WorldWideScience

Sample records for platinum electrodes synthesis

  1. Electrochemical synthesis and spectroscopic characterization of poly(N-phenylpyrrole coatings in an organic medium on iron and platinum electrodes

    Directory of Open Access Journals (Sweden)

    A.K.D. Diaw

    2008-12-01

    Full Text Available The electrochemical synthesis of poly(N-phenylpyrrole film was achieved on pretreated iron and platinum electrodes in acetonitrile solutions containing 0.1 M N-phenylpyrrole as the monomer and 0.1 M tetrabutylammonium trifluoromethane sulfonate (Bu4NCF3SO3 as the supporting-salt. The results showed that a surface treatment by 10 % aqueous nitric acid inhibits iron dissolution without preventing the N-phenylpyrrole oxidation. Very strongly adherent films were obtained at constant-potential, constant-current and cyclic voltammetry. XPS measurements, infrared (FT-IR and electronic absorption (UV-vis spectroscopies were used to characterize the iron and platinum-coated electrodes. Finally the anticorrosion properties of the PΦP film were evidenced.

  2. Surface characterization of platinum electrodes.

    Science.gov (United States)

    Solla-Gullón, José; Rodríguez, Paramaconi; Herrero, Enrique; Aldaz, Antonio; Feliu, Juan M

    2008-03-14

    The quantitative analysis of the different surface sites on platinum samples is attempted from pure voltammetric data. This analysis requires independent knowledge of the fraction of two-dimensional (111) and (100) domains. Specific site-probe reactions are employed to achieve this goal. Irreversibly-adsorbed bismuth and tellurium have been revealed to be sensitive to the presence of (111) terrace domains of different width whereas almost all sites involved in (100) ordered domains have been characterized through germanium adatoms. The experimental protocol follows that used with well-defined single-crystal electrodes and, therefore, requires careful control of the surface cleanliness. Platinum basal planes and their vicinal stepped surfaces have been employed to obtain calibration plots between the charge density measured under the adatom redox peak, specific for the type of surface site, and the corresponding terrace size. The evaluation of the (100) bidimensional domains can also be achieved using the voltammetric profiles, once the fraction of (111) ordered domains present in the polyoriented platinum has been determined and their featureless contribution has been subtracted from the whole voltammetric response. Using that curve, it is possible to perform a deconvolution of the adsorption states of the polycrystalline sample different from those related to (111) domains. The fraction of (100)-related states in the deconvoluted voltammogram can then be compared to that expected from the independent estimation coming from the charge involved in the redox process undergone by the irreversibly-adsorbed germanium and thus check the result of the deconvolution. The information about the surface-site distribution can also be applied to analyze the voltammetric profile of nanocrystalline platinum electrodes.

  3. Templated synthesis, characterization, and sensing application of macroscopic platinum nanowire network electrodes

    DEFF Research Database (Denmark)

    Wang, D. H.; Kou, R.; Gil, M. P.;

    2005-01-01

    properties of the electrodes, such as electrochemical active area and methanol oxidation, have also been studied. Compared with conventional polycrystalline Pt electrodes, these novel nanowire network electrodes possess high electrochemical active areas and demonstrate higher current densities and a lower...... onset potential for methanol electro-oxidation. Enzymatic Pt nanowire-network-based sensors show higher sensitivity for glucose detection than that using conventional polycrystalline Pt electrode. Such macroscopic nanowire network electrodes provide ideal platforms for sensing and other device...

  4. Preparation and Electrochemical Properties of Porous Platinum Electrode

    Institute of Scientific and Technical Information of China (English)

    HE Xin; CHEN Boxun; CHEN Qiao

    2012-01-01

    Porous platinum electrodes were prepared by adding YSZ,as an active material,in platinum paste.Relationship between microstructure and electrochemical performance of O2(g),Pt/YSZ electrode have been characterized by SEM and cyclic voltammetry.Results showed that the microstructure of platinum electrode is a significant impact on the cyclic voltammetry.With the increase of platinum electrode's porosity,the area of three-phase boundary of O2(g)/Pt/YSZ was increased.The electrochemical reactivity was also enhanced.These were presented as the increase of current density and cathode voltage in cyclic voltammetry.

  5. Electroreduction of cefetamet on mercury platinum and gold electrodes

    Directory of Open Access Journals (Sweden)

    P. ZUMAN

    2000-01-01

    Full Text Available The electroreduction of cefetamet (CEF using gold and platinum electrodes has been investigated in slightly alkaline medium (pH 8.40 where adsorption, previously observed at mercury electrode, was pronounced. This investigation was performed in order to determine whether the adsorption interfers with the reduction process even at solid electrodes and to compare with a mercury electrode.

  6. Electrooxidation of saccharides at platinum electrode

    Science.gov (United States)

    Han, Ji-Hyung; Chung, Taek Dong

    2012-10-01

    Saccharides have been emerging as promising fuels for future energy industry because they possess high energy density and tremendous amount of them can be obtained from abundant biomass. Direct electrochemical oxidation of saccharides to generate electricity is a potentially competitive approach in terms of the demand for small, handy, and cost-effective electric power sources. To develop efficient sugar fuel cell, it is necessary to understand mechanism of electrooxidation of saccharide at electrode surface. Although glucose oxidation at platinum surface has been well known, fundamental mechanism study on electrooxidation of other sugars is still in its infancy. Based on research of glucose oxidation, we will predict the electrooxidation of other saccharides such as fructose.

  7. Surface Analysis of 4-Aminothiophenol Adsorption at Polycrystalline Platinum Electrodes

    Science.gov (United States)

    Rosario-Castro, Belinda I.; Fachini, Estevao R.; Contes, Enid J.; Perez-Davis, Marla E.; Cabrera, Carlos R.

    2008-01-01

    Formation of self-assembled monolayer (SAM) of 4-aminothiophenol (4-ATP) on polycrystalline platinum electrodes has been studied by surface analysis and electrochemistry techniques. The 4-ATP monolayer was characterized by cyclic voltammetry (CV), Raman spectroscopy, reflection absorption infrared (RAIR) spectroscopy, and X-ray photoelectron spectroscopy (XPS). Cyclic voltammetry (CV) experiments give an idea about the packing quality of the monolayer. RAIR and Raman spectra for 4-ATP modified platinum electrodes showed the characteristic adsorption bands for neat 4-ATP indicating the adsorption of 4-ATP molecules on platinum surface. The adsorption on platinum was also evidenced by the presence of sulfur and nitrogen peaks by XPS survey spectra of the modified platinum electrodes. High resolution XPS studies and RAIR spectrum for platinum electrodes modified with 4-ATP indicate that molecules are sulfur-bonded to the platinum surface. The formation of S-Pt bond suggests that ATP adsorption gives up an amino terminated SAM. Thickness of the monolayer was evaluated via angle-resolved XPS (AR-XPS) analyses. Derivatization of 4-ATP SAM was performed using 16-Br hexadecanoic acid.

  8. Synthesis of platinum-polyaniline composite, its evaluation as a performance boosting interphase in the electrode assembly of proton exchange membrane fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Jayasree, R.; Mohanraju, K. [Fuel Cell Laboratory, Department of Chemistry, National Institute of Technology, Tiruchirappalli 620015 (India); Cindrella, L., E-mail: cind@nitt.edu [Fuel Cell Laboratory, Department of Chemistry, National Institute of Technology, Tiruchirappalli 620015 (India)

    2013-01-15

    Highlights: Black-Right-Pointing-Pointer Pt-polyaniline composite has been prepared and characterized. Black-Right-Pointing-Pointer It has been used as an interlayer in membrane electrode assembly and has been evaluated to boost the performance of the proton exchange membrane fuel cell. - Abstract: Platinum formed on polyaniline (PANi) is used as the interlayer between porous gas diffusion layer and the catalyst layer with the aim to reduce the thickness of the ordinary gas diffusion layer and provide a performance boosting electrostatic layer. The doping tendency of PANi is utilized to incorporate platinum(IV) ion in its matrix by chemisorption followed by its reduction to metallic platinum. Platinum is deposited on polyaniline by a simple wet chemistry method. PANi is prepared by the chemical oxidative polymerization of aniline by ammonium persulphate while Pt deposition on PANi is achieved by a phase transfer method (water-toluene) to yield Pt nanoparticles on PANi. The composite is characterized by XRD, Scanning electron microscopy (SEM) with energy dispersive X-ray analysis (EDX), IR spectroscopy, cyclic voltammetry (CV), AC impedance studies, density and conductivity measurements. The Pt/PANi composite is assessed in the proton exchange membrane fuel cell (PEMFC) using H{sub 2}/O{sub 2} gases at ambient pressure. The performance of the PEMFC with Pt/PANi composite interphase on cathode side of the gas diffusion layer (GDL) shows improvement at high current densities which is attributed to the increased capacitative current of Pt/PANi layer in the presence of O{sub 2} thereby improving the kinetics of subsequent reduction of O{sub 2}.

  9. Nanostructured gold and platinum electrodes on silicon structures for biosensing

    Science.gov (United States)

    Ogurtsov, V. I.; Sheehan, M. M.

    2005-01-01

    Gold and platinum metal electrodes on Si/SiO2 having undergone anisotropic potassium hydroxide (KOH) etch treatment are considered. This treatment etches at different rates and directions in the material resulting in creation of numerous pyramid shaped holes in the silicon substrate. This surface is used to make metal electrodes with increased electrode efficiency. The electrodes can serve as the sensors or as the sensor substrates (for surface polymer modification) and because both gold and platinum are inert they have applications for food safety biosensing. Wine, an economically significant food product, was chosen as a matrix, and impedance spectroscopy (EIS) was selected as a method of investigation of electrode behaviour. Based on results of EIS, different complexity equivalent circuits were determined by applying fitting mean square root optimisation of sensor complex impedance measurements.

  10. The effects of platinum on nickel electrodes in the nickel hydrogen cell

    Science.gov (United States)

    Zimmerman, Albert H.

    1991-01-01

    Interactions of platinum and platinum compounds with the nickel electrode that are possible in the nickel hydrogen cell, where both the nickel electrode and a platinum catalyst hydrogen electrode are in intimate contact with the alkaline electrolyte, are examined. Additionally, a mechanism of nickel cobalt oxyhydroxide formation in NiH2 cells is presented.

  11. Platinum single crystal electrodes for the electrocatalysis of methane oxidation

    Directory of Open Access Journals (Sweden)

    Mayara Munaretto

    2011-03-01

    Full Text Available The main objective of this paper is to characterize the voltammetric profiles of platinum single crystals of low Miller indexes Pt(100 and Pt(110 and study their catalytic activities on the oxidation of methane. In this way, it was developed a metallic surface modified by presence of other metal oxide, which presents catalytic activity for this reaction. It is well known that the electrooxidation of methane (CH4 leads mainly to the formation of CO2 and H2O, however, the oxidation can also lead to the formation of CO, a reaction intermediate that has strong interaction with metal surfaces, such as platinum. This molecule tends to accumulate on the platinum surface and to passive it, due to the self-poisoning, decreasing its catalytic activity. Therefore, the main aim of this work was the development of a platinum electrode modified by deposition of titanium oxide, which presented electrocatalytic properties for the oxidation of methane.

  12. Hollow platinum alloy tailored counter electrodes for photovoltaic applications

    Science.gov (United States)

    Li, Pinjiang; Zhang, Yange; Fa, Wenjun; Yang, Xiaogang; Wang, Liang

    2017-08-01

    Without sacrifice of photovoltaic performances, low-platinum alloy counter electrodes (CEs) are promising in bringing down the fabrication cost of dye-sensitized solar cells (DSSCs). We present here the realization of ZnO nanostructure assisted hollow platinum-nickel (PtNi) alloy microstructure CEs with a simple hydrothermal methods and maximization of electrocatalytic behaviors by tuning Zn precursors. The maximal power conversion efficiency is up to 8.74% for the liquid-junction dye-sensitized solar cells with alloyed PtNi0.41 electrode, yielding a 37.6% cell efficiency enhancement in comparison with pristine solar cell from planar Pt electrode. Moreover, the dissolution-resistant and charge-transfer abilities toward I-/I3- redox electrolyte have also been markedly enhanced due to competitive dissolution reactions and alloying effects.

  13. Novel compliant electrodes based on platinum salt reduction

    Science.gov (United States)

    Delille, Remi; Urdaneta, Mario; Hsieh, Kuangwen; Smela, Elisabeth

    2006-03-01

    A compliant electrode material is presented that was inspired by the electroding process used to manufacture ionic polymer-metal composites (IPMCs). However, instead of an ion-exchange membrane, a UV-curable acrylated urethane elastomer is employed. The electrode material consists of the UV-curable elastomer (Loctite 3108) loaded with tetraammineplatinum(II) chloride salt particles through physical mixing and homogenization. The composite material is made conductive by immersion in a reducing agent, sodium borohydride, which reduces the salt to platinum metal on the surface of the elastomer film. Because the noble metal is mixed into the elastomer precursor as a salt, the amount of UV light absorbed by the precursor is not significantly reduced, and the composite loses little photopatternability. As a result meso-scale electrodes of varying geometries can be formed by exposing the precursor/salt mixture through a mask. The materials are mechanically and electrically characterized. The percolation threshold of the composite is estimated to be 9 vol. % platinum salt, above which the compliant electrode material exhibits a maximum conductivity of 1 S/cm. The composite maintains its electrical conductivity under axial tensile strains of up to 40%.

  14. Synthesis of Bimetallic Platinum Nanoparticles for Biosensors

    Directory of Open Access Journals (Sweden)

    Gerard M. Leteba

    2013-08-01

    Full Text Available The use of magnetic nanomaterials in biosensing applications is growing as a consequence of their remarkable properties; but controlling the composition and shape of metallic nanoalloys is problematic when more than one precursor is required for wet chemistry synthesis. We have developed a successful simultaneous reduction method for preparation of near-spherical platinum-based nanoalloys containing magnetic solutes. We avoided particular difficulties in preparing platinum nanoalloys containing Ni, Co and Fe by the identification of appropriate synthesis temperatures and chemistry. We used transmission electron microscopy (TEM to show that our particles have a narrow size distribution, uniform size and morphology, and good crystallinity in the as-synthesized condition. Energy dispersive spectroscopy (EDS and X-ray diffraction (XRD confirms the coexistence of Pt with the magnetic solute in a face-centered cubic (FCC solid solution.

  15. Platinum Porous Electrodes for Fuel Cells

    DEFF Research Database (Denmark)

    Andersen, Shuang Ma

    Fuel cell energy bears the merits of renewability, cleanness and high efficiency. Proton Exchange Membrane Fuel Cell (PEMFC) is one of the most promising candidates as the power source in the near future. A fine management of different transports and electrochemical reactions in PEM fuel cells...... to a genuine picture of a working PEM fuel cell catalyst layer. These, in turn, enrich the knowledge of Three-Phase-Boundary, provide efficient tool for the electrode selection and eventually will contribute the advancement of PEMFC technology....

  16. Synthesis of platinum-polyaniline composite, its evaluation as a performance boosting interphase in the electrode assembly of proton exchange membrane fuel cell

    Science.gov (United States)

    Jayasree, R.; Mohanraju, K.; Cindrella, L.

    2013-01-01

    Platinum formed on polyaniline (PANi) is used as the interlayer between porous gas diffusion layer and the catalyst layer with the aim to reduce the thickness of the ordinary gas diffusion layer and provide a performance boosting electrostatic layer. The doping tendency of PANi is utilized to incorporate platinum(IV) ion in its matrix by chemisorption followed by its reduction to metallic platinum. Platinum is deposited on polyaniline by a simple wet chemistry method. PANi is prepared by the chemical oxidative polymerization of aniline by ammonium persulphate while Pt deposition on PANi is achieved by a phase transfer method (water-toluene) to yield Pt nanoparticles on PANi. The composite is characterized by XRD, Scanning electron microscopy (SEM) with energy dispersive X-ray analysis (EDX), IR spectroscopy, cyclic voltammetry (CV), AC impedance studies, density and conductivity measurements. The Pt/PANi composite is assessed in the proton exchange membrane fuel cell (PEMFC) using H2/O2 gases at ambient pressure. The performance of the PEMFC with Pt/PANi composite interphase on cathode side of the gas diffusion layer (GDL) shows improvement at high current densities which is attributed to the increased capacitative current of Pt/PANi layer in the presence of O2 thereby improving the kinetics of subsequent reduction of O2.

  17. Formic Acid Electrooxidation by a Platinum Nanotubule Array Electrode

    Directory of Open Access Journals (Sweden)

    Eric Broaddus

    2013-01-01

    Full Text Available One-dimensional metallic nanostructures such as nanowires, rods, and tubes have drawn much attention for electrocatalytic applications due to potential advantages that include fewer diffusion impeding interfaces with polymeric binders, more facile pathways for electron transfer, and more effective exposure of active surface sites. 1D nanostructured electrodes have been fabricated using a variety of methods, typically showing improved current response which has been attributed to improved CO tolerance, enhanced surface activity, and/or improved transport characteristics. A template wetting approach was used to fabricate an array of platinum nanotubules which were examined electrochemically with regard to the electrooxidation of formic acid. Arrays of 100 and 200 nm nanotubules were compared to a traditional platinum black catalyst, all of which were found to have similar surface areas. Peak formic acid oxidation current was observed to be highest for the 100 nm nanotubule array, followed by the 200 nm array and the Pt black; however, CO tolerance of all electrodes was similar, as were the onset potentials of the oxidation and reduction peaks. The higher current response was attributed to enhanced mass transfer in the nanotubule electrodes, likely due to a combination of both the more open nanostructure as well as the lack of a polymeric binder in the catalyst layer.

  18. Influence of Surface Structure of Platinum Electrodes on Electrooxidation of CO

    Institute of Scientific and Technical Information of China (English)

    XIA Xing-hua; ZHANG Dai; SONG Yan-yan

    2003-01-01

    The oxidation of CO on platinum electrodes in an acid solution was studied with the conventional electrochemical methods and the on-line electrochemical mass spectroscopy. It was found that this reaction is strongly determined by the surface morphology of platinum. The pretreatment of platinum electrodes can change the surface properties dramatically, in consequence it can improve the electrocatalytic activity towards the electrooxidation of CO. The existence of surface active sites on the roughened platinum electrodes can be used to explain its high electrocatalysis towards the oxidation of CO.

  19. Platinum-polyaniline-modified carbon fiber electrode for the electrooxidation of methanol

    Institute of Scientific and Technical Information of China (English)

    WU Kezhong; MENG Xu; WANG Xindong; LI Jingling

    2005-01-01

    Platinum was electrodeposited onto a polyaniline-modified carbon fiber electrode by the cyclic voltammetric method in sulfuric acid, which may enable an increase in the level of platinum u tilization currently achieved in electrocatalyric systems. This electrode preparation consists of a two-step procedure: first electropolymerization of aniline onto carbon fiber and then electrodeposition of platinum. The catalytic activity of the platinum-polyaniline-modified carbon fiber electrode (Pt/PAni/C) was compared with that of a bare carbon fiber electrode (Pt/C) by the oxidation of methanol. The maximum oxidation current of methanol on Pt/PAni/C is 50.7 mA.cm-2, which is 6.7 times higher than 7.6 mA.cm-2 on the Pt/C.Scanning electron microscopy was used to investigate the dispersion of the platinum particles of about 0.4 μm.

  20. Controlled synthesis of porous platinum nanostructures for catalytic applications.

    Science.gov (United States)

    Cao, Yanqin; Zhang, Junwei; Yang, Yong; Huang, Zhengren; Long, Nguyen Viet; Nogami, Masayuki

    2014-02-01

    Porous platinum, that has outstanding catalytic and electrical properties and superior resistant characteristics to corrosion, has been widely applied in chemical, petrochemical, pharmaceutical, electronic, and automotive industries. As the catalytic activity and selectivity depend on the size, shape and structure of nanomaterials, the strategies for controlling these factors of platinum nanomaterials to get excellent catalytic properties are discussed. Here, recent advances in the design and preparation of various porous platinum nanostructures are reviewed, including wet-chemical synthesis, electro-deposition, galvanic replacement reaction and de-alloying technology. The applications of various platinum nanostructures are also discussed, especially in fuel cells.

  1. Fabrication of platinum coated nanoporous gold film electrode: A nanostructured ultra low-platinum loading electrocatalyst for hydrogen evolution reaction

    Energy Technology Data Exchange (ETDEWEB)

    Kiani, Abolfazl; Hatami, Somayeh [Department of Chemistry, Faculty of Science, University of Isfahan, Isfahan (Iran)

    2010-06-15

    The electrolytic hydrogen evolution reaction (HER) on platinum coated nanoporous gold film (PtNPGF) electrode is demonstrated. The deposition of platinum occurred as a spontaneous redox process in which a copper layer, obtained by underpotential deposition, was oxidized by platinum ions, which were reduced and simultaneously deposited. The present method could provide a very low Pt-loading electrode and the results demonstrated that ultra thin Pt coating effected efficiently and behaved as the nanostructured Pt for electrocatalytic hydrogen evolution reaction. The loading of Pt was calculated as 4.2 x 10{sup -3} {mu}g cm{sup -2} for PtNPGF electrode. The current density at -0.4 V and -0.8 V vs. Ag/AgCl was as high as 0.66 A {mu}g{sup -1} Pt and 3 A {mu}g{sup -1} Pt, respectively and the j{sub 0} was evaluated as 0.03 mA cm{sup -2} or 8 mA {mu}g{sup -1} Pt. The results indicated that increasing electrode area had no catalytic effect, but the nanostructure nature of as-fabricated electrode and submonolayer deposition of copper resulted in electrocatalytic activity for PtNPGF electrode. (author)

  2. Room temperature synthesis of colloidal platinum nanoparticles

    Indian Academy of Sciences (India)

    G Sarala Devi; V J Rao

    2000-12-01

    Efficient preparation of stable dispersions of platinum nanoparticles from platinous chloride (K2PtCl4) was achieved by simultaneous addition of capping polymer material. The size of platinum nanoparticles was controlled by changing the ratio of concentration of capping polymer material to the concentration of platinum cation used. The morphology of colloidal particles were studied by means of UV-visible spectrophotometry and transmission electron microscopy (TEM). Particle size increased with low reagent concentration. The change in absorption spectra with the particle size was observed, i.e. blue shift attributed to decrease in particle size.

  3. Recent advances in solid polymer electrolyte fuel cell technology with low platinum loading electrodes

    Science.gov (United States)

    Srinivasan, Supramaniam; Manko, David J.; Koch, Hermann; Enayetullah, Mohammad A.; Appleby, A. John

    1989-01-01

    Of all the fuel cell systems only alkaline and solid polymer electrolyte fuel cells are capable of achieving high power densities (greater than 1 W/sq cm) required for terrestrial and extraterrestrial applications. Electrode kinetic criteria for attaining such high power densities are discussed. Attainment of high power densities in solid polymer electrolyte fuel cells has been demonstrated earlier by different groups using high platinum loading electrodes (4 mg/sq cm). Recent works at Los Alamos National Laboratory and at Texas A and M University (TAMU) demonstrated similar performance for solid polymer electrolyte fuel cells with ten times lower platinum loading (0.45 mg/sq cm) in the electrodes. Some of the results obtained are discussed in terms of the effects of type and thickness of membrane and of the methods platinum localization in the electrodes on the performance of a single cell.

  4. Surface structured platinum electrodes for the electrochemical reduction of carbon dioxide in imidazolium based ionic liquids.

    Science.gov (United States)

    Hanc-Scherer, Florin A; Montiel, Miguel A; Montiel, Vicente; Herrero, Enrique; Sánchez-Sánchez, Carlos M

    2015-10-01

    The direct CO2 electrochemical reduction on model platinum single crystal electrodes Pt(hkl) is studied in [C2mim(+)][NTf2(-)], a suitable room temperature ionic liquid (RTIL) medium due to its moderate viscosity, high CO2 solubility and conductivity. Single crystal electrodes represent the most convenient type of surface structured electrodes for studying the impact of RTIL ion adsorption on relevant electrocatalytic reactions, such as surface sensitive electrochemical CO2 reduction. We propose here based on cyclic voltammetry and in situ electrolysis measurements, for the first time, the formation of a stable adduct [C2mimH-CO2(-)] by a radical-radical coupling after the simultaneous reduction of CO2 and [C2mim(+)]. It means between the CO2 radical anion and the radical formed from the reduction of the cation [C2mim(+)] before forming the corresponding electrogenerated carbene. This is confirmed by the voltammetric study of a model imidazolium-2-carboxylate compound formed following the carbene pathway. The formation of that stable adduct [C2mimH-CO2(-)] blocks CO2 reduction after a single electron transfer and inhibits CO2 and imidazolium dimerization reactions. However, the electrochemical reduction of CO2 under those conditions provokes the electrochemical cathodic degradation of the imidazolium based RTIL. This important limitation in CO2 recycling by direct electrochemical reduction is overcome by adding a strong acid, [H(+)][NTf2(-)], into solution. Then, protons become preferentially adsorbed on the electrode surface by displacing the imidazolium cations and inhibiting their electrochemical reduction. This fact allows the surface sensitive electro-synthesis of HCOOH from CO2 reduction in [C2mim(+)][NTf2(-)], with Pt(110) being the most active electrode studied.

  5. Electrochemical behaviour of platinum at polymer-modified glassy carbon electrodes

    Indian Academy of Sciences (India)

    Carmem L P S Zanta; C A Martínez-Huitle

    2007-07-01

    In this paper, the preparations and voltammetric characteristics of chitosan-modified glassy carbon (Ct-MGC) and platinum electrodes are studied. Ct-MGC can be used for pre-concentration and quantification of trace amounts of platinum in solution. At low pH medium, the complex of Pt with protonated group -NH3+ in the chitosan molecule has been confirmed by FT-IR spectra studies.

  6. Targeting Platinum Compounds: synthesis and biological activity

    OpenAIRE

    VAN ZUTPHEN, Steven

    2005-01-01

    Inspired by cisplatin, the inorganic drug discovered by Barnett Rosenberg in 1965, the research described in this thesis uses targeting ligands, or ligands varied in a combinatorial fashion, to find platinum complexes with more specific modes of action. These studies have lead to the development of novel (solid-phase) synthetic methods and to the discovery of several compounds with promising biological properties.

  7. Targeting Platinum Compounds : synthesis and biological activity

    NARCIS (Netherlands)

    Zutphen, Steven van

    2005-01-01

    Inspired by cisplatin, the inorganic drug discovered by Barnett Rosenberg in 1965, the research described in this thesis uses targeting ligands, or ligands varied in a combinatorial fashion, to find platinum complexes with more specific modes of action. These studies have lead to the development of

  8. DME Dissociation Reaction on Platinum Electrode Surface : A Quantitative Kinetic Analysis by In Situ IR Spectroscopy

    OpenAIRE

    Zhang, Yi; Tong, Yujin; Lu, Leilei; Osawa, Masatoshi; Ye, Shen

    2010-01-01

    The kinetics of electrocatalytic dissociation reaction of dimethyl ether (DME) on a platinum (Pt) polycrystalline electrode in an acidic solution yielding carbon monoxide (CO) has been quantitatively analyzed by in situ IR spectroscopy in the potential region between 100 and 500 mV (vs reversible hydrogen electrode). A two-step consecutive reaction model, an initial dehydrogenation step followed by a CO formation step, is proposed for the dissociation process of the DME molecule. The mechanis...

  9. Tris(2,2'-bipyridyl)ruthenium(Ⅱ) electrochemiluminescence (ECL) enhanced by rutin on platinum electrode

    Institute of Scientific and Technical Information of China (English)

    Da Xu; Zhong Lan Gao; Na Li; Ke An Li

    2007-01-01

    Ru(bpy)32+ electrochemiluminescence (ECL) was applied to determination of rutin. ECL intensity of Ru(bpy)32+could be enhanced in the presence of rutin in basic solution on platinum electrode. At pH 9.9, light emission intensity was found to be linear with rutin in the range of 1-50 μmol/L.

  10. In-situ FTIR Spectroelectrochemical and Electrochemical Studies of Ferrocene and Derivatives at a Platinum Electrode

    Institute of Scientific and Technical Information of China (English)

    Peng DU; Bao Kang JIN; Jia Xiang YANG; Xiang Qin LIN

    2004-01-01

    Redox mechanism of ferrocene, acetylferrocene, ferrocenyl cinnamenyl ketone at a platinum electrode was studied with cyclic voltammetry (CV) and in-situ Fourier transform infrared (FTIR) spectroelectrochemistry. The IR bands in the range of 2000-1000 cm-1 attributed to the stretching and ring vibrations of these materials show the main spectral changes in the processes.

  11. Electrocatalytic oxidation of methanol at platinum electrode modified with Eu-Fe cyanide-bridged binuclear complexes

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    The electrocatalytic oxidation of methanol at the platinum electrode modified with Eu-Fe cyanide-bridged binuclear complexes (Eu-Fe film) was investigated for the first time by cyclic voltammetry.Compared with the bare platinum electrode,the results showed that the modified electrode had excellent electrocatalytic activity for the oxidation of methanol;the oxidation peak potential shifted more negatively and the peak current increased about twenty times.The electrooxidation of methanol at the modified el...

  12. Cyclic voltammetric investigations of microstructured and platinum-covered glassy carbon electrodes in contact with a polymer electrolyte membrane

    Energy Technology Data Exchange (ETDEWEB)

    Scherer, G.G.; Veziridis, Z.; Staub, M. [Paul Scherrer Inst. (PSI), Villigen (Switzerland); Freimuth, H. [Inst. fuer Mikrotechnik Mainz IMM, Mainz (Germany)

    1997-06-01

    Model gas diffusion electrodes were prepared by microstructuring glassy carbon surfaces with high aspect ratios and subsequent deposition of platinum. These electrodes were characterized by hydrogen under-potential deposition (H-upd) in contact with a polymer electrolyte membrane employing cyclic voltametry. H-upd was found on platinum areas not in direct contact to the solid electrolyte, as long as a continuous platinum-path existed. A carbon surface between platinum acts as barrier for H-upd. (author) 4 figs., 5 refs.

  13. Anisotropic etching of platinum electrodes at the onset of cathodic corrosion.

    Science.gov (United States)

    Hersbach, Thomas J P; Yanson, Alexei I; Koper, Marc T M

    2016-08-24

    Cathodic corrosion is a process that etches metal electrodes under cathodic polarization. This process is presumed to occur through anionic metallic reaction intermediates, but the exact nature of these intermediates and the onset potential of their formation is unknown. Here we determine the onset potential of cathodic corrosion on platinum electrodes. Electrodes are characterized electrochemically before and after cathodic polarization in 10 M sodium hydroxide, revealing that changes in the electrode surface start at an electrode potential of -1.3 V versus the normal hydrogen electrode. The value of this onset potential rules out previous hypotheses regarding the nature of cathodic corrosion. Scanning electron microscopy shows the formation of well-defined etch pits with a specific orientation, which match the voltammetric data and indicate a remarkable anisotropy in the cathodic etching process, favouring the creation of (100) sites. Such anisotropy is hypothesized to be due to surface charge-induced adsorption of electrolyte cations.

  14. Synthesis of platinum nanoparticle electrocatalysts by atomic layer deposition

    Science.gov (United States)

    Lubers, Alia Marie

    successful hydrogen pumping catalysts, comparable to a commercial Pt/C catalyst. Synthesized Pt/C materials were also used as PEMFC catalysts. We found the ALD catalysts with lower platinum loading to be competitive with a commercial fuel cell catalyst, especially when exhibiting similar platinum particle characteristics. The functionalized carbon helped produce smaller and more dispersed platinum particles; however, it encouraged carbon corrosion within an electrode, severing electrical connections and lowering energy production. The most suitable chemistry for competitive Pt/C catalysts was produced by platinum ALD on unmodified carbon using hydrogen as a reactant. ALD is a promising method for fabricating electrocatalysts, which could help fuel cells become an economically viable alternative to fossil fuels.

  15. Formation and Oxidation of Hydrogen Molybdenum Bronze on platinum electrode in sulfuric acid solution

    Institute of Scientific and Technical Information of China (English)

    Jin LU; Jun Hua DU; Wei Shan Li; Jia Mo FU

    2004-01-01

    Hydrogen molybdenum bronze (HxMoO3) can be electrodeposited on platinum and oxidized in two steps to the hydrogen molybdenum bronze with less amount of hydrogen HyMoO3 (yplatinum electrode is cycled from -0.2 to 1.3V (vs. SCE) in 0.05 mol/L Na2MoO4 + 0.5 mol/L H2SO4 solution. During the formation of HxMoO3, the electrochemical reduction of molybdate existing in the form of polymolydate is reversible and is about a five-electron transfer reaction.

  16. Copper deposition and its replacement by platinum on a gold electrode

    Energy Technology Data Exchange (ETDEWEB)

    Misicak, Daniel; Ruthenburg, Travis C. [Department of Chemistry, University of California, Davis, CA 95616 (United States); Fawcett, W. Ronald, E-mail: wrfawcett@ucdavis.ed [Department of Chemistry, University of California, Davis, CA 95616 (United States)

    2010-11-01

    The decoration of single crystal gold electrodes with platinum using underpotential deposited copper as an intermediate has been studied in detail. It was found that a significant fraction of the copper is lost in the transfer process from the upd cell to the exchange cell. In addition the surface of the gold is not covered uniformly by the platinum. Nevertheless, acceleration of the electroreduction of oxygen was observed with a loading of 0.14 {mu}g cm{sup -2}. The structure of the decorating layer was studied by scanning electron microscopy and atomic force microscopy.

  17. Electrodeposition of uranium and thorium onto small platinum electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Reichenberger, Michael A., E-mail: mar89@ksu.edu [S.M.A.R.T. Laboratory, Mechanical and Nuclear Engineering Dept., Kansas State University, Manhattan, KS 66506 (United States); Ito, Takashi [Department of Chemistry, Kansas State University, 213 CBC Building, Manhattan, KS 66506-0401 (United States); Ugorowski, Philip B.; Montag, Benjamin W.; Stevenson, Sarah R.; Nichols, Daniel M.; McGregor, Douglas S. [S.M.A.R.T. Laboratory, Mechanical and Nuclear Engineering Dept., Kansas State University, Manhattan, KS 66506 (United States)

    2016-03-11

    Preparation of thin U- and Th-coated 0.3 mm diameter Pt working electrodes by the cyclic potential sweep method is described. Uranyl- and thorium hydroxide layers were electrodeposited from ethanol solutions containing 0.02 M natural uranyl and 0.02 M natural thorium nitrate, each with 3.6 M ammonium nitrate. The cell for electrodeposition was specially developed in order to accommodate the small working electrodes for this research by including a working electrode probe, 3-D translation stage, and microscope. The source material deposition was analyzed using digital microscopy and scanning electron microscopy, and confirmed using x-ray fluorescence measurements. The appropriate potential range for electrodeposition was determined to be −0.62 V to −0.64 V for a 0.3 mm diameter Pt working electrode placed 1 cm from the counter electrode. Smooth, uniform deposition was observed near the central region of the working electrode, while surface cracking and crystalline formations were found near the edge of the working electrode. The final procedure for sample substrate preparation, electrolytic solution preparation and electrodeposition are described.

  18. Electrodeposition of uranium and thorium onto small platinum electrodes

    Science.gov (United States)

    Reichenberger, Michael A.; Ito, Takashi; Ugorowski, Philip B.; Montag, Benjamin W.; Stevenson, Sarah R.; Nichols, Daniel M.; McGregor, Douglas S.

    2016-03-01

    Preparation of thin U- and Th-coated 0.3 mm diameter Pt working electrodes by the cyclic potential sweep method is described. Uranyl- and thorium hydroxide layers were electrodeposited from ethanol solutions containing 0.02 M natural uranyl and 0.02 M natural thorium nitrate, each with 3.6 M ammonium nitrate. The cell for electrodeposition was specially developed in order to accommodate the small working electrodes for this research by including a working electrode probe, 3-D translation stage, and microscope. The source material deposition was analyzed using digital microscopy and scanning electron microscopy, and confirmed using x-ray fluorescence measurements. The appropriate potential range for electrodeposition was determined to be -0.62 V to -0.64 V for a 0.3 mm diameter Pt working electrode placed 1 cm from the counter electrode. Smooth, uniform deposition was observed near the central region of the working electrode, while surface cracking and crystalline formations were found near the edge of the working electrode. The final procedure for sample substrate preparation, electrolytic solution preparation and electrodeposition are described.

  19. Sputtered platinum-iridium layers as electrode material for functional electrostimulation

    Energy Technology Data Exchange (ETDEWEB)

    Ganske, G., E-mail: ganske@iwe1.rwth-aachen.d [Institute of Materials in Electrical Engineering I, RWTH Aachen University, Sommerfeldstr. 24, D-52074 Aachen (Germany); Slavcheva, E. [Institute of Materials in Electrical Engineering I, RWTH Aachen University, Sommerfeldstr. 24, D-52074 Aachen (Germany); Institute of Electrochemistry and Energy Systems, Bulgarian Academy of Sciences, 1113 Sofia (Bulgaria); Ooyen, A. van; Mokwa, W.; Schnakenberg, U. [Institute of Materials in Electrical Engineering I, RWTH Aachen University, Sommerfeldstr. 24, D-52074 Aachen (Germany)

    2011-03-31

    In this study co-sputtered layers of platinum-iridium (PtIr) are investigated as stimulation electrode material. The effects of different sputter parameters on the morphology and the electrochemical behavior are examined. It is shown that films sputtered at the lowest incident energy possess the highest charge storage capacity (CSC). At a Pt:Ir atomic-ratio of 55:45 the obtained CSC of 22 mC/cm{sup 2} is enhanced compared to the standard stimulation material platinum (16 mC/cm{sup 2}) but inferior to iridium which has a CSC of 35 mC/cm{sup 2}. Long term cyclic voltammetry measurements show that PtIr can be activated which increases the CSC to 29 mC/cm{sup 2}. Also a change in the film morphology is observed. Sputtered platinum-iridium films promise to combine high mechanical strength and increased charge storage capacity.

  20. Three-dimensional ordered macroporous platinum-based electrode for methanol oxidation

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    In this paper, three-dimensional ordered macroporous platinum catalysts with high real surface area were synthesized using the inverted colloidal crystals template technique and have been employed for the electrooxidation of methanol. The morphology and electrocatalytic behavior of the porous Pt electrodes were investigated with atomic force microscopy and electrochemical techniques. For the same amount of Pt deposited, the real surface areas of the electrodes are 9.16 and 8.00 cm2 for the porous electrodes with pore size of 320 and 500 nm respectively, which are more than 5 times larger than the directly deposited Pt electrode (1.4 cm2). The pore size effect on the methanol electrooxidation was investigated by testing low concentration solution of methanol and porous materials with different pore sizes. The synthesized macroporous Pt electrode shows high stability toward the electrooxidation of methanol and is promising for the direct methanol fuel cell.

  1. Electrochemical characterisation and anodic stripping voltammetry at mesoporous platinum rotating disc electrodes.

    Science.gov (United States)

    Lozano-Sanchez, Pablo; Elliott, Joanne M

    2008-02-01

    Using the technique of liquid crystal templating a rotating disc electrode (RDE) was modified with a high surface area mesoporous platinum film. The surface area of the electrode was characterised by acid voltammetry, and found to be very high (ca. 86 cm(2)). Acid characterisation of the electrode produced distorted voltammograms was interpreted as being due to the extremely large surface area which produced a combination of effects such as localised pH change within the pore environment and also ohmic drop effects. Acid voltammetry in the presence of two different types of surfactant, namely Tween 20 and Triton X-100, suggested antifouling properties associated with the mesoporous deposit. Further analysis of the modified electrode using a redox couple in solution showed typical RDE behaviour although extra capacitive currents were observed due to the large surface area of the electrode. The phenomenon of underpotential deposition was exploited for the purpose of anodic stripping voltammetry and results were compared with data collected for microelectrodes. Underpotential deposition of metal ions at the mesoporous RDE was found to be similar to that at conventional platinum electrodes and mesoporous microelectrodes although the rate of surface coverage was found to be slower at a mesoporous RDE. It was found that a mesoporous RDE forms a suitable system for quantification of silver ions in solution.

  2. Microwave enhanced electroanalysis of formulations: processes in micellar media at glassy carbon and at platinum electrodes.

    Science.gov (United States)

    Ghanem, Mohamed A; Compton, Richard G; Coles, Barry A; Canals, Antonio; Marken, Frank

    2005-10-01

    The direct electroanalysis of complex formulations containing alpha-tocopherol (vitamin E) is possible in micellar solution and employing microwave-enhanced voltammetry. In the presence of microwave radiation substantial heating and current enhancement effects have been observed at 330 microm diameter glassy carbon electrodes placed into a micellar aqueous solution and both hydrophilic and highly hydrophobic redox systems are detected. For the water soluble Fe(CN)(6)(3-/4-) redox system in micellar aqueous solutions of 0.1 M NaCl and 0.1 M sodium dodecylsulfate (SDS) at low to intermediate microwave power, thermal effects and convection effects are observed. At higher microwave power, thermal cavitation is induced and dominates the mass transport at the electrode surface. For the micelle-soluble redox systems tert-butylferrocene and 2,5-di-tert-butyl-1,4-benzoquinone, strong and concentration dependent current responses are observed only in the presence of microwave radiation. For the oxidation of micelle-soluble alpha-tocopherol current responses at glassy carbon electrodes are affected by adsorption and desorption processes whereas at platinum electrodes, analytical limiting currents are obtained over a wide range of alpha-tocopherol concentrations. However, for the determination of alpha-tocopherol in a commercial formulation interference from proteins is observed at platinum electrodes and direct measurements are possible only over a limited concentration range and at glassy carbon electrodes.

  3. Response mechanism of platinum electrode to uncoupled ions(Ⅰ)——Response of platinum electrode to Pb2+,Cd2+,Ca2+ and Mg2+

    Institute of Scientific and Technical Information of China (English)

    史生华; 于书平; 刘鹏

    1997-01-01

    The transient response mechanism of the platinum electrode to the uncoupled ions may be interpreted with the mixed phase formation (MPF) model of the transient response of precipitate-based ion-selective electrodes to interfering tons for Kxy<<1 It is discovered that the peak height of the transient signal is related to the solubility of M(OH)2 and hydration heat of M2+ The relation between the positive peak height of transient signal of Pb2+ or Cd2+ and lgaM obey tne Nernst equation,while that of Ca2+ or Mg2+ does not.The equilibrium potential is not of Nernst response for all ions.

  4. Platinum and palladium alloys suitable as fuel cell electrodes

    DEFF Research Database (Denmark)

    2014-01-01

    The present invention concerns electrode catalysts used in fuel cells, such as proton exchange membrane (PEM) fuel cells. The invention is related to the reduction of the noble metal content and the improvement of the catalytic efficiency by low level substitution of the noble metal to provide new...

  5. Platinum and palladium alloys suitable as fuel cell electrodes

    DEFF Research Database (Denmark)

    2014-01-01

    The present invention concerns electrode catalysts used in fuel cells, such as proton exchange membrane (PEM) fuel cells. The invention is related to the reduction of the noble metal content and the improvement of the catalytic5 efficiency by low level substitution of the noble metal to provide new...

  6. Platinum and Palladium Alloys Suitable as Fuel Cell Electrodes

    DEFF Research Database (Denmark)

    2011-01-01

    The present invention concerns electrode catalysts used in fuel cells, such as proton exchange membrane (PEM) fuel cells. The invention is related to the reduction of the noble metal content and the improvement of the catalytic efficiency by low level substitution of the noble metal to provide new...

  7. LDRD final report on synthesis of shape-and size-controlled platinum and platinum alloy nanostructures on carbon with improved durability.

    Energy Technology Data Exchange (ETDEWEB)

    Shelnutt, John Allen; Garcia, Robert M.; Song, Yujiang; Moreno, Andres M.; Stanis, Ronald J.

    2008-10-01

    This project is aimed to gain added durability by supporting ripening-resistant dendritic platinum and/or platinum-based alloy nanostructures on carbon. We have developed a new synthetic approach suitable for directly supporting dendritic nanostructures on VXC-72 carbon black (CB), single-walled carbon nanotubes (SWCNTs), and multi-walled carbon nanotubes (MWCNTs). The key of the synthesis is to creating a unique supporting/confining reaction environment by incorporating carbon within lipid bilayer relying on a hydrophobic-hydrophobic interaction. In order to realize size uniformity control over the supported dendritic nanostructures, a fast photocatalytic seeding method based on tin(IV) porphyrins (SnP) developed at Sandia was applied to the synthesis by using SnP-containing liposomes under tungsten light irradiation. For concept approval, one created dendritic platinum nanostructure supported on CB was fabricated into membrane electrode assemblies (MEAs) for durability examination via potential cycling. It appears that carbon supporting is essentially beneficial to an enhanced durability according to our preliminary results.

  8. The laser welding of iridium-platinum tips to spark plug electrodes

    Science.gov (United States)

    Antoszewski, Bogdan; Tofil, Szymon

    2016-12-01

    The paper presents selected results of model and technological experiments of welding iridium-platinum tips to spark plug electrodes. Variants of welding technology included different ways of preparing materials and the use of different Nd: YAG lasers (Rofin BLS 720 and Rofin Integral). The results of technological tests were verified by the metallographic evaluation of joints. Performance tests when powered by biogas were conducted for selected variants of welding.

  9. On the activation energy of the formic acid oxidation reaction on platinum electrodes

    OpenAIRE

    Perales-Rondón, Juan V.; Herrero, Enrique; Feliu, Juan M

    2015-01-01

    A temperature dependent study on the formic acid oxidation reaction has been carried out in order to determine the activation energy of this reaction on different platinum single crystal electrodes, namely Pt(1 0 0), Pt(1 1 1), Pt(5 5 4) and Pt(5 4 4) surfaces. The chronoamperometric transients obtained with pulsed voltammetry have been analyzed to determine the current densities through the active intermediate and the CO formation rate. From the temperature dependency of those parameters, th...

  10. Platinum porphyrins as ionophores in polymeric membrane electrodes

    DEFF Research Database (Denmark)

    Lvova, Larisa; Verrelli, Giorgio; Nardis, Sara

    2011-01-01

    porphyrin dimers occurs in the membrane plasticized both with high or low dielectric constant plasticizer, due to a low oxophilicity of central Pt. The computational study of various anion–Pt(IV)TPPCl2 complex formation by means of semi-empirical and density functional theory (DFT) methods revealed a good......A comparative study of Pt(II)- and Pt(IV)-porphyrins as novel ionophores for anion-selective polymeric membrane electrodes is performed. Polymeric membranes of different compositions, prepared by varying plasticizers, cationic and anionic additives and Pt porphyrins, have been examined...... within the electrode membranes, while those based on Pt(IV)TPPCl2 operate via a mixed mode carrier mechanism, evidencing also a partial reduction of the starting ionophore to Pt(II)TPP. Spectrophotometric measurements of thin polymeric films indicate that no spontaneous formation of hydroxide ion bridged...

  11. Single crystal studies of platinum alloys for oxygen reduction electrodes

    DEFF Research Database (Denmark)

    Ulrikkeholm, Elisabeth Therese

    In this thesis the discovery, characterization and testing of new catalysts for the oxygen reduction reaction (ORR) is investigated. Experiments on sputter cleaned, polycrystalline Pt5Y and Pt5Gd crystals have shown that these alloys are excelent candidates for catalysts for the ORR. To mimic...... was performed on the samples as prepared, and after electrochemical cycling between 0.05 V and 1.0 V VS. RHE. and between 0.05 V and 1.2 V VS. RHE. Diffraction experiments carried out after the cycling to 1.0 V showed that an overlayer with crystalline order had been formed on the Y/Pt(111) sample and the Gd....../Pt(111) samples. These overlayers were slightly compressed compared to pure platinum and had a 6-fold symmetry. After cycling to 1.2 V VS. RHE. the correlation length of the overlayer on the Gd/Pt(111) sample had decreased significantly, and the overlayer on the Y/Pt(111) had disappeared completely...

  12. Surface oxide growth on platinum electrode in aqueous trifluoromethanesulfonic acid

    Science.gov (United States)

    Furuya, Yoshihisa; Mashio, Tetsuya; Ohma, Atsushi; Dale, Nilesh; Oshihara, Kenzo; Jerkiewicz, Gregory

    2014-10-01

    Platinum in the form of nanoparticles is the key and most expensive component of polymer electrolyte membrane fuel cells, while trifluoromethanesulfonic acid (CF3SO3H) is the smallest fluorinated sulfonic acid. Nafion, which acts as both electrolyte and separator in fuel cells, contains -CF2SO3H groups. Consequently, research on the electrochemical behaviour of Pt in aqueous CF3SO3H solutions creates important background knowledge that can benefit fuel cell development. In this contribution, Pt electro-oxidation is studied in 0.1 M aqueous CF3SO3H as a function of the polarization potential (Ep, 1.10 ≤ Ep ≤ 1.50 V), polarization time (tp, 100 ≤ tp ≤ 104 s), and temperature (T, 278 ≤ T ≤ 333 K). The critical thicknesses (X1), which determines the applicability of oxide growth theories, is determined and related to the oxide thickness (dox). Because X1 > dox for the entire range of Ep, tp, and T values, the formation of Pt surface oxide follows the interfacial place-exchange or the metal cation escape mechanism. The mechanism of Pt electro-oxidation is revised and expanded by taking into account possible interactions of cations, anions, and water molecules with Pt. A modified kinetic equation for the interfacial place exchange is proposed. The application of the interfacial place-exchange and metal cation escape mechanisms leads to an estimation of the Ptδ+-Oδ- surface dipole (μPtO), and the potential drop (Vox) and electric field (Eox) within the oxide. The Pt-anion interactions affect the oxidation kinetics by indirectly influencing the electric field within the double layer and the surface oxide.

  13. Experimental and theoretical studies on electropolymerization of polar amino acids on platinum electrode

    Energy Technology Data Exchange (ETDEWEB)

    Alhedabi, Taleb [Nanomedicine Lab EA4662, Bat. E, Université de Bourgogne Franche-Comté, UFR Sciences & Techniques, 16 route de Gray, 25030 Besançon Cedex (France); Department of Chemistry, College of Science, University of Thi-qar, Thi-qar (Iraq); Cattey, Hélène [Institut ICMUB - CNRS 6302, Université de Bourgogne Franche-Comté, UFR Sciences et Techniques Mirande, 9 Avenue Alain Savary, 21000 Dijon (France); Roussel, Christophe [Ecole Polytechnique Fédérale de Lausanne, Section of Chemistry and Chemical Engineering, Station 6, CH-1015 Lausanne (Switzerland); Blondeau-Patissier, Virginie [Institut FEMTO-ST, UMR CNRS 6174, Department Time-Frequency, 26, Chemin de l' épitaphe, 25030 Besançon Cedex (France); Gharbi, Tijani [Nanomedicine Lab EA4662, Bat. E, Université de Bourgogne Franche-Comté, UFR Sciences & Techniques, 16 route de Gray, 25030 Besançon Cedex (France); Herlem, Guillaume, E-mail: guillaume.herlem@univ-fcomte.fr [Nanomedicine Lab EA4662, Bat. E, Université de Bourgogne Franche-Comté, UFR Sciences & Techniques, 16 route de Gray, 25030 Besançon Cedex (France)

    2017-01-01

    The anodic oxidation of polar amino acids (L-serine, L-threonine, L-asparagine, and L-glutamine) in aqueous electrolyte on smooth platinum electrode was carried out by cyclic voltammetry coupled to electrochemical quartz crystal microbalance (EQCM). pH (zwitterion, acidic and alkaline) effects on their electrochemical behavior were examined. The maximum current values are measured for zwitterion species. In addition, the current increases with increasing of concentration and scan rate, and decreases with increasing pH. The resulting passivation was studied by spectroscopic analysis such as attenuated total reflection FT infrared spectroscopy (ATR-FTIR), X-ray photoelectron spectroscopy (XPS) and mass spectroscopy (MALDI-TOF). From thin film coatings observed on the electrode surface, peptide bonds are found, and are in favor of electropolymerization of these polar amino acids into poly-L-amino acids in an irreversible way. Scanning electronic microscopy was also used to study the morphology of these electrodeposited L-amino acids. The electrodeposited poly-L-amino acids on Pt electrode were tested as bioinspired transducer for pH sensing purposes. - Highlights: • Anodic oxidation of polar amino acids with uncharged R group on platinum electrode. • Polypeptide bonds revealed by ATR-IR and XPS spectroscopies. • The film growth depends on the chemistry of the polar amino acid.

  14. Advances in solid polymer electrolyte fuel cell technology with low-platinum-loading electrodes

    Science.gov (United States)

    Srinivasan, Supramaniam; Ticianelli, E. A.; Derouin, C. R.; Redondo, A.

    1987-01-01

    The Gemini Space program demonstrated the first major application of fuel cell systems. Solid polymer electrolyte fuel cells were used as auxiliary power sources in the spacecraft. There has been considerable progress in this technology since then, particularly with the substitution of Nafion for the polystyrene sulfonate membrane as the electrolyte. Until recently the performance was good only with high platinum loading (4 mg/sq cm) electrodes. Methods are presented to advance the technology by (1) use of low platinum loading (0.35 mg/sq cm) electrodes; (2) optimization of anode/membrane/cathode interfaces by hot pressing; (3) pressurization of reactant gases, which is most important when air is used as cathodic reactant; and (4) adequate humidification of reactant gases to overcome the water management problem. The high performance of the fuel cell with the low loading of platinum appears to be due to the extension of the three dimensional reaction zone by introduction of a proton conductor, Nafion. This was confirmed by cyclic voltammetry.

  15. Transparent platinum counter electrode for efficient semi-transparent dye-sensitized solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Iefanova, Anastasiia; Nepal, Jeevan; Poudel, Prashant; Davoux, Daren; Gautam, Umesh [Electrical Engineering and Computer Science Department, South Dakota State University, Brookings, SD 57006 (United States); Mallam, Venkataiah [Chemistry and Biochemistry Department, South Dakota State University, Brookings, SD 57006 (United States); Qiao, Qiquan [Electrical Engineering and Computer Science Department, South Dakota State University, Brookings, SD 57006 (United States); Logue, Brian [Chemistry and Biochemistry Department, South Dakota State University, Brookings, SD 57006 (United States); Baroughi, Mahdi Farrokh, E-mail: m.farrokhbaroughi@sdstate.edu [Electrical Engineering and Computer Science Department, South Dakota State University, Brookings, SD 57006 (United States)

    2014-07-01

    A method for fabrication of highly transparent platinum counter electrodes (CEs) has been developed based on spray coating of Pt nanoparticles (NPs) on hot substrates. This method leads to 86% reduction in Pt consumption reducing the Pt cost per peak watt of counter electrode from $0.79/Wp down to $0.11/Wp compared to the conventional Pt counter electrodes made by sputter deposition. The simplicity and low cost of this method provide a basis for an up-scalable fabrication process. The Pt NP layer is over 88% transparent, leading to overall transparency of 80% when incorporated with indium tin oxide/glass substrates for functional counter electrodes. This counter electrode exhibits a large surface area and high catalytic activity, comparable to that of the conventional opaque CEs. Semi-transparent dye-sensitized solar cells fabricated based on this counter electrode showed 6.17% power conversion efficiency. - Highlights: • Counter electrode (CE) prepared by spraying nanoparticle (NP) Pt on hot substrate. • Low cost and scalable fabrication process of CE. • The spray deposited CE uses 10 times less Pt compared to the sputtering method. • The CE is 80% transparent and exhibits a large surface and high catalytic activity. • A semitransparent dye-sensitized solar cell with Pt NP CE was 6.17% efficient.

  16. Electrochemical characteristics of nanostructured platinum electrodes--a cyclic voltammetry study.

    Science.gov (United States)

    Daubinger, P; Kieninger, J; Unmüssig, T; Urban, G A

    2014-05-14

    Platinum surfaces play a decisive role in catalysis in sensors, fuel cells, solar cells and other applications like neuronal stimulation and recording. Technical advances in nanotechnology contributed tremendously to the progress in these fields. A fundamental understanding of the chemical and physical interactions between the nanostructured surfaces and electrolytes is essential, but was barely investigated up to now. In this article, we present a wet-chemical process for the deposition of nanostructures on polycrystalline platinum surfaces. The electrochemically active surface area was increased by a factor of over 1000 times with respect to the geometrical surface. The influence of the nanostructures was examined in different acidic, alkaline, and neutral electrolytes. Comparing cyclic voltammograms of nanostructured and planar polycrystalline platinum revealed new insights into the microenvironment at the electrode-electrolyte interface. The characteristic features of the cyclic voltammograms were altered in their shape and strongly shifted with respect to the applied potential. In neutral buffered and unbuffered electrolytes the water window was expanded from 1.4 V to more than 2 V. The shifts were interpreted as local pH-changes and exhausted buffer capacity in direct proximity of the electrode surface due to the strong release and binding of protons, respectively. These polarized electrodes induce significant changes in the electrochemical potential of the electrolyte due to the high roughness of their surface. The electrochemical phenomena and the observed voltage shifts are crucial for the understanding of the basic mechanism at nanostructured electrodes and mandatory for designing fuel cells, sensors and many other devices.

  17. Electrochemical sensing of bisphenol using a multilayer graphene nanobelt modified photolithography patterned platinum electrode

    Science.gov (United States)

    Karthick Kannan, Padmanathan; Hu, Chunxiao; Morgan, Hywel; Moshkalev, Stanislav A.; Sekhar Rout, Chandra

    2016-09-01

    An electrochemical sensor has been developed for the detection of Bisphenol-A (BPA) using photolithographically patterned platinum electrodes modified with multilayer graphene nanobelts (GNB). Compared to bare electrodes, the GNB modified electrode exhibited enhanced BPA oxidation current, due to the high effective surface area and high adsorption capacity of the GNB. The sensor showed a linear response over the concentration range from 0.5 μM-9 μM with a very low limit of detection = 37.33 nM. In addition, the sensor showed very good stability and reproducibility with good specificity, demonstrating that GNB is potentially a new material for the development of a practical BPA electrochemical sensor with application in both industrial and plastic industries.

  18. Indium- and Platinum-Free Counter Electrode for Green Mesoscopic Photovoltaics through Graphene Electrode and Graphene Composite Catalysts: Interfacial Compatibility.

    Science.gov (United States)

    Yin, Jie; Zhou, Huawei; Liu, Zhicheng; Nie, Zhonghao; Li, Yinhao; Qi, Xuan; Chen, Baoli; Zhang, Yingtian; Zhang, Xianxi

    2016-03-01

    The scarcity and noble indium and platinum (Pt) are important elements in photoelectric nanomaterials. Therefore, development of low cost alternative materials to meet different practical applications is an urgent need. Two-dimensional (2D) layered graphene (GE) with unique physical, mechanical, and electrical properties has recently drawn a great deal of attention in various optoelectronic fields. Herein, the large scale (21 cm × 15 cm) high-quality single layer graphene (SLG) and multilayer graphene on a flexible plastic substrate PET were controllably prepared through layer-by-layer (LBL) transfer using the thermal release adhesive transfer method (TRA-TM). Transmission and antibending performance based on PET/GE were superior to traditional PET/ITO. The square resistance of a nine-layer graphene electrode reached approximately 58 Ω. Combined with our newly developed and highly effective Fe3O4@RGO (reduced graphene oxide) catalyst, the power conversion efficiency of the dye-sensitized solar cell (DSC) using flexible PET/GE conductive substrate was comparable to that of the DSC using the PET/ITO substrate. The desirable performance of PET/GE/Fe3O4@RGO counter electrodes (low-cost indium- and platinum-free counter electrodes) is attributed to the interfacial compatibility between 2D graphene composite catalyst (Fe3O4@RGO) and 2D PET/GE conductive substrate. In addition, DSCs that use only PET/GE (without Fe3O4@RGO catalyst) as counter electrodes can also achieve a photocurrent density of 6.30 mA cm(-2). This work is beneficial for fundamental research and practical applications of graphene and graphene composite in photovoltaics, photocatalytic water splitting, supercapacitors.

  19. Multistep electrochemical deposition of hierarchical platinum alloy counter electrodes for dye-sensitized solar cells

    Science.gov (United States)

    Zhang, Junjun; Ma, Mingming; Tang, Qunwei; Yu, Liangmin

    2016-01-01

    The preferred platinum counter electrode (CE) has been a burden for commercialization of dye-sensitized solar cell (DSSC) due to high expense and chemical corrosion by liquid electrolyte. In the current study, we have successfully realized the multistep deposition of platinum alloy CEs including PtNi, PtFe, and PtCo for liquid-junction DSSC applications. The preliminary results demonstrate that the enhanced electrochemical activities are attributable to high charge-transfer ability and matching work functions of the PtM (M = Ni, Fe, Co) alloy CEs to redox potential of I-/I3- electrolyte. The resultant DSSCs yield impressive power conversion efficiencies of 8.65%, 7.48%, and 7.08% with PtNi, PtFe, and PtCo CEs, respectively. On behalf of the competitive reactions between transition metals with liquid electrolyte, the PtM alloy CEs display enhanced long-term stability.

  20. Electrochemical Oxidation of Fragrances 4-Allyl and 4-Propenylbenzenes on Platinum and Carbon Paste Electrodes

    Directory of Open Access Journals (Sweden)

    Lai-Hao Wang

    2015-03-01

    Full Text Available The electrochemical oxidation behaviors of 4-allylbenzenes (estragole, safrole and eugenol and 4-propenylbenzenes (anethole, asarone and isoeugenol on platinum and carbon paste electrodes were investigated in a Britton-Robinson buffer (pH = 2.93 and 10.93, acetate buffer, phosphate buffer solutions (pH = 2.19 and 6.67, and acetonitrile containing various supporting electrolytes examined lithium perchlorate. Their oxidation potential with Hammett (free-energy relationships and possible reaction mechanisms were discussed.

  1. Electron transfer processes occurring on platinum neural stimulating electrodes: calculated charge-storage capacities are inaccessible during applied stimulation

    Science.gov (United States)

    Hudak, Eric M.; Kumsa, Doe W.; Martin, Heidi B.; Mortimer, J. Thomas

    2017-08-01

    Objective. Neural prostheses employing platinum electrodes are often constrained by a charge/charge-density parameter known as the Shannon limit. In examining the relationship between charge injection and observed tissue damage, the electrochemistry at the electrode-tissue interface should be considered. The charge-storage capacity (CSC) is often used as a predictor of how much charge an electrode can inject during stimulation, but calculating charge from a steady-state i-E curve (cyclic voltammogram) over the water window misrepresents how electrodes operate during stimulation. We aim to gain insight into why CSC predictions from classic i-E curves overestimate the amount of charge that can be injected during neural stimulation pulsing. Approach. In this study, we use a standard electrochemical technique to investigate how platinum electrochemistry depends on the potentials accessed by the electrode and on the electrolyte composition. Main results. The experiments indicate: (1) platinum electrodes must be subjected to a ‘cleaning’ procedure in order to expose the maximum number of surface platinum sites for hydrogen adsorption; (2) the ‘cleaned’ platinum surface will likely revert to an obstructed condition under typical neural stimulation conditions; (3) irreversible oxygen reduction may occur under neural stimulation conditions, so the consequences of this reaction should be considered; and (4) the presence of the chloride ion (Cl-) or proteins (bovine serum albumin) inhibits oxide formation and alters H adsorption. Significance. These observations help explain why traditional CSC calculations overestimate the charge that can be injected during neural stimulation. The results underscore how careful electrochemical examination of the electrode-electrolyte interface can result in more accurate expectations of electrode performance during applied stimulation.

  2. Green Synthesis, Characterization and Uses of Palladium/Platinum Nanoparticles

    Science.gov (United States)

    Siddiqi, Khwaja Salahuddin; Husen, Azamal

    2016-11-01

    Biogenic synthesis of palladium (Pd) and platinum (Pt) nanoparticles from plants and microbes has captured the attention of many researchers because it is economical, sustainable and eco-friendly. Plant and their parts are known to have various kinds of primary and secondary metabolites which reduce the metal salts to metal nanoparticles. Shape, size and stability of Pd and Pt nanoparticles are influenced by pH, temperature, incubation time and concentrations of plant extract and that of the metal salt. Pd and Pt nanoparticles are broadly used as catalyst, as drug, drug carrier and in cancer treatment. They have shown size- and shape-dependent specific and selective therapeutic properties. In this review, we have discussed the biogenic fabrication of Pd/Pt nanoparticles, their potential application as catalyst, medicine, biosensor, medical diagnostic and pharmaceuticals.

  3. Voltammetric Determination of Salbutamol Based on Electrochemical Oxidation at Platinum and Glassy Carbon Electrodes

    OpenAIRE

    YILMAZ, Niyazi; Sibel A. Özkan; USLU, Bengi

    1998-01-01

    The oxidative behavior of salbutamol was studied as a function of pH at platinum and activated glassy carbon electrodes. Between pH 1.9 and 12.0, the drug was characterized by a single oxidation step at both electrodes. The process was found to be dependent on the nature and the pH of the supporting elctrolyte. The procedure yielded a linear concentration range of 1 \\times 10-4 to 1 \\times 10-3 M and 2 \\times 10-5 to 1 \\times 10-3 M in 0.2 M sulphuric acid and a phosphate buffer of pH 6, at p...

  4. Platinum-based nanocomposite electrodes for low-temperature solid oxide fuel cells with extended lifetime

    Science.gov (United States)

    Lee, Yoon Ho; Cho, Gu Young; Chang, Ikwhang; Ji, Sanghoon; Kim, Young Beom; Cha, Suk Won

    2016-03-01

    Due to its high catalytic activity and convenient fabrication procedure that uses physical vapor deposition (PVD), nanofabricated platinum (Pt) is widely used for low temperature operating solid oxide fuel cells (LT-SOFC). However, the poor thermal stability of nanofabricated Pt accelerates cell performance degradation. To solve this problem, we apply a thermal barrier coating and use the dispersion hardening process for the nanofabrication of Pt by sputter device. Through morphological and electrochemical data, GDC modified nano-porous Pt electrodes shows improved performance and thermal stability at the operating temperature of 500 °C. While the peak power density of pure Pt sample is 6.16 mW cm-2 with a performance degradation of 43% in an hour, the peak power density of the GDC modified Pt electrodes are in range of 7.42-7.91 mW cm-2 with a 7-16% of performance degradation.

  5. Palladium and platinum-palladium bi-layer based counter electrode for dye-sensitized solar cells with modified photoanode

    Science.gov (United States)

    Mokurala, Krishnaiah; Kamble, Anvita; Nemala, Siva Sankar; Bhargava, Parag; Mallick, Sudhanshu

    2015-06-01

    Dye sensitized solar cells (DSSCs) were fabricated with palladium (Pd) and platinum-palladium (Pt-Pd) bi-layer as counter electrodes, respectively. Effects of photoanode thickness and morphology on device performance were studied. DSSCs fabricated with Pd and Pd-Pt as counter electrode (CE) showed photo conversion efficiency of 4.30% and 6.20%, respectively as compared to Platinum (Pt) based CE which showed 6.65% efficiency. Lower device performance was explained with help of cyclic voltammetry and electrochemical impedance spectroscopy (EIS) measurements of the cells.

  6. Solid-state dye-sensitized solar cells using polymerized ionic liquid electrolyte with platinum-free counter electrode.

    Science.gov (United States)

    Kawano, Ryuji; Katakabe, Toru; Shimosawa, Hironobu; Nazeeruddin, Md Khaja; Grätzel, Michael; Matsui, Hiroshi; Kitamura, Takayuki; Tanabe, Nobuo; Watanabe, Masayoshi

    2010-02-28

    A polymerized ionic liquid electrolyte and platinum-free counter electrode are employed for solid-state DSSCs. We are able to prepare a thin polymer electrolyte layer on nanocrystalline TiO(2) in order to reduce the cell resistance. In addition, an electron conductive polymer (PEDOT/PSS) or a single-wall carbon nanotube gel is used with the cell as an inexpensive counter electrode instead of platinum. The overall photon-to-current conversion efficiency was 3.7% in this study.

  7. Effect of platinum-nanodendrite modification on the glucose-sensing properties of a zinc-oxide-nanorod electrode

    Energy Technology Data Exchange (ETDEWEB)

    Abdul Razak, Khairunisak, E-mail: khairunisak@usm.my [School of Materials and Mineral Resources Engineering, Universiti Sains Malaysia, 14300 Nibong Tebal, Penang (Malaysia); NanoBiotechnology Research & Innovation (NanoBRI), INFORMM, Universiti Sains Malaysia, 11800 USM, Penang (Malaysia); Neoh, Soo Huan; Ridhuan, N.S.; Mohamad Nor, Noorhashimah [School of Materials and Mineral Resources Engineering, Universiti Sains Malaysia, 14300 Nibong Tebal, Penang (Malaysia)

    2016-09-01

    Highlights: • Effect of PtNDs on ZnONRs/ITO glucose sensor was studied. • Well-defined PtNDs synthesis using 20 mM K{sub 2}PtCl{sub 4} produced good dispersion between nanodendrites with uniform particle size. • Nafion coating significantly improved the catalytic oxidation of glucose sensor. • Nafion/GO{sub x}/PtNDs/ZnONRs/ITO demonstrated better properties compared with Nafion/GO{sub x}/PtNDs/ITO and Nafion/GO{sub x}/ZnONRs/ITO electrodes. - Abstract: The properties of ZnO nanorods (ZnONRs) decorated with platinum nanodendrites (PtNDs) were studied. Various sizes of PtNDs were synthesized and spin coated onto ZnONRs, which were grown on indium–titanium–oxide (ITO) substrates through a low-temperature hydrothermal method. Scanning electron microscopy and X-ray diffraction analyses were conducted to analyze the morphology and structural properties of the electrodes. The effects of PtND size, glucose concentration, and Nafion amount on glucose-sensing properties were investigated. The glucose-sensing properties of electrodes with immobilized glucose oxidase (GO{sub x}) were measured using cyclic voltammetry. The bio-electrochemical properties of Nafion/GO{sub x}/42 nm PtNDs/ZnONRs/ITO glucose sensor was observed with linear range within 1–18 mM, with a sensitivity value of 5.85 μA/mM and a limit of detection of 1.56 mM. The results of this study indicate that PtNDs/ZnONRs/ITO has potential in glucose sensor applications.

  8. OXYGEN BUBBLE DEVELOPMENT ON A PLATINUM ELECTRODE IN BOROSILICATE GLASS MELT BY THE EFFECT OF ALTERNATING CURRENT

    Directory of Open Access Journals (Sweden)

    Jiri Matej

    2014-10-01

    or on alternating reduction and re-forming of oxidic layer on the electrode in the transition range, has been suggested. Start of bubble evolution at low alternating current density has also been observed in simple sodium-calcium-silicate glass melt. A relation between bubble release and platinum corrosion caused by reduced silicon has been suggested

  9. Kinetics of dissociative adsorption of formic acid on electrodes of tetrahexahedral platinum nanocrystals

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    In the present paper we study the kinetics of dissociative adsorption of formic acid on the electrode of tetrahexahedral platinum nanocrystals (THH Pt NCs). In situ FTIR spectroscopic results demonstrate that HCOOH can be oxidized to CO2 at a low potential (-0.2 V(SCE)) on the THH Pt NCs electrode, and the chemical bonds inside formic acid molecule are broken to form adsorbed COL species. The kinetics of the dissociative adsorption of HCOOH was quantitatively investigated by employing programmed potential step technique. It has been determined that, in 5 × 10-3 mol·L-1 HCOOH + 0.1 mol·L-1 H2SO4 solution, the maximal value of the average rate (υamax) of dissociative adsorption of HCOOH on a commercial Pt/C catalyst electrode is 8.58 × 10-10 mol·cm-2·s-1, while on the THH Pt NCs the υamax is 1.5 times larger than the υamax measured on Pt/C and reaches 13.19 × 10-10 mol·cm-2·s-1. The results have revealed that the reactivity of the THH Pt NCs is much higher than that of the Pt/C catalysts.

  10. Coatings of Different Carbon Nanotubes on Platinum Electrodes for Neuronal Devices: Preparation, Cytocompatibility and Interaction with Spiral Ganglion Cells.

    Directory of Open Access Journals (Sweden)

    Niklas Burblies

    Full Text Available Cochlear and deep brain implants are prominent examples for neuronal prostheses with clinical relevance. Current research focuses on the improvement of the long-term functionality and the size reduction of neural interface electrodes. A promising approach is the application of carbon nanotubes (CNTs, either as pure electrodes but especially as coating material for electrodes. The interaction of CNTs with neuronal cells has shown promising results in various studies, but these appear to depend on the specific type of neurons as well as on the kind of nanotubes. To evaluate a potential application of carbon nanotube coatings for cochlear electrodes, it is necessary to investigate the cytocompatibility of carbon nanotube coatings on platinum for the specific type of neuron in the inner ear, namely spiral ganglion neurons. In this study we have combined the chemical processing of as-delivered CNTs, the fabrication of coatings on platinum, and the characterization of the electrical properties of the coatings as well as a general cytocompatibility testing and the first cell culture investigations of CNTs with spiral ganglion neurons. By applying a modification process to three different as-received CNTs via a reflux treatment with nitric acid, long-term stable aqueous CNT dispersions free of dispersing agents were obtained. These were used to coat platinum substrates by an automated spray-coating process. These coatings enhance the electrical properties of platinum electrodes, decreasing the impedance values and raising the capacitances. Cell culture investigations of the different CNT coatings on platinum with NIH3T3 fibroblasts attest an overall good cytocompatibility of these coatings. For spiral ganglion neurons, this can also be observed but a desired positive effect of the CNTs on the neurons is absent. Furthermore, we found that the well-established DAPI staining assay does not function on the coatings prepared from single-wall nanotubes.

  11. Mechanical polishing as an improved surface treatment for platinum screen-printed electrodes

    Directory of Open Access Journals (Sweden)

    Junqiao Lee

    2016-07-01

    Full Text Available The viability of mechanical polishing as a surface pre-treatment method for commercially available platinum screen-printed electrodes (SPEs was investigated and compared to a range of other pre-treatment methods (UV-Ozone treatment, soaking in N,N-dimethylformamide, soaking and anodizing in aqueous NaOH solution, and ultrasonication in tetrahydrofuran. Conventional electrochemical activation of platinum SPEs in 0.5 M H2SO4 solution was ineffective for the removal of contaminants found to be passivating the screen-printed surfaces. However, mechanical polishing showed a significant improvement in hydrogen adsorption and in electrochemically active surface areas (probed by two different redox couples due to the effective removal of surface contaminants. Results are also presented that suggest that SPEs are highly susceptible to degradation by strong acidic or caustic solutions, and could potentially lead to instability in long-term applications due to continual etching of the binding materials. The ability of SPEs to be polished effectively extends the reusability of these traditionally “single-use” devices.

  12. Synthesis and characterization of new platinum(II) and platinum(IV) triphyrin complexes.

    Science.gov (United States)

    Xue, Zhaoli; Kuzuhara, Daiki; Ikeda, Shinya; Okujima, Tetsuo; Mori, Shigeki; Uno, Hidemitsu; Yamada, Hiroko

    2013-02-18

    Metalation of 6,13,20,21-tetrakis(4-methylphenyl)-22H-tribenzo[14]triphyrin(2.1.1) with PtCl(2) gave a platinum(II) complex having a square-planar coordination structure with two pyrrolic nitrogen atoms and two chloride ions, with a saddle-shaped macrocycle. This platinum(II) complex was easily oxidized by air to an octahedral platinum(IV) complex coordinated by three pyrrolic nitrogen atoms as a tridentate monoanionic cyclic ligand and three chloride ions. When platinum(II) triphyrin was crystallized in air, an oxygen atom was incorporated between two α-carbon atoms of the pyrroles as an oxygen bridge to intercept the 14π aromatic system.

  13. Chemical solution deposition of ferroelectric yttrium-doped hafnium oxide films on platinum electrodes

    Science.gov (United States)

    Starschich, S.; Griesche, D.; Schneller, T.; Waser, R.; Böttger, U.

    2014-05-01

    Ferroelectric hafnium oxide films were fabricated by chemical solution deposition with a remnant polarization of >13 μC/cm2. The samples were prepared with 5.2 mol. % yttrium-doping and the thickness varied from 18 nm to 70 nm. The hafnium oxide layer was integrated into a metal-insulator-metal capacitor using platinum electrodes. Due to the processing procedure, no thickness dependence of the ferroelectric properties was observed. To confirm the ferroelectric nature of the deposited samples, polarization, capacitance, and piezoelectric displacement measurements were performed. However, no evidence of the orthorhombic phase was found which has been proposed to be the non-centrosymmetric, ferroelectric phase in HfO2.

  14. Effect of the deposition conditions of platinum electrodes on their performance as resistive heating elements

    Directory of Open Access Journals (Sweden)

    Andrei Ionut Mardare

    2004-09-01

    Full Text Available The performance of different platinum electrodes used as resistive heating elements was studied. Pt films having different thickness were deposited by RF magnetron sputtering at room temperature followed by post-deposition annealing at 700 ºC or made in-situ at 700 ºC. The Pt films were deposited over oxidized silicon, using Ti or Zr buffer layers. The resistance dependence on temperature was studied by applying increasing currents (up to 2A to the Pt films. Changes in the microstructure of the Pt films account for the changes in the temperature coefficient of resistance as a function of the deposition parameters. The maximum substrate temperature (675 ºC was obtained when using 200 nm Pt films deposited at 700 ºC over Ti, with a power consumption of only 16 W.

  15. Flexible, Low Cost, and Platinum-Free Counter Electrode for Efficient Dye-Sensitized Solar Cells.

    Science.gov (United States)

    Ali, Abid; Shehzad, Khurram; Ur-Rahman, Faiz; Shah, Syed Mujtaba; Khurram, Muhammad; Mumtaz, Muhammad; Sagar, Rizwan Ur Rehman

    2016-09-28

    A platinum-free counter electrode composed of surface modified aligned multiwalled carbon nanotubes (MWCNTs) fibers was fabricated for efficient flexible dye-sensitized solar cells (DSSCs). Surface modification of MWCNTs fibers with simple one step hydrothermal deposition of cobalt selenide nanoparticles, confirmed by scanning electron microscopy and X-ray diffraction, provided a significant improvement (∼2-times) in their electrocatalytic activity. Cyclic voltammetry and electrochemical impedance spectroscopy suggest a photoelectric conversion efficiency of 6.42% for our modified fibers, higher than 3.4% and 5.6% efficeincy of pristine MWCNTs fiber and commonly used Pt wire, respectively. Good mechanical and performance stability after repeated bending and high output voltage for in-series connection suggest that our surface modified MWCNTs fiber based DSSCs may find applications as flexible power source in next-generation flexible/wearable electronics.

