WorldWideScience

Sample records for platinum alloy vessels

  1. De-alloyed platinum nanoparticles

    Science.gov (United States)

    Strasser, Peter [Houston, TX; Koh, Shirlaine [Houston, TX; Mani, Prasanna [Houston, TX; Ratndeep, Srivastava [Houston, TX

    2011-08-09

    A method of producing de-alloyed nanoparticles. In an embodiment, the method comprises admixing metal precursors, freeze-drying, annealing, and de-alloying the nanoparticles in situ. Further, in an embodiment de-alloyed nanoparticle formed by the method, wherein the nanoparticle further comprises a core-shell arrangement. The nanoparticle is suitable for electrocatalytic processes and devices.

  2. Electrodeposition of platinum metals and alloys from chloride melts

    Directory of Open Access Journals (Sweden)

    Saltykova N.A.

    2003-01-01

    Full Text Available The structure of platinum metals and their alloys deposited by the electrolysis of chloride melts have been investigated. The cathodic deposits were both in the form of compact layers and dendrites. All the alloys of platinum metals obtained are solid solutions in the whole range of composition. Depending on the experimental conditions the layers had columnar, stratum and spiral (dissipative structures. The stratum and dissipative structures were observed in the case of alloys only.

  3. Bimetallic alloy electrocatalysts with multilayered platinum-skin surfaces

    Science.gov (United States)

    Stamenkovic, Vojislav R.; Wang, Chao; Markovic, Nenad M.

    2016-01-26

    Compositions and methods of preparing a bimetallic alloy having enhanced electrocatalytic properties are provided. The composition comprises a PtNi substrate having a surface layer, a near-surface layer, and an inner layer, where the surface layer comprises a nickel-depleted composition, such that the surface layer comprises a platinum skin having at least one atomic layer of platinum.

  4. Reaction pathways for reduction of nitrate ions on platinum, rhodium, and platinum-rhodium alloy electrodes

    International Nuclear Information System (INIS)

    Cunha, M.C.P.M. da; De Souza, J.P.I.; Nart, F.C.

    2000-01-01

    The reduction of nitrate ions on platinum, rhodium, and platinum-rhodium alloy electrodes has been investigated using differential electrochemical mass spectrometry and in situ FTIR measurements. For 3 M HNO 3 concentration it has been found that nitrate starts the reduction with partial N-O bond dissociation and N-N bond formation generating NO and N 2 O. At potentials lower than 0.2 V the reaction proceeds forming dissolved NH 4 + . For potentials lower than 0 V the reduction continues via a multiple pathway reaction leading to the nonselective production of N 2 , NH 2 OH, and N 2 H 2 . On the alloyed electrodes, the production of NO and N 2 O has been observed in both cathodic and anodic scans, while on pure platinum and rhodium electrodes the reaction has been observed only during the cathodic scan. Contrasting with the pure platinum and rhodium alloys, where the N-O bond break starts forming NO and N 2 O, on the alloys HNO 2 has been observed as the first reaction step. For alloys with higher rhodium composition, like Pt 75 Rh 25 , no N 2 has been detected for potentials lower than 0 V

  5. The effects of thermal-neutron irradiation on platinum and dilute platinum-gold alloys

    International Nuclear Information System (INIS)

    Piani, C.S.B.

    1978-12-01

    The effect of varying defect concentrations on the recovery spectrum of thermal-neutron-irradiated pure platinum after isochronal anneals was investigated. The dose-independence of substages I(A), I(B) and I(C), and the dose dependence of substage I(D) and I(E), were observed to be in agreement with electron-irradiated studies. The 120 K substage in pure platinum was shown not to be due to interstitial-interstitial reactions, but could possibly be accounted for in terms of detrapping of interstitials from impurities or intrinsic immobile defects. The 360 K stage was shown to shift and was suppressed with increasing defect concentration. The possible conversion of the crowdion to a dumbbell near 160 K in Stage ll in platinum, as predicted by the two-interstitial model, was investigated by consideration of the initial slopes of the production curves between 80 K and 300 K. A minimum in these slopes was observed near 160 K and could be interpreted as due to the conversion of the highly mobile crowdion to an immobile dumbbell at this temperature. The influence of varying gold concentrations on the recovery spectrum of platinum was investigated in dilute platinum-gold alloys. The characteristics of several additional substages in Stage ll, due to the gold alloying were comparable to the results of electron-irradiation experiments. The observations made with regard to the impurity (gold) dependence of these substages could be interpreted in terms of the concentrations of the interstitials, vacancies and impurities present in the material. The interpretation of these substages was found to be consistent, if the recovery spectrum was investigated as a function of defect concentration [af

  6. Engineering Platinum Alloy Electrocatalysts in Nanoscale for PEMFC Application

    Energy Technology Data Exchange (ETDEWEB)

    He, Ting [Idaho National Laboratory

    2016-03-01

    Fuel cells are expected to be a key next-generation energy source used for vehicles and homes, offering high energy conversion efficiency and minimal pollutant emissions. However, due to large overpotentials on anode and cathode, the efficiency is still much lower than theoretically predicted. During the past decades, considerable efforts have been made to investigate synergy effect of platinum alloyed with base metals. But, engineering the alloy particles in nanoscale has been a challenge. Most important challenges in developing nanostructured materials are the abilities to control size, monodispersity, microcomposition, and even morphology or self-assembly capability, so called Nanomaterials-by-Design, which requires interdisciplinary collaborations among computational modeling, chemical synthesis, nanoscale characterization as well as manufacturing processing. Electrocatalysts, particularly fuel cell catalysts, are dramatically different from heterogeneous catalysts because the surface area in micropores cannot be electrochemically controlled on the same time scale as more transport accessible surfaces. Therefore, electrocatalytic architectures need minimal microporous surface area while maximizing surfaces accessible through mesopores or macropores, and to "pin" the most active, highest performance physicochemical state of the materials even when exposed to thermodynamic forces, which would otherwise drive restructuring, crystallization, or densification of the nanoscale materials. In this presentation, results of engineering nanoscale platinum alloy particles down to 2 ~ 4 nm will be discussed. Based on nature of alloyed base metals, various synthesis technologies have been studied and developed to achieve capabilities of controlling particle size and particle microcomposition, namely, core-shell synthesis, microemulsion technique, thermal decomposition process, surface organometallic chemical method, etc. The results show that by careful engineering the

  7. BOWIEITE: A NEW RHODIUM-IRIDIUM-PLATINUM SULFIDE IN PLATINUM-ALLOY NUGGETS, GOODNEWS BAY, ALASKA.

    Science.gov (United States)

    Desborough, George A.; Criddle, Alan J.

    1984-01-01

    Bowieite (Rh,Ir,Pt)//2S//3, a new mineral species, is found in three nuggets of platinum from Goodnews Bay, Alaska. In linearly polarized reflected light, and compared to the host, higher reflecting white platinum-iridium alloy, bowieite is pale gray to pale gray-brown; neither bireflectance nor reflectance pleochroism is apparent. With polars crossed, its anisotropic rotation tints vary from gray to dark brown. Luminance values (relative to the CIE illuminant C) for R//1 and R//2, computed from full spectral data for the most bireflectant grain, are 45. 8% and 48. 2% in air, and 30. 5% and 33. 0% in oil, respectively. VHN//1//0//0 1288 (858 to 1635). Bowieite is orthorhombic, space group Pnca, with a 8. 454(7) -8. 473(8), b 5. 995(1)-6. 002(7), c 6. 143(1)-6. 121(8) A, Z equals 4. Some grains that are 2. 6 to 3. 8 atomic % metal-deficient occur as an optically coherent rim on bowieite; the rim and the bowieite grain are not optically continuous.

  8. Single crystal studies of platinum alloys for oxygen reduction electrodes

    DEFF Research Database (Denmark)

    Ulrikkeholm, Elisabeth Therese

    /Pt(111) in the following. The prepared alloys were investigate using Low Energy Electron Diffraction (LEED), Xray Photoelectron Spectroscopy (XPS), Ion Scattering Spectroscopy (ISS) and temperature Programmed Desorption (TPD). The LEED pattern indicated that the Y/Pt(111) sample had formed a 1...... peaks with a large shift towards lower temperatures. The change in desorption temperature was ∆T = −180°C for the Y/Pt(111) sample and ∆T = −200°C for the Gd/Pt(111) sample. The ORR activity was measured showing a large enhancement for both alloys. Angle resolved XPS performed on the samples after.......89×1.89 structure, and the Gd/Pt(111) sample has formed a 1.90×1.90 structure compared to pure platinum. From the XPS measurements, it is most likely that alloys with the Pt5Y and Pt5Gd stoichiometry have been formed. The reactivity of the surfaces were probed using TPD. These measurements showed sharp desorption...

  9. Determination of phosphorus traces in platinum alloys by two-phase isotope exchange

    International Nuclear Information System (INIS)

    Vlacil, F.

    1980-01-01

    The method of ZEMAN and KRATZER for the determination of phosphorus traces by means of two-phase isotope exchange was modified for the determination of phosphorus in pure platinum or pure platinum alloys. It was found that Pt, Rh, Ag and As do not interfere with the determination. Among the elements usually present in platinum metal or platinum alloys, only gold interferes. It was removed by extraction from 7M HCl by MIBK and AmOAc. Hydrochloric acid also interferes but it can be removed by evaporation. The analytical procedure is given for the solution obtained by pressure decomposition of the sample (0.5 g) in a steel bomb with PTFE inlay. It is possible to determine > 2 ppm P (approximate error -10%). If using calibration dependence instead of the well known equation for isotope exchange it is not necessary to know the content of P in the standard solution labelled with 32 P. (author)

  10. Structure, activity, and stability of platinum alloys as catalysts for the oxygen reduction reaction

    DEFF Research Database (Denmark)

    Vej-Hansen, Ulrik Grønbjerg

    In this thesis I present our work on theoretical modelling of platinum alloys as catalysts for the Oxygen Reduction Reaction (ORR). The losses associated with the kinetics of the ORR is the main bottleneck in low-temperature fuel cells for transport applications, and more active catalysts...... are essential for wide-spread use of this technology. platinum alloys have shown great promise as more active catalysts, which are still stable under reaction conditions. We have investigated these systems on multiple scales, using either Density Functional Theory (DFT) or Effective Medium Theory (EMT......), depending on the length and time scales involved. Using DFT, we show how diffusion barriers in transition metal alloys in the L12 structure depend on the alloying energy, supporting the assumption that an intrinsically more stable alloy is also more stable towards diffusion-related degradation...

  11. The development of platinum-based alloys and their thermodynamic database

    OpenAIRE

    Cornish L.A.; Hohls J.; Hill P.J.; Prins S.; Süss R.; Compton D.N.

    2002-01-01

    A series of quaternary platinum-based alloys have been demonstrated to exhibit the same two-phase structure as Ni-based superalloys and showed good mechanical properties. The properties of ternary alloys were a good indication that the quaternary alloys, with their better microstructure, will be even better. The quaternary alloy composition has been optimised at Pt84:Al11:Ru2:Cr3 for the best microstructure and hardness. Work has begun on establishing a thermodynamic database for Pt-Al-Ru-Cr ...

  12. Nanostructured Platinum Alloys for Use as Catalyst Materials

    Science.gov (United States)

    Narayan, Sri R. (Inventor); Hays, Charles C. (Inventor)

    2015-01-01

    A series of binary and ternary Pt-alloys, that promote the important reactions for catalysis at an alloy surface; oxygen reduction, hydrogen oxidation, and hydrogen and oxygen evolution. The first two of these reactions are essential when applying the alloy for use in a PEMFC.

  13. The development of platinum-based alloys and their thermodynamic database

    Directory of Open Access Journals (Sweden)

    Cornish L.A.

    2002-01-01

    Full Text Available A series of quaternary platinum-based alloys have been demonstrated to exhibit the same two-phase structure as Ni-based superalloys and showed good mechanical properties. The properties of ternary alloys were a good indication that the quaternary alloys, with their better microstructure, will be even better. The quaternary alloy composition has been optimised at Pt84:Al11:Ru2:Cr3 for the best microstructure and hardness. Work has begun on establishing a thermodynamic database for Pt-Al-Ru-Cr alloys, and further work will be done to enhance the mechanical and oxidation properties of the alloys by adding small amounts of other elements to the base composition of Pt84:Al11:Ru2:Cr3.

  14. Platinum and Palladium Alloys Suitable as Fuel Cell Electrodes

    DEFF Research Database (Denmark)

    2011-01-01

    The present invention concerns electrode catalysts used in fuel cells, such as proton exchange membrane (PEM) fuel cells. The invention is related to the reduction of the noble metal content and the improvement of the catalytic efficiency by low level substitution of the noble metal to provide new...... and innovative catalyst compositions in fuel cell electrodes. The novel electrode catalysts of the invention comprise a noble metal selected from Pt, Pd and mixtures thereof alloyed with a further element selected from Sc, Y and La as well as any mixtures thereof, wherein said alloy is supported on a conductive...

  15. Platinum and palladium alloys suitable as fuel cell electrodes

    DEFF Research Database (Denmark)

    2014-01-01

    The present invention concerns electrode catalysts used in fuel cells, such as proton exchange membrane (PEM) fuel cells. The invention is related to the reduction of the noble metal content and the improvement of the catalytic efficiency by low level substitution of the noble metal to provide new...... and innovative catalyst compositions in fuel cell electrodes. The novel electrode catalysts of the invention comprise a noble metal selected from Pt and Pd alloyed with an alkaline earth metal....

  16. Platinum and palladium alloys suitable as fuel cell electrodes

    DEFF Research Database (Denmark)

    2014-01-01

    The present invention concerns electrode catalysts used in fuel cells, such as proton exchange membrane (PEM) fuel cells. The invention is related to the reduction of the noble metal content and the improvement of the catalytic5 efficiency by low level substitution of the noble metal to provide new...... and innovative catalyst compositions in fuel cell electrodes. The novel electrode catalysts of the invention comprise a noble metal selected from Pt and Pd alloyed with a lanthanide metal....

  17. High-temperature thermodynamic activities of zirconium in platinum alloys determined by nitrogen-nitride equilibria

    International Nuclear Information System (INIS)

    Goodman, D.A.

    1980-05-01

    A high-temperature nitrogen-nitride equilibrium apparatus is constructed for the study of alloy thermodynamics to 2300 0 C. Zirconium-platinum alloys are studied by means of the reaction 9ZrN + 11Pt → Zr 9 Pt 11 + 9/2 N 2 . Carful attention is paid to the problems of diffusion-limited reaction and ternary phase formation. The results of this study are and a/sub Zr//sup 1985 0 C/ = 2.4 x 10 -4 in Zr 9 Pt 11 ΔG/sub f 1985 0 C/ 0 Zr 9 Pt 11 less than or equal to -16.6 kcal/g atom. These results are in full accord with the valence bond theory developed by Engel and Brewer; this confirms their prediction of an unusual interaction of these alloys

  18. Platinum-nickel alloy nanoparticles supported on carbon for 3-pentanone hydrogenation

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Lihua, E-mail: lihuazhu@stu.xmu.edu.cn [School of Metallurgy and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, Jiang Xi (China); Department of Chemical and Biochemical Engineering, National Engineering Laboratory for Green Productions of Alcohols-Ethers-Esters, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005 (China); Zheng, Tuo; Yu, Changlin [School of Metallurgy and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, Jiang Xi (China); Zheng, Jinbao [Department of Chemical and Biochemical Engineering, National Engineering Laboratory for Green Productions of Alcohols-Ethers-Esters, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005 (China); Tang, Zhenbiao [School of Metallurgy and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, Jiang Xi (China); Zhang, Nuowei [Department of Chemical and Biochemical Engineering, National Engineering Laboratory for Green Productions of Alcohols-Ethers-Esters, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005 (China); Shu, Qing [School of Metallurgy and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, Jiang Xi (China); Chen, Bing H., E-mail: chenbh@xmu.edu.cn [Department of Chemical and Biochemical Engineering, National Engineering Laboratory for Green Productions of Alcohols-Ethers-Esters, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005 (China)

    2017-07-01

    Highlights: • The PtNi/Ni(OH){sub 2}/C catalyst was successfully synthesized at room temperature. • PtNi alloy/C was obtained after PtNi/Ni(OH){sub 2}/C reduced in hydrogen at 300 °C. • Nanostructures of the PtNi catalysts were characterized by numerous techniques. • PtNi alloy/C exhibited high catalytic activity for 3-pentanone hydrogenation. - Abstract: In this work, we prepared the Ni/Ni(OH){sub 2}/C sample at room temperature by hydrazine hydrate reducing method. The galvanic replacement reaction method was applied to deposit platinum on the Ni/Ni(OH){sub 2} nanoparticles, to prepare the PtNi/Ni(OH){sub 2}/C catalyst. The catalyst of platinum-nickel alloy nanoparticles supported on carbon (signed as PtNi/C) was obtained by the thermal treatment of PtNi/Ni(OH){sub 2}/C in flowing hydrogen at 300 °C for 2 h. The size, nanostructure, surface properties, Pt and Ni chemical states of the PtNi/C catalyst were analyzed using powder X-ray diffraction (XRD), transmission electron microscope (TEM) and high resolution transmission electron microscope (HRTEM), high-angle annular dark-field scanning TEM (HAADF-STEM) and elemental energy dispersive X-ray spectroscopy (EDS) line scanning, X-ray photoelectron spectroscopy (XPS) and high-sensitivity low-energy ion scattering spectroscopy (HS-LEIS) techniques. The as-synthesized PtNi/C catalyst showed enhanced catalytic performance relative to the Ni/Ni(OH){sub 2}/C, Ni/C, Pt/C and PtNi/Ni(OH){sub 2}/C catalysts for 3-pentanone hydrogenation due to electron synergistic effect between Pt and Ni species in the PtNi/C catalyst. The PtNi/C catalyst also had exceling stability, with industrial application value.

  19. Hydrogen solubility in iron, platinum and their alloys under pressure up to 67 kbars

    International Nuclear Information System (INIS)

    Belash, I.T.; Antonov, V.E.; Ponyatovskij, E.G.

    1979-01-01

    The solubility of hydrogen was studied in iron, nickel and Fe-Pt-H alloy at a high pressure. It was shown that at T=250 deg C and psub(Hsub(2))=67 kbar, the solubility hy of hydrogen in α-iron and platinum is below the sensitivity threshold of the employed method of chemical analysis, deltasub(n) approximately 0.05 (n - atomic ratio hydrogen metal). At this pressure and at a temperature of T=150 deg C, the equilibrium concentration of hydrogen in non-ordered Fe-Pt alloys with a FCC lattice, containing 25 and 32 at. % Pt, attains, respectively, n = (5+-2)x10 -2 and (2+-5)x10 -2 . Ordering of the alloy with 25 at. % Pt produces no substantial change in the solubility of hydrogen. In a hydrogen atmosphere, the dependence of the Curie point Tsub(c)(psub(Hsub(2)) deviates from Tsub(c)(p). In an inert medium, at p=67 kbar, ΔTsub(c)=Tsub(c)(psub(Hsub(2)) - Tsub(c)(p) = 35+-10 deg C

  20. LDRD final report on synthesis of shape-and size-controlled platinum and platinum alloy nanostructures on carbon with improved durability.

    Energy Technology Data Exchange (ETDEWEB)

    Shelnutt, John Allen; Garcia, Robert M.; Song, Yujiang; Moreno, Andres M.; Stanis, Ronald J.

    2008-10-01

    This project is aimed to gain added durability by supporting ripening-resistant dendritic platinum and/or platinum-based alloy nanostructures on carbon. We have developed a new synthetic approach suitable for directly supporting dendritic nanostructures on VXC-72 carbon black (CB), single-walled carbon nanotubes (SWCNTs), and multi-walled carbon nanotubes (MWCNTs). The key of the synthesis is to creating a unique supporting/confining reaction environment by incorporating carbon within lipid bilayer relying on a hydrophobic-hydrophobic interaction. In order to realize size uniformity control over the supported dendritic nanostructures, a fast photocatalytic seeding method based on tin(IV) porphyrins (SnP) developed at Sandia was applied to the synthesis by using SnP-containing liposomes under tungsten light irradiation. For concept approval, one created dendritic platinum nanostructure supported on CB was fabricated into membrane electrode assemblies (MEAs) for durability examination via potential cycling. It appears that carbon supporting is essentially beneficial to an enhanced durability according to our preliminary results.

  1. In situ XAFS studies of the oxygen reduction reaction on carbon supported platinum and platinum nickel nano-scale alloys as cathode catalysts in fuel cells

    Science.gov (United States)

    Jia, Qingying

    Platinum based bimetallic alloys have been investigated by conducting Pt L3 and Ni K edge in situ XAFS measurements on carbon supported Pt and PtNi(1:1) nanoscale catalysts under a wide range of operating potentials. We observed that (1) the Pt-Pt bond distance in PtNi alloys is shorter than that of Pt, and the bond distance between Pt and oxygen adsorbate is longer for PtNi. (2) Pt has a tendency to stay on the surface while Ni is mostly underneath the surface. (3) While a change in oxidation of pure Pt was clearly observed at different potentials, the Pt in the PtNi alloy remained nearly oxygen-free at all potentials, but an accompanying oxidation change of Ni was observed instead. (4) PtNi has higher open circuit voltage than Pt/C. These results indicate that the chemisorption energy between Pt and oxygen adsorbate is reduced in PtNi alloys, which prevents the poison of oxygen adsorbate and hence improves the reactivity. In addition, the strain and ligand effects in PtNi nanoparticle alloys were studied by FEW calculations using experimental data as a guide to understand the factors causing the reduction of chemisorptions energy of Pt. Our calculation indicates that Pt d-band is broader and lower in energy when the bond distance between Pt is shorter, resulting in weaker chemisorption energy between Pt and absorbed oxygen atom on top, and vice verse. Meanwhile, the investigation of ligand effect shows two trends in modifying Pt's properties within alloyed transition metals. The strain effect dominates in PtNi bimetallic system, corresponding to weaker chemisorptions energy and lower white intensity of Pt L3 edge, which is in consistent with our experimental results. The implications of these results afford a good guideline in understanding the reactivity enhancement mechanism and in the context of alloy catalysts design.

  2. Obtaining of platinum-titanium alloys by sol-gel and their performance for the detachment reactions and oxygen reduction

    International Nuclear Information System (INIS)

    Regueira R, B. I.

    2011-01-01

    In the present work, platinum-titanium (Pt-Ti) alloys were prepared, characterized and evaluated in acid media as bifunctional electrocatalysts for the oxygen evolution reaction (Oer) and oxygen reduction reactions (Orr) in acid media. The alloys were synthesized by sol-gel method, heating the gel at temperatures of 400 and 600 C. The alloys characterization was realized by X-ray diffraction, scanning electron microscopy and EDS. Both alloys were formed by agglomerates of nanometer particles. The particle sizes were lower for the alloy obtained at 400 C (120 nm to 257 nm) compared to the alloy prepared at 600 C (555 nm to 833 nm). Cyclic and linear voltammetry techniques were used for the electrochemical evaluation of the alloy obtained at both temperatures for the Oer and Orr, in a 0.5 M sulfuric acid solution. The materials have response for both electrochemical reactions, therefore the best performance was for the Pt-Ti alloy, obtained at 400 C and it was stable for the oxygen evolution reaction. The alloy obtained at 400 C presents satisfactory electrocatalytic characteristics to be used as bifunctional material in a unified regenerative fuel cell. (Author)

  3. Investigation of LMFBR prototype 7A heaters and the metallurgy of the platinum-8 weight percent tungsten alloy

    International Nuclear Information System (INIS)

    Ludwig, R.L.

    1976-09-01

    A Liquid Metal Fast Breeder Reactor 7A prototype heater failure was analyzed. The failure was due to melting of the platinum-8 weight percent tungsten alloy (Pt-8 W) alloy winding caused by a loss of contact with the inside boron nitride insulation. An attempt to simulate a failure revealed that elemental boron forms a low-melting mixture with Pt-8 W, but a means by which boron might be present in an actual heater was not determined. A time/temperature/grain size study of various Pt-8 W alloy samples resulted in behavior which would be expected from a single-phase, solid-solution alloy. The results of the study were useful in estimating the temperatures reached at various locations along the length of two failed 7A prototype heaters

  4. Overview of research trends and problems on Cr-Mo low alloy steels for pressure vessel

    International Nuclear Information System (INIS)

    Chi, Byung Ha; Kim, Jeong Tae

    2000-01-01

    Cr-Mo low alloy steels have been used for a long time for pressure vessel due to its excellent corrosion resistance, high temperature strength and toughness. The paper reviewed the latest trends on material development and some problems on Cr-Mo low alloy steel for pressure vessel, such as elevated temperature strength, hardenability, synergetic effect between temper and hydrogen embrittlement, hydrogen attack and hydrogen induced disbonding of overlay weld-cladding

  5. Development of inductively coupled plasma atomic emission spectrometry for palladium and Rhodium determination in platinum-based alloy

    International Nuclear Information System (INIS)

    Kovacevic, R.; Todorovic, M.; Manojlovic, D.; Mutic, J.

    2008-01-01

    Inductively coupled plasma atomic emission spectroscopy with internal standardization was applied for the analysis of an in-house reference platinum alloy containing palladium and rhodium (approximately 5% by weight). In order to compensate for variations in signal recovery due to matrix interferences, and therefore to improve the precision, platinum. the major component, was chosen as an internal standard. Quantitative analysis was based on calibration using a set of matrix-matched calibration standards with and without employing the internal standard. These results were compared with those obtained by X-ray fluorescence spectroscopy. The results for both techniques were in a good agreement, although the precision was slightly better in the inductively coupled plasma atomic emission spectroscopy technique, with or without the internal standard

  6. Hydrogenation properties and microstructure of Ti-Mn-based alloys for hybrid hydrogen storage vessel

    International Nuclear Information System (INIS)

    Shibuya, Masachika; Nakamura, Jin; Akiba, Etsuo

    2008-01-01

    Ti-Mn-based AB 2 -type alloys which are suitable for a hybrid hydrogen storage vessel have been synthesized and evaluated hydrogenation properties. As the third element V was added to Ti-Mn binary alloys. All the alloys synthesized in this work mainly consist of the C14 Laves and BCC phase. In the case of Ti0.5V0.5Mn alloy, the amounts of hydrogen absorption was 1.8 wt.% at 243 K under the atmosphere of 7 MPa H 2 , and the hydrogen desorption pressure was in the range of 0.2-0.4 MPa at 243 K. The hydrogen capacity of this alloy did not saturate under 7 MPa H 2 and seems to increase with hydrogen pressure up to 35 MPa that is estimated working pressure of the hybrid hydrogen storage vessel

  7. Bio-Adaption between Magnesium Alloy Stent and the Blood Vessel: A Review.

    Science.gov (United States)

    Ma, Jun; Zhao, Nan; Betts, Lexxus; Zhu, Donghui

    2016-09-01

    Biodegradable magnesium (Mg) alloy stents are the most promising next generation of bio-absorbable stents. In this article, we summarized the progresses on the in vitro studies, animal testing and clinical trials of biodegradable Mg alloy stents in the past decades. These exciting findings led us to propose the importance of the concept "bio-adaption" between the Mg alloy stent and the local tissue microenvironment after implantation. The healing responses of stented blood vessel can be generally described in three overlapping phases: inflammation, granulation and remodeling. The ideal bio-adaption of the Mg alloy stent, once implanted into the blood vessel, needs to be a reasonable function of the time and the space/dimension. First, a very slow degeneration of mechanical support is expected in the initial four months in order to provide sufficient mechanical support to the injured vessels. Although it is still arguable whether full mechanical support in stented lesions is mandatory during the first four months after implantation, it would certainly be a safety design parameter and a benchmark for regulatory evaluations based on the fact that there is insufficient human in vivo data available, especially the vessel wall mechanical properties during the healing/remodeling phase. Second, once the Mg alloy stent being degraded, the void space will be filled by the regenerated blood vessel tissues. The degradation of the Mg alloy stent should be 100% completed with no residues, and the degradation products (e.g., ions and hydrogen) will be helpful for the tissue reconstruction of the blood vessel. Toward this target, some future research perspectives are also discussed.

  8. Bio-Adaption between Magnesium Alloy Stent and the Blood Vessel: A Review

    Science.gov (United States)

    Ma, Jun; Zhao, Nan; Betts, Lexxus; Zhu, Donghui

    2016-01-01

    Biodegradable magnesium (Mg) alloy stents are the most promising next generation of bio-absorbable stents. In this article, we summarized the progresses on the in vitro studies, animal testing and clinical trials of biodegradable Mg alloy stents in the past decades. These exciting findings led us to propose the importance of the concept “bio-adaption” between the Mg alloy stent and the local tissue microenvironment after implantation. The healing responses of stented blood vessel can be generally described in three overlapping phases: inflammation, granulation and remodeling. The ideal bio-adaption of the Mg alloy stent, once implanted into the blood vessel, needs to be a reasonable function of the time and the space/dimension. First, a very slow degeneration of mechanical support is expected in the initial four months in order to provide sufficient mechanical support to the injured vessels. Although it is still arguable whether full mechanical support in stented lesions is mandatory during the first four months after implantation, it would certainly be a safety design parameter and a benchmark for regulatory evaluations based on the fact that there is insufficient human in vivo data available, especially the vessel wall mechanical properties during the healing/remodeling phase. Second, once the Mg alloy stent being degraded, the void space will be filled by the regenerated blood vessel tissues. The degradation of the Mg alloy stent should be 100% completed with no residues, and the degradation products (e.g., ions and hydrogen) will be helpful for the tissue reconstruction of the blood vessel. Toward this target, some future research perspectives are also discussed. PMID:27698548

  9. Platinum-TM (TM = Fe, Co) alloy nanoparticles dispersed nitrogen doped (reduced graphene oxide-multiwalled carbon nanotube) hybrid structure cathode electrocatalysts for high performance PEMFC applications.

    Science.gov (United States)

    Vinayan, B P; Ramaprabhu, S

    2013-06-07

    The efforts to push proton exchange membrane fuel cells (PEMFC) for commercial applications are being undertaken globally. In PEMFC, the sluggish kinetics of oxygen reduction reactions (ORR) at the cathode can be improved by the alloying of platinum with 3d-transition metals (TM = Fe, Co, etc.) and with nitrogen doping, and in the present work we have combined both of these aspects. We describe a facile method for the synthesis of a nitrogen doped (reduced graphene oxide (rGO)-multiwalled carbon nanotubes (MWNTs)) hybrid structure (N-(G-MWNTs)) by the uniform coating of a nitrogen containing polymer over the surface of the hybrid structure (positively surface charged rGO-negatively surface charged MWNTs) followed by the pyrolysis of these (rGO-MWNTs) hybrid structure-polymer composites. The N-(G-MWNTs) hybrid structure is used as a catalyst support for the dispersion of platinum (Pt), platinum-iron (Pt3Fe) and platinum-cobalt (Pt3Co) alloy nanoparticles. The PEMFC performances of Pt-TM alloy nanoparticle dispersed N-(G-MWNTs) hybrid structure electrocatalysts are 5.0 times higher than that of commercial Pt-C electrocatalysts along with very good stability under acidic environment conditions. This work demonstrates a considerable improvement in performance compared to existing cathode electrocatalysts being used in PEMFC and can be extended to the synthesis of metal, metal oxides or metal alloy nanoparticle decorated nitrogen doped carbon nanostructures for various electrochemical energy applications.

  10. Current Status of Development of High Nickel Low Alloy Steels for Commercial Reactor Pressure Vessel

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Min Chul; Lee, B. S.; Park, S. G.; Lee, K. H. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2008-12-15

    SA508 Gr.3 Mn-Mo-Ni low alloy steels have been used for nuclear reactor pressure vessel steels up to now. Currently, the design goal of nuclear power plant is focusing at larger capacity and longer lifetime. Requirements of much bigger pressure vessels may cause critical problems in the manufacturing stage as well as for the welding stage. Application of higher strength steel may be required to overcome the technical problems. It is known that a higher strength and fracture toughness of low alloy steels such as SA508 Gr.4N low alloy steel could be achieved by increasing the Ni and Cr contents. Therefore, SA508 Gr.4N low alloy steel is very attractive as eligible RPV steel for the next generation PWR systems. In this report, we propose the possibility of SA508 Gr.4N low alloy steel for an application of next generation commercial RPV, based on the literature research result about development history of the RPV steels and SA508 specification. In addition, we have surveyed the research result of HSLA(High Strength Low Alloy steel), which has similar chemical compositions with SA508 Gr.4N, to understand the problems and the way of improvement of SA508 Gr.4N low alloy steel. And also, we have investigated eastern RPV steel(WWER-1000), which has higher Ni contents compared to western RPV steel.

  11. Finite element analyses for design evaluation of biodegradable magnesium alloy stents in arterial vessels

    Energy Technology Data Exchange (ETDEWEB)

    Wu Wei [Laboratory of Biological Structure Mechanics, Structural Engineering Department, Politecnico di Milano, Piazza Leonardo da Vinci, 32, 20133 Milan (Italy); Gastaldi, Dario, E-mail: dario.gastaldi@polimi.it [Laboratory of Biological Structure Mechanics, Structural Engineering Department, Politecnico di Milano, Piazza Leonardo da Vinci, 32, 20133 Milan (Italy); Yang Ke; Tan Lili [Division of Specialized Materials and Devices, Institute of Metal Research, Chinese Academy of Sciences, Shenyang (China); Petrini, Lorenza; Migliavacca, Francesco [Laboratory of Biological Structure Mechanics, Structural Engineering Department, Politecnico di Milano, Piazza Leonardo da Vinci, 32, 20133 Milan (Italy)

    2011-12-15

    Biodegradable magnesium alloy stents (MAS) can provide a great benefit for diseased vessels and avoid the long-term incompatible interactions between vessels and permanent stent platforms. However, the existing MAS showed insufficient scaffolding to the target vessels due to short degradation time. In this study, a three dimensional finite element model combined with a degradable material model of AZ31 (Al 0.03, Zn 0.01, Mn 0.002 and Mg balance, mass percentage) was applied to three different MAS designs including an already implanted stent (Stent A), an optimized design (Stent B) and a patented stent design (Stent C). One ring of each design was implanted through a simulation in a vessel model then degraded with the changing interaction between outer stent surface and the vessel. Results showed that a proper stent design (Stent B) can lead to an increase of nearly 120% in half normalized recoil time of the vessel compared to the Stent A; moreover, the expectation that the MAS design, with more mass and optimized mechanical properties, can increase scaffolding time was verified numerically. The Stent C has more materials than Stent B; however, it only increased the half normalized recoil time of the vessel by nearly 50% compared to the Stent A because of much higher stress concentration than that of Stent B. The 3D model can provide a convenient design and testing tool for novel magnesium alloy stents.

  12. Finite element analyses for design evaluation of biodegradable magnesium alloy stents in arterial vessels

    International Nuclear Information System (INIS)

    Wu Wei; Gastaldi, Dario; Yang Ke; Tan Lili; Petrini, Lorenza; Migliavacca, Francesco

    2011-01-01

    Biodegradable magnesium alloy stents (MAS) can provide a great benefit for diseased vessels and avoid the long-term incompatible interactions between vessels and permanent stent platforms. However, the existing MAS showed insufficient scaffolding to the target vessels due to short degradation time. In this study, a three dimensional finite element model combined with a degradable material model of AZ31 (Al 0.03, Zn 0.01, Mn 0.002 and Mg balance, mass percentage) was applied to three different MAS designs including an already implanted stent (Stent A), an optimized design (Stent B) and a patented stent design (Stent C). One ring of each design was implanted through a simulation in a vessel model then degraded with the changing interaction between outer stent surface and the vessel. Results showed that a proper stent design (Stent B) can lead to an increase of nearly 120% in half normalized recoil time of the vessel compared to the Stent A; moreover, the expectation that the MAS design, with more mass and optimized mechanical properties, can increase scaffolding time was verified numerically. The Stent C has more materials than Stent B; however, it only increased the half normalized recoil time of the vessel by nearly 50% compared to the Stent A because of much higher stress concentration than that of Stent B. The 3D model can provide a convenient design and testing tool for novel magnesium alloy stents.

  13. Electrochemical deposition of gold-platinum alloy nanoparticles on an indium tin oxide electrode and their electrocatalytic applications

    Energy Technology Data Exchange (ETDEWEB)

    Song Yan; Ma Yuting; Wang Yuan [Department of Chemistry, Soochow University, Suzhou, Jiangsu 215123 (China); Di Junwei, E-mail: djw@suda.edu.c [Department of Chemistry, Soochow University, Suzhou, Jiangsu 215123 (China); Tu Yifeng [Department of Chemistry, Soochow University, Suzhou, Jiangsu 215123 (China)

    2010-07-01

    Gold-platinum (Au-Pt) hybrid nanoparticles (Au-PtNPs) were successfully deposited on an indium tin oxide (ITO) surface using a direct electrochemical method. The resulting nanoparticles were characterized by scanning electron microscopy (SEM), UV-vis spectroscopy, X-ray diffraction (XRD), energy-dispersive X-ray spectroscopy (EDX), and electrochemical methods. It was found that the size of the Au-PtNPs depends on the number of electrodeposition cycles. Au-PtNPs obtained by 20 electrodeposition cycles had a cauliflower-shaped structure with an average diameter of about 60 nm. These Au-PtNPs exhibited alloy properties. Electrochemical measurements showed that the charge transfer resistivity was significantly decreased for the Au-PtNPs/ITO electrode. Additionally, the Au-PtNPs displayed an electrocatalytic activity for nitrite oxidation and oxygen reduction. The Au-PtNPs/ITO electrodes reported herein could possibly be used as electrocatalysts and sensors.

  14. Influence of adsorbed carbon dioxide on hydrogen electrosorption in palladium-platinum-rhodium alloys

    International Nuclear Information System (INIS)

    Lukaszewski, M.; Grden, M.; Czerwinski, A.

    2004-01-01

    Carbon dioxide electroreduction was applied to examine the processes of hydrogen electrosorption (adsorption, absorption and desorption) by thin electrodeposits of Pd-Pt-Rh alloys under conditions of cyclic voltammetric (CV) experiments. Due to different adsorption characteristics towards the adsorption product of the electroreduction of CO 2 (reduced CO 2 ) exhibited by the alloy components hydrogen adsorption and hydrogen absorption signals can be distinguished on CV curves. Reduced CO 2 causes partial blocking of hydrogen adsorbed on surface Pt and Rh atoms, without any significant effect on hydrogen absorption into alloy. It reflects the fact that adsorbed hydrogen bonded to Pd atoms does not participate in CO 2 reduction, while hydrogen adsorbed on Pt and Rh surface sites is inactive in the absorption reaction. In contrast, CO is adsorbed on all alloy components and causes a marked inhibition of hydrogen sorption (both adsorption and absorption)/desorption reactions

  15. APFIM investigation of clustering in neutron-irradiated Fe-Cu alloys and pressure vessel steels

    International Nuclear Information System (INIS)

    Auger, P.; Pareige, P.; Blavette, D.

    1996-01-01

    Pressure vessel steels used in PWRs are known to be prone to hardening and embrittlement under neutron irradiation. The changes in mechanical properties are commonly supposed to result from the formation of point defects, dislocation loops, voids and copper-rich precipitates. However, the real nature of the irradiation induced damage, in these particularly low copper steels (>0,1 wt%), has not been clearly identify yet. A new experimental work has been carried out thanks to atom probe and field ion microscopy (APFIM) facilities and, more particularly with a new generation of atom probe recently developed, namely the tomographic atom probe (TAP), in order to improve: the understanding of the complex behavior of copper precipitation which occurs when low-alloyed Fe-Cu model alloys are irradiated with neutrons; the microstructural characterization of the pressure vessel steel of the CHOOZ A reactor under various fluences (French Surveillance Programme). The investigations clearly reveal the precipitation of copper-rich clusters in irradiated Fe-Cu alloys while more complicated Si, Ni, Mn and Cu-solute 'clouds' were observed to develop in the low-copper ferritic solid solution of the pressure vessel steel. (authors)

  16. Stress corrosion cracking studies on ferritic low alloy pressure vessel steel - water chemistry and modelling aspects

    International Nuclear Information System (INIS)

    Tipping, P.; Ineichen, U.; Cripps, R.

    1994-01-01

    The susceptibility of low alloy ferritic pressure vessel steels (A533-B type) to stress corrosion cracking (SCC) degradation has been examined using various BWR type coolant chemistries. Fatigue pre-cracked wedge-loaded double cantilever beams and also constantly loaded 25 mm thick compact tension specimens have shown classical SCC attack. The influence of parameters such as dissolved oxygen content, water impurity level and conductivity, material chemical composition (sulphur content) and stress intensity level are discussed. The relevance of SCC as a life-limiting degradation mechanism for low alloy ferritic nuclear power plant PV steel is examined. Some parameters, thought to be relevant for modelling SCC processes in low alloy steels in simulated BWR-type coolant, are discussed. 8 refs., 1 fig., 4 tabs

  17. Investigation of platinum alloys for melting of inclusion free laser glass: Final report

    International Nuclear Information System (INIS)

    Izumitani, T.; Toratani, H.; Meissner, H.E.

    1986-01-01

    The objective of this work is to evaluate the suitability of Pt alloys as crucible materials for melting LHG-8 phosphate laser glass. The tendency of forming metallic inclusions and ionic dissolution of alloy components in the glass is to be compared with that of pure Pt. Ionic Pt is introduced into the glass melt by direct dissolution of Pt at the crucible-melt interface and by vapor phase transport. It was felt that a Pt-alloy may behave sufficiently differently from Pt that a number of alloys should be studied. Pt inclusions may originate from Pt which reprecipitates from the glass melt on cooling or change in redox-conditions; from volatilized Pt which deposits in colder zones of the melting environment as crystallites which may drop back into the glass melt; and/or from Pt particles which are mechanically removed from the crucible and drop into the glass melt. Besides pure Pt, the following alloys have been tested: Pt/ 10 Ir, Pt/ 10 Rh, Pt/ 5 Au, Pt-ZGS, Pt/ 5 Au-ZGS, Pt/ 10 Rh-ZGS

  18. Electrodeposition of gold-platinum alloy nanoparticles on carbon nanotubes as electrochemical sensing interface for sensitive detection of tumor marker

    Energy Technology Data Exchange (ETDEWEB)

    Li Ya [Key Laboratory on Luminescence and Real-Time Analysis, Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715 (China); Yuan Ruo, E-mail: yuanruo@swu.edu.cn [Key Laboratory on Luminescence and Real-Time Analysis, Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715 (China); Chai Yaqin; Song Zhongju [Key Laboratory on Luminescence and Real-Time Analysis, Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715 (China)

    2011-07-30

    Graphical abstract: Electrodeposition of gold-platinum alloy (Au-PtNPs) on carbon nanotubes as electrochemical sensing interface and HRP as blocking agent for the fabrication of high sensitive immunosensor. Display Omitted Highlights: > In this work, we proposed a novel electrochemical sensing surface. > The sensing surface possessed larger electro-active areas and higher conductivity due to the introduction of MWCNTs. > The signal could be amplified effectively by synergetic catalysis effect of Au-PtNPs and HRP towards the reduction of H{sub 2}O{sub 2}. > Biomolecules could be immobilized on the surface of Au-PtNPs tightly with the bioactivity kept well. > The simple fabrication method provided a new potential for the future development of practical devices for clinical diagnosis application. - Abstract: A novel electrochemical sensing interface, electrodeposition of gold-platinum alloy nanoparticles (Au-PtNPs) on carbon nanotubes, was proposed and used to fabricate a label-free amperometric immunosensor. On the one hand, the multiwalled carbon nanotubes (MWCNTs) could increase active area of the electrode and enhance the electron transfer ability between the electrode and redox probe; on the other hand, the Au-PtNPs not only could be used to assemble biomolecules with bioactivity kept well, but also could further facilitate the shuttle of electrons. In the meanwhile, horseradish peroxidase (HRP) instead of bovine serum albumin (BSA) was employed to block the possible remaining active sites and avoid the nonspecific adsorption. With the synergetic catalysis effect of Au-PtNPs and HRP towards the reduction of hydrogen peroxide (H{sub 2}O{sub 2}), the signal could be amplified and the sensitivity could be enhanced. Using alpha-fetoprotein (AFP) as model analyte, the fabricated immunosensor exhibited two wide linear ranges in the concentration ranges of 0.5-20 ng mL{sup -1} and 20-200 ng mL{sup -1} with a detection limit of 0.17 ng mL{sup -1} at a signal-to-noise of

  19. Highly Durable Platinum Single-Atom Alloy Catalyst for Electrochemical Reactions

    DEFF Research Database (Denmark)

    Kim, Jiwhan; Roh, Chi-Woo; Sahoo, Suman Kalyan

    2018-01-01

    Single atomic Pt catalyst can offer efficient utilization of the expensive platinum and provide unique selectivity because it lacks ensemble sites. However, designing such a catalyst with high Pt loading and good durability is very challenging. Here, single atomic Pt catalyst supported on antimony...... functional theory calculations show that replacing Sb sites with Pt atoms in the bulk phase or at the surface of SbSn or ATO is energetically favorable. The Pt1/ATO shows superior activity and durability for formic acid oxidation reaction, compared to a commercial Pt/C catalyst. The single atomic Pt...... structure is retained even after a harsh durability test, which is performed by repeating cyclic voltammetry in the range of 0.05–1.4 V for 1800 cycles. A full cell is fabricated for direct formic acid fuel cell using the Pt1/ATO as an anode catalyst, and an order of magnitude higher cell power is obtained...

  20. Elucidation of the Oxygen Reduction Volcano in Alkaline Media using a Copper-Platinum(111) Alloy

    DEFF Research Database (Denmark)

    Jensen, Kim Degn; Tymoczko, Jakub; Rossmeisl, Jan

    2018-01-01

    catalyst should exhibit OH binding circa 0.1 eV weaker than Pt(111), via a Sabatier volcano; this observation suggests that the reaction is mediated via the same surface bound intermediates as in acid, in contrast to previous reports. In 0.1 m KOH, the alloy catalyst at the peak of the volcano exhibits...

  1. Elucidation of the Oxygen Reduction Volcano in Alkaline Media using a Copper-Platinum(111) Alloy

    DEFF Research Database (Denmark)

    Jensen, Kim Degn; Tymoczko, Jakub; Rossmeisl, Jan

    2018-01-01

    catalyst should exhibit OH binding circa 0.1 eV weaker than Pt(111), via a Sabatier volcano; this observation suggests that the reaction is mediated via the same surface bound intermediates as in acid, in contrast to previous reports. In 0.1(M) KOH, the alloy catalyst at the peak of the volcano exhibits...

  2. Synthesis, characterization and optimization of platinum-alloy nanoparticle catalysts in proton exchange membrane fuel cells

    Science.gov (United States)

    Srivastava, Ratndeep

    Renewable hydrogen-fuelled proton exchange membrane (PEMFC) fuel cells have consistently demonstrated great promise as a future source of energy due to their high conversion efficiency, lower temperature of operation and lack of greenhouse emissions. One of the major impediments in the commercialization of polymer electrolyte membrane fuel cells is the insufficient catalytic reactivity and higher cost of Pt electrocatalysts which are utilized for the electroreduction of oxygen from air. This dissertation focuses primarily on a family of Pt alloy fuel cell electrocatalysts referred to as de-alloyed core-shell electrocatalysts. These materials are bimetallic or multimetallic nanoparticles, mostly supported on conductive supports which were first described in a dissertation by Dr. S. Koh earlier in 2009.1 De-alloyed Pt nanoparticle electrocatalysts are formed from base metal rich binary Pt-M and ternary Pt-M1-M 2 (M, M1, M2 = Cu, Co, Ni, Fe and Cr) alloy nanoparticle precursors. The precursors are transformed and activated by electrochemical selective dissolution of the less noble metal component of the precursors (de-alloying). They have shown exceptional activity for oxygen reduction reaction (ORR) in idealized electrochemical half cell measurements, in particular rotating disk electrode experiments. However, these materials were never tested or implemented in realistic Membrane Electrode Assemblies (MEA) and single PEM fuel cells. The objective of this work was to implement de-alloyed Pt particle catalysts in realistic fuel cell electrode layers as well as a detailed characterization of their behavior and stability. The major challenges of MEA implementation consists of the behavior of the new nanostructured electrocatalysts inside the complex three-phase interface of polymer membrane ionomer, liquid water, metal catalyst, support, and reactant gas. Activity measurements were followed by medium and long-term durability analysis by potential cycling of the membrane

  3. Corrosion of Fe-25 Cr Alloy with microconstituent additions of hafnium and platinum

    International Nuclear Information System (INIS)

    Srinivasan, V.

    1989-01-01

    The study reported was performed with a view to understanding the effects of minor additions of Hf and Pt on the corrosion behavior of a model chromia former, Fe-25Cr. Bulk addition of Hf or Pt was made at 1 wt.% level to the base alloy, Fe-25 Cr, and the experimental alloys were made by an ingot metallurgy route. Coupons were machined from the as-cast rods or forged prismatic bars, and metallographically polished to 1 μ alumina. Multiple samples were exposed to an H 2 /H 2 S/H 2 O/Ar gas mixture at 700 degrees C for times up to 192 hrs. Planar and cross-sections of scales formed on the substrate alloys were examined using a scanning electron microscope with an energy dispersive x-ray spectrometer (SEM/EDAX). A uniform chromia scale formed initially. This scale was broken down locally and slowly by the overgrowth of sulfide rich nodules. The effects of minor additions of Hf or Pt on the growth and breakdown of protective chromia scales are discussed in this paper

  4. High temperature oxidation behavior of gamma-nickel+gamma'-nickel aluminum alloys and coatings modified with platinum and reactive elements

    Science.gov (United States)

    Mu, Nan

    was also inferred that Pt enhances the diffusive flux of aluminum from the substrate to the scale/alloy interface. Relatively low levels of hafnium addition to Pt-free gamma'-Ni 3Al increased the extent of external NiO formation due to non-protective HfO2 formation. Accordingly, this effect intensified with increasing Hf content from 0.2 to 0.5at.%. The synergistic effect of Pt and Hf co-addition was realized by examining Pt+Hf-modified gamma'-Ni3Al alloys. It was inferred that Pt decreases the chemical activity of Hf so that HfO2 formation could be suppressed with increasing Pt content. Thus, the early-stage Al2O3 formation facilitated by Pt additions and NiO development assisted by Hf additions are the competing scale growth processes that are influenced by the relative contents of Pt and Hf. Large interfacial voids were observed on the gamma'-Ni 3Al alloy after 4-days isothermal oxidation at 1150°C, which could be attributed to the Kirkendall effect. Platinum addition was also found to improve Al2O3-scale adhesion. Pt and Hf effects on two-phase gamma-Ni+gamma'-Ni3Al alloys of compositions Ni-20Al-20Pt-xHf (x ranges from 0 to 0.91) were examined by both thermal gravimetric analyses and cyclic oxidation tests. Scale microstructures were characterized by confocal photo-stimulated microspectroscopy (CPSM), in-lens SEM, and FIB-TEM. Hafnium additions up to about 0.48at.% markedly decreased the weight change of isothermally oxidized Pt-modified gamma+gamma' alloys by forming thinner oxide scales than that on the Hf-free Ni-20Al-20Pt base alloy. This could be attributed to an Al2O3 grain boundary blocking effect imparted by the segregated Hf. However, an over-doped alloy with 0.91at.% Hf exhibited detrimental effect by forming internal HfO 2. It was observed that Hf additions altered the Al2O3 scale microstructure. The most remarkable difference was that the columnar width of the Al2O3 scale grains formed on Ni-20Al-20Pt was much larger than it was on Ni-20Al-20Pt-0

  5. Development of Ultra-Low Platinum Alloy Cathode Catalysts for PEM Fuel Cells

    Energy Technology Data Exchange (ETDEWEB)

    Popov, Branko N. [Univ. of South Carolina, Columbia, SC (United States). Dept. of Chemical Engineering; Weidner, John [Univ. of South Carolina, Columbia, SC (United States)

    2016-01-07

    The goal of this project is to synthesize a low cost PEM fuel cell cathode catalyst and support with optimized average mass activity, stability of mass activity, initial high current density performance under H2/air (power density), and catalyst and support stability able to meet 2017 DOE targets for electrocatalysts for transportation applications. Pt*/ACCS-2 catalyst was synthesized according to a novel methodology developed at USC through: (i) surface modification, (ii) metal catalyzed pyrolysis and (iii) chemical leaching to remove excess meal used to dope the support. Pt* stands for suppressed platinum catalyst synthesized with Co doped platinum. The procedure results in increasing carbon graphitization, inclusion of cobalt in the bulk and formation of non-metallic active sites on the carbon surface. Catalytic activity of the support shows an onset potential of 0.86 V for the oxygen reduction reaction (ORR) with well-defined kinetic and mass transfer regions and 2.5% H2O2 production. Pt*/ACCS-2 catalyst durability under 0.6-1.0 V potential cycling and support stability under 1.0-1.5 V potential cycling was evaluated. The results indicated excellent catalyst and support performance under simulated start-up/shut down operating conditions (1.0 – 1.5 V, 5000 cycles) which satisfy DOE 2017 catalyst and support durability and activity. The 30% Pt*/ACCS-2 catalyst showed high initial mass activity of 0.34 A/mgPGM at 0.9 ViR-free and loss of mass activity of 45% after 30,000 cycles (0.6-1.0 V). The catalyst performance under H2-air fuel cell operating conditions showed only 24 mV (iR-free) loss at 0.8 A/cm2 with an ECSA loss of 42% after 30,000 cycles (0.6-1.0 V). The support stability under 1.0-1.5 V potential cycling showed mass activity loss of 50% and potential loss of 8 mV (iR-free) at 1.5 A/cm2. The ECSA loss was 22% after 5,000 cycles. Furthermore, the Pt*/ACCS-2 catalyst showed an

  6. Microstructural characterization of atom clusters in irradiated pressure vessel steels and model alloys

    International Nuclear Information System (INIS)

    Auger, P.; Pareige, P.; Akamatsu, M.; Van Duysen, J.C.

    1993-01-01

    In order to characterize the microstructural evolution of iron solid solution under irradiation, two pressure vessel steels irradiated in service conditions, and, for comparison, low copper model alloys irradiated with neutrons and electrons, have been studied through small angle neutron scattering and atom probe experiments. In Fe-Cu model alloys, copper clusters are formed containing uncertain proportions of iron. In the low copper industrial steels, the feature is more complex; solute atoms such as Ni, Mn and Si, sometimes associated with Cu, segregate as ''clouds'' more or less condensed in the iron solid solution. These silicides, or at least Si, Ni, Mn association, may facilitate the copper segregation although the initial iron matrix contains a low copper concentration. (authors). 24 refs., 3 figs., 2 tabs

  7. Microstructural characterization of atom clusters in irradiated pressure vessel steels and model alloys

    Energy Technology Data Exchange (ETDEWEB)

    Auger, P; Pareige, P [Rouen Univ., 76 - Mont-Saint-Aignan (France); Akamatsu, M; Van Duysen, J C [Electricite de France (EDF), 77 - Ecuelles (France)

    1994-12-31

    In order to characterize the microstructural evolution of iron solid solution under irradiation, two pressure vessel steels irradiated in service conditions, and, for comparison, low copper model alloys irradiated with neutrons and electrons, have been studied through small angle neutron scattering and atom probe experiments. In Fe-Cu model alloys, copper clusters are formed containing uncertain proportions of iron. In the low copper industrial steels, the feature is more complex; solute atoms such as Ni, Mn and Si, sometimes associated with Cu, segregate as ``clouds`` more or less condensed in the iron solid solution. These silicides, or at least Si, Ni, Mn association, may facilitate the copper segregation although the initial iron matrix contains a low copper concentration. (authors). 24 refs., 3 figs., 2 tabs.

  8. Characterization of atom clusters in irradiated pressure vessel steels and model alloys

    International Nuclear Information System (INIS)

    Auger, P.; Pareige, P.; Akamatsu, M.; Van Duysen, J.C.

    1993-12-01

    In order to characterize the microstructural evolution of the iron solid solution under irradiation, two pressure vessel steels irradiated in service conditions and, for comparison, low copper model alloys irradiated with neutrons and electrons have been studied. The characterization has been carried out mainly thanks to small angle neutron scattering and atom probe experiments. Both techniques lead to the conclusion that clusters develop with irradiations. In Fe-Cu model alloys, copper clusters are formed containing uncertain proportions of iron. In the low copper industrial steels, the feature is more complex. Solute atoms like Ni, Mn and Si, sometimes associated with Cu, segregate as ''clouds'' more or less condensed in the iron solid solution. These silicides, or at least Si, Ni, Mn association, may facilitate the copper segregation although the initial iron matrix contains a low copper concentration. (authors). 24 refs., 3 figs., 2 tabs

  9. Pressure vessel code construction capabilities for a nickel-chromium-tungsten-molybdenum alloy

    International Nuclear Information System (INIS)

    Rothman, M.F.

    1990-01-01

    HAYNES alloy 230 (UNS NO6230) has achieved wide usage in a variety of high-temperature aerospace, chemical process industry and industrial heating applications since its introduction in 1981. Combining high elevated temperature strength with excellent metallurgical stability, environment-resistance and relatively straight forward fabrication characteristics, this Ni-Cr-W-Mo alloy was an excellent candidate for ASME Pressure vessel Code applications. Coverage under case No. 2063 was granted in July, 1989, for both Section I and Section VIII Division 1 construction. In this paper, the metallurgy of 230 alloy will be described, and its design strength capabilities contrasted with those for more established code materials. Other important performance capabilities, such as long-term thermal stability, oxidation-resistance, fatigue-resistance, and resistance to other forms of environmental degradation will be discussed. It will be shown that the combined properties of 230 alloy offer some significant advantages over other materials for applications such as expansion bellows, heat-exchangers, valves and other components in the fossil energy, nuclear energy and chemical process industries, among others

  10. Synthesis of Platinum Nanotubes and Nanorings via Simultaneous Metal Alloying and Etching

    KAUST Repository

    Huang, Zhiqi

    2016-04-19

    Metallic nanotubes represent a class of hollow nanostructures with unique catalytic properties. However, the wet-chemical synthesis of metallic nanotubes remains a substantial challenge, especially for those with dimensions below 50 nm. This communication describes a simultaneous alloying-etching strategy for the synthesis of Pt nanotubes with open ends by selective etching Au core from coaxial Au/Pt nanorods. This approach can be extended for the preparation of Pt nanorings when Saturn-like Au core/Pt shell nanoparticles are used. The diameter and wall thickness of both nanotubes and nanorings can be readily controlled in the range of 14-37 nm and 2-32 nm, respectively. We further demonstrated that the nanotubes with ultrathin side walls showed superior catalytic performance in oxygen reduction reaction. © 2016 American Chemical Society.

  11. Thermochemical Properties of Group IVB and VB Transition Metal Alloys with Platinum Group Metals: Acid - Stabilization.

    Science.gov (United States)

    Cima, Michael John

    Solid-state galvanic cell measurements and oxide equilibration experiments are used to derive thermochemical quantities for a variety of acid-base stabilized alloys such as Nb-Pd, Nb-Rh, Ti-Pd, and Ti-Rh. The experiments have effectively resulted in the titration of palladium by niobium metal. The excess partial molar Gibbs energy of niobium at infinite dilution was determined to be -62 kcal/mole at 1000^circ C and the Gibbs energy of formation of {rm NbPd}_{3.55} is -42 kcal/mole. These results and those for the other systems are used to assess the importance of crystal field effects in the context of the generalized Lewis acid-base theory.

  12. In vitro biocompatibility and electrical stability of thick-film platinum/gold alloy electrodes printed on alumina

    Science.gov (United States)

    Carnicer-Lombarte, Alejandro; Lancashire, Henry T.; Vanhoestenberghe, Anne

    2017-06-01

    Objective. High-density electrode arrays are a powerful tool in both clinical neuroscience and basic research. However, current manufacturing techniques require the use of specialised techniques and equipment, which are available to few labs. We have developed a high-density electrode array with customisable design, manufactured using simple printing techniques and with commercially available materials. Approach. Electrode arrays were manufactured by thick-film printing a platinum-gold alloy (Pt/Au) and an insulating dielectric on 96% alumina ceramic plates. Arrays were conditioned in serum and serum-free conditions, with and without 1 kHz, 200 µA, charge balanced stimulation for up to 21 d. Array biocompatibility was assessed using an extract assay and a PC-12 cell contact assay. Electrode impedance, charge storage capacity and charge injection capacity were before and after array conditioning. Main results. The manufactured Pt/Au electrodes have a highly porous surface and exhibit electrical properties comparable to arrays manufactured using alternative techniques. Materials used in array manufacture were found to be non-toxic to L929 fibroblasts by extract assay, and neuronal-like PC-12 cells adhered and extended neurites on the array surfaces. Arrays remained functional after long-term delivery of electrical pulses while exposed to protein-rich environments. Charge storage capacities and charge injection capacities increased following stimulation accounted for by an increase in surface index (real surface area) observed by vertical scanning interferometry. Further, we observed accumulation of proteins at the electrode sites following conditioning in the presence of serum. Significance. This study demonstrates the in vitro biocompatibility of commercially available thick-film printing materials. The printing technique is both simple and versatile, with layouts readily modified to produce customized electrode arrays. Thick-film electrode arrays are an

  13. Low platinum catalyst and method of preparation

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Di-Jia; Chong, Lina

    2017-11-21

    A low platinum catalyst and method for making same. The catalyst comprises platinum-transition metal bimetallic alloy microcrystallites over a transition metal-nitrogen-carbon composite. A method of making a catalyst comprises preparation of transition metal organic frameworks, infusion of platinum, thermal treatment, and reduction to form the microcrystallites and composite.

