WorldWideScience

Sample records for platinum alloy catalysts

  1. Preparation of low-platinum-content platinum-nickel, platinum-cobalt binary alloy and platinum-nickel-cobalt ternary alloy catalysts for oxygen reduction reaction in polymer electrolyte fuel cells

    Science.gov (United States)

    Li, Mu; Lei, Yanhua; Sheng, Nan; Ohtsuka, Toshiaki

    2015-10-01

    A series of low-platinum-content platinum-nickel (Pt-Ni), platinum-cobalt (Pt-Co) binary alloys and platinum-nickel-cobalt (Pt-Ni-Co) ternary alloys electrocatalysts were successfully prepared by a three-step process based on electrodeposition technique and studied as electrocatalysts for oxygen reduction reaction (ORR) in polymer-electrolyte fuel cells. Kinetics of ORR was studied in 0.5 M H2SO4 solution on the Pt-Ni, Pt-Co and Pt-Ni-Co alloys catalysts using rotating disk electrode technique. Both the series of Pt-Ni, Pt-Co binary alloys and the Pt-Ni-Co ternary alloys catalysts exhibited an obvious enhancement of ORR activity in comparison with pure Pt. The significant promotion of ORR activities of Pt-Ni and Pt-Co binary alloys was attributed to the enhancement of the first electron-transfer step, whereas, Pt-Ni-Co ternary alloys presented a more complicated mechanism during the electrocatalysis process but a much more efficient ORR activities than the binary alloys.

  2. Nanostructured Platinum Alloys for Use as Catalyst Materials

    Science.gov (United States)

    Hays, Charles C. (Inventor); Narayan, Sri R. (Inventor)

    2015-01-01

    A series of binary and ternary Pt-alloys, that promote the important reactions for catalysis at an alloy surface; oxygen reduction, hydrogen oxidation, and hydrogen and oxygen evolution. The first two of these reactions are essential when applying the alloy for use in a PEMFC.

  3. Structure, activity, and stability of platinum alloys as catalysts for the oxygen reduction reaction

    DEFF Research Database (Denmark)

    Vej-Hansen, Ulrik Grønbjerg

    and dealloying due to kinetic barriers, despite the thermodynamic driving force for dissolution. This is followed by our results on trying to decouple the strain and ligand effects for platinum skin structures, and determining whether there is any correlation between adsorption energy and surface stability...... in these systems. We find that there is such a correlation for some adsorbates, indicating that there exists a limit for the stability of an overlayer for a given adsorption strength. Finally, we introduce our work on platinum alloy nanoparticles, and our attempt to isolate the features which result...... in the increased activity that has been seen experimentally. We show how the platinum-platinum distance at the surface is decreased for a variety of alloy phases in the core, with greater compression of the overlayer for core phases with lattice parameters which are either much smaller or much larger than pure...

  4. Development of Ultra-Low Platinum Alloy Cathode Catalysts for PEM Fuel Cells

    Energy Technology Data Exchange (ETDEWEB)

    Popov, Branko N. [Univ. of South Carolina, Columbia, SC (United States). Dept. of Chemical Engineering; Weidner, John [Univ. of South Carolina, Columbia, SC (United States)

    2016-01-07

    The goal of this project is to synthesize a low cost PEM fuel cell cathode catalyst and support with optimized average mass activity, stability of mass activity, initial high current density performance under H2/air (power density), and catalyst and support stability able to meet 2017 DOE targets for electrocatalysts for transportation applications. Pt*/ACCS-2 catalyst was synthesized according to a novel methodology developed at USC through: (i) surface modification, (ii) metal catalyzed pyrolysis and (iii) chemical leaching to remove excess meal used to dope the support. Pt* stands for suppressed platinum catalyst synthesized with Co doped platinum. The procedure results in increasing carbon graphitization, inclusion of cobalt in the bulk and formation of non-metallic active sites on the carbon surface. Catalytic activity of the support shows an onset potential of 0.86 V for the oxygen reduction reaction (ORR) with well-defined kinetic and mass transfer regions and 2.5% H2O2 production. Pt*/ACCS-2 catalyst durability under 0.6-1.0 V potential cycling and support stability under 1.0-1.5 V potential cycling was evaluated. The results indicated excellent catalyst and support performance under simulated start-up/shut down operating conditions (1.0 – 1.5 V, 5000 cycles) which satisfy DOE 2017 catalyst and support durability and activity. The 30% Pt*/ACCS-2 catalyst showed high initial mass activity of 0.34 A/mgPGM at 0.9 ViR-free and loss of mass activity of 45% after 30,000 cycles (0.6-1.0 V). The catalyst performance under H2-air fuel cell operating conditions showed only 24 mV (iR-free) loss at 0.8 A/cm2 with an ECSA loss of 42% after 30,000 cycles (0.6-1.0 V). The support stability under 1.0-1.5 V potential cycling showed mass activity loss of 50% and potential loss of 8 mV (iR-free) at 1.5 A/cm2. The ECSA loss was 22% after 5,000 cycles. Furthermore, the Pt*/ACCS-2 catalyst showed an

  5. Carbon-supported platinum alloy catalysts for phenol hydrogenation for making industrial chemicals

    Energy Technology Data Exchange (ETDEWEB)

    Srinivas, S.T.; Song, C.

    1999-07-01

    Phenol is available in large quantities in liquids derived from coal and biomass. Phenol hydrogenation is an industrially important reaction to produce cyclohexanone and cyclohexanol. Cyclohexane, cyclohexene and benzene are obtained as minor products in this reaction. Cyclohexanone is an important intermediate in the production of caprolactam for nylon 6 and cyclohexanol for adipic acid production. In USA, cyclohexanol and cyclohexanone are produced by benzene hydrogenation to cyclohexane over nickel or noble metal catalysts, followed by oxidation of cyclohexane to produce a mixture of cyclohexanol and cyclohexanone. Then cyclohexanol is dehydrogenated in the presence of Cu-Zn catalyst to cyclohexanone. Usually phenol hydrogenation is also carried out by using Ni catalyst in liquid phase. However, a direct single-step vapor phase hydrogenation of phenol to give cyclohexanone selectively is more advantageous in terms of energy savings and process economics, since processing is simplified and the endothermic step of cyclohexanol dehydrogenation can be avoided, as demonstrated by Montedipe and Johnson Matthey using promoted Pd/Al{sub 2}O{sub 3} catalyst. While it is not the purpose of this paper to dwell on the relative merits of these routes, it is necessary to mention that while using monometallic catalysts, generally the problem of catalyst deactivation of sintering as well as coking is frequently encountered. Addition and alloying of noble metal (e.g. Pt) with a second metal can result in a catalyst with better selectivity and activity in the reaction which is more resistant to deactivation. This paper presents the results on the single-step vapor phase hydrogenation of phenol over carbon-supported Pt-M (M=Cr, V, Zr) alloy catalysts to yield mainly cyclohexanone or cyclohexanol.

  6. Examining the surfaces in used platinum catalysts

    Directory of Open Access Journals (Sweden)

    Trumić B.

    2009-01-01

    Full Text Available For the purpose of finding more advanced platinum catalyst manufacturing technologies and achieving a higher degree of ammonia oxidation, metallographic characterization has been done on the surface of catalyst gauzes and catalyst gripper gauzes made from platinum and palladium alloys. For the examined samples of gauzes as well as the cross section of the wires, a chemical analysis was provided. The purpose of this paper is the metallographic characterization of examined alloys carried out by way of electronic microscopic scanning, X-rays as well as chemical assays which contributed greatly to a better understanding of the surface deactivation, in other words a better consideration of structural changes occurring on the wire surface.

  7. Novel non-platinum metal catalyst material

    DEFF Research Database (Denmark)

    2014-01-01

    The present invention relates to a novel non-platinum metal catalyst material for use in low temperature fuel cells and electrolysers and to fuel cells and electrolysers comprising the novel non-platinum metal catalyst material. The present invention also relates to a novel method for synthesizing...... the novel non-platinum metal catalyst material....

  8. A Platinum Monolayer Core-Shell Catalyst with a Ternary Alloy Nanoparticle Core and Enhanced Stability for the Oxygen Reduction Reaction

    Directory of Open Access Journals (Sweden)

    Haoxiong Nan

    2015-01-01

    Full Text Available We synthesize a platinum monolayer core-shell catalyst with a ternary alloy nanoparticle core of Pd, Ir, and Ni. A Pt monolayer is deposited on carbon-supported PdIrNi nanoparticles using an underpotential deposition method, in which a copper monolayer is applied to the ternary nanoparticles; this is followed by the galvanic displacement of Cu with Pt to generate a Pt monolayer on the surface of the core. The core-shell Pd1Ir1Ni2@Pt/C catalyst exhibits excellent oxygen reduction reaction activity, yielding a mass activity significantly higher than that of Pt monolayer catalysts containing PdIr or PdNi nanoparticles as cores and four times higher than that of a commercial Pt/C electrocatalyst. In 0.1 M HClO4, the half-wave potential reaches 0.91 V, about 30 mV higher than that of Pt/C. We verify the structure and composition of the carbon-supported PdIrNi nanoparticles using X-ray powder diffraction, X-ray photoelectron spectroscopy, thermogravimetry, transmission electron microscopy, and energy dispersive X-ray spectrometry, and we perform a stability test that confirms the excellent stability of our core-shell catalyst. We suggest that the porous structure resulting from the dissolution of Ni in the alloy nanoparticles may be the main reason for the catalyst’s enhanced performance.

  9. Catalyst Alloys Processing

    Science.gov (United States)

    Tan, Xincai

    2014-10-01

    Catalysts are one of the key materials used for diamond formation at high pressures. Several such catalyst products have been developed and applied in China and around the world. The catalyst alloy most widely used in China is Ni70Mn25Co5 developed at Changsha Research Institute of Mining and Metallurgy. In this article, detailed techniques for manufacturing such a typical catalyst alloy will be reviewed. The characteristics of the alloy will be described. Detailed processing of the alloy will be presented, including remelting and casting, hot rolling, annealing, surface treatment, cold rolling, blanking, finishing, packaging, and waste treatment. An example use of the catalyst alloy will also be given. Industrial experience shows that for the catalyst alloy products, a vacuum induction remelt furnace can be used for remelting, a metal mold can be used for casting, hot and cold rolling can be used for forming, and acid pickling can be used for metal surface cleaning.

  10. Alternative alloys for catalysts and platinum jewelry? New structures in Pt-Hf and Pt-Mo

    Science.gov (United States)

    Gilmartin, Erin; Corbitt, Jacqueline; Hart, Gus

    2009-03-01

    The only known intermetallic structure with an 8:1 stoichiometry is that of Pt8Ti. It is intriguing that an ordered phase would occur at such low concentrations of the minority atom, but this structure occurs in about a dozen binary intermetallic systems. The formation of an ordered phase in an alloy can significantly enhance the performance of the material, particularly the hardness. We have taken a broad look at possible systems where this phase forms. Using first-principles, we calculated the stability of this structure relative to experimentally known phases for more than 80 Pt/Pd binary systems. We find the Pt8Ti structure is a possible ground state in more than 20 cases. Our experimental collaborators have verified our prediction in Pt-Mo and observed order-hardening in Pt-Hf. We discuss the discovery of new ground states that are likely to be verified experimentally and their impact on materials for Pt- and Pd-based catalysts and jewelry.

  11. Alloy catalyst material

    DEFF Research Database (Denmark)

    2014-01-01

    The present invention relates to a novel alloy catalyst material for use in the synthesis of hydrogen peroxide from oxygen and hydrogen, or from oxygen and water. The present invention also relates to a cathode and an electrochemical cell comprising the novel catalyst material, and the process use...

  12. Platinum- and platinum alloy-coated palladium and palladium alloy particles and uses thereof

    Science.gov (United States)

    Adzic, Radoslav; Zhang, Junliang; Mo, Yibo; Vukmirovic, Miomir Branko

    2010-04-06

    The present invention relates to particle and nanoparticle composites useful as oxygen-reduction electrocatalysts. The particle composites are composed of a palladium or palladium-alloy particle or nanoparticle substrate coated with an atomic submonolayer, monolayer, bilayer, or trilayer of zerovalent platinum atoms. The invention also relates to a catalyst and a fuel cell containing the particle or nanoparticle composites of the invention. The invention additionally includes methods for oxygen reduction and production of electrical energy by using the particle and nanoparticle composites of the invention.

  13. Porous platinum-based catalysts for oxygen reduction

    Science.gov (United States)

    Erlebacher, Jonah D; Snyder, Joshua D

    2014-11-25

    A porous metal that comprises platinum and has a specific surface area that is greater than 5 m.sup.2/g and less than 75 m.sup.2/g. A fuel cell includes a first electrode, a second electrode spaced apart from the first electrode, and an electrolyte arranged between the first and the second electrodes. At least one of the first and second electrodes is coated with a porous metal catalyst for oxygen reduction, and the porous metal catalyst comprises platinum and has a specific surface area that is greater than 5 m.sup.2/g and less than 75 m.sup.2/g. A method of producing a porous metal according to an embodiment of the current invention includes producing an alloy consisting essentially of platinum and nickel according to the formula Pt.sub.xNi.sub.1-x, where x is at least 0.01 and less than 0.3; and dealloying the alloy in a substantially pH neutral solution to reduce an amount of nickel in the alloy to produce the porous metal.

  14. Formic acid oxidation at platinum-bismuth catalysts

    Directory of Open Access Journals (Sweden)

    Popović Ksenija Đ.

    2015-01-01

    Full Text Available The field of heterogeneous catalysis, specifically catalysis on bimetallic surfaces, has seen many advances over the past few decades. Bimetallic catalysts, which often show electronic and chemical properties that are distinct from those of their parent metals, offer the opportunity to obtain new catalysts with enhanced selectivity, activity, and stability. The oxidation of formic acid is of permanent interest as a model reaction for the mechanistic understanding of the electrooxidation of small organic molecules and because of its technical relevance for fuel cell applications. Platinum is one of the most commonly used catalysts for this reaction, despite the fact that it shows a few significant disadvantages: high cost and extreme susceptibility to poisoning by CO. To solve this problem, several approaches have been used, but generally, they all consist in the modification of platinum with a second element. Especially, bismuth has received significant attention as Pt modifier. According to the results presented in this survey dealing with the effects influencing the formic acid oxidation it was found that two types of Pt-Bi bimetallic catalysts (bulk and low loading deposits on GC showed superior catalytic activity in terms of the lower onset potential and oxidation current density, as well as exceptional stability compared to Pt. The findings in this report are important for the understanding of mechanism of formic acid electrooxidation on a bulk alloy and decorated surface, for the development of advanced anode catalysts for direct formic acid fuel cells, as well as for the synthesis of novel low-loading bimetallic catalysts. The use of bimetallic compounds as the anode catalysts is an effective solution to overcoming the problems of the formic acid oxidation current stability for long term applications. In the future, the tolerance of both CO poisoning and electrochemical leaching should be considered as the key factors in the development

  15. Surface segregations in platinum-based alloy nanoparticles

    Science.gov (United States)

    Yamakawa, Shunsuke; Asahi, Ryoji; Koyama, Toshiyuki

    2014-04-01

    A phase-field model that describes the radial distributions of the ordered-disordered phase and surface segregation in a single-alloy nanoparticle is introduced to clarify the overall behavior of surface segregation of various Pt-based alloy nanoparticles. One of the obstacles to apply a platinum-transition metal alloy as a cathode electro-catalyst of a polymer electrolyte fuel cell is the need to ensure the retention of the designed surface composition in an alloy nanoparticle against the alloy combinations, a particle size, and heat treatment. From the results of calculations for CrPt, FePt, CoPt, NiPt, CuPt, PdPt, IrPt, and AuPt binary nanoparticles with diameters below 10 nm at 973.15 K, the compositional variation within a single particle was found to depend on the balance between the atomic interaction within particles and the surface free energy. In addition, the obtained specific steady-state composition of the surface varied significantly with alloy combination and particle diameter. Based on the general tendencies of a binary system to exhibit segregation, attempts to control the amount of platinum segregation on the surface using a ternary-alloy system were examined.

  16. Pyrometallurgical Recovery of Platinum Group Metals from Spent Catalysts

    Science.gov (United States)

    Peng, Zhiwei; Li, Zhizhong; Lin, Xiaolong; Tang, Huimin; Ye, Lei; Ma, Yutian; Rao, Mingjun; Zhang, Yuanbo; Li, Guanghui; Jiang, Tao

    2017-09-01

    As an important secondary resource with abundant platinum group metals (PGMs), spent catalysts demand recycling for both economic and environmental benefits. This article reviews the main pyrometallurgical processes for PGM recovery from spent catalysts. Existing processes, including smelting, vaporization, and sintering processes, are discussed based in part on a review of the physiochemical characteristics of PGMs in spent catalysts. The smelting technology, which produces a PGM-containing alloy, is significantly influenced by the addition of various collectors, such as lead, copper, iron, matte, or printed circuit board (PCB), considering their chemical affinities for PGMs. The vaporization process can recover PGMs in vapor form at low temperatures (250-700°C), but it suffers high corrosion and potential environmental and health risks as a result of involvement of the hazardous gases, mainly Cl2 and CO. The sintering process serves as a reforming means for recycling of the spent catalysts by in situ reduction of their oxidized PGMs components. Among these processes, the smelting process seems more promising although its overall performance can be further improved by seeking a suitable target-oriented collector and flux, together with proper pretreatment and process intensification using an external field.

  17. De-alloyed platinum nanoparticles

    Science.gov (United States)

    Strasser, Peter [Houston, TX; Koh, Shirlaine [Houston, TX; Mani, Prasanna [Houston, TX; Ratndeep, Srivastava [Houston, TX

    2011-08-09

    A method of producing de-alloyed nanoparticles. In an embodiment, the method comprises admixing metal precursors, freeze-drying, annealing, and de-alloying the nanoparticles in situ. Further, in an embodiment de-alloyed nanoparticle formed by the method, wherein the nanoparticle further comprises a core-shell arrangement. The nanoparticle is suitable for electrocatalytic processes and devices.

  18. Development of radioactive platinum group metal catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Chung, H.S.; Kim, Y.S.; Kim, Y.E. [and others

    1999-03-01

    The fission product nuclides generated during the irradiation of reactor fuel include many useful elements, among them platinum group metals such as ruthenium, rhodium and palladium which are of great industrial importance, occur rarely in nature and are highly valuable. In this research, the authors reviewed various PGM recovery methods. Recovery of palladium from seven-component simulated waste solutions was conducted by selective precipitation method. The recovery yield was more than 99.5% and the purity of the product was more than 99%. Wet-proof catalyst was prepared with the recovered palladium. The specific surface area of the catalyst support was more than 400m{sup 2}/g.The content of palladium impregnated on the support was 1 to 10 wt. %. Hydrogen isotope exchange efficiency of more than 93% to equilibrium with small amount of the catalyst was obtained. It was turned out possible to consider using such palladium or other very low active PGM materials in applications where its activity is unimportant as in nuclear industries. (author). 86 refs., 44 tabs., 88 figs.

  19. Development of radioactive platinum group metal catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Chung, H.S.; Kim, Y.S.; Kim, Y.E. [and others

    1999-03-01

    The fission product nuclides generated during the irradiation of reactor fuel include many useful elements, among them platinum group metals such as ruthenium, rhodium and palladium which are of great industrial importance, occur rarely in nature and are highly valuable. In this research, the authors reviewed various PGM recovery methods. Recovery of palladium from seven-component simulated waste solutions was conducted by selective precipitation method. The recovery yield was more than 99.5% and the purity of the product was more than 99%. Wet-proof catalyst was prepared with the recovered palladium. The specific surface area of the catalyst support was more than 400m{sup 2}/g.The content of palladium impregnated on the support was 1 to 10 wt. %. Hydrogen isotope exchange efficiency of more than 93% to equilibrium with small amount of the catalyst was obtained. It was turned out possible to consider using such palladium or other very low active PGM materials in applications where its activity is unimportant as in nuclear industries. (author). 86 refs., 44 tabs., 88 figs.

  20. Study of supported platinum catalysts by anomalous scattering

    Energy Technology Data Exchange (ETDEWEB)

    Georgopoulos, P.; Cohen, J.B.

    1985-01-01

    Platinum metal catalysts supported on silica gel and alumina were examined by wide-angle anomalous x-ray scattering at the Cornell High Energy Synchrotron Source. Complete removal of the support background features is achieved by this method, eliminating errors due to inaccurate background estimation. Platinum diffraction patterns from very-high-percentage metal-exposed catalysts were obtained for the first time, as well as from platinum supported on alumina. This technique is suitable for examining catalysts under working conditions and is superior to EXAFS for determinations of particle morphology and size distribution. 10 references, 8 figures.

  1. Exhaust system having a gold-platinum group metal catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Ragle, Christie Susan [Havana, IL; Silver, Ronald G [Peoria, IL; Zemskova, Svetlana Mikhailovna [Edelstein, IL; Eckstein, Colleen J [Metamora, IL

    2011-12-06

    A method of providing an exhaust treatment device is disclosed. The method includes applying a catalyst including gold and a platinum group metal to a particulate filter. The concentration of the gold and the platinum group metal is sufficient to enable oxidation of carbon monoxide and nitric oxide.

  2. Engineering Platinum Alloy Electrocatalysts in Nanoscale for PEMFC Application

    Energy Technology Data Exchange (ETDEWEB)

    He, Ting [Idaho National Laboratory

    2016-03-01

    Fuel cells are expected to be a key next-generation energy source used for vehicles and homes, offering high energy conversion efficiency and minimal pollutant emissions. However, due to large overpotentials on anode and cathode, the efficiency is still much lower than theoretically predicted. During the past decades, considerable efforts have been made to investigate synergy effect of platinum alloyed with base metals. But, engineering the alloy particles in nanoscale has been a challenge. Most important challenges in developing nanostructured materials are the abilities to control size, monodispersity, microcomposition, and even morphology or self-assembly capability, so called Nanomaterials-by-Design, which requires interdisciplinary collaborations among computational modeling, chemical synthesis, nanoscale characterization as well as manufacturing processing. Electrocatalysts, particularly fuel cell catalysts, are dramatically different from heterogeneous catalysts because the surface area in micropores cannot be electrochemically controlled on the same time scale as more transport accessible surfaces. Therefore, electrocatalytic architectures need minimal microporous surface area while maximizing surfaces accessible through mesopores or macropores, and to "pin" the most active, highest performance physicochemical state of the materials even when exposed to thermodynamic forces, which would otherwise drive restructuring, crystallization, or densification of the nanoscale materials. In this presentation, results of engineering nanoscale platinum alloy particles down to 2 ~ 4 nm will be discussed. Based on nature of alloyed base metals, various synthesis technologies have been studied and developed to achieve capabilities of controlling particle size and particle microcomposition, namely, core-shell synthesis, microemulsion technique, thermal decomposition process, surface organometallic chemical method, etc. The results show that by careful engineering the

  3. Interfacial electronic effects control the reaction selectivity of platinum catalysts

    Science.gov (United States)

    Chen, Guangxu; Xu, Chaofa; Huang, Xiaoqing; Ye, Jinyu; Gu, Lin; Li, Gang; Tang, Zichao; Wu, Binghui; Yang, Huayan; Zhao, Zipeng; Zhou, Zhiyou; Fu, Gang; Zheng, Nanfeng

    2016-05-01

    Tuning the electronic structure of heterogeneous metal catalysts has emerged as an effective strategy to optimize their catalytic activities. By preparing ethylenediamine-coated ultrathin platinum nanowires as a model catalyst, here we demonstrate an interfacial electronic effect induced by simple organic modifications to control the selectivity of metal nanocatalysts during catalytic hydrogenation. This we apply to produce thermodynamically unfavourable but industrially important compounds, with ultrathin platinum nanowires exhibiting an unexpectedly high selectivity for the production of N-hydroxylanilines, through the partial hydrogenation of nitroaromatics. Mechanistic studies reveal that the electron donation from ethylenediamine makes the surface of platinum nanowires highly electron rich. During catalysis, such an interfacial electronic effect makes the catalytic surface favour the adsorption of electron-deficient reactants over electron-rich substrates (that is, N-hydroxylanilines), thus preventing full hydrogenation. More importantly, this interfacial electronic effect, achieved through simple organic modifications, may now be used for the optimization of commercial platinum catalysts.

  4. Nanocrystal and surface alloy properties of bimetallic Gold-Platinum nanoparticles

    OpenAIRE

    Mott Derrick; Luo Jin; Smith Andrew; Njoki Peter; Wang Lingyan; Zhong Chuan-Jian

    2006-01-01

    AbstractWe report on the correlation between the nanocrystal and surface alloy properties with the bimetallic composition of gold-platinum(AuPt) nanoparticles. The fundamental understanding of whether the AuPt nanocrystal core is alloyed or phase-segregated and how the surface binding properties are correlated with the nanoscale bimetallic properties is important not only for the exploitation of catalytic activity of the nanoscale bimetallic catalysts, but also to the general exploration of t...

  5. Ruthenium–Platinum Catalysts and Direct Methanol Fuel Cells (DMFC: A Review of Theoretical and Experimental Breakthroughs

    Directory of Open Access Journals (Sweden)

    Ana S. Moura

    2017-02-01

    Full Text Available The increasing miniaturization of devices creates the need for adequate power sources and direct methanol fuel cells (DMFC are a strong option in the various possibilities under current development. DMFC catalysts are mostly based on platinum, for its outperformance in three key areas (activity, selectivity and stability within methanol oxidation framework. However, platinum poisoning with products of methanol oxidation led to the use of alloys. Ruthenium–platinum alloys are preferred catalysts active phases for methanol oxidation from an industrial point of view and, indeed, ruthenium itself is a viable catalyst for this reaction. In addition, the route of methanol decomposition is crucial in the goal of producing H2 from water reaction with methanol. However, the reaction pathway remains elusive and new approaches, namely in computational methods, have been ensued to determine it. This article reviews the various recent theoretical approaches for determining the pathway of methanol decomposition, and systematizes their validation with experimental data, within methodological context.

  6. Deactivation of platinum catalysts by oxygen 2. Nature of the catalyst deactivation

    Energy Technology Data Exchange (ETDEWEB)

    Dijkgraaf, P.J.M.; Duisters, H.A.M.; Kuster, B.F.M.; van der Wiele, K. (Univ. of Technology, Eindhoven (Netherlands))

    1988-08-01

    The effect of different start-up procedures on the deactivation of a 5% Pt/C catalyst used for the oxidation of D-gluconate has been investigated. Results have been obtained both in a stirred tank reactor for batch experiments and in an apparatus for continuous oxidation processes. The deactivation of the catalyst is not explicable by formation of platinum oxides. A model is proposed for the deactivation of platinum catalysts by oxygen, based on penetration of oxygen atoms into the platinum lattice.

  7. Platinum on Carbon Nanofibers as Catalyst for Cinnamaldehyde Hydrogenation

    NARCIS (Netherlands)

    Plomp, A.J.

    2009-01-01

    The aim of the work described in this thesis was to investigate the role and nature of nanostructured carbon materials, oxygen surface groups and promoters on platinum-based catalysts for the selective hydrogenation of cinnamaldehyde. The selective hydrogenation of cinnamaldehyde to cinnamyl alcohol

  8. Platinum on Carbon Nanofibers as Catalyst for Cinnamaldehyde Hydrogenation

    NARCIS (Netherlands)

    Plomp, A.J.

    2009-01-01

    The aim of the work described in this thesis was to investigate the role and nature of nanostructured carbon materials, oxygen surface groups and promoters on platinum-based catalysts for the selective hydrogenation of cinnamaldehyde. The selective hydrogenation of cinnamaldehyde to cinnamyl alcohol

  9. SILICA-BOUND CROWN ETHERS PLATINUM COMPLEX AS HYDROSILYLATION CATALYST

    Institute of Scientific and Technical Information of China (English)

    CHEN Yuanyin; MENG Lingzhi; LI Liping; LUO Jieqi; HU Jinchang

    1993-01-01

    Silica-bound 15-Crown-5, 18-Crown-6 with a spacer of propyloxymethyl and their platinum complexes have been synthesized. It was found that they were efficient catalysts for the hydrosilylation of olefins with triethoxysilane in the temperature range of 60 to 130 ℃ .

  10. Sulfur tolerant zeolite supported platinum catalysts for aromatics hydrogenation

    Energy Technology Data Exchange (ETDEWEB)

    Bergem, Haakon

    1997-12-31

    The increased demand for transportation fuels at the expence of heavier fuel oil has forced the refinery industry to expand their conversion capacity with hydrotreating as one of the key processes. A shift towards more diesel powered vehicles along with tightening fuel regulations demanding cleaner fuels has lead to increasing interest in catalytic processes for the manufacturing of such environmentally acceptable fuels. This provides the motivation for this thesis. Its main objective was to study possible catalysts active for desulfurization, hydrogenation, and ring-opening of aromatics all in the presence of sulfur. A close examination of the physical properties and kinetical behaviour of the chosen catalysts has been performed. A high pressure reactor setup was designed and built for activity measurements. Zeolite supported platinum catalysts were prepared and both the metal and acid functions were characterized utilizing various experimental techniques. Hydrogenation of toluene was used as a model reaction and the effect of sulfur adsorption on the activity and kinetic behaviour of the catalysts was investigated. The catalyst samples showed hydrogenation activities comparable to a commercial Pt/Al2O3 catalyst. There were no clear differences in the effect of the various sulfur compounds studied. Platinum supported on zeolite Y gave considerably more sulfur tolerant catalysts compared to Al2O3 as support. 155 refs., 58 figs., 36 tabs.

  11. Platinum-Iridium Alloy Films Prepared by MOCVD

    Institute of Scientific and Technical Information of China (English)

    WEI Yan; CHEN Li; CAI Hongzhong; ZHENG Xu; YANG Xiya; HU Changyi

    2012-01-01

    Platinum-Iridium alloy films were prepared by MOCVD on Mo substrate using metal-acetylacetonate precursors.Effects of deposition conditions on composition,microstructure and mechanical properties were determined.In these experimental conditions,the purities of films are high and more than 99.0%.The films are homogeneous and monophase solid solution of Pt and Ir.Weight percentage of platinum are much higher than iridium in the alloy.Lattice constant of the alloy changes with the platinum composition.Iridium composition showing an up-down-up trend at the precursor temperature of 190~230℃ and the deposition temperature at 400~550℃.The hardness of Pt-Ir alloys prepared by MOCVD is three times more than the alloys prepared by casting.

  12. Single crystal studies of platinum alloys for oxygen reduction electrodes

    DEFF Research Database (Denmark)

    Ulrikkeholm, Elisabeth Therese

    In this thesis the discovery, characterization and testing of new catalysts for the oxygen reduction reaction (ORR) is investigated. Experiments on sputter cleaned, polycrystalline Pt5Y and Pt5Gd crystals have shown that these alloys are excelent candidates for catalysts for the ORR. To mimic...... was performed on the samples as prepared, and after electrochemical cycling between 0.05 V and 1.0 V VS. RHE. and between 0.05 V and 1.2 V VS. RHE. Diffraction experiments carried out after the cycling to 1.0 V showed that an overlayer with crystalline order had been formed on the Y/Pt(111) sample and the Gd....../Pt(111) samples. These overlayers were slightly compressed compared to pure platinum and had a 6-fold symmetry. After cycling to 1.2 V VS. RHE. the correlation length of the overlayer on the Gd/Pt(111) sample had decreased significantly, and the overlayer on the Y/Pt(111) had disappeared completely...

  13. Electrochemical oxidation of carbon monoxide: from platinum single crystals to low temperature fuel catalysts. Part II: Electrooxidation of H2, CO and H2/CO mixtures on well characterized PtMo alloy

    Directory of Open Access Journals (Sweden)

    PHILIP N. ROSS JR.

    2003-03-01

    Full Text Available The oxidation of hydrogen and hydrogen–carbon monoxide mixture has been investigated on well-characterized metallurgically prepared platinum–molybdenum (PtMo alloys. It was concluded that the optimum surface concentration of molybdenum is near 23 mol.%. Based on experimentally determined parameters and simulations, the mechanism of the oxidation of CO/H2 mixtures is discussed.

  14. Synthesis of nanosized platinum based catalyst using sol-gel process

    Science.gov (United States)

    Ingale, S. V.; Wagh, P. B.; Bandyopadhyay, D.; Singh, I. K.; Tewari, R.; Gupta, S. C.

    2015-02-01

    The nano-sized platinum based catalysts using high surface area silica support have been prepared by sol-gel method. Tetramethoxysilane (TMOS) diluted in methanol was hydrolyzed to form a porous silica gel. Platinum (2%) was loaded at sol state using platinum chloride solution. After gelation, the solvent from the gel pores was extracted at ambient temperature which resulted in porous silica matrix incorporated with nanosized platinum. X-ray diffraction studies indicated the presence of elemental platinum in the silica-platinum composites. Transmission electron microscopy of the platinum -silica composites revealed that nanosized platinum particles of about 5-10 nm are homogeneously dispersed in silica matrix. Chemisorptions studies showed high dispersion (more than 50%) of platinum on silica support with specific surface area of 400 m2/g which puts them as promising candidates as catalyst in heterogeneous reactions.

  15. X-ray characterization of platinum group metal catalysts

    Science.gov (United States)

    Peterson, Eric J.

    Platinum group metals (PGMs) are used extensively as catalysts, employed in several sectors of the world energy economy. Fuel cells employing PGM catalysts show promise as power sources in the proposed hydrogen economy, using alcohols as hydrogen storage media. Currently, the most economically important application for PGMs is for the mitigation of emissions from internal combustion engines via catalytic converters. In all applications, efficient use of these expensive metals to fabricate robust catalysts is of the utmost importance. Understanding the catalyst structure/property relationship is the key to the improvement of existing catalysts and the discovery of new catalysts. For example, catalyst particle size can have profound effects on catalyst activity, as in the case of gold nanoparticles. Catalyst particle size control and stability is also important for the efficient use of PGM metals and catalyst deactivation prevention. The challenge is to identify and characterize structural features and determine if and how these features may relate to catalytic properties. The ultimate goal is to simultaneously measure catalyst structural characteristics and catalytic properties under operando conditions, unambiguously establishing the structure/property link. X-ray diffraction (XRD) and X-ray absorption spectroscopy (XAS) are important techniques used for the characterization of PGM catalysts. Microstructural information such as crystallite size, as small as ~ 1 nm, and microstrain can be obtained from Bragg diffraction peak shapes in X-ray diffraction patterns, and long range crystal structure information is found in the intensities and positions of these peaks. In contrast, X-ray absorption spectroscopy provides information about the chemical state and local structure of selected atoms. From the average nearest neighbor coordination numbers, crystallite sizes can also be inferred, with particularly high sensitivity in the sub-nm size range. Electron microscopy

  16. Hollow platinum alloy tailored counter electrodes for photovoltaic applications

    Science.gov (United States)

    Li, Pinjiang; Zhang, Yange; Fa, Wenjun; Yang, Xiaogang; Wang, Liang

    2017-08-01

    Without sacrifice of photovoltaic performances, low-platinum alloy counter electrodes (CEs) are promising in bringing down the fabrication cost of dye-sensitized solar cells (DSSCs). We present here the realization of ZnO nanostructure assisted hollow platinum-nickel (PtNi) alloy microstructure CEs with a simple hydrothermal methods and maximization of electrocatalytic behaviors by tuning Zn precursors. The maximal power conversion efficiency is up to 8.74% for the liquid-junction dye-sensitized solar cells with alloyed PtNi0.41 electrode, yielding a 37.6% cell efficiency enhancement in comparison with pristine solar cell from planar Pt electrode. Moreover, the dissolution-resistant and charge-transfer abilities toward I-/I3- redox electrolyte have also been markedly enhanced due to competitive dissolution reactions and alloying effects.

  17. Single-Atom Catalyst of Platinum Supported on Titanium Nitride for Selective Electrochemical Reactions.

    Science.gov (United States)

    Yang, Sungeun; Kim, Jiwhan; Tak, Young Joo; Soon, Aloysius; Lee, Hyunjoo

    2016-02-05

    As a catalyst, single-atom platinum may provide an ideal structure for platinum minimization. Herein, a single-atom catalyst of platinum supported on titanium nitride nanoparticles were successfully prepared with the aid of chlorine ligands. Unlike platinum nanoparticles, the single-atom active sites predominantly produced hydrogen peroxide in the electrochemical oxygen reduction with the highest mass activity reported so far. The electrocatalytic oxidation of small organic molecules, such as formic acid and methanol, also exhibited unique selectivity on the single-atom platinum catalyst. A lack of platinum ensemble sites changed the reaction pathway for the oxygen-reduction reaction toward a two-electron pathway and formic acid oxidation toward direct dehydrogenation, and also induced no activity for the methanol oxidation. This work demonstrates that single-atom platinum can be an efficient electrocatalyst with high mass activity and unique selectivity.

