Mphuthi, Ntsoaki G.; Adekunle, Abolanle S.; Fayemi, Omolola E.; Olasunkanmi, Lukman O.; Ebenso, Eno E.

    2017-01-01

    The electrocatalytic properties of metal oxides (MO = Fe3O4, ZnO) nanoparticles doped phthalocyanine (Pc) and functionalized MWCNTs, decorated on glassy carbon electrode (GCE) was investigated. Successful synthesis of the metal oxide nanoparticles and the MO/Pc/MWCNT composite were confirmed using UV-Vis, EDX, XRD and TEM techniques. Successful modification of GCE with the MO and their composite was also confirmed using cyclic voltammetry (CV) technique. GCE-MWCNT/ZnO/29H,31H-Pc was the best electrode towards DA detection with very low detection limit (0.75 μM) which compared favourably with literature, good sensitivity (1.45 μA/μM), resistance to electrode fouling, and excellent ability to detect DA without interference from AA signal. Electrocatalytic oxidation of DA on GCE-MWCNT/ZnO/29H,31H-Pc electrode was diffusion controlled but characterized with some adsorption of electro-oxidation reaction intermediates products. The fabricated sensors are easy to prepare, cost effective and can be applied for real sample analysis of dopamine in drug composition. The good electrocatalytic properties of 29H,31H-Pc and 2,3-Nc were related to their (quantum chemically derived) frontier molecular orbital energies and global electronegativities. The better performance of 29H,31H-Pc than 2,3-Nc in aiding electrochemical oxidation of DA might be due to its better electron accepting ability, which is inferred from its lower ELUMO and higher χ. PMID:28256521

  8. Phthalocyanine Doped Metal Oxide Nanoparticles on Multiwalled Carbon Nanotubes Platform for the detection of Dopamine.

    Science.gov (United States)

    Mphuthi, Ntsoaki G; Adekunle, Abolanle S; Fayemi, Omolola E; Olasunkanmi, Lukman O; Ebenso, Eno E

    2017-03-03

    The electrocatalytic properties of metal oxides (MO = Fe3O4, ZnO) nanoparticles doped phthalocyanine (Pc) and functionalized MWCNTs, decorated on glassy carbon electrode (GCE) was investigated. Successful synthesis of the metal oxide nanoparticles and the MO/Pc/MWCNT composite were confirmed using UV-Vis, EDX, XRD and TEM techniques. Successful modification of GCE with the MO and their composite was also confirmed using cyclic voltammetry (CV) technique. GCE-MWCNT/ZnO/29H,31H-Pc was the best electrode towards DA detection with very low detection limit (0.75 μM) which compared favourably with literature, good sensitivity (1.45 μA/μM), resistance to electrode fouling, and excellent ability to detect DA without interference from AA signal. Electrocatalytic oxidation of DA on GCE-MWCNT/ZnO/29H,31H-Pc electrode was diffusion controlled but characterized with some adsorption of electro-oxidation reaction intermediates products. The fabricated sensors are easy to prepare, cost effective and can be applied for real sample analysis of dopamine in drug composition. The good electrocatalytic properties of 29H,31H-Pc and 2,3-Nc were related to their (quantum chemically derived) frontier molecular orbital energies and global electronegativities. The better performance of 29H,31H-Pc than 2,3-Nc in aiding electrochemical oxidation of DA might be due to its better electron accepting ability, which is inferred from its lower ELUMO and higher χ.

  9. Single-walled carbon nanotube release affects the microbial enzyme-catalyzed oxidation processes of organic pollutants and lignin model compounds in nature.

    Science.gov (United States)

    Chen, Ming; Qin, Xiaosheng; Zeng, Guangming

    2016-11-01

    The question how microbial enzyme-catalyzed oxidation processes of organic pollutants and lignin model compounds (LMCs) are affected by the release of single-walled carbon nanotube (SWCNT) into the environment remains to be addressed at the molecular level. We have, therefore concentrated the effects of SWCNT on some important properties associated with enzyme activity and function during microbial oxidation of polycyclic aromatic hydrocarbons (benzo(a)pyrene, acenaphthene and anthracene), LMCs (2,6-dimethoxyphenol, guaiacol and veratryl alcohol) and β-hexachlorocyclohexane, including the behaviour of water molecules, hydrogen bonds (HBs) and hydrophobic interactions (HYs) between ligand and the enzyme, and conformational dynamics in N- and C-terminus. Our study revealed that SWCNT significantly affected the behaviour of water molecules within 5 Å of both these substrates and their respective enzymes during oxidation (p microbial enzyme-catalyzed processes of organic pollutants and LMCs in nature.

  10. Dye-sensitized solar cells based on thick highly ordered TiO(2) nanotubes produced by controlled anodic oxidation in non-aqueous electrolytic media.

    Science.gov (United States)

    Stergiopoulos, T; Ghicov, A; Likodimos, V; Tsoukleris, D S; Kunze, J; Schmuki, P; Falaras, P

    2008-06-11

    Dye-sensitized solar cells (DSSCs) were prepared using TiO(2) nanotubes, grown by controlled Ti anodic oxidation in non-aqueous media. Smooth, vertically oriented TiO(2) nanotube arrays, presenting a high degree of self-organization and a length of 20 µm, have been grown using ethylene glycol electrolyte containing HF. As-grown nanotubes exhibit an amorphous structure, which transforms to the anatase TiO(2) crystalline phase upon post-annealing in air at 450 °C. Atomic force microscopy (AFM) revealed the porous morphology together with high roughness and fractality of the surface. The annealed tubes were sensitized by the standard N719 ruthenium dye and the adsorption was characterized using resonance micro-Raman spectroscopy and adsorption-desorption measurements. The sensitized tubes were further used as active photoelectrodes after incorporation in sandwich-type DSSCs using both liquid and solidified electrolytes. The efficiencies obtained under air mass (AM) 1.5 conditions, using a back-side illumination geometry, were very promising: 0.85% using a composite polymer redox electrolyte, while the efficiency was further increased up to 1.65% using a liquid electrolyte.

  11. High-performance printed carbon nanotube thin-film transistors array fabricated by a nonlithography technique using hafnium oxide passivation layer and mask.

    Science.gov (United States)

    Pillai, Suresh Kumar Raman; Chan-Park, Mary B

    2012-12-01

    The large-scale application of semiconducting single-walled carbon nanotubes (s-SWCNTs) for printed electronics requires scalable, repeateable, as well as noncontaminating assembly techniques. Previously explored nanotube deposition methods include serial methods such as inkjet printing and parallel methods such as spin-coating with photolithography. The serial methods are usually slow, whereas the photolithography-related parallel methods result in contamination of the nanotubes. In this paper, we report a reliable clean parallel method for fabrication of arrays of carbon nanotube-based field effect transistors (CNTFETs) involving shadow mask patterning of a passivating layer of Hafnium oxide (HfO(2)) over the nanotube (CNT) active channel regions and plasma etching of the unprotected nanotubes. Pure (99%) semiconducting SWCNTs are first sprayed over the entire surface of a wafer substrate followed by a two-step shadow masking procedure to first deposit metal electrodes and then a HfO(2) isolation/passivation layer over the device channel region. The exposed SWCNT network outside the HfO(2) protected area is removed with oxygen plasma etching. The HfO(2) thus serves as both the device isolation mask during the plasma etching and as a protective passivating layer in subsequent use. The fabricated devices on SiO(2)/Si substrate exhibit good device performance metrics, with on/off ratio ranging from 1 × 10(1) to 3 × 10(5) and mobilities of 4 to 23 cm(2)/(V s). The HfO(2)/Si devices show excellent performance with on/off ratios of 1 × 10(2) to 2 × 10(4) and mobilities of 8 to 56 cm(2)/(V s). The optimum devices (on HfO(2)/Si) have an on/off ratio of 1 × 10(4) and mobility as high as 46 cm(2)/(V s). This HfO(2)-based patterning method enables large scale fabrication of CNTFETs with no resist residue or other contamination on the device channel. Further, shadow masking circumvents the need for expensive and area-limited lithography patterning process. The device

  12. Electrocatalytic oxidation of diethylaminoethanethiol and hydrazine at single-walled carbon nanotubes modified with prussian blue nanoparticles

    CSIR Research Space (South Africa)

    Adekunle, AS

    2010-11-01

    Full Text Available In this work, edged plane pyrolytic graphite electrode EPPGE was modified with functionalised single-walled carbon nanotubes and Prussian blue nanoparticles (PB). The modified electrode was characterised by techniques such as TEM, FTIR, XPS, EDX...

  13. Solid-phase microextraction of ultra-trace amounts of tramadol from human urine by using a carbon nanotube/flower-shaped zinc oxide hollow fiber.

    Science.gov (United States)

    Abbasian, Maryam; Balali-Mood, Mahdi; Mozaffari, Sayed Ahmad; Amoli, Hossein Salar

    2016-11-01

    A new method is successfully developed for the separation and determination of a very low amount of tramadol in urine using functionalized multiwalled carbon nanotubes/flower-shaped zinc oxide before solid-phase microextraction combined with gas chromatography. Under ultrasonic agitation, a sol of multiwalled carbon nanotubes and flower-shaped zinc oxide were forced into and trapped within the pore structure of the polypropylene and the sol solution immobilized into the hollow fiber. Flower-shaped zinc oxide was synthesized and characterized by Fourier transform infrared spectroscopy. The morphology of the fabricated solid-phase microextraction surface was investigated by scanning electron microscopy and X-ray diffraction. The parameters affecting the extraction efficiencies were investigated and optimized. Under the optimized conditions, the method shows linearity in a wide range of 0.12-7680 ng/mL, and a low detection limit (S/N = 3) of 0.03 ng/mL. The precision of the method was determined and a relative standard deviation of 3.87% was obtained. This method was successfully applied for the separation and determination of tramadol in urine samples. The relative recovery percentage obtained for the spiked urine sample at 1000 ng/mL was 94.2%.

  14. TiO2 Nanotube-Carbon (TNT-C) as Support for Pt-based Catalyst for High Methanol Oxidation Reaction in Direct Methanol Fuel Cell.

    Science.gov (United States)

    Abdullah, M; Kamarudin, S K; Shyuan, L K

    2016-12-01

    In this study, TiO2 nanotubes (TNTs) were synthesized via a hydrothermal method using highly concentrated NaOH solutions varying from 6 to 12 M at 180 °C for 48 h. The effects of the NaOH concentration and the TNT crystal structure on the performance for methanol oxidation were investigated to determine the best catalyst support for Pt-based catalysts. The results showed that TNTs produced with 10 M NaOH exhibited a length and a diameter of 550 and 70 nm, respectively; these TNTs showed the best nanotube structure and were further used as catalyst supports for a Pt-based catalyst in a direct methanol fuel cell. The synthesized TNT and Pt-based catalysts were analysed by FESEM, TEM, BET, EDX, XRD and FTIR. The electrochemical performance of the catalysts was investigated using cyclic voltammetry (CV) and chronoamperometric (CA) analysis to further understand the methanol oxidation in the direct methanol fuel cell (DMFC). Finally, the result proves that Pt-Ru/TNT-C catalyst shows high performance in methanol oxidation as the highest current density achieved at 3.3 mA/cm(2) (normalised by electrochemically active surface area) and high catalyst tolerance towards poisoning species was established.

  15. TiO2 Nanotube-Carbon (TNT-C) as Support for Pt-based Catalyst for High Methanol Oxidation Reaction in Direct Methanol Fuel Cell

    Science.gov (United States)

    Abdullah, M.; Kamarudin, S. K.; Shyuan, L. K.

    2016-12-01

    In this study, TiO2 nanotubes (TNTs) were synthesized via a hydrothermal method using highly concentrated NaOH solutions varying from 6 to 12 M at 180 °C for 48 h. The effects of the NaOH concentration and the TNT crystal structure on the performance for methanol oxidation were investigated to determine the best catalyst support for Pt-based catalysts. The results showed that TNTs produced with 10 M NaOH exhibited a length and a diameter of 550 and 70 nm, respectively; these TNTs showed the best nanotube structure and were further used as catalyst supports for a Pt-based catalyst in a direct methanol fuel cell. The synthesized TNT and Pt-based catalysts were analysed by FESEM, TEM, BET, EDX, XRD and FTIR. The electrochemical performance of the catalysts was investigated using cyclic voltammetry (CV) and chronoamperometric (CA) analysis to further understand the methanol oxidation in the direct methanol fuel cell (DMFC). Finally, the result proves that Pt-Ru/TNT-C catalyst shows high performance in methanol oxidation as the highest current density achieved at 3.3 mA/cm2 (normalised by electrochemically active surface area) and high catalyst tolerance towards poisoning species was established.

  16. Electrocatalytic activity of 2,3,5,6-tetrachloro-1,4-benzoquinone/multi-walled carbon nanotubes immobilized on edge plane pyrolytic graphite electrode for NADH oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Cassia Silva Luz, Rita de [Institute of Chemistry, UNICAMP, P.O. Box 6154, 13084-971, Campinas, SP (Brazil)], E-mail: rcsluz@iqm.unicamp.br; Damos, Flavio Santos [Institute of Chemistry, UNICAMP, P.O. Box 6154, 13084-971, Campinas, SP (Brazil); Tanaka, Auro Atsushi [Center of Science and Technology, UFMA, Avenida dos Portugueses s/n, 65085-040, Sao Luis, MA (Brazil); Kubota, Lauro Tatsuo; Gushikem, Yoshitaka [Institute of Chemistry, UNICAMP, P.O. Box 6154, 13084-971, Campinas, SP (Brazil)

    2008-05-30

    This work reports the electrocatalytic activity of 2,3,5,6-tetrachloro-1,4-benzoquinone (TCBQ)/multi-walled carbon nanotubes (MWCNT) immobilized on an edge plane pyrolytic graphite electrode for nicotinamide adenine dinucleotide (NADH) oxidation. Scanning electron microscopy (SEM) and energy dispersive X-ray spectrometry (EDS) were used to confirms the presence of chloro after the nanotube modification with 2,3,5,6-tetrachloro-1,4-benzoquinone. The surface charge transfer constant, k{sub s}, and the charge transfer coefficient for the modified electrode, {alpha}, were estimated as 98.5 ({+-}0.6) s{sup -1} and 0.5, respectively. With this modified electrode the oxidation potential of the NADH was shifted about 300 mV toward a less positive value, presenting a peak current much higher than those measured on an unmodified edge plane pyrolytic graphite electrode (EPPG). Cyclic voltammetry and rotating disk electrode (RDE) experiments indicated that the NADH oxidation reaction involves 2 electrons and a heterogenous rate constant (k{sub obs}) of 3.1 x 10{sup 5} mol{sup -1} l s{sup -1}. The detection limit, repeatability, long-term stability, time of response and linear response range were also investigated.

  17. Th(IV Adsorption onto Oxidized Multi-Walled Carbon Nanotubes in the Presence of Hydroxylated Fullerene and Carboxylated Fullerene

    Directory of Open Access Journals (Sweden)

    Wangsuo Wu

    2013-09-01

    Full Text Available The adsorption of Th(IV onto the surface of oxidized multi-walled carbon nanotubes (oMWCNTs in the absence and presence of hydroxylated fullerene (C60(OHn and carboxylated fullerene (C60(C(COOH2n has been investigated. C60(OHn, C60(C(COOH2n and oMWCNTs have been chosen as model phases because of their representative in carbon nano-materials family. Adsorption experiments were performed by batch procedure as a function of contact time, pH, ionic strength, and temperature. The results demonstrated that the adsorption of Th(IV was rapidly reached equilibrium and the kinetic process could be described by a pseudo-second-order rate model very well. Th(IV adsorption on oMWCNTs was dependent on pH but independent on ionic strength. Adsorption isotherms were correlated better with the Langmuir model than with the Freundlich model. The thermodynamic parameters calculated from temperature-dependent adsorption isotherms suggested that Th(IV adsorption on oMWCNTs was spontaneous and endothermic. Compared with the adsorption of Th(IV on the same oMWCNTs free of C60(OHn or C60(C(COOH2n, the study of a ternary system showed the inhibition effect of C60(OHn at high concentration on the adsorption of Th(IV in a pH range from neutral to slightly alkaline; whereas the promotion effect of C60(C(COOH2n, even at its low concentration, on Th(IV adsorption was observed in acid medium.

  18. Photocatalytic oxidation of methyl orange in water phase by immobilized TiO{sub 2}-carbon nanotube nanocomposite photocatalyst

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Yinmao [School of Chemical Engineering and Technology, Harbin Institute of Technology, Harbin 150001 (China); School of Sciences/Beijing Key Lab of Plant Resource Research and Development, Beijing Technology and Business University, Beijing 100048 (China); Tang, Dongyan [School of Chemical Engineering and Technology, Harbin Institute of Technology, Harbin 150001 (China); Li, Chensha, E-mail: lichnsa@mail.tsinghua.edu.cn [Department of Mechanical Engineering, Tsinghua University, Beijing 100084 (China)

    2014-03-01

    Highlights: • An immobilized photocatalyst with heterostructure of nanophase CNT-TiO{sub 2} was developed. • The unique 3-D network structure of the photocatalyst resulted in high and available surface area. • The nano-photocatalyst exhibited a high photocatalysis performance. • The immobilized nano-photocatalyst possess the merits of powder nano-photocatalyst. • The immobilized nano-photocatalyst adapts the requirement for clean and convenient manipulation. - Abstract: We developed an immobilized carbon nanotube (CNT)–titanium dioxide (TiO{sub 2}) heterostructure material for the photocatalytic oxidation of methyl orange in aqueous phase. The catalyst material was prepared via sol–gel method using multi-walled CNTs grown on graphite substrate as carriers. The multi-walled CNTs were synthesized from thermal decomposing of hydrocarbon gas directly on thin graphite plate, forming immobilized 3-dimensional network of CNTs. The nanophase TiO{sub 2} was synthesized coating on CNTs to form “coral”-shaped nanocomposite 3-dimensional network on graphite substrate, thus bringing effective porous structure and high specific surface area, and possessing the merit of dispersive powder photocatalysts, which is the fully available surface area, while adapting the requirement for clean and convenient manipulation as an immobilized photocatalyst. Moreover, the CNT–TiO{sub 2} heterostructure reduced the electron–hole pair recombination rate and enhanced the photoabsorption and the adsorption ability, resulting in elevating the photocatalysis efficiency. These synergistic effects due to the hybrid nature of the materials and interphase interaction greatly improved the catalytic activity, and demonstrated superior photocatalytic performances. Our work can be a significant inspiration for developing hybrid nano-phase materials to realize sophisticated functions, and bear tremendous significance for the development and applications of semiconductor nano-materials.

  19. Ultrasensitive and selective 4-aminophenol chemical sensor development based on nickel oxide nanoparticles decorated carbon nanotube nanocomposites for green environment.