  16. METHYLENE BLUE MINERALISATION BY ELECTROCHEMICAL PROCESS MEDIATED BY COBALT CATALYST ON PLATINUM ELECTRODES

    Directory of Open Access Journals (Sweden)

    Ouarda BRAHMIA

    2015-12-01

    Full Text Available In this study, the electrochemical decolorization of the Methylene Blue dye on Platinum electrodes was assessed. Direct oxidation results demonstrate a partial pollutant degradation reaching a maximum of 64 %. However, the addition of a small amount of a redox mediator Co2+/3+ is efficiently able to electrocatalyse the Methylene blue oxidation by shortening significantly the treatment time and enhancing clearly the dye decolorization rate. Nearly complete decolorization was achieved (92 % in 1h 45min. The most striking results achieved within the cyclic voltammetry study demonstrate undoubtedly the pollutant mineralisation. Electrochemical experiments were performed using the spectrophotometric method, which is very convenient, easy and allows monitoring the spectral changes as well as the determination of the dye concentration during the process. The kinetics data show a first-order indirect oxidation kinetics. A mechanism was proposed to explain the different phenomenon during the electrochemical process.

  17. Change of the work function of platinum electrodes induced by halide adsorption.

    Science.gov (United States)

    Gossenberger, Florian; Roman, Tanglaw; Forster-Tonigold, Katrin; Groß, Axel

    2014-01-01

    The properties of a halogen-covered platinum(111) surface have been studied by using density functional theory (DFT), because halides are often present at electrochemical electrode/electrolyte interfaces. We focused in particular on the halogen-induced work function change as a function of the coverage of fluorine, chlorine, bromine and iodine. For electronegative adsorbates, an adsorption-induced increase of the work function is usually expected, yet we find a decrease of the work function for Cl, Br and I, which is most prominent at a coverage of approximately 0.25 ML. This coverage-dependent behavior can be explained by assuming a combination of charge transfer and polarization effects on the adsorbate layer. The results are contrasted to the adsorption of fluorine on calcium, a system in which a decrease in the work function is also observed despite a large charge transfer to the halogen adatom.

  18. Synthesis, characterization and application of electrode materials

    Energy Technology Data Exchange (ETDEWEB)

    He, Lin [Iowa State Univ., Ames, IA (United States)

    1995-07-07

    It has been known that significant advances in electrochemistry really depend on improvements in the sensitivity, selectivity, convenience, and/or economy of working electrodes, especially through the development of new working electrode materials. The advancement of solid state chemistry and materials science makes it possible to provide the materials which may be required as satisfactory electrode materials. The combination of solid state techniques with electrochemistry expands the applications of solid state materials and leads to the improvement of electrocatalysis. The study of Ru-Ti4O7 and Pt-Ti4O7 microelectrode arrays as introduced in paper 1 and paper 4, respectively, focuses on their synthesis and characterization. The synthesis is described by high temperature techniques for Ru or Pt microelectrode arrays within a conductive Ti4O7ceramic matrix. The characterization is based on the data obtained by x-ray diffractometry, scanning electron microscopy, voltammetry and amperometry. These microelectrode arrays show significant enhancement in current densities in comparison to solid Ru and Pt electrodes. Electrocatalysis at pyrochlore oxide Bi2Ru2O7.3 and Bi2Ir2O7 electrodes are described in paper 2 and paper 3, respectively. Details are reported for the synthesis and characterization of composite Bi2Ru2O7.3 electrodes. Voltammetric data are examined for evidence that oxidation can occur with transfer of oxygen to the oxidation products in the potential region corresponding to anodic discharge of H2O with simultaneous evolution of O2. Paper 3 includes electrocatalytic activities of composite Bi2Ir2O7 disk electrodes for the oxidation of I- and the reduction of IO3-.

  19. Synthesis and characterization of phosphorescent platinum complexes containing phenylpyridazine

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sang Jin; Kang, Seok; Lee, Seung Hee; Hwang, Kwang Jin; Park, Noh Kil; Kim, Young Sik

    2004-01-05

    Synthesis and characterization of a series of square planar Pt(II)-phenylpyridazine complexes are reported. The complexes have the general structure of (C-N)Pt(O-O), where HC-N is 3-phenyl-pyridazine (ppdz), 3-(3'-trifluoromethylphenyl)pyridazine (3'tfmppdz), 3-(3'-methoxyphenyl)-pyridazine (3'meoppdz), 3-(4'-methoxyphenyl)pyridazine (4'meoppdz), or 3-phenyl-6-chloro-pyridazine (6Clppdz) and HO-O is acetylacetone (Hacac). Reaction of K{sub 2}PtCl{sub 4} with a HC-N ligand forms the dimer, (C-N)Pt({mu}-Cl){sub 2}Pt(C-N), which is cleaved with Hacac to give the corresponding monomer, (C-N)Pt(O-O). The emission characteristics of these complexes are governed by the substituents of the cyclometalating ligands, showing emission {lambda}{sub max} values from 508 to 610 nm. Strong spin-orbit coupling of the platinum atom allows for the formally forbidden mixing of the {sup 1}MLCT with the {sup 3}MCLT and {sup 3}({pi}-{pi}*) states.

  20. Glycolate adsorption at gold and platinum electrodes: A theoretical and in situ spectroelectrochemical study

    Energy Technology Data Exchange (ETDEWEB)

    Delgado, Jose Manuel; Blanco, Raquel; Orts, Jose Manuel; Perez, Juan Manuel [Departamento de Quimica Fisica e Instituto Universitario de Electroquimica, Universidad de Alicante, Apartado 99, E-03080 Alicante (Spain); Rodes, Antonio, E-mail: Antonio.Rodes@ua.e [Departamento de Quimica Fisica e Instituto Universitario de Electroquimica, Universidad de Alicante, Apartado 99, E-03080 Alicante (Spain)

    2010-02-15

    The adsorption of glycolate anions at sputtered gold thin-film electrodes was studied in perchloric acid solutions by cyclic voltammetry experiments combined with in situ Surface Enhanced Raman Scattering (SERS) and Surface Enhanced Infrared Reflection Absorption Spectroscopy under attenuated total reflection conditions (ATR-SEIRAS). Theoretical harmonic vibrational frequencies and band intensities obtained from B3LYP/LANL2DZ,6-31+G(d) calculations for glycolate species adsorbed on Au clusters with (1 1 1) orientation were used to interpret the experimental spectra. Vibrational data confirm the bidentate bonding of glycolate anions through the oxygen atoms of the carboxylate group, in a bridge configuration with the OCO plane perpendicular to the metal surface. The DFT calculations show no significant effect of the total charge of the metal cluster-adsorbate adduct on the vibrational frequencies of adsorbed glycolate species. The infrared experimental study is extended to platinum films electrochemically deposited onto sputtered gold thin-film electrodes showing the potential-dependent formation of adsorbed CO upon dissociative adsorption of glycolate anions. As in the case of gold, the reversible adsorption of glycolate anions takes place in a bidentate configuration as predicted by DFT calculations for glycolate adsorbed on Pt(1 1 1) clusters. At low glycolic acid concentration, the in situ ATR-SEIRA spectra evidence the formation of adsorbed oxalate as reaction intermediate.

  1. Electrophoretic deposition of ligand-free platinum nanoparticles on neural electrodes affects their impedance in vitro and in vivo with no negative effect on reactive gliosis

    OpenAIRE

    Angelov, Svilen D.; Koenen, Sven; Jakobi, Jurij; Heissler, Hans E.; Alam, Mesbah; Schwabe, Kerstin; Barcikowski, Stephan; Krauss, Joachim K.

    2016-01-01

    Background Electrodes for neural stimulation and recording are used for the treatment of neurological disorders. Their features critically depend on impedance and interaction with brain tissue. The effect of surface modification on electrode impedance was examined in vitro and in vivo after intracranial implantation in rats. Electrodes coated by electrophoretic deposition with platinum nanoparticles (NP;

  2. Electrochemical detection of hydrogen peroxide at a waxed graphite electrode modified with platinum-decorated carbon nanotubes

    Institute of Scientific and Technical Information of China (English)

    SHI Qiao-cui; ZENG Wen-fang; ZHU Yunu

    2009-01-01

    Platinum-decorated carbon nanotubes (CNT-Pt) were produced by the chemical reduction method. A novel modified electrode was fabricated by intercalated CNT-Pt in the surface of waxed graphite, which provided excellent electro-catalytic activity and selectivity for both oxidation and reduction of hydrogen peroxide. The current response of the modified electrode for hydrogen peroxide was very rapid and the detection limits in amperometry are 2.5×10-6 mol/L at reduction potential and 4.8×10-6 mol/L at oxidation potential. It was desmonstrated that the electrode with high electro-activity was a suitable basic electrode for preparing enzyme electrode.

  3. Counter electrodes from polymorphic platinum-nickel hollow alloys for high-efficiency dye-sensitized solar cells

    Science.gov (United States)

    Wang, Jing; Tang, Qunwei; He, Benlin; Yang, Peizhi

    2016-10-01

    Precious platinum counter electrode (CE) has been an economic burden for future commercialization of dye-sensitized solar cells (DSSCs). Low-platinum alloy CE catalysts are promising in bringing down the solar cell cost without reducing photovoltaic performances. We present here a facile strategy of fabricating ZnO nanorods assisted platinum-nickel (PtNi) alloy microtube CEs for liquid-junction DSSCs. By adjusting the concentration of zinc precursors, the ZnO nanostructures and therefore PtNi alloys are optimized to maximize the electrocatalytic behaviors toward triiodide reduction reaction. The maximal power conversion efficiency is determined as high as 8.43% for liquid-junction DSSC device with alloyed PtNi microtube CE synthesized at 75 mM Zn(NO3)2 aqueous solution, yielding a 32.8% enhancement in cell efficiency in comparison with the solar cell from pristine platinum electrode. Moreover, the dissolution resistance and charge-transfer ability toward redox couples have also been markedly enhanced due to competitive dissolution reactions and alloyed effects.

  4. Platinum group metal nitrides and carbides: synthesis, properties and simulation

    Energy Technology Data Exchange (ETDEWEB)

    Ivanovskii, Alexander L [Institute of Solid State Chemistry, Urals Branch of the Russian Academy of Sciences, Ekaterinburg (Russian Federation)

    2009-04-30

    Experimental and theoretical data on new compounds, nitrides and carbides of the platinum group 4d and 5d metals (ruthenium, rhodium, palladium, osmium, iridium, platinum), published over the past five years are summarized. The extreme mechanical properties of platinoid nitrides and carbides, i.e., their high strength and low compressibility, are noted. The prospects of further studies and the scope of application of these compounds are discussed.

  5. Efficient Dye-Sensitized Solar Cells Made from High Catalytic Ability of Polypyrrole@Platinum Counter Electrode

    OpenAIRE

    Ma, Xingping; Yue, Gentian; Wu, Jihuai; Lan, Zhang

    2015-01-01

    Polypyrrole@platinum (PPy@Pt) composite film was successfully synthesized by using a one-step electrochemical method and served as counter electrode (CE) for efficient dye-sensitized solar cells (DSSCs). The PPy@Pt CE with one-dimensional structure exhibited excellent electrocatalytic activity and superior charge transfer resistance for I−/I3 − electrolyte after being the cyclic voltammetry and electrochemical impedance spectroscopy tested. The photocurrent-photovoltage curves were further us...

  6. The Effects of Organic Adsorbates on the Underpotential and Bulk Deposition of Silver on Polycrystalline Platinum Electrodes

    Science.gov (United States)

    1994-03-14

    the Underpotential and Bulk Deposition of Silver on Polycrystalline Platinum Electrodes S.H. Harford, D.L. Taylor, and H.D. Abrufia Department of...Arlington, VA 22217 i1 iTITLE (Irlude Security Cla$slficatIon) The Effects of Organic Adsorbates on the Underpotential and Bulk Deposition of Silver on...through a nitrogen hetero-atom significantly hinder both the silver underpotential (UPD) and bulk deposition processes. The existence of a Pt/Ag

  7. High-throughput in vitro assay to evaluate the cytotoxicity of liberated platinum compounds for stimulating neural electrodes.

    Science.gov (United States)

    Kovach, Kyle M; Kumsa, Doe W; Srivastava, Vishnupriya; Hudak, Eric M; Untereker, Darrel F; Kelley, Shawn C; von Recum, Horst A; Capadona, Jeffrey R

    2016-11-01

    It is currently unclear how the platinum (Pt) species released from platinum-containing stimulating electrodes may affect the health of the surrounding tissue. This study develops an effective system to assess the cytotoxicity of any electrode-liberated Pt over a short duration, to screen systems before future in vivo testing. A platinum electrode was stimulated for two hours under physiologically relevant conditions to induce the liberation of Pt species. The total concentration of liberated Pt species was quantified and the concentration found was used to develop a range of Pt species for our model system comprised of microglia and neuron-like cells. Under our stimulation conditions (k=2.3, charge density of 57.7μC/cm(2)), Pt was liberated to a concentration of 1ppm. Interestingly, after 24h of Pt exposure, the dose-dependent cytotoxicity plots revealed that cell death became statistically significant at 10ppm for microglia and 20ppm for neuronal cells. However, in neuron-like cell cultures, concentrations above 1ppm resulted in significant neurite loss after 24h. To our knowledge, there does not exist a simple, in vitro assay system for assessing the cytotoxicity of Pt liberated from stimulating neural electrodes. This work describes a simple model assay that is designed to be applicable to almost any electrode and stimulation system where the electrode is directly juxtaposed to the neural target. Based on the application, the duration of stimulation and Pt exposure may be varied. Published by Elsevier B.V.

  8. Facile one-pot synthesis of platinum nanoparticles decorated nitrogen-graphene with high electrocatalytic performance for oxygen reduction and anodic fuels oxidation

    Science.gov (United States)

    Navaee, Aso; Salimi, Abdollah; Soltanian, Saeid; Servati, Peyman

    2015-03-01

    Due to exceptional electronic properties of graphene (Gr) and nitrogen doped graphene (N-Gr), they are considered as superior supporting platforms for novel metal nanoparticle decorations. Here, we report, a novel one-step electrochemical method for synthesis of Nitrogen-doped graphene sheets uniformly decorated with platinum nanoparticles (Pt/N-Gr). A graphite rod and platinum wire are respectively used for graphene and platinum nanoparticles production. The potential is cycled from -3V to +3V in acetonitrile solution as a nitrogen dopant source. By increasing the number of cycles the nitrogen-doped graphene/platinum nanoparticles composite is generated. After heat-treating the composite is characterized with various techniques such as FTIR, Raman, XPS, SEM and TEM. The electrocatalytic activity of the prepared composite toward the reduction of O2 and the oxidation of usual anodic fuels such as methanol, ethanol, hydrazine and formic acid is investigated using cyclic voltammetry technique. In comparison to commercial platinum/carbon, the onset potentials and the current densities for both O2 reduction and fuels oxidation are remarkably improved. Furthermore, the modified electrode by this composite shows good long-term stability and poisoning tolerance.

  9. Electrooxidation of ethanol on platinum nanoparticles supported by ZrO2 nanotube matrix as a new highly active electrode

    Science.gov (United States)

    Ordikhani-Seyedlar, R.; Hosseini, M. G.; Daneshvari-Esfahlan, V.

    2017-08-01

    Platinum nanoparticles/ZrO2 nanotubes/Zr electrode (Pt-NPs/ZrO2-NTs/Zr) was fabricated by electroplating of platinum nanoparticles (Pt-NPs) on the ZrO2 nanotube arrays. ZrO2-NTs were prepared by anodizing in an electrolyte containing dimethylformamide (DMF), glycerol and ammonium fluoride (NH4F). The morphology and structure of ZrO2-NTs and Pt-NPs/ZrO2-NTs/Zr electrodes were characterized by scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDX). The results indicated that ZrO2-NTs involve individual tubes with the diameter of 50-90 nm. In addition, Pt-NPs were homogeneously deposited on the surface of ZrO2-NTs with the size range of 10-20 nm. Cyclic voltammetry (CV) and chronoamperometry (CA) methods were used to study the electro-catalytic properties of Pt-NPs/ZrO2-NTs/Zr and flat Pt electrodes for ethanol oxidation. Experiments revealed the Pt-NPs/ZrO2-NTs/Zr electrode to have higher electro catalytic activity and better stability for ethanol oxidation when compared to flat Pt electrode.

  10. Graphene-Supported Platinum Catalyst-Based Membrane Electrode Assembly for PEM Fuel Cell

    Science.gov (United States)

    Devrim, Yilser; Albostan, Ayhan

    2016-08-01

    The aim of this study is the preparation and characterization of a graphene-supported platinum (Pt) catalyst for proton exchange membrane fuel cell (PEMFC) applications. The graphene-supported Pt catalysts were prepared by chemical reduction of graphene and chloroplatinic acid (H2PtCl6) in ethylene glycol. X-ray powder diffraction, thermogravimetric analysis (TGA) and scanning electron microscopy have been used to analyze structure and surface morphology of the graphene-supported catalyst. The TGA results showed that the Pt loading of the graphene-supported catalyst was 31%. The proof of the Pt particles on the support surfaces was also verified by energy-dispersive x-ray spectroscopy analysis. The commercial carbon-supported catalyst and prepared Pt/graphene catalysts were used as both anode and cathode electrodes for PEMFC at ambient pressure and 70°C. The maximum power density was obtained for the Pt/graphene-based membrane electrode assembly (MEA) with H2/O2 reactant gases as 0.925 W cm2. The maximum current density of the Pt/graphene-based MEA can reach 1.267 and 0.43 A/cm2 at 0.6 V with H2/O2 and H2/air, respectively. The MEA prepared by the Pt/graphene catalyst shows good stability in long-term PEMFC durability tests. The PEMFC cell voltage was maintained at 0.6 V without apparent voltage drop when operated at 0.43 A/cm2 constant current density and 70°C for 400 h. As a result, PEMFC performance was found to be superlative for the graphene-supported Pt catalyst compared with the Pt/C commercial catalyst. The results indicate the graphene-supported Pt catalyst could be utilized as the electrocatalyst for PEMFC applications.

  11. Electrochemical degradation of PNP at boron-doped diamond and platinum electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yanrong, E-mail: yanrong_zhang@mail.hust.edu.cn [Environmental Science Research Institute, Huazhong University of Science and Technology, Wuhan 430074 (China); Yang, Nan [Environmental Science Research Institute, Huazhong University of Science and Technology, Wuhan 430074 (China); Murugananthan, Muthu [Dept of Chemistry and Applied Chemistry, PSG College of Technology, Peelamedu, Coimbatore 641 004 (India); Yoshihara, Sachio [Department of Energy and Environmental Science, Graduate School of Engineering, Utsunomiya University, 7-1-2 Yoto, Utsunomiya, Tochigi 321-8585 (Japan)

    2013-01-15

    Highlights: ► Low concentration of Cl{sup −} could improve the removal of PNP. ► High chlorine concentration inhibited the COD removal. ► BDD electrode was highly effective for the conversion of PNP to organic acids. ► Accumulation of degradation intermediates was happened at Pt electrode. -- Abstract: The electrochemical degradation of p-nitrophenol (PNP) at boron-doped diamond (BDD) and platinum (Pt) anodes was studied by varying the parameters such as Cl{sup −} concentration, pH of aqueous medium and applied current density. The results obtained were explained in terms of in situ concomitant generation of hydroxyl radicals and chloride based oxidant species. The degradation of PNP was highly promoted in low concentration of NaCl electrolyte (less than 0.10 M), on contrary, the mineralization efficiency was poor at both BDD and Pt anodes with the NaCl concentration up to 0.20 M, which was ascribed to the formation of refractory chlorinated organic compounds. A maximum of 100% and 70% of COD removal was achieved in 5 h of electrolysis period using both BDD and Pt anodes under similar experimental conditions. Kinetic study indicated that the degradation of PNP at BDD and Pt anodes followed pseudo-first-order reactions, and the reaction rate constant (k{sub s}) of the former was observed to be higher than that of the latter. Besides COD, conversion of PNP into various intermediate compounds and their degradations were also monitored. The mechanisms for PNP degradation at BDD and Pt anodes were proposed separately by considering the nature of respective intermediate species and their concentrations.

  12. Electrical characterization of gold and platinum thin film electrodes with polyaniline modified surfaces

    Science.gov (United States)

    Aggas, John Richard

    Recent studies into soft organic electronics have burgeoned as a result of discoveries of conducting polymers such as polyaniline, polythiophene, and polypyrrole. However, in order to make these conducting polymers suitable for in vivo soft organic electronics, they must be developed so that they can be biocompatible and provide accurate sensing. Chitosan, a naturally occurring polymer structure found in exoskeletons of crustaceans, has been studied for its biocompatible properties. Composites of polyaniline (PAn), an intrinsically conductive polymer (ICP) and chitosan (Chi), a biopolymer, were developed and applied to gold and platinum Thin Film Electrode (TFE) devices. Electropolymerization and drop cast deposition were utilized to modify TFEs with a thin film of PAn or PAn-Chi composite. The impedance response over a spectrum of frequencies was studied for blank control TFEs, platinized TFEs, and platinized TFEs with various polyaniline coatings. Impedance measurements were taken in dry environments, DI Water, and in buffers such as PBS, and HEPES. Current-Voltage (I-V) characterization was used to study the current response and SEM imaging was used to study the surface topography. Resistance was measured for PAn modified unplatinized gold TFEs with varying amounts of incorporated chitosan. Impedance measurements of control and platinized TFEs yielded results similar to a low pass filter. Due to the conductive nature of polyaniline, the impedance of TFEs decreased substantially after poylaniline deposition. Measured resistance values for polyaniline and chitosan composites on TFEs revealed a window of concentrations of incorporated chitosan to lower resistance.

  13. Platinum nanoparticles decorated dendrite-like gold nanostructure on glassy carbon electrodes for enhancing electrocatalysis performance to glucose oxidation

    Science.gov (United States)

    Jia, Hongmei; Chang, Gang; Lei, Ming; He, Hanping; Liu, Xiong; Shu, Honghui; Xia, Tiantian; Su, Jie; He, Yunbin

    2016-10-01

    Platinum nanoparticles decorated dendrite-like gold nanostructure, bimetal composite materials on glassy carbon electrode (Pt/DGNs/GC) for enhancing electrocatalysis to glucose oxidation was designed and successfully fabricated by a facile two-step deposition method without any templates, surfactants, or stabilizers. Dendrite-like gold nanostructure was firstly deposited on the GC electrode via the potentiostatic method, and then platinum nanoparticles were decorated on the surface of gold substrate through chemical reduction deposition. X-ray diffraction (XRD), field-emission scanning electron microscope (FE-SEM), energy-dispersive X-ray spectroscopy (EDS) were applied to characterize the evolution of morphology and structure of the as-prepared Pt/DGNs/GC. Based on electrochemical measurements such as cyclic voltammetry, linear voltammetry and chronoamperometry, Pt/DGNs/GC exhibited significantly enhanced electrocatalytic performance to glucose oxidation compared those of pure dendrite-like Au nanoparticles in our previous report. Controlling chemical reduction deposition time, the amount of platinum nanoparticles on Au surface could be regulated, which further tuned electrocatalytic properties toward glucose oxidation. The dendrite-like gold surface partially covered by platinum nanoparticles dramatically enhanced the electrocatalytic performance for the oxidation of glucose because of excellent synergetic effects between gold and platinum species and the increased electrochemical active area from Pt nanoparticles loading. The non-enzymatic glucose biosensor based on Pt/DGNs/GC showed a rapid respond time (within 2 s), wide linear range (from 0.1 mM to 14 mM), low detection limit (0.01 mM), supernal sensitivity (275.44 μA cm-2 mM-1, R = 0.993), satisfactory reproducibility and good stability for glucose sensing. It was demonstrated that Pt/DGNs/GC could work as promising candidate for factual non-enzymatic glucose detection.

  14. Synthesis and Electrocatalytic Performance of BDD-Supported Platinum Nanoparticles

    Science.gov (United States)

    Lyu, Xiao; Hu, Jingping; Foord, John S.; Lou, Changsheng; Zhang, Weiqiang

    2015-02-01

    Platinum nanoparticles were deposited on boron-doped diamond substrate by electroless method without pre-activation. The mechanism of this deposition is a galvanic process along with a chemical process. Platinum particles are in nanoscale with diameter around 30-50 nm and height of around 3 nm observed from AFM and SEM images. The electrochemical activity of Pt nanoparticles was evaluated by cyclic voltammograms of hydrogen desorption process in 0.5 M H2SO4. The deposited platinum shows great stability in subsequent cycling in sulfuric acid and exhibits a high selectivity toward H2O2 detection in the range of 1 to 400 μM compared with those produced by electrochemical deposition.

  15. Synthesis, biological evaluation and SAR studies of novel bicyclic antitumor platinum(IV) complexes.

    Science.gov (United States)

    Lorenzo, Julia; Delgado, Aida; Montaña, Ángel M; Mesas, Juan M; Alegre, María-Teresa; Rodríguez, María del Carmen; Avilés, Francesc-Xavier

    2014-08-18

    The present study describes the synthesis, anticancer activity and SAR studies of novel platinum(IV) complexes having 1,2-bis(aminomethyl)carbobicyclic or oxabicyclic carrier ligands, bearing chlorido and/or hydroxido ligands in axial position and chlorido or malonato ligands in equatorial position (labile ligands). These complexes were synthetized with the aim of obtaining new anticancer principles more soluble in water and therefore more bioavailable. Several substitution patterns on the platinum atom have been designed in order to evaluate their antiproliferative activity and to establish structure-activity relationship rules. The synthesis of platinum(IV) complexes with axial hydroxyl ligands on the platinum(IV) were carried out by reaction of K2Pt(OH)2Cl4 with the corresponding diamines. The complexes with axial chlorido ligands on the platinum(IV) atom were synthesized by direct reaction of diamines with K2PtCl6. Carboxylated complexes were synthesized by the substitution reaction of equatorial chlorido ligands by silver dicarboxylates. The most actives complexes were those having malonate as a labile ligand, no matter of the structure of the carrier ligand. Regarding the influence of the structure of the non-labile 1,4-diamine carrier ligand on the cytotoxicity, it was found that the complexes having the more lipophilic and symmetrical bicyclo[2.2.2]octane framework were much more active than those having an oxygen or methylene bridge.

  16. Immobilization of lysine oxidase on a gold-platinum nanoparticles modified Au electrode for detection of lysine.

    Science.gov (United States)

    Chauhan, N; Narang, J; Sunny; Pundir, C S

    2013-04-10

    A commercial lysine oxidase (LyOx) from Trichoderma viride was immobilized covalently onto gold nanoparticles (AuNPs) and platinum nanoparticles (PtNPs) electrodeposited onto Au electrode using 3-aminopropyltriethoxy silane (3-APTES) and glutaraldehyde cross linking chemistry. A lysine biosensor was fabricated using LyOx/3-APTES/AuNPs-PtNPs/Au electrode as a working electrode, Ag/AgCl (3M KCl) as standard electrode and Pt wire as auxiliary electrode connected through a potentiostat. The enzyme electrode was characterized by scanning electron microscopy (SEM), Fourier transform infrared (FTIR) spectroscopy, electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV). The cumulative effect of AuNPs and PtNPs showed excellent electrocatalytic activity at low applied potential for detection of H2O2, a product of LyOx reaction. The sensor showed its optimum response within 4s, when polarized at 0.2V vs. Ag/AgCl in 0.1M phosphate buffer, pH 7.5 at 30°C. The linear range and detection limit of the sensor were 1.0-600μM and 1.0μM (S/N=3), respectively. Biosensor measured lysine level in sera, milk and amino acid tablet, which correlated well with those by standard HPLC method. The enzyme electrode lost 50% of its initial activity after 200 uses over a period of 4 months.

  17. Steady-state oxidation of cholesterol catalyzed by cholesterol oxidase in lipid bilayer membranes on platinum electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Bokoch, Michael P.; Devadoss, Anando; Palencsar, Mariela S.; Burgess, James D

    2004-08-09

    Cholesterol oxidase is immobilized in electrode-supported lipid bilayer membranes. Platinum electrodes are initially modified with a self-assembled monolayer of thiolipid. A vesicle fusion method is used to deposit an outer leaflet of phospholipids onto the thiolipid monolayer forming a thiolipid/lipid bilayer membrane on the electrode surface. Cholesterol oxidase spontaneously inserts into the electrode-supported lipid bilayer membrane from solution and is consequently immobilized to the electrode surface. Cholesterol partitions into the membrane from buffer solutions containing cyclodextrin. Cholesterol oxidase catalyzes the oxidation of cholesterol by molecular oxygen, forming hydrogen peroxide as a product. Amperometric detection of hydrogen peroxide for continuous solution flow experiments are presented, where flow was alternated between cholesterol solution and buffer containing no cholesterol. Steady-state anodic currents were observed during exposures of cholesterol solutions ranging in concentration from 10 to 1000 {mu}M. These data are consistent with the Michaelis-Menten kinetic model for oxidation of cholesterol as catalyzed by cholesterol oxidase immobilized in the lipid bilayer membrane. The cholesterol detection limit is below 1 {mu}M for cholesterol solution prepared in buffered cyclodextrin. The response of the electrodes to low density lipoprotein solutions is increased upon addition of cyclodextrin. Evidence for adsorption of low density lipoprotein to the electrode surface is presented.

  18. Evaluation of Platinum-Black Stimulus Electrode Array for Electrical Stimulation of Retinal Cells in Retinal Prosthesis System

    Science.gov (United States)

    Watanabe, Taiichiro; Kobayashi, Risato; Komiya, Ken; Fukushima, Takafumi; Tomita, Hiroshi; Sugano, Eriko; Kurino, Hiroyuki; Tanaka, Tetsu; Tamai, Makoto; Koyanagi, Mitsumasa

    2007-04-01

    A retinal prosthesis system with a three-dimensionally (3D) stacked LSI chip has been proposed. We fabricated a new implantable stimulus electrode array deposited with Platinum-black (Pt-b) on a polyimide-based flexible printed circuit (FPC) for the electrical stimulation of the retinal cells. Impedance measurement of the Pt-b electrode-electrolyte interface in a saline solution was performed and the Pt-b electrode realized a very low impedance. The power consumption at the electrode array when retinal cells were stimulated by a stimulus current was evaluated. The power consumption of the Pt-b stimulus electrode array was 91% lower than that of a previously fabricated Al stimulus electrode array due to a convexo-concave surface. In the cytotoxicity test (CT), we confirmed that Pt implantation induced no cellular degeneration of the rat retina. In the animal experiments, electrically evoked potential (EEP) was successfully recorded using Japanese white rabbits. These results indicate that electrical stimulation using the Pt-b stimulus electrode array can restore visual sensation.

  19. Fabrication and Optimization of a Nanoporous Platinum Electrode and a Non-enzymatic Glucose Micro-sensor on Silicon

    Directory of Open Access Journals (Sweden)

    Younghun Kim

    2008-10-01

    Full Text Available In this paper, optimal conditions for fabrication of nanoporous platinum (Pt were investigated in order to use it as a sensitive sensing electrode for silicon CMOS integrable non-enzymatic glucose micro-sensor applications. Applied charges, voltages, and temperatures were varied during the electroplating of Pt into the formed nonionic surfactant C16EO8 nano-scaled molds in order to fabricate nanoporous Pt electrodes with large surface roughness factor (RF, uniformity, and reproducibility. The fabricated nanoporous Pt electrodes were characterized using atomic force microscopy (AFM and electrochemical cyclic voltammograms. Optimal electroplating conditions were determined to be an applied charge of 35 mC/mm2, a voltage of -0.12 V, and a temperature of 25 °C, respectively. The optimized nanoporous Pt electrode had an electrochemical RF of 375 and excellent reproducibility. The optimized nanoporous Pt electrode was applied to fabricate non-enzymatic glucose micro-sensor with three electrode systems. The fabricated sensor had a size of 3 mm x 3 mm, air gap of 10 µm, working electrode (WE area of 4.4 mm2, and sensitivity of 37.5 µA•L/mmol•cm2. In addition, it showed large detection range from 0.05 to 30 mmolL-1 and stable recovery responsive to the step changes in glucose concentration.

  20. Raney-platinum film electrodes for potentially implantable glucose fuel cells. Part 1: Nickel-free glucose oxidation anodes

    Energy Technology Data Exchange (ETDEWEB)

    Kerzenmacher, S.; von Stetten, F. [Laboratory for MEMS Applications, Department of Microsystems Engineering- IMTEK, University of Freiburg, Georges-Koehler-Allee 106, 79110 Freiburg (Germany); Schroeder, M. [Institut fuer Anorganische und Analytische Chemie, University of Freiburg, Albertstrasse 21, 79104 Freiburg (Germany); Braemer, R. [Hochschule Offenburg- University of Applied Sciences, Badstrasse 24, 79652 Offenburg (Germany); Zengerle, R. [Laboratory for MEMS Applications, Department of Microsystems Engineering- IMTEK, University of Freiburg, Georges-Koehler-Allee 106, 79110 Freiburg (Germany); Centre for Biological Signalling Studies (bioss), Albert-Ludwigs-Universitaet Freiburg (Germany)

    2010-10-01

    We present a novel fabrication route yielding Raney-platinum film electrodes intended as glucose oxidation anodes for potentially implantable fuel cells. Fabrication roots on thermal alloying of an extractable metal with bulk platinum at 200 C for 48 h. In contrast to earlier works using carcinogenic nickel, we employ zinc as potentially biocompatible alloying partner. Microstructure analysis indicates that after removal of extractable zinc the porous Raney-platinum film (roughness factor {proportional_to}2700) consists predominantly of the Pt{sub 3}Zn phase. Release of zinc during electrode operation can be expected to have no significant effect on physiological normal levels in blood and serum, which promises good biocompatibility. In contrast to previous anodes based on hydrogel-bound catalyst particles the novel anodes exhibit excellent resistance against hydrolytic and oxidative attack. Furthermore, they exhibit significantly lower polarization with up to approximately 100 mV more negative electrode potentials in the current density range relevant for fuel cell operation. The anodes' amenability to surface modification with protective polymers is demonstrated by the exemplary application of an approximately 300 nm thin Nafion coating. This had only a marginal effect on the anode long-term stability and amino acid tolerance. While in physiological glucose solution after approximately 100 h of operation gradually increasing performance degradation occurs, rapid electrode polarization within 24 h is observed in artificial tissue fluid. Optimization approaches may include catalyst enhancement by adatom surface modification and the application of specifically designed protective polymers with controlled charge and mesh size. (author)

  1. PLATINUM AND FUEL CELLS

    Science.gov (United States)

    Platinum requirements for fuel cell vehicles (FCVS) have been identified as a concern and possible problem with FCV market penetration. Platinum is a necessary component of the electrodes of fuel cell engines that power the vehicles. The platinum is deposited on porous electrodes...

  2. Green synthesis and characterisation of platinum nanoparticles using quail egg yolk

    Science.gov (United States)

    Nadaroglu, Hayrunnisa; Gungor, Azize Alayli; Ince, Selvi; Babagil, Aynur

    2017-02-01

    Nanotechnology is extensively used in all parts today. Therefore, nano synthesis is also significant in all explored areas. The results of studies conducted have revealed that nanoparticle synthesis is performed by using both chemical and physical methods. It is well known that these syntheses are carried out at high charge, pressure and temperature in harsh environments. Therefore, this study investigated green synthesis method that sustains more mild conditions. In this study, quail egg yolk having high vitamin and protein content was prepared for green synthesis reaction and used for the synthesis of platinum nanoparticles in the reaction medium. Reaction situations were optimised as a function of pH, temperature, time and concentration by using quail egg yolk. The results showed that the highest platinum nanoparticles were synthesised at 20 °C and pH 6.0 for 4 h. Also, optimal concentration of metal ions was established as 0.5 mM. The synthesised platinum nanoparticles were characterised by using UV spectrum, X-ray diffraction and scanning electron microscope.

  3. Platinum nanoparticles decorated dendrite-like gold nanostructure on glassy carbon electrodes for enhancing electrocatalysis performance to glucose oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Jia, Hongmei [Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, School of Materials Science and Engineering, Hubei University, No. 368 Youyi Avenue, Wuchang, Wuhan 430062 (China); Chang, Gang, E-mail: changgang@hubu.edu.cn [Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, School of Materials Science and Engineering, Hubei University, No. 368 Youyi Avenue, Wuchang, Wuhan 430062 (China); Lei, Ming [State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing 100876 (China); He, Hanping [College of Chemistry and Chemical Engineer, Hubei University, Youyi Road 368, Wuchang, Wuhan, Hubei 430062 (China); Liu, Xiong; Shu, Honghui; Xia, Tiantian; Su, Jie [Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, School of Materials Science and Engineering, Hubei University, No. 368 Youyi Avenue, Wuchang, Wuhan 430062 (China); He, Yunbin, E-mail: ybhe@hubu.edu.cn [Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, School of Materials Science and Engineering, Hubei University, No. 368 Youyi Avenue, Wuchang, Wuhan 430062 (China)

    2016-10-30

    Highlights: • Pt/DGNs/GC composites were obtained via a clean and facile method without any templates, surfactants, or stabilizers. • Controlling chemical reduction deposition time, the amount of platinum nanoparticles on Au surface could be regulated, which further tuned electrocatalytic properties toward glucose oxidation. • The obtained Pt/DGNs/GC composites with high electrochemical active surface area (ECSA) show superior electrocatalytic activity to glucose. • The sensor based on Pt/DGNs/GC exhibited excellent sensitivity, selectivity and stability for nonenzymatic glucose detection. - Abstract: Platinum nanoparticles decorated dendrite-like gold nanostructure, bimetal composite materials on glassy carbon electrode (Pt/DGNs/GC) for enhancing electrocatalysis to glucose oxidation was designed and successfully fabricated by a facile two-step deposition method without any templates, surfactants, or stabilizers. Dendrite-like gold nanostructure was firstly deposited on the GC electrode via the potentiostatic method, and then platinum nanoparticles were decorated on the surface of gold substrate through chemical reduction deposition. X-ray diffraction (XRD), field-emission scanning electron microscope (FE-SEM), energy-dispersive X-ray spectroscopy (EDS) were applied to characterize the evolution of morphology and structure of the as-prepared Pt/DGNs/GC. Based on electrochemical measurements such as cyclic voltammetry, linear voltammetry and chronoamperometry, Pt/DGNs/GC exhibited significantly enhanced electrocatalytic performance to glucose oxidation compared those of pure dendrite-like Au nanoparticles in our previous report. Controlling chemical reduction deposition time, the amount of platinum nanoparticles on Au surface could be regulated, which further tuned electrocatalytic properties toward glucose oxidation. The dendrite-like gold surface partially covered by platinum nanoparticles dramatically enhanced the electrocatalytic performance for the

  4. Preparation and characterization of platinum/carbon and ruthenium/platinum/carbon nanocatalyst using the novel rotating disk-slurry electrode (RoDSE) technique

    Science.gov (United States)

    Santiago de Jesus, Diana

    An effort to develop electrochemically smaller and well-dispersed catalytic material on a high surface area carbon material is required for fuel cell applications. In terms of pure metal catalysts, platinum has shown to be the most common catalyst used in fuel cells, but suffers from poisoning when carbon monoxide is strongly adsorbed on its surface when used for direct methanol fuel cell applications. The addition of a metal with the ability to form oxides, such as ruthenium, helps to oxidize the carbon monoxide, freeing the platinum surface for new methanol oxidation. The deposition of catalysts of PtRu onto a carbon support helps to increase the active surface area of the catalyst. Vulcan X is the most commonly used of the amorphous carbon materials for fuel cell applications. Also, a high-surface-area carbon material of interest is carbon nano-onions (CNOs), also known as multilayer fullerenes. The most convenient synthetic method for CNOs is annealing nanodiamond particles, thus retaining the size of the precursors and providing the possibility to prepare very small nanocatalysts using electrochemical techniques. A rotating disk-slurry electrode (RoDSE) technique was developed as a unique method to electrochemically prepare bulk Pt/Carbon and PtRu/Carbon nanocatalysts avoiding a constant contact of the carbon support to an electrode surface during the electrodeposition process. The nanocatalysts were prepared by using a slurry that was saturated with functionalized Vulcan XC-72R and the metal precursor in sulfuric acid. The electrochemically prepared Pt/C and PtRu/C catalysts were characterized by using TEM, STEM, XRD, XRF, TGA, XPS and electrochemical techniques. A computational analysis also was done.

  5. Design, Synthesis of Novel Platinum(II) Glycoconjugates, and Evaluation of Their Antitumor Effects.

    Science.gov (United States)

    Han, Jianbin; Gao, Xiangqian; Liu, Ran; Yang, Jinna; Zhang, Menghua; Mi, Yi; Shi, Ying; Gao, Qingzhi

    2016-06-01

    A new series of sugar-conjugated (trans-R, R-cyclohexane-1, 2-diamine)-2-halo-malonato-platinum(II) complexes were designed and synthesized to target tumor-specific glucose transporters (GLUTs). The water solubility of the sugar-conjugated platinum (II) complexes was greatly improved by average of 570-fold, 33-fold, and 94-fold, respectively, compared to cisplatin (1.0 mg/mL), carboplatin (17.1 mg/mL), and the newest generation of clinical drug oxaliplatin (6.0 mg/mL). Despite the high water solubility, the platinum(II) glycoconjugates exhibited a notable increase in cytotoxicity by a margin of 1.5- to 6.0-fold in six different human cancer cell lines with respect to oxaliplatin. The potential GLUT1 transportability of the complexes was investigated through a molecular docking study and was confirmed with GLUT1 inhibitor-mediated cytotoxicity dependency evaluation. The results showed that the sugar-conjugated platinum(II) complexes can be recognized by the glucose recognition binding site of GLUT1 and their cell killing effect depends highly on the GLUT1 inhibitor, quercetin. The research presenting a prospective concept for targeted therapy anticancer drug design, and with the analysis of the synthesis, water solubility, antitumor activity, and the transportability of the platinum(II) glycoconjugates, this study provides fundamental data supporting the inherent potential of these designed conjugates as lead compounds for GLUT-mediated tumor targeting.

  6. Mechanistic Switching by Hydronium Ion Activity for Hydrogen Evolution and Oxidation over Polycrystalline Platinum Disk and Platinum/Carbon Electrodes

    KAUST Repository

    Shinagawa, Tatsuya

    2014-07-22

    Fundamental electrochemical reactions, namely the hydrogen evolution reaction (HER) and the hydrogen oxidation reaction (HOR), are re-evaluated under various pH conditions over polycrystalline Pt disk electrodes and Pt/C electrodes to investigate the overpotential and Tafel relations. Kinetic trends are observed and can be classified into three pH regions: acidic (1-5), neutral (5-9), and alkaline (9-13). Under neutral conditions, in which H2O becomes the primary reactant, substantial overpotential, which is not affected by pH and the supporting electrolyte type, is required for electrocatalysis in both directions. This ion independence, including pH, suggests that HER/HOR performance under neutral conditions solely reflects the intrinsic electrocatalytic activity of Pt in the rate determining steps, which involve electron transfer with water molecules. A global picture of the HER/HOR, resulting from mechanistic switching accompanied by change in pH, is detailed.

  7. In vitro biocompatibility and electrical stability of thick-film platinum/gold alloy electrodes printed on alumina

    Science.gov (United States)

    Carnicer-Lombarte, Alejandro; Lancashire, Henry T.; Vanhoestenberghe, Anne

    2017-06-01

    Objective. High-density electrode arrays are a powerful tool in both clinical neuroscience and basic research. However, current manufacturing techniques require the use of specialised techniques and equipment, which are available to few labs. We have developed a high-density electrode array with customisable design, manufactured using simple printing techniques and with commercially available materials. Approach. Electrode arrays were manufactured by thick-film printing a platinum-gold alloy (Pt/Au) and an insulating dielectric on 96% alumina ceramic plates. Arrays were conditioned in serum and serum-free conditions, with and without 1 kHz, 200 µA, charge balanced stimulation for up to 21 d. Array biocompatibility was assessed using an extract assay and a PC-12 cell contact assay. Electrode impedance, charge storage capacity and charge injection capacity were before and after array conditioning. Main results. The manufactured Pt/Au electrodes have a highly porous surface and exhibit electrical properties comparable to arrays manufactured using alternative techniques. Materials used in array manufacture were found to be non-toxic to L929 fibroblasts by extract assay, and neuronal-like PC-12 cells adhered and extended neurites on the array surfaces. Arrays remained functional after long-term delivery of electrical pulses while exposed to protein-rich environments. Charge storage capacities and charge injection capacities increased following stimulation accounted for by an increase in surface index (real surface area) observed by vertical scanning interferometry. Further, we observed accumulation of proteins at the electrode sites following conditioning in the presence of serum. Significance. This study demonstrates the in vitro biocompatibility of commercially available thick-film printing materials. The printing technique is both simple and versatile, with layouts readily modified to produce customized electrode arrays. Thick-film electrode arrays are an

  8. Bulk synthesis of nanoporous palladium and platinum powders

    Energy Technology Data Exchange (ETDEWEB)

    Robinson, David B; Fares, Stephen J; Tran, Kim L; Langham, Mary E

    2014-04-15

    Disclosed is a method for providing nanoporous palladium and platinum powders. These materials were synthesized on milligram to gram scales by chemical reduction of tetrahalo-complexes with ascorbate in a concentrated aqueous surfactant at temperatures between -20.degree. C. and 30.degree. C. The prepared particles have diameters of approximately 50 nm, wherein each particle is perforated by pores having diameters of approximately 3 nm, as determined by electron tomography. These materials are of potential value for hydrogen and electrical charge storage applications.

  9. Synthesis and polarized photoluminescence of novel phosphorescent cyclometalated platinum dimer

    Institute of Scientific and Technical Information of China (English)

    Shi Ping Jiang; Kai Jun Luo; Ying Han Wang; Xin Wang; Ying Jiang; Yan Yan Wei

    2011-01-01

    A novel phosphorescent cyclometalated platinum dimer with bis-[2-(p-dodecyloxyphenyl) pyridyl]-hexane-l,6-diol as ligand and 1,3-( 1-n-hexyl,3-n-heptadecyl) diketone as ancillary ligand was synthesized. The chemical structure and liquid crystal property of the dimer were characterized by 1H NMR, ESI-MS, polarizing optical microscopy (POM) and differential scanning calorimetry (DSC). The aligned film of title compound on the rubbed polyimide film is intensely emissive at room temperature with emission maximum at 516 nm. The luminescence dichroic ratio (I∥/ IL) at 516 nm is 3.1.

  10. Bulk synthesis of nanoporous palladium and platinum powders

    Science.gov (United States)

    Robinson, David B [Fremont, CA; Fares, Stephen J [Pleasanton, CA; Tran, Kim L [Livermore, CA; Langham, Mary E [Pleasanton, CA

    2012-04-17

    Disclosed is a method for providing nanoporous palladium and platinum powders. These materials were synthesized on milligram to gram scales by chemical reduction of tetrahalo-complexes with ascorbate in a concentrated aqueous surfactant at temperatures between -20.degree. C. and 30.degree. C. The prepared particles have diameters of approximately 50 nm, wherein each particle is perforated by pores having diameters of approximately 3 nm, as determined by electron tomography. These materials are of potential value for hydrogen and electrical charge storage applications.

  11. Synthesis of novel Cu2S nanohusks as high performance counter electrode for CdS/CdSe sensitized solar cell

    Science.gov (United States)

    Kamaja, Chaitanya Krishna; Devarapalli, Rami Reddy; Dave, Yasha; Debgupta, Joyashish; Shelke, Manjusha V.

    2016-05-01

    An important component of quantum dot sensitized solar cells (QDSSC) is the counter electrode which mediates the regeneration of oxidized quantum dots by reducing the polysulphide electrolyte. However, design and synthesis of an efficient counter electrode material is a challenging task. Herein, we report the synthesis of a unique Cu2S nanohusks directly on FTO coated glass substrates by electrodeposition and used as a counter electrode in QDSSC. When these electrodes are used for the reduction of polysulfide electrolyte in QDSSC, they exhibit higher catalytic activity and photovoltaic performance as compared to the Platinum counter electrode. The power conversion efficiency of about 4.68% has been achieved by optimizing the deposition time of Cu2S.

  12. Mild in situ growth of platinum nanoparticles on multiwalled carbon nanotube-poly (vinyl alcohol) hydrogel electrode for glucose electrochemical oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Shumin; Zheng, Yudong, E-mail: zhengyudong@mater.ustb.edu.cn; Qiao, Kun [University of Science and Technology Beijing, School of Material Science and Engineering (China); Su, Lei [University of Science and Technology Beijing, School of Chemistry and Biological Engineering (China); Sanghera, Amendeep; Song, Wenhui [University College London, UCL Centre for Nanotechnology & Regenerative Medicine, Division of Surgery and Interventional Science (United Kingdom); Yue, Lina; Sun, Yi [University of Science and Technology Beijing, School of Material Science and Engineering (China)

    2015-12-15

    This investigation describes an effective strategy to fabricate an electrochemically active hybrid hydrogel made from platinum nanoparticles that are highly dense, uniformly dispersed, and tightly embedded throughout the conducting hydrogel network for the electrochemical oxidation of glucose. A suspension of multiwalled carbon nanotubes and polyvinyl alcohol aqueous was coated on glassy carbon electrode by electrophoretic deposition and then physically crosslinked to form a three-dimensional porous conductive hydrogel network by a process of freezing and thawing. The network offered 3D interconnected mass-transport channels (around 200 nm) and confined nanotemplates for in situ growth of uniform platinum nanoparticles via the moderate reduction agent, ascorbic acid. The resulting hybrid hydrogel electrode membrane demonstrates an effective method for loading platinum nanoparticles on multiwalled carbon nanotubes by the electrostatic adsorption between multiwalled carbon nanotubes and platinum ions within porous hydrogel network. The average diameter of platinum nanoparticles is 37 ± 14 nm, which is less than the particle size by only using the moderate reduction agent. The hybrid hydrogel electrode membrane-coated glassy carbon electrode showed excellent electrocatalytic activity and good long-term stability toward glucose electrochemical oxidation. The glucose oxidation current exhibited a linear relationship with the concentration of glucose in the presence of chloride ions, promising for potential applications of implantable biofuel cells, biosensors, and electronic devices.

  13. Synthesis and characterization of novel platinum acetylide oligomers

    Science.gov (United States)

    Cooper, Thomas M.; Krein, Douglas M.; Burke, Aaron R.; McLean, Daniel G.; Rogers-Haley, Joy E.; Slagle, Jonathan; Monahan, Jennifer; Urbas, Augustine

    2008-08-01

    To learn about excited state geometry in biphenyl-containing platinum acetylides, we synthesized a series of compounds that have biphenyl ligands. The ligands consisted of biphenyl(I), the hindered 2'-methyl biphenyl(III) and planar fluorenyl(IV) groups. We also synthesized a "half" complex(II) consisting of one ligand attached to the platinum atom. The optical properties of these compounds were measured by ground state absorption, phosphorescence, ultrafast transient absorption and nanosecond transient absorption spectroscopy. DFT calculations were performed to determine the ground state and triplet state geometries and the lowest triplet energy. TDDFT calculations were performed to determine singlet excited state energies. Compared to the reference compound I, ground state spectra show a blue shift in II and III and red shift in IV, showing the singlet energy is sensitive to conjugation and biphenyl twist angle. Comparison of the phosphorescence spectra of I and II shows the triplet exciton is confined to one ligand. The time behavior of the ultrafast excited state absorption spectrum of I shows a red shift within 1 ps from the initial spectrum. This behavior is not seen in IV. The different behavior suggests formation of the triplet state of I is accompanied by conversion from a non-planar to a planar conformation while IV retains a planar conformation.

  14. Microwave Assisted Synthesis, Modification With Platinum And Photocatalytical Properties of TiO2 Nanofibers

    Directory of Open Access Journals (Sweden)

    Reinis DRUNKA

    2016-05-01

    Full Text Available In the present work formation of active TiO2 nanoparticles in microwave synthesis and their modification with platinum were studied. Anatase nanopowder and 10 M KOH solution were used as raw materials. Microwave assisted synthesis method permited to obtain TiO2 nanofibres and nanowires with a diameter of 10 nm and a specific surface area in the range of 70 – 150 m2/g. In order to modify TiO2 nanofibers with platinum it was stirred in H2PtCl6 solution under UV irradiation. Photocatalytic activity was determined by degradation of the methylene blue (MB solution under UV and visible light irradiation. The obtained samples showed higher photocatalytic activity with respect to pure TiO2 nanofibers. The doped TiO2 nanofibers were appropriate for degradation of harmful organic compounds as well as for hydrogen production by water splitting.

  15. Developing strongly luminescent platinum(IV) complexes: facile synthesis of bis-cyclometalated neutral emitters.

    Science.gov (United States)

    Juliá, Fabio; Bautista, Delia; González-Herrero, Pablo

    2016-01-28

    A straightforward, one-pot procedure has been developed for the synthesis of bis-cyclometalated chloro(methyl)platinum(IV) complexes with a wide variety of heteroaromatic ligands of the 2-arylpyridine type. The new compounds exhibit phosphorescent emissions in the blue to orange colour range and represent the most efficient Pt(IV) emitters reported to date, with quantum yields up to 0.81 in fluid solutions at room temperature.

  16. Electrochemical removal of hexavalent chromium from wastewater using Platinum-Iron/Iron-carbon nanotubes and bipolar Electrodes

    Directory of Open Access Journals (Sweden)

    Hoshyar Hossini

    2015-01-01

    Full Text Available Background: In recent decades, electrocoagulation (EC has engrossed much attention as an environmental-friendly and effectiveness process. In addition, the EC process is a potential suitable way for treatment of wastewater with concern to costs and environment. The object of this study was electrochemical evaluation of chromium removal from industrial wastewater using Platinum and carbon nanotubes electrodes. Materials and Methods: The effect of key variables including pH (3–9, hexavalent chromium concentration (50–300 mg/l, supporting electrolyte (NaCl, KCl, Na2CO3 and KNO3 and its dosage, Oxidation-Reduction variations, sludge generation rate and current density (2–20 mA/cm2 was determined. Results: Based on experimental data, optimum conditions were determined in 20, 120 min, pH 3, NaCl 0.5% and 100 mg/L initial concentration of chromium. Conclusions: Removal of hexavalent chromium from the wastewater could be successfully performanced using Platinum-Iron/Iron-carbon nanotubes and bipolar Electrodes.

  17. Unsaturated platinum-rhenium cluster complexes. Synthesis, structures and reactivity.

    Science.gov (United States)

    Adams, Richard D; Captain, Burjor; Smith, Mark D; Beddie, Chad; Hall, Michael B

    2007-05-09

    Two new compounds PtRe3(CO)12(PBut3)(micro-H)3, 9, and PtRe2(CO)9(PBut3)(micro-H)2, 10, were obtained from the reaction of Pt(PBut3)2 with Re3(CO)12(micro-H3), 8, at room temperature. Compound 9 contains a butterfly cluster of four metals formed by the insertion of the platinum atom from a Pt(PBut3) group into one of the hydride-bridged metal-metal bonds of 8. The three hydrido ligands are bridging ligands across each of three new Pt-Re bonds. Compound 10 contains a triangular PtRe2 cluster with two hydrido ligands; one bridges a Pt-Re bond, and the other bridges the Re-Re bond. The new compound Pt2Re2(CO)7(PBut3)2(micro-H)2, 11, was obtained from the reaction of 8 with Pt(PBut3)2 in hexane at reflux. Compound 11 was also obtained from 10 by reaction with an additional quantity of Pt(PBut3)2. Compound 11 contains a tetrahedral cluster of four metal atoms with two dynamically active hydrido ligands. A CO ligand on one of the two platinum atoms also exchanges between the two platinum atoms rapidly on the NMR time scale. Compound 11 is electronically unsaturated and was found to add hydrogen at room temperature to form the tetrahydrido cluster complex, Pt2Re2(CO)7(PBut3)2(micro-H)4, 12. Compound 12 has a structure similar to 11 but contains one triply bridging hydrido ligand, two edge bridging hydrido ligands, and one terminal hydrido ligand on one of the two platinum atoms. A kinetic isotope effect D/H of 1.5(1) was determined for the addition of H2 to 11. Hydrogen can be eliminated from 12 by heating to 97 degrees C or by the application of UV-vis irradiation at room temperature. Compound 12 adds CO at room temperature to yield the complex Pt2Re2(CO)8(PBut3)2(micro-H)4, 13, which contains a planar cluster of four metal atoms with a Pt-Pt bond and four edge bridging hydrido ligands. Compounds 11 and 12 react with Pt(PBut3)2 to yield the known five metal cluster complexes Pt3Re2(CO)6(PBut3)3(micro-H)2, 14, and Pt3Re2(CO)6(PBut3)3(micro-H)4, 15, respectively. Density

  18. Controlled synthesis of the tricontinuous mesoporous material IBN-9 and its carbon and platinum derivatives

    KAUST Repository

    Zhao, Yunfeng

    2011-08-23

    Controlled synthesis of mesoporous materials with ultracomplicated pore configurations is of great importance for both fundamental research of nanostructures and the development of novel applications. IBN-9, which is the only tricontinuous mesoporous silica with three sets of interpenetrating three-dimensional channel systems, appears to be an excellent model mesophase for such study. The extensive study of synthesis space diagrams proves mesophase transition among the cylindrical MCM-41, tricontinuous IBN-9 and bicontinuous MCM-48, and also allows a more precise control of phase-pure synthesis. On the other hand, rational design of structure-directing agents offers a possibility to extend the synthesis conditions of IBN-9, as well as tailor its pore size. Moreover, an unprecedented helical structure consisting of twisted 3-fold interwoven mesoporous channels is reported here for the first time. The unique tricontinuous mesostructure of IBN-9 has been well-replicated by other functional materials (e.g., carbon and platinum) via a "hard- templating" synthesis route. The obtained carbon material possesses large surface area (∼1900 m2/g), high pore volume (1.56 cm 3/g), and remarkable gas adsorption capability at both cryogenic temperatures and room temperature. The platinum material has an ordered mesostructure composed of highly oriented nanocrystals. © 2011 American Chemical Society.

  19. Origins of nanoscale damage to glass-sealed platinum electrodes with submicrometer and nanometer size.

    Science.gov (United States)

    Nioradze, Nikoloz; Chen, Ran; Kim, Jiyeon; Shen, Mei; Santhosh, Padmanabhan; Amemiya, Shigeru

    2013-07-02

    Glass-sealed Pt electrodes with submicrometer and nanometer size have been successfully developed and applied for nanoscale electrochemical measurements such as scanning electrochemical microscopy (SECM). These small electrodes, however, are difficult to work with because they often lose a current response or give a low SECM feedback in current-distance curves. Here we report that these problems can be due to the nanometer-scale damage that is readily and unknowingly made to the small tips in air by electrostatic discharge or in electrolyte solution by electrochemical etching. The damaged Pt electrodes are recessed and contaminated with removed electrode materials to lower their current responses. The recession and contamination of damaged Pt electrodes are demonstrated by scanning electron microscopy and X-ray energy dispersive spectroscopy. The recessed geometry is noticeable also by SECM but is not obvious from a cyclic voltammogram. Characterization of a damaged Pt electrode with recessed geometry only by cyclic voltammetry may underestimate electrode size from a lower limiting current owing to an invalid assumption of inlaid disk geometry. Significantly, electrostatic damage can be avoided by grounding a Pt electrode and nearby objects, most importantly, an operator as a source of electrostatic charge. Electrochemical damage can be avoided by maintaining potentiostatic control of a Pt electrode without internally disconnecting the electrode from a potentiostat between voltammetric measurements. Damage-free Pt electrodes with submicrometer and nanometer sizes are pivotal for reliable and quantitative nanoelectrochemical measurements.

  20. Synthesis, characterization, and biological activity of platinum II, III, and IV pivaloamidine complexes.

    Science.gov (United States)

    Sinisi, Marilù; Gandin, Valentina; Saltarella, Teresa; Intini, Francesco P; Pacifico, Concetta; Marzano, Christine; Natile, Giovanni

    2014-10-01

    Imino ligands have proven to be able to activate the trans geometry of platinum(II) complexes towards antitumor activity. These ligands, like aromatic N-donor heterocycles, have a planar shape but, different from the latter, have still an H atom on the coordinating nitrogen which can be involved in H-bond formation. Three classes of imino ligands have been extensively investigated: iminoethers (HN=C(R)OR'), ketimines (HN=CRR'), and amidines (HN=C(R)NR'R″). The promising efficacy of the platinum compounds with amidines (activity comparable to that of cisplatin for cis complexes and much greater than that of transplatin for trans complexes) prompted us to extend the investigation to amidine complexes with a bulkier organic residue (R = t-Bu). The tert-butyl group can confer greater affinity for lipophilic environments, thus potentiating the cellular uptake of the compound. In the present study we describe the synthesis and characterization of pivaloamidine complexes of platinum(II), (cis and trans-[PtCl2(NH3){Z-HN=C(t-Bu)NH2}] and cis and trans-[PtCl2{Z-HN=C(t-Bu)NH2}2]), platinum(III) ([Pt2Cl4{HN=C(t-Bu)NH}2(NH3)2]), and platinum(IV) (trans-[PtCl4(NH3){Z-HN=C(t-Bu)NH2}] and trans-[PtCl4{Z-HN=C(t-Bu)NH2}2]). The cytotoxicity of all new Pt complexes was tested toward a panel of cultured cancer cell lines, including cisplatin and multidrug resistant variants. In addition, cellular uptake and DNA binding, perturbations of cell cycle progression, induction of apoptosis, and p53 activation were investigated for the most promising compound trans-[PtCl2(NH3){Z-HN=C(t-Bu)NH2}]. Remarkably, the latter complex was able to overcome both acquired and intrinsic cisplatin resistance.

  1. Synthesis and Pharmacological Evaluation of Modified Adenosines Joined to Mono-Functional Platinum Moieties

    Directory of Open Access Journals (Sweden)

    Stefano D'Errico

    2014-07-01

    Full Text Available The synthesis of four novel platinum complexes, bearing N6-(6-amino-hexyladenosine or a 1,6-di(adenosin-N6-yl-hexane respectively, as ligands of mono-functional cisplatin or monochloro(ethylendiamineplatinum(II, is reported. The chemistry exploits the high affinity of the charged platinum centres towards the N7 position of the adenosine base system and a primary amine of an alkyl chain installed on the C6 position of the purine. The cytotoxic behaviour of the synthesized complexes has been studied in A549 adenocarcinomic human alveolar basal epithelial and MCF7 human breast adenocarcinomic cancer cell lines, in order to investigate their effects on cell viability and proliferation.

  2. Electron transfer processes occurring on platinum neural stimulating electrodes: a tutorial on the i(V e) profile

    Science.gov (United States)

    Kumsa, Doe W.; Bhadra, Narendra; Hudak, Eric M.; Kelley, Shawn C.; Untereker, Darrel F.; Mortimer, J. Thomas

    2016-10-01

    The aim of this tutorial is to encourage members of the neuroprosthesis community to incorporate electron transfer processes into their thinking and provide them with the tools to do so when they design and work with neurostimulating devices. The focus of this article is on platinum because it is the most used electrode metal for devices in commercial use. The i(V e) profile or cyclic voltammogram contains information about electron transfer processes that can occur when the electrode-electrolyte interface, V e, is at a specific potential, and assumed to be near steady-state conditions. For the engineer/designer this means that if the potential is not in the range of a specific electron transfer process, that process cannot occur. An i(V e) profile, recorded at sweep rates greater than 0.1 mVs-1, approximates steady-state conditions. Rapid transient potential excursions, like that seen with neural stimulation pulses, may be too fast for the reaction to occur, however, this means that if the potential is in the range of a specific electron transfer process it may occur and should be considered. The approach described here can be used to describe the thermodynamic electron transfer processes on other candidate electrode metals, e.g. stainless steel, iridium, carbon-based, etc.

  3. Electron transfer processes occurring on platinum neural stimulating electrodes: a tutorial on the i(V e) profile.

    Science.gov (United States)

    Kumsa, Doe W; Bhadra, Narendra; Hudak, Eric M; Kelley, Shawn C; Untereker, Darrel F; Mortimer, J Thomas

    2016-10-01

    The aim of this tutorial is to encourage members of the neuroprosthesis community to incorporate electron transfer processes into their thinking and provide them with the tools to do so when they design and work with neurostimulating devices. The focus of this article is on platinum because it is the most used electrode metal for devices in commercial use. The i(V e) profile or cyclic voltammogram contains information about electron transfer processes that can occur when the electrode-electrolyte interface, V e, is at a specific potential, and assumed to be near steady-state conditions. For the engineer/designer this means that if the potential is not in the range of a specific electron transfer process, that process cannot occur. An i(V e) profile, recorded at sweep rates greater than 0.1 mVs(-1), approximates steady-state conditions. Rapid transient potential excursions, like that seen with neural stimulation pulses, may be too fast for the reaction to occur, however, this means that if the potential is in the range of a specific electron transfer process it may occur and should be considered. The approach described here can be used to describe the thermodynamic electron transfer processes on other candidate electrode metals, e.g. stainless steel, iridium, carbon-based, etc.

  4. Electrocatalytic oxidation of methanol on carbon-nanotubes/graphite electrode modified with platinum and molybdenum oxide nanoparticles

    Institute of Scientific and Technical Information of China (English)

    GAN Yong-ping; HUANG Hui; ZHANG Wen-kui

    2007-01-01

    Electrochemical codeposition and electrocatalytic properties of platinum and molybdenum oxide nanoparticles (Pt-MoOx) on carbon-nanotubes/graphite electrode for methanol oxidation were investigated. The micrograph and elemental composition of the resulting Pt-MoOx/CNTs/graphite electrode were characterized by scanning electron microscopy(SEM) and energy dispersive X-ray spectroscopy(EDS). The results show that the Pt-MoOx particles with the average size of about 50 nm are highly dispersed on the CNTs surface. The Pt-MoOx/CNTs/graphite electrode delivers excellent electrocatalytic properties for methanol oxidation. The highest mass activity(Am) reaches 264.8 A/g at the loading mass of 159.3 (g/cm2. This may be attributed to the small particle size and high dispersion of Pt-MoOx catalysts deposited on the CNTs surface. The kinetic analysis from electrochemical impedance spectroscopy(EIS) reveals that the existed MoOx phase can improve the chemisorptive and catalytic properties for methanol oxidation.

  5. Improved heat-responsive electrode for the measurement of electrochemical Peltier heat. The Peltier heat for electrosorption and electrodesorption of oxygen on a platinum electrode in sulfuric acid solution

    Energy Technology Data Exchange (ETDEWEB)

    Shibata, Shigeo; Sumino, M.P.; Yamada, Akifumi

    1985-01-01

    A new plate type electrode with high sensitivity and response to temperature change was made using a thick film thermistor. The electrochemical Peltier heat for the oxygen surface process at a platinized platinum electrode in 0.5 M H/sub 2/SO/sub 4/ solution was measured with this electrode by potentiodynamic and galvanostatic transient techniques. It was demonstrated that the most of Peltier heat is caused by the overpotential due to the irreversible oxygen electrode reaction. That is, a Tafel-type relation between the Peltier heat and the current was confirmed. A step-wise heat change corresponding to consecutive stages of platinum lattice occupation by OH was observed. The amount of heat evolved on PtO formation was apparently larger than that on PtOH formation. The results were compared with those obtained by the voltammetric measurement. (orig.).

  6. Platinum-free binary Co-Ni alloy counter electrodes for efficient dye-sensitized solar cells.

    Science.gov (United States)

    Chen, Xiaoxu; Tang, Qunwei; He, Benlin; Lin, Lin; Yu, Liangmin

    2014-09-26

    Dye-sensitized solar cells (DSSCs) have attracted growing interest because of their application in renewable energy technologies in developing modern low-carbon economies. However, the commercial application of DSSCs has been hindered by the high expenses of platinum (Pt) counter electrodes (CEs). Here we use Pt-free binary Co-Ni alloys synthesized by a mild hydrothermal strategy as CE materials in efficient DSSCs. As a result of the rapid charge transfer, good electrical conduction, and reasonable electrocatalysis, the power conversion efficiencies of Co-Ni-based DSSCs are higher than those of Pt-only CEs, and the fabrication expense is markedly reduced. The DSSCs based on a CoNi0.25 alloy CE displays an impressive power conversion efficiency of 8.39%, fast start-up, multiple start/stop cycling, and good stability under extended irradiation. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Electrochemical incineration of high concentration azo dye wastewater on the in situ activated platinum electrode with sustained microwave radiation.

    Science.gov (United States)

    Zhao, Guohua; Gao, Junxia; Shi, Wei; Liu, Meichuan; Li, Dongming

    2009-09-01

    In this study, an in situ microwave activated platinum electrode was developed for the first time to completely incinerate the azo dye simulated wastewater containing methyl orange. The experiments were carried out in a circulating system under atmospheric pressure. Azo bond of methyl orange was partly broken on Pt, certain decoloration was reached, and the total organic carbon was not removed effectively without microwave activation. However, methyl orange was mineralized completely and efficiently on the in situ microwave activated Pt. 2,5-Dinitrophenol, p-nitrophenol, hydroquinone, benzoquinone, maleic and oxalic acids are the main intermediates during degradation of methyl orange. Aromatic products are the main substances leading to the poisoning of Pt and decrease of electrochemical oxidation efficiency, so methyl orange removal can not be carried out thoroughly. However, the intermediates were broke down quickly with in situ microwave activation promoting the mineralization of methyl orange on Pt.

  8. Efficient Dye-Sensitized Solar Cells Made from High Catalytic Ability of Polypyrrole@Platinum Counter Electrode

    Science.gov (United States)

    Ma, Xingping; Yue, Gentian; Wu, Jihuai; Lan, Zhang

    2015-08-01

    Polypyrrole@platinum (PPy@Pt) composite film was successfully synthesized by using a one-step electrochemical method and served as counter electrode (CE) for efficient dye-sensitized solar cells (DSSCs). The PPy@Pt CE with one-dimensional structure exhibited excellent electrocatalytic activity and superior charge transfer resistance for I-/I3 - electrolyte after being the cyclic voltammetry and electrochemical impedance spectroscopy tested. The photocurrent-photovoltage curves were further used to calculate the theoretical photoelectric performance parameters of the DSSCs. The DSSC based on the PPy@Pt CE achieved a remarkable power conversion efficiency of 7.35 %, higher about 19.9 % than that of conventional Pt CE (6.13 %). This strategy provides a new opportunity for fabricating low-cost and highly efficient DSSCs.

  9. Electroanalytical method for determination of lead(II) in orange and apple using kaolin modified platinum electrode.

    Science.gov (United States)

    El Mhammedi, M A; Achak, M; Bakasse, M; Chtaini, A

    2009-08-01

    This paper reports on the use of platinum electrode modified with kaolin (K/Pt) and square wave voltammetry for analytical detection of trace lead(II) in pure water, orange and apple samples. The electroanalytical procedure for determination of the Pb(II) comprises two steps: the chemical accumulation of the analyte under open-circuit conditions followed by the electrochemical detection of the preconcentrated species using square wave voltammetry. The analytical performances of the extraction method has been explored by studying the incubating time, and effect of interferences due to other ions. During the preconcentration step, Pb(II) was accumulated on the surface of the kaolin. The observed detection and quantification limits in pure water were 3.6x10(-9)molL(-1) and 1.2x10(-8)molL(-1), respectively. The precision of the method was also determined; the results was 2.35% (n=5).

  10. Study on the-Redox Process of Bilirubin and Biliverdin at Platinum Electrode by in Situ Spectroelectrochemistry

    Institute of Scientific and Technical Information of China (English)

    牛建军; 董绍俊

    1994-01-01

    The electrochemical redox behavior of bilirubin(BR Ⅳα),biliverdin(BV Ⅳα)and theiroxidized product bile-purpurin(Bi-Pu)have been studied by in situ spectroelectrochemical techniques,whichreveals that the transformation of BR Ⅳα■BV Ⅳα■Bi-Pu can be achieved by controlling poten-tials.The kinetic investigation has shown that the heterogeneous electron transfer reactions of the couples ofⅠ/Ⅱ and Ⅳ/Ⅲ were quasi-reversible and irreversible at a clean platinum electrode with the formal heteroge-neous electron transfer rate constants 1.5×10-4cm·s-1and 4.8×10-5cm·s-1,respectively.

  11. Sequential Electrodeposition of Platinum-Ruthenium at Boron-Doped Diamond Electrodes for Methanol Oxidation

    Directory of Open Access Journals (Sweden)

    Ileana González-González

    2011-01-01

    Full Text Available Sequential electrodeposition of Pt and Ru on boron-doped diamond (BDD films, in 0.5 M H2SO4 by cyclic voltammetry, has been prepared. The potential cycling, in the aqueous solutions of the respective metals, was between 0.00 and 1.00 V versus Ag/AgCl. The catalyst composites, Pt and PtRu, deposited on BDD film substrates, were tested for methanol oxidation. The modified diamond surfaces were also characterized by scanning electron microscopy-X-ray fluorescence-energy dispersive spectroscopy, X-ray photoelectron spectroscopy, and Auger electron spectroscopy. The scanning Auger electron spectroscopy mapping showed the ruthenium signal only in areas where platinum was electrodeposited. Ruthenium does not deposit on the oxidized diamond surface of the boron-doped diamond. Particles with 5–10% of ruthenium with respect to platinum exhibited better performance for methanol oxidation in terms of methanol oxidation peak current and chronoamperometric current stability. The electrogenerated •OH radicals on BDD may interact with Pt surface, participating in the methanol oxidation as shown in oxidation current and the shift in the peak position. The conductive diamond surface is a good candidate as the support for the platinum electrocatalyst, because it ensures catalytic activity, which compares with the used carbon, and higher stability under severe anodic and cathodic conditions.

  12. Fabrication of electrodes with ultralow platinum loading by RF plasma processing of self-assembled arrays of Au@Pt nanoparticles

    Science.gov (United States)

    Banerjee, Ipshita; Kumaran, V.; Santhanam, Venugopal

    2016-07-01

    Conductive, carbon-free, electrocatalytically active, nanostructured electrodes with ultra-low platinum loading were fabricated using self-assembly of octadecanethiol-coated Au@Pt nanoparticles followed by RF plasma treatment. Bilayer arrays of Au@Pt nanoparticles with platinum loadings of 0.50, 1.04, 1.44, and 1.75 μg cm-2 (corresponding to 0.5, 1, 1.5 and 2 atomic layer coverage of platinum on nominally 5 nm gold core) were subjected to RF argon plasma treatment for various durations and their electrical conductivity, morphological evolution, and electrocatalytic activity characterized. Samples with monolayer and above platinum coverages exhibit maximum electrochemically active surface areas values of ˜100 m2/gpt and specific activities that are ˜4× to 6× of a reference platinum nanoparticle bilayer array. The underlying gold core influences the structural evolution of the samples upon RF plasma treatment and leads to the formation of highly active Pt(110) facets on the surface at an optimal plasma treatment duration, which also corresponds to the onset of a sharp decline in lateral sheet resistance. The sample having a two atom thick platinum coating has the highest total mass activity of 48 ± 3 m2/g(pt+au), corresponding to 44% Pt atom utilization, while also exhibiting enhanced CO tolerance as well as high methanol oxidation reaction and oxygen reduction reaction activity.

  13. 1.7 nm Platinum Nanoparticles: Synthesis with Glucose Starch, Characterization and Catalysis

    DEFF Research Database (Denmark)

    Engelbrekt, Christian; Sørensen, Karsten Holm; Lubcke, T.

    2010-01-01

    Monodisperse platinum nanoparticles (PtNPs) were synthesized by a green recipe. Glucose serves as a reducing agent and starch as a stabilization agent to protect the freshly formed PtNP cores in buffered aqueous solutions. Among the ten buffers studied, 2-(N-morpholino)ethanesulfonic acid (MES......, respectively. The estimated total diameter of the core with a starch coating layer is 5.8-6.0 nm, based on thermogravimetric analysis (TGA). The synthesis reaction is simple, environmentally friendly, highly reproducible, and easy to scale up. The PtNPs were characterized electrochemically and show high...

  14. Microscope in situ FTIRS studies of CO adsorption on an array of platinum micro electrodes

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    An array of platinum microelectrodes was de signed and fabricated. The adsorption of CO on such a Pt microelectrode (μ-Pt) was investigated by employing micro scope in situ FTIR spectroscopy. A nanostructured film is formed at the surface of μ-Pt (denoted as μ-Pt(R)) when ithas been subjected to a treatment of fast potential cycling.Abnormal infrared effects (AIREs) were observed in COadsorption on the surface of μ-Pt(R), consisting of the inver sion of the IR bipolar CO band and the extensively enhanced IR adsorption of COad species.``

  15. Same-Side Platinum Electrodes for Metal Assisted Etching of Porous Silicon

    Science.gov (United States)

    2015-11-01

    depth by varying the local electrode/silicon (Si) ratio, the electrode will need to be cut up into electrically isolated sections or else the carriers...hydrogen peroxide (H2O2), and ethanol etch solution. The H2O2 reacts with hydrogen ions from the HF at the catalytic metal surface to become water ...the sample, or by hot gases at the flame front jetting across to a nearby PSi line. 4. Conclusions We have developed new procedures for etching

  16. Effect of platinum-nanodendrite modification on the glucose-sensing properties of a zinc-oxide-nanorod electrode

    Science.gov (United States)

    Abdul Razak, Khairunisak; Neoh, Soo Huan; Ridhuan, N. S.; Mohamad Nor, Noorhashimah

    2016-09-01

    The properties of ZnO nanorods (ZnONRs) decorated with platinum nanodendrites (PtNDs) were studied. Various sizes of PtNDs were synthesized and spin coated onto ZnONRs, which were grown on indium-titanium-oxide (ITO) substrates through a low-temperature hydrothermal method. Scanning electron microscopy and X-ray diffraction analyses were conducted to analyze the morphology and structural properties of the electrodes. The effects of PtND size, glucose concentration, and Nafion amount on glucose-sensing properties were investigated. The glucose-sensing properties of electrodes with immobilized glucose oxidase (GOx) were measured using cyclic voltammetry. The bio-electrochemical properties of Nafion/GOx/42 nm PtNDs/ZnONRs/ITO glucose sensor was observed with linear range within 1-18 mM, with a sensitivity value of 5.85 μA/mM and a limit of detection of 1.56 mM. The results of this study indicate that PtNDs/ZnONRs/ITO has potential in glucose sensor applications.