  18. Monodisperse Platinum and Rhodium Nanoparticles as Model Heterogeneous Catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Grass, Michael Edward [Univ. of California, Berkeley, CA (United States)

    2008-09-01

    Model heterogeneous catalysts have been synthesized and studied to better understand how the surface structure of noble metal nanoparticles affects catalytic performance. In this project, monodisperse rhodium and platinum nanoparticles of controlled size and shape have been synthesized by solution phase polyol reduction, stabilized by polyvinylpyrrolidone (PVP). Model catalysts have been developed using these nanoparticles by two methods: synthesis of mesoporous silica (SBA-15) in the presence of nanoparticles (nanoparticle encapsulation, NE) to form a composite of metal nanoparticles supported on SBA-15 and by deposition of the particles onto a silicon wafer using Langmuir-Blodgett (LB) monolayer deposition. The particle shapes were analyzed by transmission electron microscopy (TEM) and high resolution TEM (HRTEM) and the sizes were determined by TEM, X-ray diffraction (XRD), and in the case of NE samples, room temperature H2 and CO adsorption isotherms. Catalytic studies were carried out in homebuilt gas-phase reactors. For the nanoparticles supported on SBA-15, the catalysts are in powder form and were studied using the homebuilt systems as plug-flow reactors. In the case of nanoparticles deposited on silicon wafers, the same systems were operated as batch reactors. This dissertation has focused on the synthesis, characterization, and reaction studies of model noble metal heterogeneous catalysts. Careful control of particle size and shape has been accomplished though solution phase synthesis of Pt and Rh nanoparticles in order to elucidate further structure-reactivity relationships in noble metal catalysis.

  19. Comparative analysis of high temperature strength of platinum and its binary alloys with low content of alloying element

    Directory of Open Access Journals (Sweden)

    Stanković Draško S.

    2012-01-01

    Full Text Available The comparative analysis of platinum and its binary alloys (containing alloying elements up to 10 mass% mechanical properties at high temperatures has been carried out. The goal of the analysis was to investigate new application possibilities for products based on platinum and platinum alloys, and to expand the existing database of platinum metals, originating from the RTB group, Serbia. Palladium, rhodium, ruthenium, iridium and gold were used as alloying elements. In order to examine the effect of alloying elements’ low concentrations on the high-temperature platinum durability, creep rate, rupture time, tensile strength and relative elongation at high temperatures, up to 1400 °C, were determined. In addition, changes in the structure of dislocations were tracked. The summary of investigation results led to conclusion that, of all the alloying elements used, the best influence on high-temperature platinum durability has rhodium.

  20. Counter electrodes from polymorphic platinum-nickel hollow alloys for high-efficiency dye-sensitized solar cells

    Science.gov (United States)

    Wang, Jing; Tang, Qunwei; He, Benlin; Yang, Peizhi

    2016-10-01

    Precious platinum counter electrode (CE) has been an economic burden for future commercialization of dye-sensitized solar cells (DSSCs). Low-platinum alloy CE catalysts are promising in bringing down the solar cell cost without reducing photovoltaic performances. We present here a facile strategy of fabricating ZnO nanorods assisted platinum-nickel (PtNi) alloy microtube CEs for liquid-junction DSSCs. By adjusting the concentration of zinc precursors, the ZnO nanostructures and therefore PtNi alloys are optimized to maximize the electrocatalytic behaviors toward triiodide reduction reaction. The maximal power conversion efficiency is determined as high as 8.43% for liquid-junction DSSC device with alloyed PtNi microtube CE synthesized at 75 mM Zn(NO3)2 aqueous solution, yielding a 32.8% enhancement in cell efficiency in comparison with the solar cell from pristine platinum electrode. Moreover, the dissolution resistance and charge-transfer ability toward redox couples have also been markedly enhanced due to competitive dissolution reactions and alloyed effects.

  1. Platinum group metal recovery and catalyst manufacturing process

    Energy Technology Data Exchange (ETDEWEB)

    Chung, H. S.; Kim, Y. S.; Yoo, J. H.; Lee, H. S.; Ahn, D. H.; Kim, K. R.; Lee, S. H.; Paek, S. W.; Kang, H. S.

    1998-03-01

    The fission product nuclides generated during the irradiation of reactor fuel include many useful elements, among them platinum group metal such as ruthenium, rhodium and palladium which are of great industrial importance, occur rarely in nature and are highly valuable. In this research, the authors reviewed various PGM recovery methods. Recovery of palladium from seven-component simulated waste solution was conducted by selective precipitation method. The recovery yield was more than 99.5% and the purity of the product was more than 99%. Wet-proof catalyst was prepared with the recovered palladium. The specific surface area of the catalyst support was more than 400 m{sup 2}/g. The content of palladium impregnated on the support was 10 wt.%. Hydrogen isotope exchange efficiency of 93 % to equilibrium with small amount of the catalyst was obtained. It was turned out possible to consider using such palladium or other very low active PGM materials in applications where its actively is unimportant as in nuclear industries. (author). 63 refs., 38 tabs., 36 figs.

  2. Investigation of the oxidation of NO over platinum catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Despres, J.; Koebel, M.; Elsener, M.; Wokaun, A.

    2002-03-01

    The oxidation of NO to NO{sub 2} over Pt/SiO{sub 2} was investigated in the temperature range 150-450{sup o}C. Powdered catalysts were prepared by incipient wetness impregnation, followed by calcination and reduction. The feed gas typically contained oxygen, nitrogen monoxide, water and nitrogen. The concentration of NO in the feed was varied at constant concentration of O{sub 2} in order to study its influence on the reaction. A decrease of the conversion with increasing concentration of NO was observed. A similar study was performed with various oxygen concentrations at constant concentration of NO. Oxygen involved in the surface reaction originates from the dissociative chemisorption of O{sub 2} on the platinum surface. (author)

  3. Polyaniline-functionalized carbon nanotube supported platinum catalysts.

    Science.gov (United States)

    He, Daping; Zeng, Chao; Xu, Cheng; Cheng, Niancai; Li, Huaiguang; Mu, Shichun; Pan, Mu

    2011-05-03

    Electrocatalytically active platinum (Pt) nanoparticles on a carbon nanotube (CNT) with enhanced nucleation and stability have been demonstrated through introduction of electron-conducting polyaniline (PANI) to bridge the Pt nanoparticles and CNT walls with the presence of platinum-nitride (Pt-N) bonding and π-π bonding. The Pt colloids were prepared through ethanol reduction under the protection of aniline, the CNT was dispersed well with the existence of aniline in the solution, and aniline was polymerized in the presence of a protonic acid (HCl) and an oxidant (NH(4)S(2)O(8)). The synthesized PANI is found to wrap around the CNT as a result of π-π bonding, and highly dispersed Pt nanoparticles are loaded onto the CNT with narrowly distributed particle sizes ranging from 2.0 to 4.0 nm due to the polymer stabilization and existence of Pt-N bonding. The Pt-PANI/CNT catalysts are electroactive and exhibit excellent electrochemical stability and therefore promise potential applications in proton exchange membrane fuel cells.

  4. Effect of titania on the characteristics of a Tin-Platinum catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Morales-Gil, P., E-mail: moralesp@imp.mx; Nava, N. [Instituto Mexicano del Petróleo (Mexico); Baggio-Saitovitch, E. [Centro Brasileiro de Pesquisas Físicas (Brazil)

    2015-06-15

    Pt-Sn bimetallic catalysts dispersed on alumina are commonly used for reforming and dehydrogenation reactions. In this research work, Pt and Sn were supported on titania. The resulting interactions between the components in the prepared samples, before and after treatment with hydrogen, were studied by Mössbauer spectroscopy, X-ray diffraction and Rietveld refinement. The results show the presence of Pt and SnO{sub 2} after calcinations. After the reduction process, metallic Pt, PtSn, and Pt{sub 3}Sn alloys were identified. The Rietveld refinement analysis shows that some Ti{sup 4+} atoms were replaced by Sn{sup 4+} atoms in the titania structure. Finally, the Mössbauer spectroscopy and X-ray diffraction results indicate that metallic platinum and SnO{sub 2} are encapsulated by a TiOx layer.

  5. Platinum-tin oxide core-shell catalysts for efficient electro-oxidation of ethanol.

    Science.gov (United States)

    Du, Wenxin; Yang, Guangxing; Wong, Emily; Deskins, N Aaron; Frenkel, Anatoly I; Su, Dong; Teng, Xiaowei

    2014-08-06

    Platinum-tin (Pt/Sn) binary nanoparticles are active electrocatalysts for the ethanol oxidation reaction (EOR), but inactive for splitting the C-C bond of ethanol to CO2. Here we studied detailed structure properties of Pt/Sn catalysts for the EOR, especially CO2 generation in situ using a CO2 microelectrode. We found that composition and crystalline structure of the tin element played important roles in the CO2 generation: non-alloyed Pt46-(SnO2)54 core-shell particles demonstrated a strong capability for C-C bond breaking of ethanol than pure Pt and intermetallic Pt/Sn, showing 4.1 times higher CO2 peak partial pressure generated from EOR than commercial Pt/C.

  6. Preparation of MgO supported platinum nanoparticle catalyst using toluene dispersed platinum sol

    Science.gov (United States)

    Seth, Jhumur; Nepak, Devadutta; Chaudhari, Vijay R.; Prasad, Bhagavatula L. V.

    2017-10-01

    An effective way of anchoring Pt nanoparticles on MgO using toluene dispersed platinum nanoparticles (Pt-NPs) as one of the ingredient is demonstrated. The usage of particles dispersed in toluene allows the retention of size and size distribution of preformed Pt-NPs even after deposition on MgO support with high active surface area, which is crucial for heterogeneous catalysis. The catalyst thus prepared, displayed selective hydrogenation of cinnamaldehyde to cinnamyl alcohol with high turn on frequency (TOF - 105 h-1) with respect to the total Pt content. We attribute this efficient catalytic performance to the uniform distribution and deposition of Pt on the active MgO support and its better accessible surface as evidenced by the cyclic-voltammetry results.

  7. Hydrogenation of ortho-nitrochlorobenzene on activated carbon supported platinum catalysts

    Institute of Scientific and Technical Information of China (English)

    JIANG Cheng-jun; YIN Hong; CHEN Zhi-rong

    2005-01-01

    Platinum/carbon catalyst is one of the most important catalysts in hydrogenation of ortho-nitrochlorobenzene to 2,2'-dichlorohydrazobenzene. The preparation process and the supports of catalysts are studied in this paper. Raw materials and preparation procedure of the activated carbon have great influences on the compositions and surface structure of platinum/carbon catalysts. Platinum catalysts supported on activated carbon with high purity, high surface area, large pore volume and appropriate pore structure usually exhibit higher activities for hydrogenation of ortho-nitrochlorobenzene to 2,2'-dichlorohydrazobenzene.The catalyst prepared from H2PtCl6 with pH=3 shows greater catalytic performance than those prepared under other conditions.

  8. Platinum overlayers on Co(0001) and Ni(111): numerical simulation of surface alloying

    Science.gov (United States)

    Légaré, P.; Cabeza, G. F.; Castellani, N. J.

    1999-11-01

    The surface alloying of one and two monolayers (ML) of platinum deposited on Ni(111) and Co(0001) were studied by means of the ECT-BFS method. The 1 ML deposit appears to be very stable on both substrates. Platinum can diffuse at high temperature only, the large activation barrier being represented by the first substrate layer. On the contrary, the stability of the 2 ML deposit is poor so that alloying is easily obtained. In both cases, the platinum diffusion produces metastable states. The lowest-energy states exhibit a propensity for platinum dilution in a limited region below the surface. The initial platinum thickness determines not only the features of the alloyed region, but also the surface concentration. The surface alloys have features qualitatively similar to those reported for the (111) surface of bulk Pt-Ni and Pt-Co alloys: a platinum-rich surface and oscillating concentration profiles.

  9. Rumpling phenomenon in platinum modified Ni-Al alloys

    Energy Technology Data Exchange (ETDEWEB)

    Zimmerman, Benjamin Joseph [Iowa State Univ., Ames, IA (United States)

    2005-05-01

    Surface undulations known as rumpling have been shown to develop at the surface of bond coats used in advanced thermal barrier coating systems. Rumpling can result in cracking and eventual spallation of the top coat. Many mechanisms to explain rumpling have been proposed, and among them is a martensitic transformation. High-temperature x-ray diffraction, differential scanning calorimetry and potentiometry were used to investigate the nature of the martensitic transformation in bulk platinum-modified nickel aluminides. It was found that the martensitic transformation has strong time dependence and can form over a range of temperatures. Cyclic oxidation experiments were performed on the bulk alloys to investigate the effect of the martensitic transformation on surface rumpling. It was found that the occurrence of rumpling was associated with the martensitic transformation. The degree of rumpling was found to increase with an increasing number of cycles and was independent of the heating and cooling rates used. The thickness of the oxide layer at the surface of the samples had a significant impact on the amplitude of the resulting undulations, with amplitude increasing with increasing oxide-layer thickness. Rumpling was also observed in an alloy based on the γ-γ' region of the nickel-aluminum-platinum phase diagram. Rumpling in this alloy was found to occur during isothermal oxidation and is associated with a subsurface layer containing a platinum-rich phase known as a. Rumpling in both alloy systems may be explained by creep deformation of a weakened subsurface layer in response to the compressive stresses in the thermally grown oxide layer.

  10. Thermally stable single-atom platinum-on-ceria catalysts via atom trapping

    Energy Technology Data Exchange (ETDEWEB)

    Jones, John; Xiong, Haifeng; DelaRiva, Andrew; Peterson, Eric J.; Pham, Hien; Challa, Sivakumar R.; Qi, Gongshin; Oh, Se H.; Wiebenga, Michelle H.; Pereira Hernandez, Xavier I.; Wang, Yong; Datye, Abhaya K.

    2016-07-08

    Catalysts based on single atoms of scarce precious metals can lead to more efficient use through enhanced reactivity and selectivity. However, single atoms on catalyst supports can be mobile and aggregate into nanoparticles when heated at elevated temperatures. High temperatures are detrimental to catalyst performance unless these mobile atoms can be trapped. We used ceria powders having similar surface areas but different exposed surface facets. When mixed with a platinum/ aluminum oxide catalyst and aged in air at 800°C, the platinum transferred to the ceria and was trapped. Polyhedral ceria and nanorods were more effective than ceria cubes at anchoring the platinum. Performing synthesis at high temperatures ensures that only the most stable binding sites are occupied, yielding a sinter-resistant, atomically dispersed catalyst.

  11. Nanocrystal and surface alloy properties of bimetallic Gold-Platinum nanoparticles

    Directory of Open Access Journals (Sweden)

    Mott Derrick

    2006-01-01

    Full Text Available AbstractWe report on the correlation between the nanocrystal and surface alloy properties with the bimetallic composition of gold-platinum(AuPt nanoparticles. The fundamental understanding of whether the AuPt nanocrystal core is alloyed or phase-segregated and how the surface binding properties are correlated with the nanoscale bimetallic properties is important not only for the exploitation of catalytic activity of the nanoscale bimetallic catalysts, but also to the general exploration of the surface or interfacial reactivities of bimetallic or multimetallic nanoparticles. The AuPt nanoparticles are shown to exhibit not only single-phase alloy character in the nanocrystal, but also bimetallic alloy property on the surface. The nanocrystal and surface alloy properties are directly correlated with the bimetallic composition. The FTIR probing of CO adsorption on the bimetallic nanoparticles supported on silica reveals that the surface binding sites are dependent on the bimetallic composition. The analysis of this dependence further led to the conclusion that the relative Au-atop and Pt-atop sites for the linear CO adsorption on the nanoparticle surface are not only correlated with the bimetallic composition, but also with the electronic effect as a result of the d-band shift of Pt in the bimetallic nanocrystals, which is the first demonstration of the nanoscale core-surface property correlation for the bimetallic nanoparticles over a wide range of bimetallic composition.

  12. Nanocrystal and surface alloy properties of bimetallic Gold-Platinum nanoparticles

    Science.gov (United States)

    Mott, Derrick; Luo, Jin; Smith, Andrew; Njoki, Peter N; Wang, Lingyan

    2007-01-01

    We report on the correlation between the nanocrystal and surface alloy properties with the bimetallic composition of gold-platinum(AuPt) nanoparticles. The fundamental understanding of whether the AuPt nanocrystal core is alloyed or phase-segregated and how the surface binding properties are correlated with the nanoscale bimetallic properties is important not only for the exploitation of catalytic activity of the nanoscale bimetallic catalysts, but also to the general exploration of the surface or interfacial reactivities of bimetallic or multimetallic nanoparticles. The AuPt nanoparticles are shown to exhibit not only single-phase alloy character in the nanocrystal, but also bimetallic alloy property on the surface. The nanocrystal and surface alloy properties are directly correlated with the bimetallic composition. The FTIR probing of CO adsorption on the bimetallic nanoparticles supported on silica reveals that the surface binding sites are dependent on the bimetallic composition. The analysis of this dependence further led to the conclusion that the relative Au-atop and Pt-atop sites for the linear CO adsorption on the nanoparticle surface are not only correlated with the bimetallic composition, but also with the electronic effect as a result of the d-band shift of Pt in the bimetallic nanocrystals, which is the first demonstration of the nanoscale core-surface property correlation for the bimetallic nanoparticles over a wide range of bimetallic composition.

  13. The role of support and promoter on the oxidation of sulfur dioxide using platinum based catalysts

    DEFF Research Database (Denmark)

    Koutsopoulos, Sotiris; Rasmussen, Søren Birk; Eriksen, Kim Michael

    2006-01-01

    The catalytic oxidation of SO2 to SO3 was studied over platinum based catalysts in the absence and the presence of dopants. The active metal was supported on silica gel or titania (anatase) by impregnation. The activities of the silica supported catalysts were found to follow the order PtRh/SiO2...

  14. Noble Metal Catalysts for Mercury Oxidation in Utility Flue Gas: Gold, Palladium and Platinum Formulations

    Energy Technology Data Exchange (ETDEWEB)

    Presto, A.A.; Granite, E.J

    2008-07-01

    The use of noble metals as catalysts for mercury oxidation in flue gas remains an area of active study. To date, field studies have focused on gold and palladium catalysts installed at pilot scale. In this article, we introduce bench-scale experimental results for gold, palladium and platinum catalysts tested in realistic simulated flue gas. Our initial results reveal some intriguing characteristics of catalytic mercury oxidation and provide insight for future research into this potentially important process.

  15. Facile Fabrication of Platinum-Cobalt Alloy Nanoparticles with Enhanced Electrocatalytic Activity for a Methanol Oxidation Reaction

    Science.gov (United States)

    Huang, Huihong; Hu, Xiulan; Zhang, Jianbo; Su, Nan; Cheng, JieXu

    2017-01-01

    Decreasing the cost associated with platinum-based catalysts along with improving their catalytic properties is a major challenge for commercial direct methanol fuel cells. In this work, a simple and facile strategy was developed for the more efficient preparation of multi-walled carbon nanotube (MWCNT) -supported Pt/CoPt composite nanoparticles (NPs) via solution plasma sputtering with subsequent thermal annealing. Quite different from general wet synthesis methods, Pt/CoPt composite NPs were directly derived from metal wire electrodes without any additions. The obtained Pt/CoPt/MWCNTs composite catalysts exhibited tremendous improvement in the electro-oxidation of methanol in acidic media with mass activities of 1719 mA mg−1Pt. This value is much higher than that of previous reports of Pt-Co alloy and commercial Pt/C (3.16 times) because of the many active sites and clean surface of the catalysts. The catalysts showed good stability due to the special synergistic effects of the CoPt alloy. Pt/CoPt/MWCNTs can be used as a promising catalyst for direct methanol fuel cells. In addition, this solution plasma sputtering-assisted synthesis method introduces a general and feasible route for the synthesis of binary alloys. PMID:28358143

  16. Electro-oxidation of Formic Acid on Carbon Supported Edge-Truncated Cubic Platinum Nanoparticles Catalysts

    Institute of Scientific and Technical Information of China (English)

    LI She-Qiang; FU Xing-Qiu; HU Bing; DENG Jia-Jun; CHEN Lei

    2009-01-01

    The oxidation of formic acid on edge-truncated cubic platinum nanoparticles/C catalysts is investigated. X-ray photoelectron spectroscopy analysis indicates that the surface of edge-truncated cubic platinum nanoparticles is composed of two types of coordination sites. The oxidation behavior of formic acid on edge-truncated cubic platinum nanoparticles/C is investigated using cyclic voltammetry. The apparent activation energies are found to be 54.2, 55.0, 61.8, 69.5, 71.9, 69.26, 65.28kJ/mol at 0.15, 0.3, 0.4, 0.5, 0.6, 0.65, 0.7 V, respectively. A specific surface area activity of 1.76mA·cm~(-2) at 0.4 V indicates that the edge-truncated cubic Platinum nanoparticles are a promising anode catalyst for direct formic acid fuel cells.

  17. Investigating the performance of catalyst layer micro-structures with different platinum loadings

    Energy Technology Data Exchange (ETDEWEB)

    Khakaz-Baboli, Moben; Harvey, David; Pharoah, Jon

    2012-07-01

    In this study a four-phase micro-structure of a PEFC catalyst layer was reconstructed by randomly placing overlapping spheres for each solid catalyst phase. The micro-structure was mirrored to make a micro-structure. A body-fit computational mesh was produced for the reconstructed micro-structure in OpenFOAM. Associated conservation equations were solved within all the phases with electrochemical reaction as the boundary condition at the interface between ionomer and platinum phases. The study is focused on the platinum loading of CL. The polarization curves of the micro-structure performance have been compared for different platinum loadings. This paper gives increased insight into the relatively greater losses at decreased platinum loadings.

  18. Surface features and catalytic performance of platinum/alumina catalysts in slurry-phase hydrogenation

    Energy Technology Data Exchange (ETDEWEB)

    Gutierrez-Ortiz, M.A.; Gonzalez-Marcos, M.P.; Arnaiz-Aguilar, S.; Gonzalez-Marcos, J.A.; Gonzalez-Velasco, J.R. (Univ. del Pais Vasco/Euskal Hirrika Unibertsitatea, Bilbao (Spain). Dept. de Ingenierlla Quimica)

    1993-11-01

    Several platinum catalysts supported on three commercial [gamma]-aluminas were prepared by impregnation and anionic exchange using aqueous solutions of H[sub 2]PtCl[sub 6]. A number of methods were used to characterize the precursors as well as the final catalysts, including TGA, TPR, and hydrogen chemisorption at 298 K. TPR measurements showed two reduction peaks for the catalysts: the first one corresponding to reduction of the metal precursor to platinum and the second one associated to formation of a surface complex, Pt-Al[sub 2]O[sub 3[minus]x], With partial reduction of the support. The activity of the different catalysts was tested in the slurry-phase hydrogenation of benzene. The results obtained in the activity measurements have been correlated to the characteristics of the catalysts.

  19. Highly Dispersed Alloy Catalyst for Durability

    Energy Technology Data Exchange (ETDEWEB)

    Murthi, Vivek S.; Izzo, Elise; Bi, Wu; Guerrero, Sandra; Protsailo, Lesia

    2013-01-08

    Achieving DOE's stated 5000-hr durability goal for light-duty vehicles by 2015 will require MEAs with characteristics that are beyond the current state of the art. Significant effort was placed on developing advanced durable cathode catalysts to arrive at the best possible electrode for high performance and durability, as well as developing manufacturing processes that yield significant cost benefit. Accordingly, the overall goal of this project was to develop and construct advanced MEAs that will improve performance and durability while reducing the cost of PEMFC stacks. The project, led by UTC Power, focused on developing new catalysts/supports and integrating them with existing materials (membranes and gas diffusion layers (GDLs)) using state-of-the-art fabrication methods capable of meeting the durability requirements essential for automotive applications. Specifically, the project work aimed to lower platinum group metals (PGM) loading while increasing performance and durability. Appropriate catalysts and MEA configuration were down-selected that protects the membrane, and the layers were tailored to optimize the movements of reactants and product water through the cell to maximize performance while maintaining durability.

  20. Composition Tunability and (111)-Dominant Facets of Ultrathin Platinum-Gold Alloy Nanowires toward Enhanced Electrocatalysis.

    Science.gov (United States)

    Chang, Fangfang; Shan, Shiyao; Petkov, Valeri; Skeete, Zakiya; Lu, Aolin; Ravid, Jonathan; Wu, Jinfang; Luo, Jin; Yu, Gang; Ren, Yang; Zhong, Chuan-Jian

    2016-09-21

    The ability for tuning not only the composition but also the type of surface facets of alloyed nanomaterials is important for the design of catalysts with enhanced activity and stability through optimizing both ensemble and ligand effects. Herein we report the first example of ultrathin platinum-gold alloy nanowires (PtAu NWs) featuring composition-tunable and (111) facet-dominant surface characteristics, and the electrocatalytic enhancement for the oxygen reduction reaction (ORR). PtAu NWs of different bimetallic compositions synthesized by a single-phase and surfactant-free method are shown to display an alloyed, parallel-bundled structure in which the individual nanowires exhibit Boerdijk-Coxeter helix type morphology predominant in (111) facets. Results have revealed intriguing catalytic correlation with the binary composition, exhibiting an activity maximum at a Pt:Au ratio of ∼3:1. As revealed by high-energy synchrotron X-ray diffraction and atomic pair distribution function analysis, NWs of this ratio exhibit a clear shrinkage in interatomic bonding distances. In comparison with PtAu nanoparticles of a similar composition and degree of shrinking of atomic-pair distances, the PtAu NWs display a remarkably higher electrocatalytic activity and stability. The outperformance of NWs over nanoparticles is attributed to the predominant (111)-type facets on the surface balancing the contribution of ensemble and ligand effects, in addition to the composition synergy due to optimal adsorption energies for molecular and atomic oxygen species on the surface as supported by DFT computation of models of the catalysts. The findings open up a new pathway to the design and engineering of alloy nanocatalysts with enhanced activity and durability.

  1. Elaboration, physical and electrochemical characterizations of CO tolerant PEMFC anode materials. Study of platinum-molybdenum and platinum-tungsten alloys and composites; Elaborations et caracterisations electrochimiques et physiques de materiaux d'anode de PEMFC peu sensibles a l'empoisonnement par CO: etude d'alliages et de composites a base de platine-molybdene et de platine-tungstene

    Energy Technology Data Exchange (ETDEWEB)

    Peyrelade, E.

    2005-06-15

    PEMFC development is hindered by the CO poisoning ability of the anode platinum catalyst. It has been previously shown that the oxidation potential of carbon monoxide adsorbed on the platinum atoms can be lowered using specific Pt based catalysts, either metallic alloys or composites. The objective is then to realize a catalyst for which the CO oxidation is compatible with the working potential of a PEMFC anode. In our approach, to enhance the CO tolerance of platinum based catalyst supported on carbon, we studied platinum-tungsten and platinum-molybdenum alloys and platinum-metal oxide materials (Pt-WO{sub x} and Pt-MoO{sub x}). The platinum based alloys demonstrate a small effect of the second metal towards the oxidation of carbon monoxide. The platinum composites show a better tolerance to carbon monoxide. Electrochemical studies on both Pt-MoO{sub x} and Pt-WO{sub x} demonstrate the ability of the metal-oxides to promote the ability of Pt to oxidize CO at low potentials. However, chrono-amperometric tests reveal a bigger influence of the tungsten oxide. Complex chemistry reactions on the molybdenum oxide surface make it more difficult to observe. (author)

  2. Novel platinum-cobalt alloy nanoparticles dispersed on nitrogen-doped graphene as a cathode electrocatalyst for PEMFC applications

    Energy Technology Data Exchange (ETDEWEB)

    Vinayan, Bhaghavathi P.; Nagar, Rupali; Ramaprabhu, Sundara [Alternative Energy and Nanotechnology Laboratory (AENL), Nano Functional Materials Technology Centre (NFMTC), Department of Physics, IITM, Chennai (India); Rajalakshmi, Natarajan [Centre for Fuel Cell Technology, International Advanced Research Centre for Powder Metallurgy and New Materials, ARCI, IIT Madras Research Park, Taramani, Chennai (India)

    2012-08-21

    A novel synthesis procedure is devised to obtain nitrogen-doping in hydrogen-exfoliated graphene (HEG) sheets. An anionic polyelectrolyte-conducting polymer duo is used to form a uniform coating of the polymer over graphene sheets. Pyrolysis of graphene coated with polypyrrole, a nitrogen-containing polymer, in an inert environment leads to the incorporation of nitrogen atoms in the graphene network with simultaneous removal of the polymer. These nitrogen-doped graphene (N-HEG) sheets are used as catalyst support for dispersing platinum and platinum-cobalt alloy nanoparticles synthesized by the modified-polyol reduction method, yielding a uniform dispersion of the catalyst nanoparticles. Compared to commercial Pt/C electrocatalyst, Pt-Co/N-HEG cathode electrocatalyst exhibits four times higher power density in proton exchange membrane fuel cells, which is attributed to the excellent dispersion of Pt-Co alloy nanoparticles on the N-HEG support, the alloying effect of Pt-Co, and the high electrocatalytic activity of the N-HEG support. A stability study shows that Pt/N-HEG and Pt-Co/N-HEG cathode electrocatalysts are highly stable in acidic media. The study shows two promising electrocatalysts for proton exchange membrane fuel cells, which on the basis of performance and stability present the possibility of replacing contemporary electrocatalysts. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  3. CROWN FUNCTIONALIZED LINEAR POLYSILOXANE PLATINUM COMPLEX AS HYDROSILYLATION CATALYST

    Institute of Scientific and Technical Information of China (English)

    CHEN Yuanyin; LU Xueran; GONG Shuling; ZHANG Baolian

    1994-01-01

    A modified method of preparing crown functionalized linear polysiloxane has been described.4'-allylbenzo-15-crown-5 was subjected to hydrosilylation with methyldichlorosilane,followed by polycondensation with silanol-terminated polydimethylsiloxane to give the title crown functionalized linear polysiloxane. It was found that the polysiloxane could be coordinated with platinum salt to form platinum complex, which could catalyze the hydrosilylation of olefins with triethoxysilane efficiently.

  4. Dearomatization of jet fuel on irradiated platinum-supported catalyst

    Science.gov (United States)

    Múčka, V.; Ostrihoňová, A.; Kopernický, I.; Mikula, O.

    The effect of ionizing radiation ( 60Co γ-rays) on Pt-supported catalyst used for the dearomatization of jet fuel with distillation in the range 395-534 K has been studied. Pre-irradiation of the catalyst with doses in the range 10 2-5 × 10 4 Gy leads to the partial catalyst activation. Irradiation of the catalyst enhances its resistance to catalyst poisons, particularly to sulphur-compounds, and this is probably the reason for its catalytic activity being ˜60-100% greater than that of un-irradiated catalyst. Optimum conditions for dearomatization on the irradiated catalyst were found and, by means of a rotary three-factorial experiment, it was shown that these lie at lower temperatures and lower pressures than those for un-irradiated catalyst.

  5. Hydrogenation of cottonseed oil with nickel, palladium and platinum catalysts

    Science.gov (United States)

    A number of commercial catalysts have been used to study hydrogenation of cottonseed oil, with the goal of minimizing trans fatty acid (TFA) content. Despite the different temperatures used, catalyst levels, and reaction times, the data from each catalyst type fall on the same curve when the TFA le...

  6. Membrane fuel cell cathode catalysts based on titanium oxide supported platinum nanoparticles.

    Science.gov (United States)

    Gebauer, Christian; Jusys, Zenonas; Wassner, Maximilian; Hüsing, Nicola; Behm, R Jürgen

    2014-07-21

    The potential of platinum catalysts supported on pure, nitrogen-, or carbon-doped titania for application in the oxygen reduction reaction (ORR), as a cathode catalyst in polymer electrolyte membrane fuel cells, is investigated. The oxide supports are synthesized by using a sol-gel route. Modification with nitrogen and carbon doping is achieved by thermal decomposition of urea and the structure-directing agent P123. Platinum nanoparticles are prepared by reduction of a Pt(IV) salt in ethylene glycol and subsequently immobilized on different support materials. Structural and electronic properties of the support materials and the resulting catalysts are characterized by various methods, including X-ray diffraction, transmission electron microscopy, and X-ray photoelectron spectroscopy. These results and electrochemical characterization of the support materials and platinum nanoparticle catalysts indicate distinct support effects in the catalysts. The electrocatalytic performance of these catalysts in the ORR, as determined in rotating ring disc electrode measurements, is promising. Also here, distinct support effects can be identified. Correlations with the structural/electronic and the electrochemical properties are discussed, as well as the role of metal-support interactions.

  7. Oxygen reduction on carbon supported platinum catalysts in high temperature polymer electrolytes

    DEFF Research Database (Denmark)

    Qingfeng, Li; Bergqvist, R. S.; Hjuler, H. A.

    1999-01-01

    Oxygen reduction on carbon supported platinum catalysts has been investigated in H3PO4, H3PO4-doped Nafion and PBI polymer electrolytes in a temperature range from 80 to 190°C. Compared with pure H3PO4, using the H3PO4 doped Nafion and PBI polymer electrolytes can significantly improve the oxygen...

  8. Carbon Supported Polyaniline as Anode Catalyst: Pathway to Platinum-Free Fuel Cells

    CERN Document Server

    Zabrodskii, A G; Malyshkin, V G; Sapurina, I Y

    2006-01-01

    The effectiveness of carbon supported polyaniline as anode catalyst in a fuel cell (FC) with direct formic acid electrooxidation is experimentally demonstrated. A prototype FC with such a platinum-free composite anode exhibited a maximum room-temperature specific power of about 5 mW/cm2

  9. Hydroisomerization of Ethylbenzene on Mordenite-Based Bifunctional Catalysts with Different Platinum Contents

    Directory of Open Access Journals (Sweden)

    Fernandes L.D.

    1998-01-01

    Full Text Available A commercial Na-mordenite sample underwent ion exchange with HCl. The ion-exchanged sample was sequentially submitted to hydrothermal treatments at 823, 873 and 923 K, each followed by acid leaching of the extraframework alumina (EFAL generated. Six mordenite samples, presenting different framework and extraframework compositions, were obtained. These samples were used to prepare bifunctional catalysts by mixing them with Pt/Al2O3 in different proportions. The generated samples presented distinct platinum contents and were tested in the hydroisomerization reaction of ethylbenzene. A maximum xylene selectivity at about 0.45 wt% of platinum was observed. Normally, the total activity increased as the platinum content increased; this effect was more pronounced in the samples which presented lower mesoporosity. The most dealuminated sample, which presented a high mesoporosity, did not show any change in activity with the increase in platinum content.

  10. Formation and Characterization of Pd, Pt and Pd-Pt Alloy Films on Polyimide by Catalyst-Enhanced Chemical Vapor Deposition

    Institute of Scientific and Technical Information of China (English)

    ZHOU Jinlan; CHENG Yinhua; Yousuf Hamadan; YU Kaichao

    2007-01-01

    Platinum, palladium and their alloy films on polyimide were formed by catalyst-enhanced chemical vapor deposition (CVD) in the carrier gas (N2, O2) at 220-300 ℃ under reduced pressure and normal pressure. The deposition of palladium complexes [ Pd((η3-allyl)(hfac) and Pd(hfac)2 ] gives pure palladium film,while the deposition of platinum needs the enhancement of palladium complex by mixing precursor platinum complex Pt(COD)Me2 and palladium complex in the same chamber. The co-deposition of Pd and Pt metals was used for the deposition of alloy films. During the CVD of palladium-platinum alloy, the Pd/Pt atomic ratios vary under different co-deposition conditions. These metal films were characterized by XPS and SEM, and show a good adhesive property.

  11. Nano carbon supported platinum catalyst interaction behavior with perfluorosulfonic acid ionomer and their interface structures

    DEFF Research Database (Denmark)

    Andersen, Shuang Ma

    2016-01-01

    behavior of Nafion ionomer on platinized carbon nano fibers (CNFs), carbon nano tubes (CNTs) and amorphous carbon (Vulcan). The interaction is affected by the catalyst surface oxygen groups as well as porosity. Comparisons between the carbon supports and platinized equivalents are carried out. It reveals......, the ionomer may have an adsorption preference to the platinum nano particle rather than to the overall catalyst. This was verified by a close examination on the decomposition temperature of the carbon support and the ionomer. The electrochemical stability of the catalyst ionomer composite electrode suggests...