    Science.gov (United States)

    Hussain, Mohammad Musarraf; Rahman, Mohammed M; Asiri, Abdullah M

    2017-03-01

    Nickel oxide nanoparticles decorated carbon nanotube nanocomposites (NiO·CNT NCs) were prepared in a basic medium by using facile wet-chemical routes. The optical, morphological, and structural properties of NiO·CNT NCs were characterized using Fourier transformed infra-red (FT-IR), Ultra-violet visible (UV/Vis) spectroscopy, field-emission scanning electron microscopy (FESEM), X-ray energy dispersed spectroscopy (XEDS), X-ray photoelectron spectroscopy (XPS), and powder X-ray diffraction (XRD) methods. Selective 4-aminophenol (4-AP) chemical sensor was developed by a flat glassy carbon electrode (GCE, surface area: 0.0316cm(2)) fabricated with a thin-layer of NCs. Electrochemical responses including higher sensitivity, large dynamic range (LDR), limit of detection (LOD), and long-term stability towards 4-AP were obtained using the fabricated chemical sensors. The calibration curve was found linear (R(2)=0.914) over a wide range of 4-AP concentration (0.1nmol/L-0.1mol/L). In perspective of slope (2×10(-5)μA/μM), LOD and sensitivity were calculated as 15.0±0.1pM and ~6.33×10(-4)μA/(μM·cm) respectively. The synthesized NiO·CNT NCs using a wet-chemical method is a significant route for the development of ultrasensitive and selective phenolic sensor based on nano-materials for environmental toxic substances. It is suggested that a pioneer and selective development of 4-AP sensitive sensor using NiO·CNT NCs by a facile and reliable current vs voltage (I-V) method for the major application of toxic agents in biological, green environmental, and health-care fields in near future. Copyright © 2016. Published by Elsevier B.V.

  20. Synergistic bifunctional catalyst design based on perovskite oxide nanoparticles and intertwined carbon nanotubes for rechargeable zinc-air battery applications.

    Science.gov (United States)

    Lee, Dong Un; Park, Hey Woong; Park, Moon Gyu; Ismayilov, Vugar; Chen, Zhongwei

    2015-01-14

    Advanced morphology of intertwined core-corona structured bifunctional catalyst (IT-CCBC) is introduced where perovskite lanthanum nickel oxide nanoparticles (LaNiO3 NP) are encapsulated by high surface area network of nitrogen-doped carbon nanotubes (NCNT) to produce highly active and durable bifunctional catalyst for rechargeable metal-air battery applications. The unique composite morphology of IT-CCBC not only enhances the charge transport property by providing rapid electron-conduction pathway but also facilitates in diffusion of hydroxyl and oxygen reactants through the highly porous framework. Confirmed by electrochemical half-cell testing, IT-CCBC in fact exhibits very strong synergy between LaNiO3 NP and NCNT demonstrating bifunctionality with significantly improved catalytic activities of oxygen reduction reaction (ORR) and oxygen evolution reaction (OER). Furthermore, when compared to the state-of-art catalysts, IT-CCBC outperforms Pt/C and Ir/C in terms of ORR and OER, respectively, and shows improved electrochemical stability compared to them after cycle degradation testing. The practicality of the catalyst is corroborated by testing in a realistic rechargeable zinc-air battery utilizing atmospheric air in ambient conditions, where IT-CCBC demonstrates superior charge and discharge voltages and long-term cycle stability with virtually no battery voltage fading. These improved electrochemical properties of the catalyst are attributed to the nanosized dimensions of LaNiO3 NP controlled by simple hydrothermal technique, which enables prolific growth of and encapsulation by highly porous NCNT network. The excellent electrochemical results presented in this study highlight IT-CCBC as highly efficient and commercially viable bifunctional catalyst for rechargeable metal-air battery applications.

  1. Multi-walled carbon nanotubes/graphene oxide hybrid and nanohydroxyapatite composite: A novel coating to prevent dentin erosion.

    Science.gov (United States)

    Nahorny, Sídnei; Zanin, Hudson; Christino, Vinie Abreu; Marciano, Fernanda Roberta; Lobo, Anderson Oliveira; Soares, Luís Eduardo Silva

    2017-10-01

    To date is emergent the development of novel coatings to protect erosion, especially to preventive dentistry and restorative dentistry. Here, for the first time we report the effectiveness of multi-walled carbon nanotube/graphene oxide hybrid carbon-base material (MWCNTO-GO) combined with nanohydroxyapatite (nHAp) as a protective coating for dentin erosion. Fourier transform Raman spectroscopy (FT-Raman), scanning electron (SEM), and transmission electron (TEM) microscopy were used to investigated the coatings and the effect of acidulated phosphate fluoride gel (APF) treatment on bovine teeth root dentin before and after erosion. The electrochemical corrosion performance of the coating was evaluated. Raman spectra identified that: (i) the phosphate (ν1PO4(3-)) content of dentin was not significantly affected by the treatments and (ii) the carbonate (ν1CO3(2-)) content in dentin increased when nHAp was used. However, the nHAp/MWCNTO-GO composite exposited lower levels of organic matrix (CH bonds) after erosion compared to other treatments. Interesting, SEM micrographs identified that the nHAp/MWCNTO-GO formed layers after erosive cycling when associate with APF treatment, indicating a possible chemical bond among them. Treatments of root dentin with nHAp, MWCNTO-GO, APF_MWCNTO-GO, and APF_nHAp/MWCNTO-GO increased the carbonate content, carbonate/phosphate ratio, and organic matrix band area after erosion. The potentiodynamic polarization curves and Nyquist plot showed that nHAp, MWCNT-GO and nHAp/MWCNT-GO composites acted as protective agents against corrosion process. Clearly, the nHAp/MWCNTO-GO composite was stable after erosive cycling and a thin and acid-resistant film was formed when associated to APF treatment. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. A novel composite electrode based on tungsten oxide nanoparticles and carbon nanotubes for the electrochemical determination of paracetamol

    Energy Technology Data Exchange (ETDEWEB)

    Baytak, Aysegul Kutluay; Duzmen, Sehriban; Teker, Tugce; Aslanoglu, Mehmet, E-mail: maslanoglu@harran.edu.tr

    2015-12-01

    An electrochemical sensor was prepared by the modification of a glassy carbon electrode (GCE) with a composite of nanoparticles of tungsten oxide (WO{sub 3}) and carbon nanotubes (CNTs) for the quantification of paracetamol (PR). Energy dispersive X-ray analysis (EDX) and scanning electron microscopy (SEM) were performed for the characterization of the nanocomposite layer. Compared with a bare GCE and a GCE modified with CNTs, the proposed electrode (WO{sub 3}NPs/CNTs/GCE) exhibited a well-defined redox couple for PR and a marked enhancement of the current response. The experimental results also showed that ascorbic acid (AA) did not interfere with the selective determination of PR. The proposed electrode was used for the determination of PR in 0.1 M phosphate buffer solution (PBS) at pH 7.0 using square wave voltammetry (SWV). The peak current increased linearly with the concentration of PR in the range of 1.0 × 10{sup −9}–2.0 × 10{sup −7} M. The detection limit (LOD) was 5.54 × 10{sup −11} M (based on 3 S{sub b}/m). The proposed voltammetric sensor provided long-time stability, improved voltammetric behavior and good reproducibility for PR. The selective, accurate and precise determination of PR makes the proposed electrode of great interest for monitoring its therapeutic use. - Highlights: • A voltammetric nanosensor was prepared using nanoparticles of WO{sub 3} and CNTs. • A selective quantification of paracetamol was carried out in the presence of AA. • A linear plot was obtained for current responses versus concentrations over the range from 1.0 × 10{sup −9} to 2.0 × 10{sup −7} M. • A detection limit of 554 pM was obtained for paracetamol using the proposed nanosensor. • An accurate quantification makes the proposed nanosensor of great interest for public health.

  3. Effect of cobalt alloying on the electrochemical performance of manganese oxide nanoparticles nucleated on multiwalled carbon nanotubes

    Science.gov (United States)

    Yazdani, Sajad; Kashfi-Sadabad, Raana; Palmieri, Alessandro; Mustain, William E.; Thompson Pettes, Michael

    2017-04-01

    MnO is an electrically insulating material which limits its usefulness in lithium ion batteries. We demonstrate that the electrochemical performance of MnO can be greatly improved by using oxygen-functional groups created on the outer walls of multiwalled carbon nanotubes (MWCNTs) as nucleation sites for metal oxide nanoparticles. Based on the mass of the active material used in the preparation of electrodes, the composite conversion-reaction anode material Mn1‑x Co x O/MWCNT with x = 0.2 exhibited the highest reversible specific capacity, 790 and 553 mAhg‑1 at current densities of 40 and 1600 mAg‑1, respectively. This is 3.1 times higher than that of MnO/MWCNT at a charge rate of 1600 mAg‑1. Phase segregation in the {{{Mn}}}1-x{{{Co}}}x{{O}} nanoparticles was not observed for x ≤ 0.15. Capacity retention in x = 0, 0.2, and 1 electrodes showed that the corresponding specific capacities were stabilized at 478, 709 and 602 mAhg‑1 respectively, after 55 cycles at a current density of 400 mAg‑1. As both MnO and CoO exhibit similar theoretical capacities and MnO/MWCNT and CoO/MWCNT anodes both exhibit lower performance than Mn0.8Co0.2O/MWCNT, the improved performance of the {{{Mn}}}1-x{{{Co}}}x{{O}}/{{MWCNT}} alloy likely arises from beneficial synergistic interactions in the bimetallic system.

  4. Preparation of electrochemically reduced graphene oxide/multi-wall carbon nanotubes hybrid film modified electrode, and its application to amperometric sensing of rutin

    Indian Academy of Sciences (India)

    Uling Yang; Gang Li; Meifang Hu; Lingbo Qu

    2014-07-01

    Through a facile electrochemical method, we prepared an electrochemically reduced graphene oxide (ERGO)/multi-wall carbon nanotubes (MWNTs) hybrid film modified glassy carbon electrode (GCE), and characterized it by Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM) and x-ray diffraction (XRD) The experimental results demonstrated that ERGO-MWNTs/GCE exhibited excellent electrocatalytic activity toward rutin as evidenced by the significant enhancement of redox peak currents in comparison with a bare GCE, ERGO/GCE and MWNTs/GCE. This method has been applied for the direct determination of rutin in real samples with satisfactory results.

  5. Adsorption of Cu2+ Ions From Aqueous Solutions Using Oxidized Multi-Walled Carbon Nanotubes

    Directory of Open Access Journals (Sweden)

    Soheil Sobhanardakani

    2015-06-01

    Full Text Available Copper ion (Cu2+ is one of the heavy metal ions that cause environmental pollution specifically in water. Copper ion cations are not biodegradable and tend to cumulate in living organisms. Consequently, the removal of Cu2+ in environmental samples plays an important role in environmental pollution monitoring. The purpose of the present work was to prepare oxidized Multi-Walled Carbon Nano Tubes (MWCNTs for removal of Cu2+ ions from aqueous solutions. This study was conducted under laboratory conditions. Multi-Walled Carbon Nano Tubes were oxidized and characterized by Fourier Transform Infrared Spectroscopy (FTIR, Scanning Electron Microscope (SEM and the Brunauer, Emmett, and Teller (BET methods. The effects of various factors, such as solution pH (3 - 9, adsorbent dose (0.006 - 0.06 g and contact time (10 - 120 minutes were investigated. Results showed that the suitable pH for Cu2+ ions removal was about 6.0, and the optimal dose was 0.03 g. Isotherm studies indicated that the Langmuir model fits the experimental data better than the Freundlich model. Maximum Cu2+ adsorption capacity was calculated as 200 mg g-1. The kinetics of the adsorption process was tested for the pseudo-first-order and pseudo-second-order models. The comparison among the models showed that the pseudo-second order model best described the adsorption kinetics. The results showed that oxidized MWCNTs can be used as a low cost adsorbent for the removal of Cu2+ ions from aqueous solutions.

  6. Nondestructive covalent functionalization of carbon nanotubes by selective oxidation of the original defects with K{sub 2}FeO{sub 4}

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Zhao-yang; Xu, Xue-cheng, E-mail: xcxu@phy.ecnu.edu.cn

    2015-08-15

    Graphical abstract: - Highlights: • Nondestructive covalent CNT functionalization is realized by defect oxidation. • A green oxidant K{sub 2}Fe{sup VI}O{sub 4} is used for CNT oxidation for the first time. • Effective CNT oxidation can be achieved at 60 °C in 3 h. • Oxidized CNTs are obtained in yields of above 100 wt%. • FeO{sub 3}, an unusual Fe (VI) specie, is produced when K{sub 2}FeO{sub 4} is dissolved in H{sub 2}SO{sub 4}. - Abstract: Chemical oxidation is still the major approach to the covalent functionalization of carbon nanotubes (CNTs). Theoretically, the defects on CNTs are more reactive than skeletal hexagons and should be preferentially oxidized, but conventional oxidation methods, e.g., HNO{sub 3}/H{sub 2}SO{sub 4} treatment, have poor reaction selectivity and inevitably consume the C=C bonds in the hexagonal lattices, leading to structural damage, π-electrons loss and weight decrease. In this work, we realized the nondestructive covalent functionalization of CNTs by selective oxidation of the defects. In our method, potassium ferrate K{sub 2}Fe{sup VI}O{sub 4} was employed as an oxidant for CNTs in H{sub 2}SO{sub 4} medium. The CNT samples, before and after K{sub 2}FeO{sub 4}/H{sub 2}SO{sub 4} treatment, were characterized with colloid dispersibility, IR, Raman spectroscopy, FESEM and XPS. The results indicated that (i) CNTs could be effectively oxidized by Fe (VI) under mild condition (60 °C, 3 h), and hydrophilic CNTs with abundant surface −COOH groups were produced; and (ii) Fe (VI) oxidation of CNTs followed a defect-specific oxidation process, that is, only the sp{sup 3}-hybridized carbon atoms on CNT surface were oxidized while the C=C bonds remained unaffected. This selective/nondestructive oxidation afforded oxidized CNTs in yields of above 100 wt%. This paper shows that K{sub 2}FeO{sub 4}/H{sub 2}SO{sub 4} is an effective, nondestructive and green oxidation system for oxidative functionalization of CNTs and probably other

  7. Comparison study of PE epitaxy on carbon nanotubes and graphene oxide and PE/graphene oxide as amphiphilic molecular structure for solvent separation

    Science.gov (United States)

    He, Linghao; Zheng, Xiaoli; Xu, Qun; Chen, Zhimin; Fu, Jianwei

    2012-03-01

    Carbon nanotubes (CNTs) and graphene nanosheets, as one-dimensional and two-dimensional carbon-based nanomaterials respectively, have different abilities to induce the polymer crystallization. In this study, hybrid materials, polyethylene (PE) decorating on CNTs and graphene oxide (GO), were prepared by a facile and efficient method using supercritical carbon dioxide (SC CO2) as anti-solvent. And the morphology and crystallization behavior of PE on CNTs and GO were investigated by transmission electron microscopy, Fourier transform infrared spectroscopy, Raman spectra, wide angle X-ray diffraction, and differential scanning calorimetry. Although both CNTs and GO could act as nucleating agents to induce PE epitaxial growth, CNTs were decorated by PE lamellar crystals forming nanohybrid "shish-kebab" (NHSK) structure, whereas GO sheets were only decorated with petal-like PE crystals. The varying morphologies of the nanohybrids depend on the PE epitaxy and the interactions between polymer chains and substrates. High surface curvature and the perfect ordered crystal structure of CNTs make PE crystals periodically grow on CNTs. While PE crystals grow and form multiple orientation-lamellae on GO due to the lattice matching and complex interactions between PE chains and GO. In addition, our experimental results show an interesting and evident stratification phenomenon for the PE/GO hybrid material, implying that GO decorated by PE have a screening function for the solvents. We anticipate that this work can widen the area of functionalization of carbon-based nanomaterials with a controlled means by an environmentally benign method, which are important for the functional design in nanodevice applications.

  8. Comparison study of PE epitaxy on carbon nanotubes and graphene oxide and PE/graphene oxide as amphiphilic molecular structure for solvent separation

    Energy Technology Data Exchange (ETDEWEB)

    He Linghao [College of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450052 (China); Henan Provincial Key Laboratory of Surface and Interface Science, Zhengzhou University of Light of Industry, Zhengzhou 450002 (China); Zheng Xiaoli [College of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450052 (China); Xu Qun, E-mail: qunxu@zzu.edu.cn [College of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450052 (China); Chen Zhimin; Fu Jianwei [College of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450052 (China)

    2012-03-01

    Carbon nanotubes (CNTs) and graphene nanosheets, as one-dimensional and two-dimensional carbon-based nanomaterials respectively, have different abilities to induce the polymer crystallization. In this study, hybrid materials, polyethylene (PE) decorating on CNTs and graphene oxide (GO), were prepared by a facile and efficient method using supercritical carbon dioxide (SC CO{sub 2}) as anti-solvent. And the morphology and crystallization behavior of PE on CNTs and GO were investigated by transmission electron microscopy, Fourier transform infrared spectroscopy, Raman spectra, wide angle X-ray diffraction, and differential scanning calorimetry. Although both CNTs and GO could act as nucleating agents to induce PE epitaxial growth, CNTs were decorated by PE lamellar crystals forming nanohybrid 'shish-kebab' (NHSK) structure, whereas GO sheets were only decorated with petal-like PE crystals. The varying morphologies of the nanohybrids depend on the PE epitaxy and the interactions between polymer chains and substrates. High surface curvature and the perfect ordered crystal structure of CNTs make PE crystals periodically grow on CNTs. While PE crystals grow and form multiple orientation-lamellae on GO due to the lattice matching and complex interactions between PE chains and GO. In addition, our experimental results show an interesting and evident stratification phenomenon for the PE/GO hybrid material, implying that GO decorated by PE have a screening function for the solvents. We anticipate that this work can widen the area of functionalization of carbon-based nanomaterials with a controlled means by an environmentally benign method, which are important for the functional design in nanodevice applications.