  14. Application of electron beam welding to large size pressure vessels made of thick low alloy steel

    International Nuclear Information System (INIS)

    Kuri, S.; Yamamoto, M.; Aoki, S.; Kimura, M.; Nayama, M.; Takano, G.

    1993-01-01

    The authors describe the results of studies for application of the electron beam welding to the large size pressure vessels made of thick low alloy steel (ASME A533 Gr.B cl.2 and A533 Gr.A cl.1). Two major problems for applying the EBW, the poor toughness of weld metal and the equipment to weld huge pressure vessels are focused on. For the first problem, the effects of Ni content of weld metal, welding conditions and post weld heat treatment are investigated. For the second problem, an applicability of the local vacuum EBW to a large size pressure vessel made of thick plate is qualified by the construction of a 120 mm thick, 2350 mm outside diameter cylindrical model. The model was electron beam welded using local vacuum chamber and the performance of the weld joint is investigated. Based on these results, the electron beam welding has been applied to the production of a steam generator for a PWR. (author). 3 refs., 10 figs., 4 tabs

  15. Elaboration, physical and electrochemical characterizations of CO tolerant PEMFC anode materials. Study of platinum-molybdenum and platinum-tungsten alloys and composites; Elaborations et caracterisations electrochimiques et physiques de materiaux d'anode de PEMFC peu sensibles a l'empoisonnement par CO: etude d'alliages et de composites a base de platine-molybdene et de platine-tungstene

    Energy Technology Data Exchange (ETDEWEB)

    Peyrelade, E.

    2005-06-15

    PEMFC development is hindered by the CO poisoning ability of the anode platinum catalyst. It has been previously shown that the oxidation potential of carbon monoxide adsorbed on the platinum atoms can be lowered using specific Pt based catalysts, either metallic alloys or composites. The objective is then to realize a catalyst for which the CO oxidation is compatible with the working potential of a PEMFC anode. In our approach, to enhance the CO tolerance of platinum based catalyst supported on carbon, we studied platinum-tungsten and platinum-molybdenum alloys and platinum-metal oxide materials (Pt-WO{sub x} and Pt-MoO{sub x}). The platinum based alloys demonstrate a small effect of the second metal towards the oxidation of carbon monoxide. The platinum composites show a better tolerance to carbon monoxide. Electrochemical studies on both Pt-MoO{sub x} and Pt-WO{sub x} demonstrate the ability of the metal-oxides to promote the ability of Pt to oxidize CO at low potentials. However, chrono-amperometric tests reveal a bigger influence of the tungsten oxide. Complex chemistry reactions on the molybdenum oxide surface make it more difficult to observe. (author)

  16. The failure behavior of duplex 316 L steel-TA6V titanium alloy spherical pressure vessels

    International Nuclear Information System (INIS)

    Miannay, D.

    1980-05-01

    The purpose of this paper is to compare the experimental residual stresses of spherical vessels made of TA6V alloy which exhibits plasticity before failure in toughness testing and cracked with several configurations, with stresses estimated according to the afore mentioned theories. An internal austenitic 316 L steel is used to prevent 'leak before break' [fr

  17. Acoustic emission during the elastic-plastic deformation of low alloy reactor pressure vessel steels. I

    International Nuclear Information System (INIS)

    Holt, J.; Goddard, D.J.

    1980-01-01

    Measurements of the acoustic emission behaviour of A533B and C-Mn low alloy reactor pressure vessel steels subjected to uniaxial tensile deformation are described. The effects on the emission activity of the rolling plane orientation and the carbide morphology were examined. Detailed discussions are given of the stress dependence of the emission activity below yield and of its recovery by annealing at the stress relief temperature. It is shown that the dominant emission source is the same in both steels and is associated with inclusions, such as MnS, elongated by the rolling process, the carbide morphology being relatively unimportant. A criterion for the occurrence of an emission is obtained which is directly analogous to the general criterion for yielding. It is also shown that a large fraction, at least, of the emission activity arises from a recoverable process such as localized yielding around inclusions or limited inclusion decohesion and not from inclusion fracture. Low activity in C-Mn steel taken from reactor pressure vessels, previously attributed to spheroidization of carbides, is shown to be due to the limited acoustic recovery of these relatively high sulphur content steels when annealed at the stress relief temperature. It is concluded that the limited amplitudes of these emissions during deformation severely restrict their potential application in practice. (Auth.)

  18. Bobbin-Tool Friction-Stir Welding of Thick-Walled Aluminum Alloy Pressure Vessels

    Energy Technology Data Exchange (ETDEWEB)

    Dalder, E C; Pastrnak, J W; Engel, J; Forrest, R S; Kokko, E; Ternan, K M; Waldron, D

    2007-06-06

    It was desired to assemble thick-walled Al alloy 2219 pressure vessels by bobbin-tool friction-stir welding. To develop the welding-process, mechanical-property, and fitness-for-service information to support this effort, extensive friction-stir welding-parameter studies were conducted on 2.5 cm. and 3.8 cm. thick 2219 Al alloy plate. Starting conditions of the plate were the fully-heat-treated (-T62) and in the annealed (-O) conditions. The former condition was chosen with the intent of using the welds in either the 'as welded' condition or after a simple low-temperature aging treatment. Since preliminary stress-analyses showed that stresses in and near the welds would probably exceed the yield-strength of both 'as welded' and welded and aged weld-joints, a post-weld solution-treatment, quenching, and aging treatment was also examined. Once a suitable set of welding and post-weld heat-treatment parameters was established, the project divided into two parts. The first part concentrated on developing the necessary process information to be able to make defect-free friction-stir welds in 3.8 cm. thick Al alloy 2219 in the form of circumferential welds that would join two hemispherical forgings with a 102 cm. inside diameter. This necessitated going to a bobbin-tool welding-technique to simplify the tooling needed to react the large forces generated in friction-stir welding. The bobbin-tool technique was demonstrated on both flat-plates and plates that were bent to the curvature of the actual vessel. An additional issue was termination of the weld, i.e. closing out the hole left at the end of the weld by withdrawal of the friction-stir welding tool. This was accomplished by friction-plug welding a slightly-oversized Al alloy 2219 plug into the termination-hole, followed by machining the plug flush with both the inside and outside surfaces of the vessel. The second part of the project involved demonstrating that the welds were fit for the intended

  19. Atom probe study of the microstructural evolution induced by irradiation in Fe-Cu ferritic alloys and pressure vessel steels

    International Nuclear Information System (INIS)

    Pareige, P.

    1996-04-01

    Pressure vessel steels used in pressurized water reactors are low alloyed ferritic steels. They may be prone to hardening and embrittlement under neutron irradiation. The changes in mechanical properties are generally supposed to result from the formation of point defects, dislocation loops, voids and/or copper rich clusters. However, the real nature of the irradiation induced-damage in these steels has not been clearly identified yet. In order to improve our vision of this damage, we have characterized the microstructure of several steels and model alloys irradiated with electrons and neutrons. The study was performed with conventional and tomographic atom probes. The well known importance of the effects of copper upon pressure vessel steel embrittlement has led us to study Fe-Cu binary alloys. We have considered chemical aging as well as aging under electron and neutron irradiations. The resulting effects depend on whether electron or neutron irradiations ar used for thus. We carried out both kinds of irradiation concurrently so as to compare their effects. We have more particularly considered alloys with a low copper supersaturation representative of that met with the French vessel alloys (0.1% Cu). Then, we have examined steels used on French nuclear reactor pressure vessels. To characterize the microstructure of CHOOZ A steel and its evolution when exposed to neutrons, we have studied samples from the reactor surveillance program. The results achieved, especially the characterization of neutron-induced defects have been compared with those for another steel from the surveillance program of Dampierre 2. All the experiment results obtained on model and industrial steels have allowed us to consider an explanation of the way how the defects appear and grow, and to propose reasons for their influence upon steel embrittlement. (author). 3 appends

  20. l-Glutamic acid assisted eco-friendly one-pot synthesis of sheet-assembled platinum-palladium alloy networks for methanol oxidation and oxygen reduction reactions.

    Science.gov (United States)

    Shi, Ya-Cheng; Mei, Li-Ping; Wang, Ai-Jun; Yuan, Tao; Chen, Sai-Sai; Feng, Jiu-Ju

    2017-10-15

    In this work, bimetallic platinum-palladium sheet-assembled alloy networks (PtPd SAANs) were facilely synthesized by an eco-friendly one-pot aqueous approach under the guidance of l-glutamic acid at room temperature, without any additive, seed, toxic or organic solvent involved. l-Glutamic acid was served as the green shape-director and weak-stabilizing agent. A series of characterization techniques were employed to examine the morphology, structure and formation mechanism of the product. The architectures exhibited improved electrocatalytic activity and durable ability toward methanol oxidation reaction (MOR) and oxygen reduction reaction (ORR) in contrast with commercial Pt black and Pd black catalysts. This is ascribed to the unique structures of the obtained PtPd SAANs and the synergistic effects of the bimetals. These results demonstrate the potential application of the prepared catalyst in fuel cells. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Irradiation effects in low-alloy reactor pressure vessel steels (Heavy-Section Steel Technology program series 4 and 5)

    International Nuclear Information System (INIS)

    McGowan, J.J.; Nanstad, R.K.; Thoms, K.R.; Menke, B.H.

    1985-01-01

    This report presents studies on the irradiation effects in low-alloy reactor pressure vessel steels. The Fourth Heavy-Section Steel Technology (HSST) Irradiation Series, almost completed, was aimed at elastic-plastic and fully plastic fracture toughness of low-copper weldments (''current practice welds''). A typical nuclear pressure vessel plate steel was included for statistical purposes. The Fifth HSST Irradiation Series, now in progress, is aimed at determining the shape of the K/sub IR/ curve after significant radiation-induced shift of the transition temperatures. This series includes irradiated test specimens of thicknesses up to 100 mm and weldment compositions typical of early nuclear power reactor pressure vessel welds. 27 refs., 22 figs

  2. Tuning of platinum nano-particles by Au usage in their binary alloy for direct ethanol fuel cell: Controlled synthesis, electrode kinetics and mechanistic interpretation

    Science.gov (United States)

    Dutta, Abhijit; Mondal, Achintya; Datta, Jayati

    2015-06-01

    Understanding of the electrode-kinetics and mechanism of ethanol oxidation reaction (EOR) is of considerable interest for optimizing electro-catalysis in direct ethanol fuel cell (DEFC). This work attempts to design Pt based electro-catalyst on carbon support, tuned with gold nano-particles (NPs), for their use in DEFC operating in alkaline medium. The platinum-gold alloyed NPs are synthesized at desired compositions and size (2-10 nm) by controlled borohydride reduction method and successfully characterized by XRD, TEM, EDS and XPS techniques. The kinetic parameters along with the activation energies for the EOR are evaluated over the temperature range 20-80 °C and the oxidation reaction products estimated through ion chromatographic analysis. Compared to single Pt/C catalyst, the over potential of EOR is reduced by ca. 500 mV, at the onset during the reaction, for PtAu/C alloy with only 23% Pt content demonstrating the ability of Au and/or its surface oxides providing oxygen species at much lower potentials compared to Pt. Furthermore, a considerable increase in the peak power density (>191%) is observed in an in-house fabricated direct ethanol anion exchange membrane fuel cell, DE(AEM)FC using the best performing Au covered Pt electrode (23% Pt) compared to the monometallic Pt catalyst.

  3. A Platinum Monolayer Core-Shell Catalyst with a Ternary Alloy Nanoparticle Core and Enhanced Stability for the Oxygen Reduction Reaction

    Directory of Open Access Journals (Sweden)

    Haoxiong Nan

    2015-01-01

    Full Text Available We synthesize a platinum monolayer core-shell catalyst with a ternary alloy nanoparticle core of Pd, Ir, and Ni. A Pt monolayer is deposited on carbon-supported PdIrNi nanoparticles using an underpotential deposition method, in which a copper monolayer is applied to the ternary nanoparticles; this is followed by the galvanic displacement of Cu with Pt to generate a Pt monolayer on the surface of the core. The core-shell Pd1Ir1Ni2@Pt/C catalyst exhibits excellent oxygen reduction reaction activity, yielding a mass activity significantly higher than that of Pt monolayer catalysts containing PdIr or PdNi nanoparticles as cores and four times higher than that of a commercial Pt/C electrocatalyst. In 0.1 M HClO4, the half-wave potential reaches 0.91 V, about 30 mV higher than that of Pt/C. We verify the structure and composition of the carbon-supported PdIrNi nanoparticles using X-ray powder diffraction, X-ray photoelectron spectroscopy, thermogravimetry, transmission electron microscopy, and energy dispersive X-ray spectrometry, and we perform a stability test that confirms the excellent stability of our core-shell catalyst. We suggest that the porous structure resulting from the dissolution of Ni in the alloy nanoparticles may be the main reason for the catalyst’s enhanced performance.

  4. Electrocatalytic approach for the efficiency increase of electrolytic hydrogen production: Proof-of-concept using platinum-dysprosium alloys

    International Nuclear Information System (INIS)

    Santos, D.M.F.; Šljukić, B.; Sequeira, C.A.C.; Macciò, D.; Saccone, A.; Figueiredo, J.L.

    2013-01-01

    Development of electrocatalytic materials for the hydrogen evolution reaction (HER) is attempted with the aim of reducing the water electrolysis overpotential and increasing its efficiency. Using linear scan voltammetry measurements of the hydrogen discharge enables evaluation of the electrocatalytic activity for the HER of platinum–dysprosium (Pt–Dy) intermetallic alloy electrodes of different compositions. Understanding of materials electrocatalytic performance is based on determination of several crucial kinetic parameters, including the Tafel coefficients, b, charge transfer coefficients, α, exchange current densities, j 0 , and activation energies, E a . Influence of temperature on HER is investigated by performing studies at temperatures ranging from 25 °C to 85 °C. The effect of the Dy amount in the efficiency of the HER on the Pt–Dy alloys is analysed. Results demonstrate that Dy can substantially increase the electrocatalytic activity of the Pt alloys, in comparison to the single Pt electrode. Efforts are made to correlate the microstructure of the alloys with their performance towards the HER. - Highlights: ► Development of electrocatalysts to increase efficiency of electrolytic hydrogen production. ► Synthesis and evaluation of composition and morphology of platinum–dysprosium (Pt–Dy) alloys. ► Hydrogen evolution reaction on Pt–Dy alloys electrodes studied using linear scan voltammetry in alkaline medium. ► Pt–Dy alloy with equiatomic composition enhances kinetics of hydrogen discharge compared to single Pt

  5. Hierarchical nanoporous platinum-copper alloy for simultaneous electrochemical determination of ascorbic acid, dopamine, and uric acid

    International Nuclear Information System (INIS)

    Zhao, Dianyun; Fan, Dawei; Wang, Jinping; Xu, Caixia

    2015-01-01

    A hierarchical nanoporous PtCu alloy was fabricated by two-step dealloying of a PtCuAl precursor alloy followed by annealing. The new alloy possesses interconnected hierarchical network architecture with bimodal distributions of ligaments and pores. It exhibits high electrochemical activity towards the oxidation of ascorbic acid (AA), dopamine (DA), and uric acid (UA) at working potentials of 0.32, 0.47 and 0.61 V (vs. a mercury sulfate reference electrode), respectively. The new alloy was placed on a glassy carbon electrode and then displayed a wide linear response to AA, DA, and UA in the concentration ranges from 25 to 800 μM, 4 to 20 μM, and 10 to 70 μM, respectively. The lower detection limits are 17.5 μM, 2.8 µM and 5.7 μM at an S/N ratio of 3. (author)

  6. Electrodeposition of gold-platinum alloy nanoparticles on ionic liquid-chitosan composite film and its application in fabricating an amperometric cholesterol biosensor.

    Science.gov (United States)

    Safavi, Afsaneh; Farjami, Fatemeh

    2011-01-15

    An electrodeposition method was applied to form gold-platinum (AuPt) alloy nanoparticles on the glassy carbon electrode (GCE) modified with a mixture of an ionic liquid (IL) and chitosan (Ch) (AuPt-Ch-IL/GCE). AuPt nanoparticles were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and electrochemical methods. AuPt-Ch-IL/GCE electrocatalyzed the reduction of H(2)O(2) and thus was suitable for the preparation of biosensors. Cholesterol oxidase (ChOx) was then, immobilized on the surface of the electrode by cross-linking ChOx and chitosan through addition of glutaraldehyde (ChOx/AuPt-Ch-IL/GCE). The fabricated biosensor exhibited two wide linear ranges of responses to cholesterol in the concentration ranges of 0.05-6.2 mM and 6.2-11.2 mM. The sensitivity of the biosensor was 90.7 μA mM(-1) cm(-2) and the limit of detection was 10 μM of cholesterol. The response time was less than 7 s. The Michaelis-Menten constant (K(m)) was found as 0.24 mM. The effect of the addition of 1 mM ascorbic acid and glucose was tested on the amperometric response of 0.5 mM cholesterol and no change in response current of cholesterol was observed. Copyright © 2010 Elsevier B.V. All rights reserved.

  7. Adsorption and temperature-programmed desorption of hydrogen with dispersed platinum and platinum-gold catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, J.R.; Foger, K.; Breakspere, R.J.

    1979-05-01

    Adsorption and temperature-programmed desorption of hydrogen with dispersed platinum and platinum-gold catalysts was studied with 0.9-3Vertical Bar3< platinum on silica gel, aerosil, sodium and lanthanum Y zeolites, and ..gamma..-alumina, and on aerosil-supported gold-platinum alloys containing 2, 10, 24, 33, and 85Vertical Bar3< gold. Surface enrichment with gold in the alloy systems, as derived from hydrogen adsorption data and predicted from surface enrichment theory and electron microscopic measurements of particle size, were in good agreement, which indicated that equilibrium was achieved by the thermal treatment (oxygen at 573/sup 0/K, hydrogen at 620/sup 0/K, repeated cycles) used. Hydrogen spillover to gold was observed at the higher hydrogen pressures tested on the alloys with high gold content, and to the zeolite supports. The temperature-programed desorption profiles were independent of gold content, which indicated that gold acts only as diluent, and that isolated surface platinum atoms become populated with hydrogen atoms either by hydrogen atom spillover from platinum ensembles to gold and from the gold to the isolated platinum, and/or by adsorption of a molecule directly on the isolated platinum and chemisorption of one H atom at an adjacent gold atom. The distribution of surface platinum ensembles was evaluated by a computer simulation method.

  8. Electrocatalysts with platinum, cobalt and nickel preparations by mechanical alloyed and CVD for the reaction of oxygen reduction

    International Nuclear Information System (INIS)

    Garcia C, M. A.

    2008-01-01

    In this research, the molecular oxygen reduction reaction (ORR) was investigated on electrocatalysts of Co, Ni, Pt and their alloys CoNi, PtCo, PtNi and PtCoNi by using H 2 SO 4 0.5 and KOH 0.5 M solutions as electrolytes. The electrocatalysts were synthesized by Mechanical Alloying (MA) and Chemical Vapor Deposition (CVD) processes. For MA, metallic powders were processed during 20 h of milling in a high energy SPEX 8000 mill. For CVD, a hot-wall reactor was utilized and Co, Ni and Pt acetilactetonates were used as precursors. Films were deposited at a total pressure of 1 torr and temperatures of 400-450 C. Electrocatalysts were characterized by X-Ray Diffraction (XRD). Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM) and Energy Dispersive X-Ray Spectroscopy (EDS). Electrocatalysts prepared by mechanical alloying showed a homogeneously dispersed agglomeration of particles with nano metric size. Electrocatalysts obtained by CVD showed, in some cases, non uniform films, with particles of nano metric size, as well. The electrocatalytic performance was evaluated by using the Rotating Disk Electrode technique (RDE). Electrocatalysts prepared by MA showed higher activity than those obtained by CVD. All electrocatalysts were evaluated in alkaline media. Only electrocatalysts containing Pt were evaluated in acid media, because those materials with Co, Ni and their alloys showed instability in acidic media. Most electrocatalysts followed a mechanism for the ORR producing a certain proportion of H 2 O 2 . All electrocatalysts, exhibited a fair or good electrocatalytic activity in comparison with other similar reported materials. It was found that MA and CVD are appropriate processes to prepare electrocatalysts for the ORR with particles of nano metric size and performing with an acceptable catalytic activity. PtCoNi 70-23-7% by MA and PtCoNi-CVD electrocatalysts showed the highest activity in alkaline media, while in acidic electrolyte PtCoNi 70

  9. Environmentally-Assisted Cracking of Low-Alloy Reactor Pressure Vessel Steels under Boiling Water Reactor Conditions

    Energy Technology Data Exchange (ETDEWEB)

    Seifert, H.P.; Ritter, S

    2002-02-01

    The present report summarizes the experimental work performed by PSI on the environmentally-assisted cracking (EAC) of low-alloy steels (LAS) in the frame of the RIKORR-project during the period from January 2000 to August 2001. Within this project, the EAC crack growth behaviour of different low-alloy reactor pressure vessel (RPV) steels, weld filler and weld heat-affected zone materials is investigated under simulated transient and steady-state BWR/NWC power operation conditions. The EAC crack growth behaviour of different low-alloy RPV steels was characterized by slow rising load (SRL) / low-frequency corrosion fatigue (LFCF) and constant load tests with pre-cracked fracture mechanics specimens in oxygenated high-temperature water at temperatures of either 288, 250, 200 or 150 C. These tests revealed the following important interim results: Under low-flow and highly oxidizing (ECP >= 100 mV SHE) conditions, the ASME XI 'wet' reference fatigue crack growth curve could be significantly exceeded by cyclic fatigue loading at low frequencies (<0.001 Hz), at high and low load-ratios R, and by ripple loading near to DKth fatigue thresholds. The BWR VIP 60 SCC disposition lines may be significantly or slightly exceeded (even in steels with a low sulphur content) in the case of small load fluctuations at high load ratios (ripple loading) or at intermediate temperatures (200 -250 C) in RPV materials, which show a distinct susceptibility to dynamic strain ageing (DSA). (author)

  10. Platinum-group elements

    Science.gov (United States)

    Zientek, Michael L.; Loferski, Patricia J.; Parks, Heather L.; Schulte, Ruth F.; Seal, Robert R.; Schulz, Klaus J.; DeYoung,, John H.; Seal, Robert R.; Bradley, Dwight C.

    2017-12-19

    The platinum-group elements (PGEs)—platinum, palladium, rhodium, ruthenium, iridium, and osmium—are metals that have similar physical and chemical properties and tend to occur together in nature. PGEs are indispensable to many industrial applications but are mined in only a few places. The availability and accessibility of PGEs could be disrupted by economic, environmental, political, and social events. The United States net import reliance as a percentage of apparent consumption is about 90 percent.PGEs have many industrial applications. They are used in catalytic converters to reduce carbon monoxide, hydrocarbon, and nitrous oxide emissions in automobile exhaust. The chemical industry requires platinum or platinum-rhodium alloys to manufacture nitric oxide, which is the raw material used to manufacture explosives, fertilizers, and nitric acid. In the petrochemical industry, platinum-supported catalysts are needed to refine crude oil and to produce aromatic compounds and high-octane gasoline. Alloys of PGEs are exceptionally hard and durable, making them the best known coating for industrial crucibles used in the manufacture of chemicals and synthetic materials. PGEs are used by the glass manufacturing industry in the production of fiberglass and flat-panel and liquid crystal displays. In the electronics industry, PGEs are used in computer hard disks, hybridized integrated circuits, and multilayer ceramic capacitors.Aside from their industrial applications, PGEs are used in such other fields as health, consumer goods, and finance. Platinum, for example, is used in medical implants, such as pacemakers, and PGEs are used in cancer-fighting drugs. Platinum alloys are an ideal choice for jewelry because of their white color, strength, and resistance to tarnish. Platinum, palladium, and rhodium in the form of coins and bars are also used as investment commodities, and various financial instruments based on the value of these PGEs are traded on major exchanges

  11. Nanostructure evolution under irradiation of Fe(C)MnNi model alloys for reactor pressure vessel steels

    Energy Technology Data Exchange (ETDEWEB)

    Chiapetto, M., E-mail: mchiapet@sckcen.be [SCK-CEN, Nuclear Materials Science Institute, Boeretang 200, B-2400 Mol (Belgium); Unité Matériaux Et Transformations (UMET), UMR 8207, Université de Lille 1, ENSCL, F-59600 Villeneuve d’Ascq Cedex (France); Becquart, C.S. [Unité Matériaux Et Transformations (UMET), UMR 8207, Université de Lille 1, ENSCL, F-59600 Villeneuve d’Ascq Cedex (France); Laboratoire commun EDF-CNRS Etude et Modélisation des Microstructures pour le Vieillissement des Matériaux (EM2VM) (France); Domain, C. [EDF R& D, Département Matériaux et Mécanique des Composants, Les Renardières, F-77250 Moret sur Loing (France); Laboratoire commun EDF-CNRS Etude et Modélisation des Microstructures pour le Vieillissement des Matériaux (EM2VM) (France); Malerba, L. [SCK-CEN, Nuclear Materials Science Institute, Boeretang 200, B-2400 Mol (Belgium)

    2015-06-01

    Radiation-induced embrittlement of bainitic steels is one of the most important lifetime limiting factors of existing nuclear light water reactor pressure vessels. The primary mechanism of embrittlement is the obstruction of dislocation motion produced by nanometric defect structures that develop in the bulk of the material due to irradiation. The development of models that describe, based on physical mechanisms, the nanostructural changes in these types of materials due to neutron irradiation are expected to help to better understand which features are mainly responsible for embrittlement. The chemical elements that are thought to influence most the response under irradiation of low-Cu RPV steels, especially at high fluence, are Ni and Mn, hence there is an interest in modelling the nanostructure evolution in irradiated FeMnNi alloys. As a first step in this direction, we developed sets of parameters for object kinetic Monte Carlo (OKMC) simulations that allow this to be done, under simplifying assumptions, using a “grey alloy” approach that extends the already existing OKMC model for neutron irradiated Fe–C binary alloys [1]. Our model proved to be able to describe the trend in the buildup of irradiation defect populations at the operational temperature of LWR (∼300 °C), in terms of both density and size distribution of the defect cluster populations, in FeMnNi model alloys as compared to Fe–C. In particular, the reduction of the mobility of point-defect clusters as a consequence of the presence of solutes proves to be key to explain the experimentally observed disappearance of detectable point-defect clusters with increasing solute content.

  12. Creep deformation and crack growth in a low alloy steel welded pressure vessel containing defects

    International Nuclear Information System (INIS)

    Coleman, M.C.

    1982-01-01

    A full-size pressure vessel was tested for effects of welding residual stresses on creep deformation and crack growth. The vessel, based on 1/2 Cr 1/2 Mo 1/4 V main steam pipe, contained four 2CrMo manual metal arc welds, two in the as-welded condition and two stress-relieved. All the welds contained pre-existing defects machined in the heat affected zones. Testing was carried out at two internal steam pressures, 250 and 350 bar, and 565 0 C. Cracked and uncracked areas of the vessel were monitored continuously. Results are presented for the continuous creep deformation observed in both the hoop and axial directions of the welds throughout the 11,400 h of testing, as well as the intermittent strain data obtained during inspections. Crack growth observations are described based on nondestructive examination. The residual stresses measured are also given for both the as-welded and stress relieved weldments. Results obtained are discussed in terms of the effects of welding residual stress on the hoop and axial deformations observed in the welds. Similarly, the effects of residual stress on creep crack growth are considered together with compositional and microstructural implications. 9 figures, 5 tables

  13. Platinum-group elements and gold in base metal sulfides, platinum-group minerals, and Re-Os isotope compositions of the Uitkomst complex, South Africa

    Czech Academy of Sciences Publication Activity Database

    Trubač, Jakub; Ackerman, Lukáš; Gauert, Ch.; Ďurišová, Jana; Hrstka, Tomáš

    2018-01-01

    Roč. 113, č. 2 (2018), s. 439-461 ISSN 0361-0128 R&D Projects: GA ČR GA13-15390S Institutional support: RVO:67985831 Keywords : binary alloys * copper compounds * economic geology * gold * iridium * isotopes * ore deposits * osmium * palladium * platinum * platinum metals * pyrites * Rhenium * rhenium alloys * ruthenium * solid solutions * sulfur compounds * crustal materials * mass-balance calculations * massive sulfides * mineralized zone * monosulfide solid solutions * platinum group elements * platinum group elements (PGEs) * platinum group minerals Subject RIV: DB - Geology ; Mineralogy; AC - Archeology, Anthropology, Ethnology (ARUB-Q) OBOR OECD: Geology; Archaeology (ARUB-Q) Impact factor: 2.519, year: 2016

  14. On flux effects in a low alloy steel from a Swedish reactor pressure vessel

    Energy Technology Data Exchange (ETDEWEB)

    Boåsen, Magnus, E-mail: boasen@kth.se [Department of Solid Mechanics, Royal Institute of Technology (KTH), SE-100 44 Stockholm (Sweden); Efsing, Pål [Department of Solid Mechanics, Royal Institute of Technology (KTH), SE-100 44 Stockholm (Sweden); Ehrnstén, Ulla [VTT Technical Research Centre of Finland Ltd, PO Box 1000, FI-02044 VTT (Finland)

    2017-02-15

    This study aims to investigate the presence of Unstable Matrix Defects in irradiated pressure vessel steel from weldments of the Swedish PWR Ringhals 4 (R4). Hardness tests have been performed on low flux (surveillance material) and high flux (Halden reactor) irradiated material samples in combination with heat treatments at temperatures of 330, 360 and 390 °C in order to reveal eventual recovery of any hardening features induced by irradiation. The experiments carried out in this study could not reveal any hardness recovery related to Unstable Matrix Defects at relevant temperatures. However, a difference in hardness recovery was found between the low and the high flux samples at heat treatments at higher temperatures than expected for the annihilation of Unstable Matrix Defects–the observed recovery is here attributed to differences of the solute clusters formed by the high and low flux irradiations. - Highlights: • Hardness testing is combined with post irradiation annealing at 330, 360 and 390 °C. • Unstable matrix defects is studied in a reactor pressure vessel steel. • Comparison between surveillance material and accelerated irradiation. • No evidence of unstable matrix defects, i.e. not present in studied material. • Difference in hardness recovery between irradiation conditions found at 390 °C.

  15. The mechanism of solute-enriched clusters formation in neutron-irradiated pressure vessel steels: The case of Fe-Cu model alloys

    Energy Technology Data Exchange (ETDEWEB)

    Subbotin, A.V., E-mail: Alexey.V.Subbotin@gmail.com [Scientific and Production Complex Atomtechnoprom, Moscow 119180 (Russian Federation); Panyukov, S.V., E-mail: panyukov@lpi.ru [PN Lebedev Physics Institute, Russian Academy of Sciences, Moscow 117924 (Russian Federation)

    2016-08-15

    Mechanism of solute-enriched clusters formation in neutron-irradiated pressure vessel steels is proposed and developed in case of Fe-Cu model alloys. The suggested solute-drag mechanism is analogous to the well-known zone-refining process. We show that the obtained results are in good agreement with available experimental data on the parameters of clusters enriched with the alloying elements. Our model explains why the formation of solute-enriched clusters does not happen in austenitic stainless steels with fcc lattice structure. It also allows to quantify the method of evaluation of neutron irradiation dose for the process of RPV steels hardening.

  16. Thermodynamic Alloy Design of High Strength and Toughness in 300 mm Thick Pressure Vessel Wall of 1.25Cr-0.5Mo Steel

    Directory of Open Access Journals (Sweden)

    Hye-sung Na

    2018-01-01

    Full Text Available In the 21st century, there is an increasing need for high-capacity, high-efficiency, and environmentally friendly power generation systems. The environmentally friendly integrated gasification combined-cycle (IGCC technology has received particular attention. IGCC pressure vessels require a high-temperature strength and creep strength exceeding those of existing pressure vessels because the operating temperature of the reactor is increased for improved capacity and efficiency. Therefore, high-pressure vessels with thicker walls than those in existing pressure vessels (≤200 mm must be designed. The primary focus of this research is the development of an IGCC pressure vessel with a fully bainitic structure in the middle portion of the 300 mm thick Cr-Mo steel walls. For this purpose, the effects of the alloy content and cooling rates on the ferrite precipitation and phase transformation behaviors were investigated using JMatPro modeling and thermodynamic calculation; the results were then optimized. Candidate alloys from the simulated results were tested experimentally.

  17. Topical problems of crackability in weld annealing of low-alloyed pressure vessel steels

    International Nuclear Information System (INIS)

    Holy, M.

    1977-01-01

    The following method was developed for determining annealing crackability: A sharp notch was made in the middle of the bodies of rods imitated in a welding simulator. Chucking heads were modified such as to permit chucking a rod in an austenitic block by securing the nut. Prestress was controlled by button-headed screw adapters. The blocks were made of 4 types of austenitic steels with graded thermal expansivity coefficients, all higher than that of the tested low-alloyed steel rod. The blocks with rods were placed in a furnace and heated at a rate of 100 degC/h. As a result of the larger austenite block diameter the rod began to be stretched and at some temperature of more than 500 degC it was pulled apart. The risk of annealing crackability of welded joints may be reduced by the choice of material and melt and by the technology of welding, mainly by the choice of a suitable addition material in whose weld metal the plastic deformation preferably takes place in annealing. (J.P.)

  18. Investigation into a major crack that occurred during fabrication of a thick walled alloy pressure vessel

    International Nuclear Information System (INIS)

    Griffiths, Roger R.

    2002-01-01

    A high pressure thick walled (171 mm+cladding) reactor was under construction when a crack, with a total length of about 2.5 m, occurred at a nozzle. An investigation was conducted to determine how manufacture could safely proceed. This revealed that the primary cause of cracking was the method by which preheat had been applied to the vessel for the welding operation, coupled with the very low impact values achieved by the weld metal in the as-welded condition. Investigation also centred on the use of dehydrogenation heat treatment (DHT) instead of an intermediate stress relief (ISR), and the oxidised nature of the fracture surface. The oxidation could not be satisfactorily explained, and as a result neither the time the fracture occurred nor the significance of applying DHT in place of ISR could be absolutely determined. Nevertheless it was concluded that fracture probably occurred before DHT was applied. It was recommended that the method of preheat be revised and ISR applied without cooling below minimum preheat temperature. Further review of the incident resulted in additional recommendations for prevention of a recurrence in future work. One critical aspect was the lack of response to the poor as-welded toughness properties of the weld deposit

  19. Investigation into a major crack that occurred during fabrication of a thick walled alloy pressure vessel

    Energy Technology Data Exchange (ETDEWEB)

    Griffiths, Roger R

    2002-08-01

    A high pressure thick walled (171 mm+cladding) reactor was under construction when a crack, with a total length of about 2.5 m, occurred at a nozzle. An investigation was conducted to determine how manufacture could safely proceed. This revealed that the primary cause of cracking was the method by which preheat had been applied to the vessel for the welding operation, coupled with the very low impact values achieved by the weld metal in the as-welded condition. Investigation also centred on the use of dehydrogenation heat treatment (DHT) instead of an intermediate stress relief (ISR), and the oxidised nature of the fracture surface. The oxidation could not be satisfactorily explained, and as a result neither the time the fracture occurred nor the significance of applying DHT in place of ISR could be absolutely determined. Nevertheless it was concluded that fracture probably occurred before DHT was applied. It was recommended that the method of preheat be revised and ISR applied without cooling below minimum preheat temperature. Further review of the incident resulted in additional recommendations for prevention of a recurrence in future work. One critical aspect was the lack of response to the poor as-welded toughness properties of the weld deposit.

  20. Low Temperature (320 deg C and 340 deg C) Creep Crack Growth in Low Alloy Reactor Pressure Vessel Steel

    International Nuclear Information System (INIS)

    Rui Wu; Sandstroem, Rolf; Seitisleam, Facredin

    2004-02-01

    Uni-axial creep and creep crack growth (CCG) tests at 320 deg C and 340 deg C as well as post test metallography have been carried out in a low alloy reactor pressure vessel steel (ASTM A508 class 2) having simulated coarse grained heat affected zone microstructure. The CCG behaviour is studied in terms of steady crack growth rate, creep fracture parameter C*, stress intensity factor and reference stress at given testing conditions. It has been found that CCG does occur at both tested temperatures. The lifetimes for the CCG tests are considerably shorter than those for the uni-axial creep tests. This is more pronounced at longer lifetimes or lower stresses. Increasing temperature from 320 deg C to 340 deg C causes a reduction of lifetime by approximately a factor of five and a corresponding increase of steady crack growth rate. For the CCG tests, there are three regions when the crack length is plotted against time. After incubation, the crack grows steadily until it accelerates when rupture is approached. Notable crack growth takes place at later stage of the tests. No creep cavitation is observed and transgranular fracture is dominant for the uni-axial creep specimens. In the CT specimens the cracks propagate intergranularly, independent of temperature and time. Some relations between time to failure, reference stress and steady crack growth rate are found for the CCG tests. A linear extrapolation based on the stress-time results indicates that the reference stress causing failure due to CCG at a given lifetime of 350,000 hours at 320 deg C is clearly lower than both yield and tensile strengths, on which the design stress may have based. Therefore, caution must be taken to prevent premature failure due to low temperature CCG. Both uni-axial and CCG tests on real welded joint at 320 deg C, study of creep damage zone at crack tip as well as numerical simulation are recommended for future work

  1. Formation mechanism of solute clusters under neutron irradiation in ferritic model alloys and in a reactor pressure vessel steel: clusters of defects

    International Nuclear Information System (INIS)

    Meslin-Chiffon, E.

    2007-11-01

    The embrittlement of reactor pressure vessel (RPV) under irradiation is partly due to the formation of point defects (PD) and solute clusters. The aim of this work was to gain more insight into the formation mechanisms of solute clusters in low copper ([Cu] = 0.1 wt%) FeCu and FeCuMnNi model alloys, in a copper free FeMnNi model alloy and in a low copper French RPV steel (16MND5). These materials were neutron-irradiated around 300 C in a test reactor. Solute clusters were characterized by tomographic atom probe whereas PD clusters were simulated with a rate theory numerical code calibrated under cascade damage conditions using transmission electron microscopy analysis. The confrontation between experiments and simulation reveals that a heterogeneous irradiation-induced solute precipitation/segregation probably occurs on PD clusters. (author)

  2. Iodometric determination of platinum(4) using amperometry

    International Nuclear Information System (INIS)

    Zakharov, V.A.; Gavva, N.F.; Songina, O.A.

    1976-01-01

    The possibility of iodometric determination of platinum (4) by amperometric titration has been investigated. Titration has been conducted at zero potential of platinum reference electrode. Voltampere curves and absorption spectra of the solutions have been recorded to elucidate the nature of platinum (4) interaction with iodide-ion. It has been established that in the case of small excess of iodide complex [PtI 6 ] 2- is formed. When there is a considerable excess of KI, platinum (4) is reduced to Pt(2) with the formation of [PtI 4 ] 2 - and liberation of free iodine. Optimal for iodometric titration of Pt(4) is the use of acetate ot phosphate background solution with pH 6-8 with respect to 1M KI which is attained by adding 3 g of solid KI to 20 ml of the solution being titrated. Under these conditions the limit of platinum detection is 0.5 mkg/ml. Determination of Pt (4) is not hindered by the presence of 200-fold amounts of Cr(6), V(5), and Ni(2) as well as by 20-10-fold amounts of As(5), Sb(5), Se(4), Te(4), Rh(3), and Ir(3), Determination is hindered by the presence of Pd(2), Fe(3), Ir(4), and Cu(2) which, however, can easily be overcome. The possibility has been shown of using the developed technique for analysis of platinum catalysts and alloys

  3. Electrocatalysts of platinum, cobalt and nickel prepared by mechanical alloying for the oxygen reduction reaction in H2SO4 0.5M

    International Nuclear Information System (INIS)

    Garcia C, M.A.; Fernandez V, S.M.; Vargas G, J.R.

    2007-01-01

    Metallic powders of Pt, Co and Nickel were processed by mechanical alloyed and electrocatalysts were synthesized for the oxygen reduction reaction, applicable in fuel cells. The structural and morphological characterization was carried out using X-ray Diffraction, scanning electron microscopy and transmission electron microscopy. It was found that the alloyed powders formed agglomerates that consist of crystalline particles of nano metric size. Its were obtained polarization curves by the Electrode of Rotational Disk technique in a solution of H 2 SO 4 0.5 M, used as electrolyte, to evaluate the electrocatalytic activity of mechanically alloyed powders. Tafel graphics were built to determine the kinetic parameters of each electro catalyst. The PtCoNi alloy exhibited the biggest electrocatalytic activity, with the smallest over potential for the oxygen reduction reaction. (Author)

  4. Stage II recovery behavior of a series of ion-irradiated platinum (gold) alloys as studied by field-ion microscopy. [0. 10, 0. 62, and 4. 0 at. percent Au and pure Pt

    Energy Technology Data Exchange (ETDEWEB)

    Wei, C.Y.; Seidman, D.N.

    1976-11-01

    Direct and visible evidence was obtained for long-range migration of self-interstitial atoms (SIAs) in Stage II of three different ion-irradiated platinum (gold) alloys. Field-ion microscope (FIM) specimens of Pt--0.10, 0.62 and 4.0 at. percent Au alloys were irradiated in-situ with 30-keV W/sup +/ or Pt/sup +/ ions at a tip temperature of 35 to 41 K at 2 x 10/sup -9/ torr. Direct observation of the surfaces of the FIM specimens during isochronal warming experiments to 100 K showed that a flux of SIAs crossed the surfaces of the specimens between 40 to 100 K. The spectrum for each alloy consisted of two recovery peaks (substages II/sub B/ and II/sub C/). The results are explained on the basis of an impurity-delayed diffusion mechanism employing a two-level trapping model. The application of this diffusion model to the isochronal recovery spectra yielded a dissociation enthalpy (DELTAh/sub li-Au//sup diss/) and an effective diffusion coefficient for each substage; for substage II/sub B/ DELTAh/sub li-Au//sup diss/ (II/sub B/) = 0.15 eV and for substage II/sub C/ DELTAh/sub li-Au//sup diss/ (II/sub C/) = 0.24 eV. A series of detailed control experiments was also performed to show that the imaging electric field had not caused the observed long-range migration of SIAs and that the observed effects were not the result of surface artifacts. 14 figures, 6 tables.

  5. Comparison of SA508 Gr.3 and SA508 Gr.4N Low Alloy Steels for Reactor Pressure Vessel Steel

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Min Chul; Lee, B. S

    2009-12-15

    The microstructural characteristics and mechanical properties of SA508 Gr.3 Mn-Mo-Ni low alloy steel and SA508 Gr.4N Ni-Mo-Cr low alloy steel were investigated. The differences in the stable phases between these two low alloy steels were evaluated by means of a thermodynamic calculation using ThermoCalc. They were then compared to microstructural features and correlated with mechanical properties. Mn-Mo-Ni low alloy steel shows the upper bainite structure which has the coarse cementite in the lath boundaries. However, Ni-Mo-Cr low alloy steel shows the mixture of lower bainite and tempered martensite structure that homogeneously precipitates the small carbides such as M{sub 23}C{sub 6} and M{sub 7}C{sub 3} due to an increase of hardenability and Cr addition. In the mechanical properties, Ni-Mo-Cr low alloy steel has higher strength and toughness than Mn-Mo-Ni low alloy steel. Ni and Cr additions increase the strength by solid solution hardening. Besides, microstructural changes from upper bainite to tempered martensite improve the strength of the low alloy steel by grain refining effect. And the changes in the precipitation behavior by Cr addition improve the ductile-brittle transition behavior along with a toughening effect of Ni addition.

  6. Obtaining of platinum-titanium alloys by sol-gel and their performance for the detachment reactions and oxygen reduction; Obtencion de aleaciones de platino-titanio por sol-gel y su desempeno para las reacciones de desprendimiento y reduccion de oxigeno

    Energy Technology Data Exchange (ETDEWEB)

    Regueira R, B. I.

    2011-07-01

    In the present work, platinum-titanium (Pt-Ti) alloys were prepared, characterized and evaluated in acid media as bifunctional electrocatalysts for the oxygen evolution reaction (Oer) and oxygen reduction reactions (Orr) in acid media. The alloys were synthesized by sol-gel method, heating the gel at temperatures of 400 and 600 C. The alloys characterization was realized by X-ray diffraction, scanning electron microscopy and EDS. Both alloys were formed by agglomerates of nanometer particles. The particle sizes were lower for the alloy obtained at 400 C (120 nm to 257 nm) compared to the alloy prepared at 600 C (555 nm to 833 nm). Cyclic and linear voltammetry techniques were used for the electrochemical evaluation of the alloy obtained at both temperatures for the Oer and Orr, in a 0.5 M sulfuric acid solution. The materials have response for both electrochemical reactions, therefore the best performance was for the Pt-Ti alloy, obtained at 400 C and it was stable for the oxygen evolution reaction. The alloy obtained at 400 C presents satisfactory electrocatalytic characteristics to be used as bifunctional material in a unified regenerative fuel cell. (Author)

  7. Atoms diffusion-induced phase engineering of platinum-gold alloy nanocrystals with high electrocatalytic performance for the formic acid oxidation reaction.

    Science.gov (United States)

    Li, Fu-Min; Kang, Yong-Qiang; Liu, Hui-Min; Zhai, Ya-Nan; Hu, Man-Cheng; Chen, Yu

    2018-03-15

    Bimetallic noble metal nanocrystals have been widely applied in many fields, which generally are synthesized by the wet-chemistry reduction method. This work presents a purposely designed atoms diffusion induced phase engineering of PtAu alloy nanocrystals on platy Au substrate (PtAu-on-Au nanostructures) through simple hydrothermal treatment. Benefitting from the synergistic effects of component and structure, PtAu-on-Au nanostructures remarkably enhance the dehydrogenation pathway of the formic acid oxidation reaction (FAOR), and thus exhibit much higher FAOR activity and durability compared with Pt nanocrystals on platy Au substrate (Pt-on-Au nanostructures) and commercial Pd black due to an excellent stability of platy Au substrate and a high oxidation resistance of PtAu alloy nanocrystals. The atoms diffusion-induced phase engineering demonstrated in this work builds a bridge between the traditional metallurgy and modern nanotechnologies, which also provides some useful insights in developing noble metals based alloyed nanostructures for the energy and environmental applications. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. A method for increasing the homogeneity of the temperature distribution during magnetic fluid hyperthermia with a Fe-Cr-Nb-B alloy in the presence of blood vessels

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Yundong [College of Physics and Information Engineering, Fuzhou University, Fuzhou 350116 (China); Flesch, Rodolfo C.C. [Departamento de Automação e Sistemas, Universidade Federal de Santa Catarina, 88040-900 Florianópolis, SC (Brazil); Jin, Tao, E-mail: jintly@fzu.edu.cn [College of Electrical Engineering and Automation, Fuzhou University, Fuzhou 350116 (China)

    2017-06-15

    Highlights: • The effects of blood vessels on temperature field distribution are investigated. • The critical thermal energy of hyperthermia is computed by the Finite Element Analysis. • A treatment method is proposed by using the MNPs with low Curie temperature. • The cooling effects due to the blood flow can be controlled. - Abstract: Magnetic hyperthermia ablates tumor cells by absorbing the thermal energy from magnetic nanoparticles (MNPs) under an external alternating magnetic field. The blood vessels (BVs) within tumor region can generally reduce treatment effectiveness due to the cooling effect of blood flow. This paper aims to investigate the cooling effect of BVs on the temperature field of malignant tumor regions using a complex geometric model and numerical simulation. For deriving the model, the Navier-Stokes equation for blood flow is combined with Pennes bio-heat transfer equation for human tissue. The effects on treatment temperature caused by two different BV distributions inside a mammary tumor are analyzed through numerical simulation under different conditions of flow rate considering a Fe-Cr-Nb-B alloy, which has low Curie temperature ranging from 42 °C to 45 °C. Numerical results show that the multi-vessel system has more obvious cooling effects than the single vessel one on the temperature field distribution for hyperthermia. Besides, simulation results show that the temperature field within tumor area can also be influenced by the velocity and diameter of BVs. To minimize the cooling effect, this article proposes a treatment method based on the increase of the thermal energy provided to MNPs associated with the adoption of low Curie temperature particles recently reported in literature. Results demonstrate that this approach noticeably improves the uniformity of the temperature field, and shortens the treatment time in a Fe-Cr-Nb-B system, thus reducing the side effects to the patient.

  9. Effects of irradiation at lower temperature on the microstructure of Cr-Mo-V-alloyed reactor pressure vessel steel

    Energy Technology Data Exchange (ETDEWEB)

    Grosse, M; Boehmert, J; Gilles, R [Hahn-Meitner-Institut Berlin GmbH (Germany)

    1998-10-01

    The microstructural damage process due to neutron irradiation [1] proceeds in two stages: - formation of displacement cascades - evolution of the microstructure by defect reactions. Continuing our systematic investigation about the microstructural changes of Russian reactor pressure vessel steel due to neutron irradiation the microstructure of two laboratory heats of the VVER 440-type reactor pressure vessel steel after irradiation at 60 C was studied by small angle neutron scattering (SANS). 60 C-irradiation differently changes the irradiation-induced microstructure in comparison with irradiation at reactor operation temperature and can, thus, provide new insights into the mechanisms of the irradiation damage. (orig.)

  10. Growing Platinum-Ruthenium-Tin ternary alloy nanoparticles on reduced graphene oxide for strong ligand effect toward enhanced ethanol oxidation reaction.

    Science.gov (United States)

    Xia, Qing Qing; Zhang, Lian Ying; Zhao, Zhi Liang; Li, Chang Ming

    2017-11-15

    Uniform Pt 1 Ru 0.5 Sn 0.5 ternary alloy nanoparticles are in situ deposited on reduced graphene oxide (Pt 1 Ru 0.5 Sn 0.5 -RGO) through its functional groups and defects as nucleation sites to greatly electrocatalyze ethanol oxidation reaction for much higher mass current densities, larger apparent specific current densities and better stability than commercial Pt-C catalyst (Pt-C(commer)). Mechanistic studies indicate that the excellent electrocatalytic activity and anti-poisoning are resulted from a strong ligand effect of the ternary alloy components, in which the charge transfer is boosted while decreasing the density of states close to the Fermi level of Pt to reduce bond energy between Pt and CO-like adsorbates for greatly improved anti-poisoning ability. This work holds a great promise to fabricate a high performance anode catalyst with a low Pt loading for direct ethanol fuel cells. Copyright © 2017. Published by Elsevier Inc.

  11. A method for increasing the homogeneity of the temperature distribution during magnetic fluid hyperthermia with a Fe-Cr-Nb-B alloy in the presence of blood vessels

    Science.gov (United States)

    Tang, Yundong; Flesch, Rodolfo C. C.; Jin, Tao

    2017-06-01

    Magnetic hyperthermia ablates tumor cells by absorbing the thermal energy from magnetic nanoparticles (MNPs) under an external alternating magnetic field. The blood vessels (BVs) within tumor region can generally reduce treatment effectiveness due to the cooling effect of blood flow. This paper aims to investigate the cooling effect of BVs on the temperature field of malignant tumor regions using a complex geometric model and numerical simulation. For deriving the model, the Navier-Stokes equation for blood flow is combined with Pennes bio-heat transfer equation for human tissue. The effects on treatment temperature caused by two different BV distributions inside a mammary tumor are analyzed through numerical simulation under different conditions of flow rate considering a Fe-Cr-Nb-B alloy, which has low Curie temperature ranging from 42 °C to 45 °C. Numerical results show that the multi-vessel system has more obvious cooling effects than the single vessel one on the temperature field distribution for hyperthermia. Besides, simulation results show that the temperature field within tumor area can also be influenced by the velocity and diameter of BVs. To minimize the cooling effect, this article proposes a treatment method based on the increase of the thermal energy provided to MNPs associated with the adoption of low Curie temperature particles recently reported in literature. Results demonstrate that this approach noticeably improves the uniformity of the temperature field, and shortens the treatment time in a Fe-Cr-Nb-B system, thus reducing the side effects to the patient.

  12. Synthesis of platinum nanowheels using a bicellar template.

    Science.gov (United States)

    Song, Yujiang; Dorin, Rachel M; Garcia, Robert M; Jiang, Ying-Bing; Wang, Haorong; Li, Peng; Qiu, Yan; van Swol, Frank; Miller, James E; Shelnutt, John A

    2008-09-24

    Disk-like surfactant bicelles provide a unique meso-structured reaction environment for templating the wet-chemical reduction of platinum(II) salt by ascorbic acid to produce platinum nanowheels. The Pt wheels are 496 +/-55 nm in diameter and possess thickened centers and radial dendritic nanosheets (about 2-nm in thickness) culminating in flared dendritic rims. The structural features of the platinum wheels arise from confined growth of platinum within the bilayer that is also limited at edges of the bicelles. The size of CTAB/FC7 bicelles is observed to evolve with the addition of Pt(II) complex and ascorbic acid. Synthetic control is demonstrated by varying the reaction parameters including metal salt concentration, temperature, and total surfactant concentration. This study opens up opportunities for the use of other inhomogeneous soft templates for synthesizing metals, metal alloys, and possibly semiconductors with complex nanostructures.

  13. Development of Preemptive Repair Technology for Alloy 600 J-Groove Welds of Reactor Vessel Upper Head CEDM Nozzles

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Kwang Woon; Lee, Jang Wook; Cho, Ki Hyun; Choi, Kwang Min; Choi, Dong Chul; Cho, Sang Beum; Cho, Hong Seok [KEPCO, Daejeon (Korea, Republic of)

    2016-05-15

    After 2000, PWSCC in numerous NPPs around the world has been generated, and recently, PWSCC in several CEDM nozzles of domestic NPP Hanbit Unit 3 and 4 was founded and repaired with embedded flaw repair(EFR) welding method by Westinghouse. In this study, development status of EFR equipment and basic experimental results for preventive PWSCC of RVUH CEDM nozzles will be introduced. The development of EFR seal welding equipment and welding process for the preemptive repair with original Alloy 600 J-Groove welds of RVUHP was conducted. The EFR welding equipment was tested to be possible seal welding to track J-Groove welds with three dimensional curved surfaces and OD penetration with vertical welding position. Through several BOP and overlay welding experiments, it was verified that good weld beads with no defects, such as cracks, spatter, undercut at the stable welding conditions with heat input of 27.4-32.5 KJ/in were well produced. Consequently, it is expected that the EFR seal welding technique will be applicable on the site.

  14. Radiation annealing mechanisms of low-alloy reactor pressure vessel steels dependent on irradiation temperature and neutron fluence

    International Nuclear Information System (INIS)

    Pachur, D.

    1982-01-01

    Heat treatment after irradiation of reactor pressure vessel steels showed annealing of irradiation embrittlement. Depending on the irradiation temperature, the embrittlement started to anneal at about 220 0 C and was completely annealed at 500 0 C with 4 h of annealing time. The annealing behavior was normally measured in terms of the Vickers hardness increase produced by irradiation relative to the initial hardness as a function of the annealing temperature. Annealing results of other mechanical properties correspond to hardness results. During annealing, various recovery mechanisms occur in different temperature ranges. These are characterized by activation energies from 1.5 to 2.1 eV. The individual mechanisms were determined by the different time dependencies at various temperatures. The relative contributions of the mechanisms showed a neutron fluence dependence, with the lower activation energy mechanisms being predominant at low fluence and vice versa. In the temperature range where partial annealing of a mechanism took place during irradiation, an increase in activation energy was observed. Trend curves for the increase in transition temperature with irradiation, for the relative increase of Vickers hardness and yield strength, and for the relative decrease of Charpy-V upper shelf energy are interpreted by the behavior of different mechanisms

  15. Platinum metals in the environment

    Energy Technology Data Exchange (ETDEWEB)

    Zereini, Fathi [Frankfurt Univ. (Germany). Dept. of Environmental Analytical Chemistry; Wiseman, Clare L.S. (ed.) [Toronto Univ. (Canada). School of the Environment

    2015-03-01

    This book contains the five chapters with the following topics: 1. SOURCES OF PGE EMISSIONS ELEMENTS: Sources of Platinum Group Elements (PGE) in the Environment; Impact of Platinum Group Element Emissions from Mining and Production Activities. 2. ANALYTICAL METHODS FOR THE DETERMINATION OF PGE IN BIOLOGICAL AND ENVIRONMENTAL MATRICES: Appraisal of Biosorption for Recovery, Separation and Determination of Platinum, Palladium and Rhodium in Environmental Samples; On the Underestimated Factors Influencing the Accuracy of Determination of Pt and Pd by Electrothermal Atomic Absorption Spectrometry in Road Dust Samples; Application of Solid Sorbents for Enrichment and Separation of Platinum Metal Ions; Voltammetric Analysis of Platinum in Environmental Matrices; Speciation Analysis of Chloroplatinates; Analysis of Platinum Group Elements in Environmental Samples: A Review. 3. OCCURRENCE, CHEMICAL BEHAVIOR AND FATE OF PGE IN THE ENVIRONMENT: Brazilian PGE Research Data Survey on Urban and Roadside Soils; Platinum, Palladium and Rhodium in a Bavarian Roadside Soil; Increase of Platinum Group Element Concentrations in Soils and Airborne Dust During the Period of Vehicular Exhaust Catalysts Introduction; Platinum-Group Elements in Urban Fluvial Bed Sediments-Hawaii; Long-Term Monitoring of Palladium and Platinum Contents in Road Dust of the City of Munich, Germany; Characterization of PGEs and Other Elements in Road Dusts and Airborne Particles in Houston, Texas; Accumulation and Distribution of Pt and Pd in Roadside Dust, Soil and Vegetation in Bulgaria; Increase of the Environmental Pt Concentration in the Metropolitan Area of Mexico City Associated to the Use of Automobile Catalytic Converters; Solubility of Emitted Platinum Group Elements (Pt, Pd and Rh) in Airborne Particulate Matter (PM10) in the Presence of Organic Complexing Agents; The Influence of Anionic Species (Cl{sup -}, NO{sub 3}{sup -}, SO{sub 4}{sup 2-}) on the Transformation and Solubility of Platinum in

  16. Vessel Operating Units (Vessels)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains data for vessels that are greater than five net tons and have a current US Coast Guard documentation number. Beginning in1979, the NMFS...

  17. Effect of high-temperature water and hydrogen on the fracture behavior of a low-alloy reactor pressure vessel steel

    International Nuclear Information System (INIS)

    Roychowdhury, S.; Seifert, H.-P.; Spätig, P.; Que, Z.

    2016-01-01

    Structural integrity of reactor pressure vessels (RPV) is critical for safety and lifetime. Possible degradation of fracture resistance of RPV steel due to exposure to coolant and hydrogen is a concern. In this study tensile and elastic-plastic fracture mechanics (EPFM) tests in air (hydrogen pre-charged) and EFPM tests in hydrogenated/oxygenated high-temperature water (HTW) was done, using a low-alloy RPV steel. 2–5 wppm hydrogen caused embrittlement in air tensile tests at room temperature (25 °C) and at 288 °C, effects being more significant at 25 °C and in simulated weld coarse grain heat affected zone material. Embrittlement at 288 °C is strain rate dependent and is due to localized plastic deformation. Hydrogen pre-charging/HTW exposure did not deteriorate the fracture resistance at 288 °C in base metal, for investigated loading rate range. Clear change in fracture morphology and deformation structures was observed, similar to that after air tests with hydrogen. - Highlights: • Hydrogen content, microstructure of LAS, and strain rate affects tensile properties at 288 °C. • Strength affects hydrogen embrittlement susceptibility to a greater extent than grain size. • Hydrogen in LAS leads to strain localization and restricts cross-slip at 288 °C. • Possible hydrogen pickup due to exposure to 288 °C water alters fracture surface appearance without affecting fracture toughness in bainitic base material. • Simulated weld heat affected zone microstructure shows unstable crack propagation in 288 °C water.