  17. Binary platinum alloy electrodes for hydrogen and oxygen evolutions by seawater splitting

    Science.gov (United States)

    Zheng, Jingjing

    2017-08-01

    Hydrogen and oxygen evolutions by seawater splitting are persistent objectives for green energy production. We present here the experimental realization of Ti foil supported PtM (M = Fe, Co, Ni, Pd) alloy electrodes by a cycle voltammetry method for seawater splitting. The preliminary results demonstrate that the resultant Ti supported PtM alloy electrodes are robust in realizing high-efficiency hydrogen evolution reaction (HER) and oxygen evolution reaction (OER), arising from enhanced current density, reduced potential, and good durability. By tuning M species, the Ti supported PtPd alloy electrode displays a maximal efficiency, yielding an onset potential of -52 mV and 690 mV (vs RHE) in HER and OER, respectively. The current densities of Ti supported PtPd electrode are as high as 270 mA cm-2 at 1.32 V (vs RHE) and 590 mA cm-2 at 3.99 V (vs RHE). Moreover, the long-term stability has also been increased by alloying Pt with M. Although the work presented here is far from optimized, the concept of alloying transition metals with Pt can guide us to design highly efficient alloy electrodes for hydrogen and oxygen evolutions from seawater splitting.

  18. Ordered macroporous platinum electrode and enhanced mass transfer in fuel cells using inverse opal structure.

    Science.gov (United States)

    Kim, Ok-Hee; Cho, Yong-Hun; Kang, Soon Hyung; Park, Hee-Young; Kim, Minhyoung; Lim, Ju Wan; Chung, Dong Young; Lee, Myeong Jae; Choe, Heeman; Sung, Yung-Eun

    2013-01-01

    Three-dimensional, ordered macroporous materials such as inverse opal structures are attractive materials for various applications in electrochemical devices because of the benefits derived from their periodic structures: relatively large surface areas, large voidage, low tortuosity and interconnected macropores. However, a direct application of an inverse opal structure in membrane electrode assemblies has been considered impractical because of the limitations in fabrication routes including an unsuitable substrate. Here we report the demonstration of a single cell that maintains an inverse opal structure entirely within a membrane electrode assembly. Compared with the conventional catalyst slurry, an ink-based assembly, this modified assembly has a robust and integrated configuration of catalyst layers; therefore, the loss of catalyst particles can be minimized. Furthermore, the inverse-opal-structure electrode maintains an effective porosity, an enhanced performance, as well as an improved mass transfer and more effective water management, owing to its morphological advantages.

  19. The Catalysis of NAD+, NADP+ and Nicotinic Amide for Methanol Electrooxidation at Platinum Electrode

    Institute of Scientific and Technical Information of China (English)

    ZHANG Ping; SHI Yufang; ZHANG Qiaolian; TANG Zhiyong; ZHENG Hongtao; YUAN Runzhang

    2006-01-01

    A group of liquid catalysts composed of nicotinic amide functioning on the anode of DMFC were investigated at a Pt electrode, which were nicotinic amide, nicotinamide adenine dinucleotide (NAD+) and its phosphate (NAD(P)+). The kinetics of methanol anode oxidation in the three reaction systems was compared by measuring potentiodynamic current-potential curves and AC impedances. The experimental results show that the dynamic behavior of methanol oxidation at a Pt electrode has been changed with adding the three substances. The influence of temperature on the catalysis of these coenzymes and nicotinic amide was discussed by comparing the AC impedances spectra of methanol oxidation at different temperatures.

  20. Potential-assisted assembly of functionalised platinum nanoparticles on electrode surfaces

    NARCIS (Netherlands)

    Peruffo, M.; Contreras-Carballada, P.; Bertoncello, P.; Williams, R.M.; De Cola, L.; Unwin, P.R.

    2009-01-01

    A method for assembling Pt nanoparticles (5 nm diameter) on indium tin oxide (ITO) and highly oriented pyrolytic graphite (HOPG) electrodes, via the potential-assisted deposition of pre-formed perthiolated-β-cyclodextrin-capped Pt nanoparticles is described. Cyclic voltammetry allowed control over t

  1. Spatially resolved electrochemistry in ionic liquids: surface structure effects on triiodide reduction at platinum electrodes

    NARCIS (Netherlands)

    Aaronson, Barak D.B.; Lai, Stanley C.S.; Unwin, Patrick R.

    2014-01-01

    Understanding the relationship between electrochemical activity and electrode structure is vital for improving the efficiency of dye-sensitized solar cells. Here, the reduction of triiodide to iodide in 1-butyl-3-methylimidazolium tetrafluoroborate ([BMIm][BF4]) room temperature ionic liquid (RTIL)

  2. Carbon nanotube detectors for microchip CE: comparative study of single-wall and multiwall carbon nanotube, and graphite powder films on glassy carbon, gold, and platinum electrode surfaces.

    Science.gov (United States)

    Pumera, Martin; Merkoçi, Arben; Alegret, Salvador

    2007-04-01

    The performance of microchip electrophoresis/electrochemistry system with carbon nanotube (CNT) film electrodes was studied. Electrocatalytic activities of different carbon materials (single-wall CNT (SWCNT), multiwall CNT (MWCNT), carbon powder) cast on different electrode substrates (glassy carbon (GC), gold, and platinum) were compared in a microfluidic setup and their performance as microchip electrochemical detectors was assessed. An MWCNT film on a GC electrode shows electrocatalytic effect toward oxidation of dopamine (E(1/2) shift of 0.09 V) and catechol (E(1/2) shift of 0.19 V) when compared to a bare GC electrode, while other CNT/carbon powder films on the GC electrode display negligible effects. Modification of a gold electrode by graphite powder results in a strong electrocatalytic effect toward oxidation of dopamine and catechol (E(1/2) shift of 0.14 and 0.11 V, respectively). A significant shift of the half-wave potentials to lower values also provide the MWCNT film (E(1/2) shift of 0.08 and 0.08 V for dopamine and catechol, respectively) and the SWCNT film (E(1/2) shift of 0.10 V for catechol) when compared to a bare gold electrode. A microfluidic device with a CNT film-modified detection electrode displays greatly improved separation resolution (R(s)) by a factor of two compared to a bare electrode, reflecting the electrocatalytic activity of CNT.

  3. Adsorbed formate: the key intermediate in the oxidation of formic acid on platinum electrodes.

    Science.gov (United States)

    Cuesta, Angel; Cabello, Gema; Gutiérrez, Claudio; Osawa, Masatoshi

    2011-12-07

    The electrooxidation of formic acid on Pt and other noble metal electrodes proceeds through a dual-path mechanism, composed of a direct path and an indirect path through adsorbed carbon monoxide, a poisoning intermediate. Adsorbed formate had been identified as the reactive intermediate in the direct path. Here we show that actually it is also the intermediate in the indirect path and is, hence, the key reaction intermediate, common to both the direct and indirect paths. Furthermore, it is confirmed that the dehydration of formic acid on Pt electrodes requires adjacent empty sites, and it is demonstrated that the reaction follows an apparently paradoxical electrochemical mechanism, in which an oxidation is immediately followed by a reduction.

  4. Improving Impedance of Implantable Microwire Multi-Electrode Arrays by Ultrasonic Electroplating of Durable Platinum Black

    OpenAIRE

    Desai, Sharanya Arcot; Rolston, John D.; Guo, Liang; Potter, Steve M.

    2010-01-01

    Implantable microelectrode arrays (MEAs) have been a boon for neural stimulation and recording experiments. Commercially available MEAs have high impedances, due to their low surface area and small tip diameters, which are suitable for recording single unit activity. Lowering the electrode impedance, but preserving the small diameter, would provide a number of advantages, including reduced stimulation voltages, reduced stimulation artifacts and improved signal-to-noise ratio. Impedance reduct...

  5. Temperature dependence studies on the electro-oxidation of aliphatic alcohols with modified platinum electrodes

    Indian Academy of Sciences (India)

    Panadda Katikawong; Tanakorn Ratana; Waret Veerasai

    2009-05-01

    Temperature dependence on the electro-oxidation of methanol, ethanol and 1-propanol in 0.5 M H2SO4 were investigated with Pt and PtRu electrodes. Tafel slope and apparent activation energy were evaluated from the cyclic voltammetric data in the low potential region (0.3-0.5 V vs SHE). The CV results provided Tafel slopes for alcohols in the range of 200-400 mV dec-1 which indicated a difference in the rate determining step. The decrease in Tafel slope was only observed in the case of methanol for the Ru-modified Pt electrode. This indicates that Ru improves the rate of determining step for methanol while hindering it for the other alcohols. The electrochemical impedance spectroscopy was also used to evaluate the electro-oxidation mechanism of alcohols on these electrodes. The simulated EIS results provided two important parameters: charge transfer resistance () and inductance (). The $R^{-1}_{ct}$ and -1 represent the rate of alcohol electro-oxidation and rate of desorption of intermediate species, respectively. These values increased with the increasing of temperature. The results from two techniques were well agreed that the electro-oxidation of methanol was improved by raising the temperature and ruthenium modification.

  6. Synthesis of nanosized platinum based catalyst using sol-gel process

    Science.gov (United States)

    Ingale, S. V.; Wagh, P. B.; Bandyopadhyay, D.; Singh, I. K.; Tewari, R.; Gupta, S. C.

    2015-02-01

    The nano-sized platinum based catalysts using high surface area silica support have been prepared by sol-gel method. Tetramethoxysilane (TMOS) diluted in methanol was hydrolyzed to form a porous silica gel. Platinum (2%) was loaded at sol state using platinum chloride solution. After gelation, the solvent from the gel pores was extracted at ambient temperature which resulted in porous silica matrix incorporated with nanosized platinum. X-ray diffraction studies indicated the presence of elemental platinum in the silica-platinum composites. Transmission electron microscopy of the platinum -silica composites revealed that nanosized platinum particles of about 5-10 nm are homogeneously dispersed in silica matrix. Chemisorptions studies showed high dispersion (more than 50%) of platinum on silica support with specific surface area of 400 m2/g which puts them as promising candidates as catalyst in heterogeneous reactions.

  7. Electrochemical characteristics of a platinum electrode modified with a matrix of polyvinyl butyral and colloidal Ag containing immobilized horseradish peroxidase.

    Science.gov (United States)

    Yuan, Ruo; Liu, Yan; Li, Qun-Fang; Chai, Ya-Qin; Mo, Chang-Li; Zhong, Xia; Tang, Dian-Ping; Dai, Jian-Yuan

    2005-02-01

    A new hydrogen peroxide biosensor was constructed, which consisted of a platinum electrode modified by a matrix of polyvinyl butyral (PVB) and nanometer-sized Ag colloid containing immobilized horseradish peroxidase (HRP), and using Co(bpy)3(3+) as mediator in the hydrogen peroxide solution. The electrochemical characteristics of the biosensor were studied by cyclic voltammetry and chronoamperometry. The modified process was characterized by electrochemical impedance spectroscopy and cyclic voltammetry. The HRP immobilized on colloidal Ag was stable and retained its biological activity. The sensor displays excellent electrocatalytic response to the reduction of H2O2. Analytical parameters such as pH and temperature were also studied. Linear calibration for H2O2 was obtained in the range of 1x10(-5) to 1x10(-2) M under optimized conditions. The sensor was highly sensitive to H2O2, with a detection limit of 2x10(-6) M, and the sensor achieved 95% of steady-state current within 10 s. The sensor exhibited high sensitivity, selectivity and stability.

  8. A non-platinum counter electrode, MnNx/C, for dye-sensitized solar cell applications

    Science.gov (United States)

    Kushwaha, Suman; M. P., Karthikayini; Wang, Guanxiong; Mandal, Sudip; Bhobe, Preeti. A.; Ramani, Vijay K.; Priolkar, K. R.; Ramanujam, Kothandaraman

    2017-10-01

    A non-platinum metal catalyst, MnNx/C was synthesized via the high-pressure pyrolysis route. The combination of X-ray photoelectron spectroscopy (XPS) and X-ray absorption fine structure (XAFS) studies indicated the presence of Mn in +2 oxidation state surrounded by four N atoms. The peak-to-peak separation (ΔEp) of the more negative peak pair observed for I3-/I- redox couple over MnNx/C catalyst was 20 mV lower than that of the Pt catalyst, indicating high reversibility of the redox couple over MnNx/C catalyst. The charge transfer resistance of the MnNx/C electrode, as measured by the impedance spectroscopy, is ∼ 2 Ω higher than that of Pt, which resulted slightly lower short circuit current (Jsc) value for MnNx/C over Pt, however the fill factor (FF) and power conversion efficiency (PCE) values of MnNx/C was slightly higher and comparable to that of Pt respectively. Hence; replacing Pt with MnNx/C would decrease the cost of DSSCs.

  9. Synthesis and antitumor activity of 1,2-diaminocyclohexane platinum(IV) complexes.

    Science.gov (United States)

    Khokhar, A R; al-Baker, S; Siddik, Z H

    1994-04-01

    The synthesis, characterization, and antitumor activity of a series of platinum(IV) complexes of the type DACH-PtIV(X)2Y (where DACH = trans-dl, or trans-l-1,2-diaminocyclohexane, X = OH or Cl, and Y = oxalato, malonato, methylmalonato, tartronato, ketomalonato, 1,1-cyclopropanedicarboxylato, or 1,1-cyclobutanedicarboxylato, are described. These complexes have been characterized by elemental analysis, HPLC, and infrared and 195Pt NMR spectroscopic techniques. The complexes had good in vitro cytotoxic activity (IC50 = 0.14-7.6 micrograms/ml) and were highly active in vivo against leukemia L1210 cells (%T/C = 152- > 600, cisplatin = 218). In addition, excellent in vivo antitumor activities against B16 melanoma (%T/C = 309), M5076 reticulosarcoma (100% cures) and cisplatin-resistant L1210/DDP (%T/C = 217) cell lines were also exhibited by an analog selected for further evaluation.

  10. Carbon nanotube composite coated platinum electrode for detection of Ga(III).

    Science.gov (United States)

    Abbaspour, A; Khoshfetrat, Seyyed Mehdi; Sharghi, H; Khalifeh, R

    2011-01-15

    This study demonstrates the application of composite multi-walled carbon nanotube (MWCNT) polyvinylchloride (MWNT-PVC) based on 7-(2-hydroxy-5-methoxybenzyl)-5,6,7,8,9,10-hexahydro-2H benzo [b][1,4,7,10,13] dioxa triaza cyclopentadecine-3,11(4H,12H)-dione ionophore for gallium sensor. The sensor shows a good Nernstian slope of 19.68 ± 0.40 mV/decade in a wide linear range concentration of 7.9 × 10(-7) to 3.2 × 10(-2)M of Ga(NO(3))(3). The detection limit of this electrode is 5.2 × 10(-7)M of Ga(NO(3))(3). This proposed sensor is applicable in a pH range of 2.7-5.0. It has a short response time of about 10s and has a good selectivity over nineteen various metal ions. The practical analytical utility of this electrode is demonstrated by measurement of Ga(III) in river water.

  11. Inhibition of nucleic acid synthesis in P388 lymphocytic leukemia cells in culture by cis-platinum derivatives.

    Science.gov (United States)

    Oswald, C B; Chaney, S G; Hall, I H

    1990-01-01

    Cis-diaminedichloroplatinum(II) [cDDP] and three related derivatives Pt(mal)(NH3)2, PtCl2(dach) and Pt(mal) (dach) have been observed to possess cytotoxicity against the growth of P388 lymphocytic leukemia cells. DNA synthesis in P388 cells was inhibited by the agents in a manner which was consistent with their ED50 values for cytotoxicity. When P388 cells were treated with these platinum complexes in vitro at doses which caused more than 80% inhibition of DNA synthesis, no significant inhibition was observed for thymidine, kinase, thymidine monophosphate kinase, carbamoyl phosphate synthetase, or aspartate transcarbamoylase activities. Thus, there was no evidence that these agents inhibited de novo purine, pyrmidine, or deoxynucleotide synthesis. All of the agents did inhibit the nuclear DNA polymerase activity, but the extent of inhibition was 20% or less at doses which caused greater than 70% inhibition of DNA synthesis. Thus, the inhibition of DNA synthesis appeared to be due to cisplatinum(II) drug binding to the DNA bases. This was estimated to be 1 atom of platinum per 1500-3000 DNA base pairs which is consistent with other studies. The platinum complexes with chloro leaving ligands caused considerable DNA strand scission by 24 h at 10 times the ED50 dose, most likely a measure of impending cell death. In contrast, the platinum complexes with malonato leaving ligands did not cause significant strand scission by 24 h at similar doses. They also exhibited a significant delay in the inhibition of DNA synthesis. These data were interpreted as resulting from slower monoadduct to diadduct conversion, but it is not possible to eliminate the possibility of a different mode of interaction with DNA or a different mechanism of cytotoxicity for the malonato compounds.

  12. Synthesis and characterization of potential iron–platinum drugs and supplements by laser liquid photolysis

    CSIR Research Space (South Africa)

    Nkosi, SS

    2013-06-01

    Full Text Available , and structure was systematically investigated. Different nanostructures of iron–platinum alloy and chemically disordered iron–platinum L10 phase were obtained without annealing. The prepared precursor solution underwent deep photolysis to polycrystalline iron...

  13. Water exchange at a hydrated platinum electrode is rare and collective

    CERN Document Server

    Limmer, David T; Madden, Paul A; Chandler, David

    2015-01-01

    We use molecular dynamics simulations to study the exchange kinetics of water molecules at a model metal electrode surface -- exchange between water molecules in the bulk liquid and water molecules bound to the metal. This process is a rare event, with a mean residence time of a bound water of about 40 ns for the model we consider. With analysis borrowed from the techniques of rare-event sampling, we show how this exchange or desorption is controlled by (1) reorganization of the hydrogen bond network within the adlayer of bound water molecules, and by (2) interfacial density fluctuations of the bulk liquid adjacent to the adlayer. We define collective coordinates that describe the desorption mechanism. Spatial and temporal correlations associated with a single event extend over nanometers and tens of picoseconds.

  14. The formation and activity of platinum adlayers on diamond electrodes for electrocatalysis

    Science.gov (United States)

    Bennett, Jason Alan

    The research described in this dissertation evaluates the potential of diamond as an advanced carbon electrocatalyst support material. This includes both assessing the physical and electrochemical properties of the material as well as a comprehensive investigation into the nature of metal adlayer formation on the material. The physical and electrochemical properties of boron-doped polycrystalline diamond thin films, prepared with varying levels of sp2-bonded nondiamond carbon impurity, were systematically investigated. This impurity was introduced through adjustment of the methane-to-hydrogen source gas ratio used for the deposition. Increasing the methane-to-hydrogen ratio resulted in an increase in the fraction of grain boundary, the extent of secondary nucleation, and the amount of sp2-bonded nondiamond carbon impurity. The effect of the source gas ratio on the electrochemical response towards several well known redox analytes and the oxygen reduction reaction in both acidic and alkaline media was also investigated. The results demonstrate that the grain boundaries, and the sp2-bonded nondiamond carbon impurity presumably residing there, can have a significant impact on the electrode reaction kinetics for certain redox systems and little influence for others. The morphological and microstructural stability of microcrystalline and nanocrystalline boron-doped diamond thin film electrodes under conditions observed in phosphoric acid fuel cells was investigated. The electrodes were exposed to a 2 h period of anodic polarization in 85% H3PO 4 at ˜180°C and 0.1 A/cm2. Catastrophic degradation was not observed for either type of diamond. The oxidation of the microcrystalline diamond was limited to the surface, and the effects could be reversed upon exposure to a hydrogen plasma. The nanocrystalline diamond exhibited similar responses to well known redox analytes after anodic polarization, however an irreversible increase in the film capacitance was also observed

  15. Platinum/Palladium hollow nanofibers as high-efficiency counter electrodes for enhanced charge transfer

    Science.gov (United States)

    Navarro Pardo, F.; Benetti, D.; Zhao, H. G.; Castaño, V. M.; Vomiero, A.; Rosei, F.

    2016-12-01

    Pt/Pd hollow nanofibers were obtained by sputtering a Pt/Pd alloy (80/20 wt%) onto polymer nanofibers (used as sacrificial template) and were used as counter-electrodes (CEs) in dye-sensitized solar cells (DSSCs). We demonstrate that optimization of nanofiber density and Pt/Pd sputtering thickness can increase the short circuit current density and consequently lead to a ∼15% enhancement in power conversion efficiency (PCE), when compared to the commonly used flat Pt/Pd CEs with the same thickness. The processes that contribute to such PCE improvement are: (i) increased surface area provided by the high aspect ratio hollow nanofibers and (ii) improved electro-catalytic performance, as validated by electrochemical impedance spectroscopy (EIS) measurements. The latter showed a two-fold decrease in the charge-transfer resistance of the nanostructured-CE, compared to the flat CE. The contribution of the Pt/Pd hollow nanofiber to light scattering was negligible as shown by reflectance measurements. These results suggest a simple and straightforward strategy to increase PCE in DSSCs, to minimize the use of precious metals used in this kind of devices and, more generally, to tailor the CE structure in photoelectrochemical systems to boost their functional properties, thanks to the advantages afforded by this complex morphology.

  16. Nitrogen-Doped Graphene/Platinum Counter Electrodes for Dye-Sensitized Solar Cells

    KAUST Repository

    Lin, Chinan

    2014-12-17

    Nitrogen-doped graphene (NGR) was utilized in dye-sensitized solar cells for energy harvesting. NGR on a Pt-sputtered fluorine-doped tin oxide substrate (NGR/Pt/FTO) as counter electrodes (CEs) achieves the high efficiency of 9.38% via the nitrogen doping into graphene. This is due to (i) the hole-cascading transport at the interface of electrolyte/CEs via controlling the valence band maximum of NGR located between the redox potential of the I-/I- redox couple and the Fermi level of Pt by nitrogen doping, (ii) the extended electron transfer surface effect provided by large-surface-area NGR, (iii) the high charge transfer efficiency due to superior catalytic characteristics of NGR via nitrogen doping, and (iv) the superior light-reflection effect of NGR/Pt/FTO CEs, facilitating the electron transfer from CEs to I3 - ions of the electrolyte and light absorption of dye. The result demonstrated that the NGR/Pt hybrid structure is promising in the catalysis field. (Chemical Presented). © 2014 American Chemical Society.

  17. Enhanced Electrochemical Catalytic Efficiencies of Electrochemically Deposited Platinum Nanocubes as a Counter Electrode for Dye-Sensitized Solar Cells

    Science.gov (United States)

    Wei, Yu-Hsuan; Tsai, Ming-Chi; Ma, Chen-Chi M.; Wu, Hsuan-Chung; Tseng, Fan-Gang; Tsai, Chuen-Horng; Hsieh, Chien-Kuo

    2015-12-01

    Platinum nanocubes (PtNCs) were deposited onto a fluorine-doped tin oxide glass by electrochemical deposition (ECD) method and utilized as a counter electrode (CE) for dye-sensitized solar cells (DSSCs). In this study, we controlled the growth of the crystalline plane to synthesize the single-crystal PtNCs at room temperature. The morphologies and crystalline nanostructure of the ECD PtNCs were examined by field emission scanning electron microscopy and high-resolution transmission electron microscopy. The surface roughness of the ECD PtNCs was examined by atomic force microscopy. The electrochemical properties of the ECD PtNCs were analyzed by cyclic voltammetry, Tafel polarization, and electrochemical impedance spectra. The Pt loading was examined by inductively coupled plasma mass spectrometry. The DSSCs were assembled via an N719 dye-sensitized titanium dioxide working electrode, an iodine-based electrolyte, and a CE. The photoelectric conversion efficiency (PCE) of the DSSCs with the ECD PtNC CE was examined under the illumination of AM 1.5 (100 mWcm-2). The PtNCs in this study presented a single-crystal nanostructure that can raise the electron mobility to let up the charge-transfer impedance and promote the charge-transfer rate. In this work, the electrocatalytic mass activity (MA) of the Pt film and PtNCs was 1.508 and 4.088 mAmg-1, respectively, and the MA of PtNCs was 2.71 times than that of the Pt film. The DSSCs with the pulse-ECD PtNC CE showed a PCE of 6.48 %, which is higher than the cell using the conventional Pt film CE (a PCE of 6.18 %). In contrast to the conventional Pt film CE which is fabricated by electron beam evaporation method, our pulse-ECD PtNCs maximized the Pt catalytic properties as a CE in DSSCs. The results demonstrated that the PtNCs played a good catalyst for iodide/triiodide redox couple reactions in the DSSCs and provided a potential strategy for electrochemical catalytic applications.

  18. Platinum-catalyzed cycloisomerizations of a common enyne: a divergent entry to cyclopropane sesquiterpenoids. Formal synthesis of sarcandralactone A.

    Science.gov (United States)

    Demertzidou, Vera P; Zografos, Alexandros L

    2016-08-01

    A common enyne scaffold, resembling the structures of natural elemanes was found to be an excellent substrate for highly regioselective cycloisomerizations to produce diverse cyclopropane sesquiterpenoids. Platinum-catalysis was utilized to produce either lindenane or myliol cores, found in natural products, starting from enyne acetate 10 and its corresponding allene 12 respectively. Based on this concept, a second generation strategy allows the formal synthesis of sarcandralactone A.

  19. Synthesis and Development of Modified OMC-Supported Platinum Electrocatalyst for PEMFC

    Science.gov (United States)

    Muonagolu, Emeka Paul

    Ordered mesoporous carbon (OMC) has been considered as a promising Platinum catalyst support because of its large surface area, uniform ordered hexagonal mesopores, porous structure and high electrical conductivity. Graphitization of the walls of OMC is vital when the electrical conductivity of the catalyst is the main concern. The objective of this work was to improve the electrical conductivity of the ordered mesoporous carbon (OMC) support by utilizing transition metals such as Ni, Co and Fe to graphitize the pore walls of OMC via catalytic graphitization. Metal modified OMCs have been synthesized following two steps. First step is synthesizing metal modified SBA-15 as a template containing 10wt% transition metals (Ni, Co, Fe) and TEOS as a source of silica followed by calcination. The second step is introducing sucrose as the carbon source into the pores of the silica template followed by carbonization at 900°C and removal of the silica template using hydrofluoric acid. The synthesized Metal modified OMCs were characterized using Brunaeur Emmit Teller (BET) analysis, X-ray diffraction (XRD), transmission electron microscopy (TEM), Raman spectroscopy. Surface area for the metal modified --OMC was found around 1300--1500m 2/g and pore sizes in the range of 3--4nm. The membrane electrode assembly (MEA) was prepared using the synthesized electrocatalyst and was used to evaluate the performance of the catalyst by testing it on the fuel cell test station. The results were compared to that of commercial catalyst.

  20. Dendrimer-mediated synthesis of platinum nanoparticles: new insights from dialysis and atomic force microscopy measurements

    Science.gov (United States)

    Xie, Hong; Gu, Yunlong; Ploehn, Harry J.

    2005-07-01

    In this work, we use AFM measurements in conjunction with dialysis experiments to study the synthesis mechanism and physical state of dendrimer-stabilized platinum nanoparticles. For characterizing particle size distributions by high resolution transmission electron microscopy and AFM, sample preparation by drop evaporation presumably minimizes the risk of sample bias that might be found in spin coating or dip-and-rinse methods. However, residual synthesis by-products (mainly salts) must be removed from solutions of dendrimer-stabilized metal nanoparticles prior to AFM imaging. Purification by dialysis is effective for this purpose. We discovered, by UV-visible spectrophotometry and atomic absorption (AA) spectroscopy, that dialysis using 'regular' cellulose dialysis tubing (12 000 Da cut-off) used in all previous work leads to substantial losses of poly(amidoamine) (PAMAM) dendrimer (G4OH), PAMAM-Pt(+2) complex, and PAMAM-stabilized Pt nanoparticles. Use of benzoylated dialysis tubing (1200 Da cut-off) shows no losses of G4OH or G4OH-Pt mixtures. We use AFM to see whether selective filtration during dialysis introduces sampling bias in the measurement of particle size distributions. We compare results (UV-visible spectra, AA results, and AFM-based particle size distributions) for a sample of G4OH-Pt40 divided into two parts, one part dialysed with regular dialysis tubing and the other with benzoylated tubing. Exhaustive dialysis using benzoylated tubing may lead to the loss of colloidal Pt nanoparticles stabilized by adsorbed dendrimer, but not Pt nanoparticles encapsulated by the dendrimer. The comparisons also lead to new insights concerning the underlying synthesis mechanisms for PAMAM-stabilized Pt nanoparticles.

  1. On the reactivity of platinum(IV) complexes: Synthesis and spectroscopic studies of platinum(IV) complexes with hypoxanthine

    Science.gov (United States)

    Gaballa, Akmal S.

    2006-01-01

    Na 2[PtCl 6] was found to react with (HypH)Cl·H 2O ( 2) (Hyp=hypoxanthine) in aqueous solution at room temperature yielding (HypH) 2[PtCl 6] ( 3). The same compound was obtained from hexachloroplatinic acid and hypoxanthine. Performing this reaction in methanol at 50 °C complex formation took place yielding the hypoxanthine complex [PtCl 4(Hyp) 2] ( 4). Both compounds were isolated in good yields as faint orange ( 3) and yellow ( 4) precipitates, respectively and characterized by microanalyses, IR and NMR ( 1H, 13C, 195Pt) spectroscopies as well as thermal analysis. Based on the data obtained an octahedral molecular structure is proposed for complex 4 with two hypoxanthine ligands coordinated through N7 to platinum(IV).

  2. In situ synthesis of platinum nanocatalysts on a microstructured paperlike matrix for the catalytic purification of exhaust gases.

    Science.gov (United States)

    Koga, Hirotaka; Umemura, Yuuka; Tomoda, Akihiko; Suzuki, Ryo; Kitaoka, Takuya

    2010-05-25

    The successful in situ synthesis of platinum nanoparticles (PtNPs) on a microstructured paperlike matrix, comprising ceramic fibers as main framework and zinc oxide whiskers as selective support for the PtNPs, is reported. The as-prepared hybrid material (PtNPs@ZnO "paper") resembles ordinary paper products because it is flexible, lightweight, and easy to handle. In the catalytic reduction of nitrogen oxide (NO(x)) with propene for exhaust gas purification, the PtNPs@ZnO paper demonstrates a high catalytic performance at a low reaction temperature, with one-third the dosage of precious platinum compared to conventional platinum-loaded honeycomb catalysts. These results imply that the combination of easily synthesized PtNPs and a unique fiber-network microstructure can provide excellent performances, promoting the effective transport of heat and reactants to the active sites of the platinum nanocatalysts. Thus, PtNPs@ZnO materials with paperlike practical aspects are promising catalytic materials for efficient NO(x) gas purification.

  3. Síntese e caracterização de um novo complexo de platina (IV a partir de seu análogo de platina (II utilizando iodo molecular como agente oxidante: uma rota sintética interessante para obtenção de novos complexos de platina Synthesis and characterization of a novel platinum (IV complex from its platinum (II analogue using molecular iodine as an oxidizing agent: an interesting synthetic route for the preparation of new platinum complexes

    Directory of Open Access Journals (Sweden)

    Wendell Guerra

    2007-02-01

    Full Text Available In an attempt to reduce toxicity and widen the spectrum of activity of cisplatin and its analogues, much attention has been focused on designing new platinum complexes. This work reports the synthesis and characterization of novel compounds of the platinum (II and platinum (IV containing 2-furoic hydrazide acid and iodide as ligands. Although the prepared compounds do not present the classical structure of biologically active platinum analogues, they could be potentially active or useful as precursors to prepare antitumor platinum complexes. The reported compounds were characterized by ¹H NMR, 13C NMR, 195Pt NMR, IR and elemental analyses.

  4. Controllable ALD synthesis of platinum nanoparticles by tuning different synthesis parameters

    Science.gov (United States)

    Wang, Chuandao; Hu, Linhua; Lin, Yuyuan; Poeppelmeier, Kenneth; Stair, Peter; Marks, Laurence

    2017-10-01

    Pt nanoparticles were successfully deposited using three different atomic layer deposition (ALD) methods, e.g. AB-type, ABC-type and static ABC-type ALD, on two different types of strontium titanate nanocuboids (STO-NCs) samples in a reaction temperature window of 125 °C–300 °C. The influence of reaction temperature, number of ALD cycles, type of substrate, 2nd reagent and type of ALD method on Pt nanoparticle deposition are comprehensively studied and discussed in this work. Varying the reaction temperature and number of cycles across the three different ALD methods affects Pt particle size, density, and loading. Surface termination of STO-NCs substrate will change deposited Pt nanoparticle growth orientation and thermodynamic shape. The B reagent besides platinum precursor can lead to different ligand decomposition mechanism when Pt precursors are exposed: oxygen allows more effective ligand combustion compared to water, however, the Pt particles are more oxidized according to XPS studies. We expect this work provides a way for tailoring nanoparticles with desired size, dispersion, exposed surfaces and chemical state etc, which helps controlling and optimizing their performance when applied as catalysts or nanosensors.

  5. Synthesis of Platinum-Nickel Hydroxide Nanocomposites for Electrocatalytic Reduction of Water

    KAUST Repository

    Wang, Lei

    2016-11-25

    Water electrolysis represents a promising solution for storage of renewable but intermittent electrical energy in hydrogen molecules. This technology is however challenged by the lack of efficient electrocatalysts for the hydrogen and oxygen evolution reactions. Here we report on the synthesis of platinum-nickel hydroxide nanocomposites and their electrocatalytic applications for water reduction. An in situ reduction strategy taking advantage of the Ni(II)/Ni(III) redox has been developed to enable and regulate the epitaxial growth of Pt nanocrystals on single-layer Ni(OH)2 nanosheets. The obtained nanocomposites (denoted as Pt@2D-Ni(OH)2) exhibit an improvement factor of 5 in catalytic activity and a reduction of up to 130 mV in overpotential compared to Pt for the hydrogen evolution reaction (HER). A combination of electron microscopy/spectroscopy characterization, electrochemical studies and density functional calculations was employed to uncover the structures of the metal-hydroxide interface and understand the mechanisms of catalytic enhancement.

  6. Facile and green synthesis of phytochemicals capped platinum nanoparticles and in vitro their superior antibacterial activity.

    Science.gov (United States)

    Tahir, Kamran; Nazir, Sadia; Ahmad, Aftab; Li, Baoshan; Khan, Arif Ullah; Khan, Zia Ul Haq; Khan, Faheem Ullah; Khan, Qudrat Ullah; Khan, Abrar; Rahman, Aziz Ur

    2017-01-01

    The increase in the severe infectious diseases and resistance of the majority of the bacterial pathogens to the available drug is a serious problem now a day. In order to overcome this problem it is necessary to develop new therapeutic agents which are non-toxic and more effective to inhibit these microbial pathogens. For this purpose the plant extract of highly active medicinal plant, Taraxacum laevigatum was used for the synthesis of platinum nanoparticles (PtNPs) to enhance its bio-activities. The surface plasmon resonance peak appeared at 283nm clearly represent the formation of PtNPs. The results illustrate that the bio-synthesized PtNPs were uniformly dispersed, small sized (2-7nm) and spherical in shape. The green synthesized PtNPs were characterized by UV-vis spectroscopy, XRD, TEM, SEM, EDX, DLS and FTIR. These nanoparticles were tested against gram positive bacteria (Bacillus subtilis) and gram negative bacteria (Pseudomonas aeruginosa). The bio-synthesized PtNPs were examined to be more effective against both of the bacteria. The results showed, that the zone of inhibition of PtNPs against P. aeruginosa was 15 (±0.5) mm and B. subtilis was 18 (±0.8) mm. The most significant outcome of this examination is that PtNPs exhibited strong antibacterial activity against P. aeruginosa and B. subtilis which have strong defensive system against several antibiotics. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. 1.7 nm platinum nanoparticles: synthesis with glucose starch, characterization and catalysis.

    Science.gov (United States)

    Engelbrekt, Christian; Sørensen, Karsten Holm; Lübcke, Teis; Zhang, Jingdong; Li, Qingfeng; Pan, Chao; Bjerrum, Niels J; Ulstrup, Jens

    2010-09-10

    Monodisperse platinum nanoparticles (PtNPs) were synthesized by a green recipe. Glucose serves as a reducing agent and starch as a stabilization agent to protect the freshly formed PtNP cores in buffered aqueous solutions. Among the ten buffers studied, 2-(N-morpholino)ethanesulfonic acid (MES), ammonium acetate and phosphate are the best media for PtNP size control and fast chemical preparation. The uniform sizes of the metal cores were determined by transmission electron microscopy (TEM) and found to be 1.8 ± 0.5, 1.7 ± 0.2 and 1.6 ± 0.5 nm in phosphate, MES and ammonium acetate buffer, respectively. The estimated total diameter of the core with a starch coating layer is 5.8-6.0 nm, based on thermogravimetric analysis (TGA). The synthesis reaction is simple, environmentally friendly, highly reproducible, and easy to scale up. The PtNPs were characterized electrochemically and show high catalytic activity for reduction of dioxygen and hydrogen peroxide as well as for oxidation of dihydrogen. The PtNPs can be transferred to carbon support materials with little demand for high specific surface area of carbon. This enables utilization of graphitized carbon blacks to prepare well-dispersed Pt/C catalysts, which exhibit significantly improved durability in the accelerated aging test under fuel cell mimicking conditions.

  8. Electrochemical pulsed deposition of platinum nanoparticles on indium tin oxide/polyethylene terephthalate as a flexible counter electrode for dye-sensitized solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Wei, Yu-Hsuan; Chen, Chih-Sheng [Department of Materials Engineering, Ming Chi University of Technology, New Taipei City 24301, Taiwan (China); Ma, Chen-Chi M. [Department of Chemical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan (China); Tsai, Chuen-Horng [Department of Engineering and System Science, National Tsing Hua University, Hsinchu 30013, Taiwan (China); Hsieh, Chien-Kuo, E-mail: jack_hsieh@mail.mcut.edu.tw [Department of Materials Engineering, Ming Chi University of Technology, New Taipei City 24301, Taiwan (China)

    2014-11-03

    In this study, a pulsed-mode electrochemical deposition (Pulse-ECD) technique was employed to deposit platinum nanoparticles (PtNPs) on the indium tin oxide/polyethylene terephthalate (ITO/PET) substrate as a flexible counter electrode for dye-sensitized solar cells (DSSCs). The characteristic properties of the Pulse-ECD PtNPs were prepared and compared to the traditional (electron beam) Pt film. The surface morphologies of the PtNPs were examined by field emission scanning electron microscopy (FE-SEM) and the atomic force microscope (AFM). The FE-SEM results showed that our PtNPs were deposited uniformly on the ITO/PET flexible substrates via the Pulse-ECD technique. The AFM results indicated that the surface roughness of the pulsed PtNPs influenced the power conversion efficiency (PCE) of DSSCs, due to the high specific surface area of PtNPs which enhanced the catalytic activities for the reduction (I{sub 3}{sup −} to I{sup −}) of redox electrolyte. In combination with a N719 dye-sensitized TiO{sub 2} working electrode and an iodine-based electrolyte, the DSSCs with the PtNPs flexible counter electrode showed a PCE of 4.3% under the illumination of AM 1.5 (100 mW cm{sup −2}). The results demonstrated that the Pulse-ECD PtNPs are good candidate for flexible DSSCs. - Highlights: • We used indium tin oxide/polyethylene terephthalate as a flexible substrate. • We utilized pulse electrochemical deposition to deposit platinum nanoparticles. • We synthesized a flexible counter electrode for dye-sensitized solar cell (DSSC). • The power conversion efficiency of DSSC was measured to be 4.3%.

  9. Microwave-assisted synthesis and photocatalytic properties of sulphur and platinum modified TiO2 nanofibers

    Science.gov (United States)

    Drunka, R.; Grabis, J.; Jankovica, Dz; Krumina, A.; Rasmane, Dz

    2015-03-01

    In the present work formation of active TiO2 nanofibers in microwave synthesis and their modification with platinum were studied. Mixture of anatase and rutile nanopowder and 10M KOH solution were used as raw materials. Microwave assisted synthesis method permitted to obtain TiO2 nanofibres with a diameter of 10nm and a specific surface area up to 40.2 m2/g. In order to modify TiO2 nanofibers with platinum it was stirred in H2PtCl6 solution and illuminated with UV irradiation or reduced with sodium boronhydride. To modify titania with sulphur and prepare co-doped nanofibers platinum doped samples were extra treated in hydrogen sulphide atmosphere. Photocatalytic activity was determined by degradation of the methylene blue (MB) solution under UV and visible light irradiation. The obtained samples showed higher photocatalytic activity with respect to pure TiO2 nanofibers. The doped TiO2 nanofibers were appropriate for degradation of harmful organic compounds.

  10. A novel immunosensor based on immobilization of hepatitis B surface antibody on platinum electrode modified colloidal gold and polyvinyl butyral as matrices via electrochemical impedance spectroscopy.

    Science.gov (United States)

    Tang, Dianping; Yuan, Ruo; Chai, Yaqin; Dai, Jianyuan; Zhong, Xia; Liu, Yan

    2004-12-01

    Hepatitis B surface antibody (HBsAb) was immobilized to the surface of platinum electrode modified with colloidal gold and polyvinyl butyral (PVB) as matrices to detect hepatitis B surface antigen (HBsAg) via electrochemical impedance spectroscopy (EIS). The electrochemical measurements of cyclic voltammetry and impedance spectroscopy showed that K(4)[Fe(CN)(6)]/K(3)[Fe(CN)(6)] reactions on the platinum electrode surface were blocked due to the procedures of self-assembly of HBsAb-Au-PVB. The binding of a specific HBsAb to HBsAg recognition layer could be detected by measurements of the impedance change. A new strategy was introduced for improving the sensitivity of impedance measurements via the large specific surface area and high surface free energy of Au nanoparticles and the encapsulated effect of polyvinyl butyral. The results showed that this strategy caused dramatic improvement of the detection sensitivity of HBsAg and had good linear response to detect HBsAg in the range of 20-160 ng.ml(-1) with a detection limit of 7.8 ng.ml(-1). Moreover, the studied immunosensor exhibited high sensitivity and long-term stability.

  11. Advances in the synthesis mulitmetallic systems: hydroxyl group protection in aryldiamine platinum species

    NARCIS (Netherlands)

    Koten, G. van; Davies, P.J.; Grove, D.M.

    1997-01-01

    A multimetallic system containing three platinum atoms has been synthesized through use of an (aryldiamine)platinum complex with a protected hydroxyl group which, after deprotection, is coupled with the trisubstituted aryl molecule 1,3,5-tris(chlorocarbonyl)benzene that provides the core moiety. The

  12. Synthesis and Structural Properties of Aza[n]helicene Platinum Complexes: Control of Cis and Trans Stereochemistry.

    Science.gov (United States)

    Mendola, Daniele; Saleh, Nidal; Hellou, Nora; Vanthuyne, Nicolas; Roussel, Christian; Toupet, Loïc; Castiglione, Franca; Melone, Federica; Caronna, Tullio; Fontana, Francesca; Martí-Rujas, Javier; Parisini, Emilio; Malpezzi, Luciana; Mele, Andrea; Crassous, Jeanne

    2016-03-07

    The synthesis and structural characterization of azahelicene platinum complexes obtained from cis-PtCl2(NCEt)(PPh3) and from ligands that differ in terms of both the position of the nitrogen atom and the number of fused rings are reported. These square-planar complexes of the general formula PtCl2(nHm)(PPh3) (n = 4, 5; m = 5, 6) display mainly a cis configuration. However, by X-ray crystallographic analysis, we show that for both PtCl2(4H6)(PPh3) and PtCl2(5H6)(PPh3) there is chirality control of the cis/trans stereochemistry. Indeed, starting from a racemic mixture of aza[6]helicene, platinum complexes with a cis configuration are invariably obtained, and the more thermodynamically stable trans isomers are formed when using enantiopure ligands. We further corroborated these results by NMR analysis in solution.

  13. Synthesis, characterization and electrochemical studies of novel platinum-based nanomaterials

    Science.gov (United States)

    Wang, Jingpeng

    2009-12-01

    Platinum (Pt) as well as its alloys represent some of the most efficient catalyst materials among intermetallic compounds and alloys. An important clue throughout this work is the development of a desired synthetic approach of Pt-based nanomaterials---a one-step hydrothermal co-reduction of inorganic metal precursors. Slight modifications in experimental conditions have led to the production of Pt-based nanostructured materials with two distinct morphologies: (i) three-dimensional (3D) nanoporous Pt-M networks (M= Ru, Ir, Pb, Pd) when formaldehyde is used as a reducing agent; and (ii) 3D intermetallic Pt-M nanodendrites (M= Au, Pb, Bi or Pd) when formate ligands are present as multi-functional reagents in the hydrothermal process. Those as-synthesized Pt-based nanoporous catalysts not only possess significantly high surface areas, but also exhibit superb electrocatalytic activities towards the electrochemical oxidation of methanol and formic acid. Among them, the nanoporous PtPb networks were further tested towards the electro-oxidation of glucose. Voltammetric and amperometric results demonstrate that the PtPb electrodes have strong and sensitive current responses to the incremental glucose concentrations, and are capable of sensing glucose with excellent selectivity in neutral media. In the case of synthesizing Pt-based nanodendritic materials, ammonium formate and formic acid were used as multi-functional reagents in the hydrothermal-assisted fabrication of alloyed PtAu and PtPb nanodendrites, respectively. Electrochemical studies reveal that both PtAu and PtPb nanodendrites exhibit exceptionally high electrocatalytic activities in formic acid oxidation owing to their unique alloyed intermetallic crystal structures. The proposed coordination and co-reduction alloying mechanism together with the foreign particle-induced dendritic growth mechanism have been further proved to be universal for fabricating a wide range of intermetallic nanodendrites, including

  14. Radiochemical synthesis and preliminary in vivo evaluation of new radioactive platinum complexes with carnosine.

    Science.gov (United States)

    Maurin, Michał; Garnuszek, Piotr

    2010-02-01

    Application of cross-linking agents such as SATA and 2-iminothiolane (2-IT) for radiochemical synthesis of new radioactive Pt(II) and Pt(IV) complexes with carnosine was investigated. The mixed-ligand Pt(II)([(125)I]Hist)(Carnosine) complex has been synthesized in a multi-step reaction. First, carnosine was modified by the attachment of SATA. After chromatographic purification, the conjugate was unprotected to form a reactive sulfhydryl functional group, and then the modified carnosine was substituted to PtCl(2)[(125)I]Hist complex. The Pt(II)(IT-[(125)I]Carnosine) and Pt(IV)(IT-[(131)I]Carnosine) complexes were synthesized in a three-step reaction. First, carnosine was labeled with iodine radionuclide ((125)I or (131)I), followed by conjugation with 2-IT. The modified IT-[*I]Carnosine was complexed with tetrachloroplatinate or hexachloroplatinate. Comparative biodistribution studies were performed in normal Wistar rats and in Lewis rats with implanted (s.c.) rat pancreatic tumor cells (AR42J). The HPLC analysis showed a relatively fast formation of the new mixed-ligand Pt([(125)I]Hist)(Carnosine) complex (yield ca. 50% after 20h). Reaction of K(2)PtCl(4) with [(125)I]Carnosine modified by 2-IT proceeded rapidly and with a high yield (>95% after 2h). The synthesis of the Pt(IV)IT-[*I]Carnosine complex was the slower reaction in comparison to the analogous synthesis of the Pt(II) complex (yield ca. 70% after 12h), thus a purification step was necessary. The biodistribution study proved the in vivo stability of the newly synthesized complexes (a low accumulation in thyroid gland and in GIT) and showed that the conjugation of the modified carnosine changes significantly biodistribution scheme of the Pt complexes comparing to the reference Pt(II)[*I]Hist and Pt(IV)([*I]Hist)(2) complexes. The mixed-ligand complex was rapidly excreted in urine and revealed the highest accumulation in kidneys (>5%ID/g). A very high concentration in blood and in liver was observed for the

  15. Bio-inspired routes for synthesizing efficient nanoscale platinum electrocatalysts

    Energy Technology Data Exchange (ETDEWEB)

    Cha, Jennifer N. [Univ. of California, San Diego, CA (United States); Wang, Joseph [Univ. of California, San Diego, CA (United States)

    2014-08-31

    The overall objective of the proposed research is to use fundamental advances in bionanotechnology to design powerful platinum nanocrystal electrocatalysts for fuel cell applications. The new economically-viable, environmentally-friendly, bottom-up biochemical synthetic strategy will produce platinum nanocrystals with tailored size, shape and crystal orientation, hence leading to a maximum electrochemical reactivity. There are five specific aims to the proposed bio-inspired strategy for synthesizing efficient electrocatalytic platinum nanocrystals: (1) isolate peptides that both selectively bind particular crystal faces of platinum and promote the nucleation and growth of particular nanocrystal morphologies, (2) pattern nanoscale 2-dimensional arrays of platinum nucleating peptides from DNA scaffolds, (3) investigate the combined use of substrate patterned peptides and soluble peptides on nanocrystal morphology and growth (4) synthesize platinum crystals on planar and large-area carbon electrode supports, and (5) perform detailed characterization of the electrocatalytic behavior as a function of catalyst size, shape and morphology. Project Description and Impact: This bio-inspired collaborative research effort will address key challenges in designing powerful electrocatalysts for fuel cell applications by employing nucleic acid scaffolds in combination with peptides to perform specific, environmentally-friendly, simultaneous bottom-up biochemical synthesis and patterned assembly of highly uniform and efficient platinum nanocrystal catalysts. Bulk synthesis of nanoparticles usually produces a range of sizes, accessible catalytic sites, crystal morphologies, and orientations, all of which lead to inconsistent catalytic activities. In contrast, biological systems routinely demonstrate exquisite control over inorganic syntheses at neutral pH and ambient temperature and pressures. Because the orientation and arrangement of the templating biomolecules can be precisely

  16. Enhancement of Electrode Stability Using Platinum-Cobalt Nanocrystals on a Novel Composite SiCTiC Support.

    Science.gov (United States)

    Millán, María; Zamora, Héctor; Rodrigo, Manuel A; Lobato, Justo

    2017-02-22

    PtCo alloy catalysts for high temperature PEMFCs (protonic exchange membrane fuel cells) were synthesized on a novel noncarbonaceous support (SiCTiC) using the impregnation method with NaBH4 as the reducing agent at different synthesis temperatures to evaluate the effect of this variable on their physicochemical and electrochemical properties. The catalysts were characterized by inductively coupled plasma optical emission spectrometry, scanning electron microscopy-energy dispersive X-ray spectroscopy, X-ray diffraction, transmission electron microscope-energy dispersive X-ray,and temperature-programmed reduction. In addition, the electrochemical characterization (i.e., cyclic voltammetry, oxygen reduction reaction, and chronoamperometry) was carried out with a rotating disk electrode. For the cyclic voltammetry investigation, 400 cycles were performed in hot phosphoric acid and a half-cell to evaluate the stability of the synthesized catalysts. The catalyst synthesized on SiCTiC exhibited excellent durability compared to the catalyst synthesized on a Vulcan support. In addition, all synthesized catalysts exhibited better catalytic activity than that of the PtCo/C catalysts. The best results were observed for the catalyst synthesized at 80 °C due to its shorter Pt-Pt nearest-neighbor and higher alloy degree. Finally, a preliminary stability test was conducted in an HT-PEMFC, and promising results in terms of stability and performance were observed.

  17. Mono- and di-bromo platinum(IV) prodrugs via oxidative bromination: synthesis, characterization, and cytotoxicity.

    Science.gov (United States)

    Xu, Zoufeng; Wang, Zhigang; Yiu, Shek-Man; Zhu, Guangyu

    2015-12-14

    Platinum(IV)-based anticancer prodrugs have attracted much attention due to their relative inertness under physiological conditions, being activated inside cells, and their capacity for functionalization with a variety of small-molecule or macromolecule moieties. Novel asymmetric platinum(IV) compounds synthesized through expedient and unique methods are desired. Here we utilize N-bromosuccinimide (NBS) and carry out oxidative bromination on platinum(II) drugs, namely cisplatin, carboplatin, and oxaliplatin, to obtain asymmetric and mono-bromo platinum(IV) prodrugs. Different solvents are used to obtain various compounds, and the compounds are further functionalized. Di-bromo compounds are also obtained through NBS-directed oxidative bromination in ethanol. The crystal structures of representative compounds are discussed, and the reduction potentials of some compounds are examined. A cytotoxicity test shows that the mono- and di-bromo platinum(IV) compounds are active against human ovarian cancer cells. Our study enriches the family of asymmetric platinum(IV) prodrugs and provides with a convenient strategy to obtain brominated platinum(IV) complexes.

  18. Application of Polyaniline Incorporated Carbon Particles Coated Platinum Electrode in Coulometric Titration to Determination of Polyisoprene Alcohol

    Institute of Scientific and Technical Information of China (English)

    ZHAO Ge; LIU Meng; LIU Kuai-zhi; QU Jiang-ying; CHENG Gang; DU Zu-ling

    2003-01-01

    The feasibility of using electrodes modified with polyaniline incorporated carbon particles films for improving the precision of coulometric titration is demonstrated. The problem of large deviation produced during determining polyisoprene by coulometric titration with direct titration technique(double Pt electrodes indicating electrode) has been solved. In the titration process, polyisoprene alcohol, an electro-inactive species, is adsorbed on the surface of the bare Pt electrode, which inhibits the electrode reaction of Br- and Br2. Therefore, when the titration reaches the end-point, the detected current will slowly change with time, which can make the repeatability of end-point poor. The atomic force microscopic images show the morphology of the electrode surface of adsorbing polyisoprene alcohol. The application of the chemically modified electrode instead of the bare Pt electrode to indicating the end-point has been investigated. The results show that the Pt electrode coated with polyaniline incorporated carbon particles films is an excellent indicator electrode. This electrode has advantages that the indicating signals are sharp and repeatable at end-point. The precision and the accuracy of the determination of polyisoprene alcohol are satisfactory.

  19. Synthesis and characterisation of platinum (II) salphen complex and its interaction with calf thymus DNA

    Energy Technology Data Exchange (ETDEWEB)

    Sukri, Shahratul Ain Mohd; Heng, Lee Yook; Karim, Nurul Huda Abd [School of Chemical Sciences and Food Technology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43650 Bangi, Selangor (Malaysia)

    2014-09-03

    A platinum (II) salphen complex was synthesised by condensation reaction of 2,4-dihydroxylbenzaldehyde and o-phenylenediamine with potassium tetrachloroplatinate to obtain N,N′-Bis-4-(hydroxysalicylidene)-phenylenediamine-platinum (II). The structure of the complex was confirmed by {sup 1}H and {sup 13}C NMR spectroscopy, FTIR spectroscopy, CHN elemental analyses and ESI-MS spectrometry. The platinum (II) salphen complex with four donor atoms N{sub 2}O{sub 2} from its salphen ligand coordinated to platinum (II) metal centre were determined. The binding mode and interaction of this complex with calf thymus DNA was determined by UV/Vis DNA titration and emission titration. The intercalation between the DNA bases by π-π stacking due to its square planar geometry and aromatic rings structures was proposed.

  20. Synthesis and characterisation of platinum (II) salphen complex and its interaction with calf thymus DNA

    Science.gov (United States)

    Sukri, Shahratul Ain Mohd; Heng, Lee Yook; Karim, Nurul Huda Abd

    2014-09-01

    A platinum (II) salphen complex was synthesised by condensation reaction of 2,4-dihydroxylbenzaldehyde and o-phenylenediamine with potassium tetrachloroplatinate to obtain N,N'-Bis-4-(hydroxysalicylidene)-phenylenediamine-platinum (II). The structure of the complex was confirmed by 1H and 13C NMR spectroscopy, FTIR spectroscopy, CHN elemental analyses and ESI-MS spectrometry. The platinum (II) salphen complex with four donor atoms N2O2 from its salphen ligand coordinated to platinum (II) metal centre were determined. The binding mode and interaction of this complex with calf thymus DNA was determined by UV/Vis DNA titration and emission titration. The intercalation between the DNA bases by π-π stacking due to its square planar geometry and aromatic rings structures was proposed.

  1. Bis- and Tetrakis(carboxylato)platinum(IV) complexes with mixed axial ligands - synthesis, characterization, and cytotoxicity.

    Science.gov (United States)

    Hoffmeister, Björn R; Hejl, Michaela; Adib-Razavi, Mahsa S; Jakupec, Michael A; Galanski, Markus; Keppler, Bernhard K

    2015-04-01

    A series of twelve novel diamminetetrakis(carboxylato)platinum(IV) and 18 novel bis(carboxylato)dichlorido(ethane-1,2-diamine)platinum(IV) complexes with mixed axial carboxylato ligands was synthesized and characterized by multinuclear (1) H-, (13) C-, (15) N-, and (195) Pt-NMR spectroscopy. Their cytotoxic potential was evaluated (by MTT assay) against three human cancer cell lines derived from ovarian teratocarcinoma (CH1/PA-1), lung (A549), and colon carcinoma (SW480). In the cisplatin-sensitive CH1/PA-1 cancer cell line, diamminetetrakis(carboxylato)platinum(IV) complexes showed IC50 values in the low micromolar range, whereas, for the most lipophilic compounds of the bis(carboxylato)dichlorido(ethane-1,2-diamine)platinum(IV) series, IC50 values in the nanomolar range were found. Copyright © 2015 Verlag Helvetica Chimica Acta AG, Zürich.

  2. Synthesis and photophysical and electrochemical properties of new cyclometalated platinum complex containing oxadiazole ligand

    Institute of Scientific and Technical Information of China (English)

    DENG Ji-yong; LIU Yu; HU Zheng-yong; ZHU Mei-xiang; ZHU Wei-guo

    2007-01-01

    A new cyclometalated platinum complex containing 2, 5-bis(naphthalene-1-y1)-1,3,4-oxadiazole ligand was synthesized and characterized. The UV-Vis absorptions and photoluminescent properties of the ligand and its platinum complex were investigated.A characteristic metal-ligand charge transfer absorption peak at 439 nm in the UV spectrum and a strong emission peak at 625 nm in the photoluminescence spectrum were observed for this complex in dichloromethane. Cyclic voltammtry (CV) analysis shows that the EHOMO (energy level of the highest occupied molecular orbital) and ELUMO (energy level of the lowest unoccupied molecular orbital) of the platinum complex are about -5.69 and -3.25 eV, respectively, indicating that the oxadiazole-based platinum complex has a potential application in electrophosphorescent devices used as a red-emitting material.

  3. Platinum(iv) N-heterocyclic carbene complexes: their synthesis, characterisation and cytotoxic activity.

    Science.gov (United States)

    Bouché, M; Dahm, G; Wantz, M; Fournel, S; Achard, T; Bellemin-Laponnaz, S

    2016-07-28

    Platinum(ii) N-heterocyclic carbene complexes have been oxidized by bromine or iodobenzene dichloride to provide the fully characterised corresponding platinum(iv) NHC complexes. Antiproliferative activities of Pt(iv) NHC complexes were assayed against several cancer cell lines and the results were correlated with respect to their stability. Mechanistic investigations revealed that mitochondrial dysfunction and ROS production were associated with the cytotoxic process induced by these compounds.

  4. SYNTHESIS OF POLYSILOXANE-SUPPORTED SELENAETHER PLATINUM COMPLEX AND ITS CATALYTIC PROPERTY FOR HYDROSILYLATION OF OLEFINS

    Institute of Scientific and Technical Information of China (English)

    LU Xueran; CHEN Zhen; DUAN Heping; CHEN Yifan

    1996-01-01

    A new type of selenious polymer, silica-bound polybispropoxyethyl-selenidesilsesquioxane,and its platinum complex were synthesized from bis-allyloxyethyl selenide via hydrosilylation with triethoxysilane, followed by immobilized on fumed silica, and then reacting with potassium chloroplatinite under nitrogen atmosphere in acetone. It was found that the platinum complex can catalyze the hydrosilylation of olefins with triethoxysilane effectively. The effects of the nature of the substrate, the amount of complex used, and the reaction temperature on the catalytic activity were investigated.

  5. Platinum group metal-free electrocatalysts: Effects of synthesis on structure and performance in proton-exchange membrane fuel cell cathodes

    Science.gov (United States)

    Workman, Michael J.; Dzara, Michael; Ngo, Chilan; Pylypenko, Svitlana; Serov, Alexey; McKinney, Sam; Gordon, Jonathan; Atanassov, Plamen; Artyushkova, Kateryna

    2017-04-01

    Development of platinum group metal free catalysts for the oxygen reduction reaction (ORR) in proton exchange membrane fuel cells (PEMFCs) requires understanding of the interactions between surface chemistry and performance, both of which are strongly dependent on synthesis conditions. To elucidate these complex relationships, a set of Fe-N-C catalysts derived from the same set of precursor materials is fabricated by varying several key synthetic parameters under controlled conditions. The results of physicochemical characterization are presented and compared with the results of rotating disk electrode (RDE) analysis and fuel cell testing. We find that electrochemical performance is strongly correlated with three key properties related to catalyst composition: concentrations of 1) atomically dispersed Fe species, 2) species in which N is bound to Fe, and 3) surface oxides. Not only are these factors related to performance, these types of chemical species are shown to correlate with each other. This study provides evidence supporting the role of iron coordinated with nitrogen as an active species for the ORR, and offers synthetic pathways to increase the density of atomically dispersed iron species and surface oxides for optimum performance.

  6. Solution-Processed Transparent Nickel-Mesh Counter Electrode with in-Situ Electrodeposited Platinum Nanoparticles for Full-Plastic Bifacial Dye-Sensitized Solar Cells.

    Science.gov (United States)

    Khan, Arshad; Huang, Yu-Ting; Miyasaka, Tsutomu; Ikegami, Masashi; Feng, Shien-Ping; Li, Wen-Di

    2017-03-08

    A new type of embedded metal-mesh transparent electrode (EMTE) with in-situ electrodeposited catalytic platinum nanoparticles (PtNPs) is developed as a high-performance counter electrode (CE) for lightweight flexible bifacial dye-sensitized solar cells (DSSCs). The thick but narrow nickel micromesh fully embedded in a plastic film provides superior electrical conductivity, optical transmittance, and mechanical stability to the novel electrode. PtNPs decorated selectively on the nickel micromesh surface provide catalytic function with minimum material cost and without interfering with optical transparency. Facile and fully solution-processed fabrication of the novel CE is demonstrated with potential for scalable and cost-effective production. Using this PtNP-decorated nickel EMTE as the CE and titanium foil as the photoanode, unifacial flexible DSSCs are fabricated with a power conversion efficiency (PCE) of 6.91%. By replacing the titanium foil with a transparent ITO-PEN photoanode, full-plastic bifacial DSSCs are fabricated and tested, demonstrating a remarkable PCE of 4.87% under rear-side illumination, which approaches 85% of the 5.67% PCE under front-side illumination, among the highest ratio in published results. These promising results reveal the enormous potential of this hybrid transparent CE in scalable production and commercialization of low-cost and efficient flexible DSSCs.

  7. Electrodeposition of platinum nanoclusters on type I collagen modified electrode and its electrocatalytic activity for methanol oxidation

    Science.gov (United States)

    Sun, Yujing; Sun, Lanlan; Xu, Fugang; Guo, Cunlan; Liu, Zhelin; Zhang, Yue; Yang, Tao; Li, Zhuang

    2009-05-01

    We firstly reported a novel polymer matrix fabricated by type I collagen and polymers, and this matrix can be used as nanoreactors for electrodepositing platinum nanoclusters (PNCs). The type I collagen film has a significant effect on the growth of PNCs. The size of the platinum nanoparticles could be readily tuned by adjusting deposition time, potential and the concentration of electrolyte, which have been verified by field-emitted scanning electron microscopy (FE-SEM). Furthermore, cyclic voltammetry (CV) has demonstrated that the as-prepared PNCs can catalyze methanol directly with higher activity than that prepared on PSS/PDDA film, and with better tolerance to poisoning than the commercial E-TEK catalyst. The collagen-polymer matrix can be used as a general reactor to electrodeposit other metal nanostructures.

  8. Synthesis and characterization of potential iron–platinum drugs and supplements by laser liquid photolysis

    Directory of Open Access Journals (Sweden)

    Forbes A

    2012-06-01

    Full Text Available Steven S Nkosi,1,2 Bonex W Mwakikunga,4 Elias Sideras-Haddad,2 Andrew Forbes1,31CSIR National Laser Centre, Pretoria, South Africa; 2DST/NRF Centre for Excellence in Strong Materials and School of Physics, University of the Witwatersrand, Johannesburg, 3School of Physics, University of KwaZulu-Natal, Durban, South Africa; 4DST/CSIR National Centre for Nano-Structured Materials, Pretoria, South AfricaAbstract: Highly crystalline nanospherical iron–platinum systems were produced by 248 nm laser irradiation of a liquid precursor at different laser fluences, ranging from 100–375 mJ/cm2. The influence of laser intensity on particle size, iron composition, and structure was systematically investigated. Different nanostructures of iron–platinum alloy and chemically disordered iron–platinum L10 phase were obtained without annealing. The prepared precursor solution underwent deep photolysis to polycrystalline iron–platinum nanoalloys through Fe(III acetylacetonate and Pt(II acetylacetonate. Fe(II and Pt(I acetylacetone decomposed into Fe0 and Pt0 nanoparticles. We found that the (001 diffraction peak shifted linearly to a lower angle, with the last peak shifting in opposition to the others. This caused the face-centered cubic L10 structure to change its composition according to laser fluence. The nanostructures were shown to contain iron and platinum only by energy-dispersive spectroscopy at several spots. The response of these iron–platinum nanoparticles to infrared depends on their stoichiometric composition, which is controlled by laser fluence.Keywords: nanostructures, iron, platinum, nanoparticles, laser liquid photolysis, composition

  9. Electroless deposition of Gold-Platinum Core@Shell Nanoparticles on Glassy Carbon Electrode for Non-Enzymatic Hydrogen Peroxide sensing#

    Indian Academy of Sciences (India)

    Gowthaman N S K; Abraham John S

    2016-03-01

    A non-enzymatic hydrogen peroxide sensor was developed using gold@platinum nanoparticlesz (Au@PtNPs) with core@shell structure fabricated on glassy carbon electrode (GCE) by electroless depositionmethod. Initially, gold nanoparticles (AuNPs) were deposited on GCE by reducing HAuCl4 in the presence of NH2OH and the deposited AuNPs on GCE act as the nucleation centre for the deposition of platinum nanoparticles (PtNPs) in the presence of H2PtCl6 and NH2OH. SEM and AFM studies demonstrated that the electrolessdeposition of Pt on Au was isotropic and uniform. Further, Au@PtNP-modified substrates were characterizedby X-ray photoelectron spectroscopy (XPS), energy dispersive X-ray analysis (EDAX) and cyclic voltammetry (CV). XPS showed characteristic binding energies at 71.2 and 74.4 eV for PtNPs and, 83.6 and 87.3 eV forAuNPs indicating the zero-valent nature in both of them. The electrocatalytic activity of Au@PtNP-modifiedelectrode was investigated towards hydrogen peroxide (HP) reduction. The modified electrode exhibited higherelectrocatalytic activity towards HP by not only shifting its reduction potential by 370 mV towards less positivepotential but also by enhancing the reduction current when compared to bare and AuNP-modified GCE. Thepresent method shows better sensitivity compared to the reported methods in literature and the detection limitwas found to be 60 nM.

  10. Synthesis and Analysis of the Structure, Diffusion and Cytotoxicity of Heterocyclic Platinum(IV) Complexes.

    Science.gov (United States)

    Macias, Freddy J; Deo, Krishant M; Pages, Benjamin J; Wormell, Paul; Clegg, Jack K; Zhang, Yingjie; Li, Feng; Zheng, Gang; Sakoff, Jennette; Gilbert, Jayne; Aldrich-Wright, Janice R

    2015-11-16

    We have developed six dihydroxidoplatinum(IV) compounds with cytotoxic potential. Each derived from active platinum(II) species, these complexes consist of a heterocyclic ligand (HL) and ancillary ligand (AL) in the form [Pt(HL)(AL)(OH)2](2+), where HL is a methyl-functionalised variant of 1,10-phenanthroline and AL is the S,S or R,R isomer of 1,2-diaminocyclohexane. NMR characterisation and X-ray diffraction studies clearly confirmed the coordination geometry of the octahedral platinum(IV) complexes. The self-stacking of these complexes was determined using pulsed gradient stimulated echo nuclear magnetic resonance. The self-association behaviour of square planar platinum(II) complexes is largely dependent on concentration, whereas platinum(IV) complexes do not aggregate under the same conditions, possibly due to the presence of axial ligands. The cytotoxicity of the most active complex, exhibited in several cell lines, has been retained in the platinum(IV) form.

  11. Synthesis, characterization and electrochemical studies of nanostructured CaWO{sub 4} as platinum support for oxygen reduction reaction

    Energy Technology Data Exchange (ETDEWEB)

    Farsi, Hossein [Department of Chemistry, University of Birjand, 97175-615 Birjand (Iran, Islamic Republic of); Solar Energy Research Department, University of Birjand, Birjand (Iran, Islamic Republic of); Barzgari, Zahra, E-mail: zbarzgari@birjand.ac.ir [Department of Chemistry, University of Birjand, 97175-615 Birjand (Iran, Islamic Republic of)

    2014-11-15

    Highlights: • Nanostructured CaWO{sub 4} was fabricated by co-precipitation method. • Platinum was electrodeposited onto the surface prepared nanostructured CaWO{sub 4}. • Pt/CaWO{sub 4}-graphite demonstrate good oxygen reduction reaction activity. - Abstract: In the present work, we employed nanostructured calcium tungstate as a supporting material for platinum, a well-known electrocatalyst for oxygen reduction. The co-precipitation method has been utilized to synthesize nanostructured calcium tungstate from aqueous solution. The structure and morphology of the obtained CaWO{sub 4} were characterized by X-ray diffraction (XRD) and transmission electron microscopy (TEM). Preparation of the Pt/CaWO{sub 4}-graphite catalyst was carried out by electrodeposition of Pt onto the surface of CaWO{sub 4}/graphite electrode. The physical properties of the catalyst were determined by scanning electron microscopy analysis and energy dispersive X-ray (SEM/EDX). The electrochemical activity of the Pt/CaWO{sub 4}-graphite for the oxygen reduction reaction (ORR) was investigated in acid solution by cyclic voltammetry measurements, linear sweep voltammetry, and electrochemical impedance spectroscopy. The results revealed that the Pt/CaWO{sub 4}-graphite has higher electrocatalytic activity for oxygen reduction in comparison with Pt/graphite catalyst.

  12. SYNTHESIS AND CATALYTIC BEHAVIOR OF POLYSILOXANE-SUPPORTED FULLERENE PLATINUM OR RHODIUM COMPLEXES

    Institute of Scientific and Technical Information of China (English)

    Peng-fei Fang; Yuan-yin Chen; Shu-ling Gong; Lei Guo; Qiu-sheng Lu; Ling Zhu

    1999-01-01

    Two polysiloxanes with pendant fullerene moieties and their platinum or rhodium complexes have been prepared from C60 via amination with ω-decenylamine, followed by hydrosilylation with triethoxysilane and immobilization on fumed silica or by hydrosilylation with methyldichlorosilane and polycondensation with polydimethylsiloxanol, and then by reacting them with potassium chloroplatinite or rhodium chloride in acetone respectively under argon atmosphere. It was found that the four noble metal complexes are effective catalysts for the hydrosilylation of olefins with triethoxysilane. The regioselectivity of platinum complexes for styrene increases remarkably by introducing C60 moiety. Factors influencing catalytic activity and the mechanism have been investigated.

  13. GREEN AND CONTROLLED SYNTHESIS OF GOLD AND PLATINUM NANOMATERIALS USING VITAMIN B2: DENSITY-ASSISTED SELF-ASSEMBLY OF NANOSPHERES, WIRES AND RODS

    Science.gov (United States)

    For the first time, we report density-assisted self-assembly and efficient synthesis of gold (Au) and platinum (Pt) nanospheres, nanowires and nanorods using vitamin B2 (riboflavin) without employing any special capping or dispersing agent at room temperature; this env...

  14. Coated magnetic particles in electrochemical systems: Synthesis, modified electrodes, alkaline batteries, and paste electrodes

    Science.gov (United States)

    Unlu, Murat

    Magnetic field effects on electrochemical reactions have been studied and shown to influence kinetics and dynamics. Recently, our group has introduced a novel method to establish magnetic field effects by incorporating inert, magnetic microparticles onto the electrode structure. This modification improved several electrochemical systems including modified electrodes, alkaline batteries, and fuel cells. This dissertation describes the applicability of magnetic microparticles and the understanding of magnetic field effects in modified electrodes, alkaline batteries, and paste electrodes. Magnetic effects are studied on electrodes that are coated with an ion exchange polymer that embeds chemically inert, commercial, magnetic microparticles. The flux (electrolysis current) of redox probe to the magnetically modified system is compared to a similar non-magnetic electrode. Flux enhancements of 60% are achieved at magnetically modified electrode as compared to non-magnetic controls. In addition to modifying electrode surfaces, the incorporation of magnetic microparticles into the electrode material itself establishes a 20% increase in flux. Possible magnetic field effects are evaluated. Study of samarium cobalt modified electrolytic manganese dioxide, EMD electrodes further establish a magnetic effect on alkaline cathode performance. Magnetic modification improves alkaline battery performance in primary and secondary applications. The reaction mechanism is examined through voltammetric methods. This work also includes coating protocols to produce inert magnetic microparticles with high magnetic content. Magnetite powders are encapsulated in a polymer matrix by dispersion polymerization. Composite particles are examined in proton exchange membrane fuel cells to study carbon monoxide tolerance.

  15. 2-Deoxyglucose conjugated platinum (II) complexes for targeted therapy: design, synthesis, and antitumor activity.

    Science.gov (United States)

    Mi, Qian; Ma, Yuru; Gao, Xiangqian; Liu, Ran; Liu, Pengxing; Mi, Yi; Fu, Xuegang; Gao, Qingzhi

    2016-11-01

    Malignant neoplasms exhibit an elevated rate of glycolysis over normal cells. To target the Warburg effect, we designed a new series of 2-deoxyglucose (2-DG) conjugated platinum (II) complexes for glucose transporter 1 (GLUT1)-mediated anticancer drug delivery. The potential GLUT1 transportability of the complexes was investigated through a comparative molecular docking analysis utilizing the latest GLUT1 protein crystal structure. The key binding site for 2-DG as GLUT1's substrate was identified with molecular dynamics simulation, and the docking study demonstrated that the 2-DG conjugated platinum (II) complexes can be recognized by the same binding site as potential GLUT1 substrate. The conjugates were synthesized and evaluated for in vitro cytotoxicity study with seven human cancer cell lines. The results of this study revealed that 2-DG conjugated platinum (II) complexes are GLUT1 transportable substrates and exhibit improved cytotoxicities in cancer cell lines that over express GLUT1 when compared to the clinical drug, Oxaliplatin. The correlation between GLUT1 expression and antitumor effects are also confirmed. The study provides fundamental information supporting the potential of the 2-DG conjugated platinum (II) complexes as lead compounds for further pharmaceutical R&D.

  16. SYNTHESIS AND CATALYTIC ACTIVITY OF PLATINUM COMPLEX OF ACRYLATE TERPOLYMER WITH Se,N BIDENTATE LIGAND

    Institute of Scientific and Technical Information of China (English)

    MengLingzhi; QiLiangwei; 等

    1998-01-01

    Acrylate terpolymer-bound Se,N bidentate ligand was synthesized from the side chain chlorine of copolymer and β-dimethylamino-β′-hydroxyl-diethyl selenoether.The polymer-supported platinum complex exhibited high catalytic activity in the hydrosilylation of olefins with triethoxysilane.

  17. SYNTHESIS AND CHARACTERIZATION OF DVE-CO-MA DERIVATIVES OF CIS- PLATINUM COMPLEXES

    Institute of Scientific and Technical Information of China (English)

    WANG Zhuting

    1989-01-01

    Copolymer of divinyl ether and maleic anhydride (DVE- co - MA) derivatives of cis- platinum complexes were synthesized and characterized by elementary analysis, IR and XPS ( X- ray photoelectron spectroscopy). The behavior of the products in biological environment was also studied. UV- visible and fluorescence spectra show that these polymer derivatives are able to exchange ligands with selected nucleophilic groups in biological environment.

  18. Synthesis and Luminescent Properties of an Acetylide-Bridged Dinuclear Platinum(II) Terpyridyl Complex

    Institute of Scientific and Technical Information of China (English)

    WANG,You-Wei(王幼薇); YANG,Qing-Zheng(杨清正); WU,Li-Zhu(吴骊珠); ZHANG,Li-Ping(张丽萍); TUNG,Chen-Ho(佟振合)

    2004-01-01

    An acetylide-bridged dinuclear platinum(II) terpyridyl complex, [Pt(4'-p-tolyl-terpy)-≡-phenyl-≡-(4'-p-tolyl- terpy)Pt](ClO4)2 (1), has been successfully synthesized and its photophysical properties are reported.

  19. Synthesis and ion-binding studies of platinum(Ⅱ) phenanthroline complexes containing crown ether moiety

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Two new benzo-[15]-crown-5 attached phenanthroline platinum(Ⅱ) complexes with the general formula Pt(phen)X2, where X = Cl (1), C≡CC6H5 (2) have been synthesized, and their absorption and luminescence response towards metal ions have been studied.

  20. [NiFe]Hydrogenase from Citrobacter sp. S-77 surpasses platinum as an electrode for H2 oxidation reaction.

    Science.gov (United States)

    Matsumoto, Takahiro; Eguchi, Shigenobu; Nakai, Hidetaka; Hibino, Takashi; Yoon, Ki-Seok; Ogo, Seiji

    2014-08-18

    Reported herein is an electrode for dihydrogen (H2) oxidation, and it is based on [NiFe]Hydrogenase from Citrobacter sp. S-77 ([NiFe]S77). It has a 637 times higher mass activity than Pt (calculated based on 1 mg of [NiFe]S77 or Pt) at 50 mV in a hydrogen half-cell. The [NiFe]S77 electrode is also stable in air and, unlike Pt, can be recovered 100 % after poisoning by carbon monoxide. Following characterization of the [NiFe]S77 electrode, a fuel cell comprising a [NiFe]S77 anode and Pt cathode was constructed and shown to have a a higher power density than that achievable by Pt.