  9. Simultaneous determination of 2,4,6-trichlorophenol and pentachlorophenol based on poly(Rhodamine B)/graphene oxide/multiwalled carbon nanotubes composite film modified electrode

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Xiaolin; Zhang, Kexin; Lu, Nan; Yuan, Xing, E-mail: yuanx@nenu.edu.cn

    2016-01-15

    Graphical abstract: A poly(Rhodamine B)/graphene oxide/multiwalled carbon nanotubes composite film modified glassy carbon electrode (PRhB/GO/MWCNTs/GCE) was developed for the simultaneous determination of 2,4,6-trichlorophenol (2,4,6-TCP) and pentachlorophenol (PCP) without any pretreatment. - Highlights: • A poly(RhB)/graphene oxide/multiwalled carbon nanotubes composite was synthesized. • The composite film was characterized by SEM, XRD, EIS and Raman spectroscopy. • The simultaneous electrochemical determination of 2,4,6-TCP and PCP was realized. • The electrode showed high sensitivity, excellent reproducibility and good stability. • The electrode was used to determine 2,4,6-TCP and PCP in practical water samples. - Abstract: In the present study, a poly(Rhodamine B)/graphene oxide/multiwalled carbon nanotubes nanocomposite modified glass carbon electrode (PRhB/GO/MWCNTs/GCE) was developed for the simultaneous determination of 2,4,6-trichlorophenol (2,4,6-TCP) and pentachlorophenol (PCP). The PRhB/GO/MWCNTs film was extensively characterized by emission scanning electron microscopy (SEM), X-ray diffraction (XRD), Raman spectroscopy and electrochemical impedance spectroscopy (EIS). The electrochemical behaviors of 2,4,6-TCP and PCP were investigated by cyclic voltammetry, linear sweep voltammetry and differential pulse voltammetry. Due to the synergistic effect, the PRhB/GO/MWCNTs/GCE significantly facilitated the simultaneous electro-oxidation of 2,4,6-TCP and PCP with peak potential difference of 160 mV and enhanced oxidation currents. Under optimum conditions, the oxidation current of 2,4,6-TCP was linear to its concentration in the ranges of 4.0 × 10{sup −9} to 1.0 × 10{sup −7} M and 1.0 × 10{sup −7} to 1.0 × 10{sup −4} M with the detection limit (S/N = 3) of 8.0 × 10{sup −10} M. And the linear concentration ranges for PCP were 2.0 × 10{sup −9} to 1.0 × 10{sup −7} M and 1.0 × 10{sup −7} to 9.0 × 10{sup −5} M with the

  10. One-Step Cohydrothermal Synthesis of Nitrogen-Doped Titanium Oxide Nanotubes with Enhanced Visible Light Photocatalytic Activity

    Directory of Open Access Journals (Sweden)

    Cheng-Ching Hu

    2012-01-01

    Full Text Available Nitrogen-doped TiO2 nanotubes with enhanced visible light photocatalytic activity have been synthesized using commercial titania P25 as raw material by a facile P25/urea cohydrothermal method. Morphological and microstructural characteristics were conducted by transmission electron microscopy, powder X-ray diffraction, and nitrogen adsorption/desorption isotherms; chemical identifications were performed using X-ray photoelectron spectroscopy, and the interstitial nitrogen linkage to the TiO2 nanotubes is identified. The photocatalytic activity of nitrogen-doped TiO2 nanotubes, evaluated by the decomposition of rhodamine B dye solution under visible light using UV-vis absorption spectroscopy, is found to exhibit ~ four times higher than that of P25 and undoped titanate nanotubes. Factors affecting the photocatalytic activity are analyzed; it is found that the nitrogen content and surface area, rather than the crystallinity, are more crucial in affecting the photocatalytic efficiency of the nitrogen-doped TiO2 nanotubes.

  11. A novel reduced graphene oxide decorated with halloysite nanotubes (HNTs-d-rGO hybrid composite and its flame-retardant application for polyamide 6

    Directory of Open Access Journals (Sweden)

    M. F. Zhu

    2014-06-01

    Full Text Available The improvement of flame-retardant properties of polyamide 6 (PA6 was achieved by using reduced graphene oxide decorated with halloysite nanotubes (HNTs-d-rGO hybrid composite as the additive in PA6 matrix. The intimate integration of reduced graphene oxide (rGO and halloysite nanotubes (HNTs through a three-step chemical functionalization, enabled the combination of their unique physical and chemical characteristics together. The nanostructure of HNTs-d-rGO was determined by Fourier transform infrared spectroscopy (FTIR, X-ray photoelectron spectroscopy (XPS and transmission electron microscopy (TEM. A morphological study revealed that HNTs-d-rGO was dispersed uniformly in PA6 matrix. From the results of cone calorimetry measurements, the fire retardant properties of PA6 were further improved with the addition of HNTs-d-rGO when compared with that of either HNTs, or GO, or a mixture of HNTs and GO (HNTs-m-GO used in PA6 matrix. The results indicate clearly that higher flame-retardant activity of the integrated HNTs-d-rGO nanostructures than that of the simple mixture verifies the importance of the intimate integration between HNTs and rGO, which ascribe to the combination of the stable silica layer created by HNT and the barrier effect of rGO.

  12. Glassy carbon electrode modified with horse radish peroxidase/organic nucleophilic-functionalized carbon nanotube composite for enhanced electrocatalytic oxidation and efficient voltammetric sensing of levodopa.

    Science.gov (United States)

    Shoja, Yalda; Rafati, Amir Abbas; Ghodsi, Javad

    2016-01-01

    A novel and selective enzymatic biosensor was designed and constructed for voltammetric determination of levodopa (L-Dopa) in aqueous media (phosphate buffer solution, pH=7). Biosensor development was on the basis of to physically immobilizing of horse radish peroxidase (HRP) as electrochemical catalyst by sol-gel on glassy carbon electrode modified with organic nucleophilic carbon nanotube composite which in this composite p-phenylenediamine (pPDA) as organic nucleophile chemically bonded with functionalized MWCNT (MWCNT-COOH). The results of this study suggest that prepared bioorganic nucleophilic carbon nanotube composite (HRP/MWCNT-pPDA) shows fast electron transfer rate for electro oxidation of L-Dopa because of its high electrochemical catalytic activity toward the oxidation of L-Dopa, more--NH2 reactive sites and large effective surface area. Also in this work we measured L-Dopa in the presence of folic acid and uric acid as interferences. The proposed biosensor was characterized by scanning electron microscopy (SEM), energy dispersive X-ray analysis (EDX), FT-IR spectroscopy and cyclic voltammetry (CV). The differential pulse voltammetry (DPV) was used for determination of L-Dopa from 0.1 μM to 1.9 μM with a low detection limit of 40 nM (for S/N=3) and sensitivity was about 35.5 μA/μM. Also this biosensor has several advantages such as rapid response, high stability and reproducibility.

  13. A biosensor based on Coriolopsis gallica laccase immobilized on nitrogen-doped multiwalled carbon nanotubes and graphene oxide for polyphenol detection

    Science.gov (United States)

    Aguila, Sergio A.; Shimomoto, David; Ipinza, Franscisco; Bedolla-Valdez, Zaira I.; Romo-Herrera, José; Contreras, Oscar E.; Farías, Mario H.; Alonso-Núñez, Gabriel

    2015-10-01

    The use of nanomaterials allows the design of ultrasensitive biosensors with advantages in the detection of organic molecules. Catechol and catechin are molecules that occur naturally in fruits, and their presence in products like dyes and wines affects quality standards. In this study, catechol and catechin were measured at the nanoscale by means of cyclic voltammetry. The oxidation of Coriolopsis gallica laccase immobilized on nitrogen-doped multiwalled carbon nanotubes (Lac/CNx-MWCNT) and on graphene oxide (Lac/GO) was used to measure the concentrations of catechol and catechin. Nitrogen-doped multiwalled carbon nanotubes (CNx-MWCNT) were synthesized by spray pyrolysis and characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), and x-ray photoelectron spectroscopy (XPS). Covalently bonded hybrids with laccase (Lac/CNx-MWCNT and Lac/GO) were generated. Catalytic activity of free enzymes determined with syringaldazine yielded 14 584 UmL-1. With Lac/CNx-MWCNT at concentrations of 6.4 mmol L-1 activity was 9326 U mL-1, while enzyme activity measured with Lac/GO at concentration of 6.4 mmol L-1 was 9 234 U mL-1. The Lac/CNx-MWCNT hybrid showed higher stability than Lac/GO at different ethyl alcohol concentrations. The Lac/CNx-MWCNT hybrid can measure concentrations, not previously reported, as low as 1 × 10-8 mol L-1 by measuring the electric current responses.

  14. A carbon nanotube/polyvanillin composite film as an electrocatalyst for the electrochemical oxidation of nitrite and its application as a nitrite sensor

    Energy Technology Data Exchange (ETDEWEB)

    Zheng Dongyun [College of Chemistry and Molecular Science, Wuhan University, Wuhan 430072 (China); State Key Laboratory of Transducer Technology, Chinese Academy of Sciences (China); Hu Chengguo [College of Chemistry and Molecular Science, Wuhan University, Wuhan 430072 (China); State Key Laboratory of Transducer Technology, Chinese Academy of Sciences (China)], E-mail: cghu@whu.edu.cn; Peng Yanfen [College of Chemistry and Molecular Science, Wuhan University, Wuhan 430072 (China); State Key Laboratory of Transducer Technology, Chinese Academy of Sciences (China); Hu Shengshui [College of Chemistry and Molecular Science, Wuhan University, Wuhan 430072 (China); State Key Laboratory of Transducer Technology, Chinese Academy of Sciences (China)], E-mail: sshu@whu.edu.cn

    2009-08-30

    We report a simple method for the stable dispersion of multi-walled carbon nanotubes (MWNTs) in water by vanillin and controllable surface addition onto carbon fiber microelectrodes (CFE) via electropolymerization. We have characterized these polyvanillin-carbon nanotube (PVN-MWNT) composite films with techniques including scanning electron microscopy (SEM), infrared spectroscopy (IR) and voltammetry. These investigations showed that the films have a uniform porous nanostructure with a large surface area. This PVN-MWNT composite-modified CFE (PVN-MWNT/CFE) exhibited a sensitive response to the electrochemical oxidation of nitrite. Under optimal working conditions, the oxidation peak current of nitrite linearly increased with its concentration in the range of 0.2 {mu}M-3.1 mM, with the system exhibiting a lower detection limit of 50 nM (S/N = 3). We successfully applied the PVN-MWNT/CFE system to the determination of nitrite from lake water. The efficient recovery of nitrite indicated that this electrode was able to detect nitrite in real samples.

  15. Hydrous ruthenium oxide nanoparticles anchored to graphene and carbon nanotube hybrid foam for supercapacitors

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Wei [Univ. of California, Riverside, CA (United States); Guo, S. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Lee, I. [Univ. of California, Riverside, CA (United States); Ahmed, K. [Univ. of California, Riverside, CA (United States); Zhong, J. [Univ. of California, Riverside, CA (United States); Favors, Z. [Univ. of California, Riverside, CA (United States); Zaera, F. [Univ. of California, Riverside, CA (United States); Ozkan, M. [Univ. of California, Riverside, CA (United States); Ozkan, C. S [Univ. of California, Riverside, CA (United States)

    2014-03-25

    In real life applications, supercapacitors (SCs) often can only be used as part of a hybrid system together with other high energy storage devices due to their relatively lower energy density in comparison to other types of energy storage devices such as batteries and fuel cells. Increasing the energy density of SCs will have a huge impact on the development of future energy storage devices by broadening the area of application for SCs. Here, we report a simple and scalable way of preparing a three-dimensional (3D) sub-5 nm hydrous ruthenium oxide (RuO₂) anchored graphene and CNT hybrid foam (RGM) architecture for high-performance supercapacitor electrodes. This RGM architecture demonstrates a novel graphene foam conformally covered with hybrid networks of RuO₂ nanoparticles and anchored CNTs. SCs based on RGM show superior gravimetric and per-area capacitive performance (specific capacitance: 502.78 F g⁻¹, areal capacitance: 1.11 F cm⁻²) which leads to an exceptionally high energy density of 39.28 Wh kg⁻¹ and power density of 128.01 kW kg⁻¹. The electrochemical stability, excellent capacitive performance, and the ease of preparation suggest this RGM system is promising for future energy storage applications.

  16. Hydrous ruthenium oxide nanoparticles anchored to graphene and carbon nanotube hybrid foam for supercapacitors.

    Science.gov (United States)

    Wang, Wei; Guo, Shirui; Lee, Ilkeun; Ahmed, Kazi; Zhong, Jiebin; Favors, Zachary; Zaera, Francisco; Ozkan, Mihrimah; Ozkan, Cengiz S

    2014-03-25

    In real life applications, supercapacitors (SCs) often can only be used as part of a hybrid system together with other high energy storage devices due to their relatively lower energy density in comparison to other types of energy storage devices such as batteries and fuel cells. Increasing the energy density of SCs will have a huge impact on the development of future energy storage devices by broadening the area of application for SCs. Here, we report a simple and scalable way of preparing a three-dimensional (3D) sub-5 nm hydrous ruthenium oxide (RuO2) anchored graphene and CNT hybrid foam (RGM) architecture for high-performance supercapacitor electrodes. This RGM architecture demonstrates a novel graphene foam conformally covered with hybrid networks of RuO2 nanoparticles and anchored CNTs. SCs based on RGM show superior gravimetric and per-area capacitive performance (specific capacitance: 502.78 F g(-1), areal capacitance: 1.11 F cm(-2)) which leads to an exceptionally high energy density of 39.28 Wh kg(-1) and power density of 128.01 kW kg(-1). The electrochemical stability, excellent capacitive performance, and the ease of preparation suggest this RGM system is promising for future energy storage applications.

  17. Magnesium oxide grafted carbon nanotubes based impedimetric genosensor for biomedical application.

    Science.gov (United States)

    Patel, Manoj Kumar; Ali, Md Azahar; Srivastava, Saurabh; Agrawal, Ved Varun; Ansari, S G; Malhotra, Bansi D

    2013-12-15

    Nanostructured magnesium oxide (sizeoxide (ITO) coated glass electrode and have been utilized for Vibrio cholerae detection. Aminated 23 bases single stranded DNA (NH2-ssDNA) probe sequence (O1 gene) of V. cholerae has been covalently functionalized onto nMgO-cMWCNTs/ITO electrode surface using EDC-NHS chemistry. This DNA functionalized MgO grafted cMWCNTs electrode has been characterized using X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and electrochemical techniques. The results of XPS studies reveal that sufficient O-C=O groups present at the nMgO-cMWCNTs surface are utilized for DNA binding. The results of hybridization studies conducted with fragmented target DNA (ftDNA) of V. cholerae using electrochemical impedance spectroscopy (EIS) reveal sensitivity as 3.87 Ω ng(-1) cm(-2), detection limit of ~21.70 ng µL(-1) in the linear range of 100-500 ng µL(-1) and stability of about 120 days. The proposed DNA functionalized nMgO-cMWCNTs nanomatrix provides a novel impedimetric platform for the fabrication of a compact genosensor device for biomedical application.

  18. Single-walled carbon nanotubes induce cell death and transcription of TNF-α in macrophages without affecting nitric oxide production.

    Science.gov (United States)

    Kim, Kyong Hoon; Yeon, Seung-min; Kim, Hyun Gyung; Lee, Hwanbum; Kim, Sun Kyung; Han, Seung Hyun; Min, Kyung-Jin; Byun, Youngjoo; Lee, Eun Hee; Lee, Kenneth Sung; Yuk, Soon Hong; Ha, Un-Hwan; Jung, Yong Woo

    2014-02-01

    Single-walled carbon nanotubes (SWCNTs) are potent nanomaterials that have diverse shapes and features. The utilization of these molecules for drug delivery is being investigated; thus, it is important to determine whether they alter immune responses against pathogens. In this study, we show that macrophages treated with a mixture of lipopolysaccharide and SWCNTs produced normal levels of nitric oxide and inducible nitric oxide synthase mRNA. However, these treatments induced cell death, presumably via necrosis. In addition, treating cells with SWCNTs induced the expression of tumor necrosis factor-α mRNA, a potent pro-inflammatory cytokine. These results suggest that SWCNTs may influence immune responses, which could result in unexpected effects following their administration for the purpose of drug delivery.

  19. Dia-magnetic to ferro-magnetic behavioral change of Fe-catalysts based nitrogenated carbon nanotubes (NCNTs) by the process of chlorination/oxidation.

    Science.gov (United States)

    Ray, S C; Sahu, D R; Papakonstantinou, P

    2011-09-01

    In this work, we have synthesized multiwall nitrogenated carbon nanotubes (MW-NCNTs) with Fe-catalysts by the microwave plasma-enhanced chemical vapor deposition process @950 degrees C and subsequently functionalized with chlorine and oxygen. The dia-magnetic behavioral M-H loop of non-functionalized MW-NCNTs were turn into ferromagnetic behaviors by the process of chlorination and oxidation respectively; which were characterized by means of superconducting quantum interference device magnetometer within the temperature range 5-300 K. A prominent cusp like behavior is also observed at around approximately 45 K in M(FC) and M(ZFC) measurements confirming the ferromagnetic behaviors of these MW-NCNTs after chlorination and oxidation.

  20. Free-standing TiO{sub 2} nanotube arrays made by anodic oxidation and ultrasonic splitting

    Energy Technology Data Exchange (ETDEWEB)

    Chen Qingwei; Xu Dongsheng; Wu Zhongyun; Liu Zhongfan [Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871 (China)], E-mail: dsxu@pku.edu.cn

    2008-09-10

    A facile and green method was employed to prepare large-scale free-standing TiO{sub 2} nanotube (TNT) arrays, in which as-anodized TiO{sub 2} nanotube films prepared in organic electrolytes with thickness ranging from seven to tens of micrometers were then ultrasonicated in a mix solution of ethanol and water. By controlling the ratio of ethanol to water, the time and the power of ultrasonication, large-scale free-standing TiO{sub 2} nanotube arrays without any crack could be detached from the Ti substrates. Hydrogen sensing results demonstrated that the free-standing TNT film is more sensitive than a film with Ti substrates when exposed to 1000 ppm hydrogen ambient.

  1. Electrochemically oxidized multiwalled carbon nanotube/glassy carbon electrode as a probe for simultaneous determination of dopamine and doxorubicin in biological samples.

    Science.gov (United States)

    Haghshenas, Esmaeel; Madrakian, Tayyebeh; Afkhami, Abbas

    2016-04-01

    A facile and effective approach of fabricating oxidized multiwalled carbon nanotube/glassy carbon electrode (OMWCNT/GCE) is herein reported. The OMWCNT/GCE was prepared by electrochemical oxidation method in basic media (0.5 mol L(-1) NaOH solution) and used as a sensor for simultaneous determination of dopamine (DA) and doxorubicin (DOX). Scanning electron microscopy, energy dispersive X-ray spectroscopy and cyclic voltammetry were used for characterization and performance study of the OMWCNT/GCE. The modified electrode exhibited good electrocatalytic properties toward the oxidation of DA and DOX. Peaks potential difference of 240 mV between DA and DOX was large enough to determine DA and DOX individually and simultaneously. Square wave voltammetry (SWV) was used for the simultaneous determination of DA and DOX in their binary mixture. Under the optimum conditions, the linear concentration dependences of SW peak current responses were observed for DA and DOX in the concentration ranges of 0.03-55 μmol L(-1) and 0.04-90 μmol L(-1), respectively. The detection limits (S/N = 3) were 8.5 × 10(-3) μmol L(-1), and 9.4 × 10(-3) μmol L(-1) for DA and DOX, respectively. The analytical utility of OMWCNT/GCE was also successfully demonstrated for the simultaneous determination of DA and DOX in human blood serum and urine samples. Graphical Abstract Fabrication of new oxidized multiwalled carbon nanotube/glassy carbon electrode for simultaneous determination of dopamine and doxorubicin.

  2. Single molecule detection of nitric oxide enabled by d(AT)15 DNA adsorbed to near infrared fluorescent single-walled carbon nanotubes.

    Science.gov (United States)

    Zhang, Jingqing; Boghossian, Ardemis A; Barone, Paul W; Rwei, Alina; Kim, Jong-Ho; Lin, Dahua; Heller, Daniel A; Hilmer, Andrew J; Nair, Nitish; Reuel, Nigel F; Strano, Michael S

    2011-01-26

    We report the selective detection of single nitric oxide (NO) molecules using a specific DNA sequence of d(AT)(15) oligonucleotides, adsorbed to an array of near-infrared fluorescent semiconducting single-walled carbon nanotubes (AT(15)-SWNT). While SWNT suspended with eight other variant DNA sequences show fluorescence quenching or enhancement from analytes such as dopamine, NADH, L-ascorbic acid, and riboflavin, d(AT)(15) imparts SWNT with a distinct selectivity toward NO. In contrast, the electrostatically neutral polyvinyl alcohol enables no response to nitric oxide, but exhibits fluorescent enhancement to other molecules in the tested library. For AT(15)-SWNT, a stepwise fluorescence decrease is observed when the nanotubes are exposed to NO, reporting the dynamics of single-molecule NO adsorption via SWNT exciton quenching. We describe these quenching traces using a birth-and-death Markov model, and the maximum likelihood estimator of adsorption and desorption rates of NO is derived. Applying the method to simulated traces indicates that the resulting error in the estimated rate constants is less than 5% under our experimental conditions, allowing for calibration using a series of NO concentrations. As expected, the adsorption rate is found to be linearly proportional to NO concentration, and the intrinsic single-site NO adsorption rate constant is 0.001 s(-1) μM NO(-1). The ability to detect nitric oxide quantitatively at the single-molecule level may find applications in new cellular assays for the study of nitric oxide carcinogenesis and chemical signaling, as well as medical diagnostics for inflammation.