  18. Effect of high-temperature water and hydrogen on the fracture behavior of a low-alloy reactor pressure vessel steel

    Energy Technology Data Exchange (ETDEWEB)

    Roychowdhury, S., E-mail: sroy27@gmail.com [Paul Scherrer Institut, Nuclear Energy and Safety Research Department, Laboratory for Nuclear Materials, 5232 Villigen, PSI (Switzerland); Materials Processing & Corrosion Engineering Division, Mod-Lab, D-Block, Bhabha Atomic Research Centre, Mumbai 400085 (India); Seifert, H.-P.; Spätig, P.; Que, Z. [Paul Scherrer Institut, Nuclear Energy and Safety Research Department, Laboratory for Nuclear Materials, 5232 Villigen, PSI (Switzerland)

    2016-09-15

    Structural integrity of reactor pressure vessels (RPV) is critical for safety and lifetime. Possible degradation of fracture resistance of RPV steel due to exposure to coolant and hydrogen is a concern. In this study tensile and elastic-plastic fracture mechanics (EPFM) tests in air (hydrogen pre-charged) and EFPM tests in hydrogenated/oxygenated high-temperature water (HTW) was done, using a low-alloy RPV steel. 2–5 wppm hydrogen caused embrittlement in air tensile tests at room temperature (25 °C) and at 288 °C, effects being more significant at 25 °C and in simulated weld coarse grain heat affected zone material. Embrittlement at 288 °C is strain rate dependent and is due to localized plastic deformation. Hydrogen pre-charging/HTW exposure did not deteriorate the fracture resistance at 288 °C in base metal, for investigated loading rate range. Clear change in fracture morphology and deformation structures was observed, similar to that after air tests with hydrogen. - Highlights: • Hydrogen content, microstructure of LAS, and strain rate affects tensile properties at 288 °C. • Strength affects hydrogen embrittlement susceptibility to a greater extent than grain size. • Hydrogen in LAS leads to strain localization and restricts cross-slip at 288 °C. • Possible hydrogen pickup due to exposure to 288 °C water alters fracture surface appearance without affecting fracture toughness in bainitic base material. • Simulated weld heat affected zone microstructure shows unstable crack propagation in 288 °C water.

  19. Electrochemical behavior of titanium implanted with platinum

    International Nuclear Information System (INIS)

    Thompson, N.G.; Lichter, B.D.; Appleton, B.R.; Kelly, E.J.; White, C.W.

    1979-01-01

    The following conclusions apply to Ti(Pt) near-surface alloys studied. (1) Open-circuit corrosion measurements show that accumulation of platinum may occur at a surface concentration of 0.32 atomic percent Pt while no accumulation occurs at 0.16 atomic percent Pt. However, these results do not allow a distinction as to cause of accumulation to be made between concentration effects and effects due to the presence of an oxide film. (2) Potentiostatic corrosion at -0.450 V (active corrosion) establish that little or no accumulation of platinum occurs at an oxide-free surface for concentrations less than 0.086 atomic percent Pt; whereas, a large amount of accumulation occurs for a distribution with a peak concentration of 0.83 atomic percent Pt. (3) An initial distribution having a peak concentration of 0.32 atomic percent platinum is sufficient to induce natural passivity in titanium and bring a freely corroding sample to a potential of 0.269 V. This is nearly the applicable reversible potential (-0.260 V) for the hydrogen reaction in 1N H 2 SO 4 . (4) Of three samples which showed accumulation, platinum was eventually lost for two of these samples (0.32 atomic percent, open-circuit corrosion; 0.83 atomic percent, potentiostatic corrosion). The remaining sample (9.1 atomic percent, open-circuit corrosion) maintained the maximum possible potential of -0.260 V for the length of the experiment (approx. 30 days). (5) For samples which had been polarized at -0.300 to -0.340 V and which had eventually reverted to the behavior of pure Ti, post corrosion RBS measurements reveal that a substantial fraction of the Pt fluence is retained on the surface in an electrochemically inactive state

  20. Point defects in platinum

    International Nuclear Information System (INIS)

    Piercy, G.R.

    1960-01-01

    An investigation was made of the mobility and types of point defect introduced in platinum by deformation in liquid nitrogen, quenching into water from 1600 o C, or reactor irradiation at 50 o C. In all cases the activation energy for motion of the defect was determined from measurements of electrical resistivity. Measurements of density, hardness, and x-ray line broadening were also made there applicable. These experiments indicated that the principal defects remaining in platinum after irradiation were single vacant lattice sites and after quenching were pairs of vacant lattice sites. Those present after deformation In liquid nitrogen were single vacant lattice sites and another type of defect, perhaps interstitial atoms. (author)

  1. Biocompatibility of dental alloys

    Energy Technology Data Exchange (ETDEWEB)

    Braemer, W. [Heraeus Kulzer GmbH and Co. KG, Hanau (Germany)

    2001-10-01

    Modern dental alloys have been used for 50 years to produce prosthetic dental restorations. Generally, the crowns and frames of a prosthesis are prepared in dental alloys, and then veneered by feldspar ceramics or composites. In use, the alloys are exposed to the corrosive influence of saliva and bacteria. Metallic dental materials can be classified as precious and non-precious alloys. Precious alloys consist of gold, platinum, and small amounts of non-precious components such as copper, tin, or zinc. The non-precious alloys are based on either nickel or cobalt, alloyed with chrome, molybdenum, manganese, etc. Titanium is used as Grade 2 quality for dental purposes. As well as the dental casting alloys, high purity electroplated gold (99.8 wt.-%) is used in dental technology. This review discusses the corrosion behavior of metallic dental materials with saliva in ''in vitro'' tests and the influence of alloy components on bacteria (Lactobacillus casei and Streptococcus mutans). The test results show that alloys with high gold content, cobalt-based alloys, titanium, and electroplated gold are suitable for use as dental materials. (orig.)

  2. Developments in platinum anticancer drugs

    Science.gov (United States)

    Tylkowski, Bartosz; Jastrząb, Renata; Odani, Akira

    2018-01-01

    Platinum compounds represent one of the great success stories of metals in medicine. Following the unexpected discovery of the anticancer activity of cisplatin (Fig. 1) in 1965 by Prof. Rosenberg [1], a large number of its variants have been prepared and tested for their ability to kill cancer cells and inhibit tumor growth. Although cisplatin has been in use for over four decades, new and more effective platinum-based therapeutics are finally on the horizon. A wide introduction to anticancer studies is given by the authors of the previous chapter. This chapter aims at providing the readers with a comprehensive and in-depth understanding of recent developments of platinum anticancer drugs and to review the state of the art. The chapter is divided into two parts. In the first part we present a historical aspect of platinum and its complexes, while in the second part we give an overview of developments in the field of platinum anticancer agents.

  3. Development of PWR pressure vessel steels

    International Nuclear Information System (INIS)

    Druce, S.; Edwards, B.

    1982-01-01

    Requirements to be met by vessel steels for pressurized water reactors are analyzed. Chemicat composition of low-alloyed steels, mechanical properties of sheets and forgings made of these steels and changes in the composition and properties over the wall thickness of the reactor vessel are presented. Problems of the vessel manufacturing including welding and heat treatment processes of sheets and forgings are considered. Special attention is paid to steel embrittlement during vessel fabrication and operation (radiation embrittlement, thermal embrittlement). The role of non-metal inclusions and their effect on anisotropy of fracture toughness is discussed. Possible developments of vessel steels and procedures for producing reactor vessels are reviewed

  4. Development of PWR pressure vessel steels

    Energy Technology Data Exchange (ETDEWEB)

    Druce, S.; Edwards, B.

    1982-01-01

    Requirements to be met by vessel steels for pressurized water reactors are analyzed. Chemicat composition of low-alloyed steels, mechanical properties of sheets and forgings made of these steels and changes in the composition and properties over the wall thickness of the reactor vessel are presented. Problems of the vessel manufacturing including welding and heat treatment processes of sheets and forgings are considered. Special attention is paid to steel embrittlement during vessel fabrication and operation (radiation embrittlement, thermal embrittlement). The role of non-metal inclusions and their effect on anisotropy of fracture toughness is discussed. Possible developments of vessel steels and procedures for producing reactor vessels are reviewed.

  5. Research vessels

    Digital Repository Service at National Institute of Oceanography (India)

    Rao, P.S.

    The role of the research vessels as a tool for marine research and exploration is very important. Technical requirements of a suitable vessel and the laboratories needed on board are discussed. The history and the research work carried out...

  6. Comparison on Mechanical Properties of SA508 Gr.3 Cl.1, Cl.2, and Gr.4N Low Alloy Steels for Pressure Vessels

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Min-Chul; Park, Sang-Gyu; Lee, Bong-Sang [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Lee, Ki-Hyoung [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of)

    2014-10-15

    In this study, microstructure and mechanical properties of SA508 Gr.3 Cl. 1, Cl.2, and Gr.4N low alloy steels are characterized to compare their properties. To evaluate the fracture toughness in the transition region, the master curve method according to ASTM E1921 was adopted in the cleavage transition region. Tensile tests and Charpy impact tests were also performed to evaluate the mechanical properties, and a microstructural investigation was carried out. The microstructure and mechanical properties of SA508 Gr.3 Cl.1, Cl2 and Gr.4N low alloy steels were characterized.. The predominant microstructure of SA508 Gr.4N model alloy is tempered martensite, while SA508 Gr.3 Cl.1 and Cl.2 steels show a typical tempered upper bainitic structure. SA508 Gr. 4N model alloy shows the best strength and transition behavior among the three SA508 steels. SA508 Gr.3 Cl.2 steel also has quite good strength, but there is a loss of toughness.

  7. Redeposition of electrochemically dissolved platinum as nanoparticles on carbon

    DEFF Research Database (Denmark)

    Norgaard, C. F.; Stamatin, S. N.; Skou, E. M.

    2014-01-01

    communication reports a simple chemical method for reprecipitating platinum as nanoparticles of reasonable particle size on a carbon substrate without intermediary separation and handling of solid platinum salt. After electrochemical dissolution, platinum was reprecipitated using a polyol based method. Platinum...

  8. Novel non-platinum metal catalyst material

    DEFF Research Database (Denmark)

    2014-01-01

    The present invention relates to a novel non-platinum metal catalyst material for use in low temperature fuel cells and electrolysers and to fuel cells and electrolysers comprising the novel non-platinum metal catalyst material. The present invention also relates to a novel method for synthesizing...... the novel non-platinum metal catalyst material....

  9. Atom probe study of the microstructural evolution induced by irradiation in Fe-Cu ferritic alloys and pressure vessel steels; Etude a la sonde atomique de l`evolution microstructurale sous irradiation d`alliages ferritiques Fe-Cu et d`aciers de cuve REP

    Energy Technology Data Exchange (ETDEWEB)

    Pareige, P

    1996-04-01

    Pressure vessel steels used in pressurized water reactors are low alloyed ferritic steels. They may be prone to hardening and embrittlement under neutron irradiation. The changes in mechanical properties are generally supposed to result from the formation of point defects, dislocation loops, voids and/or copper rich clusters. However, the real nature of the irradiation induced-damage in these steels has not been clearly identified yet. In order to improve our vision of this damage, we have characterized the microstructure of several steels and model alloys irradiated with electrons and neutrons. The study was performed with conventional and tomographic atom probes. The well known importance of the effects of copper upon pressure vessel steel embrittlement has led us to study Fe-Cu binary alloys. We have considered chemical aging as well as aging under electron and neutron irradiations. The resulting effects depend on whether electron or neutron irradiations ar used for thus. We carried out both kinds of irradiation concurrently so as to compare their effects. We have more particularly considered alloys with a low copper supersaturation representative of that met with the French vessel alloys (0.1% Cu). Then, we have examined steels used on French nuclear reactor pressure vessels. To characterize the microstructure of CHOOZ A steel and its evolution when exposed to neutrons, we have studied samples from the reactor surveillance program. The results achieved, especially the characterization of neutron-induced defects have been compared with those for another steel from the surveillance program of Dampierre 2. All the experiment results obtained on model and industrial steels have allowed us to consider an explanation of the way how the defects appear and grow, and to propose reasons for their influence upon steel embrittlement. (author). 3 appends.

  10. Electrocatalysts with platinum, cobalt and nickel preparations by mechanical alloyed and CVD for the reaction of oxygen reduction; Electrocatalizadores a base de platino, cobalto y niquel preparados por aleado mecanico y CVD para la reaccion de reduccion de oxigeno

    Energy Technology Data Exchange (ETDEWEB)

    Garcia C, M A [ININ, 52750 La Marquesa, Estado de Mexico (Mexico)

    2008-07-01

    In this research, the molecular oxygen reduction reaction (ORR) was investigated on electrocatalysts of Co, Ni, Pt and their alloys CoNi, PtCo, PtNi and PtCoNi by using H{sub 2}SO{sub 4} 0.5 and KOH 0.5 M solutions as electrolytes. The electrocatalysts were synthesized by Mechanical Alloying (MA) and Chemical Vapor Deposition (CVD) processes. For MA, metallic powders were processed during 20 h of milling in a high energy SPEX 8000 mill. For CVD, a hot-wall reactor was utilized and Co, Ni and Pt acetilactetonates were used as precursors. Films were deposited at a total pressure of 1 torr and temperatures of 400-450 C. Electrocatalysts were characterized by X-Ray Diffraction (XRD). Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM) and Energy Dispersive X-Ray Spectroscopy (EDS). Electrocatalysts prepared by mechanical alloying showed a homogeneously dispersed agglomeration of particles with nano metric size. Electrocatalysts obtained by CVD showed, in some cases, non uniform films, with particles of nano metric size, as well. The electrocatalytic performance was evaluated by using the Rotating Disk Electrode technique (RDE). Electrocatalysts prepared by MA showed higher activity than those obtained by CVD. All electrocatalysts were evaluated in alkaline media. Only electrocatalysts containing Pt were evaluated in acid media, because those materials with Co, Ni and their alloys showed instability in acidic media. Most electrocatalysts followed a mechanism for the ORR producing a certain proportion of H{sub 2}O{sub 2}. All electrocatalysts, exhibited a fair or good electrocatalytic activity in comparison with other similar reported materials. It was found that MA and CVD are appropriate processes to prepare electrocatalysts for the ORR with particles of nano metric size and performing with an acceptable catalytic activity. PtCoNi 70-23-7% by MA and PtCoNi-CVD electrocatalysts showed the highest activity in alkaline media, while in acidic

  11. Reducing Stress-Corrosion Cracking in Bearing Alloys

    Science.gov (United States)

    Paton, N. E.; Dennies, D. P.; Lumsden, I., J.b.

    1986-01-01

    Resistance to stress-corrosion cracking in some stainless-steel alloys increased by addition of small amounts of noble metals. 0.75 to 1.00 percent by weight of palladium or platinum added to alloy melt sufficient to improve properties of certain stainless steels so they could be used in manufacture of high-speed bearings.

  12. Draft ASME Boiler and Pressure Vessel Code Section III, Division 5, Section HB, Subsection B, Code Case for Alloy 617 and Background Documentation

    Energy Technology Data Exchange (ETDEWEB)

    Wright, Julie Knibloe [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-08-01

    Alloy 617 is the leading candidate material for an intermediate heat exchanger for the very high temperature reactor. To evaluate the behavior of this material in the expected service conditions, strain controlled cyclic tests that include long hold times up to 240 minutes at maximum tensile strain were conducted at 850°C. In terms of the total number of cycles to failure, the fatigue resistance decreased when a hold time was added at peak tensile strain. Increases in the tensile hold duration degraded the creep fatigue resistance, at least to the investigated strain controlled hold time of up to 60 minutes at the 0.3% strain range and 240 minutes at the 1.0% strain range. The creep fatigue deformation mode is considered relative to the lack of saturation, or continually decreasing number of cycles to failure with increasing hold times. Additionally, preliminary values from the 850°C creep fatigue data are calculated for the creep fatigue damage diagram and have higher values of creep damage than those from tests at 950°C.

  13. Ruthenium–Platinum Catalysts and Direct Methanol Fuel Cells (DMFC: A Review of Theoretical and Experimental Breakthroughs

    Directory of Open Access Journals (Sweden)

    Ana S. Moura

    2017-02-01

    Full Text Available The increasing miniaturization of devices creates the need for adequate power sources and direct methanol fuel cells (DMFC are a strong option in the various possibilities under current development. DMFC catalysts are mostly based on platinum, for its outperformance in three key areas (activity, selectivity and stability within methanol oxidation framework. However, platinum poisoning with products of methanol oxidation led to the use of alloys. Ruthenium–platinum alloys are preferred catalysts active phases for methanol oxidation from an industrial point of view and, indeed, ruthenium itself is a viable catalyst for this reaction. In addition, the route of methanol decomposition is crucial in the goal of producing H2 from water reaction with methanol. However, the reaction pathway remains elusive and new approaches, namely in computational methods, have been ensued to determine it. This article reviews the various recent theoretical approaches for determining the pathway of methanol decomposition, and systematizes their validation with experimental data, within methodological context.

  14. Phenomenological vessel burst investigations

    International Nuclear Information System (INIS)

    Hippelein, K.W.; Julisch, P.; Muz, J.; Schiedermaier, J.

    1985-07-01

    Fourteen burst experiments have been carried out using vessels with circumferential and longitudinal flaws, for investigation of the fracture behaviour, i.e. the time-related fracture opening. The vessels had dimensions (outer diameter x wall thickness = 800 x 47 mm) which correspond to the dimensions of the main coolant piping of a 1300 MW e PWR. The test specimens had been made of the base-safe material 20 MnMoNi 55 and of a special, 22 NiMoCr 37 base alloy. The experimental conditions with regard to pressure and temperature have been chosen so as to correspond to normal operating conditions of a PWR (p∝17.5 MPa, T∝300 0 C), i.e. the flaws have been so dimensioned that failure was to be expected at a pressure of p∝17.5 MPa. As a rule, water has been used as the pressure medium, or in some cases air, in order to influence the time-dependent pressure decrease. Fluid and structural dynamics calculations have also been made. In order to determine the impact of a fast propagating crack on the leak-to-fracture curve, which normally is defined by quasistationary experiments, suitable tests have been made with large-volume, cylindrical vessels (outer diameter x wall thickness x length = 3000 x 21 x 14000 mm) made of the material WSt E 43. The leak-before-fracture criterion has been confirmed. (orig./HP) [de

  15. Structural property of platinum mononitride

    International Nuclear Information System (INIS)

    Yu, L.H.; Yao, K.L.; Liu, Z.L.; Zhang, Y.S.

    2007-01-01

    The structural stability and pressure-induced structural phase transition of platinum mononitride (PtN), as well as its electronic structure, were studied using the full potential augmented plane wave plus local orbitals method with the generalized gradient approximation (GGA) exchange-correlation functional. The total energy calculations show that the optimized wurtzite structure is most stable energetically among four structures: zinc blende, rocksalt, CsCl and wurtzite, which reveals the platinum mononitride PtN perhaps crystallizes in the wurtzite structure; the pressure of phase transition from wurtzite to rocksalt is predicted to be 41.4 GPa.The calculated bulk modulus of the wurtzite structure is 99.41 GPa, which is smaller than that of the other three structures and face-centered cubic Pt. The band structure calculations show wurtzite PtN is metallic

  16. Rhenium–platinum antitumor systems

    Directory of Open Access Journals (Sweden)

    A. V. Shtemenko

    2017-04-01

    Full Text Available This review provides an overlook of design (in short, antitumor and other biological activity of quadruple-bonded cluster dirhenium(III compounds and their synergism with cisplatin. In particular, we describe the work of the rhenium-platinum antitumor system (introduction of rhenium and platinum compounds. Among known metal-based anticancer drugs and drug candidates dirhenium(III compounds differ profoundly due to their strong antiradical and antioxidant properties determined by quadruple bond unsaturation. Such advantages of metal complexes as more expressed redox chemical propertie should be exploited for creating more efficient anticancer drugs. Combination of drugs leads to synergistic effects and/or to lowe­ring toxicity of platinides and is very promising in cancer chemotherapy. The review covers the follo­wing items: design of quadruple bonded dirhenium(III clusters, their spectral and antiradical properties (in short; interaction of the dirhenium(III compounds with lipids and formation of liposomes; interaction of the dirhenium(III compounds with erythrocytes and their antihemolytic activity in the models of hemolytic anemia; anticancer activity of dirhenium clusters and work of the rhenium-platinum antitumor system; antianemic and antioxidant properties of the dirhenium(III compounds in the model of tumor growth; interaction of the dirhenium(III compounds with nucleobases and DNA. Some modern trends in the field of bioinorganic and medicinal chemi­stry are also considered regarding their connection to the rhenium-platinum system efficiency: use of combinational therapy and nanomaterials; involvement of some biologically active ligands and redox-activation strategy, etc.

  17. Radiation and platinum drug interaction

    International Nuclear Information System (INIS)

    Nias, A.H.W.

    1985-01-01

    The ideal platinum drug-radiation interaction would achieve radiosensitization of hypoxic tumour cells with the use of a dose of drug which is completely non-toxic to normal tissues. Electron-affinic agents are employed with this aim, but the commoner platinum drugs are only weakly electron-affinic. They do have a quasi-alkylating action however, and this DNA targeting may account for the radiosensitizing effect which occurs with both pre- and post-radiation treatments. Because toxic drug dosage is usually required for this, the evidence of the biological responses to the drug and to the radiation, as well as to the combination, requires critical analysis before any claim of true enhancement, rather than simple additivity, can be accepted. The amount of enhancement will vary with both the platinum drug dose and the time interval between drug administration and radiation. Clinical schedules may produce an increase in tumour response and/or morbidity, depending upon such dose and time relationships. (author)

  18. The TPX vacuum vessel and in-vessel components

    International Nuclear Information System (INIS)

    Heitzenroeder, P.; Bialek, J.; Ellis, R.; Kessel, C.; Liew, S.

    1994-01-01

    The Tokamak Physics Experiment (TPX) is a superconducting tokamak with double-null diverters. TPX is designed for 1,000-second discharges with the capability of being upgraded to steady state operation. High neutron yields resulting from the long duration discharges require that special consideration be given to materials and maintainability. A unique feature of the TPX is the use of a low activation, titanium alloy vacuum vessel. Double-wall vessel construction is used since it offers an efficient solution for shielding, bakeout and cooling. Contained within the vacuum vessel are the passive coil system, Plasma Facing Components (PFCs), magnetic diagnostics, and the internal control coils. All PFCs utilize carbon-carbon composites for exposed surfaces

  19. Phosphoric acid fuel cell platinum use study

    Science.gov (United States)

    Lundblad, H. L.

    1983-05-01

    The U.S. Department of Energy is promoting the private development of phosphoric acid fuel cell (PAFC) power plants for terrestrial applications. Current PAFC technology utilizes platinum as catalysts in the power electrodes. The possible repercussions that the platinum demand of PAFC power plant commercialization will have on the worldwide supply and price of platinum from the outset of commercialization to the year 2000 are investigated. The platinum demand of PAFC commercialization is estimated by developing forecasts of platinum use per unit of generating capacity and penetration of PAFC power plants into the electric generation market. The ability of the platinum supply market to meet future demands is gauged by assessing the size of platinum reserves and the capability of platinum producers to extract, refine and market sufficient quantities of these reserves. The size and timing of platinum price shifts induced by the added demand of PAFC commercialization are investigated by several analytical methods. Estimates of these price shifts are then used to calculate the subsequent effects on PAFC power plant capital costs.

  20. Formation, Characteristics and Electrocatalytic Properties of Nanoporous Metals Formed by Dealloying of Ternary-Noble Alloys

    Science.gov (United States)

    Vega Zuniga, Adrian A.

    Nanoporous metals formed by electrochemical dealloying of silver from Ag-Au-Pt alloys, with 77 at.% silver and platinum contents of 1, 2 and 3 at.%, have been studied. The presence of platinum, which is immobile relative to gold, refine the ligament size and stabilized the nanostructure against coarsening, even under experimental conditions that would be expected to promote coarsening (e.g., exposure to high temperature, longer dealloying times). By adding only 1 at.% Pt to the alloy precursor, the ligament/pore size was reduced by 50% with respect to that in nanoporous gold (NPG), which was formed on a Ag-Au alloy with the same silver content as ternary alloys. A further decrease in the ligament size was observed by increasing the platinum content of the precursor; however, most of the improvement occurred with 1 at.% Pt. The adsorbate-induced surface segregation of platinum was also investigated for these nanoporous metals. By exposing freshly-dealloyed nanostructures to moderate temperatures in the presence of air, platinum segregated to the ligament surface; in contrast, in an inert atmosphere (Ar-H 2), platinum mostly reverted to the bulk of the ligaments. This thermally activated process was thermodynamically driven by the interaction between platinum and oxygen; however, at the desorption temperature of oxygen, platinum de-segregated from the surface. Moreover, the co-segregation of platinum and oxygen hindered the thermal coarsening of the ligaments. Finally, the electrocatalytic abilities of these nanostructures were studied towards methanol and ethanol electro-oxidation, in alkaline and acidic media, showing significantly improved response in comparison to that observed in NPG. The synergistic effect between gold and platinum atoms and the smaller feature size of the nanostructures were directly associated with this behaviour. In alkaline electrolyte, the nanostructure formed on the alloy with 1 at.% Pt showed higher catalytic response than the other two

  1. Vacuum vessel of thermonuclear device and manufacturing method thereof

    International Nuclear Information System (INIS)

    Kurita, Genichi; Nagashima, Keisuke; Uchida, Takaho; Shibui, Masanao; Ebisawa, Katsuyuki; Nakagawa, Satoshi.

    1997-01-01

    The present invention provides a vacuum vessel of a thermonuclear device using, as a material of a plasma vacuum vessel, a material to be less activated and having excellent strength as well as a manufacturing method thereof. Namely, the vacuum vessel is made of titanium or a titanium alloy. In addition, a liner layer comprising a manganese alloy, nickel alloy, nickel-chromium alloy or aluminum or aluminum alloy is formed. With such a constitution, the wall substrate made of titanium or a titanium alloy can be isolated by the liner from hydrogen or plasmas. As a result, occlusion of hydrogen to titanium or the titanium alloy can be prevented thereby enabling to prevent degradation of the material of the wall substrate of the vacuum vessel. In addition, since the liner layer has relatively high electric resistance, a torus circumferential resistance value required for plasma ignition can be ensured by using it together with the vessel wall made of titanium alloy. (I.S.)

  2. Containment vessel

    International Nuclear Information System (INIS)

    Zbirohowski-Koscia, K.F.; Roberts, A.C.

    1980-01-01

    A concrete containment vessel for nuclear reactors is disclosed that is spherical and that has prestressing tendons disposed in first, second and third sets, the tendons of each set being all substantially concentric and centred around a respective one of the three orthogonal axes of the sphere; the tendons of the first set being anchored at each end at a first anchor rib running around a circumference of the vessel, the tendons of the second set being anchored at each end at a second anchor rib running around a circumference of the sphere and disposed at 90 0 to the first rib, and the tendons of the third set being anchored some to the first rib and the remainder to the second rib. (author)

  3. Room temperature synthesis of colloidal platinum nanoparticles

    Indian Academy of Sciences (India)

    Unknown

    platinum cation used. ... Particle size increased with low reagent concentration. ... 2,100) was added separately to the starting solution. Argon gas was bubbled in the solution for 20 min. Later, reduction of platinum ions was carried out by bubbling hydrogen gas ... plex to aquate (Cl– → H2O ligand exchange). ... copper grid.

  4. A Change to the Platinum Publications | Poster

    Science.gov (United States)

    Please be advised that the Poster will no longer publish the “Platinum Publications” series listing recent NCI at Frederick publications. All published research represents a valuable addition to the fight against cancer, AIDS, and infectious diseases—thus, the “Platinum Publications” did not adequately commend all of the important work done by NCI at Frederick researchers.

  5. Collective Behavior of Water on Platinum

    Science.gov (United States)

    Limmer, David; Willard, Adam; Chandler, David

    2012-02-01

    We present the results of molecular dynamics simulations of a interface between water and a platinum electrode. Using importance sampling techniques we probe a variety of collective phenomenon that emerge at the interface. We consider platinum electrodes with two different geometries and discuss how different behaviors result from a competition between geometrical frustration and favorable local interactions.

  6. Platinum-group element mineralization

    International Nuclear Information System (INIS)

    Gruenewaldt, G.

    1985-01-01

    The purpose of this investigation is to determine the geological processes responsible for the abnormal enrichment of the platinum-group elements (PGE) in the mineralized layers of the Bushveld Complex. Questions asked are: what processes caused enrichment of the Bushveld magma in the PGE ; by what processes were these PGE concentrated in the mineralized layers ; was contamination of the Bushveld magma from external sources important in the formation of the PGE enriched layers ; what are the effects of fractional crystallization on the PGE ratios

  7. A novel reusable platinum nanocatalyst

    International Nuclear Information System (INIS)

    Zhou Weiqiang; Wang Jing; Wang Chuanyi; Du Yukou; Xu Jingkun; Yang Ping

    2010-01-01

    Recyclability of noble metal catalysts is a challenging issue when dealing with their industrial applications. Smart pH-sensitive Pt nanoparticles were successfully prepared for the first time by using octa(N,N-diacetic acid phenylamine)silsesquioxane (OAPAS) as a macromolecular protective agent. As-prepared Pt nanoparticles can self-aggregate or redisperse by only changing the pH of the system solution. In the weak acidic or alkaline solution (pH > 4.0), the Pt nanoparticles dispersed homogenously; while in the acidic solution (pH = 2.5), they self-aggregated. The dynamic self-aggregation and redispersion processes of the Pt nanoparticles driven by pH changes were revealed by transmission electron microscopy measurements. Electrocatalytic experiments proved that the platinum nanoparticles as a recyclable catalyst showed excellent activity for the hydrogenation of aldehyde after runs of five times. Such platinum nanoparticles are thereby anticipated to have great potential functioning as 'smart' catalysts for industrial applications.

  8. Vacuum vessel for thermonuclear device

    International Nuclear Information System (INIS)

    Kikuchi, Mitsuru; Nagashima, Keisuke; Suzuki, Masaru; Onozuka, Masaki.

    1997-01-01

    A vacuum vessel main body and structural members at the inside and the outside of the vacuum vessel main body are constituted by structural materials activated by irradiation of neutrons from plasmas such as stainless steels. Shielding members comprising tungsten or molybdenum are disposed on the surface of the vacuum vessel main body and the structural members of the inside and the outside of the main body. The shielding members have a function also as first walls or a seat member for the first walls. Armor tiles may be disposed to the shielding members. The shielding members and the armor tiles are secured to a securing seat member disposed, for example, to an inner plate of the vacuum vessel main body by bolts. Since the shielding members are disposed, it is not necessary to constitute the vacuum vessel main body and the structural members at the inside and the outside thereof by using a low activation material which is less activated, such as a titanium alloy. (I.N.)

  9. Vacuum vessel for thermonuclear device

    Energy Technology Data Exchange (ETDEWEB)

    Kikuchi, Mitsuru; Nagashima, Keisuke [Japan Atomic Energy Research Inst., Tokyo (Japan); Suzuki, Masaru; Onozuka, Masaki

    1997-07-11

    A vacuum vessel main body and structural members at the inside and the outside of the vacuum vessel main body are constituted by structural materials activated by irradiation of neutrons from plasmas such as stainless steels. Shielding members comprising tungsten or molybdenum are disposed on the surface of the vacuum vessel main body and the structural members of the inside and the outside of the main body. The shielding members have a function also as first walls or a seat member for the first walls. Armor tiles may be disposed to the shielding members. The shielding members and the armor tiles are secured to a securing seat member disposed, for example, to an inner plate of the vacuum vessel main body by bolts. Since the shielding members are disposed, it is not necessary to constitute the vacuum vessel main body and the structural members at the inside and the outside thereof by using a low activation material which is less activated, such as a titanium alloy. (I.N.)

  10. Characterization of electrochemically modified polycrystalline platinum surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Krebs, L.C.; Ishida, Takanobu.

    1991-12-01

    The characterization of electrochemically modified polycrystalline platinum surfaces has been accomplished through the use of four major electrochemical techniques. These were chronoamperometry, chronopotentiommetry, cyclic voltammetry, and linear sweep voltammetry. A systematic study on the under-potential deposition of several transition metals has been performed. The most interesting of these were: Ag, Cu, Cd, and Pb. It was determined, by subjecting the platinum electrode surface to a single potential scan between {minus}0.24 and +1.25 V{sub SCE} while stirring the solution, that the electrocatalytic activity would be regenerated. As a consequence of this study, a much simpler method for producing ultra high purity water from acidic permanganate has been developed. This method results in water that surpasses the water produced by pyrocatalytic distillation. It has also been seen that the wettability of polycrystalline platinum surfaces is greatly dependent on the quantity of oxide present. Oxide-free platinum is hydrophobic and gives a contact angle in the range of 55 to 62 degrees. We have also modified polycrystalline platinum surface with the electrically conducting polymer poly-{rho}-phenylene. This polymer is very stable in dilute sulfuric acid solutions, even under applied oxidative potentials. It is also highly resistant to electrochemical hydrogenation. The wettability of the polymer modified platinum surface is severely dependent on the choice of supporting electrolyte chosen for the electrochemical polymerization. Tetraethylammonium tetrafluoroborate produces a film that is as hydrophobic as Teflon, whereas tetraethylammonium perchlorate produces a film that is more hydrophilic than oxide-free platinum.

  11. Characterization of electrochemically modified polycrystalline platinum surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Krebs, Leonard C. [State Univ. of New York (SUNY), Stony Brook, NY (United States); Ishida, Takanobu [State Univ. of New York (SUNY), Stony Brook, NY (United States)

    1991-12-01

    The characterization of electrochemically modified polycrystalline platinum surfaces has been accomplished through the use of four major electrochemical techniques. These were chronoamperometry, chronopotentiommetry, cyclic voltammetry, and linear sweep voltammetry. A systematic study on the under-potential deposition of several transition metals has been performed. The most interesting of these were: Ag, Cu, Cd, and Pb. It was determined, by subjecting the platinum electrode surface to a single potential scan between -0.24 and +1.25 VSCE while stirring the solution, that the electrocatalytic activity would be regenerated. As a consequence of this study, a much simpler method for producing ultra high purity water from acidic permanganate has been developed. This method results in water that surpasses the water produced by pyrocatalytic distillation. It has also been seen that the wettability of polycrystalline platinum surfaces is greatly dependent on the quantity of oxide present. Oxide-free platinum is hydrophobic and gives a contact angle in the range of 55 to 62 degrees. We have also modified polycrystalline platinum surface with the electrically conducting polymer poly-ρ-phenylene. This polymer is very stable in dilute sulfuric acid solutions, even under applied oxidative potentials. It is also highly resistant to electrochemical hydrogenation. The wettability of the polymer modified platinum surface is severely dependent on the choice of supporting electrolyte chosen for the electrochemical polymerization. Tetraethylammonium tetrafluoroborate produces a film that is as hydrophobic as Teflon, whereas tetraethylammonium perchlorate produces a film that is more hydrophilic than oxide-free platinum.

  12. Formation mechanism of solute clusters under neutron irradiation in ferritic model alloys and in a reactor pressure vessel steel: clusters of defects; Mecanismes de fragilisation sous irradiation aux neutrons d'alliages modeles ferritiques et d'un acier de cuve: amas de defauts

    Energy Technology Data Exchange (ETDEWEB)

    Meslin-Chiffon, E

    2007-11-15

    The embrittlement of reactor pressure vessel (RPV) under irradiation is partly due to the formation of point defects (PD) and solute clusters. The aim of this work was to gain more insight into the formation mechanisms of solute clusters in low copper ([Cu] = 0.1 wt%) FeCu and FeCuMnNi model alloys, in a copper free FeMnNi model alloy and in a low copper French RPV steel (16MND5). These materials were neutron-irradiated around 300 C in a test reactor. Solute clusters were characterized by tomographic atom probe whereas PD clusters were simulated with a rate theory numerical code calibrated under cascade damage conditions using transmission electron microscopy analysis. The confrontation between experiments and simulation reveals that a heterogeneous irradiation-induced solute precipitation/segregation probably occurs on PD clusters. (author)

  13. Platinum Group Metal Recycling Technology Development - Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Lawrence Shore

    2009-08-19

    BASF Catalysts LLC, formerly Engelhard Corporation, has completed a project to recover Pt from PEM fuel cell membrane electrode assemblies. The project, which began in 2003, has met the project objective of an environmentally-friendly, cost-effective method for recovery of platinum without release of hydrogen fluoride. This has been achieved using a combination of milling, dispersion and acid leaching. 99% recovery of Pt was achieved, and this high yield can be scaled up using one vessel for a single leach and rinse. Leaching was been successfully achieved using a 10% solids level, double the original target. At this solids content, the reagent and utility costs represent ~0.35% of the Pt value of a lot, using very conservative assumptions. The main cost of the process is capital depreciation, followed by labor.

  14. Mechanism of Platinum Derivatives Induced Kidney Injury

    Directory of Open Access Journals (Sweden)

    Feifei YAN

    2015-09-01

    Full Text Available Platinum derivatives are the most widely used chemotherapeutic agents to treat solid tumors including ovarian, head and neck, and testicular germ cell tumors, lung cancer, and colorectal cancer. Two major problems exist, however, in the clinic use of platinum derivatives. One is the development of tumor resistance to the drug during therapy, leading to treatment failure. The other is the drug’s toxicity such as the cisplatin’s nephrotoxicity, which limits the dose that can be administered. This paper describes the mechanism of platinum derivatives induced kidney injury.

  15. Hydrogenation of hexene over platinum on alumina vs. platinum in a Na-Y zeolite

    International Nuclear Information System (INIS)

    Miner, R.S. Jr.; Ione, K.G.; Namba, S.; Turkevich, J.

    1978-01-01

    In order to study the efficacy of zeolites as supports, several platinum H--Y zeolites were prepared by ion exchanging an H--Y zeolite with Pt(NH 3 ) 4 Cl 2 and reducing these products with hydrazine hydrate (A, B, C). Another preparation was made by adsorbing 32-A platinum sol on the zeolite crystallites (D). These catalysts were studied for hydrogenation and isomerization of hexene-1, ethylene hydrogenation, hydrogen chemisorption, and poison titration. They were compared with monodisperse Pt (32 A diameter) on alumina. A marked difference was found between the behavior of hexene-1 with the platinum-in-zeolite and with the platinum-on-alumina

  16. VB Platinum Tile & Carpet, Inc. Information Sheet

    Science.gov (United States)

    VB Platinum Tile & Carpet, Inc. (the Company) is located in Bristow, Virginia. The settlement involves renovation activities conducted at a property constructed prior to 1978, located in Washington, DC.

  17. Platinum-Resistor Differential Temperature Sensor

    Science.gov (United States)

    Kolbly, R. B.; Britcliffe, M. J.

    1985-01-01

    Platinum resistance elements used in bridge circuit for measuring temperature difference between two flowing liquids. Temperature errors with circuit are less than 0.01 degrees C over range of 100 degrees C.

  18. Vessel Operator System

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Operator cards are required for any operator of a charter/party boat and or a commercial vessel (including carrier and processor vessels) issued a vessel permit from...

  19. Activation analysis for platinum in gold and metals of the platinum group through 199Au

    International Nuclear Information System (INIS)

    Foerster, H.

    1976-01-01

    Platinum was determined in gold and in metals of the platinum group through 199 Au by activation analysis. The matrix was separated at the end of irradiation before the daughter nuclide was formed. Gold was separated by extraction with MIBK from 1

  20. Solvent extraction of platinum with thiobenzanilide. Separation of platinum from copper

    International Nuclear Information System (INIS)

    Shkil', A.N.; Zolotov, Yu.A.

    1989-01-01

    The solvent extraction of micro concentrations of platinum has been investigated from hydrochloric acid media using thiobenzanilide in the presence of SnCl 2 and KI. In the presence of SnCl 2 platinum is extracted rapidly and to significant completion. Conditions have been developed for the quantitative extraction of platinum. The authors have also examined the solvent extraction of copper(II) using thiobenzanilide, interference due to copper(II) and iron(III) on solvent extraction of platinum, and methods to suppress this interference. A procedure has also been developed for the separation of platinum from copper. Solvent extraction of metals was studied using radioactive isotopes: 197 Pt, 64 Cu, 59 Fe, 198 Au, 109 Pd, 110m Ag

  1. Platinum uptake from chloride solutions using biosorbents

    Directory of Open Access Journals (Sweden)

    Mehmet Hakan Morcali

    2013-04-01

    Full Text Available Present work investigates platinum uptake from synthetically prepared, dilute platinum-bearing solutions using biomass residues, i.e. pistachio nut shell and rice husk, which are abundant in Turkey, and provides a comparison between these two biosorbents. Effects of the different uptake parameters, sorbent dosage, contact time, temperature and pH of solution on platinum uptake (% were studied in detail on a batch sorption. Before the pistachio nut shell was activated, platinum uptake (% was poor compared to the rice husk. However, after the pistachio nut shell was activated at 1000 °C under an argon atmosphere, the platinum uptake (% increased two-fold. The pistachio nut shell (original and activated and rice husk were shown to be better than commercially available activated carbon in terms of adsorption capacity. These two sorbents have also been characterized by FTIR and SEM. Adsorption equilibrium data best complied with the Langmuir isotherm model. Maximum adsorption capacities, Qmax, at 25 °C were found to be 38.31 and 42.02 mg.g- 1for the activated pistachio nut shell and rice husk, respectively. Thermodynamic calculations using the measured ∆H°, ∆S° and ∆G° values indicate that the uptake process was spontaneous and endothermic. The experimental data were shown to be fit the pseudo-second-order kinetic model.

  2. Novel platinum black electroplating technique improving mechanical stability.

    Science.gov (United States)

    Kim, Raeyoung; Nam, Yoonkey

    2013-01-01

    Platinum black microelectrodes are widely used as an effective neural signal recording sensor. The simple fabrication process, high quality signal recording and proper biocompatibility are the main advantages of platinum black microelectrodes. When microelectrodes are exposed to actual biological system, various physical stimuli are applied. However, the porous structure of platinum black is vulnerable to external stimuli and destroyed easily. The impedance level of the microelectrode increases when the microelectrodes are damaged resulting in decreased recording performance. In this study, we developed mechanically stable platinum black microelectrodes by adding polydopamine. The polydopamine layer was added between the platinum black structures by electrodeposition method. The initial impedance level of platinum black only microelectrodes and polydopamine added microelectrodes were similar but after applying ultrasonication the impedance value dramatically increased for platinum black only microelectrodes, whereas polydopamine added microelectrodes showed little increase which were nearly retained initial values. Polydopamine added platinum black microelectrodes are expected to extend the availability as neural sensors.

  3. Formic acid oxidation at platinum-bismuth catalysts

    Directory of Open Access Journals (Sweden)

    Popović Ksenija Đ.

    2015-01-01

    Full Text Available The field of heterogeneous catalysis, specifically catalysis on bimetallic surfaces, has seen many advances over the past few decades. Bimetallic catalysts, which often show electronic and chemical properties that are distinct from those of their parent metals, offer the opportunity to obtain new catalysts with enhanced selectivity, activity, and stability. The oxidation of formic acid is of permanent interest as a model reaction for the mechanistic understanding of the electrooxidation of small organic molecules and because of its technical relevance for fuel cell applications. Platinum is one of the most commonly used catalysts for this reaction, despite the fact that it shows a few significant disadvantages: high cost and extreme susceptibility to poisoning by CO. To solve this problem, several approaches have been used, but generally, they all consist in the modification of platinum with a second element. Especially, bismuth has received significant attention as Pt modifier. According to the results presented in this survey dealing with the effects influencing the formic acid oxidation it was found that two types of Pt-Bi bimetallic catalysts (bulk and low loading deposits on GC showed superior catalytic activity in terms of the lower onset potential and oxidation current density, as well as exceptional stability compared to Pt. The findings in this report are important for the understanding of mechanism of formic acid electrooxidation on a bulk alloy and decorated surface, for the development of advanced anode catalysts for direct formic acid fuel cells, as well as for the synthesis of novel low-loading bimetallic catalysts. The use of bimetallic compounds as the anode catalysts is an effective solution to overcoming the problems of the formic acid oxidation current stability for long term applications. In the future, the tolerance of both CO poisoning and electrochemical leaching should be considered as the key factors in the development

  4. Segregation of the elements of the platinum group in a simulated high-level waste glass

    International Nuclear Information System (INIS)

    Mitamura, H.; Banba, T.; Kamizono, H.; Kiriyama, Y.; Kumata, M.; Murakami, T.; Tashiro, S.

    1983-01-01

    Segregation of the elements of the platinum group occurred during vitrification of the borosilicate glass containing 20 wt% simulated high-level waste oxides. The segregated materials were composed of two crystalline phases: one was the solid solution of ruthenium and rhodium dioxides and the other was that of palladium and rhodium metals also with tellurium. The segregated materials were not distributed homogeneously throughout the glass: (i) on the surface of the glass, there occurred palladium, rhodium and tellurium alloy alone; and (ii) at the inner part of the glass, the agglomerates of the two phases were concentrated in one part and dispersed in the other

  5. Alloy materials

    Energy Technology Data Exchange (ETDEWEB)

    Hans Thieme, Cornelis Leo (Westborough, MA); Thompson, Elliott D. (Coventry, RI); Fritzemeier, Leslie G. (Acton, MA); Cameron, Robert D. (Franklin, MA); Siegal, Edward J. (Malden, MA)

    2002-01-01

    An alloy that contains at least two metals and can be used as a substrate for a superconductor is disclosed. The alloy can contain an oxide former. The alloy can have a biaxial or cube texture. The substrate can be used in a multilayer superconductor, which can further include one or more buffer layers disposed between the substrate and the superconductor material. The alloys can be made a by process that involves first rolling the alloy then annealing the alloy. A relatively large volume percentage of the alloy can be formed of grains having a biaxial or cube texture.

  6. Multiple shell pressure vessel

    International Nuclear Information System (INIS)

    Wedellsborg, B.W.

    1988-01-01

    A method is described of fabricating a pressure vessel comprising the steps of: attaching a first inner pressure vessel having means defining inlet and outlet openings to a top flange, placing a second inner pressure vessel, having means defining inlet and outlet opening, concentric with and spaced about the first inner pressure vessel and attaching the second inner pressure vessel to the top flange, placing an outer pressure vessel, having inlet and outlet openings, concentric with and spaced apart about the second inner pressure vessel and attaching the outer pressure vessel to the top flange, attaching a generally cylindrical inner inlet conduit and a generally cylindrical inner outlet conduit respectively to the inlet and outlet openings in the first inner pressure vessel, attaching a generally cylindrical outer inlet conduit and a generally cylindrical outer outlet conduit respectively to the inlet and outlet opening in the second inner pressure vessel, heating the assembled pressure vessel to a temperature above the melting point of a material selected from the group, lead, tin, antimony, bismuth, potassium, sodium, boron and mixtures thereof, filling the space between the first inner pressure vessel and the second inner pressure vessel with material selected from the group, filling the space between the second inner pressure vessel and the outer pressure vessel with material selected from the group, and pressurizing the material filling the spaces between the pressure vessels to a predetermined pressure, the step comprising: pressurizing the spaces to a pressure whereby the wall of the first inner pressure vessel is maintained in compression during steady state operation of the pressure vessel

  7. Platinum recycling in the United States in 1998

    Science.gov (United States)

    Hilliard, Henry E.

    2001-01-01

    In the United States, catalytic converters are the major source of secondary platinum for recycling. Other sources of platinum scrap include reforming and chemical process catalysts. The glass industry is a small but significant source of platinum scrap. In North America, it has been estimated that in 1998 more than 20,000 kilograms per year of platinum-group metals from automobile catalysts were available for recycling. In 1998, an estimated 7,690 kilograms of platinum were recycled in the United States. U.S. recycling efficiency was calculated to have been 76 percent in 1998; the recycling rate was estimated at 16 percent.

  8. Outpatient desensitization in selected patients with platinum hypersensitivity reactions.

    Science.gov (United States)

    O'Malley, David M; Vetter, Monica Hagan; Cohn, David E; Khan, Ambar; Hays, John L

    2017-06-01

    Platinum-based chemotherapies are a standard treatment for both initial and recurrent gynecologic cancers. Given this widespread use, it is important to be aware of the features of platinum hypersensitivity reactions and the subsequent treatment of these reactions. There is also increasing interest in the development of desensitization protocols to allow patients with a history of platinum hypersensitivity to receive further platinum based therapy. In this review, we describe the management of platinum hypersensitivity reactions and the desensitization protocols utilized at our institution. We also describe the clinical categorizations utilized to triage patients to appropriate desensitization protocols. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Study crevice corrosion alloys C-22 and 625 by electrochemical noise

    International Nuclear Information System (INIS)

    Ungaro, María L.; Carranza, Ricardo M.; Rodríguez, Martín A.

    2013-01-01

    C-22 and 625 alloys are two of the Ni –Cr-Mo alloys considered as candidate materials to form the corrosion resistance engineered barriers for nuclear waste repositories. The corrosion resistance of these alloys is remarkable in a wide variety of environments. Despite of their resistance these alloys are susceptible to crevice corrosion in a certain aggressive environments. This work presents the use of electrochemical noise technique to study crevice corrosion susceptibility of alloys C-22 and 625 in 1M NaCl acidic solutions at 60ºC and 90ºC. Asymmetrical electrodes and a complementary platinum electrode were used to assess the influence of cathodic reaction in crevice process. The obtained records were analyzed directly and through statistical parameters. The potential drop and the simultaneous increment of the current records indicated the occurrence of crevice corrosion. The alternative use of a platinum electrode resulted in higher currents and higher potentials and reduced the induction time to crevice formation. The reason for this behavior is that platinum surface allows faster cathodic reactions than C-22 and 625 alloys. The standard deviation of the current records was responsive to the crevice corrosion intensity. C-22 alloy had better crevice corrosion performance than 625 alloy. (author)

  10. On the enzymatic formation of platinum nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Govender, Y.; Riddin, T. L. [Rhodes University, Department of Biochemistry, Microbiology and Biotechnology (South Africa); Gericke, M. [MINTEK (South Africa); Whiteley, C. G., E-mail: C.Whiteley@ru.ac.z [Rhodes University, Department of Biochemistry, Microbiology and Biotechnology (South Africa)

    2010-01-15

    A dimeric hydrogenase enzyme (44.5 and 39.4 kDa sub units) was isolated in a 39.5% yield from the fungus Fusarium oxysporum and purified 4.64-fold by ion exchange chromatography on Sephacryl S-200. Characterisation of the enzyme afforded pH and temperature optima of 7.5 and 38 {sup o}C, respectively, a half-life stability of 36 min and a V{sub max} and K{sub m} of 3.57 nmol min{sup -1} mL{sup -1} and 2.25 mM, respectively. This enzyme was inhibited (non-competitively) by hydrogen hexachloroplatinic acid (H{sub 2}PtCl{sub 6}) at 1 or 2 mM with a K{sub i} value of 118 {mu}M. Incubation of the platinum salt with the pure enzyme under an atmosphere of hydrogen and optimum enzyme conditions (pH 7.5, 38 {sup o}C) afforded <10% bioreduction after 8 h while at conditions suitable for platinum nanoparticle formation (pH 9, 65 {sup o}C) over 90% reduction took place after the same length of time. Cell-free extract from the fungal isolates produced nearly 90% bioreduction of the platinum salt under both pH and temperature conditions. The bioreduction of the platinum salt by a hydrogenase enzyme takes place by a passive process and not an active one as previously understood.

  11. Rockburst damage mechanism at Impala Platinum Mine

    CSIR Research Space (South Africa)

    Ledwaba, LS

    2012-05-01

    Full Text Available Impala Platinum Mine (Impala), situated north of the town of Rustenburg in the North West Province of South Africa, has experienced an increase in seismicity from ~841 seismic events in the year 2005 to ~1588 seismic events in 2008...

  12. Study of the re-dispersion of platinum containing bimetallic phases supported on chlorinated or neutralized alumina; Etude de la redispersion de phases bimetalliques a base de platine supportees sur alumine chloree ou neutralisee

    Energy Technology Data Exchange (ETDEWEB)

    Cholley, T

    1997-01-31

    The re-dispersion by oxy-chlorination of platinum-tin catalysts supported on alumina constitute the matter of this work. Influence of parameters like the nature of the platinum-tin phases and particles size has been examined. The use of organometallic precursors has allowed an optimum control of the preparation and of the particles growth of the catalysts. Characterization by programmed temperature reduction (TPR), X-ray photoelectron spectroscopy (XPS), Moessbauer spectroscopy, near-edge absorption spectra (XANES) and X-ray absorption fine structure (EXAFS) has led to a better understanding of the phenomena ruling the tin reducibility. Sintering has been studied, showing that only platinum-tin alloy can sinter, while tin oxides are strongly stabilized by the support. It is shown similarly that oxy-chlorination of these catalysts causes the re-dispersion of the platinum and the platinum-tin alloy only. A re-dispersion mechanism through platinum-tin oxychloride species has been proposed. Furthermore, the main parameters influencing the re-dispersion have been highlighted. (author) 175 refs.

  13. Platinum-gold nanoclusters as catalyst for direct methanol fuel cells.

    Science.gov (United States)

    Giorgi, L; Giorgi, R; Gagliardi, S; Serra, E; Alvisi, M; Signore, M A; Piscopiello, E

    2011-10-01

    Nanosized platinum-gold alloys clusters have been deposited on gas diffusion electrode by sputter deposition. The deposits were characterized by FE-SEM, TEM and XPS in order to verify the formation of alloy nanoparticles and to study the influence of deposition technique on the nanomorphology. The deposition by sputtering process allowed a uniform distribution of metal particles on porous surface of carbon supports. Typical island growth mode was observed with the formation of a dispersed metal nanoclusters (mean size about 5 nm). Cyclic voltammetry was used to determine the electrochemical active surface and the electrocatalytic performance of the PtAu electrocatalysts for methanol oxidation reaction. The data were re-calculated in the form of mass specific activity (MSA). The sputter-catalyzed electrodes showed higher performance and stability compared to commercial catalysts.

  14. Problems in Pressure Vessel Design and Manufacture

    Energy Technology Data Exchange (ETDEWEB)

    Hellstroem, O [Uddeholms AB, Degerfors (Sweden); Nilson, Ragnar [AB Atomenergi, Nykoeping (Sweden)

    1963-05-15

    The general desire by the power reactor process makers to increase power rating and their efforts to involve more advanced thermal behaviour and fuel handling facilities within the reactor vessels are accompanied by an increase in both pressure vessel dimensions and various difficulties in giving practical solutions of design materials and fabrication problems. In any section of this report it is emphasized that difficulties and problems already met with will meet again in the future vessels but then in modified forms and in many cases more pertinent than before. As for the increase in geometrical size it can be postulated that with use of better materials and adjusted fabrication methods the size problems can be taken proper care of. It seems likely that vessels of sufficient large diameter and height for the largest power output, which is judged as interesting in the next ten year period, can be built without developing totally new site fabrication technique. It is, however, supposed that such a fabrication technique will be feasible though at higher specific costs for the same quality requirements as obtained in shop fabrication. By the postulated use of more efficient vessel material with principally the same good features of easy fabrication in different stages such as preparation, welding, heat treatment etc as ordinary or slightly modified carbon steels the increase in wall thickness might be kept low. There exists, however, a development work to be done for low-alloy steels to prove their justified use in large reactor pressure vessels.

  15. Problems in Pressure Vessel Design and Manufacture

    International Nuclear Information System (INIS)

    Hellstroem, O.; Nilson, Ragnar

    1963-05-01

    The general desire by the power reactor process makers to increase power rating and their efforts to involve more advanced thermal behaviour and fuel handling facilities within the reactor vessels are accompanied by an increase in both pressure vessel dimensions and various difficulties in giving practical solutions of design materials and fabrication problems. In any section of this report it is emphasized that difficulties and problems already met with will meet again in the future vessels but then in modified forms and in many cases more pertinent than before. As for the increase in geometrical size it can be postulated that with use of better materials and adjusted fabrication methods the size problems can be taken proper care of. It seems likely that vessels of sufficient large diameter and height for the largest power output, which is judged as interesting in the next ten year period, can be built without developing totally new site fabrication technique. It is, however, supposed that such a fabrication technique will be feasible though at higher specific costs for the same quality requirements as obtained in shop fabrication. By the postulated use of more efficient vessel material with principally the same good features of easy fabrication in different stages such as preparation, welding, heat treatment etc as ordinary or slightly modified carbon steels the increase in wall thickness might be kept low. There exists, however, a development work to be done for low-alloy steels to prove their justified use in large reactor pressure vessels

  16. Probabilistic retinal vessel segmentation

    Science.gov (United States)

    Wu, Chang-Hua; Agam, Gady

    2007-03-01

    Optic fundus assessment is widely used for diagnosing vascular and non-vascular pathology. Inspection of the retinal vasculature may reveal hypertension, diabetes, arteriosclerosis, cardiovascular disease and stroke. Due to various imaging conditions retinal images may be degraded. Consequently, the enhancement of such images and vessels in them is an important task with direct clinical applications. We propose a novel technique for vessel enhancement in retinal images that is capable of enhancing vessel junctions in addition to linear vessel segments. This is an extension of vessel filters we have previously developed for vessel enhancement in thoracic CT scans. The proposed approach is based on probabilistic models which can discern vessels and junctions. Evaluation shows the proposed filter is better than several known techniques and is comparable to the state of the art when evaluated on a standard dataset. A ridge-based vessel tracking process is applied on the enhanced image to demonstrate the effectiveness of the enhancement filter.