  1. Electron transfer processes occurring on platinum neural stimulating electrodes: pulsing experiments for cathodic-first/charge-balanced/biphasic pulses for 0.566 ≤ k ≥ 2.3 in oxygenated and deoxygenated sulfuric acid

    Science.gov (United States)

    Kumsa, Doe W.; Montague, Fred W.; Hudak, Eric M.; Mortimer, J. Thomas

    2016-10-01

    The application of a train of cathodic-first/charge-balanced/biphasic pulses applied to a platinum electrode resulted in a positive creep of the anodic phase potential that increases with increasing charge injection but reaches a steady-state value before 1000 pulses have been delivered. The increase follows from the fact that charge going into irreversible reactions occurring during the anodic phase must equal the charge going into irreversible reactions during the cathodic phase for charge-balanced pulses. In an oxygenated electrolyte the drift of the measured positive potential moved into the platinum oxidation region of the i(V e) profile when the charge injection level exceeds k = 1.75. Platinum dissolution may occur in this region and k = 1.75 defines a boundary between damaging and non-damaging levels on the Shannon Plot. In a very low oxygen environment, the positive potential remained below the platinum oxidation region for the highest charge injection values studied, k = 2.3. The results support the hypothesis that platinum dissolution is the defining factor for the Shannon limit, k = 1.75. Numerous instrumentation issues were encountered in the course of making measurements. The solutions to these issues are provided.

  2. Electron transfer processes occurring on platinum neural stimulating electrodes: pulsing experiments for cathodic-first/charge-balanced/biphasic pulses for 0.566 ≤ k ≤ 2.3 in oxygenated and deoxygenated sulfuric acid.

    Science.gov (United States)

    Kumsa, Doe W; Montague, Fred W; Hudak, Eric M; Mortimer, J Thomas

    2016-10-01

    The application of a train of cathodic-first/charge-balanced/biphasic pulses applied to a platinum electrode resulted in a positive creep of the anodic phase potential that increases with increasing charge injection but reaches a steady-state value before 1000 pulses have been delivered. The increase follows from the fact that charge going into irreversible reactions occurring during the anodic phase must equal the charge going into irreversible reactions during the cathodic phase for charge-balanced pulses. In an oxygenated electrolyte the drift of the measured positive potential moved into the platinum oxidation region of the i(V e) profile when the charge injection level exceeds k = 1.75. Platinum dissolution may occur in this region and k = 1.75 defines a boundary between damaging and non-damaging levels on the Shannon Plot. In a very low oxygen environment, the positive potential remained below the platinum oxidation region for the highest charge injection values studied, k = 2.3. The results support the hypothesis that platinum dissolution is the defining factor for the Shannon limit, k = 1.75. Numerous instrumentation issues were encountered in the course of making measurements. The solutions to these issues are provided.

  3. Cyclometalated NCN platinum(II) acetylide complexes - Synthesis, photophysics and OLEDs fabrication

    Science.gov (United States)

    Szafraniec-Gorol, Grazyna; Slodek, Aneta; Schab-Balcerzak, Ewa; Grucela, Marzena; Siwy, Mariola; Filapek, Michal; Matussek, Marek; Zych, Dawid; Mackowski, Sebastian; Buczynska, Dorota; Grzelak, Justyna; Erfurt, Karol; Chrobok, Anna; Krompiec, Stanislaw

    2016-12-01

    The novel cyclometalated NCN platinum(II) acetylide complexes were synthesized. As precursors of acetylide ligands were used 9,9-dibutyl-2-ethynylfluorene, 9-butyl-3-ethynylcarbazole, and 5-ethynyl-2,2‧-bithiophene, whereas 1,3-di(2-pirydyl)benzene derivatives were cyclometalating NCN ligands. Variable character of ligands allowed to prepare a series of novel platinum(II) complexes, which showed light emission in a wide wavelength range from 410 to 625 nm. The optical and electrochemical properties of new complexes were examined and compared with theoretical DFT calculations. Complexes containing fluorenyl and carbazyl motif were used as emitters in an organic light-emitting diodes. The applicability of these Pt(II) complexes for electroluminescence was examined.

  4. Unsymmetric mono- and dinuclear platinum(IV) complexes featuring an ethylene glycol moiety: synthesis, characterization, and biological activity.

    Science.gov (United States)

    Pichler, Verena; Heffeter, Petra; Valiahdi, Seied M; Kowol, Christian R; Egger, Alexander; Berger, Walter; Jakupec, Michael A; Galanski, Markus; Keppler, Bernhard K

    2012-12-27

    Eight novel mononuclear and two dinuclear platinum(IV) complexes were synthesized and characterized by elemental analysis, one- and two-dimensional NMR spectroscopy, mass spectrometry, and reversed-phase HPLC (log k(w)) and in one case by X-ray diffraction. Cytotoxicity of the compounds was studied in three human cancer cell lines (CH1, SW480, and A549) by means of the MTT assay, featuring IC(50) values to the low micromolar range. Furthermore a selected set of compounds was investigated in additional cancer cell lines (P31 and P31/cis, A2780 and A2780/cis, SW1573, 2R120, and 2R160) with regard to their resistance patterns, offering a distinctly different scheme compared to cisplatin. To gain further insights into the mode of action, drug uptake, DNA synthesis inhibition, cell cycle effects, and induction of apoptosis were determined for two characteristic substances.

  5. A self-regenerable soot sensor with a proton-conductive thin electrolyte and a nanostructured platinum sensing electrode

    Science.gov (United States)

    Lv, Peiling; Ito, Takenori; Oogushi, Akihide; Nakashima, Kensaku; Nagao, Masahiro; Hibino, Takashi

    2016-11-01

    In recent years, exhaust sensors have become increasingly attractive for use in energy and environmental technologies. Important issues regarding practical applications of these sensors, especially for soot measurements, include the further development of ion-conductive electrolytes and active electrode catalysts for meeting performance and durability requirements. Herein, we design a proton conductor with a high breakdown voltage and a sensing electrode with high sensitivity to electrochemical carbon oxidation, enabling continuous soot monitoring with self-regeneration of the sensor. A Si0.97Al0.03HxP2O7-δ layer with an excellent balance between proton conductivity and voltage endurance was grown on the surface of a Si0.97Al0.03O2-δ substrate by reacting it with liquid H3PO4 at 600 °C. Specific reactivity of the electrochemically formed active oxygen toward soot was accomplished by adding a Pt-impregnated Sn0.9In0.1HxP2O7-δ catalyst into a Pt sensing electrode. To make the best use of these optimized materials, a unipolar electrochemical device was fabricated by configuring the sensing and counter electrodes on the same surface of the electrolyte layer. The resulting amperometric mode sensor successfully produced a current signal that corresponded to the quantity of soot.

  6. The use of a hierarchically platinum-free electrode composed of tin oxide decorated polypyrrole on nanoporous copper in catalysis of methanol electrooxidation

    Energy Technology Data Exchange (ETDEWEB)

    Asghari, Elnaz, E-mail: elnazasghari@yahoo.com; Ashassi-Sorkhabi, Habib; Vahed, Akram; Rezaei-Moghadam, Babak; Charmi, Gholam Reza

    2016-01-01

    Tin oxide nanoparticles were synthesized through a galvanostatic pathway on polypyrrole, PPy, coated nanoporous copper. The morphology and surface analysis of the assemblies were evaluated by field emission scanning electron microscopy, FESEM, and energy dispersive X-ray, EDX, analysis, respectively. The electrocatalytic behavior of electrodes was studied by cyclic voltammetry and chronoamperometry tests in methanol solution. FESEM results showed that uniformly distributed nanoparticles with diameters of about 20–30 nm have been dispersed on PPy matrix. Cyclic voltammetry and chronoamperometry tests in methanol solution showed a significant enhancement in the catalytic action of PPy after decoration of tin oxide nanoparticles. Porous Cu/PPy/SnO{sub x} electrodes showed enhanced anodic peak current density for methanol oxidation compared to smooth Cu/PPy/SnO{sub x} and porous Cu/PPy. The effects of synthesis current density and time on the electrocatalytic behavior of the electrodes were evaluated. The significant enhancement of electrocatalytic behavior of the Cu/PPy electrode after decoration of SnO{sub x} overlayer was attributed to the effect of tin oxide on the adsorption of intermediates of methanol oxidation as well as oxidation of bi-products such as CO; huge tendency of tin oxides for dehydrogenation of the alcohols and the increase in microscopic surface area of the electrodes were introduced as other affecting factors. - Highlights: • Nanoporous copper–zinc substrates were formed by chemical leaching of zinc. • Polypyrrole thin film was electrodeposited on nanoporous copper. • Thin oxide nanoparticles were synthesized electrochemically on polypyrrole layer. • The catalytic performance of the electrodes was evaluated for methanol oxidation.

  7. Electrochemical Peltier heat for the adsorption and desorption of hydrogen on a platinized platinum electrode in sulfuric acid solution

    Energy Technology Data Exchange (ETDEWEB)

    Shibata, Shigeo; Sumino, M.P.

    1985-01-01

    The electrochemical Peltier heat for the surface hydrogen process at a pt-Pt electrode in 0.5 M H/sub 2/SO/sub 4/ solution was measured under controlled-potential and controlled-current polarizations using a thick film thermistor electrode. The observed Peltier heat is related to the entropy change of the reversible hydrogen process. In the hydrogen potential region, four stepwise heat changes were observed. These heat changes correspond to the adsorptions of four hydrogen species with different adsorption strengths, respectively. The most weakly bonded hydrogen species Hsub(w) exhibited the largest Peltier heat. This is possibly due to the strong interaction of Hsub(w) with the water molecules of the solvent. Peltier effects for the other three adsorption species are explained in terms of the nature of the adsorption sites where hydrogen atoms adsorb with a different mobility or vibrational movement, resulting in a different entropy. (orig.).

  8. TEM and EELS studies of microwave-irradiation synthesis of bimetallic platinum nanocatalysts

    CSIR Research Space (South Africa)

    Mathe, NR

    2014-01-01

    Full Text Available Microwave-irradiation (MW) synthesis of nanostructured materials provides for the synthesis of metal nanoparticles, using fast and uniform heating rates. This procedure affords better control of the shape and size of the nanoparticles when compared...

  9. Fabrication of Carbon-Platinum Interdigitated Array Electrodes and Their Application for Investigating Homogeneous Hydrogen Evolution Catalysis

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Fei; Divan, Ralu; Parkinson, Bruce A.

    2015-06-29

    Carbon interdigitated array (IDA) electrodes have been applied to study the homogeneous hydrogen evolution electrocatalyst [Ni(PPh2NBn2)2]2+ (where PPh2NBn2 is 1,5-dibenzyl-3,7-diphenyl-1,5-diaza-3,7-diphosphacyclooctane). The existence of reaction intermediates in the catalytic cycle is inferred from the electrochemical behavior of a glassy carbon disk electrodes and carbon IDA electrodes. The currents on IDA electrodes for an EC’ (electron transfer reaction followed by a catalytic reaction) mechanism are derived from the number of redox cycles and the contribution of non-catalytic currents. The catalytic reaction rate constant was then extracted from the IDA current equations. Applying the IDA current and kinetic equations to the electrochemical response of the [Ni(PPh2NBn2)2]2+ catalyst yielded a rate constant of 0.10 s-1 for the hydrogen evolution reaction that agrees with the literature value. The quantitative analysis of IDA cyclic voltammetry can be used as a simple and straightforward method for determining rate constants in other catalytic systems. This work was supported as part of the Center for Molecular Electrocatalysis, an Energy Frontier Research Center funded by the Department of Energy, Office of Science, Office of Basic Energy Sciences. Pacific Northwest National Laboratory is operated by Battelle for DOE. Use of the Center for Nanoscale Materials was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357.

  10. Novel one pot stoichiometric synthesis of nickel sulfide nanomaterials as counter electrodes for QDSSCs

    Energy Technology Data Exchange (ETDEWEB)

    Mani, A. Daya; Deepa, Melepurath [Department of Chemistry, IIT Hyderabad, Yeddumailaram 502 205 (India); Xanthopoulos, N. [Ecole Polytechnique Federale de Lausanne (EPFL), CH-Lausanne (Switzerland); Subrahmanyam, Ch, E-mail: csubbu@iith.ac.in [Department of Chemistry, IIT Hyderabad, Yeddumailaram 502 205 (India)

    2014-11-14

    Solution combustion synthesis has been used for the first time to synthesize metal sulfide nanomaterials. Selective stoichiometric synthesis of nickel sulfide nanomaterials was achieved in a single step by using combustion synthesis under ambient conditions and the samples were tested as counter electrodes in a typical quantum dot sensitized solar cell (QDSSC). By varying the oxidant/fuel ratio, different stoichiometric nickel sulfide nanomaterials were obtained. Interestingly, a maximum of fourfold increase in efficiency (1.1%) was achieved with nickel sulfide counter electrode when compared to the Pt counter electrode (0.25%). This can be attributed to the less charge transfer resistance offered by nickel sulfide samples compared to Pt, which was confirmed by electrochemical impedance spectroscopy. Among different stoichiometric compositions of nickel sulfide, Ni{sub 3}S{sub 2} was found to exhibit the least charge transfer resistance and superior solar cell efficiency. The present study describes a novel selective stoichiometric synthetic approach and facile fabrication procedure for low cost counter electrode materials in QDSSCs. - Highlights: • Novel and facile phase selective synthesis of nickel sulfide nanomaterials. • A different sensitization approach of TiO{sub 2} with CdS. • A simple paint approach for working and counter electrode fabrication. • Fourfold increase of efficiency with Ni{sub 3}S{sub 2} compared to the conventional Pt.

  11. Why (1 0 0) terraces break and make bonds: oxidation of dimethyl ether on platinum single-crystal electrodes.

    Science.gov (United States)

    Li, Hongjiao; Calle-Vallejo, Federico; Kolb, Manuel J; Kwon, Youngkook; Li, Yongdan; Koper, Marc T M

    2013-09-25

    A surface structural preference for (1 0 0) terraces of fcc metals is displayed by many bond-breaking or bond-making reactions in electrocatalysis. Here, this phenomenon is explored in the electrochemical oxidation of dimethyl ether (DME) on platinum. The elementary C-O bond-breaking step is identified and clarified by combining information obtained from single-crystal experiments and density functional theory (DFT) calculations. Experiments on Pt(1 0 0), Pt(5 1 0), and Pt(10 1 0) surfaces show that the surface structure sensitivity is due to the bond-breaking step, which is unfavorable on step sites. DFT calculations suggest that the precursor for the bond-breaking step is a CHOC adsorbate that preferentially adsorbs on a square ensemble of four neighboring atoms on Pt(1 0 0) terraces, named as "the active site". Step sites fail to strongly adsorb CHOC and are, therefore, ineffective in breaking C-O bonds, resulting in a decrease in activity on surfaces with increasing step density. Our combined experimental and computational results allow the formulation of a new mechanism for the electro-oxidation of DME as well as a simple general formula for the activity of different surfaces toward electrocatalytic reactions that prefer (1 0 0) terrace active sites.

  12. Amperometric Biosensor Based on Diamine Oxidase/Platinum Nanoparticles/Graphene/Chitosan Modified Screen-Printed Carbon Electrode for Histamine Detection.

    Science.gov (United States)

    Apetrei, Irina Mirela; Apetrei, Constantin

    2016-03-24

    This work describes the development and optimization studies of a novel biosensor employed in the detection and quantification of histamine in freshwater fish samples. The proposed biosensor is based on a modified carbon screen-printed electrode with diamineoxidase, graphene and platinum nanoparticles, which detects the hydrogen peroxide formed by the chemical process biocatalysed by the enzyme diamine oxidase and immobilized onto the nanostructurated surface of the receptor element. The amperometric measurements with the biosensor have been implemented in buffer solution of pH 7.4, applying an optimal low potential of +0.4 V. The novel biosensor shows high sensitivity (0.0631 μA·μM), low detection limit (2.54 × 10(-8) M) and a broad linear domain from 0.1 to 300 μM. The applicability in natural complex samples and the analytical parameters of this enzyme sensor have been performed in the quantification of histamine in freshwater fish. An excellent correlation among results achieved with the developed biosensor and results found with the standard method for all freshwater fish samples has been achieved.

  13. Fuel blends: Enhanced electro-oxidation of formic acid in its blend with methanol at platinum nanoparticles modified glassy carbon electrodes

    Science.gov (United States)

    El-Deab, Mohamed S.; El-Nagar, Gumaa A.; Mohammad, Ahmad M.; El-Anadouli, Bahgat E.

    2015-07-01

    The current study addresses, for the first time, the enhanced direct electro-oxidation of formic acid (FA) at platinum-nanoparticles modified glassy carbon (nano-Pt/GC) electrode in the presence of methanol (MeOH) as a blending fuel. This enhancement is probed by: (i) the increase of the direct oxidation current of FA to CO2 (Ipd, dehydrogenation pathway), (ii) suppressing the dehydration pathway (Ipind, producing the poisoning intermediate CO) and (iii) a favorable negative shift of the onset potential of Ipd with increasing the mole fraction of MeOH in the blend. Furthermore, the charge of the direct FA oxidation in 0.3 M FA + 0.3 M MeOH blend is by 14 and 21times higher than that observed for 0.3 M FA and 0.3 M MeOH, respectively. MeOH is believed to adsorb at the Pt surface sites and thus disfavor the "non-faradaic" dissociation of FA (which produces the poisoning CO intermediate), i.e., MeOH induces a high CO tolerance of the Pt catalyst. The enhanced oxidation activity indicates that FA/MeOH blend is a promising fuel system.

  14. SYNTHESIS AND CATALYTIC HYDROSILYLATION PROPERTY OF POLYSILOXANE-SUPPORTED MERCAPTOSELENAETHER PLATINUM OR RHODIUM COMPLEX

    Institute of Scientific and Technical Information of China (English)

    1998-01-01

    Silica-bound mercaptoselenaether-containing silsesquioxane and its platinum or rhodium complex were synthesized from γ-(2,3-epithiopropyl) propyltrimethoxysilane via ring-opening reaction with bis(2-hydroxyethyl) selenide, followed by hydrolysis and immobilization on fumed silica, and then reacting with potassium chloroplatinite or rhodium chloride in acetone under nitrogen atmosphere. It was found that two noble metal complexes can catalyze the hydrosilylation of olefins with triethoxysilane effectively. The influences of temperature, the amount of complex used, the nature of olefin on catalytic activity were investigated.

  15. Electrocatalytic oxidation of hydrogen peroxide on a platinum electrode in the imitation of oxidative drug metabolism of lidocaine

    NARCIS (Netherlands)

    Nouri-Nigjeh, Eslam; Bruins, Andries P.; Bischoff, Rainer; Permentier, Hjalmar P.

    2012-01-01

    Electrochemistry in combination with mass spectrometry has shown promise as a versatile technique not only in the analytical assessment of oxidative drug metabolism, but also for small-scale synthesis of drug metabolites. However, electrochemistry is generally limited to reactions initiated by direc

  16. Synthesis and cytotoxicity of new platinum(IV) complexes of mixed carboxylates.

    Science.gov (United States)

    Song, Rita; Park, Sun Young; Kim, Yeong Sang; Kim, Youngmee; Kim, Sung Jin; Ahn, Byung Tae; Sohn, Youn Soo

    2003-08-01

    In order to develop new antitumor platinum(IV) complexes with highly tuned lipophilicity, a series of (diamine)Pt(IV) complexes of the formula [Pt(IV)(dach)L(3)L'] or [Pt(IV)(dach)L(2)L"(2)] (dach=trans-(+/-)-1,2-diaminocyclohexane; L=acetato, propionato; L'=acetato, propionato, valerato or pivalato; L"=trifluoroacetato) have been synthesized by electrophilic substitution of the tris(carboxylato)hydroxoplatinum(IV) complexes, [Pt(IV)(dach)L(3)OH] (L=acetato, propionato), with various carboxylic anhydrides such as acetic, trifluoroacetic, pivalic and valeric anhydrides. The present platinum(IV) complexes were fully characterized by means of elemental analyses, 1H NMR, mass and IR spectroscopies. The complexes 8 and 10, satisfying the appropriate range of lipophilicity (logP=0.18-1.54), exhibited high activity (ED(50), 5.1 and 1.3 microM, respectively) compared with other complexes, which implies that the lipophilicity is an important factor for the antitumor activity of this series of complexes.

  17. Hydrothermal synthesis of platinum-group-metal nanoparticles by using HEPES as a reductant and stabilizer.

    Science.gov (United States)

    So, Man-Ho; Ho, Chi-Ming; Chen, Rong; Che, Chi-Ming

    2010-06-01

    Platinum-group-metal (Ru, Os, Rh, Ir, Pd and Pt) nanoparticles are synthesized in an aqueous buffer solution of 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES) (200 mM, pH 7.4) under hydrothermal conditions (180 degrees C). Monodispersed (monodispersity: 11-15%) metal nanoparticles were obtained with an average particle size of less than 5 nm (Ru: 1.8+/-0.2, Os: 1.6+/-0.2, Rh: 4.5+/-0.5, Ir: 2.0+/-0.3, Pd: 3.8+/-0.4, Pt: 1.9+/-0.2 nm). The size, monodispersity, and stability of the as-obtained metal nanoparticles were affected by the HEPES concentration, pH of the HEPES buffer solution, and reaction temperature. HEPES with two tertiary amines (piperazine groups) and terminal hydroxyl groups can act as a reductant and stabilizer. The HEPES molecules can bind to the surface of metal nanoparticles to prevent metal nanoparticles from aggregation. These platinum-group-metal nanoparticles could be deposited onto the surface of graphite, which catalyzed the aerobic oxidation of alcohols to aldehydes.

  18. Synthesis and antitumor activity of iodo-bridged-binuclear platinum complex

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Iodo-bridged binuclear platinum(II) com- plex[Pt((◇)-NH2)I2]2(BPA) has been synthesized and characterized by elemental analysis, conductivity, differential thermal analysis, IR, UV and 1HNMR spectra techniques. The cytotoxicity of the complex was tested by MTT and SRB assays. The results show that complex BPA demonstrates better cytotoxicity than that of the clinically established cisplatin against EJ, HCT-8, BGC-823, HL-60 and MCF-7 cell lines. The complex BPA at concentrations of 1.00 and 2.00 μmol/L induces G1 cell cycle arrest in HL-60 cells. The level of total platinum bound to DNA in HL-60 cells is significantly higher than that of cisplatin under the same experimental conditions. Acute toxicity experimental results indiacte that LD50 of BPA is 815.3 mg/kg by intraperitoneal administration. BPA at dose of 12 mg/kg significantly inhibits the growth of nude mice implanted by human A2780 and HCT-116 carcinomas, and inhibition rate is similar to that of cisplatin at dose of 4 mg/kg by intraperitoneal administration. BPA at dose of 20 mg/kg inhibits the growth of nude mice implanted by human A549 carcinomas, but there was no significant statistical difference.

  19. Acrylonitrile-contamination induced enhancement of formic acid electro-oxidation at platinum nanoparticles modified glassy carbon electrodes

    Science.gov (United States)

    El-Nagar, Gumaa A.; Mohammad, Ahmad M.; El-Deab, Mohamed S.; Ohsaka, Takeo; El-Anadouli, Bahgat E.

    2014-11-01

    Minute amount (∼1 ppm) of acrylonitrile (AcN), a possible contaminant, shows an unexpected enhancement for the direct electro-oxidation of formic acid (FAO) at Pt nanoparticles modified GC (nano-Pt/GC) electrodes. This is reflected by a remarkable increase of the current intensity of the direct oxidation peak (Ipd, at ca. 0.3 V) in the presence of AcN, concurrently with a significant decrease of the second (indirect) oxidation current (Ipind, at ca. 0.7 V), compared to that observed in the absence of AcN (i.e., at the unpoisoned Pt electrode). The extent of enhancement depends on the surface coverage (θ) of AcN at the surface of Pt nanoparticles. AcN is thought to favor the direct FAO by disturbing the contiguity of the Pt sites, which is necessary for CO adsorption. Furthermore, XPS measurements revealed a change in the electronic structure of Pt in presence of AcN, which has a favorable positive impact on the charge transfer during the direct FAO.

  20. Anodic oxidation of ketoprofen-An anti-inflammatory drug using boron doped diamond and platinum electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Murugananthan, M., E-mail: muruga.chem@gmail.com [National Metallurgical Laboratory Madras Centre, CSIR Madras Complex, Taramani, Chennai 600 113 (India); Latha, S.S.; Bhaskar Raju, G. [National Metallurgical Laboratory Madras Centre, CSIR Madras Complex, Taramani, Chennai 600 113 (India); Yoshihara, S. [Department of Advanced Interdisciplinary Science, Graduate School of Engineering, Utsunomiya University, 7-1-2 Yoto, Utsunomiya, Tochigi 321-8585 (Japan)

    2010-08-15

    The mineralization of ketoprofen (KP) by anodic oxidation was studied by employing boron doped diamond (BDD) and Pt electrodes. The redox behavior of KP molecule, fouling of electrodes, generation of oxygen and active chlorine species were studied by cyclic voltammetry. The effect of electrolyte, pH of aqueous medium and applied current density on the mineralization behavior of KP was also investigated. The degradation and mineralization were monitored by UV-vis spectrophotometer and total organic carbon analyzer, respectively. The results were explained in terms of in situ generation of hydroxyl radical ({center_dot}OH), peroxodisulfate (S{sub 2}O{sub 8}{sup 2-}), and active chlorine species (Cl{sub 2}, HOCl, OCl{sup -}). The physisorbed {center_dot}OH on BDD was observed to trigger the combustion of KP in to CO{sub 2} and H{sub 2}O. The poor mineralization at both BDD and Pt anodes in the presence of NaCl as supporting electrolyte was ascribed to the formation of chlorinated organic compounds which are refractory. Complete mineralization of KP molecule was achieved using Na{sub 2}SO{sub 4} as supporting electrolyte.

  1. Microwave synthesis of electrode materials for lithium batteries

    Indian Academy of Sciences (India)

    M Harish Bhat; B P Chakravarthy; P A Ramakrishnan; A Levasseur; K J RAO

    2000-12-01

    A novel microwave method is described for the preparation of electrode materials required for lithium batteries. The method is simple, fast and carried out in most cases with the same starting material as in conventional methods. Good crystallinity has been noted and lower temperatures of reaction has been inferred in cases where low temperature products have been identified.

  2. The electrochemical reduction of the purines guanine and adenine at platinum electrodes in several room temperature ionic liquids

    Energy Technology Data Exchange (ETDEWEB)

    Zanoni, Maria Valnice Boldrin, E-mail: boldrinv@iq.unesp.br [Department of Analytical Chemistry, Institute of Chemistry, University of Sao Paulo State, Araraquara, R. Prof. Francisco Degni, CP 355, 14801-970, SP (Brazil); Rogers, Emma I. [Department of Chemistry, Physical and Theoretical Laboratory, Oxford University, South Parks Road, Oxford, OX1 3QZ (United Kingdom); Hardacre, Christopher, E-mail: c.hardacre@qub.ac.uk [School of Chemistry and Chemical Engineering/QUILL, Queen' s University Belfast, Belfast, Northern Ireland BT9 5AG (United Kingdom); Compton, Richard G., E-mail: richard.compton@chem.ox.ac.uk [Department of Chemistry, Physical and Theoretical Laboratory, Oxford University, South Parks Road, Oxford, OX1 3QZ (United Kingdom)

    2010-02-05

    The reduction of guanine was studied by microelectrode voltammetry in the room temperature ionic liquids (RTILs) N-hexyltriethylammonium bis (trifluoromethanesulfonyl) imide [N{sub 6,2,2,2}][N(Tf){sub 2}], 1-butyl-3-methylimidazolium hexafluorosphosphate [C{sub 4}mim][PF{sub 6}], N-butyl-N-methyl-pyrrolidinium bis(trifluoromethanesulfonyl)imide [C{sub 4}mpyrr][N(Tf){sub 2}], 1-butyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide [C{sub 4}mim][N(Tf){sub 2}], N-butyl-N-methyl-pyrrolidinium dicyanamide [C{sub 4}mpyrr][N(NC){sub 2}] and tris(P-hexyl)-tetradecylphosphonium trifluorotris(pentafluoroethyl)phosphate [P{sub 14,6,6,6}][FAP] on a platinum microelectrode. In [N{sub 6,2,2,2}][NTf{sub 2}] and [P{sub 14,6,6,6}][FAP], but not in the other ionic liquids studied, guanine reduction involves a one-electron, diffusion-controlled process at very negative potential to produce an unstable radical anion, which is thought to undergo a dimerization reaction, probably after proton abstraction from the cation of the ionic liquid. The rate of this subsequent reaction depends on the nature of the ionic liquid, and it is faster in the ionic liquid [P{sub 14,6,6,6}][FAP], in which the formation of the resulting dimer can be voltammetrically monitored at less negative potentials than required for the reduction of the parent molecule. Adenine showed similar behaviour to guanine but the pyrimidines thymine and cytosine did not; thymine was not reduced at potentials less negative than required for solvent (RTIL) decomposition while only a poorly defined wave was seen for cytosine. The possibility for proton abstraction from the cation in [N{sub 6,2,2,2}][NTf{sub 2}] and [P{sub 14,6,6,6}][FAP] is noted and this is thought to aid the electrochemical dimerization process. The resulting rapid reaction is thought to shift the reduction potentials for guanine and adenine to lower values than observed in RTILs where the scope for proton abstraction is not present. Such shifts are

  3. A self-template strategy for the synthesis of mesoporous carbon nanofibers as advanced supercapacitor electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Li, Wei; Zhang, Fan; Dou, Yuqian; Wu, Zhangxiong; Liu, Haijing; Qian, Xufang; Gu, Dong; Xia, Yongyao; Tu, Bo; Zhao, Dongyuan [Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials and Laboratory of Advanced Materials, Fudan University, Shanghai 200433 (China)

    2011-05-15

    Self-construction: A facile self-templating strategy is presented for the synthesis of mesoporous carbon nanofibers by using zinc glycolate fibers as the built-in template. The spectacular architectures show excellent performances as recommended electrode material for electrochemical capacitors. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  4. Flow Synthesis of Silver Nanowires for Semitransparent Solar Cell Electrodes: A Life Cycle Perspective.

    Science.gov (United States)

    Espinosa, Nieves; Søndergaard, Roar R; Jørgensen, Mikkel; Krebs, Frederik C

    2016-04-21

    Silver nanowires (AgNWs) were prepared on a 5 g scale using either the well-known batch synthesis following the polyol method or a new flow synthesis method. The AgNWs were employed as semitransparent electrode materials in organic photovoltaics and compared to traditional printed silver electrodes based on micron sized silver flakes using life cycle analysis and environmental impact analysis methods. The life cycle analysis of AgNWs confirms that they provide an avenue to low-impact semitransparent electrodes. We find that the benefit of AgNWs in terms of embodied energy is less pronounced than generally assumed but that the toxicological and environmental benefits are significant.

  5. Novel endothall-containing platinum(IV) complexes: synthesis, characterization, and cytotoxic activity.

    Science.gov (United States)

    Reithofer, Michael R; Valiahdi, Seied M; Galanski, Markus; Jakupec, Michael A; Arion, Vladimir B; Keppler, Bernhard K

    2008-10-01

    Two platinum(IV) complexes (OC-6-33)-dichlorido(ethane-1,2-diamine)dihydroxidoplatinum(IV) and (OC-6-33)-diammine(dichlorido)dihydroxidoplatinum(IV) were carboxylated using demethylcantharidin as carboxylation agent. The complexes were characterized by elemental analysis, mass spectrometry, multinuclear (1H, 13C, 15N, and 195Pt) NMR spectroscopy, and, in case of (OC-6-33)-diamminebis(3-carboxy-7exo-oxabicyclo[2.2.1]heptane-2-carboxylato)dichloridoplatinum(IV) via X-ray diffraction. Cytotoxicity of the complexes was studied in seven human cancer cell lines representing five tumor entities, i.e., ovarian carcinoma (CH1, SK-OV-3), cervical carcinoma (HeLa), colon carcinoma (SW480, HCT-116), osteosarcoma (U-2 OS), and hepatocellular carcinoma (Hep G2) by means of the MTT (=3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium hydrobromide) assay.

  6. Synthesis, characterization and biological activity of trans-platinum(II) complexes with chloroquine

    Science.gov (United States)

    Navarro, Maribel; Castro, William; Higuera-Padilla, Angel R; Sierraalta, Anibal; Abad, María Jesús; Taylor, Peter; Sánchez-Delgado, Roberto A.

    2012-01-01

    Three platinum-chloroquine complexes, trans-Pt(CQDP)2(I)2 [1], trans-Pt(CQDP)2(Cl)2 [2] and trans-Pt(CQ)2(Cl)2 [3], were prepared and their most probable structure was established through a combination of spectroscopic analysis and density functional theory (DFT) calculations. Their interaction with DNA was studied and their activity against 6 tumor cell lines was evaluated. Compounds 1 and 2 interact with DNA primarily through electrostatic contacts and hydrogen bonding, with a minor contribution of a covalent interaction, while compound 3 binds to DNA predominantly in a covalent fashion, with weaker secondary electrostatic interactions and possibly hydrogen bonding, this complex also exerted greater cytotoxic activity against the tumor cell lines. PMID:22001497

  7. Synthesis of platinum and palladium complexes with bis-(hydroxy imines

    Directory of Open Access Journals (Sweden)

    Lucas M. Arantes

    2012-06-01

    Full Text Available The Schiff bases are an important class of compounds well used as ligands in coordination chemistry. The functionalized bis-imines, that represent a specific group of Schiff base, have been studied in our research group both for the evaluation of biological activity, against fungi and cancer, as for organocatalyst. Here the bis-imines 1 and 4 were synthesized in good yields by condensation of hydroxylated benzaldehydes with phenylenediamines. After that they were matched with Platinum and palladium salts providing three metallic complex (2, 3 and 5 that were fully characterized by nuclear magnetic resonance and mass spectrometry with electrospray ionization. Now these complexes are being tested in cross-coupling reactions of Heck and Suzuki.

  8. Platinum (II) and (IV) spermidine complexes. Synthesis, characterization, and biological studies.

    Science.gov (United States)

    Navarro-Ranninger, C; Ochoa, P A; Pérez, J M; González, V M; Masaguer, J R; Alonso, C

    1994-02-15

    By reaction of K2PtCl4 with spermidine we have synthesized two tris-platinum covalent compounds of formula (PtI2)3(sper)2 and (PtCl2)3(sper)2, one ionic compound of formula (sperH3)2(PtCl4)3, and another one of a covalent nature of formula (PtCl2sperH)2 (PtCl4) having a partially protonated spermidine residue. Treatment of the tris-platinum compounds with hydrogen peroxide and hydrochloric acid led to the production of two compounds of formula cis-trans-cis-(PtIVCl2(OH)2)3(sper)2 and cis-(PtIVCl4)3(sper)2, respectively. All of them have been characterized by IR and 1H MNR spectroscopy and tested for their ability to interact with pUC8 plasmid DNA by the use of UV, CD, and electrophoretic techniques. The results suggest that all of these compounds modify the secondary structure of the double helix. We observed that the alteration in electrophoretic mobility of nicked and closed circular forms of DNA induced by the Pt(II) complexes is higher than that induced by the Pt(IV) complexes. The synthesized compounds were also assayed for antitumor activity in vitro against breast (MDA-MB468) and leukemia (HL-60) tumor cells. Only three of these complexes may be regarded as potential antitumor agents, since their ID50 values are lower than 10 micrograms/ml.

  9. Novel electrochemical sensors with electrodes based on multilayers fabricated by layer-by-layer synthesis and their analytical potential

    Science.gov (United States)

    Ermakov, S. S.; Nikolaev, K. G.; Tolstoy, V. P.

    2016-08-01

    The results of studies on layer-by-layer synthesis of multilayers on the electrode surface in order to design electrochemical sensors for the determination of concentrations of inorganic, organic and bioorganic compounds are summarized and analyzed. The principle of the method is discoursed and the key advantages of the approach are highlighted, such as the possibility of single layer synthesis with specified thickness and composition under mild conditions with further fabrication of multilayers. Charge transfer conditions in the layers on the electrode surface between the analyte molecules and electrode redox centres and the operating conditions for the optimal electrode are considered. The role of electrocatalysts and intermediates of these processes is noted. Particular attention is devoted to the methods for synthesis of gold nanoparticles with different diameters. Analytical characteristics for electrochemical sensors are presented and application prospects of the layer-by-layer synthesis to electrode fabrication are discussed. The bibliography includes 241 references.

  10. Synthesis, Structure and Reactivity of Molecules Attached to Electrode Surfaces.

    Science.gov (United States)

    2014-09-26

    Structure and Reactivity of Molecules Attached to Electrode Surfaces", AFOSR #81-0149 III. REPORTING PERIOD: April 15, 1981 through April 14, 1985 IV...Adsorption .... ............... 17 9. Effect of Surface Roughness on Adsorbate Orientation and Reactivity . 20 10. Ordered/ Disordered Packing in Chemisorbed... reactivity only when present in the edge-pendant orientation. Clearly, molecular orientation (i.e., mode of +. .4 o,, -12- attachment to the surface) is a

  11. Hydrogen sensing based on proton and electron transport across and along the interface solid oxide electrolyte-platinum electrode

    Energy Technology Data Exchange (ETDEWEB)

    Sakthivel, M; Weppner, W [Chair for Sensors and Solid State Ionics, Faculty of Engineering, Christian Albrechts University, Kaiserstrasse 2, Kiel D-24143 (Germany)

    2007-12-07

    A new class of low temperature proton-conducting-type hydrogen gas sensor was developed using Dion-Jacobson type layered perovskite oxides. A laminated structure with a junction of charge carriers at the interface between a predominantly ionically and predominately electronically conducting material was prepared by using the multistep-impregnation-reduction method for the deposition of Pt on top of a perovskite oxide. The proton conductivity of the layered perovskite materials was studied between room temperature and 250 deg. C. The sensing characteristic was studied by using H{sub 2} concentrations between 1% and 7%. The optimum operating temperature of the sensor was found to be at 45 deg. C. The formation of the galvanic cell voltage is described in terms of reactions at the interfaces and the surface of the electrodes. The experimental results indicate the motion of electrons within the Pt and of protons within the perovskite oxide along the interface. Hence, modelling the system response upon a change in gas concentrations can be beneficial for understanding the individual processes and optimizing the overall performance. (review article)

  12. REVIEW ARTICLE: Hydrogen sensing based on proton and electron transport across and along the interface solid oxide electrolyte platinum electrode

    Science.gov (United States)

    Sakthivel, M.; Weppner, W.

    2007-12-01

    A new class of low temperature proton-conducting-type hydrogen gas sensor was developed using Dion-Jacobson type layered perovskite oxides. A laminated structure with a junction of charge carriers at the interface between a predominantly ionically and predominately electronically conducting material was prepared by using the multistep-impregnation-reduction method for the deposition of Pt on top of a perovskite oxide. The proton conductivity of the layered perovskite materials was studied between room temperature and 250 °C. The sensing characteristic was studied by using H2 concentrations between 1% and 7%. The optimum operating temperature of the sensor was found to be at 45 °C. The formation of the galvanic cell voltage is described in terms of reactions at the interfaces and the surface of the electrodes. The experimental results indicate the motion of electrons within the Pt and of protons within the perovskite oxide along the interface. Hence, modelling the system response upon a change in gas concentrations can be beneficial for understanding the individual processes and optimizing the overall performance.

  13. Synthesis, characterization and reactivity of carbohydrate platinum(IV) complexes with thioglycoside ligands.

    Science.gov (United States)

    Vetter, Cornelia; Pornsuriyasak, Papapida; Schmidt, Jürgen; Rath, Nigam P; Rüffer, Tobias; Demchenko, Alexei V; Steinborn, Dirk

    2010-07-21

    Reactions of fac-[PtMe3(4,4'-R2bpy)(Me2CO)][BF4] (R = H, 1a; tBu, 1b) and fac-[PtMe3(OAc-kappa2O,O')(Me2CO)] (2), respectively, with thioglycosides containing thioethyl (ch-SEt) and thioimidate (ch-STaz, Taz = thiazoline-2-yl) anomeric groups led to the formation of the carbohydrate platinum(IV) complexes fac-[PtMe3(4,4-R2bpy)(ch*)][BF4] (ch* = ch-SEt, 8-14; ch-STaz, 15-23) and fac-[PtMe3(OAc-kappa2O,O')(ch*)] (ch* = ch-SEt, 24-28; ch-STaz = 29-35), respectively. NMR (1H, 13C, 195Pt) spectroscopic investigations and a single-crystal X-ray diffraction analysis of 19 (ch-STaz = 2-thiazolinyl 2,3,4,6-tetra-O-benzoyl-1-thio-beta-D-galactopyranose) revealed the S coordination of the ch-SEt glycosides and the N coordination of the ch-STaz glycosides. Furthermore, X-ray structure analyses of the two decomposition products fac-[PtMe3(bpy)(STazH-kappaS)][BF4] (21a) and 1,6-anhydro-2,3,4-tri-O-benzoyl-beta-D-glucopyranose (23a), where a cleavage of the anomeric C-S bond had occurred in both cases, gave rise to the assumption that this decomposition was mediated due to coordination of the thioglycosides to the high electrophilic platinum(IV) atom, in non-strictly dried solutions. Reactions of fac-[PtMe3(Me2CO)3][BF4] (3) with ch-SEt as well as with ch-SPT and ch-Sbpy thioglycosides (PT = 4-(pyridine-2-yl)-thiazole-2-yl; bpy = 2,2'-bipyridine-6-yl), having N,S and N,N heteroaryl anomeric groups, respectively, led to the formation of platinum(IV) complexes of the type fac-[PtMe3(ch*)][BF4] (ch* = ch-SEt, 36-40, ch-SPT 42-44, ch-Sbpy 45, 46). The thioglycosides were found to be coordinated in a tridentate kappaS,kappa2O,O, kappaS,kappaN,kappaO and kappaS,kappa2N,N coordination mode, respectively. Analogous reactions with ch-STaz ligands succeeded for 2-thiazolinyl 2,3,4-tri-O-benzyl-6-O-(2,2'-bipyridine-6-yl)-1-thio-beta-D-glucopyranoside (5h) resulting in fac-[PtMe3(ch-STaz)][BF4] (41, ch-STaz = 5h), having a kappa3N,N',N''coordinated thioglycoside ligand.

  14. Synthesis, characterization and reactivity of carbohydrate platinum(IV) complexes with thioglycoside ligands†

    Science.gov (United States)

    Vetter, Cornelia; Pornsuriyasak, Papapida; Schmidt, Jürgen; Rath, Nigam P.; Rüffer, Tobias; Demchenko, Alexei V.; Steinborn, Dirk

    2011-01-01

    Reactions of fac-[PtMe3(4,4′-R2bpy)(Me2CO)][BF4] (R = H, 1a; tBu, 1b) and fac-[PtMe3-(OAc-κ2O,O′)(Me2CO)] (2), respectively, with thioglycosides containing thioethyl (ch-SEt) and thioimidate (ch-STaz, Taz = thiazoline-2-yl) anomeric groups led to the formation of the carbohydrate platinum(IV) complexes fac-[PtMe3(4,4′-R2bpy)(ch*)][BF4] (ch* = ch-SEt, 8–14; ch-STaz, 15–23) and fac-[PtMe3(OAc-κ2O,O′)(ch*)] (ch* = ch-SEt, 24–28; ch-STaz = 29–35), respectively. NMR (1H, 13C, 195Pt) spectroscopic investigations and a single-crystal X-ray diffraction analysis of 19 (ch-STaz = 2-thiazolinyl 2,3,4,6-tetra-O-benzoyl-1-thio-β-d-galactopyranose) revealed the S coordination of the ch-SEt glycosides and the N coordination of the ch-STaz glycosides. Furthermore, X-ray structure analyses of the two decomposition products fac-[PtMe3(bpy)(STazH-κS)][BF4] (21a) and 1,6-anhydro-2,3,4-tri-O-benzoyl-β-d-glucopyranose (23a), where a cleavage of the anomeric C–S bond had occurred in both cases, gave rise to the assumption that this decomposition was mediated due to coordination of the thioglycosides to the high electrophilic platinum(IV) atom, in non-strictly dried solutions. Reactions of fac-[PtMe3(Me2CO)3][BF4] (3) with ch-SEt as well as with ch-SPT and ch-Sbpy thioglycosides (PT = 4-(pyridine-2-yl)-thiazole-2-yl; bpy = 2,2′-bipyridine-6-yl), having N,S and N,N heteroaryl anomeric groups, respectively, led to the formation of platinum(IV) complexes of the type fac-[PtMe3(ch*)][BF4] (ch* = ch-SEt, 36–40, ch-SPT 42–44, ch-Sbpy 45, 46). The thioglycosides were found to be coordinated in a tridentate κS,κ2O,O′, κS,κN,κO and κS,κ2N,N′ coordination mode, respectively. Analogous reactions with ch-STaz ligands succeeded for 2-thiazolinyl 2,3,4-tri-O-benzyl-6-O-(2,2′-bipyridine-6-yl)-1-thio-β-d-glucopyranoside (5h) resulting in fac-[PtMe3(ch-STaz)][BF4] (41, ch-STaz = 5h), having a κ3N,N′,N″ coordinated thioglycoside ligand. PMID:20517543

  15. Influence of carbon chain length on the synthesis and yield of fatty amine-coated iron-platinum nanoparticles

    Science.gov (United States)

    Taylor, Robert M.; Monson, Todd C.; Gullapalli, Rama R.

    2014-06-01

    Iron oxide nanoparticles are among the most widely used and characterized magnetic nanoparticles. However, metal alloys such as superparamagnetic iron-platinum particles (SIPPs), which have better magnetic properties, are receiving increased attention. Scalable techniques to routinely synthesize SIPPs in bulk need further study. Here, we focus on the role played by the fatty amine ligand in the formation of the bimetallic FePt nanocrystal. More specifically, we compare the effect of varying lengths of fatty amine ligands on the shape, structure, uniformity, composition, and magnetic properties of the SIPPs. We synthesized SIPPs by employing a `green' thermal decomposition reaction using fatty amine ligands containing 12 to 18 carbons in length. Greater fatty amine chain length increased the polydispersity, particle concentration, iron concentration, and the stability of the SIPPs. Additionally, longer reflux times increased the diameter of the particles, but decreased the iron concentration, suggesting that shorter reaction times are preferable. Fourier transform infrared spectroscopy of the SIPPs indicates that the ligands are successfully bound to the FePt cores through the amine group. Superconducting quantum interference device magnetometry measurements suggest that all of the SIPPs were superparamagnetic at room temperature and that SIPPs synthesized using tetradecylamine had the highest saturation magnetization. Our findings indicate that the octadecylamine ligand, which is currently used for the routine synthesis of SIPPs, may not be optimal. Overall, we found that using tetradecylamine and a 30-min reflux reaction resulted in optimal particles with the highest degree of monodispersity, iron content, stability, and saturation magnetization.

  16. Complexes of platinum and palladium with β-diketones and DMSO: Synthesis, characterization, molecular modeling, and biological studies

    Science.gov (United States)

    do Couto Almeida, J.; Marzano, I. M.; de Paula, F. C. Silva; Pivatto, M.; Lopes, N. P.; de Souza, P. C.; Pavan, F. R.; Formiga, A. L. B.; Pereira-Maia, E. C.; Guerra, W.

    2014-10-01

    This work reports on the synthesis and characterization of new complexes of the type [MCl(L)DMSO], where L = 4,4,4-trifluoro-1-phenyl-1,3-butanedione (HTPB) or 4,4,4-trifluoro-1-(2-thienyl)-1,3-butanedione (HTTA) and M = Pt2+ or Pd2+. These complexes were characterized by elemental analyses, conductivity measurements, FT-IR, UV-Vis, high-resolution mass spectra (HRESIMS) and TG/DTA. In the complexes, the metallic ions bind to β-diketone via the oxygen atoms and to DMSO molecule via sulfur atom. The structures of complexes were optimized and theoretical data showed good agreement with the experimental results. The cytotoxic activity of the compounds was evaluated in a chronic myelogenous leukemia cell line. The platinum complexes were more cytotoxic than the free ligands and carboplatin and are promising candidates for further investigations. As example, the compound [PtCl(TPB)(DMSO)] inhibits the growth of K562 cells with an IC50 value equal to 2.5 μM. Furthermore, microbiological assays against Mycobacterium tuberculosis showed that all complexes exhibit low cytotoxicity against this bacterial strain while the free ligands exhibited MIC values of approximately 10 μg mL-1.

  17. Ionic liquid-assisted synthesis of carbon nanotube/platinum nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Zou Hua [Shandong University, Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, School of Materials Science and Engineering (China); Luan Yuxia [Shandong University, School of Pharmaceutical Sciences (China); Wang Xiaojun; Xie Zhiyun; Liu Jijuan; Sun Junchao; Wang Yana; Li Zhonghao, E-mail: zhonghaoli@sdu.edu.cn [Shandong University, Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, School of Materials Science and Engineering (China)

    2012-03-15

    The carbon nanotubes (CNTs) without modification for any functional group are used for the formation of CNTs/Pt nanocomposites in the presence of 1-butyl-3-methylimidazolium chloride ([BMIM]Cl) ionic liquid (IL) at a mild condition. The effects of platinum salt and [BMIM]Cl concentrations on the morphologies of final products are investigated. The as-prepared products are characterized by transmission electron microscopy, powder X-ray diffraction, and cyclic voltammetry. It shows that the as-prepared CNTs/Pt nanocomposites have a good dispersion of Pt particles with tunable size by controlling the concentration of [BMIM]Cl. The Pt particle size of the synthesized CNTs/Pt nanocomposites could be as small as 7 {+-} 2 nm. The possible formation mechanism of the as-prepared nanocomposites is proposed based on the {pi}-{pi} interaction between the IL and the CNT. The electrochemical response of the synthesized CNTs/Pt nanocomposites to K{sub 3}(FeCN){sub 6} is studied by cyclic voltammetry measurements, which demonstrates the response increases with the decrease of the Pt particle size. Moreover, the electroactivity for methanol oxidation using the synthesized CNTs/Pt nanocomposites with Pt particle size of 7 {+-} 2 nm shows that the as-prepared CNTs/Pt nanocomposites have an improved catalytic performance.

  18. Synthesis, characterization, and biological evaluation of Schiff base-platinum(II) complexes.

    Science.gov (United States)

    Shiju, C; Arish, D; Bhuvanesh, N; Kumaresan, S

    2015-06-15

    The platinum complexes of Schiff base ligands derived from 4-aminoantipyrine and a few substituted aldehydes were synthesized and characterized by elemental analysis, mass, (1)H NMR, IR, electronic spectra, molar conductance, and powder XRD. The structure of one of the ligands L5 was confirmed by a single crystal XRD analysis. The Schiff base ligand crystallized in the triclinic, space group P-1 with a=7.032(2)Ǻ, b=9.479(3)Ǻ, c=12.425(4)Ǻ, α=101.636(3)°, β=99.633(3)°, γ=94.040(3)°, V=795.0(4)Ǻ(3), Z=2, F(000)=352, Dc=1.405 mg/m(3), μ=0.099 mm(-1), R=0.0378, and wR=0.0967. The spectral results show that the Schiff base ligand acts as a bidentate donor coordinating through the azomethine nitrogen and the carbonyl oxygen atoms. The geometrical structures of these complexes are found to be square planar. Antimicrobial studies indicate that these complexes exhibit better activity than the ligand. The anticancer activities of the complexes have also been studied towards human cervical cancer cell line (HeLa), Colon Cancer Cells (HCT116) and Epidermoid Carcinoma Cells (A431) and it was found that the [Pt(L3)Cl2] complex is more active.

  19. Easy Synthesis and Characterization of Poly(alkoxysilane)s Promoted by Silver-Platinum Mixed Complexes.

    Science.gov (United States)

    Roh, Sung-Hee; Lee, In-Hwa; Cheong, Hyeonsook; Noh, Ji Eun; Lee, Ki Bok; Woo, Hee-Gweon; Kim, Bo Hye; Jun, Jin; Sohn, Honglae

    2015-01-01

    One-pot Si-Si/Si-O dehydrocoupling of hydrosilanes with alcohols (1:1.5 mole ratio), promoted by a mixture of AgNO3-H2PtCl6 (150/1 mole ratio) readily gave poly(alkoxysilane)s in good yield (62-91%). The addition of small amount of platinum complex to form nanoparticles facilitated the silicon polymer formation when compared to the reaction rate with AgNO3 alone. The primary/secondary hydrosilanes [p-X-C6H4SiH3 (X = H, CH3, OCH3, F), PhCH2SiH3, and (PhSiH2)2] and alcohols [MeOH, EtOH, (i)PrOH, PhOH, and CF3(CF2)2CH2OH] were used for the reaction. The weight average molecular weight and polydispersity of the poly(alkoxysilane)s were in the range of 1,690-7,100 Dalton and 1.44-3.49, respectively. The reaction of phenylsilane with ethanol (1:3 mole ratio) using the Ag-Pt complexes produced triethoxyphenylsilane only, as expected. The reaction of phenylsilane with Ge-132 produced an insoluble cross-linked gel.

  20. Synthesis, Characterization and Cytotoxicity of Ammine/Methylamine Platinum(Ⅱ) Complexes with Carboxylates

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Seven novel platinum (Ⅱ) complexes [Pt (Ⅱ) (NH3) (CH3NH2) X2] (Ⅰ -Ⅶ) (X: CH3COO- ,CH2 ClCOO - , CHCl2COO -, C6H5-COO - , p-CH3O-C6H4 -COO - , p-NH2-C6 H4 -COO - , p-NO2 -C6 H4 -COO-) were prepared and characterized by means of elemental analysis, molar conductivity, thermal analysis,IR, UV, and 1 H NMR spectrometries. The cytotoxicity against HCT-8, BGC-823, MCF-7, EJ, and HL-60 cell lines increases in the following sequence: cisplatin >Ⅳ>Ⅴ>Ⅵ>Ⅶ>Ⅰ>Ⅱ>Ⅲ. Moreover, the complexes(Ⅰ -Ⅶ) display substantially greater activities against EJ and HL-60 cell lines than those against the cell lines from other carcinomas. They can induce a concentration-dependent accumulation of HL-60 cells in the G2/M phase of the cell cycle as cisplatin. There is no significant correlation between total DNA platination levels and cytotoxicity of the complexes.

  1. Synthesis of Platinum Nanoparticles from K2PtCl4 Solution Using Bacterial Cellulose Matrix

    Directory of Open Access Journals (Sweden)

    H. F. Aritonang

    2014-01-01

    Full Text Available Platinum (Pt nanoparticles have been synthesized from a precursor solution of potassium tetrachloroplatinate (K2PtCl4 using a matrix of bacterial cellulose (BC. The formation of Pt nanoparticles occurs at the surface and the inside of the BC membrane by reducing the precursor solution with a hydrogen gas reductant. The Pt nanoparticles obtained from the variations of precursor concentration, between 3 mM and 30 mM, and the formation of Pt nanoparticles have been studied using X-ray diffraction (XRD, scanning electron microscopy-energy dispersive X-ray spectroscopy (SEM-EDS, and thermogravimetry analysis (TGA. Based on X-ray diffraction patterns, Pt particles have sizes between 6.3 nm and 9.3 nm, and the Pt particle size increases with an increase in precursor concentration. The morphology of the Pt nanoparticles was observed by SEM-EDS and the content of Pt particles inside the membrane is higher than that on the surface of BC membranes. This analysis corresponds to the TGA analysis, but the TGA analysis is more representative in how it describes the content of Pt particles in the BC membrane.

  2. The Synthesis, Characterization and Catalytic Reaction Studies of Monodisperse Platinum Nanoparticles in Mesoporous Oxide Materials

    Energy Technology Data Exchange (ETDEWEB)

    Rioux, Robert M. [Univ. of California, Berkeley, CA (United States)

    2006-01-01

    A catalyst design program was implemented in which Pt nanoparticles, either of monodisperse size and/or shape were synthesized, characterized and studied in a number of hydrocarbon conversion reactions. The novel preparation of these materials enables exquisite control over their physical and chemical properties that could be controlled (and therefore rationally tuned) during synthesis. The ability to synthesize rather than prepare catalysts followed by thorough characterization enable accurate structure-function relationships to be elucidated. This thesis emphasizes all three aspects of catalyst design: synthesis, characterization and reactivity studies. The precise control of metal nanoparticle size, surface structure and composition may enable the development of highly active and selective heterogeneous catalysts.

  3. Cost-effective counter electrode electrocatalysts from iron@palladium and iron@platinum alloy nanospheres for dye-sensitized solar cells

    Science.gov (United States)

    Tang, Qunwei; Liu, Juan; Zhang, Huihui; He, Benlin; Yu, Liangmin

    2015-11-01

    Pursuit of cost-effective counter electrode (CE) electrocatalysts with no sacrifice of photovoltaic performances has been a persistent objective for dye-sensitized solar cells (DSSCs). Here we demonstrate the galvanic replacement realization of cost-effective CEs from Fe@M (M = Pd, Pt) nanospheres for DSSCs. Due to the enhanced catalytic activity originated from compressive strain and extended surface in tuning the electronic structure of Pd (or Pt) shell along with competitive dissolution reaction of Fe with electrolyte, the cells with high durability display efficiencies of 8.74% and 7.22%. The impressive results along with simple synthesis highlight the potential application of Fe@M nanospheres in robust DSSCs.

  4. Synthesis, photovoltaic performances and TD-DFT modeling of push-pull diacetylide platinum complexes in TiO2 based dye-sensitized solar cells.

    Science.gov (United States)

    Gauthier, Sébastien; Caro, Bertrand; Robin-Le Guen, Françoise; Bhuvanesh, Nattamai; Gladysz, John A; Wojcik, Laurianne; Le Poul, Nicolas; Planchat, Aurélien; Pellegrin, Yann; Blart, Errol; Jacquemin, Denis; Odobel, Fabrice

    2014-08-07

    In this joint experimental-theoretical work, we present the synthesis and optical and electrochemical characterization of five new bis-acetylide platinum complex dyes end capped with diphenylpyranylidene moieties, as well as their performances in dye-sensitized solar cells (DSCs). Theoretical calculations relying on Time-Dependent Density Functional Theory (TD-DFT) and a range-separated hybrid show a very good match with experimental data and allow us to quantify the charge-transfer character of each compound. The photoconversion efficiency obtained reaches 4.7% for 8e (see TOC Graphic) with the tri-thiophene segment, which is among the highest efficiencies reported for platinum complexes in DSCs.

  5. Síntese e caracterização de complexos de platina(IV com derivados N-benzilados da 1,3-propanodiamina Synthesis and characterization of platinum(IV complexes derived from N-benzyl-propanediamine

    Directory of Open Access Journals (Sweden)

    Ana Paula Soares Fontes

    2010-01-01

    Full Text Available The present work describes the synthesis of a series of platinum(IV complexes with N-benzyl 1,3-propanediamine derivatives. Since substitution of the axial ligands in the platinum(IV complexes may alter their pharmacological properties, we have prepared complexes with different groups, such as hydroxide, chloride and acetate using a sequence of substitution reactions. The resulting complexes were fully characterized by IR, ¹H, 13C and 195Pt NMR spectroscopies, and elemental analysis.

  6. Síntese e caracterização de novos complexos de platina (II com ligantes derivados do furano e nitrofurano Synthesis and characterization of new platinum (II complexes containing furan and nitrofuran derived ligands

    Directory of Open Access Journals (Sweden)

    Wendell Guerra

    2005-10-01

    Full Text Available Platinum (II complexes, for example, cisplatin and carboplatin, have been used as chemotherapeutic agents for the treatment of various types of cancer. Several other complexes of this metallic ion are also under clinical evaluation. This work describes the synthesis of five new platinum (II complexes having furan and 5-nitrofuran derivatives and chloride as ligands. The compounds were characterized by NMR, IR and elemental analysis.

  7. Synthesis and antitumor activity of a series of [2-substituted-4,5-bis(aminomethyl)-1,3-dioxolane]platinum(II) complexes.

    Science.gov (United States)

    Kim, D K; Kim, G; Gam, J; Cho, Y B; Kim, H T; Tai, J H; Kim, K H; Hong, W S; Park, J G

    1994-05-13

    The synthesis, physical properties, antitumor activity, structure-activity relationships, and nephrotoxicity of a series of [2-substituted-4,5-bis(aminomethyl)-1,3-dioxolane]platinum(II) complexes are described. The 42 platinum(II) complexes having a seven-membered ring structure in this series have been prepared and characterized by 1H NMR, 13C NMR, IR, FAB-MS, and elemental analysis. All members of the series were designed to have a 1,3-dioxolane ring moiety in their carrier ligands to increase water solubility. The solubility of platinum complexes was related to the nature of leaving ligands and 2-substituents in the 4,5-bis(aminomethyl)-1,3-dioxolane carrier ligands. In general, compounds having two different R1 and R2 substituents in the 4,5-bis(aminomethyl)-1,3-dioxolane moiety were more water-soluble than those having the same substituents. Most members of this series showed the excellent antitumor activity against murine L1210 leukemia cells transplanted in mice and were superior to cisplatin and carboplatin. The (4R,5R)-stereoisomer 1a-h exhibited the higher antitumor activity than the corresponding (4S,5S)-stereoisomer 2a-h in the (1,1-cyclobutanedicarboxylato)platinum(II) complexes. The (glycolato)-platinum(II) complexes were highly cytotoxic toward four human stomach cancer cell lines, SNU-1, SNU-5, SNU-16, and NCI-N87, and among them, complexes 3d-g were even more cytotoxic than cisplatin. The (malonato)platinum(II) complex 1m and the (glycolato)platinum(II) complexes 3d-g were selected for further studies based on the greater in vivo and in vitro antitumor activity and desirable physical properties. The complexes 3e-g were almost equally cytotoxic to cisplatin toward human stomach cancer cell lines, KATO-III and MKN-45, and a human non-small cell lung cancer cell line, PC14. In contrast with cisplatin and carboplatin, five complexes selected significantly increased in life span in mice transplanted with cisplatin-resistant L1210 cells. Nephrotoxicity

  8. Effect of Rotation Rate on the Formation of Platinum-modified Polyaniline Film and Electrocatalytic Oxidation of Methanol

    Institute of Scientific and Technical Information of China (English)

    Qiu Hong LI; Lin NIU; Chang Qiao ZHANG; Feng Hua WEI; Hu ZHANG

    2004-01-01

    The oxidation of methanol was investigated on platinum-modified polyaniline electrode. Changes in the electrode rotation rates (Ω) during platinum electrodeposition remarkably affect the formation and distribution of platinum in the polymer matrix and consequently lead to different currents of methanol oxidation. The results show that platinum loading is proportional to rotation ratesΩ1/2.

  9. Poly(o-aminophenol) film electrodes synthesis, transport properties and practical applications

    CERN Document Server

    Tucceri, Ricardo

    2014-01-01

    This review book is concerned with the synthesis, charge transport properties and practical applications of poly (o-aminophenol) (POAP) film electrodes. It is divided into three parts. The first one has a particular emphasis on problems of synthesis and structure of POAP. The second part deals with the mechanism of charge transfer and charge transport processes occurring in the course of the redox reactions of POAP. The third part describes the promising applications of POAP in the different fields of sensors, electrocatalysis, bioelectrochemistry, corrosion protection, among others. This review covers the literature on POAP in the time period comprised between 1987 and 2013.

  10. Synthesis of Platinum Nanotubes and Nanorings via Simultaneous Metal Alloying and Etching

    KAUST Repository

    Huang, Zhiqi

    2016-04-19

    Metallic nanotubes represent a class of hollow nanostructures with unique catalytic properties. However, the wet-chemical synthesis of metallic nanotubes remains a substantial challenge, especially for those with dimensions below 50 nm. This communication describes a simultaneous alloying-etching strategy for the synthesis of Pt nanotubes with open ends by selective etching Au core from coaxial Au/Pt nanorods. This approach can be extended for the preparation of Pt nanorings when Saturn-like Au core/Pt shell nanoparticles are used. The diameter and wall thickness of both nanotubes and nanorings can be readily controlled in the range of 14-37 nm and 2-32 nm, respectively. We further demonstrated that the nanotubes with ultrathin side walls showed superior catalytic performance in oxygen reduction reaction. © 2016 American Chemical Society.

  11. Synthesis, characterization and cytotoxic activity of novel platinum(II) iodido complexes.

    Science.gov (United States)

    Savić, Aleksandar; Filipović, Lana; Aranđelović, Sandra; Dojčinović, Biljana; Radulović, Siniša; Sabo, Tibor J; Grgurić-Šipka, Sanja

    2014-07-23

    Novel Pt(II) complexes of general formula [PtI2(L(1-3))], (C1-C3): where L(1-3) are isobutyl, n-pentyl and isopentyl esters of (S,S)-1,3-propanediamine-N,N'-di-2-(3-cyclohexyl)propanoic acid has been synthesized and characterized by elemental analysis, UV/Vis, IR, ((1)H, (13)C and HSQC, Pt) NMR spectroscopy and ESI mass spectrometry. Spectroscopic data and computational studies have shown the usual square planar coordination geometry of synthesized complexes, with coordination of ligands via nitrogen donor atoms. The cytotoxic activity of novel ligands and corresponding complexes were investigated on a palette of different cells line. Complexes C1-C3 exhibited activity comparable to cisplatin, with IC50 values (μM) ranging from 4.6 ± 0.6 to 17.2 ± 2, and showed the highest potential in HeLa, LS-174 and EA.hy.926 cells. Ligands L1-L3 exhibited two- to four-times less activity than corresponding complexes. Analysis of the mode of action in HeLa cells, by ICP-MS study, showed markedly higher intracellular accumulation and DNA binding affinity of C1-C3 versus cisplatin, after 4 h and 20 h post-treatment. Annexin-V-FITC assay, flow cytometry and fluorescence microscopy study demonstrated occurrence of cell death through both apoptotic and necrotic changes. Tested complexes, at corresponding IC50 concentrations, caused considerable "sub-G1" peak, without other substantial alterations of cell cycle, while only C1 induced higher level of phosphatidylserine externalization (11.7%), comparing to ligand L1 (4.9%) and cisplatin (8.4%). Structure-activity comparison indicated variations of C1-C3 cytotoxicity, related to the drug/ligand lipophilicity (C log P value), while intracellular platinum content and DNA platination increased on increase of length and branching of ester chain, in sequence: C1 (isobutyl) < C2 (n-pentyl) < C3 (isopentyl).

  12. [Synthesis and luminescent spectral characteristics of porphyrin complexes with platinum group metals].

    Science.gov (United States)

    Rumiantseva, V D; Ivanovskaia, N P; Konovalenko, L I; Tsukanov, S V; Mironov, A F; Osin, N S

    2008-01-01

    The synthesis of natural and synthetic porphyrin complexes with Pt, Pd, Rh, and Ru is reported. Their electronic absorption spectra, phosphorescence spectra, and lifetimes at room temperature both in the presence and in the absence of oxygen were studied. It has been shown that the variation of the nature of the central metal atom and of the substituents in pyrrole and phenyl rings allows the obtaining of metalloporphyrins with various phosphorescence excitation and phosphorescing emission spectra at room temperature. The English version of the paper: Russian Journal of Bioorganic Chemistry, 2008, vol. 34, no. 2; see also http://www.maik.ru.

  13. Three-dimensional photonic crystal fluorinated tin oxide (FTO) electrodes: synthesis and optical and electrical properties.

    Science.gov (United States)

    Yang, Zhenzhen; Gao, Shanmin; Li, Wei; Vlasko-Vlasov, Vitalii; Welp, Ulrich; Kwok, Wai-Kwong; Xu, Tao

    2011-04-01

    Photovoltaic (PV) schemes often encounter a pair of fundamentally opposing requirements on the thickness of semiconductor layer: a thicker PV semiconductor layer provides enhanced optical density, but inevitably increases the charge transport path length. An effective approach to solve this dilemma is to enhance the interface area between the terminal electrode, i.e., transparent conducting oxide (TCO) and the semiconductor layer. As such, we report a facile, template-assisted, and solution chemistry-based synthesis of 3-dimensional inverse opal fluorinated tin oxide (IO-FTO) electrodes. Synergistically, the photonic crystal structure possessed in the IO-FTO exhibits strong light trapping capability. Furthermore, the electrical properties of the IO-FTO electrodes are studied by Hall effect and sheet resistance measurement. Using atomic layer deposition method, an ultrathin TiO(2) layer is coated on all surfaces of the IO-FTO electrodes. Cyclic voltammetry study indicates that the resulting TiO(2)-coated IO-FTO shows excellent potentials as electrodes for electrolyte-based photoelectrochemical solar cells.

  14. Synthesis and antitumor activity of [1,2-bis(4-fluorophenyl)ethylenediamine][dicarboxylato]platinum(II) complexes.

    Science.gov (United States)

    Gust, R; Krauser, R; Schmid, B; Schönenberger, H

    1998-01-01

    The synthesis of the diastereomeric [1,2-bis(4-fluorophenyl)-ethylenediamine][dicarboxylato]platinum(I I) complexes, rac- and meso-4F-Pt(X) [X: oxalato (Ox), malonato (Mal), hydroxymalonato (OHMal), phenylmalonato (PhMal), tetrahydro-4H-pyran-4,4-dicarboxylato (Thpdc)], the evaluation of their structure, water solubility, resistance against attack by nucleophiles, and growth inhibiting properties on the human MCF-7 breast cancer cell line are described [parent compounds: rac-4F-Pt(CBDC) and meso-4F-Pt(CBDC); reference complexes: carboplatin, cisplatin, rac- and meso-4F-PtCl2]. The most active 4F-Pt(X) complexes, rac-4F-Pt(Mal), rac-4F-Pt(OHMal) and rac-4F-Pt(Thpdc), equal the parent compound rac-4F-Pt(CBDC) as well as cisplatin and surpass carboplatin in their effect on the MCF-7 breast cancer cell line. Their water solubility, which is of importance for an application in the cancer chemotherapy, is higher than that of rac-4F-Pt(CBDC), especially in the case of rac-4F-Pt(OHMal) and rac-4F-Pt(Thpdc). In comparison to the dichloroplatinum(II) analogue (4F-PtCl2) the stability of the three compounds in the presence of the strong nucleophile iodide is markedly enhanced, which means a reduction of the protein bound drug fraction in the blood and tissue compartments accompanied by an increase of the active, free drug level. The found physiochemical properties of these compounds meet the requirements for the transferability of their promising breast cancer inhibiting effects detected in cell culture experiments to in vivo conditions.

  15. Synthesis and Characterization of Bimetallic Core-Shell-Supported Platinum Monolayer Electrocatalysts for the Oxygen Reduction Reaction

    Science.gov (United States)

    Kuttiyiel, Kurian Abraham

    Fuel cells are expected to be one of the major clean energy sources in the near future. However, the slow kinetics of electrocatalytic oxygen reduction reaction (ORR) and the high loading of Platinum (Pt) for the cathode material are the urgent issues to be addressed since they determine the efficiency and the cost of this energy source. In this study, a new approach was developed for designing electrocatalysts for the ORR in fuel cells. These electrocatalysts consist of only one Pt monolayer on suitable carbon-supported Iridium-Nickel (IrNi) core-shell nanoparticles. The synthesis involved depositing a monolayer of Copper (Cu) on IrNi metal alloy surface at under-potentials, followed by galvanic displacement of the Cu monolayer with Pt. It was found that the electronic properties of Pt monolayer could be fine-tuned by the electronic and geometric effects introduced by the substrate metal. The Pt mass activity of the new Pt monolayer IrNi electrocatalysts was up to six times higher than the state-of-the-art commercial Pt/C catalysts. The structure and composition of the core-shell nanoparticles were verified using transmission electron microscopy and in situ X-ray absorption spectroscopy, while potential cycling test was employed to confirm the stability of the electrocatalyst. The formation of Ir shell on IrNi alloy during annealing due to thermal segregation was monitored by time-resolved synchrotron XRD measurements. Our experimental results, supported by computations, demonstrated an effective way of using Pt that can resolve key ORR problems which include inadequate activity and durability while minimizing the Pt loading.

  16. Highly luminescent half-lantern cyclometalated platinum(II) complex: synthesis, structure, luminescence studies, and reactivity.

    Science.gov (United States)

    Sicilia, Violeta; Forniés, Juan; Casas, José Ma; Martín, Antonio; López, José A; Larraz, Carmen; Borja, Pilar; Ovejero, Carmen; Tordera, Daniel; Bolink, Henk

    2012-03-19

    The half-lantern compound [{Pt(bzq)(μ-C(7)H(4)NS(2)-κN,S)}(2)]·Me(2)CO (1) was obtained by reaction of equimolar amounts of potassium 2-mercaptobenzothiazolate (KC(7)H(4)NS(2)) and [Pt(bzq)(NCMe)(2)]ClO(4). The Pt(II)···Pt(II) separation in the neutral complex [{Pt(bzq)(μ-C(7)H(4)NS(2)-κN,S)}(2)] is 2.910 (2) Å, this being among the shortest observed in half-lantern divalent platinum complexes. Within the complex, the benzo[h]quinoline (bzq) groups lie in close proximity with most C···C distances being between 3.3 and 3.7 Å, which is indicative of significant π-π interactions. The reaction of 1 with halogens X(2) (X(2) = Cl(2), Br(2), or I(2)) proceeds with a two-electron oxidation to give the corresponding dihalodiplatinum(III) complexes [{Pt(bzq)(μ-C(7)H(4)NS(2)-κN,S)X}(2)] (X = Cl 2, Br 3, I 4). Their X-ray structures confirm the retention of the half-lantern structure and the coordination mode of the bzq and the bridging ligand μ-C(7)H(4)NS(2)-κN,S. The Pt-Pt distances (Pt-Pt = 2.6420(3) Å 2, 2.6435(4) Å 3, 2.6690(3) Å 4) are shorter than that in 1 because of the Pt-Pt bond formation. Time dependent-density functional theory (TD-DFT) studies performed on 1 show a formal bond order of 0 between the metal atoms, with the 6p(z) contribution diminishing the antibonding character of the highest occupied molecular orbital (HOMO) and being responsible for an attractive intermetallic interaction. A shortening of the Pt-Pt distance from 2.959 Å in the ground state S(0) to 2.760 Å in the optimized first excited state (T(1)) is consistent with an increase in the Pt-Pt bond order to 0.5. In agreement with TD-DFT calculations, the intense, structureless, red emission of 1 in the solid state and in solution can be mainly attributed to triplet metal-metal-to-ligand charge transfer ((3)MMLCT) [dσ*(Pt-Pt) → π*(bzq)] excited states. The high quantum yields of this emission measured in toluene (44%) and solid state (62%) at room temperature indicate

  17. Design and synthesis of MWNTs-TiO2 nanotube hybrid electrode and its supercapacitance performance

    Science.gov (United States)

    Gao, Zhonghui; Cui, Zhenduo; Zhu, Shengli; Liang, Yanqin; Li, Zhaoyang; Yang, Xianjin

    2015-06-01

    A new two-step method is successfully developed for the synthesis of MWNTs-TiO2 nanotube hybrid electrodes. The resulting (3-aminopropyl)triethoxysilane (APS) film was chemisorbed on the surface of TiO2 nanotubes. TiO2 nanotubes surface modified by 5, 10, and 20 mg ml-1 APS ethanol solution can determine the morphology of MWNTs-TiO2 nanotube electrodes. The morphology and surface composition were characterized by scanning electron microscopy (SEM), Fourier-transform infrared spectroscopy (FTIR), and X-ray photoelectron spectroscopy (XPS) techniques. The zeta potential results confirm that MWNTs were deposited on APS-TiO2 nanotubes by the electrical attractive force. The electrochemical performances were evaluated by using cyclic voltammetry, electrochemical impedance spectroscopy, and galvanostatic charge-discharge measurements. The MWNTs-TiO2 nanotube hybrid electrodes (5, 10, and 20 mg ml-1 APS) exhibited a high specific capacitance of 3.5, 4.4, and 3.4 mF cm-2 in 1 M H2SO4 aqueous solution at a charge-discharge current density of 0.1 mA cm-2, respectively. Cyclic voltammetric studies indicated that the electrode has excellent stability even after 1000 consecutive CV cycles. Moreover, the galvanostatic charge-discharge experiments conducted on the MWNTs-TiO2 nanotube hybrid electrodes (10 mg ml-1 APS) exhibited long-term cycle stability, retaining about 75% specific capacitance after 1000 cycles, which suggests that it has potential as an electrode material for high-performance electrochemical supercapacitors.

  18. Platinum-Niobium(V Oxide/Carbon Nanocomposites Prepared By Microwave Synthesis For Ethanol Oxidation

    Directory of Open Access Journals (Sweden)

    Virginija KEPENIENĖ

    2016-05-01

    Full Text Available In the present work, Pt nanoparticles were deposited by means of microwave synthesis on the primary carbon supported Nb2O5 composite which was prepared in two different ways: (A by dispersion of Nb2O5 and carbon with the mass ratio equal to 1:1 in a 2-propanol solution by ultrasonication for 30 min. with further desiccation of the mixture and (B by heating the Nb2O5/C composite obtained according to the procedure (A at 500 °C for 2 h. The transmission electron microscopy was used to determine the shape and the size of catalyst particles. X-ray diffraction and inductively coupled plasma optical emission spectroscopy were employed to characterize the structure and composition of the synthesized catalysts. The electrocatalytic activity of the synthesized catalysts towards the oxidation of ethanol in an alkaline medium was investigated by means of cyclic voltammetry.DOI: http://dx.doi.org/10.5755/j01.ms.22.2.8609

  19. Low-temperature synthesis of CuO-interlaced nanodiscs for lithium ion battery electrodes

    Directory of Open Access Journals (Sweden)

    Seo Seung-Deok

    2011-01-01

    Full Text Available Abstract In this study, we report the high-yield synthesis of 2-dimensional cupric oxide (CuO nanodiscs through dehydrogenation of 1-dimensional Cu(OH2 nanowires at 60°C. Most of the nanodiscs had a diameter of approximately 500 nm and a thickness of approximately 50 nm. After further prolonged reaction times, secondary irregular nanodiscs gradually grew vertically into regular nanodiscs. These CuO nanostructures were characterized using X-ray diffraction, transmission electron microscopy, and Brunauer-Emmett-Teller measurements. The possible growth mechanism of the interlaced disc CuO nanostructures is systematically discussed. The electrochemical performances of the CuO nanodisc electrodes were evaluated in detail using cyclic voltammetry and galvanostatic cycling. Furthermore, we demonstrate that the incorporation of multiwalled carbon nanotubes enables the enhanced reversible capacities and capacity retention of CuO nanodisc electrodes on cycling by offering more efficient electron transport paths.