  3. Multi-walled carbon nanotube-reinforced porous iron oxide as a superior anode material for lithium ion battery

    Energy Technology Data Exchange (ETDEWEB)

    Pang, Xin-Jing; Zhang, Juan; Qi, Gong-Wei; Dai, Xiao-Hui; Zhou, Jun-Ping [School of Chemistry and Chemical Engineering, Shandong University, No. 27, Shanda Nan Rd., Jinan 250100 (China); Zhang, Shu-Yong, E-mail: syzhang@sdu.edu.cn [School of Chemistry and Chemical Engineering, Shandong University, No. 27, Shanda Nan Rd., Jinan 250100 (China); National Key Lab of Crystal, Shandong University, No. 27, Shanda Nan Rd., Jinan 250100 (China)

    2015-08-15

    Highlights: • Electrochemical performance of Fe{sub 3}O{sub 4} is improved by combining different approaches. • Porous Cu substrate is used to enlarge surface area and improve conductivity. • MWCNT is used to reinforce the electrode structure and change morphology of Fe{sub 3}O{sub 4}. • Reversible capacity, capacity retention and high-rate performance are improved. - Abstract: Multi-walled carbon nanotube-reinforced porous iron oxide (Fe{sub 3}O{sub 4}/MWCNT) is synthesized by a two-step approach with porous Cu substrate serving as current collector. Porous Cu substrate is prepared through electroless deposition with hydrogen bubble serving as template. Fe{sub 3}O{sub 4}/MWCNT composites are prepared by the electrodeposition of Fe{sub 3}O{sub 4} in the presence of dispersed MWCNTs from a Fe{sub 2}(SO{sub 4}){sub 3} solution with MWCNT suspension. Results showed that Fe{sub 3}O{sub 4} forms granular nanoparticles on the porous Cu substrate with several MWCNTs embedded in it. Adding MWCNTs changes the morphology of Fe{sub 3}O{sub 4}. Smooth Fe{sub 3}O{sub 4}, smooth Fe{sub 3}O{sub 4}/MWCNT, and porous Fe{sub 3}O{sub 4} composites are also prepared for comparison. When used as anode materials, porous Fe{sub 3}O{sub 4}/MWCNT composites have a reversible capacity of approximately 601 mA h g{sup −1} at the 60th cycle at a cycling rate of 100 mA g{sup −1}. This value is higher than that of the other materials. The reversible capacity at a cycling rate of 10,000 mA g{sup −1} is approximately 50% of that at 100 mA g{sup −1}. Therefore, the MWCNT-reinforced porous Fe{sub 3}O{sub 4} composite exhibits much better reversible capacity, capacity retention, and high-rate performance than the other samples. This finding can be ascribed to the porous structure of Fe{sub 3}O{sub 4}, better conductivity of porous Cu substrate and MWCNTs, and the morphology change of Fe{sub 3}O{sub 4} nanoparticles upon the addition of MWCNTs.

  4. Dispersion fraction enhances cellular growth of carbon nanotube and aluminum oxide reinforced ultrahigh molecular weight polyethylene biocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Patel, Anup Kumar; Balani, Kantesh, E-mail: kbalani@iitk.ac.in

    2015-01-01

    Ultrahigh molecular weight polyethylene (UHMWPE) is widely used as bone-replacement material for articulating surfaces due to its excellent wear resistance and low coefficient of friction. But, the wear debris, generated during abrasion between mating surfaces, leads to aseptic loosening of implants. Thus, various reinforcing agents are generally utilized, which may alter the surface and biological properties of UHMWPE. In the current work, the cellular response of compression molded UHMWPE upon reinforcement of bioactive multiwalled carbon nanotubes (MWCNTs) and bioinert aluminum oxide (Al{sub 2}O{sub 3}) is investigated. The phase retention and stability were observed using X-ray diffraction, Raman spectroscopy and Fourier transform infrared (FTIR) spectroscopy. The reinforcement of MWCNTs and Al{sub 2}O{sub 3} has shown to alter the wettability (from contact angle of ∼ 88° ± 2° to ∼ 118° ± 4°) and surface energy (from ∼ 23.20 to ∼ 17.75 mN/m) of composites with respect to UHMWPE, without eliciting any adverse effect on cytocompatibility for the L929 mouse fibroblast cell line. Interestingly, the cellular growth of the L929 mouse fibroblast cell line is observed to be dominated by the dispersion fraction of surface free energy (SFE). After 48 h of incubation period, a decrease in metabolic activity of MWCNT–Al{sub 2}O{sub 3} reinforced composites is attributed to apatite formation that reduces the dispersion fraction of surface energy. The mineralized apatite during incubation was confirmed and quantified by energy dispersive spectroscopy and X-ray diffraction respectively. Thus, the dispersion fraction of surface free energy can be engineered to play an important role in achieving enhanced metabolic activity of the MWCNT–Al{sub 2}O{sub 3} reinforced UHMWPE biopolymer composites. - Highlights: • The cellular response of UHMWPE upon MWCNT and Al{sub 2}O{sub 3} reinforcement is highlighted. • Wettability decreases with Al{sub 2}O{sub 3} and

  5. Design of covalently functionalized carbon nanotubes filled with metal oxide nanoparticles for imaging, therapy, and magnetic manipulation.

    Science.gov (United States)

    Liu, Xiaojie; Marangon, Iris; Melinte, Georgian; Wilhelm, Claire; Ménard-Moyon, Cécilia; Pichon, Benoit P; Ersen, Ovidiu; Aubertin, Kelly; Baaziz, Walid; Pham-Huu, Cuong; Bégin-Colin, Sylvie; Bianco, Alberto; Gazeau, Florence; Bégin, Dominique

    2014-11-25

    Nanocomposites combining multiple functionalities in one single nano-object hold great promise for biomedical applications. In this work, carbon nanotubes (CNTs) were filled with ferrite nanoparticles (NPs) to develop the magnetic manipulation of the nanotubes and their theranostic applications. The challenges were both the filling of CNTs with a high amount of magnetic NPs and their functionalization to form biocompatible water suspensions. We propose here a filling process using CNTs as nanoreactors for high-yield in situ growth of ferrite NPs into the inner carbon cavity. At first, NPs were formed inside the nanotubes by thermal decomposition of an iron stearate precursor. A second filling step was then performed with iron or cobalt stearate precursors to enhance the encapsulation yield and block the formed NPs inside the tubes. Water suspensions were then obtained by addition of amino groups via the covalent functionalization of the external surface of the nanotubes. Microstructural and magnetic characterizations confirmed the confinement of NPs into the anisotropic structure of CNTs making them suitable for magnetic manipulations and MRI detection. Interactions of highly water-dispersible CNTs with tumor cells could be modulated by magnetic fields without toxicity, allowing control of their orientation within the cell and inducing submicron magnetic stirring. The magnetic properties were also used to quantify CNTs cellular uptake by measuring the cell magnetophoretic mobility. Finally, the photothermal ablation of tumor cells could be enhanced by magnetic stimulus, harnessing the hybrid properties of NP loaded-CNTs.

  6. Tetrabromobisphenol A photoelectrocatalytic degradation using reduced graphene oxide and cerium dioxide comodified TiO2 nanotube arrays as electrode under visible light.

    Science.gov (United States)

    Zhou, Qingxiang; Xing, An; Zhao, Danchen; Zhao, Kuifu

    2016-12-01

    Tetrabromobisphenol A, one of the most important brominated retardants, is an typical persistent organic pollutant and it is of great value to develop rapid and effective degradation method. Present study established a photoelectrodegradation method with CeO2 and reduced graphene oxide co-modified TiO2 nanotube arrays (RGO-CeO2-TiO2 NAs), which were successfully synthesized and characterized with scanning electron microscopy (SEM) and Energy Dispersive X Ray Spectrometry (EDX). The SEM Images revealed that the nanotubes had a diameter of about 100 nm and an obvious layer of CeO2 and RGO on the surface of TiO2 nanotube arrays. The EDX data exhibited the presence of Ce element. The results demonstrated that TBBPA was degraded at a high degradation rate constant of 0.0191 min(-1), and photogenerated holes played a major role in the degradation reaction. Significant decrease of degradation efficiency was achieved with the presence of EDTA-2Na(hole scavenger), yet while the existence of t-BuOH(OH scavenger) resulted in less inhibition on the degradation. Besides, RGO-CeO2-TiO2 NAs exhibited good stability with rarely decline of degradation efficiency for ten reused runs. All these indicated that RGO-CeO2-TiO2 NAs were a good catalyst with extraordinary catalytic activity and stability for PEC degradation, and would have great potential in the control and removal of pollutants. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Synthesis and characterization of gadolinium carbonate and oxide nanotubes%碳酸钆及氧化钆纳米管的合成及表征

    Institute of Scientific and Technical Information of China (English)

    王正德; 徐喜民; 李保卫

    2004-01-01

    为丰富稀土产品,拓展稀土应用领域,以现有稀土产品之一的碳酸钆为原料,通过水热结晶,直接合成水合碳酸钆薄壁纳米管,用粉末X射线衍射、热分析、透射电镜技术表征了样品的结构、形貌和热稳定性.水合碳酸钆纳米管长为数百纳米至1.5μm,管径为50~200 m,在680℃以上分解后可得体心立方晶系的氧化钆纳米管,尺寸和形貌未发生显著变化.该法条件温和,流程短,可作为现有湿法冶金工艺的一个部分,直接生产碳酸钆和氧化钆纳米管,而且克服了立方相氧化物不易可控生长的缺点.%Nanotubes of gadolinium carbonate hydrate were prepared through a simple hydrothermal crystallization method with commercial carbonate as precursor for the purpose of enriching rare earth products and enhancement of their applications. The nanotubes are hundreds nanometers to one and a half micrometers long and 50 ~ 200 nm wide with thin walls. The sample can easily bedecomposed into body - centered cubic oxide crystalline nanotubes with almost no changes of both the size and the morphology at a lower temperature of about 680 ℃.

  8. Titanium oxide nanotube arrays prepared by anodic oxidation method and photocatalytic degradation of chloramine phosphorus%阳极氧化法制备氧化钛纳米管阵列及光催化降解氯胺磷

    Institute of Scientific and Technical Information of China (English)

    龚青; 尹荔松; 郭智博; 阳素玉; 安科云

    2011-01-01

    Using anodic oxidation in HF+ACOH+PEG solution at the constant voltage to deal with the titanium foil, the high-density TiO2 nanotube arrays with regular and orderly structure were prepared. The morphology of the nanotubes was characterized by SEM, and the crystal of the nanotubes was analyzed by XRD. The effect of oxidation time on the morphology and size of nanotube arrays were studied, and the current-time curve was obtained. The photocatalytic activities were evaluated by degradation of chloramine phosphorus. The ratio of degradation was measured and calculated by Molybdenum- Antimony Anti-Spectrophotometric method. The influences of annealing temperature and anodic oxidation time of solution were analyzed. The sol-gel method was used to prepare TiC>2 thin film, which is used to do photocatalytic comparative experiments.%采用阳极氧化法在氢氟酸+冰醋酸+聚乙二醇水溶液恒压处理钛箔,制备结构规整有序的高密度TiO2纳米管阵列.利用电子扫描电镜(SEM)和X线衍射仪(XRD)对纳米管形貌和结构进行表征,考察氧化时间对纳米管阵列形貌和尺寸的影响,绘制并分析电流-时间曲线.选用有机磷药氯胺磷为光催化降解对象,利用钼锑抗分光光度法测量并计算降解率,研究不同热处理温度和阳极氧化时间对光催化降解效果的影响,并采用溶胶-凝胶法制备TiO2纳米薄膜进行光催化对比实验.

  9. Dual-Layer Oxidation-Protective Plasma-Sprayed SiC-ZrB2/Al2O3-Carbon Nanotube Coating on Graphite

    Science.gov (United States)

    Ariharan, S.; Sengupta, Pradyut; Nisar, Ambreen; Agnihotri, Ankur; Balaji, N.; Aruna, S. T.; Balani, Kantesh

    2017-02-01

    Graphite is used in high-temperature gas-cooled reactors because of its outstanding irradiation performance and corrosion resistance. To restrict its high-temperature (>873 K) oxidation, atmospheric-plasma-sprayed SiC-ZrB2-Al2O3-carbon nanotube (CNT) dual-layer coating was deposited on graphite substrate in this work. The effect of each layer was isolated by processing each component of the coating via spark plasma sintering followed by isothermal kinetic studies. Based on isothermal analysis and the presence of high residual thermal stress in the oxide scale, degradation appeared to be more severe in composites reinforced with CNTs. To avoid the complexity of analysis of composites, the high-temperature activation energy for oxidation was calculated for the single-phase materials only, yielding values of 11.8, 20.5, 43.5, and 4.5 kJ/mol for graphite, SiC, ZrB2, and CNT, respectively, with increased thermal stability for ZrB2 and SiC. These results were then used to evaluate the oxidation rate for the composites analytically. This study has broad implications for wider use of dual-layer (SiC-ZrB2/Al2O3) coatings for protecting graphite crucibles even at temperatures above 1073 K.

  10. Preparation of glass carbon electrode modified with nanocrystalline nickel-decorated carbon nanotubes and electrocatalytic oxidation of methanol in alkaline solution

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Nanocrystalline nickel with an average diameter of about 16 nm and a face-centered cubic (fcc)structure was uniformly attached to the surface of carbon nanotubes (CNT) by wet chemistry.The sample was characterized by X-ray powder diffraction and transmission electron microscopy (TEM).A glass carbon electrode modified with nickel-modified multi-wall carbon nanotubes (MWCNTs-Ni/GCE) was prepared.The electrochemical behavior of the MWCNTs-Ni/GCE and the electrocatalytic oxidation of methanol at the MWCNTsNi/GCE were investigated by cyclic voltammetry in 1.0 mol/L NaOH solution.The cyclic voltammograms showed that the electron transfer between β-Ni(OH)2 and β-NiOOH is mainly a diffusion-controlled quasireversible process,and that the electrode has high catalytic activity for the electrooxidation of methanol in alkaline medium,revealing its potential application in alkaline rechargeable batteries and fuel cells.

  11. The synergistic effect of the combined thin multi-walled carbon nanotubes and reduced graphene oxides on photothermally actuated shape memory polyurethane composites.

    Science.gov (United States)

    Yi, Dong Hun; Yoo, Hye Jin; Mahapatra, Sibdas Singha; Kim, Yoong Ahm; Cho, Jae Whan

    2014-10-15

    We evaluated the synergistic effect of the hybrid-type nanocarbon, consisting of 1D thin-walled carbon nanotubes (TWNTs) and 2D reduced graphene oxide (RGO), on the shape memory performance of hyperbranched polyurethane composites. The shape recovery of the resulting composites was activated via a photothermal process using a near-infrared laser. The best laser-induced shape recovery performance was achieved for the composites with a 7/3 of TWNT/RGO ratio and a 1wt.% of nanocarbon content. Such result can be explained by good dispersion of TWNTs and RGO in the hyperbranched polymer as well as three-dimensionally enhanced interconnection between carbon nanotubes and graphenes. The optically active TWNTs with a high optical absorption section exhibited high ability of transferring laser-induced thermal energy to polymer matrix whereas RGO provided a high mechanical property to polymer matrix. The tensile modulus and electrical conductivity of the composites also showed a similar dependence on the TWNT/RGO composition ratio as the photothermal shape recovery. Our study demonstrated an effective conversion from light, thermal to mechanical work by irradiating shape memory polymer composite containing hybrid-type fillers using a near-infrared laser. Copyright © 2014 Elsevier Inc. All rights reserved.

  12. Reduced graphene oxide supported MnS nanotubes hybrid as a novel non-precious metal electrocatalyst for oxygen reduction reaction with high performance

    Science.gov (United States)

    Tang, Yongfu; Chen, Teng; Guo, Wenfeng; Chen, Shunji; Li, Yanshuai; Song, Jianzheng; Chang, Limin; Mu, Shichun; Zhao, Yufeng; Gao, Faming

    2017-09-01

    Electronic structure of Mn cations, electric conductivity of active materials and three dimensional structure for mass transport play vital roles in the electrocatalytic activity of Mn-based electrocatalysts for oxygen reduction reaction (ORR). To construct efficient and robust Mn-based electrocatalysts, MnS nanotubes anchored on reduced graphene oxide (MnS-NT@rGO) hybrid was synthesized and used as a novel non-precious metal electrocatalyst for ORR. The formation of nano-tubular structure, which offers more active sites and suitable channels for mass transport to enhance the electrocatalytic activity towards ORR, are carefully illustrated based on the core-dissolution/shell-recrystallization type Ostwald ripening effect. Tuned electronic structure of Mn cations, enhanced electric conductivity and suitable nano-tubular structure endow MnS-NT@rGO electrocatalyst comparative catalytic activity to commercial 20 wt % Pt/C in alkaline electrolyte. The MnS-NT@rGO electrocatalyst exhibits higher catalytic activity than rGO supported MnS nanoparticles (MnS-NP@rGO) and MnS nanotubes without rGO substrate (MnS-NT), as well as rGO supported Mn(OH)2 (Mn(OH)2@rGO) and rGO supported MnO (MnO@rGO). Moreover, the MnS-NT@rGO electrocatalyst shows superior durability and methanol tolerance to commercial Pt/C.

  13. Hydroxylation of multi-walled carbon nanotubes: Enhanced biocompatibility through reduction of oxidative stress initiated cell membrane damage, cell cycle arrestment and extrinsic apoptotic pathway.

    Science.gov (United States)

    Liu, Zhenbao; Liu, Yanfei; Peng, Dongming

    2016-10-01

    Modification of CNTs with hydroxyl group promotes their applications in biomedical area. However, the impact of hydroxylation on their biocompatibility is far from being completely understood. In this study, we carried out a comprehensive evaluation of hydroxylated multi-walled carbon nanotubes (MWCNTs-OH) on the human normal liver L02 cell line, and compared it with that of pristine multi-walled carbon nanotubes (p-MWCNTs). Results demonstrated that compared with p-MWCNTs, MWCNTs-OH induced significantly lower oxidative stress as indicated by the level of intracellular antioxidant glutathione (GSH), subsequently lead to less cell membrane damage as demonstrated by lactate dehydrogenase (LDH) leakage assay, and showed slightly decreased arrestment of cell cycle distribution at G0/G1. More interestingly, MWCNTs-OH exhibited significantly lower tendency to activate caspase-8, a key molecule involved in the extrinsic apoptotic pathway. All these in vitro results demonstrated that hydroxylation of MWCNTs enhanced their biocompatibility compare with p-MWCNTs.