  17. Improvement to reactor vessel

    International Nuclear Information System (INIS)

    1974-01-01

    The vessel described includes a prestressed concrete vessel containing a chamber and a removable cover closing this chamber. The cover is in concrete and is kept in its closed position by main and auxiliary retainers, comprising fittings integral with the concrete of the vessel. The auxiliary retainers pass through the concrete of the cover. This improvement may be applied to BWR, PWR and LMFBR type reactor vessel [fr

  18. ALICE HMPID Radiator Vessel

    CERN Document Server

    2003-01-01

    View of the radiator vessels of the ALICE/HMPID mounted on the support frame. Each HMPID module is equipped with 3 indipendent radiator vessels made out of neoceram and fused silica (quartz) windows glued together. The spacers inside the vessel are needed to stand the hydrostatic pressure. http://alice-hmpid.web.cern.ch/alice-hmpid

  19. Electrocatalysts of platinum, cobalt and nickel prepared by mechanical alloying for the oxygen reduction reaction in H{sub 2}SO{sub 4} 0.5M; Electrocatalizadores de Platino, Cobalto y Niquel preparados por Aleado Mecanico para la reaccion de reduccion de oxigeno en H{sub 2}SO{sub 4} 0.5M

    Energy Technology Data Exchange (ETDEWEB)

    Garcia C, M.A.; Fernandez V, S.M.; Vargas G, J.R. [lNIN, Depto. de Quimica, 52750 La Marquesa, Estado de Mexico (Mexico)

    2007-07-01

    Metallic powders of Pt, Co and Nickel were processed by mechanical alloyed and electrocatalysts were synthesized for the oxygen reduction reaction, applicable in fuel cells. The structural and morphological characterization was carried out using X-ray Diffraction, scanning electron microscopy and transmission electron microscopy. It was found that the alloyed powders formed agglomerates that consist of crystalline particles of nano metric size. Its were obtained polarization curves by the Electrode of Rotational Disk technique in a solution of H{sub 2}SO{sub 4} 0.5 M, used as electrolyte, to evaluate the electrocatalytic activity of mechanically alloyed powders. Tafel graphics were built to determine the kinetic parameters of each electro catalyst. The PtCoNi alloy exhibited the biggest electrocatalytic activity, with the smallest over potential for the oxygen reduction reaction. (Author)

  20. Studies on formation and structures of ultrafine Cu precipitates in Fe-Cu model alloys for reactor pressure vessel steels using positron quantum dot confinement in the precipitates by their positron affinity. JAERI's nuclear research promotion program, H11-034 (Contract research)

    Energy Technology Data Exchange (ETDEWEB)

    Hasegawa, Masayuki; Nagai, Yasuyoshi; Tang, Zheng; Yubuta, Kunio [Tohoku Univ., Sendai (Japan). Inst. for Materials Research; Suzuki, Masahide [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2003-03-01

    Positron annihilation experiments on Fe-Cu model dilute alloys of nuclear reactor pressure vessel (RPV) steels have been performed after neutron irradiation in JMTR. Nanovoids whose inner surfaces were covered by Cu atoms were clearly observed. The nanovoids transformed to ultrafine Cu precipitates by dissociating their vacancies after annealing at around 400degC. The nanovoids and the ultrafine Cu precipitates are strongly suggested to be responsible for irradiation-induced embrittlement of RPV steels. Effects of Ni, Mn and P addition on the nanovoid and Cu precipitate formations were also studied. The nanovoid formation was enhanced by Ni and P, but suppressed by Mn. The Cu precipitates after annealing around 400degC were almost free from these doping elements and hence were pure Cu in the chemical composition. Furthermore the Fermi surface of the 'embedded' Cu precipitates with a body centered cubic crystal structure was obtained from two dimensional angular correlation of annihilation radiation (2D-ACAR) in a Fe-Cu single crystal and was agreed well with that from a band structure calculation. Theoretical calculation of positron confinement in Fe-Cu model alloys showed that a positron quantum dot state induced by positron affinity is attained for the embedded precipitates larger than 1 nm. A new position sensitive detector with a function of one dimensional angular correlation of annihilation radiation (1D-ACAR) has been developed that enables high resolution experiments over wide ranges of momentum distribution. (author)

  1. Porous platinum mesoflowers with enhanced activity for methanol oxidation reaction

    Energy Technology Data Exchange (ETDEWEB)

    Zhuang Lina; Wang Wenjin; Hong Feng [School of Science, MOE Key Laboratory for Non-equilibrium Synthesis and Modulation of Condensed Matter, Xi' an Jiaotong University, Xi' an 710049 (China); Yang Shengchun, E-mail: ysch1209@mail.xjtu.edu.cn [School of Science, MOE Key Laboratory for Non-equilibrium Synthesis and Modulation of Condensed Matter, Xi' an Jiaotong University, Xi' an 710049 (China); You Hongjun, E-mail: hjyou@mail.xjtu.edu.cn [School of Science, MOE Key Laboratory for Non-equilibrium Synthesis and Modulation of Condensed Matter, Xi' an Jiaotong University, Xi' an 710049 (China); Fang Jixiang; Ding Bingjun [School of Science, MOE Key Laboratory for Non-equilibrium Synthesis and Modulation of Condensed Matter, Xi' an Jiaotong University, Xi' an 710049 (China)

    2012-07-15

    Porous Pt and Pt-Ag alloy mesoflowers (MFs) with about 2 {mu}m in diameter and high porosity were synthesized using Ag mesoflowers as sacrificial template by galvanic reaction. The silver content in Pt-Ag alloys can be facilely controlled by nitric acid treatment. And the pure Pt MFs can be obtained by selective removal of silver element from Pt{sub 72}Ag{sub 28} MFs electrochemically. Both Pt{sub 45}Ag{sub 55}, Pt{sub 72}Ag{sub 28} and pure Pt show a high catalytic performance in methanol oxidation reaction (MOR). Especially, pure Pt MFs exhibited a 2 to 3 times current density enhancement in MOR compared with the commercial used Pt black, which can be attributed to their porous nanostructure with 3-dimentional nature and small crystal sizes. - Graphical Abstract: The CVs of MOR on Pt (red) and Pt black (green) catalysts in 0.1 M HClO{sub 4} and 0.5 M CH{sub 3}OH for specific mass current. The insert shows the SEM images of two porous Pt MFs. Platinum mesoflowers (MFs) with about 2 {mu}m in diameter and high porosity were synthesised with Ag mesoflowers as sacrificial template by galvanic replacement. The porous Pt MFs exhibited a more than 3 times enhancement in electrocatalytic performance for methanol oxidation reaction compared the commercial used Pt black. Highlights: Black-Right-Pointing-Pointer Porous Pt and Pt-Ag mesoflowers (MFs) were synthesized using Ag MFs sacrifical template. Black-Right-Pointing-Pointer Pt MFs presents an improved catalytic activity in MOR compared with Pt black. Black-Right-Pointing-Pointer We provided a facile approach for the development of high performance Pt electrocatalysts for fuel cells.

  2. Influence of cathodic current density and mechanical stirring on the electrodeposition of Cu-Co alloys in citrate bath

    OpenAIRE

    Leandro Trinta de Farias; Aderval Severino Luna; Dalva Cristina Baptista do Lago; Lilian Ferreira de Senna

    2008-01-01

    Cathodic polarization curves of Cu-Co alloys were galvanostatically obtained on a platinum net, using electrolytes containing copper and cobalt sulfates, sodium citrate and boric acid (pH values ranging from 4.88 to 6.00), with different mechanical stirring conditions. In order to evaluate quantitatively the influence of the applied current density and the mechanical stirring on the cathodic efficiency, the alloy composition for the Cu-Co alloy deposition process, and the average deposition p...

  3. Alloy 690 in PWR type reactors; Aleaciones base niquel en condiciones de primario de los reactores tipo PWR

    Energy Technology Data Exchange (ETDEWEB)

    Gomez Briceno, D.; Serrano, M.

    2005-07-01

    Alloy 690, used as replacement of Alloy 600 for vessel head penetration (VHP) nozzles in PWR, coexists in the primary loop with other components of Alloy 600. Alloy 690 shows an excellent resistance to primary water stress corrosion cracking, while Alloy 600 is very susceptible to this degradation mechanisms. This article analyse comparatively the PWSCC behaviour of both Ni-based alloys and associated weld metals 52/152 and 82/182. (Author)

  4. Non-platinum electrocatalysts for PEM fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Lee, K.; Zhang, L.; Shi, Z.; Hui, R.; Zhang, J. [National Research Council of Canada, Vancouver, BC (Canada). Inst. For Fuel Cell Innovation

    2008-07-01

    High cost, low reliability and durability are the main barriers preventing widespread commercialization of fuel cells. In particular, the platinum (Pt)-based electrocatalysts used in proton exchange membrane (PEM) fuel cells, including direct methanol fuel cells (DMFCs) are major contributors to the high cost of PEM fuel cells. The Institute for Fuel Cell Innovation at the National Research Council of Canada has developed several new non-Pt electrocatalysts for PEM fuel cell applications. This paper presented the research results on these catalysts, including transition metal macrocycles, chalcogenides, and Ir- or Pd-based alloys. It also described catalyst structure modes via theoretical density functional theory (DFT) calculations. Research activities on these electrocatalysts was summarized in terms of catalytic activity and the oxygen reduction reaction (ORR). Typical catalysts such as cobalt(Co)-polypyrrole (PPy) and the chalcogenides show promising results in terms of catalytic activity and a 4-electron reaction mechanism. Efforts are underway to modify both catalyst structure and synthesis methods in order to further improve catalyst performance. 4 refs., 2 figs.

  5. Reactions of neopentane and neohexane on platinum/Y-zeolite and platinum/silica catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Foger, K.; Anderson, J.R.

    1978-10-13

    The hydrocracking/hydroisomerization reaction of 20:1 hydrogen/neopentane at 455-625/sup 0/K was studied on platinum-exchanged sodium, calcium, and lanthanum Y zeolites and Aerosil-supported platinum of 1-20 nm average platinum particle size, by analysis of the product distribution, ESCA, and temperature-programed desorption. The results suggested that the reaction occurs only on platinum and that it proceeds by two parallel pathways which have different activation energies and whose relative proportion depends on the particle size. One pathway is the conventionally accepted one on low-index crystallite facets; the other proceeds on single-surface platinum atoms of low coordination (corner or edge atoms) which become more abundant at lower crystallite size. In both cases, the adsorbed intermediate may undergo either isomerization or hydrogenolysis; the selectivity depends on the hydrogen partial pressure and the relative strength of adsorption of hydrogen and neopentane. Neohexane isomerization selectivity on the same catalysts is consistent with a carbonium ion mechanism on a dual-function catalyst.

  6. Guidelines for pressure vessel safety assessment

    Science.gov (United States)

    Yukawa, S.

    1990-04-01

    A technical overview and information on metallic pressure containment vessels and tanks is given. The intent is to provide Occupational Safety and Health Administration (OSHA) personnel and other persons with information to assist in the evaluation of the safety of operating pressure vessels and low pressure storage tanks. The scope is limited to general industrial application vessels and tanks constructed of carbon or low alloy steels and used at temperatures between -75 and 315 C (-100 and 600 F). Information on design codes, materials, fabrication processes, inspection and testing applicable to the vessels and tanks are presented. The majority of the vessels and tanks are made to the rules and requirements of ASME Code Section VIII or API Standard 620. The causes of deterioration and damage in operation are described and methods and capabilities of detecting serious damage and cracking are discussed. Guidelines and recommendations formulated by various groups to inspect for the damages being found and to mitigate the causes and effects of the problems are presented.

  7. On the enzymatic formation of platinum nanoparticles

    International Nuclear Information System (INIS)

    Govender, Y.; Riddin, T. L.; Gericke, M.; Whiteley, C. G.

    2010-01-01

    A dimeric hydrogenase enzyme (44.5 and 39.4 kDa sub units) was isolated in a 39.5% yield from the fungus Fusarium oxysporum and purified 4.64-fold by ion exchange chromatography on Sephacryl S-200. Characterisation of the enzyme afforded pH and temperature optima of 7.5 and 38 o C, respectively, a half-life stability of 36 min and a V max and K m of 3.57 nmol min -1 mL -1 and 2.25 mM, respectively. This enzyme was inhibited (non-competitively) by hydrogen hexachloroplatinic acid (H 2 PtCl 6 ) at 1 or 2 mM with a K i value of 118 μM. Incubation of the platinum salt with the pure enzyme under an atmosphere of hydrogen and optimum enzyme conditions (pH 7.5, 38 o C) afforded o C) over 90% reduction took place after the same length of time. Cell-free extract from the fungal isolates produced nearly 90% bioreduction of the platinum salt under both pH and temperature conditions. The bioreduction of the platinum salt by a hydrogenase enzyme takes place by a passive process and not an active one as previously understood.

  8. Platinum boride nanowires: Synthesis and characterization

    International Nuclear Information System (INIS)

    Ding Zhanhui; Qiu Lixia; Zhang Jian; Yao Bin; Cui Tian; Guan Weiming; Zheng Weitao; Wang Wenquan; Zhao Xudong; Liu Xiaoyang

    2012-01-01

    Highlights: ► Platinum boride nanowires have been synthesized via the direct current arc discharge method. ► XRD, TEM and SAED indicate that the nanowires are single-crystal PtB. ► Two broad photoluminescence emission peaks at about 586 nm and 626 nm have been observed in the PL spectroscopy of PtB nanowires. - Abstract: Platinum boride (PtB) nanowires have been successfully fabricated with direct current arc discharge method using a milled mixture of platinum (Pt) and boron nitride (BN) powders. X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were used to characterize the compositions, morphology, and structures of the samples. The results show that PtB nanowires are 30–50 nm thick and 20–30 μm long. TEM and selected area electron diffraction (SAED) patterns identify that the PtB nanowires are single-crystalline in nature. A growth mechanism based on vapor–liquid–solid (VLS) process is proposed for the formation of nanowires.

  9. Pressure vessel design manual

    CERN Document Server

    Moss, Dennis R

    2013-01-01

    Pressure vessels are closed containers designed to hold gases or liquids at a pressure substantially different from the ambient pressure. They have a variety of applications in industry, including in oil refineries, nuclear reactors, vehicle airbrake reservoirs, and more. The pressure differential with such vessels is dangerous, and due to the risk of accident and fatality around their use, the design, manufacture, operation and inspection of pressure vessels is regulated by engineering authorities and guided by legal codes and standards. Pressure Vessel Design Manual is a solutions-focused guide to the many problems and technical challenges involved in the design of pressure vessels to match stringent standards and codes. It brings together otherwise scattered information and explanations into one easy-to-use resource to minimize research and take readers from problem to solution in the most direct manner possible. * Covers almost all problems that a working pressure vessel designer can expect to face, with ...

  10. Recovery of Platinum from Dilute Chloride Media Using Biosorbents

    Science.gov (United States)

    Zeytuncu, B.; Morcali, M. H.; Yucel, O.

    Pistachio nut shells and Rice husk, a biomass residue, were investigated as adsorbents for the platinum uptake from synthetically prepared dilute chloroplatinic acid solutions. The effects of the different uptake parameters on platinum uptake (%) were studied in detail on a batch sorption. Before the pistachio nut shell material was activated, platinum uptake (%) was poor compared with rice husk. However, after the pistachio nut shell material was activated at 1000°C under an argon atmosphere, the platinum uptake (%) increased two-fold. The pistachio nut shell (inactivated and activated) and rice husk were characterized by Attenuated Total Reflection-Fourier transform infrared spectroscopy (ATR-FTIR).

  11. Strategies for the fabrication of porous platinum electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Kloke, Arne; Stetten, Felix von; Kerzenmacher, Sven [Laboratory for MEMS Applications, Department of Microsystems Engineering-IMTEK, University of Freiburg, Freiburg (Germany); Zengerle, Roland [Laboratory for MEMS Applications, Department of Microsystems Engineering-IMTEK, University of Freiburg, Freiburg (Germany); BIOSS Centre for Biological Signalling Studies, Albert-Ludwigs-Universitaet Freiburg (Germany)

    2011-11-16

    Porous platinum is of high technological importance due to its various applications in fuel cells, sensors, stimulation electrodes, mechanical actuators and catalysis in general. Based on a discussion of the general principles behind the reduction of platinum salts and corresponding deposition processes this article discusses techniques available for platinum electrode fabrication. The numerous, different strategies available to fabricate platinum electrodes are reviewed and discussed in the context of their tuning parameters, strengths and weaknesses. These strategies comprise bottom-up approaches as well as top-down approaches. In bottom-up approaches nanoparticles are synthesized in a first step by chemical, photochemical or sonochemical means followed by an electrode formation step by e.g. thin film technology or network formation to create a contiguous and conducting solid electrode structure. In top-down approaches fabrication starts with an already conductive electrode substrate. Corresponding strategies enable the fabrication of substrate-based electrodes by e.g. electrodeposition or the fabrication of self-supporting electrodes by dealloying. As a further top-down strategy, this review describes methods to decorate porous metals other than platinum with a surface layer of platinum. This way, fabrication methods not performable with platinum can be applied to the fabrication of platinum electrodes with the special benefit of low platinum consumption. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  12. Tumor Blood Vessel Dynamics

    Science.gov (United States)

    Munn, Lance

    2009-11-01

    ``Normalization'' of tumor blood vessels has shown promise to improve the efficacy of chemotherapeutics. In theory, anti-angiogenic drugs targeting endothelial VEGF signaling can improve vessel network structure and function, enhancing the transport of subsequent cytotoxic drugs to cancer cells. In practice, the effects are unpredictable, with varying levels of success. The predominant effects of anti-VEGF therapies are decreased vessel leakiness (hydraulic conductivity), decreased vessel diameters and pruning of the immature vessel network. It is thought that each of these can influence perfusion of the vessel network, inducing flow in regions that were previously sluggish or stagnant. Unfortunately, when anti-VEGF therapies affect vessel structure and function, the changes are dynamic and overlapping in time, and it has been difficult to identify a consistent and predictable normalization ``window'' during which perfusion and subsequent drug delivery is optimal. This is largely due to the non-linearity in the system, and the inability to distinguish the effects of decreased vessel leakiness from those due to network structural changes in clinical trials or animal studies. We have developed a mathematical model to calculate blood flow in complex tumor networks imaged by two-photon microscopy. The model incorporates the necessary and sufficient components for addressing the problem of normalization of tumor vasculature: i) lattice-Boltzmann calculations of the full flow field within the vasculature and within the tissue, ii) diffusion and convection of soluble species such as oxygen or drugs within vessels and the tissue domain, iii) distinct and spatially-resolved vessel hydraulic conductivities and permeabilities for each species, iv) erythrocyte particles advecting in the flow and delivering oxygen with real oxygen release kinetics, v) shear stress-mediated vascular remodeling. This model, guided by multi-parameter intravital imaging of tumor vessel structure

  13. Maury Journals - German Vessels

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — German vessels observations, after the 1853 Brussels Conference that set International Maritime Standards, modeled after Maury Marine Standard Observations.

  14. Components made of corrosion-resistent zirconium alloy and method for its production

    International Nuclear Information System (INIS)

    Hanneman, R.E.; Urquhart, A.W.; Vermilyea, D.A.

    1977-01-01

    The invention deals with a method to increase the resistance of zirconium alloys to blister corrosion which mainly occurs in boiling-water nuclear reactors. According to the method described, the surface of the alloy body is coated with a thin film of a suitable electronically conducting material. Gold, silver, platinum, nickel, chromium, iron and niobium are suitable as coating materials. The invention is more closely explained by means of examples. (GSC) [de

  15. Oxygen reduction reaction of Pt–In alloy: Combined theoretical and experimental investigations

    International Nuclear Information System (INIS)

    Pašti, Igor A.; Gavrilov, Nemanja M.; Baljozović, Miloš; Mitrić, Miodrag; Mentus, Slavko V.

    2013-01-01

    Graphical abstract: Upon DFT prediction of improved electrocatalytic activity of Pt–In alloys toward ORR, the alloy Pt-10 at% In was synthesized on glassy carbon disc, simultaneously with pure Pt reference catalyst. Improved catalytic activity of the alloy was evidenced by voltammetry on RDE in 0.1 mol dm −3 KOH solution. -- Highlights: •The adsorption of O atoms on Pt–In alloys model surfaces was investigated by DFT. •The improvement of catalytic activity toward ORR was predicted by DFT. •Pt-10 at% In alloy was synthesized on glassy carbon disk surface. •By voltammetry on RDE improvement of activity toward ORR was evidenced. -- Abstract: By means of the density functional theory (DFT) calculations, using the adsorption energy of oxygen on single crystal surfaces as criterion, it was predicted that the alloying of Pt with In should improve kinetics of oxygen reduction reaction (ORR). To prove this, the Pt–In alloy having nominal composition Pt 9 In was synthesized by heating H 2 PtCl 6 –InCl 3 mixture in hydrogen stream. The XRD characterization confirmed that Pt–In alloy was formed. The electrochemical measurements by rotating disk technique in alkaline 0.1 mol dm −3 KOH solution evidenced faster ORR kinetics for factor 2.6 relative to the one on pure platinum. This offers the possibility of searching for new ORR electrocatalysts by alloying platinum with p-elements

  16. VANADIUM ALLOYS

    Science.gov (United States)

    Smith, K.F.; Van Thyne, R.J.

    1959-05-12

    This patent deals with vanadium based ternary alloys useful as fuel element jackets. According to the invention the ternary vanadium alloys, prepared in an arc furnace, contain from 2.5 to 15% by weight titanium and from 0.5 to 10% by weight niobium. Characteristics of these alloys are good thermal conductivity, low neutron capture cross section, good corrosion resistance, good welding and fabricating properties, low expansion coefficient, and high strength.

  17. Reactor vessel sealing plug

    International Nuclear Information System (INIS)

    Dooley, R.A.

    1986-01-01

    This invention relates to an apparatus and method for sealing the cold leg nozzles of a nuclear reactor pressure vessel from a remote location during maintenance and inspection of associated steam generators and pumps while the pressure vessel and refueling canal are filled with water. The apparatus includes a sealing plug for mechanically sealing the cold leg nozzle from the inside of a reactor pressure vessel. The sealing plugs include a primary and a secondary O-ring. An installation tool is suspended within the reactor vessel and carries the sealing plug. The tool telescopes to insert the sealing plug within the cold leg nozzle, and to subsequently remove the plug. Hydraulic means are used to activate the sealing plug, and support means serve to suspend the installation tool within the reactor vessel during installation and removal of the sealing plug

  18. Containment vessel drain system

    Science.gov (United States)

    Harris, Scott G.

    2018-01-30

    A system for draining a containment vessel may include a drain inlet located in a lower portion of the containment vessel. The containment vessel may be at least partially filled with a liquid, and the drain inlet may be located below a surface of the liquid. The system may further comprise an inlet located in an upper portion of the containment vessel. The inlet may be configured to insert pressurized gas into the containment vessel to form a pressurized region above the surface of the liquid, and the pressurized region may operate to apply a surface pressure that forces the liquid into the drain inlet. Additionally, a fluid separation device may be operatively connected to the drain inlet. The fluid separation device may be configured to separate the liquid from the pressurized gas that enters the drain inlet after the surface of the liquid falls below the drain inlet.

  19. To alloy or not to alloy? Cr modified Pt/C cathode catalysts for PEM fuel cells.

    Science.gov (United States)

    Wells, Peter P; Qian, Yangdong; King, Colin R; Wiltshire, Richard J K; Crabb, Eleanor M; Smart, Lesley E; Thompsett, David; Russell, Andrea E

    2008-01-01

    The cathode electrocatalysts for proton exchange membrane (PEM) fuel cells are commonly platinum and platinum based alloy nanoparticles dispersed on a carbon support. Control over the particle size and composition has, historically, been attained empirically, making systematic studies of the effects of various structural parameters difficult. The controlled surface modification methodology used in this work has enabled the controlled modification of carbon supported Pt nanoparticles by Cr so as to yield nanoalloy particles with defined compositions. Subsequent heat treatment in 5% H2 in N2 resulted in the formation of a distinct Pt3Cr alloy phase which was either restricted to the surface of the particles or present throughout the bulk of the particle structure. Measurement of the oxygen reduction activity of the catalysts was accomplished using the rotating thin film electrode method and the activities obtained were related to the structure of the nanoalloy catalyst particles, largely determined using Cr K edge and Pt L3 edge XAS.

  20. Bioaccumulation of platinum group metals in dolphins, Stenella sp ...

    African Journals Online (AJOL)

    Platinum group metals (PGMs) concentrations were measured in the tissues= of dolphins (Stenella sp.) caught along the Ghanaian coastline. Tissues from specimens caught by fishermen from Dixcove, western Ghana, were analysed in 2006 for palladium (Pd), platinum (Pt) and rhodium (Rh) using the Neutron Activation ...

  1. Preparation of platinum/iridium scanning probe microscopy tips

    DEFF Research Database (Denmark)

    Sørensen, Alexis Hammer; Hvid, U.; Mortensen, M.W.

    1999-01-01

    oxide layer. In order to explain the relatively high etching rates observed for the otherwise noble metal platinum we suggest that besides anodic corrosion of the platinum by the electrolyte containing chloride ions, a different etching mechanism causes a substantial increase of the etching rate...

  2. Atomically flat platinum films grown on synthetic mica

    Science.gov (United States)

    Tanaka, Hiroyuki; Taniguchi, Masateru

    2018-04-01

    Atomically flat platinum thin films were heteroepitaxially grown on synthetic fluorophlogopite mica [KMg3(AlSi3O10)F2] by van der Waals epitaxy. Platinum films deposited on a fluorophlogopite mica substrate by inductively coupled plasma-assisted sputtering with oxygen introduction on a synthetic mica substrate resulted in the growth of twin single-crystalline epitaxial Pt(111) films.

  3. Enzymatic recovery of platinum (IV) from industrial wastewater using ...

    African Journals Online (AJOL)

    highest hydrogen-dependent platinum (IV) reducing activity in the presence of hydrogenase and its physiological electron carrier, cytochrome c3. When the purified hydrogenase enzyme (with and without cytochrome c3) was used with the industrial effluent, containing 7.9 mg.l-1 platinum, only 10 – 15% recovery was noted ...

  4. Thermal embrittlement of reactor vessel steels

    International Nuclear Information System (INIS)

    Corwin, W.R.; Nanstad, R.K.; Alexander, D.J.; Stoller, R.E.; Wang, J.A.; Odette, G.R.

    1995-01-01

    As a result of observations of possible thermal embrittlement from recent studies with welds removed from retired steam generators of the Palisades Nuclear Plant (PNP), an assessment was made of thermal aging of reactor pressure vessel (RPV) steels under nominal reactor operating conditions. Discussions are presented on (1) data from the literature regarding relatively low-temperature thermal embrittlement of RPV steels; (2)relevant data from the US power reactor-embrittlement data base (PR-EDB); and (3)potential mechanisms of thermal embrittlement in low-alloy steels

  5. Chiral discrimination in platinum anticancer drugs

    Czech Academy of Sciences Publication Activity Database

    Benedetti, M.; Malina, Jaroslav; Kašpárková, Jana; Brabec, Viktor; Natile, G.

    2002-01-01

    Roč. 110, Suppl. 5 (2002), s. 779-782 ISSN 0091-6765 R&D Projects: GA ČR GA301/00/0556; GA ČR GA305/02/1552; GA AV ČR IAA7004805; GA AV ČR IBS5004107; GA MŠk OC D20.001 Institutional research plan: CEZ:AV0Z5004920 Keywords : DNA * platinum * cancer Subject RIV: BO - Biophysics Impact factor: 3.452, year: 2002

  6. A NEW EMPIRICAL INVESTIGATION OF THE PLATINUM SPOT RETURNS

    Directory of Open Access Journals (Sweden)

    Simone Kruse

    2017-08-01

    Full Text Available The global platinum market has been in downturn and unstable for five consecutive years, and thus market participants are demanding effective quantitative risk management tools. Since platinum is so widely used and serves as an important investment vehicle, the importance of risk management of platinum spot returns cannot be understated. In this paper, we take advantage of a very popular econometric model, the generalized autoregressive conditional heteroscedasticity (GARCH model, for platinum returns. We received two important findings by using the conventional GARCH models in explain daily platinum spot returns. First, it is crucial to introduce heavy-tailed distribution to explain conditional heavy tails; and second, the NRIG distribution performs better than the most widely-used heavy-tailed distribution, the Student’s t distribution.

  7. NCSX Vacuum Vessel Fabrication

    International Nuclear Information System (INIS)

    Viola ME; Brown T; Heitzenroeder P; Malinowski F; Reiersen W; Sutton L; Goranson P; Nelson B; Cole M; Manuel M; McCorkle D.

    2005-01-01

    The National Compact Stellarator Experiment (NCSX) is being constructed at the Princeton Plasma Physics Laboratory (PPPL) in conjunction with the Oak Ridge National Laboratory (ORNL). The goal of this experiment is to develop a device which has the steady state properties of a traditional stellarator along with the high performance characteristics of a tokamak. A key element of this device is its highly shaped Inconel 625 vacuum vessel. This paper describes the manufacturing of the vessel. The vessel is being fabricated by Major Tool and Machine, Inc. (MTM) in three identical 120 o vessel segments, corresponding to the three NCSX field periods, in order to accommodate assembly of the device. The port extensions are welded on, leak checked, cut off within 1-inch of the vessel surface at MTM and then reattached at PPPL, to accommodate assembly of the close-fitting modular coils that surround the vessel. The 120 o vessel segments are formed by welding two 60 o segments together. Each 60 o segment is fabricated by welding ten press-formed panels together over a collapsible welding fixture which is needed to precisely position the panels. The vessel is joined at assembly by welding via custom machined 8-inch (20.3 cm) wide spacer ''spool pieces''. The vessel must have a total leak rate less than 5 X 10 -6 t-l/s, magnetic permeability less than 1.02(micro), and its contours must be within 0.188-inch (4.76 mm). It is scheduled for completion in January 2006

  8. Environmental routes for platinum group elements to biological materials. A review

    Energy Technology Data Exchange (ETDEWEB)

    Ek, Kristine H.; Morrison, Gregory M. [Water Environment Transport, Chalmers University of Technology, SE 412 96 Goteborg (Sweden); Rauch, Sebastien [R.M. Parsons Laboratory 48-108, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States)

    2004-12-01

    The increased use of platinum group elements (PGE) in automobile catalysts has led to concern over potential environmental and biological accumulation. Platinum (Pt), palladium (Pd) and rhodium (Rh) concentrations have increased in the environment since the introduction of automobile catalysts. This review summarises current knowledge concerning the environmental mobility, speciation and bioavailability of Pt, Pd and Rh. The greater proportion of PGE emissions is from automobile catalysts, in the form of nanometer-sized catalyst particles, which deposit on roadside surfaces, as evidenced in samples of road dust, grass and soil. In soil, PGE can be transformed into more mobile species through complexation with organic matter and can be solubilised in low pH rainwater. There are indications that environmentally formed Pd species are more soluble and hence more mobile in the environment than Rh and Pt. PGE can reach waterbodies through stormwater transport and deposition in sediments. Besides external contamination of grass close to roads, internal PGE uptake has been observed for plants growing on soil contaminated with automobile catalyst PGE. Fine particles of PGE were also detected on the surface of feathers sampled from passerines and raptors in their natural habitat, and internal organs of these birds also contained PGE. Uptake has been observed in sediment-dwelling invertebrates, and laboratory studies have shown an uptake of PGE in eel and fish exposed to water containing road dust.The available evidence indicates that the PGE, especially Pd, are transported to biological materials through deposition in roots by binding to sulphur-rich low molecular weight species in plants. PGE uptake to exposed animals have uptake rates in the following order: Pd>Pt>Rh. The liver and kidney accumulate the highest levels of PGE, especially Pd. Urinary Pd and Rh, but not Pt, levels are correlated with traffic intensity. Dental alloys may lead to elevated urinary Pt levels

  9. Nonswelling alloy

    Science.gov (United States)

    Harkness, S.D.

    1975-12-23

    An aluminum alloy containing one weight percent copper has been found to be resistant to void formation and thus is useful in all nuclear applications which currently use aluminum or other aluminum alloys in reactor positions which are subjected to high neutron doses.

  10. Nonswelling alloy

    International Nuclear Information System (INIS)

    Harkness, S.D.

    1975-01-01

    An aluminum alloy containing one weight percent copper has been found to be resistant to void formation and thus is useful in all nuclear applications which currently use aluminum or other aluminum alloys in reactor positions which are subjected to high neutron doses

  11. Radioactive waste processing vessel

    International Nuclear Information System (INIS)

    Hayashi, Masaru; Suzuki, Osamu; Ishizaki, Kanjiro.

    1987-01-01

    Purpose: To obtain a vessel of a reduced weight and with no external leaching of radioactive materials. Constitution: The vessel main body is constituted, for example, with light weight concretes or foamed concretes, particularly, foamed concretes containing fine closed bubbles in the inside. Then, layers having dense texture made of synthetic resin such as polystylene, vinylchloride resin, etc. or metal plate such as stainless plate are integrally disposed to the inner surface of the vessel main body. The cover member also has the same structure. (Sekiya, K.)

  12. Tempest in a vessel

    International Nuclear Information System (INIS)

    Barre, Bertrand

    2015-01-01

    As the ASN made some statements about anomalies of carbon content in the EPR vessel bottom and top, the author recalls and comments some technical issues to better understand the information published on this topic. He notably addresses the role of the vessel, briefly indicates its operating conditions, shape and structure, and mechanical components for the top, its material and mechanical properties, and test samples used to assess mechanical properties. He also comments the phenomenon of radio-induced embrittlement, the vessel manufacturing process, and evokes the applicable regulations. He quotes and comments statements made by the ASN and Areva which evoke further assessments of the concerned components

  13. Cheboygan Vessel Base

    Data.gov (United States)

    Federal Laboratory Consortium — Cheboygan Vessel Base (CVB), located in Cheboygan, Michigan, is a field station of the USGS Great Lakes Science Center (GLSC). CVB was established by congressional...

  14. High Performance Marine Vessels

    CERN Document Server

    Yun, Liang

    2012-01-01

    High Performance Marine Vessels (HPMVs) range from the Fast Ferries to the latest high speed Navy Craft, including competition power boats and hydroplanes, hydrofoils, hovercraft, catamarans and other multi-hull craft. High Performance Marine Vessels covers the main concepts of HPMVs and discusses historical background, design features, services that have been successful and not so successful, and some sample data of the range of HPMVs to date. Included is a comparison of all HPMVs craft and the differences between them and descriptions of performance (hydrodynamics and aerodynamics). Readers will find a comprehensive overview of the design, development and building of HPMVs. In summary, this book: Focuses on technology at the aero-marine interface Covers the full range of high performance marine vessel concepts Explains the historical development of various HPMVs Discusses ferries, racing and pleasure craft, as well as utility and military missions High Performance Marine Vessels is an ideal book for student...

  15. 2011 Vessel Density

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Automatic Identification Systems (AIS) are a navigation safety device that transmits and monitors the location and characteristics of many vessels in U.S. and...

  16. 2011 Fishing Vessel Density

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Automatic Identification Systems (AIS) are a navigation safety device that transmits and monitors the location and characteristics of many vessels in U.S. and...

  17. Pressurized Vessel Slurry Pumping

    International Nuclear Information System (INIS)

    Pound, C.R.

    2001-01-01

    This report summarizes testing of an alternate ''pressurized vessel slurry pumping'' apparatus. The principle is similar to rural domestic water systems and ''acid eggs'' used in chemical laboratories in that material is extruded by displacement with compressed air

  18. 2013 Tanker Vessel Density

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Automatic Identification Systems (AIS) are a navigation safety device that transmits and monitors the location and characteristics of many vessels in U.S. and...

  19. Maury Journals - US Vessels

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — U.S. vessels observations, after the 1853 Brussels Conference that set International Maritime Standards, modeled after Maury Marine Standard Observations.

  20. Coastal Logbook Survey (Vessels)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains catch (landed catch) and effort for fishing trips made by vessels that have been issued a Federal permit for the Gulf of Mexico reef fish,...

  1. In-vessel tritium

    International Nuclear Information System (INIS)

    Ueda, Yoshio; Ohya, Kaoru; Ashikawa, Naoko; Ito, Atsushi M.; Kato, Daiji; Kawamura, Gakushi; Takayama, Arimichi; Tomita, Yukihiro; Nakamura, Hiroaki; Ono, Tadayoshi; Kawashima, Hisato; Shimizu, Katsuhiro; Takizuka, Tomonori; Nakano, Tomohide; Nakamura, Makoto; Hoshino, Kazuo; Kenmotsu, Takahiro; Wada, Motoi; Saito, Seiki; Takagi, Ikuji; Tanaka, Yasunori; Tanabe, Tetsuo; Yoshida, Masafumi; Toma, Mitsunori; Hatayama, Akiyoshi; Homma, Yuki; Tolstikhina, Inga Yu.

    2012-01-01

    The in-vessel tritium research is closely related to the plasma-materials interaction. It deals with the edge-plasma-wall interaction, the wall erosion, transport and re-deposition of neutral particles and the effect of neutral particles on the fuel recycling. Since the in-vessel tritium shows a complex nonlinear behavior, there remain many unsolved problems. So far, behaviors of in-vessel tritium have been investigated by two groups A01 and A02. The A01 group performed experiments on accumulation and recovery of tritium in thermonuclear fusion reactors and the A02 group studied theory and simulation on the in-vessel tritium behavior. In the present article, outcomes of the research are reviewed. (author)

  2. Reactor pressure vessel support

    International Nuclear Information System (INIS)

    Butti, J.P.

    1977-01-01

    A link and pin support system provides the primary vertical and lateral support for a nuclear reactor pressure vessel without restricting thermally induced radial and vertical expansion and contraction. (Auth.)

  3. 2013 Cargo Vessel Density

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Automatic Identification Systems (AIS) are a navigation safety device that transmits and monitors the location and characteristics of many vessels in U.S. and...

  4. 2013 Fishing Vessel Density

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Automatic Identification Systems (AIS) are a navigation safety device that transmits and monitors the location and characteristics of many vessels in U.S. and...

  5. 2013 Vessel Density

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Automatic Identification Systems (AIS) are a navigation safety device that transmits and monitors the location and characteristics of many vessels in U.S. and...

  6. Ocean Station Vessel

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Ocean Station Vessels (OSV) or Weather Ships captured atmospheric conditions while being stationed continuously in a single location. While While most of the...

  7. Vessel Sewage Discharges

    Science.gov (United States)

    Vessel sewage discharges are regulated under Section 312 of the Clean Water Act, which is jointly implemented by the EPA and Coast Guard. This homepage links to information on marine sanitation devices and no discharge zones.

  8. Reactor pressure vessel design

    International Nuclear Information System (INIS)

    Foehl, J.

    1998-01-01

    As a result of the popularity of the Agencies report 'Neutron Irradiation Embrittlement of Reactor Pressure Vessel Steels' of 1975, it was decided that another report on this broad subject would be of use. In this report, background and contemporary views on specially identified areas of the subject are considered as self-contained chapters, written by experts. In chapter 2, the general principles of reactor pressure vessel design are elaborated. Crack and fracture initiation and propagation are treated in some detail

  9. Graywater Discharges from Vessels

    Science.gov (United States)

    2011-11-01

    metals (e.g., cadmium, chromium, lead, copper , zinc, silver, nickel, and mercury), solids, and nutrients (USEPA, 2008b; USEPA 2010). Wastewater from... flotation ), and disinfection (using ultraviolet light) as compared to traditional Type II MSDs that use either simple maceration and chlorination, or...Coliform Naval Vessels Oceanographic Vessels Small Cruise Ships 25a Vendor 2 Hamann AG Biological Treatment with Dissolved Air Flotation and

  10. Effect of titania on the characteristics of a Tin-Platinum catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Morales-Gil, P., E-mail: moralesp@imp.mx; Nava, N. [Instituto Mexicano del Petróleo (Mexico); Baggio-Saitovitch, E. [Centro Brasileiro de Pesquisas Físicas (Brazil)

    2015-06-15

    Pt-Sn bimetallic catalysts dispersed on alumina are commonly used for reforming and dehydrogenation reactions. In this research work, Pt and Sn were supported on titania. The resulting interactions between the components in the prepared samples, before and after treatment with hydrogen, were studied by Mössbauer spectroscopy, X-ray diffraction and Rietveld refinement. The results show the presence of Pt and SnO{sub 2} after calcinations. After the reduction process, metallic Pt, PtSn, and Pt{sub 3}Sn alloys were identified. The Rietveld refinement analysis shows that some Ti{sup 4+} atoms were replaced by Sn{sup 4+} atoms in the titania structure. Finally, the Mössbauer spectroscopy and X-ray diffraction results indicate that metallic platinum and SnO{sub 2} are encapsulated by a TiOx layer.

  11. LANL Robotic Vessel Scanning

    Energy Technology Data Exchange (ETDEWEB)

    Webber, Nels W. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-11-25

    Los Alamos National Laboratory in J-1 DARHT Operations Group uses 6ft spherical vessels to contain hazardous materials produced in a hydrodynamic experiment. These contaminated vessels must be analyzed by means of a worker entering the vessel to locate, measure, and document every penetration mark on the vessel. If the worker can be replaced by a highly automated robotic system with a high precision scanner, it will eliminate the risks to the worker and provide management with an accurate 3D model of the vessel presenting the existing damage with the flexibility to manipulate the model for better and more in-depth assessment.The project was successful in meeting the primary goal of installing an automated system which scanned a 6ft vessel with an elapsed time of 45 minutes. This robotic system reduces the total time for the original scope of work by 75 minutes and results in excellent data accumulation and transmission to the 3D model imaging program.

  12. Crack growth rates in vessel head penetration materials

    International Nuclear Information System (INIS)

    Gomez Briceno, D.; Lapena, J.; Blazquez, F.

    1994-01-01

    The cracks detected in reactor vessel head penetrations in certain European plants have been attributed to Primary Water Stress Corrosion Cracking (PWSCC). The penetrations in question are made from Inconel 600. The susceptibility of this alloy to PWSCC has been widely studied in relation to use of this material for steam generator tubes. When the first reactor vessel head penetration cracks were detected, most of the available data on crack propagation rates were from test specimens made from steam generator tubes and tested under conditions that questioned the validity of these data for assessment of the evolution of cracks in penetrations. For this reason, the scope of the Spanish Research Project on the Inspection and Repair of PWR reactor vessel head penetrations included the acquisition of data on crack propagation rates in Inconel 600, representative of the materials used for vessel head penetrations. (authors). 1 fig., 2 tabs., 6 refs

  13. Application and biocompatibility of a new absorbable magnesium alloy stent in blood vessels%新型可吸收镁合金支架在血管内应用及生物相容性

    Institute of Scientific and Technical Information of China (English)

    赵辉; 雷民

    2016-01-01

    BACKGROUND: In vivo animal experiments have found that magnesium al oy stents can be completely degraded in a slow, orderly and non-toxic manner fol owing the vascular remodeling. OBJECTIVE: To investigate the applied effect and biocompatibility of a new type of magnesium al oy stent in blood vessels. METHODS: Forty-two crossbreed dogs were implanted with absorbable magnesium al oy stents via the coronary artery or left femoral artery. At days 1, 3, 5 and weeks 1, 2, 3, 4 after implantation, coronary or femoral artery angiography, inflammatory factor detection and morphological analysis targeting intimal hyperplasia were performed. RESULTS AND CONCLUSION: At 1 day after implantation, the stents had the complete shape and were ful y extended; at 3 days after implantation, the stents were degraded partial y; at 1 week after implantation, the stents were degraded completely. Within 1-3 weeks after implantation, the levels of tumor necrosis factor α, interleukin-6 and interleukin-8 continued to decrease. At 2 and 3 weeks after implantation, the target vessels presented with mild intimal hyperplasia. As time went on, the hyperplasia area increased gradual y, and the percentage of intimal hyperplasia increased gradual y. Blood magnesium concentration remained unchanged before and after stent implantation. The results show that the new absorbable magnesium al oy stent can be completely degraded within 1 week after stent implantation and has good biocompatibility.%背景:动物体内实验发现,可吸收镁合金支架随着血管结构重塑的完成,可通过缓慢、有序、无毒害降解方式在体内完全降解。目的:探讨新型血管内可吸收镁合金支架在血管内的应用效果及生物相容性。方法:取42只防疫杂种犬,均于冠状动脉或者左侧股动脉置入可吸收镁合金支架,置入后1 d、3 d、5 d、1周、2周、3周、4周,进行冠状动脉或股动脉造影、炎性因子检测及靶血管内膜增生面

  14. FFTF and CRBRP reactor vessels

    International Nuclear Information System (INIS)

    Morgan, R.E.

    1977-01-01

    The Fast Flux Test Facility (FFTF) reactor vessel and the Clinch River Breeder Reactor Plant (CRBRP) reactor vessel each serve to enclose a fast spectrum reactor core, contain the sodium coolant, and provide support and positioning for the closure head and internal structure. Each vessel is located in its reactor cavity and is protected by a guard vessel which would ensure continued decay heat removal capability should a major system leak develop. Although the two plants have significantly different thermal power ratings, 400 megawatts for FFTF and 975 megawatts for CRBRP, the two reactor vessels are comparable in size, the CRBRP vessel being approximately 28% longer than the FFTF vessel. The FFTF vessel diameter was controlled by the space required for the three individual In-Vessel Handling Machines and Instrument Trees. Utilization of the triple rotating plug scheme for CRBRP refueling enables packaging of the larger CRBRP core in a vessel the same diameter as the FFTF vessel

  15. Corrosion Studies of Platinum Nano-Particles for Fuel Cells

    DEFF Research Database (Denmark)

    Shim, Signe Sarah

    The main focus of the present thesis is on corrosion and prevention of corrosion of platinum particles supported on carbon. This is important for instance in connection with start up and shutdown of fuel cells. The degradation mechanism of platinum particles supported on carbon has been character......The main focus of the present thesis is on corrosion and prevention of corrosion of platinum particles supported on carbon. This is important for instance in connection with start up and shutdown of fuel cells. The degradation mechanism of platinum particles supported on carbon has been...... characterized during oxygen reduction reaction (ORR) condition using identical location (IL) transmission electron microscopy (TEM). A TEM grid was used as the working electrode in an electrochemical setup allowing a direct correlation between the electrochemical response and the TEM analysis. The main results...... thirds and one monolayer of gold on platinum supported on carbon were synthesized by an inverse micelle method. The results obtained appear independent of the gold coverage. It has been shown that the electrochemical active surface areas of the platinum and platinum gold particles synthesized...

  16. In vitro corrosion and biocompatibility of binary magnesium alloys.

    Science.gov (United States)

    Gu, Xuenan; Zheng, Yufeng; Cheng, Yan; Zhong, Shengping; Xi, Tingfei

    2009-02-01

    As bioabsorbable materials, magnesium alloys are expected to be totally degraded in the body and their biocorrosion products not deleterious to the surrounding tissues. It's critical that the alloying elements are carefully selected in consideration of their cytotoxicity and hemocompatibility. In the present study, nine alloying elements Al, Ag, In, Mn, Si, Sn, Y, Zn and Zr were added into magnesium individually to fabricate binary Mg-1X (wt.%) alloys. Pure magnesium was used as control. Their mechanical properties, corrosion properties and in vitro biocompatibilities (cytotoxicity and hemocompatibility) were evaluated by SEM, XRD, tensile test, immersion test, electrochemical corrosion test, cell culture and platelet adhesion test. The results showed that the addition of alloying elements could influence the strength and corrosion resistance of Mg. The cytotoxicity tests indicated that Mg-1Al, Mg-1Sn and Mg-1Zn alloy extracts showed no significant reduced cell viability to fibroblasts (L-929 and NIH3T3) and osteoblasts (MC3T3-E1); Mg-1Al and Mg-1Zn alloy extracts indicated no negative effect on viabilities of blood vessel related cells, ECV304 and VSMC. It was found that hemolysis and the amount of adhered platelets decreased after alloying for all Mg-1X alloys as compared to the pure magnesium control. The relationship between the corrosion products and the in vitro biocompatibility had been discussed and the suitable alloying elements for the biomedical applications associated with bone and blood vessel had been proposed.

  17. Electrical Resistance Alloys and Low-Expansion Alloys

    DEFF Research Database (Denmark)

    Kjer, Torben

    1996-01-01

    The article gives an overview of electrical resistance alloys and alloys with low thermal expansion. The electrical resistance alloys comprise resistance alloys, heating alloys and thermostat alloys. The low expansion alloys comprise alloys with very low expansion coefficients, alloys with very low...... thermoelastic coefficients and age hardenable low expansion alloys....

  18. Dissolution of Platinum in Hydrochloric Acid Under Industrial-Scale Alternating Current Polarization

    Science.gov (United States)

    Myrzabekov, B. E.; Bayeshov, A. B.; Makhanbetov, A. B.; Mishra, B.; Baigenzhenov, O. S.

    2018-02-01

    The electrochemical behavior of platinum in a hydrochloric acid solution under polarization by an industrial-scale alternating current has been investigated. For the electrical dissolution of platinum, titanium is used as an auxiliary electrode, which increases the yield of platinum dissolution by 12.5 pct. The influence of the concentration of hydrochloric acid, the current densities of the platinum and titanium electrodes, and the temperature of the electrolyte on the efficiency of the process of dissolving platinum have all been studied.

  19. Bio-inspired routes for synthesizing efficient nanoscale platinum electrocatalysts

    Energy Technology Data Exchange (ETDEWEB)

    Cha, Jennifer N. [Univ. of California, San Diego, CA (United States); Wang, Joseph [Univ. of California, San Diego, CA (United States)

    2014-08-31

    The overall objective of the proposed research is to use fundamental advances in bionanotechnology to design powerful platinum nanocrystal electrocatalysts for fuel cell applications. The new economically-viable, environmentally-friendly, bottom-up biochemical synthetic strategy will produce platinum nanocrystals with tailored size, shape and crystal orientation, hence leading to a maximum electrochemical reactivity. There are five specific aims to the proposed bio-inspired strategy for synthesizing efficient electrocatalytic platinum nanocrystals: (1) isolate peptides that both selectively bind particular crystal faces of platinum and promote the nucleation and growth of particular nanocrystal morphologies, (2) pattern nanoscale 2-dimensional arrays of platinum nucleating peptides from DNA scaffolds, (3) investigate the combined use of substrate patterned peptides and soluble peptides on nanocrystal morphology and growth (4) synthesize platinum crystals on planar and large-area carbon electrode supports, and (5) perform detailed characterization of the electrocatalytic behavior as a function of catalyst size, shape and morphology. Project Description and Impact: This bio-inspired collaborative research effort will address key challenges in designing powerful electrocatalysts for fuel cell applications by employing nucleic acid scaffolds in combination with peptides to perform specific, environmentally-friendly, simultaneous bottom-up biochemical synthesis and patterned assembly of highly uniform and efficient platinum nanocrystal catalysts. Bulk synthesis of nanoparticles usually produces a range of sizes, accessible catalytic sites, crystal morphologies, and orientations, all of which lead to inconsistent catalytic activities. In contrast, biological systems routinely demonstrate exquisite control over inorganic syntheses at neutral pH and ambient temperature and pressures. Because the orientation and arrangement of the templating biomolecules can be precisely

  20. The RSC Faraday prize lecture of 1989 on platinum.

    Science.gov (United States)

    Thomas, John Meurig

    2017-08-25

    In 1861, Michael Faraday gave one of his last Friday Evening Discourses at the Royal Institution of Great Britain, London, on platinum, which he described as "this beautiful, magnificent and valuable metal". More than a hundred and twenty years later (in 1989), the author re-enacted, at the Royal Institution, many of the demonstrations that Faraday carried out in his memorable Discourse. This article outlines many of Faraday's views on, and experiments with, platinum. It also describes the continuing importance and utilization of platinum, both as perceived in 1989 and from present perspectives.

  1. Platinum dendritic nanoparticles with magnetic behavior

    Energy Technology Data Exchange (ETDEWEB)

    Li, Wenxian, E-mail: wl240@uowmail.edu.au [Institute for Superconducting and Electronic Materials, University of Wollongong, NSW 2522 (Australia); Solar Energy Technologies, School of Computing, Engineering, and Mathematics, University of Western Sydney, Penrith NSW 2751 (Australia); Sun, Ziqi; Nevirkovets, Ivan P.; Dou, Shi-Xue [Institute for Superconducting and Electronic Materials, University of Wollongong, NSW 2522 (Australia); Tian, Dongliang [Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of the Ministry of Education, School of Chemistry and the Environment, Beihang University, Beijing 100191 (China)

    2014-07-21

    Magnetic nanoparticles have attracted increasing attention for biomedical applications in magnetic resonance imaging, high frequency magnetic field hyperthermia therapies, and magnetic-field-gradient-targeted drug delivery. In this study, three-dimensional (3D) platinum nanostructures with large surface area that features magnetic behavior have been demonstrated. The well-developed 3D nanodendrites consist of plentiful interconnected nano-arms ∼4 nm in size. The magnetic behavior of the 3D dendritic Pt nanoparticles is contributed by the localization of surface electrons due to strongly bonded oxygen/Pluronic F127 and the local magnetic moment induced by oxygen vacancies on the neighboring Pt and O atoms. The magnetization of the nanoparticles exhibits a mixed paramagnetic and ferromagnetic state, originating from the core and surface, respectively. The 3D nanodendrite structure is suitable for surface modification and high amounts of drug loading if the transition temperature was enhanced to room temperature properly.

  2. Superconductivity observed in platinum-silicon interface

    Energy Technology Data Exchange (ETDEWEB)

    Kuo, Pai-Chia, E-mail: paichia@phys.sinica.edu.tw [Research Program on Nanoscience and Nanotechnology, Academia Sinica, Taipei 11529, Taiwan (China); Institute of Physics, Academia Sinica, Taipei 11529, Taiwan (China); Department of Materials Science and Engineering, National Taiwan University, Taipei 10617, Taiwan (China); Chen, Chun-Wei [Department of Materials Science and Engineering, National Taiwan University, Taipei 10617, Taiwan (China); Lee, Ku-Pin; Shiue, Jessie, E-mail: yshiue@phys.sinica.edu.tw [Research Program on Nanoscience and Nanotechnology, Academia Sinica, Taipei 11529, Taiwan (China); Institute of Physics, Academia Sinica, Taipei 11529, Taiwan (China)

    2014-05-26

    We report the discovery of superconductivity with an onset temperature of ∼0.6 K in a platinum-silicon interface. The interface was formed by using a unique focused ion beam sputtering micro-deposition method in which the energies of most sputtered Pt atoms are ∼2.5 eV. Structural and elemental analysis by transmission electron microscopy (TEM) and energy dispersive X-ray spectroscopy reveal a ∼ 7 nm interface layer with abundant Pt, which is the layer likely responsible for the superconducting transport behavior. Similar transport behavior was also observed in a gold-silicon interface prepared by the same technique, indicating the possible generality of this phenomenon.

  3. A platinum in-core flux detector

    International Nuclear Information System (INIS)

    Shields, R.B.

    1976-01-01

    The performance is described of a platinum emitter self-powered detector having the following parameters: emitter diameter 0.51 mm, Inconel 600 collector of 1.5 mm outer diameter and 0.25 mm wall thickness, compacted powder MgO insulant, thermal neutron flux 10 14 n.cm -2 .s -1 and gamma radiation dose rate 1.2 x 10 8 rad.h -1 . The advantage of the detector is its sensitivity to both neutrons and gamma radiation. A comparison is made with other types of detectors using Ce, Ta, Os, Rh, V, Co, Zr as emitters, especially in relation to the emitter response time to neutrons or gammas, the output signal amplitude, sensitivity, and the emitter half-life. Extensive tests of the detectors proceeded for two years on the NRU and CANDU-BLW reactors in Gentilly, Canada. (J.B.)

  4. Platinum dendritic nanoparticles with magnetic behavior

    International Nuclear Information System (INIS)

    Li, Wenxian; Sun, Ziqi; Nevirkovets, Ivan P.; Dou, Shi-Xue; Tian, Dongliang

    2014-01-01

    Magnetic nanoparticles have attracted increasing attention for biomedical applications in magnetic resonance imaging, high frequency magnetic field hyperthermia therapies, and magnetic-field-gradient-targeted drug delivery. In this study, three-dimensional (3D) platinum nanostructures with large surface area that features magnetic behavior have been demonstrated. The well-developed 3D nanodendrites consist of plentiful interconnected nano-arms ∼4 nm in size. The magnetic behavior of the 3D dendritic Pt nanoparticles is contributed by the localization of surface electrons due to strongly bonded oxygen/Pluronic F127 and the local magnetic moment induced by oxygen vacancies on the neighboring Pt and O atoms. The magnetization of the nanoparticles exhibits a mixed paramagnetic and ferromagnetic state, originating from the core and surface, respectively. The 3D nanodendrite structure is suitable for surface modification and high amounts of drug loading if the transition temperature was enhanced to room temperature properly.

  5. Acrylic vessel cleaning tests

    International Nuclear Information System (INIS)

    Earle, D.; Hahn, R.L.; Boger, J.; Bonvin, E.

    1997-01-01

    The acrylic vessel as constructed is dirty. The dirt includes blue tape, Al tape, grease pencil, gemak, the glue or residue form these tapes, finger prints and dust of an unknown composition but probably mostly acrylic dust. This dirt has to be removed and once removed, the vessel has to be kept clean or at least to be easily cleanable at some future stage when access becomes much more difficult. The authors report on the results of a series of tests designed: (a) to prepare typical dirty samples of acrylic; (b) to remove dirt stuck to the acrylic surface; and (c) to measure the optical quality and Th concentration after cleaning. Specifications of the vessel call for very low levels of Th which could come from tape residues, the grease pencil, or other sources of dirt. This report does not address the concerns of how to keep the vessel clean after an initial cleaning and during the removal of the scaffolding. Alconox is recommended as the cleaner of choice. This acrylic vessel will be used in the Sudbury Neutrino Observatory

  6. Development of low activation aluminum alloys for reacting plasma experiment

    International Nuclear Information System (INIS)

    Matsumoto, K.; Kawai, H.; Saida, T.; Onozuka, M.

    1986-01-01

    In the advanced fusion devices aiming at D-T burning, structural components such as vacuum vessels, coil casings are exposed to high energy neutrons produced by D-T reaction. From a view point of maintenability of accessibility, low radioactive structural materials are strongly preferred. The authors have developed two types of improved alloys of reduced radioactivity based on 5083 aluminum alloy: Al-Mg-Bi . Cr and Al-Mg-Cu . Zr. Both of the alloys of 50mm thickness have been proved to have excellent material properties virtually equivalent to those of 5083 alloy

  7. Manufacture of an Inconel pressure vessel

    International Nuclear Information System (INIS)

    Herz, H.; Iversen, K.; Stiefelhagen, B.

    1978-01-01

    The fabrication of a thermo-shock-loaded pressure vessel of high temperature nickel alloys required the individual licensing of the basic and addition materials according to the AD data sheets Contrary to the experience of Duennbleck processars, it was found that the alloy Inconel 718 in its hardened state could not be allowed due to the formation of the brittle daves phase in the welding deposit. Positive experience was acquired however with the non-hardenable alloy Inconel 625 which could be processed as jacket materials without problem. Rods of Inconel 625 were used as similar additive for WIG welding and the same type electrode 112 for E-welding. The heat resistance required of 320 N/cm 2 at 623 0 K and the lowest notch bar value of 35 J/cm 2 at RT were well surpassed. The mixed compounds of Inconel 625 and 718 were also no problem when welding with the non-hardening additives Inconel 625 and 112 and eliminating a thermal treatment. (orig.) [de

  8. Radioactive liquid containing vessel

    International Nuclear Information System (INIS)

    Sakurada, Tetsuo; Kawamura, Hironobu.

    1993-01-01

    Cooling jackets are coiled around the outer circumference of a container vessel, and the outer circumference thereof is covered with a surrounding plate. A liquid of good conductivity (for example, water) is filled between the cooling jackets and the surrounding plate. A radioactive liquid is supplied to the container vessel passing through a supply pipe and discharged passing through a discharge pipe. Cooling water at high pressure is passed through the cooling water jackets in order to remove the heat generated from the radioactive liquid. Since cooling water at high pressure is thus passed through the coiled pipes, the wall thickness of the container vessel and the cooling water jackets can be reduced, thereby enabling to reduce the cost. Further, even if the radioactive liquid is leaked, there is no worry of contaminating cooling water, to prevent contamination. (I.N.)

  9. Thiosemicarbazone complexes of the platinum metals. A story of ...

    Indian Academy of Sciences (India)

    Unknown

    Thiosemicarbazone complexes; platinum metals; variable coordination; ... carbonylic carbon via one or two intervening atoms, D,N,S tricoordination usually takes .... modelling studies show that in this coordination mode, the phenyl ring of the.

  10. Platinum single crystal electrodes for the electrocatalysis of methane oxidation

    Directory of Open Access Journals (Sweden)

    Mayara Munaretto

    2011-03-01

    Full Text Available The main objective of this paper is to characterize the voltammetric profiles of platinum single crystals of low Miller indexes Pt(100 and Pt(110 and study their catalytic activities on the oxidation of methane. In this way, it was developed a metallic surface modified by presence of other metal oxide, which presents catalytic activity for this reaction. It is well known that the electrooxidation of methane (CH4 leads mainly to the formation of CO2 and H2O, however, the oxidation can also lead to the formation of CO, a reaction intermediate that has strong interaction with metal surfaces, such as platinum. This molecule tends to accumulate on the platinum surface and to passive it, due to the self-poisoning, decreasing its catalytic activity. Therefore, the main aim of this work was the development of a platinum electrode modified by deposition of titanium oxide, which presented electrocatalytic properties for the oxidation of methane.

  11. Wireless gas sensing in South African underground platinum mines

    CSIR Research Space (South Africa)

    Abu-Mahfouz, Adnan M

    2014-04-01

    Full Text Available Approximately 70% of South African mines are classified as fiery, where methane gas potentially could cause explosions. The number of flammable gas reports and accidents are increasing steadily for both gold and platinum mines. However...

  12. Nanoparticulate platinum films on gold using dendrimer-based wet ...

    Indian Academy of Sciences (India)

    Central Electrochemical Research Institute, Karaikudi 630 006, India. E-mail: ... deposition methods for applications involving thin films, e.g., catalysis. Deposition of platinum .... The spectrum recorded at 0.3 V shows a mixed control behaviour ...

  13. Nickel and its alloys as perspective materials for intermediate temperature steam electrolysers operating on proton conducting solid acids as electrolyte

    DEFF Research Database (Denmark)

    Nikiforov, Aleksey; Petrushina, Irina; Jensen, Jens Oluf

    2012-01-01

    Several stainless steels, nickel-based alloys, Ta-coated stainless steel, niobium, nickel, platinum and gold were evaluated as possible materials for use in the intermediate temperature water electrolysers. The corrosion resistance was measured in molten KH2PO4 as simulated conditions corresponding...

  14. Determination of microquantities of silver in platinum by isotope dilution

    International Nuclear Information System (INIS)

    Yedinakova, V.; Sladkovska, Y.

    1980-01-01

    A method is described for determining microquantities of silver in platinum. It is based on isotope dilution by means of substoichiometric extraction of dithizonates with carbon tetrachloride. The determination of silver according to this technique is not interfered by zinc or gold in quantities exceeding the silver content by one order of magnitude nor by a great excess of platinum. In the presence of copper the addition of complexon is necessary. (author)

  15. Platinum-Bismuth Bimetallic Catalysts: Synthesis, Characterization and Applications

    OpenAIRE

    Saucedo, Jose A, Jr; Xiao, Yang; Varma, Arvind

    2015-01-01

    Bimetallic catalysts have been explored and shown to exhibit unique characteristics which are not present in monometallic catalysts. Platinum is well known as an effective catalyst for oxidation and reduction reactions, and it can be made more effective when bismuth is introduced as a promotor. Thus, the effectiveness of the Pt-Bi catalyst was demonstrated in prior work. What is not clear, however, is the mechanism behind the catalyst function; why addition of bismuth to platinum decreases de...