  20. Electrochemical synthesis and characterization of stable colloidal suspension of graphene using two-electrode cell system

    Energy Technology Data Exchange (ETDEWEB)

    Danial, Wan Hazman, E-mail: hazmandanial@gmail.com; Majid, Zaiton Abdul, E-mail: zaiton@kimia.fs.utm.my; Aziz, Madzlan [Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia (UTM), 81310 Skudai, Johor (Malaysia); Chutia, Arunabhiram [Institute of Fluid Sciences, Tohoku University, Sendai 980-8577 (Japan); Sahnoun, Riadh [Ibnu Sina Institute for Fundamental Science Studies, Universiti Teknologi Malaysia (UTM), 81310 Skudai, Johor (Malaysia)

    2015-07-22

    The present work reports the synthesis and characterization of graphene via electrochemical exfoliation of graphite rod using two-electrode system assisted by Sodium Dodecyl Sulphate (SDS) as a surfactant. The electrochemical process was carried out with sequence of intercalation of SDS onto the graphite anode followed by exfoliation of the SDS-intercalated graphite electrode when the anode was treated as cathode. The effect of intercalation potential from 5 V to 9 V and concentration of the SDS surfactant of 0.1 M and 0.01 M were investigated. UV-vis Spectroscopic analysis indicated an increase in the graphene production with higher intercalation potential. Transmission Electron Microscopy (TEM) analysis showed a well-ordered hexagonal lattice of graphene image and indicated an angle of 60° between two zigzag directions within the honeycomb crystal lattice. Raman spectroscopy analysis shows the graphitic information effects after the exfoliation process.

  1. Novel platinum(II) compounds with O,S bidentate ligands: synthesis, characterization, antiproliferative properties and biomolecular interactions.

    Science.gov (United States)

    Mügge, Carolin; Liu, Ruiqi; Görls, Helmar; Gabbiani, Chiara; Michelucci, Elena; Rüdiger, Nadine; Clement, Joachim H; Messori, Luigi; Weigand, Wolfgang

    2014-02-28

    Cisplatin and its analogues are first-line chemotherapeutic agents for the treatment of numerous human cancers. A major inconvenience in their clinical use is their strong tendency to link to sulfur compounds, especially in kidney, ultimately leading to severe nephrotoxicity. To overcome this drawback we prepared a variety of platinum complexes with sulfur ligands and analyzed their biological profiles. Here, a series of six platinum(II) compounds bearing a conserved O,S binding moiety have been synthesized and characterized as experimental anticancer agents. The six compounds differ in the nature of the O,S bidentate β-hydroxydithiocinnamic alkyl ester ligand where both the substituents on the aromatic ring and the length of the alkyl chain may be varied. The two remaining coordination positions at the square-planar platinum(II) center are occupied by a chloride ion and a DMSO molecule. These novel platinum compounds showed an acceptable solubility profile in mixed DMSO-buffer solutions and an appreciable stability at physiological pH as judged from analysis of their time-course UV-visible absorption spectra. Their anti-proliferative and pro-apoptotic activities were tested against the cisplatin-resistant lung cancer cell line A549. Assays revealed significant effects of the sample drugs at low concentrations (in the μmolar range); initial structure-activity-relationships are proposed. The activity of the apoptosis-promoting protein caspase 3/7 was determined; results proved that these novel platinum compounds, under the chosen experimental conditions, preferentially induce apoptosis over necrosis. Reactions with the model proteins cytochrome c, lysozyme and albumin were studied by ESI MS and ICP-OES to gain preliminary mechanistic information. The tested compounds turned out to metalate the mentioned proteins to a large extent. In view of the obtained results these novel platinum complexes qualify themselves as promising cytotoxic agents and merit, in our

  2. Diarylplatinum(II Compounds as Versatile Metallating Agents in the Synthesis of Cyclometallated Platinum Compounds with N-Donor Ligands

    Directory of Open Access Journals (Sweden)

    Margarita Crespo

    2014-03-01

    Full Text Available This review deals with the reactions of diarylplatinum(II complexes with N-donor ligands to produce a variety of cycloplatinated compounds including endo-five-, endo-seven-, endo-six- or exo-five-membered platinacycles. The observed reactions result from a series of oxidative addition/reductive elimination processes taking place at platinum(II/platinum(IV species and involving C–X (X = H, Cl, Br bond activation, arene elimination, and, in some cases, Caryl–Caryl bond formation.

  3. Facile synthesis of flower-like platinum nanostructures as an efficient electrocatalyst for methanol electro-oxidation.

    Science.gov (United States)

    Zhang, Jie; Chen, Jinwei; Jiang, Yiwu; Zhou, Feilong; Zhong, Jing; Wang, Gang; Kiani, Maryam; Wang, Ruilin

    2016-10-01

    This paper presents a facile approach for the synthesis of a novel Pt/graphene-nickel foam (Pt/GNF) electrode composed of flower-like Pt nanoparticles (NPs) and 3D graphene. The fabrication process involved the chemical vapor deposition of graphene onto Ni foam as a substrate and the subsequent growth of Pt NPs via a galvanic replacement reaction without using any seed and organic solvent. The surface morphology and composition of the prepared materials were characterized. Meanwhile, cyclic voltammetry and electrochemical impedance spectroscopy were employed to confirm their typical electrochemical characteristics. The as-prepared nanocomposites displayed enhanced catalytic activity and kinetics toward methanol electro-oxidation. Such an excellent performance can be ascribed to the high dispersion of flower-like Pt NPs and to the exposure of more sites provided by the flower-like structure. The improved stability, decreased charge transfer resistance, and enhanced reaction rate of the nanocomposites promise new opportunities for the development of direct methanol fuel cells.

  4. Facile electrochemical synthesis of few layered graphene from discharged battery electrode and its

    Directory of Open Access Journals (Sweden)

    Santosh K. Tiwari

    2017-05-01

    Full Text Available A cost-effective, simple and non-hazardous route for synthesis of few-layered graphene from waste zinc carbon battery (ZCB electrodes via electrochemical expansion (ECE has been reported. In this synthesis, we have electrochemically exfoliated the graphene layers, by intercalating sodium dodecyl benzenesulfonate (SDBS surfactant into graphitic layers at different D.C. voltages with a constant SDBS concentration. The graphene sheets were isolated, purified and characterized by Transmission electron microscopy (TEM, Scanning electron microscopy (SEM, Fourier transform infrared spectrometry (FTIR, X-ray diffraction (XRD, Raman spectrometry, Ultraviolet absorption (UV, Selected area electron diffraction (SAED and Cyclic voltammetry. Best result was obtained at 4.5 V of D.C. A possible mechanism for the intercalation process has been proposed. A promising application of the produced material for supercapacitor application has also been explored in combination with polyaniline.

  5. Robust high temperature oxygen sensor electrodes

    DEFF Research Database (Denmark)

    Lund, Anders

    Platinum is the most widely used material in high temperature oxygen sensor electrodes. However, platinum is expensive and the platinum electrode may, under certain conditions, suffer from poisoning, which is detrimental for an oxygen sensor. The objective of this thesis is to evaluate electrode ......-based electrodes and one porous electrode based on the perovskite-structured strontium and vanadiumdoped lanthanum chromium oxide (LSCV) were investigated. The porous electrodes were applied on yttrium-stabilised zirconium oxide (YSZ) substrates in a collaboration with the company PBI...

  6. Poly(3,3-dibenzyl-3,4-dihydro-2H-thieno[3,4-b][1,4]dioxepine/Platinum Composite Films as Potential Counter Electrodes for Dye-Sensitized Solar Cells

    Directory of Open Access Journals (Sweden)

    Jung-Chuan Chou

    2017-07-01

    Full Text Available In this study, poly(3,3-dibenzyl-3,4-dihydro-2H-thieno[3,4-b][1,4]dioxepine/platinum composite films (PProDOT-Bz2/Pt were used as counter electrodes (CEs in dye-sensitized solar cells (DSSCs. The composite films were prepared on fluorine-doped tin oxide (FTO glass by radio frequency (RF sputtering to deposit platinum (Pt for 30 s. Afterwards, PProDOT-Bz2 was deposited on the Pt–FTO glass via electrochemical polymerization. The electron transfer process of DSSCs was investigated using electrochemical impedance spectroscopy (EIS and cyclic voltammetry (CV. The DSSCs with 0.05 C/cm2 PProDOT-Bz2-Pt composite films showed an open circuit voltage (Voc of 0.70 V, a short-circuit current density (Jsc of 7.27 mA/cm2, and a fill factor (F.F. of 68.74%. This corresponded to a photovoltaic conversion efficiency (η of 3.50% under a light intensity of 100 mW/cm2.

  7. A comparative study on the influence of the platinum catalyst in poly(dimethylsiloxane) based networks synthesis

    DEFF Research Database (Denmark)

    Bejenariu, Anca Gabriela; Poulsen, Julie Øblom; Skov, Anne Ladegaard

    2009-01-01

    The aim of the project is to find the best of three Pt catalysts and their appropriate quantity in order to obtain soft networks in one hour at room temperature. How the choice of catalyst influences the final elastomeric properties is also evaluated. The differences between the catalysts are the...... are the solvent and the platinum concentration....

  8. Synthesis, characterization and modification of LiFePO4 by doping with platinum and palladium for lithium-ion batteries

    Science.gov (United States)

    Talebi-Esfandarani, Majid

    Lithium iron phosphate (LiFePO4) with features of excellent thermal stability, non-toxicity, low cost and abundance in nature is one of the most promising cathode materials to be used in lithium ion batteries. However, as it suffers from the low electrical conductivity and poor ionic diffusion, it operates only at low charge/discharge current rates. In this thesis, a dual approach of metal doping and carbon coating was employed to solve the aforementioned problem. This work is mainly on the study, for the first time, of the effect of platinum and palladium doping of LiFePO 4 on its physical-chemical properties. The effect of Pt and Pd doping on the LiFePO4 performance as Li-ion cathode will be also shown. Sol-gel and hydrothermal methods were used to synthesize the LiFePO4 and doped-LiFePO4 cathode materials. The prepared materials were characterized using different methods such as XRD (X-ray Diffraction), XPS (X-ray Photoelectron Spectroscopy), SEM (Scanning Electron Microscopy) and BET (Brunauer Emmett Teller). The electrochemical characterization techniques including charge/discharge test, CV (Cyclic Voltammetry), EIS (Electrochemical Impedance Spectroscopy) and cycling were also used. The effects of metals doping on chemical-physical properties, particles sizes, morphology, structure and purity of the electrodes were investigated and their correlation to the electrochemical properties of materials were studied. In the first section, we determine the optimized amount of carbon support and morphology of the particles using SEM which help to obtain LiFePO 4/C cathode material with an excellent electrochemical performance. It was found that when the amount of coated carbon exceeds the optimized value, the discharge capacity of the LiFePO4/C material decreased. This might indicate a low diffusion of the Li+ ions through the carbon layers during the charge/discharge process. On the other hand, for LiFePO4 coated with carbon quantity lower than the optimum value, Li

  9. Novel 3-(aminomethyl)naphthoquinone mannich base-platinum(IV) complexes: synthesis, characterization, electrochemical and cytotoxic studies

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Gustavo B. da; Neves, Amanda P.; Vargas, Maria D., E-mail: mdvargas@vm.uff.br [Universidade Federal Fluminense (UFF), Niteroi, RJ (Brazil). Instituto de Quimica; Alves, Wagner A. [Universidade Federal Rural do Rio de Janeiro (UFRRJ), Seropedica, RJ (Brazil). Departamento de Quimica; Marinho-Filho, Jose D.B.; Pessoa, Claudia; Moraes, Manoel O.; Costa-Lotufo, Leticia V. [Universidade Federal do Ceara (UFCE), Fortaleza, CE (Brazil). Centro de Ciencias da Saude. Departamento de Fisiologia e Farmacologia

    2013-04-15

    Three novel platinum(IV) complexes cis,cis,trans-[Pt(HL1-3)Cl{sub 2}(OH){sub 2}] 1b-3b(HL = 2-hydroxy-3-[(R{sup 1} -amino)(pyridin-2-yl)methyl]-1,4-naphthoquinone, R{sup 1} = n-butyl, HL1; n-heptyl, HL2 and n-decyl, HL3) have been obtained from the oxidation of the respective precursors cis-[Pt(HL1-3)Cl{sub 2}] 1a-3a. Cyclic voltammetry studies of 1b-3b in MeCN showed the quasi reversible naphthoquinonate (NQO{sup -}, i.e., L{sup -}) redox process and irreversible process attributed to the reduction of the Pt{sup 4+}/Pt{sup 2+} pair, at potentials about 400 mV less negative than for the cisplatin precursor cis,cis,trans-[Pt(NH{sub 3}){sub 2}Cl{sub 2}(OH){sub 2}]. Hydrogen bond interaction between the naphthoquinone 2-hydroxyl group and an axially coordinated hydroxide ligand in 1b-3b has been proposed to favor the Pt{sup 4+}/Pt{sup 2+} reduction. The cytotoxicity studies against four human cancer cell lines have shown that in general the platinum(IV) and platinum(II)derivatives exhibit the same cytotoxic profile and are all more active than cisplatin. The lowest in vitro IC{sub 50} values have been observed for 2b-3b, which bear ligands with the largest R{sup 1} groups (HL2-HL3) being the most lipophilic. Furthermore similar IC{sub 50} values for platinum(II) and platinum(IV) complexes of the same ligands have been associated with rapid in vitro reduction of the latter complexes to afford 1a-3a. (author)

  10. Phosphoric acid fuel cell platinum use study

    Science.gov (United States)

    Lundblad, H. L.

    1983-01-01

    The U.S. Department of Energy is promoting the private development of phosphoric acid fuel cell (PAFC) power plants for terrestrial applications. Current PAFC technology utilizes platinum as catalysts in the power electrodes. The possible repercussions that the platinum demand of PAFC power plant commercialization will have on the worldwide supply and price of platinum from the outset of commercialization to the year 2000 are investigated. The platinum demand of PAFC commercialization is estimated by developing forecasts of platinum use per unit of generating capacity and penetration of PAFC power plants into the electric generation market. The ability of the platinum supply market to meet future demands is gauged by assessing the size of platinum reserves and the capability of platinum producers to extract, refine and market sufficient quantities of these reserves. The size and timing of platinum price shifts induced by the added demand of PAFC commercialization are investigated by several analytical methods. Estimates of these price shifts are then used to calculate the subsequent effects on PAFC power plant capital costs.

  11. Enhanced catalytic activity of solid and hollow platinum-cobalt nanoparticles towards reduction of 4-nitrophenol

    Science.gov (United States)

    Krajczewski, Jan; Kołątaj, Karol; Kudelski, Andrzej

    2016-12-01

    Previous investigations of hollow platinum nanoparticles have shown that such nanostructures are more active catalysts than their solid counterparts towards the following electrochemical reactions: reduction of oxygen, evolution of hydrogen, and oxidation of borohydride, methanol and formic acid. In this work we show that synthesised using standard galvanic replacement reaction (with Co templates) hollow platinum nanoparticles exhibit enhanced catalytic activity also towards reduction of 4-nitrophenol by sodium borohydride in water. Unlike in the case of procedures involving hollow platinum catalysts employed so far to carry out this reaction it is not necessary to couple analysed platinum nanoparticles to the surface of an electrode. Simplification of the analyzed reaction may eliminate same experimental errors. We found that the enhanced catalytic activity of hollow Pt nanoparticles is not only connected with generally observed larger surface area of hollow nanostructures, but is also due to the contamination of formed hollow nanostructures with cobalt, from which sacrificial templates used in the synthesis of hollow Pt nanostrustures have been formed. Because using sacrificial templates is a typical method of synthesis of hollow metal nanostructures, formed hollow nanoparticles are probably often contaminated, which may significantly influence their catalytic activity.

  12. Synthesis and Evaluation on Performance of Hydrogen Storage of Multi-Walled Carbon Nanotubes Decorated with Platinum

    Institute of Scientific and Technical Information of China (English)

    MU Shi-chung; TANG Hao-lin; PAN Mu; YUAN Run-zhang

    2003-01-01

    By means of chemical reduction,nanoparticles of platinum were deposited on the surface of multi-walled carbon nanotubes (MWCNTs).The performance of hydrogen storage of as-prepared MWCNTs decorated with platinum was investigated.The results indicate that:(1) Hydrogen uptake is more quick and intense for decorated MWCNTs than that for not decorated ones at 10.931MPa and room temperature.The saturation of hydrogen uptake of the former only lasts about 30min,while the latter needs about 150 min;(2) The amount of hydrogen uptake of decorated MWCNTs is about 1.13wt%, which is larger than that of not decorated ones(about 0.54wt%);(3) However,more than 37% hydrogen absorbed by decorated MWCNTs is chemisorbed.

  13. Synthesis and Characterization of Phenothiazine-Based Platinum(II)-Acetylide Photosensitizers for Efficient Dye-Sensitized Solar Cells.

    Science.gov (United States)

    Siu, Chi-Ho; Lee, Lawrence Tien Lin; Yiu, Sze-Chun; Ho, Po-Yu; Zhou, Panwang; Ho, Cheuk-Lam; Chen, Tao; Liu, Jianyong; Han, Keli; Wong, Wai-Yeung

    2016-03-07

    Three new unsymmetrical phenothiazine-based platinum(II) bis(acetylide) complexes PT1-PT3 with different electron-donating arylacetylide ligands were synthesized and characterized. Their photophysical, electrochemical, and photovoltaic properties have been fully investigated and the density functional theory (DFT) calculations have been carried out. Under AM 1.5 irradiation (100 mW cm(-2)), the PT1-based dye-sensitized solar cell (DSSC) device exhibited an attractive power conversion efficiency (η) up to 5.78 %, with a short-circuit photocurrent density (J(sc)) of 10.98 mA cm(-2), an open-circuit photovoltage (V(oc)) of 0.738 V, and a fill factor (ff) of 0.713. These findings provide strong evidence that platinum-acetylide complexes have great potential as promising photosensitizers in DSSC applications.

  14. Synthesis and assembly with mesoporous silica of platinum (II) porphyrin complexes bearing carbazyl groups: Luminescent and oxygen sensing properties

    Institute of Scientific and Technical Information of China (English)

    HUO Cheng; ZHANG Huidong; GUO Jianhua; ZHANG Hongyu; ZHANG Ping; WANG Yue

    2006-01-01

    A series of platinum meso-tetrakis [3-methoxy-4-(N-carbazyl)n-alkyloxyphenyl]porphyrin (Pt-4Cn-TPP, n = 4, 6 and 8) are synthesized. Pt-4C4-TPP, Pt-4C6-TPP and Pt-4C8-TPP exhibit similar luminescent properties in solution and solid state. Three protonated platinum (II) porphyrins are assembled with mesoporous silica MCM-48, respectively, resulting in assembly materials Pt-4Cn-TPP4+/ MCM-48 (n = 4, 6 and 8). The luminescent intensity of Pt-4Cn-TPP4+/MCM-48 can be extremely quenched by molecular oxygen with high sensitivity (I0/I100>9). The Stern-Volmer plots of these assembly materials display considerable linearity within a wide range of oxygen concentration (0 to 100%). The response time is all ≤ 1 s and recovery time ≤ 22 s for these assembly materials.

  15. Synthesis, biological activity, and DNA-damage profile of platinum-threading intercalator conjugates designed to target adenine.

    Science.gov (United States)

    Guddneppanavar, Rajsekhar; Saluta, Gilda; Kucera, Gregory L; Bierbach, Ulrich

    2006-06-01

    PT-ACRAMTU {[PtCl(en)(ACRAMTU)](NO3)2, 2; ACRAMTU = 1-[2-(acridin-9-ylamino)ethyl]-1,3-dimethylthiourea, 1, en = ethane-1,2-diamine} is the prototype of a series of DNA-targeted adenine-affinic dual intercalating/platinating agents. Several novel 4,9-disubstituted acridines and the corresponding platinum-acridine conjugates were synthesized. The newly introduced 4-carboxamide side chains contain H-bond donor/acceptor functions designed to promote groove- and sequence-specific platinum binding. In HL-60 (leukemia) and H460 (lung) cancer cells, IC50 values in the micromolar to millimolar range were observed. Several of the intercalators show enhanced cytotoxicity compared to prototype 1, but conjugate 2 appears to be the most potent hybrid agent. Enzymatic digestion assays in conjunction with liquid chromatography-electrospray mass spectrometry analysis indicate that the new conjugates produce PT-ACRAMTU-type DNA damage. Platinum-modified 2'-deoxyguanosine, dG, and several dinucleotide fragments, d(NpN)*, were detected. One of the conjugates showed significantly higher levels of binding to A-containing sites than conjugate 2 (35 +/- 3% vs 24 +/- 3%). Possible structure-activity relationships are discussed.

  16. Design, synthesis and DNA interactions of a chimera between a platinum complex and an IHF mimicking peptide.

    Science.gov (United States)

    Rao, Harita; Damian, Mariana S; Alshiekh, Alak; Elmroth, Sofi K C; Diederichsen, Ulf

    2015-12-28

    Conjugation of metal complexes with peptide scaffolds possessing high DNA binding affinity has shown to modulate their biological activities and to enhance their interaction with DNA. In this work, a platinum complex/peptide chimera was synthesized based on a model of the Integration Host Factor (IHF), an architectural protein possessing sequence specific DNA binding and bending abilities through its interaction with a minor groove. The model peptide consists of a cyclic unit resembling the minor grove binding subdomain of IHF, a positively charged lysine dendrimer for electrostatic interactions with the DNA phosphate backbone and a flexible glycine linker tethering the two units. A norvaline derived artificial amino acid was designed to contain a dimethylethylenediamine as a bidentate platinum chelating unit, and introduced into the IHF mimicking peptides. The interaction of the chimeric peptides with various DNA sequences was studied by utilizing the following experiments: thermal melting studies, agarose gel electrophoresis for plasmid DNA unwinding experiments, and native and denaturing gel electrophoresis to visualize non-covalent and covalent peptide-DNA adducts, respectively. By incorporation of the platinum metal center within the model peptide mimicking IHF we have attempted to improve its specificity and DNA targeting ability, particularly towards those sequences containing adjacent guanine residues.

  17. Platinum Activated IrO2/SnO2 Nanocatalysts and Their Electrode Structures for High Performance Proton Exchange Membrane Water Electrolysis

    DEFF Research Database (Denmark)

    Xu, Junyuan; Li, Qingfeng; Christensen, Erik

    2013-01-01

    , which was attributed to the cooperative effects of improved electric conductivity and synergistic effect of Pt and IrO2/SnO2. Furthermore, catalyst layers based on IrO2/SnO2 catalysts were optimized with respect to microstructures, pore volume and pore size distribution. The performance was obviously...... improved due to the appropriate porosity and pore size distribution. The highest electrolyser performance of 1.63 V at 2 A cm-2 was achieved at 80 °C for optimized catalyst layers containing platinum activated IrO2/SnO2 catalyst....

  18. Stabilizing platinum in phosphoric acid fuel cells

    Science.gov (United States)

    Remick, R. J.

    1982-01-01

    Platinum sintering on phosphoric acid fuel cell cathodes is discussed. The cathode of the phosphoric acid fuel cell uses a high surface area platinum catalyst dispersed on a conductive carbon support to minimize both cathode polarization and fabrication costs. During operation, however, the active surface area of these electrodes decreases, which in turn leads to decreased cell performance. This loss of active surface area is a major factor in the degradation of fuel cell performance over time.

  19. Stabilizing platinum in phosphoric acid fuel cells

    Science.gov (United States)

    Remick, R. J.

    1981-10-01

    A carbon substrate for use in fabricating phosphoric acid fuel cell cathodes was modified by catalytic oxidation to stabilize the platinum catalyst by retarding the sintering of small platinum crystallites. Results of 100-hour operational tests confirmed that the rate of platinum surface area loss observed on catalytically oxidized supports was less than that observed with unmodified supports of the same starting material. Fuel cell electrodes fabricated from Vulcan XC-72R, which was modified by catalytic in a nitric oxide atmosphere, produced low platium sintering rates and high activity for the reduction of oxygen in the phosphoric acid environment.

  20. Synthesis of carbon nanotubes by laser ablation in graphite substrate of industrial arc electrodes

    Science.gov (United States)

    Guerrero, A.; Puerta, J.; Gomez, F.; Blanco, F.

    2008-10-01

    In this work, an inexpensive and simple technique for the synthesis of carbon nanotubes (CNTs) by using graphite as the target for IR laser radiation is presented. This graphite material is obtained from the recycled graphite electrode core of an electric arc furnace. The experiment was carried out in a reaction chamber in an argon atmosphere at a low pressure. For laser ablation, a Lumonics TEA CO2 laser beam (7 J; 0.05-50 μs pulse length) was used in multimode operation. Products were collected on free mica sheets. The substrates were characterized by scanning electron microscopy (SEM) and the products were characterized (collected as powder) by transmission electron microscopy (TEM). They showed significant amounts of high-quality dense filaments (CNTs) that were morphologically not aligned.

  1. Synthesis and characterization of LiFePO4/C composite used as lithium storage electrodes

    Institute of Scientific and Technical Information of China (English)

    胡国荣; 张新龙; 彭忠东; 廖刚; 禹筱元

    2004-01-01

    LiFePO4/C composites with good rate capability and high energy density were prepared by adding sugar to the synthetic precursor. A significant improvement in electrode performance was achieved. The resulting carbon contents in the sample 1 and sample 2 are 3.06% and 4.95% (mass fraction), respectively. It is believed that the synthesis of LiFePO4 with sugar added before heating is a good method because the synthesized particles having uniform small size are covered by carbon. The performance of the cathodes was evaluated using coin cells. The samples were characterized by X-ray diffraction and scanning electron microscope observation. The addition of carbon limits the particles size growth and enables high electron conductivity. The LiFePO4/C composites show very good electrochemical performance delivering about 142 mAh/g specific capacity when being cycled at the C/10 rate. The capacity fade upon cycling is very small.

  2. Platinum impact assessment

    OpenAIRE

    Yip, Joyce Pui Yan

    2007-01-01

    This paper presents a comprehensive strategic analysis of Company X's strategies to mitigate its risks from volatile platinum prices, since Platinum is a critical component of fuel cells. It is recommended that Company X consider leasing platinum to lower cash flow requirements to meet its platinum demand over the next 5 years. A shorter platinum leasing period will reduce Company X's platinum market risk. OEMs can set up metal accounts with catalyst suppliers to eliminate Company X from plat...

  3. Synthesis of diorganoplatinum(IV) complexes by the Ssbnd S bond cleavage with platinum(II) complexes

    Science.gov (United States)

    Niroomand Hosseini, Fatemeh; Rashidi, Mehdi; Nabavizadeh, S. Masoud

    2016-12-01

    Reaction of [PtR2(NN)] (R = Me, p-MeC6H4 or p-MeOC6H4; NN = 2,2‧-bipyridine, 4,4‧-dimethyl-2,2‧-bipyridine, 1,10-phenanthroline or 2,9-dimethyl-1,10-phenanthroline) with MeSSMe gives the platinum(IV) complexes cis,trans-[PtR2(SMe)2(NN)]. They are characterized by NMR spectroscopy and elemental analysis. The geometries and the nature of the frontier molecular orbitals of Pt(IV) complexes containing Ptsbnd S bonds are studied by means of the density functional theory.

  4. Redeposition of electrochemically dissolved platinum as nanoparticles on carbon

    DEFF Research Database (Denmark)

    Norgaard, C. F.; Stamatin, S. N.; Skou, E. M.

    2014-01-01

    Electrochemical dissolution of platinum has been proposed by several research groups as an environmentally friendly way to recover platinum from catalytic structures such as fuel cell electrodes. For the case of electrochemical dissolution of platinum in hydrochloric acid electrolyte, the present...... on carbon was then identified, quantified, and the particle size evaluated by powder X-ray diffraction, thermogravimetric analysis and cyclic voltammetry. Copyright (C) 2014, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved....

  5. SYNTHESIS,CHARACTERIZATION AND PHOTOLUMINESCENT PROPERTIES OF NEW PLATINUM-CONTAINING POLY(FLUORENYLENEETHYNYLENE) ANCHORED WITH CARBAZOLE PENDANTS

    Institute of Scientific and Technical Information of China (English)

    Cheuk-lam Ho; Wai-yeung Wong

    2009-01-01

    A new luminescent and thermally stable platinum(Ⅱ) polyyne polymer trans-[-Pt(PBu3)2C≡CArC≡C-]n (P1) containing the 2,7-fluorene chromophoric spacer substituted by pendant carbazolyl group via long alkyl bridges. The regiochemical structures of these compounds were studied by various spectroscopic analyses. We report the photophysical properties of this group 10 polymetallayne and a comparison was made to its binuclear model complex trans-[Pt(Ph)(PEt3)2C≡CArC≡CPt(Ph)(PEt3)2] (M1) as well as to those with non-carbazole-containing fluorene spacer (P2 and M2). Upon photoexcitation, each of P1 and M1 emits an intense purple-blue fluorescence emission in the near-UV to visible region in dilute fluid solutions at room temperature. Harvesting of organic triplet emissions harnessed through the strong heavy-atom effects of platinum metal was examined and at 77 K, each of the metalated compounds displayed dual emission bands, viz. Both the fluorescence and the lower-lying phosphorescence. Spectroscopic results revealed that the formation of excimers was suppressed by introducing carbazole side groups. The spatial extent of the lowest singlet and triplet excitons in PI and M1 was fully elucidated. Such organometallic poly(fluorenyleneethynylene)s anchored with the carbazole pendants was found to have an improved thermal stability and suppressed aggregation.

  6. A new platinum complex with tryptophan: synthesis, structural characterization, DFT studies and biological assays in vitro over human tumorigenic cells.

    Science.gov (United States)

    Carvalho, Marcos A; Shishido, Silvia M; Souza, Bárbara C; de Paiva, Raphael E F; Gomes, Alexandre F; Gozzo, Fábio C; Formiga, André L B; Corbi, Pedro P

    2014-03-25

    A new platinum(II) complex with the amino acid L-tryptophan (trp), named Pt-trp, was synthesized and characterized. Elemental, thermogravimetric and ESI-QTOF mass spectrometric analyses led to the composition [Pt(C11H11N2O2)2]⋅6H2O. Infrared spectroscopic data indicate the coordination of trp to Pt(II) through the oxygen of the carboxylate group and also through the nitrogen atom of the amino group. The (13)C CP/MAS NMR spectroscopic data confirm coordination through the oxygen atom of the carboxylate group, while the (15)N CP/MAS NMR data confirm coordination of the nitrogen of the NH2 group to the metal. Density functional theory (DFT) studies were applied to evaluate the cis and trans coordination modes of trp to platinum(II). The trans isomer was shown to be energetically more stable than the cis one. The Pt-trp complex was evaluated as a cytotoxic agent against SK-Mel 103 (human melanoma) and Panc-1 (human pancreatic carcinoma) cell lines. The complex was shown to be cytotoxic over the considered cells.

  7. Layer-by-layer self-assembled mesoporous PEDOT-PSS and carbon black hybrid films for platinum free dye-sensitized-solar-cell counter electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Kitamura, Koji; Shiratori, Seimei [School of Integrated Design Engineering, Keio University, Yokohama 223-8522 (Japan)

    2011-05-13

    A thin film of poly(3,4-ethylenedioxythiophene)-poly(4-styrenesulfonic acid) (PEDOT-PSS), which is an alternative cathodic catalyst for Pt in dye-sensitized solar cells, was prepared using the layer-by-layer self-assembly method (LbL). The film is highly adhesive to the substrate and has a controllable thickness. Therefore, the PEDOT-PSS film prepared using LbL is expected have high performance and durability as a counter electrode. Moreover, when carbon black was added to the PEDOT-PSS solution, highly mesoporous PEDOT-PSS and carbon black hybrid films were obtained. These films showed high cathodic activity. In this study, we investigated the change in morphology in the obtained film with increasing carbon black content, and the influence of the porosity and thickness on the performance of the cells. In this study, a Pt-free counter electrode with performance similar to that of Pt-based counter electrodes was successfully fabricated. The achieved efficiency of 4.71% was only a factor of 8% lower than that of the cell using conventional thermally deposited Pt on fluorine-doped tin oxide glass counter electrodes.

  8. Electroanalytical and Spectroscopic Studies of Poly(2,2'-bithiophene)-Modified Platinum Electrode to Detect Catechol in the Presence of Ascorbic Acid

    Science.gov (United States)

    Lunsford, Suzanne K.; Speelman, Nicole; Stinson, Jelynn; Yeary, Amber; Choi, Hyeok; Widera, Justyna; Dionysiou, Dionysios D.

    2008-01-01

    This article describes an undergraduate laboratory for an instrumental analysis course that integrates electroanalytical chemistry and infrared spectroscopy. Modified electrode surfaces are prepared by constant potentiometric electrolysis over the potential range of 1.5-1.8 V and analyzed by cyclic voltammetry and infrared spectroscopy. The…

  9. 乙醇在修饰铂电极上的电化学氧化%Electrochemical Oxidation of Ethanol on Modified Platinum Electrode

    Institute of Scientific and Technical Information of China (English)

    魏杰; 张楠

    2011-01-01

    In order to improve the electrocatalytic activity of Pt based catalyst to ethanol oxidation, the PMo12 modified Pt electrodes were prepared.Cyclic voltammetry was employed to evaluate the electrocatalytic activity to ethanol oxidation and anti-poisoning characters to co of the modified electrodes.Results show that PMo12 modified Pt electrodes can improve the electrocatalytic activity to ethanol oxidation and anti-poisoning characters to CO of Pt based electrode.%为了改善铂基催化剂氧化乙醇的活性,制备磷钼酸修饰铂电极,并利用循环伏安曲线评价其对乙醇氧化的电催化活性及抗CO毒化作用.结果表明:磷钼酸修饰铂电极可以提高铂基电极氧化乙醇的催化活性以及抗CO毒化作用.

  10. Layer-by-layer self-assembled mesoporous PEDOT-PSS and carbon black hybrid films for platinum free dye-sensitized-solar-cell counter electrodes.

    Science.gov (United States)

    Kitamura, Koji; Shiratori, Seimei

    2011-05-13

    A thin film of poly(3,4-ethylenedioxythiophene)-poly(4-styrenesulfonic acid) (PEDOT-PSS), which is an alternative cathodic catalyst for Pt in dye-sensitized solar cells, was prepared using the layer-by-layer self-assembly method (LbL). The film is highly adhesive to the substrate and has a controllable thickness. Therefore, the PEDOT-PSS film prepared using LbL is expected have high performance and durability as a counter electrode. Moreover, when carbon black was added to the PEDOT-PSS solution, highly mesoporous PEDOT-PSS and carbon black hybrid films were obtained. These films showed high cathodic activity. In this study, we investigated the change in morphology in the obtained film with increasing carbon black content, and the influence of the porosity and thickness on the performance of the cells. In this study, a Pt-free counter electrode with performance similar to that of Pt-based counter electrodes was successfully fabricated. The achieved efficiency of 4.71% was only a factor of 8% lower than that of the cell using conventional thermally deposited Pt on fluorine-doped tin oxide glass counter electrodes.

  11. Thin film fuel cell electrodes.

    Science.gov (United States)

    Asher, W. J.; Batzold, J. S.

    1972-01-01

    Earlier work shows that fuel cell electrodes prepared by sputtering thin films of platinum on porous vycor substrates avoid diffusion limitations even at high current densities. The presented study shows that the specific activity of sputtered platinum is not unusually high. Performance limitations are found to be controlled by physical processes, even at low loadings. Catalyst activity is strongly influenced by platinum sputtering parameters, which seemingly change the surface area of the catalyst layer. The use of porous nickel as a substrate shows that pore size of the substrate is an important parameter. It is noted that electrode performance increases with increasing loading for catalyst layers up to two microns thick, thus showing the physical properties of the sputtered layer to be different from platinum foil. Electrode performance is also sensitive to changing differential pressure across the electrode. The application of sputtered catalyst layers to fuel cell matrices for the purpose of obtaining thin total cells appears feasible.

  12. Design and synthesis of polymer, carbon and composite electrodes for high energy and high power supercapacitors

    Science.gov (United States)

    Arcila Velez, Margarita Rosa

    Supercapacitors (SCs) are promising energy storage devices because they deliver energy faster than Li-ion batteries and store larger amounts of charge compared to dielectric capacitors. SCs are classified in electrical double layer capacitors (EDLCs) and pseudocapacitors, based on their charge storage mechanism. EDLCs store charge electrostatically, i.e. by physical charge separation. This mechanism limits the storable amount of energy to the available surface area of the electrode, typically made of carbon materials, but grants good cycling stability of the SC device. Pseudocapacitor electrodes, commonly made of conducting polymers or metal oxides, store charge faradaically, i.e. through redox reactions throughout the bulk material, which allows them to store significantly larger amounts of energy than EDLCs, but their stability is compromised due to the partial irreversibility of the faradaic processes. To accomplish the commercialization of SCs, devices must show a combination of high charge storage capacities and long-term stability, besides being cost-effective. To tackle the current issues of SCs, this field of study has taken mainly two directions: 1) the development of new architectures and nanostructures of the active materials, which has shown to increase the surface area, enhance stability, and facilitate ion diffusion; and 2) fabrication of composites between non-faradaic (carbon), faradaic materials, and/or redox-active components to achieve a balance between the amount of energy stored and the stability. Following the first approach, a continuous process to grow vertically aligned carbon nanotubes (VACNTs) on cost-effective aluminum foil was developed. The resulting electrodes were analyzed as SC electrodes and in symmetric cells, and the influence of the arrangement of the nanotubes and the synthesis conditions was studied. The performance of the VACNTs produced continuously showed similar performance to the VACNTs produced stationarily and the

  13. Synthesis of carbon-14 labelled cis-malonato [(4R,5R)-4,5-bis(aminomethyl)-2-isopropyl-1,3-dioxolane] platinum(II) (SKI 2053R)

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dae-Kee; Kim, Youngseok; Rim, Jonggill; Kim, Ganghyeok; Gam, Jongsik; Song, Sungkun; Yoo, Kwanghee; Kim, Key H. (Sunkyong Industries, Kyungki-Do (Korea, Republic of). Life Science Research Center)

    1994-02-01

    The synthesis of [sup 14]C-labelled cis-malonato[(4R,5R)-4,5-bis(aminomethyl)-2-isopropyl-1,3-dioxolan e]platinum(II) from [1,4-[sup 14]C] D-tartaric acid is described. The overall radiochemical yield of the product in a eight-step sequence was 23.8% and radiochemical purity was 98.5%. (author).

  14. Síntese e reatividade de complexos platina-trifenilestibina: uma revisão bibliográfica Synthesis and reactivity of triphenylstibine-platinum complexes: a bibliographic revision

    Directory of Open Access Journals (Sweden)

    Roberto Santos Barbiéri

    2006-07-01

    Full Text Available This article deals with synthesis and reactivity of complexes with triphenylstibine (SbPh3 as the ligand. A comparative study of analogous complexes of triphenylphosphine (PPh3 and triphenylarsine (AsPh3 with platinum in the oxidation states zero, two and four is included. The bibliographic revision includes publications since 1936, when the first Pt(II complex with triphenylstibine was described.

  15. Platinum(II Complexes with Tetradentate Schiff Bases as Ligands: Synthesis, Characterization and Detection of DNA Interaction by Differential Pulse Voltammetry

    Directory of Open Access Journals (Sweden)

    Lijun Li

    2012-01-01

    Full Text Available Five sterically hindered platinum(II complexes with tetradentate schiff bases as ligands, [Pt(L] (L= N,N′-bisalicylidene-1,2-ethylenediamine (L1, N,N′-bisalicylidene-1,2-cyclohexanediamine (L2, N,N′-bis(5-hydroxyl-salicylidene-1,2-cyclohexanediamine (L3, N,N′-bisalicylidene-1,2-diphenyl-ethylenediamine (L4 and N,N′-bis(3-tert-butyl-5-methyl-salicylidene-1,2-diphenylethylenediamine (L5 have been synthesized and characterized by IR spectroscopy and elemental analysis. The sterical hindrance of antitumor drug candidates potentially makes them less susceptible to deactivation by sulphur containing proteins and helping to overcome resistance mechanisms. The interaction of these metal complexes with fish sperm single-stranded DNA (ssDNA was studied electrochemically based on the oxidation signals of guanine and adenine. Differential pulse voltammetry was employed to monitor the DNA interaction in solution by using renewable pencil graphite electrode. The results indicate that ligands with different groups can strongly affect the interaction between [Pt(L] complexes and ssDNA due to sterical hindrances and complex [Pt(L1] has the best interaction with DNA among the five complexes.

  16. SYNTHESIS AND CHARACTERIZATION OF A SILICA-SUPPORTED CARBOXYMETHYLCELLULOSE PLATINUM COMPLEX AND ITS CATALYTIC BEHAVIORS FOR HYDROGENATION OF AROMATICS

    Institute of Scientific and Technical Information of China (English)

    TANG Liming; HUANG Meiyu; JIANG Yingyan

    1996-01-01

    A silica-supported carboxymethylcellulose platinum complex (abbreviated as SiO2-CMC-Pt) has been prepared and characterized by XPS. Its catalytic properties for hydrogenation of aromatic compounds were studied. The results showed that this catalyst could catalyze the hydrogenation of phenol, anisol, p-cresol, benzene and toluene to cyclohexanol, cyclohexyl methyl ether, p-methyl cyclohexanol, cyclohexane and methylcyclohexane, respectively in 100% yield at 30℃ and 1 atm. In the hydrogenation of phenol,COO/Pt ratio in SiO2-CMC-Pt has much influence on the initial hydrogenation rate and the selectivity for the intermediate product, cyclohexanone. The highest initial rate and the highest yield of cyclohexanone both occur at COO/Pt ratio of 6. The complex is stable during the reaction and can be used repeatedly.

  17. SYNTHESIS OF POLYMER-STABILIZED PLATINUM/RUTHENIUM BIMETALLIC COLLOIDS AND THEIR CATALYTIC PROPERTIES FOR SELECTIVE HYDROGENATION OF CROTONALDEHYDE

    Institute of Scientific and Technical Information of China (English)

    Wei-xia Tu; Han-fan Liu

    2005-01-01

    Polymer-stabilized platinum/ruthenium bimetallic colloids (Pt/Ru) were synthesized by polyol reduction with microwave irradiation and characterized by TEM and XPS. The colloidal nanoparticles have small and narrow size distributions. Catalytic performance of the Pt/Ru colloidal catalysts was investigated on the selective hydrogenation of crontonaldehyde (CRAL). A suitable amount of the added metal ions and base can improve the selectivity of CRAL to crotylalcohol (CROL) remarkably. The catalytic activity and the selectivity are dependent on the compositions of bimetallic colloids. Thereinto, PVP-stabilized 9Pt/1Ru colloid with a molar ratio of metals Pt:Ru = 9:1 shows the highest catalytic selectivity 77.3% to CROL at 333 K under 4.0 MPa of hydrogen.

  18. Simple cerium-triethanolamine complex: Synthesis, characterization, thermal decomposition and its application to prepare ceria support for platinum catalysts used in methane steam reforming

    Science.gov (United States)

    Wattanathana, Worawat; Nootsuwan, Nollapan; Veranitisagul, Chatchai; Koonsaeng, Nattamon; Laosiripojana, Navadol; Laobuthee, Apirat

    2015-06-01

    Cerium-triethanolamine complex was synthesized by simple complexation method in 1-propanol solvent using cerium(III) chloride as a metal source and triethanolamine as a ligand. The structures of the prepared complex were proposed based on FT-IR, FT-Raman and ESI-MS results as equimolar of triethanolamine and cerium chelated complex having monomeric tricyclic structure with and without chloride anion as another coordinating group known as ceratrane. The complex was used as a precursor for ceria material done by thermal decomposition. XRD result revealed that when calcined at 600 °C for 2 h, the cerium complex was totally turned into pure ceria with cubic fluorite structure. The obtained ceria was then employed to synthesize platinum doped ceria catalysts for methane steam reforming. Various amounts of platinum i.e. 1, 3, 5 and 10 mol percents were introduced on the ceria support by microwave-assisted wetness impregnation using ammonium tetrachloroplatinate(II). The platinum-impregnated ceria powders were subjected to calcination in 10% hydrogen/helium atmosphere at 500 °C for 3 h to reduce platinum(II) to platinum(0). XRD patterns of the catalysts confirmed that the platinum particles doped on the ceria support were in the form of platinum(0). Catalytic activity test showed that the catalytic activities got higher as the amounts of platinum doped increased. Besides, the portions of coke formation on the surface of catalysts were reduced as the amounts of platinum doped increased.

  19. Characterization of electrochemically modified polycrystalline platinum surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Krebs, L.C.; Ishida, Takanobu.

    1991-12-01

    The characterization of electrochemically modified polycrystalline platinum surfaces has been accomplished through the use of four major electrochemical techniques. These were chronoamperometry, chronopotentiommetry, cyclic voltammetry, and linear sweep voltammetry. A systematic study on the under-potential deposition of several transition metals has been performed. The most interesting of these were: Ag, Cu, Cd, and Pb. It was determined, by subjecting the platinum electrode surface to a single potential scan between {minus}0.24 and +1.25 V{sub SCE} while stirring the solution, that the electrocatalytic activity would be regenerated. As a consequence of this study, a much simpler method for producing ultra high purity water from acidic permanganate has been developed. This method results in water that surpasses the water produced by pyrocatalytic distillation. It has also been seen that the wettability of polycrystalline platinum surfaces is greatly dependent on the quantity of oxide present. Oxide-free platinum is hydrophobic and gives a contact angle in the range of 55 to 62 degrees. We have also modified polycrystalline platinum surface with the electrically conducting polymer poly-{rho}-phenylene. This polymer is very stable in dilute sulfuric acid solutions, even under applied oxidative potentials. It is also highly resistant to electrochemical hydrogenation. The wettability of the polymer modified platinum surface is severely dependent on the choice of supporting electrolyte chosen for the electrochemical polymerization. Tetraethylammonium tetrafluoroborate produces a film that is as hydrophobic as Teflon, whereas tetraethylammonium perchlorate produces a film that is more hydrophilic than oxide-free platinum.

  20. Hydrothermal synthesis of nanostructured graphene/polyaniline composites as high-capacitance electrode materials for supercapacitors

    Science.gov (United States)

    Wang, Ronghua; Han, Meng; Zhao, Qiannan; Ren, Zonglin; Guo, Xiaolong; Xu, Chaohe; Hu, Ning; Lu, Li

    2017-03-01

    As known to all, hydrothermal synthesis is a powerful technique for preparing inorganic and organic materials or composites with different architectures. In this reports, by controlling hydrothermal conditions, nanostructured polyaniline (PANi) in different morphologies were composited with graphene sheets (GNS) and used as electrode materials of supercapacitors. Specifically, ultrathin PANi layers with total thickness of 10-20 nm are uniformly composited with GNS by a two-step hydrothermal-assistant chemical oxidation polymerization process; while PANi nanofibers with diameter of 50~100 nm are obtained by a one-step direct hydrothermal process. Benefitting from the ultrathin layer and porous structure, the sheet-like GNS/PANi composites can deliver specific capacitances of 532.3 to 304.9 F/g at scan rates of 2 to 50 mV/s. And also, this active material showed very good stability with capacitance retention as high as ~99.6% at scan rate of 50 mV/s, indicating a great potential for using in supercapacitors. Furthermore, the effects of hydrothermal temperatures on the electrochemical performances were systematically studied and discussed.

  1. Hydrothermal synthesis of nanostructured graphene/polyaniline composites as high-capacitance electrode materials for supercapacitors

    Science.gov (United States)

    Wang, Ronghua; Han, Meng; Zhao, Qiannan; Ren, Zonglin; Guo, Xiaolong; Xu, Chaohe; Hu, Ning; Lu, Li

    2017-01-01

    As known to all, hydrothermal synthesis is a powerful technique for preparing inorganic and organic materials or composites with different architectures. In this reports, by controlling hydrothermal conditions, nanostructured polyaniline (PANi) in different morphologies were composited with graphene sheets (GNS) and used as electrode materials of supercapacitors. Specifically, ultrathin PANi layers with total thickness of 10–20 nm are uniformly composited with GNS by a two-step hydrothermal-assistant chemical oxidation polymerization process; while PANi nanofibers with diameter of 50~100 nm are obtained by a one-step direct hydrothermal process. Benefitting from the ultrathin layer and porous structure, the sheet-like GNS/PANi composites can deliver specific capacitances of 532.3 to 304.9 F/g at scan rates of 2 to 50 mV/s. And also, this active material showed very good stability with capacitance retention as high as ~99.6% at scan rate of 50 mV/s, indicating a great potential for using in supercapacitors. Furthermore, the effects of hydrothermal temperatures on the electrochemical performances were systematically studied and discussed. PMID:28291246

  2. Organic-Stabilizer-Free Polyol Synthesis of Silver Nanowires for Electrode Applications.

    Science.gov (United States)

    Sim, Hwansu; Bok, Shingyu; Kim, Bongsung; Kim, Minha; Lim, Guh-Hwan; Cho, Sung Min; Lim, Byungkwon

    2016-09-19

    The polyol reduction of a Ag precursor in the presence of an organic stabilizer, such as poly(vinylpyrrolidone), is a widely used method for the production of Ag nanowires (NWs). However, organic capping molecules introduce insulating layers around each NW. Herein we demonstrate that Ag NWs can be produced in high yield without any organic stabilizers simply by introducing trace amounts of NaCl and Fe(NO3 )3 during low-temperature polyol synthesis. The heterogeneous nucleation and growth of Ag NWs on initially formed AgCl particles, combined with oxidative etching of unwanted Ag nanoparticles, resulted in the selective formation of long NWs with an average length of about 40 μm in the absence of a capping or stabilizing effect provided by surface-adsorbing molecules. These organic-stabilizer-free Ag NWs were directly used for the fabrication of high-performance transparent or stretchable electrodes without a complicated process for the removal of capping molecules from the NW surface.

  3. Platinum-Free Counter Electrode Comprised of Metal-Organic-Framework (MOF)-Derived Cobalt Sulfide Nanoparticles for Efficient Dye-Sensitized Solar Cells (DSSCs)

    Science.gov (United States)

    Hsu, Shao-Hui; Li, Chun-Ting; Chien, Heng-Ta; Salunkhe, Rahul R.; Suzuki, Norihiro; Yamauchi, Yusuke; Ho, Kuo-Chuan; Wu, Kevin C.-W.

    2014-11-01

    We fabricated a highly efficient (with a solar-to-electricity conversion efficiency (η) of 8.1%) Pt-free dye-sensitized solar cell (DSSC). The counter electrode was made of cobalt sulfide (CoS) nanoparticles synthesized via surfactant-assisted preparation of a metal organic framework, ZIF-67, with controllable particle sizes (50 to 320 nm) and subsequent oxidation and sulfide conversion. In contrast to conventional Pt counter electrodes, the synthesized CoS nanoparticles exhibited higher external surface areas and roughness factors, as evidenced by X-ray diffraction (XRD), scanning electron microscopy (SEM) element mapping, and electrochemical analysis. Incident photon-to-current conversion efficiency (IPCE) results showed an increase in the open circuit voltage (VOC) and a decrease in the short-circuit photocurrent density (Jsc) for CoS-based DSSCs compared to Pt-based DSSCs, resulting in a similar power conversion efficiency. The CoS-based DSSC fabricated in the study show great potential for economically friendly production of Pt-free DSSCs.

  4. Synthesis and Stability of a Nanoparticle-Infiltrated Solid OxideFuel Cell Electrode

    Energy Technology Data Exchange (ETDEWEB)

    Sholklapper, Tal Z.; Radmilovic, Velimir; Jacobson, Craig P.; Visco, Steven J.; De Jonghe, Lutgard C.

    2006-11-20

    Nanoparticulate catalysts infiltrated into SOFC (Solid OxideFUel Cell) electrodes can significantly enhance the cell performance, butthe stability of these electrodes has been an open issue. An infiltrationprocedure is reported that leads to a stable scandia-stablized zirconia(SSZ) cathode electrode performance.

  5. Gadolinium texaphyrin (Gd-Tex)-malonato-platinum conjugates: synthesis and comparison with carboplatin in normal and Pt-resistant cell lines.

    Science.gov (United States)

    Arambula, Jonathan F; Sessler, Jonathan L; Fountain, Mark E; Wei, Wen-hao; Magda, Darren; Siddik, Zahid H

    2009-12-28

    The synthesis of a new PEG-solubilized gadolinium texaphyrin (Gd-Tex) conjugate containing a malonate-Pt(NH(3))(2) moiety is described. The effect of the tumor localizing Gd-Tex macrocycle on platinum activity was evaluated in cell culture. The malonate moiety, analogous to that present in carboplatin, is expected to release an aquated Pt(NH(3))(2) species under physiological conditions. The half-life in phosphate-buffered saline was found to be ca. 3 days at room temperature, and the hydrolytic product released from the conjugate was collected and confirmed as Pt-based by flameless atomic absorption spectrophotometry. Anti-proliferative activity was tested using A549 human lung cancer and A2780 human ovarian cancer cell lines. In both cell lines, the activity of the Gd-Tex conjugate was found to be similar to that of carboplatin. Efficacy against a Pt-resistant ovarian cell line greater than that displayed by carboplatin was also observed.

  6. Synthesis, Characterization and in Vitro Antitumor Activity of Platinum(II Oxalato Complexes Involving 7-Azaindole Derivatives as Coligands

    Directory of Open Access Journals (Sweden)

    Pavel Štarha

    2014-07-01

    Full Text Available The platinum(II oxalato complexes [Pt(ox(naza2] (1–3 were synthesized and characterized by elemental analysis (C, H, N, multinuclear NMR spectroscopy (1H, 13C, 15N, 195Pt and electrospray ionization mass spectrometry (ESI-MS; naza = 4-chloro-7-azaindole (4Claza; 1, 3-bromo-7-azaindole (3Braza; 2 or 4-bromo-7-azaindole (4Braza; 3. The prepared substances were screened for their in vitro antitumor activity on the osteosarcoma (HOS and breast adenocarcinoma (MCF7 human cancer cell lines, where 2 showed moderate antitumor effect (IC50 = 27.5 μM, and 18.3 μM, respectively. The complex 2 was further tested on a panel of six others human cancer cell lines, including the malignant melanoma (G361, cervix carcinoma (HeLa, ovarian carcinoma (A2780, cisplatin-resistant ovarian carcinoma (A2780R, lung carcinoma (A549 and prostate adenocarcinoma (LNCaP. This substance was found to be moderate antitumor effective against G361 (IC50 = 17.3 μM, HeLa (IC50 = 31.8 μM and A2780 (IC50 = 19.2 μM cell lines. The complex 2 was also studied by NMR for its solution stability and by ESI-MS experiments for its ability to interact with biomolecules, such as cysteine, glutathione or guanosine 5'-monophosphate.

  7. Novel Nanocomposite of Chitosan-protected Platinum Nanoparticles Immobilized on Nickel Hydroxide: Facile Synthesis and Application as Glucose Electrochemical Sensor

    Indian Academy of Sciences (India)

    DEJIANG RAO; QINGLIN SHENG; JIANBIN ZHENG

    2016-09-01

    Novel nanocomposite of nickel hydroxide/chitosan/platinum was successfully synthesised with chitosan (CS) as a dispersing and protecting agent. Its potential application in non-enzymatic electrochemical glucose sensor was studied. Scanning electron microscopy (SEM), transmission electron microscopy (TEM)and energy-dispersive X-ray spectroscopy (EDX) were used to characterize the composition and morphology of this nanocomposite. The electrochemical investigations of this glucose sensor exhibited remarkable analyticalperformances towards the oxidation of glucose. In particular, glucose can be selectively and sensitively detected in a wide linear range from 3.0×10⁻⁶ to 1.1×10⁻² mol·L⁻¹with a detection limit of 0.56±0.03 μmol·L⁻¹ at a signal-tonoise ratio of 3 (S/N = 3). Furthermore, the Ni(OH)₂/CS/Pt nanocomposite-modified GCE also showed an acceptable anti-interference ability and stability. Importantly, the Ni(OH)₂/CS/Pt based sensor can be used to detect trace amount of glucose in serum samples. The results demonstrated that the Ni(OH)₂/CS/Pt nanocomposite can be potentially useful to construct a new glucose sensing platform.

  8. Synthesis, characterization and multi-spectroscopic DNA interaction studies of a new platinum complex containing the drug metformin

    Science.gov (United States)

    Shahabadi, Nahid; Heidari, Leila

    2014-07-01

    A new platinum(II) complex; [Pt(Met)(DMSO)Cl]Cl in which Met = metformin and DMSO: dimethylsulfoxide, was synthesized and characterized by 1H NMR, IR, UV-Vis spectra, molar conductivity and computational methods. Binding interaction of this complex with calf thymus (CT) DNA has been investigated by using absorption, emission, circular dichroism, viscosity measurements, differential pulse voltammetry and cleavage studies by agarose gel electrophoresis. UV-Vis absorption studies showed hyperchromism. CD studies showed less perturbation on the base stacking and helicity bands in the CD spectrum of CT-DNA (B → C structural transition). In fluorimeteric studies, the Pt(II) complex can bind with DNA-NR complex and forms a new non-fluorescence adduct. The anodic peak current in the differential pulse voltammogram of the Pt(II) complex decreased gradually with the addition of DNA. Cleavage experiments showed that the Pt(II) complex does not induce any cleavage under the experimental setup. Finally all results indicated that Pt(II) complex interact with DNA via groove binding mode.

  9. Unprecedented 1D Mixed-metal Polynuclear Cyclometalated Platinum Complexes: Synthesis,Structural Characterization and Spectroscopic Properties

    Institute of Scientific and Technical Information of China (English)

    CAO Qian-Yong; GAN Xin; ZHANG Jun-Feng; CHI Shao-Ming; LI Hui-Fangjie; FU Wen-Fu

    2007-01-01

    The complexes [Pt2L2(μ-dppm)](ClO4)2.(1) and {[Pt2L2(μ-dppm)Li(CH3CN)2](ClO4)3}n (2),where HL is 6-[4-(diethoxyphosphorylmethyl)phenyl]-2,2'-bipyridinyl and dppm is bis(diphenylphosphino)methane,have been synthesized and characterized.In complex 1 the platinum(Ⅱ) center adopts a distorted square planar coordination geometry.The polymer 2 exhibits a "stairstep" configuration with one-dimensional Pt(Ⅱ)N^N^CPO- Li(Ⅰ)-OPC^N^NPt(Ⅱ) mixed-metal units which are linked through dppm.Both complexes have metal-metal interaction with PtPt distances of 3.325(2) and 3.1432(9) (A),respectively,and display strong metal-metal-to-ligand charge-transfer (MMLCT) triplet state emission.The density-functional-theory calculation was used to interpret the absorption spectra of the complexes.

  10. Synthesis, characterization and multi-spectroscopic DNA interaction studies of a new platinum complex containing the drug metformin.

    Science.gov (United States)

    Shahabadi, Nahid; Heidari, Leila

    2014-07-15

    A new platinum(II) complex; [Pt(Met)(DMSO)Cl]Cl in which Met = metformin and DMSO: dimethylsulfoxide, was synthesized and characterized by (1)H NMR, IR, UV-Vis spectra, molar conductivity and computational methods. Binding interaction of this complex with calf thymus (CT) DNA has been investigated by using absorption, emission, circular dichroism, viscosity measurements, differential pulse voltammetry and cleavage studies by agarose gel electrophoresis. UV-Vis absorption studies showed hyperchromism. CD studies showed less perturbation on the base stacking and helicity bands in the CD spectrum of CT-DNA (B→C structural transition). In fluorimeteric studies, the Pt(II) complex can bind with DNA-NR complex and forms a new non-fluorescence adduct. The anodic peak current in the differential pulse voltammogram of the Pt(II) complex decreased gradually with the addition of DNA. Cleavage experiments showed that the Pt(II) complex does not induce any cleavage under the experimental setup. Finally all results indicated that Pt(II) complex interact with DNA via groove binding mode.

  11. High aspect ratio, nanostructured, platinum based electrodes for proton exchange membrane fuel cells: Design, development and ionic conduction of the proposed structures

    Science.gov (United States)

    Paschos, Odysseas

    High aspect ratio nanostructures can provide substantial benefits when used as fuel cell electrodes since they can alleviate problems associated with conventional carbon supports. In this work the potential of incorporating high aspect ratio nanostructures as electrodes for fuel cells was studied. Moreover, a model was created that demonstrated the potential for the nanostructures to yield high performance. The creation of Pt nanorods using anodic aluminum oxide templates was investigated and experiments showed complete utilization of the electrodes surface area. However, the Pt nanorod structure was found to not be effective in terms of Pt mass utilization, since only the outer surface of the rod is utilized for catalytic activity. An alternate method was developed to coat (with Pt) high aspect ratio structures made from a cost-effective support material. Thus far, methods used to conformally coat Pt either cannot be used directly on several materials or tend not to be cost-effective. A non-vacuum method based on an Aerosol Assisted Deposition (AAD) technique was developed and optimized. Initial experiments showed feasibility of the technique to coat a large variety of substrates. Dimensions of the particles were controlled by the deposition parameters and ranged from 4 nm up to several hundreds of nm in diameter. Experiments where Pt nanoparticles were deposited on gas diffusion layer substrates, showed higher electrochemical performance compared to commercial catalyst. The need for electrolyte coating on the high aspect ratio structures was also investigated. Initial experiments were performed by splitting an MEA in half and using an intermediate Pt film. These experiments showed that ionic conduction on Pt surface is possible. Moreover these studies indicated that ionic conduction on Pt could result from hydrophilic groups that can exist on its surface. Since these groups can either be physisorbed due to presence of water or chemisorbed on the oxidized Pt

  12. Electrochemical Synthesis of Dendritic Polyaniline in BrФnsted Acid Ionic Liquids

    Institute of Scientific and Technical Information of China (English)

    刘宝友; 许丹倩; 徐振元

    2005-01-01

    BrФnsted acid ionic liquids were successfully applied to the electrochemical synthesis of polyaniline films on platinum electrode surfaces by using cyclic voltammetry. The scanning electron micrographs showed distinct changes in morphological structures. The films exhibited quite dense packing and good ordering of polymer dendrite as compared with those prepared using conventional hydrochloric acid, indicating that Bronsting acid ionic liquids might be promising alternatives to dual medium-dopants in the synthesis of conducting polymers.

  13. Quinoxaline-2-carboxamide as a carrier ligand in two new platinum(ii) compounds: Synthesis, crystal structure, cytotoxic activity and DNA interaction

    NARCIS (Netherlands)

    Marques Gallego, P.; Amparo Gamiz-Gonzalez, M.; Fortea-Pérez, F. R.; Lutz, M.; Spek, A.L.; Pevec, A.; Kozlevar, B.; Reedijk, J.

    2010-01-01

    The search for platinum compounds structurally different from cisplatin has led to two new platinum(II) compounds containing quinoxaline-2-carboxamide as a carrier ligand, i.e. cis-[Pt(qnxca)(MeCN)Cl2] (1) and the [Pt(qnxca−H)(dmso)Cl] (2). Both compounds have been synthesized and characterized usin

  14. NETWORK CROWN ETHER POLYMERS WITH CENTRIC FUNCTIONAL GROUP (Ⅳ) SYNTHESIS OF NETWORK CROWN ETHER POLYMER WITH PENDANT DIETHYLAMINO THIAALKYL GROUP AND ITS PLATINUM COMPLEX

    Institute of Scientific and Technical Information of China (English)

    CHEN Yuanyin; MENG Lingzhi; YIN Yihua; GENG Chengai

    1994-01-01

    The title polymer was prepared from 5-diethylamino-3-thia-pentyl glycidyl ether and diethylene glycol bisglycidyl ether via ring-opening copolymerization. It was found that this reaction could be catalyzed by sodium, but not Lewis acid. The obtained polymer can coordinate with platinum compound, and the platinum complex is a new kind of catalyst for the hydrosilylation of olefins with triethoxysilane.

  15. Synthesis and biological evaluation of novel platinum complexes of imidazolyl-containing bisphosphonates as potential anticancer agents.

    Science.gov (United States)

    Qiu, Ling; Lv, Gaochao; Cao, Yang; Chen, Liping; Yang, Hui; Luo, Shineng; Zou, Meifen; Lin, Jianguo

    2015-12-01

    Four novel platinum complexes, [Pt(en)]2ZL (1), [Pt(en)]2IPrBP (2), [Pt(en)]2MIBP (3) and [Pt(en)]2EIBP (4) [en = ethylenediamine; ZL = 1-hydroxy-3-(1H-imidazol-1-yl)ethane-1,1-diylbisphosphonic acid, commonly known as zoledronic acid; IPrBP = 1-hydroxy-3-(1H-imidazol-1-yl)propane-1,1-diylbisphosphonic acid; MIBP = 1-hydroxy-2-(2-methyl-1H-imidazol-1-yl)ethane-1,1-diylbisphosphonic acid; EIBP = 1-hydroxy-2-(2-ethyl-1H-imidazol-1-yl)ethane-1,1-diylbisphosphonic acid], were prepared and evaluated against five human cancer cell lines, including U2OS, A549, HCT116, MDA-MB-231 and HepG2. While exhibiting lower efficacy on the inhibition of cancer cell lines than cisplatin (CDDP), four complexes showed higher cytotoxicity than the corresponding ligands and relatively stronger cytotoxic effect on the hepatoma cell lines HepG2, and the complex 1 showed higher cytotoxicity than others on the whole. These complexes have better selectivity than the corresponding ligands in inhibiting hepatocarcinoma cells rather than normal liver cells, and the selective inhibitory effect of the complex 1 at the high concentration (100 μM) is better than that at the low concentration. Morphology studies exhibited typical characteristics of cell apoptosis and the cell cycle distribution analysis indicated that the complexes can inhibit cancer cells by inducing the cell cycle arrest at the G2/M phase, exhibiting a similar mechanism of action to CDDP. The binding interaction of complex with DNA has been explored by circular dichroism (CD) and UV-Vis absorption spectra, demonstrating these new complexes have moderate binding affinity for DNA.

  16. New binary and ternary platinum(II) formamidine complexes: Synthesis, characterization, structural studies and in-vitro antitumor activity

    Science.gov (United States)

    Soliman, Ahmed A.; Alajrawy, Othman I.; Attaby, Fawzy A.; Linert, W.

    2016-07-01

    A series of new binary and ternary platinum(II) complexes of the type [Pt(L1-4)Cl2].xH2O and [Pt(L1-4)ox].xH2O where L = formamidine ligands and ox = oxalate, have been synthesized and characterized by elemental analyses, magnetic susceptibility, UV-vis, infrared (IR), mass spectroscopy, thermal analysis and theoretical calculations. The spectroscopic data indicated that the formamidine ligands act as bidentate N2 donors. The complexes (1-8) are diamagnetic and the optimization of their structures indicated that the geometry is distorted square planar with Cl-Pt-Cl, O-Pt-O and N-Pt-N bond angles ranged 81.73°-95.82° which is acceptable for the heteroleptic complexes. The electronic energies (a.u.) of the complexes (-893.53 to -1989.84) indicate that the complexes are more stable than the ligands. The energies of the HOMO (-0.218 to -0.244) and LUMO (-.0111to -0.134) orbitals of the complexes were negative which indicates that the complexes are stable compounds. The dipole moment of the complexes (6.23-19.89 Debye) indicates that the complexes are polarized. The complexes are thermally stable as shown from their relatively higher overall activation energies (889-2066 kJ mol-1). The complexes are proved to have a good cytotoxicity with IC50 (μM) against MCF-7 (0.040-0.117), HCT-116 (0.085-0.119) and HepG-2 (0.058-0.131) cell lines, which open the field for further application as antitumor compounds.

  17. Electrochemical deposition of molybdenum sulfide thin films on conductive plastic substrates as platinum-free flexible counter electrodes for dye-sensitized solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Chao-Kuang; Hsieh, Chien-Kuo, E-mail: jack_hsieh@mail.mcut.edu.tw

    2015-06-01

    In this study, pulsed electrochemical deposition (pulsed ECD) was used to deposit molybdenum sulfide (MoS{sub x}) thin films on indium tin oxide/polyethylene naphthalate (ITO/PEN) substrates as flexible counter electrodes (CEs) for dye-sensitized solar cells (DSSCs). The surface morphologies and elemental distributions of the prepared MoS{sub x} thin films were examined using field-emission scanning electron microscope (FE-SEM) equipped with energy-dispersive X-ray spectroscopy. The chemical states and crystallinities of the prepared MoS{sub x} thin films were examined by X-ray photoelectron spectroscopy and X-ray diffraction, respectively. The optical transmission (T (%)) properties of the prepared MoS{sub x} samples were determined by ultraviolet–visible spectrophotometry. Cyclic voltammetry (CV) and Tafel-polarization measurements were performed to analyze the electrochemical properties and catalytic activities of the thin films for redox reactions. The FE-SEM results showed that the MoS{sub x} thin films were deposited uniformly on the ITO/PEN flexible substrates via the pulsed ECD method. The CV and Tafel-polarization curve measurements demonstrated that the deposited MoS{sub x} thin films exhibited excellent performances for the reduction of triiodide ions. The photoelectric conversion efficiency (PCE) of the DSSC produced with the pulsed ECD MoS{sub x} thin-film CE was examined by a solar simulator. In combination with a dye-sensitized TiO{sub 2} working electrode and an iodine-based electrolyte, the DSSC with the MoS{sub x} flexible CE showed a PCE of 4.39% under an illumination of AM 1.5 (100 mW cm{sup −2}). Thus, we report that the MoS{sub x} thin films are active catalysts for triiodide reduction. The MoS{sub x} thin films are prepared at room temperature and atmospheric pressure and in a simple and rapid manner. This is an important practical contribution to the production of flexible low-cost thin-film CEs based on plastic substrates. The MoS{sub x

  18. Synthesis and Defect Structure Analysis of Complex Oxides for Li-Ion Battery Electrodes

    Science.gov (United States)

    Hao, Xiaoguang

    Lithium-ion batteries have attracted increased attention for energy storage development due to the vast demand from portable electronics, (hybrid) electric vehicles and future power grids. The research in this dissertation is focused on the development of oxide electrodes for lithium-ion batteries with high power density and improved stability. One of the promising cathodes for lithium-ion batteries is lithium manganospinel (LiMn2O4). However, this compound suffers from manganese dissolution and a Jahn-Teller distortion due to Mn3+, especially in oxygen deficient LiMn2O4-delta. Hydrothermal based synthesis methods were developed to eliminate oxygen vacancies to enable high power in cathodes composed of nano-sized spinel particles. The relationship between oxygen defects and the capacity fading mechanism was demonstrated, and collapse of the mechanical structure was identified in defect-rich LiMn 2O4-delta. Next, the nickel substituted manganospinel, LiNi0.5Mn 1.5O4 shows unexpected high voltage side reactions. To overcome this drawback, a thin and chemically inert titanate was used as an artificial SEI (solid electrolyte interface) coating to prohibit transition-metal dissolution and parasitic side reactions, which led to a 200% improvement of the capacity retention at 55°C and negligible polarization losses. Finally, the spinel-structured lithium titanate (Li 4Ti5O12) is introduced as an anode material for lithium-ion batteries due to its higher operating potential and excellent structural stability compared to current graphite anodes. However, the poor electronic conductivity and low lithium diffusion coefficient hinder its wide application. Given these advantages, a facile, low-cost solution method is explored to synthesize nano-sized titanates. Rapid charge/ discharge was achieved up to rates of 100 C (36 second charge/ discharge) due to a shorter lithium mean-free path and better contact between the active material and conductive agents.

  19. Synthesis of NiMnO3/C nano-composite electrode materials for electrochemical capacitors.

    Science.gov (United States)

    Kakvand, Pejman; Rahmanifar, Mohammad Safi; El-Kady, Maher F; Pendashteh, Afshin; Kiani, Mohammad Ali; Hashami, Masumeh; Najafi, Mohsen; Abbasi, Ali; Mousavi, Mir F; Kaner, Richard B

    2016-08-05

    Demand for high-performance energy storage materials has motivated research activities to develop nano-engineered composites that benefit from both high-rate and high-capacitance materials. Herein, NiMnO3 (NMO) nanoparticles have been synthesized through a facile co-precipitation method. As-prepared NMO samples are then employed for the synthesis of nano-composites with graphite (Gr) and reduced graphene oxide (RGO). Various samples, including pure NMO, NMO-graphite blend, as well as NMO/Gr and NMO/RGO nano-composites have been electrochemically investigated as active materials in supercapacitors. The NMO/RGO sample exhibited a high specific capacitance of 285 F g(-1) at a current density of 1 A g(-1), much higher than the other samples (237 F g(-1) for NMO/Gr, 170 F g(-1) for NMO-Gr and 70 F g(-1) for NMO). Moreover, the NMO/RGO nano-composite has shown excellent cycle stability with a 93.5% capacitance retention over 1000 cycles at 2 A g(-1) and still delivered around 87% of its initial capacitance after cycling for 4000 cycles. An NMO/RGO composite was assessed in practical applications by assembling NMO/RGO//NMO/RGO symmetric devices, exhibiting high specific energy (27.3 Wh kg(-1)), high specific power (7.5 kW kg(-1)), and good cycle stability over a broad working voltage of 1.5 V. All the obtained results demonstrate the promise of NMO/RGO nano-composite as a high-performance electrode material for supercapacitors.

  20. Application of morphological synthesis for understanding electrode microstructure evolution as a function of applied charge/discharge cycles

    Science.gov (United States)

    Glazoff, Michael V.; Dufek, Eric J.; Shalashnikov, Egor V.

    2016-10-01

    Morphological synthesis operations were employed for understanding electrode microstructure transformations and evolution accompanying the application of charge/discharge cycles to electrochemical storage systems (batteries). Using state-of-the-art morphological algorithms, it was possible to predict microstructure evolution in porous Si electrodes for Li-ion batteries with reasonable accuracy. The developed techniques could be considered supplementary to a phase-field mesoscopic approach to microstructure evolution that is based upon clear and definitive changes in the appearance of microstructure. However, unlike in phase field, the governing equations for the morphological approach are geometry, not physics, based. A similar non-physics-based approach to understanding different phenomena was attempted with the introduction of cellular automata. It is anticipated that morphological synthesis will represent a useful supplementary tool to phase field and will render assistance to unraveling the underlying microstructure-property relationships. The paper contains data on electrochemical characterization of different electrode materials that was conducted in parallel to the morphological study.

  1. The Adsorption and Oxidation of Isopropanol at Platinum Electrode in Alkaline Media%碱性介质中异丙醇在铂电极表面的吸附和电化学氧化

    Institute of Scientific and Technical Information of China (English)

    林珩; 陈国良; 郑子山; 周建章; 陈声培; 林仲华

    2005-01-01

    运用电化学循环伏安、原位FTIR反射光谱和石英晶体微天平(EQCM)等方法研究了碱性介质中异丙醇在Pt电极表面吸附和氧化行为.结果表明:碱性介质中异丙醇电氧化过程不存在自毒化现象.虽然电化学原位FTIR反射光谱未能检测到CO等毒性物种,但EQCM结果证明异丙醇或其解离产物吸附于铂电极上.在实验条件下,碱性介质中异丙醇在铂电极上氧化的最终产物只有丙酮,预示着碱性介质中异丙醇通过脱氢步骤氧化成丙酮.EQCM研究还从电极表面质量定量变化的角度提供了异丙醇吸附和电氧化反应机理的新数据.%The adsorption and oxidation of isopropanol in alkaline media at platinum electrode have been investigated by using electrochemical quartz crystal microbalance (EQCM) and in situ FTIR spectroscopy. The results show thatthere is no self-poisoning in the electrooxidation of isopropanol in alkaline media. Though no poison species, such as CO, are evidenced by in situ FTIR spectroscopy, the adsorption of isopropanol or its dissociative products on Pt surface is suggested by EQCM data. The final product of isopropanol oxidation is only acetone under experimental condition, which suggests that the oxidation of isopropanol into acetone takes place via dehydrogenation step. The EQCM studies provide quantitative results of surface mass variation and have thrown new light in the elucidating isopropanol oxidation.

  2. The role of chloride ions in rapid synthesis of ultra-long silver nanowires for flexible electrodes

    Science.gov (United States)

    Wang, Shang; Tian, Yanhong; Ding, Su; Wang, Chunqing

    2016-07-01

    Ultra-long silver nanowires (AgNWs) could be an ideal material to replace the commercial used indium tin oxide in highly conductive and transparent electrodes field. In this report, AgNWs with mean length of 102 μm and even 268 μm have been synthesized through a rapid and one-step polyol method within only 40 min. The effective synthesis was contributed to the relatively high concentration of Cl- which facilitated the generation of silver five-twined seeds by heterogeneous nucleation during the nucleation process. By varying the ratio of Cl-, AgNWs with various diameters ranging from 60 to 141 nm could be obtained. Moreover, AgNWs based electrodes were prepared on paper and polyethylene terephthalate (PET) substrates and the sheet resistance of the PET based transparent electrode were measured to be 14 Ω sq-1 at optical transmittance of 87%. The mechanical properties of the ultra-long AgNWs based electrodes were also characterized.

  3. The influence of the synthesis method of Ti/RuO{sub 2} electrodes on their stability and catalytic activity for electrochemical oxidation of the pesticide carbaryl

    Energy Technology Data Exchange (ETDEWEB)

    Santos, T.É.S. [Laboratório de Eletroquímica e Nanotecnologia, Instituto de Tecnologia e Pesquisa (ITP)/Programa de Pós-Graduação em Engenharia de Processos, Universidade Tiradentes, 49032–490 Aracaju, SE (Brazil); Silva, R.S. [Laboratório de Materiais Cerâmicos Avançados, Departamento de Física, Universidade Federal de Sergipe, 49.100-000 São Cristóvão, SE (Brazil); Carlesi Jara, C. [Escuela de Ingeniería Química, Pontificia Universidad Católica de Valparaíso, Av. Brasil No 2147, 2362804 Valparaíso (Chile); Eguiluz, K.I.B. [Laboratório de Eletroquímica e Nanotecnologia, Instituto de Tecnologia e Pesquisa (ITP)/Programa de Pós-Graduação em Engenharia de Processos, Universidade Tiradentes, 49032–490 Aracaju, SE (Brazil); Salazar-Banda, G.R., E-mail: gianrsb@gmail.com [Laboratório de Eletroquímica e Nanotecnologia, Instituto de Tecnologia e Pesquisa (ITP)/Programa de Pós-Graduação em Engenharia de Processos, Universidade Tiradentes, 49032–490 Aracaju, SE (Brazil)

    2014-11-14

    In this study, we developed dimensionally stable anodes of titanium covered with ruthenium oxides (Ti/RuO{sub 2}) using sol–gel, Pechini and ionic liquid (IL) methodologies. The electrochemical efficiency of these electrodes was then evaluated regarding electrochemical degradation of the pesticide carbaryl. The UV–visible spectroscopy measurements showed that the electrodes obtained by the IL and Pechini methods were more effective at pesticide degradation compared with the sol–gel electrode, especially at high current density values. Carbaryl degradation after 2 h of electrolysis at 30 mA cm{sup −2} was 96.4% and 95.5% for the electrodes obtained by the IL and Pechini methods, respectively, while the degradation was 65.0% for the electrodes obtained by the sol–gel method. Additionally, the electrodes prepared by the IL and Pechini methods showed greater physical and electrochemical stability when compared to electrodes obtained by the sol–gel method. Electrodes prepared by the IL method with a few covering layers (three) achieved an elevated and constant area in a more efficient way than electrodes prepared by the Pechini and sol–gel methods. This fact can be attributed to the higher viscosity of the ionic liquid-based precursor solution, which transfers a higher amount of Ru in one single layer, compared to the other methods studied, thus reducing the time for synthesis, the number of calcination steps and the production costs of electrodes. - Highlights: • We developed dimensionally stable anodes containing ruthenium oxides. • Sol–gel, Pechini and ionic liquid methodologies were used. • The ionic liquid method covers the surfaces more efficiently and with few layers. • The proposed method reduces the time and production cost for synthesis of electrodes. • The electrodes synthesized present high stability and pesticide degradation activity.