  14. Oxidation of 2,4-dichlorophenol by non-radical mechanism using persulfate activated by Fe/S modified carbon nanotubes.

    Science.gov (United States)

    Cheng, Xin; Guo, Hongguang; Zhang, Yongli; Liu, Yang; Liu, Hongwei; Yang, Ying

    2016-05-01

    The aim of this study was to develop a new approach for the activation of persulfate (PS) based on carbon nanotubes (CNTs). Fe/S modified carbon nanotubes (Fe/S-CNTs) were synthesized via impregnation-precipitation in the aqueous-phase synthesis method. The morphologies and chemical states of the catalysts were characterized and 2,4-dichlorophenol (2,4-DCP) was selected to investigate the degradation performance using Fe/S-CNTs with PS. The results reveal that the Fe/S-CNTs catalysts can significantly accelerate the removal of 2,4-DCP compared to single PS or PS/CNTs. The catalytic capacity is also enhanced by S modification and is affected by the solution pH. The iron loading content, PS concentration and catalyst dosage could play important roles in the degradation. A non-radical process of 2,4-DCP degradation is demonstrated for the first time in the results of the radical scavengers and chloride ionic, as well as persulfate decomposition. It is suggested that PS is first bonded with the sp(2)-hybridized system and activated by iron oxide particles and iron-sulfur complexes, then it reacts rapidly with the adsorbed 2,4-DCP.

  15. Superior performance of highly flexible solid-state supercapacitor based on the ternary composites of graphene oxide supported poly(3,4-ethylenedioxythiophene)-carbon nanotubes

    Science.gov (United States)

    Zhou, Haihan; Zhai, Hua-Jin; Han, Gaoyi

    2016-08-01

    Ternary composite electrodes based on carbon nanotubes thin films (CNFs)-loaded graphene oxide (GO) supported poly(3,4-ethylenedioxythiophene)- carbon nanotubes (GO/PEDOT-CNTs) have been prepared via a facile one-step electrochemical codeposition method. The effect of long and short CNTs-incorporated composites (GO/PEDOT-lCNTs and GO/PEDOT-sCNTs) on the electrochemical behaviors of the electrodes is investigated and compared. Electrochemical measurements indicate that the incorporation of CNTs effectively improves the electrochemical performances of the GO/PEDOT electrodes. Long CNTs-incorporated GO/PEDOT-lCNTs electrodes have more superior electrochemical behaviors with respect to the short CNTs-incorporated GO/PEDOT-lCNTs electrodes, which can be attributed to the optimized composition and specific microstructures of the former. To verify the feasibility of the prepared composite electrodes for utilization as flexible supercapacitor, a solid-state supercapacitor using the CNFs-loaded GO/PEDOT-lCNTs electrodes is fabricated and tested. The device shows lightweight, ultrathin, and highly flexible features, which also has a high areal and volumetric specific capacitance (33.4 m F cm-2 at 10 mV s-1 and 2.7 F cm-3 at 0.042 A cm-3), superior rate capability, and excellent cycle stability (maintaining 97.5% for 5000 cycles). This highly flexible solid-state supercapacitor has great potential for applications in flexible electronics, roll-up display, and wearable devices.

  16. Adsorption of phenanthrene, 2-naphthol, and 1-naphthylamine to colloidal oxidized multiwalled carbon nanotubes: effects of humic acid and surfactant modification.

    Science.gov (United States)

    Hou, Lei; Zhu, Dongqiang; Wang, Ximeng; Wang, Lilin; Zhang, Chengdong; Chen, Wei

    2013-03-01

    Carbon nanotubes (CNTs) can exist in the form of colloidal suspension in aquatic environments, particularly in the presence of natural organic matter or surfactants, and may significantly affect the fate and transport of organic contaminants. In the present study, the authors examined the adsorption of phenanthrene, 2-naphthol, and 1-naphthylamine to three colloidal CNTs, including a stable suspension of oxidized multiwalled carbon nanotubes (O-MWNT), a humic acid (HA)-modified colloidal O-MWNT, and a sodium dodecyl sulfate (SDS)-modified colloidal O-MWNT. All three colloidal O-MWNTs exhibit strong adsorption affinities to the three test compounds (with K(OC) values orders of magnitude greater than those of natural organic matter), likely resulting from strong nonhydrophobic interactions such as π-π electron donor-acceptor interactions and Lewis acid-base interactions. When thoroughly mixed, HA (at ∼310 mg HA/g CNT) and SDS (at ∼750 mg SDS/g CNT) significantly affected the aggregation properties of O-MWNT, causing individually dispersed tubes to form a loosely entangled network. The effects of HA or SDS modification on adsorption are twofold. Adsorption of HA/SDS significantly reduces surface areas of O-MWNT; however, the entangled network allows adsorbate molecules to interact simultaneously with multiple tubes. An important implication is that humic substances and surfactant-like materials not only facilitate the formation of colloidal carbon nanoparticles but also affect how these colloidal carbon nanoparticles adsorb organic contaminants.

  17. Formation of tin-tin oxide core-shell nanoparticles in the composite SnO2-x/nitrogen-doped carbon nanotubes by pulsed ion beam irradiation

    Science.gov (United States)

    Korusenko, P. M.; Nesov, S. N.; Bolotov, V. V.; Povoroznyuk, S. N.; Pushkarev, A. I.; Ivlev, K. E.; Smirnov, D. A.

    2017-03-01

    The complex methods of transmission electron microscopy, energy dispersive X-ray analysis, and X-ray photoelectron spectroscopy were used to investigate the changes in the morphology, phase composition, and electronic structure of the composite SnO2-x/nitrogen-doped multiwalled carbon nanotubes (SnO2-x/N-MWCNTs) irradiated with the pulsed ion beam of nanosecond duration. The irradiation of the composite SnO2-x/N-MWCNTs leads to the formation of nanoparticles with the core-shell structure on the surface of CNTs with a sharp interfacial boundary. It has been established that the "core" is a metal tin (Sn0) with a typical size of 5-35 nm, and the "shell" is a thin amorphous layer (2-6 nm) consisting of nonstoichiometric tin oxide with a low oxygen content. The "core-shell" structure Snsbnd SnOx is formed due to the process of heating and evaporation of SnO2-x under the effect of the ion beam, followed by vapor deposition on the surface of carbon nanotubes.

  18. Inorganic nanotube nanofluidics

    Science.gov (United States)

    Fan, Rong

    The ability to manipulate charge carriers (electrons and holes) in metal-oxide semiconductor field effect transistors (MOSFETs) has revolutionized how information is processed and stored, and created the modern digital age. Introducing direct field effect modulation in fluidic systems would enable the manipulation of ionic and molecular species at a similar level and even logic operation. Due to strong Debye screening in aqueous solutions, field effect manipulation of ion transport arises only in systems whose dimensions are comparable to the critical Debye Length, i.e. in nanofluidic systems. Nanofluidics has already been explored in various cases, e.g. biological channel proteins and artificial solid-state nanopores. All these two terminal systems usually transport the ions the same way as passive electron conduction in a resistor. My work is aimed at developing nanotube nanofluidic units with a third terminal that can electrically turn on/off and control ion and biomolecule transport. Moreover, the systematic study on "doping" and transient phenomena can provide rich information to assess the electrokinetics theory and fluidic physics in nanoscale. Silica nanotubes were synthesized by oxidation/etching approach using vertical silicon nanowires as templates. A single nanotube was integrated into a metal-oxide-solution field effect transistor (MOSolFET) by interfacing with two microfluidic channels and a metallic gate electrode. Concentration dependence of ionic conductance through single nanotubes revealed the emergence of unipolar environment at low ionic strength regime. In this case, ionic conductance is only associated with majority ions and governed by surface potentials and charge densities. By applying a gate voltage, the ionic conductance can be quickly modulated. The gate voltages alter the surface potential of the silica nanotubes via capacitive coupling through the nanotube wall and the electrical double layer. In a negatively charged silica nanotube

  19. Development of Pd and Pd-Co catalysts supported on multi-walled carbon nanotubes for formic acid oxidation

    Science.gov (United States)

    Morales-Acosta, D.; Ledesma-Garcia, J.; Godinez, Luis A.; Rodríguez, H. G.; Álvarez-Contreras, L.; Arriaga, L. G.

    Pd-Co and Pd catalysts were prepared by the impregnation synthesis method at low temperature on multi-walled carbon nanotubes (MWCNTs). The nanotubes were synthesized by spray pyrolysis technique. Both catalysts were obtained with high homogeneous distribution and particle size around 4 nm. The morphology, composition and electrocatalytic properties were investigated by transmission electron microscopy, scanning electron microscopy-energy dispersive X-ray analysis, X-ray diffraction and electrochemical measurements, respectively. The electrocatalytic activity of Pd and PdCo/MWCNTs catalysts was investigated in terms of formic acid electrooxidation at low concentration in H 2SO 4 aqueous solution. The results obtained from voltamperometric studies showed that the current density achieved with the PdCo/MWCNTs catalyst is 3 times higher than that reached with the Pd/MWCNTs catalyst. The onset potential for formic acid electrooxidation on PdCo/MWCNTs electrocatalyst showed a negative shift ca. 50 mV compared with Pd/MWCNTs.

  20. Interacting ZnCo2O4 and Au nanodots on carbon nanotubes as highly efficient water oxidation electrocatalyst

    Science.gov (United States)

    Cheng, Hui; Su, Chang-Yuan; Tan, Zhi-Yun; Tai, Su-Zhen; Liu, Zhao-Qing

    2017-07-01

    An advanced hybrid electrocatalyst consisting of ZnCo2O4 nanodots and Au decorated carbon nanotubes is developed for oxygen evolution reaction (OER). In the catalyst system, carbon nanotubes are served as the support substrate to enhance the conductivity of ZnCo2O4 and provide a high specific area; meanwhile, Au species accelerate the electron-stripping from cobalt ions during the catalytic process, leading to a fast promotion of cobalt ions with high valence state which possess a highly electrocatalytic efficiency. With the well synergistic effect between the components, ZnCo2O4/Au/CNTs exhibits low potential of 1.67 V at j = 10 mA cm-2, large current density of 97.8 mA cm-2 at high operating potential (1.8 V), and prominent durability in alkaline. This finding will pave a new avenue to search highly efficient and stable electrocatalysts for water splitting devices.

  1. Layer-By-Layer Assembled Hybrid Film of Carbon Nanotubes/Iron Oxide Nanocrystals for Reagentless Electrochemical Detection of H2O2

    Energy Technology Data Exchange (ETDEWEB)

    Miao, Yuqing; Wang, Hua; Shao, Yuyan; Tang, Zhiwen; Wang, Jun; Lin, Yuehe

    2009-04-01

    A new approach to construct a reagentless H2O2 electrochemical sensor is described. Iron oxide magnetic nanocystals (IOMNs), as peroxidase mimetics, were employed to assemble a multilayer structure layer by layer. Polythionin was electrodeposited onto the glassy carbon electrode surface to introduce amino groups. Carboxyl functionalized multi-walled carbon nanotubes, amino functionalized IOMNs, and thionin monomers were anchored onto a polythionin-functionalized GC surface in order by carbodiimide or glutaraldehyde chemistry. The resulting multilayer construction with three layers of IOMNs and thionin mediator exhibits excellent electrochemical response to the reduction of H2O2, whereas such a modified electrode with one layer construction only yields a slight response to H2O2 of the same concentration. The tethered MWCNs enlarge the amount of immobilized IOMNs and effectively shuttle electrons between the electrode and the thionin.

  2. Effective enhancement of gas separation performance in mixed matrix membranes using core/shell structured multi-walled carbon nanotube/graphene oxide nanoribbons

    Science.gov (United States)

    Xue, Qingzhong; Pan, Xinglong; Li, Xiaofang; Zhang, Jianqiang; Guo, Qikai

    2017-02-01

    Novel core/shell structured multi-walled carbon nanotube/graphene oxide nanoribbons (MWCNT@GONRs) nanohybrids were successfully prepared using a modified chemical longitudinal unzipping method. Subsequently, the MWCNT@GONRs nanohybrids were used as fillers to enhance the gas separation performance of polyimide based mixed matrix membranes (MMMs). It is found that MMMs concurrently exhibited higher gas selectivity and higher gas permeability compared to pristine polyimide. The high gas selectivity could be attributed to the GONRs shell, which provided a selective barrier and large gas adsorbed area, while the high gas permeability resulted from the hollow structured MWCNTs core with smooth internal surface, which acted as a rapid transport channel. MWCNT@GONRs could be promising candidates to improve gas separation performance of MMMs due to the unique microstructures, ease of synthesis and low filling loading.

  3. Facile green synthesis of Pd/N-doped carbon nanotubes catalysts and their application in Heck reaction and oxidation of benzyl alcohol

    Science.gov (United States)

    Wang, Ling-ling; Zhu, Lu-ping; Bing, Nai-ci; Wang, Li-jun

    2017-08-01

    Evenly dispersed Pd nanoparticles are facilely and successfully deposited on N-doped carbon nanotubes (Pd/N-CNTs) by employing sodium dodecyl sulfate (SDS) as a salt and polyvinylpyrrolidone (PVP) as both a surface modifier and a stabilizing agent. The presence of SDS and the amount of PVP have significant influences on the formation of evenly dispersed Pd/N-CNTs catalyst. No additional functionalization steps, reducing agents and stabilizers are required as usual to achieve the uniform deposition of Pd NPs over the N-CNTs surfaces. The as-synthesized Pd/N-CNTs catalyst is proved to be very active in the Heck reaction and can be reused at least for 5 times without significant loss of catalytic activity in the aerobic oxidation of benzyl alcohol.

  4. Nickel oxide/carbon nanotube/polyaniline nanocomposite as bifunctional anode catalyst for high-performance Shewanella-based dual-chamber microbial fuel cell.

    Science.gov (United States)

    Nourbakhsh, Fatemeh; Mohsennia, Mohsen; Pazouki, Mohammad

    2017-08-01

    A novel nickel oxide/carbon nanotube/polyaniline (NCP) nanocomposite has been prepared and used to modify the electrocatalytic properties of carbon cloth anode in fabricating dual-chamber MFC. The prepared nanocomposite was characterized by scanning electron microscopy, X-ray diffraction, and fourier transform infrared spectroscopy. The carbon cloth coated with the NCP nanocomposite showed the enhanced electrochemical performance as compared to bare carbon cloth anode. The electrochemical properties of the fabricated MFC with the modified anode have been investigated by linear sweep voltammetry and electrochemical impedance spectroscopy. The maximum power density of the MFC using the novel NCP nanocomposite-carbon cloth anode increased by 61.88% compared to that of the bare carbon cloth anode. In comparison to the bare carbon cloth anode, the new composite anode showed 26.8% enhancement of current density output which it can be due to the enhancement of the charge transfer capability.

  5. Ultrasonic-assisted synthesis of Pd-Pt/carbon nanotubes nanocomposites for enhanced electro-oxidation of ethanol and methanol in alkaline medium.

    Science.gov (United States)

    Yang, Guohai; Zhou, Yazhou; Pan, Horng-Bin; Zhu, Chengzhou; Fu, Shaofang; Wai, Chien M; Du, Dan; Zhu, Jun-Jie; Lin, Yuehe

    2016-01-01

    Herein, a facile ultrasonic-assisted strategy was proposed to fabricate the Pd-Pt alloy/multi-walled carbon nanotubes (Pd-Pt/CNTs) nanocomposites. A good number of Pd-Pt alloy nanoparticles with an average of 3.4 ± 0.5 nm were supported on sidewalls of CNTs with uniform distribution. The composition of the Pd-Pt/CNTs nanocomposites could also be easily controlled, which provided a possible approach for the preparation of other architectures with anticipated properties. The Pd-Pt/CNTs nanocomposites were extensively studied by electron microscopy, induced coupled plasma atomic emission spectroscopy, X-ray diffraction, and X-ray photoelectron spectroscopy, and applied for the ethanol and methanol electro-oxidation reaction in alkaline medium. The electrochemical results indicated that the nanocomposites had better electrocatalytic activities and stabilities, showing promising applications for fuel cells. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. 碳纳米管的纯化——电化学氧化法%Purification of Carbon Nanotubes Oxidation Method by Using Electrochemistry

    Institute of Scientific and Technical Information of China (English)

    杨占红; 吴浩青; 李晶; 李新海

    2001-01-01

    用电化学氧化法对碳纳米管进行纯化, 从稳态极化曲线出发, 对反应的可行性进行了分析, 考察了支持电解质、 电流密度、 时间等因素对反应的影响, 确定了最佳实验条件, 同时对纯化机理进行了解释.%Carbon nanotubes were purified by use of electrical chemistry oxidation method. In the view of polarization curves it was discussed that electrochemistry method could be used in the purification of carbon nanotubus. The influence of current density, sulfuric acid concentration and reaction time on the reaction was studied, the optimum experimental condition was obtained and the mechanism of purification was also discussed.

  7. Carbon Nanotubes for Supercapacitor

    Directory of Open Access Journals (Sweden)

    Li Jianyi

    2010-01-01

    Full Text Available Abstract As an electrical energy storage device, supercapacitor finds attractive applications in consumer electronic products and alternative power source due to its higher energy density, fast discharge/charge time, low level of heating, safety, long-term operation stability, and no disposable parts. This work reviews the recent development of supercapacitor based on carbon nanotubes (CNTs and their composites. The purpose is to give a comprehensive understanding of the advantages and disadvantages of carbon nanotubes-related supercapacitor materials and to find ways for the improvement in the performance of supercapacitor. We first discussed the effects of physical and chemical properties of pure carbon nanotubes, including size, purity, defect, shape, functionalization, and annealing, on the supercapacitance. The composites, including CNTs/oxide and CNTs/polymer, were further discussed to enhance the supercapacitance and keep the stability of the supercapacitor by optimally engineering the composition, particle size, and coverage.

  8. Carbon nanotubes for supercapacitor.

    Science.gov (United States)

    Pan, Hui; Li, Jianyi; Feng, Yuanping

    2010-01-05

    As an electrical energy storage device, supercapacitor finds attractive applications in consumer electronic products and alternative power source due to its higher energy density, fast discharge/charge time, low level of heating, safety, long-term operation stability, and no disposable parts. This work reviews the recent development of supercapacitor based on carbon nanotubes (CNTs) and their composites. The purpose is to give a comprehensive understanding of the advantages and disadvantages of carbon nanotubes-related supercapacitor materials and to find ways for the improvement in the performance of supercapacitor. We first discussed the effects of physical and chemical properties of pure carbon nanotubes, including size, purity, defect, shape, functionalization, and annealing, on the supercapacitance. The composites, including CNTs/oxide and CNTs/polymer, were further discussed to enhance the supercapacitance and keep the stability of the supercapacitor by optimally engineering the composition, particle size, and coverage.