  16. Platinum group metal nitrides and carbides: synthesis, properties and simulation

    International Nuclear Information System (INIS)

    Ivanovskii, Alexander L

    2009-01-01

    Experimental and theoretical data on new compounds, nitrides and carbides of the platinum group 4d and 5d metals (ruthenium, rhodium, palladium, osmium, iridium, platinum), published over the past five years are summarized. The extreme mechanical properties of platinoid nitrides and carbides, i.e., their high strength and low compressibility, are noted. The prospects of further studies and the scope of application of these compounds are discussed.

  17. Platinum stable isotopes in ferromanganese crust and nodules

    Science.gov (United States)

    Corcoran, Loretta; Seward, Terry; Handler, Monica R.

    2015-04-01

    Hydrogenetic ferromanganese (Fe-Mn) crust and nodules are slow-growing chemical sediments that form by direct precipitation from seawater, resulting in a record of changing seawater chemistry. These sediments are the primary sink for platinum in the modern oxic marine environment, hosting well-documented enrichments over other platinum-group elements (PGEs): the Pt anomaly [1]. Platinum is a non-bio-essential, highly siderophile, transition metal with six stable isotopes (190Pt, 192Pt, 194Pt, 195Pt, 196Pt, and 198Pt) with several oxidation states (Pt0, Pt2+ and Pt4+). Platinum is generally considered to exist in the hydrosphere as Pt2+ although its behaviour in the marine environment is poorly constrained, and Pt4+may also be present. Variations in ocean redox state, together with changes in source fluxes to the oceans, may therefore lead to small variations (Leaching experiments conducted on platinum rich terrestrial materials underwent platinum stable isotopic measurement as an analogue for the Pt isotopic fractionation associated with continental weathering. [1] Hodge, V.F. et al. (1985) Earth and Planetary Science Letters, 72, 158-162. [2] Creech, J. et al. (2013) Journal of Analytical Atomic Spectrometry, 28. 853-865.

  18. Exosomes as mediators of platinum resistance in ovarian cancer.

    Science.gov (United States)

    Crow, Jennifer; Atay, Safinur; Banskota, Samagya; Artale, Brittany; Schmitt, Sarah; Godwin, Andrew K

    2017-02-14

    Exosomes have been implicated in the cell-cell transfer of oncogenic proteins and genetic material. We speculated this may be one mechanism by which an intrinsically platinum-resistant population of epithelial ovarian cancer (EOC) cells imparts its influence on surrounding tumor cells. To explore this possibility we utilized a platinum-sensitive cell line, A2780 and exosomes derived from its resistant subclones, and an unselected, platinum-resistant EOC line, OVCAR10. A2780 cells demonstrate a ~2-fold increase in viability upon treatment with carboplatin when pre-exposed to exosomes from platinum-resistant cells as compared to controls. This coincided with increased epithelial to mesenchymal transition (EMT). DNA sequencing of EOC cell lines revealed previously unreported somatic mutations in the Mothers Against Decapentaplegic Homolog 4 (SMAD4) within platinum-resistant cells. A2780 cells engineered to exogenously express these SMAD4 mutations demonstrate up-regulation of EMT markers following carboplatin treatment, are more resistant to carboplatin, and release exosomes which impart a ~1.7-fold increase in resistance in naive A2780 recipient cells as compared to controls. These studies provide the first evidence that acquired SMAD4 mutations enhance the chemo-resistance profile of EOC and present a novel mechanism in which exchange of tumor-derived exosomes perpetuates an EMT phenotype, leading to the development of subpopulations of platinum-refractory cells.

  19. High performance platinum single atom electrocatalyst for oxygen reduction reaction

    Science.gov (United States)

    Liu, Jing; Jiao, Menggai; Lu, Lanlu; Barkholtz, Heather M.; Li, Yuping; Wang, Ying; Jiang, Luhua; Wu, Zhijian; Liu, Di-Jia; Zhuang, Lin; Ma, Chao; Zeng, Jie; Zhang, Bingsen; Su, Dangsheng; Song, Ping; Xing, Wei; Xu, Weilin; Wang, Ying; Jiang, Zheng; Sun, Gongquan

    2017-07-01

    For the large-scale sustainable implementation of polymer electrolyte membrane fuel cells in vehicles, high-performance electrocatalysts with low platinum consumption are desirable for use as cathode material during the oxygen reduction reaction in fuel cells. Here we report a carbon black-supported cost-effective, efficient and durable platinum single-atom electrocatalyst with carbon monoxide/methanol tolerance for the cathodic oxygen reduction reaction. The acidic single-cell with such a catalyst as cathode delivers high performance, with power density up to 680 mW cm-2 at 80 °C with a low platinum loading of 0.09 mgPt cm-2, corresponding to a platinum utilization of 0.13 gPt kW-1 in the fuel cell. Good fuel cell durability is also observed. Theoretical calculations reveal that the main effective sites on such platinum single-atom electrocatalysts are single-pyridinic-nitrogen-atom-anchored single-platinum-atom centres, which are tolerant to carbon monoxide/methanol, but highly active for the oxygen reduction reaction.

  20. In vitro permeation of platinum and rhodium through Caucasian skin.

    Science.gov (United States)

    Franken, A; Eloff, F C; Du Plessis, J; Badenhorst, C J; Jordaan, A; Du Plessis, J L

    2014-12-01

    During platinum group metals (PGMs) refining the possibility exists for dermal exposure to PGM salts. The dermal route has been questioned as an alternative route of exposure that could contribute to employee sensitisation, even though literature has been focused on respiratory exposure. This study aimed to investigate the in vitro permeation of platinum and rhodium through intact Caucasian skin. A donor solution of 0.3mg/ml of metal, K2PtCl4 and RhCl3 respectively, was applied to the vertical Franz diffusion cells with full thickness abdominal skin. The receptor solution was removed at various intervals during the 24h experiment, and analysed with high resolution ICP-MS. Skin was digested and analysed by ICP-OES. Results indicated cumulative permeation with prolonged exposure, with a significantly higher mass of platinum permeating after 24h when compared to rhodium. The mass of platinum retained inside the skin and the flux of platinum across the skin was significantly higher than that of rhodium. Permeated and skin retained platinum and rhodium may therefore contribute to sensitisation and indicates a health risk associated with dermal exposure in the workplace. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Structure-activity relationships of carbon-supported platinum-bismuth and platinum-antimony oxidation catalysts

    CSIR Research Space (South Africa)

    Maphoru, MV

    2017-04-01

    Full Text Available Compositional and morphological studies on supported platinum are important for the improvement and expanded use of catalysts for oxidative coupling reactions. Nanocomposites consisting of 5% Pt supported on activated carbon and promoted with 5% Bi...

  2. Radiation embrittlement in pressure vessels of power reactors

    International Nuclear Information System (INIS)

    Kempf, Rodolfo; Fortis, Ana M.

    2007-01-01

    It is presented the project to study the effect of lead factors on the mechanical behavior of Reactor Pressure Vessel steels. It is described the facility designed to irradiate Charpy specimens with V notch of SA-508 type 3 steel at power reactor temperature, installed in the RA-1 reactor. The objective is to obtain the fracture behavior of irradiated specimens with different lead factors and to know their dependence with the diffusion of alloy elements. (author) [es

  3. Pressure vessel integrity 1991

    International Nuclear Information System (INIS)

    Bhandari, S.; Doney, R.O.; McDonald, M.S.; Jones, D.P.; Wilson, W.K.; Pennell, W.E.

    1991-01-01

    This volume contains papers relating to the structural integrity assessment of pressure vessels and piping, with special emphasis on nuclear industry applications. The papers were prepared for technical sessions developed under the sponsorship of the ASME Pressure Vessels and Piping Division Committees for Codes and Standards, Computer Technology, Design and Analysis, and Materials Fabrication. They were presented at the 1991 Pressure Vessels and Piping Division Conference in San Diego, California, June 23-27. The primary objective of the sponsoring organization is to provide a forum for the dissemination and discussion of information on development and application of technology for the structural integrity assessment of pressure vessels and piping. This publication includes contributions from authors from Australia, France, Japan, Sweden, Switzerland, the United Kingdom, and the United States. The papers here are organized in six sections, each with a particular emphasis as indicated in the following section titles: Fracture Technology Status and Application Experience; Crack Initiation, Propagation and Arrest; Ductile Tearing; Constraint, Stress State, and Local-Brittle-Zones Effects; Computational Techniques for Fracture and Corrosion Fatigue; and Codes and Standards for Fatigue, Fracture and Erosion/Corrosion

  4. The reactor vessel steels

    International Nuclear Information System (INIS)

    Bilous, W.; Hajewska, E.; Szteke, W.; Przyborska, M.; Wasiak, J.; Wieczorkowski, M.

    2005-01-01

    In the paper the fundamental steels using in the construction of pressure vessel water reactor are discussed. The properties of these steels as well as the influence of neutron irradiation on its degradation in the time of exploitation are also done. (authors)

  5. Vacuum distilling vessel

    Energy Technology Data Exchange (ETDEWEB)

    Reik, H

    1928-12-27

    Vacuum distilling vessel for mineral oil and the like, characterized by the ring-form or polyconal stiffeners arranged inside, suitably eccentric to the casing, being held at a distance from the casing by connecting members of such a height that in the resulting space if necessary can be arranged vapor-distributing pipes and a complete removal of the residue is possible.

  6. Visualization of vessel traffic

    NARCIS (Netherlands)

    Willems, C.M.E.

    2011-01-01

    Moving objects are captured in multivariate trajectories, often large data with multiple attributes. We focus on vessel traffic as a source of such data. Patterns appearing from visually analyzing attributes are used to explain why certain movements have occurred. In this research, we have developed

  7. GOLD PRESSURE VESSEL SEAL

    Science.gov (United States)

    Smith, A.E.

    1963-11-26

    An improved seal between the piston and die member of a piston-cylinder type pressure vessel is presented. A layer of gold, of sufficient thickness to provide an interference fit between the piston and die member, is plated on the contacting surface of at least one of the members. (AEC)

  8. Reactor vessel stud tensioner

    International Nuclear Information System (INIS)

    Malandra, L.J.; Beer, R.W.; Salton, R.B.; Spiegelman, S.R.; Cognevich, M.L.

    1982-01-01

    A quick-acting stud tensioner, for facilitating the loosening or tightening of a stud nut on a reactor vessel stud, has gripper jaws which when the tensioner is lowered into engagement with the upper end of the stud are moved inwards to grip the upper end and which when the tensioner is lifted move outward to release the upper end. (author)

  9. PDX vacuum vessel stress analysis

    International Nuclear Information System (INIS)

    Nikodem, Z.D.

    1975-01-01

    A stress analysis of PDX vacuum vessel is described and the summary of results is presented. The vacuum vessel is treated as a toroidal shell of revolution subjected to an internal vacuum. The critical buckling pressure is calculated. The effects of the geometrical discontinuity at the juncture of toroidal shell head and cylindrical outside wall, and the concavity of the cylindrical wall are examined. An effect of the poloidal field coil supports and the vessel outside supports on the stress distribution in the vacuum vessel is determined. A method evaluating the influence of circular ports in the vessel wall on the stress level in the vessel is outlined

  10. Recovery of Platinum Group Metals from Spent Catalysts Using Iron Chloride Vapor Treatment

    Science.gov (United States)

    Taninouchi, Yu-ki; Okabe, Toru H.

    2018-05-01

    The recovery of platinum group metals (PGMs) from spent automobile catalysts is a difficult process because of their relatively low contents in the scrap. In this study, to improve the efficiency of the existing recycling techniques, a novel physical concentration method involving treatment with FeCl2 vapor has been examined. The reactions occurring between typical catalyst components and FeCl2 vapor are discussed from the thermodynamic point of view, and the validity of the proposed technique was experimentally verified. The obtained results indicate that the vapor treatment at around 1200 K (927 °C) can effectively alloy PGMs (Pt, Pd, and Rh) with Fe, resulting in the formation of a ferromagnetic alloy. It was also confirmed that cordierite and alumina (the major catalyst components) remained unreacted after the vapor treatment, while ceria species were converted into oxychlorides. The samples simulating the automobile catalyst were also subjected to magnetic separation after the treatment with FeCl2 vapor; as a result, PGMs were successfully extracted and concentrated in the form of a magnetic powder. Thus, the FeCl2 vapor treatment followed by magnetic separation can be utilized for recovering PGMs directly from spent catalysts as an effective pretreatment for the currently used recycling methods.

  11. Nuclear analytical methods for platinum group elements

    International Nuclear Information System (INIS)

    2005-04-01

    Platinum group elements (PGE) are of special interest for analytical research due to their economic importance like chemical peculiarities as catalysts, medical applications as anticancer drugs, and possible environmental detrimental impact as exhaust from automobile catalyzers. Natural levels of PGE are so low in concentration that most of the current analytical techniques approach their limit of detection capacity. In addition, Ru, Rh, Pd, Re, Os, Ir, and Pt analyses still constitute a challenge in accuracy and precision of quantification in natural matrices. Nuclear analytical techniques, such as neutron activation analysis, X ray fluorescence, or proton-induced X ray emission (PIXE), which are generally considered as reference methods for many analytical problems, are useful as well. However, due to methodological restrictions, they can, in most cases, only be applied after pre-concentration and under special irradiation conditions. This report was prepared following a coordinated research project and a consultants meeting addressing the subject from different viewpoints. The experts involved suggested to discuss the issue according to the (1) application, hence, the concentration levels encountered, and (2) method applied for analysis. Each of the different fields of application needs special consideration for sample preparation, PGE pre-concentration, and determination. Additionally, each analytical method requires special attention regarding the sensitivity and sample type. Quality assurance/quality control aspects are considered towards the end of the report. It is intended to provide the reader of this publication with state-of-the-art information on the various aspects of PGE analysis and to advise which technique might be most suitable for a particular analytical problem related to platinum group elements. In particular, many case studies described in detail from the authors' laboratory experience might help to decide which way to go. As in many cases

  12. Modelling and sensitivity analysis of urinary platinum excretion in anticancer chemotherapy for the recovery of platinum

    DEFF Research Database (Denmark)

    Folens, Karel; Mortier, Séverine Thérèse F C; Baeten, Janis

    2016-01-01

    Platinum (Pt) based antineoplastics are important in cancer therapy. To date the Pt which is urinary excreted by the patients ends up in wastewater. This is disadvantageous from both an economic as from an ecological point of view because Pt is a valuable material and the excretion products...... are toxic for aquatic organisms. Therefore, efforts should be made to recover the Pt. The urinary excretion of Pt from two antineoplastics are taken under consideration, i.e. cisplatin and carboplatin. Using these reference compounds, a scenario analysis based on administration statistics from Ghent...

  13. Superconducting alloys

    International Nuclear Information System (INIS)

    Bowers, J.E.

    1976-01-01

    Reference is made to superconductors having high critical currents. The superconductor described comprises an alloy consisting of a matrix of a Type II superconductor which is a homogeneous mixture of 50 to 95 at.% Pb and 5 to 40 at.%Bi and/or 10 to 50 at.%In. Dispersed in the matrix is a material to provide pinning centres comprising from 0.01% to 20% by volume of the alloy; this material is a stable discontinuous phase of discrete crystalline particles of Cu, Mn, Te, Se, Ni, Ca, Cr, Ce, Ge or La, either in the form of the element or a compound with a component of the matrix. These particles should have an average diameter of not more than 2μ. A method for making this alloy is described. (U.K.)

  14. An impending platinum crisis and its implications for the future of the automobile

    International Nuclear Information System (INIS)

    Yang, C.-J.

    2009-01-01

    The global demand for platinum has consistently outgrown supply in the past decade. This trend likely will continue and the imbalance may possibly escalate into a crisis. Platinum plays pivotal roles in both conventional automobile emissions control and the envisioned hydrogen economy. A platinum crisis would have profound implications on energy and environment. On the one hand, inadequate platinum supply will prevent widespread commercialization of hydrogen fuel-cell vehicles. On the other hand, expensive platinum may enhance the competitiveness of hybrid, plug-in hybrid, and battery-powered electric cars. Policymakers should weigh the potential impacts of a platinum crisis in energy policy.

  15. Electrical Discharge Platinum Machining Optimization Using Stefan Problem Solutions

    Directory of Open Access Journals (Sweden)

    I. B. Stavitskiy

    2015-01-01

    Full Text Available The article presents the theoretical study results of platinum workability by electrical discharge machining (EDM, based on the solution of the thermal problem of moving the boundary of material change phase, i.e. Stefan problem. The problem solution enables defining the surface melt penetration of the material under the heat flow proceeding from the time of its action and the physical properties of the processed material. To determine the rational EDM operating conditions of platinum the article suggests relating its workability with machinability of materials, for which the rational EDM operating conditions are, currently, defined. It is shown that at low densities of the heat flow corresponding to the finishing EDM operating conditions, the processing conditions used for steel 45 are appropriate for platinum machining; with EDM at higher heat flow densities (e.g. 50 GW / m2 for this purpose copper processing conditions are used; at the high heat flow densities corresponding to heavy roughing EDM it is reasonable to use tungsten processing conditions. The article also represents how the minimum width of the current pulses, at which platinum starts melting and, accordingly, the EDM process becomes possible, depends on the heat flow density. It is shown that the processing of platinum is expedient at a pulse width corresponding to the values, called the effective pulse width. Exceeding these values does not lead to a substantial increase in removal of material per pulse, but considerably reduces the maximum repetition rate and therefore, the EDM capacity. The paper shows the effective pulse width versus the heat flow density. It also presents the dependences of the maximum platinum surface melt penetration and the corresponding pulse width on the heat flow density. Results obtained using solutions of the Stephen heat problem can be used to optimize EDM operating conditions of platinum machining.

  16. Superlattices of platinum and palladium nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    MARTIN,JAMES E.; WILCOXON,JESS P.; ODINEK,JUDY G.; PROVENCIO,PAULA P.

    2000-04-06

    The authors have used a nonionic inverse micelle synthesis technique to form nanoclusters of platinum and palladium. These nanoclusters can be rendered hydrophobic or hydrophilic by the appropriate choice of capping ligand. Unlike Au nanoclusters, Pt nanoclusters show great stability with thiol ligands in aqueous media. Alkane thiols, with alkane chains ranging from C{sub 6} to C{sub 18} were used as hydrophobic ligands, and with some of these they were able to form 2-D and/or 3-D superlattices of Pt nanoclusters as small as 2.7 nm in diameter. Image processing techniques were developed to reliably extract from transmission electron micrographs (TEMs) the particle size distribution, and information about the superlattice domains and their boundaries. The latter permits one to compute the intradomain vector pair correlation function of the particle centers, from which they can accurately determine the lattice spacing and the coherent domain size. From these data the gap between the particles in the coherent domains can be determined as a function of the thiol chain length. It is found that as the thiol chain length increases, the gaps between particles within superlattice domains increases, but more slowly than one might expect, possibly indicating thiol chain interdigitation.

  17. Development of radioactive platinum group metal catalysts

    International Nuclear Information System (INIS)

    Chung, H.S.; Kim, Y.S.; Kim, Y.E.

    1999-03-01

    The fission product nuclides generated during the irradiation of reactor fuel include many useful elements, among them platinum group metals such as ruthenium, rhodium and palladium which are of great industrial importance, occur rarely in nature and are highly valuable. In this research, the authors reviewed various PGM recovery methods. Recovery of palladium from seven-component simulated waste solutions was conducted by selective precipitation method. The recovery yield was more than 99.5% and the purity of the product was more than 99%. Wet-proof catalyst was prepared with the recovered palladium. The specific surface area of the catalyst support was more than 400m 2 /g. The content of palladium impregnated on the support was 1 to 10 wt. %. Hydrogen isotope exchange efficiency of more than 93% to equilibrium with small amount of the catalyst was obtained. It was turned out possible to consider using such palladium or other very low active PGM materials in applications where its activity is unimportant as in nuclear industries. (author). 86 refs., 44 tabs., 88 figs

  18. Development of radioactive platinum group metal catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Chung, H.S.; Kim, Y.S.; Kim, Y.E. [and others

    1999-03-01

    The fission product nuclides generated during the irradiation of reactor fuel include many useful elements, among them platinum group metals such as ruthenium, rhodium and palladium which are of great industrial importance, occur rarely in nature and are highly valuable. In this research, the authors reviewed various PGM recovery methods. Recovery of palladium from seven-component simulated waste solutions was conducted by selective precipitation method. The recovery yield was more than 99.5% and the purity of the product was more than 99%. Wet-proof catalyst was prepared with the recovered palladium. The specific surface area of the catalyst support was more than 400m{sup 2}/g.The content of palladium impregnated on the support was 1 to 10 wt. %. Hydrogen isotope exchange efficiency of more than 93% to equilibrium with small amount of the catalyst was obtained. It was turned out possible to consider using such palladium or other very low active PGM materials in applications where its activity is unimportant as in nuclear industries. (author). 86 refs., 44 tabs., 88 figs.

  19. Silicon Alloying On Aluminium Based Alloy Surface

    International Nuclear Information System (INIS)

    Suryanto

    2002-01-01

    Silicon alloying on surface of aluminium based alloy was carried out using electron beam. This is performed in order to enhance tribological properties of the alloy. Silicon is considered most important alloying element in aluminium alloy, particularly for tribological components. Prior to silicon alloying. aluminium substrate were painted with binder and silicon powder and dried in a furnace. Silicon alloying were carried out in a vacuum chamber. The Silicon alloyed materials were assessed using some techniques. The results show that silicon alloying formed a composite metal-non metal system in which silicon particles are dispersed in the alloyed layer. Silicon content in the alloyed layer is about 40% while in other place is only 10.5 %. The hardness of layer changes significantly. The wear properties of the alloying alloys increase. Silicon surface alloying also reduced the coefficient of friction for sliding against a hardened steel counter face, which could otherwise be higher because of the strong adhesion of aluminium to steel. The hardness of the silicon surface alloyed material dropped when it underwent a heating cycle similar to the ion coating process. Hence, silicon alloying is not a suitable choice for use as an intermediate layer for duplex treatment

  20. Vessels in Transit - Web Tool

    Data.gov (United States)

    Department of Transportation — A web tool that provides real-time information on vessels transiting the Saint Lawrence Seaway. Visitors may sort by order of turn, vessel name, or last location in...

  1. Use of glass-reinforced plastic vessels in petrochemical production plants

    International Nuclear Information System (INIS)

    Makarov, V.G.; Baikin, V.G.; Perlin, S.M.

    1984-01-01

    At present, petrochemical plant production equipment is made of scarce high-alloy steels and alloys or carbon steel with subsequent chemical protection. Traditional methods of protection frequently do not provide reliable and safe service of equipment for the length of the normal operating life. One of the effective methods of combatting corrosion is the use of glass-reinforced plastic equipment. Glass-reinforced equipment is not subject to electrochemical corrosion and has a high chemical resistance. Weight is approximately a third of similar vessels. The paper provides recommendations and precautions for the production, installation, use and maintenance of glass-reinforced plastic vessels

  2. Metallography and microstructure interpretation of some archaeological tin bronze vessels from Iran

    Energy Technology Data Exchange (ETDEWEB)

    Oudbashi, Omid, E-mail: o.oudbashi@aui.ac.ir [Department of Conservation of Historic Properties, Faculty of Conservation, Art University of Isfahan, Hakim Nezami Street, Sangtarashha Alley, P.O. Box 1744, Isfahan (Iran, Islamic Republic of); Davami, Parviz, E-mail: pdavami@razi-foundation.com [Faculty of Material Science and Engineering, Sharif University of Technology/Razi Applied Science Foundation, No. 27, Fernan St., Shahid Ghasem Asghari Blvd., km 21 of Karadj Makhsous Road, Tehran (Iran, Islamic Republic of)

    2014-11-15

    Archaeological excavations in western Iran have recently revealed a significant Luristan Bronzes collection from Sangtarashan archaeological site. The site and its bronze collection are dated to Iron Age II/III of western Iran (10th–7th century BC) according to archaeological research. Alloy composition, microstructure and manufacturing technique of some sheet metal vessels are determined to reveal metallurgical processes in western Iran in the first millennium BC. Experimental analyses were carried out using Scanning Electron Microscopy–Energy Dispersive X-ray Spectroscopy and Optical Microscopy/Metallography methods. The results allowed reconstructing the manufacturing process of bronze vessels in Luristan. It proved that the samples have been manufactured with a binary copper–tin alloy with a variable tin content that may relates to the application of an uncontrolled procedure to make bronze alloy (e.g. co-smelting or cementation). The presence of elongated copper sulphide inclusions showed probable use of copper sulphide ores for metal production and smelting. Based on metallographic studies, a cycle of cold working and annealing was used to shape the bronze vessels. - Highlights: • Sangtarashan vessels are made by variable Cu-Sn alloys with some impurities. • Various compositions occurred due to applying uncontrolled smelting methods. • The microstructure represents thermo-mechanical process to shape bronze vessels. • In one case, the annealing didn’t remove the eutectoid remaining from casting. • The characteristics of the bronzes are similar to other Iron Age Luristan Bronzes.

  3. Reactor vessel sealing plug

    International Nuclear Information System (INIS)

    Dooley, R.A.

    1986-01-01

    An apparatus is described for sealing a cold leg nozzle of a nuclear reactor pressure vessel from a remote location comprising: at least one sealing plug for mechanically sealing the nozzle from the inside of the reactor pressure vessel. The sealing plug includes a plate and a cone assembly having an end part receptive in the nozzle, the plate being axially moveable relative to the cone assembly. The plate and cone assembly have confronting bevelled edges defining an opening therebetween. A primary O-ring is disposed about the opening and is supported on the bevelled edges, the plate being guidably mounted to the cone assembly for movement toward the cone assembly to radially expand the primary O-ring into sealing engagement with the nozzle. A means is included for providing relative movement between the outer plate and the cone assembly

  4. Mobile nuclear reactor containment vessel

    International Nuclear Information System (INIS)

    Thompson, R.E.; Spurrier, F.R.; Jones, A.R.

    1978-01-01

    A containment vessel for use in mobile nuclear reactor installations is described. The containment vessel completely surrounds the entire primary system, and is located as close to the reactor primary system components as is possible in order to minimize weight. In addition to being designed to withstand a specified internal pressure, the containment vessel is also designed to maintain integrity as a containment vessel in case of a possible collision accident

  5. Nuclear reactor vessel inspection apparatus

    International Nuclear Information System (INIS)

    Blackstone, E.G.; Lofy, R.A.; Williams, L.P.

    1979-01-01

    Apparatus for the in situ inspection of a nuclear reactor vessel to detect the location and character of flaws in the walls of the vessel, in the welds joining the various sections of the vessel, in the welds joining attachments such as nozzles, elbows and the like to the reactor vessel and in such attachments wherein an inspection head carrying one or more ultrasonic transducers follows predetermined paths in scanning the various reactor sections, welds and attachments

  6. Reactor vessel stud closure system

    International Nuclear Information System (INIS)

    Spiegelman, S.R.; Salton, R.B.; Beer, R.W.; Malandra, L.J.; Cognevich, M.L.

    1982-01-01

    A quick-acting stud tensioner apparatus for enabling the loosening or tightening of a stud nut on a reactor vessel stud. The apparatus is adapted to engage the vessel stud by closing a gripper around an upper end of the vessel stud when the apparatus is seated on the stud. Upon lifting the apparatus, the gripper releases the vessel stud so that the apparatus can be removed

  7. Reactor pressure vessel steels

    International Nuclear Information System (INIS)

    Van De Velde, J.; Fabry, A.; Van Walle, E.; Chaouuadi, R.

    1998-01-01

    Research and development activities related to reactor pressure vessel steels during 1997 are reported. The objectives of activities of the Belgian Nuclear Research Centre SCK/CEN in this domain are: (1) to develop enhanced surveillance concepts by applying micromechanics and fracture-toughness tests to small specimens, and by performing damage modelling and microstructure characterization; (2) to demonstrate a methodology on a broad database; (3) to achieve regulatory acceptance and industrial use

  8. Reactor Pressure Vessel Steels

    Energy Technology Data Exchange (ETDEWEB)

    Van de Velde, J.; Fabry, A.; Van Walle, E.; Chaoudi, R

    1998-07-01

    SCK-CEN's R and D programme on Reactor Pressure Vessel (RPV) Steels in performed in support of the RVP integrity assessment. Its main objectives are: (1) to develop enhanced surveillance concepts by applying micromechanics and fracture-toughness tests to small specimens, and by performing damage modelling and microstructure characterization; (2) to demonstrate the applied methodology on a broad database; (3) to achieve regulatory acceptance and industrial use. Progress and achievements in 1999 are reported.

  9. Elaboration and characterisation of Pd-Cr alloys for PEM fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Souleymane, B.; Fouda-Onana, F.; Savadogo, O. [Ecole Polytechnique de Montreal, Montreal, PQ (Canada). Laboratoire de nouveaux materiaux pour l' energie et l' electrochimie

    2008-07-01

    Palladium (Pd) alloys have been considered as alternative catalyst cathodes for the oxygen reduction reaction (ORR) in proton exchange membrane (PEM) fuel cells, particularly in liquid fuel cells. The purpose of this study was to investigate the ORR on various Pd-Cr alloys. Pd-Cr alloys were deposited on glassy carbon support and the electrocatalytic parameters for the ORR were determined in acid medium. The effect of the Pd-Cr alloy deposition parameters on its composition and electrocatalytic behaviour were determined. The study showed that there is a relationship between the composition of the alloy and the power of the Pd and Cr cathode. The parameters of the ORR were correlated to the alloy chemical and physical properties. EDS and XPS analysis revealed a segregation of Cr in the alloy.The variation of the work function (W) of the alloy with the alloy composition has shown a minimum value of W of 0.287 for a composition of the alloy of 70 per cent of Pd and 30 per cent of Cr. The electrochemically active surface area and the exchange current density of the ORR indicated that the mechanism of the ORR on Pd-Cr is similar to that on platinum. 9 refs., 2 figs.

  10. Blood Vessels in Allotransplantation.

    Science.gov (United States)

    Abrahimi, P; Liu, R; Pober, J S

    2015-07-01

    Human vascularized allografts are perfused through blood vessels composed of cells (endothelium, pericytes, and smooth muscle cells) that remain largely of graft origin and are thus subject to host alloimmune responses. Graft vessels must be healthy to maintain homeostatic functions including control of perfusion, maintenance of permselectivity, prevention of thrombosis, and participation in immune surveillance. Vascular cell injury can cause dysfunction that interferes with these processes. Graft vascular cells can be activated by mediators of innate and adaptive immunity to participate in graft inflammation contributing to both ischemia/reperfusion injury and allograft rejection. Different forms of rejection may affect graft vessels in different ways, ranging from thrombosis and neutrophilic inflammation in hyperacute rejection, to endothelialitis/intimal arteritis and fibrinoid necrosis in acute cell-mediated or antibody-mediated rejection, respectively, and to diffuse luminal stenosis in chronic rejection. While some current therapies targeting the host immune system do affect graft vascular cells, direct targeting of the graft vasculature may create new opportunities for preventing allograft injury and loss. © Copyright 2015 The American Society of Transplantation and the American Society of Transplant Surgeons.

  11. Ionizing radiations and blood vessels

    International Nuclear Information System (INIS)

    Vorob'ev, E.I.; Stepanov, R.P.

    1985-01-01

    Data on phenomenology of radiation-induced changes in blood vessels are systematized and authors' experience is generalized. Modern concepts about processes leading to vessel structure injury after irradiation is critically analyzed. Special attention is paid to reparation and compensation of X-ray vessel injury, consideration of which is not yet sufficiently elucidated in literature

  12. Ionizing radiations and blood vessels

    International Nuclear Information System (INIS)

    Vorob'ev, E.I.; Stepanov, R.P.

    1985-01-01

    Data on phenomeology of radiation changes of blood vessels are systemized and the authors' experience is generalyzed. A critical analysis of modern conceptions on processes resulting in vessel structure damage after irradiation, is given. Special attention is paid to reparation and compensation of radiation injury of vessels

  13. Synthesis of platinum nanowire networks using a soft template.

    Science.gov (United States)

    Song, Yujiang; Garcia, Robert M; Dorin, Rachel M; Wang, Haorong; Qiu, Yan; Coker, Eric N; Steen, William A; Miller, James E; Shelnutt, John A

    2007-12-01

    Platinum nanowire networks have been synthesized by chemical reduction of a platinum complex using sodium borohydride in the presence of a soft template formed by cetyltrimethylammonium bromide in a two-phase water-chloroform system. The interconnected polycrystalline nanowires possess the highest surface area (53 +/- 1 m2/g) and electroactive surface area (32.4 +/- 3.6 m2/g) reported for unsupported platinum nanomaterials; the high surface area results from the small average diameter of the nanowires (2.2 nm) and the 2-10 nm pores determined by nitrogen adsorption measurements. Synthetic control over the network was achieved simply by varying the stirring rate and reagent concentrations, in some cases leading to other types of nanostructures including wormlike platinum nanoparticles. Similarly, substitution of a palladium complex for platinum gives palladium nanowire networks. A mechanism of formation of the metal nanowire networks is proposed based on confined metal growth within a soft template consisting of a network of swollen inverse wormlike micelles.

  14. Structures of 38-atom gold-platinum nanoalloy clusters

    Energy Technology Data Exchange (ETDEWEB)

    Ong, Yee Pin; Yoon, Tiem Leong [School of Physics, Universiti Sains Malaysia, 11800 USM, Penang (Malaysia); Lim, Thong Leng [Faculty of Engineering and Technology, Multimedia University, Melaka Campus, 75450 Melaka (Malaysia)

    2015-04-24

    Bimetallic nanoclusters, such as gold-platinum nanoclusters, are nanomaterials promising wide range of applications. We perform a numerical study of 38-atom gold-platinum nanoalloy clusters, Au{sub n}Pt{sub 38−n} (0 ≤ n ≤ 38), to elucidate the geometrical structures of these clusters. The lowest-energy structures of these bimetallic nanoclusters at the semi-empirical level are obtained via a global-minimum search algorithm known as parallel tempering multi-canonical basin hopping plus genetic algorithm (PTMBHGA), in which empirical Gupta many-body potential is used to describe the inter-atomic interactions among the constituent atoms. The structures of gold-platinum nanoalloy clusters are predicted to be core-shell segregated nanoclusters. Gold atoms are observed to preferentially occupy the surface of the clusters, while platinum atoms tend to occupy the core due to the slightly smaller atomic radius of platinum as compared to gold’s. The evolution of the geometrical structure of 38-atom Au-Pt clusters displays striking similarity with that of 38-atom Au-Cu nanoalloy clusters as reported in the literature.

  15. Platinum catalyst formed on carbon nanotube by the in-liquid plasma method for fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Show, Yoshiyuki; Hirai, Akira; Almowarai, Anas; Ueno, Yutaro

    2015-12-01

    In-liquid plasma was generated in the carbon nanotube (CNT) dispersion fluid using platinum electrodes. The generated plasma spattered the surface of the platinum electrodes and dispersed platinum particles into the CNT dispersion. Therefore, the platinum nanoparticles were successfully formed on the CNT surface in the dispersion. The platinum nanoparticles were applied to the proton exchange membrane fuel cell (PEMFC) as a catalyst. The electrical power of 108 mW/cm{sup 2} was observed from the fuel cell which was assembled with the platinum catalyst formed on the CNT by the in-liquid plasma method. - Highlights: • The platinum catalyst was successfully formed on the CNT surface in the dispersion by the in-liquid plasma method. • The electrical power of 108 mW/cm{sup 2} was observed from the fuel cell which was assembled with the platinum catalyst formed on the CNT by the in-liquid plasma method.

  16. Flow Injection Analysis with Electrochemical Detection for Rapid Identification of Platinum-Based Cytostatics and Platinum Chlorides in Water

    Directory of Open Access Journals (Sweden)

    Marketa Kominkova

    2014-02-01

    Full Text Available Platinum-based cytostatics, such as cisplatin, carboplatin or oxaliplatin are widely used agents in the treatment of various types of tumors. Large amounts of these drugs are excreted through the urine of patients into wastewaters in unmetabolised forms. This phenomenon leads to increased amounts of platinum ions in the water environment. The impacts of these pollutants on the water ecosystem are not sufficiently investigated as well as their content in water sources. In order to facilitate the detection of various types of platinum, we have developed a new, rapid, screening flow injection analysis method with electrochemical detection (FIA-ED. Our method, based on monitoring of the changes in electrochemical behavior of analytes, maintained by various pH buffers (Britton-Robinson and phosphate buffer and potential changes (1,000, 1,100 and 1,200 mV offers rapid and cheap selective determination of platinum-based cytostatics and platinum chlorides, which can also be present as contaminants in water environments.

  17. Oscillatory instabilities in the electrooxidation of borohydride on platinum

    Energy Technology Data Exchange (ETDEWEB)

    Machado, Eduardo G.; Varela, Hamilton, E-mail: varela@iqsc.usp.br [Universidade de Sao Paulo (USP), Sao Carlos, SP (Brazil). Instituto de Quimica

    2014-03-15

    The borohydride ion has been pointed as a promising alternative fuel. Most of the investigation on its electrochemistry is devoted to the electrocatalytic aspects of its electrooxidation on platinum and gold surfaces. Besides the known kinetic limitations and intricate mechanism, our Group has recently found the occurrence of two regions of bi-stability and autocatalysis in the electrode potential during the open circuit interaction of borohydride and oxidized platinum surfaces. Following this previous contribution, the occurrence of more complicated phenomena is here presented: namely the presence of electrochemical oscillations during the electrooxidation of borohydride on platinum in alkaline media. Current oscillations were found to be associated to two distinct instability windows and characterized in the resistance-potential parameter plane. The dynamic features of such oscillations suggest the existence of distinct mechanisms according to the potential region. Previously published results obtained under non-oscillatory regime were used to give some hints on the surface chemistry behind the observed dynamics. (author)

  18. Electrochemical DNA biosensors based on platinum nanoparticles combined carbon nanotubes

    International Nuclear Information System (INIS)

    Zhu Ningning; Chang Zhu; He Pingang; Fang Yuzhi

    2005-01-01

    Platinum nanoparticles were used in combination with multi-walled carbon nanotubes (MWCNTs) for fabricating sensitivity-enhanced electrochemical DNA biosensor. Multi-walled carbon nanotubes and platinum nanoparticles were dispersed in Nafion, which were used to fabricate the modification of the glassy carbon electrode (GCE) surface. Oligonucleotides with amino groups at the 5' end were covalently linked onto carboxylic groups of MWCNTs on the electrode. The hybridization events were monitored by differential pulse voltammetry (DPV) measurement of the intercalated daunomycin. Due to the ability of carbon nanotubes to promote electron-transfer reactions, the high catalytic activities of platinum nanoparticles for chemical reactions, the sensitivity of presented electrochemical DNA biosensors was remarkably improved. The detection limit of the method for target DNA was 1.0 x 10 -11 mol l -1

  19. Niraparib Maintenance Therapy in Platinum-Sensitive, Recurrent Ovarian Cancer

    DEFF Research Database (Denmark)

    Mirza, Mansoor R; Monk, Bradley J; Herrstedt, Jørn

    2016-01-01

    Background Niraparib is an oral poly(adenosine diphosphate [ADP]-ribose) polymerase (PARP) 1/2 inhibitor that has shown clinical activity in patients with ovarian cancer. We sought to evaluate the efficacy of niraparib versus placebo as maintenance treatment for patients with platinum-sensitive, ......Background Niraparib is an oral poly(adenosine diphosphate [ADP]-ribose) polymerase (PARP) 1/2 inhibitor that has shown clinical activity in patients with ovarian cancer. We sought to evaluate the efficacy of niraparib versus placebo as maintenance treatment for patients with platinum...... or 4 adverse events that were reported in the niraparib group were thrombocytopenia (in 33.8%), anemia (in 25.3%), and neutropenia (in 19.6%), which were managed with dose modifications. Conclusions Among patients with platinum-sensitive, recurrent ovarian cancer, the median duration of progression...

  20. Cytotoxic evaluation upon cis-platinum aminodiacetic acid complexes

    International Nuclear Information System (INIS)

    Almah binti Awaluddin; Parsons, Peter G.; Lean, Jenny M.; Jacobs, Jeffrey J.

    1990-01-01

    Cytoxic study of cis-platinum aminodiacetic acid complexes. Three novel platinum complexes have been synthesised and characterised by Awaluddin et. al (1987). This introduces a new area of radiopharmaceuticals based on technician and platinum. Cytotoxic studies were conducted on these complexes using four different types of cell lines. The para amina was found to be highly active against multi-resistant ovarian tumor cells compared to normal cells (fibroblast) and other tumor cells. The chemical structure of para-amina appears to be devoid of any functional group resembling current antitumor drugs except for a distant similarity to metotrexate with respect to the p-aminobenzoic type structure. However cell lines such as Hela and MM 253c-1, which is sensitive to metotrexate, were not sensitive to the para amina. Preliminary studies have shown that cells are blocked in the G phase of the cell cycle, suggesting an antimetabolite effect

  1. Electrochemical behaviour of platinum in hydrogen peroxide solution (1963)

    International Nuclear Information System (INIS)

    Prost, G.H.

    1963-06-01

    The relative stability of hydrogen peroxide in aqueous solution at 25 deg. C, allows its amperometric determination from the theory, using either its cathodic reduction or its anodic oxidation. The cathodic reduction yields a wave on a platinum electrode only when some oxygen is present in the solution. It cannot, therefore, be used for electrochemical determination. On the other hand, the anodic oxidation on platinum produces a wave which might be used. However, a passivation of platinum occurs at the same time. This passivation process is studied by means of potentio-kinetic, potentio-static, intensio-static curves and of pH measurements in the vicinity of the anode. A mechanism for passivation is presented, which takes into account the role of hydrogen peroxide as a reducing agent. This passivation rules out any analytical application of the oxidation reaction of hydrogen peroxide. (author) [fr

  2. The stability of PEMFC electrodes : platinum dissolution vs potential and temperature investigated by quartz crystal microbalance

    NARCIS (Netherlands)

    Dam, V.A.T.; Bruijn, de F.A.

    2007-01-01

    The stability of platinum in proton exchange membrane fuel cell (PEMFC) electrodes has been investigated by determining the dissolution of platinum from a thin platinum film deposited on a gold substrate in 1 M HClO4 at different temperatures ranging between 40 and 80°C and potentials between 0.85

  3. Polarographic determination of selenium and tellurium in silver-gold alloys

    International Nuclear Information System (INIS)

    Gornostaeva, T.D.; Shmargun, S.V.

    1986-01-01

    The determination of selenium and tellurium is of importance in monitoring the composition of silver-gold alloys (SGA) since these elements are harmful impurities in the pure metals. Tellurium is determined in silver alloys by atomic absorption and atomic emmission methods; selenium determination is made by atomic absorption methods. This paper examines the polarographic determination of silver and tellurium in SGA containing platinum metals and copper. Copper and the bulk of the platinum and palladium were removed by precipitating selenium and tellurium with potassium hypophosphite in the elementary state from 6 M HC1. The results of an analysis of samples of SGA according to the proposed method were compared with the results obtained by the atomic absorption method. the relative deviation in the determination of 0.02-1.0% by weight selenium and tellurium does not exceed 0.12 (n = 5)

  4. Pressure vessel lid

    International Nuclear Information System (INIS)

    Schoening, J.; Elter, C.; Becker, G.; Pertiller, S.

    1986-01-01

    The invention concerns a lid for closing openings in reactor pressure vessels containing helium, which is made as a circular casting with hollow spaces and a flat floor and is set on the opening and kept down. It consists of helium-tight metal cast material with sufficient temperature resistance. There are at least two concentric heat resistant seals let into the bottom of the lid. The bottom is in immediate contact with the container atmosphere and has hollow spaces in its inside in the area opposite to the opening. (orig./HP) [de

  5. [Small vessel cerebrovascular disease].

    Science.gov (United States)

    Cardona Portela, P; Escrig Avellaneda, A

    2018-05-09

    Small vessel vascular disease is a spectrum of different conditions that includes lacunar infarction, alteration of deep white matter, or microbleeds. Hypertension is the main risk factor, although the atherothrombotic lesion may be present, particularly in large-sized lacunar infarctions along with other vascular risk factors. MRI findings are characteristic and the lesions authentic biomarkers that allow differentiating the value of risk factors and defining their prognostic value. Copyright © 2018 SEH-LELHA. Publicado por Elsevier España, S.L.U. All rights reserved.

  6. Discovery of the calcium, indium, tin, and platinum isotopes

    International Nuclear Information System (INIS)

    Amos, S.; Gross, J.L.; Thoennessen, M.

    2011-01-01

    Currently, twenty-four calcium, thirty-eight indium, thirty-eight tin, and thirty-nine platinum isotopes have been observed and the discovery of these isotopes is discussed here. For each isotope a brief synopsis of the first refereed publication, including the production and identification method, is presented. - Highlights: Documentation of the discovery of all calcium, indium, tin and platinum isotopes. → Summary of author, journal, year, place and country of discovery for each isotope. → Brief description of discovery history of each isotope.

  7. Corrosion Damage in Penetration Nozzle and Its Weldment of Reactor Pressure Vessel Head

    International Nuclear Information System (INIS)

    Lim, Yun Soo; Kim, Joung Soo; Kim, Hong Pyo; Hwang, Seong Sik; Yi, Young Sun; Kim, Dong Jin; Jung, Man Kyo

    2003-07-01

    The recent status on corrosion damage of reactor vessel head (RVH) penetration nozzles at primary water reactors (PWRs), including control rod drive mechanism (CRDM) and thermocouple nozzles, was investigated. The studies for primary water stress corrosion cracking (PWSCC) characteristics of Alloy 600 and Alloy 182/82 were reviewed and summarized in terms of the crack initiation and crack growth rate. The studies on the boric acid corrosion (BAC) of low alloy steels were also included in this report. PWSCC was found to be the main failure mechanism of RVH CRDM nozzles, which are constituted with Alloy 600 base metal and Alloy 182 weld filler materials. Alloy 600 and Alloy 182/82 are very susceptible to intergranular SCC in the PWR environments. The PWSCC crack initiation and growth features in the fusion zone of Alloy 182/82 were strongly dependant on solidification anisotropy during welding, test temperature, weld heat, mechanical loading, stress relief heat treatment, cold work and so on. BAC of low alloy steels is a wastage phenomenon due to general corrosion occurring on the over-all surface area of material. Systematic studies, concerned with structural integrity of RVH penetration nozzles as well as improvement of PWSCC resistance of nickel-based weld metals in the simulated PWR environment, are needed

  8. Structure and Stability of Pt-Y Alloy Particles for Oxygen Reduction Studied by Electron Microscopy

    DEFF Research Database (Denmark)

    Deiana, Davide; Wagner, Jakob Birkedal; Hansen, Thomas Willum

    2015-01-01

    Platinum-yttrium alloy nanoparticles show both a high activity and stability for the oxygen reduction reaction. The catalysts were prepared by magnetron sputter aggregation and mass filtration providing a model catalyst system with a narrow size distribution. The structure and stability of nanost...... the catalyst after reaction and after aging tests shows the development of a core-shell type structure after being exposed to reaction conditions....

  9. An automated vessel segmentation of retinal images using multiscale vesselness

    International Nuclear Information System (INIS)

    Ben Abdallah, M.; Malek, J.; Tourki, R.; Krissian, K.

    2011-01-01

    The ocular fundus image can provide information on pathological changes caused by local ocular diseases and early signs of certain systemic diseases, such as diabetes and hypertension. Automated analysis and interpretation of fundus images has become a necessary and important diagnostic procedure in ophthalmology. The extraction of blood vessels from retinal images is an important and challenging task in medical analysis and diagnosis. In this paper, we introduce an implementation of the anisotropic diffusion which allows reducing the noise and better preserving small structures like vessels in 2D images. A vessel detection filter, based on a multi-scale vesselness function, is then applied to enhance vascular structures.

  10. Cold source vessel development for the advanced neutron source

    Energy Technology Data Exchange (ETDEWEB)

    Williams, P.T.; Lucas, A.T. [Oak Ridge National Lab., TN (United States)

    1995-09-01

    The Advanced Neutron Source (ANS), in its conceptual design phase at Oak Ridge National Laboratory (ORNL), will be a user-oriented neutron research facility that will produce the most intense flux of neutrons in the world. Among its many scientific applications, the productions of cold neutrons is a significant research mission for the ANS. The cold neutrons come from two independent cold sources positioned near the reactor core. Contained by an aluminum alloy vessel, each cold source is a 410 mm diameter sphere of liquid deuterium that functions both as a neutron moderator and a cryogenic coolant. With nuclear heating of the containment vessel and internal baffling, steady-state operation requires close control of the liquid deuterium flow near the vessel`s inner surface. Preliminary thermal-hydraulic analyses supporting the cold source design are being performed with multi-dimensional computational fluid dynamics simulations of the liquid deuterium flow and heat transfer. This paper presents the starting phase of a challenging program and describes the cold source conceptual design, the thermal-hydraulic feasibility studies of the containment vessel, and the future computational and experimental studies that will be used to verify the final design.

  11. Recent strikes in South Africa’s platinum-group metal mines: effects upon world platinum-group metal supplies

    Science.gov (United States)

    Yager, Thomas R.; Soto-Viruet, Yadira; Barry, James J.

    2012-01-01

    The recent labor disputes over wages and working conditions that have affected South Africa’s three leading platinum-group metal (PGM) producers have affected an industry already plagued by market pressures and labor unrest and raised the specter of constraints in the world’s supply of these metals. Although low demand for these metals in 2011 and 2012 helped to offset production losses of recent years, and particularly those losses caused by the strikes in 2012, a prolonged resumption of strikes could cause severe shortages of iridium, platinum, rhodium, ruthenium, and, to a lesser extent, palladium.

  12. Tunable morphological properties of silver enriched platinum allied nanoparticles and their catalysed reduction of p-nitrophenol

    International Nuclear Information System (INIS)

    Adekoya, Joseph Adeyemi; Dare, Enock Olugbenga; Mesubi, Michael Adediran

    2014-01-01

    A robust polymer based and polyol mediated procedure to synthesize nanobimetallic particles has been modified to produce core–shell and alloy Ag/Pt nanoparticles with tunable properties. Novel three-dimensional (3D) quasi nanocubes entangled in nanowebs were produced by rapid solution phase transformation with hot addition of absolute ethanol. The optical characterization showed extinction of plasmon resonance band occurring with incremental feeding ratio of Pt source in all cases. Transmission electron microscope (TEM) and high resolution transmission electron microscope (HRTEM) images revealed that the shape, size and size distribution of as-prepared silver platinum nanoparticles depended on the stabilizer or capping agent, mole ratio of metal ion sources, temperature and time of reaction. Meanwhile, catalytic activity was highest in the reduction of p-nitrophenol in the presence of polyvinylpyrrolidone/diethylene glycol stabilized Ag/Pt nanoparticles. (paper)

  13. Tunable morphological properties of silver enriched platinum allied nanoparticles and their catalysed reduction of p-nitrophenol

    Science.gov (United States)

    Adeyemi Adekoya, Joseph; Olugbenga Dare, Enock; Adediran Mesubi, Michael

    2014-09-01

    A robust polymer based and polyol mediated procedure to synthesize nanobimetallic particles has been modified to produce core-shell and alloy Ag/Pt nanoparticles with tunable properties. Novel three-dimensional (3D) quasi nanocubes entangled in nanowebs were produced by rapid solution phase transformation with hot addition of absolute ethanol. The optical characterization showed extinction of plasmon resonance band occurring with incremental feeding ratio of Pt source in all cases. Transmission electron microscope (TEM) and high resolution transmission electron microscope (HRTEM) images revealed that the shape, size and size distribution of as-prepared silver platinum nanoparticles depended on the stabilizer or capping agent, mole ratio of metal ion sources, temperature and time of reaction. Meanwhile, catalytic activity was highest in the reduction of p-nitrophenol in the presence of polyvinylpyrrolidone/diethylene glycol stabilized Ag/Pt nanoparticles.

  14. Investigation of americium-241 metal alloys for target applications

    International Nuclear Information System (INIS)

    Conner, W.V.; Rockwell International Corp., Golden, CO

    1982-01-01

    Several 241 Am metal alloys have been investigated for possible use in the Lawrence Livermore National Laboratory Radiochemical Diagnostic Tracer Program. Several properties were desired for an alloy to be useful for tracer program applications. A suitable alloy would have a fairly high density, be ductile, homogeneous and easy to prepare. Alloys investigated have included uranium-americium, aluminium-americium, and cerium-americium. Uranium-americium alloys with the desired properties proved to be difficult to prepare, and work with this alloy was discontinued. Aluminium-americium alloys were much easier to prepare, but the alloy consisted of an aluminium-americium intermetallic compound (AmAl 4 ) in an aluminum matrix. This alloy could be cast and formed into shapes, but the low density of aluminum, and other problems, made the alloy unsuitable for the intended application. Americium metal was found to have a high solid solubility in cerium and alloys prepared from these two elements exhibited all of the properties desired for the tracer program application. Cerium-americium alloys containing up to 34 wt% americium have been prepared using both co-melting and co-reduction techniques. The latter technique involves co-reduction of cerium tetrafluoride and americium tetrafluoride with calcium metal in a sealed reduction vessel. Casting techniques have been developed for preparing up to eight 2.2 cm (0.87 in) diameter disks in a single casting, and cerium-americium metal alloy disks containing from 10 to 25 wt% 241 Am have been prepared using these techniques. (orig.)

  15. The electrogas and electroslag multipass high speed welding of nuclear pressure vessel steels

    International Nuclear Information System (INIS)

    Eichhorn, F.; Hirsch, P.; Langenbahn, H.W.; Wubbels, B.

    1978-01-01

    High-speed electroslag and electrogas welding of 15 Mn Ni63 steel plates to achieve high strength and toughness joints for reactor pressure vessels are described. Mechanical testing of overheating-resistant, brittle fracture resistant low alloy steels is discussed. (UK)

  16. Targeting Therapy Resistant Tumor Vessels

    Science.gov (United States)

    2008-08-01

    Morris LS. Hysterectomy vs. resectoscopic endometrial ablation for the control of abnormal uterine bleeding . A cost-comparative study. J Reprod Med 1994;39...after the antibody treatment contain a pericyte coat, vessel architecture is normal, the diameter of the vessels is smaller (dilated, abnormal vessels...involvement of proteases from inflammatory mast cells and functionally abnormal (Carmeliet and Jain, 2000; Pasqualini (Coussens et al., 1999) and other bone

  17. The vessel fluence; Fluence cuve

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-07-01

    This book presents the proceedings of the technical meeting on the reactors vessels fluence. They are grouped in eight sessions: the industrial context and the stakes of the vessels control; the organization and the methodology for the fluence computation; the concerned physical properties; the reference computation methods; the fluence monitoring in an industrial context; vessels monitoring under irradiation; others methods in the world; the research and development programs. (A.L.B.)

  18. Biological role in the transformation of platinum-group mineral grains

    Science.gov (United States)

    Reith, Frank; Zammit, Carla M.; Shar, Sahar S.; Etschmann, Barbara; Bottrill, Ralph; Southam, Gordon; Ta, Christine; Kilburn, Matthew; Oberthür, Thomas; Ball, Andrew S.; Brugger, Joël

    2016-04-01

    Platinum-group elements are strategically important metals. Finding new deposits is becoming increasingly difficult owing to our limited understanding of the processes that affect their mobility in surface environments. Microorganisms have been shown to promote the mobility of metals around ore deposits. Here we show that microorganisms influence the mobility of platinum-group elements in mineral grains collected from Brazil, Australia and Colombia. Scanning electron microscopy showed biofilms covering the platinum-group mineral grains. The biofilms contained abundant platinum-group element nanoparticles and microcrystalline aggregates, and were dominated by Proteobacteria, many of which were closely related to known metal-resistant species. Some platinum-group mineral grains contained carbon, nitrogen, sulfur, selenium and iodine, suggesting the grains may be biogenic in origin. Molecular analyses show that Brazilian platinum-palladium grains hosted specific bacterial communities, which were different in composition from communities associated with gold grains, or communities in surrounding soils and sediments. Nano-phase metallic platinum accumulated when a metallophillic bacterium was incubated with a percolating platinum-containing medium, suggesting that biofilms can cause the precipitation of mobile platinum complexes. We conclude that biofilms are capable of forming or transforming platinum-group mineral grains, and may play an important role for platinum-group element dispersion and re-concentration in surface environments.

  19. Platinum Jubilee of the Indian Academy of Science

    Indian Academy of Sciences (India)

    user

    Platinum Jubilee of the Indian Academy of Science βγ-Crystallins and the bacterial immunoglobulines fold: Two calcium binding folds. Yogendra Sharma. Centre for Cellular and Molecular Biology (CCMB). "Hell is a half-filled auditorium ". Hell is a half-filled auditorium. - Robert Frost (1874-1963) ...

  20. Platinum-group elements in the Eastern Deccan volcanic province ...

    Indian Academy of Sciences (India)

    This study is the first detailed investigation of the platinum-group elements (PGE) at the eastern mar- ... A Zr vs. Pd scattergram found a strong positive correlation for these two elements ..... and the PGE and Au collected by co-precipitation.

  1. Oxidation of 4-methoxy-1-naphthol on promoted platinum catalysts

    CSIR Research Space (South Africa)

    Maphoru, MV

    2017-07-01

    Full Text Available , July 2017, Volume 58, Issue 4, pp 441–447 Oxidation of 4-methoxy-1-naphthol on promoted platinum catalysts M. V. Maphoru J. Heveling S. Kesavan Pillai Abstract Oxidative coupling of naphthols is a useful method for the formation of new...

  2. Electrochemical titration of hydrogen adsorbed on supported platinum catalysts

    Czech Academy of Sciences Publication Activity Database

    Paseka, Ivo

    2007-01-01

    Roč. 329, - (2007), s. 161-163 ISSN 0926-860X R&D Projects: GA ČR GA104/03/0409 Institutional research plan: CEZ:AV0Z40320502 Keywords : platinum * hydrogen adsorption * specific surface area Subject RIV: CA - Inorganic Chemistry Impact factor: 3.166, year: 2007

  3. Niraparib Maintenance Therapy in Platinum-Sensitive, Recurrent Ovarian Cancer

    NARCIS (Netherlands)

    Mirza, M. R.; Monk, B. J.; Herrstedt, J.; Oza, A. M.; Mahner, S.; Redondo, A.; Fabbro, M.; Ledermann, J. A.; Lorusso, D.; Vergote, I.; Ben-Baruch, N. E.; Marth, C.; Madry, R.; Christensen, R. D.; Berek, J. S.; Dorum, A.; Tinker, A. V.; du Bois, A.; Gonzalez-Martin, A.; Follana, P.; Benigno, B.; Rosenberg, P.; Gilbert, L.; Rimel, B. J.; Buscema, J.; Balser, J. P.; Agarwal, S.; Matulonis, U. A.; van der Zee, A.G.J.

    2016-01-01

    BACKGROUND Niraparib is an oral poly(adenosine diphosphate [ADP]-ribose) polymerase (PARP) 1/2 inhibitor that has shown clinical activity in patients with ovarian cancer. We sought to evaluate the efficacy of niraparib versus placebo as maintenance treatment for patients with platinum-sensitive,

  4. In situ measurements of Merensky pillar behaviour at Impala Platinum

    CSIR Research Space (South Africa)

    Watson, BP

    2009-12-01

    Full Text Available to stabilize the stoping excavations. This paper describes the in situ measurement, of stress within a Merensky pillar from Impala Platinum. These measurements were used to derive a stress-strain curve that includes pre and post failure behaviour. 2D FLAC...

  5. Enhanced catalytic activity of nanoscale platinum islands loaded ...

    Indian Academy of Sciences (India)

    2016-08-26

    Aug 26, 2016 ... In the present study, different catalysts (∼ 10 nm thick) including metals, noble metals and metal oxides, were loaded in dotted island form over SnO2 thin film for LPG gas detection. A comparison of various catalysts indicated that the presence of platinum dotted islands over SnO2 thin film deposited by r.f. ...

  6. Electrochemical and microstructural characterization of platinum supported on glassy carbon

    Directory of Open Access Journals (Sweden)

    Terzić Sanja

    2007-01-01

    Full Text Available The effect of the electrochemical oxidation of glassy carbon on the deposition of platinum particles and the electrocatalytic activity of platinum supported on oxidized glassy carbon were studied for methanol oxidation in H2SO4 solution. Platinum was potentiostatically deposited from H2SO4 + 6mM H2PtCl6 solution. Glassy carbon was anodically polarized in 1 M NaOH at 1.41 V (SCE for 35 and 95 s and in 0.5 M H2SO4 at 2V (SCE for 35; 95 s and 2.25 V for 35 and 95 s. Electrochemical treatment of the GC support leads to a better distribution of platinum on the substrate and has remarkable effect on the activity. The activity of the Pt/GCox electrode for methanol oxidation is larger than that of polycrystalline Pt and by more than one order of magnitude larger than that of a Pt/GC electrode. This increase in activity indicates the pronounced role of the organic residues of the GC support on the properties of Pt particles deposited on glassy carbon.