  12. Graphene-supported platinum catalysts for fuel cells

    DEFF Research Database (Denmark)

    Seselj, Nedjeljko; Engelbrekt, Christian; Zhang, Jingdong

    2015-01-01

    the past 15 years. It is focused on polymer electrolyte membrane fuel cells as an environmentally benign and feasible energy source. Graphene is used as a promising support material for Pt catalysts. It ensures high catalyst loading, good electrocatalysis and stability. Attention has been drawn...... to structural sensitivity of the catalysts, as well as polymetallic and nanostructured catalysts in order to improve the oxygen reduction reaction. Characterization methods including electrochemical, microscopic and spectroscopic techniques are summarized with an overview of the latest technological advances...

  13. A comparative study on the influence of the platinum catalyst in poly(dimethylsiloxane) based networks synthesis

    DEFF Research Database (Denmark)

    Bejenariu, Anca Gabriela; Poulsen, Julie Øblom; Skov, Anne Ladegaard

    2009-01-01

    The aim of the project is to find the best of three Pt catalysts and their appropriate quantity in order to obtain soft networks in one hour at room temperature. How the choice of catalyst influences the final elastomeric properties is also evaluated. The differences between the catalysts are the...... are the solvent and the platinum concentration....

  14. Understanding the electrocatalysis of oxygen reduction on platinum and its alloys

    DEFF Research Database (Denmark)

    Stephens, Ifan E. L.; Bondarenko, Alexander S.; Grønbjerg, Ulrik;

    2012-01-01

    by alloying it with other metals. In this perspective paper we provide an overview of the fundamentals underlying the reduction of oxygen on platinum and its alloys. We also report the ORR activity of Pt5La for the first time, which shows a 3.5- to 4.5-fold improvement in activity over Pt in the range 0...

  15. Nanolithographic Fabrication and Heterogeneous Reaction Studies ofTwo-Dimensional Platinum Model Catalyst Systems

    Energy Technology Data Exchange (ETDEWEB)

    Contreras, Anthony Marshall [Univ. of California, Berkeley, CA (United States)

    2006-05-20

    In order to better understand the fundamental components that govern catalytic activity, two-dimensional model platinum nanocatalyst arrays have been designed and fabricated. These catalysts arrays are meant to model the interplay of the metal and support important to industrial heterogeneous catalytic reactions. Photolithography and sub-lithographic techniques such as electron beam lithography, size reduction lithography and nanoimprint lithography have been employed to create these platinum nanoarrays. Both in-situ and ex-situ surface science techniques and catalytic reaction measurements were used to correlate the structural parameters of the system to catalytic activity.

  16. Catalytic wet-air oxidation of a chemical plant wastewater over platinum-based catalysts.

    Science.gov (United States)

    Cybulski, Andrzej; Trawczyński, Janusz

    2006-01-01

    Catalytic wet-air oxidation (CWAO) of wastewater (chemical oxygen demand [COD] = 1800 mg O2/dm3) from a fine chemicals plant was investigated in a fixed-bed reactor at T = 393-473 K under total pressure of 5.0 or 8.0 MPa. Catalysts containing 0.3% wt. of platinum deposited on two supports, mixed silica-titania (SM1) and carbon black composites (CBC) were used. The CBC-supported catalyst appeared to be more active than the SM1-supported one. A slow decrease of activity of the platinum on SM1 (Pt-SM1) during the long-term operation is attributed to recrystallization of titania and leaching of a support component, while the Pt-CBC catalyst is deteriorated, owing to combustion of the support component. The power-law-kinetic equations were used to describe the rate of COD removal at CWAO over the catalysts. The kinetic parameters of COD reduction for the wastewater were determined and compared with the kinetic parameters describing phenol oxidation over the same catalysts. Rates of COD removal for the wastewater were found higher than those for phenol oxidation over the same catalysts and under identical operating conditions.

  17. Determination of platinum in waste platinum-loaded carbon catalyst samples using microwave-assisted sample digestion and ICP-OES

    Science.gov (United States)

    Ma, Yinbiao; Wei, Xiaojuan

    2017-04-01

    A novel method for the determination of platinum in waste platinum-loaded carbon catalyst samples was established by inductively coupled plasma optical emission spectrometry after samples digested by microwave oven with aqua regia. Such experiment conditions were investigated as the influence of sample digestion methods, digestion time, digestion temperature and interfering ions on the determination. Under the optimized conditions, the linear range of calibration graph for Pt was 0 ˜ 200.00 mg L-1, and the recovery was 95.67% ˜ 104.29%. The relative standard deviation (RSDs) for Pt was 1.78 %. The proposed method was applied to determine the same samples with atomic absorption spectrometry with the results consistently, which is suitable for the determination of platinum in waste platinum-loaded carbon catalyst samples.

  18. Aged nano-structured platinum based catalyst: effect of chemical treatment on adsorption and catalytic activity.

    Science.gov (United States)

    Shim, Wang Geun; Nahm, Seung Won; Park, Hyuk Ryeol; Yun, Hyung Sun; Seo, Seong Gyu; Kim, Sang Chai

    2011-02-01

    To examine the effect of chemical treatment on the adsorption and catalytic activity of nanostructured platinum based catalyst, the aged commercial Pt/AC catalyst was pretreated with sulfuric acid (H2SO4) and a cleaning agent (Hexane). Several reliable methods such as nitrogen adsorption, X-ray powder diffraction (XRD), scanning electron microscopy (SEM) and inductively coupled plasma (ICP) were employed to characterize the aged Pt/AC catalyst and its chemically pretreated Pt/AC catalysts. The catalytic and adsorption activities of nano-structured heterogeneous Pt/AC catalyst were investigated on the basis of toluene oxidation and adsorption isotherm data. In addition, the adsorption isotherms of toluene were used to calculate the adsorption energy distribution functions for the parent catalyst and its pre-treated nano-structured Pt/AC catalysts. It was found that sulfuric acid aqueous treatment can enhance the catalytic performance of aged Pt/AC catalyst toward catalytic oxidation of toluene. It was also shown that a comparative analysis of the energy distribution functions for nano-structured Pt/AC catalysts as well as the pore size distribution provides valuable information about their structural and energetic heterogeneity.

  19. Improving the Quality of Thermocouple Wire Made of Platinum-rhodium Alloys

    Institute of Scientific and Technical Information of China (English)

    HORIKOV P.A.; MAMONOV S.N.; EFIMOV V.N.; RADKIN A.N.; DROZDOV D.E.

    2012-01-01

    For the manufacture of S-type thermocouple the so-called thermocouple wire of platinum and platinum-rhodium alloy is used.One of the main technical requirements for the quality of the wire,according to State Standard of Russia (GOST 10821),is the uniformity of its largest thermoelectric force (Thermo-emf) in the length different sections.It was found that a determining impact on the uniformity of the wire thermo-emf is the distribution of rhodium along the length of the wire.The impact of platinum- rhodium melt crystallization conditions on the inhomogeneity of wire manufactured from it.It was suggested that the chemical inhomogeneity of the wire is related to the liquation phase of platinum-rhodium alloy.

  20. Liquid-phase benzene isopropylation using alumina solid lewis superacid-supported platinum catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Yamada, K.; Honda, K.; Kitahara, D.; Miyamoto, M.; Shiga, M.; Ayame, A. [Muroran Inst. of Tech., Hokkaido (Japan)

    2000-03-01

    Supporting platinum on alumina solid Lewis superacid (AmLSA; J. C. S., Chem. Commun., 645 (1989)) was prepared by using of the in situ CVD technique at 773 K with Ar{sup +}-sputtered platinum fine particles and dry chlorine, followed by reduction with hydrogen at 673 K. The AmLSA-supported platinum catalyst (Pt/AmLSA) was applied to isopropylation of benzene with propene in the hydrogen stream at ambient temperature, using a semibatch reactor. Products were mono-, di-, tri-, and tetra-isopropylbenzenes. Conversion of propene to propane was below 1 %, and a trace amount of cyclohexane from benzene was also observed. Deactivation of AmLSA due to strong adsorption of poly-substituted benzenes and/or propene oligomers was remarkably depressed by supporting platinum and supplying hydrogen into the propene stream. Consequently, the activity of Pt/AmLSA catalyst had increased almost 1.5 times that of AmLSA. At the same level of benzene conversion, the product distribution f isopropyl-substituted benzenes obtained on Pt/AmLSA was identical to that on AmLSA, and had shifted slightly into the mono-substituted benzene side compared with the result on AmLSA in the absence of hydrogen. In the isopropylation of benzene with 2-chloropropane, the results quite similar to those described above were obtained. From the above observations, synergetic effects of platinum supporting and hydrogen supplying were considered to be due to the presence of hydrogen atoms spilled over from the platinum surface to the strong Lewis acid sites. (author)

  1. Kinetics of benzene hydrogenation on supported platinum, palladium, rhodium and ruthenium catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Nakano, K.; Fueda, Y.; Kusunoiki, K.; Uchino, T.

    1982-10-01

    Although benzene hydrogenation has been widely utilized as a test reaction for the investigation of catalytic activity, the reaction mechanism has not been well elucidated. As to the Langmuir-Hinshelwood rate equations, there have been many reports for the reaction on nickel catalysts, but few papers have been published on platinum metal catalysts, especially on rhodium and ruthenium catalysts. In this communication, reaction rates were measured for benzene hydrogenation over commercially available Pt-, Pd-, Rh- and Ru-Al/sub 2/O/sub 3/ catalysts and the rate equation was derived. The thermodynamic consistency of the rate equation was then tested in the light of the rules established by Boudart et al. and Vannice et al.

  2. Ionic Liquids as Solvents for Rhodium and Platinum Catalysts Used in Hydrosilylation Reaction

    Directory of Open Access Journals (Sweden)

    Witold Zielinski

    2016-08-01

    Full Text Available A group of imidazolium and pyridinium based ionic liquids has been synthetized, and their ability to dissolve and activate the catalysts used in hydrosilylation reaction of 1-octane and 1,1,1,3,5,5,5-heptamethyltrisiloxane was investigated. An organometallic catalyst as well as inorganic complexes of platinum and rhodium dissolved in ionic liquids were used, forming liquid solutions not miscible with the substrates or with the products of the reaction. The results show that application of such a simple biphasic catalytic system enables reuse of ionic liquid phase with catalysts in multiple reaction cycles reducing the costs and decreasing the amount of catalyst needed per mole of product.

  3. Tin-Platinum catalysts interactions on titania and silica

    Energy Technology Data Exchange (ETDEWEB)

    Nava, N. [Instituto Mexicano del Petroleo Lazaro Cardenas 152, 07730 Mexico, D.F. (Mexico)], E-mail: tnava@imp.mx; Del Angel, P. [Instituto Mexicano del Petroleo Lazaro Cardenas 152, 07730 Mexico, D.F. (Mexico); Salmones, J. [Instituto Politecnico Nacional-ESIQIE UPALM, 07738 Mexico, D.F. (Mexico); Baggio-Saitovitch, E. [Centro Brasileiro de Pesquisas Fisicas, Rua Dr. Xavier Sigaud 150, 22290-180 Rio de Janeiro, Brasil (Brazil); Santiago, P. [Instituto de Fisica, UNAM, Mexico, D. F., 04510 Mexico (Mexico)

    2007-09-30

    Pt-Sn was supported on titania and silica, and the resulting interactions between the components in prepared samples and the resulting interactions between the components before and after treatment with hydrogen were characterized by Moessbauer spectroscopy, X-ray diffraction, Rietveld refinement, high-resolution transmission electron microscopy (HRTEM) and catalytic tests data. Results show the presence of Pt and SnO{sub 2} after calcinations, and Pt{sub 3}Sn, PtSn and PtSn{sub 3} after reduction. Rietveld analysis shows that some Ti{sup 4+} are replaced by Sn{sup 4+} atoms in the titania structure. Finally, HRTEM and the practically absence of activity observed confirms that metallic platinum is encapsulated.

  4. Electrodeposited NiCu Alloy Catalysts for Glucose Oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Jieun; Park, Hansoo; Kim, Sookil [Chung-Ang Univ., Seoul (Korea, Republic of); Ahn, Sang Hyun; Jang, Jong Hyun [Korea Institute of Science and Technology, Seoul (Korea, Republic of)

    2014-07-15

    NiCu alloys have been suggested as potential candidates for catalysts in glucose oxidation. In this study, NiCu alloys with different compositions were prepared on a glassy carbon substrate by changing the electrodeposition potential to examine the effect of Ni/Cu ratios in alloys on catalytic activity toward glucose oxidation. Cyclic voltammetry and chronoamperometry showed that NiCu alloys had higher catalytic activity than pure Ni and Cu catalysts. Especially, Ni{sub 59}Cu{sub 41} had superior catalytic activity, which was about twice that of Ni at a given oxidation potential. X-ray analyses showed that the oxidation state of Ni in NiCu alloys was increased with the content of Cu by lattice expansion. Ni components in alloys with higher oxidation state were more effective in the oxidation of glucose.

  5. Graphene-Supported Platinum Catalyst-Based Membrane Electrode Assembly for PEM Fuel Cell

    Science.gov (United States)

    Devrim, Yilser; Albostan, Ayhan

    2016-08-01

    The aim of this study is the preparation and characterization of a graphene-supported platinum (Pt) catalyst for proton exchange membrane fuel cell (PEMFC) applications. The graphene-supported Pt catalysts were prepared by chemical reduction of graphene and chloroplatinic acid (H2PtCl6) in ethylene glycol. X-ray powder diffraction, thermogravimetric analysis (TGA) and scanning electron microscopy have been used to analyze structure and surface morphology of the graphene-supported catalyst. The TGA results showed that the Pt loading of the graphene-supported catalyst was 31%. The proof of the Pt particles on the support surfaces was also verified by energy-dispersive x-ray spectroscopy analysis. The commercial carbon-supported catalyst and prepared Pt/graphene catalysts were used as both anode and cathode electrodes for PEMFC at ambient pressure and 70°C. The maximum power density was obtained for the Pt/graphene-based membrane electrode assembly (MEA) with H2/O2 reactant gases as 0.925 W cm2. The maximum current density of the Pt/graphene-based MEA can reach 1.267 and 0.43 A/cm2 at 0.6 V with H2/O2 and H2/air, respectively. The MEA prepared by the Pt/graphene catalyst shows good stability in long-term PEMFC durability tests. The PEMFC cell voltage was maintained at 0.6 V without apparent voltage drop when operated at 0.43 A/cm2 constant current density and 70°C for 400 h. As a result, PEMFC performance was found to be superlative for the graphene-supported Pt catalyst compared with the Pt/C commercial catalyst. The results indicate the graphene-supported Pt catalyst could be utilized as the electrocatalyst for PEMFC applications.

  6. Electrodeposition of platinum-iridium alloy nanowires for hermetic packaging of microelectronics.

    Science.gov (United States)

    Petrossians, Artin; Whalen, John J; Weiland, James D; Mansfeld, Florian

    2012-01-01

    An electrodeposition technique was applied for fabrication of dense platinum-iridium alloy nanowires as interconnect structures in hermetic microelectronic packaging to be used in implantable devices. Vertically aligned arrays of platinum-iridium alloy nanowires with controllable length and a diameter of about 200 nm were fabricated using a cyclic potential technique from a novel electrodeposition bath in nanoporous aluminum oxide templates. Ti/Au thin films were sputter deposited on one side of the alumina membranes to form a base material for electrodeposition. Scanning Electron Microscopy (SEM) and Energy Dispersive Spectroscopy (EDS) were used to characterize the morphology and the chemical composition of the nanowires, respectively. SEM micrographs revealed that the electrodeposited nanowires have dense and compact structures. EDS analysis showed a 60:40% platinum-iridium nanowire composition. Deposition rates were estimated by determining nanowire length as a function of deposition time. High Resolution Transmission Electron Microscopy (HRTEM) images revealed that the nanowires have a nanocrystalline structure with grain sizes ranging from 3 nm to 5 nm. Helium leak tests performed using a helium leak detector showed leak rates as low as 1 × 10(-11) mbar L s(-1) indicating that dense nanowires were electrodeposited inside the nanoporous membranes. Comparison of electrical measurements on platinum and platinum-iridium nanowires revealed that platinum-iridium nanowires have improved electrical conductivity.

  7. Measurement, by adsorption, of the dispersion of platinum on supported catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Castells, R.C.

    1979-12-01

    A gas chromatographic pulsed adsorption technique similar to that of Freel was used in hydrogen and oxygen chemisorption measurements, and in ''titrating'' adsorbed hydrogen with oxygen pulses (H-O) and adsorbed oxygen with hydrogen pulses (O-H) on the surfaces of a Houdry 3H (0.30-0.70% platinum/alumina) catalyst and of 3.7 and 2.3% Pt/silica catalysts. In successive H-O and O-H titration cycles, hydrogen and oxygen consumption increased, leveling off after 8-10 cycles for Pt/alumina and after 3-4 cycles for the Pt/silica catalyst. The adsorption of hydrogen increased, whereas that of oxygen decreased with increasing number of cycles. The H-O titration sequence was a more accurate method of measuring metal dispersion than hydrogen adsorption or the O-H sequence.

  8. Formic acid electrooxidation on carbon supported platinum catalyst with preferential plane orientation

    Directory of Open Access Journals (Sweden)

    Krstajić Mila N.

    2015-01-01

    Full Text Available Pt-based nanocatalysts supported on Vulcan XC-72R carbon, were prepared by water-in-oil microemulsion method, with addition of various amounts of HCl in the water phase. Polyethileneglycoldodecylether (BRIJ 30 was used as a surfactant, which influenced the Pt surface structure, along with HCl. Catalysts prepared with addition of 0, 15, 25 and 35 % of HCl during the synthesis, were electrochemically characterised in 0,5 M H2SO4 using cyclic voltammetry and CO oxidation. Formic acid electrooxidation was examined on all investigated catalysts, in terms of their electrocatalytic activity and stability. Platinum loading on carbon support was examined by Thermogravimetric analysis. Catalysts showed different features in hydrogen region, and slight differences in formic acid oxidation mechanisms.

  9. Kinetics studies of d-glucose hydrogenation over activated charcoal supported platinum catalyst

    Science.gov (United States)

    Ahmed, Muthanna J.

    2012-02-01

    The kinetics of the catalytic hydrogenation of d-glucose to produce d-sorbitol was studied in a three-phase laboratory scale reactor. The hydrogenation reactions were performed on activated charcoal supported platinum catalyst in the temperature range 25-65°C and in a constant pressure of 1 atm. The kinetic data were modeled by zero, first and second-order reaction equations. In the operating regimes studied, the results show that the hydrogenation reaction was of a first order with respect to d-glucose concentration. Also the activation energy of the reaction was determined, and found to be 12.33 kJ mole-1. A set of experiment was carried out to test the deactivation of the catalyst, and the results show that the deactivation is slow with the ability of using the catalyst for several times with a small decrease in product yield.

  10. Platinum-group elements. Quantification in collected exhaust fumes and studies of catalyst surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Palacios, M.A.; Gomez, M.M.; Moldovan, M. [Departamento de Quimica Analitica, Facultad de CC Quimicas, Universidad Complutense de Madrid, 28040- Madrid (Spain); Morrison, G.; Rauch, S. [Chalmers University of Technology, Gothenburg (Sweden); McLeod, C.; Ma, R. [University of Sheffield, Sheffield (United Kingdom); Laserna, J.; Lucena, P. [University of Malaga, Malaga (Spain); Caroli, S.; Alimonti, A.; Petrucci, F.; Bocca, B. [Istituto Superiore di Sanita, Rome (Italy); Schramel, P.; Lustig, S.; Zischka, M. [GSF-Forschung, Neuherberg (Germany); Wass, U.; Stenbom, B. [Volvo, Gothenberg (Sweden); Luna, M. [Ford, Madrid (Spain); Saenz, J.C. [Instituto Nacional de Tecnica Aeroespacial, INTA, Madrid (Spain); Santamaria, J.; Torrens, J.M. [Seat, Barcelona (Spain)

    2000-07-20

    Automotive catalytic converters, in which Pt, Pd and Rh (platinum-group elements; PGEs) are the active components for eliminating several noxious components from exhaust fumes, have become the main source of environmental urban pollution by PGEs. This work reports on the catalyst morphology through changes in catalyst surface by scanning electron microscopy/energy dispersive X-ray spectroscopy (SEM/EDX) and laser-induced breakdown spectrometry (LIBS) from fresh to aged catalytic converters. The distribution of these elements in the fresh catalysts analysed (Pt-Pd-Rh gasoline catalyst) is not uniform and occurs mainly in a longitudinal direction. This heterogeneity seems to be greater for Pt and Pd. PGEs released by the catalysts, fresh and aged 30000 km, were studied in parallel. Whole raw exhaust fumes from four catalysts of three different types were also examined. Two of these were gasoline catalysts (Pt-Pd-Rh and Pd-Rh) and the other two were diesel catalysts (Pt). Samples were collected following the 91441 EUDC driving cycle for light-duty vehicle testing. The results show that at 0 km the samples collected first have the highest content of particulate PGEs and although the general tendency is for the release to decrease with increasing number of samples taken, exceptions are frequent. At 30000 km the released PGEs in gasoline and diesel catalysts decreased significantly. For fresh gasoline catalysts the mean of the total amount released was approximately 100, 250 and 50 ng km{sup -1} for Pt, Pd and Rh, respectively. In diesel catalysts the Pt release varied in the range 400-800 ng km{sup -1}. After ageing the catalysts up to 30000 km, the gasoline catalysts released amounts of Pt between 6 and 8 ng km{sup -1}, Pd between 12 and 16 ng km{sup -1} and Rh between 3 and 12 ng km{sup -1}. In diesel catalysts the Pt release varied in the range 108-150 ng km{sup -1}. The soluble portion of PGEs in the HNO{sub 3} collector solution represented less than 5% of the

  11. Platinum supported catalysts for carbon monoxide preferential oxidation: Study of support influence

    Energy Technology Data Exchange (ETDEWEB)

    Padilla, R.; Rodriguez, L.; Serrano-Lotina, A.; Daza, L. [Instituto de Catalisis y Petroleoquimica (CSIC), C/Marie Curie 2, Campus Cantoblanco, 28049 Madrid (Spain); Benito, M. [Instituto de Catalisis y Petroleoquimica (CSIC), C/Marie Curie 2, Campus Cantoblanco, 28049 Madrid (Spain); Centro de Investigaciones Energeticas Medioambientales y Tecnologicas (CIEMAT), Av. Complutense 22, 28040 Madrid (Spain)

    2009-07-01

    The aim of this work is to study the influence of the addition of different oxides to an alumina support, on surface acidity and platinum reducibility in platinum-based catalysts, as well as their effect on the activity and selectivity in CO preferential oxidation, in presence of hydrogen. A correlation between surface acidity and acid strength of surface sites and metal reducibility was obtained, being Pt-support interaction a function of the acid sites concentration under a particular temperature range. In platinum supported on alumina catalysts, CO oxidation follows a Langmuir-Hinshelwood mechanism, where O{sub 2} and CO compete in the adsorption on the same type of active sites. It is noteworthy that the addition of La{sub 2}O{sub 3} modifies the reaction mechanism. In this case, CO is not only adsorbed on the Pt active sites but also on La{sub 2}O{sub 3}, forming bridge bonded carbonates which leads to high reactivity at low temperatures. An increase on temperature produces CO desorption from Pt surface sites and favours oxygen adsorption producing CO{sub 2}. CO oxidation with surface hydroxyl groups was activated producing simultaneously CO{sub 2} and H{sub 2}. (author)

  12. Acetaldehyde behavior over platinum based catalyst in hydrogen stream generated by ethanol reforming

    Energy Technology Data Exchange (ETDEWEB)

    de Lima, Adriana F.F. [Laboratorio de Catalise, Instituto Nacional de Tecnologia, Av. Venezuela 82/507, 20081-310 Rio de Janeiro, RJ (Brazil); Instituto de Quimica e INOG (Instituto Nacional de Oleo Gas), UERJ-CNPq, FAPERJ, Universidade do Estado do Rio de Janeiro, Rua Sao Francisco Xavier, 524, 20550-900 Rio de Janeiro, RJ (Brazil); Colman, Rita C. [Departamento de Engenharia Quimica e de Petroleo, Universidade Federal Fluminense, Av. Passos da Patria, 156/bl E/240, 24210-240 Niteroi, RJ (Brazil); Zotin, Fatima M.Z. [Instituto de Quimica e INOG (Instituto Nacional de Oleo Gas), UERJ-CNPq, FAPERJ, Universidade do Estado do Rio de Janeiro, Rua Sao Francisco Xavier, 524, 20550-900 Rio de Janeiro, RJ (Brazil); CETEM-MCT, Av. Pedro Calmon, 900, Cidade Universitaria, 21941-908 Rio de Janeiro, RJ (Brazil); Appel, Lucia G. [Laboratorio de Catalise, Instituto Nacional de Tecnologia, Av. Venezuela 82/507, 20081-310 Rio de Janeiro, RJ (Brazil)

    2010-12-15

    Due to the greenhouse effect, hydrogen production from bioethanol reforming is a very important subject in heterogeneous catalysis research. Pt based catalysts are employed in H{sub 2} purification processes and also as electrocatalysts of PEM (''Proton Exchange Membrane'') fuel cells. Hydrogen obtained from ethanol reforming may contain, as contaminants, acetaldehyde and small amounts of CO. This aldehyde can be decarbonylated on Pt based catalysts generating carbon monoxide and methane, rendering the hydrogen purification more challenging. Moreover, acetaldehyde might also change the electrocatalyst behavior. Therefore, this contribution aims at studying the acetaldehyde behavior in the presence of platinum based catalysts in hydrogen atmosphere. The Pt/SiO{sub 2}, Pt/USY catalysts and an electrocatalyst were characterized by n-butylamine, H{sub 2} and CO{sub 2} adsorption, ATG/DTG measurements and cyclohexane dehydrogenation reaction. It was observed that the acid-basic properties of the supports promote condensation reactions. When in contact with Pt based catalysts, acetaldehyde undergoes C-C and C=O bond scissions. The former occurs at a wide range of temperatures, whereas the latter only at low temperatures (<200 C). The C-C bond scission (decarbonylation) produces methane and CO. The C=O bond scission generates carbon residues on the catalyst as well as oxygen species, which in turn is able to eliminate CO from the catalytic surface. The data also show that decarbonylation is not a structure-sensitive reaction. (author)

  13. Reaction selectivity studies on nanolithographically-fabricated platinum model catalyst arrays

    Energy Technology Data Exchange (ETDEWEB)

    Grunes, Jeffrey Benjamin

    2004-05-15

    In an effort to understand the molecular ingredients of catalytic activity and selectivity toward the end of tuning a catalyst for 100% selectivity, advanced nanolithography techniques were developed and utilized to fabricate well-ordered two-dimensional model catalyst arrays of metal nanostructures on an oxide support for the investigation of reaction selectivity. In-situ and ex-situ surface science techniques were coupled with catalytic reaction data to characterize the molecular structure of the catalyst systems and gain insight into hydrocarbon conversion in heterogeneous catalysis. Through systematic variation of catalyst parameters (size, spacing, structure, and oxide support) and catalytic reaction conditions (hydrocarbon chain length, temperature, pressures, and gas composition), the data presented in this dissertation demonstrate the ability to direct a reaction by rationally adjusting, through precise control, the design of the catalyst system. Electron beam lithography (EBL) was employed to create platinum nanoparticles on an alumina (Al{sub 2}O{sub 3}) support. The Pt nanoparticle spacing (100-150-nm interparticle distance) was varied in these samples, and they were characterized using x-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), scanning electron microscopy (SEM), and atomic force microscopy (AFM), both before and after reactions. The TEM studies showed the 28-nm Pt nanoparticles with 100 and 150-nm interparticle spacing on alumina to be polycrystalline in nature, with crystalline sizes of 3-5 nm. The nanoparticle crystallites increased significantly after heat treatment. The nanoparticles were still mostly polycrystalline in nature, with 2-3 domains. The 28-nm Pt nanoparticles deposited on alumina were removed by the AFM tip in contact mode with a normal force of approximately 30 nN. After heat treatment at 500 C in vacuum for 3 hours, the AFM tip, even at 4000 nN, could not remove the platinum nanoparticles. The

  14. Reaction selectivity studies on nanolithographically-fabricated platinum model catalyst arrays

    Energy Technology Data Exchange (ETDEWEB)

    Grunes, Jeffrey Benjamin [Univ. of California, Berkeley, CA (United States)

    2004-05-01

    In an effort to understand the molecular ingredients of catalytic activity and selectivity toward the end of tuning a catalyst for 100% selectivity, advanced nanolithography techniques were developed and utilized to fabricate well-ordered two-dimensional model catalyst arrays of metal nanostructures on an oxide support for the investigation of reaction selectivity. In-situ and ex-situ surface science techniques were coupled with catalytic reaction data to characterize the molecular structure of the catalyst systems and gain insight into hydrocarbon conversion in heterogeneous catalysis. Through systematic variation of catalyst parameters (size, spacing, structure, and oxide support) and catalytic reaction conditions (hydrocarbon chain length, temperature, pressures, and gas composition), the data presented in this dissertation demonstrate the ability to direct a reaction by rationally adjusting, through precise control, the design of the catalyst system. Electron beam lithography (EBL) was employed to create platinum nanoparticles on an alumina (Al2O3) support. The Pt nanoparticle spacing (100-150-nm interparticle distance) was varied in these samples, and they were characterized using x-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), scanning electron microscopy (SEM), and atomic force microscopy (AFM), both before and after reactions. The TEM studies showed the 28-nm Pt nanoparticles with 100 and 150-nm interparticle spacing on alumina to be polycrystalline in nature, with crystalline sizes of 3-5 nm. The nanoparticle crystallites increased significantly after heat treatment. The nanoparticles were still mostly polycrystalline in nature, with 2-3 domains. The 28-nm Pt nanoparticles deposited on alumina were removed by the AFM tip in contact mode with a normal force of approximately 30 nN. After heat treatment at 500 C in vacuum for 3 hours, the AFM tip, even at 4000 nN, could not remove the platinum

  15. Oxygen reduction on carbon supported platinum catalysts in high temperature polymer electrolytes

    DEFF Research Database (Denmark)

    Qingfeng, Li; Hjuler, Hans Aage; Bjerrum, Niels

    2000-01-01

    improve the oxygen reduction kinetics due to increased oxygen solubility and suppressed adsorption of phosphoric acid anions. Further enhancement of the catalytic activity can be obtained by operating the polymer electrolytes at higher temperatures. Efforts have been made to develop a polymer electrolyte......Oxygen reduction on carbon supported platinum catalysts has been investigated in H3PO4, H3PO4-doped Nafion and polybenzimidazole (PBI) polymer electrolytes in a temperature range up to 190 degrees C. Compared with pure H3PO4, the combination of H3PO4 and polymer electrolytes can significantly...

  16. High sintering resistance of size-selected platinum cluster catalysts by suppressed ostwald ripening

    DEFF Research Database (Denmark)

    Wettergren, Kristina; Schweinberger, Florian F.; Deiana, Davide;

    2014-01-01

    Employing rationally designed model systems with precise atom-by-atom particle size control, we demonstrate by means of combining noninvasive in situ indirect nanoplasmonic sensing and ex situ scanning transmission electron microscopy that monomodal size-selected platinum cluster catalysts...... on different supports exhibit remarkable intrinsic sintering resistance even under reaction conditions. The observed stability is related to suppression of Ostwald ripening by elimination of its main driving force via size-selection. This study thus constitutes a general blueprint for the rational design...

  17. Multistep electrochemical deposition of hierarchical platinum alloy counter electrodes for dye-sensitized solar cells

    Science.gov (United States)

    Zhang, Junjun; Ma, Mingming; Tang, Qunwei; Yu, Liangmin

    2016-01-01

    The preferred platinum counter electrode (CE) has been a burden for commercialization of dye-sensitized solar cell (DSSC) due to high expense and chemical corrosion by liquid electrolyte. In the current study, we have successfully realized the multistep deposition of platinum alloy CEs including PtNi, PtFe, and PtCo for liquid-junction DSSC applications. The preliminary results demonstrate that the enhanced electrochemical activities are attributable to high charge-transfer ability and matching work functions of the PtM (M = Ni, Fe, Co) alloy CEs to redox potential of I-/I3- electrolyte. The resultant DSSCs yield impressive power conversion efficiencies of 8.65%, 7.48%, and 7.08% with PtNi, PtFe, and PtCo CEs, respectively. On behalf of the competitive reactions between transition metals with liquid electrolyte, the PtM alloy CEs display enhanced long-term stability.

  18. Design of a surface alloy catalyst for steam reforming

    DEFF Research Database (Denmark)

    Besenbacher, F.; Chorkendorff, Ib; Clausen, B.S.;

    1998-01-01

    Detailed studies of elementary chemical processes on well-characterized single crystal surfaces have contributed substantially to the understanding of heterogeneous catalysis. insight into the structure of surface alloys combined with an understanding of the relation between the surface composition...... and reactivity is shown to lead directly to new ideas for catalyst design, The feasibility of such an approach is illustrated by the synthesis, characterization, and tests of a high-surface area gold-nickel catalyst for steam reforming....

  19. Drift as a Function of Temperature in Platinum-Rhodium-Alloyed Thermoelements

    Science.gov (United States)

    Webster, E. S.; Edler, F.

    2017-02-01

    Platinum-rhodium-alloyed thermocouples are the most commonly used high-temperature reference thermometer in national measurement institutes, second tier laboratories and industry. Despite the common use of these thermocouples, there is still a great deal that is not known about the drift processes that occur in them. Drift processes in these alloys are known to be made up of three main components: crystallographic changes, rhodium oxidation and migration, and contamination. Through careful use, contamination can be largely avoided; however, the other two processes often cannot. Research on drift in the different platinum-rhodium alloys is important because the largest uncertainty component during calibration of these thermocouple types is due to inhomogeneity, and the same mechanisms responsible for inhomogeneity are responsible for the drift. This study investigates the drift processes as a function of temperature and time for the 5 %, 13 %, 17 %, 20 %, 30 % and 40 % Rh alloys when paired with pure platinum. The use of a linear gradient furnace and high-resolution homogeneity scanner has enabled identification of drift characteristics in the temperature range 100°C to 950°C, where the bulk of reversible drift occurs. The experiments have quantified the drift rates and magnitude for thermoelements given two commonly used annealing procedures: the high-temperature quench anneal and the low-temperature vacancy anneal. Consequently, this study provides users of platinum-rhodium thermoelements with guidance on what levels of drift they should expect and exposure times before re-annealing is required. It also shows that a Pt-Rh alloy of 20 % Rh is by far the most stable and has properties comparable to the Pt-Pd thermocouple.

  20. Improved and selective platinum recovery from spent alpha-alumina supported catalysts using pretreated anionic ion exchange resin.

    Science.gov (United States)

    Shams, K; Goodarzi, F

    2006-04-17

    Improved and selective recovery of platinum from a spent dehydrogenation platinum alpha-alumina supported catalyst using a strong basic ion exchange resin is reported. Platinum and other precious metal group (PMG) complexes are leached using concentrated hydrochloric acid along with about 0.20 vol.% nitric acid as an oxidizing agent from de-coked and crushed spent catalyst. Effects of hydrochloric acid concentration, time, and temperature in leaching stage are investigated. The strong basic anionic resin is treated by sodium hydroxide solution to replace chloride anion by hydroxyl group ion. The supernatant of the leaching process is passed through a fixed column of hydroxylated strong base anionic resin. The treated resin on which the platinum complex is adsorbed is dried and burned in an oxidizing atmosphere at 750-800 degrees C. The recovered gray metallic powder is mainly platinum. Results compared with those obtained from untreated anionic resin show that adsorption of platinum complexes onto the treated anionic resin is more selective and the yield of separation is considerably improved. The breakthrough curves of the pretreated anion exchanger and that of untreated exchange resin reveals that the capacity of the hyroxilated resin is decreased by about 14%. These breakthrough curves can be used for calculation of height of a practical exchange plate (HPEP) for design purposes.