  9. Glassy carbon electrode modified with horse radish peroxidase/organic nucleophilic-functionalized carbon nanotube composite for enhanced electrocatalytic oxidation and efficient voltammetric sensing of levodopa

    Energy Technology Data Exchange (ETDEWEB)

    Shoja, Yalda; Rafati, Amir Abbas, E-mail: aa_rafati@basu.ac.ir; Ghodsi, Javad

    2016-01-01

    A novel and selective enzymatic biosensor was designed and constructed for voltammetric determination of levodopa (L-Dopa) in aqueous media (phosphate buffer solution, pH = 7). Biosensor development was on the basis of to physically immobilizing of horse radish peroxidase (HRP) as electrochemical catalyst by sol–gel on glassy carbon electrode modified with organic nucleophilic carbon nanotube composite which in this composite p-phenylenediamine (pPDA) as organic nucleophile chemically bonded with functionalized MWCNT (MWCNT-COOH). The results of this study suggest that prepared bioorganic nucleophilic carbon nanotube composite (HRP/MWCNT-pPDA) shows fast electron transfer rate for electro oxidation of L-Dopa because of its high electrochemical catalytic activity toward the oxidation of L-Dopa, more −NH{sub 2} reactive sites and large effective surface area. Also in this work we measured L-Dopa in the presence of folic acid and uric acid as interferences. The proposed biosensor was characterized by scanning electron microscopy (SEM), energy dispersive X-ray analysis (EDX), FT-IR spectroscopy and cyclic voltammetry (CV). The differential pulse voltammetry (DPV) was used for determination of L-Dopa from 0.1 μM to 1.9 μM with a low detection limit of 40 nM (for S/N = 3) and sensitivity was about 35.5 μA/μM. Also this biosensor has several advantages such as rapid response, high stability and reproducibility. - Highlights: • Glassy carbon electrode modified by a novel composite in which pPDA as nucleophile is chemically attached to MWCNTs. • The developed biosensor exhibited excellent electrocatalytic activity in electrochemically determination of L-Dopa. • The biosensor showed acceptable sensitivity, reproducibility, detection limit, selectivity and stability. • MWCNT-pPDA provides a good electrical conductivity and large effective surface area for enzyme immobilization.

  10. Transparent conducting oxide-free nitrogen-doped graphene/reduced hydroxylated carbon nanotube composite paper as flexible counter electrodes for dye-sensitized solar cells

    Science.gov (United States)

    Zhang, Jindan; Yu, Mei; Li, Songmei; Meng, Yanbing; Wu, Xueke; Liu, Jianhua

    2016-12-01

    Three-dimensional nitrogen-doped graphene/reduced hydroxylated carbon nanotube composite aerogel (NG/CNT-OH) with unique hierarchical porosity and mechanical stability is developed through a two-step hydrothermal reaction. With plenty of exposed active sites and efficient multidimensional transport pathways of electrons and ions, NG/CNT-OH exhibits great electrocatalytic performances for I-/I3- redox couple. The subsequent compressed NG/CNT-OH papers possess high electrical conductivity and good flexibility, thus generating high-performance flexible counter electrodes (CEs) with transparent conducting oxide free (TCO-free) for dye-sensitized solar cells (DSSCs). The flexible NG/CNT-OH electrodes show good stability and the DSSCs with the optimized NG/CNT-OH CE had higher short-circuit current density (13.62 mA cm-2) and cell efficiency (6.36%) than DSSCs using Pt CE, whereas those of the DSSCs using Pt CE were only 12.81 mA cm-2 and 5.74%, respectively. Increasing the ratio of hydroxylated carbon nanotubes (CNT-OH) to the graphene oxide (GO) in the reactant would lead to less content of doped N, but better diffusion of electrolyte in the CEs because of more complete GO etching reaction. The design strategy presents a facile and cost effective way to synthesis three-dimensional graphene/CNT composite aerogel with excellent performance, and it can be potentially used as flexible TCO-free CE in other power conversion or energy storage devices.

  11. A novel miniaturized zinc oxide/hydroxylated multiwalled carbon nanotubes as a stir-brush microextractor device for carbamate pesticides analysis.

    Science.gov (United States)

    Makkliang, Fonthip; Kanatharana, Proespichaya; Thavarungkul, Panote; Thammakhet, Chongdee

    2016-04-21

    A novel miniaturized "stir-brush microextractor" was prepared using a zinc oxide/hydroxylated multiwalled carbon nanotubes (ZnO/MWCNTs-OH) coated stainless steel brush connected to a small dc motor. The synthesized zinc oxide on each strand of stainless steel had a flower-like nanostructure when observed by a scanning electron microscope (SEM). This structure produced a large surface area before it was coated with the hydroxylated multiwalled carbon nanotubes sorbent. Under optimal conditions, the developed device provided a good linearity for the extraction of carbofuran and carbaryl, in the range of 25-500 ng mL(-1) and 50-500 ng mL(-1), respectively, with low limits of detection of 17.5 ± 2.0 ng mL(-1) and 13.0 ± 1.8 ng mL(-1). It also provided a good stir-brush-to-stir-brush reproducibility (% relative standard deviation < 5.6%, n = 6). The device was applied for the extraction and preconcentration of carbamate pesticides in fruit and vegetable samples prior to analysis with a gas chromatograph coupled with a flame ionization detector (GC-FID). Carbofuran was found at 9.24 ± 0.93 ng g(-1) and carbaryl was detected at 7.05 ± 0.61 ng g(-1) with good recoveries in the range of 73.7 ± 10.0% to 108.4 ± 2.6% for carbofuran and 75.7 ± 10.0% to 111.7 ± 5.7% for carbaryl.

  12. Morphology of TiO2 Nanotube Arrays Prepared by Anodic Oxidation%阳极氧化法制备二氧化钛纳米管阵列的形貌

    Institute of Scientific and Technical Information of China (English)

    谭志谋; 王慧洁; 杨杭生; 张孝彬

    2013-01-01

    Highly ordered titanium oxide nanotube arrays were fabricated by titanium anodic oxidation in a glycol solution containing 5% ammonium fluoride.Influences of anodizing voltage and electrode distance on morphology of the nanotube arrays were investigated.By fine tuning the anodizing voltage,the inner diameter of the titanium oxide nanotube arrays ranged between 20~145 nm.Amost perfect and highly ordered titanium oxide nanopore arrays could also be prepared by properly controlling the distance between two electrodes.Moreover,the morphology variation of the highly ordered titanium oxide nanotube/nanopore arrays was explained by the current density distribution inside the titanium oxide film simulated by finite element analysis.%采用阳极氧化法,以NH4 F-乙二醇-水溶液为电解质,在钛片上制备了TiO2纳米管阵列,并研究了电解电压和电极距离对TiO2多孔薄膜形貌的影响.结果表明,通过优化电解电压,可以调控二氧化钛纳米管阵列的内径在20~145nm之间;通过调节两电极间的间距,在金属钛片上制备了完整的二氧化钛纳米孔阵列.并采用有限元模拟二氧化钛层中的电流密度分布,探讨了二氧化钛纳米管阵列和纳米孔阵列的形成.

  13. Constructing heterostructure on highly roughened caterpillar-like gold nanotubes with cuprous oxide grains for ultrasensitive and stable nonenzymatic glucose sensor.

    Science.gov (United States)

    Chen, Anran; Ding, Yu; Yang, Zhimao; Yang, Shengchun

    2015-12-15

    In this study, a metal-metal oxide heterostructure was designed and constructed by growing cuprous oxide (Cu2O) grains on highly surface roughened caterpillar-like Au nanotubes (CLGNs) for ultrasensitive, selective and stable nonenzymatic glucose biosensors. The Cu2O grains are tightly anchored to the surface of CLGNs by the spines, resulting in a large increase in the contact area between Cu2O grains and the CLGNs, which facilitates the electron transport between metal and metal oxide and improves the sensitivity and stability of the sensors. The electron transfer coefficient (α) and electron transfer rate constant (ks) for redox reaction of Cu2O-CLGNs/GCE are found to be 0.50114 and 3.24±0.1 s(-1), respectively. The biosensor shows a linear response to glucose over a concentration range of 0.1-5mM and a high sensitivity of 1215.7 µA mM(-1) cm(-2) with a detection limit of 1.83 μM. Furthermore, the Cu2O-CLGNs biosensor exhibited strong anti-interference capability against uric acid (UA), ascorbic acid (AA), potassium chloride (KCl) and sodium ascorbate (SA), as well as a high stability and repeatability. Our current research indicates that the Cu2O-CLGNs hybrid electrode is a promising choice for constructing nonenzyme based electrochemical biosensors.

  14. Kinetics and thermodynamics of adsorption of ionizable aromatic compounds from aqueous solutions by as-prepared and oxidized multiwalled carbon nanotubes.

    Science.gov (United States)

    Sheng, G D; Shao, D D; Ren, X M; Wang, X Q; Li, J X; Chen, Y X; Wang, X K

    2010-06-15

    The adsorption of 1-naphthylamine, 1-naphthol and phenol on as-prepared and oxidized multiwalled carbon nanotubes (MWCNTs) has been investigated. The results illustrated that both as-prepared and oxidized MWCNTs showed high adsorption capacity for the three ionizable aromatic compounds (IACs) studied. Oxidation of MWCNTs increased the surface area and the pore volume, and introduced oxygen-containing functional groups to the surfaces of MWCNTs, which depressed the adsorption of IACs on MWCNTs. Both Langmuir and Freundlich models described the adsorption isotherms very well and the adsorption thermodynamic parameters (DeltaG degrees, DeltaH degrees and DeltaS degrees) were measured. The adsorption for 1-naphthylamine, 1-naphthol and phenol is general spontaneous and thermodynamically favorable. The adsorption of phenol is an exothermic process, whereas the adsorption of 1-naphthylamine and 1-naphthol is an endothermic process. Results of this work are of great significance for the environmental application of MWCNTs for the removal of IACs from large volume of aqueous solutions.

  15. One-Pot Synthesis of Multipod ZnO-Carbon Nanotube-Reduced Graphene Oxide Composites with High Performance in Photocatalysis.

    Science.gov (United States)

    Fu, Li; Lai, Guosong; Zhang, Haili; Yu, Aimin

    2015-06-01

    Multipod ZnO-multi-walled carbon nanotube (MWCNT)-reduced graphene oxide (RGO) ternary nanocomposites were synthesized via a simple one-pot hydrothermal process using graphene oxide (GO)-dispersed MWCNT and zinc nitrate as raw materials. Scanning electron microscopy analysis indicated the formation of multipod structure of ZnO in the presence of MWCNT. XRD confirmed that the ZnO multipod was in a hexagonal phase while UV-vis and FTIR spectroscopy confirmed that the graphene oxide in the resulting material was in the reduced form. The as-prepared MWCNT-RGO-ZnO composites displayed excellent photocatalytic performance towards the degradation of methylene blue. More specifically, the degradation rate constant of using MWCNT-RGO-ZnO composites were twice and thrice higher than those of using RGO-ZnO composites and bare ZnO material, respectively. The main reason of enhanced photocatalytic property might be due to the internal stepwise energy level of the three components, which helped the electron separation and hinder the charge recombination.

  16. Template synthesis and characterization of chiral organic nanotubes and nanowires

    Science.gov (United States)

    Gan, Haiyang; Liu, Huibiao; Li, Yuliang; Liu, Yang; Lu, Fushen; Jiu, Tonggang; Zhu, Daoben

    2004-11-01

    Large-scale chiral quinidine nanotubes and nanowires have been obtained by pressure-filter and wetting procedure using porous aluminum oxide template. The circular dichroism (CD) spectra show quinidine nanotubes and nanowires remain the optical properties of chirality in the aggregations. Compared with that of the quinidine solution, the CD spectra of quinidine nanotubes and nanowires show obvious red shift.

  17. Air-stable conversion of separated carbon nanotube thin-film transistors from p-type to n-type using atomic layer deposition of high-κ oxide and its application in CMOS logic circuits.

    Science.gov (United States)

    Zhang, Jialu; Wang, Chuan; Fu, Yue; Che, Yuchi; Zhou, Chongwu

    2011-04-26

    Due to extraordinary electrical properties, preseparated, high purity semiconducting carbon nanotubes hold great potential for thin-film transistors (TFTs) and integrated circuit applications. One of the main challenges it still faces is the fabrication of air-stable n-type nanotube TFTs with industry-compatible techniques. Here in this paper, we report a novel and highly reliable method of converting the as-made p-type TFTs using preseparated semiconducting nanotubes into air-stable n-type transistors by adding a high-κ oxide passivation layer using atomic layer deposition (ALD). The n-type devices exhibit symmetric electrical performance compared with the p-type devices in terms of on-current, on/off ratio, and device mobility. Various factors affecting the conversion process, including ALD temperature, metal contact material, and channel length, have also been systematically studied by a series of designed experiments. A complementary metal-oxide-semiconductor (CMOS) inverter with rail-to-rail output, symmetric input/output behavior, and large noise margin has been further demonstrated. The excellent performance gives us the feasibility of cascading multiple stages of logic blocks and larger scale integration. Our approach can serve as the critical foundation for future nanotube-based thin-film macroelectronics.

  18. Hierarchical networks of redox-active reduced crumpled graphene oxide and functionalized few-walled carbon nanotubes for rapid electrochemical energy storage

    Science.gov (United States)

    Lee, Byeongyong; Lee, Chongmin; Liu, Tianyuan; Eom, Kwangsup; Chen, Zhongming; Noda, Suguru; Fuller, Thomas F.; Jang, Hee Dong; Lee, Seung Woo

    2016-06-01

    Crumpled graphene is known to have a strong aggregation-resistive property due to its unique 3D morphology, providing a promising solution to prevent the restacking issue of graphene based electrode materials. Here, we demonstrate the utilization of redox-active oxygen functional groups on the partially reduced crumpled graphene oxide (r-CGO) for electrochemical energy storage applications. To effectively utilize the surface redox reactions of the functional groups, hierarchical networks of electrodes including r-CGO and functionalized few-walled carbon nanotubes (f-FWNTs) are assembled via a vacuum-filtration process, resulting in a 3D porous structure. These composite electrodes are employed as positive electrodes in Li-cells, delivering high gravimetric capacities of up to ~170 mA h g-1 with significantly enhanced rate-capability compared to the electrodes consisting of conventional 2D reduced graphene oxide and f-FWNTs. These results highlight the importance of microstructure design coupled with oxygen chemistry control, to maximize the surface redox reactions on functionalized graphene based electrodes.Crumpled graphene is known to have a strong aggregation-resistive property due to its unique 3D morphology, providing a promising solution to prevent the restacking issue of graphene based electrode materials. Here, we demonstrate the utilization of redox-active oxygen functional groups on the partially reduced crumpled graphene oxide (r-CGO) for electrochemical energy storage applications. To effectively utilize the surface redox reactions of the functional groups, hierarchical networks of electrodes including r-CGO and functionalized few-walled carbon nanotubes (f-FWNTs) are assembled via a vacuum-filtration process, resulting in a 3D porous structure. These composite electrodes are employed as positive electrodes in Li-cells, delivering high gravimetric capacities of up to ~170 mA h g-1 with significantly enhanced rate-capability compared to the electrodes

  19. Field-effect transistors assembled from functionalized carbon nanotubes

    OpenAIRE

    Klinke, Christian; Hannon, James B.; Afzali, Ali; Avouris, Phaedon

    2006-01-01

    We have fabricated field effect transistors from carbon nanotubes using a novel selective placement scheme. We use carbon nanotubes that are covalently bound to molecules containing hydroxamic acid functionality. The functionalized nanotubes bind strongly to basic metal oxide surfaces, but not to silicon dioxide. Upon annealing, the functionalization is removed, restoring the electronic properties of the nanotubes. The devices we have fabricated show excellent electrical characteristics.

  20. Preparation of Titanium Oxide Nanotube and Its Properties Study%二氧化钛纳米管的制备及其特性研究

    Institute of Scientific and Technical Information of China (English)

    陈首部; 孙奉娄

    2015-01-01

    The titanium oxide ( TiO2 ) nanotubes were prepared by anodization method using the titanium foils as anodes. The characteristics of the prepared samples were investigated by X-ray diffractometer and scanning electron microscopy.The results indicated that the morphology and crystallinity of the samples are closely related to the preparation conditions and ultrasonic wave used.The heat treatment brings about the transform from amorphous structure into anatase and rutile for the TiO2 samples.The growth velocity, diameter and wall thickness of TiO2 nanotubes are subjected to the average current density during anodization.The TiO2 nanotube samples prepared using 40 V anodization voltage have diameter of 90 nm, wall thickness of 21 nm and lengths of 8 μm.%以金属钛板作为阳极材料,采用阳极氧化方法制备了二氧化钛( TiO2)纳米管,通过X射线衍射仪和扫描电子显微镜等测试,研究了制备工艺条件和超声波源对样品性能的影响.结果表明:纳米管的形貎和结晶性能与工艺参数和超声波源密切相关,退火处理能使样品由不定形相转成由锐钛矿相和金红石相组成的混合相,其生长速度、管径和管壁厚度明显受到阳极氧化时平均电流密度的影响.氧化电压为60 V时所制备TiO2纳米管样品的管径为90 nm、管壁厚度为21 nm、长度为8μm.

  1. Three-dimensional hierarchical porous flower-like nickel-cobalt oxide/multi-walled carbon nanotubes nanocomposite for high-capacity supercapacitors

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Peipei; Hu, Zhonghua, E-mail: huzh@tongji.edu.cn; Liu, Yafei; Yao, Mingming; Zhang, Qiang

    2015-02-15

    Highlights: • 3D hierarchical porous flower-like Ni-Co oxide/MWCNTs was synthesized. • The electrode shows a large specific surface area and desirable mesoporosity. • High specific capacitances and outstanding stability were obtained. • The content of MWCNTs affects the electrochemical properties of the electrode. - Abstract: Three-dimensional (3D) hierarchical porous flower-like nickel-cobalt oxide/multi-walled carbon nanotubes (Ni-Co oxide/MWCNTs) nanocomposites were fabricated by a facile and template-free hydrothermal method as electrodes for high-capacity supercapacitors. The samples were characterized by energy dispersive spectroscopy (EDS), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), transmission electron microscopy (TEM), nitrogen adsorption-desorption and thermal gravimetric analysis (TGA). The electrochemical performance was investigated by cyclic voltammetry (CV), galvanostatic charge-discharge, and cycle life. It was found that Ni-Co oxide/MWCNTs nanocomposites displayed a high specific capacitance (1703 F g{sup −1} at a discharge current density of 1 A g{sup −1}) and, additionally, an excellent cycling performance, retaining 97% of the maximum capacitance after 2000 cycles at 10 A g{sup −1}. Even at a high current density (20 A g{sup −1}), the specific capacitance was still up to 1309 F g{sup −1}. This outstanding capacitive performance may be attributed to the ideal composition of the material and to its unique 3D hierarchical porous flower-like architecture.