  7. Responses of fibroblasts and glial cells to nanostructured platinum surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Pennisi, C P; Sevcencu, C; Yoshida, K [Center for Sensory-Motor Interaction (SMI), Aalborg University, Aalborg (Denmark); Dolatshahi-Pirouz, A; Foss, M; Larsen, A Nylandsted; Besenbacher, F [Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Aarhus (Denmark); Hansen, J Lundsgaard [Department of Physics and Astronomy, Aarhus University, Aarhus (Denmark); Zachar, V, E-mail: cpennisi@hst.aau.d [Laboratory for Stem Cell Research, Aalborg University (Denmark)

    2009-09-23

    The chronic performance of implantable neural prostheses is affected by the growth of encapsulation tissue onto the stimulation electrodes. Encapsulation is associated with activation of connective tissue cells at the electrode's metallic contacts, usually made of platinum. Since surface nanotopography can modulate the cellular responses to materials, the aim of the present work was to evaluate the 'in vitro' responses of connective tissue cells to platinum strictly by modulating its surface nanoroughness. Using molecular beam epitaxy combined with sputtering, we produced platinum nanostructured substrates consisting of irregularly distributed nanopyramids and investigated their effect on the proliferation, cytoskeletal organization and cellular morphology of primary fibroblasts and transformed glial cells. Cells were cultured on these substrates and their responses to surface roughness were studied. After one day in culture, the fibroblasts were more elongated and their cytoskeleton less mature when cultured on rough substrates. This effect increased as the roughness of the surface increased and was associated with reduced cell proliferation throughout the observation period (4 days). Morphological changes also occurred in glial cells, but they were triggered by a different roughness scale and did not affect cellular proliferation. In conclusion, surface nanotopography modulates the responses of fibroblasts and glial cells to platinum, which may be an important factor in optimizing the tissue response to implanted neural electrodes.

  8. Production of platinum radioisotopes at Brookhaven Linac Isotope Producer (BLIP

    Directory of Open Access Journals (Sweden)

    Smith Suzanne V.

    2017-01-01

    Full Text Available The accelerator production of platinum isotopes was investigated at the Brookhaven Linac Isotope Producer (BLIP. In this study high purity natural platinum foils were irradiated at 53.2, 65.7, 105.2, 151.9, 162.9 and 173.3.MeV. The irradiated foils were digested in aqua regia and then converted to their hydrochloride salt with concentrated hydrochloric acid before analyzing by gamma spectrometry periodically for at least 10 days post end of bombardment. A wide range of platinum (Pt, gold (Au and iridium (Ir isotopes were identified. Effective cross sections at BLIP for Pt-188, Pt-189, Pt-191 and Pt-195m were compared to literature and theoretical cross sections determined using Empire-3.2. The majority of the effective cross sections (<70 MeV confirm those reported in the literature. While the absolute values of the theoretical cross sections were up to a factor of 3 lower, Empire 3.2 modeled thresholds and maxima correlated well with experimental values. Preliminary evaluation into a rapid separation of Pt isotopes from high levels of Ir and Au isotopes proved to be a promising approach for large scale production. In conclusion, this study demonstrated that with the use of isotopically enriched target material accelerator production of selected platinum isotopes is feasible over a wide proton energy range.

  9. Leading the next boom? competitive Eastern limb platinum supply

    CSIR Research Space (South Africa)

    McGill, JE

    2010-07-01

    Full Text Available in USD/troy oz (Data source: Johnson Matthey) Figure 4. Variation in nominal PGEs spot price from July 1992 till July 2010 in USD/troy oz (Data source: Johnson Matthey) PLATINUM IN TRANSITION ?BOOM OR BUST?4 each. In 1996 and 2003 merger attempts...

  10. A Multimethod Approach for Investigating Algal Toxicity of Platinum Nanoparticles

    DEFF Research Database (Denmark)

    Sørensen, Sara Nørgaard; Engelbrekt, Christian; Lützhøft, Hans-Christian Holten

    2016-01-01

    The ecotoxicity of platinum nanoparticles (PtNPs) widely used in for example automotive catalytic converters, is largely unknown. This study employs various characterization techniques and toxicity end points to investigate PtNP toxicity toward the green microalgae Pseudokirchneriella subcapitata...

  11. Diffuse X-Ray Scattering from Several Platinum Chain Compounds

    DEFF Research Database (Denmark)

    Braude, A.; Lindegaard-Andersen, Asger; Carneiro, K.

    1980-01-01

    Values of the Fermi wavevector for several platinum based one-dimensional conductors were determined from diffuse X-ray scattering measurements. The values were compared with those expected from the chemical compositions. The importance of conclusive values of this parameter is stressed and the c...

  12. Americium behaviour in plastic vessels

    International Nuclear Information System (INIS)

    Legarda, F.; Herranz, M.; Idoeta, R.; Abelairas, A.

    2010-01-01

    The adsorption of 241 Am dissolved in water in different plastic storage vessels was determined. Three different plastics were investigated with natural and distilled waters and the retention of 241 Am by these plastics was studied. The same was done by varying vessel agitation time, vessel agitation speed, surface/volume ratio of water in the vessels and water pH. Adsorptions were measured to be between 0% and 70%. The adsorption of 241 Am is minimized with no water agitation, with PET or PVC plastics, and by water acidification.

  13. Americium behaviour in plastic vessels

    Energy Technology Data Exchange (ETDEWEB)

    Legarda, F.; Herranz, M. [Departamento de Ingenieria Nuclear y Mecanica de Fluidos, Escuela Tecnica Superior de Ingenieria de Bilbao, Universidad del Pais Vasco (UPV/EHU), Alameda de Urquijo s/n, 48013 Bilbao (Spain); Idoeta, R., E-mail: raquel.idoeta@ehu.e [Departamento de Ingenieria Nuclear y Mecanica de Fluidos, Escuela Tecnica Superior de Ingenieria de Bilbao, Universidad del Pais Vasco (UPV/EHU), Alameda de Urquijo s/n, 48013 Bilbao (Spain); Abelairas, A. [Departamento de Ingenieria Nuclear y Mecanica de Fluidos, Escuela Tecnica Superior de Ingenieria de Bilbao, Universidad del Pais Vasco (UPV/EHU), Alameda de Urquijo s/n, 48013 Bilbao (Spain)

    2010-07-15

    The adsorption of {sup 241}Am dissolved in water in different plastic storage vessels was determined. Three different plastics were investigated with natural and distilled waters and the retention of {sup 241}Am by these plastics was studied. The same was done by varying vessel agitation time, vessel agitation speed, surface/volume ratio of water in the vessels and water pH. Adsorptions were measured to be between 0% and 70%. The adsorption of {sup 241}Am is minimized with no water agitation, with PET or PVC plastics, and by water acidification.

  14. Americium behaviour in plastic vessels.

    Science.gov (United States)

    Legarda, F; Herranz, M; Idoeta, R; Abelairas, A

    2010-01-01

    The adsorption of (241)Am dissolved in water in different plastic storage vessels was determined. Three different plastics were investigated with natural and distilled waters and the retention of (241)Am by these plastics was studied. The same was done by varying vessel agitation time, vessel agitation speed, surface/volume ratio of water in the vessels and water pH. Adsorptions were measured to be between 0% and 70%. The adsorption of (241)Am is minimized with no water agitation, with PET or PVC plastics, and by water acidification. Copyright 2009 Elsevier Ltd. All rights reserved.

  15. Single-Atom Catalyst of Platinum Supported on Titanium Nitride for Selective Electrochemical Reactions.

    Science.gov (United States)

    Yang, Sungeun; Kim, Jiwhan; Tak, Young Joo; Soon, Aloysius; Lee, Hyunjoo

    2016-02-05

    As a catalyst, single-atom platinum may provide an ideal structure for platinum minimization. Herein, a single-atom catalyst of platinum supported on titanium nitride nanoparticles were successfully prepared with the aid of chlorine ligands. Unlike platinum nanoparticles, the single-atom active sites predominantly produced hydrogen peroxide in the electrochemical oxygen reduction with the highest mass activity reported so far. The electrocatalytic oxidation of small organic molecules, such as formic acid and methanol, also exhibited unique selectivity on the single-atom platinum catalyst. A lack of platinum ensemble sites changed the reaction pathway for the oxygen-reduction reaction toward a two-electron pathway and formic acid oxidation toward direct dehydrogenation, and also induced no activity for the methanol oxidation. This work demonstrates that single-atom platinum can be an efficient electrocatalyst with high mass activity and unique selectivity. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Phase-field model for deposition process of platinum nanoparticles on carbon substrate

    International Nuclear Information System (INIS)

    Yamakawa, S; Hyodo, S; Okazaki-Maeda, K; Kohyama, M

    2008-01-01

    Platinum supported on a carbon carrier is widely used as a catalyst for polymer electrolyte membrane fuel cells. The catalytic activity is significantly affected by the size distribution and morphologies of the platinum particles. The objective of this study is to extend the phase-field approach to describe the formation process of platinum particles onto the substrate. The microstructural evolution of a nanoparticle was represented by the temporal evolution of the field variables related to the platinum concentration, long-range crystallographic ordering and phase transition. First-principles calculations were performed in order to estimate the interaction energies between several different types of platinum clusters and a graphene sheet. The platinum density profile concentrated over the substrate surface led to the formation of three-dimensional islands in accordance with the Volmer-Weber mode of growth. The size distributions of the platinum particles were sensitive to the heterogeneity of the substrate surface and to the competitive nucleation and growth processes

  17. [Large vessel vasculitides].

    Science.gov (United States)

    Morović-Vergles, Jadranka; Puksić, Silva; Gracanin, Ana Gudelj

    2013-01-01

    Large vessel vasculitis includes Giant cell arteritis and Takayasu arteritis. Giant cell arteritis is the most common form of vasculitis affect patients aged 50 years or over. The diagnosis should be considered in older patients who present with new onset of headache, visual disturbance, polymyalgia rheumatica and/or fever unknown cause. Glucocorticoides remain the cornerstone of therapy. Takayasu arteritis is a chronic panarteritis of the aorta ant its major branches presenting commonly in young ages. Although all large arteries can be affected, the aorta, subclavian and carotid arteries are most commonly involved. The most common symptoms included upper extremity claudication, hypertension, pain over the carotid arteries (carotidynia), dizziness and visual disturbances. Early diagnosis and treatment has improved the outcome in patients with TA.

  18. Reactor pressure vessel embrittlement

    International Nuclear Information System (INIS)

    1992-07-01

    Within the framework of the IAEA extrabudgetary programme on the Safety of WWER-440/230 NPPs, a list of safety issues requiring broad studies of generic interest have been agreed upon by an Advisory Group who met in Vienna in September 1990. The list was later revised in the light of the programme findings. The information on the status of the issues, and on the amount of work already completed and under way in the various countries, needs to be compiled. Moreover, an evaluation of what further work is required to resolve each one of the issues is also necessary. In view of this, the IAEA has started the preparation of a series of status reports on the various issues. This report on the generic safety issue ''Reactor Pressure Vessel Embrittlement'' presents a comprehensive survey of technical information available in the field and identifies those aspects which require further investigation. 39 refs, 21 figs, 4 tabs

  19. Reactor containment vessel

    International Nuclear Information System (INIS)

    Ochiai, Kanehiro; Hayagumo, Sunao; Morikawa, Matsuo.

    1981-01-01

    Purpose: To safety and simplify the structure in a reactor containment vessel. Constitution: Steam flow channels with steam jetting ports communicating to coolants are provided between a communication channel and coolants in a pressure suppression chamber. Upon loss of coolant accidents, pressure in a dry well will increase, then force downwards water in an annulus portion and further flow out the water through steam jetting ports into a suppression pool. Thus, the steam flow channel is filled with steams or airs present in the dry well, which are released through the steam jetting ports into the pressure suppression chamber. Even though water is violently vibrated owing to the upward movement of air bubbles and condensation of steam bubbles, the annular portion and the steam jetting ports are filled with steams or the like, direct dynamic loads onto the structures such as communication channels can be avoided. (J.P.N.)

  20. Invited: Tailoring Platinum Group Metals Towards Optimal Activity for Oxygen Electroreduction to H2o and H2O2: From Extended Surfaces to Nanoparticles

    DEFF Research Database (Denmark)

    Stephens, Ifan

    2014-01-01

    ). The figure shows transmission electron miscroscopy images of 9 nm diameter PtxY nanoparticles, based on high angle annular dark field –scanning transmission electron microscopy (left) and Y, Pt and combined Pt+Y X-ray energy dispersive X-ray spectroscopy elemental maps. (a) as-prepared catalyst and (b) after......The slow kinetics of the 4-electron reduction of oxygen to H2O imposes a bottleneck against the widespread uptake of low temperature fuel cells in automotive vehicles. High loadings of platinum are required to drive the reaction; the limited supply of this precious metal limits the extent to which...... fuel cell technology could be scaled up.(1) The most widely used strategy towards decreasing the Pt loading is to alloy Pt with other late transition metals, in particular Ni or Co. (2-5) However, when tested in a fuel cell, these alloys are often susceptible towards degradation via dealloying.(6, 7...

  1. Advanced smart tungsten alloys for a future fusion power plant

    Science.gov (United States)

    Litnovsky, A.; Wegener, T.; Klein, F.; Linsmeier, Ch; Rasinski, M.; Kreter, A.; Tan, X.; Schmitz, J.; Mao, Y.; Coenen, J. W.; Bram, M.; Gonzalez-Julian, J.

    2017-06-01

    The severe particle, radiation and neutron environment in a future fusion power plant requires the development of advanced plasma-facing materials. At the same time, the highest level of safety needs to be ensured. The so-called loss-of-coolant accident combined with air ingress in the vacuum vessel represents a severe safety challenge. In the absence of a coolant the temperature of the tungsten first wall may reach 1200 °C. At such a temperature, the neutron-activated radioactive tungsten forms volatile oxide which can be mobilized into atmosphere. Smart tungsten alloys are being developed to address this safety issue. Smart alloys should combine an acceptable plasma performance with the suppressed oxidation during an accident. New thin film tungsten-chromium-yttrium smart alloys feature an impressive 105 fold suppression of oxidation compared to that of pure tungsten at temperatures of up to 1000 °C. Oxidation behavior at temperatures up to 1200 °C, and reactivity of alloys in humid atmosphere along with a manufacturing of reactor-relevant bulk samples, impose an additional challenge in smart alloy development. First exposures of smart alloys in steady-state deuterium plasma were made. Smart tungsten-chroimium-titanium alloys demonstrated a sputtering resistance which is similar to that of pure tungsten. Expected preferential sputtering of alloying elements by plasma ions was confirmed experimentally. The subsequent isothermal oxidation of exposed samples did not reveal any influence of plasma exposure on the passivation of alloys.

  2. Residual life assessment of French PWR vessel head penetrations through metallurgical analysis

    International Nuclear Information System (INIS)

    Pichon, C.; Boudot, R.; Benhamou, C.; Gelpi, A.

    1994-01-01

    In September 1991, a vessel head penetration was found leaking at Bugey 3 plant during the hydrotest included in the framework of decennial In Service Inspections. Non destructive examinations performed afterwards on several other plants have shown some cracked penetrations. Destructive expertise confirmed quickly that again this new problem is related to stress corrosion cracking of Alloy 600 used as base material. During the last 15 years, similar cracking have been met in steam generator tubes and secondly in pressurizer instrumentation tubes. In spite of all the work performed since that time an extension appears to be necessary for explaining the features of this new event; however material sensitivity, stress and temperature still remain the key parameters governing the behavior of Alloy 600 in PWR environment. In this paper, only the material sensitivity of vessel head penetrations is examined through metallurgical analysis in relation with SCC tests. On the basis of vessel head field experience in combination with thermomechanical process used for fabrication of original bars criteria for a sensitivity ranking of penetrations are proposed. Metallurgical investigations and SCC tests were carried out to support this sensitivity ranking. The final aim is to use such information among those quoted above for assessment of vessel heads residual life. This document is an overview of the work performed in France concerning the material sensitivity of forged Alloy 600. It represents an important part of the assessments and investigations undertaken in France on the stress corrosion cracking phenomenon affecting the reactor vessel head penetrations in PWR's

  3. A combined radiation and platinum chemotherapy for esophageal carcinoma

    International Nuclear Information System (INIS)

    Takamura, Akio; Saito, Hiroya; Sakurai, Yasuo; Horio, Keiji; Mizoe, Junetsu.

    1993-01-01

    The prognosis of the patients with advanced esophageal carcinoma treated by definitive radiotherapy is still dismal with a reported 5-year survival rate of 5-10% in most series. Since 1986, combined radiotherapy with chemotherapy using platinum analogue was initiated at Asahikawa and Obihiro Kosei Hospitals in order to improve local-regional control and the survival of the patients. From 1980 to 1992, 81 patients with unresectable esophageal carcinoma were treated with radiotherapy. Since April 1986, 37 out of the 81 patients received both radiotherapy and chemotherapy with platinum. Platinum was used during the course of radiotherapy. The method of administration of platinum was as follows; Cisplatin intravenously (50 mg, weekly, total 200 mg) in 9 patients, Carboplatin intravenously (100-150 mg, weekly, total 400-900 mg) in 11 patients and Cisplatin intraarterially (100 mg, at a 3-4 week interval, total 100-300 mg) in 17 patients. These 37 patients (Group A) were compared to 44 patients treated by radiotherapy alone (Group B) with respect to initial response and survival rate. Response was defined according to the guidelines recommended by Japanese Society for Esophageal Diseases. Response rates were 59.1% (19 CR and 7 PR) in Group B and 70.3% (7 CR and 19 PR) in Group A. Primary relapse-free rates were 36.4% in Group B and 37.8% in Group A. The cumulative survival at 3 years were 11.7% in Group B and 10.6% in Group A. Enhancement of side effects by chemotherapy was minimal and acceptable. Improvement of local-regional control and survival was not obvious by adding a concomitant platinum-chemotherapy. A definite conclusion, however, could not be drawn because of the retrospective, non-controlled nature of this study. Introduction of more intensive, multiple agents chemotherapy seems necessary if one aims at improving the results. (author)

  4. Applicability of electrical resistance tomography to rectangular vessels

    International Nuclear Information System (INIS)

    Ichijo, Noriaki; Matsuno, Shinsuke; Tokura, Susumu; Tochigi, Yoshikatsu; Misumi, Ryuta; Nishi, Kazuhiko; Kaminoyama, Meguru

    2012-01-01

    To ensure a stable operation of Joule-heated glass melters, it is necessary to observe the distribution of platinum group metal particles (noble metals) in molten glass. Electrical resistance tomography (ERT) has a potential to visualize the inside of the melter section because it can be applied at severe conditions such as high temperature and radioactive fields. Due to designing limitations, it is difficult to install electrodes on the wall of the glass melter. In addition, ERT is hardly applied to a rectangular section. To solve these problems, numerical and experimental studies have been implemented. To apply the ERT method, 8 electrodes are inserted from the top of the melter and set near the bottom to visualize the accumulation of noble metals on the bottom area. As a result of the numerical simulation and the experiment, it was clarified that the ERT can be applied to the rectangular vessel by inserting electrodes from the top of the vessel and has a potential to observe the accumulation of noble metals. (author)

  5. Study of gold-platinum and platinum-gold surface modification and its influence on hydrogen evolution and oxygen reduction

    Directory of Open Access Journals (Sweden)

    BRANIMIR N. GRGUR

    2005-02-01

    Full Text Available Surface modification of the electrodes was conducted from sulfuric acid solutions containing the corresponding metal–chloride complexes using cyclic voltammetry. Comparing the charges of the hydrogen underpotential deposition region, and the corresponding oxide reduction regions, it is concluded that a platinum overlayer on gold forms 3D islands, while gold on platinum forms 2D islands. Foreign metals present in an amount of up to one monolayer exert an influence on the change in reaction rate with respect to both hydrogen evolution (HER and oxygen reduction (ORR reactions. Aplatinum overlayer on a gold substrate increases the activity forHER and for ORR, compared with pure gold. These results can be understood in terms of a simple model, in which the change in the H and OH binding energies are directly proportional to the shift of the d-bond center of the overlayer. On the contrary, a gold layer on platinum slightly decreases the activity for both reactions compared with pure platinum.

  6. Determination of trace platinum by supramolecular catalytic kinetic spectrofluorimetry of {beta}-cyclodextrin-platinum-KBrO{sub 3}-salicylaldehyde furfuralhydrazone

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Bo; Zhang, Ning; Chen, Zhen-Zhen; Kong, Qing-Cheng [Shandong Normal University, College of Chemistry, Chemical Engineering and Materials Science, Jinan (China)

    2006-02-01

    A supramolecular catalytic kinetic spectrofluorimetric method was developed for the determination of platinum(IV) and the possible mechanism of catalytic reaction was discussed. The method was based on the fluorescence-enhancing reaction of salicylaldehyde furfuralhydrazone (SAFH) with potassium bromate, which was catalysed by platinum(IV) in a water-ethanol medium. {beta}-Cyclodextrin ({beta}-CD) obviously sensitized the determination at pH 5.20 and 25 C. Under optimum conditions, the {beta}-CD-platinum-KBrO{sub 3}-SAFH supramolecular kinetic catalytic reaction system had excitation and emission maxima at 372 and 461 nm, respectively. The linear range of this method was 0.60-180 ng ml{sup -1} with a relative standard deviation of 1.2%, and the detection limit was 0.18 ng ml{sup -1}. Investigation of the mechanism and the effects of interferences is presented. The proposed method was applied successfully to determine trace platinum(IV) in the chemotherapeutic drug cisplatin and serum from patients with satisfactory results. (orig.)

  7. Translating VDM to Alloy

    DEFF Research Database (Denmark)

    Lausdahl, Kenneth

    2013-01-01

    specifications. However, to take advantage of the automated analysis of Alloy, the model-oriented VDM specifications must be translated into a constraint-based Alloy specifications. We describe how a sub- set of VDM can be translated into Alloy and how assertions can be expressed in VDM and checked by the Alloy...

  8. Progress in understanding the mechanical behavior of pressure-vessel materials at elevated temperatures

    International Nuclear Information System (INIS)

    Swindeman, R.W.; Brinkman, C.R.

    1981-01-01

    Progress during the 1970's on the production of high-temperature mechanical properties data for pressure vessel materials was reviewed. The direction of the research was toward satisfying new data requirements to implement advances in high-temperature inelastic design methods. To meet these needs, servo-controlled testing machines and high-resolution extensometry were developed to gain more information on the essential behavioral features of high-temperature alloys. The similarities and differences in the mechanical response of various pressure vessel materials were identified. High-temperature pressure vessel materials that have received the most attention included Type 304 stainless steel, Type 316 stainless steel, 2 1/4 Cr-1 Mo steel, alloy 800H, and Hastelloy X

  9. Platinum-group elements fractionation by selective complexing, the Os, Ir, Ru, Rh-arsenide-sulfide systems above 1020 °C

    Science.gov (United States)

    Helmy, Hassan M.; Bragagni, Alessandro

    2017-11-01

    The platinum-group element (PGE) contents in magmatic ores and rocks are normally in the low μg/g (even in the ng/g) level, yet they form discrete platinum-group mineral (PGM) phases. IPGE (Os, Ir, Ru) + Rh form alloys, sulfides, and sulfarsenides while Pt and Pd form arsenides, tellurides, bismuthoids and antimonides. We experimentally investigate the behavior of Os, Ru, Ir and Rh in As-bearing sulfide system between 1300 and 1020 °C and show that the prominent mineralogical difference between IPGE (+Rh) and Pt and Pd reflects different chemical preference in the sulfide melt. At temperatures above 1200 °C, Os shows a tendency to form alloys. Ruthenium forms a sulfide (laurite RuS2) while Ir and Rh form sulfarsenides (irarsite IrAsS and hollingworthite RhAsS, respectively). The chemical preference of PGE is selective: IPGE + Rh form metal-metal, metal-S and metal-AsS complexes while Pt and Pd form semimetal complexes. Selective complexing followed by mechanical separation of IPGE (and Rh)-ligand from Pt- and Pd-ligand associations lead to PGE fractionation.

  10. Development of advanced low alloy steel for nuclear RPV

    Energy Technology Data Exchange (ETDEWEB)

    Lee, H. C.; Shin, K. S.; Lee, S. H.; Lee, B. J. [Seoul National Univ., Seoul (Korea)

    2000-04-01

    Low carbon low alloy steels are used in nuclear power plants as pressure vessel, steam generator, etc. Nuclear pressure vessel material requires good combination of strength/ toughness, good weldability and high resistance to neutron irradiation and corrosion fatigue. For SA508III steels, most widely used in the production of nuclear power plant, attaining toughness is more difficult than strength. When taking into account the loss of toughness due to neutron irradiation, attaining as low transition temperature as possible prior to operation is a critical task in the production of nuclear pressure vessels. In the present study, we investigated detrimental microstructural features of SA508III steels to toughness, then alloy design directions to achieve improved mechanical properties were devised. The next step of alloy design was determined based on phase equilibrium thermodynamics and obtained results. Low carbon low alloy steels having low transition temperatures with enough strength and hardenability were developed. Microstructure and mechanical properties of HAZ of SA508III steels and alloy designed steels were investigated. 22 refs., 147 figs., 38 tabs. (Author)

  11. Removal of platinum group metals contained in molten glass using copper

    International Nuclear Information System (INIS)

    Uruga, Kazuyoshi; Sawada, Kayo; Arita, Yuji; Enokida, Youichi; Yamamoto, Ichiro

    2007-01-01

    Removal of platinum group metals (PGMs) such as Pd, Ru, and RuO 2 from molten glass by using various amounts of liquid Cu was done as a basic study on a new vitrification process for a high-level radio-active waste. We prepared two types of borosilicate glasses containing PGMs and Cu, respectively. These glasses were mixed together and heated at 1,473 K for 4h in Ar atmosphere. More than 95% of Pd were removed as a spherical metal button composed of Pd-Cu alloy when Cu was added in an amount 0.5 times the weight of Pd. Nearly 95% of Ru was also removed as a spherical button with 2.5-5 times as much Cu addition as Ru in weight. Ruthenium oxide was reduced to metallic Ru by a reaction with Cu in the molten glass. The removal fraction was increased by increasing the amount of Cu and reached 63% when Cu addition was 7.5 times as much as RuO 2 in weight. By addition of Si as a reducing agent, nearly 90% of Pd and Ru were removed with Cu and Si metal composites even under O 2 :Ar=20:80 (v/v) condition. (author)

  12. Palladium, platinum, rhodium, iridium and ruthenium in chromite- rich rocks from the Samail ophiolite, Oman.

    Science.gov (United States)

    Page, N.J.; Pallister, J.S.; Brown, M.A.; Smewing, J.D.; Haffty, J.

    1982-01-01

    30 samples of chromitite and chromite-rich rocks from two stratigraphic sections, 250 km apart, through the basal ultramafic member of the Samail ophiolite were spectrographically analysed for platinum-group elements (PGE) and for Co, Cu, Ni and V. These data are reported as are Cr/(Cr + Al), Mg/(Mg + Fe) and wt.% TiO2 for most samples. The chromitite occurs as pods or lenses in rocks of mantle origin or as discontinuous layers at the base of the overlying cumulus sequence. PGE abundances in both sections are similar, with average contents in chromite-rich rocks: Pd 8 ppb, Pt 14 ppb, Rh 6 ppb, Ir 48 ppb and Ru 135 ppb. The PGE data, combined with major-element and petrographic data on the chromitite, suggest: 1) relatively larger Ir and Ru contents and highest total PGE in the middle part of each section; 2) PGE concentrations and ratios do not correlate with coexisting silicate and chromite abundances or chromite compositions; 3) Pd/PGE, on average, increases upward in each section; 4) Samail PGE concentrations, particularly Rh, Pt and Pd, are lower than the average values for chromite-rich rocks in stratiform intrusions. 2) suggests that PGEs occur in discrete alloy or sulphide phases rather than in the major oxides or silicates, and 4) suggests that chromite-rich rocks from the oceanic upper mantle are depleted in PGE with respect to chondrites. L.C.C.

  13. Pressure vessel for nuclear reactors

    International Nuclear Information System (INIS)

    1975-01-01

    The invention applies to a pressure vessel for nuclear reactors whose shell, made of cast metal segments, has a steel liner. This liner must be constructed to withstand all operational stresses and to be easily repairable. The invention solves this problem by installing the liner at a certain distance from the inner wall of the pressure vessel shell and by filling this clearance with supporting concrete. Both the concrete and the steel liner must have a lower prestress than the pressure vessel shell. In order to avoid damage to the liner when prestressing the pressure vessel shell, special connecting elements are provided which consist of welded-on fastening elements projecting into recesses in the cast metal segments of the pressure vessel. Their design is described in detail. (TK) [de

  14. Embrittlement and annealing of reactor pressure vessel steels: comparison of BR3 surveillance and vessel plates to the surrogate plates representative of the Yankee Rowe vessel

    Energy Technology Data Exchange (ETDEWEB)

    Fabry, A.; Chaouadi, T.; Puzzolante, J.L.; Van de Velde, J. [Centre de l``Etude de l``Energie Nucleaire, Mol (Belgium); Biemiller, E.C. [Yankee Atomic Electric Company, Bolton (United States); Rossinski, S.T.; Carter, R.G. [Electric Power Research Institute, Charlotte (United States)

    1996-07-01

    The sister pressure vessels at the BR3 and Rowe Yankee PWR plants were operated at a lower-than-usual temperature (260 degrees Celsius) and their plates were austenitized at higher-than-usual temperature (970 degrees Celsius). A heat tratemement leading to a coarser microstructure than typical for the fine grain plates that are considered in development of USNRC Regulatory guide 1.99. This material displayed outlier behaviour charackterized by a 41J CVN-shift significantly larger than predicted by Regulatory Guide 1.99. Because lower radiation temperature and nickell alloying are generally considered detrimental to irradiation sensitivity, there was a major concern that the nickel-modified lower Rowe plate and the nickel-modified BR3 plate may become too embrittled to satisfy the toughness requirements enbodied in the PTS screening criterion. This paper compares three complementary studies undertaken to clarify these uncertainties: 1) the accelerated irradiation and test program launched in 1990 by Yankee Atomic Electric Company using typical vessel plate materials containing 0.24% copper at two nickel levels: YA1, 0.63% (A533-B) and YA9, 0.19% (A302-B). These were heat-treated to produce the coarse and fine grain microstructures representative of the Yankee/BR3 and the Regulatory Guide plates, respectively, 2) the BR3 surveillance and vessel testing program: this vessel was wet-annealed in 1984, relicensed for operation till the plant shutdown in 1987, ANCL was trepanned in early 1995, 3) the accelerated irradiations in the Belgian BR2 test reactor of the Yankee coarse grain plates YA1 and YA9 together with BR3 vessel specimens extracted at nozzle elevation, a location with negligible radiation exposure. It is shown that the PTS screening criterion was never attained by the BR3 and Rowe plates, and that the BR3 vessel anneal was neither necessary nor sufficient. Finally, the sensitivity of embrittlement, annealing and post-annealing reembrittlement to irradiation

  15. Embrittlement and annealing of reactor pressure vessel steels: comparison of BR3 surveillance and vessel plates to the surrogate plates representative of the Yankee Rowe vessel

    International Nuclear Information System (INIS)

    Fabry, A.; Chaouadi, T.; Puzzolante, J.L.; Van de Velde, J.; Biemiller, E.C.; Rossinski, S.T.; Carter, R.G.

    1996-07-01

    The sister pressure vessels at the BR3 and Rowe Yankee PWR plants were operated at a lower-than-usual temperature (260 degrees Celsius) and their plates were austenitized at higher-than-usual temperature (970 degrees Celsius). A heat tratemement leading to a coarser microstructure than typical for the fine grain plates that are considered in development of USNRC Regulatory guide 1.99. This material displayed outlier behaviour charackterized by a 41J CVN-shift significantly larger than predicted by Regulatory Guide 1.99. Because lower radiation temperature and nickell alloying are generally considered detrimental to irradiation sensitivity, there was a major concern that the nickel-modified lower Rowe plate and the nickel-modified BR3 plate may become too embrittled to satisfy the toughness requirements enbodied in the PTS screening criterion. This paper compares three complementary studies undertaken to clarify these uncertainties: 1) the accelerated irradiation and test program launched in 1990 by Yankee Atomic Electric Company using typical vessel plate materials containing 0.24% copper at two nickel levels: YA1, 0.63% (A533-B) and YA9, 0.19% (A302-B). These were heat-treated to produce the coarse and fine grain microstructures representative of the Yankee/BR3 and the Regulatory Guide plates, respectively, 2) the BR3 surveillance and vessel testing program: this vessel was wet-annealed in 1984, relicensed for operation till the plant shutdown in 1987, ANCL was trepanned in early 1995, 3) the accelerated irradiations in the Belgian BR2 test reactor of the Yankee coarse grain plates YA1 and YA9 together with BR3 vessel specimens extracted at nozzle elevation, a location with negligible radiation exposure. It is shown that the PTS screening criterion was never attained by the BR3 and Rowe plates, and that the BR3 vessel anneal was neither necessary nor sufficient. Finally, the sensitivity of embrittlement, annealing and post-annealing reembrittlement to irradiation

  16. Containment vessel stability analysis

    International Nuclear Information System (INIS)

    Harstead, G.A.; Morris, N.F.; Unsal, A.I.

    1983-01-01

    The stability analysis for a steel containment shell is presented herein. The containment is a freestanding shell consisting of a vertical cylinder with a hemispherical dome. It is stiffened by large ring stiffeners and relatively small longitudinal stiffeners. The containment vessel is subjected to both static and dynamic loads which can cause buckling. These loads must be combined prior to their use in a stability analysis. The buckling loads were computed with the aid of the ASME Code case N-284 used in conjunction with general purpose computer codes and in-house programs. The equations contained in the Code case were used to compute the knockdown factors due to shell imperfections. After these knockdown factors were applied to the critical stress states determined by freezing the maximum dynamic stresses and combining them with other static stresses, a linear bifurcation analysis was carried out with the aid of the BOSOR4 program. Since the containment shell contained large penetrations, the Code case had to be supplemented by a local buckling analysis of the shell area surrounding the largest penetration. This analysis was carried out with the aid of the NASTRAN program. Although the factor of safety against buckling obtained in this analysis was satisfactory, it is claimed that the use of the Code case knockdown factors are unduly conservative when applied to the analysis of buckling around penetrations. (orig.)

  17. Pressure vessel design

    International Nuclear Information System (INIS)

    Annaratone, D.

    2007-01-01

    This book guides through general and fundamental problems of pressure vessel design. It moreover considers problems which seem to be of lower importance but which turn out to be crucial in the design phase. The basic approach is rigorously scientific with a complete theoretical development of the topics treated, but the analysis is always pushed so far as to offer concrete and precise calculation criteria that can be immediately applied to actual designs. This is accomplished through appropriate algorithms that lead to final equations or to characteristic parameters defined through mathematical equations. The first chapter describes how to achieve verification criteria, the second analyzes a few general problems, such as stresses of the membrane in revolution solids and edge effects. The third chapter deals with cylinders under pressure from the inside, while the fourth focuses on cylinders under pressure from the outside. The fifth chapter covers spheres, and the sixth is about all types of heads. Chapter seven discusses different components of particular shape as well as pipes, with special attention to flanges. The eighth chapter discusses the influence of holes, while the ninth is devoted to the influence of supports. Finally, chapter ten illustrates the fundamental criteria regarding fatigue analysis. Besides the unique approach to the entire work, original contributions can be found in most chapters, thanks to the author's numerous publications on the topic and to studies performed ad hoc for this book. (orig.)

  18. OFFGEL isoelectric focusing and polyacrylamide gel electrophoresis separation of platinum-binding proteins.

    Science.gov (United States)

    Mena, Ma Luz; Moreno-Gordaliza, Estefanía; Moraleja, Irene; Cañas, Benito; Gómez-Gómez, Ma Milagros

    2011-03-04

    In this work a 2D electrophoretic separation procedure able to maintain the integrity of platinum-protein bonds has been developed. The method is based on the use of sequential OFFGEL isoelectric focussing (IEF) and PAGE. A systematic study of the reagents used for PAGE, for OFFGEL-IEF separation, and post-separation treatment of gels (such as enzymatic digestion and sample preparation for MS analysis) was tackled regarding their suitability for the identification of platinum binding proteins using standard proteins incubated with cisplatin. The distribution of platinum in high and low molecular weight fractions (separated by cut-off filters) was determined by ICP-MS, which allows evaluating platinum-protein bond stability under the conditions studied. SDS-PAGE in the absence of β-mercaptoethanol or dithiotreitol preserved the platinum-protein bonds. In addition, neither the influence of the electric field during the electrophoretic separation, nor the processes of fixing, staining and destaining of proteins in the gel did result in the loss of platinum from platinum binding proteins. SDS-PAGE under non-reducing conditions provides separation of platinum-binding proteins in very narrow bands with quantitative recoveries. Different amounts of platinum-bound proteins covering the range 0.3-2.0 μg were separated and mineralised for platinum determination, showing good platinum linearity. Limits of detection for a mixture of five standard proteins incubated with cisplatin were between the range of 2.4 and 13.9 pg of platinum, which were satisfactory for their application to biological samples. Regarding OFFGEL-IEF, a denaturing solution without thiourea and without dithiotreitol is recommended. The suitability of the OFFGEL-IEF for the separation of platinum binding proteins of a kidney cytosol was demonstrated. Copyright © 2011 Elsevier B.V. All rights reserved.

  19. Niobium Application, Metallurgy and Global Trends in Pressure Vessel Steels

    Science.gov (United States)

    Jansto, Steven G.

    Niobium-containing high strength steel materials have been developed for a variety of pressure vessel applications. Through the application of these Nb-bearing steels in demanding applications, the designer and end user experience improved toughness at low temperature, excellent fatigue resistance and fracture toughness and excellent weldability. These enhancements provide structural engineers the opportunity to further improve the pressure vessel design and performance. The Nb-microalloy alloy designs also result in reduced operational production cost at the steel operation, thereby embracing the value-added attribute Nb provides to both the producer and the end user throughout the supply chain. For example, through the adoption of these Nb-containing structural materials, several design-manufacturing companies are considering improved designs which offer improved manufacturability, lower overall cost and better life cycle performance.

  20. Pressure vessel steels: influence of chemical composition on irradiation sensitivity

    International Nuclear Information System (INIS)

    Ghoniem, M.M.; Hammad, F.H.

    1998-01-01

    Neutron irradiation of the steels used in the construction of the nuclear reactor pressure vessels can lead to the embrittlement of these materials, increasing the ductile-to-brittle transition temperature and decreasing the fracture energy, which can limit the plant life. The knowledge of irradiation embrittlement and the means for minimizing such degradation is therefore important in the field of assuring the safety of the nuclear power plants. Irradiation embrittlement is quite a complex process. It involves many variables. The most important of these are irradiation temperature, neutron fluence (neutron dose), neutron flux (neutron dose rate), and chemical composition of the irradiated material. This paper is concerned with the effect of chemical composition, the role of residual and alloying elements in the irradiation embrittlement of nuclear reactor pressure vessel steels in light water reactors. It presents a critical review for the published work in this field through the last 25 years

  1. Microstructural evolution in reactor pressure vessel steel under neutron irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Ohno, Katsumi; Fukuya, Koji [Institute of Nuclear Safety System Inc., Seika, Kyoto (Japan)

    2000-09-01

    Understanding microstructural changes in reactor pressure vessel steels is important in order to evaluate radiation-induced embrittlement, one of the major aging phenomena affecting the extension of plant life. In this study, actual surveillance test specimens and samples of rector vessel low-alloy steel (A533B steel) irradiated in a research reactor were examined using state-of-the-art techniques to clarify the neutron flux effect on the microstructural changes. These techniques included small angle neutron scattering and atom probes. Microstructural changes which are considered to be the main factors affecting embrittlement, including the production of copper-rich precipitates and the segregation of impurity elements, were confirmed by the results of the study. In addition, the mechanical properties were predicted based on the obtained quantitative data such as the diameters of precipitates. Consequently, the hardening due to irradiation was almost simulated. (author)

  2. Topic 1. Steels for light water reactor pressure vessels

    International Nuclear Information System (INIS)

    Brumovsky, M.; Brynda, J.; Kepka, M.; Barackova, L.; Vacek, M.; Havel, S.; Cukr, B.; Protiva, K.; Petrman, I.; Tvrdy, M.; Hyspecka, L.; Mazanec, K.; Kupca, L.; Brezina, M.

    1980-01-01

    Part 1 of the Proceedings consists of papers on the criteria for the selection and comparison of the properties of steel for pressure vessels and on the metallurgy of the said steels, the selection of suitable material for internal tubing systems, the manufacture of high-alloy steels for WWER components, the mechanical and metallurgical properties of steel 22K for WWER 440 pressure components, and of steel 10MnNi2Mo for the WWER primary coolant circuit, and the metallographic assessment of steel 0Kh18N10T. (J.P.)

  3. Electrode for welding steel for WWER-1000 reactor pressure vessel

    International Nuclear Information System (INIS)

    Lakatos, L.

    Of two types of electrodes, ie., with an alloyed core and with an unalloyed core, an electrode was chosen consisting of a basic coat and an unalloyed core. Fluctuations are shown of shear strength, tensile strenght and contraction with the welding mode and annealing temperature. It was found that pre-heating to 250 and 350 degC, respectively, was most suitable for welding a pressure vessel manufactured from material designated SKODA A3/II. Annealing aimed at removing stress was chosen at 650 to 700 degC. (H.S.)

  4. High temperature cathodic charging of hydrogen in zirconium alloys and iron and nickel base alloys

    International Nuclear Information System (INIS)

    John, J.T.; De, P.K.; Gadiyar, H.S.

    1990-01-01

    These investigations lead to the development of a new technique for charging hydrogen into metals and alloys. In this technique a mixture of sulfates and bisulfates of sodium and potassium is kept saturated with water at 250-300degC in an open pyrex glass beaker and electrolysed using platinum anode and the material to be charged as the cathode. Most of the studies were carried out on Zr alloys. It is shown that because of the high hydrogen flux available at the surface and the high diffusivity of hydrogen in metals at these temperatures the materials pick up hydrogen faster and more uniformly than the conventional electrolytic charging at room temperature and high temperature autoclaving in LiOH solutions. Chemical analysis, metallographic examination and XRD studies confirm this. This technique has been used to charge hydrogen into many iron and nickel base austentic alloys, which are very resistant to hydrogen pick up and to H-embrittlement. Since this involved a novel method of electrolysing water, the hydrogen/deuterium isotopic ratio has been studied. At this temperatures the D/H ratio in the evolved hydrogen gas was found to be closer to the value in the liquid water, which means a smaller separation factor. This confirm the earlier observation that separation factor decreases with increase of temperature. (author). 16 refs., 21 fi gs., 6 tabs

  5. Screening reactive oxygen species scavenging properties of platinum nanoparticles on a microfluidic chip.

    Science.gov (United States)

    Zheng, Wenfu; Jiang, Bo; Hao, Yi; Zhao, Yuyun; Zhang, Wei; Jiang, Xingyu

    2014-09-12

    Hyperglycemia, hyperlipidemia and inflammation are key risk factors for atherosclerosis and can lead to overproduction of reactive oxygen species (ROS), which plays a critical role in vascular endothelial dysfunction and subsequent progress of atherosclerosis. However, there is currently a lack of effective drugs that deal with ROS. Platinum nanoparticles (Pt-NPs) have proven to be promising antioxidant drugs in vitro and in vivo. To optimize the efficacy of Pt-NP based drugs, we synthesized and characterized the ROS scavenging properties of three kinds of small molecules that capped Pt-NPs (Pt-AMP-NPs, Pt-ATT-NPs, Pt-MI-NPs) on a blood vessel-mimicking microfluidic chip. The Pt-NPs showed superior superoxide dismutase (SOD)-like functions and can scavenge ROS and recover compromised cell-cell junctions under hyperglycemic, hyperlipidemic and proinflammatory conditions. Amongst these NPs, Pt-AMP-NPs showed the most superior antioxidant properties, suggesting its potency to serve as a novel drug to treat vascular diseases such as atherosclerosis. Our microfluidic chip, providing physiological hemodynamic conditions for the experiments, is potentially a promising tool for a wide range of biological research on the vascular system.

  6. Steel alloys

    International Nuclear Information System (INIS)

    Bloom, E.E.; Stiegler, J.O.; Rowcliffe, A.F.; Leitnaker, J.M.

    1977-01-01

    The invention deals with a fuel element for fast breeder reactors. It consits essentially of a uranium oxide, nitride, or carbide or a mixture of these fuels with a plutonium or thorium oxide, nitride, or carbide. The fuel elements are coated with an austenitic stainless steel alloy. Inside the fuel elements, vacancies or small cavities are produced by neutron effects which causes the steel coating to swell. According to the invention, swelling is prevented by a modification of type 304, 316, 321, or 12 K 72HV commercial steels. They consist mainly of Fe, Cr, and Ni in a ratio determined by a temary diagram. They may also contain 1.8 to 2.3% by weight of Mo and a fraction of Si (0.7 to 2% by weight) and Ti(0.10 to 0.5% by weight) to prevent cavity formation. They are structurally modified by cold working. (IHOE) [de

  7. TP53 status and taxane-platinum versus platinum-based therapy in ovarian cancer patients: A non-randomized retrospective study

    Directory of Open Access Journals (Sweden)

    Markowska Janina

    2008-01-01

    Full Text Available Abstract Background Taxane-platinum therapy (TP has replaced platinum-based therapy (PC or PAC, DNA damaging chemotherapy in the postoperative treatment of ovarian cancer patients; however, it is not always effective. TP53 protein plays a differential role in response to DNA-damaging agents and taxanes. We sought to define profiles of patients who benefit the most from TP and also of those who can be treated with PC. Methods We compared the effectiveness of PC/PAC (n = 253 and TP (n = 199 with respect to tumor TP53 accumulation in ovarian cancer patients with FIGO stage IIB-IV disease; this was a non-randomized retrospective study. Immunohistochemical analysis was performed on 452 archival tumors; univariate and multivariate analysis by the Cox's and logistic regression models was performed in all patients and in subgroups with [TP53(+] and without TP53 accumulation [TP53(-]. Results The advantage of taxane-platinum therapy over platinum-based therapy was seen in the TP53(+, and not in the TP53(- group. In the TP53(+ group taxane-platinum therapy enhanced the probability of complete remission (p = .018, platinum sensitivity (p = .014, platinum highly sensitive response (p = .038 and longer survival (OS, p = .008. Poor tumor differentiation diminished the advantage from taxane-platinum therapy in the TP53(+ group. In the TP53(- group PC/PAC was at least equally efficient as taxane-platinum therapy and it enhanced the chance of platinum highly sensitive response (p = .010. However, in the TP53(- group taxane-platinum therapy possibly diminished the risk of death in patients over 53 yrs (p = .077. Among factors that positively interacted with taxane-platinum therapy in some analyses were endometrioid and clear cell type, FIGO III stage, bulky residual tumor, more advanced age of patient and moderate tumor differentiation. Conclusion Our results suggest that taxane-platinum therapy is particularly justified in patients with TP53(+ tumors or older

  8. Comparison of BR3 Surveillance and Vessel Plates to the Surrogate Plates Representative of the Yankee Rowe PWR Vessel

    Energy Technology Data Exchange (ETDEWEB)

    Fabry, A.; Chaouadi, R.; Puzzolante, J.L.; Van de Velde, J.; Biemiller, E.C.; Rosinski, S.T.; Carter, R.G

    1998-07-01

    The sister pressure vessels at the BR3 and Yankee Rowe PWR plants were operated at lower-than-usual temperature ( 260 degrees Celsius) and their plates were austenitized a higher-than-usual temperature (970 degrees Celsius) - a heat treatment leading to a coarser microstructure than is typical for the fine grain plates considered in development of USNRC Regulatory Guide 1.99. The surveillance programs provided by Westinghouse for the two plants were limited to the same A302-B plate representative of the Rowe vessel upper shell plate; this material displayed outlier behaviour characterized by a 41 J Charpy-V Notch shift significantly larger than predicted by Regulatory Guide 1.99. Because lower irradiation temperature and nickel alloying are generally considered detrimental to irradiation sensitivity, there was a major concern that the nickel-modified lower Rate plate and the nickel-modified BR3 plate may become too embrittled to satisfy the toughness requirements embodied in the PTS screening criterion. This paper compares free complementary studies undertaken to clarify these uncertainties: (1) The accelerated irradiation and test program launched in 1990 by Yankee Atomic Electric Company using typical vessel plate materials containing 0.24% copper at two nickel levels: YA1, 0.63 % (A533-B) and YA9, 0.19 (A302-B). These were heat-treated to produce the coarse and fine grain microstructures representative of the Yankee/BR3 and the Regulatory Guide plates, respectively; (2) The BR3 surveillance and vessel testing program: this vessel was wet-annealed in 1984, relicensed for operation till the plant shutdown in 1987, and was trepanned in early 1995; (3) The accelerated irradiations in the Belgian test reactor BR2 of the Yankee coarse grain plates YA1 and YA9 together with BR3 vessel specimens extracted at nozzle elevation, a location with negligible radiation exposure. It is contended that the PTS screening criterion was never attained by the BR3 and Rowe plates, and

  9. Comparison of BR3 Surveillance and Vessel Plates to the Surrogate Plates Representative of the Yankee Rowe PWR Vessel

    International Nuclear Information System (INIS)

    Fabry, A.; Chaouadi, R.; Puzzolante, J.L.; Van de Velde, J.; Biemiller, E.C.; Rosinski, S.T.; Carter, R.G.

    1998-07-01

    The sister pressure vessels at the BR3 and Yankee Rowe PWR plants were operated at lower-than-usual temperature ( 260 degrees Celsius) and their plates were austenitized a higher-than-usual temperature (970 degrees Celsius) - a heat treatment leading to a coarser microstructure than is typical for the fine grain plates considered in development of USNRC Regulatory Guide 1.99. The surveillance programs provided by Westinghouse for the two plants were limited to the same A302-B plate representative of the Rowe vessel upper shell plate; this material displayed outlier behaviour characterized by a 41 J Charpy-V Notch shift significantly larger than predicted by Regulatory Guide 1.99. Because lower irradiation temperature and nickel alloying are generally considered detrimental to irradiation sensitivity, there was a major concern that the nickel-modified lower Rate plate and the nickel-modified BR3 plate may become too embrittled to satisfy the toughness requirements embodied in the PTS screening criterion. This paper compares free complementary studies undertaken to clarify these uncertainties: (1) The accelerated irradiation and test program launched in 1990 by Yankee Atomic Electric Company using typical vessel plate materials containing 0.24% copper at two nickel levels: YA1, 0.63 % (A533-B) and YA9, 0.19 (A302-B). These were heat-treated to produce the coarse and fine grain microstructures representative of the Yankee/BR3 and the Regulatory Guide plates, respectively; (2) The BR3 surveillance and vessel testing program: this vessel was wet-annealed in 1984, relicensed for operation till the plant shutdown in 1987, and was trepanned in early 1995; (3) The accelerated irradiations in the Belgian test reactor BR2 of the Yankee coarse grain plates YA1 and YA9 together with BR3 vessel specimens extracted at nozzle elevation, a location with negligible radiation exposure. It is contended that the PTS screening criterion was never attained by the BR3 and Rowe plates, and

  10. Comparison of BR3 surveillance and vessel plates to the surrogate plates representative of the Yankee Rowe PWR vessel

    International Nuclear Information System (INIS)

    Fabry, A.; Chaouadi, R.; Puzzolante, J.L.; Van de Velde, J.; Biemiller, E.C.; Rosinski, S.T.; Carter, R.G.

    1999-01-01

    The sister pressure vessels at the BR3 and Yankee Rowe PWR plants were operated at lower-than-usual temperature (∼260 C) and their plates were austenitized at higher-than-usual temperature (∼970 C) -- a heat treatment leading to a coarser microstructure than is typical for the fine grain plates considered in development of USNRC Regulatory Guide 1.99. The surveillance programs provided by Westinghouse for the two plants were limited to the same A302-B plate representative of the Rowe vessel upper shell plate; this material displayed outlier behavior characterized by a 41J. Charpy-V Notch shift significantly larger than predicted by Regulatory Guide 1.99. Because lower irradiation temperature and nickel alloying are generally considered detrimental to irradiation sensitivity, there was a major concern that the nickel-modified lower Rowe plate and the nickel-modified BR3 plate may become too embrittled to satisfy the toughness requirements embodied in the PTS screening criterion. This paper compares three complementary studies undertaken to clarify these uncertainties: (1) The accelerated irradiation and test program launched in 1990 by Yankee Atomic Electric Company using typical vessel plate materials containing 0.24% copper at two nickel levels: YA1, 0.63% (A533-B) and YA9, 0.19% (A302-B). These were heat-treated to produce the coarse and fine grain microstructures representative of the Yankee/BR3 and the Regulatory Guide plates, respectively; (2) The BR3 surveillance and vessel testing program; this vessel was wet-annealed in 1984, relicensed for operation till the plant shutdown in 1987, and was trepanned in early 1995; (3) The accelerated irradiations in the Belgian test reactor BR2 of the Yankee coarse grain plates YA1 and YA9 together with BR3 vessel specimens extracted at nozzle elevation, a location with negligible radiation exposure. It is contended that the PTS screening criterion was never attained by the BR3 and Rowe plates, and that the BR3 vessel

  11. PWR vessel flaw distribution development

    International Nuclear Information System (INIS)

    Rosinski, S.T.; Kennedy, E.L.; Foulds, J.R.; Kinsman, K.M.

    1990-01-01

    This paper reports on PWR pressure vessels which operate under NRC rules and regulatory guides intended to prevent failure of the vessels. Plants failing to meet the operating criteria specified under these rules and regulations are required to analytically demonstrate fitness for service in order to continue operation. The initial flaw size or distribution of initial vessel flaws is a key input to the required vessel integrity analyses. However, the flaw distribution assumed in the development of the NRC Regulations and recommended for the plant specific analyses is potentially over-conservative. This is because the distribution is based on the limited amount of vessel inspection data available at the time the criteria were being developed and does not take full advantage of the more recent and reliable domestic vessel inspection results. The U.S. Department of Energy is funding an effort through Sandia National Laboratories to investigate the possibility of developing a new flaw distribution based on the increased amount and improved reliability of domestic vessel inspection data. Results of Phase I of the program indicate that state-of-the-art NDE systems' capabilities are sufficient for development of a new flaw distribution that could ultimately provide life extension benefits over the presently required operating practice

  12. Nuclear reactor vessel decontamination systems

    International Nuclear Information System (INIS)

    McGuire, P. J.

    1985-01-01

    There is disclosed in the present application, a decontamination system for reactor vessels. The system is operatable without entry by personnel into the contaminated vessel before the decontamination operation is carried out and comprises an assembly which is introduced into the vertical cylindrical vessel of the typical boiling water reactor through the open top. The assembly includes a circular track which is centered by guideways permanently installed in the reactor vessel and the track guides opposed pairs of nozzles through which water under very high pressure is directed at the wall for progressively cutting and sweeping a tenacious radioactive coating as the nozzles are driven around the track in close proximity to the vessel wall. The whole assembly is hoisted to a level above the top of the vessel by a crane, outboard slides on the assembly brought into engagement with the permanent guideways and the assembly progressively lowered in the vessel as the decontamination operation progresses. The assembly also includes a low pressure nozzle which forms a spray umbrella above the high pressure nozzles to contain radioactive particles dislodged during the decontamination

  13. Gammatography of thick lead vessels

    International Nuclear Information System (INIS)

    Raghunath, V.M.; Bhatnagar, P.K.; Sundaram, V.M.

    1979-01-01

    Radiography, scintillation and GM counting and dose measurements using ionisation chamber equipment are commonly used for detecting flaws/voids in materials. The first method is mostly used for steel vessels and to a lesser extent thin lead vessels also and is essentially qualitative. Dose measuring techniques are used for very thick and large lead vessels for which high strength radioactive sources are required, with its inherent handling problems. For vessels of intermediate thicknesses, it is ideal to use a small strength source and a GM or scintillation counter assembly. At the Reactor Research Centre, Kalpakkam, such a system was used for checking three lead vessels of thicknesses varying from 38mm to 65mm. The tolerances specified were +- 4% variation in lead thickness. The measurements also revealed the non concentricity of one vessel which had a thickness varying from 38mm to 44mm. The second vessel was patently non-concentric and the dimensional variation was truly reproduced in the measurements. A third vessel was fabricated with careful control of dimensions and the measurements exhibited good concentricity. Small deviations were observed, attributable to imperfect bondings between steel and lead. This technique has the following advantages: (a) weaker sources used result in less handling problems reducing the personnel exposures considerably; (b) the sensitivity of the instrument is quite good because of better statistics; (c) the time required for scanning a small vessel is more, but a judicious use of a scintillometer for initial fast scan will help in reducing the total scanning time; (d) this method can take advantage of the dimensional variations themselves to get the calibration and to estimate the deviations from specified tolerances. (auth.)

  14. BY FRUSTUM CONFINING VESSEL

    Directory of Open Access Journals (Sweden)

    Javad Khazaei

    2016-09-01

    Full Text Available Helical piles are environmentally friendly and economical deep foundations that, due to environmental considerations, are excellent additions to a variety of deep foundation alternatives available to the practitioner. Helical piles performance depends on soil properties, the pile geometry and soil-pile interaction. Helical piles can be a proper alternative in sensitive environmental sites if their bearing capacity is sufficient to support applied loads. The failure capacity of helical piles in this study was measured via an experimental research program that was carried out by Frustum Confining Vessel (FCV. FCV is a frustum chamber by approximately linear increase in vertical and lateral stresses along depth from top to bottom. Due to special geometry and applied bottom pressure, this apparatus is a proper choice to test small model piles which can simulate field stress conditions. Small scale helical piles are made with either single helix or more helixes and installed in fine grained sand with three various densities. Axial loading tests including compression and tension tests were performed to achieve pile ultimate capacity. The results indicate the helical piles behavior depends essentially on pile geometric characteristics, i.e. helix configuration and soil properties. According to the achievements, axial uplift capacity of helical model piles is about equal to usual steel model piles that have the helixes diameter. Helical pile compression bearing capacity is too sufficient to act as a medium pile, thus it can be substituted other piles in special geoenvironmental conditions. The bearing capacity also depends on spacing ratio, S/D, and helixes diameter.

  15. Vacuum vessel for thermonuclear device

    International Nuclear Information System (INIS)

    Hagiwara, Koji; Imura, Yasuya.

    1979-01-01

    Purpose: To provide constituted method for easily performing baking of vacuum vessel, using short-circuiting segments. Constitution: At the time of baking, one turn circuit is formed by the vacuum vessel and short-circuiting segments, and current transformer converting the one turn circuit into a secondary circuit by the primary coil and iron core is formed, and the vacuum vessel is Joule heated by an induction current from the primary coil. After completion of baking, the short-circuiting segments are removed. (Kamimura, M.)

  16. PWR vessel inspection performance improvements

    International Nuclear Information System (INIS)

    Blair Fairbrother, D.; Bodson, Francis

    1998-01-01

    A compact robot for ultrasonic inspection of reactor vessels has been developed that reduces setup logistics and schedule time for mandatory code inspections. Rather than installing a large structure to access the entire weld inspection area from its flange attachment, the compact robot examines welds in overlapping patches from a suction cup anchor to the shell wall. The compact robot size allows two robots to be operated in the vessel simultaneously. This significantly reduces the time required to complete the inspection. Experience to date indicates that time for vessel examinations can be reduced to fewer than four days. (author)

  17. Electrical conductivity of platinum-implanted polymethylmethacrylate nanocomposite

    Science.gov (United States)

    Salvadori, M. C.; Teixeira, F. S.; Cattani, M.; Brown, I. G.

    2011-12-01

    Platinum/polymethylmethacrylate (Pt/PMMA) nanocomposite material was formed by low energy ion implantation of Pt into PMMA, and the transition from insulating to conducting phase was explored. In situ resistivity measurements were performed as the implantation proceeded, and transmission electron microscopy was used for direct visualization of Pt nanoparticles. Numerical simulation was carried out using the TRIDYN computer code to calculate the expected depth profiles of the implanted platinum. The maximum dose for which the Pt/PMMA system remains an insulator/conductor composite was found to be ϕ0 = 1.6 × 1016 cm-2, the percolation dose was 0.5 × 1016 cm-2, and the critical exponent was t = 1.46, indicating that the conductivity is due only to percolation. The results are compared with previously reported results for a Au/PMMA composite.