  1. Nano-structured Platinum-based Catalysts for the Complete Oxidation of Ethylene Glycol and Glycerol

    Science.gov (United States)

    Falase, Akinbayowa

    Direct alcohol fuel cells are a viable alternative to the traditional hydrogen PEM fuel cell. Fuel versatility, integration with existing distribution networks, and increased safety when handling these fuels increases their appeal for portable power applications. In order to maximize their utility, the liquid fuel must be fully oxidized to CO2 so as to harvest the full amount of energy. Methanol and ethanol are widely researched as potential fuels to power these devices, but methanol is a toxic substance, and ethanol has a much lower energy density than other liquids such as gasoline or glucose. Oxidation of complex fuels is difficult to realize, due to difficulty in breaking carbon-carbon bonding and poisoning of the catalysts by oxidative byproducts. In order to achieve the highest efficiency, an anode needs to be engineered in such a way as to maximize activity while minimizing poisoning effects of reaction byproducts. We have engineered an anode that uses platinum-based catalysts that is capable of completely oxidizing ethylene glycol and glycerol in neutral and alkaline media with little evidence of CO poisoning. We have constructed a hybrid anode consisting of a nano-structured PtRu electrocatayst with an NAD-dependent alcohol dehydrogenase for improved oxidation of complex molecules. A nano-structured PtRu catalyst was used to oxidize ethylene glycol and glycerol in neutral media. In situ infrared spectroscopy was used to verify complete oxidation via CO2 generation. There was no evidence of poisoning by CO species. A pH study was performed to determine the effect of pH on oxidative current. The peak currents did not trend at 60 mV/pH unit as would be expected from the Nernst equation, suggesting that adsorption of fuel to the surface of the electrode is not an electron-transfer step. We synthesized nano-structured PtRu, PtSn, and PtRuSn catalysts for oxidation of ethylene glycol and glycerol in alkaline media. The PtRu electrocatalyst the highest oxidative

  2. Furfural Hydrogenation on Alloyed Copper Catalysts With Additives of Ferrosilicium

    Directory of Open Access Journals (Sweden)

    T. K. Akilov

    2015-12-01

    Full Text Available The present work is dedicated to the study of influence of ferrosilicium additives [FA*-ferroalloy containing (% mass: 46.8 Si, ~53,0 Fe, other are (C, P, S impurities] on the activity of alloyed Gu-Al = 50-50 catalyst in the reaction of furfural hydrogenation under hydrogen pressure. Components content varied (% mass: Cu- 40...49, aluminum- 50, FA* -1.0...10.0. The catalysts were prepared from 1g alloys by leaching it with 20% of aqueous solution of caustic soda in boiling water-bath during 1 hour. The phase composition and structure of alloys were investigated by means of roentgenographic and X-ray spectrum methods.

  3. Spectrophotometric determination of platinum(IV) in alloys, complexes, environmental, and pharmaceutical samples using 4-[N,N-(diethyl)amino] benzaldehyde thiosemicarbazone.

    Science.gov (United States)

    Naik, P Parameshwara; Karthikeyan, J; Shetty, A Nityananda

    2010-12-01

    4-[N,N-(Diethyl)amino] benzaldehyde thiosemicarbazone (DEABT) is proposed as an analytical reagent for the spectrophotometric determination of platinum(IV). The DEABT forms 1:2 yellow complex with Pt(IV), which is sparingly soluble in water and completely soluble in water-ethanol-DMF medium. The Pt(IV)-DEABT complex shows maximum absorbance at 405 nm. Beer's law is valid up to 7.80 μg cm(-3), and optimum concentration range for the determination of platinum(IV) is 0.48-7.02 μg cm(-3). The molar absorptivity and Sandell's sensitivity of the method are found to be 1.755 × 10(4) dm(3) mol(-1) cm(-1) and 0.0012 μg cm(-2), respectively. The relative error and coefficient of variation (n=6) for the method does not exceed ± 0.43% and 0.35%, respectively. Since the method tolerates a number of metal ions commonly associated with platinum, it can be employed for the determination of platinum in environmental samples, pharmaceutical samples, alloys, catalysts, and complexes. The method is rapid as the Pt(IV)-DEABT complex is soluble in water-ethanol-DMF medium and not requiring any time consuming extraction method for the complex.

  4. Selective oxidation of glycerol by using a hydrotalcite-supported platinum catalyst under atmospheric oxygen pressure in water.

    Science.gov (United States)

    Tsuji, Akihiro; Rao, Kasanneni Tirumala Venkateswara; Nishimura, Shun; Takagaki, Atsushi; Ebitani, Kohki

    2011-04-18

    A hydrotalcite-supported platinum (Pt/HT) catalyst was found to be a highly active and selective heterogeneous catalyst for glycerol oxidation in pure water under atmospheric oxygen pressure in a high glycerol/metal molar ratio up to 3125. High selectivity toward glyceric acid (78 %) was obtained even at room temperature under air atmosphere. The Pt/HT catalyst selectively oxidized the primary hydroxyl group of 1,2-propandiol to give the corresponding carboxylic acid (lactic acid) as well as glycerol. The activity of the catalyst was greatly influenced by the Mg/Al ratio of hydrotalcite. Glycerol conversion increased with increasing the Mg/Al ratio of hydrotalcite (from trace to 56 %). X-ray absorption fine structure (XAFS) measurements indicated that the catalytic oxidation activity was proportional to the metallic platinum concentration, and more than 35 % of metallic platinum was necessary for this reaction. TEM measurements and titration analysis by using benzoic acid suggested that the solid basicity of hydrotalcite plays important roles in the precise control of platinum size and metal concentration as well as the initial promotion of alcohol oxidation.

  5. Activity targets for nanostructured platinum-group-metal-free catalysts in hydroxide exchange membrane fuel cells

    Science.gov (United States)

    Setzler, Brian P.; Zhuang, Zhongbin; Wittkopf, Jarrid A.; Yan, Yushan

    2016-12-01

    Fuel cells are the zero-emission automotive power source that best preserves the advantages of gasoline automobiles: low upfront cost, long driving range and fast refuelling. To make fuel-cell cars a reality, the US Department of Energy has set a fuel cell system cost target of US$30 kW-1 in the long-term, which equates to US$2,400 per vehicle, excluding several major powertrain components (in comparison, a basic, but complete, internal combustion engine system costs approximately US$3,000). To date, most research for automotive applications has focused on proton exchange membrane fuel cells (PEMFCs), because these systems have demonstrated the highest power density. Recently, however, an alternative technology, hydroxide exchange membrane fuel cells (HEMFCs), has gained significant attention, because of the possibility to use stable platinum-group-metal-free catalysts, with inherent, long-term cost advantages. In this Perspective, we discuss the cost profile of PEMFCs and the advantages offered by HEMFCs. In particular, we discuss catalyst development needs for HEMFCs and set catalyst activity targets to achieve performance parity with state-of-the-art automotive PEMFCs. Meeting these targets requires careful optimization of nanostructures to pack high surface areas into a small volume, while maintaining high area-specific activity and favourable pore-transport properties.

  6. Activity targets for nanostructured platinum-group-metal-free catalysts in hydroxide exchange membrane fuel cells.

    Science.gov (United States)

    Setzler, Brian P; Zhuang, Zhongbin; Wittkopf, Jarrid A; Yan, Yushan

    2016-12-06

    Fuel cells are the zero-emission automotive power source that best preserves the advantages of gasoline automobiles: low upfront cost, long driving range and fast refuelling. To make fuel-cell cars a reality, the US Department of Energy has set a fuel cell system cost target of US$30 kW(-1) in the long-term, which equates to US$2,400 per vehicle, excluding several major powertrain components (in comparison, a basic, but complete, internal combustion engine system costs approximately US$3,000). To date, most research for automotive applications has focused on proton exchange membrane fuel cells (PEMFCs), because these systems have demonstrated the highest power density. Recently, however, an alternative technology, hydroxide exchange membrane fuel cells (HEMFCs), has gained significant attention, because of the possibility to use stable platinum-group-metal-free catalysts, with inherent, long-term cost advantages. In this Perspective, we discuss the cost profile of PEMFCs and the advantages offered by HEMFCs. In particular, we discuss catalyst development needs for HEMFCs and set catalyst activity targets to achieve performance parity with state-of-the-art automotive PEMFCs. Meeting these targets requires careful optimization of nanostructures to pack high surface areas into a small volume, while maintaining high area-specific activity and favourable pore-transport properties.

  7. Platinum and palladium alloys suitable as fuel cell electrodes

    DEFF Research Database (Denmark)

    2014-01-01

    The present invention concerns electrode catalysts used in fuel cells, such as proton exchange membrane (PEM) fuel cells. The invention is related to the reduction of the noble metal content and the improvement of the catalytic efficiency by low level substitution of the noble metal to provide new...

  8. Platinum and palladium alloys suitable as fuel cell electrodes

    DEFF Research Database (Denmark)

    2014-01-01

    The present invention concerns electrode catalysts used in fuel cells, such as proton exchange membrane (PEM) fuel cells. The invention is related to the reduction of the noble metal content and the improvement of the catalytic5 efficiency by low level substitution of the noble metal to provide new...

  9. Platinum and Palladium Alloys Suitable as Fuel Cell Electrodes

    DEFF Research Database (Denmark)

    2011-01-01

    The present invention concerns electrode catalysts used in fuel cells, such as proton exchange membrane (PEM) fuel cells. The invention is related to the reduction of the noble metal content and the improvement of the catalytic efficiency by low level substitution of the noble metal to provide new...

  10. Role of bonding mechanisms during transfer hydrogenation reaction on heterogeneous catalysts of platinum nanoparticles supported on zinc oxide nanorods

    Science.gov (United States)

    Al-Alawi, Reem A.; Laxman, Karthik; Dastgir, Sarim; Dutta, Joydeep

    2016-07-01

    For supported heterogeneous catalysis, the interface between a metal nanoparticle and the support plays an important role. In this work the dependency of the catalytic efficiency on the bonding chemistry of platinum nanoparticles supported on zinc oxide (ZnO) nanorods is studied. Platinum nanoparticles were deposited on ZnO nanorods (ZnO NR) using thermal and photochemical processes and the effects on the size, distribution, density and chemical state of the metal nanoparticles upon the catalytic activities are presented. The obtained results indicate that the bonding at Pt-ZnO interface depends on the deposition scheme which can be utilized to modulate the surface chemistry and thus the activity of the supported catalysts. Additionally, uniform distribution of metal on the catalyst support was observed to be more important than the loading density. It is also found that oxidized platinum Pt(IV) (platinum hydroxide) provided a more suitable surface for enhancing the transfer hydrogenation reaction of cyclohexanone with isopropanol compared to zero valent platinum. Photochemically synthesized ZnO supported nanocatalysts were efficient and potentially viable for upscaling to industrial applications.

  11. Bimetallic Catalysts and Platinum Surfaces Studied by X-ray Absorption Spectroscopy and Scanning Tunnelling Microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Roenning, Magnus

    2000-07-01

    Bimetallic catalyst systems used in Fischer-Tropsch synthesis (Co-Re/Al{sub 2}O{sub 3}) and in the naphtha reforming process (Pt-Re/Al{sub 2}O{sub 3}) have been studied in situ using X-ray absorption spectroscopy (EXAFS). Additionally, the adsorption of ethene on platinum single crystal surfaces has been investigated using scanning tunnelling microscopy. In situ EXAFS at the cobalt K absorption edge have been carried out at 450{sup o}C on the hydrogen reduction of a rhenium-promoted Co{sub 3}O{sub 4}/Al{sub 2}O{sub 3} catalyst. Reductions carried out using 100% hydrogen and 5% hydrogen in helium gave different results. Whereas the reduction using dilute hydrogen leads to bulk-like metallic cobalt particles (hcp or fcc), reaction with pure hydrogen yields a more dispersed system with smaller cobalt metal particles (< 40 A). The results are rationalised in terms of different degrees of reoxidation of cobalt by the higher and lower concentrations of water generated during the reduction of cobalt oxide by 100% and 5% hydrogen, respectively. Additionally, in both reduction protocols a small fraction (3 -4 wt%) of the cobalt content is randomly dispersed over the tetrahedral vacancies of the alumina support. This dispersion occurs during reduction and not calcination. The cobalt in these sites cannot be reduced at 450 {sup o}C. The local environments about the rhenium atoms in Co-Re/{gamma}-A1{sub 2}O{sub 3} catalyst after different reduction periods have been studied by X-ray absorption spectroscopy. A bimetallic catalyst containing 4.6 wt% cobalt and 2 wt% rhenium has been compared with a corresponding monometallic sample with 2 wt% rhenium on the same support. The rhenium L{sub III} EXAFS analysis shows that bimetallic particles are formed after reduction at 450{sup o}C with the average particle size being 10-15 A. Rhenium is shown to be reduced at a later stage than cobalt. The fraction of cobalt atoms entering the support obstructs the access to the support for the

  12. High-temperature thermodynamic activities of zirconium in platinum alloys determined by nitrogen-nitride equilibria

    Energy Technology Data Exchange (ETDEWEB)

    Goodman, D.A.

    1980-05-01

    A high-temperature nitrogen-nitride equilibrium apparatus is constructed for the study of alloy thermodynamics to 2300/sup 0/C. Zirconium-platinum alloys are studied by means of the reaction 9ZrN + 11Pt ..-->.. Zr/sub 9/Pt/sub 11/ + 9/2 N/sub 2/. Carful attention is paid to the problems of diffusion-limited reaction and ternary phase formation. The results of this study are and a/sub Zr//sup 1985/sup 0/C/ = 2.4 x 10/sup -4/ in Zr/sub 9/Pt/sub 11/ ..delta..G/sub f 1985/sup 0/C//sup 0/ Zr/sub 9/Pt/sub 11/ less than or equal to -16.6 kcal/g atom. These results are in full accord with the valence bond theory developed by Engel and Brewer; this confirms their prediction of an unusual interaction of these alloys.

  13. Performance of Pt-Co alloys and CoTPP catalysts for the reduction of oxygen in AFC

    Energy Technology Data Exchange (ETDEWEB)

    Kiros, Y. [Royal Institute of Technology, Stockholm (Sweden); Sampathrajan, A.; Ramanathan, M. [Tamil Nadu Agricultural Univ., Coimbatore (India)

    1996-12-31

    One of the primary problems of the oxygen reduction reaction (ORR) for especially low and medium temperature fuel cells such as AFC, PEFC and PAFC is the high activation overpotential. This high overpotential is due to the complicated nature of the ORR and the morphological properties of the catalyst particles. High catalyst dispersion on the carbon support and small particle sizes, non-agglomeration and/or non-dissolution of the electrocatalyst is desired for the long-term operation of the electrodes. In this study electrodes were tested at different temperatures and concentrations in order to substantiate their influences on the activity and stability of the electrocatalysts, i.e.; cobalt tetraphenylporphyrin (CoTPP) and alloys of platinum and cobalt.

  14. Preparation and characterization of hydrophobic platinum-doped carbon aerogel catalyst for hydrogen isotope separation

    Indian Academy of Sciences (India)

    M K Singh; R Singh; A Singh; D K Kohli; U Deshpande; P K Gupta

    2014-10-01

    We report preparation of hydrophobic platinum-doped carbon aerogel (PtCA) catalyst and its characterization for catalytic exchange reactions between hydrogen isotopes. The PtCA powder was synthesized by sol–gel polymerization method, mixed with colloidal PTFE solution, and coated on Dixon rings to obtain hydrophobic catalyst. The Pt cluster size in PtCA powder was observed to vary from 3 to 5 nm for a change in resorcinol to alkali molar ratio in synthesis solution from 20 to 200. Transmission electron microscopy of powder showed that the Pt clusters were uniformally dispersed and Pt0 metallic content estimated by X-ray photoelectron spectroscopy (XPS) was found to be of ∼ 70%. The catalytic activity was found to depend on Pt cluster size and was higher for smaller cluster size. For the smallest achieved Pt cluster size of 3 nm, catalytic activity of ∼ 0.8 m3 (STP) s-1 m-3 was obtained for hydrogen isotope exchange in atmospheric pressure conditions.

  15. Reduction of Furfural to Furfuryl Alcohol in Liquid Phase over a Biochar-Supported Platinum Catalyst

    Directory of Open Access Journals (Sweden)

    Ariadna Fuente-Hernández

    2017-02-01

    Full Text Available In this work, the liquid phase hydrogenation of furfural has been studied using a biochar-supported platinum catalyst in a batch reactor. Reactions were performed between 170 °C and 320 °C, using 3 wt % and 5 wt % of Pt supported on a maple-based biochar under hydrogen pressure varying from 500 psi to 1500 psi for reaction times between 1 h and 6 h in various solvents. Under all reactive conditions, furfural conversion was significant, whilst under specific conditions furfuryl alcohol (FA was obtained in most cases as the main product showing a selectivity around 80%. Other products as methylfuran (MF, furan, and trace of tetrahydrofuran (THF were detected. Results showed that the most efficient reaction conditions involved a 3% Pt load on biochar and operations for 2 h at 210 °C and 1500 psi using toluene as solvent. When used repetitively, the catalyst showed deactivation although only a slight variation in selectivity toward FA at the optimal experimental conditions was observed.

  16. Revealing the semiconductor–catalyst interface in buried platinum black silicon photocathodes

    Energy Technology Data Exchange (ETDEWEB)

    Aguiar, Jeffery A.; Anderson, Nicholas C.; Neale, Nathan R.

    2016-01-01

    Nanoporous 'black' silicon semiconductors interfaced with buried platinum nanoparticle catalysts have exhibited stable activity for photoelectrochemical hydrogen evolution even after months of exposure to ambient conditions. The mechanism behind this stability has not been explained in detail, but is thought to involve a Pt/Si interface free from SiOx layer that would adversely affect interfacial charge transfer kinetics. In this paper, we resolve the chemical composition and structure of buried Pt/Si interfaces in black silicon photocathodes from a micron to sub-nanometer level using aberration corrected analytical scanning transmission electron microscopy. Through a controlled electrodeposition of copper on samples aged for one month in ambient conditions, we demonstrate that the main active catalytic sites are the buried Pt nanoparticles located below the 400-800 nm thick nanoporous SiOx layer. Though hydrogen production performance degrades over 100 h under photoelectrochemical operating conditions, this burying strategy preserves an atomically clean catalyst/Si interface free of oxide or other phases under air exposure and provides an example of a potential method for stabilizing silicon photoelectrodes from oxidative degradation in photoelectrochemical applications.

  17. Catalytic Wet Air Oxidation of Oxalic Acid using Platinum Catalysts in Bubble Column Reactor: A Review

    Directory of Open Access Journals (Sweden)

    A. K. Saroha

    2010-01-01

    Full Text Available Wastewater treatment and re-use of industrial process water are critical issue for the development of human activities andenvironment conservation. Catalytic wet air oxidation (CWAO is an attractive and useful technique for treatment of effluentswhere the concentrations of organic pollutants are too low, for the incineration and other pollution control techniquesto be economically feasible and when biological treatments are ineffective, e.g. in the case of toxic effluents. In CWAO,combustion takes place on a Pt/Al2O3 catalysts usually at temperatures several degrees below those required forthermal incineration. In CWAO process, the organic contaminants dissolved in water are either partially degraded by meansof an oxidizing agent into biodegradable intermediates or mineralized into innocuous inorganic compounds such as CO2,H2O and inorganic salts, which remain in the aqueous phase. In contrast to other thermal processes CWAO produces no NOx,SO2, HCl, dioxins, furans, fly ash, etc. This review paper presents the application of platinum catalysts in bubble columnreactor for CWAO of oxalic acid.

  18. Bimetallic Catalysts and Platinum Surfaces Studied by X-ray Absorption Spectroscopy and Scanning Tunnelling Microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Roenning, Magnus

    2000-07-01

    Bimetallic catalyst systems used in Fischer-Tropsch synthesis (Co-Re/Al{sub 2}O{sub 3}) and in the naphtha reforming process (Pt-Re/Al{sub 2}O{sub 3}) have been studied in situ using X-ray absorption spectroscopy (EXAFS). Additionally, the adsorption of ethene on platinum single crystal surfaces has been investigated using scanning tunnelling microscopy. In situ EXAFS at the cobalt K absorption edge have been carried out at 450{sup o}C on the hydrogen reduction of a rhenium-promoted Co{sub 3}O{sub 4}/Al{sub 2}O{sub 3} catalyst. Reductions carried out using 100% hydrogen and 5% hydrogen in helium gave different results. Whereas the reduction using dilute hydrogen leads to bulk-like metallic cobalt particles (hcp or fcc), reaction with pure hydrogen yields a more dispersed system with smaller cobalt metal particles (< 40 A). The results are rationalised in terms of different degrees of reoxidation of cobalt by the higher and lower concentrations of water generated during the reduction of cobalt oxide by 100% and 5% hydrogen, respectively. Additionally, in both reduction protocols a small fraction (3 -4 wt%) of the cobalt content is randomly dispersed over the tetrahedral vacancies of the alumina support. This dispersion occurs during reduction and not calcination. The cobalt in these sites cannot be reduced at 450 {sup o}C. The local environments about the rhenium atoms in Co-Re/{gamma}-A1{sub 2}O{sub 3} catalyst after different reduction periods have been studied by X-ray absorption spectroscopy. A bimetallic catalyst containing 4.6 wt% cobalt and 2 wt% rhenium has been compared with a corresponding monometallic sample with 2 wt% rhenium on the same support. The rhenium L{sub III} EXAFS analysis shows that bimetallic particles are formed after reduction at 450{sup o}C with the average particle size being 10-15 A. Rhenium is shown to be reduced at a later stage than cobalt. The fraction of cobalt atoms entering the support obstructs the access to the support for the

  19. Simple cerium-triethanolamine complex: Synthesis, characterization, thermal decomposition and its application to prepare ceria support for platinum catalysts used in methane steam reforming

    Science.gov (United States)

    Wattanathana, Worawat; Nootsuwan, Nollapan; Veranitisagul, Chatchai; Koonsaeng, Nattamon; Laosiripojana, Navadol; Laobuthee, Apirat

    2015-06-01

    Cerium-triethanolamine complex was synthesized by simple complexation method in 1-propanol solvent using cerium(III) chloride as a metal source and triethanolamine as a ligand. The structures of the prepared complex were proposed based on FT-IR, FT-Raman and ESI-MS results as equimolar of triethanolamine and cerium chelated complex having monomeric tricyclic structure with and without chloride anion as another coordinating group known as ceratrane. The complex was used as a precursor for ceria material done by thermal decomposition. XRD result revealed that when calcined at 600 °C for 2 h, the cerium complex was totally turned into pure ceria with cubic fluorite structure. The obtained ceria was then employed to synthesize platinum doped ceria catalysts for methane steam reforming. Various amounts of platinum i.e. 1, 3, 5 and 10 mol percents were introduced on the ceria support by microwave-assisted wetness impregnation using ammonium tetrachloroplatinate(II). The platinum-impregnated ceria powders were subjected to calcination in 10% hydrogen/helium atmosphere at 500 °C for 3 h to reduce platinum(II) to platinum(0). XRD patterns of the catalysts confirmed that the platinum particles doped on the ceria support were in the form of platinum(0). Catalytic activity test showed that the catalytic activities got higher as the amounts of platinum doped increased. Besides, the portions of coke formation on the surface of catalysts were reduced as the amounts of platinum doped increased.

  20. Performance of metal alloys as hydrogen evolution reaction catalysts in a microbial electrolysis cell

    NARCIS (Netherlands)

    Jeremiasse, A.W.; Bergsma, J.; Kleijn, J.M.; Saakes, M.; Buisman, C.J.N.; Cohen Stuart, M.A.; Hamelers, H.V.M.

    2011-01-01

    H2 can be produced from organic matter with a microbial electrolysis cell (MEC). To decrease the energy input and increase the H2 production rate of an MEC, a catalyst is used at the cathode. Platinum is an effective catalyst, but its high costs stimulate searching for alternatives, such as non-nobl

  1. Biogenic platinum and palladium nanoparticles as new catalysts for the removal of pharmaceutical compounds.

    Science.gov (United States)

    Martins, Mónica; Mourato, Cláudia; Sanches, Sandra; Noronha, João Paulo; Crespo, M T Barreto; Pereira, Inês A C

    2017-01-01

    Pharmaceutical products (PhP) are one of the most alarming emergent pollutants in the environment. Therefore, it is of extreme importance to investigate efficient PhP removal processes. Biologic synthesis of platinum nanoparticles (Bio-Pt) has been reported, but their catalytic activity was never investigated. In this work, we explored the potential of cell-supported platinum (Bio-Pt) and palladium (Bio-Pd) nanoparticles synthesized with Desulfovibrio vulgaris as biocatalysts for removal of four PhP: ciprofloxacin, sulfamethoxazole, ibuprofen and 17β-estradiol. The catalytic activity of the biological nanoparticles was compared with the PhP removal efficiency of D. vulgaris whole-cells. In contrast with Bio-Pd, Bio-Pt has a high catalytic activity in PhP removal, with 94, 85 and 70% removal of 17β-estradiol, sulfamethoxazole and ciprofloxacin, respectively. In addition, the estrogenic activity of 17β-estradiol was strongly reduced after the reaction with Bio-Pt, showing that this biocatalyst produces less toxic effluents. Bio-Pt or Bio-Pd did not act on ibuprofen, but this could be completely removed by D. vulgaris whole-cells, demonstrating that sulfate-reducing bacteria are among the microorganisms capable of biotransformation of ibuprofen in anaerobic environments. This study demonstrates for the first time that Bio-Pt has a high catalytic activity, and is a promising catalyst to be used in water treatment processes for the removal of antibiotics and endocrine disrupting compounds, the most problematic PhP. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Catalytic wet oxidation of ammonia solution: activity of the nanoscale platinum-palladium-rhodium composite oxide catalyst.

    Science.gov (United States)

    Hung, Chang-Mao

    2009-04-15

    Aqueous solutions of 400-1000 mg/L of ammonia were oxidized in a trickle-bed reactor (TBR) in this study of nanoscale platinum-palladium-rhodium composite oxide catalysts, which were prepared by the co-precipitation of H(2)PtCl(6), Pd(NO(3))(3) and Rh(NO(3))(3). Hardly any of the dissolved ammonia was removed by wet oxidation in the absence of any catalyst, whereas about 99% of the ammonia was reduced during wet oxidation over nanoscale platinum-palladium-rhodium composite oxide catalysts at 503 K in an oxygen partial pressure of 2.0 MPa. A synergistic effect exists in the nanoscale platinum-palladium-rhodium composite structure, which is the material with the highest ammonia reduction activity. The nanometer-sized particles were characterized by TEM, XRD and FTIR. The effect of the initial concentration and reaction temperature on the removal of ammonia from the effluent streams was also studied at a liquid hourly space velocity of under 9 h(-1) in the wet catalytic processes.

  3. POLYMER-PLATINUM COMPLEX CATALYSTS FOR OXIDATION OF METHANOL TO FORMALDEHYDE

    Institute of Scientific and Technical Information of China (English)

    HUANG Meiyu; HUANG Li; ZHENG Qingyao; WANG Dianxun; JIANG Yingyan

    1984-01-01

    Two kinds of polymer-platinum complexes: silica-supported poly-γ-diphenylphosphinopropyl-siloxane-platinum complex and silica-supported polyphenylsilazane-platinum complex, have been found very active and selective in catalyzation of oxidation of methanol to formaldehyde at room temperature and under an atmospheric oxygen pressure. Their catalytic activities are greatly affected by P or N/Pt gram atomic ratio.

  4. Experience in the Production of Horizontal Ingots of Platinum Metals and Alloys

    Institute of Scientific and Technical Information of China (English)

    LEVCHENKO S. D.; VERSHININA E. N.

    2012-01-01

    The quality of semi-products of platinum metals and alloys,produced by way of plastic working,essentially depends on or,in many cases,is completely determined by the quality of ingots.Plastic working does not make it possible to eliminate or localize metallurgical defects.In many cases it promotes the occurence thereof.Low-rate casting with directional crystallization can ensure the production of dense ingots free of non-metallic inclusions,shrinkage and gas weakness,with observance of certain temperature/rate modes.After comparative tests of vertical and horizontal molds,preference has been given to horizontal water-cooled molds,allowing to cast all alloys in the conditions of directional crystallization.

  5. Platinum impact assessment

    OpenAIRE

    Yip, Joyce Pui Yan

    2007-01-01

    This paper presents a comprehensive strategic analysis of Company X's strategies to mitigate its risks from volatile platinum prices, since Platinum is a critical component of fuel cells. It is recommended that Company X consider leasing platinum to lower cash flow requirements to meet its platinum demand over the next 5 years. A shorter platinum leasing period will reduce Company X's platinum market risk. OEMs can set up metal accounts with catalyst suppliers to eliminate Company X from plat...

  6. Picosecond laser micromachining of nitinol and platinum-iridium alloy for coronary stent applications

    Energy Technology Data Exchange (ETDEWEB)

    Muhammad, N.; Whitehead, D.; Li, L. [University of Manchester, Laser Processing Research Centre, School of Mechanical, Aerospace and Civil Engineering, Manchester (United Kingdom); Boor, A.; Oppenlander, W. [Swiss Tec AG, Schaan, Principality of Liechtenstein (Liechtenstein); Liu, Z. [University of Manchester, Corrosion and Protection Centre, School of Materials, Manchester (United Kingdom)

    2012-03-15

    The demand for micromachining of coronary stents by means of industrial lasers rises quickly for treating coronary artery diseases, which cause more than one million deaths each year. The most widely used types of laser for stent manufacturing are Nd:YAG laser systems with a wavelength of 1064 nm with pulse lengths of 10{sup -3}-10{sup -2} seconds. Considerable post-processing is required to remove heat-affected zones (HAZ), and to improve surface finishes and geometry. Using a third harmonic laser radiation of picosecond laser (6 x 10{sup -12} s pulse duration) in UV range, the capability of the picosecond laser micromachining of nitinol and platinum-iridium alloy for coronary stent applications are presented. In this study dross-free cut of nitinol and platinum-iridium alloy tubes are demonstrated and topography analysis of the cut surface is carried out. The HAZ characteristics have been investigated by means of microscopic examinations and measurement of micro-hardness distribution near the cut zones. (orig.)

  7. Picosecond laser micromachining of nitinol and platinum-iridium alloy for coronary stent applications

    Science.gov (United States)

    Muhammad, N.; Whitehead, D.; Boor, A.; Oppenlander, W.; Liu, Z.; Li, L.

    2012-03-01

    The demand for micromachining of coronary stents by means of industrial lasers rises quickly for treating coronary artery diseases, which cause more than one million deaths each year. The most widely used types of laser for stent manufacturing are Nd:YAG laser systems with a wavelength of 1064 nm with pulse lengths of 10-3-10-2 seconds. Considerable post-processing is required to remove heat-affected zones (HAZ), and to improve surface finishes and geometry. Using a third harmonic laser radiation of picosecond laser (6×10-12 s pulse duration) in UV range, the capability of the picosecond laser micromachining of nitinol and platinum-iridium alloy for coronary stent applications are presented. In this study dross-free cut of nitinol and platinum-iridium alloy tubes are demonstrated and topography analysis of the cut surface is carried out. The HAZ characteristics have been investigated by means of microscopic examinations and measurement of micro-hardness distribution near the cut zones.

  8. Theoretical studies on membranes and non-platinum catalysts for polymer electrolyte fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Ushiyama, Hiroshi [Department of Chemical System Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan ushiyama@chemsys.t.u-tokyo.ac.jp (Japan)

    2015-12-31

    Mechanism of proton transfer among high-density acid groups in the interface between organic and inorganic materials for polymer electrolyte fuel cells has been theoretically examined. It has been clearly shown that the interactions between the phosphate groups at the surface of the inorganic material, zirconium phosphate (ZrP), and the adsorbed water molecules are relatively large and a strong hydrogen-bond network is generated locally. Because of the strong interactions, water molecules can be attached to ZrP and the O–O distance becomes shorter than that in bulk water systems. Because of the short O–O distances and the delocalized charge of each atom, the activation energy of proton transfer at the ZrP surface decreases and causes high proton conductivity even under conditions of high temperature and low humidity. Based on the above studies, the origin of the high proton conductivity of hybrid electrolytes is also discussed. We will also discuss the mechanism of oxygen reduction reaction on non-platinum catalysts such as Ta{sub 3}N{sub 5}.

  9. Hydrogenation of o-cresol on platinum catalyst: Catalytic experiments and first-principles calculations

    Science.gov (United States)

    Li, Yaping; Liu, Zhimin; Xue, Wenhua; Crossley, Steven P.; Jentoft, Friederike C.; Wang, Sanwu

    2017-01-01

    Catalytic experiments were performed for the hydrogenation of o-cresol in n-dodecane over a platinum catalyst. Batch reactions analyzed with an in-situ ATR IR probe suggest that the hydrogenation results in the formation of the final product, 2-methyl-cyclohexanol, with 2-methyl-cyclohexanone as the intermediate product. Ab initio density-functional theory was employed to investigate the atomic-scale mechanism of o-cresol hydrogenation on the Pt(111) surface. The formation of 2-methyl-cyclohexanone was found to involve two steps. The first step is a hydrogen abstraction, that is, the H atom in the hydroxyl group migrates to the Pt surface. The second step is hydrogenation, that is, the pre-existing H atoms on Pt react with the carbon atoms in the aromatic ring. On the other hand, 2-methyl-cyclohexanonol may be produced through two paths, with activation energies slightly greater than that for the formation of 2-methyl-cyclohexanone. One path involves direct hydrogenation of the aromatic ring. Another path involves three steps, with the partial hydrogenation of the ring as the first step, hydrogen abstraction of the sbnd OH group as the second, and hydrogenation of remaining C atoms and the O atom the last.

  10. Glycerol electro-oxidation on a carbon-supported platinum catalyst at intermediate temperatures

    Science.gov (United States)

    Ishiyama, Keisuke; Kosaka, Fumihiko; Shimada, Iori; Oshima, Yoshito; Otomo, Junichiro

    2013-03-01

    The electro-oxidation of glycerol on a carbon-supported platinum catalyst (Pt/C) in combination with a reaction products analysis was investigated at intermediate temperatures (235-260 °C) using a single cell with a CsH2PO4 proton conducting solid electrolyte. A high current density was achieved. The main products were H2, CO2 and CO but the formation of C2 compounds, such as glycolic acid and ethane, was also observed. In addition, several C3 compounds were detected as minor products. A reaction products analysis revealed that the C-C bond dissociation ratio of glycerol was 70-80% at both low and high potentials (>200 mV vs. reversible hydrogen electrode) at 250 °C, suggesting that rapid dissociation occurs on Pt/C. The reaction products analysis also suggested that hydrogen production via thermal decomposition and/or steam reforming of glycerol (indirect path) and direct electro-oxidation of glycerol (direct path) proceed in parallel. More detailed reaction paths involving C1, C2 and C3 reaction products are discussed as well as the possible rate-determining step in glycerol electro-oxidation at intermediate temperatures.

  11. Catalytic activity vs. size correlation in platinum catalysts of PEM fuel cells prepared on carbon black by different methods

    Energy Technology Data Exchange (ETDEWEB)

    Nores-Pondal, F.J.; Granada, M.; Corti, H.R. [Departamento de Fisica de la Materia Condensada, Centro Atomico Constituyentes, Comision Nacional de Energia Atomica (CNEA), General Paz 1499, 1650 San Martin, Buenos Aires (Argentina); Vilella, I.M.J.; de Miguel, S.R.; Scelza, O.A. [Instituto de Investigaciones en Catalisis y Petroquimica (INCAPE), Facultad de Ingenieria Quimica (Universidad Nacional del Litoral) - CONICET, Santiago del Estero 2654, 3000 Santa Fe (Argentina); Troiani, H. [Departamento de Fisica, Centro Atomico Bariloche, Comision Nacional de Energia Atomica (CNEA), Av. Bustillo 9500, 8400 San Carlos de Bariloche (Argentina)

    2009-10-15

    In this work nanoparticulated platinum catalysts have been prepared on carbon Vulcan XC-72 using three methods starting with chloroplatinic acid as a precursor: (i) formic acid as a reductor agent; (ii) impregnation method followed by reduction in hydrogen atmosphere at moderated temperature; and (iii) microwave-assisted reduction in ethylene glycol. The catalytic and size studies were also performed on a commercial Pt catalyst (E-Tek, De Nora). The characterization of the particle size and distribution was performed by means of transmission electron microscopy (TEM) and X-ray diffraction (XRD). The characterizations of the catalytic and electrocatalytic properties of the catalysts were determined by studying the cyclohexane dehydrogenation reaction (CHD) and the behavior under cyclic voltammetry (CV) in sulfuric acid solutions. The measured electrochemical activity, along with the hydrogen chemisorption of the catalysts allows the estimation of effective particle sizes, which are much larger than those measured by TEM and XRD. The catalysts prepared by reduction with formic acid and ethylene glycol (microwave-assisted) show electrochemical activities very close to those of the commercial catalyst, and are almost insensitive to the Pt dispersion or Pt particle size. The chemical activity in CHD correlates well with the metallic dispersion determined by hydrogen chemisorption, indicating similar accesibility of H{sub 2} and cyclohexane to the catalyst surface. (author)

  12. Novel Carbon Nanotubes-supported NiB Amorphors Alloy Catalyst for Benzene Hydrogenation

    Institute of Scientific and Technical Information of China (English)

    Mei Hua YANG; Rong Bin ZHANG; Feng Yi LI

    2004-01-01

    The NiB amorphous alloy catalysts supported on CNTs and alumina were prepared by impregnation and chemical reduction. The gas-phase benzene hydrogenation was used as a probe reaction to evaluate the catalytic activity. The result showed that the NiB amorphous alloy catalyst supported on carbon nanotubes exhibited higher activity than that supported on alumina.