  2. Simultaneous determination of 2,4,6-trichlorophenol and pentachlorophenol based on poly(Rhodamine B)/graphene oxide/multiwalled carbon nanotubes composite film modified electrode

    Science.gov (United States)

    Zhu, Xiaolin; Zhang, Kexin; Lu, Nan; Yuan, Xing

    2016-01-01

    In the present study, a poly(Rhodamine B)/graphene oxide/multiwalled carbon nanotubes nanocomposite modified glass carbon electrode (PRhB/GO/MWCNTs/GCE) was developed for the simultaneous determination of 2,4,6-trichlorophenol (2,4,6-TCP) and pentachlorophenol (PCP). The PRhB/GO/MWCNTs film was extensively characterized by emission scanning electron microscopy (SEM), X-ray diffraction (XRD), Raman spectroscopy and electrochemical impedance spectroscopy (EIS). The electrochemical behaviors of 2,4,6-TCP and PCP were investigated by cyclic voltammetry, linear sweep voltammetry and differential pulse voltammetry. Due to the synergistic effect, the PRhB/GO/MWCNTs/GCE significantly facilitated the simultaneous electro-oxidation of 2,4,6-TCP and PCP with peak potential difference of 160 mV and enhanced oxidation currents. Under optimum conditions, the oxidation current of 2,4,6-TCP was linear to its concentration in the ranges of 4.0 × 10-9 to 1.0 × 10-7 M and 1.0 × 10-7 to 1.0 × 10-4 M with the detection limit (S/N = 3) of 8.0 × 10-10 M. And the linear concentration ranges for PCP were 2.0 × 10-9 to 1.0 × 10-7 M and 1.0 × 10-7 to 9.0 × 10-5 M with the detection limit of 5.0 × 10-10 M. Moreover, the proposed PRhB/GO/MWCNTs/GCE was successfully applied to the simultaneous determination of 2,4,6-TCP and PCP in practical water samples.

  3. Synthesis of Metal Oxide Decorated Polycarboxyphenyl Polymer-Grafted Multiwalled Carbon Nanotube Composites by a Chemical Grafting Approach for Supercapacitor Application

    Directory of Open Access Journals (Sweden)

    Do-Yeon Kang

    2015-01-01

    Full Text Available We present grafting of polycarboxyphenyl polymer on the surface of multiwalled carbon nanotube (MWCNT via a free radical polymerization and subsequent anchoring of the metal oxide nanoparticles for the evaluation of their potential applicability to supercapacitor electrodes. Here, metal oxide nanoparticles, Fe3O4 and Sm2O3, were created after the oxidation of metal precursors Sm(NO33 and FeCl2, respectively, and attached on the surface of polycarboxyphenyl-grafted MWCNT (P-CNT in aqueous medium. This approach shows a potential for enhancing the dispersion of Fe3O4 and Sm2O3 nanoparticles on the wall of P-CNT. The structure and morphological characteristics of the purified MWCNT, P-CNT, and metal oxide-anchored polycarboxyphenyl-grafted MWCNT (MP-CNT nanocomposites were studied by X-ray diffraction (XRD, scanning electron microscopy (SEM, transmission electron microscopy (TEM, and thermogravimetric analysis (TGA. The electrochemical performance of the purified MWCNT electrode, P-CNT electrode, and MP-CNT electrodes was tested by cyclic voltammetry (CV and galvanostatic charge discharge in a 1.0 M H2SO4 aqueous electrolyte. The results showed that the specific capacitance of the purified MWCNT was 45.3 F/g at the scan rate of 5 mV/s and increased to 54.1 F/g after the modification with polycarboxyphenyl polymer. Further modification of P-CNT with Sm2O3 and Fe3O4 improved the specific capacitance of 65.84 F/g and 173.38 F/g, respectively, at the same scan rate.

  4. 一维碳纳米管与金属氧化物材料研究%Study on One Dimensional Carbon Nanotubes and Metal Oxide

    Institute of Scientific and Technical Information of China (English)

    郭欣; 赵新宇

    2016-01-01

    One dimensional nanostructures have attracted much attention because they are the most fascinating functional ma-terials. The one dimensional morphologies can easily enhance the unique properties of the nanostructures, which make them suit-able for a wide variety of applications, including gas sensors, electro-chromic devices, light-emitting diodes, field emitters, supercapacitors, nanoelectronics, and nanogenerators. Therefore, much effort has been made to synthesize and characterize one dimensional nanostructures in the forms of nanorods, nanowires, nanotubes, nanobelts, etc. This article mainly introduced the one dimensional nanostructures carbon nanotubes and metal oxide, discuss the advantages and disadvantages of two kinds of materials for complementary modified synthesis of new composite materials.%一维纳米结构是最吸引人的功能材料而被广泛关注.一维形态可以很容易地提高纳米结构的独特性能,使它们适合各种各样的应用程序,包括气体传感器、电致变色的设备、发光二极管、场发射器、超级电容器和纳米发电机.因此,目前已合成多种一维纳米结构形式的纳米棒、纳米线、纳米管、纳米带等.本文主要介绍了一维碳纳米管与金属氧化物的性质与研究现状,探讨两种材料的优缺点以期进行互补修饰合成新型复合材料.

  5. Growth, Structure, and Photocatalytic Properties of Hierarchical V₂O₅-TiO₂ Nanotube Arrays Obtained from the One-step Anodic Oxidation of Ti-V Alloys.

    Science.gov (United States)

    Nevárez-Martínez, María C; Mazierski, Paweł; Kobylański, Marek P; Szczepańska, Grażyna; Trykowski, Grzegorz; Malankowska, Anna; Kozak, Magda; Espinoza-Montero, Patricio J; Zaleska-Medynska, Adriana

    2017-04-05

    V₂O₅-TiO₂ mixed oxide nanotube (NT) layers were successfully prepared via the one-step anodization of Ti-V alloys. The obtained samples were characterized by scanning electron microscopy (SEM), UV-Vis absorption, photoluminescence spectroscopy, energy-dispersive X-ray spectroscopy (EDX), X-ray diffraction (DRX), and micro-Raman spectroscopy. The effect of the applied voltage (30-50 V), vanadium content (5-15 wt %) in the alloy, and water content (2-10 vol %) in an ethylene glycol-based electrolyte was studied systematically to determine their influence on the morphology, and for the first-time, on the photocatalytic properties of these nanomaterials. The morphology of the samples varied from sponge-like to highly-organized nanotubular structures. The vanadium content in the alloy was found to have the highest influence on the morphology and the sample with the lowest vanadium content (5 wt %) exhibited the best auto-alignment and self-organization (length = 1 μm, diameter = 86 nm and wall thickness = 11 nm). Additionally, a probable growth mechanism of V₂O₅-TiO₂ nanotubes (NTs) over the Ti-V alloys was presented. Toluene, in the gas phase, was effectively removed through photodegradation under visible light (LEDs, λmax = 465 nm) in the presence of the modified TiO₂ nanostructures. The highest degradation value was 35% after 60 min of irradiation. V₂O₅ species were ascribed as the main structures responsible for the generation of photoactive e(-) and h⁺ under Vis light and a possible excitation mechanism was proposed.

  6. Development of Pd and Pd-Co catalysts supported on multi-walled carbon nanotubes for formic acid oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Morales-Acosta, D.; Godinez, Luis A.; Rodriguez, H.G.; Arriaga, L.G. [Centro de Investigacion y Desarrollo Tecnologico en Electroquimica, Parque Tecnologico Queretaro, Sanfandila, Pedro Escobedo, C.P. 76703 Queretaro (Mexico); Ledesma-Garcia, J. [Division de Investigacion y Posgrado, Facultad de Ingenieria, Universidad Autonoma de Queretaro, Cerro de las Campanas S/N, C.P. 76010, Queretaro, Qro. (Mexico); Alvarez-Contreras, L. [Centro de Investigacion en Materiales Avanzados S. C., Complejo Industrial Chihuahua, C.P. 31109, Chihuahua, Chih. (Mexico)

    2010-01-15

    Pd-Co and Pd catalysts were prepared by the impregnation synthesis method at low temperature on multi-walled carbon nanotubes (MWCNTs). The nanotubes were synthesized by spray pyrolysis technique. Both catalysts were obtained with high homogeneous distribution and particle size around 4 nm. The morphology, composition and electrocatalytic properties were investigated by transmission electron microscopy, scanning electron microscopy-energy dispersive X-ray analysis, X-ray diffraction and electrochemical measurements, respectively. The electrocatalytic activity of Pd and PdCo/MWCNTs catalysts was investigated in terms of formic acid electrooxidation at low concentration in H{sub 2}SO{sub 4} aqueous solution. The results obtained from voltamperometric studies showed that the current density achieved with the PdCo/MWCNTs catalyst is 3 times higher than that reached with the Pd/MWCNTs catalyst. The onset potential for formic acid electrooxidation on PdCo/MWCNTs electrocatalyst showed a negative shift ca. 50 mV compared with Pd/MWCNTs. (author)

  7. Layered manganese oxides-decorated and nickel foam-supported carbon nanotubes as advanced binder-free supercapacitor electrodes

    KAUST Repository

    Huang, Ming

    2014-12-01

    Three-dimensional carbon nanotubes@MnO2 core-shell nanostructures grown on Ni foam for binder-free capacitor electrodes have been fabricated by a floating catalyst chemical vapor deposition process and a facile hydrothermal approach. Ultrathin layered MnO2 nanosheets are uniformly coated on the surface of the carbon nanotubes (CNTs), directly grown on Ni foam. This unique well-designed binder-free electrode exhibits a high specific capacitance (325.5 F g-1 at a current density of 0.3 A g-1), good rate capability (70.7% retention), and excellent cycling stability (90.5% capacitance retention after 5000 cycles), due to the high conductivity of the close contact between CNTs and Ni foam, as well as the moderate specific surface area of the CNTs@MnO2 core-shell nanostructures. The developed synthetic strategy may provide design guidelines for constructing advanced binder-free supercapacitors electrode. © 2014 Elsevier B.V. All rights reserved.

  8. Electrochemical biosensing based on polypyrrole/titania nanotube hybrid

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Yibing, E-mail: ybxie@seu.edu.cn; Zhao, Ye

    2013-12-01

    The glucose oxidase (GOD) modified polypyrrole/titania nanotube enzyme electrode is fabricated for electrochemical biosensing application. The titania nanotube array is grown directly on a titanium substrate through an anodic oxidation process. A thin film of polypyrrole is coated onto titania nanotube array to form polypyrrole/titania nanotube hybrid through a normal pulse voltammetry process. GOD-polypyrrole/titania nanotube enzyme electrode is prepared by the covalent immobilization of GOD onto polypyrrole/titania nanotube hybrid via the cross-linker of glutaraldehyde. The morphology and microstructure of nanotube electrodes are characterized by field emission scanning electron microscopy and Fourier transform infrared analysis. The biosensing properties of this nanotube enzyme electrode have been investigated by means of cyclic voltammetry and chronoamperometry. The hydrophilic polypyrrole/titania nanotube hybrid provides highly accessible nanochannels for GOD encapsulation, presenting good enzymatic affinity. As-formed GOD-polypyrrole/titania nanotube enzyme electrode well conducts bioelectrocatalytic oxidation of glucose, exhibiting a good biosensing performance with a high sensitivity, low detection limit and wide linear detection range. - Graphical abstract: The schematic diagram presents the fabrication of glucose oxidase modified polypyrrole/titania (GOD-PPy/TiO{sub 2}) nanotube enzyme electrode for biosensing application. - Highlights: • Hydrophilic polypyrrole/titania nanotube hybrid is well used as biosensing substrate. • Polypyrrole promotes GOD immobilization on titania nanotubes via glutaraldehyde. • GOD-polypyrrole/titania enzyme electrode shows good bioelectrocatalytic reactivity.

  9. (0 0 1) Facet-exposed anatase-phase TiO{sub 2} nanotube hybrid reduced graphene oxide composite: Synthesis, characterization and application in photocatalytic degradation

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Xun [School of Chemical Engineering of Hefei University of Technology, Hefei 230009 (China); Shi, Tiejun, E-mail: stjhfut@163.com [School of Chemical Engineering of Hefei University of Technology, Hefei 230009 (China); Wu, Jing [School of Chemical Engineering of Hefei University of Technology, Hefei 230009 (China); Zhou, Haiou [School of Chemical Engineering of Hefei University of Technology, Hefei 230009 (China); School of Materials and Chemical Engineering of Anhui University of Architecture, Hefei 230901 (China)

    2013-12-15

    Reduced graphene oxide (RGO) and TiO{sub 2} nanotube (TNT) with (0 0 1) facet-exposed anatase phase are covalently bonded together to synthesize TNT hybrid RGO (RGO-TNT) through consecutive process such as hydrothermal reaction, HCl washing, lyophilization and heat treatment with graphene oxide (GO), TiO{sub 2} powder and high concentration NaOH solution as the starting materials. The TNT with the diameter between 10 and 20 nm characterized by high resolution transmission electron microscopy (HRTEM) is in anatase phase proven by X-ray diffraction (XRD) and HRTEM. Additionally, the more active (0 0 1) facet is exposed identified by HRTEM. More significantly, TNT is bridged to RGO by C-Ti bond by the measurement of X-ray photoelectron spectroscopy (XPS). The photoluminescence (PL) spectra has testified that RGO in RGO-TNT can transfer and accept photoelectrons from TNT. The photocatalytic activity of RGO-TNT for degrading methylene blue (MB) is enhanced by contrast with pure TNT, and changeable by adjusting the mass ratios of GO to TiO{sub 2} powder. Simultaneously, lyophilization is benefit for maintaining the high active surface area of RGO-TNT, which is deeply in relationship with a higher photocatalytic activity. After four running cycles of photocatalytic degradation, RGO-TNT has shown a high stability and perfect reproducibility.

  10. (0 0 1) Facet-exposed anatase-phase TiO2 nanotube hybrid reduced graphene oxide composite: Synthesis, characterization and application in photocatalytic degradation

    Science.gov (United States)

    Zhou, Xun; Shi, Tiejun; Wu, Jing; Zhou, Haiou

    2013-12-01

    Reduced graphene oxide (RGO) and TiO2 nanotube (TNT) with (0 0 1) facet-exposed anatase phase are covalently bonded together to synthesize TNT hybrid RGO (RGO-TNT) through consecutive process such as hydrothermal reaction, HCl washing, lyophilization and heat treatment with graphene oxide (GO), TiO2 powder and high concentration NaOH solution as the starting materials. The TNT with the diameter between 10 and 20 nm characterized by high resolution transmission electron microscopy (HRTEM) is in anatase phase proven by X-ray diffraction (XRD) and HRTEM. Additionally, the more active (0 0 1) facet is exposed identified by HRTEM. More significantly, TNT is bridged to RGO by Csbnd Ti bond by the measurement of X-ray photoelectron spectroscopy (XPS). The photoluminescence (PL) spectra has testified that RGO in RGO-TNT can transfer and accept photoelectrons from TNT. The photocatalytic activity of RGO-TNT for degrading methylene blue (MB) is enhanced by contrast with pure TNT, and changeable by adjusting the mass ratios of GO to TiO2 powder. Simultaneously, lyophilization is benefit for maintaining the high active surface area of RGO-TNT, which is deeply in relationship with a higher photocatalytic activity. After four running cycles of photocatalytic degradation, RGO-TNT has shown a high stability and perfect reproducibility.

  11. Facile synthesis of the necklace-like graphene oxide-multi-walled carbon nanotube nanohybrid and its application in electrochemical sensing of azithromycin.

    Science.gov (United States)

    Zhang, Kaixin; Lu, Limin; Wen, Yangping; Xu, Jingkun; Duan, Xuemin; Zhang, Long; Hu, Dufen; Nie, Tao

    2013-07-17

    A novel electrochemical platform was designed for the determination of Azithromycin (Azi), a widely used macrolide antibiotic, by combining the hydrophilic properties of graphene oxide (GO) and the excellent electronic and antifouling properties of multi-walled carbon nanotubes (MWCNTs). Stable MWCNTs aqueous dispersion has been prepared using GO nano-sheets as surfactant and the obtained GO-MWCNTs nanohybrid was characterized by UV-vis spectroscopy, Fourier transform infrared spectroscopy, Raman spectroscopy, transmission electron microscopy and electrochemical impedance spectroscopy, which confirmed that GO nano-sheets were attached onto the wall of MWCNTs to form a necklace-like structure. Electrochemical results obviously reveal that the oxidation peak currents of Azi obtained at the GC electrode modified with GO-MWCNTs hybrid are much higher than those at the MWCNTs/GC, GO/GC and bare GC electrodes. Under optimized conditions, the anodic peak current was linear to the concentration of Azi in the range from 0.1 to 10 μM with the detection limit of 0.07 μM. To further validate its possible application, the proposed method was successfully used for the determination of Azi in pharmaceutical formulations with satisfactory results. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. Preparation of well-aligned carbon nanotubes/silicon nanowires core-sheath composite structure arrays in porous anodic aluminum oxide templates

    Institute of Scientific and Technical Information of China (English)

    李梦轲; 陆梅; 王成伟; 力虎林

    2002-01-01

    The well-aligned carbon nanotubes (CNTs) arrays with opened ends were prepared in ordered pores of anodic aluminum oxide (AAO) template by the chemical vapor deposition (CVD) method. After then, silicon nanowires (SiNWs) were deposited in the hollow cavities of CNTs. By using this method, CNTs/SiNWs core-sheath composite structure arrays were synthesized successfully. Growing structures and physical properties of the CNTs/SiNWs composite structure arrays were analyzed and researched by the scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-ray diffraction spectrum (XRD), respectively. The field emission (FE) behavior of the CNTs/SiNWs composite structure arrays was studied based on Fowler- Nordheim tunneling mechanism and current-voltage (I -V) curve. And the photoluminescence (PL) was also characterized. Significantly, the CNTs/SiNWs core-sheath composite structure nanowire fabricated by AAO template method is characteristic of a metal/semiconductor (M/S) behavior and can be utilized to synthesize nanoscale PN junction or Schottky diode device. This process also could be useful for the fabrication of SiNWs and other nanoscale core-sheath composite structure nanowires with chemically inert interfaces for nanoscale electronic and device applications where surface oxidation is undesirable. The diameters and lengths of nanoscale composite structure arrays can be dominated easily, and the experimental result shows that the curling and twisting structures are fewer than those prepared by other synthesized methods.

  13. CTAB functionalized graphene oxide/multiwalled carbon nanotube composite modified electrode for the simultaneous determination of ascorbic acid, dopamine, uric acid and nitrite.

    Science.gov (United States)

    Yang, Yu Jun; Li, Weikun

    2014-06-15

    We have developed hexadecyl trimethyl ammonium bromide (CTAB) functionalized graphene oxide (GO)/multiwalled carbon nanotubes (MWNTs) modified glassy carbon electrode (CTAB-GO/MWNT) as a novel system for the simultaneous determination of dopamine (DA), ascorbic acid (AA), uric acid (UA) and nitrite (NO2(-)). The combination of graphene oxide and MWNTs endow the biosensor with large surface area, good biological compatibility, electricity and stability, high selectivity and sensitivity. In the fourfold co-existence system, the linear calibration plots for AA, DA, UA and NO2(-) were obtained over the range of 5.0-300 μM, 5.0-500 μM, 3.0-60 μM and 5.0-800 μM with detection limits of 1.0 μM, 1.5 μM, 1.0 μM and 1.5 μM, respectively. In addition, the modified biosensor was applied to the determination of AA, DA, UA and NO2(-) in urine samples by using standard adding method with satisfactory results.