  18. Nanostructured gold and platinum electrodes on silicon structures for biosensing

    International Nuclear Information System (INIS)

    Ogurtsov, V I; Sheehan, M M

    2005-01-01

    Gold and platinum metal electrodes on Si/SiO 2 having undergone anisotropic potassium hydroxide (KOH) etch treatment are considered. This treatment etches at different rates and directions in the material resulting in creation of numerous pyramid shaped holes in the silicon substrate. This surface is used to make metal electrodes with increased electrode efficiency. The electrodes can serve as the sensors or as the sensor substrates (for surface polymer modification) and because both gold and platinum are inert they have applications for food safety biosensing. Wine, an economically significant food product, was chosen as a matrix, and impedance spectroscopy (EIS) was selected as a method of investigation of electrode behaviour. Based on results of EIS, different complexity equivalent circuits were determined by applying fitting mean square root optimisation of sensor complex impedance measurements

  19. Platinum replica electron microscopy: Imaging the cytoskeleton globally and locally.

    Science.gov (United States)

    Svitkina, Tatyana M

    2017-05-01

    Structural studies reveal how smaller components of a system work together as a whole. However, combining high resolution of details with full coverage of the whole is challenging. In cell biology, light microscopy can image many cells in their entirety, but at a lower resolution, whereas electron microscopy affords very high resolution, but usually at the expense of the sample size and coverage. Structural analyses of the cytoskeleton are especially demanding, because cytoskeletal networks are unresolvable by light microscopy due to their density and intricacy, whereas their proper preservation is a challenge for electron microscopy. Platinum replica electron microscopy can uniquely bridge the gap between the "comfort zones" of light and electron microscopy by allowing high resolution imaging of the cytoskeleton throughout the entire cell and in many cells in the population. This review describes the principles and applications of platinum replica electron microscopy for studies of the cytoskeleton. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Recycling of platinum group metals from the automotive catalysts

    International Nuclear Information System (INIS)

    Benevit, Mariana; Petter, Patricia Melo Halmenschlager; Veit, Hugo Marcelo

    2014-01-01

    Currently it is very important to use alternative sources of raw material for obtaining metals, avoiding the traditional mining. This work aims to characterize and evaluate the recoverability of platinum group metals present in automotive catalysts. Thus, the catalysts were divided into two groups: the first was catalysts used in 1.0 cars and the second was catalyst used in 2.0 cars. DRX and FRX techniques and chemical analysis performed by ICP/OES was used to characterized these materials. The results showed that there is a significant amount of platinum group elements in catalyst waste, which can be separated and reused. In the next step, hydro and pyrometallurgical routes, for metals extraction from catalyst waste, will be studied. (author)

  1. Stabilization of 200-atom platinum nanoparticles by organosilane fragments

    KAUST Repository

    Pelzer, Katrin

    2011-04-19

    Three\\'s a charm: Platinum nanoparticles of 2 nm diameter and containing approximately 200 atoms covered with n-octylsilyl groups (see picture, right; Pt blue, Si red, C gray, H turquoise) form when [Pt(dba)2] (dba=dibenzylideneacetone) decomposes in the presence of n-octylsilane. The particles adopt a cuboctahedral structure with an edge length of three atoms. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Effect of Platinum Group Metal Doping in Magnesium Diboride Wires

    DEFF Research Database (Denmark)

    Grivel, Jean-Claude; Alexiou, Aikaterini; Namazkar, Shahla

    2016-01-01

    The effect of some platinum group metals(PGM = Rh, Pd, and Pt) on the microstructure and critical current density of Cu/Nb-sheathed MgB2 wires has been studied using Mg1-x PGMxB2 powders with low doping levels. It was found that Pt and Pd do not enter the MgB2 lattice and have only limited influe...

  3. Platinum redispersion on metal oxides in low temperature fuel cells

    DEFF Research Database (Denmark)

    Tripkovic, Vladimir; Cerri, Isotta; Nagami, Tetsuo

    2013-01-01

    We have analyzed the aptitude of several metal oxide supports (TiO2, SnO2, NbO2, ZrO2, SiO2, Ta2O5 and Nb2O5) to redisperse platinum under electrochemical conditions pertinent to the Proton Exchange Membrane Fuel Cell (PEMFC) cathode. The redispersion on oxide supports in air has been studied in ...

  4. Stabilization of 200-atom platinum nanoparticles by organosilane fragments

    KAUST Repository

    Pelzer, Katrin; Hä vecker, Michael; Boualleg, Malika; Candy, Jean Pierre; Basset, Jean-Marie

    2011-01-01

    Three's a charm: Platinum nanoparticles of 2 nm diameter and containing approximately 200 atoms covered with n-octylsilyl groups (see picture, right; Pt blue, Si red, C gray, H turquoise) form when [Pt(dba)2] (dba=dibenzylideneacetone) decomposes in the presence of n-octylsilane. The particles adopt a cuboctahedral structure with an edge length of three atoms. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Platinum(II) complexes as spectroscopic probes for biomolecules

    Energy Technology Data Exchange (ETDEWEB)

    Ratilla, E.

    1990-09-21

    The use of platinum(II) complexes as tags and probes for biomolecules is indeed advantageous for their reactivities can be selective for certain purposes through an interplay of mild reaction conditions and of the ligands bound to the platinum. The use of {sup 195}Pt NMR as a method of detecting platinum and its interactions with biomolecules was carried out with the simplest model of platinum(II) tagging to proteins. Variable-temperature {sup 195}Pt NMR spectroscopy proved useful in studying the stereodynamics of complex thioethers like methionine. The complex, Pt(trpy)Cl{sup +}, with its chromophore has a greater potential for probing proteins. It is a noninvasive and selective tag for histidine and cysteine residues on the surface of cytochrome c at pH 5. The protein derivatives obtained are separable, and the tags are easily quantitated and differentiated through the metal-to-ligand charge transfer bands which are sensitive to the environment of the tag. Increasing the pH to 7.0 led to the modification by Pt(trpy)Cl{sup +}of Arg 91 in cytochrome c. Further studies with guanidine-containing ligands as models for arginine modification by Pt(trpy)Cl{sup +} showed that guanidine can act as a terminal ligand and as a bridging ligand. Owing to the potential utility of Pt(trpy)L{sup n+} as electron dense probes of nucleic acid structure, interactions of this bis-Pt(trpy){sup 2+} complex with nucleic acids was evaluated. Indeed, the complex interacts non-covalently with nucleic acids. Its interactions with DNA are not exactly the same as those of its precedents. Most striking is its ability to form highly immobile bands of DNA upon gel electrophoresis. 232 refs.

  6. One-step electrochemically-codeposited polyaniline-platinum for dye-sensitized solar cell applications

    Energy Technology Data Exchange (ETDEWEB)

    Thiangkaew, Anongnad; Keothongkham, Khamsone; Maiaugree, Wasan; Jarernboon, Wirat [Khon Kaen University, Khon Kaen (Thailand); Kamwanna, Teerasak; Pimanpang, Samuk; Amornkitbamrung, Vittaya [Khon Kaen University, Khon Kaen (Thailand); Nanotec-KKU Center of Excellence on Advanced Nanomaterials for Energy Production and Storage, Khon Kaen (Thailand)

    2014-05-15

    Platinum, polyaniline and composite polyaniline-platinum films were coated on conductive glass by using electrochemical deposition. They were then used as dye-sensitized solar cell counter electrodes. The efficiencies of platinum, polyaniline and composite polyaniline-platinum cells were 2.47, 4.47 and 6.62%, respectively. The improvement of composite polyaniline-platinum solar cell efficiency over pure polyaniline and platinum cells is because of an increase in the film's catalytic activity and a decrease in charge-transfer resistance between its counter electrode and electrolyte, as observed by using cyclic voltammogram and electrochemical impedance spectroscopy measurements, respectively. Co-deposition of polyaniline and Pt catalysts was confirmed by the presence of Pt and N peaks in the X-ray photoelectron spectroscopy spectrum.

  7. Platinum uptake by the freshwater isopod Asellus Aquaticus in urban rivers

    Energy Technology Data Exchange (ETDEWEB)

    Rauch, S.; Morrison, G.M. [Department of Sanitary Engineering, Chalmers University of Technology, S-412 96 Goeteborg (Sweden)

    1999-09-01

    Platinum has been increasing in the environment as a result of emissions from catalytic converters. The platinum emitted is principally located in the vicinity of roads but might be transported to urban rivers through highway and urban run-off water. Platinum concentrations in the freshwater isopod Asellus aquaticus were measured for two urban rivers and a stormwater detention pond. Concentrations ranged from 0.04 to 12.4 {mu}g g{sup -1} for direct analysis and from 0.16 to 4.5 {mu}g g{sup -1} after depuration. Analyses of water, pore water and sediments indicate that platinum in urban rivers is mostly found in the sediments and these provide the major contribution of platinum to Asellus aquaticus. Exposure experiments showed the importance of platinum speciation for uptake.

  8. Special enclosure for a pressure vessel

    International Nuclear Information System (INIS)

    Wedellsborg, B.W.; Wedellsborg, U.W.

    1993-01-01

    A pressure vessel enclosure is described comprising a primary pressure vessel, a first pressure vessel containment assembly adapted to enclose said primary pressure vessel and be spaced apart therefrom, a first upper pressure vessel jacket adapted to enclose the upper half of said first pressure vessel containment assembly and be spaced apart therefrom, said upper pressure vessel jacket having an upper rim and a lower rim, each of said rims connected in a slidable relationship to the outer surface of said first pressure vessel containment assembly, mean for connecting in a sealable relationship said upper rim of said first upper pressure vessel jacket to the outer surface of said first pressure vessel containment assembly, means for connecting in a sealable relationship said lower rim of said first upper pressure vessel jacket to the outer surface of said first pressure vessel containment assembly, a first lower pressure vessel jacket adapted to enclose the lower half of said first pressure vessel containment assembly and be spaced apart therefrom, said lower pressure vessel jacket having an upper rim connected in a slidable relationship to the outer surface of said first pressure vessel containment assembly, and means for connecting in a sealable relationship said upper rim of said first lower pressure vessel jacket to the outer surface of said first pressure vessel containment assembly, a second upper pressure vessel jacket adapted to enclose said first upper pressure vessel jacket and be spaced apart therefrom, said second upper pressure vessel jacket having an upper rim and a lower rim, each of said rims adapted to slidably engage the outer surface of said first upper pressure vessel jacket, means for sealing said rims, a second lower pressure vessel jacket adapted to enclose said first lower pressure vessel jacket and be spaced apart therefrom

  9. Synthesis of Platinum Nanotubes and Nanorings via Simultaneous Metal Alloying and Etching

    KAUST Repository

    Huang, Zhiqi; Raciti, David; Yu, Shengnan; Zhang, Lei; Deng, Lin; He, Jie; Liu, Yijing; Khashab, Niveen M.; Wang, Chao; Gong, Jinlong; Nie, Zhihong

    2016-01-01

    Metallic nanotubes represent a class of hollow nanostructures with unique catalytic properties. However, the wet-chemical synthesis of metallic nanotubes remains a substantial challenge, especially for those with dimensions below 50 nm

  10. Oxygen Electroreduction Activity and X-Ray Photoelectron Spectroscopy of Platinum and Early Transition Metal Alloys

    DEFF Research Database (Denmark)

    Stephens, Ifan; Bondarenko, Alexander S.; Bech, Lone

    2012-01-01

    and exsitu under ultrahigh vacuum conditions. The ORR activity was established in an electrochemical cell containing 0.1M HClO4 by use of a rotating ring disk electrode assembly. The surface composition was characterised before and after the electrochemical measurements by using angle-resolved X-ray...

  11. The Effect of Cold Work on Properties of Alloy 617

    Energy Technology Data Exchange (ETDEWEB)

    Wright, Richard [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2014-08-01

    Alloy 617 is approved for non-nuclear construction in the ASME Boiler and Pressure Vessel Code Section I and Section VIII, but is not currently qualified for nuclear use in ASME Code Section III. A draft Code Case was submitted in 1992 to qualify the alloy for nuclear service but efforts were stopped before the approval process was completed.1 Renewed interest in high temperature nuclear reactors has resulted in a new effort to qualify Alloy 617 for use in nuclear pressure vessels. The mechanical and physical properties of Alloy 617 were extensively characterized for the VHTR programs in the 1980’s and incorporated into the 1992 draft Code Case. Recently, the properties of modern heats of the alloy that incorporate an additional processing step, electro-slag re-melting, have been characterized both to confirm that the properties of contemporary material are consistent with those in the historical record and to increase the available database. A number of potential issues that were identified as requiring further consideration prior to the withdrawal of the 1992 Code Case are also being re-examined in the current R&D program. Code Cases are again being developed to allow use of Alloy 617 for nuclear design within the rules of the ASME Boiler and Pressure Vessel Code. In general the Code defines two temperature ranges for nuclear design with austenitic and nickel based alloys. Below 427°C (800°F) time dependent behavior is not considered, while above this temperature creep and creep-fatigue are considered to be the dominant life-limiting deformation modes. There is a corresponding differentiation in the treatment of the potential for effects associated with cold work. Below 427°C the principal issue is the relationship between the level of cold work and the propensity for stress corrosion cracking and above that temperature the primary concern is the impact of cold work on creep-rupture behavior.

  12. Influence of oxide and alloy formation on the Electrochemistry of Ti deposition from the NaCl-KCl-NaF-K-2 TiF6 melt reduced by metallic Ti

    DEFF Research Database (Denmark)

    Barner, Jens H. Von; Precht Noyé, Pernille; Barhoun, A

    2005-01-01

    The redox reactions in KCl-NaCl-NaF-K2TiF6 melts reduced by titanium metal have been studied by cyclic voltammetry and chronopotentiommetry. At platinum and nickel electrodes waves due to alloy formation were seen preceding the Ti(III) --> Ti metal deposition wave. The presence of oxide species...

  13. Platinum-induced structural collapse in layered oxide polycrystalline films

    International Nuclear Information System (INIS)

    Wang, Jianlin; Liu, Changhui; Huang, Haoliang; Fu, Zhengping; Peng, Ranran; Zhai, Xiaofang; Lu, Yalin

    2015-01-01

    Effect of a platinum bottom electrode on the SrBi 5 Fe 1−x Co x Ti 4 O 18 layered oxide polycrystalline films was systematically studied. The doped cobalt ions react with the platinum to form a secondary phase of PtCoO 2 , which has a typical Delafossite structure with a weak antiferromagnetism and an exceptionally high in-plane electrical conductivity. Formation of PtCoO 2 at the interface partially consumes the cobalt dopant and leads to the structural collapsing from 5 to 4 layers, which was confirmed by X-ray diffraction and high resolution transmission electron microscopy measurements. Considering the weak magnetic contribution from PtCoO 2 , the observed ferromagnetism should be intrinsic of the Aurivillius compounds. Ferroelectric properties were also indicated by the piezoresponse force microscopy. In this work, the platinum induced secondary phase at the interface was observed, which has a strong impact on Aurivillius structural configuration and thus the ferromagnetic and ferroelectric properties

  14. A Single Platinum Microelectrode for Identifying Soft Drink Samples

    Directory of Open Access Journals (Sweden)

    Lígia Bueno

    2012-01-01

    Full Text Available Cyclic voltammograms recorded with a single platinum microelectrode were used along with a non-supervised pattern recognition, namely, Principal Component Analysis, to conduct a qualitative analysis of sixteen different brands of carbonated soft drinks (Kuat, Soda Antarctica, H2OH!, Sprite 2.0, Guarana Antarctica, Guarana Antarctica Zero, Coca-Cola, Coca-Cola Zero, Coca-Cola Plus, Pepsi, Pepsi Light, Pepsi Twist, Pepsi Twist Light, Pepsi Twist 3, Schin Cola, and Classic Dillar’s. In this analysis, soft drink samples were not subjected to pre-treatment. Good differentiation among all the analysed soft drinks was achieved using the voltammetric data. An analysis of the loading plots shows that the potentials of −0.65 V, −0.4 V, 0.4 V, and 0.750 V facilitated the discrimination process. The electrochemical processes related to this potential are the reduction of hydrogen ions and inhibition of the platinum oxidation by the caffeine adsorption on the electrode surface. Additionally, the single platinum microelectrode was useful for the quality control of the soft drink samples, as it helped to identify the time at which the beverage was opened.

  15. In vitro free radical scavenging activity of platinum nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, Aki; Kajita, Masashi; Kim, Juewon; Kanayama, Atsuhiro; Miyamoto, Yusei [Department of Integrated Biosciences, Graduate School of Frontier Sciences, University of Tokyo, Bioscience Building 402, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8562 (Japan); Takahashi, Kyoko; Mashino, Tadahiko, E-mail: yusei74@k.u-tokyo.ac.j [Department of Pharmaceutical Sciences, Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato, Tokyo 105-8512 (Japan)

    2009-11-11

    A polyacrylic acid (PAA)-protected platinum nanoparticle species (PAA-Pt) was prepared by alcohol reduction of hexachloroplatinate. The PAA-Pt nanoparticles were well dispersed and homogeneous in size with an average diameter of 2.0 {+-} 0.4 nm (n = 200). We used electron spin resonance to quantify the residual peroxyl radical AOO. generated from 2,2-azobis (2-aminopropane) dihydrochloride (AAPH) by thermal decomposition in the presence of O{sub 2} and a spectrophotometric method to quantify the residual 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical. PAA-Pt scavenged these two radicals in a dose-dependent manner. Platinum was the functional component. PAA-Pt reduced the rate of oxygen consumption required for linoleic acid peroxidation initiated by AOO. generated from AAPH, indicating inhibition of the propagation of linolate peroxidation. A thiobarbituric acid test also revealed dose-dependent inhibition of the linolate peroxidation by PAA-Pt. Fifty micromolar platinum, as PAA-Pt, completely quenched 250 {mu}M DPPH radical for 5 min. Even when twice diluted in half, the PAA-Pt still quenched 100% of the 250 {mu}M DPPH radical. The scavenging activity of PAA-Pt is durable. These observations suggest that PAA-Pt is an efficient scavenger of free radicals.

  16. Platinum redispersion on metal oxides in low temperature fuel cells.

    Science.gov (United States)

    Tripković, Vladimir; Cerri, Isotta; Nagami, Tetsuo; Bligaard, Thomas; Rossmeisl, Jan

    2013-03-07

    We have analyzed the aptitude of several metal oxide supports (TiO(2), SnO(2), NbO(2), ZrO(2), SiO(2), Ta(2)O(5) and Nb(2)O(5)) to redisperse platinum under electrochemical conditions pertinent to the Proton Exchange Membrane Fuel Cell (PEMFC) cathode. The redispersion on oxide supports in air has been studied in detail; however, due to different operating conditions it is not straightforward to link the chemical and the electrochemical environment. The largest differences reflect in (1) the oxidation state of the surface (the oxygen species coverage), (2) temperature and (3) the possibility of platinum dissolution at high potentials and the interference of redispersion with normal working potential of the PEMFC cathode. We have calculated the PtO(x) (x = 0, 1, 2) adsorption energies on different metal oxides' surface terminations as well as inside the metal oxides' bulk, and we have concluded that NbO(2) might be a good support for platinum redispersion at PEMFC cathodes.

  17. Prediction of ligand effects in platinum-amyloid-β coordination.

    Science.gov (United States)

    Turner, Matthew; Deeth, Robert J; Platts, James A

    2017-08-01

    Ligand field molecular mechanics (LFMM) and semi-empirical Parametric Model 7 (PM7) methods are applied to a series of six Pt II -Ligand systems binding to the N-terminal domain of the amyloid-β (Aβ) peptide. Molecular dynamics using a combined LFMM/Assisted Model Building with Energy Refinement (AMBER) approach is used to explore the conformational freedom of the peptide fragment, and identifies favourable platinum binding modes and peptide conformations for each ligand investigated. Platinum coordination is found to depend on the nature of the ligand, providing evidence that binding mode may be controlled by suitable ligand design. Boltzmann populations at 310K indicate that each Pt-Aβ complex has a small number of thermodynamically accessible states. Ramachandran maps are constructed for the sampled Pt-Aβ conformations and secondary structural analysis of the obtained complex structures is performed and contrasted with the free peptide; coordination of these platinum complexes disrupts existing secondary structure in the Aβ peptide and promotes formation of ligand-specific turn-type secondary structure. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. In vitro permeation of platinum through African and Caucasian skin.

    Science.gov (United States)

    Franken, A; Eloff, F C; du Plessis, J; Badenhorst, C J; Du Plessis, J L

    2015-02-03

    The majority of the South African workforce are Africans, therefore potential racial differences should be considered in risk and exposure assessments in the workplace. Literature suggests African skin to be a superior barrier against permeation and irritants. Previous in vitro studies on metals only included skin from Caucasian donors, whereas this study compared the permeation of platinum through African and Caucasian skin. A donor solution of 0.3 mg/ml of potassium tetrachloroplatinate (K₂PtCl₄) dissolved in synthetic sweat was applied to the vertical Franz diffusion cells with full thickness abdominal skin. Skin from three female African and three female Caucasian donors were included (n=21). The receptor solution was removed at various intervals during the 24 h experiment, and analysed with high resolution inductively coupled plasma-mass spectrometry (ICP-MS). Skin was digested and analysed by inductively coupled plasma-optical emission spectrometry (ICP-OES). Significantly higher permeation of platinum through intact African skin (p=0.044), as well as a significantly higher mass of platinum retention in African skin in comparison with Caucasian skin (p=0.002) occurred. Significant inter-donor variation was found in both racial groups (pskin and further investigation is necessary to explain the higher permeation through African skin. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  19. Speciation of platinum(IV) in nitric acid solutions.

    Science.gov (United States)

    Vasilchenko, Danila; Tkachev, Sergey; Baidina, Iraida; Korenev, Sergey

    2013-09-16

    The speciation of platinum(IV) ions in nitric acid (6-15.8 M) solutions of H2[Pt(OH)6] has been studied by (195)Pt NMR and Raman spectroscopy. Series of aqua-hydroxo-nitrato complexes [Pt(L)(x)(NO3)(6-x)] (L = H2O or OH(-); x = 0, ..., 6) were found to exist in such solutions. The pair additivity model of chemical shifts and statistical theory were used to assign signals in NMR spectra to particular [Pt(L)(x)(NO3)(6-x)] species. Mononuclear hexanitratoplatinates(IV) have been isolated in solid state in substantial yield as pyridinium salt (PyH)2[Pt(NO3)6] and characterized by single-crystal X-ray diffraction. Aging of the platinum nitric acid solutions for more than 5-6 h results in oligomerization of [Pt(L)(x)(NO3)(6-x)] species and the formation of oligonuclear aqua-hydroxo-nitrato complexes with OH(-) and NO3(-) bridging ligands. Oligomeric platinum(IV) complexes with two and four nuclei were unambiguously detected by NMR on (195)Pt -enriched samples. Oligomers with even higher nuclearity were also detected. Dimeric anions [Pt2(μ-OH)2(NO3)8](2-) have been isolated as single crystals of tetramethylammonium salt and characterized by X-ray diffraction.

  20. Textured strontium titanate layers on platinum by atomic layer deposition

    International Nuclear Information System (INIS)

    Blomberg, T.; Anttila, J.; Haukka, S.; Tuominen, M.; Lukosius, M.; Wenger, Ch.; Saukkonen, T.

    2012-01-01

    Formation of textured strontium titanate (STO) layers with large lateral grain size (0.2–1 μm) and low X-ray reflectivity roughness (∼ 1.36 nm) on Pt electrodes by industry proven atomic layer deposition (ALD) method is demonstrated. Sr(t-Bu 3 Cp) 2 , Ti(OMe) 4 and O 3 precursors at 250 °C were used to deposit Sr rich STO on Pt/Ti/SiO 2 /Si ∅200 mm substrates. After crystallization post deposition annealing at 600 °C in air, most of the STO grains showed a preferential orientation of the {001} plane parallel to the substrate surface, although other orientations were also present. Cross sectional and plan view transmission electron microscopy and electron diffraction analysis revealed more than an order of magnitude larger lateral grain sizes for the STO compared to the underlying multicrystalline {111} oriented platinum electrode. The combination of platinum bottom electrodes with ALD STO(O 3 ) shows a promising path towards the formation of single oriented STO film. - Highlights: ► Amorphous strontium titanate (STO) on platinum formed a textured film after annealing. ► Single crystal domains in 60 nm STO film were 0.2–1 μm wide. ► Most STO grains were {001} oriented.

  1. 2013 West Coast Vessel Tracklines

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Automatic Identification Systems (AIS) are a navigation safety device that transmits and monitors the location and characteristics of many vessels in U.S. and...

  2. 2011 West Coast Vessel Tracklines

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Automatic Identification Systems (AIS) are a navigation safety device that transmits and monitors the location and characteristics of many vessels in U.S. and...

  3. 2013 Great Lakes Vessel Tracklines

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Automatic Identification Systems (AIS) are a navigation safety device that transmits and monitors the location and characteristics of many vessels in U.S. and...

  4. 2011 Great Lakes Vessel Tracklines

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Automatic Identification Systems (AIS) are a navigation safety device that transmits and monitors the location and characteristics of many vessels in U.S. and...

  5. 2011 East Coast Vessel Tracklines

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Automatic Identification Systems (AIS) are a navigation safety device that transmits and monitors the location and characteristics of many vessels in U.S. and...

  6. Coastal Discard Logbook Survey (Vessels)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains data on the type and amount of marine resources that are discarded or interacted with by vessels that are selected to report to the Southeast...

  7. SC/OQ Vessel Database

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Data tables holding information for the Surf Clam/Ocean Quahog vessel and dealer/processor logbooks (negative and positive), as well as individual tag information...

  8. Vessel Permit System Data Set

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — GARFO issues federal fishing permits annually to owners of fishing vessels who fish in the Greater Atlantic region, as required by federal regulation. These permits...

  9. Reactor pressure vessel status report

    International Nuclear Information System (INIS)

    Strosnider, J.; Wichman, K.; Elliot, B.

    1994-12-01

    This report gives a brief description of the reactor pressure vessel (RPV), followed by a discussion of the radiation embrittlement of RPV beltline materials and the two indicators for measuring embrittlement, the end-of-license (EOL) reference temperature and the EOL upper-shelf energy. It also summarizes the GL 92-01 effort and presents, for all 37 boiling water reactor plants and 74 pressurized water reactor plants in the United States, the current status of compliance with regulatory requirements related to ensuring RPV integrity. The staff has evaluated the material data needed to predict neutron embrittlement of the reactor vessel beltline materials. These data will be stored in a computer database entitled the reactor vessel integrity database (RVID). This database will be updated annually to reflect the changes made by the licensees in future submittals and will be used by the NRC staff to assess the issues related to vessel structural integrity

  10. Reactor-vessel-sectioning demonstration

    International Nuclear Information System (INIS)

    Lundgren, R.A.

    1981-07-01

    A successful technical demonstration of simulated reactor vessel sectioning was completed using the combined techniques of air arc gouging and flame cutting. A 4-ft x 3-ft x 9-in. thick sample was fabricated of A36 carbon steel to simulate a reactor vessel wall. A 1/4-in layer of stainless steel (SS) was tungsten inert gas (TIG)-welded to the carbon steel. Several techniques were considered to section the simulated reactor vessel: an air arc gouger was chosen to penetrate the stainless steel, and flame cutting was selected to sever the carbon steel. After the simulated vessel was successfully cut from the SS side, another cut was made, starting from the carbon steel side. This cut was also successful. Cutting from the carbon steel side has the advantages of cost reduction since the air arc gouging step is eliminated and contamination controlled because the molten metal is blown inward

  11. Power reactor pressure vessel benchmarks

    International Nuclear Information System (INIS)

    Rahn, F.J.

    1978-01-01

    A review is given of the current status of experimental and calculational benchmarks for use in understanding the radiation embrittlement effects in the pressure vessels of operating light water power reactors. The requirements of such benchmarks for application to pressure vessel dosimetry are stated. Recent developments in active and passive neutron detectors sensitive in the ranges of importance to embrittlement studies are summarized and recommendations for improvements in the benchmark are made. (author)

  12. Prosopomorphic vessels from Moesia Superior

    Directory of Open Access Journals (Sweden)

    Nikolić Snežana

    2008-01-01

    Full Text Available The prosopomorphic vessels from Moesia Superior had the form of beakers varying in outline but similar in size. They were wheel-thrown, mould-made or manufactured by using a combination of wheel-throwing and mould-made appliqués. Given that face vessels are considerably scarcer than other kinds of pottery, more than fifty finds from Moesia Superior make an enviable collection. In this and other provinces face vessels have been recovered from military camps, civilian settlements and necropolises, which suggests that they served more than one purpose. It is generally accepted that the faces-masks gave a protective role to the vessels, be it to protect the deceased or the family, their house and possessions. More than forty of all known finds from Moesia Superior come from Viminacium, a half of that number from necropolises. Although tangible evidence is lacking, there must have been several local workshops producing face vessels. The number and technological characteristics of the discovered vessels suggest that one of the workshops is likely to have been at Viminacium, an important pottery-making centre in the second and third centuries.

  13. Vacuum vessel for thermonuclear device

    International Nuclear Information System (INIS)

    Kikuchi, Mitsuru; Kurita, Gen-ichi; Onozuka, Masaki; Suzuki, Masaru.

    1997-01-01

    Heat of inner walls of a vacuum vessel that receive radiation heat from plasmas by way of first walls is removed by a cooling medium flowing in channels for cooling the inner walls. Nuclear heat generation of constitutional materials of the vacuum vessel caused by fast neutrons and γ rays is removed by a cooling medium flowing in cooling channels disposed in the vacuum vessel. Since the heat from plasmas and the nuclear heat generation are removed separately, the amount of the cooling medium flowing in the channels for cooling inner walls is increased for cooling a great amount of heat from plasmas while the amount of the cooling medium flowing in the channels for cooling the inside of the vacuum vessel is reduced for cooling the small amount of nuclear heat generation. Since the amount of the cooling medium can thus be optimized, the capacity of the facilities for circulating the cooling medium can be reduced. In addition, since the channels for cooling the inner walls and the channels of cooling medium formed in the vacuum vessel are disposed to the inner walls of the vacuum vessel on the side opposite to plasmas, integrity of the channels relative to leakage of the cooling medium can be ensured. (N.H.)

  14. Vacuum vessel for thermonuclear device

    Energy Technology Data Exchange (ETDEWEB)

    Kikuchi, Mitsuru; Kurita, Gen-ichi [Japan Atomic Energy Research Inst., Tokyo (Japan); Onozuka, Masaki; Suzuki, Masaru

    1997-07-31

    Heat of inner walls of a vacuum vessel that receive radiation heat from plasmas by way of first walls is removed by a cooling medium flowing in channels for cooling the inner walls. Nuclear heat generation of constitutional materials of the vacuum vessel caused by fast neutrons and {gamma} rays is removed by a cooling medium flowing in cooling channels disposed in the vacuum vessel. Since the heat from plasmas and the nuclear heat generation are removed separately, the amount of the cooling medium flowing in the channels for cooling inner walls is increased for cooling a great amount of heat from plasmas while the amount of the cooling medium flowing in the channels for cooling the inside of the vacuum vessel is reduced for cooling the small amount of nuclear heat generation. Since the amount of the cooling medium can thus be optimized, the capacity of the facilities for circulating the cooling medium can be reduced. In addition, since the channels for cooling the inner walls and the channels of cooling medium formed in the vacuum vessel are disposed to the inner walls of the vacuum vessel on the side opposite to plasmas, integrity of the channels relative to leakage of the cooling medium can be ensured. (N.H.)

  15. Rapid and Efficient Collection of Platinum from Karstedt's Catalyst Solution via Ligands-Exchange-Induced Assembly.

    Science.gov (United States)

    Yang, Gonghua; Wei, Yanlong; Huang, Zhenzhu; Hu, Jiwen; Liu, Guojun; Ou, Ming; Lin, Shudong; Tu, Yuanyuan

    2018-02-21

    Reported herein is a novel strategy for the rapid and efficient collection of platinum from Karstedt's catalyst solution. By taking advantage of a ligand-exchange reaction between alkynols and the 1,3-divinyltetramethyldisiloxane ligand (M Vi M Vi ) that coordinated with platinum (Pt(0)), the Karstedt's catalyst particles with a size of approximately 2.5 ± 0.7 nm could be reconstructed and assembled into larger particles with a size of 150 ± 35 nm due to the hydrogen bonding between the hydroxyl groups of the alkynol. In addition, because the silicone-soluble M Vi M Vi ligand of the Karstedt's catalyst was replaced by water-soluble alkynol ligands, the resultant large particles were readily dispersed in water, resulting in rapid, efficient, and complete collection of platinum from the Karstedt's catalyst solutions with platinum concentrations in the range from ∼20 000 to 0.05 ppm. Our current strategy not only was used for the rapid and efficient collection of platinum from the Karstedt's catalyst solutions, but it also enabled the precise evaluation of the platinum content in the Karstedt's catalysts, even if this platinum content was extremely low (i.e., 0.05 ppm). Moreover, these platinum specimens that were efficiently collected from the Karstedt's catalyst solutions could be directly used for the evaluation of platinum without the need for pretreatment processes, such as calcination and digestion with hydrofluoric acid, that were traditionally used prior to testing via inductively coupled plasma mass spectrometry in conventional methods.

  16. Graphite-supported platinum catalysts: Effects of gas and aqueous phase treatments

    Energy Technology Data Exchange (ETDEWEB)

    Vleeming, J.H.; Kuster, B.F.M.; Marin, G.B. [Eindhoven Univ. of Technology (Netherlands)] [and others

    1997-03-01

    The effects on the platinum particle diameter and the available platinum surface area of a graphite-supported platinum catalyst resulting from pretreatments and from performing a selective oxidation reaction are investigated. In the gas phase considerable catalyst sintering occurs only in the presence of oxygen at 773 K due to extensive carbon burn-off, whereas in an aqueous phase platinum particle growth is limited upon oxidative treatment. A hydrogen treatment in aqueous phase at 363 K causes platinum particle growth, aggregate formation, and covering of metal sites. These phenomena become more important with increasing pH. Platinum particle growth and aggregate formation are attributed to platinum particle rather than platinum adatom mobility and is caused by the destruction of the oxygen-containing surface groups on the graphite support, which serve as anchorage sites for the platinum particles. Site covering is caused by products originating from the graphite support, which are formed as a result of the reductive treatments. When performing the aqueous phase oxidation of methyl {alpha}-D-glucopyranoside at 323 K and a pH of 9, catalyst modifications are small under oxidative conditions. Exposure of the catalyst for several hours to methyl {alpha}-D-glucopyranoside under the same conditions but in the absence of oxygen causes site covering. 50 refs., 9 figs., 1 tab.

  17. Corrosion phase formation on container alloys in basalt repository environments

    International Nuclear Information System (INIS)

    Johnston, R.G.; Anantatmula, R.P.; Lutton, J.M.; Rivera, C.L.

    1986-01-01

    The Basalt Waste Isolation Project is evaluating the suitability of basalt in southeastern Washington State as a possible location for a nuclear waste repository. The performance of the waste package, which includes the waste form, container, and surrounding packing material, will be affected by the stability of container alloys in the repository environment. Primary corrosion phases and altered packing material containing metals leached from the container may also influence subsequent reactions between the waste form and repository environment. Copper- and iron-based alloys were tested at 50 0 to 300 0 C in an air/steam environment and in pressure vessels in ground-water-saturated basalt-bentonite packing material. Reaction phases formed on the alloys were identified and corrosion rates were measured. Changes in adhering packing material were also evaluated. The observed reactions and their possible effects on container alloy durability in the repository are discussed

  18. Alloy Fabrication Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — At NETL’s Alloy Fabrication Facility in Albany, OR, researchers conduct DOE research projects to produce new alloys suited to a variety of applications, from gas...

  19. Controlled Thermal Expansion Alloys

    Data.gov (United States)

    National Aeronautics and Space Administration — There has always been a need for controlled thermal expansion alloys suitable for mounting optics and detectors in spacecraft applications.  These alloys help...

  20. Electronic structure of alloys

    International Nuclear Information System (INIS)

    Ehrenreich, H.; Schwartz, L.M.

    1976-01-01

    The description of electronic properties of binary substitutional alloys within the single particle approximation is reviewed. Emphasis is placed on a didactic exposition of the equilibrium properties of the transport and magnetic properties of such alloys. Topics covered include: multiple scattering theory; the single band alloy; formal extensions of the theory; the alloy potential; realistic model state densities; the s-d model; and the muffin tin model. 43 figures, 3 tables, 151 references

  1. Investigation of a weld defect, reactor vessel head Ringhals 2

    International Nuclear Information System (INIS)

    Embring, G.; Pers-Anderson, E.B.

    1994-01-01

    During the summer-outage 1993 Ringhals unit 2 vessel head was inspected at weld-area of Alloy 182. One major defect was found Two plus two ''boat-samples'' were taken out from the zone between the weld and the stainless cladding. All samples were sent to Studsviks laboratories for detailed investigations. The metallographic and fractographic investigations revealed that the major weld-defect had been there from manufacturing. The defect was located between the Alloy 182-buttering and the pressure vessel steel SA 533 grB cl 1. No indications of PWSCC or IDSCC were found. An inspection programme was defined. Different types of reference blocks were provided by Ringhals in cooperation with ABB TRC. Reference reflectors of type flat bottom hole (FBH) and eroded notches (EDM), with different sizes and separation were manufactured. One weld sample with manufacturing defects -lack of fusion and slag was inclusions- was present. ABB TRC performed UT inspection in the gap between the penetration and the thermal sleeve. Inspection results like defect identification, defect separation and defect sizing accuracy were compared with result from the destructive inspection. No relevant additional defects were found. An analysing and repair program was performed. A special designed disc sealed off the defect area. (authors). 5 figs., 3 refs

  2. Automated method for identification and artery-venous classification of vessel trees in retinal vessel networks.

    Science.gov (United States)

    Joshi, Vinayak S; Reinhardt, Joseph M; Garvin, Mona K; Abramoff, Michael D

    2014-01-01

    The separation of the retinal vessel network into distinct arterial and venous vessel trees is of high interest. We propose an automated method for identification and separation of retinal vessel trees in a retinal color image by converting a vessel segmentation image into a vessel segment map and identifying the individual vessel trees by graph search. Orientation, width, and intensity of each vessel segment are utilized to find the optimal graph of vessel segments. The separated vessel trees are labeled as primary vessel or branches. We utilize the separated vessel trees for arterial-venous (AV) classification, based on the color properties of the vessels in each tree graph. We applied our approach to a dataset of 50 fundus images from 50 subjects. The proposed method resulted in an accuracy of 91.44% correctly classified vessel pixels as either artery or vein. The accuracy of correctly classified major vessel segments was 96.42%.

  3. Influence of heat treatments on thermoelectric power of pressure vessel steels: effect of microstructural evolutions of strongly segregated areas

    International Nuclear Information System (INIS)

    Houze, M.

    2002-12-01

    Thermoelectric power measurement (TEP) is a very potential non destructive evaluation method considered to follow ageing under neutron irradiation of pressure vessel steel of nuclear reactor. Prior to these problems, the aim of this study is to establish correlations between TEP variations and microstructural evolutions of pressure vessel steels during heat treatments. Different steels, permitting to simulate heterogeneities of pressure vessel steels and to deconvoluate main metallurgical phenomenons effects were studied. This work allowed to emphasize effect on TEP of: austenitizing and cooling conditions and therefore of microstructure, metallurgical transformations during tempering (recovery, precipitation of alloying elements), and particularly molybdenum precipitation associated to secondary hardening, residual austenite amount or partial austenitizing. (author)

  4. Clay Corner: Recreating Chinese Bronze Vessels.

    Science.gov (United States)

    Gamble, Harriet

    1998-01-01

    Presents a lesson where students make faux Chinese bronze vessels through slab or coil clay construction after they learn about the history, function, and design of these vessels. Utilizes a variety of glaze finishes in order to give the vessels an aged look. Gives detailed guidelines for creating the vessels. (CMK)

  5. Novel technique for determination of alloy composition with the help of chronopotentiometry

    International Nuclear Information System (INIS)

    Rizwan, R.; Mehmood, M.

    2006-01-01

    Single phase gamma (Ni/sub 5/Zn/sub 21/) nanocrystalline zinc-nickel alloy coatings were prepared by electrodeposition in chloride bath. Cyclic voltammetry as well as reverse Chronopotentiometry was performed on platinum substrate. Both of these techniques are well known for determination of phases present in alloy in electrochemistry. A new model is introduced for determining composition of the electrodeposited alloy (Zn-Ni) with the help of Chronopotentiometry. EDX of deposits was also performed. Relative percentages of zinc and nickel determined from Chronopotentiometry were almost same to the results obtained from EDX. So by use of this model, Chronopotentiometry can be used as useful characterization technique for in-situ determination of composition during electrodeposition. X -ray diffraction was performed and it confirms the presence of single phase deposits. Current efficiency of the deposits remain above 90%. Surface compactness of deposits is verified with the help of SEM. (author)

  6. Investigation of as-cast alloys in the Pt-Al-Cr system

    International Nuclear Information System (INIS)

    Suess, R.; Cornish, L.A.; Witcomb, M.J.

    2010-01-01

    Platinum-based alloys are being developed which have microstructures that are analogous to the γ/γ' microstructure of the nickel-based superalloys. These Pt-based alloys have the potential to be used for high-temperature applications. The ternary Pt-Al-Cr system was investigated as part of the continued development of a thermodynamic database for the Pt-Al-Cr-Ru system. Scanning electron microscopy (SEM) with energy dispersive X-ray spectroscopy (EDX) and X-ray diffraction (XRD) analyses were used to obtain phase equilibria data. The alloys were studied in the as-cast condition. A solidification projection was constructed and a liquidus surface derived. It was concluded that all phase regions were identified correctly since the results were self-consistent. Three ternary phases and 21 ternary invariant reactions were identified.

  7. Molten material-containing vessel

    International Nuclear Information System (INIS)

    Akagawa, Katsuhiko

    1998-01-01

    The molten material-containing vessel of the present invention comprises a vessel main body having an entrance opened at the upper end, a lid for closing the entrance, an outer tube having an upper end disposed at the lower surface of the lid, extended downwardly and having an closed lower end and an inner tube disposed coaxially with the outer tube. When a molten material is charged from the entrance to the inside of the vessel main body of the molten material-containing vessel and the entrance is closed by the lid, the outer tube and the inner tube are buried in the molten material in the vessel main body, accordingly, a fluid having its temperature elevated by absorption of the heat of the molten material rises along the inner circumferential surface of the outer tube, abuts against the lower surface of the lid and cooled by exchanging heat with the lid and forms a circulating flow. Since the heat in the molten material is continuously absorbed by the fluid, transferred to the lid and released from the lid to the atmospheric air, heat releasing efficiency can be improved compared with conventional cases. (N.H.)

  8. Determinants of ototoxicity in 451 platinum-treated Dutch survivors of childhood cancer : A DCOG late-effects study

    NARCIS (Netherlands)

    Clemens, Eva; de Vries, Andrica C.; Pluijm, Saskia F.; Zehnhoff-Dinnesen, Antoinette Am; Tissing, Wim J.; Loonen, Jacqueline J.; van Dulmen-den Broeder, Eline; Bresters, Dorine; Versluys, Birgitta; Kremer, Leontien C.; van der Pal, Heleen J.; van Grotel, Martine; van den Heuvel-Eibrink, Marry M.

    2016-01-01

    Platinum-containing chemotherapeutics are efficacious for a variety of pediatric malignancies, nevertheless these drugs can induce ototoxicity. However, ototoxicity data on large cohorts of childhood cancer survivors (CCSs) who received platinum agents, but not cranial irradiation are scarce.

  9. Effect of stress relief parameters on the mechanical properties of pressure vessel steels and weldments

    International Nuclear Information System (INIS)

    Canonico, D.A.; Stelzman, W.J.

    1976-01-01

    Post weld heat treatments of thick-section A533B steel for nuclear pressure vessels are discussed with reference to the ASME code. The discussion is in the form of a lecture and summarized by noting that the ASME code, in particular Section III, Division 1, imposes a post weld heat treatment requirement on pressure vessels fabricated from low alloy high strength steels. The Code permits a holding temperature range, the high side of which could result in poorer toughness properties. Long times in excess of 100 hours and/or high temperatures, 649 0 C can result in an increase in the NDT and a decrease in the upper shelf energy

  10. Vessel head penetrations: French approach for maintenance in the PLIM program

    International Nuclear Information System (INIS)

    Champigny, F.

    2002-01-01

    Full text: In 1991, in the Bugey nuclear power plant, for the first time a leak occurred at the level of a vessel head penetration made with base nickel alloy (Inconel 600). This leak was caused by a primary stress corrosion cracking coming from inside the penetration tube. The crack was trough wall extent and primary fluid went out from the top of the vessel head. Immediately, Electricite de France launched important research programs and expertise in order to understand the root causes and propose solutions to this problem. The root causes confirmed PWSCC, and in the same time solutions for repair were studied and an inspection program was established to check the base metal of other vessel head penetrations. After several tests, repair solutions were abandoned because of their high costs (financial and dosimetry). EDF decided to replace all the vessel heads with Inconel 600 penetrations. Non destructive developments leaded to use eddy currents for detection and characterization but also televisual techniques to confirm. In a second step, in order to inspect without removing the inside thermal sleeve, eddy current and ultrasonic sword probes were achieved and used to inspect all vessel heads penetrations. Up to now, 75% of the vessel head have been replaced on the 900 MW and 1300 MW fleets but to replace wisely the last vessel heads EDF continues to perform NDE of the penetrations on the basis of safety criteria. This paper describes the different steps of the applied policy in France, NDE methods, criteria and the results obtained. (author)

  11. Crack stability analysis of low alloy steel primary coolant pipe

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, T.; Kameyama, M. [Kansai Electric Power Company, Osaka (Japan); Urabe, Y. [Mitsubishi Heavy Industries, Ltd., Takasago (Japan)] [and others

    1997-04-01

    At present, cast duplex stainless steel has been used for the primary coolant piping of PWRs in Japan and joints of dissimilar material have been applied for welding to reactor vessels and steam generators. For the primary coolant piping of the next APWR plants, application of low alloy steel that results in designing main loops with the same material is being studied. It means that there is no need to weld low alloy steel with stainless steel and that makes it possible to reduce the welding length. Attenuation of Ultra Sonic Wave Intensity is lower for low alloy steel than for stainless steel and they have advantageous inspection characteristics. In addition to that, the thermal expansion rate is smaller for low alloy steel than for stainless steel. In consideration of the above features of low alloy steel, the overall reliability of primary coolant piping is expected to be improved. Therefore, for the evaluation of crack stability of low alloy steel piping to be applied for primary loops, elastic-plastic future mechanics analysis was performed by means of a three-dimensioned FEM. The evaluation results for the low alloy steel pipings show that cracks will not grow into unstable fractures under maximum design load conditions, even when such a circumferential crack is assumed to be 6 times the size of the wall thickness.

  12. High strength alloys

    Science.gov (United States)

    Maziasz, Phillip James [Oak Ridge, TN; Shingledecker, John Paul [Knoxville, TN; Santella, Michael Leonard [Knoxville, TN; Schneibel, Joachim Hugo [Knoxville, TN; Sikka, Vinod Kumar [Oak Ridge, TN; Vinegar, Harold J [Bellaire, TX; John, Randy Carl [Houston, TX; Kim, Dong Sub [Sugar Land, TX

    2010-08-31

    High strength metal alloys are described herein. At least one composition of a metal alloy includes chromium, nickel, copper, manganese, silicon, niobium, tungsten and iron. System, methods, and heaters that include the high strength metal alloys are described herein. At least one heater system may include a canister at least partially made from material containing at least one of the metal alloys. At least one system for heating a subterranean formation may include a tubular that is at least partially made from a material containing at least one of the metal alloys.

  13. Emergency venting of pressure vessels

    International Nuclear Information System (INIS)

    Steinkamp, H.

    1995-01-01

    With the numerical codes developed for safety analysis the venting of steam vessel can be simulated. ATHLET especially is able to predict the void fraction depending on the vessel height. Although these codes contain a one-dimensional model they allow the description of complex geometries due to the detailed nodalization of the considered apparatus. In chemical reactors, however, the venting process is not only influenced by the flashing behaviour but additionally by the running chemical reaction in the vessel. Therefore the codes used for modelling have to consider the kinetics of the chemical reaction. Further multi-component systems and dissolving processes have to be regarded. In order to preduct the fluid- and thermodynamic process it could be helpful to use 3-dimensional codes in combination with the one-dimensional codes as used in nuclear industry to get a more detailed describtion of the running processes. (orig./HP)

  14. Development of Catamaran Fishing Vessel

    Directory of Open Access Journals (Sweden)

    A. Jamaluddin

    2010-11-01

    Full Text Available Multihull due to a couple of advantages has been the topic of extensive research work in naval architecture. In this study, a series of investigation of fishing vessel to save fuel energy was carried out at ITS. Two types of ship models, monohull (round bilge and hard chine and catamaran, a boat with two hulls (symmetrical and asymmetrical were developed. Four models were produced physically and numerically, tested (towing tank and simulated numerically (CFD code. The results of the two approaches indicated that the catamaran mode might have drag (resistance smaller than those of monohull at the same displacement. A layout of catamaran fishing vessel, proposed here, indicates the freedom of setting the deck equipments for fishing vessel.

  15. A Challenge to Improve High-Temperature Platinum Resistance Thermometer

    Science.gov (United States)

    Tanaka, Y.; Widiatmo, J. V.; Harada, K.; Kobayashi, T.; Yamazawa, K.

    2017-05-01

    High-temperature standard platinum resistance thermometers (HTSPRTs) are used to interpolate the international temperature scale of 1990 (ITS-90), especially for temperatures between the aluminum and the silver points. For this, long-term stability of the HTSPRT is essential. CHINO R800-3L type SPRT, which has a nominal resistance at the triple point of water (TPW) around 0.25 Ω , is the one developed earlier for the interpolation of the ITS-90 at this temperature range. Further development to this previous model has been carried out for the purpose of improving the thermal stability. The improvement was focused on reducing the effect coming from the difference in thermal expansion between platinum wire and the quartz frame on which the platinum wire is installed. New HTSPRTs were made by CHINO Corporation. Some series of tests were carried out at CHINO and at NMIJ. Initial tests after the HTSPRT fabrication were done at CHINO, where thermal cycles between 500°C and 980°C were applied to the HTSPRTs to see change in the resistances at the TPW (R_{TPW}) and at the gallium point (R_{Ga}). Repeated resistance measurements at the silver point (R_{Ag}) were performed after completing the thermal cycling test. Before and after every measurement at silver point, R_{TPW} was measured, while before and after every two silver point realization R_{Ga} were measured. After completing this test, the HTSPRTs were transported to NMIJ, where the same repeated measurements at the silver point were done at NMIJ. These were then repeated at CHINO and at NMIJ upon repeated transportation among the institutes, to evaluate some effect due to transportation. This paper reports the details of the above-mentioned tests, the results and the analysis.

  16. Textured strontium titanate layers on platinum by atomic layer deposition

    Energy Technology Data Exchange (ETDEWEB)

    Blomberg, T., E-mail: tom.blomberg@asm.com [ASM Microchemistry Ltd., Vaeinoe Auerin katu 12 A, 00560 Helsinki (Finland); Anttila, J.; Haukka, S.; Tuominen, M. [ASM Microchemistry Ltd., Vaeinoe Auerin katu 12 A, 00560 Helsinki (Finland); Lukosius, M.; Wenger, Ch. [IHP, Im Technologiepark 25, 15236 Frankfurt (Oder) (Germany); Saukkonen, T. [Aalto University, Puumiehenkuja 3, 02150 Espoo (Finland)

    2012-08-31

    Formation of textured strontium titanate (STO) layers with large lateral grain size (0.2-1 {mu}m) and low X-ray reflectivity roughness ({approx} 1.36 nm) on Pt electrodes by industry proven atomic layer deposition (ALD) method is demonstrated. Sr(t-Bu{sub 3}Cp){sub 2}, Ti(OMe){sub 4} and O{sub 3} precursors at 250 Degree-Sign C were used to deposit Sr rich STO on Pt/Ti/SiO{sub 2}/Si Empty-Set 200 mm substrates. After crystallization post deposition annealing at 600 Degree-Sign C in air, most of the STO grains showed a preferential orientation of the {l_brace}001{r_brace} plane parallel to the substrate surface, although other orientations were also present. Cross sectional and plan view transmission electron microscopy and electron diffraction analysis revealed more than an order of magnitude larger lateral grain sizes for the STO compared to the underlying multicrystalline {l_brace}111{r_brace} oriented platinum electrode. The combination of platinum bottom electrodes with ALD STO(O{sub 3}) shows a promising path towards the formation of single oriented STO film. - Highlights: Black-Right-Pointing-Pointer Amorphous strontium titanate (STO) on platinum formed a textured film after annealing. Black-Right-Pointing-Pointer Single crystal domains in 60 nm STO film were 0.2-1 {mu}m wide. Black-Right-Pointing-Pointer Most STO grains were {l_brace}001{r_brace} oriented.

  17. 33 CFR 90.3 - Pushing vessel and vessel being pushed: Composite unit.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Pushing vessel and vessel being... HOMELAND SECURITY INLAND NAVIGATION RULES INLAND RULES: INTERPRETATIVE RULES § 90.3 Pushing vessel and vessel being pushed: Composite unit. Rule 24(b) of the Inland Rules states that when a pushing vessel and...

  18. 33 CFR 82.3 - Pushing vessel and vessel being pushed: Composite unit.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Pushing vessel and vessel being... HOMELAND SECURITY INTERNATIONAL NAVIGATION RULES 72 COLREGS: INTERPRETATIVE RULES § 82.3 Pushing vessel and vessel being pushed: Composite unit. Rule 24(b) of the 72 COLREGS states that when a pushing vessel and a...

  19. Hydroxylamine electrochemistry at low-index single-crystal platinum electrodes in acidic media

    NARCIS (Netherlands)

    Rosca, V.; Beltramo, G.L.; Koper, M.T.M.

    2004-01-01

    The electrochemistry of hydroxylamine at low-index single-crystal platinum electrodes in acidic media has been studied by voltammetry and in-situ FTIRRAS. Hydroxylamine (HAM) reactivity at platinum is largely controlled by interaction of the other components of the solution or products of the HAM

  20. ENVIRONMENTAL TECHNOLOGY VERIFICATION REPORT, HVLP COATING EQUIPMENT, SHARPE MANUFACTURING COMPANY PLATINUM 2012 HVLP SPRAY GUN

    Science.gov (United States)

    This report presents the results of the verification test of the Sharpe Platinum 2013 high-volume, low-pressure gravity-feed spray gun, hereafter referred to as the Sharpe Platinum, which is designed for use in automotive refinishing. The test coating chosen by Sharpe Manufacturi...

  1. Tripodal osmium polypyridyl complexes for self-assembly on platinum nanoparticles

    NARCIS (Netherlands)

    Contreras-Carballada, P.; Edafe, F.; Tichelaar, F.D.; Belser, P.; De Cola, L.; Williams, R.M.

    2011-01-01

    The combination of platinum nanoparticles with a tripodal osmium complex that anchors to the metal surface leads, under visible light irradiation, to the formation of solvated electrons. The formation kinetics is limited by the detachment of the electron from the platinum surface into the solution,

  2. Metal Oxide-Supported Platinum Overlayers as Proton-Exchange Membrane Fuel Cell Cathodes

    DEFF Research Database (Denmark)

    Tripkovic, Vladimir; Abild-Pedersen, Frank; Studt, Felix

    2012-01-01

    We investigated the activity and stability of n=(1, 2, 3) platinum layers supported on a number of rutile metal oxides (MO2; M=Ti, Sn, Ta, Nb, Hf and Zr). A suitable oxide support can alleviate the problem of carbon corrosion and platinum dissolution in Pt/C catalysts. Moreover, it can increase t...

  3. Structure of matrix metalloproteinase-3 with a platinum-based inhibitor.

    Science.gov (United States)

    Belviso, Benny Danilo; Caliandro, Rocco; Siliqi, Dritan; Calderone, Vito; Arnesano, Fabio; Natile, Giovanni

    2013-06-18

    An X-ray investigation has been performed with the aim of characterizing the binding sites of a platinum-based inhibitor (K[PtCl3(DMSO)]) of matrix metalloproteinase-3 (stromelysin-1). The platinum complex targets His224 in the S1' specificity loop, representing the first step in the selective inhibition process (PDB ID code 4JA1).

  4. The influence of nitrate concentrations and acidity on the electrocatalytic reduction of nitrate on platinum

    NARCIS (Netherlands)

    Groot, de M.T.; Koper, M.T.M.

    2004-01-01

    A study was performed to determine the influence of nitrate concentration and acidity on the reaction rate and selectivity of the electrocatalytic nitrate reduction on platinum. There are two different nitrate reduction mechanisms on platinum: a direct mechanism (0.4–0.1 V vs. SHE) and an indirect

  5. SEROTONIN METABOLISM FOLLOWING PLATINUM-BASED CHEMOTHERAPY COMBINED WITH THE SEROTONIN TYPE-3 ANTAGONIST TROPISETRON

    NARCIS (Netherlands)

    SCHRODER, CP; VANDERGRAAF, WTA; KEMA, IP; GROENEWEGEN, A; SLEIJFER, DT; DEVRIES, EGE

    1995-01-01

    The administration of platinum-based chemotherapy induces serotonin release from the enterochromaffin cells, causing nausea and vomiting. This study was conducted to evaluate parameters of serotonin metabolism following platinum-based chemotherapy given in combination with the serotonin type-3

  6. Same-Side Platinum Electrodes for Metal Assisted Etching of Porous Silicon

    Science.gov (United States)

    2015-11-01

    Platinum Electrodes for Metal Assisted Etching of Porous Silicon by Matthew H Ervin and Brian Isaacson Sensors and Electron Devices Directorate...SUBTITLE Same-Side Platinum Electrodes for Metal Assisted Etching of Porous Silicon 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT

  7. Containment vessel design and practice

    International Nuclear Information System (INIS)

    Bangash, Y.

    1983-01-01

    The state of the art of analysis and design of the concrete containment vessels required for BWR and PWR is reviewed. A step-by-step critical appraisal of the existing work is given. Elastic, inelastic and cracking conditions under extreme loads are fully discussed. Problems associated with these structures are highlighted. A three-dimensional finite element analysis is included to cater for service, overload and dynamic cracking of such structures. Missile impact and seismic effects are included in this work. The second analysis is known as the limit state analysis, which is given to design such vessels for any kind of load. (U.K.)

  8. Stress analysis of pressure vessels

    International Nuclear Information System (INIS)

    Kim, B.K.; Song, D.H.; Son, K.H.; Kim, K.S.; Park, K.B.; Song, H.K.; So, J.Y.

    1979-01-01

    This interim report contains the results of the effort to establish the stress report preparation capability under the research project ''Stress analysis of pressure vessels.'' 1978 was the first year in this effort to lay the foundation through the acquisition of SAP V structural analysis code and a graphic terminal system for improved efficiency of using such code. Software programming work was developed in pre- and post processing, such as graphic presentation of input FEM mesh geometry and output deformation or mode shope patterns, which was proven to be useful when using the FEM computer code. Also, a scheme to apply fracture mechanics concept was developed in fatigue analysis of pressure vessels. (author)

  9. Vessel dilatation in coronary angiograms

    International Nuclear Information System (INIS)

    Hinterauer, L.; Goebel, N.

    1983-01-01

    Amongst 166 patients with aneurysms, ectasia or megaloarteries shown on coronary angiograms, 86.1% had dilated vessels as part of generalised coronary sclerosis (usually in patients with three-vessel disease). In 9%, dilatation was of iatrogenic origin and in 4.8% it was idiopathic. One patient had Marfan's syndrome. Amongst 9 000 patients, there were eight with megalo-arteries without stenosis; six of these had atypical angina and three suffered an infarct. Patients with definite dilatation of the coronary artery and stagnation of contrast flow required treatment. (orig.) [de

  10. Vessel dilatation in coronary angiograms

    Energy Technology Data Exchange (ETDEWEB)

    Hinterauer, L.; Goebel, N.

    1983-11-01

    Amongst 166 patients with aneurysms, ectasia or megaloarteries shown on coronary angiograms, 86.1% had dilated vessels as part of generalised coronary sclerosis (usually in patients with three-vessel disease). In 9%, dilatation was of iatrogenic origin and in 4.8% it was idiopathic. One patient had Marfan's syndrome. Amongst 9 000 patients, there were eight with megalo-arteries without stenosis; six of these had atypical angina and three suffered an infarct. Patients with definite dilatation of the coronary artery and stagnation of contrast flow required treatment.

  11. Electrosynthesis of vanillin from isoeugenol using platinum electrode

    Science.gov (United States)

    Mubarok, H.; Hilyatudini; Saepudin, E.; Ivandini, T. A.