  13. The influence of reduction methods and conditions on the activity of alumina-supported platinum catalysts for the liquid phase hydrogenation of benzaldehyde in ethanol

    Energy Technology Data Exchange (ETDEWEB)

    Arai, M.; Obata, A.; Nishiyama, Y. [Tohoku Univ., Sendai (Japan)

    1997-02-01

    The activities of supported metal catalysts depend on various preparation variables, including the method of reduction. A variety of reduction procedures can be applied to the preparation of supported metal catalysts. Previously, the authors used a solid-liquid reduction by sodium tetrahydroborate solution for preparing supported platinum catalysts. In this reduction, platinum precursors adsorbed on supports were brought into contact with the reducing solution. The alumina-supported platinum catalysts prepared in this way were found to display interesting activities in the liquid-phase hydrogenation of {alpha},{beta}-unsaturated aldehydes; they were highly selective to the formation of unsaturated alcohols. The selective hydrogenation of C=O bonds of {alpha},{beta}-unsaturated aldehydes is difficult to achieve with platinum catalysts without using some additives like tin and iron. The maximum temperature that the supported platinum catalysts went through was 110{degrees}C, required for the removal of water. This thermal history is a possible reason for the catalytic activity observed. Following those observations, in the present work, the authors have further examined the influence of reduction procedures by using hydrazine as well as sodium tetrahydroborate and different temperatures common during gas-phase reduction with hydrogen. The catalytic activity has been tested by the liquid-phase hydrogenation of benzaldehyde (BAL) in ethanol under mild conditions. 12 refs., 3 figs.

  14. Selective hydrogenation of halogenated arenes using porous manganese oxide (OMS-2) and platinum supported OMS-2 catalysts.

    Science.gov (United States)

    McManus, Iain J; Daly, Helen; Manyar, Haresh G; Taylor, S F Rebecca; Thompson, Jillian M; Hardacre, Christopher

    2016-07-04

    Porous manganese oxide (OMS-2) and platinum supported on OMS-2 catalysts have been shown to facilitate the hydrogenation of the nitro group in chloronitrobenzene to give chloroaniline with no dehalogenation. Complete conversion was obtained within 2 h at 25 °C and, although the rate of reaction increased with increasing temperature up to 100 °C, the selectivity to chloroaniline remained at 99.0%. Use of Pd/OMS-2 or Pt/Al2O3 resulted in significant dechlorination even at 25 °C and 2 bar hydrogen pressure giving a selectivity to chloroaniline of 34.5% and 77.8%, respectively, at complete conversion. This demonstrates the potential of using platinum group metal free catalysts for the selective hydrogenation of halogenated aromatics. Two pathways were observed for the analogous nitrobenzene hydrogenation depending on the catalyst used. The hydrogenation of nitrobenzene was found to follow a direct pathway to aniline and nitrosobenzene over Pd/OMS-2 in contrast to the OMS and Pt/OMS-2 catalysts which resulted in formation of nitrosobenzene, azoxybenzene and azobenzene/hydrazobenzene intermediates before complete conversion to aniline. These results indicate that for Pt/OMS-2 the hydrogenation proceeds predominantly over the support with the metal acting to dissociate hydrogen. In the case of Pd/OMS-2 both the hydrogenation and hydrogen adsorption occur on the metal sites.

  15. Thermal Balance of the Magneto-Hydro-Dynamic Pump for Recovery of Platinum Group Metals from Spent Auto Catalysts

    Directory of Open Access Journals (Sweden)

    Gil S.

    2016-03-01

    Full Text Available Every new car should be equipped with the catalyst, which limits the amount of harmful chemical compounds such as NOx, CH and CO emitted to the air. Auto catalyst consists of the ceramic or metallic carrier, on which is the layer with Platinum Group Metals playing catalytic role. There are many methods using for recovery those valuable metals from spent auto catalyst, however evry of those methods have some limitations. Proces described in the article is the modified method of metal collector, which used magnetohydrodynamic pump. Rotary electromagnetic field generates in the liquid metal rotary current, which as a consequence washing out the PGM metals from the ceramic carriers. Considering the possibilities of commercialization of the described method, the energy balance was made. From that balance the energetic efficiency of the unit was determined and the analysis of the temperature distribution was shown thermographycally.

  16. Shape and composition-controlled platinum alloy nanocrystals using carbon monoxide as reducing agent.

    Science.gov (United States)

    Wu, Jianbo; Gross, Adam; Yang, Hong

    2011-02-01

    The shape of metal alloy nanocrystals plays an important role in catalytic performances. Many methods developed so far in controlling the morphologies of nanocrystals are however limited by the synthesis that is often material and shape specific. Here we show using a gas reducing agent in liquid solution (GRAILS) method, different Pt alloy (Pt-M, M = Co, Fe, Ni, Pd) nanocrystals with cubic and octahedral morphologies can be prepared under the same kind of reducing reaction condition. A broad range of compositions can also be obtained for these Pt alloy nanocrystals. Thus, this GRAILS method is a general approach to the preparation of uniform shape and composition-controlled Pt alloy nanocrystals. The area-specific oxygen reduction reaction (ORR) activities of Pt(3)Ni catalysts at 0.9 V are 0.85 mA/cm(2)(Pt) for the nanocubes, and 1.26 mA/cm(2)(Pt) for the nanooctahedra. The ORR mass activity of the octahedral Pt(3)Ni catalyst reaches 0.44 A/mg(Pt).

  17. Identification of non-precious metal alloy catalysts for selective hydrogenation of acetylene

    DEFF Research Database (Denmark)

    Studt, Felix; Abild-Pedersen, Frank; Bligaard, Thomas

    2008-01-01

    The removal of trace acetylene from ethylene is performed industrially by palladium hydrogenation catalysts ( often modified with silver) that avoid the hydrogenation of ethylene to ethane. In an effort to identify catalysts based on less expensive and more available metals, density functional...... calculations were performed that identified relations in heats of adsorption of hydrocarbon molecules and fragments on metal surfaces. This analysis not only verified the facility of known catalysts but identified nickel- zinc alloys as alternatives. Experimental studies demonstrated that these alloys...

  18. Study of The Pd-B/γ-Al2O3 Amorphous Alloy Catalyst

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    The Pd-B/γ-Al2O3 amorphous alloy catalyst and Pd/γ-Al2O3 crystalline metal catalyst were prepared by KBH4 reduction and routine impregnation, respectively. Pd-B/γ-A12O3 and Pd/γ-A12O3 catalysts were characterized by XRD and SEM. It was found that the catalytic activity of the Pd-B/γ-A12O3 amorphous alloy catalyst was higher than that of the Pd/γ-A12O3crystalline metal catalyst in the anthraquinone hydrogenation.

  19. Platinum and palladium nano-structured catalysts for polymer electrolyte fuel cells and direct methanol fuel cells.

    Science.gov (United States)

    Long, Nguyen Viet; Thi, Cao Minh; Yong, Yang; Nogami, Masayuki; Ohtaki, Michitaka

    2013-07-01

    In this review, we present the synthesis and characterization of Pt, Pd, Pt based bimetallic and multi-metallic nanoparticles with mixture, alloy and core-shell structure for nano-catalysis, energy conversion, and fuel cells. Here, Pt and Pd nanoparticles with modified nanostructures can be controllably synthesized via chemistry and physics for their uses as electro-catalysts. The cheap base metal catalysts can be studied in the relationship of crystal structure, size, morphology, shape, and composition for new catalysts with low cost. Thus, Pt based alloy and core-shell catalysts can be prepared with the thin Pt and Pt-Pd shell, which are proposed in low and high temperature proton exchange membrane fuel cells (PEMFCs), and direct methanol fuel cells (DMFCs). We also present the survey of the preparation of Pt and Pd based catalysts for the better catalytic activity, high durability, and stability. The structural transformations, quantum-size effects, and characterization of Pt and Pd based catalysts in the size ranges of 30 nm (1-30 nm) are presented in electro-catalysis. In the size range of 10 nm (1-10 nm), the pure Pt catalyst shows very large surface area for electro-catalysis. To achieve homogeneous size distribution, the shaped synthesis of the polyhedral Pt nanoparticles is presented. The new concept of shaping specific shapes and morphologies in the entire nano-scale from nano to micro, such as polyhedral, cube, octahedra, tetrahedra, bar, rod, and others of the nanoparticles is proposed, especially for noble and cheap metals. The uniform Pt based nanosystems of surface structure, internal structure, shape, and morphology in the nanosized ranges are very crucial to next fuel cells. Finally, the modifications of Pt and Pd based catalysts of alloy, core-shell, and mixture structures lead to find high catalytic activity, durability, and stability for nano-catalysis, energy conversion, fuel cells, especially the next large-scale commercialization of next

  20. Development of Sulfur and Carbon Tolerant Reforming Alloy Catalysts Aided Fundamental Atomistic Insights

    Energy Technology Data Exchange (ETDEWEB)

    Suljo Linic

    2008-12-31

    Current hydrocarbon reforming catalysts suffer from rapid carbon and sulfur poisoning. Even though there is a tremendous incentive to develop more efficient catalysts, these materials are currently formulated using inefficient trial and error experimental approaches. We have utilized a hybrid experimental/theoretical approach, combining quantum Density Functional Theory (DFT) calculations and various state-of-the-art experimental tools, to formulate carbon tolerant reforming catalysts. We have employed DFT calculations to develop molecular insights into the elementary chemical transformations that lead to carbon poisoning of Ni catalysts. Based on the obtained molecular insights, we have identified, using DFT quantum calculation, various Ni alloy catalysts as potential carbon tolerant reforming catalysts. The alloy catalysts were synthesized and tested in steam reforming and partial oxidation of methane, propane, and isooctane. We demonstrated that the alloy catalysts are much more carbon-tolerant than monometallic Ni catalysts under nearly stoichiometric steam-to-carbon ratios. Under these conditions, monometallic Ni is rapidly poisoned by sp2 carbon deposits. The research approach is distinguished by two characteristics: (a) knowledge-based, bottomup approach, compared to the traditional trial and error approach, allows for a more efficient and systematic discovery of improved catalysts. (b) the focus is on exploring alloy materials which have been largely unexplored as potential reforming catalysts.

  1. Oxygen reduction activity of Pt and Pt Co-alloy catalysts: A comparison between kinetic measurements and polymer electrolyte fuel cell experiments

    Energy Technology Data Exchange (ETDEWEB)

    Paulus, U.A.; Draschil, C.; Schmidt, T.J. [PSI and Lawrence Berkeley National Lab (United States); Stamenkovic, V. [Lawrence Berkeley National Lab (United States); Markovic, N.M. [Lawrence Berkeley National Lab (United States); Ross, P.N. [Lawrence Berkeley National Lab (United States); Scherer, G.G.

    2002-03-01

    The oxygen reduction reaction (orr) has been studied on various carbon supported Pt Co alloys in comparison to carbon supported platinum in perchloric acid. The applied thin film rotating ring-disk electrode (rrde) technique allows both the investigation of the orr and their kinetic analysis and in parallel the detection and quantification of the amount of peroxide produced during the orr. Polymer Electrolyte Fuel cell (PEFC) experiments using commercially available gas diffusion electrodes (gdes) with Pt/C and Pt Co/C respectively as active layers were carried out to investigate the above characterized catalysts under real PEFC conditions. (author)

  2. Platinum catalysts recovery of the proton exchange membrane fuel cell; Recuperacao de catalisadores de platina da celula a combustibel de membrana polimerica trocadora de protons

    Energy Technology Data Exchange (ETDEWEB)

    Fukurozaki, S.H.; Seo, E.S.M. [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil). Centro de Ciencia e Tecnologia de Materiais. Lab. de Processamento de Residuos

    2006-07-01

    Currently, platinum is the most feasible catalyst for the Proton Exchange Membrane Fuel Cells - PEMFC. Along with platinum's significant importance in this energy system are the high cost of this noble metal and its detrimental effects on the environment. Therefore, recycling this material seems as an alternative to decrease its impacts on the environment and, at the same time, to provide a reduction of the system's costs. A search was conducted for literature and studies about platinum recycling methods. However, only two techniques of platinum recovery, which are still in development, were found. In face of this situation, a recovery method of platinum from deactivated Membrane Electrode Assembly - MEA's was developed, with attention to aspects related to the environment and the necessary requirements for its primary recycling. The results found showed a high recovery ratio and a possibility to reintroduce this metal into the production cycle. (author)

  3. Synthesis and characterization of Pt-Sn-Ni alloys to application as catalysts for direct ethanol fuel cells; Sintese e caracterizacao de ligas de Pt-Sn-Ni para aplicacao como caztalisadores em celulas a combustivel do tipo DEFC

    Energy Technology Data Exchange (ETDEWEB)

    Silva, E.L. da; Correa, P.S.; Oliveira, E.L. de; Takimi, A.S.; Malfatti, C.F., E-mail: celia.malfatti@ufrgs.b [Universidade Federal do Rio Grande do Sul (LAPEC/UFRGS), Porto Alegre, RS (Brazil). Programa de Pos-Graduacao em Engenharia Mecanica. Lab. de Pesquisa em Corrosao; Radtke, C. [Universidade Federal do Rio Grande do Sul (IQ/UFRGS), Porto Alegre, RS (Brazil). Inst. de Quimica

    2010-07-01

    Direct ethanol fuel cells (DEFCs) have been the focus of recent research due its application in mobile energy sources. In order to obtain the maximum efficiency from these systems, it is necessary the total ethanol oxidation, which implies in C-C bond break. Different catalysts described in literature are employed with this intent. This work consists in studying PtSnNi catalysts supported on carbon Vulcan XC72R, to application in DEFCs. Thus, it was used the impregnation/reduction method, varying the atomic proportion among Pt, Sn and Ni. The alloys were characterized by X-Ray Diffraction, Cyclic Voltammetry and Transmission Microscopy. Preliminary results show that predominant structure on the catalysts is the face centered cubic platinum and the densities currents are dependent on the platinum amount. (author)

  4. The Effect of Platinum on Stability of the B2O3/TiO2-ZrO2 Catalyst for Beckmann Rearrangement of Cyclohexanone Oxime

    Institute of Scientific and Technical Information of China (English)

    Dong Sen MAO; Guan Zhong LU

    2006-01-01

    The addition of platinum over the B2O3/TiO2-ZrO2 remarkably enhanced its catalytic stability in the vapor phase Beckmann rearrangement of cyclohexanone oxime under the carrier gas of H2. The content of coke deposited on catalyst surface was decreased from 1.92% over the B2O3/TiO2-ZrO2 to 1.14% over the platinum promoted B2O3/TiO2-ZrO2 after reaction of six hours. This result indicates that the platinum added on the B2O3/TiO2-ZrO2 catalyst plays an important role in reducing the coke formation on the catalyst surface.

  5. Study of pyrolyzed hemin/C as non-platinum cathodic catalyst for direct methanol fuel cells

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Biological reduction of O2 to H2O justifies a serious look at heme as a potential O2 reduction reaction(ORR) catalyst for low temperature fuel cells.In this study,a novel non-platinum electrocatalyst for ORR was prepared through hemin,which is hydrochloride of heme,supported on Black Pearls 2000 carbon black(Hm-BP) pyrolyzed at 700-900℃ in Ar atmosphere.The physical and electrocatalytic properties of as-prepared catalysts were characterized by TGA,XRD,XPS,TEM,rotating disk electrode(RDE) and rotating ring disk electrode(RRDE).It has found that the catalyst treated at 750℃(Hm-BP-750) exhibits the best property among the Hm-BP catalysts prepared.The onset potential of ORR on the Hm-BP-750 at 30℃ was measured ca.0.90 V(vs.RHE) in 0.1 M H2SO4,and mass current density was reached 15.3 mA mg-1 at 0.75 V.It has revealed that O2 could be reduced directly to water in a 4e process between 0.9 and 0.83V,and the yield of H2O2 was 0-18% in the potential range of 0.83-0.63 V.This methanol-tolerant catalyst also presents excellent stability in medium-term test of direct methanol fuel cell at 80℃.

  6. Using Mechanical Alloying to Create Bimetallic Catalysts for Vapor-Phase Carbon Nanofiber Synthesis

    Directory of Open Access Journals (Sweden)

    Laura Guevara

    2015-10-01

    Full Text Available Carbon nanofibers were generated over bimetallic catalysts in an atmospheric pressure chemical vapor deposition (APCVD reactor. Catalyst compositions of Fe 30 at%, Cu and Ni 30 at% and Cu were mechanically alloyed using high-energy ball milling over durations of 4, 8, 12, 16, and 20 h. The catalyst powders were then used to produce carbon nanofibers in ethylene and hydrogen (4:1 at temperatures of 500, 550, and 600 °C. The microstructures of the catalysts were characterized as a function of milling time as well as at deposition temperature. The corresponding carbon deposition rates were assessed and are correlated to the microstructural features of each catalyst. The milling process directly determines the performance of each catalyst toward carbon deposition, and both catalysts performed comparably to those made by traditional co-precipitation methods. Considerations in miscible and immiscible nanostructured alloy systems are discussed.

  7. Alloy catalysts for fuel cell-based alcohol sensors

    Science.gov (United States)

    Ghavidel, Mohammadreza Zamanzad

    Direct ethanol fuel cells (DEFCs) are attractive from both economic and environmental standpoints for generating renewable energy and powering vehicles and portable electronic devices. There is a great interest recently in developing DEFC systems. The cost and performance of the DEFCs are mainly controlled by the Pt-base catalysts used at each electrode. In addition to energy conversion, DEFC technology is commonly employed in the fuel-cell based breath alcohol sensors (BrAS). BrAS is a device commonly used to measure blood alcohol concentration (BAC) and enforce drinking and driving laws. The BrAS is non-invasive and has a fast respond time. However, one of the most important drawback of the commercially available BrAS is the very high loading of Pt employed. One well-known and cost effective method to reduce the Pt loading is developing Pt-alloy catalysts. Recent studies have shown that Pt-transition metal alloy catalysts enhanced the electroactivity while decreasing the required loadings of the Pt catalysts. In this thesis, carbon supported Pt-Mn and Pt-Cu electrocatalysts were synthesized by different methods and the effects of heat treatment and structural modification on the ethanol oxidation reaction (EOR) activity, oxygen reduction reaction (ORR) activity and durability of these samples were thoroughly studied. Finally, the selected Pt-Mn and Pt-Cu samples with the highest EOR activity were examined in a prototype BrAS system and compared to the Pt/C and Pt 3Sn/C commercial electrocatalysts. Studies on the Pt-Mn catalysts produced with and without additives indicate that adding trisodium citrate (SC) to the impregnation solution improved the particle dispersion, decreased particle sizes and reduced the time required for heat treatment. Further studies show that the optimum weight ratio of SC to the metal loading in the impregnation solution was 2:1 and optimum results achieved at pH lower than 4. In addition, powder X-ray diffraction (XRD) analyses indicate

  8. Controlled Surface Segregation Leads to Efficient Coke-Resistant Nickel/Platinum Bimetallic Catalysts for the Dry Reforming of Methane

    Energy Technology Data Exchange (ETDEWEB)

    Li, Lidong [King Abdullah Univ. of Science and Technology, Thuwal (Saudi Arabia); Zhou, Lu [King Abdullah Univ. of Science and Technology, Thuwal (Saudi Arabia); Ould-Chikh, Samy [King Abdullah Univ. of Science and Technology, Thuwal (Saudi Arabia); Anjum, Dalaver H. [King Abdullah Univ. of Science and Technology, Thuwal (Saudi Arabia); Kanoun, Mohammed B. [King Abdullah Univ. of Science and Technology, Thuwal (Saudi Arabia); Scaranto, Jessica [SABIC Corporate Research and Innovation Center, Thuwal (Saudi Arabia); Hedhili, Mohamed N. [King Abdullah Univ. of Science and Technology, Thuwal (Saudi Arabia); Khalid, Syed [Brookhaven National Lab. (BNL), Upton, NY (United States); Laveille, Paco V. [King Abdullah Univ. of Science and Technology, Thuwal (Saudi Arabia); D' Souza, Lawrence [SABIC Corporate Research and Innovation Center, Thuwal (Saudi Arabia); Clo, Alain [King Abdullah Univ. of Science and Technology, Thuwal (Saudi Arabia); Basset, Jean-Marie [King Abdullah Univ. of Science and Technology, Thuwal (Saudi Arabia)

    2015-02-03

    The surface composition and structure are of vital importance for heterogeneous catalysts, especially for bimetallic catalysts, which often vary as a function of reaction conditions (known as surface segregation). The preparation of bimetallic catalysts with controlled metal surface composition and structure is very challenging. In this study, we synthesize a series of Ni/Pt bimetallic catalysts with controlled metal surface composition and structure using a method derived from surface organometallic chemistry. Moreover, the evolution of the surface composition and structure of the obtained bimetallic catalysts under simulated reaction conditions is investigated by various techniques, which include CO-probe IR spectroscopy, high-angle annular dark-field scanning transmission electron microscopy, energy-dispersive X-ray spectroscopy, extended X-ray absorption fine structure analysis, X-ray absorption near-edge structure analysis, XRD, and X-ray photoelectron spectroscopy. It is demonstrated that the structure of the bimetallic catalyst is evolved from Pt monolayer island-modified Ni nanoparticles to core–shell bimetallic nanoparticles composed of a Ni-rich core and a Ni/Pt alloy shell upon thermal treatment. The catalysts are active for the dry reforming of methane, and their catalytic activities, stabilities, and carbon formation vary with their surface composition and structure.

  9. LDRD final report on synthesis of shape-and size-controlled platinum and platinum alloy nanostructures on carbon with improved durability.

    Energy Technology Data Exchange (ETDEWEB)

    Shelnutt, John Allen; Garcia, Robert M.; Song, Yujiang; Moreno, Andres M.; Stanis, Ronald J.

    2008-10-01

    This project is aimed to gain added durability by supporting ripening-resistant dendritic platinum and/or platinum-based alloy nanostructures on carbon. We have developed a new synthetic approach suitable for directly supporting dendritic nanostructures on VXC-72 carbon black (CB), single-walled carbon nanotubes (SWCNTs), and multi-walled carbon nanotubes (MWCNTs). The key of the synthesis is to creating a unique supporting/confining reaction environment by incorporating carbon within lipid bilayer relying on a hydrophobic-hydrophobic interaction. In order to realize size uniformity control over the supported dendritic nanostructures, a fast photocatalytic seeding method based on tin(IV) porphyrins (SnP) developed at Sandia was applied to the synthesis by using SnP-containing liposomes under tungsten light irradiation. For concept approval, one created dendritic platinum nanostructure supported on CB was fabricated into membrane electrode assemblies (MEAs) for durability examination via potential cycling. It appears that carbon supporting is essentially beneficial to an enhanced durability according to our preliminary results.

  10. Indium- and Platinum-Free Counter Electrode for Green Mesoscopic Photovoltaics through Graphene Electrode and Graphene Composite Catalysts: Interfacial Compatibility.

    Science.gov (United States)

    Yin, Jie; Zhou, Huawei; Liu, Zhicheng; Nie, Zhonghao; Li, Yinhao; Qi, Xuan; Chen, Baoli; Zhang, Yingtian; Zhang, Xianxi

    2016-03-01

    The scarcity and noble indium and platinum (Pt) are important elements in photoelectric nanomaterials. Therefore, development of low cost alternative materials to meet different practical applications is an urgent need. Two-dimensional (2D) layered graphene (GE) with unique physical, mechanical, and electrical properties has recently drawn a great deal of attention in various optoelectronic fields. Herein, the large scale (21 cm × 15 cm) high-quality single layer graphene (SLG) and multilayer graphene on a flexible plastic substrate PET were controllably prepared through layer-by-layer (LBL) transfer using the thermal release adhesive transfer method (TRA-TM). Transmission and antibending performance based on PET/GE were superior to traditional PET/ITO. The square resistance of a nine-layer graphene electrode reached approximately 58 Ω. Combined with our newly developed and highly effective Fe3O4@RGO (reduced graphene oxide) catalyst, the power conversion efficiency of the dye-sensitized solar cell (DSC) using flexible PET/GE conductive substrate was comparable to that of the DSC using the PET/ITO substrate. The desirable performance of PET/GE/Fe3O4@RGO counter electrodes (low-cost indium- and platinum-free counter electrodes) is attributed to the interfacial compatibility between 2D graphene composite catalyst (Fe3O4@RGO) and 2D PET/GE conductive substrate. In addition, DSCs that use only PET/GE (without Fe3O4@RGO catalyst) as counter electrodes can also achieve a photocurrent density of 6.30 mA cm(-2). This work is beneficial for fundamental research and practical applications of graphene and graphene composite in photovoltaics, photocatalytic water splitting, supercapacitors.

  11. Development of Sulfur and Carbon Tolerant Reforming Alloy Catalysts Aided by Fundamental Atomistics Insights

    Energy Technology Data Exchange (ETDEWEB)

    Suljo Linic

    2006-08-31

    Current hydrocarbon reforming catalysts suffer from rapid carbon and sulfur poisoning. Even though there is a tremendous incentive to develop more efficient catalysts, these materials are currently formulated using inefficient trial and error experimental approaches. We have utilized a novel hybrid experimental/theoretical approach, combining quantum Density Functional Theory (DFT) calculations and various state-of-the-art experimental tools, to formulate carbon tolerant reforming catalysts. We have employed DFT calculations to develop molecular insights into the elementary chemical transformations that lead to carbon poisoning of Ni catalysts. Based on the obtained molecular insights, we have identified, using DFT quantum calculation, Sn/Ni alloy as a potential carbon tolerant reforming catalyst. Sn/Ni alloy was synthesized and tested in steam reforming of methane, propane, and isooctane. We demonstrated that the alloy catalyst is carbon-tolerant under nearly stoichiometric steam-to-carbon ratios. Under these conditions, monometallic Ni is rapidly poisoned by sp2 carbon deposits. The research approach is distinguished by a few characteristics: (a) Knowledge-based, bottom-up approach, compared to the traditional trial and error approach, allows for a more efficient and systematic discovery of improved catalysts. (b) The focus is on exploring alloy materials which have been largely unexplored as potential reforming catalysts.

  12. Polyol Synthesis of Cobalt–Copper Alloy Catalysts for Higher Alcohol Synthesis from Syngas

    DEFF Research Database (Denmark)

    Mendes, Laiza V.P.; Snider, Jonathan L.; Fleischman, Samuel D.

    2017-01-01

    Novel catalysts for the selective production of higher alcohols from syngas could offer improved pathways towards synthetic fuels and chemicals. Cobalt–copper alloy catalysts have shown promising results for this reaction. To improve control over particle properties, a liquid phase nanoparticle s...

  13. Heterogeneous platinum-catalyzed hydrogenation of dialkyl(diolefin)platinum(II) complexes: A new route to platinum surface alkyls

    OpenAIRE

    McCarthy, Thomas J.; Shih, Yen-Shiang; Whitesides, George M.

    1981-01-01

    Platinum metal catalyzes the reduction of dialkyl(diolefin)platinum(II) complexes by dihydrogen to alkanes and platinum(0). The reaction involves adsorption of the platinum(II) complex on the platinum(0) catalyst surface with conversion of the alkyl moieties to platinum surface alkyls; these appear as alkane products. The platinum atom originally present in the soluble organoplatinum species becomes part of the platinum(0) surface.

  14. Alloyed Ni-Fe nanoparticles as catalysts for NH3 decomposition

    DEFF Research Database (Denmark)

    Simonsen, Søren Bredmose; Chakraborty, Debasish; Chorkendorff, Ib;

    2012-01-01

    A rational design approach was used to develop an alloyed Ni-Fe/Al2O3 catalyst for decomposition of ammonia. The dependence of the catalytic activity is tested as a function of the Ni-to-Fe ratio, the type of Ni-Fe alloy phase, the metal loading and the type of oxide support. In the tests with high...

  15. Controlled surface segregation leads to efficient coke-resistant nickel/platinum bimetallic catalysts for the dry reforming of methane

    KAUST Repository

    Li, Lidong

    2015-02-03

    Surface composition and structure are of vital importance for heterogeneous catalysts, especially for bimetallic catalysts, which often vary as a function of reaction conditions (known as surface segregation). The preparation of bimetallic catalysts with controlled metal surface composition and structure is very challenging. In this study, we synthesize a series of Ni/Pt bimetallic catalysts with controlled metal surface composition and structure using a method derived from surface organometallic chemistry. The evolution of the surface composition and structure of the obtained bimetallic catalysts under simulated reaction conditions is investigated by various techniques, which include CO-probe IR spectroscopy, high-angle annular dark-field scanning transmission electron microscopy, energy-dispersive X-ray spectroscopy, extended X-ray absorption fine structure analysis, X-ray absorption near-edge structure analysis, XRD, and X-ray photoelectron spectroscopy. It is demonstrated that the structure of the bimetallic catalyst is evolved from Pt monolayer island-modified Ni nanoparticles to core-shell bimetallic nanoparticles composed of a Ni-rich core and a Ni/Pt alloy shell upon thermal treatment. These catalysts are active for the dry reforming of methane, and their catalytic activities, stabilities, and carbon formation vary with their surface composition and structure. The reform of reforming: A series of alumina-supported Ni/Pt bimetallic nanoparticles (NPs) with controlled surface composition and structure are prepared. Remarkable surface segregation for these bimetallic NPs is observed upon thermal treatment. These bimetallic NPs are active catalysts for CO2 reforming of CH4, and their catalytic activities, stabilities, and carbon formation vary with their surface composition and structure.

  16. UV-induced polymerization of size-controlled platinum/poly[styrene-divinylbenzene-tri(propylene glycol diacrylate] hydrophobic catalyst beads in microfluidics

    Directory of Open Access Journals (Sweden)

    Jun Wei

    2015-10-01

    Full Text Available The catalytic exchange of hydrogen isotopes between hydrogen and water has been known to be a very useful process for the separation of tritium from tritiated water. For the process, a highly active hydrophobic catalyst is needed. This study provides an effective fabrication method of size-controlled platinum/poly[styrene-divinylbenzene-tri(propylene glycol diacrylate] [Pt/poly(SDB-TPGDA] hydrophobic catalyst beads with a narrow size distribution. Platinum nanoparticles were prepared by γ-ray-induced reduction in the aqueous phase first, and then uniformly dispersed in SDB-TPGDA comonomer after the hydrophobization of platinum nanoparticles with alkylamine stabilizers. The porous Pt/poly(SDB-TPGDA hydrophobic catalyst beads were synthesized by the UV-initiated polymerization of the mixture droplets prepared in a capillary-based microfluidic system. The size of as-prepared catalyst beads can be controlled in the range of 200–1,000 μm by adjusting the flow rate of dispersed and continuous phases, as well as the viscosity of the continuous phase. Sorbitan monooleate and cyclohexanol were used as coporogens to control the porosities of the catalyst beads.

  17. UV-induced polymerization of size-controlled platinum/poly[styrene-divinylbenzene-tri(propylene glycol) diacrylate] hydrophobic catalyst beads in microfluidics

    Energy Technology Data Exchange (ETDEWEB)

    Wi, Jun; Li, Xiang; Song, Tong; Song, Zi Fan; Chang, Zhen Qi [School of Nuclear Science and Technology, University of Science and Technology of China, Hefei (China); Meng, Da Qiao [Si Chuan Institute of Materials and Technology, Jiang You (China)

    2015-10-15

    The catalytic exchange of hydrogen isotopes between hydrogen and water has been known to be a very useful process for the separation of tritium from tritiated water. For the process, a highly active hydrophobic catalyst is needed. This study provides an effective fabrication method of size-controlled platinum/poly[styrene-divinylbenzene-tri(propylene glycol) diacrylate] [Pt/poly(SDB-TPGDA)] hydrophobic catalyst beads with a narrow size distribution. Platinum nanoparticles were prepared by γ-ray-induced reduction in the aqueous phase first, and then uniformly dispersed in SDB-TPGDA comonomer after the hydrophobization of platinum nanoparticles with alkylamine stabilizers. The porous Pt/poly(SDB-TPGDA) hydrophobic catalyst beads were synthesized by the UV-initiated polymerization of the mixture droplets prepared in a capillary-based microfluidic system. The size of as-prepared catalyst beads can be controlled in the range of 200-1,000 μm by adjusting the flow rate of dispersed and continuous phases, as well as the viscosity of the continuous phase. Sorbitan monooleate and cyclohexanol were used as coporogens to control the porosities of the catalyst beads.

  18. Platinum Alloy Tailored All-Weather Solar Cells for Energy Harvesting from Sun and Rain.

    Science.gov (United States)

    Tang, Qunwei; Duan, Yanyan; He, Benlin; Chen, Haiyan

    2016-11-07

    Solar cells that can harvest energy in all weathers are promising in solving the energy crisis and environmental problems. The power outputs are nearly zero under dark conditions for state-of-the-art solar cells. To address this issue, we present herein a class of platinum alloy (PtMx , M=Ni, Fe, Co, Cu, Mo) tailored all-weather solar cells that can harvest energy from rain and realize photoelectric conversion under sun illumination. By tuning the stoichiometric Pt/M ratio and M species, the optimized solar cell yields a photoelectric conversion efficiency of 10.38 % under simulated sunlight irradiation (AM 1.5, 100 mW cm(-2) ) as well as current of 3.90 μA and voltage of 115.52 μV under simulated raindrops. Moreover, the electric signals are highly dependent on the dripping velocity and the concentration of simulated raindrops along with concentrations of cation and anion.

  19. Research of platinum catalysts used in PEM fuel cell%质子交换膜燃料电池含Pt催化剂的研究

    Institute of Scientific and Technical Information of China (English)

    雷一杰; 李彤; 顾军; 于涛; 邹志刚

    2011-01-01

    作为质子交换膜燃料电池的主要用催化剂,Pt的研究对质子交换膜燃料电池运用和普及起着至关重要的作用.为此,近年来一系列大量的基于Pt催化剂的不同形貌、不同成分、不同载体的研究大大地推进了Pt催化剂技术的发展.%As the main catalyst used in proton exchange membrane fuel cell(PEMFC), the platinum research plays a vital role on the application and popularization of PEMFC. In this respect, a great deal of effort has been put into the morphologies, ingredients, supporters based on the platinum catalysts in recent years, which has promoted the catalyst technology.

  20. The platinum catalyst layer in polymer-electrolyte fuel cells[Dissertation 17127]; Die Platinkatalysatorschicht in Polymerelektrolyt-Brennstoffzellen. Beitraege zum Verstaendnis und zur Optimierung

    Energy Technology Data Exchange (ETDEWEB)

    Reiner, A.

    2007-07-01

    This illustrated, comprehensive dissertation by Dr. Andreas Reiner presents an in-depth analysis of polymer electrolyte fuel cells (PEFC) and in particular, their platinum catalyst layer. First of all, the thermodynamics and kinetics involved are reviewed, along with components, their efficiencies and the catalyst layer. The methods used, including scanning electron microscope, x-ray and Rutherford spectroscopy are discussed. The structure and composition of co-sputtered catalyst layers and their production are described. Electro-chemical activation and the electro-chemical properties of the layers are discussed. The second part of the dissertation deals with the principle of hydrogen under-potential deposition. This method provides information about the electrochemically active platinum surface fraction. The results of investigations made are presented and discussed.