  14. Recyclable enzyme mimic of cubic Fe3O4 nanoparticles loaded on graphene oxide-dispersed carbon nanotubes with enhanced peroxidase-like catalysis and electrocatalysis

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Hua; Li, Shuai; Si, Yanmei; Sun, Zhongzhao; Li, Shuying; Lin, Yuehe

    2014-01-01

    Fe3O4 nanoparticles as nanocatalysts may present peroxidase-like catalysis activities and high electrocatalysis if loaded on conductive carbon nanotube (CNT) supports; however, their catalysis performances in an aqueous system might still be challenged by the poor aqueous dispersion of hydrophobic carbon supports and/or low stability of loaded iron catalysts. In this work, amphiphilic graphene oxide nanosheets were employed as “surfactant” to disperse CNTs to create stable graphene oxide-dispersed CNT (GCNT) supports in water for covalently loading cubic Fe3O4 nanoparticles with improved distribution and binding efficiency. Compared with original Fe3O4 nanos and CNT-loaded Fe3O4 nanocomplex, the prepared GCNT–Fe3O4 nanocomposite could achieve higher aqueous stability and, especially, much stronger peroxidase-like catalysis and electrocatalysis to H2O2, presumably resulting from the synergetic effects of two conductive carbon supports and cubic Fe3O4 nanocatalysts effectively loaded. Colorimetric and direct electrochemical detections of H2O2 and glucose using the GCNT–Fe3O4 nanocomposite were conducted with high detection sensitivities, demonstrating the feasibility of practical sensing applications. Such a magnetically recyclable “enzyme mimic” may circumvent some disadvantages of natural protein enzymes and common inorganic catalysts, featuring the multi-functions of high peroxidase-like catalysis, strong electrocatalysis, magnetic separation/recyclability, environmental stability, and direct H2O2 electrochemistry.

  15. Reduced graphene oxide/carbon nanotubes sponge: A new high capacity and long life anode material for sodium-ion batteries

    Science.gov (United States)

    Yan, Dong; Xu, Xingtao; Lu, Ting; Hu, Bingwen; Chua, Daniel H. C.; Pan, Likun

    2016-06-01

    Reduced graphene oxide/carbon nanotubes (CNTs) sponge (GCNTS) is fabricated via a simple freeze drying of graphene oxide/CNTs mixed solution and subsequent thermal treatment in nitrogen atmosphere, and used as anodes for sodium-ion batteries (SIBs) for the first time. The morphology, structure and electrochemical performance of GCNTS are characterized by field emission scanning electron microscopy, transmission electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy, Raman spectroscopy, nitrogen adsorption-desorption isotherms, galvanostatic charge/discharge tests, cyclic voltammetry and electrochemical impedance spectroscopy, respectively. The results show that GCNTS with 20 wt % CNTs has a highest charge capacity of 436 mA h g-1 after 100 cycles at a current density of 50 mA g-1 and even at a high current density of 10 A g-1, a capacity of 195 mA h g-1 is maintained after 7440 cycles. The high capacity, excellent rate performance and long life cycling enable the GCNTS to be a promising candidate for practical SIBs.

  16. An enhanced electrochemical platform based on graphene oxide and multi-walled carbon nanotubes nanocomposite for sensitive determination of Sunset Yellow and Tartrazine.

    Science.gov (United States)

    Qiu, Xinlan; Lu, Limin; Leng, Jing; Yu, Yongfang; Wang, Wenmin; Jiang, Min; Bai, Ling

    2016-01-01

    A novel electrochemical platform was designed for the simultaneous determination of Sunset Yellow (SY) and Tartrazine (TT), synthetic food dyes, by combining the signal amplification properties of graphene oxide (GO) and the excellent electronic and antifouling properties of multi-walled carbon nanotubes (MWCNTs). Stable dispersion of GO/MWCNTs composite was produced by sonication mixing. Compared with glassy carbon, MWCNTs and GO electrodes, GO/MWCNTs electrode exhibited strong enhancement effect and greatly increased the oxidation signal of SY and TT. Under optimized conditions, the enhanced anodic peak currents represented the excellent analytical performance of simultaneous detection of SY and TT in the range of 0.09-8.0 μM, with a low limit of detection of 0.025 μM for SY and 0.01 μM for TT (S/N = 3), respectively. To further validate its possible application, the proposed method was successfully used for the determination of SY and TT in orange juice with satisfactory results.

  17. Facile Synthesis of Ternary Boron Carbonitride Nanotubes

    Directory of Open Access Journals (Sweden)

    Luo Lijie

    2009-01-01

    Full Text Available Abstract In this study, a novel and facile approach for the synthesis of ternary boron carbonitride (B–C–N nanotubes was reported. Growth occurred by heating simple starting materials of boron powder, zinc oxide powder, and ethanol absolute at 1150 °C under a mixture gas flow of nitrogen and hydrogen. As substrate, commercial stainless steel foil with a typical thickness of 0.05 mm played an additional role of catalyst during the growth of nanotubes. The nanotubes were characterized by SEM, TEM, EDX, and EELS. The results indicate that the synthesized B–C–N nanotubes exhibit a bamboo-like morphology and B, C, and N elements are homogeneously distributed in the nanotubes. A catalyzed vapor–liquid–solid (VLS mechanism was proposed for the growth of the nanotubes.

  18. Selective intercalation of polymers in carbon nanotubes.

    Science.gov (United States)

    Bazilevsky, Alexander V; Sun, Kexia; Yarin, Alexander L; Megaridis, Constantine M

    2007-07-03

    A room-temperature, open-air method is devised to selectively intercalate relatively low-molecular-weight polymers (approximately 10-100 kDa) from dilute, volatile solutions into open-end, as-grown, wettable carbon nanotubes with 50-100 nm diameters. The method relies on a novel self-sustained diffusion mechanism driving polymers from dilute volatile solutions into carbon nanotubes and concentrating them there. Relatively low-molecular-weight polymers, such as poly(ethylene oxide) (PEO, 600 kDa) and poly(caprolactone) (PCL, 80 kDa), were encapsulated in graphitic nanotubes as confirmed by transmission electron microscopy, which revealed morphologies characteristic of mixtures in nanoconfinements affected by intermolecular forces. Whereas relatively small, flexible polymer molecules can conform to enter these nanotubes, larger macromolecules (approximately 1000 kDa) remain outside. The selective nature of this process is useful for filling nanotubes with polymers and could also be valuable in capping nanotubes.

  19. TiO2纳米管阵列阳极氧化制备的研究进展%Research Progress on Anodic Oxidation for Fabricating Titania Nanotube Arrays

    Institute of Scientific and Technical Information of China (English)

    田甜; 王凡; 袁永健; 孙远东

    2013-01-01

    The research progress on titania nanotube arrays prepared by anodic oxidation under static voltage is reviewed, especially that the mechanism of fabrication, the effect of the work-voltage and electrolyte on its figuration. The potential researches of titania nanotube arrays are predicted. The research of industrialized production technology and using the cavum nanotube arrays configuration of titania nanotube arrays for amendment are put forward.%综述了TiO2纳米管阵列的阳极氧化制备研究进展,尤其是制备机理、阳极氧化电压、电解液组成对其形貌的影响.此外,展望了TiO2纳米管阵列的研究前景,提出了其工业化生产工艺的研究方向和充分利用其空腔管阵结构进行改性的研究思路.

  20. Oxidized multiwalled carbon nanotubes as antigen delivery system to promote superior CD8(+) T cell response and protection against cancer.

    Science.gov (United States)

    de Faria, Paula Cristina Batista; dos Santos, Luara Isabela; Coelho, João Paulo; Ribeiro, Henrique Bücker; Pimenta, Marcos Assunção; Ladeira, Luiz Orlando; Gomes, Dawidson Assis; Furtado, Clascídia Aparecida; Gazzinelli, Ricardo Tostes

    2014-09-10

    Properties like high interfacial area with cellular membranes, unique ability to incorporate multiple functionalization, as well as compatibility and transport in biological fluids make carbon nanotubes (CNTs) useful for a variety of therapeutic and drug-delivery applications. Here we used a totally synthetic hybrid supramolecule as an anticancer vaccine formulation. This complex structure comprises CNTs as delivery system for the Cancer Testis Antigen named NY-ESO-1, allied to a synthetic Toll-Like Receptor agonist. The CNT constructs were rapidly internalized into dendritic cells, both in vitro and in vivo, and served as an intracellular antigen depot. This property favored the induction of strong CD4(+) T as well as CD8(+) T cell-mediated immune responses against the NY-ESO-1. Importantly, the vaccination significantly delayed the tumor development and prolonged the mice survival, highlighting the potential application of CNTs as a vaccine delivery system to provide superior immunogenicity and strong protection against cancer.

  1. Application of multi-walled carbon nanotubes modified carbon ionic liquid electrode for electrocatalytic oxidation of dopamine.

    Science.gov (United States)

    Li, Yonghong; Liu, Xinsheng; Liu, Xiaoying; Mai, Nannan; Li, Yuandong; Wei, Wanzhi; Cai, Qingyun

    2011-11-01

    A simple, sensitive, and reliable method based on a multi-walled carbon nanotubes (MWNTs) modified carbon ionic liquid electrode (CILE) has been successfully developed for determination of dopamine (DA) in the presence of ascorbic acid (AA). The acid-treated MWNTs with carboxylic acid functional groups could promote the electron-transfer reaction of DA and inhibit the voltammetric response of AA. Due to the good performance of the ionic liquid, the electrochemical response of DA on the MWNTs/CILE was better than that of other MWNTs modified electrodes. Under the optimum conditions a linear calibration plot was obtained in the range 5.0×10(-8) to 2.0×10(-4) mol L(-1) and the detection limit was 1.0×10(-8) mol L(-1).

  2. Pd(II)-Directed Encapsulation of Hydrogenase within the Layer-by-Layer Multilayers of Carbon Nanotube Polyelectrolyte Used as a Heterogeneous Catalyst for Oxidation of Hydrogen.

    Science.gov (United States)

    Liu, Jiang; Zorin, Nikolay A; Chen, Meng; Qian, Dong-Jin

    2015-06-16

    A metal-directed assembling approach has been developed to encapsulate hydrogenase (H2ase) within a layer-by-layer (LBL) multilayer of carbon nanotube polyelectrolyte (MWNT-PVPMe), which showed efficient biocatalytic oxidation of H2 gas. The MWNT-PVPMe was prepared via a diazonium process and addition reactions with poly(4-vinylpyridine) (PVP) and methyl iodide (MeI). The covalently attached polymers and organic substituents in the polyelectrolyte comprised 60-70% of the total weight. The polyelectrolyte was then used as a substrate for H2ase binding to produce MWNT-PVPMe@H2ase bionanocomposites. X-ray photoelectron spectra revealed that the bionanocomposites included the elements of Br, S, C, N, O, I, Fe, and Ni, which confirmed that they were composed of MWNT-PVPMe and H2ase. Field emission transmission electron microscope images revealed that the H2ase was adsorbed on the surface of MWNT-PVPMe with the domains ranging from 20 to 40 nm. Further, with the use of the bionanocomposites as nanolinkers and Na2PdCl4 as connectors, the (Pd/MWNT-PVPMe@H2ase)n multilayers were constructed on the quartz and gold substrate surfaces by the Pd(II)-directed LBL assembling technique. Finally, the as-prepared LBL multilayers were used as heterogeneous catalysts for hydrogen oxidation with methyl viologen (MV(2+)) as an electron carrier. The dynamic processes for the reversible color change between blue-colored MV(+) and colorless MV(2+) (catalyzed by the LBL multilayers) were video recorded, which confirmed that the H2ase encapsulated within the present LBL multilayers was of much stronger stability and higher biocatalytic activity of H2 oxidation resulting in potential applications for the development of H2 biosensors and fuel cells.

  3. High loading of graphene oxide/multi-walled carbon nanotubes into PDLLA: A route towards the design of osteoconductive, bactericidal and non-immunogenic 3D porous scaffolds

    Energy Technology Data Exchange (ETDEWEB)

    Zanin, Hudson [Laboratory of Biomedical Nanotechnology (NANOBIO), Institute of Research and Development - IP& D, University of Vale do Paraiba, Av. Shishima Hifumi 2911, Sao Jose dos Campos, 12244-000, Sao Paulo (Brazil); Laboratory of Energy Storage & Supply - ES& S, Institute of Research and Development - IP& D, University of Vale do Paraiba, Av. Shishima Hifumi 2911, Sao Jose dos Campos, CEP: 12.244-000, Sao Paulo (Brazil); Rodrigues, Bruno Vinícius Manzolli [Laboratory of Biomedical Nanotechnology (NANOBIO), Institute of Research and Development - IP& D, University of Vale do Paraiba, Av. Shishima Hifumi 2911, Sao Jose dos Campos, 12244-000, Sao Paulo (Brazil); Ribeiro Neto, Wilson Alves; Bretas, Rosario Elida Suman [Department of Materials Engineering, Federal University of Sao Carlos, Rodovia Washington Luis, km 235 – SP-310, Sao Carlos, Sao Paulo (Brazil); Da-Silva, Newton Soares [Laboratory of Cell Biology and Tissue, Institute of Research and Development - IP& D, University of Vale do Paraiba, Av. Shishima Hifumi 2911, Sao Jose dos Campos, CEP: 12244-000, Sao Paulo (Brazil); Marciano, Fernanda Roberta [Laboratory of Biomedical Nanotechnology (NANOBIO), Institute of Research and Development - IP& D, University of Vale do Paraiba, Av. Shishima Hifumi 2911, Sao Jose dos Campos, 12244-000, Sao Paulo (Brazil); Oliveira Lobo, Anderson, E-mail: aolobo@pq.cnpq.br [Laboratory of Biomedical Nanotechnology (NANOBIO), Institute of Research and Development - IP& D, University of Vale do Paraiba, Av. Shishima Hifumi 2911, Sao Jose dos Campos, 12244-000, Sao Paulo (Brazil)

    2016-07-01

    We have prepared a novel 3D porous biomaterial combining poly (DL-lactic acid) (PDLLA) and graphene and multi-walled carbon nanotubes oxides (MWCNTO-GO) composite. PDLLA as control and a high loading of PDLLA/MWCNTO-GO (50/50 w/w) bioscaffolds were prepared and functionalized. MWCNTs were exfoliated to form MWCNTO-GO by oxygen plasma etching. The later was also applied to enhance the scaffolds wettability, attaching oxygen-containing groups on their surfaces. This approach produced a porous architecture observed by scanning electron microscopy and semi-quantified by electrochemical analysis. The later also indicated a notable increase on the conductivity of PDLLA/MWCNTO-GO scaffold compared to MWCNTO-GO free PDLLA (about 5 orders of magnitudes at low frequencies). Thermogravimetric analysis showed that the MWCNTO-GO acted protecting the PDLLA matrix, enhancing its thermal stability. The PDLLA/MWCNTO-GO scaffolds had significant cellular adhesion, did not present cytotoxicity effect, besides reduced bactericidal proliferation and produced mineralized tissues in SBF media. The metallic MWCNTO-GO powder held together by PDLLA polymer opens a whole new branch of applications, including bioelectroanalyses, drug delivery systems and tissue engineering. - Highlights: • We produced a novel 3D porous material from PDLLA, graphene oxide and MWCNT oxide. • MWCNTO-GO loading (50/50 w/w) increased notably the conductivity of PDLLA scaffold. • MWCNTO-GO acted protecting the PDLLA matrix, enhancing its thermal stability. • PDLLA/MWCNTO-GO scaffolds did not present cytotoxicity effect. • PDLLA/MWCNTO-GO scaffolds presented bioactivity properties.

  4. Growth of Carbon Nanotubes over Ni Nano-particles Prepared in Situ by Reduction of La2NiO4 Oxides

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    A novel catalyst precursor, La2NiO4, was investigated to synthesize carbon nanotubes, obtained from catalytic disproportionation of CO. The morphology of carbon nanotubes has been examined by TEM (transmission electron micrograph) and SEM (scaning electron micrograph). It was observed that the Ni nano-particle size formed at different reducing temperatures was a key factor to the yield and diameter of carbon nanotubes.

  5. A novel miniaturized zinc oxide/hydroxylated multiwalled carbon nanotubes as a stir-brush microextractor device for carbamate pesticides analysis

    Energy Technology Data Exchange (ETDEWEB)

    Makkliang, Fonthip; Kanatharana, Proespichaya [Trace Analysis and Biosensor Research Center, Prince of Songkla University, Hat Yai, Songkhla 90112 (Thailand); Center of Excellence for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90112 (Thailand); Department of Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90112 (Thailand); Thavarungkul, Panote [Trace Analysis and Biosensor Research Center, Prince of Songkla University, Hat Yai, Songkhla 90112 (Thailand); Center of Excellence for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90112 (Thailand); Department of Physics, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90112 (Thailand); Thammakhet, Chongdee, E-mail: chongdee.t@psu.ac.th [Trace Analysis and Biosensor Research Center, Prince of Songkla University, Hat Yai, Songkhla 90112 (Thailand); Center of Excellence for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90112 (Thailand); Department of Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90112 (Thailand)

    2016-04-21

    A novel miniaturized “stir-brush microextractor” was prepared using a zinc oxide/hydroxylated multiwalled carbon nanotubes (ZnO/MWCNTs–OH) coated stainless steel brush connected to a small dc motor. The synthesized zinc oxide on each strand of stainless steel had a flower-like nanostructure when observed by a scanning electron microscope (SEM). This structure produced a large surface area before it was coated with the hydroxylated multiwalled carbon nanotubes sorbent. Under optimal conditions, the developed device provided a good linearity for the extraction of carbofuran and carbaryl, in the range of 25–500 ng mL{sup −1} and 50–500 ng mL{sup −1}, respectively, with low limits of detection of 17.5 ± 2.0 ng mL{sup −1} and 13.0 ± 1.8 ng mL{sup −1}. It also provided a good stir-brush-to-stir-brush reproducibility (% relative standard deviation < 5.6%, n = 6). The device was applied for the extraction and preconcentration of carbamate pesticides in fruit and vegetable samples prior to analysis with a gas chromatograph coupled with a flame ionization detector (GC–FID). Carbofuran was found at 9.24 ± 0.93 ng g{sup −1} and carbaryl was detected at 7.05 ± 0.61 ng g{sup −1} with good recoveries in the range of 73.7 ± 10.0% to 108.4 ± 2.6% for carbofuran and 75.7 ± 10.0% to 111.7 ± 5.7% for carbaryl. - Highlights: • A brush as the sampling tool was first introduced. • A novel miniaturized and portable stir brush microextractor was developed for carbamate pesticides extraction. • Large surface area of ZnO flower-like nanostructure coated with MWCNTs–OH on each brush fiber was observed.

  6. Charge transport in a single superconducting tin nanowire encapsulated in a multiwalled carbon nanotube

    NARCIS (Netherlands)

    Tombros, Nikolaos; Buit, Luuk; Arfaoui, Imad; Tsoufis, Theodoros; Gournis, Dimitrios; Trikalitis, Pantelis N.; van der Molen, Sense Jan; Rudolf, Petra; van Wees, Bart J.

    2008-01-01

    The charge transport properties of single superconducting tin nanowires encapsulated by multiwalled carbon nanotubes have been investigated by multiprobe measurements. The multiwalled carbon nanotube protects the tin nanowire from oxidation and shape fragmentation and therefore allows us to investig

  7. A comparative study of two techniques for determining photocatalytic activity of nitrogen doped TiO2 nanotubes under visible light irradiation: Photocatalytic reduction of dye and photocatalytic oxidation of organic molecules

    DEFF Research Database (Denmark)

    In, Su-Il; Vesborg, Peter Christian Kjærgaard; Abrams, Billie

    2011-01-01

    Nitrogen-doping (N-doping) is a popular strategy for promoting the absorption of visible light in TiO2 and other photocatalysts. We have grown TiO2 nanotubes onto non-conducting Pyrex in a one