    2017-04-01

    Vanillin was synthesized from isoeugenol through electrochemical method in one compartment cell using platinum electrode. Cyclic voltammetry in 0.1 M TBAP in methanol and acetonitrile indicated the first oxidation potential at +0.21 and +0.16 V (vs. Ag/AgCl), respectively. Isoeugenolis was proposed to undergo the oxidation accompanied by oxidative cleavage of alkene bond into aldehyde. Accordingly, the synthesis of vanillin was conducted using chronoamperometry technique. The electrosynthesis result was analyzed by HPLC and GC/MS. The optimum condition of the oxidation potential, solvent ratio, time of electrolysis and amount of water was investigated.

  12. An IBM description of coexistence in the platinum isotopes

    International Nuclear Information System (INIS)

    Harder, M.; Tang, K.T.; Van Isacker, P.

    1996-06-01

    The low-energy spectra of the platinum isotopes show evidence for the presence of two types of configurations: one which involves only excitations of the valence nucleons and another which includes proton excitations across the Z = 82 shell gap. A schematic description is presented of the coexistence and mixing of both configurations in the context of the interacting boson model and energies, electromagnetic transition rates and moments, and radii are studied. The analysis shows that a simultaneous description of both configurations puts constraints on the possible range of model parameters. Isotope and isomer shifts are shown to be sensitive to the mixing of both configurations. (author)

  13. A theoretical study of cluster radioactivity in platinum isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Joseph, Deepthy Maria; Ashok, Nithu; Joseph, Antony [University of Calicut, Department of Physics, Malappuram, Kerala (India)

    2018-01-15

    The probable cluster decay modes in platinum isotopes are predicted with the help of effective liquid drop model. The calculated half-lives are compared with those of universal decay law model and with the experimental data. The investigation affirms the decisive role of neutron magicity in the phenomenon of cluster radioactivity. It is found that the probability of cluster emission decreases with the increase in the neutron number of parent nucleus. Geiger-Nuttall plots of the probable decay modes show linear behaviour, which in turn leads to the equation for logarithmic half-life for the clusters emitted from Pt isotopes. (orig.)

  14. Tin-Platinum catalysts interactions on titania and silica

    International Nuclear Information System (INIS)

    Nava, N.; Del Angel, P.; Salmones, J.; Baggio-Saitovitch, E.; Santiago, P.

    2007-01-01

    Pt-Sn was supported on titania and silica, and the resulting interactions between the components in prepared samples and the resulting interactions between the components before and after treatment with hydrogen were characterized by Moessbauer spectroscopy, X-ray diffraction, Rietveld refinement, high-resolution transmission electron microscopy (HRTEM) and catalytic tests data. Results show the presence of Pt and SnO 2 after calcinations, and Pt 3 Sn, PtSn and PtSn 3 after reduction. Rietveld analysis shows that some Ti 4+ are replaced by Sn 4+ atoms in the titania structure. Finally, HRTEM and the practically absence of activity observed confirms that metallic platinum is encapsulated

  15. Amperometric and coulometric methods of platinum metal determination. (Review)

    International Nuclear Information System (INIS)

    Ezerskaya, N.A.

    1981-01-01

    Reviewed are works published in the period from 1957-1979, on amperometric and coulometric (potentiostatistic and amperostatistic variant) determination of platinum metals, Ru in particular. During amperometric titration of Ru the following titrantes are used: hydroquinone, thioxne thiourea, Na 2 S 2 O 3 . It is proposed to titrate Ru in the form of ruthenate-ion with hydrazine sulphate in alkal: medium according to the current of reagent oxidation. During coulometric determination of Ru the electrogenerating titrant TiCl 3 or Ti 2 (SO 4 ) 3 (for initial form of Ru [RuCl 6 ] 2- ) is used [ru

  16. Pretreatment of Platinum/Tin Oxide-Catalyst

    Science.gov (United States)

    Hess, Robert V.; Paulin, Patricia A.; Miller, Irvin M.; Schryer, David R.; Sidney, Barry D.; Wood, George M.; Upchurch, Billy T.; Brown, Kenneth G.

    1987-01-01

    Addition of CO to He pretreatment doubles catalytic activity. In sealed, high-energy, pulsed CO2 laser, CO and O2 form as decomposition products of CO2 in laser discharge zone. Products must be recombined, because oxygen concentration of more than few tenths of percent causes rapid deterioration of power, ending in unstable operation. Promising low-temperature catalyst for combining CO and O2 is platinum on tin oxide. New development increases activity of catalyst so less needed for recombination process.

  17. Modeling chemisorption kinetics of carbon monoxide on polycrystalline platinum

    Energy Technology Data Exchange (ETDEWEB)

    Donnelly, R.G.; Modell, M.; Baddour, R.F.

    1978-04-01

    Seven distinct desorption surface states of carbon monoxide on polycrystalline platinum were detected by deconvoluting temperature-programed desorption spectra of 4-100% carbon monoxide monolayer coverage. The adstates had fixed activation energies of desorption (22.5-32.6 kcal/mole) over the entire coverage range. Rates of formation and populations were derived. The chemisorption was modeled by a Hinshelwood-type expression which allowed for site creation and suggested that adsorbed molecules are sufficiently mobile during desorption heating to fill ordered states of minimum energy and that chemisorption into these states is noncompetitive and determined by the surface. Spectra, diagrams, graphs, tables, and 49 references.

  18. Stability and phase transfer of catalytically active platinum nanoparticle suspensions

    International Nuclear Information System (INIS)

    Sriram, Indira; Curtin, Alexandra E.; Chiaramonti, Ann N.; Cuchiaro, J. Hunter; Weidner, Andrew R.; Tingley, Tegan M.; Greenlee, Lauren F.; Jeerage, Kavita M.

    2015-01-01

    In this work, we present a robust synthesis protocol for platinum nanoparticles that yields a monomodal dispersion of particles that are approximately 100 nm in diameter. We determine that these particles are actually agglomerates of much smaller particles, creating a “raspberry” morphology. We demonstrate that these agglomerates are stable at room temperature for at least 8 weeks by dynamic light scattering. Furthermore, we demonstrate consistent electrocatalytic activity for methanol oxidation. Finally, we quantitatively explore the relationship between dispersion solvent and particle agglomeration; specifically, particles are found to agglomerate abruptly as solvent polarity decreases

  19. A phototactic micromotor based on platinum nanoparticle decorated carbon nitride.

    Science.gov (United States)

    Ye, Zhenrong; Sun, Yunyu; Zhang, Hui; Song, Bo; Dong, Bin

    2017-11-30

    In this paper, we report a unique phototactic (both positive and negative) micromotor based on platinum nanoparticle decorated carbon nitride. The phototaxis relies on the self-diffusiophoretic mechanism and different surface modifications. The micromotor reported in the current study does not require the addition of any external fuels and shows versatile motion behaviour, i.e. start, stop, directional and programmable motion, which is controlled by light. In addition, since the actuation of the precipitated micromotors at the bottom of a solution using light results in the opacity changes from transparent to translucent, we anticipate that the current micromotor may have potential application in the field of smart windows.

  20. Oxidation-reduction induced roughening of platinum (111) surface

    International Nuclear Information System (INIS)

    You, H.; Nagy, Z.

    1993-06-01

    Platinum (111) single crystal surface was roughened by repeated cycles of oxidation and reduction to study dynamic evolution of surface roughening. The interface roughens progressively upon repeated cycles. The measured width of the interface was fit to an assumed pow law, W ∼t β , with β = 0.38(1). The results are compared with a simulation based on a random growth model. The fraction of the singly stepped surface apparently saturates to 0. 25 monolayer, which explains the apparent saturation to a steady roughness observed in previous studies

  1. Shape coexistence and phase transitions in the platinum isotopes

    International Nuclear Information System (INIS)

    Morales, Irving O.; Frank, Alejandro; Vargas, Carlos E.; Isacker, P. Van

    2008-01-01

    The matrix coherent-state approach of the interacting boson model with configuration mixing is used to study the geometry of the platinum isotopes. With a parameter set determined in previous studies, it is found that the absolute minimum of the potential for the Pt isotopes evolves from spherical to oblate and finally to prolate shapes when the neutron number decreases from N=126 (semi-magic) to N=104 (mid-shell). Shape coexistence is found in the isotopes 182,184,186,188 Pt. A phase diagram is constructed that shows the coexistence region as a function of the number of bosons and the strength of the mixing parameter

  2. Stability and phase transfer of catalytically active platinum nanoparticle suspensions

    Energy Technology Data Exchange (ETDEWEB)

    Sriram, Indira; Curtin, Alexandra E.; Chiaramonti, Ann N.; Cuchiaro, J. Hunter; Weidner, Andrew R.; Tingley, Tegan M.; Greenlee, Lauren F.; Jeerage, Kavita M., E-mail: jeerage@boulder.nist.gov [National Instrument of Standards and Technology, Applied Chemicals and Materials Division (United States)

    2015-05-15

    In this work, we present a robust synthesis protocol for platinum nanoparticles that yields a monomodal dispersion of particles that are approximately 100 nm in diameter. We determine that these particles are actually agglomerates of much smaller particles, creating a “raspberry” morphology. We demonstrate that these agglomerates are stable at room temperature for at least 8 weeks by dynamic light scattering. Furthermore, we demonstrate consistent electrocatalytic activity for methanol oxidation. Finally, we quantitatively explore the relationship between dispersion solvent and particle agglomeration; specifically, particles are found to agglomerate abruptly as solvent polarity decreases.

  3. Phosphorescent Organic Light Emitting Diodes Implementing Platinum Complexes

    Science.gov (United States)

    Ecton, Jeremy Exton

    Organic light emitting diodes (OLEDs) are a promising approach for display and solid state lighting applications. However, further work is needed in establishing the availability of efficient and stable materials for OLEDs with high external quantum efficiency's (EQE) and high operational lifetimes. Recently, significant improvements in the internal quantum efficiency or ratio of generated photons to injected electrons have been achieved with the advent of phosphorescent complexes with the ability to harvest both singlet and triplet excitons. Since then, a variety of phosphorescent complexes containing heavy metal centers including Os, Ni, Ir, Pd, and Pt have been developed. Thus far, the majority of the work in the field has focused on iridium based complexes. Platinum based complexes, however, have received considerably less attention despite demonstrating efficiency's equal to or better than their iridium analogs. In this study, a series of OLEDs implementing newly developed platinum based complexes were demonstrated with efficiency's or operational lifetimes equal to or better than their iridium analogs for select cases. In addition to demonstrating excellent device performance in OLEDs, platinum based complexes exhibit unique photophysical properties including the ability to form excimer emission capable of generating broad white light emission from a single emitter and the ability to form narrow band emission from a rigid, tetradentate molecular structure for select cases. These unique photophysical properties were exploited and their optical and electrical properties in a device setting were elucidated. Utilizing the unique properties of a tridentate Pt complex, Pt-16, a highly efficient white device employing a single emissive layer exhibited a peak EQE of over 20% and high color quality with a CRI of 80 and color coordinates CIE(x=0.33, y=0.33). Furthermore, by employing a rigid, tetradentate platinum complex, PtN1N, with a narrow band emission into a

  4. Factors Governing concentration of platinum group elements in layered complexes

    DEFF Research Database (Denmark)

    Makovicky, E.; Rose-Hansen, J.; Karup-Møller, Sven

    1996-01-01

    This report covers the synthetic research results obtained by the Danish group on: (1) The phase system Fe-Ir-S at 1100o, 1000o and 800oC, (2) Metal-rich portions of the phase system Pt-Ir-Fe-S: Pt-Fe-Ir alloys and associated sulfides at 1000oC and 1100oC, (3) The Fe (Cu)-Pt-Rh-S system: alloys...

  5. On the mobility of carbon-supported platinum nanoparticles towards unveiling cathode degradation in water electrolysis

    Science.gov (United States)

    Paciok, Paul; Schalenbach, Maximilian; Carmo, Marcelo; Stolten, Detlef

    2017-10-01

    This study investigates the influence of the hydrogen evolution reaction (HER) overpotential on the mobility of carbon-supported platinum particles. The migration of the platinum over the carbon support was analyzed by means of identical location transmission electron microscopy (IL-TEM). While at potentials of 0.1 and 0 V vs. reversible hydrogen electrode (RHE), no changes to the Pt/C material were observed. With a decrease of the overpotential to -0.1 V vs. RHE, an increase in the quantity of migrating platinum particles took place. At -0.2 V vs. RHE, a further rise in the particle migration was observed. The effect of the overpotential on the migration was explained by a higher hydrogen generation rate, the formation of a hydrogen monolayer on the platinum and the resulting changes of the platinum support distance. The mechanisms revealed in this study could describe a relevant source of degradation of PEM water electrolyzers.

  6. The relationship between debt levels and total shareholder return of JSE-listed platinum companies

    Directory of Open Access Journals (Sweden)

    Sandra Jooste

    2016-02-01

    Full Text Available The purpose of this study is to investigate empirically whether there is a positive correlation between debt levels and total shareholder return (TSR of platinum JSE-listed companies. The study field comprised annual analyses for 12 companies listed under the Platinum and Precious Metals sector on the JSE Ltd for the 14-year period 2000 to 2013. The results of the study were inconclusive as a statistically significant positive correlation between changes in debt levels and changes in TSR could only be found in two of these years. The core audience of the study will be the management of South African platinum companies considering changes in their capital structure, and investors considering investment in a listed platinum company. The contribution of the study is therefore to add to the body of literature on capital structure decisions from a South African platinum mine context

  7. Exposure of the German general population to platinum and rhodium - Urinary levels and determining factors.

    Science.gov (United States)

    Munker, Sven; Kilo, Sonja; Röß, Christoph; Jeitner, Peter; Schierl, Rudolf; Göen, Thomas; Drexler, Hans

    2016-11-01

    In this study the exposure of the general population in Germany to platinum and rhodium and its determinants was investigated in 259 participants (subdivided in three groups) by urine analyses and assessment of the dental status. Complementary, an interview including questions characterising possible exposure to traffic exhaust was conducted. The median excretion was 2.42ng platinum/g creatinine and 7.27ng rhodium/g creatinine. The detailed analysis of the collected data showed significant higher platinum excretion values with increasing number of surfaces covered with restorations containing precious metals (R=0.389; prhodium excretion values (median=7.27ng/g; 95th percentile=13.5 ng/g). In summary, the study showed that exhaust emissions have an influence on platinum and rhodium excretion, but for platinum this influence is rather low compared to the influence of precious metals containing restorations. Copyright © 2016 Elsevier GmbH. All rights reserved.

  8. Cermet Ni-ZrO2 by mechanical alloying

    International Nuclear Information System (INIS)

    Leite, Douglas Will

    2010-01-01

    The ZrO 2 and metallic Ni Cermet obtained by Mechanical Alloying - MA is studied in the present work with the objective to prepare solid oxide fuel cells anodes (SOFC). Metallic Ni is added under three different concentrations: 30, 40 and 50% volume. The millings were conducted in SPEX vibratory mill where the influence of milling time, process control additives efficiency, type and geometry of milling vessels were studied. The study of the influence of these variables was made under particle size analysis, surface area determination and resulting material morphology. The use of teflon vessel causes contamination by carbon. On the other side, steel vessel increases the contamination by metallic impurities. The several geometries projected and analyzed for the vessels showed that vessels with larger bottom radius (R.15) showed the best results. After conformation and sintering at 1300 degree C in argon atmosphere the samples reached densities between 60 and 80% of the theoretical density. Microstructures observed by scanning electron microscopy reveal good homogeneity in the Cermet phases distribution. The mechanical alloying technique was considered a good option to obtain Ni- ZrO 2 Cermet. (author)

  9. Corrosion fatigue of pressure vessel steels in PWR environments--influence of steel sulfur content

    International Nuclear Information System (INIS)

    Scott, P.M.; Druce, S.G.; Truswell, A.E.

    1984-01-01

    Large effects of simulated light water reactor environments at 288 C on fatigue crack growth in low alloy pressure vessel steels are observed only when specific mechanical, metallurgical, and electrochemical conditions are satisfied simultaneously. In this paper, the relative importance of three key variables--steel impurity content, water chemistry, and flow rate--and their interaction with loading rate or strain rate are examined. In particular, the results of a systematic examination of the influence of a steel's sulfur content are described

  10. Grounding Damage to Conventional Vessels

    DEFF Research Database (Denmark)

    Lützen, Marie; Simonsen, Bo Cerup

    2003-01-01

    The present paper is concerned with rational design of conventional vessels with regard to bottom damage generated in grounding accidents. The aim of the work described here is to improve the design basis, primarily through analysis of new statistical data for grounding damage. The current regula...

  11. PLANNING VESSEL BODY SECTION PRODUCTION

    Directory of Open Access Journals (Sweden)

    A. G. Grivachevsky

    2015-01-01

    Full Text Available A problem of planning production of a vessel body section is considered. The problem is reduced to the classic Johnson’s tree-machine flow-shop scheduling problem. A genetic algorithm and computer experiment to compare efficiency of this algorithm and the algorithm of full enumeration are described.

  12. Pressure vessel and method therefor

    Science.gov (United States)

    Saunders, Timothy

    2017-09-05

    A pressure vessel includes a pump having a passage that extends between an inlet and an outlet. A duct at the pump outlet includes at least one dimension that is adjustable to facilitate forming a dynamic seal that limits backflow of gas through the passage.

  13. Commercial Passenger Fishing Vessel Fishery

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains the logbook data from U.S.A. Commercial Passenger Fishing Vessels (CPFV) fishing in the U.S.A. EEZ and in waters off of Baja California, from...

  14. Penetration of hydrogen isotopes through EhI 698 alloy at high pressure and temperature

    International Nuclear Information System (INIS)

    Bystritskij, V.M.; Voznyak, Ya.; Granovskij, V.B.

    1986-01-01

    The paper deals with investigations of the process of hydrogen and deuterium penetration through the high-temperature alloy EhI-698 at a pressure up to 1 kbar and temperature up to 1050 K. Parameters of the process obey Sieverts's law and can be described by Arrenius's and Vant-Goff's equations. The obtained results lead to a conclusion that the alloy EhI-698 is good for vessels to be employed in hydrogen media

  15. Low-cycle fatigue of welded joints of alloy AMg5

    International Nuclear Information System (INIS)

    Modestova, R.V.; Borisenko, V.A.; Parfenova, I.N.; Stepanov, S.V.

    1986-01-01

    The authors study the low-cycle fatigue of welded joints of aluminum alloy AMg5 in order to determine the cyclic strength coefficient of welded seams. Tests were carried out on cylindrical specimens of the parent metal, welded specimens, and models of welded vessels. The average values of mechanical properties of the specimens and the parent metal are shown. It is shown that when designing welded vessels of aluminum alloy AMg5, the permissible amplitudes of conventional compressive stresses are recommended to be determined as the lower of the two values calculated using the equations presented

  16. Platinum-Group Minerals and Other Accessory Phases in Chromite Deposits of the Alapaevsk Ophiolite, Central Urals, Russia

    Directory of Open Access Journals (Sweden)

    Federica Zaccarini

    2016-10-01

    Full Text Available An electron microprobe study has been carried out on platinum-group minerals, accessory phases, and chromite in several chromite deposits of the Alapaevsk ophiolite (Central Urals, Russia namely the Bakanov Kluch, Kurmanovskoe, Lesnoe, 3-d Podyony Rudnik, Bol’shaya Kruglyshka, and Krest deposits. These deposits occur in partially to totally serpentinized peridotites. The microprobe data shows that the chromite composition varies from Cr-rich to Al-rich. Tiny platinum-group minerals (PGM, 1–10 µm in size, have been found in the chromitites. The most abundant PGM is laurite, accompanied by minor cuproiridsite and alloys in the system Os–Ir–Ru. A small grain (about 20 μm was found in the interstitial serpentine of the Bakanov Kluch chromitite, and its calculated stoichiometry corresponds to (Ni,Fe5P. Olivine, occurring in the silicate matrix or included in fresh chromite, has a mantle-compatible composition in terms of major and minor elements. Several inclusions of amphibole, Na-rich phlogopite, and clinopyroxene have been identified. The bimodal Cr–Al composition of chromite probably corresponds to a vertical distribution in the ophiolite sequence, implying formation of Cr-rich chromitites in the deep mantle, and Al-rich chromitites close to the Moho-transition zone, in a supra-subduction setting. The presence of abundant hydrous silicate inclusions, such as amphibole and phlogopite, suggests that the Alapaevsk chromitites crystallized as a result of the interaction between a melt enriched in fluids and peridotites. Laurite and cuproiridsite are considered to be magmatic in origin, i.e., entrapped as solid phases during the crystallization of chromite at high temperatures. The sulfur fugacity was relatively high to allow the precipitation of Ir-bearing sulfides, but below the Os–OsS2 buffer. The alloys in the system Os–Ir–Ru are classified as secondary PGM, i.e., formed at low temperature during the serpentinization process. The

  17. Platinum bioaccumulation by mustard plants (Sinapis alba L.)

    International Nuclear Information System (INIS)

    Hawienczyk, M.; Bystrzejewska-Piotrowska, G.; Kowalska, J.; Asztemborska, M.

    2005-01-01

    The ability of hydroponically cultivated Indian mustard plants (Sinapis alba L.) to accumulate platinum was investigated. The Pt-bioaccumulation in leaves, stem and shoots of plants growing for 2 and 4 weeks at Pt-concentration of 50 and 500 μg/L was compared. The relation between dry and fresh weight was also estimated. Adsorptive stripping voltammetry (AdSV) and mass spectrometry with inductively coupled plasma (ICP-MS) were applied for determination of Pt. Increasing Pt-concentration from 50 to 500 μg/L in the medium causes: (1) reduction of the root tissue hydration level at unchanged modification in aboveground parts of the plants and (2) decrease of the Pt transfer factor (TF) for roots and increase for leaves and stem. Duration of the culture influenced on Pt-accumulation in roots and in aboveground organs of mustard plants. Transfer factor for Pt between 560 and 1600 makes Indian mustard plants one at Pt-hyperaccumulators. Distribution of Pt-bioaccumulation in the plant organs may be useful for biomonitoring of platinum in the environment. (author)

  18. Platinum Monolayer Electrocatalysts for Anodic Oxidation of Alcohols.

    Science.gov (United States)

    Li, Meng; Liu, Ping; Adzic, Radoslav R

    2012-12-06

    The slow, incomplete oxidation of methanol and ethanol on platinum-based anodes as well as the high price and limited reserves of Pt has hampered the practical application of direct alcohol fuel cells. We describe the electrocatalysts consisting of one Pt monolayer (one atom thick layer) placed on extended or nanoparticle surfaces having the activity and selectivity for the oxidation of alcohol molecules that can be controlled with platinum-support interaction. The suitably expanded Pt monolayer (i.e., Pt/Au(111)) exhibits a factor of 7 activity increase in catalyzing methanol electrooxidation relative to Pt(111). Sizable enhancement is also observed for ethanol electrooxidation. Furthermore, a correlation between substrate-induced lateral strain in a Pt monolayer and its activity/selectivity is established and rationalized by experimental and theoretical studies. The knowledge we gained with single-crystal model catalysts was successfully applied in designing real nanocatalysts. These findings for alcohols are likely to be applicable for the oxidation of other classes of organic molecules.

  19. Sulfur tolerant zeolite supported platinum catalysts for aromatics hydrogenation

    Energy Technology Data Exchange (ETDEWEB)

    Bergem, Haakon

    1997-12-31

    The increased demand for transportation fuels at the expence of heavier fuel oil has forced the refinery industry to expand their conversion capacity with hydrotreating as one of the key processes. A shift towards more diesel powered vehicles along with tightening fuel regulations demanding cleaner fuels has lead to increasing interest in catalytic processes for the manufacturing of such environmentally acceptable fuels. This provides the motivation for this thesis. Its main objective was to study possible catalysts active for desulfurization, hydrogenation, and ring-opening of aromatics all in the presence of sulfur. A close examination of the physical properties and kinetical behaviour of the chosen catalysts has been performed. A high pressure reactor setup was designed and built for activity measurements. Zeolite supported platinum catalysts were prepared and both the metal and acid functions were characterized utilizing various experimental techniques. Hydrogenation of toluene was used as a model reaction and the effect of sulfur adsorption on the activity and kinetic behaviour of the catalysts was investigated. The catalyst samples showed hydrogenation activities comparable to a commercial Pt/Al2O3 catalyst. There were no clear differences in the effect of the various sulfur compounds studied. Platinum supported on zeolite Y gave considerably more sulfur tolerant catalysts compared to Al2O3 as support. 155 refs., 58 figs., 36 tabs.

  20. Electrochemical Characterization of Platinum Nanotubules Made via Template Wetting Nanofabrication

    Directory of Open Access Journals (Sweden)

    Eric Broaddus

    2013-01-01

    Full Text Available Standard oxidation-reduction reactions such as those of ferrocyanide and ferrocene have long been employed in evaluating and comparing new electrode structures with more traditional configurations. A variety of nanostructured carbon electrodes developed in recent years have been reported to exhibit faster electron transfer kinetics than more traditional carbon structures when studied with these redox reactions. This type of comparison has not been widely explored for nanostructured platinum electrodes that have become increasingly common. In this work, a platinum nanotubule array electrode was fabricated via a simple template-based process and evaluated using the standard ferrocyanide redox reaction. The nanotubule array electrodes were observed to more closely approach ideal reversible behavior than a typical Pt black/Nafion fuel cell electrode or a standard polished Pt disc electrode. The apparent heterogeneous electron transfer coefficient was determined using the Nicholson method and found to be one to two orders of magnitude greater for the nanotubule array electrodes, depending on the diameter of the nanotubules, in comparison with these same two more traditional electrode structures.

  1. Formic Acid Electrooxidation by a Platinum Nanotubule Array Electrode

    Directory of Open Access Journals (Sweden)

    Eric Broaddus

    2013-01-01

    Full Text Available One-dimensional metallic nanostructures such as nanowires, rods, and tubes have drawn much attention for electrocatalytic applications due to potential advantages that include fewer diffusion impeding interfaces with polymeric binders, more facile pathways for electron transfer, and more effective exposure of active surface sites. 1D nanostructured electrodes have been fabricated using a variety of methods, typically showing improved current response which has been attributed to improved CO tolerance, enhanced surface activity, and/or improved transport characteristics. A template wetting approach was used to fabricate an array of platinum nanotubules which were examined electrochemically with regard to the electrooxidation of formic acid. Arrays of 100 and 200 nm nanotubules were compared to a traditional platinum black catalyst, all of which were found to have similar surface areas. Peak formic acid oxidation current was observed to be highest for the 100 nm nanotubule array, followed by the 200 nm array and the Pt black; however, CO tolerance of all electrodes was similar, as were the onset potentials of the oxidation and reduction peaks. The higher current response was attributed to enhanced mass transfer in the nanotubule electrodes, likely due to a combination of both the more open nanostructure as well as the lack of a polymeric binder in the catalyst layer.

  2. Pressure vessel for nuclear reactor plant consisting of several pre-stressed cast pressure vessels

    International Nuclear Information System (INIS)

    Bodmann, E.

    1984-01-01

    Several cylindrical pressure vessel components made of pressure castings are arranged on a sector of a circle around the cylindrical cast pressure vessel for accommodating the helium cooled HTR. Each component pressure vessel is connected to the reactor vessel by a horizontal gas duct. The contact surfaces between reactor and component pressure vessel are in one plane. In the spaces between the individual component pressure vessels, there are supporting blocks made of cast iron, which are hollow and also have flat surfaces. With the reactor vessel and the component pressure vessels they form a disc-shaped connecting part below and above the gas ducts. (orig./PW)

  3. Stress Corrosion Cracking and Fatigue Crack Growth Studies Pertinent to Spacecraft and Booster Pressure Vessels

    Science.gov (United States)

    Hall, L. R.; Finger, R. W.

    1972-01-01

    This experimental program was divided into two parts. The first part evaluated stress corrosion cracking in 2219-T87 aluminum and 5Al-2.5Sn (ELI) titanium alloy plate and weld metal. Both uniform height double cantilever beam and surface flawed specimens were tested in environments normally encountered during the fabrication and operation of pressure vessels in spacecraft and booster systems. The second part studied compatibility of material-environment combinations suitable for high energy upper stage propulsion systems. Surface flawed specimens having thicknesses representative of minimum gage fuel and oxidizer tanks were tested. Titanium alloys 5Al-2.5Sn (ELI), 6Al-4V annealed, and 6Al-4V STA were tested in both liquid and gaseous methane. Aluminum alloy 2219 in the T87 and T6E46 condition was tested in fluorine, a fluorine-oxygen mixture, and methane. Results were evaluated using modified linear elastic fracture mechanics parameters.

  4. Low activation ferritic alloys

    Science.gov (United States)

    Gelles, David S.; Ghoniem, Nasr M.; Powell, Roger W.

    1986-01-01

    Low activation ferritic alloys, specifically bainitic and martensitic stainless steels, are described for use in the production of structural components for nuclear fusion reactors. They are designed specifically to achieve low activation characteristics suitable for efficient waste disposal. The alloys essentially exclude molybdenum, nickel, nitrogen and niobium. Strength is achieved by substituting vanadium, tungsten, and/or tantalum in place of the usual molybdenum content in such alloys.

  5. PLUTONIUM-ZIRCONIUM ALLOYS

    Science.gov (United States)

    Schonfeld, F.W.; Waber, J.T.

    1960-08-30

    A series of nuclear reactor fuel alloys consisting of from about 5 to about 50 at.% zirconium (or higher zirconium alloys such as Zircaloy), balance plutonium, and having the structural composition of a plutonium are described. Zirconium is a satisfactory diluent because it alloys readily with plutonium and has desirable nuclear properties. Additional advantages are corrosion resistance, excellent fabrication propenties, an isotropie structure, and initial softness.

  6. Advances in titanium alloys

    International Nuclear Information System (INIS)

    Seagle, S.R.; Wood, J.R.

    1993-01-01

    As described above, new developments in the aerospace market are focusing on higher temperature alloys for jet engine components and higher strength/toughness alloys for airframe applications. Conventional alloys for engines have reached their maximum useful temperature of about 1000 F (540 C) because of oxidation resistance requirements. IMI 834 and Ti-1100 advanced alloys show some improvement, however, the major improvement appears to be in gamma titanium aluminides which could extend the maximum usage temperature to about 1500 F (815 C). This puts titanium alloys in a competitive position to replace nickel-base superalloys. Advanced airframe alloys such as Ti-6-22-22S, Beta C TM , Ti-15-333 and Ti-10-2-3 with higher strength than conventional Ti-6-4 are being utilized in significantly greater quantities, both in military and commercial applications. These alloys offer improved strength with little or no sacrifice in toughness and improved formability, in some cases. Advanced industrial alloys are being developed for improved corrosion resistance in more reducing and higher temperature environments such as those encountered in sour gas wells. Efforts are focused on small precious metal additions to optimize corrosion performance for specific applications at a modest increase in cost. As these applications develop, the usage of titanium alloys for industrial markets should steadily increase to approach that for aerospace applications. (orig.)

  7. Platinum-group metals from nuclear reactions as a possible resource

    International Nuclear Information System (INIS)

    Jensen, G.A.

    1985-03-01

    Spent nuclear fuels contain significant quantities of three of the platinum-group metals (ruthenium, rhodium, and palladium), and a related element technetium, which is nearly absent in nature. Applications for ruthenium, rhodium, and palladium are well established. Since the supply of these and other platinum metals is largely from foreign sources, they are considered strategic materials. Existing and future spent nuclear fuels contain quantities of these platinum metals that exceed the United States reserve base. Technetium has properties similar to platinum metals and has unique, useful properties of its own. The technical feasibility of recovering and using fission product platinum metals (and technetium) extensively in industry depends on: thoroughly decontaminating platinum-group metals from all other radioactive materials in the waste stream; separating platinum-group metals from one another in very high purity; using applications where appropriate control of the residual radioactivity is possible; and whether or not the United States will recover or process spent fuel prior to repository storage. If the radioactivity must be removed, isotope separation or long term storage to allow decay of the contained radioisotopes may be possible. 7 figs., 7 tabs

  8. Investigation of a combined platinum and electron lifetime control treatment for silicon

    International Nuclear Information System (INIS)

    Jia, Yunpeng; Cui, Zhihang; Yang, Fei; Zhao, Bao; Zou, Shikai; Liang, Yongsheng

    2017-01-01

    In silicon, the effect of Combined Lifetime Treatment (CLT) involving platinum diffusion and subsequent electron irradiation is different from the separate treatments of platinum diffusion and electron irradiation, even the treatment of electron irradiation followed by platinum diffusion. In this paper, we investigated the experimental behavior of different kinds of lifetime treated samples. We found that the reverse leakage current (I rr ) increases with the increasing platinum diffusion temperature or electron irradiation dose in the separate treatments. Conversely, I rr of the CLT samples decreased with rising platinum diffusion temperature at the same dose of subsequent electron irradiation. By deep-level transient spectroscopy (DLTS), a new energy level E7 (Ec −0.376 eV) was found in our CLT samples. The new level E7 suppresses the dominance of the deeper level E8 (Ec −0.476 eV), which is caused by electron irradiation directly and results in I rr ’s increase. The formation of the level E7 comes from the complex defect-combined effect between platinum atoms and silicon vacancies, and it affects device’s characteristics finally. These research will be helpful to the development of platinum-diffused devices used in intense electron irradiation environments.

  9. Investigation of a combined platinum and electron lifetime control treatment for silicon

    Energy Technology Data Exchange (ETDEWEB)

    Jia, Yunpeng [College of Electronic Information and Control Engineering, Beijing University of Technology, Beijing 100124 (China); Cui, Zhihang, E-mail: czhczh321321@126.com [College of Electronic Information and Control Engineering, Beijing University of Technology, Beijing 100124 (China); Yang, Fei [State Grid Smart Electrical Engineering, Beijing 100192 (China); Zhao, Bao; Zou, Shikai; Liang, Yongsheng [College of Electronic Information and Control Engineering, Beijing University of Technology, Beijing 100124 (China)

    2017-02-01

    In silicon, the effect of Combined Lifetime Treatment (CLT) involving platinum diffusion and subsequent electron irradiation is different from the separate treatments of platinum diffusion and electron irradiation, even the treatment of electron irradiation followed by platinum diffusion. In this paper, we investigated the experimental behavior of different kinds of lifetime treated samples. We found that the reverse leakage current (I{sub rr}) increases with the increasing platinum diffusion temperature or electron irradiation dose in the separate treatments. Conversely, I{sub rr} of the CLT samples decreased with rising platinum diffusion temperature at the same dose of subsequent electron irradiation. By deep-level transient spectroscopy (DLTS), a new energy level E7 (Ec −0.376 eV) was found in our CLT samples. The new level E7 suppresses the dominance of the deeper level E8 (Ec −0.476 eV), which is caused by electron irradiation directly and results in I{sub rr}’s increase. The formation of the level E7 comes from the complex defect-combined effect between platinum atoms and silicon vacancies, and it affects device’s characteristics finally. These research will be helpful to the development of platinum-diffused devices used in intense electron irradiation environments.

  10. Concentration and measuring Platinum Group Elements (PGE) Transfer Factor in soil and vegetations

    International Nuclear Information System (INIS)

    Adibah Sakinah Oyub

    2012-01-01

    This study was conducted to determine the concentration and to measure platinum group elements (PGE) transfer factor in environmental samples of roadside soil and vegetation. The use of vehicle catalytic converter has released platinum group elements (PGE) and other gases into the environment. Thus, roadside soil and plants were exposed to this element and has become the medium for the movement of this elements. Samples of roadside soil and vegetation were taken at various locations in UKM Bangi Toll and the concentration of platinum group elements (PGE) is determined using mass spectrometry-inductively coupled plasma (ICP-MS). Overall, the concentrations of platinum group elements (PGE), which is the element platinum (Pt) in soil was 0.016 ± 0.036 μgg -1 . While the concentration of the elements palladium (Pd) was 0.079 ± 0.019 μgg -1 and element rhodium (Rh) is at a concentration of 0.013 ± 0.020 μgg -1 . Overall, the transfer factor for the element platinum (Pt) is 1. While the transfer factor of the element palladium (Pd) is 0.96 and the element rhodium (Rh) is 1.11. In conclusion, the concentration of platinum group elements (PGE) in soils have increased. (author)

  11. The exchange reaction between deuterium and water vapour on platinum deposited over a hydrophobic support

    International Nuclear Information System (INIS)

    Itsuo, Iida; Junko, Kato; Kenzi, Tamuru

    1977-01-01

    Isotope exchange reaction between deuterium gas and water vapour at room temperature and below on platinum deposited on hydrophobic supports such as polytetrafluoroethylene (PTFE) or Porapak Q (copolymer of styrene and divinylbenzene) was studied and the results were compared with those of the exchange reaction on platinum over hydrophilic support such as alumina. It was demonstrated that the exchange reaction at temperatures below the boiling point of water is markedly retarded by the multilayer adsorption of water over the platinum catalyst deposited on hydrophilic support, whereas the platinum catalyst on hydrophobic support exhibited a high catalytic activity, being not retarded by the water, forming no multilayer of adsorbed water over platinum surface. Therefore in the case of the hydrogen isotope exchange reaction on platinum over hydrophobic support, the chemical exchange rate can be measured even under a saturated vapour pressure of water. The surface area of platinum was estimated by hydrogen chemisorption and hydrogen titration and specific activities of the catalyst were calculated at both room temperature and freezing point of water, which revealed that the specific rate of this reaction does not differ so much over various supports. (orig.) [de

  12. AFSC/FMA/Vessel Assessment Logging

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Vessels fishing trawl gear, vessels fishing hook-and-line and pot gear that are also greater than 57.5 feet overall, and shoreside and floating processing facilities...

  13. 2013 EPA Vessels General Permit (VGP)

    Data.gov (United States)

    U.S. Environmental Protection Agency — Information for any vessel that submitted a Notice of Intent (NOI), Notice of Termination (NOT), or annual report under EPA's 2013 Vessel General Permit (VGP)....

  14. Laser surface alloying of aluminium-transition metal alloys

    International Nuclear Information System (INIS)

    Almeida, A.; Vilar, R.

    1998-01-01

    Laser surface alloying has been used as a tool to produce hard and corrosion resistant Al-transition metal (TM) alloys. Cr and Mo are particularly interesting alloying elements to produce stable high-strength alloys because they present low diffusion coefficients and solid solubility in Al. To produce Al-TM surface alloys a two-step laser process was developed: firstly, the material is alloyed using low scanning speed and secondly, the microstructure is modified by a refinement step. This process was used in the production of Al-Cr, Al-Mo and Al-Mo and Al-Nb surface alloys by alloying Cr, Mo or Nb powder into an Al and 7175 Al alloy substrate using a CO 2 laser . This paper presents a review of the work that has been developed at Instituto Superior Tecnico on laser alloying of Al-TM alloy, over the last years. (Author) 16 refs

  15. Reactor vessel dismantling at the high flux materials testing reactor Petten

    International Nuclear Information System (INIS)

    Tas, A.; Teunissen, G.

    1986-01-01

    The project of replacing the reactor vessel of the high flux materials testing reactor (HFR) originated in 1974 when results of several research programs confirmed severe neutron embrittlement of aluminium alloys suggesting a limited life of the existing facility. This report describes the dismantling philosophy and organisation, the design of special underwater equipment, the dismantling of the reactor vessel and thermal column, and the conditioning and shielding activities resulting in a working area for the installation of the new vessel with no access limitations due to radiation. Finally an overview of the segmentation, waste disposal and radiation exposure is given. The total dismantling, segmentation and conditioning activities resulted in a total collective radiation dose of 300 mSv. (orig.) [de

  16. Interstitial Cells of Blood Vessels

    Directory of Open Access Journals (Sweden)

    Vladimír Pucovský

    2010-01-01

    Full Text Available Blood vessels are made up of several distinct cell types. Although it was originally thought that the tunica media of blood vessels was composed of a homogeneous population of fully differentiated smooth muscle cells, more recent data suggest the existence of multiple smooth muscle cell subpopulations in the vascular wall. One of the cell types contributing to this heterogeneity is the novel, irregularly shaped, noncontractile cell with thin processes, termed interstitial cell, found in the tunica media of both veins and arteries. While the principal role of interstitial cells in veins seems to be pacemaking, the role of arterial interstitial cells is less clear. This review summarises the knowledge of the functional and structural properties of vascular interstitial cells accumulated so far, offers hypotheses on their physiological role, and proposes directions for future research.

  17. The Vessel Schedule Recovery Problem

    DEFF Research Database (Denmark)

    Brouer, Berit Dangaard; Plum, Christian Edinger Munk; Vaaben, Bo

    Maritime transportation is the backbone of world trade and is accountable for around 3% of the worlds CO2 emissions. We present the Vessel Schedule Recovery Problem (VSRP) to evaluate a given disruption scenario and to select a recovery action balancing the trade off between increased bunker cons...... consumption and the impact on the remaining network and the customer service level. The model is applied to 4 real cases from Maersk Line. Solutions are comparable or superior to those chosen by operations managers. Cost savings of up to 58% may be achieved.......Maritime transportation is the backbone of world trade and is accountable for around 3% of the worlds CO2 emissions. We present the Vessel Schedule Recovery Problem (VSRP) to evaluate a given disruption scenario and to select a recovery action balancing the trade off between increased bunker...

  18. Nuclear power plant pressure vessels. Inservice inspections

    International Nuclear Information System (INIS)

    1995-01-01

    The requirements for the planning and reporting of inservice inspections of nuclear power plant pressure vessels are presented. The guide specifically applies to inservice inspections of Safety class 1 and 2 nuclear power plant pressure vessels, piping, pumps and valves plus their supports and reactor pressure vessel internals by non- destructive examination methods (NDE). Inservice inspections according to the Pressure Vessel Degree (549/73) are discussed separately in the guide YVL 3.0. (4 refs.)

  19. Expanded Fermilab pressure vessel directory program

    Energy Technology Data Exchange (ETDEWEB)

    Tanner, A.

    1983-01-01

    Several procedures have been written to manage the information pertaining to the vacuum tanks and pressure vessels for which the laboratory is responsible. These procedures have been named TANK1 for the vessels belonging to the Accelerator Division, TANK2 and TANK3 for the vessels belonging to the Research Division and to Technical Support respectively, and TANK4 for the vessels belonging to the Business Division. The operating procedures are otherwise identical in every respect.

  20. Expanded Fermilab pressure vessel directory program

    International Nuclear Information System (INIS)

    Tanner, A.

    1983-01-01

    Several procedures have been written to manage the information pertaining to the vacuum tanks and pressure vessels for which the laboratory is responsible. These procedures have been named TANK1 for the vessels belonging to the Accelerator Division, TANK2 and TANK3 for the vessels belonging to the Research Division and to Technical Support respectively, and TANK4 for the vessels belonging to the Business Division. The operating procedures are otherwise identical in every respect

  1. Preclinical imaging characteristics and quantification of Platinum-195m SPECT

    Energy Technology Data Exchange (ETDEWEB)

    Aalbersberg, E.A.; Wit-van der Veen, B.J. de; Vegt, E.; Vogel, Wouter V. [The Netherlands Cancer Institute (NKI-AVL), Department of Nuclear Medicine, Amsterdam (Netherlands); Zwaagstra, O.; Codee-van der Schilden, K. [Nuclear Research and Consultancy Group (NRG), Petten (Netherlands)

    2017-08-15

    In vivo biodistribution imaging of platinum-based compounds may allow better patient selection for treatment with chemo(radio)therapy. Radiolabeling with Platinum-195m ({sup 195m}Pt) allows SPECT imaging, without altering the chemical structure or biological activity of the compound. We have assessed the feasibility of {sup 195m}Pt SPECT imaging in mice, with the aim to determine the image quality and accuracy of quantification for current preclinical imaging equipment. Enriched (>96%) {sup 194}Pt was irradiated in the High Flux Reactor (HFR) in Petten, The Netherlands (NRG). A 0.05 M HCl {sup 195m}Pt-solution with a specific activity of 33 MBq/mg was obtained. Image quality was assessed for the NanoSPECT/CT (Bioscan Inc., Washington DC, USA) and U-SPECT{sup +}/CT (MILabs BV, Utrecht, the Netherlands) scanners. A radioactivity-filled rod phantom (rod diameter 0.85-1.7 mm) filled with 1 MBq {sup 195m}Pt was scanned with different acquisition durations (10-120 min). Four healthy mice were injected intravenously with 3-4 MBq {sup 195m}Pt. Mouse images were acquired with the NanoSPECT for 120 min at 0, 2, 4, or 24 h after injection. Organs were delineated to quantify {sup 195m}Pt concentrations. Immediately after scanning, the mice were sacrificed, and the platinum concentration was determined in organs using a gamma counter and graphite furnace - atomic absorption spectroscopy (GF-AAS) as reference standards. A 30-min acquisition of the phantom provided visually adequate image quality for both scanners. The smallest visible rods were 0.95 mm in diameter on the NanoSPECT and 0.85 mm in diameter on the U-SPECT{sup +}. The image quality in mice was visually adequate. Uptake was seen in the kidneys with excretion to the bladder, and in the liver, blood, and intestine. No uptake was seen in the brain. The Spearman correlation between SPECT and gamma counter was 0.92, between SPECT and GF-AAS it was 0.84, and between GF-AAS and gamma counter it was0.97 (all p < 0

  2. Vacuum vessel for plasma devices

    International Nuclear Information System (INIS)

    Yamada, Masao; Taguchi, Masami.

    1975-01-01

    Object: To permit effective utility of the space in the inner and outer sides of the container wall and also permit repeated assembly for use. Structure: Vacuum vessel wall sections are sealed together by means of welding bellows, and also flange portions formed at the end of the wall sections are coupled together by bolts and are sealed together with a seal ring and a seal cap secured by welding. (Nakamura, S.)

  3. Enhancement of micropore filling of water on carbon black by platinum loading

    Energy Technology Data Exchange (ETDEWEB)

    Miyajima, Naoya, E-mail: miyajima@yamanashi.ac.jp [Interdisciplinary Graduate School of Medicine and Engineering, 4-3-11 Takeda, Kofu, Yamanashi 400-8511 (Japan); Hatori, Hiroaki [Institute of Advanced Industrial Science and Technology (AIST), 16-1 Onogawa, Tsukuba, Ibaraki 305-8569 (Japan); Radovic, Ljubisa R. [Department of Energy and Geo-Environmental Engineering, The Pennsylvania State University, University Park, PA 16802 (United States); Yamada, Yoshio [Institute of Advanced Industrial Science and Technology (AIST), 16-1 Onogawa, Tsukuba, Ibaraki 305-8569 (Japan)

    2010-10-15

    Two kinds of typical carbons, carbon black and activated carbon fibers, were modified with platinum nanoparticles without changing their original pore structures. The surface properties of the modified carbons were investigated by measuring of water adsorption isotherms. Micropore filling of water was facilitated by the presence of platinum nanoparticles on the surface of the carbon black. On the other hand, such a filling effect was not observed in the case of the activated carbon fibers. A critical content and/or size of platinum nanoparticles could be required to promote efficiently the water adsorption.

  4. Stability of Porous Platinum Nanoparticles: Combined In Situ TEM and Theoretical Study

    DEFF Research Database (Denmark)

    Chang, Shery L. Y.; Barnard, Amanda S.; Dwyer, Christian

    2012-01-01

    Porous platinum nanoparticles provide a route for the development of catalysts that use less platinum without sacrificing catalytic performance. Here, we examine porous platinum nanoparticles using a combination of in situ transmission electron microscopy and calculations based on a first-principles......-parametrized thermodynamic model. Our experimental observations show that the initially irregular morphologies of the as-sythesized porous nanoparticles undergo changes at high temperatures to morphologies having faceted external surfaces with voids present in the interior of the particles. The increasing size of stable...

  5. Radiochemical neutron activation analysis of high pure palladium and platinum by ion exchange chromatography

    International Nuclear Information System (INIS)

    Sadikov, I.I.; Zinov'ev, V.G.; Sadikova, Z.O.; Salimov, M.I.

    2006-01-01

    Full text: The palladium and platinum are widely used for jewel manufacture because of their beautiful white color. However the most part of these metals are widely adopted in the world as catalysts. Many works on analytical chemistry of platinum group elements published during last years are devoted to determination of platinum and palladium in other materials. There are no articles on analysis technique of the palladium and platinum purity published during last 20 years. Available publications are very old and are published till 70th of the last century, and implement chemical and spectral methods. At the same time, the palladium and platinum are very suitable for NAA. Therefore the purpose of our research was development of high-sensitivity and multielement techniques of radiochemical neutron activation analysis of a high pure palladium and platinum. Research of nuclear characteristics of palladium and platinum has shown that radioactive nuclides with different yields are formed under the reactor neutrons. 109 , 111 , 111m Pd, 109m , 111 Ag, 191 , 197 , 199 Pt, 199 Au are the most important among them. 109Pd separation factor is equal to 1*10 5 at palladium analysis, whereas 197 Pt and 199 Au separation factor is equal to 1*10 4 at the platinum analysis every other day after irradiation. Palladium and platinum can be separated by precipitation, extraction and ion exchange methods. For separation of radioactive nuclide of the matrix elements from the impurity elements we used ion exchange chromatography system Dowex-1x8 - 1 M HNO 3 for palladium and Dowex-1x8 - 0.1 M HNO 3 for platinum. At the HNO 3 acid concentrations variation from 0,1 M to 1 M more then 25 elements have distribution factors less than 1 and 10 elements have distribution factors 5 while matrix elements have distribution factors higher than 100. It allows an effective separation of these elements from palladium and platinum. Optimum sizes of the chromatographic column and the column effluent

  6. Efficient organic light-emitting devices with platinum-complex emissive layer

    KAUST Repository

    Yang, Xiaohui

    2011-01-18

    We report efficient organic light-emitting devices having a platinum-complex emissive layer with the peak external quantum efficiency of 17.5% and power efficiency of 45 lm W−1. Variation in the device performance with platinum-complex layer thickness can be attributed to the interplay between carrier recombination and intermolecular interactions in the layer. Efficient white devices using double platinum-complex layers show the external quantum efficiency of 10%, the Commission Internationale d’Énclairage coordinates of (0.42, 0.41), and color rendering index of 84 at 1000 cd m−2.

  7. Investigation of mechanical and structural characteristics of platinum and palladium at high temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Trumie, B. T.; Gomidzelovie, L.; Marjanovic, S. R.; Krstic, V. R.

    2015-03-30

    In order to broaden future application of products based on platinum and palladium a comparative analysis of their high-temperature mechanical properties was performed. Platinum and palladium are of great importance and are widely used in chemical industry, electronics, for making laboratory dishes, to name a few. Mechanical properties of pure metals, such as: tensile strength, creep rate and rupture time were investigated using universal testing machine for tensile testing of materials. Microstructure of samples was investigated by optical microscopy. Based on obtained results it can be concluded that the platinum, compared to palladium, is superior for high-temperature applications. (Author)

  8. Investigation of mechanical and structural characteristics of platinum and palladium at high temperatures

    International Nuclear Information System (INIS)

    Trumie, B. T.; Gomidzelovie, L.; Marjanovic, S. R.; Krstic, V. R.

    2015-01-01

    In order to broaden future application of products based on platinum and palladium a comparative analysis of their high-temperature mechanical properties was performed. Platinum and palladium are of great importance and are widely used in chemical industry, electronics, for making laboratory dishes, to name a few. Mechanical properties of pure metals, such as: tensile strength, creep rate and rupture time were investigated using universal testing machine for tensile testing of materials. Microstructure of samples was investigated by optical microscopy. Based on obtained results it can be concluded that the platinum, compared to palladium, is superior for high-temperature applications. (Author)

  9. Efficient organic light-emitting devices with platinum-complex emissive layer

    KAUST Repository

    Yang, Xiaohui; Wu, Fang-Iy; Haverinen, Hanna; Li, Jian; Cheng, Chien-Hong; Jabbour, Ghassan E.

    2011-01-01

    We report efficient organic light-emitting devices having a platinum-complex emissive layer with the peak external quantum efficiency of 17.5% and power efficiency of 45 lm W−1. Variation in the device performance with platinum-complex layer thickness can be attributed to the interplay between carrier recombination and intermolecular interactions in the layer. Efficient white devices using double platinum-complex layers show the external quantum efficiency of 10%, the Commission Internationale d’Énclairage coordinates of (0.42, 0.41), and color rendering index of 84 at 1000 cd m−2.

  10. Reactor vessel head permanent shield

    International Nuclear Information System (INIS)

    Hankinson, M.F.; Leduc, R.J.; Richard, J.W.; Malandra, L.J.

    1989-01-01

    A nuclear reactor is described comprising: a nuclear reactor pressure vessel closure head; control rod drive mechanisms (CRDMs) disposed within the closure head so as to project vertically above the closure head; cooling air baffle means surrounding the control rod drive mechanisms for defining cooling air paths relative to the control rod drive mechanisms; means defined within the periphery of the closure head for accommodating fastening means for securing the closure head to its associated pressure vessel; lifting lugs fixedly secured to the closure head for facilitating lifting and lowering movements of the closure head relative to the pressure vessel; lift rods respectively operatively associated with the plurality of lifting lugs for transmitting load forces, developed during the lifting and lowering movements of the closure head, to the lifting lugs; upstanding radiation shield means interposed between the cooling air baffle means and the periphery of the enclosure head of shielding maintenance personnel operatively working upon the closure head fastening means from the effects of radiation which may emanate from the control rod drive mechanisms and the cooling air baffle means; and connecting systems respectively associated with each one of the lifting lugs and each one of the lifting rods for connecting each one of the lifting rods to a respective one of each one of the lifting lugs, and for simultaneously connecting a lower end portion of the upstanding radiation shield means to each one of the respective lifting lugs

  11. Reactor-vessel-sectioning demonstration

    International Nuclear Information System (INIS)

    Lundgren, R.A.

    1981-09-01

    A technical demonstration was successfully completed of simulated reactor vessel sectioning using the combined techniques of air arc gouging and flame cutting. A 4-ft x 3-ft x 9-in. thick sample was fabricated of A36 carbon steel to simulate a reactor vessel wall. A 1/4-in. layer of stainless steel (SS) was tungsten inert gas (TIG)-welded to the carbon steel. Several techniques were considered to section the simulated reactor vessel; air arc gouging was selected to penetrate the stainless steel, and flame cutting was selected to sever the carbon steel. Three sectioning operations were demonstrated. For all three, the operating parameters were the same; but the position of the sample was varied. For the first cut, the sample was placed in a horizontal position, and it was successfully severed from the SS side. For the second cut, the sample was turned over and cut from the carbon steel side. Cutting from the carbon steel side has the advantages of cost reduction

  12. 33 CFR 151.1512 - Vessel safety.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Vessel safety. 151.1512 Section... River § 151.1512 Vessel safety. Nothing in this subpart relieves the master of the responsibility for ensuring the safety and stability of the vessel or the safety of the crew and passengers, or any other...

  13. Reactor vessel supported by flexure member

    International Nuclear Information System (INIS)

    Crawford, J.D.; Pankow, B.

    1975-01-01

    A description is given of a reactor pressure vessel which is provided with vertical support means in the form of circumferentially spaced columns upon which the vessel is mounted. The columns are adapted to undergo flexure in order to accommodate the thermally induced displacements experienced by the vessel during operational transients

  14. 19 CFR 4.97 - Salvage vessels.

    Science.gov (United States)

    2010-04-01

    ... United States and Great Britain ‘concerning reciprocal rights for United States and Canada in the... meaning of this statute. (e) A Mexican vessel may engage in a salvage operation on a Mexican vessel in any territorial waters of the United States in which Mexican vessels are permitted to conduct such operations by...

  15. Model tests for prestressed concrete pressure vessels

    International Nuclear Information System (INIS)

    Stoever, R.

    1975-01-01

    Investigations with models of reactor pressure vessels are used to check results of three dimensional calculation methods and to predict the behaviour of the prototype. Model tests with 1:50 elastic pressure vessel models and with a 1:5 prestressed concrete pressure vessel are described and experimental results are presented. (orig.) [de

  16. 50 CFR 648.4 - Vessel permits.

    Science.gov (United States)

    2010-10-01

    ... carrying passengers for hire. (8) Atlantic bluefish vessels. (i) Commercial. Any vessel of the United... lands Atlantic bluefish in or from the EEZ in excess of the recreational possession limit specified at § 648.164 must have been issued and carry on board a valid commercial bluefish vessel permit. (ii) Party...

  17. Tin-Platinum catalysts interactions on titania and silica

    Energy Technology Data Exchange (ETDEWEB)

    Nava, N. [Instituto Mexicano del Petroleo Lazaro Cardenas 152, 07730 Mexico, D.F. (Mexico)], E-mail: tnava@imp.mx; Del Angel, P. [Instituto Mexicano del Petroleo Lazaro Cardenas 152, 07730 Mexico, D.F. (Mexico); Salmones, J. [Instituto Politecnico Nacional-ESIQIE UPALM, 07738 Mexico, D.F. (Mexico); Baggio-Saitovitch, E. [Centro Brasileiro de Pesquisas Fisicas, Rua Dr. Xavier Sigaud 150, 22290-180 Rio de Janeiro, Brasil (Brazil); Santiago, P. [Instituto de Fisica, UNAM, Mexico, D. F., 04510 Mexico (Mexico)

    2007-09-30

    Pt-Sn was supported on titania and silica, and the resulting interactions between the components in prepared samples and the resulting interactions between the components before and after treatment with hydrogen were characterized by Moessbauer spectroscopy, X-ray diffraction, Rietveld refinement, high-resolution transmission electron microscopy (HRTEM) and catalytic tests data. Results show the presence of Pt and SnO{sub 2} after calcinations, and Pt{sub 3}Sn, PtSn and PtSn{sub 3} after reduction. Rietveld analysis shows that some Ti{sup 4+} are replaced by Sn{sup 4+} atoms in the titania structure. Finally, HRTEM and the practically absence of activity observed confirms that metallic platinum is encapsulated.

  18. Solid-state dewetting of continuous thin platinum coatings

    Energy Technology Data Exchange (ETDEWEB)

    Hanief, N. [University of Cape Town, Private Bag X3, Rondebosch 7701 (South Africa); Topić, M.; Pineda-Vargas, C. [iThemba LABS, National Research Foundation, P.O. Box 722, Somerset West (South Africa)

    2015-11-15

    Thermal stability of coatings is of crucial importance for reliability of electronic devices operating at high temperature. Thus, we investigated the Cr–Pt system where a thin platinum coating of 0.1 μm was deposited on chromium substrate and annealed at 1000 °C for 8 h. The scanning electron microscope (SEM) showed that a continuous and uniformly deposited Pt coating experienced the formation of “islands” after annealing. The grain-boundary grooving, dewetting and agglomeration were the main mechanisms of degradation of thermally annealed coatings. Results by μ-PIXE (particle-induced X-ray emission) and transmission electron microscope (TEM) showed the presence of Cr{sub 3}Pt phase in “islands” and the coating thickness was approximately 0.5 μm. The surrounding regions were left uncovered due to coating agglomeration at the expense of initially deposited coating.

  19. The platinum catalysed decomposition of hydrazine in acidic media

    International Nuclear Information System (INIS)

    Ananiev, A.V.; Tananaev, I.G.; Brossard, Ph.; Broudic, J.C.

    2000-01-01

    Kinetic study of the hydrazine decomposition in the solutions of HClO 4 , H 2 SO 4 and HNO 3 in the presence of Pt/SiO 2 catalyst has been undertaken. It was shown that the kinetics of the hydrazine catalytic decomposition in HClO 4 and H 2 SO 4 are identical. The process is determined by the heterogeneous catalytic auto-decomposition of N 2 H 4 on the catalyst's surface. The platinum catalysed hydrazine decomposition in the nitric acid solutions is a complex process, including heterogeneous catalytic auto-decomposition of N 2 H 4 , reaction of hydrazine with catalytically generated nitrous acid and the catalytic oxidation of hydrazine by nitric acid. The kinetic parameters of these reactions have been determined. The contribution of each reaction in the total process is determined by the liquid phase composition and by the temperature. (authors)

  20. Separation of platinum metals by theirs extraction as sulfides

    International Nuclear Information System (INIS)

    Pilipenko, A.T.; Ryabushko, O.P.; Ty Van Mak

    1978-01-01

    Separation of platinum metals by means of their sediment in the form of sulfides with subsequent extraction is studied. The optimum conditions of metal sulfide extraction are determined, the metal output dependence from acidness and aqueous phase composition and also the organic solvent nature are investigated. Ruthenium concentration was determined photometrically. Ruthenium sulfide is extracted by butyl spirit from 1-4 normal hydrochloric acid. The maximum extraction grade of 63% is reached in 3.2-normal acid. When the mixture of acetic and hydrochloric acids (2:1) is used for decomposition of ruthenium tiosalts, the grade of ruthenium extraction by amyl spirit or the mixture of anyl and butyl spirits (1:1) constitutes 100%