  1. Modeling the cathode in a proton exchange membrane fuel cell using density functional theory How the carbon support can affect durability and activity of a platinum catalyst

    Science.gov (United States)

    Groves, Michael Nelson

    The current global energy and environmental challenges need to be addressed by developing a new portfolio of clean power producing devices. The proton exchange membrane fuel cell has the potential to be included and can fit into a variety of niches ranging from portable electronics to stationary residential applications. One of the many barriers to commercial viability is the cost of the cathode layer which requires too much platinum metal to achieve a comparable power output as well as would need to be replaced more frequently when compared to conventional sources for most applications. Using density functional theory, an ab initio modeling technique, these durability and activity issues are examined for platinum catalysts on graphene and carbon nanotube supports. The carbon supports were also doped by replacing individual carbon atoms with other second row elements (beryllium, boron, nitrogen, and oxygen) and the effect on the platinum-surface interaction along with the interaction between the platinum and the oxygen reduction reaction intermediates are discussed. Keywords: proton exchange membrane fuel cell, density functional theory, platinum catalyst, oxygen reduction reaction, doped carbon surfaces

  2. Performance of Platinum Nanoparticles / Multiwalled Carbon Nanotubes / Bacterial Cellulose Composite as Anode Catalyst for Proton Exchange Membrane Fuel Cells

    Directory of Open Access Journals (Sweden)

    Henry Fonda Aritonang

    2017-05-01

    Full Text Available Highly dispersed platinum (Pt nanoparticles / multiwalled carbon nanotubes (MWCNTs on bacterial cellulose (BC as anode catalysts for proton exchange membrane fuel cells (PEMFC were prepared with various precursors and their electro-catalytic activities towards hydrogen oxidation at 70 oC under non-humidified conditions. The composite was prepared by deposition of Pt nanoparticles and MWCNTs on BC gel by impregnation method using a water solution of metal precursors and MWCNTs followed by reducing reaction using a hydrogen gas. The composite was characterized by using TEM (transmission electron microscopy, EDS (energy dispersive spectroscopy, and XRD (X-ray diffractometry techniques. TEM images and XRD patterns both lead to the observation of spherical metallic Pt nanoparticles with mean diameter of 3-11 nm well impregnated into the BC fibrils. Preliminary tests on a single cell indicate that renewable BC is a good prospect to be explored as a membrane in fuel cell field. Copyright © 2017 BCREC Group. All rights reserved Received: 21st November 2016; Revised: 26th February 2017; Accepted: 27th February 2017 How to Cite: Aritonang, H.F., Kamu, V.S., Ciptati, C., Onggo, D., Radiman, C.L. (2017. Performance of Platinum Nanoparticles / Multiwalled Carbon Nanotubes / Bacterial Cellulose Composite as Anode Catalyst for Proton Exchange Membrane Fuel Cells. Bulletin of Chemical Reaction Engineering & Catalysis, 12 (2: 287-292 (doi:10.9767/bcrec.12.2.803.287-292 Permalink/DOI: http://dx.doi.org/10.9767/bcrec.12.2.803.287-292

  3. Hydrogen and/or syngas from steam reforming of glycerol. Study of platinum catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Pompeo, Francisco; Santori, Gerardo; Nichio, Nora N. [Facultad de Ingenieria, Universidad Nacional de La Plata, 1 esq 47, 1900 La Plata (Argentina); CINDECA, Facultad de Ciencias Exactas, Universidad Nacional de La Plata-CONICET, 47 N 257, 1900 La Plata (Argentina)

    2010-09-15

    In the present work, Pt catalysts prepared on different supports were evaluated in order to apply them in the steam reforming of glycerol reaction to obtain hydrogen and/or synthesis gas at temperatures lower than 450 C. A strong support effect on the behavior of catalysts was determined. The presence of intermediate products allowed to propose a scheme of reactions that would explain the results obtained at different space times and temperatures studied. Materials with acid properties demonstrated low activity to gaseous products, with formation of lateral products due to dehydration and condensation reactions, which would lead to coke formation and to a fast catalyst deactivation. On the contrary, the catalyst prepared with a support with neutral properties permitted to obtain a catalyst with excellent activity levels to gaseous products, high selectivity to H{sub 2}, and a very well stability in time. (author)

  4. Influence of Yttrium and Ytterbium on Reaction Performance of Platinum-Rhenium Reforming Catalyst

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The influence of yttrium and ytterbium on the catalytic performance of Pt-Re reforming cata-lysts was studied in a continuous flow pressurized microreactor-chromatograph system and pilot unit. Theresults of micro-reactor test showed that both yttrium and ytterbium could improve the selectivity of Pt-Recatalysts for the conversion ofn-heptane as well as MCP into aromatics, but also suppressed their activityas well. Pilot test results showed that yttrium and ytterbium enhanced both the selectivity and activity ofPt-Re catalysts for naphtha reforming. Yttrium showed more improvement than ytterbium. The perfor-mance difference between microreactor test and pilot test might be due to the difference in improvement ofcatalytic stability of yttrium or ytterbium modified Pt-Re catalysts. Yttrium and ytterbium improved thecoking resistance of yttrium or ytterbium modified Pt-Re catalysts. TEM determination results indicatedthat both yttrium and ytterbium had improved the thermal stability of Pt-Re catalysts.

  5. REDUCTION OF NITRIC OXIDE BY CARBON MONOXIDE OVER A SILICA SUPPORTED PLATINUM CATALYST: INFRARED AND KINETIC STUDIES

    Energy Technology Data Exchange (ETDEWEB)

    Lorimer, D.H.

    1978-08-01

    The reduction of nitric oxide by carbon monoxide over a 4.5 weight precent platinum catalyst supported on silica was studied at 300 C. Reaction rate data was obtained together with in situ infrared spectra of species on the catalyst surface. The kinetics of the system were found to exhibit two distinct trends, depending on the molar ratio of CO/NO in the reactor. For net reducing conditions (CO/NO> 1) the catalyst underwent a transient deactivation, the extent of which was dependent on the specific CO/NO ratio during reaction. Reactivation of the catalyst was obtained with both oxidizing and reducing pretreatments. For molar feed ratios of CO/NO less than one, carbon monoxide conversion was typically 95 to 100%, resulting in strongly oxidizing conditions over the catalyst. Under these conditions no deactivation was apparent. Infrared spectra recorded under reaction conditions revealed intense bands at 2075 and 2300 cm{sup -1} , which were identified as carbon monoxide adsorbed on Pt and Si-NCO, respectively. Isocyanate bands formed under reducing conditions were more intense and exhibited greater stability than those formed under oxidizing conditions. A reaction mechanism based on the dissociation of nitric oxide as the rate-limiting step was used to correlate nitric oxide reaction rates and nitrous oxide selectivities observed under reducing conditions. As part of this mechanism it is assumed that nitrous bxide is formed via a Langmuir-Hinshelwood process in which an adsorbed nitrogen atom reacts with an adsorbed nitric oxide molecule. The nitric oxide reaction rate was found to be first order in nitric oxide partial pressure, and inverse second order in carbon monoxide partial pressure. A mechanism is proposed to qualitatively explain the deactivation process observed under reducing conditions. The essential part of this mechanism is the formation of an isocyanate species on the Pt crystallites of the catalyst and the subsequent transient diffusion of these

  6. Load cycle durability of a graphitized carbon black-supported platinum catalyst in polymer electrolyte fuel cell cathodes

    Science.gov (United States)

    Takei, Chikara; Kakinuma, Katsuyoshi; Kawashima, Kazuhito; Tashiro, Keisuke; Watanabe, Masahiro; Uchida, Makoto

    2016-08-01

    We focus on Pt degradation occurring during fuel cell vehicle (FCV) combined drive cycles involving load and open circuit voltage (OCV) just after startup and during idling. Load cycle durability is evaluated as a function of OCV/load holding time, load rate and relative humidity (RH) with a graphitized carbon black-supported platinum catalyst (Pt/GCB) in the cathode. The degradation of Pt/GCB is suppressed for shorter OCV holding times, lower load rates and lower RH. Scanning ion microscopy (SIM) images of membrane cross-sections indicate that the amount of Pt deposited in the membrane decreases during drive cycles involving load with short OCV holding times. Investigations of the Pt distribution in the cathode catalyst layer (CL) by using scanning TEM-EDX show that the dissolution of Pt is suppressed on the membrane side in the CL. The Pt dissolution is accelerated by the high Pt oxidation due to the long OCV holding time. A load cycle with both long OCV holding time and low load inhibits the Pt2+ migration into the membrane but accelerates the Pt particle growth due to electrochemical Ostwald ripening; meanwhile, a load cycle with long OCV holding time at lower RH prevents both the Pt dissolution and particle growth.

  7. A solar-powered microbial electrolysis cell with a platinum catalyst-free cathode to produce hydrogen.

    Science.gov (United States)

    Chae, Kyu-Jung; Choi, Mi-Jin; Kim, Kyoung-Yeol; Ajayi, Folusho F; Chang, In-Seop; Kim, In S

    2009-12-15

    This paper reports successful hydrogen evolution using a dye-sensitized solar cell (DSSC)-powered microbial electrolysis cell (MEC) without a Pt catalyst on the cathode, indicating a solution for the inherent drawbacks of conventional MECs, such as the need for an external bias and catalyst. DSSCs fabricated by assembling a ruthenium dye-loaded TiO(2) film and platinized FTO glass with an I(-)/I(3)(-) redox couple were demonstrated as an alternative bias (V(oc) = 0.65 V). Pt-loaded (0.3 mg Pt/cm(2)) electrodes with a Pt/C nanopowder showed relatively faster hydrogen production than the Pt-free electrodes, particularly at lower voltages. However, once the applied photovoltage exceeded a certain level (0.7 V), platinum did not have any additional effect on hydrogen evolution in the solar-powered MECs: hydrogen conversion efficiency was almost comparable for either the plain (71.3-77.0%) or Pt-loaded carbon felt (79.3-82.0%) at >0.7 V. In particular, the carbon nanopowder-coated electrode without Pt showed significantly enhanced performance compared to the plain electrode, which indicates efficient electrohydrogenesis, even without Pt by enhancing the surface area. As the applied photovoltage was increased, anodic methanogenesis decreased gradually, resulting in increasing hydrogen yield.

  8. bis-Nitrile and bis-Dialkylcyanamide Platinum(II) Complexes as Efficient Catalysts for Hydrosilylation Cross-Linking of Siloxane Polymers.

    Science.gov (United States)

    Islamova, Regina M; Dobrynin, Mikhail V; Ivanov, Daniil M; Vlasov, Andrey V; Kaganova, Elena V; Grigoryan, Galina V; Kukushkin, Vadim Yu

    2016-03-05

    cis- and trans-Isomers of the platinum(II) nitrile complexes [PtCl2(NCR)2] (R = NMe2, N(C₅H10), Ph, CH2Ph) were examined as catalysts for hydrosilylation cross-linking of vinyl-terminated polydimethylsiloxane and trimethylsilyl-terminated poly(dimethylsiloxane-co-ethylhydrosiloxane) producing high quality silicone rubbers. Among the tested platinum species the cis-complexes are much more active catalysts than their trans-congeners and for all studied platinum complexes cis-[PtCl2(NCCH2Ph)2] exhibits the best catalytic activity (room temperature, c = 1.0 × 10(-4) mol/L, τpot-life 60 min, τcuring 6 h). Although cis-[PtCl₂(NCCH2Ph)2] is less active than the widely used Karstedt's catalyst, its application for the cross-linking can be performed not only at room temperature (c = 1.0 × 10(-4) mol/L), but also, more efficiently, at 80 °C (c = 1.0 × 10(-4)-1.0 × 10(-5) mol/L) and it prevents adherence of the formed silicone rubbers to equipment. The usage of the cis- and trans-[PtCl2(NCR)2] complexes as the hydrosilylation catalysts do not require any inhibitors and, moreover, the complexes and their mixtures with vinyl- and trimethylsilyl terminated polysiloxanes are shelf-stable in air. Tested catalysts do not form colloid platinum particles after the cross-linking.

  9. Miniature fuel cell with monolithically fabricated Si electrodes - Alloy catalyst formation -

    Science.gov (United States)

    Ogura, Daiki; Suzuki, Takahiro; Katayama, Noboru; Dowaki, Kiyoshi; Hayase, Masanori

    2013-12-01

    A novel Pd-Pt catalyst formation process was proposed for reduction of Pt usage. In our miniature fuel cells, porous Pt was used as the catalyst, and the Pt usage was quite high. To reduce the Pt usage, we have attempted to deposit Pt on porous Pd by galvanic replacement, and relatively large output was demonstrated. In this study, in order to reduce more Pt usage and explore the alloy catalyst formation process, atomic layer deposition by UPD-SLRR (Under Potential Deposition - Surface Limited Redox Replacement) was applied to the Pd-Pt catalyst formation. The new process was verified at each process steps by EDS elemental analysis, and the expected spectra were obtained. Prototype cells were constructed by the new process, and cell output was raised to 420mW/cm2 by the Pd-Pt catalyst from 125mW/cm2 with Pd catalyst.

  10. Influences of Platinum Precursors and Solution Acidities on REO-Based Catalysts Performances

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Important effects exist between precious metals and rare earths oxides in three-way catalyst, especially the coordinated effects. These effects were studied by using H2PtCl6, Pt(NH3)2(NO2)2 and Pt(OH)2(C2H5ONH2)2 as Pt precursors, and the mixed oxide of (Ce-Zr-La-Pr)O as base material to prepare a series of catalysts, and their performances of the catalysts were studied by TPR and CO pulse titration technologies. The results shown that Pt precursors and their solutions pH values influenced the oxygen storage capabilities, the active metal distribution degrees of the catalysts obviously, and every catalyst prepared by different precursors had an optimal pH values. It indicates that the active metals precursors and their solutions acidities have outstanding influences on the catalysts performances for the mutual effects existing between the active metals and the Rare Earth metal oxides, which results from the mate groups of the precursors and the solution acidity.

  11. Parametric study of the partial oxidation of propane over nickel and platinum based catalysts

    Science.gov (United States)

    Mukka, Mayuri

    Hydrogen production though the partial oxidation of propane over 1%Pt/CeO 2 and 1%Ni/CeO2 catalysts was studied in a fixed-bed reactor. The purpose of the experiments was to study the pathways, priority and the sequence of reactions which occur over each catalyst system. A temperature of 600°C and O2/C3H8 ratio of 1.78 was used for all the runs. The space velocity was varied by varying the flowrates (100, 200, 300, 400 sccm), and also the catalyst loadings. Seven species were found at the outlet of the reactor (C3H8, O2, H2, CO, CO2, H2O and C3H 6). All the species except H2O were analyzed quantitatively by the gas chromatograph. The following reactions can occur during the process at 600°C: total oxidation, partial oxidation, steam reforming, dry reforming, water gas shift, dehydrogenation and water formation. Of these, a Gaussian elimination process yields four independent reactions. This results in ten sets of possible independent reactions. For each set, a material balance on the six outlet compositions allows the calculation of rates of each of the four reactions in the set. Sets containing negative rates for irreversible reactions are discarded. To confirm the validity of sets containing dry reforming, steam reforming and water gas shift, these reactions were carried out over the catalysts at the experimentally determined outlet conditions for the propane partial oxidation process. For the 1%Ni/CeO2 catalyst, both dry and steam reforming reactions were favorable, but the water gas shift reaction was not favorable. The activities of the 1%Pt/CeO2 catalyst for dry reforming and steam reforming were insignificant. The water gas shift reaction was not conducted over the 1%Pt/CeO2 catalyst as no feasible set contained this reaction. These results, coupled with the effect of weight hourly space velocity, allows us to evaluate the relative importance of each reaction in each allowable set as a function of contact time. The results indicate that the pathways

  12. Catalyst and electrode research for phosphoric acid fuel cells

    Science.gov (United States)

    Antoine, A. C.; King, R. B.

    1987-01-01

    An account is given of the development status of phosphoric acid fuel cells' high performance catalyst and electrode materials. Binary alloys have been identified which outperform the baseline platinum catalyst; it has also become apparent that pressurized operation is required to reach the desired efficiencies, calling in turn for the use of graphitized carbon blacks in the role of catalyst supports. Efforts to improve cell performance and reduce catalyst costs have led to the investigation of a class of organometallic cathode catalysts represented by the tetraazaannulenes, and a mixed catalyst which is a mixture of carbons catalyzed with an organometallic and a noble metal.

  13. Methane decomposition on Ni-Cu alloyed Raney-type catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Cunha, A.F.; Orfao, J.J.M.; Figueiredo, J.L. [Laboratorio de Catalise e Materiais, Laboratorio Associado LSRE/LCM, Departamento de Engenharia Quimica, Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias, 4200-465 Porto (Portugal)

    2009-06-15

    In the present work, we report on the performance of Ni-Cu alloyed Raney-type catalysts for the production of hydrogen by catalytic methane decomposition. The activity of the catalysts was assessed by comparing the experimental conversions with the calculated equilibrium conversions for each set of experimental conditions. The stability of the catalysts was assessed by comparing the maximum conversions with the conversions at the end of 5 h tests. Comparison with monometallic Ni Raney-type catalytic systems shows that Cu addition significantly improves catalyst stability. Excellent results were obtained when the Ni-Cu Raney-type system was thermally treated in situ at 600 C, as a result of incipient alloy formation. (author)

  14. A Novel Ultrafine Ru-B Amorphous Alloy Catalyst for Glucose Hydrogenation to Sorbitol

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    An ultrafine Ru-B amorphous alloy catalyst was prepared by chemical reduction with KBH4 in aqueous solution, which exhibited perfect selectivity to sorbitol (~100%) and very high activity during the liquid phase glucose hydrogenation, much higher than the corresponding crystallized Ru-B, the pure Ru powder, and Raney Ni catalysts. The correlation of the catalytic activity to both the structural and surface electronic characteristics was discussed briefly.

  15. Amorphous Nickel Based Alloy Catalysts and Magnetically Stabilized Bed Hydrogenation Technology

    Institute of Scientific and Technical Information of China (English)

    MuXuhong; ZongBaoning; 等

    2002-01-01

    Amorphous nickel based alloy catalysts(denoted as the SRNA series catalysts)were prepared via rapid quenching method followed by alkali leaching and other activation procedures.The physicochemical characterizations show that nickel,the active component in these catalysts,exists in the amorphous state,and the catalyst particles possess many nanosized voids leading to large surface area(the highest is 145m2/g).The evaluation results in some model reactions show that the SRNA series catalysts have 2 to 4 times higher activity and selectivity than conventional Raney Ni catalyst for the hydrogenation of compounds with unsatur-ated functional groups.At present,the SRNA series catalysts have been successfully used in hydrogenation of glucose,hydrogenation of pharmaceutical intermediates and purification of caprolactam.In order to use these catalysts efficiently,a magnetically stabilized bed(MSB) technology has been developed by combining the ferromagnetic property of the catalyst with the good mass transfer characteristics of MSB.The demonstration unit of MSB hydrogenation technology has been set up and has kept running for 2800 hours.The results show that,after running 2800 hours,the catalyst still retained good activity; meanwhile,the hydrogenation effi-ciency had been improved 10 times in comparison with the traditional CSTR process.

  16. Preparation of highly active AlSBA-15-supported platinum catalyst for thiophene hydrodesulfurization

    OpenAIRE

    KANDA, Yasuharu; AIZAWA, Tomohiro; Kobayashi, Takao; UEMICHI, Yoshio; NAMBA, Seitaro; SUGIOKA, Masatoshi

    2007-01-01

    The catalytic activities of various noble metals (Pt, Pd, Rh, and Ru) supported on siliceous SBA-15 and Al-containing SBA-15 (AlSBA-15) for hydrodesulfurization (HDS) of thiophene at 350 C were investigated. AlSBA-15 was prepared by a grafting method using aluminum isopropoxide (Al(OC3H7)3) hexane solution. The HDS activity of Pt/AlSBA-15 catalyst was the highest among those of various supported noble metal catalysts, and this activity was higher than that of commercial CoMo/Al2O3 HDS catalys...

  17. Electronic metal-support interaction enhanced oxygen reduction activity and stability of boron carbide supported platinum

    Science.gov (United States)

    Jackson, Colleen; Smith, Graham T.; Inwood, David W.; Leach, Andrew S.; Whalley, Penny S.; Callisti, Mauro; Polcar, Tomas; Russell, Andrea E.; Levecque, Pieter; Kramer, Denis

    2017-06-01

    Catalysing the reduction of oxygen in acidic media is a standing challenge. Although activity of platinum, the most active metal, can be substantially improved by alloying, alloy stability remains a concern. Here we report that platinum nanoparticles supported on graphite-rich boron carbide show a 50-100% increase in activity in acidic media and improved cycle stability compared to commercial carbon supported platinum nanoparticles. Transmission electron microscopy and x-ray absorption fine structure analysis confirm similar platinum nanoparticle shapes, sizes, lattice parameters, and cluster packing on both supports, while x-ray photoelectron and absorption spectroscopy demonstrate a change in electronic structure. This shows that purely electronic metal-support interactions can significantly improve oxygen reduction activity without inducing shape, alloying or strain effects and without compromising stability. Optimizing the electronic interaction between the catalyst and support is, therefore, a promising approach for advanced electrocatalysts where optimizing the catalytic nanoparticles themselves is constrained by other concerns.

  18. Effects of tungsten oxide on the activity and thermal stability of a sulfate-derived titania supported platinum catalyst for propane oxidation

    Institute of Scientific and Technical Information of China (English)

    Xiaodong Wu; Zhou Zhou; Duan Weng; Bin Wang

    2012-01-01

    A Pt/WO3/TiO2 catalyst for propane oxidation was prepared by a stepwise wet impregnation method,and was aged at 800℃ for 5 hr.Compared to the sulfate-derived titania supported catalyst,the introduction of tungsten oxide as stable Brφnsted acid sites led to the formation of more metallic platinum active sites at the Pt/WO3 interface.The dissociation of surface intermediates for propane oxidation was promoted on the WO3-modified catalyst.This,as well as the inhibition effects of tungsten oxide on the sintering of anatase and the phase transformation to rutile,resulting in a high activity and thermal stability for the Pt/WO3/TiO2 catalyst.

  19. Platinum-free binary Co-Ni alloy counter electrodes for efficient dye-sensitized solar cells.

    Science.gov (United States)

    Chen, Xiaoxu; Tang, Qunwei; He, Benlin; Lin, Lin; Yu, Liangmin

    2014-09-26

    Dye-sensitized solar cells (DSSCs) have attracted growing interest because of their application in renewable energy technologies in developing modern low-carbon economies. However, the commercial application of DSSCs has been hindered by the high expenses of platinum (Pt) counter electrodes (CEs). Here we use Pt-free binary Co-Ni alloys synthesized by a mild hydrothermal strategy as CE materials in efficient DSSCs. As a result of the rapid charge transfer, good electrical conduction, and reasonable electrocatalysis, the power conversion efficiencies of Co-Ni-based DSSCs are higher than those of Pt-only CEs, and the fabrication expense is markedly reduced. The DSSCs based on a CoNi0.25 alloy CE displays an impressive power conversion efficiency of 8.39%, fast start-up, multiple start/stop cycling, and good stability under extended irradiation. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Treatment of ammonia by catalytic wet oxidation process over platinum-rhodium bimetallic catalyst in a trickle-bed reactor: effect of pH.

    Science.gov (United States)

    Hung, Chang-Mao; Lin, Wei-Bang; Ho, Ching-Lin; Shen, Yun-Hwei; Hsia, Shao-Yi

    2010-08-01

    This work adopted aqueous solutions of ammonia for use in catalytic liquid-phase reduction in a trickle-bed reactor with a platinum-rhodium bimetallic catalyst, prepared by the co-precipitation of chloroplatinic acid (H2PtCl6) and rhodium nitrate [Rh(NO3)3]. The experimental results demonstrated that a minimal amount of ammonia was removed from the solution by wet oxidation in the absence of any catalyst, while approximately 97.0% of the ammonia was removed by wet oxidation over the platinum-rhodium bimetallic catalyst at 230 degrees C with an oxygen partial pressure of 2.0 MPa. The oxidation of ammonia has been studied as a function of pH, and the main reaction products were determined. A synergistic effect is manifest in the platinum-rhodium bimetallic structure, in which the material has the greatest capacity to reduce ammonia. The reaction pathway linked the oxidizing ammonia to nitric oxide, nitrogen, and water.

  1. Controllable Deposition of Alloy Clusters or Nanoparticles Catalysts on Carbon Surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Sasaki, K.; Ando, Y.; Su, D.; Adzic, R.

    2011-08-15

    We describe a simple method for controllably depositing Pt-Ru alloy nanoparticles on carbon surfaces that is mediated by Pb or Cu adlayers undergoing underpotential deposition and stripping during Pt and Ru codeposition at diffusion-limiting currents. The amount of surface Pt atoms deposited largely reflects the number of potential cycles causing the deposition and stripping of the metal adlayer at underpotentials, the metal species used as a mediator, and the scan rate of the potential cycles. We employed electrochemical methanol oxidation to gain information on the catalyst's activities. The catalysts with large amounts of surface Pt atoms have relatively high methanol-oxidation activity. Catalysts prepared using this method enhance methanol-oxidation activity per electrode surface area, while maintaining catalytic activity per surface Pt atom; thus, the amount of Pt is reduced in comparison with conventional methanol-oxidation catalysts. The method is suitable for efficient synthesizing various bimetallic catalysts.

  2. Amorphous Nickel Based Alloy Catalysts and Magnetically Stabilized Bed Hydrogenation Technology

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Amorphous nickel based alloy catalysts (denoted as the SRNA series catalysts) were prepared viarapid quenching method followed by alkali leaching and other activation procedures. The physicochemicalcharacterizations show that nickel, the active component in these catalysts, exists in the amorphous state, andthe catalyst particles possess many nanosized voids leading to large surface area (the highest is 145m2/g). Theevaluation results in some model reactions show that the SRNA series catalysts have 2 to 4 times higheractivity and selectivity than conventional Raney Ni catalyst for the hydrogenation of compounds with unsatur-ated functional groups. At present, the SRNA series catalysts have been successfully used in hydrogenation ofglucose, hydrogenation of pharmaceutical intermediates and purification of caprolactam. In order to use thesecatalysts efficiently, a magnetically stabilized bed (MSB) technology has been developed by combining theferromagnetic property of the catalyst with the good mass transfer characteristics of MSB. The demonstrationunit of MSB hydrogenation technology has been set up and has kept running for 2800 hours. The results showthat, after running 2800 hours, the catalyst still retained good activity; meanwhile, the hydrogenation effi-ciency had been improved 10 times in comparison with the traditional CSTR process.

  3. Amorphous Nickel Based Alloy Catalysts and Magnetically Stabilized Bed Hydrogenation Technology

    Institute of Scientific and Technical Information of China (English)

    Mu Xuhong; Zong Baoning; Meng Xiangkun; Min Enze

    2002-01-01

    Amorphous nickel based alloy catalysts (denoted as the SRNAseries catalysts) were prepared viarapid quenching method followed by alkali leaching and other activation procedures. The physicochemicalcharacterizations show that nickel, the active component in these catalysts, exists in the amorphous state, andthe catalyst particles possess many nanosized voids leading to large surface area (the highest is 145m2/g). Theevaluation results in some model reactions show that the SRNA series catalysts have 2 to 4 times higheractivity and selectivity than conventional Raney Ni catalyst for the hydrogenation of compounds with unsatur-ated functional groups. At present, the SRNA series catalysts have been successfully used in hydrogenation ofglucose, hydrogenation of pharmaceutical intermediates and purification of caprolactam. In order to use thesecatalysts efficiently, a magnetically stabilized bed (MSB) technology has been developed by combining theferromagnetic property of the catalyst with the good mass transfer characteristics of MSB. The demonstrationunit of MSB hydrogenation technology has been set up and has kept running for 2800 hours. The results showthat, after running 2800 hours, the catalyst still retained good activity; meanwhile, the hydrogenation effi-ciency had been improved 10 times in comparison with the traditional CSTR process.

  4. METHYLENE BLUE MINERALISATION BY ELECTROCHEMICAL PROCESS MEDIATED BY COBALT CATALYST ON PLATINUM ELECTRODES

    Directory of Open Access Journals (Sweden)

    Ouarda BRAHMIA

    2015-12-01

    Full Text Available In this study, the electrochemical decolorization of the Methylene Blue dye on Platinum electrodes was assessed. Direct oxidation results demonstrate a partial pollutant degradation reaching a maximum of 64 %. However, the addition of a small amount of a redox mediator Co2+/3+ is efficiently able to electrocatalyse the Methylene blue oxidation by shortening significantly the treatment time and enhancing clearly the dye decolorization rate. Nearly complete decolorization was achieved (92 % in 1h 45min. The most striking results achieved within the cyclic voltammetry study demonstrate undoubtedly the pollutant mineralisation. Electrochemical experiments were performed using the spectrophotometric method, which is very convenient, easy and allows monitoring the spectral changes as well as the determination of the dye concentration during the process. The kinetics data show a first-order indirect oxidation kinetics. A mechanism was proposed to explain the different phenomenon during the electrochemical process.

  5. Modeling Low-Platinum-Loading Effects in Fuel-Cell Catalyst Layers

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Wonseok; Weber, Adam Z.

    2011-01-20

    The cathode catalyst layer within a proton-exchange-membrane fuel cell is the most complex and critical, yet least understood, layer within the cell. The exact method and equations for modeling this layer are still being revised and will be discussed in this paper, including a 0.8 reaction order, existence of Pt oxides, possible non-isopotential agglomerates, and the impact of a film resistance towards oxygen transport. While the former assumptions are relatively straightforward to understand and implement, the latter film resistance is shown to be critically important in explaining increased mass-transport limitations with low Pt-loading catalyst layers. Model results demonstrate agreement with experimental data that the increased oxygen flux and/or diffusion pathway through the film can substantially decrease performance. Also, some scale-up concepts from the agglomerate scale to the more macroscopic porous-electrode scale are discussed and the resulting optimization scenarios investigated.

  6. Characterization of the surfaces of platinum/tin oxide based catalysts by Fourier transform spectroscopy (FTIR)

    Science.gov (United States)

    Keiser, Joseph T.

    1989-01-01

    The Laser Atmospheric Wind Sounder (LAWS) Program has as one of its goals the development of a satellite based carbon dioxide laser for making wind velocity measurements. The specifications for this laser include the requirement that the laser operate at a repetition rate of 10 Hertz continuously for three years. Earth-based carbon dioxide lasers can operate for only a short time on a single charge of gas because the lasing action causes the CO2 to break down into CO and O2. Therefore, earth-based CO2 lasers are generally operated in a flow through mode in which the spent gas is continually exhausted and fresh gas is continually added. For a satellite based system, however, a recirculation system is desired because it is not practical to send up extra tanks of CO2. A catalyst which could enable a recirculating CO2 laser to function continuously for three years needs to be developed. In the development of a catalyst system there are many variables. Obviously, not all possible formulations can be tested for three years, therefore, an accurate model which is based on the reaction mechanism is needed. The construction of a multistep reaction mechanism is similar to the construction of a jigsaw puzzle. Different techniques each supply a piece of the puzzle and the researcher must put the pieces together. Transmission infrared spectroscopy was shown to be very useful in supplying some of the information needed to elucidate reaction mechanisms. The purpose was to see what kind of information might be obtained about the NASA catalyst using infrared absorption spectroscopy. Approximately 200 infrared spectra of the prototype Pt/tin oxide catalyst and its precursor components are observed under a variety of different conditions. The most significant observations are summarized.

  7. Synergistic effect between Sn and K promoters on supported platinum catalyst for isobutane dehydrogenation

    Institute of Scientific and Technical Information of China (English)

    Yiwei Zhang; Yuming Zhou; Lihui Wan; Mengwei Xue; Yongzheng Duan; Xuan Liu

    2011-01-01

    Catalytic dehydrogenation of isobutane has recently received considerable attention because of the increasing demand for isobutene.In this study,the synergistic effect between Sn and K on PtSnK/γ-Al2O3 catalysts has been investigated by changing the content of Sn.It was found that with the presence of potassium,suitable addition of Sn could not only increase the metal dispersion,but also reduce the catalyst acidity.In these cases,the synergistic effect could also strengthen the interactions between the metal and support,which resulted in an increase in both catalytic activity and stability.In our experiments,Pt-0.6SnK/Al catalyst exhibited the lowest deactivation rate (12.4%) and showed a selectivity to isobutene higher than 94% at the isobutane conversion of about 45.3% after running the reaction for 6 h.However,with the excessive loading of Sn,surface property of active sites and the interactions between metal and support were changed.As a result,the initial optimal ratio between the metallic function and acid function would be destroyed,which was disadvantageous to the reaction.

  8. Beneficial effects of rhodium and tin oxide on carbon supported platinum catalysts for ethanol electrooxidation

    Science.gov (United States)

    Soares, Layciane A.; Morais, Claudia; Napporn, Teko W.; Kokoh, K. Boniface; Olivi, Paulo

    2016-05-01

    This work investigates ethanol electrooxidation on Pt/C, PtxRhy/C, Pt-SnO2/C, and PtxRhy-SnO2/C catalysts synthesized by the Pechini and microwave-assisted polyol methods. The catalysts are characterized by energy dispersive X-ray analysis (EDX), transmission electron microscopy (TEM), and X-ray diffraction (XRD) techniques. The electrochemical properties of these electrode materials are examined by cyclic voltammetry and chronoamperometry experiments in acid medium. The products obtained during ethanol electrolysis are identified by high performance liquid chromatography (HPLC). The adsorbed intermediates are evaluated by an in situ reflectance Infrared Spectroscopy technique combined with cyclic voltammetry. Catalysts performance in a direct ethanol fuel cell (DEFC) is also assessed. The electrical performance of the electrocatalysts in a single DEFC at 80 °C decreases in the following order Pt70Rh30SnO2 > Pt80Rh20SnO2 > Pt60Rh40SnO2 ∼ PtSnO2 > PtxRhy ∼ Pt, showing that the presence of SnO2 enhances the ability of Pt to catalyze ethanol electrooxidation.

  9. Nanotemplated platinum fuel cell catalysts and copper-tin lithium battery anode materials for microenergy devices

    OpenAIRE

    Rohan, James F.; Hasan, Maksudul; Holubowitch, Nicolas E.

    2011-01-01

    Nanotemplated materials have significant potential for applications in energy conversion and storage devices due to their unique physical properties. Nanostructured materials provide additional electrode surface area beneficial for energy conversion or storage applications with short path lengths for electronic and ionic transport and thus the possibility of higher reaction rates. We report on the use of controlled growth of metal and alloy electrodeposited templated nanostructures for energy...

  10. Skeletal Amorphous Nickel Based Alloy Catalysts and Magnetically Stabilized Bed Hydrogenation Technology

    Institute of Scientific and Technical Information of China (English)

    Min Enze

    2004-01-01

    Looking toward 21 century, smaller, cleaner and more energy-efficient technology will be an important trend in the development of chemical industry. In light of the new process requirements,a number of technology breakthroughs have occurred. One of these discoveries, the magnetically stabilized bed (MSB), has been proven a powerful process for intensification. Since its initial research in the late 1980's at Research Institute of Petroleum Processing (RIPP), the MSB technology and related catalytic material have matured rapidly through an intensive research and engineering program, primarily focused on its scaling-up.In this paper, we report the discovery of a novel skeletal amorphous nickel-based alloy and its use in magnetically stabilized bed (MSB). Amorphous alloys are new kinds of catalytic materials with short-range order but long-range disorder structure. In comparison with Raney Ni, the skeletal amorphous nickel-based alloy has an increasingly higher activity in the hydrogenation of reactive groups and compounds including nitro, nitrile, olefin, acetylene, aromatics, etc. Up to now, the amorphous nickel based alloy catalysts, SRNA series catalyst, one with high Ni ratio have been commercially manufactured more than four year. The new SRNA catalyst has been successfully implemented for hydrogenation applications in slurry reactor at Balin Petrochemical, SINOPEC.SRNA catalyst with further improvement in catalytic activity and stability raise its relative stability to 2~4 times of that of conventional catalyst. In the course of the long-cycle operation of SRNA-4 the excellent catalyst activity and stability can bring about such advantage as low reaction temperature, good selectivity and low catalyst resumption.Magnetically stabilized bed (MSB), a fluidized bed of magnetizable particles by applying a spatially uniform and time-invariant magnetic field oriented axially relative to the fluidizing fluid flow, had many advantages such as the low pressure drop and

  11. Platinum(0-1,3-divinyl-1,1,3,3-tetramethyldisiloxane Complex as a Pt Source for Pt/SnO2 Catalyst

    Directory of Open Access Journals (Sweden)

    Agnieszka Martyla

    2014-01-01

    Full Text Available This paper presents new preparation method of Pt/SnO2, an important catalytic system. Besides of its application as a heterogenic industrial catalyst, it is also used as a catalyst in electrochemical processes, especially in fuel cells. Platinum is commonly used as an anode catalyst in low temperature fuel cells, fuelled with alcohols of low molecular weight such as methanol. Platinum(0-1,3-divinyl-1,1,3,3-tetramethyldisiloxane complex was used as a precursor of metallic phase. The aim of the research was to obtain a highly active in electrochemical system Pt/SnO2 catalyst with low metal load. Considering small size of Pt crystallites, it should result in high activity of Pt/SnO2 system. The presented method of SnO2 synthesis allows for obtaining support consisting of nanoparticles. The effect of the thermal treatment on activity of Pt/SnO2 gel was demonstrated. The system properties were investigated using TEM, FTIR (ATR, and XRD techniques to describe its thermal structural evolution. The results showed two electrocatalytical activity peaks for drying at a temperature of 430 K and above 650 K.