  4. Efficient and high yield one-pot synthesis of cyclometalated platinum(II) β-diketonates at ambient temperature.

    Science.gov (United States)

    Hudson, Zachary M; Blight, Barry A; Wang, Suning

    2012-04-06

    Cyclometalated Pt(II) β-diketonates are widely used as efficient luminescent materials but are typically prepared at high temperatures in low yields using excess reagents. A one-pot synthesis of these complexes is described employing stoichiometric reagents and short reaction times at ambient temperature, giving yields of up to 94%. The method is applicable to a broad range of substrates including N^C, P^C, and C^C chelate Pt(II) complexes and different β-diketonate ligands.

  5. Optimization of a surfactant free polyol method for the synthesis of platinum-cobalt electrocatalysts using Taguchi design of experiments

    Energy Technology Data Exchange (ETDEWEB)

    Grolleau, C. [Laboratoire de Catalyse en Chimie Organique (LACCO), Universite de Poitiers, 40 av Recteur Pineau, F-86000 Poitiers (France); ST Microelectronics Tours, rue Pierre et Marie Curie, F-37100 Tours (France); Coutanceau, C.; Leger, J.-M. [Laboratoire de Catalyse en Chimie Organique (LACCO), Universite de Poitiers, 40 av Recteur Pineau, F-86000 Poitiers (France); Pierre, F. [ST Microelectronics Tours, rue Pierre et Marie Curie, F-37100 Tours (France)

    2010-03-15

    A design of experiments (derived from the Taguchi method) was implemented to optimize experimental conditions of a surfactant free polyol method for the synthesis of PtCo electrocatalysts. Considered responses were the active surface area and the catalytic activity toward oxygen reduction reaction. Metallic salt concentration, pH, temperature ramp, addition order of reactants and particle cleaning step were chosen as main parameters according to considerations coming from literature and previous experiments. Matrix models describing the behaviour of the synthesis system was elaborated taking into account the effects of each considered parameter and their interactions. From this model, an optimized PtCo/C catalyst, in terms of active surface area and activity towards the oxygen reduction reaction, was synthesized. Both the measured values of the active surface area and the electrocatalytic activity are in very good agreement with the calculated ones from the matrix model. Furthermore, actions of parameters and interactions between parameters can be better understood using this method. (author)

  6. Platinum-Catalyzed Selective Tin-Carbon Bond Formation

    NARCIS (Netherlands)

    Thoonen, Sander Hendrikus Lambertus

    2003-01-01

    In conclusion, two improved methods for the selective synthesis of monoorganotin trihalides were developed. The platinum-catalyzed Kocheshkov redistribution reaction of dialkyltin dichlorides with tin tetrachloride is the most interesting. Contrary to the other two methods described (the direct

  7. Synthesis and Investigation of Electrical Properties of Nanopowders Produced by Spark Erosion of Silver Electrodes in the Air

    Directory of Open Access Journals (Sweden)

    Alexey Efimov

    2016-12-01

    Full Text Available The synthesis parameters and results of investigation of electrical properties of nanopowders produced by a spark erosion of silver electrodes in the air are presented. The powders are composed mostly of metallic silver (52.9 wt. % and silver nitrate (46.5 wt. % particles with the size less than 50 nm as determined from the transmission electron microscopy images and their specific surface area is ranging from 4 to 11 m2/g. The powder production rate is estimated at 0.4 g/h. The corresponding particulate films demonstrated the ultimate resistivity of 3∙10–4 Ω∙cm at room temperature.

  8. Synthesis, characterization, and electrochemical investigation of novel electrode materials for lithium ion batteries

    Science.gov (United States)

    Kerr, Tracy Alexandra

    2002-08-01

    As the demand for better energy storage devices increases, finding new materials capable of improvement on existing technology becomes essential. Within this body of work, several new electrode materials of different structure type have been synthesized, characterized, and evaluated for their lithium insertion/deinsertion behavior in lithium ion batteries. Nanocomposites of novel alloy, and convertible oxide anode materials have been studied. Nanoparticles of Ge and Sn that are able to form lithium rich alloys have been synthesized, and their low potential lithium insertion behavior studied. In order to inhibit agglomeration of the tiny particles, a novel synthesis route was designed to attach ionically conducting polymers to their surfaces. Characterization by a combination of techniques (XRD, TEM, SEM and FTIR spectroscopy) verified the existence of nanoparticles embedded in a polymer matrix, albeit with some impurities. Electrochemical data show that even when the lithium insertion capacity within these materials is high, the process is extremely irreversible as lithium ions become trapped within the matrix, and only a very small anodic capacity is realized. The first convertible polymer/oxide nanocomposite (poly(para-phenylene)/MoO 3) to be evaluated as an anode material was synthesized using a novel surfactant mediated method. XRD data indicated a 5.2 A increase in the MoO3 layer spacing to 12.1 A after polymer incorporation. Low potential electrochemical insertion properties show that the polymer/oxide nanocomposite behaves in a similar manner to the host MoO3 material. A variety of cathode materials were also synthesized and evaluated for their high potential lithium insertion properties. A comparative study on the effect that synthetic procedure may have on the electrochemical properties of the poly(aniline)/MoO3 cathode material have been studied. Poly(aniline)/MoO 3 nanocomposites have been synthesized from a solution insertion route and via hydrothermal

  9. Synthesis of carbon nanotubes over 3D cubical Co-KIT-6 and nickel decorated graphene by Hummer's method, its application as counter electrode in dye sensitive solar cell

    Science.gov (United States)

    Subramanian, Sunu; Pandurangan, Arumugam

    2016-04-01

    The challenges on carbon nanotubes and graphene are still the subject of many research works due to its unique properties. There are three main methods to synthesis carbon nanotubes in which chemical vapor deposition (CVD) method can use for large scale production. The principle of CVD is the decomposition of various hydrocarbons over transition metal supported catalyst. KIT-6 molecular sieve was used as a support to prepare cobalt catalyst for CVD method using metal impregnation method to produce cobalt loadings of 2, 4 and 6 wt%. The catalysts were characterized by XRD, FTIR &TEM. Carbon nanotubes (CNTs) synthesized on Co-KIT-6 was also characterized by XRD, TGA, SEM & Raman spectra. Graphene was synthesized by Hummers method, which is the most common method for preparing graphene oxide. Graphene oxide was prepared by oxidation of graphite using some oxidizing agents like sulphuric acid, sodium nitrate and potassium permanganate. This graphene oxide is further treated with hydrazine solution to convert it into chemically converted graphene and also decorated with nickel metal and characterized. Hummer's method is important for large scale production of graphene. Both Graphene and carbon nanotubes are used in different fields due to its unique properties. Both Graphene and carbon nanotubes are fabricated in counter electrode of Dye sensitized solar cells (DSSC). By cyclic voltammetry study, it confirms that both materials are good and efficient to replace platinum in the DSSC.

  10. Oxygen reduction reaction catalyzed by platinum nanonetwork prepared by template free one step synthesis for polymer electrolyte membrane fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Narayanamoorthy, B. [Department of Chemistry, Faculty of Science, Sri Chandrasekharendra Saraswathi Viswa Mahavidyalaya (SCSVMV University), Enathur, Kanchipuram 631 561 (India); Kumar, B.V.V.S. Pavan; Eswaramoorthy, M. [Nanomaterials and Catalysis Lab, Chemistry and Physics of Materials Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Bangalore 560 064 (India); Balaji, S., E-mail: prof.balaji13@gmail.com [Department of Chemistry, Faculty of Science, Sri Chandrasekharendra Saraswathi Viswa Mahavidyalaya (SCSVMV University), Enathur, Kanchipuram 631 561 (India)

    2014-07-01

    Highlights: • Supportless Pt nanonetwork (Pt NN) synthesized by novel template free one step method as per our earlier reported procedure. • Electrocatalytic activity of Pt NN studied taking oxygen reduction reaction in acid medium. • Kinetic and thermodynamic parameters were deduced under hydrodynamic conditions. • ORR mechanistic pathway was proposed based on kinetic rate constants. • ADT analysis found enhanced stability (5000 cycles) for Pt NN than Pt NN/VC and reported Pt/C. - Abstract: The reduction reaction of molecular oxygen (ORR) was investigated using supportless Pt nanonetwork (Pt NN) electrocatalyst in sulfuric acid medium. Pt NN was prepared by template free borohydride reduction. The transmission electron microscope images revealed a network like nano-architecture having an average cluster size of 30 nm. The electrochemical characterization of supportless and Vulcan carbon supported Pt NN (Pt NN/VC) was carried out using rotating disc and ring disc electrodes at various temperatures. Kinetic and thermodynamic parameters were estimated under hydrodynamic conditions and compared with Pt NN/VC and reported Pt/C catalysts. The accelerated durability test revealed that supportless Pt NN is quite stable for 5000 potential cycles with 22% reduction in electrochemical surface area (ECSA). While the initial limiting current density has in fact increased by 11.6%, whereas Pt NN/VC suffered nearly 55% loss in ECSA and 13% loss in limiting current density confirming an enhanced stability of supportless Pt NN morphology for ORR compared to conventional Pt/C ORR catalysts in acid medium.

  11. Synthesis, characterization and study of the photoelectrochemical behaviour of a nanocrystalline electrode of TiO{sub 2}; Synthese, caracterisation et etude du comportement photo electrochimique d'une electrode nanocristalline de TiO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Abdi, D.J.; Lakhdari, D.; Chettah, H.; Amardjia, A. [Laboratoire d' Energietique et d' Electrochimie du Solide, Dept. de Genie des Procedes Facultes des Sciences de l' Ingenieur, U.F.A. Setif (Algeria); Haffar, H.; Abdi, D.J.; Amardjia, A.; Hemissi, M. [Universite Fehat Abbas de Setif, Lab. Dosage, Analyse et Caracterisation en Haute Resolution, Faculte des Sciences, Dept. de Physique, Setif (Algeria)

    2006-07-01

    This work deals with the synthesis of thin layers of TiO{sub 2} on glass substrates by a sol-gel process, the characterization of these layers by X-ray diffraction and the study of the effect of ultraviolet radiation (237 nm) on the electrochemical behaviour of these electrodes in different media. (O.M.)

  12. Synthesis and characterization of different metal oxide nanostructures by simple electrolysis based oxidation of metals.

    Science.gov (United States)

    Singh, Dinesh Pratap; Srivastava, Onkar Nath

    2009-09-01

    We report the Synthesis of different metal oxide (Cu2O, SnO2, Fe3O4 and PbO2) nanostructures by simple electrolysis based oxidation of metals (Cu, Sn, Fe and Pb). We have utilized the two electrode set up for the electrolysis and used different metal electrodes as anode and platinum as cathode. The synthesized nanomaterials were delaminated in the electrolyte. The microstructural characterization of synthesized materials in electrolytes after electrolysis at different electrode potentials revealed that the nanostructures strongly depend on the applied voltage between the electrodes. Various nanostructures (nanothreads, nanowires, nanocubes, nanotetrapods and hexagons-like) of metal oxides have been synthesized by this method. In case of copper electrode we have found nanothreads and nanowires of cuprous oxide. Tin electrode resulted nanothreads, nanotetrapod and nanocube like structures of tin oxide. Iron electrode resulted, nanowire like structures of iron oxide and lead sheet transformed into hexagon like and six petals like structures of lead oxide.

  13. trans-Platinum(II) complex of 3-aminoflavone - synthesis, X-ray crystal structure and biological activities in vitro.

    Science.gov (United States)

    Fabijańska, Małgorzata; Studzian, Kazimierz; Szmigiero, Leszek; Rybarczyk-Pirek, Agnieszka J; Pfitzner, Arno; Cebula-Obrzut, Barbara; Smolewski, Piotr; Zyner, Elżbieta; Ochocki, Justyn

    2015-01-21

    This paper describes the synthesis of trans-bis-(3-aminoflavone)dichloridoplatinum(ii) (trans-Pt(3-af)2Cl2; TCAP) for use as a potential anticancer compound, and the evaluation of its structure by elemental and spectral analyses, and X-ray crystallography. The complex demonstrated a significant cytotoxic effect against human and murine cancer cell lines, as well as weaker toxicity towards healthy cells (human peripheral blood lymphocytes) in comparison with cisplatin. Various biochemical and morphological methods confirm that the proapoptotic activity of trans-Pt(3-af)2Cl2 is markedly higher than the reference cisplatin. Our results suggest that trans-Pt(3-af)2Cl2 may have a different antitumour specificity from that of cisplatin.

  14. Synthesis and characterization of nanostructured electrodes for solid state ionic devices

    Science.gov (United States)

    Zhang, Yuelan

    Solid-state electrochemical energy conversion and storage technologies such as fuel cells and lithium ion batteries will influence the way we use energy and the environment we live in. The demands for advanced power sources with high energy efficiency, minimum environmental impact, and low cost have been the impetus for the development of a new generation of batteries and fuel cells. Currently, lithium ion battery technology's greatest disadvantages are long-term cycling stability and high charge/discharge rate capabilities. On the other hand, fuel cell technology's greatest disadvantage is cost. It is found that these problems could be attenuated by the incorporation of nano-structured materials. But, we are still far away from possessing a solid scientific understanding of what goes on at the nanoscale inside these solid state ionic devices, and what is the relationship between nano-structures and their electrochemical properties, especially between the microstructure and electrode polarization and degradation. Electrode polarization represents a voltage loss in an electrochemical energy conversion process. Such understanding is critical for further progress in solid state ionic devices. This thesis focused on the design, fabrication, and characterization of nanostructured porous electrodes with desired composition and microstructure to minimize electrode polarization losses in the application of fuel cells and lithium ion batteries. Various chemical methods such as sol-gel, hydrothermal, surfactant, colloidal and polymer template-assisted processes have been applied in this work. And various characterization techniques have been used to explore the understanding of the microscopic features with electrochemical interfacial properties of the electrodes. Solid-state diffusion often limits the utilization and rate capability of electrode materials in a lithium-ion battery, especially at high charge/discharge rates. When the fluxes of Li+ insertion or extraction

  15. Lanthanum oxide promoted rhodium/titania and rhodium-platinum/titania catalysts for alcohol formation from synthesis gas

    Energy Technology Data Exchange (ETDEWEB)

    Bond, G.C.; Richards, D.G.

    1986-12-15

    TiO/sub 2/-supported Rh and Rh-Pt catalysts have been studied for the selective formation of oxygenates from synthesis gas. The addition of La/sub 2/O/sub 3/ as a promoter significantly increased the C/sub 2/H/sub 5/OH selectivities and formation rates. Pt addition increased the overall activity and in combination with La/sub 2/O/sub 3/ led to higher alcohol selectivities of 25% compared with 6% for an unpromoted Rh catalyst. A pronounced induction period was observed for CH/sub 3/OH and C/sub 2/H/sub 5/OH formation, attributed to changes in the nature of the catalytically active sites. A simple theoretical model is used to illustrate the parallel trends in C/sub 2/H/sub 5/OH and hydrocarbon formation after the induction period. Temperature-programmed reduction showed that the La/sub 2/O/sub 3/ increased the stability of Rh oxide. The main role of La/sub 2/O/sub 3/ appears to be promotion of the formation of the C/sub 2/H/sub 5/OH precursor, while Pt increased the rate of hydrogenation. 26 refs., 8 figs., 3 tabs.

  16. Synthesis of Carbon–Metal Multi-Strand Nanocomposites by Discharges in Heptane Between Two Metallic Electrodes

    KAUST Repository

    Hamdan, A.

    2017-04-26

    We studied composite wires assembled from electric field-driven nanoparticles in a dielectric liquid (heptane) to elucidate the exact processes and controlling factors involved in the synthesis of the multi-phase nanocomposites. Filamentary wires are synthesized by a two-step process: (1) abundant nanoparticle production, mostly of carbonaceous types, from heptane decomposition by spark discharge and of metal nanoparticles by electrode erosion and (2) assembly of hydrogenated amorphous carbonaceous nano-clusters with incorporated metal nanoparticles forming wires by dielectrophoretic transport while maintaining a high electric field between electrodes kept sufficiently separated to avoid breakdown. Four types of nanocomposites products are identified to form at different steps in distinctive zones of the setup. The black carbonaceous agglomerates with metal spherules made by electrode erosion represent the pyrolytic residues of heptane decomposition by spark discharge during step 1. The filamentary wires grown in the interelectrode gap during step 2 get assembled by dielectrophoretic transport and chaining forces. Their great stability is shown to express the concurrent effect of polymerization favoured by the abundance of metal catalysts. The nature, abundance, and transformation of solid particles from the source materials versus discharge conditions control the morphological and compositional diversity of the wires. The production of mineral and metal nano-particles traces the efficiency of dielectrophoresis to separate compound particle mixtures by size and to co-synthesize nanostructured microcrystals and nanocomposites. The link between impurities and the variability from nano- to micro-scales of the synthesized products provides an innovative contribution to the knowledge of nanocomposite synthesis triggered by electric field.

  17. Synthesis, Characterization, and Interaction with Biomolecules of Platinum(II Complexes with Shikimic Acid-Based Ligands

    Directory of Open Access Journals (Sweden)

    Yan Peng

    2013-01-01

    Full Text Available Starting from the active ingredient shikimic acid (SA of traditional Chinese medicine and NH2(CH2nOH, (n=2–6, we have synthesized a series of new water-soluble Pt(II complexes PtLa–eCl2, where La–e are chelating diamine ligands with carbon chain covalently attached to SA (La–e = SA-NH(CH2nNHCH2CH2NH2; La, n=2; Lb, n=3; Lc, n=4; Ld, n=5; Le, n=6. The results of the elemental analysis, LC-MS, capillary electrophoresis, and 1H, 13C NMR indicated that there was only one product (isomer formed under the present experimental conditions, in which the coordinate mode of PtLa–eCl2 was two-amine bidentate. Their in vitro cytotoxic activities were evaluated by MTT method, where these compounds only exhibited low cytotoxicity towards BEL7404, which should correlate their low lipophilicity. The interactions of the five Pt(II complexes with DNA were investigated by agarose gel electrophoresis, which suggests that the Pt(II complexes could induce DNA alteration. We also studied the interactions of the Pt(II complexes with 5′-GMP with ESI-MS and 1H NMR and found that PtLbCl2, PtLcCl2, and PtLdCl2 could react with 5′-GMP to form mono-GMP and bis-GMP adducts. Furthermore, the cell-cycle analysis revealed that PtLbCl2, PtLcCl2 cause cell G2-phase arrest after incubation for 72 h. Overall, these water-soluble Pt(II complexes interact with DNA mainly through covalent binding, which blocks the DNA synthesis and replication and thus induces cytotoxicity that weakens as the length of carbon chain increases.

  18. Neutral and ionic platinum compounds containing a cyclometallated chiral primary amine: synthesis, antitumor activity, DNA interaction and topoisomerase I-cathepsin B inhibition.

    Science.gov (United States)

    Albert, Joan; Bosque, Ramon; Crespo, Margarita; Granell, Jaume; López, Concepción; Martín, Raquel; González, Asensio; Jayaraman, Anusha; Quirante, Josefina; Calvis, Carme; Badía, Josefa; Baldomà, Laura; Font-Bardia, Mercè; Cascante, Marta; Messeguer, Ramon

    2015-08-14

    The synthesis and preliminary biological evaluation of neutral and cationic platinum derivatives of chiral 1-(1-naphthyl)ethylamine are reported, namely cycloplatinated neutral complexes [PtCl{(R or S)-NH(2)CH(CH(3))C(10)H(6)}(L)] [L = SOMe(2) ( 1-R or 1-S ), L = PPh(3) (2-R or 2-S), L = P(4-FC(6)H(4))(3) (3-R), L = P(CH(2))(3)N(3)(CH(2))(3) (4-R)], cycloplatinated cationic complexes [Pt{(R)-NH(2)CH(CH(3))C(10)H(6)}{L}]Cl [L = Ph(2)PCH(2)CH(2)PPh(2) (5-R), L = (C(6)F(5))(2)PCH(2)CH(2)P(C(6)F(5))(2) (6-R)] and the Pt(ii) coordination compound trans-[PtCl(2){(R)-NH(2)CH(CH(3))C(10)H(6)}(2)] (7-R). The X-ray molecular structure of 7-R is reported. The cytotoxic activity against a panel of human adenocarcinoma cell lines (A-549 lung, MDA-MB-231 and MCF-7 breast, and HCT-116 colon), cell cycle arrest and apoptosis, DNA interaction, topoisomerase I and cathepsin B inhibition, and Pt cell uptake of the studied compounds are presented. Remarkable cytotoxicity was observed for most of the synthesized Pt(ii) compounds regardless of (i) the absolute configuration R or S, and (ii) the coordinated/cyclometallated (neutral or cationic) nature of the complexes. The most potent compound 2-R (IC(50) = 270 nM) showed a 148-fold increase in potency with regard to cisplatin in HCT-116 colon cancer cells. Preliminary biological results point out to different biomolecular targets for the investigated compounds. Neutral cyclometallated complexes 1-R and 2-R, modify the DNA migration as cisplatin, cationic platinacycle 5-R was able to inhibit topoisomerase I-promoted DNA supercoiling, and Pt(ii) coordination compound 7-R turned out to be the most potent inhibitor of cathepsin B. Induction of G-1 phase ( 2-R and 5-R ), and S and G-2 phases (6-R) arrests are related to the antiproliferative activity of some representative compounds upon A-549 cells. Induction of apoptosis is also observed for 2-R and 6-R.

  19. Synthesis and characterization of electron donor-acceptor platinum(II) complexes composed of N,N-diphenylpyridineamine and triphenylamine ligands.

    Science.gov (United States)

    Dai, Zhi; Metta-Magaña, Alejandro J; Nuñez, Jose E

    2014-07-21

    The synthesis and electronic properties of a series of platinum(II) complexes composed of electron-donor and electron-acceptor components as potential photovoltaic materials is reported. The complexes are composed of triphenylamines (TPA) and pyridine-derivatized TPAs as the electron-donating components, and alkynyl derivatives of 2,1,3-benzothiadiazole and cyclopentadithiophenone as the electron acceptors. The complexes containing the pyridine-derivatized ligands were prepared to examine the effect that direct coordination of a heteroatom-modified TPA may have on the electronic properties of donor-acceptor (D-A) complexes. Four complexes composed of meta- and para- pyridine-derivatized TPAs were prepared, and their electronic properties were compared with three structurally similar complexes composed of TPA, as well as with purely organic D-A compounds. Data collected from UV-vis and cyclic voltammetry show minor differences on the properties of the complexes containing the pyridine-derivatized ligands when compared to the TPA analogs, exhibiting similar highest occupied molecular orbital-lowest unoccupied molecular orbital bandgaps ranging from 2.156 to 2.705 eV for the pyridine-derivatized complexes (6a,b and 7a,b), 2.038-2.320 eV for the TPA complexes (8a,b and 9a), 2.301 eV for organic molecule 10a, and 1.997 eV for 10b. All compounds are stable, exhibiting no decomposition in the solid indefinitely, and only minor decomposition in solution. All compounds were characterized by (1)H and (13)C nuclear magnetic resonance, infrared spectroscopy, and electrospray mass spectrometry. All complexes were also characterized by (31)P nuclear magnetic resonance and elemental analysis of CHN; determination of Ag content for 6a,b and 7a,b (carried through the synthetic steps) was determined by inductively coupled plasma optical emission spectrometry. The para-pyridine-derivatized complex of 2,1,3-benzothiadiazole (6a) was further characterized by X-ray crystallography as a

  20. Solution-based chemical synthesis of electrode materials for electrochemical power sources

    Science.gov (United States)

    Jeong, Yeon Uk

    The popularity of portable electronic devices and the desire for clean-air vehicles have created enormous interest in electrochemical power sources. Lithium-ion batteries offering higher energy density compared to other rechargeable battery systems are becoming the choice of a power source for portables. On the other hand, electrochemical supercapacitors offering higher power density compared to batteries are appealing for hybrid electric vehicles. However, both the lithium-ion and supercapacitor technologies are hampered by the high cost and toxicity of the currently used electrode materials. This dissertation explores alternate low cost materials for lithium-ion batteries and supercapacitors by employing novel solution-based chemical synthesis procedures. Manganese oxides are attractive alternates for lithium-ion cells as Mn is inexpensive and environmentally benign. Several NaxMnO 2+delta oxides crystallizing in different structures have been synthesized in this study by reducing sodium permanganate with sodium iodide in aqueous medium followed by firing the reduction product. While the hexagonal Na 0.7MnO2+delta (delta ≈ 0.3) transforms to a spinel-like phase during ion exchange with lithium salts, the layered and tunnel Na 0.5MnO2+delta are quite stable to ion-exchange reactions. The ion-exchanged layered and tunnel Na0.5-xLixMnO 2+delta exhibit initial capacities of, respectively, 225 and 170 mA/g. While it is difficult to maintain a high capacity with good cyclability with the tunnel structure, the layered material is found to exhibit good cyclability. Amorphous RuO2·xH2O has been shown in the literature to exhibit a high capacitance of 720 F/g in electrochemical redox capacitors. With an objective to lower the cost per F capacitance, (i) substitutions of low cost Cr and W for Ru, (ii) coating of RuO2·xH 2O on low cost oxides, and (iii) other low cost transition metal oxides and sulfides in various electrolytes have been pursued in this study. Ru1-xCrxO2

  1. Platinum recycling going green via induced surface potential alteration enabling fast and efficient dissolution

    Science.gov (United States)

    Hodnik, Nejc; Baldizzone, Claudio; Polymeros, George; Geiger, Simon; Grote, Jan-Philipp; Cherevko, Serhiy; Mingers, Andrea; Zeradjanin, Aleksandar; Mayrhofer, Karl J. J.

    2016-01-01

    The recycling of precious metals, for example, platinum, is an essential aspect of sustainability for the modern industry and energy sectors. However, due to its resistance to corrosion, platinum-leaching techniques rely on high reagent consumption and hazardous processes, for example, boiling aqua regia; a mixture of concentrated nitric and hydrochloric acid. Here we demonstrate that complete dissolution of metallic platinum can be achieved by induced surface potential alteration, an ‘electrode-less' process utilizing alternatively oxidative and reductive gases. This concept for platinum recycling exploits the so-called transient dissolution mechanism, triggered by a repetitive change in platinum surface oxidation state, without using any external electric current or electrodes. The effective performance in non-toxic low-concentrated acid and at room temperature is a strong benefit of this approach, potentially rendering recycling of industrial catalysts, including but not limited to platinum-based systems, more sustainable. PMID:27767178

  2. Platinum recycling going green via induced surface potential alteration enabling fast and efficient dissolution

    Science.gov (United States)

    Hodnik, Nejc; Baldizzone, Claudio; Polymeros, George; Geiger, Simon; Grote, Jan-Philipp; Cherevko, Serhiy; Mingers, Andrea; Zeradjanin, Aleksandar; Mayrhofer, Karl J. J.

    2016-10-01

    The recycling of precious metals, for example, platinum, is an essential aspect of sustainability for the modern industry and energy sectors. However, due to its resistance to corrosion, platinum-leaching techniques rely on high reagent consumption and hazardous processes, for example, boiling aqua regia; a mixture of concentrated nitric and hydrochloric acid. Here we demonstrate that complete dissolution of metallic platinum can be achieved by induced surface potential alteration, an `electrode-less' process utilizing alternatively oxidative and reductive gases. This concept for platinum recycling exploits the so-called transient dissolution mechanism, triggered by a repetitive change in platinum surface oxidation state, without using any external electric current or electrodes. The effective performance in non-toxic low-concentrated acid and at room temperature is a strong benefit of this approach, potentially rendering recycling of industrial catalysts, including but not limited to platinum-based systems, more sustainable.

  3. Facile synthesis of polypyrrole nanowires for high-performance supercapacitor electrode materials

    Directory of Open Access Journals (Sweden)

    Junhong Zhao

    2016-06-01

    Full Text Available Polypyrrole nanowires are facile synthesized under a mild condition with FeCl3 as an oxidant. Polypyrrole nanowires with the width of 120 nm form many nanogaps or pores due to the intertwined nanostructures. More importantly, PPy nanowires were further applied for supercapacitor electrode materials. After electrochemical testing, it was observed that the PPy nanowire based electrode showed a large specific capacitance (420 F g−1, 1.5 A g−1 and good rate capability (272 F g−1, 18.0 A g−1, which is larger than that of most of published results. The as-prepared electrode can work well even after 8000 cycles at 1.5 A g−1.

  4. Facile synthesis of polypyrrole nanowires for high-performance supercapacitor electrode materials

    Institute of Scientific and Technical Information of China (English)

    Junhong Zhao; Jinping Wu; Bing Li; Weimin Du; Qingli Huang; Mingbo Zheng; Huaiguo Xue; Huan Pang

    2016-01-01

    Polypyrrole nanowires are facile synthesized under a mild condition with FeCl3 as an oxidant. Polypyrrole nanowires with the width of 120 nm form many nanogaps or pores due to the intertwined nanos-tructures. More importantly, PPy nanowires were further applied for supercapacitor electrode materials. After electrochemical testing, it was observed that the PPy nanowire based electrode showed a large specific capacitance (420 F g ? 1, 1.5 A g ? 1) and good rate capability (272 F g ? 1, 18.0 A g ? 1), which is larger than that of most of published results. The as-prepared electrode can work well even after 8000 cycles at 1.5 A g ? 1.

  5. SYNTHESIS OF DI(ETHYLMERCAPTOETHYL) AMINO GROUP—CONTAINING POLYSESQUISILOXANE PLATINUM COMPLEX AND ITS CATALYSIS IN HYDROSIL YLATION OF OLEFINS WITH TRIETHOXYSILANE

    Institute of Scientific and Technical Information of China (English)

    CHENYuanyin; HUXubo; 等

    1992-01-01

    Three new polysesquisiloxane-bound platinum complexes were synthesized via hydrolysis of N,N-di(β-ethylmercaptoethyl)γ-(triethoxysilyl)propylamine or cohydrolysis of the monomer with dodecyltriethoxysilane or with phenylpropylthiethoxysilane and immobilixation on fumed silica,followed by reacting with potassium platinite in acetone under argon atmosphere.The platinum complexes exhibited high catalytic activity for the hydrosilylation of olefins by triethoxysilane. The effects of temperature and the amount of complex on the catalytic activity,as well as the recovery and reusability of the catalysts were investigated.

  6. Electrochemical Synthesis of Graphene/MnO2 Nano-Composite for Application to Supercapacitor Electrode.

    Science.gov (United States)

    Jeong, Kwang Ho; Lee, Hyeon Jeong; Simpson, Michael F; Jeong, Mun

    2016-05-01

    Graphene/MnO2 nano-composite was electrochemically synthesized for application to an electrode material for electrochemical supercapacitors. The nanosized needle-like MnO2 was obtained by use of a graphene substrate. The prepared composite exhibited an ideal supercapacitive behavior. A capacitance retention of 94% was achieved with a 4 h deposition time (an initial capacitance of 574 mF/cm2 at a scan rate of 20 mV/s) and the retention declined with further deposition time. The results demonstrate enhanced contact between the electrode and electrolyte and improved power density as an electrochemical capacitor.

  7. Determination of Platinum Metals in Carbonaceous Mineral Raw Materials by Stripping Voltammetry

    OpenAIRE

    Kolpakova, Nina Alexandrovna; Oskina, Yuliya Aleksandrovna; Dyachenko, Elena Nikolaevna; Pshenichkin, Anatoliy Yakovlevich

    2015-01-01

    The paper considers the possibility of determining platinum metals in mineral raw materials by stripping voltammetry on a graphite electrode modified by metals. Stripping voltammetry method is characterized by low determination limit, wide intervals of determined content and high sensitivity. As a result of the research the conditions for the determination of gold, platinum and palladium by stripping voltammetry have been selected. The comparison of the results of gold, palladium and platinum...

  8. Nanoscale study by piezoresponse force microscopy of relaxor 0.7Pb(Mg1/3Nb2/3)O-3-0.3PbTiO(3) and 0.9Pb(Mg1/3Nb2/3)O-3-0.1PbTiO(3) thin films grown on platinum and LaNiO3 electrodes

    NARCIS (Netherlands)

    Detalle, M.; Ferri, A.; Da Costa, A.; Desfeux, R.; Soyer, C.; Remiens, D.

    2010-01-01

    Relaxor 0.7Pb(Mg1/3Nb2/3)O-3-0.3PbTiO(3) (70/30 PMN-PT) and 0.9Pb(Mg1/3Nb2/3)O-3-0.1PbTiO(3) (90/10 PMN-PT) thin films have been grown by RF-sputtering on platinum (Pt) and lanthanum nickelate (LaNiO3) bottom electrodes. For both electrodes, macroscopic measurements evidence lower coercive fields, r

  9. Flow Synthesis of Silver Nanowires for Semitransparent Solar Cell Electrodes: A Life Cycle Perspective

    DEFF Research Database (Denmark)

    Espinosa Martinez, Nieves; Søndergaard, Roar R.; Jørgensen, Mikkel;

    2016-01-01

    based on micron sized silver flakes using life cycle analysis and environmental impact analysis methods. The life cycle analysis of AgNWs confirms that they provide an avenue to low-impact semitransparent electrodes. We find that the benefit of AgNWs in terms of embodied energy is less pronounced than...

  10. Synthesis and evaluation of polythiocyanogen (SCN) x as a rechargeable lithium-ion battery electrode material

    Science.gov (United States)

    Krishnan, Palanichamy; Advani, Suresh G.; Prasad, Ajay K.

    Polythiocyanogen, (SCN) x, is a promising lithium-ion battery electrode material due to its high theoretical capacity (462 mAh g -1), safe operation, inexpensive raw materials, and a simple and less energy-intensive manufacturing process. The (SCN) x was prepared from the solution of trithiocyanate (SCN) 3 - in methylene dichloride (MDC), which was prepared by electrochemical oxidation of ammonium thiocyanate (NH 4SCN) in a two-phase electrolysis medium of 1.0 M NH 4SCN in 0.50 M H 2SO 4 + MDC. The (SCN) 3 - underwent auto catalytic polymerization to (SCN) x during MDC removal. Battery electrodes with (SCN) x as the active material were prepared, and tested in Swagelok cells using lithium foil as the counter and reference electrode. The cells delivered capacities in the range of 200-275 mAh g -1 at the discharge-charge rate of 0.2 C. The cells were tested up to 20 cycles and showed repeatable performance with a coulombic efficiency of 97% at the 20th cycle. The results presented here indicate that (SCN) x is a promising lithium-ion battery electrode-material candidate for further studies.

  11. Synthesis of nano-structured polypyrrole/copper electrodes for nitrate and nitrite electroreduction

    Science.gov (United States)

    Phuong Thoa Nguyen, Thi; Thinh Nguyen, Viet; Nguyen Bui, Nhat; Do, Duong Kim Bao; Pham, Anh Minh

    2010-09-01

    Nanostructured polypyrrole film was synthesized onto a copper electrode in solutions of oxalic and salicylic acids and their buffers. The electrooxidation of pyrrole to form polypyrrole film and the electroreduction of nitrate and nitrite ions at synthesized Ppy modified copper electrodes (Ppy/Cu) in potassium chloride aqueous solutions were studied using chronoamperometry. The nanoporous structure of the synthesized Ppy films was characterized by scanning electron microscopy (SEM). Nitrate and nitrite reduction were performed by an electrochemical method under potentiostatic conditions. The Ppy/Cu electrodes prepared in the oxalate buffer and salicylic acid solutions perform more stable catalytic activity for nitrate reduction; their service life is about ten times longer than that for the electrodes prepared in oxalic acid solution. After 20 h of electrolysis, the nitrite was reduced completely with 100% efficiency and the nitrate was reduced with 35% efficiency. Report submitted to the 5th International Workshop on Advanced Materials Science and Nanotechnology IWAMSN, Hanoi, 9-12 November 2010.

  12. Synthesis, spectroscopic and electrochemical performance of pasted β-nickel hydroxide electrode in alkaline electrolyte

    Science.gov (United States)

    Shruthi, B.; Bheema Raju, V.; Madhu, B. J.

    2015-01-01

    β-Nickel hydroxide (β-Ni(OH)2) was successfully synthesized using precipitation method. The structure and property of the β-Ni(OH)2 were characterized by X-ray diffraction (XRD), Fourier Transform infra-red (FT-IR), Raman spectra and thermal gravimetric-differential thermal analysis (TG-DTA). The results of the FTIR spectroscopy and TG-DTA studies indicate that the β-Ni(OH)2 contains water molecules and anions. The microstructural and composition studies have been performed using Scanning Electron Microscopy (SEM) and Energy Dispersive X-ray (EDX) analysis. A pasted-type electrode is prepared using β-Ni(OH)2 powder as the active material on a nickel sheet as a current collector. Cyclic voltammetry (CV) and Electrochemical impedance spectroscopy (EIS) studies were performed to evaluate the electrochemical performance of the β-Ni(OH)2 electrode in 6 M KOH electrolyte. CV curves showed a pair of strong redox peaks as a result of the Faradaic redox reactions of β-Ni(OH)2. The proton diffusion coefficient (D) for the present β-Ni(OH)2 electrode material is found to be 1.44 × 10-12 cm2 s-1. Further, electrochemical impedance studies confirmed that the β-Ni(OH)2 electrode reaction processes are diffusion controlled.

  13. Electrochemical determination of sulphide at multi-walled carbon nanotubes-dihexadecyl hydrogen phosphate composite film modified electrodes based on in situ synthesis of methylene blue

    Institute of Scientific and Technical Information of China (English)

    An Min Xiang; Li Zhou; Cheng Guo Hu; Sheng Shui Hu

    2008-01-01

    A novel electrochemical method for the determination of sulphide at a multi-walled carbon nanotube-dihexadecyl hydrogenphosphate composite film coated glassy carbon electrode (MWNTs-DHP/GCE) based on in situ synthesis of methylene blue (MB)was established.

  14. A facile approach for the synthesis of monolithic hierarchical porous carbons – high performance materials for amine based CO2 capture and supercapacitor electrode

    KAUST Repository

    Estevez, Luis

    2013-05-03

    An ice templating coupled with hard templating and physical activation approach is reported for the synthesis of hierarchically porous carbon monoliths with tunable porosities across all three length scales (macro- meso- and micro), with ultrahigh specific pore volumes [similar]11.4 cm3 g−1. The materials function well as amine impregnated supports for CO2 capture and as supercapacitor electrodes.

  15. Physical and electrochemical study of platinum thin films deposited by sputtering and electrochemical methods

    Energy Technology Data Exchange (ETDEWEB)

    Quinones, C. [Universidad de Cartagena, Cartagena de Indias (Colombia); Departamento de Quimica, Universidad Nacional de Colombia, Cra. 30 No 45-03, Bogota (Colombia); Vallejo, W., E-mail: wavallejol@unal.edu.co [Departamento de Quimica, Universidad Nacional de Colombia, Cra. 30 No 45-03, Bogota (Colombia); Mesa, F. [Departamento de Ciencias Basicas, Universidad Libre, Carrera 70 No 53-40, Bogota (Colombia)

    2011-06-15

    In this work platinum thin films deposited by sputtering and electrochemical methods were characterized through physical and electrochemical analysis. The as-grown platinum thin films were characterized through X-ray diffraction (XRD), atomic force microscopy (AFM); scanning electronic microscopy (SEM) and through electrochemical impedance spectroscopy (EIS) measurements. Structural studies indicated that platinum thin films were polycrystalline. Morphological characteristics were significantly affected by the substrate type and synthesis method. Finally the EIS analysis indicated that platinum films were electrochemically stable and present both low resistance of charge transfer and low series resistance; the equivalent circuit of platinum interface has been proposed.

  16. Value-added Synthesis of Graphene: Recycling Industrial Carbon Waste into Electrodes for High-Performance Electronic Devices

    Science.gov (United States)

    Seo, Hong-Kyu; Kim, Tae-Sik; Park, Chibeom; Xu, Wentao; Baek, Kangkyun; Bae, Sang-Hoon; Ahn, Jong-Hyun; Kim, Kimoon; Choi, Hee Cheul; Lee, Tae-Woo

    2015-11-01

    We have developed a simple, scalable, transfer-free, ecologically sustainable, value-added method to convert inexpensive coal tar pitch to patterned graphene films directly on device substrates. The method, which does not require an additional transfer process, enables direct growth of graphene films on device substrates in large area. To demonstrate the practical applications of the graphene films, we used the patterned graphene grown on a dielectric substrate directly as electrodes of bottom-contact pentacene field-effect transistors (max. field effect mobility ~0.36 cm2·V-1·s-1), without using any physical transfer process. This use of a chemical waste product as a solid carbon source instead of commonly used explosive hydrocarbon gas sources for graphene synthesis has the dual benefits of converting the waste to a valuable product, and reducing pollution.

  17. Value-added Synthesis of Graphene: Recycling Industrial Carbon Waste into Electrodes for High-Performance Electronic Devices.

    Science.gov (United States)

    Seo, Hong-Kyu; Kim, Tae-Sik; Park, Chibeom; Xu, Wentao; Baek, Kangkyun; Bae, Sang-Hoon; Ahn, Jong-Hyun; Kim, Kimoon; Choi, Hee Cheul; Lee, Tae-Woo

    2015-11-16

    We have developed a simple, scalable, transfer-free, ecologically sustainable, value-added method to convert inexpensive coal tar pitch to patterned graphene films directly on device substrates. The method, which does not require an additional transfer process, enables direct growth of graphene films on device substrates in large area. To demonstrate the practical applications of the graphene films, we used the patterned graphene grown on a dielectric substrate directly as electrodes of bottom-contact pentacene field-effect transistors (max. field effect mobility ~0.36 cm(2)·V(-1)·s(-1)), without using any physical transfer process. This use of a chemical waste product as a solid carbon source instead of commonly used explosive hydrocarbon gas sources for graphene synthesis has the dual benefits of converting the waste to a valuable product, and reducing pollution.

  18. Behind platinum's sparkle.

    Science.gov (United States)

    Yam, Vivian W W

    2010-09-01

    As a rare and precious metal that is also resistant to wear and tarnish, platinum is known to be particularly well-suited to jewellery. Vivian Yam reflects on how, beyond its prestigious image, platinum has also found its way into a variety of fields ranging from the petrochemical to the pharmaceutical industry.

  19. Synthesis and Electrochemical Characterization of Polypyrrole/Multi-walled Carbon Nanotube Composite Electrodes for Supercapacitor Applications

    Energy Technology Data Exchange (ETDEWEB)

    Paul, Santhosh; Lee, Yoon Sung; Choi, Ji Ae; Kang, Yun Chan; Kim, Dong Won [Hanyang University, Seoul (Korea, Republic of)

    2010-05-15

    The nanocomposites of polypyrrole (PPy) and multi-walled carbon nanotube (MWCNT) with different composition are synthesized by the chemical oxidative polymerization method. In these composites, the MWCNTs are uniformly coated by PPy with different thickness. The electrochemical properties of the composite electrodes are investigated by cyclic voltammetry, galvanostatic charge-discharge cycling and electrochemical impedance spectroscopy. The full cells assembled with the PPy/MWCNT composite electrodes deliver initial specific capacitances ranging from 146.3 to 167.2 F/g at 0.5 mA/cm{sup 2} and exhibit stable cycling characteristics. The effect of content of MWCNT in the composite on cycling performance of the cells is also investigated.

  20. Novel Synthesis of 3D Graphene-CNF Electrode Architectures for Supercapacitor Applications

    Science.gov (United States)

    2013-06-01

    41 Figure 27. XRD peaks of GO. Note the primary peak (Miller index (002), has shifted from ~25˚ to ~10...xvi LIST OF ACRONYMS AND ABBREVIATIONS 2D Two-dimensional 3D Three-dimensional α-Fe2O3 Hematite Å Angstroms Ar Argon BET Brunauer Emmett...From the significant amount of research performed on carbon electrode materials [1, 7–9], Hall et al. [2] describes four primary requirements for

  1. Facile synthesis of porous graphene as binder-free electrode for supercapacitor application

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Guangsheng [Nanjing National Laboratory of Microstructures and Department of Physics, Jiangsu Key Laboratory for Nanotechnology, Nanjing University, Nanjing 210093 (China); Academy of Space Technolgy, Nanchang University, Nanchang, Jiangxi 330031 (China); Huang, Haifu, E-mail: haifuh@gmail.com [Nanjing National Laboratory of Microstructures and Department of Physics, Jiangsu Key Laboratory for Nanotechnology, Nanjing University, Nanjing 210093 (China); College of Physics Science and Engineering, Guangxi University, Nanning 530004 (China); Lei, Chenglong; Cheng, Zhenzhi; Wu, Xiaoshan [Nanjing National Laboratory of Microstructures and Department of Physics, Jiangsu Key Laboratory for Nanotechnology, Nanjing University, Nanjing 210093 (China); Tang, Shaolong, E-mail: tangsl@nju.edu.cn [Nanjing National Laboratory of Microstructures and Department of Physics, Jiangsu Key Laboratory for Nanotechnology, Nanjing University, Nanjing 210093 (China); Du, Youwei [Nanjing National Laboratory of Microstructures and Department of Physics, Jiangsu Key Laboratory for Nanotechnology, Nanjing University, Nanjing 210093 (China)

    2016-03-15

    Graphical abstract: - Highlights: • Our results provide a facile method to fabricate a binder-free porous rGO electrode for supercapacitors. • Polystyrene (PS) colloidal particles were used as spacers to prepare high-performance porous grapheme deposited directly on Ni foam substrate. • The specific capacitance of the rGO/NF electrode decreased by 7% after 2000 cycles and high rate capability of 53% capacitance retention at 100 A g{sup −1}. - Abstract: Here, porous grapheme oxide (GO) gel deposited on nickel foam was prepared by using polystyrene (PS) colloidal particles as spacers for use as electrodes in high rate supercapacitors, then reduced by Vitamin C aqueous solution in ambient condition. The PS particles were surrounded by reduced graphene oxide (rGO) sheets, forming crinkles and rough textures. When PS particles were selectively removed, rGO gel coated on the skeleton of Ni foam can formed an open porous structure, which prevents elf-aggregation and restacking of graphene sheets. The porous rGO-based supercapacitors exhibit excellent electrochemical performances such as a specific capacitance of 152 F g{sup −1} at 1 A g{sup −1}, high rate capability of 53% capacitance retention upon a current increase to 100 A g{sup −1} and good cycle stability, due to effective rapid and short pathways for ionic and electronic transport provided by the sub-micrometer structure of rGO gel and 3D interconnected network of Ni foam.

  2. Synthesis of an organic conductive porous material using starch aerogels as template for chronic invasive electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Starbird, Ricardo, E-mail: ricardo.starbird@tu-harburg.de [Institute of Optical and Electronic Materials, Hamburg University of Technology, Hamburg, 21073 (Germany); García-González, Carlos A.; Smirnova, Irina [Institute of Thermal Separation Processes, Hamburg University of Technology, Hamburg, 21073 (Germany); Krautschneider, Wolfgang H. [Institute of Nanoelectronics, Hamburg University of Technology, Hamburg (Germany); Bauhofer, Wolfgang [Institute of Optical and Electronic Materials, Hamburg University of Technology, Hamburg, 21073 (Germany)

    2014-04-01

    We report the development of an organic conducting mesoporous material, as coat for invasive electrodes, by a novel methodology based on the use of starch aerogel as template. The poly(3,4-ethylenedioxythiophene) (PEDOT) aerogel was synthesized by polymerization of 3,4-ethylenedioxythiophene within a saturated starch aerogel with iron (III) p-toluenesulfonate (oxidizing agent) and subsequent removal of the polysaccharide template, followed by supercritical CO{sub 2} drying. The chemical structure and oxidation state of the resulting material were studied by Raman spectroscopy. The morphology and surface properties of the obtained nanoporous material were investigated by scanning electron microscopy (SEM), micro computed tomography (μCT) and nitrogen adsorption–desorption techniques. The composition and thermal behaviour were evaluated by energy dispersive spectroscopy (EDS) and thermogravimetric analysis (TGA) respectively. A preliminary biocompatibility test verified the non-cytotoxic effects of the PEDOT aerogel. The large surface area and wide pore size distribution of the PEDOT conductive aerogel, along with its electrical properties, enable it to be used as extracellular matrix scaffold for biomedical applications. - Highlights: • Conductive porous material (PEDOT) was obtained using starch aerogel as template • The large mesoporous surface allows its use as extracellular matrix scaffold • The conductive organic aerogel is a suitable coat for chronic invasive electrodes • Gold electrodes coated with PEDOT aerogel showed a significant reduction of the impedance.

  3. One-pot synthesis of hierarchical MnO2-modified diatomites for electrochemical capacitor electrodes

    Science.gov (United States)

    Zhang, Yu Xin; Huang, Ming; Li, Fei; Wang, Xue Li; Wen, Zhong Quan

    2014-01-01

    The hierarchical and porous MnO2-modified diatomite structures are prepared for the first time by a one-pot hydrothermal method. The morphology and structure of MnO2-modified diatomite hierarchical structures are examined by focus ion beam scanning electron microscopy (FIB/SEM) and X-ray diffraction spectroscopy (XRD). The results show that Birnessite-type MnO2 nanosheets are observed to grow vertically on the purified diatomite, thus building hierarchical architecture. Furthermore, the electrochemical properties of the MnO2-modified diatomite electrodes are elucidated by cyclic voltammograms, galvanostatic charge/discharge tests and electrochemical impedance spectroscopy in 1 M Na2SO4 electrolyte. The electrochemical results demonstrate that the MnO2-modified diatomite electrode exhibits highly reversible features and good rate abilities, respectively. Significantly, it exhibits the specific capacitance of 202.6 F g-1 for the MnO2-modified diatomite and 297.8 F g-1 for the MnO2 nanostructures after etching the diatomite. The capacitance retention of 95.92% over 5000 cycles further indicates the suitability of the low-cost MnO2-modified diatomite structure as a potential electrode material for supercapacitors.

  4. Stereospecific ligands and their complexes. Part XII. Synthesis, characterization and in vitro antiproliferative activity of platinum(IV) complexes with some O,O‧-dialkyl esters of (S,S)-ethylenediamine-N,N‧-di-2-propanoic acid against colon cancer (HCT-116) and breast cancer (MDA-MB-231) cell lines

    Science.gov (United States)

    Stojković, Danijela Lj.; Jevtić, Verica V.; Radić, Gordana P.; Đačić, Dragana S.; Ćurčić, Milena G.; Marković, Snežana D.; Ðinović, Vesna M.; Petrović, Vladimir P.; Trifunović, Srećko R.

    2014-03-01

    Synthesis of three new platinum(IV) complexes C1-C3, with bidentate N,N‧-ligand precursors, O,O‧-dialkyl esters (alkyl = propyl, butyl and pentyl), of (S,S)-ethylenediamine-N,N‧-di-2-propanoic acid, H2-S,S-eddp were reported. The reported platinum(IV) complexes characterized by elemental analysis and their structures were discussed on the bases of their infrared, 1H and 13C NMR spectroscopy. In vitro antiproliferative activity was determined on tumor cell lines: human colon carcinoma HCT-116 and human breast carcinoma MDA-MB-231, using MTT test.

  5. The result of synthesis analysis of the powder TiO2/ZnO as a layer of electrodes for dye sensitized solar cell applications

    Science.gov (United States)

    Retnaningsih, Lilis; Muliani, Lia

    2016-04-01

    This study has been conducted synthesis of TiO2 nanoparticle powders and ZnO nanoparticle powder into a paste to be in this research, dye-sensitive solar cells (DSSC) was produced by TiO2 nanopowder and ZnO nanopowder synthesis to make paste that is applied as electrode. This electrode works based on photon absorbed by dye and transferred to different composition of TiO2/ ZnO particle. Properties of DSSC are affected by fabrication method, parameter and dimension of TiO2 / ZnO nanoparticles, technique and composition of TiO2 / ZnO paste preparation is important to get the higher performance of DSSC. Doctor blade is a method for electrode coating on glass substrate. The electrode was immersed into dye solution of Z907 and ethanol. From the experiment, the effect of TiO2 and ZnO nanopowder mixture for electrode was investigated. XRD characterization show anatase and rutile phase, which sintered TiO2/ZnO has intensity more than 11,000. SEM characterization shows the composition of 20% TiO2 / 80% ZnO has better porosity. Higher efficiency that is investigated by I-V measurement using Sun Simulator.

  6. The result of synthesis analysis of the powder TiO{sub 2}/ZnO as a layer of electrodes for dye sensitized solar cell applications

    Energy Technology Data Exchange (ETDEWEB)

    Retnaningsih, Lilis, E-mail: lilisretna@gmail.com; Muliani, Lia [Research Center for Electronics and Telecommunications Indonesian Institute of Sciences (PPET-LIPI) Kampus LIPI, Jl. Sangkuriang, Bandung 40135 (Indonesia)

    2016-04-19

    This study has been conducted synthesis of TiO{sub 2} nanoparticle powders and ZnO nanoparticle powder into a paste to be in this research, dye-sensitive solar cells (DSSC) was produced by TiO{sub 2} nanopowder and ZnO nanopowder synthesis to make paste that is applied as electrode. This electrode works based on photon absorbed by dye and transferred to different composition of TiO{sub 2}/ ZnO particle. Properties of DSSC are affected by fabrication method, parameter and dimension of TiO{sub 2} / ZnO nanoparticles, technique and composition of TiO{sub 2} / ZnO paste preparation is important to get the higher performance of DSSC. Doctor blade is a method for electrode coating on glass substrate. The electrode was immersed into dye solution of Z907 and ethanol. From the experiment, the effect of TiO{sub 2} and ZnO nanopowder mixture for electrode was investigated. XRD characterization show anatase and rutile phase, which sintered TiO{sub 2}/ZnO has intensity more than 11,000. SEM characterization shows the composition of 20% TiO{sub 2} / 80% ZnO has better porosity. Higher efficiency that is investigated by I-V measurement using Sun Simulator.

  7. Synthesis and characterization of high performance electrode materials for lithium ion batteries

    Science.gov (United States)

    Hong, Jian

    Lithium-ion batteries have revolutionized portable electronics. Electrode reactions in these electrochemical systems are based on reversible intercalation of Li+ ions into the host electrode material with a concomitant addition/removal of electrons into the host. If such batteries are to find a wider market such as the automotive industry, less expensive and higher capacity electrode materials will be required. The olivine phase lithium iron phosphate has attracted the most attention because of its low cost and safety (high thermal and chemical stability). However, it is an intriguing fundamental problem to understand the fast electrochemical response from the poorly electronic conducting two-phase LiFePO4/FePO 4 system. This thesis focuses on determining the rate-limit step of LiFePO4. First, a LiFePO4 material, with vanadium substituting on the P-site, was synthesized, and found that the crystal structure change may cause high lithium diffusivity. Since an accurate Li diffusion coefficient cannot be measured by traditional electrochemical method in a three-electrode cell due to the phase transformation during measurement, a new method to measure the intrinsic electronic and ionic conductivity of mixed conductive LiFePO 4 was developed. This was based on the conductivity measurements of mixed conductive solid electrolyte using electrochemical impedance spectroscopy (EIS) and blocking electrode. The effects of ionic/electronic conductivity and phase transformation on the rate performance of LiFePO4 were also first investigated by EIS and other electrochemical technologies. Based on the above fundamental kinetics studies, an optimized LiFePO4 was used as a target to deposit 1mum LiFePO4 thin film at Oak Ridge National Laboratory using radio frequency (RF) magnetron sputtering. Similar to the carbon coated LiFePO4 powder electrode, the carbon-contained RF LiFePO4 film with no preferential orientation showed excellent capacity and rate capability both at 25°C and -20

  8. Synthesis of modified polymer inclusion membranes for photo-electrodeposition of cadmium using polarized electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Yahia Cherif, Asma [Laboratory of Hydrometallurgy and Inorganic Molecular Chemistry, Faculty of Chemistry, USTHB, BP 32 El Alia, 16111, Algiers (Algeria); Arous, Omar, E-mail: omararous@yahoo.fr [Laboratory of Hydrometallurgy and Inorganic Molecular Chemistry, Faculty of Chemistry, USTHB, BP 32 El Alia, 16111, Algiers (Algeria); Center of Research in Physical and Chemical Analysis CRAPC, BP 248 Algiers, RP 16004, Algiers (Algeria); Amara, Mourad [Laboratory of Hydrometallurgy and Inorganic Molecular Chemistry, Faculty of Chemistry, USTHB, BP 32 El Alia, 16111, Algiers (Algeria); Omeiri, Said [Center of Research in Physical and Chemical Analysis CRAPC, BP 248 Algiers, RP 16004, Algiers (Algeria); Laboratory of Storage and Valorization of Renewable Energies, Faculty of Chemistry, USTHB, BP 32 El Alia, 16111, Algiers (Algeria); Kerdjoudj, Hacene [Laboratory of Hydrometallurgy and Inorganic Molecular Chemistry, Faculty of Chemistry, USTHB, BP 32 El Alia, 16111, Algiers (Algeria); Trari, Mohamed [Laboratory of Storage and Valorization of Renewable Energies, Faculty of Chemistry, USTHB, BP 32 El Alia, 16111, Algiers (Algeria)

    2012-08-15

    Highlights: Black-Right-Pointing-Pointer Homogeneous PIM membranes containing water soluble polymers have been obtained under new experimental conditions. Black-Right-Pointing-Pointer Photoelectrodeposition of 'Cd' has been carried out using WO{sub 3} and CuFeO{sub 2} as electrode. Black-Right-Pointing-Pointer Using both photo-polarized electrodes enhances transference of cadmium compared to one. Black-Right-Pointing-Pointer Membrane with poly-phosphoric acid (PPA) give a rise of transferred amount of Cd. - Abstract: In this work, we have developed a novel class of polymeric inclusion membranes (PIMs) for the cations separation. The membrane is made up of cellulose triacetate modified by poly-electrolytes (poly-phosphoric acid, polyvinyl pyrolidone, polyacrylic acid, polyvinyl alcohol and poly-anetholsulfonic acid) using 2-hydroxy-5-dodecylbenzaldehyde incorporated into the polymer as carrier and tris ethyl hexyl phosphate or glycerine as plasticizers. Different PIMs are synthesized and characterized by the Fourier transform infrared, X-ray diffraction, thermal analysis and scanning electron microscopy. The influence of the membrane nature is studied using supports with different physical characteristics (porosity, thickness, hydrophobia). As application, the transport of Cd{sup 2+} using PIMs coupled with photo-electrodes is investigated. The photo-catalytic results indicate that the combined system p-CuFeO{sub 2}/membrane/n-WO{sub 3} enhances considerably the electrons transfer toward the delafossite CuFeO{sub 2}. The position of the conduction band of CuFeO{sub 2} is looked to be the key issue for the photo electrochemical Cd{sup 2+} reduction.

  9. Self-Templated Synthesis of Mesoporous Carbon from Carbon Tetrachloride Precursor for Supercapacitor Electrodes.

    Science.gov (United States)

    Tang, Duihai; Hu, Shi; Dai, Fang; Yi, Ran; Gordin, Mikhail L; Chen, Shuru; Song, Jiangxuan; Wang, Donghai

    2016-03-23

    A high-surface-area mesoporous carbon material has been synthesized using a self-templating approach via reduction of carbon tetrachloride by sodium potassium alloy. The advantage is the reduction-generated salt templates can be easily removed with just water. The produced mesoporous carbon has a high surface area and a narrow pore size distribution. When used as a supercapacitor electrode, this material exhibits a high specific capacitance (259 F g(-1)) and excellent cycling performance (>92% capacitance retention for 6000 cycles).

  10. Design, synthesis and anticancer activity of diam(m)ine platinum(II) complexes bearing a small-molecular cell apoptosis inducer dichloroacetate.

    Science.gov (United States)

    Liu, Weiping; Jiang, Jing; Xu, Yongping; Hou, Shuqian; Sun, Liping; Ye, Qingsong; Lou, Liguang

    2015-05-01

    Four new diam(m)ine platinum complexes containing the dichloroacetate moiety in 3-dichoroacetoxylcyclobutane-1,1-dicarboxylate as the leaving group were synthesized, characterized by elemental analysis as well as by ESI(+)-MS (electrospray ionization mass spectrometry in positive mode), FT-IR, (1)H- and (13)C-NMR, and evaluated for their in vitro anticancer activity against human lung cancer cell line (A549) and ovarian cancer cell lines (SK-OV-3, SK-OV-3/DDP). Diam(m)ines used in the present study belong to the carriers of six clinically approved platinum drugs. Among the complexes synthesized, complex 2, cis-[Pt(II)(1R,2R-diaminocyclohexane)·(3-dichoroacetoxylcyclobutane-1,1-dicarboxylate)] is the most promising in terms of water solubility and potential of being totally devoid of cross-drug resistance with cisplatin. Therefore, complex 2 was selected for the dichloroacetate release test. The test shows dichloroacetate can be efficiently released from complex 2 under physiological conditions via the hydrolysis of an ester bond bridging the dichloroacetate moiety and platinum pharmacophores together. Our study supports the further evaluation of this complex as a drug candidate.

  11. Synthesis, characterization, in vitro antitumoral investigations and interaction with plasmid pBR322 DNA of R2eddp-platinum(IV) complexes (R = Et, n-Pr).

    Science.gov (United States)

    Kaluderović, Goran N; Kommera, Harish; Schwieger, Sebastian; Paethanom, Anchan; Kunze, Michael; Schmidt, Harry; Paschke, Reinhard; Steinborn, Dirk

    2009-12-28

    The studies on synthetic, spectroscopic and biological properties of platinum(IV) complexes, [PtCl(4)(R(2)eddp)] (R = Et, 1; n-Pr, 2), containing kappa(2)N,N' bidentate ligands, esters of ethylenediamine-N,N'-di-3-propionic acid (HOOCCH(2)CH(2)NHCH(2)CH(2)NHCH(2)CH(2)COOH, H(2)eddp), are reported. Complexes have been characterized by infrared, (1)H and (13)C NMR spectroscopy and elemental analysis and it was concluded that the coordination of the ligands occurs via nitrogen donor atoms of the ester ligands (R(2)eddp). Cytotoxicity studies were performed for ligand precursors and corresponding platinum(IV) complexes. Although the n-Pr(2)eddp.2HCl itself showed no activity (IC(50) values > 125 microM) in selected cell lines, the activity of complex 2, via apoptotic mode of cell death, has increased significantly for a broad range of cancer cell lines tested in vitro (IC(50) = 8.6-49 microM). As it was found that complexes 1 and 2 are able to interact with pBR322 plasmid DNA, platinum(IV) complexes of this type may act as drugs and pro-drugs.

  12. 铂纳米颗粒形貌控制研究进展%Research Progress in Shape-Controlled Synthesis of Platinum Nanocrystals

    Institute of Scientific and Technical Information of China (English)

    张明媚; 张纪伟; 张丽娟

    2013-01-01

    铂作为催化剂在光化学催化、燃料电池和工业生产等方面有重要的应用,透过控制纳米颗粒的尺寸和形貌可以降低铂用量的同时提高其催化性能.本文对晶体成核与生长的相关理论和利用无机分子或有机分子控制合成特定形貌铂纳米颗粒的研究进行了总结.%Platinum as a catalyst with superior electrical properties has been widely applied in photocatalysis,fuel cells and industrial production.With controlling the size and morphology of nanoparticles,the properties of platinum can be improved.In this paper,the theory of nucleation and growth of crystals,capping agent and surfactant for controlling the platinum morphology are summarized.

  13. Methyl 6-Amino-6-deoxy-d-pyranoside-Conjugated Platinum(II) Complexes for Glucose Transporter (GLUT)-Mediated Tumor Targeting: Synthesis, Cytotoxicity, and Cellular Uptake Mechanism.

    Science.gov (United States)

    Li, Taoli; Gao, Xiangqian; Yang, Liu; Shi, Yunli; Gao, Qingzhi

    2016-05-19

    Methyl 6-aminodeoxy-d-pyranoside-derived platinum(II) glycoconjugates were designed and synthesized based on the clinical drug oxaliplatin for glucose transporter (GLUT)-mediated tumor targeting. In addition to a substantial improvement in water solubility, the conjugates exhibited cytotoxicity similar to or higher than that of oxaliplatin in six different human cancer cell lines. GLUT-mediated transport of the complexes was investigated with a cell-based fluorescence competition assay and GLUT-inhibitor-mediated cytotoxicity analysis in a GLUT-overexpressing human colorectal adenocarcinoma (HT29) cell line. The antitumor effect of the aminodeoxypyranoside-conjugated platinum(II) complexes was found to depend significantly on the GLUT inhibitor, and the cellular uptake of the molecules was regulated by GLUT-mediated transport. The results from this study demonstrate the potential advantages of aminodeoxypyranosides as sugar motifs for glycoconjugation for Warburg-effect-targeted drug design. These fundamental results also support the potential of aminodeoxypyranoside-conjugated platinum(II) complexes as lead compounds for further preclinical evaluation.

  14. Platinum Migration at the Pt/YSZ Interface

    DEFF Research Database (Denmark)

    Nielsen, Jimmi; Jacobsen, Torben

    2006-01-01

    by potential sweep, step and impedance techniques. As expected, inductive behaviour and activation during step polarization is confirmed, but furthermore, a very accentuated noise pattern is seen during cathodic step polarization. Investigation of the YSZ and Pt surfaces afterwards reveals the growth......Electrode activation, inductive hysteresis and non-linearity are well known phenomena on Pt-YSZ electrodes, and recently also regular fluctuation patterns have been reported. The oxygen electrode on YSZ surfaces is studied at Pt micro-electrodes prepared by electrochemical etching of platinum wire...... of dendrite like Pt structures from the TPB. The formation of these may explain the observed noise and contribute to the explanation of the activation mechanism taking place at the platinum-YSZ interface....

  15. Platinum electrodeposition from a dinitrosulfatoplatinate(II) electrolyte

    Science.gov (United States)

    Weiser, Mathias; Schulze, Claudia; Schneider, Michael; Michaelis, Alexander

    2016-12-01

    In this work a halogen-free electrolyte to deposit platinum nanoparticle is studied. The investigated [Pt(NO2)2SO4]2--complex is suitable for electrochemical deposition on halogen sensitive substrates. The mechanism and kinetic of particle deposition is investigated using a glassy carbon rotating disk electrode. Nano sized platinum particles are deposited by using pulse plating technique. The size of the smallest platinum nanoparticle is 5 nm. The shape of the particle distribution strictly depends on the plating time. The platinum deposition is usually superimposed with hydrogen evolution. A diffusion coefficient of the [Pt(NO2)2SO4]2--complex is determined to 5.4 × 10-6 cm2s-1. The current efficiency depends on the deposition parameters and amounts to 37% under the chosen pulse plating conditions.

  16. Synthesis and Electrochemical Analysis of Algae Cellulose-Polypyrrole-Graphene Nanocomposite for Supercapacitor Electrode.

    Science.gov (United States)

    Aphale, Ashish; Chattopadhyay, Aheli; Mahakalakar, Kapil; Patra, Prabir

    2015-08-01

    A novel nanocomposite has been developed using extracted cellulose from marine algae coated with conductive polypyrrole and graphene nanoplateletes. The nanocomposite fabricated via in situ polymerization was used as an electrode for a supercapacitor device. The nanocomposite material has been electrochemically characterized using cyclic voltammetry to test its potential to super-capacitive behavior. The specific capacitance of polypyrrole-graphene-cellulose nanocomposite as calculated from cyclic voltammetry curve is 91.5 Fg-1 at the scan rate 50 mV s-1. Transmission electron microscope images show the polymerized polypyrrole -graphene coated cellulosic nanofibers. Scanning electron microscope images reveal an interesting "necklace" like beaded morphology on the cellulose fibers. It is observed that the necklace like structure start to disintegrate with the increase in graphene concentration. The open circuit voltage of the device with polypyrrole-graphene-cellulose electrode was found to be around 225 mV and that of the polypyrrole-cellulose device is only 53 mV without graphene. The results suggest marked improvement in the performance of the nanocomposite supercapacitor device upon graphene inclusion.

  17. Low-temperature synthesis of carbon nanotubes on indium tin oxide electrodes for organic solar cells

    Science.gov (United States)

    Salamandra, Luigi; Di Carlo, Aldo; Bell, John Marcus; Motta, Nunzio

    2012-01-01

    Summary The electrical performance of indium tin oxide (ITO) coated glass was improved by including a controlled layer of carbon nanotubes directly on top of the ITO film. Multiwall carbon nanotubes (MWCNTs) were synthesized by chemical vapor deposition, using ultrathin Fe layers as catalyst. The process parameters (temperature, gas flow and duration) were carefully refined to obtain the appropriate size and density of MWCNTs with a minimum decrease of the light harvesting in the cell. When used as anodes for organic solar cells based on poly(3-hexylthiophene) (P3HT) and phenyl-C61-butyric acid methyl ester (PCBM), the MWCNT-enhanced electrodes are found to improve the charge-carrier extraction from the photoactive blend, thanks to the additional percolation paths provided by the CNTs. The work function of as-modified ITO surfaces was measured by the Kelvin probe method to be 4.95 eV, resulting in an improved matching to the highest occupied molecular orbital level of the P3HT. This is in turn expected to increase the hole transport and collection at the anode, contributing to the significant increase of current density and open-circuit voltage observed in test cells created with such MWCNT-enhanced electrodes. PMID:23019547

  18. Facile synthesis of birnessite-type manganese oxide nanoparticles as supercapacitor electrode materials.

    Science.gov (United States)

    Liu, Lihu; Luo, Yao; Tan, Wenfeng; Zhang, Yashan; Liu, Fan; Qiu, Guohong

    2016-11-15

    Manganese oxides are environmentally benign supercapacitor electrode materials and, in particular, birnessite-type structure shows very promising electrochemical performance. In this work, nanostructured birnessite was facilely prepared by adding dropwise NH2OH·HCl to KMnO4 solution under ambient temperature and pressure. In order to fully exploit the potential of birnessite-type manganese oxide electrode materials, the effects of specific surface area, pore size, content of K(+), and manganese average oxidation state (Mn AOS) on their electrochemical performance were studied. The results showed that with the increase of NH2OH·HCl, the Mn AOS decreased and the corresponding pore sizes and specific surface area of birnessite increased. The synthesized nanostructured birnessite showed the highest specific capacitance of 245Fg(-1) at a current density of 0.1Ag(-1) within a potential range of 0-0.9V, and excellent cycle stability with a capacitance retention rate of 92% after 3000 cycles at a current density of 1.0Ag(-1). The present work implies that specific capacitance is mainly affected by specific surface area and pore volume, and provides a new method for the facile preparation of birnessite-type manganese oxide with excellent capacitive performance.

  19. Low-temperature synthesis of carbon nanotubes on indium tin oxide electrodes for organic solar cells.

    Science.gov (United States)

    Capasso, Andrea; Salamandra, Luigi; Di Carlo, Aldo; Bell, John Marcus; Motta, Nunzio

    2012-01-01

    The electrical performance of indium tin oxide (ITO) coated glass was improved by including a controlled layer of carbon nanotubes directly on top of the ITO film. Multiwall carbon nanotubes (MWCNTs) were synthesized by chemical vapor deposition, using ultrathin Fe layers as catalyst. The process parameters (temperature, gas flow and duration) were carefully refined to obtain the appropriate size and density of MWCNTs with a minimum decrease of the light harvesting in the cell. When used as anodes for organic solar cells based on poly(3-hexylthiophene) (P3HT) and phenyl-C61-butyric acid methyl ester (PCBM), the MWCNT-enhanced electrodes are found to improve the charge-carrier extraction from the photoactive blend, thanks to the additional percolation paths provided by the CNTs. The work function of as-modified ITO surfaces was measured by the Kelvin probe method to be 4.95 eV, resulting in an improved matching to the highest occupied molecular orbital level of the P3HT. This is in turn expected to increase the hole transport and collection at the anode, contributing to the significant increase of current density and open-circuit voltage observed in test cells created with such MWCNT-enhanced electrodes.

  20. Low-temperature synthesis of carbon nanotubes on indium tin oxide electrodes for organic solar cells

    Directory of Open Access Journals (Sweden)

    Andrea Capasso

    2012-07-01

    Full Text Available The electrical performance of indium tin oxide (ITO coated glass was improved by including a controlled layer of carbon nanotubes directly on top of the ITO film. Multiwall carbon nanotubes (MWCNTs were synthesized by chemical vapor deposition, using ultrathin Fe layers as catalyst. The process parameters (temperature, gas flow and duration were carefully refined to obtain the appropriate size and density of MWCNTs with a minimum decrease of the light harvesting in the cell. When used as anodes for organic solar cells based on poly(3-hexylthiophene (P3HT and phenyl-C61-butyric acid methyl ester (PCBM, the MWCNT-enhanced electrodes are found to improve the charge-carrier extraction from the photoactive blend, thanks to the additional percolation paths provided by the CNTs. The work function of as-modified ITO surfaces was measured by the Kelvin probe method to be 4.95 eV, resulting in an improved matching to the highest occupied molecular orbital level of the P3HT. This is in turn expected to increase the hole transport and collection at the anode, contributing to the significant increase of current density and open-circuit voltage observed in test cells created with such MWCNT-enhanced electrodes.

  1. Synthesis and characterization of DSSC by using Pt nano-counter electrode: photosensor applications

    Science.gov (United States)

    Yahia, I. S.; AlFaify, S.; Al-ghamdi, Attieh A.; Hafez, Hoda S.; EL-Bashir, S.; Al-Bassam, A.; El-Naggar, A. M.; Yakuphanoglu, F.

    2016-06-01

    Pt electrode prepared by chemical method has been employed as counter electrode in dye-sensitized solar cell. TiO2 nanomaterial was deposited on fluorine-doped tin oxide substrate to be used as photoanode. Structure of the TiO2 and Pt films was investigated by atomic force microscope. The effect of illumination intensity on the photovoltaic parameters such as open circuit voltage, short circuit current density, output power, fill factor and efficiency of these cells was investigated in the range 2.5-130 mW/cm-2. The cell efficiency is stable above 70 mW/cm2. The fill factor is almost constant all over the studied range of illumination intensity. Impedance spectroscopy of the studied device as the summary measurements of the capacitance-voltage, conductance-voltage and series resistance-voltage characteristics were investigated in a wide range of frequencies (5 kHz-1 MHz). At low frequencies, the capacitance has positive values with peak around the origin due to the interfaces. At 200 and 300 kHz, the capacitance is inverted to negative with further increasing of the positive biasing voltage. Above 400 kHz, C-V profile shows complete negative behavior. Also, the impedance-voltage and phase-voltage characteristics were investigated. This cell shows a new promising device for photosensor applications due to high sensitivity in low and high illuminations.

  2. Fabrication of spintronics device by direct synthesis of single-walled carbon nanotubes from ferromagnetic electrodes

    Directory of Open Access Journals (Sweden)

    Mohd Ambri Mohamed, Nobuhito Inami, Eiji Shikoh, Yoshiyuki Yamamoto, Hidenobu Hori and Akihiko Fujiwara

    2008-01-01

    Full Text Available We describe an alternative method for realizing a carbon nanotube spin field-effect transistor device by the direct synthesis of single-walled carbon nanotubes (SWNTs on substrates by alcohol catalytic chemical vapor deposition. We observed hysteretic magnetoresistance (MR at low temperatures due to spin-dependent transport. In these devices, the maximum ratio in resistance variation of MR was found to be 1.8%.

  3. Synthesis of mesoporous carbon as electrode material for supercapacitor by modified template method

    Institute of Scientific and Technical Information of China (English)

    ZHAO Jia-chang; LAI Chun-yan; DAI Yang; XIE Jing-ying

    2005-01-01

    The pore structures and electrochemical performances of mesoporous carbons prepared by silica sol template method as electrode material for supercapacitor were investigated. The mean pore size and mass specific capacitance of the mesoporous carbons increase with the increase of mass ratio of silica sol to carbon source (glucose). A modified template method, combining silica sol template method and ZnCl2 chemical activation method, was proposed to improve the mass specific capacitance of the mesoporous carbon with an improved BET surface area. The correlation of rate capability and pore structure was studied by constant current discharge and electrochemical impedance spectroscopy. A commercially available microporous carbon was used for comparison. The result shows that mesoporous carbon with a larger pore size displays a higher rate capability. Mesoporous carbon synthesized by modified template method has both high mass specific capacitance and good rate capability.

  4. Synthesis and electrochemical properties of three-dimensional graphene/polyaniline composites for supercapacitor electrode materials

    Institute of Scientific and Technical Information of China (English)

    赵文; 何大伟; 王永生; 杜翔; 忻昊

    2015-01-01

    To improve the specific capacitance and rate capability of electrode material for supercapacitors, a three-dimensional graphene/polyaniline (3DGN/PANI) composite is prepared via in situ polymerization on GN hydrogel. PANI grows on the GN surface as a thin film, and its content in the composite is controlled by the concentration of the reaction monomer. The specific capacitance of the 3DGN/PANI composite containing 10 wt%PANI reaches 322.8 F·g−1 at a current density of 1 A·g−1, nearly twice as large as that of the pure 3DGN (162.8 F·g−1). The capacitance of the composite is 307.9 F·g−1 at 30 A·g−1 (maintaining 95.4%), and 89%retention after 500 cycles. This study demonstrates the exciting potential of 3DGN/PANI with high capacitance, excellent rate capability and long cycling life for supercapacitors.

  5. Simple Synthesis of Molybdenum Disulfide/Reduced Graphene Oxide Composite Hollow Microspheres as Supercapacitor Electrode Material

    Directory of Open Access Journals (Sweden)

    Wei Xiao

    2016-09-01

    Full Text Available MoS2/RGO composite hollow microspheres were hydrothermally synthesized by using SiO2/GO microspheres as a template, which were obtained via the sonication-assisted interfacial self-assembly of tiny GO sheets on positively charged SiO2 microspheres. The structure, morphology, phase, and chemical composition of MoS2/RGO hollow microspheres were systematically investigated by a series of techniques such as FE-SEM, TEM, XRD, TGA, BET, and Raman characterizations, meanwhile, their electrochemical properties were carefully evaluated by CV, GCD, and EIS measurements. It was found that MoS2/RGO hollow microspheres possessed unique porous hollow architecture with high-level hierarchy and large specific surface area up to 63.7 m2·g−1. When used as supercapacitor electrode material, MoS2/RGO hollow microspheres delivered a maximum specific capacitance of 218.1 F·g−1 at the current density of 1 A·g−1, which was much higher than that of contrastive bare MoS2 microspheres developed in the present work and most of other reported MoS2-based materials. The enhancement of supercapacitive behaviors of MoS2/RGO hollow microspheres was likely due to the improved conductivity together with their distinct structure and morphology, which not only promoted the charge transport but also facilitated the electrolyte diffusion. Moreover, MoS2/RGO hollow microsphere electrode displayed satisfactory long-term stability with 91.8% retention of the initial capacitance after 1000 charge/discharge cycles at the current density of 3 A·g−1, showing excellent application potential.

  6. Platinum hypersensitivity and desensitization.

    Science.gov (United States)

    Miyamoto, Shingo; Okada, Rika; Ando, Kazumichi

    2015-09-01

    Platinum agents are drugs used for various types of cancer. With increased frequency of administration of platinum agents, hypersensitivity reactions appear more frequently, occurring in over 25% of cases from the seventh cycle or second line onward. It then becomes difficult to conduct treatment using these agents. Various approaches have been investigated to address hypersensitivity reactions to platinum agents. Desensitization, which gradually increases the concentration of the anticancer drug considered to be the antigen until the target dosage, has been reported as being particularly effective, with a success rate of 80-100%. The aims of this paper are to present the current findings regarding hypersensitivity reactions to platinum agents and to discuss attempts of using desensitization against hypersensitivity reactions worldwide. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  7. Synthesis and electrocatalytic water oxidation by electrode-bound helical peptide chromophore-catalyst assemblies.

    Science.gov (United States)

    Ryan, Derek M; Coggins, Michael K; Concepcion, Javier J; Ashford, Dennis L; Fang, Zhen; Alibabaei, Leila; Ma, Da; Meyer, Thomas J; Waters, Marcey L

    2014-08-01

    Artificial photosynthesis based on dye-sensitized photoelectrosynthesis cells requires the assembly of a chromophore and catalyst in close proximity on the surface of a transparent, high band gap oxide semiconductor for integrated light absorption and catalysis. While there are a number of approaches to assemble mixtures of chromophores and catalysts on a surface for use in artificial photosynthesis based on dye-sensitized photoelectrosynthesis cells, the synthesis of discrete surface-bound chromophore-catalyst conjugates is a challenging task with few examples to date. Herein, a versatile synthetic approach and electrochemical characterization of a series of oligoproline-based light-harvesting chromophore-water-oxidation catalyst assemblies is described. This approach combines solid-phase peptide synthesis for systematic variation of the backbone, copper(I)-catalyzed azide-alkyne cycloaddition (CuAAC) as an orthogonal approach to install the chromophore, and assembly of the water-oxidation catalyst in the final step. Importantly, the catalyst was found to be incompatible with the conditions both for amide bond formation and for the CuAAC reaction. The modular nature of the synthesis with late-stage assembly of the catalyst allows for systematic variation in the spatial arrangement of light-harvesting chromophore and water-oxidation catalyst and the role of intrastrand distance on chromophore-catalyst assembly properties. Controlled potential electrolysis experiments verified that the surface-bound assemblies function as water-oxidation electrocatalysts, and electrochemical kinetics data demonstrate that the assemblies exhibit greater than 10-fold rate enhancements compared to the homogeneous catalyst alone.

  8. Heterogeneous platinum-catalyzed hydrogenation of dialkyl(diolefin)platinum(II) complexes: A new route to platinum surface alkyls

    OpenAIRE

    McCarthy, Thomas J.; Shih, Yen-Shiang; Whitesides, George M.

    1981-01-01

    Platinum metal catalyzes the reduction of dialkyl(diolefin)platinum(II) complexes by dihydrogen to alkanes and platinum(0). The reaction involves adsorption of the platinum(II) complex on the platinum(0) catalyst surface with conversion of the alkyl moieties to platinum surface alkyls; these appear as alkane products. The platinum atom originally present in the soluble organoplatinum species becomes part of the platinum(0) surface.

  9. Efficient Synthesis of a Maghemite/Gold Hybrid Nanoparticle System as a Magnetic Carrier for the Transport of Platinum-Based Metallotherapeutics

    Directory of Open Access Journals (Sweden)

    Pavel Štarha

    2015-01-01

    Full Text Available The preparation and thorough characterization of a hybrid magnetic carrier system for the possible transport of activated platinum-based anticancer drugs, as demonstrated for cisplatin (cis-[Pt(NH32Cl2], CDDP, are described. The final functionalized mag/Au–LA–CDDP* system consists of maghemite/gold nanoparticles (mag/Au coated by lipoic acid (HLA; LA stands for deprotonated form of lipoic acid and functionalized by activated cisplatin in the form of cis-[Pt(NH32(H2O2]2+ (CDDP*. The relevant techniques (XPS, EDS, ICP-MS proved the incorporation of the platinum-containing species on the surface of the studied hybrid system. HRTEM, TEM and SEM images showed the nanoparticles as spherical with an average size of 12 nm, while their superparamagnetic feature was proven by 57Fe Mössbauer spectroscopy. In the case of mag/Au, mag/Au–HLA and mag/Au–LA–CDDP*, weaker magnetic interactions among the Fe3+ centers of maghemite, as compared to maghemite nanoparticles (mag, were detected, which can be associated with the non-covalent coating of the maghemite surface by gold. The pH and time-dependent stability of the mag/Au–LA–CDDP* system in different media, represented by acetate (pH 5.0, phosphate (pH 7.0 and carbonate (pH 9.0 buffers and connected with the release of the platinum-containing species, showed the ability of CDDP* to be released from the functionalized nanosystem.

  10. Solvothermal synthesis of a polyaniline nanocomposite – a prospective biosensor electrode material

    Directory of Open Access Journals (Sweden)

    R. K. Agrawalla

    2016-09-01

    Full Text Available Polyaniline (PANI is the most important conducting polymer with excellent electrochemical properties. So PANIbased biosensors may find wide applications in medical diagnostics. We report here a ternary nanocomposite of gold nanoparticle-decorated single- walled carbon nanotubes (SWCNTs embedded in sulfonated polyaniline matrix, prepared using a simple solvothermal chemical route. The structural and morphological characteristics have been determined by electron microscopy, X-ray diffraction and Raman spectroscopy. Optical characteristics of the nanocomposite have been determined by ultraviolet (UV-visible absorption spectroscopy and photoluminescence spectroscopy. The direct current (DC-conductivity measurement of the material shows a significant increase in electrical conductivity at 353 K from 7.80·10–2 S/m for pure SPANI to 10.91 S/m for the 3-phase nanocomposite as synthesized in the present investigations. Thus the incorporation of SWCNT/Au nanohybrid fibers in the PANI matrix enhanced its electrical properties. Sulfonation increased the processability of the material, as the samples have now been found to be soluble in water and common organic solvents like DMSO. Such a functional nanocomposite will make an excellent biosensor electrode material.

  11. Carbothermal synthesis of Sn-based composites as negative electrode for lithium-ion batteries

    Science.gov (United States)

    Mouyane, M.; Ruiz, J.-M.; Artus, M.; Cassaignon, S.; Jolivet, J.-P.; Caillon, G.; Jordy, C.; Driesen, K.; Scoyer, J.; Stievano, L.; Olivier-Fourcade, J.; Jumas, J.-C.

    The composite [Sn-BPO 4/ xC] to be used as negative electrode material for the storage of electrochemical energy was obtained by dispersing electroactive tin species onto a BPO 4 buffer matrix by carbothermal reduction of a mixture of SnO 2 and nanosized BPO 4. This composite material was thoroughly characterized by X-ray diffraction, Scanning Electron Microscopy, 119Sn Mössbauer spectroscopy and Raman spectroscopy. The electrochemical tests of this new material highlight its very interesting electrochemical properties, i.e., a discharge capacity of 850 mAh g -1 for the first cycle and reversible capacity around 585 mAh g -1 at C/5 rate. These electrochemical performances are attributed to the very high dispersion and stabilisation of tin metal particles onto the BPO 4 matrix. The irreversible capacity observed for the first charge/discharge cycle is due the reduction of interfacial Sn II species and to the passivation of the anode surface by liquid electrolyte decomposition (formation of the SEI layer).

  12. Synthesis of modified polymer inclusion membranes for photo-electrodeposition of cadmium using polarized electrodes.

    Science.gov (United States)

    Cherif, Asma Yahia; Arous, Omar; Amara, Mourad; Omeiri, Said; Kerdjoudj, Hacène; Trari, Mohamed

    2012-08-15

    In this work, we have developed a novel class of polymeric inclusion membranes (PIMs) for the cations separation. The membrane is made up of cellulose triacetate modified by poly-electrolytes (poly-phosphoric acid, polyvinyl pyrolidone, polyacrylic acid, polyvinyl alcohol and poly-anetholsulfonic acid) using 2-hydroxy-5-dodecylbenzaldehyde incorporated into the polymer as carrier and tris ethyl hexyl phosphate or glycerine as plasticizers. Different PIMs are synthesized and characterized by the Fourier transform infrared, X-ray diffraction, thermal analysis and scanning electron microscopy. The influence of the membrane nature is studied using supports with different physical characteristics (porosity, thickness, hydrophobia). As application, the transport of Cd(2+) using PIMs coupled with photo-electrodes is investigated. The photo-catalytic results indicate that the combined system p-CuFeO(2)/membrane/n-WO(3) enhances considerably the electrons transfer toward the delafossite CuFeO(2). The position of the conduction band of CuFeO(2) is looked to be the key issue for the photo electrochemical Cd(2+) reduction.

  13. Synthesis of ZnWO4 Electrode with tailored facets: Deactivating the Microorganisms through Photoelectrocatalytic methods

    Science.gov (United States)

    Zhan, Su; Zhou, Feng; Huang, Naibao; Liu, Yujun; He, Qiuchen; Tian, Yu; Yang, Yifan; Ye, Fei

    2017-01-01

    The exotic invasive species from the ballast water in the ship will bring about serious damages to ecosystem. Photocatalyst films have been widely studied for sterilization. In this study, ZnWO4 with different exposed facets was synthesized by hydrothermal method, and ZnWO4 film electrodes have been applied in ballast water treatment through the electro-assisted photocatalytic system. Then the samples were investigated by X-ray diffraction (XRD), X-ray photo-electron spectroscopy (XPS), Field emission on scanning electron microcopy (FE-SEM), Transmission electron microscopy (TEM), UV-vis diffuse reflectance spectroscopy (DRS), BET specific surface area analysis, Fourier transform infrared (FT-IR) and Electrochemical impedance spectra (EIS). ZnWO4 with an appropriate exposure of (0 1 1) facets ratio exhibited the best photocatalytic and photoelectrocatalytic activities. The microorganisms deactivated completely in 10 min by ZnWO4 films with 3 V bias. The mechanisms of (0 1 1) facets enhanced the photocatalytic and photoelectrocatalytic activities which were deduced based on the calculated result from the first principles. Simultaneously, appropriate exposed facets and applied bias could reduce the recombination of the photogenerated electron-hole pairs, and improve the photocatalytic activities of ZnWO4.

  14. In-situ synthesis of Co3O4/graphite nanocomposite for high-performance supercapacitor electrode applications

    Science.gov (United States)

    Gopalakrishnan, M.; Srikesh, G.; Mohan, A.; Arivazhagan, V.

    2017-05-01

    In this work, a low cost and pollution free in-situ synthesis of phase pure Co3O4 nanoparticles and Co3O4/graphite nanocomposite have been successfully developed via co-precipitation method followed by the thermal treatment process. The prepared samples were characterized by powder X-ray diffraction, scanning electron microscope, high resolution transmission electron microscope, Fourier Transform Infrared Spectroscopy and electrochemical measurements. Electrochemical measurements such as cyclic voltammetry, galvanostatic charge-discharge, electrochemical impedance spectroscopy were carried out in 6 M KOH aqueous electrolytic solution. The results show the excellent maximum specific capacitive behavior of 239.5 F g-1 for pure and 395.04 F g-1 for Co3O4/graphite nanocomposite at a current density of 0.5 A g-1. This composite exhibits a good cyclic stability, with a small loss of 2.68% of maximum capacitance over a consecutive 1000 cycles. The investigation indicates that the prepared electrode material could be a potential and promising candidate for electrochemical supercapacitors.

  15. Optimized Synthesis of Carbon Aerogels via Ambient Pressure Drying Process as Electrode for Supercapacitors

    Institute of Scientific and Technical Information of China (English)

    YUAN Lei; CHANG Lijuan; FU Zhibing; YANG Xi; JIAO Xingli; TANG Yongjian; LIU Xichuan; WANG Chaoyang

    2015-01-01

    Carbon aerogels were synthesized via ambient pressure drying process using resorcinol-formaldehyde as precursor and P123 to strengthen their skeletons. CO2 activation technology was implemented to improve surface areas and adjust pore size distribution. The synthesis process was optimized, and the morphology, structure, adsorption properties and electrochemical behavior of different samples were characterized. The CO2-activated samples achieved a high specific capacitance of 129.2 F/g in 6 M KOH electrolytes at the current density of 1 mA/cm2 within the voltage range of 0-0.8 V. The optimized activation temperature and duration were determined to be 950℃and 4 h, respectively.

  16. Morphology controlled synthesis of platinum nanoparticles performed on the surface of graphene oxide using a gas-liquid interfacial reaction and its application for high-performance electrochemical sensing.

    Science.gov (United States)

    Bai, Wushuang; Sheng, Qinglin; Zheng, Jianbin

    2016-07-21

    In this paper, we report a novel morphology-controlled synthetic method. Platinum (Pt) nanoparticles with three kinds of morphology (aggregation-like, cube-like and globular) were grown on the surface of graphene oxide (GO) using a simple gas-liquid interfacial reaction and Pt/GO nanocomposites were obtained successfully. According to the experimental results, the morphology of the Pt nanoparticles can be controlled by adjusting the reaction temperature with the protection of chitosan. The obtained Pt/GO nanocomposites were characterized using transmission electron microscopy (TEM), X-ray diffraction (XRD) and fourier transform infrared spectroscopy (FTIR). Then the Pt/GO nanocomposites with the three kinds of morphology were all used to fabricate electrochemical sensors. The electrochemical experimental results indicated that compared with various reported electrochemical sensors, the Pt/GO modified sensors in this work exhibit a low detection limit, high sensitivity and an extra wide linear range for the detection of nitrite. In addition, the synthesis of Pt particles based on a gas-liquid interfacial reaction provides a new platform for the controllable synthesis of nanomaterials.

  17. Synthesis, DFT calculations and cytotoxic investigation of platinum complexes with 3-thiolanespiro-5‧-hydantoin and 4-thio-1H-tetrahydropyranespiro-5‧-hydantoin

    Science.gov (United States)

    Bakalova, Adriana; Buyukliev, Rossen; Momekov, Georgi

    2015-07-01

    Two organic compounds - 3-thiolanespiro-5‧-hydantoin, 4-thio-1H-tetrahydropyranespiro-5‧-hydantoin and four new Pt(II) and Pt(IV) complexes with general formulas cis-[Pt(L)2Cl2] and cis-[Pt(L)2Cl4] were synthesized. The obtained compounds were characterized by elemental analysis, IR, 1H, 13C NMR spectroscopy. The hybrid DFT calculations were used for optimization of the structure geometries of the ligand (L1) and its Pt(II) complex (1). The calculated structural parameters such as bond lengths and angles are in good agreement with the experimental data for similar hydantoins and their platinum complexes. The obtained results showed that the geometry of the complex (1) is plane square and the bounding of the L1 with platinum ion is realized by sulfur atom from thiolane ring. The complexes were tested for cytotoxicity in vitro on four human tumor cell lines. The tested compounds exerted concentration-dependent cytotoxic effects against some of the tumor cell lines.

  18. Quinoxaline-2-carboxamide as a carrier ligand in two new platinum(II) compounds: Synthesis, crystal structure, cytotoxic activity and DNA interaction.

    Science.gov (United States)

    Marqués-Gallego, Patricia; Gamiz-Gonzalez, M Amparo; Fortea-Pérez, Francisco R; Lutz, Martin; Spek, Anthony L; Pevec, Andrej; Kozlevčar, Bojan; Reedijk, Jan

    2010-06-01

    The search for platinum compounds structurally different from cisplatin has led to two new platinum(II) compounds containing quinoxaline-2-carboxamide as a carrier ligand, i.e. cis-[Pt(qnxca)(MeCN)Cl2] (1) and the [Pt(qnxca-H)(dmso)Cl] (2). Both compounds have been synthesized and characterized using different spectroscopic methods. In addition, single-crystal structures have been determined by X-Ray diffraction for both compounds. In each case a square planar Pt(II) is present; in (1) the qnxca is monodentate and neutral, whereas in (2) the ligand has lost a hydrogen, to form the anionic chelating ligand abbreviated as qnxca-H. The biological activity of both compounds has been investigated in a panel of seven human tumour cells, displaying poor cytotoxic activity, compared to cisplatin. The interaction of the new compounds with 1 or 2 equiv. of 9-ethylguanine has been studied using (1)H NMR, (195)Pt NMR and ESI-MS spectroscopy, finding poor reactivity of 1 towards the model base, forming only the monosubstituted adduct. Surprisingly, compound 2, which is more sterically crowded, interacts more efficiently with the 9-EtG, forming a bifunctional adduct with two 9-EtG with substitution of the dmso and the chloride ligand. Unwinding studies of pUC19 plasmid DNA by compound 1 show similar unwinding properties to cisplatin.

  19. Porous platinum-based catalysts for oxygen reduction

    Science.gov (United States)

    Erlebacher, Jonah D; Snyder, Joshua D

    2014-11-25

    A porous metal that comprises platinum and has a specific surface area that is greater than 5 m.sup.2/g and less than 75 m.sup.2/g. A fuel cell includes a first electrode, a second electrode spaced apart from the first electrode, and an electrolyte arranged between the first and the second electrodes. At least one of the first and second electrodes is coated with a porous metal catalyst for oxygen reduction, and the porous metal catalyst comprises platinum and has a specific surface area that is greater than 5 m.sup.2/g and less than 75 m.sup.2/g. A method of producing a porous metal according to an embodiment of the current invention includes producing an alloy consisting essentially of platinum and nickel according to the formula Pt.sub.xNi.sub.1-x, where x is at least 0.01 and less than 0.3; and dealloying the alloy in a substantially pH neutral solution to reduce an amount of nickel in the alloy to produce the porous metal.

  20. Toxicity of platinum compounds.

    Science.gov (United States)

    Hartmann, Jörg Thomas; Lipp, Hans-Peter

    2003-06-01

    Since the introduction of platinum-based combination chemotherapy, particularly cisplatin, the outcome of the treatment of many solid tumours has changed. The leading platinum compounds in cancer chemotherapy are cisplatin, carboplatin and oxaliplatin. They share some structural similarities; however, there are marked differences between them in therapeutic use, pharmacokinetics and adverse effects profiles [1-4]. Compared to cisplatin, carboplatin has inferior efficacy in germ-cell tumour, head and neck cancer and bladder and oesophageal carcinoma, whereas both drugs seem to have comparable efficacy in advanced non-small cell and small cell lung cancer as well as ovarian cancer [5-7]. Oxaliplatin belongs to the group of diaminocyclohexane platinum compounds. It is the first platinum-based drug that has marked efficacy in colorectal cancer when given in combination with 5-fluorouracil and folinic acid [8,9]. Other platinum compounds such as oral JM216, ZD0473, BBR3464 and SPI-77, which is a pegylated liposomal formulation of cisplatin, are still under investigation [10-13], whereas nedaplatin has been approved in Japan for the treatment of non-small cell lung cancer and other solid tumours. This review focuses on cisplatin, carboplatin and oxaliplatin.

  1. Synthesis of LiFePO4/C composite electrode with enhanced electrochemical performance

    Institute of Scientific and Technical Information of China (English)

    HU Guo-rong; GAO Xu-guang; PENG Zhong-dong; CHEN Zhao-yong; TAN Xian-yan; YU Xiao-yuan

    2005-01-01

    LiFePO4/C composite was synthesized by high temperature solid-state reaction using iron( Ⅱ ) oxalate,ammonium di-hydrogen phosphate and lithium carbonate with a kind of carbohydrate dissolved in the dispersant(ethanol) as carbon sources added to the synthetic precursor. The samples were characterized by X-ray diffraction (XRD), scanning electron microscopy observations(SEM), charge/discharge test, cyclic voltammetry(CV) and carbon analysis. The results show that the synthesis of LiFePO4/C has ordered olivine structure. The carbon has two advantages: optimizing particle size of LiFePO4 and increasing the electronic conductivity and high Li+ diffusivity.The cathode material can demonstrate a charge/discharge flat voltage of 3.4 V(vs Li+/Li). Especially the active material with 15 % and 20% carbohydrate added according to the final product of lithium iron phosphate shows very respectively at 0. 1 C rate and the carbon contents in the final production are only 5.17% and 5.29%, respectively.

  2. Responses of fibroblasts and glial cells to nanostructured platinum surfaces

    Science.gov (United States)

    Pennisi, C. P.; Sevcencu, C.; Dolatshahi-Pirouz, A.; Foss, M.; Lundsgaard Hansen, J.; Nylandsted Larsen, A.; Zachar, V.; Besenbacher, F.; Yoshida, K.

    2009-09-01

    The chronic performance of implantable neural prostheses is affected by the growth of encapsulation tissue onto the stimulation electrodes. Encapsulation is associated with activation of connective tissue cells at the electrode's metallic contacts, usually made of platinum. Since surface nanotopography can modulate the cellular responses to materials, the aim of the present work was to evaluate the 'in vitro' responses of connective tissue cells to platinum strictly by modulating its surface nanoroughness. Using molecular beam epitaxy combined with sputtering, we produced platinum nanostructured substrates consisting of irregularly distributed nanopyramids and investigated their effect on the proliferation, cytoskeletal organization and cellular morphology of primary fibroblasts and transformed glial cells. Cells were cultured on these substrates and their responses to surface roughness were studied. After one day in culture, the fibroblasts were more elongated and their cytoskeleton less mature when cultured on rough substrates. This effect increased as the roughness of the surface increased and was associated with reduced cell proliferation throughout the observation period (4 days). Morphological changes also occurred in glial cells, but they were triggered by a different roughness scale and did not affect cellular proliferation. In conclusion, surface nanotopography modulates the responses of fibroblasts and glial cells to platinum, which may be an important factor in optimizing the tissue response to implanted neural electrodes.

  3. Synthesis of H2SO4 doped polyaniline film by potentiometric method

    Indian Academy of Sciences (India)

    P D Gaikwad; D J Shirale; V K Gade; P A Savale; H J Kharat; K P Kakde; S S Hussaini; N R Dhumane; M D Shirsat

    2006-04-01

    H2SO4 doped polyaniline films were synthesized in aqueous acidic media. The polyaniline film deposited on platinum electrode exhibits highest conductivity. The conductivity of each H2SO4 doped polyaniline sample was determined by the four-probe technique. The current–voltage curve exhibits that polyaniline sample has an ohmic behaviour. Experiments were conducted to establish the conductivity of the sample from room temperature to 110°C. The current was set constant. It has been observed that at lower current as well as higher current conductivity of the polyaniline sample is due to the electrons transferred to the conduction band. It is observed that the concentration ratio of 0.2 : 1 of aniline and H2SO4 for synthesis of PANI film on platinum electrode shows good conductivity.

  4. Synthesis of CdS flower-like hierarchical microspheres as electrode material for electrochemical performance

    Energy Technology Data Exchange (ETDEWEB)

    Kaviyarasu, K., E-mail: Kaviyarasuloyolacollege@gmail.com [UNESCO-UNISA Africa Chair in Nanosciences/Nanotechnology Laboratories, College of Graduate Studies, University of South Africa (UNISA), Muckleneuk Ridge, P O Box 392, Pretoria (South Africa); Nanosciences African Network (NANOAFNET), Materials Research Department (MSD), iThemba LABS-National Research Foundation - NRF, 1 Old Faure Road, 7129, P O Box 722, Somerset West, Western Cape Province (South Africa); Manikandan, E., E-mail: maniphysics@gmail.com [Nanosciences African Network (NANOAFNET), Materials Research Department (MSD), iThemba LABS-National Research Foundation - NRF, 1 Old Faure Road, 7129, P O Box 722, Somerset West, Western Cape Province (South Africa); Central Research Laboratory, Sree Balaji Medical College & Hospital, Bharath University, Chrompet, Chennai, 600044, Tamil Nadu (India); Maaza, M., E-mail: maaza@gmail.com [UNESCO-UNISA Africa Chair in Nanosciences/Nanotechnology Laboratories, College of Graduate Studies, University of South Africa (UNISA), Muckleneuk Ridge, P O Box 392, Pretoria (South Africa); Nanosciences African Network (NANOAFNET), Materials Research Department (MSD), iThemba LABS-National Research Foundation - NRF, 1 Old Faure Road, 7129, P O Box 722, Somerset West, Western Cape Province (South Africa)

    2015-11-05

    We report in this paper, a facile hydrothermal route for the preparation of CdS nanocrystals at room temperature (RT). Composition, structure and morphology of the products were analyzed and characterized by X-ray diffraction (XRD) confirms that the hydrothermal treatment at 180 °C for periods ranging from 0 to 1440 min caused no significant modification of the long range order structure subjected to hydrothermal treatment. From the XRD analysis the diffraction peaks pertaining to 26.75°, 43.89° and 52.34° are attributed to the (111), (220) and (311) planes of cubic zinc blende structure. The Photoluminescence (PL) spectra are dominated by a strong narrow band edge emission tunable in the blue region of the visible spectra indicating the narrow size distribution of CdS nanocrystals. TEM observation shows that the CdS nanocrystals synthesized by hydrothermal synthesis are well dispersed and the average crystallite size was found to be ∼10 nm. The confocal microscopic studies reveal that each flower like spheres is due to Ostwald's ripening with numerous nanoparticles aggregating a surface. - Highlights: • The adjacent particle coalesces together forming spherical particles. • The average crystalline size of CdS nanoparticles was found to be ∼3 nm. • In the case of spherical crystallite, is given by L = 3/4 D. • The CdS nanocrystal exhibits a direct band gap of 2.4 eV. • The microspheres are dispersed with good monodispersity.

  5. The synthesis and characterization of complexes of zinc(II, cadmium(II, platinum(II and palladium(II with potassium 3-dithiocarboxy-3-aza-5-aminopentanoate

    Directory of Open Access Journals (Sweden)

    SRECKO TRIFUNOVIC

    2004-02-01

    Full Text Available Complexes of zinc(II, cadmium(II, platinum(II and palladium(II with a new polydentate dithiocarbamate ligand, 3-dithiocarboxy-3-aza-5-aminopentanoate (daap-, of the type M(daap2·nH2O (M = Zn(II, Cd(II, n = 2, or M = Pt(II, Pd(II, n = 0, have been prepared and characterized by elemental analysis, IR and UV/VIS spectroscopy, as well as magnetic measurements. The spectra of the complexes suggest a bidentate coordination of the daap- ligand to the metal ions via the sulfur atoms of the deprotonated dithiocarbamato group. The fact that under the same experimental conditions its S-methyl ester does not form complexes could be taken as proof of the suggested coordination mode.

  6. Oxygen Reduction on Platinum

    DEFF Research Database (Denmark)

    Nesselberger, Markus

    This thesis investigates the electro reduction of oxygen on platinum nanoparticles, which serve as catalyst in low temperature fuel cells. Kinetic studies on model catalysts as well as commercially used systems are presented in order to investigate the particle size effect, the particle proximity...... carbon (HSAC) supported Pt nanoparticle (Pt/C) catalysts (of various size between 1 and 5 nm). The difference in SA between the individual Pt/C catalysts (1 to 5 nm) is very small and within the error of the measurements. The factor four of loss in SA when comparing platinum bulk and Pt/C can largely...

  7. Improved electrode material for deep brain stimulation.

    Science.gov (United States)

    Petrossians, A; Whalen, J J; Weiland, J D

    2016-08-01

    Deep brain stimulation (DBS) devices have been implanted for treatment of basic tremor, Parkinson's disease and dystonia. These devices use electrodes in contact with tissue to deliver electrical pulses to targeted cells, to elicit specific therapeutic responses. In general, the neuromodulation industry has been evolving towards smaller, less invasive electrodes. However, current electrode materials do not support small sizes without severely restricting the stimulus output. Hence, an improved electrode material will benefit present and future DBS systems. In this study, five DBS leads were modified using a cost-effective and materials-efficient process for applying an ultra-low impedance platinum-iridium alloy coating. One DBS lead was used for insertion test and four DBS leads were chronically pulsed for 12 weeks. The platinum-iridium alloy significantly improved the electrical properties of the DBS electrodes and was robust to insertion into brain and to 12 weeks of chronic pulsing.

  8. Biomineralization of platinum by microorganisms

    Science.gov (United States)

    Pavlova, L. M.; Radomskaya, V. I.; Shumilova, L. P.; Ionov, A. M.; Sorokin, P.

    2017-04-01

    The mechanism of platinum biomineralization by microscopic fungi is displayed based on data of electron microscopy, infrared and X-ray photoelectronic spectroscopy. It was suggested the platinum sorption process by microscopic fungi has some stages. The initial interaction is carried out by the mechanisms of physical and chemical sorption. Hereafter the reduction process of adsorbed platinum ions up to zero state is performed, probably, for account of organic compounds, which are produced by fungi biomass as metabolism result, and the process terminates by nulvalent particles aggregating up to nanosize forms. Obtained data on the platinum biomineralization extends the concept concerning the character of forming platinum nanoparticles in carbonous paleobasin.

  9. Platinum metals in the environment

    Energy Technology Data Exchange (ETDEWEB)

    Zereini, Fathi [Frankfurt Univ. (Germany). Dept. of Environmental Analytical Chemistry; Wiseman, Clare L.S. (ed.) [Toronto Univ. (Canada). School of the Environment

    2015-03-01

    This book contains the five chapters with the following topics: 1. SOURCES OF PGE EMISSIONS ELEMENTS: Sources of Platinum Group Elements (PGE) in the Environment; Impact of Platinum Group Element Emissions from Mining and Production Activities. 2. ANALYTICAL METHODS FOR THE DETERMINATION OF PGE IN BIOLOGICAL AND ENVIRONMENTAL MATRICES: Appraisal of Biosorption for Recovery, Separation and Determination of Platinum, Palladium and Rhodium in Environmental Samples; On the Underestimated Factors Influencing the Accuracy of Determination of Pt and Pd by Electrothermal Atomic Absorption Spectrometry in Road Dust Samples; Application of Solid Sorbents for Enrichment and Separation of Platinum Metal Ions; Voltammetric Analysis of Platinum in Environmental Matrices; Speciation Analysis of Chloroplatinates; Analysis of Platinum Group Elements in Environmental Samples: A Review. 3. OCCURRENCE, CHEMICAL BEHAVIOR AND FATE OF PGE IN THE ENVIRONMENT: Brazilian PGE Research Data Survey on Urban and Roadside Soils; Platinum, Palladium and Rhodium in a Bavarian Roadside Soil; Increase of Platinum Group Element Concentrations in Soils and Airborne Dust During the Period of Vehicular Exhaust Catalysts Introduction; Platinum-Group Elements in Urban Fluvial Bed Sediments-Hawaii; Long-Term Monitoring of Palladium and Platinum Contents in Road Dust of the City of Munich, Germany; Characterization of PGEs and Other Elements in Road Dusts and Airborne Particles in Houston, Texas; Accumulation and Distribution of Pt and Pd in Roadside Dust, Soil and Vegetation in Bulgaria; Increase of the Environmental Pt Concentration in the Metropolitan Area of Mexico City Associated to the Use of Automobile Catalytic Converters; Solubility of Emitted Platinum Group Elements (Pt, Pd and Rh) in Airborne Particulate Matter (PM10) in the Presence of Organic Complexing Agents; The Influence of Anionic Species (Cl{sup -}, NO{sub 3}{sup -}, SO{sub 4}{sup 2-}) on the Transformation and Solubility of Platinum in

  10. Chemical synthesis of α-La{sub 2}S{sub 3} thin film as an advanced electrode material for supercapacitor application

    Energy Technology Data Exchange (ETDEWEB)

    Patil, S.J.; Kumbhar, V.S.; Patil, B.H.; Bulakhe, R.N.; Lokhande, C.D., E-mail: l_chandrakant@yahoo.com

    2014-10-25

    Highlights: • The simple, chemical method used for synthesis of lanthanum sulphide thin films. • The lanthanum sulphide thin film surface exhibited porous microstructure. • The lanthanum sulphide thin film electrode is used for supercapacitor application. - Abstract: α-La{sub 2}S{sub 3} thin films have been synthesized for the first time by successive ionic layer adsorption and reaction (SILAR) method and used for supercapacitor application. These films are characterized for crystal structure, surface morphology and wettability studies using X-ray diffraction (XRD), Fourier Transform-Raman (FT-Raman) spectroscopy, scanning electron microscopy (SEM) and contact angle measurements. The electrochemical supercapacitive performance of α-La{sub 2}S{sub 3} electrode is evaluated by cyclic voltammetry (CV), galvanostatic charge discharge (GCD) and electrochemical impedance spectroscopy (EIS) techniques. From the electrochemical study, it is seen that α-La{sub 2}S{sub 3} electrode delivers high specific capacitance of 256 F g{sup −1} at scan rate of 5 mV s{sup −1} with cycling stability of 85% over 1000 cycles. Such La{sub 2}S{sub 3} electrode has great application in supercapacitor device for energy storage.

  11. One-step electrochemical synthesis of 6-amino-4-hydroxy-2-napthalene-sulfonic acid functionalized graphene for green energy storage electrode materials

    Science.gov (United States)

    Kuila, Tapas; Khanra, Partha; Kim, Nam Hoon; Kuk Choi, Sung; Yun, Hyung Joong; Lee, Joong Hee

    2013-09-01

    A green approach for the one-step electrochemical synthesis of water dispersible graphene is reported. An alkaline solution of 6-amino-4-hydroxy-2-naphthalene-sulfonic acid (ANS) serves the role of electrolyte as well as surface modifier. High-purity graphite rods are used as electrodes which can be exfoliated under a constant electrical potential (˜20 V) to form ANS functionalized graphene (ANEG). The aqueous dispersion of ANEG obeyed Beer’s law at moderate concentrations, as evidenced from ultraviolet-visible spectroscopy analysis. X-ray diffraction analysis suggests complete exfoliation of graphite into graphene. Fourier transform infrared and x-ray photoelectron spectroscopy not only confirm the functionalization of graphene with ANS, but also suggest the formation of oxygen containing functional groups on the surface of ANEG. Raman spectra analysis indicates the presence of defects in ANEG as compared to pure graphite. Cyclic voltammetry and charge-discharge measurements of ANEG using three electrode systems show a specific capacitance of 115 F g-1 at a current density of 4 A g-1. The ANEG electrode exhibits 93% retention in specific capacitance after 1000 charge-discharge cycles, confirming its utility as a green energy storage electrode material.

  12. Incorporation of a Metal Oxide Interlayer using a Virus-Templated Assembly for Synthesis of Graphene-Electrode-Based Organic Photovoltaics.

    Science.gov (United States)

    Lee, Yong Man; Kim, Wanjung; Kim, Young Hun; Kim, Jung Kyu; Jang, Ji-Ryang; Choe, Woo-Seok; Park, Jong Hyeok; Yoo, Pil J

    2015-07-20

    Transition metal oxide (TMO) thin films have been exploited as interlayers for charge extraction between electrodes and active layers in organic photovoltaic (OPV) devices. Additionally, graphene-electrode-based OPVs have received considerable attention as a means to enhance device stability. However, the film deposition process of a TMO thin-film layer onto the graphene electrode is highly restricted owing to the hydrophobic nature of the graphene surface; thus, the preparation of the device should rely on a vacuum process that is incompatible with solution processing. In this study, we present a novel means for creating a thin tungsten oxide (WO3 ) interlayer on a graphene electrode by employing an engineered biotemplate of M13 viruses, whereby nondestructive functionalization of the graphene and uniform synthesis of a WO3 thin interlayer are concurrently achieved. As a result, the incorporated virus-templated WO3 interlayer exhibited solar-conversion efficiency that was 20 % higher than that of conventional OPVs based on the use of a (3,4-ethylenedioxythiophene):poly(styrenesulfonate) ( PSS) interlayer. Notably, bilayer-structured OPVs with synergistically integrated WO3 /PEDOT:PSS achieved >60 % enhancement in device performance. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Quasi-solid state polymer electrolytes for dye-sensitized solar cells. Effect of the electrolyte components variation on the triiodide ion diffusion properties and charge-transfer resistance at platinum electrode

    Energy Technology Data Exchange (ETDEWEB)

    Nazmutdinova, G.; Sensfuss, S.; Schroedner, M. [Thuringian Institute for Textile and Plastics Research, Breitscheidstrasse 97, 07407 Rudolstadt (Germany); Hinsch, A. [Fraunhofer Institute for Solar Energy Systems, Heidenhofstrasse 2, 79110 Freiburg (Germany); Sastrawan, R. [Freiburg Materials Research Center FMF, Stefan-Meier-Street 21, 79104 Freiburg (Germany); Gerhard, D.; Himmler, S.; Wasserscheid, P. [Friedrich-Alexander-University, Egerlandstrasse 3, 91058 Erlangen (Germany)

    2006-11-30

    Quasi-solid state polymer electrolytes have been prepared from poly(vinylidenefluoride-co-hexafluoropropylene) (PVDF-HFP) as gelator for 1-ethyl-3-methylimidazolium based ionic liquids (with anions like trifluoromethanesulfonate [EMIM][TfO], bis(trifluoromethanesulfonyl)imide [EMIM][Tf{sub 2}N]) and polyacrylonitrile (PAN) for gelation of 1-ethyl-3-methylimidazolium dicyanamide [EMIM][DCA] as well as I{sup -}/I{sub 3}{sup -} as the redox couple. All electrolytes exhibit high ionic conductivity in the range of 10{sup -3} S/cm. The effect of gelation, redox couple concentration, I{sup -}/I{sub 3}{sup -} ratio, choice of cations and additives on the triiodide diffusion and charge-transfer resistance of the platinum/electrolyte interface (R{sub ct}) were studied. The apparent diffusion coefficient of triiodide ion (D(I{sub 3}{sup -})) at various iodide/triiodide ratios in liquid and gelified electrolytes has been calculated from measurements of the diffusion limited current (I{sub lim}) in electrochemical cell resembling the set-up of a dye-sensitized solar cell. The charge-transfer resistance of the platinum/electrolyte interface as well as the capacitance of the electrical double layer (C{sub dl}) have been calculated from impedance measurements. Electrolytes with reduced content of polymer (2.5 wt.%) were doped with Al{sub 2}O{sub 3} particles of different sizes (50 nm, 300 nm, 1 {mu}m). The dispersion of the particles proceeds by speedy stirring of the hot electrolyte and the addition of PAN provides a homogeneous suspension. The addition of Al{sub 2}O{sub 3} particles causes a slight increase of the triiodide diffusion constants. Furthermore the suggested enhancement of the charge transfer rate shows a dependence on the size of the particles. (author)

  14. The synthesis, spectroscopic, X-ray characterization and in vitro cytotoxic testing results of activity of five new trans-platinum(IV) complexes with functionalized pyridines.

    Science.gov (United States)

    Rakić, Gordana M; Grgurić-Šipka, Sanja; Kaluđerović, Goran N; Bette, Martin; Filipović, Lana; Aranđelović, Sandra; Radulović, Siniša; Tešić, Zivoslav Lj

    2012-09-01

    Platinum(IV) complexes with general formulas [Pt(L(1-2))(2)Cl(4)], where L(1-2) are 3-acetylpyridine (1) and 4-acetylpyridine (2) respectively, and [Pt(HL(3-5))(2)Cl(2)], where H(2)L(3-5) are 2,3-pyridinedicarboxylic acid (3), 2,4-pyridinedicarboxylic acid (4) and 2,5-pyridinedicarboxylic acid (5) respectively, were prepared by the reaction of K(2)[PtCl(6)] with the corresponding ligand in 1:2 M ratio in water. The complexes were characterized by elemental analysis and IR and NMR spectroscopy. The structures of complexes 2 and 5 were determined by X-ray crystallography, which revealed the trans orientation of chloride anions around platinum(IV) in the case of both complexes. The antiproliferative activity was investigated in six tumor cell lines (human cervical carcinoma cells (HeLa), murine melanoma cells (B16), human breast carcinoma cells (MDA-MB-453), human colon carcinoma cells (LS-174), transformed human umbilical vein endothelial cells (EA.hy 926) and murine endothelial cells (MS1)) and in one non-tumor cell line-human fetal lung fibroblast cells (MRC-5). Cytotoxicity studies indicated that Pt(IV) complexes with acetyl-substituted pyridine ligands exhibit significantly higher in vitro antiproliferative activity than the complexes with carboxylato-substituted pyridines. Complexes 1 and 2 showed antiproliferative activity in all tested tumor cell lines, with the highest potential in human endothelial cells EA.hy 926, since they had IC(50) values of 13.8 ± 5.8 μM and 23.4 ± 3.3 μM, respectively and were more active than cisplatin. Complexes 1 and 2 exhibited lower toxicity against the non-tumor human lung fibroblast cell line (MRC-5) than against most of the tested tumor cell lines. Copyright © 2012 Elsevier Masson SAS. All rights reserved.

  15. Oscillatory instabilities in the electrooxidation of borohydride on platinum

    Energy Technology Data Exchange (ETDEWEB)

    Machado, Eduardo G.; Varela, Hamilton, E-mail: varela@iqsc.usp.br [Universidade de Sao Paulo (USP), Sao Carlos, SP (Brazil). Instituto de Quimica

    2014-03-15

    The borohydride ion has been pointed as a promising alternative fuel. Most of the investigation on its electrochemistry is devoted to the electrocatalytic aspects of its electrooxidation on platinum and gold surfaces. Besides the known kinetic limitations and intricate mechanism, our Group has recently found the occurrence of two regions of bi-stability and autocatalysis in the electrode potential during the open circuit interaction of borohydride and oxidized platinum surfaces. Following this previous contribution, the occurrence of more complicated phenomena is here presented: namely the presence of electrochemical oscillations during the electrooxidation of borohydride on platinum in alkaline media. Current oscillations were found to be associated to two distinct instability windows and characterized in the resistance-potential parameter plane. The dynamic features of such oscillations suggest the existence of distinct mechanisms according to the potential region. Previously published results obtained under non-oscillatory regime were used to give some hints on the surface chemistry behind the observed dynamics. (author)

  16. Preparation of platinum/iridium scanning probe microscopy tips

    DEFF Research Database (Denmark)

    Sørensen, Alexis Hammer; Hvid, U.; Mortensen, M.W.

    1999-01-01

    for the production of sharp tips. After being etched the tips are ready for use in scanning tunneling microscopes, or they may be bent to form integrated tip/cantilever systems in ordinary commercial atomic force microscopes, being applicable as tapping mode tips and as electrostatic force microscopy tips. ©1999......We report on the development of an etching setup for use in the preparation of platinum/iridium tips for atomic force microscopy and scanning electrostatic force microscopy as well as scanning tunneling microscopy. The etching process is based on a two step electrochemical procedure. The first step....... This mechanism is based on the formation of oxygen and hydrogen at the platinum/iridium electrode when the potential is above the dissociation potential of water (~ 1.23 V) and storage of these products interstitially in the outer layers of the platinum wire. This leads to "microexplosions" that detach fragments...

  17. On the mobility of carbon-supported platinum nanoparticles towards unveiling cathode degradation in water electrolysis

    Science.gov (United States)

    Paciok, Paul; Schalenbach, Maximilian; Carmo, Marcelo; Stolten, Detlef

    2017-10-01

    This study investigates the influence of the hydrogen evolution reaction (HER) overpotential on the mobility of carbon-supported platinum particles. The migration of the platinum over the carbon support was analyzed by means of identical location transmission electron microscopy (IL-TEM). While at potentials of 0.1 and 0 V vs. reversible hydrogen electrode (RHE), no changes to the Pt/C material were observed. With a decrease of the overpotential to -0.1 V vs. RHE, an increase in the quantity of migrating platinum particles took place. At -0.2 V vs. RHE, a further rise in the particle migration was observed. The effect of the overpotential on the migration was explained by a higher hydrogen generation rate, the formation of a hydrogen monolayer on the platinum and the resulting changes of the platinum support distance. The mechanisms revealed in this study could describe a relevant source of degradation of PEM water electrolyzers.

  18. Platinum contamination issues in ferroelectric memories

    Science.gov (United States)

    Boubekeur, H.; Mikolajick, T.; Pamler, W.; Hopfner, J.; Frey, L.; Ryssel, H.

    2002-09-01

    The contamination risk of processing with platinum electrodes on device performance in ferroelectric memories is assessed in this work. Details of platinum diffusion to the active regions at annealing temperatures of 800 degC are investigated by secondary ion mass spectroscopy, deep level transient spectroscopy, and Rutherford backscattering spectrometry techniques. Cross sectional transmission electron microscopy and local elemental analysis by energy dispersive x-ray spectroscopy were used to examine the precipitation of Pt in defect free silicon as an eventual cause of gate oxide degradation. The impact of platinum contamination on device performance is evaluated under the typical ferroelectric memory processing conditions. Results from leakage current and charge to breakdown measurements of intentionally contaminated diode and metal-oxide-semiconductor (MOS) structures, respectively, are presented. The results show that the degradation depends strongly on device design and configuration. A phosphorus doped polysilicon plug, which has the function of connecting the select transistor to the capacitor module, provides effective gettering regions and prevents the diffusion of Pt atoms to the active regions. Under typical processing conditions, no evident Pt precipitates were observed and up to a concentration level of 4 x1014 atoms/cm2, the leakage current of intentionally contaminated diodes does not increase, if the contamination occurs after front-end phosphorus doped poly-Si processing. Results from constant current charge to breakdown show a small number of breakdown events due to redeposition of Pt at the periphery of the MOS structure. The risk of processing with Pt electrodes in ferroelectric memories requires great care. Precautions like sealing the back surface and incorporating phosphorus doped polysilicon as the plug material are necessary to avoid the detrimental effects of Pt.

  19. Platinum(IV) complexes with some derivatives of 5-methyl-5-(4-pyridyl) hydantoin. Synthesis, study and comparative pharmacological investigation.

    Science.gov (United States)

    Bakalova, A; Buyukliev, R; Ivanova, Z; Momekov, G; Ivanov, D

    2013-08-01

    3 Pt(IV) complexes with 3-ethyl-5-methyl-5-(4-pyridyl)hydantoin (4), 3-propyl-5-methyl-5-(4-pyridyl)hydantoin (5) and 3-benzyl-5-methyl-5-(4-pyridyl)hydantoin (6) with general formulae cis-[Pt(L)2Cl4] were synthesized. The novel compounds were characterized by elemental analysis, IR, 1H, 13C, NMR spectra in solid state and in solution. The studies showed that the ligands coordinate to the platinum ions in a monodentate manner through the nitrogen atom from the pyridine ring. The cytotoxic activity in vitro of newly synthesized complexes as well as their previously prepared analogous of Pt(IV) with other derivatives like 3-amino-5-methyl-5-(4-pyridyl)hydantoin (1), 5-methyl-5-(4-pyridyl)hydantoin (2), 3,5-dimethyl-5-(4-pyridyl)hydantoin (3) was screened against a panel of human tumor cell lines. The tested compounds displayed cytotoxic activity which was invariably superior with the Pt(IV) complex with 3-benzyl-5-methyl-5-(4-pyridyl)hydantoin (6) causing 50% inhibition of cellular viability at micromolar concentration, though the activity of the other studied Pt(IV) complexes proved to greatly decrease in the order 5-4-3-2-1. © Georg Thieme Verlag KG Stuttgart · New York.

  20. High loading MnO2 nanowires on graphene paper: facile electrochemical synthesis and use as flexible electrode for tracking hydrogen peroxide secretion in live cells.

    Science.gov (United States)

    Dong, Shuang; Xi, Jiangbo; Wu, Yanan; Liu, Hongwei; Fu, Chaoyang; Liu, Hongfang; Xiao, Fei

    2015-01-01

    Recent progress in flexible and lightweight electrochemical sensor systems requires the development of paper-like electrode materials. Here, we report a facile and green synthesis of a new type of MnO2 nanowires-graphene nanohybrid paper by one-step electrochemical method. This strategy demonstrates a collection of unique features including the effective electrochemical reduction of graphene oxide (GO) paper and the high loading of MnO2 nanowires on electrochemical reduced GO (ERGO) paper. When used as flexible electrode for nonenzymatic detection of hydrogen peroxide (H2O2), MnO2-ERGO paper exhibits high electrocatalytic activity toward the redox of H2O2 as well as excellent stability, selectivity and reproducibility. The amperometric responses are linearly proportional to H2O2 concentration in the range 0.1-45.4 mM, with a detection limit of 10 μM (S/N=3) and detection sensitivity of 59.0 μA cm(-2) mM(-1). These outstanding sensing performances enable the practical application of MnO2-ERGO paper electrode for the real-time tracking H2O2 secretion by live cells macrophages. Therefore, the proposed graphene-based nanohybrid paper electrode with intrinsic flexibility, tailorable shapes and adjustable properties can contribute to the full realization of high-performance flexible electrode material used in point-of-care testing devices and portable instruments for in-vivo clinical diagnostics and on-site environmental monitoring. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Synthesis and reactivity of Ph/sub 2/PCH/sub 2/PPh/sub 2/- (dppm-) stabilized Pd-Co and Pd-Pt-Co clusters. Effect of platinum versus palladium on the neighboring palladium center

    Energy Technology Data Exchange (ETDEWEB)

    Braunstein, P.; de Meric de Bellefon, C.; Ries, M.

    1988-04-20

    The quantitative and regioselective synthesis of the mixed-metal cluster (PdPtCo/sub 2/(CO)/sub 7/(dppm)/sub 2/) (1b) was achieved by the reaction of the bimetallic complex (PdPtCl/sub 2/(dppm)/sub 2/) (dppm = /mu/-Ph/sub 2/PCH/sub 2/PPh/sub 2/) with (Co(CO)/sub 4/)/sup /minus//. As a result of phosphorus migration from palladium to cobalt, formal insertion of the Co(CO)/sub 3/ fragment into a metal-phosphorus bond of the precursor exclusively occurs into the more labile P /yields/ Pd bond. The lability of the exocyclic Co(CO)/sub 4/ fragment was evidenced and compared between 1b and (Pd/sub 2/Co/sub 2/(CO)/sub 7/(dppm)/sub 2/) (1a). Although a Pd-Co bond is involved, this lability is very sensitive to the neighboring metal center (Pd or Pt). Transmission of electronic effects from one metal-center to another was evidenced, and a platinum effect was observed in dissociating solvents, where 1a is partly dissociated but 1b is completely dissociated into (PdPtCo(CO)/sub 3/(S)(dppm)/sub 2/)(CO(CO)/sub 4/) (S = solvent). This is a reversible process, as is the equilibrium between 1 and halide anions. Solvento clusters were prepared that possess a labile coordination site on Pd leading to completely regioselective reactions with donor molecules, e.g., phosphines, CO, or C/sub 2/Ph/sub 2/. These ligands are labile (PR/sub 3/ < CO < C/sub 2/Ph/sub 2/ < MeCN < THF), and reversible CO uptake and substitution experiments showed that the Pd-bound CO in 4b is less labile than in 4a, indicating again a platinum effect on the reactive Pd center. The tris(bis(diphenylphosphino)methane) cationic cluster (Pd/sub 2/Co(CO)/sub 2/(dppm)/sub 3/)/sup +/ was isolated, in which all the metal-metal bonds are bridged by dppm ligands. Spectroscopic IR and /sup 1/H, /sup 31/P(/sup 1/H), and /sup 195/Pt(/sup 1/H) NMR data are discussed and confirm that in these reactions the PdMCo(dppm)/sub 2/ (M = Pd, Pt) framework is maintained.

  2. FUEL CELL ELECTRODES FOR ACID MEDIA

    Science.gov (United States)

    fuel cell electrodes for acid media. Activated carbon electrodes were prepared, wetproofed with paraffin or Teflon, and catalyzed with platinum. The wetproofing agent was applied by immersion or electrodeposition and the catalyst applied by chemical decomposition of H2P+Cl6 solutions. Half cell studies with hydrogen anodes and oxygen (air) cathodes showed that electrochemical performance is essentially the same for paraffin and Teflontreated electrodes; however, the life of the Teflon-treated electrodes under equal conditions of load is greater than that for

  3. Carbon aerogel electrodes for direct energy conversion

    Science.gov (United States)

    Mayer, Steven T.; Kaschmitter, James L.; Pekala, Richard W.

    1997-01-01

    A direct energy conversion device, such as a fuel cell, using carbon aerogel electrodes, wherein the carbon aerogel is loaded with a noble catalyst, such as platinum or rhodium and soaked with phosphoric acid, for example. A separator is located between the electrodes, which are placed in a cylinder having plate current collectors positioned adjacent the electrodes and connected to a power supply, and a pair of gas manifolds, containing hydrogen and oxygen positioned adjacent the current collectors. Due to the high surface area and excellent electrical conductivity of carbon aerogels, the problems relative to high polarization resistance of carbon composite electrodes conventionally used in fuel cells are overcome.

  4. Amperometric acetylcholine biosensor based on self-assembly of gold nanoparticles and acetylcholinesterase on the sol-gel/multi-walled carbon nanotubes/choline oxidase composite-modified platinum electrode.

    Science.gov (United States)

    Hou, Shihua; Ou, Zhongmin; Chen, Qiang; Wu, Baoyan

    2012-03-15

    A novel acetylcholinesterase (AChE)/choline oxidase (ChOx) bienzyme amperometric acetylcholine biosensor based on gold nanoparticles (AuNPs) and multi-walled carbon nanotubes (MWCNTs) has been successfully developed by self-assembly process in combination of sol-gel technique. A thiolated aqueous silica sol containing MWCNTs and ChOx was first dropped on the surface of a cleaned Pt electrode, and then AuNPs were assembled with the thiolated sol-gel network. Finally, the alternate deposition of poly (diallyldimethylammonium chloride) (PDDA) and AChE was repeated to assemble different layers of PDDA-AChE on the electrode for optimizing AChE loading. Among the resulting biosensors, the biosensor based on two layers of PDDA-AChE multilayer films showed the best performance. It exhibited a wide linear range, high sensitivity and fast amperometric response, which were 0.005-0.4mM, 3.395 μA/mM, and within 15s, respectively. The biosensor showed long-term stability and acceptable reproducibility. More importantly, this study could provide a simple and effective multienzyme immobilization platform for meeting the demand of the effective immobilization enzyme on the electrode surface. Copyright © 2011 Elsevier B.V. All rights reserved.

  5. Synthesis and antitumor activity of platinum(II) complexes with trans-3,4-diamino-2,2,6,6-tetramethylpiperidine-1-oxyl.

    Science.gov (United States)

    Sen', V D; Golubev, V A; Volkova, L M; Konovalova, N P

    1996-10-01

    Platinum complexes PtII(DAPO)X2 with diaminonitroxyl radical-trans-3,4-diamino-2,2,6,6-tetramethylpiperidine-1-oxyl (DAPO)-were synthesized by the direct reaction of DAPO with K2PtX4 (X = Cl, I) or by the replacement of chloro ligands in PtII(DAPO)Cl2 by bromo, nitrato, oxalato, malonato, and 1,1-cyclobutanedicarboxylato ligands. The complexes thus obtained were characterized by elemental analysis, infrared,electronic, electron paramagnetic resonance spectroscopic techniques, and high-performance liquid chromatography. The toxicity of compounds in terms of LD50 strongly depends on the nature of X-ligands, and varies between 11 mg/kg (X = NO3) and 400 mg/kg (X2 = 1,1-cyclobutanedicarboxylate). Up to 66% of mice bearing leukemia L1210 survive after the administration of these complexes. This effect is comparable to the effect of cisplatin (50% survive). An increase in the life span of the rest of the animals ranges from 158 to 383%. Complex PtII(DAPO)Cl2 appears to be more efficient than cisplatin against adenocarcinoma 755. Cisplatin, cis-diamminedichloroplatinum(II); CBDCA, 1,1-cyclobutanedicarboxylic acid; DAPO, trans-3,4-diamino-2,2,6,6-tetramethylpiperidine-1-oxyl; Mal, malonic acid; Ox, oxalic acid; IR, infrared; EPR, electron paramagnetic resonance; HPLC, high-performance liquid chromatography; Ca755, adenocarcinoma 755; LD50 and LD100, dose of compounds (mg/kg), causing a death of 50 or 100% or treated animals; ILS, increase in life span of mice.

  6. New water-soluble azido- and derived tetrazolato-platinum(II) complexes with PTA. Easy metal-mediated synthesis and isolation of 5-substituted tetrazoles.

    Science.gov (United States)

    Smoleński, Piotr; Mukhopadhyay, Suman; Guedes da Silva, M Fátima C; Charmier, M Adília Januário; Pombeiro, Armando J L

    2008-12-14

    The water-soluble four- and five-coordinate diazido-platinum(II) complexes cis-[Pt(N3)2(PTA)2] (1) (PTA = 1,3,5-triaza-7-phosphaadamantane), cis-[Pt(N3)2(Me-PTA)2]I2 (2) (Me-PTA = N-methyl-1,3,5-triaza-7-phosphaadamantane cation) and [Pt(N3)2(PTA)3] (3) were obtained by reactions of cis-[Pt(N3)2(PPh3)2] with PTA or [Me-PTA]I in dichloromethane. [2 + 3] cycloadditions of with organonitriles NCR gave the bis(tetrazolato) complexes trans-[Pt(N4CR)2(PTA)2] (R = Ph (4), 4-ClC6H4 (5) or 3-NC5H4 (6)), the reactions being greatly accelerated by microwave irradiation. 5-R-1H-Tetrazoles N4CR (R = Ph, 4-ClC6H4 and 3-NC5H4) were easily liberated from the tetrazolato complexes and isolated in high yields, in a single-pot process, upon reaction with aqueous diluted HCl, with concomitant formation of the water soluble cis-[Pt(Cl)2(PTA-H)2] complex 7. Alternatively, in a less convenient method, the tetrazoles could be liberated on reaction of 4-6 with propionitrile which also leads to the dicyano trans-[Pt(CN)2(PTA)2] complex 8. The compounds were characterized by IR, 1H, 13C and 31P[1H] NMR spectroscopies, FAB+-MS or ESI-MS, elemental analyses and (for and 4) also by X-ray diffraction.

  7. Surface modification of recording electrodes

    OpenAIRE

    Iaci Miranda Pereira; Sandhra Maria de Carvalho; Rodrigo Lambert Oréfice; Marcelo Bariatto Andrade Fontes; Lilian Anee Muniz Arantes; Núbia Figueiró; Maria de Fátima Leite; Hercules Pereira Neves

    2013-01-01

    Waterborne Polyurethanes (PUs) are a family of polymers that contains urethane linkages synthesized in an aqueous environment and are thus free of organic solvents. Recently, waterborne PUs have been extensively studied for biomedical applications because of their biocompatibility. The present work investigates the following: (1) the impact on electrical performance of electrode materials (platinum and silicon) modified chemically by a layer of waterborne PU, and (2) the behavior of rat cardi...

  8. Synthesis of Dimethyl-Substituted Polyviologen and Control of Charge Transport in Electrodes for High-Resolution Electrochromic Displays

    National Research Council Canada - National Science Library

    Kan Sato; Ryusuke Mizukami; Takahiro Mizuma; Hiroyuki Nishide; Kenichi Oyaizu

    2017-01-01

    Electrochromic (EC) polymers such as polyviologens have been attracting considerable attention as wet-processable electrodes for EC displays, thanks to their brilliant color change accompanied with reversible redox reactions...

  9. Electrochemical synthesis of nickel-iron layered double hydroxide: application as a novel modified electrode in electrocatalytic reduction of metronidazole.

    Science.gov (United States)

    Nejati, Kamellia; Asadpour-Zeynali, Karim

    2014-02-01

    A new and simple approach based on the electrochemical method was used for preparation of reproducible nanostructure thin film of Ni/Fe-layered double hydroxides (Ni/Fe-LDH) on the glassy carbon electrode (GCE). The electrochemical behavior of the Ni/Fe-LDH deposited on GCE electrode is studied. Study of the scanning electron microscopy shows the formation of a nanostructure thin film on the glassy carbon electrode. Electrochemical experiments show that Ni/Fe-LDH modified glassy carbon electrode exhibits excellent electrocatalytic reduction activity with Metronidazole. The method was successfully applied for the analysis of Metronidazole in tablets. The results were favorably compared to those obtained by the reported BP method.

  10. Facile synthesis of oxidation-resistant copper nanowires toward solution-processable, flexible, foldable, and free-standing electrodes.

    Science.gov (United States)

    Yin, Zhenxing; Lee, Chaedong; Cho, Sanghun; Yoo, Jeeyoung; Piao, Yuanzhe; Kim, Youn Sang

    2014-12-29

    Oxidation-resistant copper nanowires (Cu NWs) are synthesized by a polyol reduction method. These Cu NWs show excellent oxidation resistance, good dispersibility, and have a low sintering temperature. A Cu NW-based flexible, foldable, and free-standing electrode is fabricated by filtration and a sintering process. The electrode also exhibits high electrical conductivity even bending, folding, and free-standing. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Point Electrode Studies of the Solid Electrolyte-Electrode Interface

    DEFF Research Database (Denmark)

    Jacobsen, Torben

    In the development of new electrode materials for high temperature Solid Oxide Fuel Cells methods are needed for the electrochemical evaluation of the catalytic properties of the materials. A major problem in the comparison of materials is how to determine the geometry and the effective length...... of the active reaction zone, the triple phase boundary. One way of solving this is by the application of point electrodes where the electrode-electrolyte contact is assumed to be circular with a radius calculated from the high frequency impedance. The perimeter is the taken as the length of the reaction zone......$mm diameter) platinum electrodes mounted in a thin alumina tube resting on a polished 8 mol\\% yttria stabilized zirconia electrolyte at $1000^\\circ$C in air. The results where analysed in terms of the equivalent circuit $R_{YSZ}(R_r Q)$ in the frequency range 0.5MHz--1kHz. Fig.\\,1 shows...

  12. Cerium oxide nanoparticles/multi-wall carbon nanotubes composites: Facile synthesis and electrochemical performances as supercapacitor electrode materials

    Science.gov (United States)

    Deng, Dongyang; Chen, Nan; Li, Yuxiu; Xing, Xinxin; Liu, Xu; Xiao, Xuechun; Wang, Yude

    2017-02-01

    Cerium oxide nanoparticles/multi-wall carbon nanotubes (MWCNTs) composites are synthesized by a facile hydrothermal method without any surfactant or template. The morphology and microstructure of samples are examined by scanning electron microscopy (SEM), transition electron microscopy (TEM), X-ray diffraction (XRD), Raman spectrum and X-ray photoelectron spectroscopy (XPS). Electrochemical properties of the MWCNTs, the pure CeO2, and the CeO2/MWCNTs nanocomposites electrodes are investigated by cyclic voltammetry (CV), galvanostatic charge/discharge (GDC) and electrochemical impedance spectroscopy (EIS) measurements. The CeO2/MWCNTs nanocomposite (at the mole ratio of 1:1) electrode exhibits much larger specific capacitance compared with both the MWCNTs electrode and the pure CeO2 electrode and significantly improves cycling stability compared to the pure CeO2 electrode. The CeO2/MWCNTs nanocomposite (at the mole ratio of 1:1) achieves a specific capacitance of 455.6 F g-1 at the current density of 1 A g-1. Therefore, the as prepared CeO2/MWCNTs nanocomposite is a promising electrode material for high-performance supercapacitors.

  13. Nanostructure Pt Electrode Obtained via Self-assembly of Nanoparticles on Conductive Oxide-coated Glass Substrate

    Institute of Scientific and Technical Information of China (English)

    WANG, Wei-Bo(王维波); LUO, Zhen(罗臻); XIAO, Xu-Rui(肖绪瑞); LIN, Yuan(林原)

    2004-01-01

    Self-assembly of platinum nanoparticles were applied to fabrication of counter electrode for dye-sensitized solar cells on conductive oxide-coated glass substrate. The present Pt electrode exhibits high exchange current density of 220 mA/cm2, which is comparable to those prepared by electrodeposition, magnetron sputtering or thermal decomposition of platinum chloride. After analysis by transmission electron microscopy (TEM), atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS), it was found that the catalyst was structurally characterized as nanosized platinum metal clusters and was continuously arranged on electrode surface. The present nanostructure electrode had high electrocatalytic activity for the reduction of iodine in organic solution.

  14. 修饰铂电极上Bi(Ⅲ)的示波双电位滴定法%Oscillo-Potentiometric Titration of Bismuth(Ⅲ)Using Modified Platinum Electrode

    Institute of Scientific and Technical Information of China (English)

    齐蕾; 齐同喜

    2011-01-01

    Bi ( Ⅲ ) modified Pt-electrode was prepared and the adsorption character of Bi ( Ⅲ ) on the electrode was studied by cyclic voltammetry. The mechanism of electrode response was discussed. A method using oscillo-potentiometry for the titration of Bi( Ⅲ) was described. In 0. 1 mol/L nitric acid solution (pH = 1.0) , Bi( Ⅲ) was titrated with EDTA, and two modified Pt-electrodes were used as bi-indicator electrode system. The end point of titration was determined by an abrupt maximum displacement of the fluorescence spot observed on the screen of the cathodic oscillograph. When Bi( Ⅲ) content was in the range of 1. 19 × 10 -4 ~ 1.44× 10-2 mol/L, the recovery was in the range of 99. 8% ~ 100. 1% and the detection limit was 1. 0 × 10-4 mol/L(S/N = 3). Furthermore, the modified electrode showed excellent stability and reproducibility. In 1.0 × 10-2 mol/L Bi ( Ⅲ ) solution, the values of end point potentials obtained from 7 continuous determinations were all around 100 mV, and the relative standard deviation( RSD) was 0.04%. Moreover, the proposed method has been used in the determination of Bi ( Ⅲ) contained in samples with recoveries of 99. 5%~100. 5% and RSD(n = 7) less than 0. 25% , which are in accordance with the indicator method.%制备了Bi(Ⅲ)修饰铂电极,用循环伏安法表征了Bi(Ⅲ)在电极上的吸附特性,探讨了电极的响应机理.通过优化实验条件,建立了一种测定Bi(Ⅲ)的示波双电位滴定法.在0.1 moL/L的硝酸溶液中(pH=1.0).用制备的修饰铂电极作为双指示电极,以EDTA标准溶液滴定Bi(Ⅲ),利用示波器屏幕上荧光点的显著最大位移指示滴定终点.Bi(Ⅲ)在1.19×10(-1)~1.44×10(-2)moL/L时,回收率为99.8%~100.1%,检出限(S,N=3)为1.0×10(-4)mol/L.该修饰电极具有良好的稳定性和重现性,在含有1.0×10(-2)moL/L Bi(Ⅲ)的溶液中,连续7次测定,所得终点电位值均在100 mV左右,其相对标准偏差(RSD)为0.04%.应用该

  15. Synthesis of antitumor azolato-bridged dinuclear platinum(ii) complexes with in vivo antitumor efficacy and unique in vitro cytotoxicity profiles.

    Science.gov (United States)

    Komeda, Seiji; Takayama, Hiroshi; Suzuki, Toshihiro; Odani, Akira; Yamori, Takao; Chikuma, Masahiko

    2013-05-01

    We synthesised four tetrazolato-bridged dinuclear Pt(ii) complexes, [{cis-Pt(NH3)2}2(μ-OH)(μ-5-R-tetrazolato-N2,N3)](n+), where R is CH3 (1), C6H5 (2), CH2COOC2H5 (3), or CH2COO(-) (4) and n = 2 (1-3) or 1 (4). Their structures were characterised by (1)H, (13)C, and (195)Pt NMR spectroscopy, mass spectrometry, and elemental analysis, and the crystal structure of 1 was determined by X-ray crystallography. The cytotoxicities of the complexes to human non-small-cell lung cancer (NSCLC) cell lines sensitive and resistant to cisplatin were assayed. Complex 1 was more cytotoxic than cisplatin in both PC-9 and PC-14 NSCLC cell lines, and cross-resistance to 1 in the cisplatin-resistant cells was largely circumvented. Complex 3 was moderately cytotoxic, whereas 2 and 4 were only marginally cytotoxic. We also determined the growth inhibitory activities of 1 and 3, as well as prototype azolato-bridged complexes [{cis-Pt(NH3)2}2(μ-OH)(μ-pyrazolato)](2+) (AMPZ), [{cis-Pt(NH3)2}2(μ-OH)(μ-1,2,3-triazolato-N1,N2)](2+) (AMTA), [{cis-Pt(NH3)2}2(μ-OH)(μ-tetrazolato-N1,N2)](2+) (5-H-X), and [{cis-Pt(NH3)2}2(μ-OH)(μ-tetrazolato-N2,N3)](2+) (5-H-Y), against a panel of 39 human cancer cell lines (JFCR39). The average 50% growth inhibition concentrations of the complexes against the JFCR39 cell lines ranged from 0.933 to 23.4 μM. The cytotoxicity fingerprints of the complexes based on the JFCR39 cytotoxicity data were similar to one another but completely different from the fingerprints of clinical platinum-based anticancer drugs. Complex 3 exhibited marked antitumor efficiency when tested in vivo on xenografts of PANC-1 pancreatic cancer in nude mice. The high potency of 3 confirmed that the tetrazolato-bridged structure exhibits high in vivo antitumor efficacy.

  16. A novel three-electrode solid electrolyte hydrogen gas sensor

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Min; Yang, Chunling; Zhang, Yan [Harbin Insitute of Technology, Harbin (China). School of Computer Science and Technology; Jia, Zheng [Harbin Insitute of Technology, Harbin (China). School of Chemical Engineering and Technology

    2013-07-01

    A three-electrode solid electrolyte hydrogen gas sensor is explored in this paper. The sensor utilized phosphotungstic acid as the electrolyte material and adopted platinum, nickel and tungsten as the three-electrode materials respectively. In real applications, platinum was used as the measuring electrode, nickel was used as the adjusting electrode and tungsten was used as the reference electrode. In order to compare the performance of the new sensor with that of the traditional two-electrode sensor, the hydrogen concentrations were adjusted so as to detect the output of the two-electrode sensor and the three-electrode sensor. The dynamic range between the measuring electrode and the reference electrode is about 0.65V and the highest detectable limit is 12% for the three-electrode solid hydrogen gas sensor. While the dynamic range is about 0.25V and and the highest detectable limit is 1% for the two-electrode solid electrolyte gas sensor. The results demonstrate that the three-electrode solid hydrogen gas sensor has a higher resolution and detectable limit than the two-electrode sensor. abstract environment.

  17. One-pot wet-chemical co-reduction synthesis of bimetallic gold-platinum nanochains supported on reduced graphene oxide with enhanced electrocatalytic activity

    Science.gov (United States)

    Chen, De-Jun; Zhang, Qian-Li; Feng, Jin-Xia; Ju, Ke-Jian; Wang, Ai-Jun; Wei, Jie; Feng, Jiu-Ju

    2015-08-01

    In this work, a simple, rapid and facile one-pot wet-chemical co-reduction method is developed for synthesis of bimetallic Au-Pt alloyed nanochains supported on reduced graphene oxide (Au-Pt NCs/RGO), in which caffeine is acted as a capping agent and a structure-directing agent, while no any seed, template, surfactant or polymer involved. The as-prepared nanocomposites display enlarged electrochemical active surface area, significantly enhanced catalytic activity and better stability for methanol and ethylene glycol oxidation, compared with commercial Pt-C (Pt 50 wt%), PtRu-C (Pt 30 wt% and Ru 15 wt%) and Pt black.

  18. Facile synthesis of ultrathin manganese dioxide nanosheets arrays on nickel foam as advanced binder-free supercapacitor electrodes

    KAUST Repository

    Huang, Ming

    2015-03-01

    © 2014 Elsevier B.V. Ultrathin MnO2 nanosheets arrays on Ni foam have been fabricated by a facile hydrothermal approach and further investigated as the binder-free electrode for high-performance supercapacitors. This unique well-designed binder-free electrode exhibits a high specific capacitance (595.2 F g-1 at a current density of 0.5 A g-1), good rate capability (64.1% retention), and excellent cycling stability (89% capacitance retention after 3000 cycles). Moreover, an asymmetric supercapacitor is constructed using the as-prepared MnO2 nanosheets arrays as the positive electrode and activated microwave exfoliated graphite oxide (MEGO) as the negative electrode. The optimized asymmetric supercapacitor displays excellent electrochemical performance with an energy density of 25.8 Wh kg-1 and a maximum power density of 223.2 kW kg-1. These impressive performances suggest that the MnO2 nanosheet array is a promising electrode material for supercapacitors.

  19. Asymmetric synthesis using chiral-encoded metal

    Science.gov (United States)

    Yutthalekha, Thittaya; Wattanakit, Chularat; Lapeyre, Veronique; Nokbin, Somkiat; Warakulwit, Chompunuch; Limtrakul, Jumras; Kuhn, Alexander

    2016-08-01

    The synthesis of chiral compounds is of crucial importance in many areas of society and science, including medicine, biology, chemistry, biotechnology and agriculture. Thus, there is a fundamental interest in developing new approaches for the selective production of enantiomers. Here we report the use of mesoporous metal structures with encoded geometric chiral information for inducing asymmetry in the electrochemical synthesis of mandelic acid as a model molecule. The chiral-encoded mesoporous metal, obtained by the electrochemical reduction of platinum salts in the presence of a liquid crystal phase and the chiral template molecule, perfectly retains the chiral information after removal of the template. Starting from a prochiral compound we demonstrate enantiomeric excess of the (R)-enantiomer when using (R)-imprinted electrodes and vice versa for the (S)-imprinted ones. Moreover, changing the amount of chiral cavities in the material allows tuning the enantioselectivity.

  20. Novel synthesis of Ni-ferrite (NiFe{sub 2}O{sub 4}) electrode material for supercapacitor applications

    Energy Technology Data Exchange (ETDEWEB)

    Venkatachalam, V.; Jayavel, R., E-mail: rjvel@annauniv.edu [Centre for Nanoscience and Technology, Anna University, Chennai-600025 (India)

    2015-06-24

    Novel nanocrystalline NiFe{sub 2}O{sub 4} has been synthesized through combustion route using citric acid as a fuel. Phase of the synthesized material was analyzed using powder X-ray diffraction. The XRD study revealed the formation of spinel phase cubic NiFe{sub 2}O{sub 4} with high crystallinity. The average crystallite size of NiFe{sub 2}O{sub 4} nanomaterial was calculated from scherrer equation. The electrochemical properties were realized by cyclic voltammetry, chronopotentiometry and electrochemical impedance spectroscopy. The electrode material shows a maximum specific capacitance of 454 F/g with pseudocapacitive behavior. High capacitance retention of electrode material over 1000 continuous charging-discharging cycles suggests its excellent electrochemical stability. The results revealed that the nickel ferrite electrode is a potential candidate for energy storage applications in supercapacitor.

  1. Synthesis and characterization of NiCo2O4 nanoplates as efficient electrode materials for electrochemical supercapacitors

    Science.gov (United States)

    Kim, Taehyun; Ramadoss, Ananthakumar; Saravanakumar, Balasubramaniam; Veerasubramani, Ganesh Kumar; Kim, Sang Jae

    2016-05-01

    In the present work, NiCo2O4 nanoplates were prepared by a facile, low temperature, hydrothermal method, followed by thermal annealing and used supercapacitor applications. The physico-chemical characterization of as-prepared materials were investigated by means of X-ray diffraction (XRD), Fourier transform infra-red spectroscopy (FT-IR) and field emission scanning electron microscopy (FE-SEM). The electrochemical measurements demonstrate that the NiCo2O4 nanoplates electrode (NC-5) exhibits a high specific capacitance of 332 F g-1 at a scan rate of 5 mV s-1 and also retained about 86% of the initial specific capacitance value even after 2000 cycles at a current density of 2.5 A g-1. These results suggest that the fabricated electrode material has huge potential as a novel electrode material for electrochemical capacitors.

  2. Novel synthesis of Ni-ferrite (NiFe2O4) electrode material for supercapacitor applications

    Science.gov (United States)

    Venkatachalam, V.; Jayavel, R.

    2015-06-01

    Novel nanocrystalline NiFe2O4 has been synthesized through combustion route using citric acid as a fuel. Phase of the synthesized material was analyzed using powder X-ray diffraction. The XRD study revealed the formation of spinel phase cubic NiFe2O4 with high crystallinity. The average crystallite size of NiFe2O4 nanomaterial was calculated from scherrer equation. The electrochemical properties were realized by cyclic voltammetry, chronopotentiometry and electrochemical impedance spectroscopy. The electrode material shows a maximum specific capacitance of 454 F/g with pseudocapacitive behavior. High capacitance retention of electrode material over 1000 continuous charging-discharging cycles suggests its excellent electrochemical stability. The results revealed that the nickel ferrite electrode is a potential candidate for energy storage applications in supercapacitor.

  3. Platinum nitride with fluorite structure

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Rong; Zhang, Xiao-Feng

    2005-01-31

    The mechanical stability of platinum nitride has been studied using first-principles calculations. By calculating the single-crystal elastic constants, we show that platinum nitride can be stabilized in the fluorite structure, in which the nitrogen atoms occupy all the tetrahedral interstitial sites of the metal lattice. The stability is attributed to the pseudogap effect from analysis of the electronic structure.