  12. Soluble Platinum Nanoparticles Ligated by Long-Chain N-Heterocyclic Carbenes as Catalysts.

    Science.gov (United States)

    Martínez-Prieto, Luis M; Rakers, Lena; López-Vinasco, Angela M; Cano, Israel; Coppel, Yannick; Philippot, Karine; Glorius, Frank; Chaudret, Bruno; van Leeuwen, Piet W N M

    2017-09-18

    Soluble platinum nanoparticles (Pt NPs) ligated by two different long-chain N-heterocyclic carbenes (LC-IPr and LC-IMe) were synthesized and fully characterized by TEM, high-resolution TEM, wide-angle X-ray scattering (WAXS), X-ray photoelectron spectroscopy (XPS), and solution NMR. The surface chemistry of these NPs (Pt@LC-IPr and Pt@LC-IMe) was investigated by FT-IR and solid state NMR using CO as a probe molecule. A clear influence of the bulkiness of the N-substituents on the size, surface state, and catalytic activity of these Pt NPs was observed. While Pt@LC-IMe showed no activity in the hydroboration of phenylacetylene, Pt@LC-IPr revealed good selectivity for the trans-isomer, which may be supported by a homogeneous species. This is the first example of hydroboration of acetylenes catalyzed by non-supported Pt NPs. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Platinum nanoparticles–manganese oxide nanorods as novel binary catalysts for formic acid oxidation

    Directory of Open Access Journals (Sweden)

    Mohamed S. El-Deab

    2012-01-01

    Full Text Available The current study proposes a novel binary catalyst system (composed of metal/metal oxide nanoparticles as a promising electrocatalyst in formic acid oxidation. The electro-catalytic oxidation of formic acid is carried out with binary catalysts of Pt nanoparticles (nano-Pt and manganese oxide nanorods (nano-MnOx electrodeposited onto glassy carbon (GC electrodes. Cyclic voltammetric (CV measurements showed that unmodified GC and nano-MnOx/GC electrodes have no catalytic activity. While two oxidation peaks were observed at nano-Pt/GC electrode at ca. 0.2 and 0.55 V (corresponding to the direct oxidation of formic acid and the oxidation of the poisoning CO intermediate, respectively. The combined use of nano-MnOx and nano-Pt results in superb enhancement of the direct oxidation pathway. Nano-MnOx is shown to facilitate the oxidation of CO (to CO2 by providing oxygen at low over-potential. This leads to retrieval of Pt active sites necessary for the direct oxidation of formic acid. The higher catalytic activity of nano-MnOx/nano-Pt/GC electrode (with Pt firstly deposited compared to its mirror image electrode (i.e., with MnOx firstly deposited, nano-Pt/nano-MnOx/GC reveals that the order of the electrodeposition is an essential parameter.

  14. Pt Monolayer Shell on Nitrided Alloy Core—A Path to Highly Stable Oxygen Reduction Catalyst

    Directory of Open Access Journals (Sweden)

    Jue Hu

    2015-07-01

    Full Text Available The inadequate activity and stability of Pt as a cathode catalyst under the severe operation conditions are the critical problems facing the application of the proton exchange membrane fuel cell (PEMFC. Here we report on a novel route to synthesize highly active and stable oxygen reduction catalysts by depositing Pt monolayer on a nitrided alloy core. The prepared PtMLPdNiN/C catalyst retains 89% of the initial electrochemical surface area after 50,000 cycles between potentials 0.6 and 1.0 V. By correlating electron energy-loss spectroscopy and X-ray absorption spectroscopy analyses with electrochemical measurements, we found that the significant improvement of stability of the PtMLPdNiN/C catalyst is caused by nitrogen doping while reducing the total precious metal loading.

  15. Stabilizing a Platinum1 Single-Atom Catalyst on Supported Phosphomolybdic Acid without Compromising Hydrogenation Activity.

    Science.gov (United States)

    Zhang, Bin; Asakura, Hiroyuki; Zhang, Jia; Zhang, Jiaguang; De, Sudipta; Yan, Ning

    2016-07-11

    In coordination chemistry, catalytically active metal complexes in a zero- or low-valent state often adopt four-coordinate square-planar or tetrahedral geometry. By applying this principle, we have developed a stable Pt1 single-atom catalyst with a high Pt loading (close to 1 wt %) on phosphomolybdic acid(PMA)-modified active carbon. This was achieved by anchoring Pt on the four-fold hollow sites on PMA. Each Pt atom is stabilized by four oxygen atoms in a distorted square-planar geometry, with Pt slightly protruding from the oxygen planar surface. Pt is positively charged, absorbs hydrogen easily, and exhibits excellent performance in the hydrogenation of nitrobenzene and cyclohexanone. It is likely that the system described here can be extended to a number of stable SACs with superior catalytic activities.

  16. Selective production of methane from aqueous biocarbohydrate streams over a mixture of platinum and ruthenium catalysts.

    Science.gov (United States)

    Neira D'Angelo, Maria Fernanda; Ordomsky, Vitaly; van der Schaaf, John; Schouten, Jaap C; Nijhuis, Tjeerd Alexander

    2014-02-01

    A one-step process for the selective production of methane from low-value aqueous carbohydrate streams is proposed. Sorbitol, used herein as a model compound, is fully converted to methane, CO2 , and a minor amount of H2 by using a physical mixture of Pt and Ru (1:5 in mass basis) at 220 °C and 35 bar. This conversion is the result of hydrogenolysis of part of the sorbitol over Ru and the in situ production of H2 through the aqueous-phase reforming of the remaining carbohydrate over Pt. A synergistic effect of the combination of these two catalysts results in the rapid and highly selective conversion of the carbohydrate to methane. This process offers the possibility of upgrading a low-value carbohydrate stream into a valuable fuel with no addition of H2. Exergy analysis reveals that nearly 80 % of the exergy of the reactant is recovered as methane.

  17. Stabilization of supported platinum nanoparticles on gamma-alumina catalysts by addition of tungsten

    Energy Technology Data Exchange (ETDEWEB)

    Contreras, Jose L., E-mail: jlcl@correo.azc.uam.m [Universidad Autonoma Metropolitana-Azcapotzalco. Energia, CBI, Av. Sn. Pablo 180, Col. Reynosa, 02200, Mexico, D.F. (Mexico); Universidad Autonoma Metropolitana-Iztapalapa Depto. Ingenieria de Procesos e Hidraulica, A.P. 55-534, 09340 Mexico, D.F. (Mexico); Fuentes, Gustavo A. [Universidad Autonoma Metropolitana-Iztapalapa Depto. Ingenieria de Procesos e Hidraulica, A.P. 55-534, 09340 Mexico, D.F. (Mexico); Zeifert, Beatriz; Salmones, Jose [Instituto Politecnico Nacional, ESIQIE, Av. IPN s/n Edif. 8, UPALM, Mexico, D.F. 07738 (Mexico)

    2009-08-26

    The thermal stabilization of Al{sub 2}O{sub 3} using W{sup 6+} ions has been found useful to the synthesis of Pt/Al{sub 2}O{sub 3} catalysts. The simultaneous and sequential methods were used to study the effect of W{sup 6+} upon Pt/gamma-Al{sub 2}O{sub 3} reducibility, Pt dispersion, and benzene hydrogenation. The W/Pt atomic ratios were from 0.49 to 12.4. In the first method we found that the W{sup 6+} ions delayed reduction of a fraction of Pt{sup 4+} atoms beyond 773 K. At the same time, W{sup 6+}inhibited sintering of the metallic crystallites once they were formed on the surface. For the sequential sample with a W/Pt atomic ratio of 3.28 W{sup 6+} did not inhibit the H{sub 2} reduction of Pt oxides even below of 773 K, the Pt oxides were reduced completely. After reduction at 1073 K, sequential samples impregnating Pt on WO{sub x}-gamma-Al{sub 2}O{sub 3} were more active and stable during benzene hydrogenation. TOF of the reaction did not change when the W/Pt atomic ratio, preparation technique and reduction temperature changed and its value was of 1.1 s{sup -1}. W{sup 6+} ions promoted high thermal stability of Pt crystallites when sequential catalysts were reduced at 1073 K and decreased their Lewis acidity.

  18. Liquid-phase processing of fast pyrolysis bio-oil using platinum/HZSM-5 catalyst

    Science.gov (United States)

    Santos, Bjorn Sanchez

    Recent developments in converting biomass to bio-chemicals and liquid fuels provide a promising sight to an emerging biofuels industry. Biomass can be converted to energy via thermochemical and biochemical pathways. Thermal degradation processes include liquefaction, gasification, and pyrolysis. Among these biomass technologies, pyrolysis (i.e. a thermochemical conversion process of any organic material in the absence of oxygen) has gained more attention because of its simplicity in design, construction and operation. This research study focuses on comparative assessment of two types of pyrolysis processes and catalytic upgrading of bio-oil for production of transportation fuel intermediates. Slow and fast pyrolysis processes were compared for their respective product yields and properties. Slow pyrolysis bio-oil displayed fossil fuel-like properties, although low yields limit the process making it uneconomically feasible. Fast pyrolysis, on the other hand, show high yields but produces relatively less quality bio-oil. Catalytic transformation of the high-boiling fraction (HBF) of the crude bio-oil from fast pyrolysis was therefore evaluated by performing liquid-phase reactions at moderate temperatures using Pt/HZSM-5 catalyst. High yields of upgraded bio-oils along with improved heating values and reduced oxygen contents were obtained at a reaction temperature of 200°C and ethanol/HBF ratio of 3:1. Better quality, however, was observed at 240 °C even though reaction temperature has no significant effect on coke deposition. The addition of ethanol in the feed has greatly attenuated coke deposition in the catalyst. Major reactions observed are esterification, catalytic cracking, and reforming. Overall mass and energy balances in the conversion of energy sorghum biomass to produce a liquid fuel intermediate obtained sixteen percent (16 wt.%) of the biomass ending up as liquid fuel intermediate, while containing 26% of its initial energy.

  19. Hierarchical Pd-Sn alloy nanosheet dendrites: an economical and highly active catalyst for ethanol electrooxidation.

    Science.gov (United States)

    Ding, Liang-Xin; Wang, An-Liang; Ou, Yan-Nan; Li, Qi; Guo, Rui; Zhao, Wen-Xia; Tong, Ye-Xiang; Li, Gao-Ren

    2013-01-01

    Hierarchical alloy nanosheet dendrites (ANSDs) are highly favorable for superior catalytic performance and efficient utilization of catalyst because of the special characteristics of alloys, nanosheets, and dendritic nanostructures. In this paper, we demonstrate for the first time a facile and efficient electrodeposition approach for the controllable synthesis of Pd-Sn ANSDs with high surface area. These synthesized Pd-Sn ANSDs exhibit high electrocatalytic activity and superior long-term cycle stability toward ethanol oxidation in alkaline media. The enhanced electrocataytic activity of Pd-Sn ANSDs may be attributed to Pd-Sn alloys, nanosheet dendrite induced promotional effect, large number of active sites on dendrite surface, large surface area, and good electrical contact with the base electrode. Because of the simple implement and high flexibility, the proposed approach can be considered as a general and powerful strategy to synthesize the alloy electrocatalysts with high surface areas and open dendritic nanostructures.

  20. Manufacture of Catalyst Systems for Ammonia Conversion

    Institute of Scientific and Technical Information of China (English)

    GAKH S.V.; SAVENKOV D.A.

    2012-01-01

    Platinum catalyst gauzes have been in use since the moment of development of the process of catalyst oxidation of ammonia for production of nitric acid or hydrocyanic acid.Catalyst gauzes are usually made of platinum or its alloys with rhodium and palladium.These precious metals have remarkable properties that make them ideal catalysts for acceleration of the ammonia/oxygen reaction.In 2008,OJSC "SIC ‘Supermetal’" and Umicore AG&Co.KG launched a production line for Pt-alloy-based catalyst systems to be used for ammonia oxidation in the production of weak nitric acid.Catalyst systems consist of a pack of catalyst gauzes and a pack of catchment gauzes,which are made using flat-bed knitting machines and wire-cloth looms.Today,up-to-date catalyst systems MKSpreciseTM are being manufactured,the basic advantages of which are an individual structure of gauzes and composition of the material,which allows to define precisely the position of each gauze in the catalyst pack,a high activity of the catalyst pack,direct catching of platinum and rhodium in the catalyst system,and a reasonable combination of single- and multilayer types of gauzes.This makes it possible to vary the configuration of the catalyst and select an optimum composition of the system to ensure the maximum efficiency of the ammonia oxidation process.We also produce the catchment systems that allow to find the best decision from the economic point view for each individual case.

  1. Low-temperature, vapor-liquid-solid, laterally grown silicon films using alloyed catalysts

    Science.gov (United States)

    LeBoeuf, Jerome L.; Brodusch, Nicolas; Gauvin, Raynald; Quitoriano, Nathaniel J.

    2014-12-01

    Using amorphous oxide templates known as micro-crucibles which confine a vapor-liquid-solid catalyst to a specific geometry, two-dimensional silicon thin-films of a single orientation have been grown laterally over an amorphous substrate and defects within crystals have been necked out. The vapor-liquid-solid catalysts consisted nominally of 99% gold with 1% titanium, chromium, or aluminum, and each alloy affected the processing of micro-crucibles and growth within them significantly. It was found that chromium additions inhibited the catalytic effect of the gold catalysts, titanium changed the morphology of the catalyst during processing and aluminum stabilized a potential third phase in the gold-silicon system upon cooling. Two mechanisms for growing undesired nanowires were identified both of which hindered the VLS film growth, fast silane cracking rates and poor gold etching, which left gold nanoparticles near the gold-vapor interface. To reduce the silane cracking rates, growth was done at a lower temperature while an engineered heat and deposition profile helped to reduce NWs caused by the second mechanism. Through experimenting with catalyst compositions, the fundamental mechanisms which produce concentration gradients across the gold-silicon alloy within a given micro-crucible have been proposed. Using the postulated mechanisms, micro-crucibles were designed which promote high-quality, single crystal growth of semiconductors.

  2. Oxygen Reduction on Platinum

    DEFF Research Database (Denmark)

    Nesselberger, Markus

    This thesis investigates the electro reduction of oxygen on platinum nanoparticles, which serve as catalyst in low temperature fuel cells. Kinetic studies on model catalysts as well as commercially used systems are presented in order to investigate the particle size effect, the particle proximity...... carbon (HSAC) supported Pt nanoparticle (Pt/C) catalysts (of various size between 1 and 5 nm). The difference in SA between the individual Pt/C catalysts (1 to 5 nm) is very small and within the error of the measurements. The factor four of loss in SA when comparing platinum bulk and Pt/C can largely...

  3. H{sub 2}/air alkaline membrane fuel cell performance and durability, using novel ionomer and non-platinum group metal cathode catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Piana, Michele; Boccia, Massimiliano; Filpi, Antonio; Flammia, Elisa; Miller, Hamish A.; Orsini, Marco; Salusti, Francesca; Santiccioli, Serena [Acta S.p.A., Fuel cell Technology, via di Lavoria 56/G, I-56042 Crespina (PI) (Italy); Ciardelli, Francesco; Pucci, Andrea [Department of Chemistry and Industrial Chemistry, University of Pisa, Via, Risorgimento 35, I-56126 Pisa (Italy)

    2010-09-15

    The development of H{sub 2}/air alkaline membrane fuel cells (AMFCs) enables the use of non-platinum group metal (PGM) catalysts which are intrinsically stable and have an activity similar to platinum in alkaline media for the oxygen reduction reaction (ORR). As opposed to PEMFCs, the research and development of these types of catalysts for AMFC has had little attention and even less has been given to the development of alkaline membranes and ionomers. Acta S.p.A. has developed recently new non-PGM ORR catalysts with activity higher than Pt in alkaline media. More importantly, a new anionic ionomer derived from cheap starting materials with optimum performance has been produced. In this paper we demonstrate the use of this new ionomer in H{sub 2}/air AMFCs showing the first polarization and durability data, with current densities higher than those recently reported in the literature. Furthermore, we report the effect of CO{sub 2} on AMFC performance, showing the possibility of use of such alkaline devices not only in outer-space applications, but also with atmospheric air for large scale devices. (author)

  4. Sum Frequency Generation Vibrational Spectroscopy of Colloidal Platinum Nanoparticle Catalysts: Disordering versus Removal of Organic Capping

    KAUST Repository

    Krier, James M.

    2012-08-23

    Recent work with nanoparticle catalysts shows that size and shape control on the nanometer scale influences reaction rate and selectivity. Sum frequency generation (SFG) vibrational spectroscopy is a powerful tool for studying heterogeneous catalysis because it enables the observation of surface intermediates during catalytic reactions. To control the size and shape of catalytic nanoparticles, an organic ligand was used as a capping agent to stabilize nanoparticles during synthesis. However, the presence of an organic capping agent presents two major challenges in SFG and catalytic reaction studies: it blocks a significant fraction of active surface sites and produces a strong signal that prevents the detection of reaction intermediates with SFG. Two methods for cleaning Pt nanoparticles capped with poly (vinylpyrrolidone) (PVP) are examined in this study: solvent cleaning and UV cleaning. Solvent cleaning leaves more PVP intact and relies on disordering with hydrogen gas to reduce the SFG signal of PVP. In contrast, UV cleaning depends on nearly complete removal of PVP to reduce SFG signal. Both UV and solvent cleaning enable the detection of reaction intermediates by SFG. However, solvent cleaning also yields nanoparticles that are stable under reaction conditions, whereas UV cleaning results in aggregation during reaction. The results of this study indicate that solvent cleaning is more advantageous for studying the effects of nanoparticle size and shape on catalytic selectivity by SFG vibrational spectroscopy. © 2012 American Chemical Society.

  5. Mechanistic studies of NO{sub x} reduction reactions under oxidative atmosphere on alumina supported 0.2wt% platinum catalyst treated under microwave. Part 2

    Energy Technology Data Exchange (ETDEWEB)

    Ringler, Sandrine; Girard, Paule; Maire, Gilbert; Garin, Francois [Laboratoire d`Etudes de la Reactivite Catalytique, des Surfaces et Interfaces (LERCSI), UMR 7515 du CNRS - ECPM, Universite Louis Pasteur - Institut Le Bel 4, rue Blaise Pascal 67, 070 Strasbourg Cedex (France); Hilaire, Stephanie; Roussy, Georges [Laboratoire de Spectroscopie et des Techniques Micro-Ondes LSTM, Universite de Nancy I, BP 239 54506, Vandoeuvre-les-Nancy Cedex (France)

    1999-03-08

    Reduction of nitrogen oxides under oxidative atmosphere is a very extensively studied reaction, but it is still very difficult to understand and to follow the various pathways of the reaction. Two alumina supported 0.2wt% platinum catalysts, reduced by hydrogen in an oven heated either by microwave irradiations or by Joule effect, with different metal dispersion of 60% and 90%, respectively, were studied. By the use of labelled compounds we were able to show the presence of an exchange reaction between 15N16O and 15N18O which occurred on both catalysts. It means that [15N16O18O] is the intermediate species. Such product, 15N18O, is less formed on the microwave catalyst `MW` than on the classical one `CT`. Experiments were performed at 22 and 550Torr, between 150C and 250C. Near atmospheric pressure, `MW` catalyst gives higher initial rates for 15N{sub 2} formation than the `CT` catalysts. At low temperature, the nitrogen selectivity is higher on `MW` catalyst than on the other catalyst. From the apparent activation energy values, one may deduce that several mechanisms are responsible for the 15N{sub 2} formation depending on the reaction temperature and the catalyst used. On the 0.2% Pt/Al{sub 2}O{sub 3} `CT` catalyst, an additive process between propene and 15NO takes place at low temperature giving nitroso and oxime intermediate species. At high temperature, a partial oxidation of propene occurs, giving a ketone, before the 15NO reduction to 15N{sub 2}. With this catalyst only two sites with different activity are involved. On the 0.2% Pt/Al{sub 2}O{sub 3} `MW` catalyst the reactants are seated on three sites with different activity. This particularity reinforce the proposals concerning the `MW` catalyst which may exhibit particular shapes for the aggregates having different crystallographic orientations. What is surprising, for this `MW` catalyst, is the fact that we already observed a specific reactivity under reductive atmosphere in reforming reactions and now

  6. Intermetallic Alloys as CO Electroreduction Catalysts-Role of Isolated Active Sites

    DEFF Research Database (Denmark)

    Karamad, Mohammadreza; Tripkovic, Vladimir; Rossmeisl, Jan

    2014-01-01

    binary bulk alloys forming from these elements have been investigated using density functional theory calculations. The electronic and geometric properties of the catalyst surface can be tuned by varying the size of the active centers and the elements forming them. We have identified six different...... potentially selective intermetallic surfaces on which CO can be reduced to methanol at potentials comparable to or even slightly positive than those for CO/CO2 reduction to methane on Cu. Common features shared by most of the selective alloys are single TM sites. The role of single sites is to block parasitic...

  7. Mechanistic Insights into the Structure-Dependent Selectivity of Catalytic Furfural Conversion on Platinum Catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Cai, Qiuxia; Wang, Jianguo; Wang, Yang-Gang; Mei, Donghai

    2015-11-01

    The effects of structure and size on the selectivity of catalytic furfural conversion over supported Pt catalysts in the presence of hydrogen have been studied using first principles density functional theory (DFT) calculations and microkinetic modeling. Four Pt model systems, i.e., periodic Pt(111), Pt(211) surfaces, as well as small nanoclusters (Pt13 and Pt55) are chosen to represent the terrace, step, and corner sites of Pt nanoparticles. Our DFT results show that the reaction routes for furfural hydrogenation and decarbonylation are strongly dependent on the type of reactive sites, which lead to the different selectivity. On the basis of the size-dependent site distribution rule, we correlate the site distributions as a function of the Pt particle size. Our microkinetic results indicate the critical particle size that controls the furfural selectivity is about 1.0 nm, which is in good agreement with the reported experimental value under reaction conditions. This work was supported by National Basic Research Program of China (973 Program) (2013CB733501) and the National Natural Science Foundation of China (NSFC-21306169, 21176221, 21136001, 21101137 and 91334103). This work was also partially supported by the US Department of Energy (DOE), the Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences & Biosciences. Pacific Northwest National Laboratory (PNNL) is a multiprogram national laboratory operated for DOE by Battelle. Computing time was granted by the grand challenge of computational catalysis of the William R. Wiley Environmental Molecular Sciences Laboratory (EMSL). EMSL is a national scientific user facility located at Pacific Northwest National Laboratory (PNNL) and sponsored by DOE’s Office of Biological and Environmental Research.

  8. Evaluation of nanostructured Pt-Ru catalyst for application in DMFC

    Energy Technology Data Exchange (ETDEWEB)

    Ocampo, A.L.; Gamboa, S.A. [Centro de Investigacion en Energia-UNAM, Morelos (Mexico); Sebastien, P.J. [Centro de Investigacion en Energia-UNAM, Morelos (Mexico)]|[Chiapas Politecnica Univ., Chiapas (Mexico); Morgado, J.; Montoya, J.A. [IMP, Eje Central Lazaro Cardenas, (Mexico); Savadogo, O. [Ecole Polytechnique, Montreal, PQ (Canada). Laboratoire d' electrochimie et de materiaux energetiques

    2006-07-01

    Slow methanol oxidation kinetics and the poisoning of the anode catalyst are the major factors that limit the performance of the direct methanol fuel cell (DMFC). Catalysts with higher catalytic activity are needed in order to overcome these challenges. Although platinum (Pt) is a good catalyst for methanol oxidation, it can be highly affected by carbon monoxide (CO) reaction intermediates. Superior catalytic activity occurs in Pt based alloys, such as platinum ruthenium (Pt-Ru), platinum molybdenum (Pt-Mo), platinum tin (Pt-Sn), and platinum osmium (Pt-Os). This is due to the bifunctional mechanism and/or by the electronic effect, which indicates a promotional effect of the alloyed metal on Pt. The most studied binary system is the Pt-Ru (ruthenium), which has shown the best catalytic activity. There are many factors that influence the physical properties and the electrochemical performance of the Pt-Ru catalyst. These include the preparation method; the atomic ratio between platinum and ruthenium; the nature of the catalyst support; and, an optional heat treatment. Other important factors such as the particle size, the morphology, the electrochemically active area, and the crystalline phase influence the physical properties. In this study, nanostructured Pt-Ru catalysts were fabricated and evaluated physicochemically and electrochemically for its use in direct methanol fuel cell (DMFC). The catalysts were synthesized from the carbonyl compounds of Pt and Ru via a pyrolysis-condensation reaction. The high resolution results showed a homogenous distribution of the nanostructured catalysts on Vulcan support. The catalyst was evaluated by XRD, HRTEM, electrochemical impedance spectroscopy and the methanol oxidation on the catalyst was studied using volt-amperometry. The performance of the catalyst was found to be similar or better than the commercial one. It was concluded that it is possible to synthesize Pt-Ru/C with good morphological characteristics and improve it

  9. Electrochemical oxidation of carbon monoxide: from platinum single crystals to low temperature fuel cells catalysts. Part I: Carbon monoxide oxidation onto low index platinum single crystals

    Directory of Open Access Journals (Sweden)

    PHILIP N. ROSS JR

    2001-12-01

    Full Text Available The electrochemical oxidation of carbon monoxide and the interfacial structure of the CO adlayer (COads on platinum low index single crystals, Pt(111, Pt(100 and two reconstruction of Pt(110, were examined using the rotation disk electrode method in combination with the in situ surface X-ray diffraction scattering technique. The mechanism of CO oxidation is discussed on the basis of the findings that, depending on the potential, two energetic states of COads exist on the platinum surfaces. Thus, at lower potentials, weakly bonded states (COads,w and at higher potentials strongly bonded states (COads,s are formed. The mechanism of the oxidation of hydrogen-carbon monoxide mixtures is also proposed.

  10. Hydrothermal Synthesis of Co-Ru Alloy Particle Catalysts for Hydrogen Generation from Sodium Borohydride

    Directory of Open Access Journals (Sweden)

    Marija Kurtinaitienė

    2013-01-01

    Full Text Available We report the synthesis of μm and sub-μm-sized Co, Ru, and Co-Ru alloy species by hydrothermal approach in the aqueous alkaline solutions (pH ≥ 13 containing CoCl2 and/or RuCl3, sodium citrate, and hydrazine hydrate and a study of their catalytic properties for hydrogen generation by hydrolysis of sodium borohydride solution. This way provides a simple platform for fabrication of the ball-shaped Co-Ru alloy catalysts containing up to 12 wt% Ru. Note that bimetallic Co-Ru alloy bowls containing even 7 at.% Ru have demonstrated catalytic properties that are comparable with the ones of pure Ru particles fabricated by the same method. This result is of great importance in view of the preparation of cost-efficient catalysts for hydrogen generation from borohydrides. The morphology and composition of fabricated catalyst particles have been characterized using scanning electron microscopy, energy dispersive X-ray diffraction, and inductively coupled plasma optical emission spectrometry.

  11. A Novel Carbon Nanotube-Supported NiP Amorphous Alloy Catalyst and Its Hydrogenation Activity

    Institute of Scientific and Technical Information of China (English)

    Yan Ju; Fengyi Li

    2006-01-01

    A carbon nanotube-supported NiP amorphous catalyst (NiP/CNT) was prepared by induced reduction. Benzene hydrogenation was used as a probe reaction for the study of catalytic activity. The effects of the support on the activity and thermal stability of the supported catalyst were discussed based on various characterizations, including XRD, TEM, ICP, XPS, H2-TPD, and DTA. In comparison with the NiP amorphous alloy, the benzene conversion on NiP/CNT catalyst was lower, but the specific activity of NiP/CNT was higher, which is attributed to the dispersion produced by the support, an electron-donating effect, and the hydrogen-storage ability of CNT. The NiP/CNT thermal stability was improved because of the dispersion and electronic effects and the good heat-conduction ability of the CNT support.

  12. Characterization and reactivity of Pd Pt bimetallic supported catalysts obtained by laser vaporization of bulk alloy

    Science.gov (United States)

    Rousset, J. L.; Cadete Santos Aires, F. J.; Bornette, F.; Cattenot, M.; Pellarin, M.; Stievano, L.; Renouprez, A. J.

    2000-09-01

    Bimetallic Pd-Pt clusters produced by laser vaporization of bulk alloy have been deposited on high surface alumina. Energy dispersive X-ray (EDX) analysis and transmission electron microscopy (TEM) show that they have a perfectly well-defined stoichiometry and a narrow range of size. Therefore, they constitute ideal systems to investigate alloying effects towards reactivity. Pd-Pt alloys are already known for their applications in the hydrogenation of unsaturated hydrocarbons, especially aromatics, because this system is highly resistant to sulfur and nitrogen poisoning. In this context, the catalytic properties of this system have been investigated in the hydrogenation of tetralin in the presence of hydrogen sulfide. Preliminary results show that this model catalyst is more sulfur-resistant than each of the pure supported metals prepared by chemical methods.

  13. Binary platinum alloy electrodes for hydrogen and oxygen evolutions by seawater splitting

    Science.gov (United States)

    Zheng, Jingjing

    2017-08-01

    Hydrogen and oxygen evolutions by seawater splitting are persistent objectives for green energy production. We present here the experimental realization of Ti foil supported PtM (M = Fe, Co, Ni, Pd) alloy electrodes by a cycle voltammetry method for seawater splitting. The preliminary results demonstrate that the resultant Ti supported PtM alloy electrodes are robust in realizing high-efficiency hydrogen evolution reaction (HER) and oxygen evolution reaction (OER), arising from enhanced current density, reduced potential, and good durability. By tuning M species, the Ti supported PtPd alloy electrode displays a maximal efficiency, yielding an onset potential of -52 mV and 690 mV (vs RHE) in HER and OER, respectively. The current densities of Ti supported PtPd electrode are as high as 270 mA cm-2 at 1.32 V (vs RHE) and 590 mA cm-2 at 3.99 V (vs RHE). Moreover, the long-term stability has also been increased by alloying Pt with M. Although the work presented here is far from optimized, the concept of alloying transition metals with Pt can guide us to design highly efficient alloy electrodes for hydrogen and oxygen evolutions from seawater splitting.

  14. Highly active carbon supported palladium catalysts decorated by a trace amount of platinum by an in-situ galvanic displacement reaction for formic acid oxidation

    Science.gov (United States)

    Li, Zuopeng; Li, Muwu; Han, Mingjia; Wu, Xin; Guo, Yong; Zeng, Jianhuang; Li, Yuexia; Liao, Shijun

    2015-03-01

    Aimed at reducing platinum usage and improved catalytic activity for formic acid oxidation, a series of Pt decorated Pd/C catalysts are prepared by an in-situ galvanic displacement reaction between freshly prepared Pd/C ink and H2PtCl6 in an aqueous solution. The catalysts with 4 nm particle sizes and 20 wt.% loadings have been characterized by transmission electron microscopy, thermogravimetric analysis and X-ray photoelectron spectroscopy (XPS). The electrochemical evaluations by cyclic voltammetry are conducted to test out the CO tolerance and catalytic activities. In addition to XPS analysis, a theoretical calculation has been attempted the first time to find out the surface Pd/Pt molar ratios. The decay rate of the catalysts has been evaluated by the percentage of the forward/backward peak current retained using the value at the 20th cycle divided by that in the first cycle. Compared with a Pd/C benchmark, all Pt decorated Pd/C register enhanced activity while the cost remains virtually unchanged. The optimized catalyst is found to have a Pd/Pt molar ratio of 75:1 but with 2.5 times activity relative to that of Pd/C.

  15. The pH-dependent release of platinum group elements (PGEs) from gasoline and diesel fuel catalysts: Implication for weathering in soils.

    Science.gov (United States)

    Suchá, Veronika; Mihaljevič, Martin; Ettler, Vojtěch; Strnad, Ladislav

    2016-04-15

    Powdered samples of new and old gasoline catalysts (Pt, Pd, Rh) and new and old diesel (Pt) catalysts were subjected to a pH-static leaching procedure (pH 2-9) coupled with thermodynamic modeling using PHREEQC-3 to verify the release and mobility of PGEs (platinum group elements). PGEs were released under acidic conditions, mostly exhibiting L-shaped leaching patterns: diesel old: 5.47, 0.005, 0.02; diesel new: 68.5, 0.23, 0.11; gasoline old: 0.1, 11.8, 4.79; gasoline new 2.6, 25.2, 35.9 in mg kg(-1) for Pt, Pd and Rh, respectively. Only the new diesel catalyst had a strikingly different leaching pattern with elevated concentrations at pH 4, probably influenced by the dissolution of the catalyst carrier and washcoat. The pH-static experiment coupled with thermodynamic modeling was found to be an effective instrument for understanding the leaching behavior of PGEs under various environmental conditions, and indicated that charged Pt and Rh species may be adsorbed on the negatively charged surface of kaolinite or Mn oxides in the soil system, whereas uncharged Pd and Rh species may remain mobile in soil solutions.

  16. Process for applying a catalytically active coating, particularly one containing platinum and/or palladium on catalyst carrier. Verfahren zum Aufbringen eines katalytisch aktiven, insbesondere Platin und/oder Palladium enthaltenden Ueberzugs auf Katalysatortraeger

    Energy Technology Data Exchange (ETDEWEB)

    Bozon, A.; Lakatos, E.; Koberstein, E.; Pletka, H.D.; Voelker, H.

    1981-09-03

    The invention concerns an improved process for applying a platinum and/or palladium, coating or films, possibly one containing other platinum group metals and/or nonprecious metals, by means of solutions of the metal compounds on the outer surface of porous catalyst carriers, i.e. those having a large surface. It was found that aquaeous solutions of ammonium chloride can be used to advantage to pre-charge the catalyst carrier, instead of the previously used organic solvents, where the saturation of the catalyst carrier must not be exceeded. After impregnation with an aquaeous solution of the catalytically active elements, the liquid is finally removed by heating. In the engine exhaust gas test, the catalysts according to the invention proved superior to the conventional ones.

  17. Catalytic wet oxidation of aqueous methylamine: comparative study on the catalytic performance of platinum-ruthenium, platinum, and ruthenium catalysts supported on titania.

    Science.gov (United States)

    Song, Aiying; Lu, Gongxuan

    2015-01-01

    Promotion of the dispersion of Ru species supported on TiO2 was achieved by introduction of Pt component and the role of Pt in enhancing the catalytic performances of Pt-Ru was investigated with catalytic wet air oxidation of methylamine used as a probing reaction. It was found that Pt-Ru/TiO2 displayed a much better catalytic performance compared with Pt/TiO2 and Ru/TiO2 catalysts due to having the highest dispersion of active species. Both high total organic carbon conversion and nitrogen selectivity (∼100%) over Pt-Ru/TiO2 catalyst were achieved at low temperature (200 °C). X-ray photoelectron spectroscopy characterization indicated that there were strong interactions between metal particles and the support, which may increase the catalytic performance of catalysts.

  18. Studies on PEM fuel cell noble metal catalyst dissolution

    DEFF Research Database (Denmark)

    Andersen, S. M.; Grahl-Madsen, L.; Skou, E. M.

    2011-01-01

    A combination of electrochemical, spectroscopic and gravimetric methods was carried out on Proton Exchange Membrane (PEM) fuel cell electrodes with the focus on platinum and ruthenium catalysts dissolution, and the membrane degradation. In cyclic voltammetry (CV) experiments, the noble metals were...... found to dissolve in 1 M sulfuric acid solution and the dissolution increased exponentially with the upper potential limit (UPL) between 0.6 and 1.6 vs. RHE. 2-20% of the Pt (depending on the catalyst type) was found to be dissolved during the experiments. Under the same conditions, 30-100% of the Ru...... (depending on the catalyst type) was found to be dissolved. The faster dissolution of ruthenium compared to platinum in the alloy type catalysts was also confirmed by X-ray diffraction measurements. The dissolution of the carbon supported catalyst was found one order of magnitude higher than the unsupported...