  4. A single-step route for large-scale synthesis of core-shell palladium@platinum dendritic nanocrystals/reduced graphene oxide with enhanced electrocatalytic properties

    Science.gov (United States)

    Liu, Qi; Xu, Yan-Ru; Wang, Ai-Jun; Feng, Jiu-Ju

    2016-01-01

    In this report, a facile, seed-less and single-step method is developed for large-scale synthesis of core-shell Pd@Pt dendritic nanocrystals anchored on reduced graphene oxide (Pd@Pt DNC/rGO) under mild conditions. Poly(ethylene oxide) is employed as a structure-directing and stabilizing agent. Compared with commercial Pt/C (20 wt%) and Pd/C (20 wt%) catalysts, the as-obtained nanocomposite has large electrochemically active surface area (114.15 m2gmetal-1), and shows superior catalytic activity and stability with the mass activities of 1210.0 and 1128.5 mAmgmetal-1 for methanol and ethanol oxidation, respectively. The improved catalytic activity is mainly the consequence of the synergistic effects between Pd and Pt of the dendritic structures, as well as rGO as a support.

  5. Synthesis and Characterization of Nanostructured Manganese Dioxide Used as Positive Electrode Material for Electrochemical Capacitor with Lithium Hydroxide Electrolyte

    Institute of Scientific and Technical Information of China (English)

    YUAN,An-Bao; ZHOU,Min; WANG,Xiu-Ling; SUN,Zi-Hong; WANG,Yu-Qin

    2008-01-01

    A nanostructured manganese dioxide electrode material was prepared using a solid-reaction route starting with MnCl2·4H2O and NH4HCO3, and its electrochemical performance as a positive electrode for MnO2/activated carbon hybrid supercapacitor with 1 mol·L-1 LiOH electrolyte was reported. The material was proved to be a mixture of nanostructured γ-MnO2 and α-MnO2 containing some bound water in the structure, which was characterized by X-ray diffraction analysis, infrared spectrum analysis, and transmission electron microscope observation. Electrochemical properties of the MnO2 electrode and the MnO2/AC capacitor were investigated by cyclic voltammetry, ac impedance and galvanostatic charge/discharge methods. Experimental results showed that the MnO2 electrode exhibited faradaic pseudocapacitance behavior and higher specific capacitance in 1 mol·L-1 LiOH electrolyte. The MnO2/AC hybrid capacitor with 1 mol·L-1 LiOH electrolyte presented excellent rate charge/discharge ability and cyclic stability.

  6. Cathodic reductive coupling of methyl cinnamate on boron-doped diamond electrodes and synthesis of new neolignan-type products.

    Science.gov (United States)

    Kojima, Taiki; Obata, Rika; Saito, Tsuyoshi; Einaga, Yasuaki; Nishiyama, Shigeru

    2015-01-01

    The electroreduction reaction of methyl cinnamate on a boron-doped diamond (BDD) electrode was investigated. The hydrodimer, dimethyl 3,4-diphenylhexanedioate (racemate/meso = 74:26), was obtained in 85% yield as the major product, along with small amounts of cyclic methyl 5-oxo-2,3-diphenylcyclopentane-1-carboxylate. Two new neolignan-type products were synthesized from the hydrodimer.

  7. Synthesis and in vitro anticancer activity of octahedral platinum(IV) complexes with cyclohexyl-functionalized ethylenediamine-N,N'-diacetate-type ligands.

    Science.gov (United States)

    Lazić, Jelena M; Vucićević, Ljubica; Grgurić-Sipka, Sanja; Janjetović, Kristina; Kaluderović, Goran N; Misirkić, Maja; Gruden-Pavlović, Maja; Popadić, Dusan; Paschke, Reinhard; Trajković, Vladimir; Sabo, Tibor J

    2010-06-07

    The present study describes the synthesis and anticancer activity of novel octahedral Pt(IV) complexes with cyclohexyl functionalized ethylenediamine-N,N'-diacetate-type ligands. Molecular mechanics calculations and density functional theory analysis revealed that s-cis is the preferred geometry of these Pt(IV) complexes with tetradentate-coordinated (S,S)-ethylenediamine-N,N'-di-2-(3-cyclohexyl)propanoate. The viability of cancer cell lines (U251 human glioma, C6 rat glioma, L929 mouse fibrosarcoma, and B16 human melanoma) was assessed by measuring mitochondrial dehydrogenase activity and lactate dehydrogenase release. Cell-cycle distribution, oxidative stress, caspase activation, and induction of autophagy were analyzed by flow cytometry using appropriate fluorescent reporter dyes. The cytotoxic activity of novel Pt(IV) complexes against various cancer cell lines (IC(50) range: 1.9-8.7 microM) was higher than that of cisplatin (IC(50) range: 10.9-67.0 microM) and proceeded through completely different mechanisms. Cisplatin induced caspase-dependent apoptosis associated with the cytoprotective autophagic response. In contrast, the new Pt(IV) complexes caused rapid, caspase-independent, oxidative stress-mediated non-apoptotic cell death characterized by massive cytoplasmic vacuolization, cell membrane damage, and the absence of protective autophagy.

  8. Novel Antitumor Platinum(II) Conjugates Containing the Nonsteroidal Anti-inflammatory Agent Diclofenac: Synthesis and Dual Mechanisms of Antiproliferative Effects.

    Science.gov (United States)

    Intini, Francesco Paolo; Zajac, Juraj; Novohradsky, Vojtech; Saltarella, Teresa; Pacifico, Concetta; Brabec, Viktor; Natile, Giovanni; Kasparkova, Jana

    2017-02-06

    One concept how to improve anticancer effects of conventional metallodrugs consists in conjugation of these compounds with other biologically (antitumor) active agents, acting by a different mechanism. Here, we present synthesis, biological effects, and mechanisms of action of new Pt(II) derivatives containing one or two nonsteroidal anti-inflammatory diclofenac (DCF) ligands also known for their antitumor effects. The antiproliferative properties of these metallic conjugates show that these compounds are potent and cancer cell selective cytotoxic agents exhibiting activity in cisplatin resistant and the COX-2 positive tumor cell lines. One of these compounds, compound 3, in which DCF molecules are coordinated to Pt(II) through their carboxylic group, is more potent than parental conventional Pt(II) drug cisplatin, free DCF and the congeners of 3 in which DCF ligands are conjugated to Pt(II) via a diamine. The potency of 3 is due to several factors including enhanced internalization that correlates with enhanced DNA binding and cytotoxicity. Mechanistic studies show that 3 combines multiple effects. After its accumulation in cells, it releases Pt(II) drug capable of binding/damaging DNA and DCF ligands, which affect distribution of cells in individual phases of the cell cycle, inhibit glycolysis and lactate transport, collapse mitochondrial membrane potential, and suppress the cellular properties characteristic of metastatic progression.

  9. Polymerization of Pyrrole and Thiophene on Polyethylene Adipate Electrodes

    OpenAIRE

    Erturan, Seyfettin; TORAMAN, Burcu YALVAÇ and Sena

    1998-01-01

    Polymerizations of pyrrole and thiophene on a platinum foil coated by polyethylene adipate (PEA) were carried out in acetonitrile by electrochemical methods. Different compositions of semi-conducting composite films of PEA/Polypyrrole(PPy), PEA/Polythiophene(PT) were prepared by the electrochemical polymerization of pyrrole and thiophene on PEA electrode. The polymerization was possible only for a certain thickness of the polyethylene adipate(PEA) on the platinum. Conductivities of PEA/PPy, P...

  10. Erosion on spark plug electrodes; Funkenerosion an Zuendkerzenelektroden

    Energy Technology Data Exchange (ETDEWEB)

    Rager, J.

    2006-07-01

    Durability of spark plugs is mainly determined by spark gap widening, caused by electrode wear. Knowledge about the erosion mechanisms of spark plug materials is of fundamental interest for the development of materials with a high resistance against electrode erosion. It is therefore crucial to identify those parameters which significantly influence the erosion behaviour of a material. In this work, a reliable and reproducible testing method is presented which produces and characterizes electrode wear under well-defined conditions and which is capable of altering parameters specifically. Endurance tests were carried out to study the dependence of the wear behaviour of pure nickel and platinum on the electrode temperature, gas, electrode gap, electrode diameter, atmospheric pressure, and partial pressure of oxygen. It was shown that erosion under nitrogen is negligible, irrespective of the material. This disproves all common mechanism discussed in the literature explaining material loss of spark plug electrodes. Based on this observation and the variation of the mentioned parameters a new erosion model was deduced. This relies on an oxidation of the electrode material and describes the erosion of nickel and platinum separately. For nickel, electrode wear is caused by the removal of an oxide layer by the spark. In the case of platinum, material loss occurs due to the plasma-assisted formation and subsequent evaporation of volatile oxides in the cathode spot. On the basis of this mechanism a new composite material was developed whose erosion resistance is superior to pure platinum. Oxidation resistant metal oxide particles were added to a platinum matrix, thus leading to a higher erosion resistance of the composite. However, this can be decreased by a side reaction, the separation of oxygen from the metal oxides, which effectively assists the oxidation of the matrix. This reaction can be suppressed by using highly stable oxides, characterized by a large negative Gibbs

  11. Rapid synthesis of ultra-long silver nanowires for tailor-made transparent conductive electrodes: proof of concept in organic solar cells.

    Science.gov (United States)

    José Andrés, Luis; Fe Menéndez, María; Gómez, David; Luisa Martínez, Ana; Bristow, Noel; Paul Kettle, Jeffrey; Menéndez, Armando; Ruiz, Bernardino

    2015-07-03

    Rapid synthesis of ultralong silver nanowires (AgNWs) has been obtained using a one-pot polyol-mediated synthetic procedure. The AgNWs have been prepared from the base materials in less than one hour with nanowire lengths reaching 195 μm, which represents the quickest synthesis and one of the highest reported aspect ratios to date. These results have been achieved through a joint analysis of all reaction parameters, which represents a clear progress beyond the state of the art. Dispersions of the AgNWs have been used to prepare thin, flexible, transparent and conducting films using spray coating. Due to the higher aspect ratio, an improved electrical percolation network is observed. This allows a low sheet resistance (RS = 20.2 Ω/sq), whilst maintaining high optical film transparency (T = 94.7%), driving to the highest reported figure-of-merit (FoM = 338). Owing to the light-scattering influence of the AgNWs, the density of the AgNW network can also be varied to enable controllability of the optical haze through the sample. Based on the identification of the optimal haze value, organic photovoltaics (OPVs) have been fabricated using the AgNWs as the transparent electrode and have been benchmarked against indium tin oxide (ITO) electrodes. Overall, the performance of OPVs made using AgNWs sees a small decrease in power conversion efficiency (PCE), primarily due to a fall in open-circuit voltage (50 mV). This work indicates that AgNWs can provide a low cost, rapid and roll-to-roll compatible alternative to ITO in OPVs, with only a small compromise in PCE needed.

  12. Rapid synthesis of ultra-long silver nanowires for tailor-made transparent conductive electrodes: proof of concept in organic solar cells

    Science.gov (United States)

    José Andrés, Luis; Menéndez, María Fe; Gómez, David; Martínez, Ana Luisa; Bristow, Noel; Kettle, Jeffrey Paul; Menéndez, Armando; Ruiz, Bernardino

    2015-07-01

    Rapid synthesis of ultralong silver nanowires (AgNWs) has been obtained using a one-pot polyol-mediated synthetic procedure. The AgNWs have been prepared from the base materials in less than one hour with nanowire lengths reaching 195 μm, which represents the quickest synthesis and one of the highest reported aspect ratios to date. These results have been achieved through a joint analysis of all reaction parameters, which represents a clear progress beyond the state of the art. Dispersions of the AgNWs have been used to prepare thin, flexible, transparent and conducting films using spray coating. Due to the higher aspect ratio, an improved electrical percolation network is observed. This allows a low sheet resistance (RS = 20.2 Ω/sq), whilst maintaining high optical film transparency (T = 94.7%), driving to the highest reported figure-of-merit (FoM = 338). Owing to the light-scattering influence of the AgNWs, the density of the AgNW network can also be varied to enable controllability of the optical haze through the sample. Based on the identification of the optimal haze value, organic photovoltaics (OPVs) have been fabricated using the AgNWs as the transparent electrode and have been benchmarked against indium tin oxide (ITO) electrodes. Overall, the performance of OPVs made using AgNWs sees a small decrease in power conversion efficiency (PCE), primarily due to a fall in open-circuit voltage (50 mV). This work indicates that AgNWs can provide a low cost, rapid and roll-to-roll compatible alternative to ITO in OPVs, with only a small compromise in PCE needed.

  13. Facile Fabrication of Platinum-Cobalt Alloy Nanoparticles with Enhanced Electrocatalytic Activity for a Methanol Oxidation Reaction

    Science.gov (United States)

    Huang, Huihong; Hu, Xiulan; Zhang, Jianbo; Su, Nan; Cheng, JieXu

    2017-01-01

    Decreasing the cost associated with platinum-based catalysts along with improving their catalytic properties is a major challenge for commercial direct methanol fuel cells. In this work, a simple and facile strategy was developed for the more efficient preparation of multi-walled carbon nanotube (MWCNT) -supported Pt/CoPt composite nanoparticles (NPs) via solution plasma sputtering with subsequent thermal annealing. Quite different from general wet synthesis methods, Pt/CoPt composite NPs were directly derived from metal wire electrodes without any additions. The obtained Pt/CoPt/MWCNTs composite catalysts exhibited tremendous improvement in the electro-oxidation of methanol in acidic media with mass activities of 1719 mA mg−1Pt. This value is much higher than that of previous reports of Pt-Co alloy and commercial Pt/C (3.16 times) because of the many active sites and clean surface of the catalysts. The catalysts showed good stability due to the special synergistic effects of the CoPt alloy. Pt/CoPt/MWCNTs can be used as a promising catalyst for direct methanol fuel cells. In addition, this solution plasma sputtering-assisted synthesis method introduces a general and feasible route for the synthesis of binary alloys. PMID:28358143

  14. Preparation of low-platinum-content platinum-nickel, platinum-cobalt binary alloy and platinum-nickel-cobalt ternary alloy catalysts for oxygen reduction reaction in polymer electrolyte fuel cells

    Science.gov (United States)

    Li, Mu; Lei, Yanhua; Sheng, Nan; Ohtsuka, Toshiaki

    2015-10-01

    A series of low-platinum-content platinum-nickel (Pt-Ni), platinum-cobalt (Pt-Co) binary alloys and platinum-nickel-cobalt (Pt-Ni-Co) ternary alloys electrocatalysts were successfully prepared by a three-step process based on electrodeposition technique and studied as electrocatalysts for oxygen reduction reaction (ORR) in polymer-electrolyte fuel cells. Kinetics of ORR was studied in 0.5 M H2SO4 solution on the Pt-Ni, Pt-Co and Pt-Ni-Co alloys catalysts using rotating disk electrode technique. Both the series of Pt-Ni, Pt-Co binary alloys and the Pt-Ni-Co ternary alloys catalysts exhibited an obvious enhancement of ORR activity in comparison with pure Pt. The significant promotion of ORR activities of Pt-Ni and Pt-Co binary alloys was attributed to the enhancement of the first electron-transfer step, whereas, Pt-Ni-Co ternary alloys presented a more complicated mechanism during the electrocatalysis process but a much more efficient ORR activities than the binary alloys.

  15. The Next Generation of Platinum Drugs: Targeted Pt(II) Agents, Nanoparticle Delivery, and Pt(IV) Prodrugs.

    Science.gov (United States)

    Johnstone, Timothy C; Suntharalingam, Kogularamanan; Lippard, Stephen J

    2016-03-09

    The platinum drugs, cisplatin, carboplatin, and oxaliplatin, prevail in the treatment of cancer, but new platinum agents have been very slow to enter the clinic. Recently, however, there has been a surge of activity, based on a great deal of mechanistic information, aimed at developing nonclassical platinum complexes that operate via mechanisms of action distinct from those of the approved drugs. The use of nanodelivery devices has also grown, and many different strategies have been explored to incorporate platinum warheads into nanomedicine constructs. In this Review, we discuss these efforts to create the next generation of platinum anticancer drugs. The introduction provides the reader with a brief overview of the use, development, and mechanism of action of the approved platinum drugs to provide the context in which more recent research has flourished. We then describe approaches that explore nonclassical platinum(II) complexes with trans geometry or with a monofunctional coordination mode, polynuclear platinum(II) compounds, platinum(IV) prodrugs, dual-threat agents, and photoactivatable platinum(IV) complexes. Nanoparticles designed to deliver platinum(IV) complexes will also be discussed, including carbon nanotubes, carbon nanoparticles, gold nanoparticles, quantum dots, upconversion nanoparticles, and polymeric micelles. Additional nanoformulations, including supramolecular self-assembled structures, proteins, peptides, metal-organic frameworks, and coordination polymers, will then be described. Finally, the significant clinical progress made by nanoparticle formulations of platinum(II) agents will be reviewed. We anticipate that such a synthesis of disparate research efforts will not only help to generate new drug development ideas and strategies, but also will reflect our optimism that the next generation of approved platinum cancer drugs is about to arrive.

  16. Exploring excited-state tunability in luminescent tris-cyclometalated platinum(IV) complexes: synthesis of heteroleptic derivatives and computational calculations.

    Science.gov (United States)

    Juliá, Fabio; Aullón, Gabriel; Bautista, Delia; González-Herrero, Pablo

    2014-12-22

    The synthesis, structure, electrochemistry, and photophysical properties of a series of heteroleptic tris- cyclometalated Pt(IV) complexes are reported. The complexes mer-[Pt(C^N)2 (C'^N')]OTf, with C^N=C-deprotonated 2-(2,4-difluorophenyl)pyridine (dfppy) or 2-phenylpyridine (ppy), and C'^N'=C-deprotonated 2-(2-thienyl)pyridine (thpy) or 1-phenylisoquinoline (piq), were obtained by reacting bis- cyclometalated precursors [Pt(C^N)2 Cl2] with AgOTf (2 equiv) and an excess of the N'^C'H pro-ligand. The complex mer-[Pt(dfppy)2 (ppy)]OTf was obtained analogously and photoisomerized to its fac counterpart. The new complexes display long-lived luminescence at room temperature in the blue to orange color range. The emitting states involve electronic transitions almost exclusively localized on the ligand with the lowest π-π* energy gap and have very little metal character. DFT and time-dependent DFT (TD-DFT) calculations on mer-[Pt(ppy)2 (C'^N')](+) (C'^N'=thpy, piq) and mer/fac-[Pt(ppy)3](+) support this assignment and provide a basis for the understanding of the luminescence of tris-cyclometalated Pt(IV) complexes. Excited states of LMCT character may become thermally accessible from the emitting state in the mer isomers containing dfppy or ppy as chromophoric ligands, leading to strong nonradiative deactivation. This effect does not operate in the fac isomers or the mer complexes containing thpy or piq, for which nonradiative deactivation originates mainly from vibrational coupling to the ground state. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Toward Plastic Smart Windows: Optimization of Indium Tin Oxide Electrodes for the Synthesis of Electrochromic Devices on Polycarbonate Substrates.

    Science.gov (United States)

    Laurenti, Marco; Bianco, Stefano; Castellino, Micaela; Garino, Nadia; Virga, Alessandro; Pirri, Candido F; Mandracci, Pietro

    2016-03-01

    Plastic smart windows are becoming one of the key elements in view of the fabrication of inexpensive, lightweight electrochromic (EC) devices to be integrated in the new generation of high-energy-efficiency buildings and automotive applications. However, fabricating electrochromic devices on polymer substrates requires a reduction of process temperature, so in this work we focus on the development of a completely room-temperature deposition process aimed at the preparation of ITO-coated polycarbonate (PC) structures acting as transparent and conductive plastic supports. Without providing any substrate heating or surface activation pretreatments of the polymer, different deposition conditions are used for growing indium tin oxide (ITO) thin films by the radiofrequency magnetron sputtering technique. According to the characterization results, the set of optimal deposition parameters is selected to deposit ITO electrodes having high optical transmittance in the visible range (∼90%) together with low sheet resistance (∼8 ohm/sq). The as-prepared ITO/PC structures are then successfully tested as conductive supports for the fabrication of plastic smart windows. To this purpose, tungsten trioxide thin films are deposited by the reactive sputtering technique on the ITO/PC structures, and the resulting single electrode EC devices are characterized by chronoamperometric experiments and cyclic voltammetry. The fast switching response between colored and bleached states, together with the stability and reversibility of their electrochromic behavior after several cycling tests, are considered to be representative of the high quality of the EC film but especially of the ITO electrode. Indeed, even if no adhesion promoters, additional surface activation pretreatments, or substrate heating were used to promote the mechanical adhesion among the electrode and the PC surface, the observed EC response confirmed that the developed materials can be successfully employed for the

  18. Cathodic reductive coupling of methyl cinnamate on boron-doped diamond electrodes and synthesis of new neolignan-type products

    Directory of Open Access Journals (Sweden)

    Taiki Kojima

    2015-02-01

    Full Text Available The electroreduction reaction of methyl cinnamate on a boron-doped diamond (BDD electrode was investigated. The hydrodimer, dimethyl 3,4-diphenylhexanedioate (racemate/meso = 74:26, was obtained in 85% yield as the major product, along with small amounts of cyclic methyl 5-oxo-2,3-diphenylcyclopentane-1-carboxylate. Two new neolignan-type products were synthesized from the hydrodimer.

  19. Synthesis and application of a triazene-ferrocene modifier for immobilization and characterization of oligonucleotides at electrodes.

    Science.gov (United States)

    Hansen, Majken N; Farjami, Elaheh; Kristiansen, Martin; Clima, Lilia; Pedersen, Steen Uttrup; Daasbjerg, Kim; Ferapontova, Elena E; Gothelf, Kurt V

    2010-04-16

    A new DNA modifier containing triazene, ferrocene, and activated ester functionalities was synthesized and applied for electrochemical grafting and characterization of DNA at glassy carbon (GC) and gold electrodes. The modifier was synthesized from ferrocenecarboxylic acid by attaching a phenyltriazene derivative to one of the ferrocene Cp rings, while the other Cp ring containing the carboxylic acid was converted to an activated ester. The modifier was conjugated to an amine-modified DNA sequence. For immobilization of the conjugate at Au or GC electrodes, the triazene was activated by dimethyl sulfate for release of the diazonium salt. The salt was reductively converted to the aryl radical which was readily immobilized at the surface. DNA grafted onto electrodes exhibited remarkable hybridization properties, as detected through a reversible shift in the redox potential of the Fc redox label upon repeated hybridization/denaturation procedures with a complementary target DNA sequence. By using a methylene blue (MB) labeled target DNA sequence the hybridization could also be followed through the MB redox potential. Electrochemical studies demonstrated that grafting through the triazene modifier can successfully compete with existing protocols for DNA immobilization through the commonly used alkanethiol linkers and diazonium salts. Furthermore, the triazene modifier provides a practical one-step immobilization procedure.

  20. Rapid synthesis of monodispersed highly porous spinel nickel cobaltite (NiCo2O4) electrode material for supercapacitors

    Science.gov (United States)

    Naveen, A. Nirmalesh; Selladurai, S.

    2015-06-01

    Monodispersed highly porous spinel nickel cobaltite electrode material was successfully synthesized in a short time using combustion technique. Single phase cubic nature of the spinel nickel cobaltite with average crystallite size of 24 nm was determined from X-ray diffraction study. Functional groups present in the compound were determined from FTIR study and it further confirms the spinel formation. FESEM images reveal the porous nature of the prepared material and uniform size distribution of the particles. Electrochemical evaluation was performed using Cyclic Voltammetry (CV) technique, Chronopotentiometry (CP) and Electrochemical Impedance Spectroscopy (EIS). Results reveal the typical pseudocapacitive behaviour of the material. Maximum capacitance of 754 F/g was calculated at the scan rate of 5 mV/s, high capacitance was due to the unique porous morphology of the electrode. Nyquist plot depicts the low resistance and good electrical conductivity of nickel cobaltite. It has been found that nickel cobaltite prepared by this typical method will be a potential electrode material for supercapcitor application.

  1. A Self-Templating Scheme for the Synthesis of Nanostructured Transition Metal Chalcogenide Electrodes for Capacitive Energy Storage

    KAUST Repository

    Xia, Chuan

    2015-06-11

    Due to their unique structural features including well-defined interior voids, low density, low coefficients of thermal expansion, large surface area and surface permeability, hollow micro/nanostructured transition metal sulfides with high conductivity have been investigated as new class of electrode materials for pseudocapacitor applications. Herein, we report a novel self-templating strategy to fabricate well-defined single and double-shell NiCo2S4 hollow spheres, as a promising electrode material for pseudocapacitors. The surfaces of the NiCo2S4 hollow spheres consist of self-assembled 2D mesoporous nanosheets. This unique morphology results in a high specific capacitance (1257 F g-1 at 2 A g-1), remarkable rate performance (76.4% retention of initial capacitance from 2 A g-1 to 60 A g-1) and exceptional reversibility with a cycling efficiency of 93.8% and 87% after 10,000 and 20,000 cycles, respectively, at a high current density of 10 A g-1. The cycling stability of our ternary chalcogenides is comparable to carbonaceous electrode materials, but with much higher specific capacitance (higher than any previously reported ternary chalcogenide), suggesting that these unique chalcogenide structures have potential application in next-generation commercial pseudocapacitors.

  2. Synthesis of Pt-Ni-Fe/CNT/CP nanocomposite as an electrocatalytic electrode for PEM fuel cell cathode

    Science.gov (United States)

    Litkohi, Hajar Rajaei; Bahari, Ali; Ojani, Reza

    2017-08-01

    In order to use carbon nanotube (CNT)-supported catalyst as fuel cell electrodes, Pt-Ni-Fe/CNT/carbon paper (CP) electrode was prepared using an ethylene glycol reduction method. CNTs were directly synthesized on Ni-impregnated carbon paper, plain carbon cloth, and Teflonized carbon cloth using chemical vapor deposition. FESEM and TEM images and thermogravimetric analysis indicated that in situ CNT on carbon paper (ICNT/CP) possesses more appropriate structural quality and stronger adhesion to the substrate than other substrates. The contact angle analysis demonstrated that the degree of ICNT/CP surface hydrophobicity encountered a 24% increase in comparison to CP and promoted to superhydrophobicity from hydrophobicity. The polarization curves and electrochemical impedance spectroscopy results of the loaded Pt-Ni-Fe on in situ and ex situ CNT/CP illustrated that the power density increased and charge transfer resistance reduced compared to commercial Pt/C loaded on CP. The results can be attributed to the outstanding properties of CNTs and high catalytic activity of triple catalysts causing alloying of Pt with Ni and Fe, which makes them a proper candidate to be used as cathode electrodes in proton exchange membrane fuel cells.

  3. Neural stimulation and recording electrodes.

    Science.gov (United States)

    Cogan, Stuart F

    2008-01-01

    Electrical stimulation of nerve tissue and recording of neural electrical activity are the basis of emerging prostheses and treatments for spinal cord injury, stroke, sensory deficits, and neurological disorders. An understanding of the electrochemical mechanisms underlying the behavior of neural stimulation and recording electrodes is important for the development of chronically implanted devices, particularly those employing large numbers of microelectrodes. For stimulation, materials that support charge injection by capacitive and faradaic mechanisms are available. These include titanium nitride, platinum, and iridium oxide, each with certain advantages and limitations. The use of charge-balanced waveforms and maximum electrochemical potential excursions as criteria for reversible charge injection with these electrode materials are described and critiqued. Techniques for characterizing electrochemical properties relevant to stimulation and recording are described with examples of differences in the in vitro and in vivo response of electrodes.

  4. Study of gold-platinum and platinum-gold surface modification and its influence on hydrogen evolution and oxygen reduction

    Directory of Open Access Journals (Sweden)

    BRANIMIR N. GRGUR

    2005-02-01

    Full Text Available Surface modification of the electrodes was conducted from sulfuric acid solutions containing the corresponding metal–chloride complexes using cyclic voltammetry. Comparing the charges of the hydrogen underpotential deposition region, and the corresponding oxide reduction regions, it is concluded that a platinum overlayer on gold forms 3D islands, while gold on platinum forms 2D islands. Foreign metals present in an amount of up to one monolayer exert an influence on the change in reaction rate with respect to both hydrogen evolution (HER and oxygen reduction (ORR reactions. Aplatinum overlayer on a gold substrate increases the activity forHER and for ORR, compared with pure gold. These results can be understood in terms of a simple model, in which the change in the H and OH binding energies are directly proportional to the shift of the d-bond center of the overlayer. On the contrary, a gold layer on platinum slightly decreases the activity for both reactions compared with pure platinum.

  5. Highly trifluoromethylated platinum compounds.

    Science.gov (United States)

    Martínez-Salvador, Sonia; Forniés, Juan; Martín, Antonio; Menjón, Babil

    2011-07-11

    The homoleptic, square-planar organoplatinum(II) compound [NBu(4)](2) [Pt(CF(3))(4)] (1) undergoes oxidative addition of CF(3) I under mild conditions to give rise to the octahedral organoplatinum(IV) complex [NBu(4)](2) [Pt(CF(3))(5)I] (2). This highly trifluoromethylated species reacts with Ag(+) salts of weakly coordinating anions in Me(2)CO under a wet-air stream to afford the aquo derivative [NBu(4)][Pt(CF(3))(5) (OH(2))] (4) in around 75% yield. When the reaction of 2 with the same Ag(+) salts is carried out in MeCN, the solvento compound [NBu(4) ][Pt(CF(3))(5)(NCMe)] (5) is obtained in around 80% yield. The aquo ligand in 4 as well as the MeCN ligand in 5 are labile and can be cleanly replaced by neutral and anionic ligands to furnish a series of pentakis(trifluoromethyl)platinate(IV) compounds with formulae [NBu(4)][Pt(CF(3))(5) (L)] (L=CO (6), pyridine (py; 7), tetrahydrothiophene (tht; 8)) and [NBu(4)](2) [Pt(CF(3))(5)X] (X=Cl (9), Br (10)). The unusual carbonyl-platinum(IV) derivative [NBu(4)][Pt(CF(3))(5) (CO)] (6) is thermally stable and has a ν(CO) of 2194 cm(-1). The crystal structures of 2⋅CH(2)Cl(2), 5, [PPh(4) ][Pt(CF(3))(5)(CO)] (6'), and 7 have been established by X-ray diffraction methods. Compound 2 has shown itself to be a convenient entry to the chemistry of highly trifluoromethylated platinum compounds. To the best of our knowledge, compounds 2 and 4-10 are the organoelement compounds with the highest CF(3) content to have been isolated and adequately characterized to date.

  6. Characterisation of carbon nanotubes decorated with platinum nanoparticles

    OpenAIRE

    M. Pawlyta; D. Łukowiec; A.D. Dobrzańska-Danikiewicz

    2012-01-01

    Purpose: In presented work results of synthesis of carbon nanotubes decorated with platinum nanoparticles by organic colloidal process as an example of direct formation of nanoparticles onto CNTs are reported.Design/methodology/approach: Powder XRD and transmission electron microscopy were used for characterisation of the morphology of composite as well as the distribution of nanocrystals on the CNTs surfaces.Findings: TEM results confirm that CNT were homogeneous and clean, without any admix...

  7. 改性介孔硅负载铂催化合成农用增效剂%Modified mesoporous silica supporting platinum catalyst for synthesis of agricultural synergist

    Institute of Scientific and Technical Information of China (English)

    谢慧琳; 张蔚欣; 朱贵有; 胡文斌; 廖列文; 贾振宇; 刘其海

    2016-01-01

    Pt/CS-SiO2 catalyst was prepared by impregnating platinum on chitosan modified mesoporous silica and characterized by Fourier Transform Infrared Spectroscopy (FTIR), nitrogen adsorption-desorption (BET), thermogravimetric analysis (TGA). Catalytic performance was evaluated in hydrosilylation of polyether and trisiloxane for synthesizing agricultural synergist. The experimental results showed that Pt was successfully incorporated on modified mesoporous silica at content of 0.85%. The new catalyst had excellent reusability, which still maintained high activity with greater than 90% of both conversion and selectivity after reused seven times. The optimal synthesis condition for agricultural synergist was a mixture of polyether and trisiloxane at a molar ratio of 1:1.1 and 105℃ for 3 h. The agricultural synergist exhibited excellent stability in neutral aqueous solution by hydrolysis assessment at various pH conditions.%通过壳聚糖(CS)改性介孔二氧化硅,并负载铂得到 Pt/CS-SiO2催化剂,采用红外光谱(FTIR)、氮气吸附脱附(BET)、热重分析(TG)等对催化剂进行表征,同时考察了 Pt/CS-SiO2催化聚醚和三硅氧烷反应合成农用增效剂。结果表明:Pt成功负载在改性介孔硅上,Pt含量为0.85%;催化剂具有良好的重复使用性,使用7次后仍有较高活性,转化率和选择性均在90%以上;合成农用增效剂的最优工艺为 n(MDHM):n(HDE)=1:1.1,反应温度为105℃,反应时间为3 h。测试产物在不同pH的水溶液中的水解性能,发现其在中性条件下可以比较稳定地存在。

  8. The effect of ammonia upon the electrocatalysis of hydrogen oxidation and oxygen reduction on polycrystalline platinum

    DEFF Research Database (Denmark)

    Verdaguer Casadevall, Arnau; Hernandez-Fernandez, Patricia; Stephens, Ifan E.L.

    2012-01-01

    The influence of ammonium ions on the catalysis of hydrogen oxidation and oxygen reduction is studied by means of rotating ring-disk electrode experiments on polycrystalline platinum in perchloric acid. While ammonium does not affect the hydrogen oxidation reaction, the oxygen reduction reaction ...

  9. Understanding platinum-induced ototoxicity.

    Science.gov (United States)

    Langer, Thorsten; am Zehnhoff-Dinnesen, Antoinette; Radtke, Susanne; Meitert, Johannes; Zolk, Oliver

    2013-08-01

    Childhood cancer survival rates are now nearly 80% in more developed European countries because of improved therapies and better supportive care. Platinum chemotherapy drugs, such as cisplatin and carboplatin, are the cornerstone of many effective therapeutic protocols for childhood cancer. However, the antitumor efficacy of cisplatin and carboplatin comes at the cost of ototoxicity, which affects at least 60% of pediatric patients. Although ototoxicity is not life threatening, it can have debilitating effects on patients' quality of life. Recently, many initiatives have been launched with the ultimate goal of reducing cisplatin and high-dose carboplatin ototoxicity without compromising antitumor efficacy. This review addresses the incidence of platinum ototoxicity and its clinical presentation, time course, and early diagnostic evaluation. Genetic and non-genetic risk factors for platinum-associated ototoxicity, and their predictive value, are discussed. Recent developments in the prevention of platinum ototoxicity are also summarized. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Design and synthesis of highly Water-soluble Platinum antineoplastic drugs%高水溶性铂类抗肿瘤药物的设计与合成

    Institute of Scientific and Technical Information of China (English)

    张启飞; 鲁彦会; 刘朋兴; 王松青; 高清志

    2012-01-01

    目的 设计与合成具有高水溶性的铂类抗肿瘤药物.方法 通过在丙二酸铂结构中偶联糖分子设计出目标化合物并合成取得水溶性抗肿瘤药物.结果 得到了迄今水溶性最好的金属铂类抗肿瘤化合物,其动物模型抗肿瘤活性和安全性均优于顺铂和卡铂.结论 通过糖分子偶联设计取得的新型铂类抗肿瘤药物能够解决一般铂类药物的低水溶性问题.经初步动物模型抗肿瘤药效实验证明该类药物具有理想的抗肿瘤效果.%Objective To design and synthesize Platinum antineoplastic drugs with high water solubility. Methods Sugar molecular was coupled to the malonic acid Platinum structure to design and synthesize Platinum antineoplastic drugs with high water solubility. Results Metal Platinum antineoplastic compound with best water-solubility was produced, and its antineoplastic activity and safety were better than those of Cisplatin and Carboplatin on animal model. Conclusion Neotype Platinum antineoplastic drug, which is produced through the sugar molecule coupling design, can solve low water-solubility problem of general Platinum drugs. Preliminary antineoplastic efficacy experiment on animal model demonstrates that this kind of medicine has ideal antineoplastic effect.

  11. Nanostructured silver and platinum modified carbon fiber microelectrodes coated with nafion for H2O2 determination

    Directory of Open Access Journals (Sweden)

    Vladimir Halouzka

    2010-12-01

    Full Text Available Carbon fiber microelectrodes equipped with nanostructured metals(platinum and silver and covered with a Nafion layer constitutesensitive H2O2 sensors. Metallic layers on carbon fibers wereprepared by surfactant assisted electrodeposition. In the case ofsilver, the procedure leads to coating which is composed of porous,partially aggregated and crystalline deposits containing silvernanoparticles. The electrodeposition of platinum leads to carbonfiber decorated with clusters of platinum nanoparticles. Aftercoating the electrodes with protective and antiinterference barriermade of Nafion, the sensing properties of the preparedmicroelectrodes towards hydrogen peroxide are investigated.

  12. Inorganic nanocarriers for platinum drug delivery

    Directory of Open Access Journals (Sweden)

    Ping’an Ma

    2015-12-01

    Full Text Available Nowadays platinum drugs take up almost 50% of all the clinically used anticancer drugs. Besides cisplatin, novel platinum agents including sterically hindered platinum (II drugs, chemically reductive platinum (IV drugs, photosensitive platinum (IV drugs, and multinuclear platinum drugs have been developed recently, with a few entering clinic trials. Rapid development of nanobiotechnology makes targeted delivery of anticancer platinum agents to the tumor site possible, while simultaneously minimizing toxicity and maximizing the drug efficacy. Being versatile drug carriers to deliver platinum drugs, inorganic nanovehicles such as gold nanoparticles, iron oxide nanomaterials, carbon nanotubes, mesoporous nanosilica, metal-organic frameworks (MOFs, have been extensively studied over the past decades. In contrast to conventional polymeric and lipid nanoparticles, inorganic nanoparticles based drug carriers are peculiar as they have shown excellent theranostic effects, revealing themselves an indispensable part of future nanomedicine. Here, we will elaborate recent research advances on fabrication of inorganic nanoparticles for platinum drug delivery.

  13. A novel rapid synthesis of Fe{sub 2}O{sub 3}/graphene nanocomposite using ferrate(VI) and its application as a new kind of nanocomposite modified electrode as electrochemical sensor

    Energy Technology Data Exchange (ETDEWEB)

    Karimi, Mohammad Ali, E-mail: ma_karimi43@yahoo.com [Department of Chemistry, Payame Noor University, 19395-4697 Tehran (Iran, Islamic Republic of); Department of Chemistry & Nanoscience and Nanotechnology Research Laboratory (NNRL), Payame Noor University, Sirjan (Iran, Islamic Republic of); Banifatemeh, Fatemeh [Department of Chemistry, Payame Noor University, 19395-4697 Tehran (Iran, Islamic Republic of); Department of Chemistry, Payame Noor University, Mashhad (Iran, Islamic Republic of); Hatefi-Mehrjardi, Abdolhamid [Department of Chemistry, Payame Noor University, 19395-4697 Tehran (Iran, Islamic Republic of); Department of Chemistry & Nanoscience and Nanotechnology Research Laboratory (NNRL), Payame Noor University, Sirjan (Iran, Islamic Republic of); Tavallali, Hossein [Department of Chemistry, Payame Noor University, 19395-4697 Tehran (Iran, Islamic Republic of); Department of Chemistry, Payame Noor University, Shiraz (Iran, Islamic Republic of); Eshaghia, Zarrin [Department of Chemistry, Payame Noor University, Mashhad (Iran, Islamic Republic of); Deilamy-Rad, Gohar [Department of Chemistry, Payame Noor University, Shiraz (Iran, Islamic Republic of)

    2015-10-15

    Highlights: • A novel rapid synthesis of rGO–Fe{sub 2}O{sub 3} nanocomposite was developed using Fe(VI). • Fe(VI) as an environmentally friendly oxidant was introduced for GO synthesis. • Synthesized rGO–Fe{sub 2}O{sub 3} nanocomposite was applied as electrochemical sensor. • A non-enzymatic sensor was developed for H{sub 2}O{sub 2}. - Abstract: In this study, a novel, simple and sensitive non-enzymatic hydrogen peroxide electrochemical sensor was developed using reduced graphene oxide/Fe{sub 2}O{sub 3} nanocomposite modified glassy carbon electrode. This nanocomposite was synthesized by reaction of sodium ferrate with graphene in alkaline media. This reaction completed in 5 min and the products were stable and its deposition on the surface of electrode is investigated. It has been found the apparent charge transfer rate constant (ks) is 0.52 and transfer coefficient (α) is 0.61 for electron transfer between the modifier and glassy carbon electrode. Electrochemical behavior of this electrode and its ability to catalyze the electro-reduction of H{sub 2}O{sub 2} has been studied by cyclic voltammetry and chronoamperometry at different experimental conditions. The analytical parameters showed the good ability of electrode as a sensor for H{sub 2}O{sub 2} amperometric reduction.

  14. Platinum availability for future automotive technologies.

    Science.gov (United States)

    Alonso, Elisa; Field, Frank R; Kirchain, Randolph E

    2012-12-04

    Platinum is an excellent catalyst, can be used at high temperatures, and is stable in many aggressive chemical environments. Consequently, platinum is used in many current industrial applications, notably automotive catalytic converters, and prospective vehicle fuel cells are expected to rely upon it. Between 2005 and 2010, the automotive industry used approximately 40% of mined platinum. Future automotive industry growth and automotive sales shifts toward new technologies could significantly alter platinum demand. The potential risks for decreased platinum availability are evaluated, using an analysis of platinum market characteristics that describes platinum's geophysical constraints, institutional efficiency, and dynamic responsiveness. Results show that platinum demand for an automotive fleet that meets 450 ppm greenhouse gas stabilization goals would require within 10% of historical growth rates of platinum supply before 2025. However, such a fleet, due largely to sales growth in fuel cell vehicles, will more strongly constrain platinum supply in the 2050 time period. While current platinum reserves are sufficient to satisfy this increased demand, decreasing platinum ore grade and continued concentration of platinum supply in a single geographic area are availability risk factors to platinum end-users.

  15. Gas diffusion electrodes for PEM-fuel cells via in situ-electrodeposition; Gasdiffusionselektroden fuer PEM-Brennstoffzellen durch in situ-Elektrodeposition

    Energy Technology Data Exchange (ETDEWEB)

    Keller, Vivien

    2009-03-16

    Commercial available membrane electrode assemblies are still very expensive, since a high noble metal catalyst loading has to be on the gas diffusion electrodes. The reason is particularly the fact that a high amount of the catalyst particles is not located in the so called three phase zone between ion conducting, electron conducting and reactant phase. In the present work the electrochemical synthesis of catalyst layers with a higher catalyst utilization, i. e. with a higher amount of particles located in the three phase zone has succeeded. Thus gas diffusion electrodes comparable in performance with commercial materials but coated with a lower catalyst loading were obtained. A second objective in this work was the development of an electrocombinatoric setup in which both the combinatoric electrosynthesis as well as the combinatoric analysis of platinum and platinum alloys can be performed. Furthermore different alloys were electrodeposited and electrocombinatorically analyzed with respect to their catalytic activity in the electroreduction of oxygen and the electrooxidation of hydrogen, methanol and ethanol. (orig.)

  16. Synthesis of a novel electrode material containing phytic acid-polyaniline nanofibers for simultaneous determination of cadmium and lead ions.

    Science.gov (United States)

    Huang, Hui; Zhu, Wencai; Gao, Xiaochun; Liu, Xiuyu; Ma, Houyi

    2016-12-01

    The development of nanostructured conducting polymers based materials for electrochemical applications has attracted intense attention due to their environmental stability, unique reversible redox properties, abundant electron active sites, rapid electron transfer and tunable conductivity. Here, a phytic acid doped polyaniline nanofibers based nanocomposite was synthesized using a simple and green method, the properties of the resulting nanomaterial was characterized by electrochemical impedance spectroscopy (EIS), Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), and energy dispersive spectroscopy (EDS). A glassy carbon electrode modified by the nanocomposite was evaluated as a new platform for the simultaneous detection of trace amounts of Cd(2+) and Pb(2+) using differential pulse anodic stripping voltammetry (DPASV). The synergistic contribution from PANI nanofibers and phytic acid enhances the accumulation efficiency and the charge transfer rate of metal ions during the DPASV analysis. Under the optimal conditions, good linear relationships were obtained for Cd(2+) in a range of 0.05-60 μg L(-1), with the detection limit (S/N = 3) of 0.02 μg L(-1), and for Pb(2+) in a range of 0.1-60 μg L(-1), with the detection limit (S/N = 3) of 0.05 μg L(-1). The new electrode was successfully applied to real water samples for simultaneous detection of Cd(2+) and Pb(2+) with good recovery rates. Therefore, the new electrode material may be a capable candidate for the detection of trace levels of heavy metal ions.

  17. Fabrication of a three-electrode battery using hydrogen-storage materials

    Science.gov (United States)

    Roh, Chi-Woo; Seo, Jung-Yong; Moon, Hyung-Seok; Park, Hyun-Young; Nam, Na-Yun; Cho, Sung Min; Yoo, Pil J.; Chung, Chan-Hwa

    2015-04-01

    In this study, an energy storage device using a three-electrode battery is fabricated. The charging process takes place during electrolysis of the alkaline electrolyte where hydrogen is stored at the palladium bifunctional electrode. Upon discharging, power is generated by operating the alkaline fuel cell using hydrogen which is accumulated in the palladium hydride bifunctional electrode during the charging process. The bifunctional palladium electrode is prepared by electrodeposition using a hydrogen bubble template followed by a galvanic displacement reaction of platinum in order to functionalize the electrode to work not only as a hydrogen storage material but also as an anode in a fuel cell. This bifunctional electrode has a sufficiently high surface area and the platinum catalyst populates at the surface of electrode to operate the fuel cell. The charging and discharging performance of the three-electrode battery are characterized. In addition, the cycle stability is investigated.

  18. Synthesis and properties of Li3VO4 - Carbon composite as negative electrode for lithium-ion battery

    Science.gov (United States)

    Narumi, Kengo; Mori, Tomoya; Kumasaka, Rei; Tojo, Tomohiro; Inada, Ryoji; Sakurai, Yoji

    2017-07-01

    Lithium vanadate Li3VO4 (LVO) is known to be as one of the attractive candidates for negative electrode of lithium-ion battery (LIB) with high safety. Although theoretical capacity of LVO attains to 400 mAh g-1, the actual charge and discharge capacities are far below due to its low electrical and ionic conductivity. In this study, we synthesized carbon-coated LVO (C-LVO) via one-step solid state reaction method and examined its properties as a negative electrode for LIB. From XRD measurements and SEM observation, crystal structure of C-LVO was nearly identical with non-coated one but grain size of former was much smaller than latter with same annealing temperature, suggesting that introduction of carbon source in starting materials effectively helps to suppress LVO grain growth during annealing. TEM observation of C-LVO also shows that amorphous carbon layer with its thickness of several ten nm was formed on the surface of LVO grain. In electrochemical testing, C-LVO shows much higher charge and discharge capacities than non-coated LVO.

  19. Synthesis of Polyaniline-Coated Ordered Mesoporous Carbon Composite Electrode Material for Supercapacitor and Its Enhanced Electrochemical Performance.

    Science.gov (United States)

    Li, Na; Xu, Jianxiong; Xu, Lijian; Du, Jingjing; Wang, Xianyou

    2015-07-01

    The polyaniline-coated ordered mesoporous carbon (PCOMC) material was prepared by chemical polymerization of aniline monomers on the ordered mesoporous carbon (OMC). The synthesized PCOMC materials were characterized by scanning electron microscopy, transmission electron microscopy, nitrogen adsorption-desorption isotherms and Fourier infrared spectroscopy. It was demonstrated that the polyaniline was successfully incorporated and well deposited on the external surface and inner pores of the OMC material. Furthermore, the electrochemical performance of the original OMC and PCOMC materials are compared by using cyclic voltammetry, electrochemical impedance spectroscopy, and galvanostatic charge-discharge tests. The results showed that the electrochemical performance of the OMC material was enhanced after the incorporation of polyaniline. The specific capacitance of PCOMC electrode (813.4 F/g) measured by cyclic voltammetry at the scan rate of 2 mV/s was much higher than that of the OMC electrode (200.9 F/g). The discharge specific capacitance of the PCOMC supercapacitor could be kept at 119.4 F/g when the current density was 5 A/g, indicating its good rate performance even at high charge/discharge current density. Moreover, the PCOMC supercapacitor exhibited long cycling stability with the capacitance retention remained 77% after 3500 cycles.

  20. Organic Solvent’s Effect in the Deposition of Platinum Particles on MWCNTs for Oxygen Reduction Reaction

    Directory of Open Access Journals (Sweden)

    Carolina Silva-Carrillo

    2016-01-01

    Full Text Available We reported the synthesis of platinum particles anchored on the surface of multiwall carbon nanotubes (MWCNTs. The synthesis of platinum particles was carried out by microemulsion method using hexadecyltrimethylammonium bromide (CTAB as surfactant to enhance the dispersion of platinum particles in hexane (C6, heptane (C7, and octane (C8 solutions. The effects of the microemulsion dispersion medium on the synthesis of platinum particles on MWCNTs (MWCNT/Pt hybrid materials and their catalytic activities of the oxygen reduction reaction (ORR in HClO4 were investigated. The anchored platinum particles showed good dispersion on carbon nanotubes surface with the average particle sizes of 2.65±0.60, 2.89±0.68, and 0.97±0.29 nm for the dispersion medium of C6, C7, and C8, respectively. The experimental results of ORR experiments indicated a relationship between the size and the dispersion media of the platinum particles; also the catalytic activity of the anchored platinum on MWCNT particles strongly depends on the dispersion medium employed in the microemulsion process.

  1. Harnessing chemoselective imine ligation for tethering bioactive molecules to platinum(IV) prodrugs.

    Science.gov (United States)

    Wong, Daniel Yuan Qiang; Lau, Jia Yi; Ang, Wee Han

    2012-05-28

    Platinum(II) anticancer drugs are among the most effective and often used chemotherapeutic drugs. In recent years, there has been increasing interest in exploiting inert platinum(IV) scaffolds as a prodrug strategy to mitigate the limitations of platinum(II) anticancer complexes. In this prodrug strategy, the axial ligands are released concomitantly upon intracellular reduction to the active platinum(II) congener, offering the possibility of conjugating bioactive co-drugs which may synergistically enhance cytotoxicity on cancer cells. Existing techniques of tethering bioactive molecules to the axial positions of platinum(IV) prodrugs suffer from limited scope, poor yields and low reliability. This report explores the applications of current chemoselective ligation chemistries to platinum(IV) anticancer complexes with the aim of addressing the aforementioned limitations. Here, we describe the synthesis of a platinum(IV) complex bearing an aromatic aldehyde functionality and explored the scope of imine ligation with various hydrazide and aminooxy functionalized substrates. As a proof of concept, we tethered a six sequence long peptide mimetic (AMVSEF) of the anti-inflammatory protein, ANXA1.

  2. Polyamide platinum anticancer complexes designed to target specific DNA sequences.

    Science.gov (United States)

    Jaramillo, David; Wheate, Nial J; Ralph, Stephen F; Howard, Warren A; Tor, Yitzhak; Aldrich-Wright, Janice R

    2006-07-24

    Two new platinum complexes, trans-chlorodiammine[N-(2-aminoethyl)-4-[4-(N-methylimidazole-2-carboxamido)-N-methylpyrrole-2-carboxamido]-N-methylpyrrole-2-carboxamide]platinum(II) chloride (DJ1953-2) and trans-chlorodiammine[N-(6-aminohexyl)-4-[4-(N-methylimidazole-2-carboxamido)-N-methylpyrrole-2-carboxamido]-N-methylpyrrole-2-carboxamide]platinum(II) chloride (DJ1953-6) have been synthesized as proof-of-concept molecules in the design of agents that can specifically target genes in DNA. Coordinate covalent binding to DNA was demonstrated with electrospray ionization mass spectrometry. Using circular dichroism, these complexes were found to show greater DNA binding affinity to the target sequence: d(CATTGTCAGAC)(2), than toward either d(GTCTGTCAATG)(2,) which contains different flanking sequences, or d(CATTGAGAGAC)(2), which contains a double base pair mismatch sequence. DJ1953-2 unwinds the DNA helix by around 13 degrees , but neither metal complex significantly affects the DNA melting temperature. Unlike simple DNA minor groove binders, DJ1953-2 is able to inhibit, in vitro, RNA synthesis. The cytotoxicity of both metal complexes in the L1210 murine leukaemia cell line was also determined, with DJ1953-6 (34 microM) more active than DJ1953-2 (>50 microM). These results demonstrate the potential of polyamide platinum complexes and provide the structural basis for designer agents that are able to recognize biologically relevant sequences and prevent DNA transcription and replication.

  3. A survey of reference electrodes for high temperature waters; Oeversikt av referenselektroder i hoegtemperaturvatten

    Energy Technology Data Exchange (ETDEWEB)

    Molander, A.; Eriksson, Sture; Pein, K. [Studsvik Nuclear, Nykoeping (Sweden)

    2000-11-01

    In nuclear power plants, corrosion potential measurements are used to follow the conditions for different corrosion types in reactor systems, particularly IGSCC in BWRs. The goal of this work has been to give a survey of reference electrodes for high temperature water, both those that are used for nuclear environments and those that are judged to possible future development. The reference electrodes that are used today in nuclear power plants for corrosion potential measurements are of three types. Silver chloride electrodes, membrane electrodes and platinum electrodes (hydrogen electrodes). The principals for their function is described as well as the conversion of measured potentials to the SHE scale (Standard Hydrogen Electrode). Silver chloride electrodes consist of an inner reference system of silver chloride in equilibrium with a chloride solution. The silver chloride electrode is the most common reference electrode and can be used in several different systems. Platinum electrodes are usually more robust and are particularly suitable to use in BWR environment to follow the hydrogen dosage, but have limitations at low and no hydrogen dosage. Ceramic membrane electrodes can be with different types of internal reference system. They were originally developed for pH measurements in high temperature water. If pH is constant, the membrane electrode can be used as reference electrode. A survey of ceramic reference electrodes for high temperature water is given. A ceramic membrane of the type used works as an oxygen conductor, so the potential and pH in surrounding medium is in equilibrium with the internal reference system. A survey of the lately development of electrodes is presented in order to explain why the different types of electrodes are developed as well as to give a background to the possibilities and limitations with the different electrodes. Possibilities of future development of electrodes are also given. For measurements at low or no hydrogen dosage

  4. Fabrication of iron-platinum ferromagnetic nanoparticles

    Science.gov (United States)

    Elkins, Kevin Eugene

    Fabrication of chemically disordered FePt particles ranging from 2--9 nm with a precision of 1 nm has been achieved through modification of key process variables including surfactant concentration, heating rates and the type of iron precursor. In addition, the shape evolution of the FePt nanoparticles during particle growth can be manipulated to give cubic or rod geometries through changes to the surfactant injection sequence and solvent system. The primary method for synthesis of the disordered FePt nanoparticles is the polyol reduction reported by Fievet et al., which has been modified and used extensively for synthesis of differing nanoparticle systems. Our procedures use platinum acetylacetonate, iron pentacarbonyl or ferric acetylacetonate as precursors for the FePt alloy, oleic acid and oleyl amine for the surfactants, 1,2-hexadecanediol to assist with the reduction of the precursors and either dioctyl ether or phenyl ether for the solvent system. For iron pentacarbonyl based reactions, adjustment of heating rates to reflux temperatures from 1--15°C per minute allows control of FePt particle diameters from 3--8 nm. Substitution of iron pentacarbonyl with ferric acetylacetonate as the iron source results in 2 nm particles. A high platinum to surfactant ratio of 10 to 1 will yield 9 nm FePt particles when iron pentacarbonyl is used as the precursor. For use of these particles in advanced applications, the synthesized particles must be transformed to the L1o phase through annealing at temperatures above 500°C. Inhibition of particle sintering can be avoided through dispersion in a NaCl matrix at a weight ratio of 400 to 1 salt to fcc FePt particles. Production of L1o FePt nanoparticles with high magnetic anisotropy with this process has been successful, allowing the original size and size distribution of the particles.

  5. Synthesis of Au/C and Au/Pani for anode electrodes in glucose microfluidic fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Guerra-Balcazar, M.; Morales-Acosta, D.; Castaneda, F.; Arriaga, L.G. [Centro de Investigacion y Desarrollo Tecnologico en Electroquimica, 76703 Queretaro (Mexico); Ledesma-Garcia, J. [Division de Investigacion y Posgrado, Facultad de Ingenieria, Universidad Autonoma de Queretaro, 76010 Queretaro (Mexico)

    2010-06-15

    Gold nanoparticles have been prepared by two methods: chemical (ex-situ, Au/C) by two phase protocol, and electrochemical (in-situ, Au/Pani) by electroreduction of gold ions on a polyaniline film and compared as anode catalysts in a glucose microfluidic fuel cell. In this paper the structural characteristics and electrocatalytic properties were investigated by X-ray diffraction and electrochemical measurements. The catalytic behavior of both anodes was tested in a microfluidic fuel cell with a reference electrode incorporated, by means of linear sweep voltammetry (LSV), showing a cathodic shift in the glucose oxidation peak for Au/Pani. Results show a higher power density (0.5 mW cm{sup -} {sup 2}) for Au/C anode compared with an already reported value, where a glucose microfluidic fuel cell was used in similar conditions. (author)

  6. Effective Synthesis and Recovery of Silver Nanowires Prepared by Tapered Continuous Flow Reactor for Flexible and Transparent Conducting Electrode

    Directory of Open Access Journals (Sweden)

    Hyung Duk Yun

    2016-01-01

    Full Text Available Silver nanowires (AgNWs with high aspect ratio were obtained utilizing a tapered tubular reactor by the polyol process. The tapered tubular type flow reactor allowed us to obtain nanowires in high yield without defects that is generally encountered in a closed reactor due to excessive shearing for a long time. After reaction the AgNWs were precipitated in the aqueous solution with the aid of a hydrogen bond breaker and were recovered effectively without using a high-cost centrifugation process. Dispersion of the AgNWs were used to prepare transparent conducting electrode (TCE films by a spray coating method, which showed 86% transmittance and 90 Ωsq−1 sheet resistance.

  7. New platinum(II) complexes conjugated at position 7α of 17β-acetyl-testosterone as new combi-molecules against prostate cancer: design, synthesis, structure-activity relationships and biological evaluation.

    Science.gov (United States)

    Fortin, Sébastien; Brasseur, Kevin; Morin, Nathalie; Asselin, Éric; Bérubé, Gervais

    2013-10-01

    Prostate cancer is a major public health problem worldwide and, more specifically, new treatments for hormone-refractory cancers are highly sought by several research groups. Although platinum(II)-based chemotherapy and other strategies grow in interest to treat castration-resistant prostate cancer (CRPC), they still exhibit modest activity on CRPC and overall patient survival. In this study, we designed and prepared new combi-molecules using 17β-acetyl-testosterone and amino acid platinum(II) complexes linked at the position 7α to target and to improve the antiproliferative activity of platinum(II)-based chemotherapy on prostate cancer cells. Twelve chemical intermediates and six new combi-molecules were prepared and characterized. Structure-activity relationships studies show that the platinum complex moiety is essential for an optimal cytocidal activity. Moreover, stereochemistry of the amino acid involved in the platinum complexes had only minor effects on the antiproliferative activity whereas pyridinyl (10a and b) and thiazolyl (10f) complexes exhibited the highest cytocidal activities that are significantly superior to that of cisplatin used as control on human prostate adenocarcinoma LNCaP (AR+), PC3 (AR-) and DU145 (AR-). Compounds 10a, b and f arrested the cell cycle progression in S-phase and induced double strand breaks as confirmed by the phosphorylation of histone H2AX into γH2AX. Compounds 10a and f showed 33 and 30% inhibition, respectively of the growth of HT-1080 tumors grafted onto chick chorioallantoic membranes. Finally, compounds 10a and 10f exhibited low toxicity on the chick embryos (18 and 21% of death, respectively), indicating that these new combi-molecules might be a promising new class of anticancer agents for prostate cancer.

  8. Nanoscale study by piezoresponse force microscopy of relaxor 0.7Pb(Mg{sub 1/3}Nb{sub 2/3})O{sub 3}-0.3PbTiO{sub 3} and 0.9Pb(Mg{sub 1/3}Nb{sub 2/3})O{sub 3}-0.1PbTiO{sub 3} thin films grown on platinum and LaNiO{sub 3} electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Detalle, M. [Universite d' Artois, Unite de Catalyse et de Chimie du Solide, CNRS UMR 8181, Faculte des Sciences Jean Perrin, Rue Jean Souvraz, SP 18, 62307 Lens Cedex (France); LETI-CEA/GRENOBLE, DIHS LCRF, 17 rue des Martyrs, 38054 Grenoble Cedex 9 (France); Ferri, A. [Zernike Institute for Advanced Materials, University of Groningen, 9747 AG Groningen (Netherlands); Da Costa, A. [Universite d' Artois, Unite de Catalyse et de Chimie du Solide, CNRS UMR 8181, Faculte des Sciences Jean Perrin, Rue Jean Souvraz, SP 18, 62307 Lens Cedex (France); Desfeux, R., E-mail: rachel.desfeux@univ-artois.f [Universite d' Artois, Unite de Catalyse et de Chimie du Solide, CNRS UMR 8181, Faculte des Sciences Jean Perrin, Rue Jean Souvraz, SP 18, 62307 Lens Cedex (France); Soyer, C.; Remiens, D. [Institut d' Electronique, de Micro electronique et de Nano technologies (IEMN), Departement d' Opto Acousto Electronique (DOAE) - MIMM Team, CNRS UMR 8520, Batiment P3, Cite Scientifique, 59665 Villeneuve d' Ascq Cedex (France)

    2010-06-01

    Relaxor 0.7Pb(Mg{sub 1/3}Nb{sub 2/3})O{sub 3}-0.3PbTiO{sub 3} (70/30 PMN-PT) and 0.9Pb(Mg{sub 1/3}Nb{sub 2/3})O{sub 3}-0.1PbTiO{sub 3} (90/10 PMN-PT) thin films have been grown by RF-sputtering on platinum (Pt) and lanthanum nickelate (LaNiO{sub 3}) bottom electrodes. For both electrodes, macroscopic measurements evidence lower coercive fields, remnant polarizations and piezoelectric coefficients d{sub 33} for 90/10 PMN-PT films compared to 70/30 PMN-PT films. For both compositions, coercive fields and remnant polarizations are lower for films grown on LaNiO{sub 3} compared to on Pt while piezoelectric coefficients d{sub 33} are higher. For each electrode and composition, a similar behavior is revealed for electromechanical activity at the nanoscale when measuring local piezoelectric hysteresis loops; on the other hand, the voltages required for switching the domains are the highest for 90/10 PMN-PT films grown on LaNiO{sub 3}. The existence of large grain boundaries in the films grown on Pt and the presence of local random fields with polar nano-domains for the 90/10 composition could explain the differences measured in domains switching properties at the macroscale and nanoscale levels.

  9. Magnetohydrodynamic electrode

    Science.gov (United States)

    Boquist, Carl W.; Marchant, David D.

    1978-01-01

    A ceramic-metal composite suitable for use in a high-temperature environment consists of a refractory ceramic matrix containing 10 to 50 volume percent of a continuous high-temperature metal reinforcement. In a specific application of the composite, as an electrode in a magnetohydrodynamic generator, the one surface of the electrode which contacts the MHD fluid may have a layer of varying thickness of nonreinforced refractory ceramic for electrode temperature control. The side walls of the electrode may be coated with a refractory ceramic insulator. Also described is an electrode-insulator system for a MHD channel.

  10. Textured strontium titanate layers on platinum by atomic layer deposition

    Energy Technology Data Exchange (ETDEWEB)

    Blomberg, T., E-mail: tom.blomberg@asm.com [ASM Microchemistry Ltd., Vaeinoe Auerin katu 12 A, 00560 Helsinki (Finland); Anttila, J.; Haukka, S.; Tuominen, M. [ASM Microchemistry Ltd., Vaeinoe Auerin katu 12 A, 00560 Helsinki (Finland); Lukosius, M.; Wenger, Ch. [IHP, Im Technologiepark 25, 15236 Frankfurt (Oder) (Germany); Saukkonen, T. [Aalto University, Puumiehenkuja 3, 02150 Espoo (Finland)

    2012-08-31

    Formation of textured strontium titanate (STO) layers with large lateral grain size (0.2-1 {mu}m) and low X-ray reflectivity roughness ({approx} 1.36 nm) on Pt electrodes by industry proven atomic layer deposition (ALD) method is demonstrated. Sr(t-Bu{sub 3}Cp){sub 2}, Ti(OMe){sub 4} and O{sub 3} precursors at 250 Degree-Sign C were used to deposit Sr rich STO on Pt/Ti/SiO{sub 2}/Si Empty-Set 200 mm substrates. After crystallization post deposition annealing at 600 Degree-Sign C in air, most of the STO grains showed a preferential orientation of the {l_brace}001{r_brace} plane parallel to the substrate surface, although other orientations were also present. Cross sectional and plan view transmission electron microscopy and electron diffraction analysis revealed more than an order of magnitude larger lateral grain sizes for the STO compared to the underlying multicrystalline {l_brace}111{r_brace} oriented platinum electrode. The combination of platinum bottom electrodes with ALD STO(O{sub 3}) shows a promising path towards the formation of single oriented STO film. - Highlights: Black-Right-Pointing-Pointer Amorphous strontium titanate (STO) on platinum formed a textured film after annealing. Black-Right-Pointing-Pointer Single crystal domains in 60 nm STO film were 0.2-1 {mu}m wide. Black-Right-Pointing-Pointer Most STO grains were {l_brace}001{r_brace} oriented.

  11. Cross-reactivity of Halogenated Platinum Salts

    Science.gov (United States)

    Halogenated platinum (Pt) salts are well-known respiratory sensitizers associated with the development of asthma. People may be exposed to a variety of platinum compounds in different contexts (e.g. occupationally, automobile exhaust). Published reports suggest that sensitizati...

  12. Characterization of hierarchical α-MoO3 plates toward resistive heating synthesis: electrochemical activity of α-MoO3/Pt modified electrode toward methanol oxidation at neutral pH

    Science.gov (United States)

    Filippo, Emanuela; Baldassarre, Francesca; Tepore, Marco; Guascito, Maria Rachele; Chirizzi, Daniela; Tepore, Antonio

    2017-05-01

    The growth of MoO3 hierarchical plates was obtained by direct resistive heating of molybdenum foils at ambient pressure in the absence of any catalysts and templates. Plates synthesized after 60 min resistive heating typically grow in an single-crystalline orthorhombic structure that develop preferentially in the [001] direction, and are characterized by high resolution transmission electron microscopy, selected area diffraction pattern and Raman-scattering measurements. They are about 100-200 nm in thickness and a few tens of micrometers in length. As heating time proceeds to 80 min, plates of α-MoO3 form a branched structure. A more attentive look shows that primary plates formed at until 60 min could serve as substrates for the subsequent growth of secondary belts. Moreover, a full electrochemical characterization of α-MoO3 plates on platinum electrodes was done by cyclic voltammetric experiments, at pH 7 in phosphate buffer, to probe the activity of the proposed composite material as anode to methanol electro-oxidation. Reported results indicate that Pt MoO3 modified electrodes are appropriate to develop new an amperometric non-enzymatic sensor for methanol as well as to make anodes suitable to be used in direct methanol fuel cells working at neutral pH.

  13. Characterization of Hierarchical α-MoOsub>3sub> Plates Toward Resistive Heating Synthesis: Electrochemical Activity of α-MoOsub>3sub>/Pt Modified Electrode Toward Methanol Oxidation in Neutral pH.

    Science.gov (United States)

    Filippo, Emanuela; Baldassarre, Francesca; Tepore, Marco; Guascito, Maria Rachele; Chirizzi, Daniela; Tepore, Antonio

    2017-03-20

    The growth of MoOsub>3sub> hierarchical plates was obtained by direct resistive heating of molybdenum foil at ambient pressure in absence of any catalysts and templates. Plates synthesized after 60 min resistive heating typically growth in an single-crystalline orthorhombic structure that develop preferentially in [001] direction, as characterized by HRTEM, SAD and Raman-scattering measurements. They are about 100-200nm in thickness and a few tens micrometers in length. As heating time proceeds to 80 min, plates of α-MoOsub>3sub> form a branched structure. A more attentive look shows that a primary plates formed at until 60 min could serve as substrates for the subsequent growth of secondary belts. Moreover, a full electrochemical characterization of α-MoOsub>3sub> plates on platinum electrodes was done by Cyclic Voltammetric experiments, at pH 7 in phosphate buffer, to probe the activity of the proposed composite material as anode to methanol electrooxidation. Reported results indicate that Pt MoOsub>3sub> modified electrodes are appropriate to develop new amperometric non-enzymatic sensor for methanol measurements and as anode in Direct Methanol Fuel Cells (DMFCs) making at neutral pH.

  14. Pulse Voltammetry in Single Cells Using Platinum Microelectrodes

    Science.gov (United States)

    1991-11-22

    ring electrodes [18) in a solution of 1.OxlO’ M H2PtCl6 and 0.5 M H2SO4 and reducing platinum at 0.0 V vs SSCE for a desired deposition time. Cyclic ...E. and the range for Ed in multiple pulse voltammetry can be chosen from examination of voltammograms obtained by cyclic voltammetry or lin-ir sweep... voltametry [3,13]. As pointed out by Sinru et al. [14) the potential and time of each pulse has a direct effect on the nature of the voltammetry

  15. Effect of Counter Electrode in Electroformation of Giant Vesicles

    Directory of Open Access Journals (Sweden)

    Shuuhei Oana

    2011-11-01

    Full Text Available Electroformation of cell-sized lipid membrane vesicles (giant vesicles, GVs, from egg yolk phosphatidylcholine, was examined varying the shape of the counter electrode. Instead of a planar ITO (indium tin oxide electrode commonly used, platinum wire mesh was employed as a counter electrode facing lipid deposit on a planar formation electrode. The modification did not significantly alter GV formation, and many GVs of 30–50 µm, some as large as 100 µm, formed as with the standard setup, indicating that a counter electrode does not have to be a complete plane. When the counter electrode was reduced to a set of two parallel platinum wires, GV formation deteriorated. Some GVs formed, but only in close proximity to the counter electrode. Lower electric voltage with this setup no longer yielded GVs. Instead, a large onion-like multilamellar structure was observed. The deteriorated GV formation and the formation of a multilamellar structure seemed to indicate the weakened effect of the electric field on lipid deposit due to insufficient coverage with a small counter electrode. Irregular membranous objects formed by spontaneous swelling of lipid without electric voltage gradually turned into multilamellar structure upon following application of voltage. No particular enhancement of GV formation was observed when lipid deposit on a wire formation electrode was used in combination with a large planar counter electrode.

  16. Novel non-platinum metal catalyst material

    DEFF Research Database (Denmark)

    2014-01-01

    The present invention relates to a novel non-platinum metal catalyst material for use in low temperature fuel cells and electrolysers and to fuel cells and electrolysers comprising the novel non-platinum metal catalyst material. The present invention also relates to a novel method for synthesizing...... the novel non-platinum metal catalyst material....

  17. Facile synthesis and thermoelectric studies of n-type bismuth telluride nanorods with cathodic stripping Te electrode

    Energy Technology Data Exchange (ETDEWEB)

    Yuan, Guoqiu [School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, Jiangsu (China); Li, Yusong [School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, Jiangsu (China); Department of Chemistry and Chemical Engineering, Southeast University, 210092 Jiangsu (China); Bao, Ning [School of Public Health, Nantong University, Nantong 226019, Jiangsu (China); Miao, Jianwen [School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, Jiangsu (China); Ge, Cunwang, E-mail: gecunwang@ntu.edu.cn [School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, Jiangsu (China); Wang, Yihong [Department of Chemistry and Chemical Engineering, Southeast University, 210092 Jiangsu (China)

    2014-01-15

    Bismuth telluride (Bi{sub 2}Te{sub 3}) nanorods (NRs) of n-type thermoelectric materials were prepared using an electrogenerated precursor of tellurium electrode in the presence of Bi{sup 3+} and mercapto protecting agent in aqueous solution under atmosphere condition. The optimal preparation conditions were obtained with ratio of Bi{sup 3+} to mercapto group and Te coulomb by photoluminescence spectra. The mechanism for generation of Bi{sub 2}Te{sub 3} precursor was investigated via the cyclic voltammetry. The highly crystalline rhombohedral structure of as-prepared Bi{sub 2}Te{sub 3} NRs with the shell of Bi{sub 2}S{sub 3} was evaluated with high resolution transmission electron microscopy (HRTEM) and powder X-ray diffraction (XRD) spectroscopy. The near-infrared absorption of synthetic Bi{sub 2}Te{sub 3} NRs was characterized with spectrophotometer to obtain information of electron at interband transition. The thermoelectric performance of Bi{sub 2}Te{sub 3} NRs was assessed with the result of electrical resistivity, Seebeck coefficient, thermal conductivity, and the figure of merit ZT parameters, indicating that thermoelectric performance of as-prepared Bi{sub 2}Te{sub 3} nanocrystals was improved by reducing thermal conductivity while maintaining the power factor. - Graphical abstract: The nanorods of n-type chalcogenides semiconductors of Bi{sub 2}Te{sub 3} are prepared using electrochemical technique with Te electrode. The highly crystalline rhombohedral structure of Bi{sub 2}Te{sub 3} nanorods with the shell of Bi{sub 2}S{sub 3} is demonstrated. The thermoelectric measurement indicated that thermoelectric performance of Bi{sub 2}Te{sub 3} NRs was improved by a highly reduced thermal conductivity while maintaining the power factor. - Highlights: • The n-type Bi{sub 2}Te{sub 3} nanorods are prepared using an electrogenerated precursor. • The rhombohedral structure of Bi{sub 2}Te{sub 3} nanorods with the shell of Bi{sub 2}S{sub 3} is demonstrated. • Bi

  18. Coating Carbon Fibers With Platinum

    Science.gov (United States)

    Effinger, Michael R.; Duncan, Peter; Coupland, Duncan; Rigali, Mark J.

    2007-01-01

    A process for coating carbon fibers with platinum has been developed. The process may also be adaptable to coating carbon fibers with other noble and refractory metals, including rhenium and iridium. The coated carbon fibers would be used as ingredients of matrix/fiber composite materials that would resist oxidation at high temperatures. The metal coats would contribute to oxidation resistance by keeping atmospheric oxygen away from fibers when cracks form in the matrices. Other processes that have been used to coat carbon fibers with metals have significant disadvantages: Metal-vapor deposition processes yield coats that are nonuniform along both the lengths and the circumferences of the fibers. The electrical resistivities of carbon fibers are too high to be compatible with electrolytic processes. Metal/organic vapor deposition entails the use of expensive starting materials, it may be necessary to use a furnace, and the starting materials and/or materials generated in the process may be hazardous. The present process does not have these disadvantages. It yields uniform, nonporous coats and is relatively inexpensive. The process can be summarized as one of pretreatment followed by electroless deposition. The process consists of the following steps: The surfaces of the fiber are activated by deposition of palladium crystallites from a solution. The surface-activated fibers are immersed in a solution that contains platinum. A reducing agent is used to supply electrons to effect a chemical reduction in situ. The chemical reduction displaces the platinum from the solution. The displaced platinum becomes deposited on the fibers. Each platinum atom that has been deposited acts as a catalytic site for the deposition of another platinum atom. Hence, the deposition process can also be characterized as autocatalytic. The thickness of the deposited metal can be tailored via the duration of immersion and the chemical activity of the solution.

  19. Synthesis and Compatibility of Ionic Liquid Containing Rod-Coil Polyimide Gel Electrolytes with Lithium Metal Electrodes

    Science.gov (United States)

    Tigelaar, Dean M.; Palker, Allyson E.; Meador, Mary Ann B.; Bennett, William R.

    2008-01-01

    A highly cross-linked polyimide-polyethylene oxide copolymer has been synthesized that is capable of holding large volumes of liquid component, simultaneously maintaining good dimensional stability. An amine end capped oligomer was made that was imidized in solution, followed by reaction with a triisocyanate in the presence of desired additives at ambient temperature. Polymer films are able to hold over 4 times their weight in room temperature ionic liquid RTIL or carbonate solvent. Electrolytes were studied that contained varying amounts of RTIL, lithium trifluoromethanesulfonimide LiTFSi, and alumina nanoparticles. Electrochemical stability of these electrolytes with lithium metal electrodes was studied by galvanic cycling and impedance spectroscopy. Improved cycling stability and decreased interfacial resistance were observed when increasing amounts of RTIL and LiTFSi were added. The addition of small amounts of alumina further decreased interfacial resistance by nearly an order of magnitude. During the course of the study, cycling stability increased from less than 3 to greater than 1000 h at 60 C and 0.25 mA/cm2 current density.

  20. Low-temperature synthesis of indium tin oxide nanowires as the transparent electrodes for organic light emitting devices.

    Science.gov (United States)

    Kee, Yeh Yee; Tan, Sek Sean; Yong, Thian Khok; Nee, Chen Hon; Yap, Seong Shan; Tou, Teck Yong; Sáfrán, György; Horváth, Zsolt Endre; Moscatello, Jason P; Yap, Yoke Khin

    2012-01-20

    Low-temperature growth of indium tin oxide (ITO) nanowires (NWs) was obtained on catalyst-free amorphous glass substrates at 250 °C by Nd:YAG pulsed-laser deposition. These ITO NWs have branching morphology as grown in Ar ambient. As suggested by scanning electron microscopy (SEM) and high-resolution transmission electron microscopy (HRTEM), our ITO NWs have the tendency to grow vertically outward from the substrate surface, with the (400) plane parallel to the longitudinal axis of the nanowires. These NWs are low in electrical resistivity (1.6×10⁻⁴ Ω cm) and high in visible transmittance (~90–96%), and were tested as the electrode for organic light emitting devices (OLEDs). An enhanced current density of ~30 mA cm⁻² was detected at bias voltages of ~19–21 V with uniform and bright emission. We found that the Hall mobility of these NWs is 2.2–2.7 times higher than that of ITO film, which can be explained by the reduction of Coulomb scattering loss. These results suggested that ITO nanowires are promising for applications in optoelectronic devices including OLED, touch screen displays, and photovoltaic solar cells.