  19. Electrodeposition of gold-platinum alloy nanoparticles on carbon nanotubes as electrochemical sensing interface for sensitive detection of tumor marker

    Energy Technology Data Exchange (ETDEWEB)

    Li Ya [Key Laboratory on Luminescence and Real-Time Analysis, Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715 (China); Yuan Ruo, E-mail: yuanruo@swu.edu.cn [Key Laboratory on Luminescence and Real-Time Analysis, Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715 (China); Chai Yaqin; Song Zhongju [Key Laboratory on Luminescence and Real-Time Analysis, Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715 (China)

    2011-07-30

    Graphical abstract: Electrodeposition of gold-platinum alloy (Au-PtNPs) on carbon nanotubes as electrochemical sensing interface and HRP as blocking agent for the fabrication of high sensitive immunosensor. Display Omitted Highlights: > In this work, we proposed a novel electrochemical sensing surface. > The sensing surface possessed larger electro-active areas and higher conductivity due to the introduction of MWCNTs. > The signal could be amplified effectively by synergetic catalysis effect of Au-PtNPs and HRP towards the reduction of H{sub 2}O{sub 2}. > Biomolecules could be immobilized on the surface of Au-PtNPs tightly with the bioactivity kept well. > The simple fabrication method provided a new potential for the future development of practical devices for clinical diagnosis application. - Abstract: A novel electrochemical sensing interface, electrodeposition of gold-platinum alloy nanoparticles (Au-PtNPs) on carbon nanotubes, was proposed and used to fabricate a label-free amperometric immunosensor. On the one hand, the multiwalled carbon nanotubes (MWCNTs) could increase active area of the electrode and enhance the electron transfer ability between the electrode and redox probe; on the other hand, the Au-PtNPs not only could be used to assemble biomolecules with bioactivity kept well, but also could further facilitate the shuttle of electrons. In the meanwhile, horseradish peroxidase (HRP) instead of bovine serum albumin (BSA) was employed to block the possible remaining active sites and avoid the nonspecific adsorption. With the synergetic catalysis effect of Au-PtNPs and HRP towards the reduction of hydrogen peroxide (H{sub 2}O{sub 2}), the signal could be amplified and the sensitivity could be enhanced. Using alpha-fetoprotein (AFP) as model analyte, the fabricated immunosensor exhibited two wide linear ranges in the concentration ranges of 0.5-20 ng mL{sup -1} and 20-200 ng mL{sup -1} with a detection limit of 0.17 ng mL{sup -1} at a signal-to-noise of

  20. Design criteria for stable Pt/C fuel cell catalysts.

    Science.gov (United States)

    Meier, Josef C; Galeano, Carolina; Katsounaros, Ioannis; Witte, Jonathon; Bongard, Hans J; Topalov, Angel A; Baldizzone, Claudio; Mezzavilla, Stefano; Schüth, Ferdi; Mayrhofer, Karl J J

    2014-01-01

    Platinum and Pt alloy nanoparticles supported on carbon are the state of the art electrocatalysts in proton exchange membrane fuel cells. To develop a better understanding on how material design can influence the degradation processes on the nanoscale, three specific Pt/C catalysts with different structural characteristics were investigated in depth: a conventional Pt/Vulcan catalyst with a particle size of 3-4 nm and two Pt@HGS catalysts with different particle size, 1-2 nm and 3-4 nm. Specifically, Pt@HGS corresponds to platinum nanoparticles incorporated and confined within the pore structure of the nanostructured carbon support, i.e., hollow graphitic spheres (HGS). All three materials are characterized by the same platinum loading, so that the differences in their performance can be correlated to the structural characteristics of each material. The comparison of the activity and stability behavior of the three catalysts, as obtained from thin film rotating disk electrode measurements and identical location electron microscopy, is also extended to commercial materials and used as a basis for a discussion of general fuel cell catalyst design principles. Namely, the effects of particle size, inter-particle distance, certain support characteristics and thermal treatment on the catalyst performance and in particular the catalyst stability are evaluated. Based on our results, a set of design criteria for more stable and active Pt/C and Pt-alloy/C materials is suggested.

  1. Design criteria for stable Pt/C fuel cell catalysts

    Directory of Open Access Journals (Sweden)

    Josef C. Meier

    2014-01-01

    Full Text Available Platinum and Pt alloy nanoparticles supported on carbon are the state of the art electrocatalysts in proton exchange membrane fuel cells. To develop a better understanding on how material design can influence the degradation processes on the nanoscale, three specific Pt/C catalysts with different structural characteristics were investigated in depth: a conventional Pt/Vulcan catalyst with a particle size of 3–4 nm and two Pt@HGS catalysts with different particle size, 1–2 nm and 3–4 nm. Specifically, Pt@HGS corresponds to platinum nanoparticles incorporated and confined within the pore structure of the nanostructured carbon support, i.e., hollow graphitic spheres (HGS. All three materials are characterized by the same platinum loading, so that the differences in their performance can be correlated to the structural characteristics of each material. The comparison of the activity and stability behavior of the three catalysts, as obtained from thin film rotating disk electrode measurements and identical location electron microscopy, is also extended to commercial materials and used as a basis for a discussion of general fuel cell catalyst design principles. Namely, the effects of particle size, inter-particle distance, certain support characteristics and thermal treatment on the catalyst performance and in particular the catalyst stability are evaluated. Based on our results, a set of design criteria for more stable and active Pt/C and Pt-alloy/C materials is suggested.

  2. 铂铑合金在硅酸盐熔体中铂和铑损失的研究%Study on the Loss of Platinum and Rhodium in Silicate Melts of Platinum-Rhodium Alloy

    Institute of Scientific and Technical Information of China (English)

    金英杰; 李树屏; 杨志先

    2015-01-01

    Study of the loss of platinum and rhodium in silicate melts of platinum-rhodium alloy. At a certain temperature, platinum and rhodium were lose, and the loss of rhodium was 3.6~5 times of the amount of platium. And qualitative analysis the change of the section rhodium content of PtRh20 in long term use. As a result, the rhodium content was falled 30% to 50%.%研究了铂铑制品中铂和铑在硅酸恿熔体中的损失。发现了在一定温度下,铂和铑在硅酸恿熔体的作用下均会损失,其中铑损失量是铂损失量的3.6~5倍。并定性研究了PtRh20制品在长期使用后厚度方向上铑含量的变化,发现在使用18个月后PtRh20制品铑含量降低了30%~50%。

  3. Activity of platinum/carbon and palladium/carbon catalysts promoted by Ni2 P in direct ethanol fuel cells.

    Science.gov (United States)

    Li, Guoqiang; Feng, Ligang; Chang, Jinfa; Wickman, Björn; Grönbeck, Henrik; Liu, Changpeng; Xing, Wei

    2014-12-01

    Ethanol is an alternative fuel for direct alcohol fuel cells, in which the electrode materials are commonly based on Pt or Pd. Owing to the excellent promotion effect of Ni2 P that was found in methanol oxidation, we extended the catalyst system of Pt or Pd modified by Ni2 P in direct ethanol fuel cells. The Ni2 P-promoted catalysts were compared to commercial catalysts as well as to reference catalysts promoted with only Ni or only P. Among the studied catalysts, Pt/C and Pd/C modified by Ni2 P (30 wt %) showed both the highest activity and stability. Upon integration into the anode of a homemade direct ethanol fuel cell, the Pt-Ni2 P/C-30 % catalyst showed a maximum power density of 21 mW cm(-2) , which is approximately two times higher than that of a commercial Pt/C catalyst. The Pd-Ni2 P/C-30 % catalyst exhibited a maximum power density of 90 mW cm(-2) . This is approximately 1.5 times higher than that of a commercial Pd/C catalyst. The discharge stability on both two catalysts was also greatly improved over a 12 h discharge operation.

  4. Magnetically stabilized bed reactor for selective hydrogenation of olefins in reformate with amorphous nickel alloy catalyst

    Institute of Scientific and Technical Information of China (English)

    Xuhong Mu; Enze Min

    2007-01-01

    A magnetically stabilized bed (MSB) reactor for selective hydrogenation of olefins in reformate was developed by combining the advantages of MSB and amorphous nickel alloy catalyst. The effects of operating conditions, such as temperature, pressure, liquid space velocity, hydrogen-to-oil ratio, and magnetic field intensity on the reaction were studied. A mathematical model of MSB reactor for hydrogenation of olefins in reformate was established. A reforming flow scheme with a post-hydrogenation MSB reactor was proposed. Finally, MSB hydrogenation was compared with clay treatment and conventional post-hydrogenation.

  5. 从炭载体废催化剂回收铂钯%Recovery of Palladium and Platinum from Carbon Supported Waste Catalysts

    Institute of Scientific and Technical Information of China (English)

    刘时杰

    2014-01-01

    The carbon supported catalysts, Pd/C and Pt/C, are the very important chemical catalysts. The incineration technology is the most simple method for the recovery of platinum or palladium from the waste catalysts. The processes and technologies to prevent the loss of flying-ash during burning were introduced and some examples were listed. The principle of supercritical water oxidation (SCWO) and its technical processes were discussed, and its application prospect was reviewed.%Pd/C、Pt/C是非常重要的化工催化剂。最简单的从废催化剂中回收钯或铂的方法是焚烧法。介绍了工艺过程及防止焚烧时飞扬损失的各种技术措施,列举了应用实例。探讨了超临界水氧化法(SCWO)的原理,工艺过程及处理炭载体废催化剂的应用前景。

  6. Self-Assembled Coral-like Hierarchical Architecture Constructed by NiSe2 Nanocrystals with Comparable Hydrogen-Evolution Performance of Precious Platinum Catalyst.

    Science.gov (United States)

    Yu, Bo; Wang, Xinqiang; Qi, Fei; Zheng, Binjie; He, Jiarui; Lin, Jie; Zhang, Wanli; Li, Yanrong; Chen, Yuanfu

    2017-03-01

    For the first time, self-assembled coral-like hierarchical architecture constructed by NiSe2 nanocrystals has been synthesized via a facile one-pot DMF-solvothermal method. Compared with hydrothermally synthesized NiSe2 (H-NiSe2), the DMF-solvothermally synthesized nanocrystalline NiSe2 (DNC-NiSe2) exhibits superior performance of hydrogen evolution reaction (HER): it has a very low onset overpotential of ∼136 mV (vs RHE), a very high cathode current density of 40 mA/cm(2) at ∼200 mV (vs RHE), and an excellent long-term stability; most importantly, it delivers an ultrasmall Tafel slope of 29.4 mV dec(-1), which is the lowest ever reported for NiSe2-based catalysts, and even lower than that of precious platinum (Pt) catalyst (30.8 mV dec(-1)). The superior HER performance of DNC-NiSe2 is attributed to the unique self-assembled coral-like network, which is a benefit to form abundant active sites and facilitates the charge transportation due to the inherent high conductivity of NiSe2 nanocrystals. The DNC-NiSe2 is promising to be a viable alternative to precious metal catalysts for hydrogen evolution.

  7. The features of CNT growth on catalyst-content amorphous alloy layer by CVD-method

    Science.gov (United States)

    Dubkov, S.; Bulyarskii, S.; Pavlov, A.; Trifonov, A.; Kitsyuk, E.; Mierczynski, P.; Maniecki, T.; Ciesielski, R.; Gavrilov, S.; Gromov, D.

    2016-12-01

    This work is devoted to the CVD-synthesis of arrays of carbon nanotubes (CNTs) on Co-Zr-N-(O), Ni-Nb-N-(O), Co- Ta-N-(O) catalytic alloy films from gas mixture of C2H2+NH3+Ar at a substrate temperature of about 550°C.Heating of the amorphous alloy causes its crystallization and squeezing of the catalytic metal onto the surface. As a result, small catalyst particles are formed on the surface. The CNT growth takes place after wards on these particles. It should be noted that the growth of CNT arrays on these alloys is insensitive to the thickness of alloy film, which makes this approach technically attractive. In particular, the possibility of local CNT growth at the ends of the Co-Ta-N-(O) film and three-level CNT growth at the end of more complex structure SiO2/Ni-Nb-N-O/SiO2/Ni-Nb-N-O/SiO2/Ni-Nb-N-O/SiO2 is demonstrated.

  8. Structure and Stability of Pt-Y Alloy Particles for Oxygen Reduction Studied by Electron Microscopy

    DEFF Research Database (Denmark)

    Deiana, Davide; Wagner, Jakob Birkedal; Hansen, Thomas Willum

    2015-01-01

    Platinum-yttrium alloy nanoparticles show both a high activity and stability for the oxygen reduction reaction. The catalysts were prepared by magnetron sputter aggregation and mass filtration providing a model catalyst system with a narrow size distribution. The structure and stability...... of nanostructured Pt-Y alloy catalysts were studied using transmission electron microscopy techniques. Using elemental X-ray mapping and high-resolution electron microscopy, the specific compositional structure and distribution of the individual nanoparticles was unraveled and the stability assessed. Studying...... the catalyst after reaction and after aging tests shows the development of a core-shell type structure after being exposed to reaction conditions....

  9. Structure and Stability of Pt-Y Alloy Particles for Oxygen Reduction Studied by Electron Microscopy

    DEFF Research Database (Denmark)

    Deiana, Davide; Wagner, Jakob Birkedal; Hansen, Thomas Willum

    2015-01-01

    Platinum-yttrium alloy nanoparticles show both a high activity and stability for the oxygen reduction reaction. The catalysts were prepared by magnetron sputter aggregation and mass filtration providing a model catalyst system with a narrow size distribution. The structure and stability...... of nanostructured Pt-Y alloy catalysts were studied using transmission electron microscopy techniques. Using elemental X-ray mapping and high-resolution electron microscopy, the specific compositional structure and distribution of the individual nanoparticles was unraveled and the stability assessed. Studying...... the catalyst after reaction and after aging tests shows the development of a core-shell type structure after being exposed to reaction conditions....

  10. The Integration of a Structural Water Gas Shift Catalyst with a Vanadium Alloy Hydrogen Transport Device

    Energy Technology Data Exchange (ETDEWEB)

    Barton, Thomas; Argyle, Morris; Popa, Tiberiu

    2009-06-30

    This project is in response to a requirement for a system that combines water gas shift technology with separation technology for coal derived synthesis gas. The justification of such a system would be improved efficiency for the overall hydrogen production. By removing hydrogen from the synthesis gas stream, the water gas shift equilibrium would force more carbon monoxide to carbon dioxide and maximize the total hydrogen produced. Additional benefit would derive from the reduction in capital cost of plant by the removal of one step in the process by integrating water gas shift with the membrane separation device. The answer turns out to be that the integration of hydrogen separation and water gas shift catalysis is possible and desirable. There are no significant roadblocks to that combination of technologies. The problem becomes one of design and selection of materials to optimize, or at least maximize performance of the two integrated steps. A goal of the project was to investigate the effects of alloying elements on the performance of vanadium membranes with respect to hydrogen flux and fabricability. Vanadium was chosen as a compromise between performance and cost. It is clear that the vanadium alloys for this application can be produced, but the approach is not simple and the results inconsistent. For any future contracts, large single batches of alloy would be obtained and rolled with larger facilities to produce the most consistent thin foils possible. Brazing was identified as a very likely choice for sealing the membranes to structural components. As alloying was beneficial to hydrogen transport, it became important to identify where those alloying elements might be detrimental to brazing. Cataloging positive and negative alloying effects was a significant portion of the initial project work on vanadium alloying. A water gas shift catalyst with ceramic like structural characteristics was the second large goal of the project. Alumina was added as a

  11. The Integration of a Structural Water Gas Shift Catalyst with a Vanadium Alloy Hydrogen Transport Device

    Energy Technology Data Exchange (ETDEWEB)

    Barton, Thomas; Argyle, Morris; Popa, Tiberiu

    2009-06-30

    This project is in response to a requirement for a system that combines water gas shift technology with separation technology for coal derived synthesis gas. The justification of such a system would be improved efficiency for the overall hydrogen production. By removing hydrogen from the synthesis gas stream, the water gas shift equilibrium would force more carbon monoxide to carbon dioxide and maximize the total hydrogen produced. Additional benefit would derive from the reduction in capital cost of plant by the removal of one step in the process by integrating water gas shift with the membrane separation device. The answer turns out to be that the integration of hydrogen separation and water gas shift catalysis is possible and desirable. There are no significant roadblocks to that combination of technologies. The problem becomes one of design and selection of materials to optimize, or at least maximize performance of the two integrated steps. A goal of the project was to investigate the effects of alloying elements on the performance of vanadium membranes with respect to hydrogen flux and fabricability. Vanadium was chosen as a compromise between performance and cost. It is clear that the vanadium alloys for this application can be produced, but the approach is not simple and the results inconsistent. For any future contracts, large single batches of alloy would be obtained and rolled with larger facilities to produce the most consistent thin foils possible. Brazing was identified as a very likely choice for sealing the membranes to structural components. As alloying was beneficial to hydrogen transport, it became important to identify where those alloying elements might be detrimental to brazing. Cataloging positive and negative alloying effects was a significant portion of the initial project work on vanadium alloying. A water gas shift catalyst with ceramic like structural characteristics was the second large goal of the project. Alumina was added as a

  12. Ultrasmall PdmMn1-mOx binary alloyed nanoparticles on graphene catalysts for ethanol oxidation in alkaline media

    Science.gov (United States)

    Ahmed, Mohammad Shamsuddin; Park, Dongchul; Jeon, Seungwon

    2016-03-01

    A rare combination of graphene (G)-supported palladium and manganese in mixed-oxides binary alloyed catalysts (BACs) have been synthesized with the addition of Pd and Mn metals in various ratios (G/PdmMn1-mOx) through a facile wet-chemical method and employed as an efficient anode catalyst for ethanol oxidation reaction (EOR) in alkaline fuel cells. The as prepared G/PdmMn1-mOx BACs have been characterized by several instrumental techniques; the transmission electron microscopy images show that the ultrafine alloyed nanoparticles (NPs) are excellently monodispersed onto the G. The Pd and Mn in G/PdmMn1-mOx BACs have been alloyed homogeneously, and Mn presents in mixed-oxidized form that resulted by X-ray diffraction. The electrochemical performances, kinetics and stability of these catalysts toward EOR have been evaluated using cyclic voltammetry in 1 M KOH electrolyte. Among all G/PdmMn1-mOx BACs, the G/Pd0.5Mn0.5Ox catalyst has shown much superior mass activity and incredible stability than that of pure Pd catalysts (G/Pd1Mn0Ox, Pd/C and Pt/C). The well dispersion, ultrafine size of NPs and higher degree of alloying are the key factor for enhanced and stable EOR electrocatalysis on G/Pd0.5Mn0.5Ox.

  13. Bi-Sn alloy catalyst for simultaneous morphology and doping control of silicon nanowires in radial junction solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Zhongwei [National Laboratory of Solid State Microstructures and School of Electronics Science and Engineering/Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093 (China); School of Science, Nantong University, Nantong 226000 (China); Lu, Jiawen; Qian, Shengyi; Xu, Jun; Xu, Ling; Wang, Junzhuan; Shi, Yi; Chen, Kunji [National Laboratory of Solid State Microstructures and School of Electronics Science and Engineering/Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093 (China); Misra, Soumyadeep; Roca i Cabarrocas, Pere [LPICM, CNRS, Ecole Polytechnique, Université Paris-Saclay, 91128 Palaiseau (France); Yu, Linwei, E-mail: yulinwei@nju.edu.cn, E-mail: linwei.yu@polytechnique.edu [National Laboratory of Solid State Microstructures and School of Electronics Science and Engineering/Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093 (China); LPICM, CNRS, Ecole Polytechnique, Université Paris-Saclay, 91128 Palaiseau (France)

    2015-10-19

    Low-melting point metals such as bismuth (Bi) and tin (Sn) are ideal choices for mediating a low temperature growth of silicon nanowires (SiNWs) for radial junction thin film solar cells. The incorporation of Bi catalyst atoms leads to sufficient n-type doping in the SiNWs core that exempts the use of hazardous dopant gases, while an easy morphology control with pure Bi catalyst has never been demonstrated so far. We here propose a Bi-Sn alloy catalyst strategy to achieve both a beneficial catalyst-doping and an ideal SiNW morphology control. In addition to a potential of further growth temperature reduction, we show that the alloy catalyst can remain quite stable during a vapor-liquid-solid growth, while providing still sufficient n-type catalyst-doping to the SiNWs. Radial junction solar cells constructed over the alloy-catalyzed SiNWs have demonstrated a strongly enhanced photocurrent generation, thanks to optimized nanowire morphology, and largely improved performance compared to the reference samples based on the pure Bi or Sn-catalyzed SiNWs.

  14. A Facile Synthesis of Hollow Palladium/Copper Alloy Nanocubes Supported on N-Doped Graphene for Ethanol Electrooxidation Catalyst

    Directory of Open Access Journals (Sweden)

    Zhengyu Bai

    2015-04-01

    Full Text Available In this paper, a catalyst of hollow PdCu alloy nanocubes supported on nitrogen-doped graphene support (H-PdCu/ppy-NG is successfully synthesized using a simple one-pot template-free method. Two other catalyst materials such as solid PdCu alloy particles supported on this same nitrogen-doped graphene support (PdCu/ppy-NG and hollow PdCu alloy nanocubes supported on the reduced graphene oxide support (H-PdCu/RGO are also prepared using the similar synthesis conditions for comparison. It is found that, among these three catalyst materials, H-PdCu/ppy-NG gives the highest electrochemical active area and both the most uniformity and dispersibility of H-PdCu particles. Electrochemical tests show that the H-PdCu/ppy-NG catalyst can give the best electrocatalytic activity and stability towards the ethanol electrooxidation when compared to other two catalysts. Therefore, H-PdCu/ppy-NG should be a promising catalyst candidate for anodic ethanol oxidation in direct ethanol fuel cells.

  15. Order-Disorder Phenomena in the Binary Alloys Platinum(x)titanium, Platinum(x)vanadium (3 Less than or Equal to X Less than or Equal to 8) and NICKEL(3)MOLYBDENUM Studied by High Resolution Electron Microscopy.

    Science.gov (United States)

    Schryvers, Dominique

    In this work the results of an experimental study on the order-disorder behaviour of three different binary alloy systems are presented. The investigations were performed mainly using electron diffraction and high resolution electron microscopy techniques. In the first chapter an introduction with respect to the general aspects of ordering in alloys is given. The second chapter describes the most important properties of the investigation techniques. Both chapters are written in function of the needs in following chapters. Chapter III comprehends the results obtained in the platinum rich part of the Pt-Ti alloy system, while those of Pt-V are described in chapter IV. The main results in these alloy systems concern the characterization of new ordered phases. The complex dynamical ordering mechanism existing in {rm Ni_3 Mo} is discussed in chapter V. In chapter VI a calculation of possible ground state structures of a binary system based on the face centered cubic lattice and including the fourth nearest neighbour pair interaction is presented. A comparison between the theoretical results and the experimental ones of chapters III and IV is given.

  16. Nanoporous PdZr surface alloy as highly active non-platinum electrocatalyst toward oxygen reduction reaction with unique structure stability and methanol-tolerance

    Science.gov (United States)

    Duan, Huimei; Xu, Caixia

    2016-06-01

    Nanoporous (NP) PdZr alloy with controllable bimetallic ratio is successfully fabricated by a simple dealloying method. By leaching out the more reactive Al from PdZrAl precursor alloy, NP-PdZr alloy with smaller ligament size was generated, characterized by the nanoscaled interconnected network skeleton and hollow channels extending in all three dimensions. Upon voltammetric scan in acid solution, the dissolution of surface Zr atoms generates the highly active Pd-Zr surface alloy with a nearly pure Pd surface and Pd-Zr alloy core. The NP-Pd80Zr20 surface alloy exhibits markedly enhanced specific and mass activities as well as higher catalytic stability toward oxygen reduction reaction (ORR) compared with NP-Pd and the state-of-the-art Pt/C catalysts. In addition, the NP-Pd80Zr20 surface alloy shows a better selectivity for ORR than methanol in the 0.1 M HClO4 and 0.1 M methanol mixed solution. X-ray photoelectron spectroscopy and density functional theory calculations both demonstrate that the weakened Pd-O bond and improved ORR performances in turn depend on the downshifted d-band center of Pd due to the alloying Pd with Zr (20 at.%). The as-made NP-PdZr alloy holds prospective applications as a cathode electrocatalyst in fuel-cell-related technologies with the advantages of superior overall ORR performances, unique structure stability, and easy preparation.

  17. 烧结-溶出法从废催化剂中回收铂%Recovery of Platinum from Spent Catalysts by Sintering- leaching

    Institute of Scientific and Technical Information of China (English)

    王明; 戴曦; 邬建辉; 张保钢; 吴永谦; 陈田庄

    2011-01-01

    The sintering -leaching method was used in order to dissolve the alumina in spent catalysts. Platinum was then recovered from the residues after enriching process. The results showed: 1) the residual carbon was 0.54% with a high decoking rate of 92.66% , after roasting the spent catalysts at 600℃ for 1 h; 2) the residue rate was 5.04% , the dissolution rate of alumina and sodium oxide were 98.10% and 99. 25% , respectively, and the platinum was enriched 17. 87 times with the one - step sintering - leaching process: the cinder was added sodium hydroxide with a molecular proportion of 1. 2, then sintered at 800℃ for 2 h, the clinker was leached at 95℃ for 10 min.%采用烧结-溶出法溶解废催化剂中氧化铝基体,使铂富集,进而从不溶渣中回收铂.研究结果表明:废催化剂于600℃焙烧1h,炭残余量为0.54%,脱炭率达到92.66%;烧渣按配料分子比1.2配料,800℃烧结反应2h,熟料于95℃热水溶出10 min,一次烧结-溶出,渣率为5.04%,氧化铝溶出率为98.10%,氧化钠溶出率为99.25%,铂富集了17.87倍.

  18. Highly active and durable platinum-lead bimetallic alloy nanoflowers for formic acid electrooxidation

    Science.gov (United States)

    Gong, Mingxing; Li, Fumin; Yao, Zhigang; Zhang, Suqi; Dong, Jingwen; Chen, Yu; Tang, Yawen

    2015-03-01

    The Pt84Pb16 (atomic ratio) bimetallic alloy nanoflowers (Pt84Pb16 BANFs) are synthesized by a simple one-pot hydrothermal reduction method that effectively enhance the dehydrogenation pathway of the formic acid oxidation reaction (FAOR) due to the ensemble effect and the electronic effect. As a result, the mass activity of Pt84Pb16 BANFs for the FAOR is 16.7 times higher than that of commercial Pt black at 0.3 V potential.The Pt84Pb16 (atomic ratio) bimetallic alloy nanoflowers (Pt84Pb16 BANFs) are synthesized by a simple one-pot hydrothermal reduction method that effectively enhance the dehydrogenation pathway of the formic acid oxidation reaction (FAOR) due to the ensemble effect and the electronic effect. As a result, the mass activity of Pt84Pb16 BANFs for the FAOR is 16.7 times higher than that of commercial Pt black at 0.3 V potential. Electronic supplementary information (ESI) available: Experimental details. See DOI: 10.1039/c4nr07375d

  19. Activity and Stability of Rare Earth-Based Hydride Alloys as Catalysts of Hydrogen Absorption-Oxidation Reactions

    Institute of Scientific and Technical Information of China (English)

    Ying Taokai(应桃开); Gao Xueping(高学平); Hu Weikang(胡伟康); Noréus Dag

    2004-01-01

    Rare earth-based AB5-type hydrogen storage alloys as catalysts of hydrogen-diffusion electrodes for hydrogen absorption and oxidation reactions in alkaline fuel cells were investigated. It is demonstrated that the meta-hydride hydrogen-diffusion electrodes could be charged by hydrogen gas and electrochemically discharged at the same time to retain a stable oxidation potential for a long period. The catalytic activities and stability are almost comparable with a Pt catalyst on the active carbon. Further improvement of performances is expected via reduction of catalyst size into nanometers.

  20. Synthesis of Platinum Nanotubes and Nanorings via Simultaneous Metal Alloying and Etching

    KAUST Repository

    Huang, Zhiqi

    2016-04-19

    Metallic nanotubes represent a class of hollow nanostructures with unique catalytic properties. However, the wet-chemical synthesis of metallic nanotubes remains a substantial challenge, especially for those with dimensions below 50 nm. This communication describes a simultaneous alloying-etching strategy for the synthesis of Pt nanotubes with open ends by selective etching Au core from coaxial Au/Pt nanorods. This approach can be extended for the preparation of Pt nanorings when Saturn-like Au core/Pt shell nanoparticles are used. The diameter and wall thickness of both nanotubes and nanorings can be readily controlled in the range of 14-37 nm and 2-32 nm, respectively. We further demonstrated that the nanotubes with ultrathin side walls showed superior catalytic performance in oxygen reduction reaction. © 2016 American Chemical Society.

  1. In vitro biocompatibility and electrical stability of thick-film platinum/gold alloy electrodes printed on alumina

    Science.gov (United States)

    Carnicer-Lombarte, Alejandro; Lancashire, Henry T.; Vanhoestenberghe, Anne

    2017-06-01

    Objective. High-density electrode arrays are a powerful tool in both clinical neuroscience and basic research. However, current manufacturing techniques require the use of specialised techniques and equipment, which are available to few labs. We have developed a high-density electrode array with customisable design, manufactured using simple printing techniques and with commercially available materials. Approach. Electrode arrays were manufactured by thick-film printing a platinum-gold alloy (Pt/Au) and an insulating dielectric on 96% alumina ceramic plates. Arrays were conditioned in serum and serum-free conditions, with and without 1 kHz, 200 µA, charge balanced stimulation for up to 21 d. Array biocompatibility was assessed using an extract assay and a PC-12 cell contact assay. Electrode impedance, charge storage capacity and charge injection capacity were before and after array conditioning. Main results. The manufactured Pt/Au electrodes have a highly porous surface and exhibit electrical properties comparable to arrays manufactured using alternative techniques. Materials used in array manufacture were found to be non-toxic to L929 fibroblasts by extract assay, and neuronal-like PC-12 cells adhered and extended neurites on the array surfaces. Arrays remained functional after long-term delivery of electrical pulses while exposed to protein-rich environments. Charge storage capacities and charge injection capacities increased following stimulation accounted for by an increase in surface index (real surface area) observed by vertical scanning interferometry. Further, we observed accumulation of proteins at the electrode sites following conditioning in the presence of serum. Significance. This study demonstrates the in vitro biocompatibility of commercially available thick-film printing materials. The printing technique is both simple and versatile, with layouts readily modified to produce customized electrode arrays. Thick-film electrode arrays are an

  2. Continuous preparation of carbon-nanotube-supported platinum catalysts in a flow reactor directly heated by electric current

    Directory of Open Access Journals (Sweden)

    Alicja Schlange

    2011-10-01

    Full Text Available In this contribution we present for the first time a continuous process for the production of highly active Pt catalysts supported by carbon nanotubes by use of an electrically heated tubular reactor. The synthesized catalysts show a high degree of dispersion and narrow distributions of cluster sizes. In comparison to catalysts synthesized by the conventional oil-bath method a significantly higher electrocatalytic activity was reached, which can be attributed to the higher metal loading and smaller and more uniformly distributed Pt particles on the carbon support. Our approach introduces a simple, time-saving and cost-efficient method for fuel cell catalyst preparation in a flow reactor which could be used at a large scale.

  3. Preparation of Uniform Ni-B Amorphous Alloy Catalyst on CNTs and its Performance for Acetylene Selective Hydrogenation

    Institute of Scientific and Technical Information of China (English)

    Chang Yuan HU; Feng Yi LI; Rong Bin ZHANG; Li HUA

    2006-01-01

    Uniform Ni-B amorphous alloys about 14 nm have been prepared on CNTs-A support,named Ni-B/CNTs-A. In comparison with the Ni-B/CNTs amorphous catalyst, Ni-B/CNTs-A showed higher nickel loading, determined by ICP and better catalytic activity and ethylene selectivity in the acetylene hydrogenation reaction.

  4. Process for the separation and recovery of palladium and platinum from spent automobile catalyst leach liquor using LIX 84I and Alamine 336.

    Science.gov (United States)

    Reddy, B Ramachandra; Raju, B; Lee, Jin Young; Park, Hyung Kyu

    2010-08-15

    Spent catalysts from automobile industry contain environmentally critical and economically valuable metals such as Pt, Pd, Fe, Ni, Mn, and Cr. In this paper, we present a process for the selective separation and complete recovery of palladium (Pd) and platinum (Pt) from hydrochloric acid leach liquors of spent automobile catalyst employing solvent extraction method. Typical composition of leach liquor used for the present study contains (mg/L): Pd-150, Pt-550, Mn-500, Ni-1000, Fe-1500, Cr-100 and 3 M HCl. Selective separation of Pd from the leach liquor is achieved with 0.5 vol.% LIX 84I (2-hydroxy-5-nonylacetophenone oxime in a mixture with a high flash point hydrocarbon diluent) in kerosene at an aqueous to organic (A/O) ratio of 3 in 2 stages, with an enrichment factor of three. Quantitative stripping of Pd from loaded organic is achieved with 0.5 M thiourea and 1 M HCl. Co-extraction of Fe and Pt with 5 vol.% Alamine 336 (tertiary amine of mixed tri-octyl/decyl amine) in kerosene followed by selective scrubbing of Fe with dilute HCl and complete stripping of Pt from loaded organic was proposed with 0.5 M thiourea and 0.1 M HCl. Purity of Pd and Pt strip solutions are 99.7%. Finally, the present process can solve environmental related issues and at the same time recover valuable metals in pure form.

  5. A Pd/C-CeO2 Anode Catalyst for High-Performance Platinum-Free Anion Exchange Membrane Fuel Cells.

    Science.gov (United States)

    Miller, Hamish A; Lavacchi, Alessandro; Vizza, Francesco; Marelli, Marcello; Di Benedetto, Francesco; D'Acapito, Francesco; Paska, Yair; Page, Miles; Dekel, Dario R

    2016-05-10

    One of the biggest obstacles to the dissemination of fuel cells is their cost, a large part of which is due to platinum (Pt) electrocatalysts. Complete removal of Pt is a difficult if not impossible task for proton exchange membrane fuel cells (PEM-FCs). The anion exchange membrane fuel cell (AEM-FC) has long been proposed as a solution as non-Pt metals may be employed. Despite this, few examples of Pt-free AEM-FCs have been demonstrated with modest power output. The main obstacle preventing the realization of a high power density Pt-free AEM-FC is sluggish hydrogen oxidation (HOR) kinetics of the anode catalyst. Here we describe a Pt-free AEM-FC that employs a mixed carbon-CeO2 supported palladium (Pd) anode catalyst that exhibits enhanced kinetics for the HOR. AEM-FC tests run on dry H2 and pure air show peak power densities of more than 500 mW cm(-2) .

  6. Alternative alloys for platinum jewelry? New structures in Pt-Hf and Pt-Mo

    Science.gov (United States)

    Gilmartin, Erin; Corbitt, Jacqueline; Hart, Gus

    2008-10-01

    The only known intermetallic structure with an 8:1 stoichiometry is that of Pt8Ti. It is intriguing that an ordered compound would occur at such low concentrations of the minority atom. But this structure occurs in about a dozen binary intermetallic systems. The formation of an ordered structure can significantly enhance the performance of the material, particularly the hardness. Pt- and Pd-rich ordered structures have been experimentally studied in the systems Pt/Pd-X where X is Ti, V, Cr, Zr, Nb, M, Hf, Ta, and W. We took a broader look at 80 Pt/Pd rich alloys to find new candidates for the 8:1 structure and have found about 20. In order to verify our predictions, we used the cluster expansion to find the stable structures. We first applied the cluster expansion to Pt-Hf and Pt-Mo because these two candidates are the most likely to form the 8:1 structure. These new candidates can have applications in the jewelry and catalysis industries.

  7. Stability of Porous Platinum Nanoparticles: Combined In Situ TEM and Theoretical Study

    DEFF Research Database (Denmark)

    Chang, Shery L. Y.; Barnard, Amanda S.; Dwyer, Christian

    2012-01-01

    Porous platinum nanoparticles provide a route for the development of catalysts that use less platinum without sacrificing catalytic performance. Here, we examine porous platinum nanoparticles using a combination of in situ transmission electron microscopy and calculations based on a first...

  8. Platinum metals in the environment

    Energy Technology Data Exchange (ETDEWEB)

    Zereini, Fathi [Frankfurt Univ. (Germany). Dept. of Environmental Analytical Chemistry; Wiseman, Clare L.S. (ed.) [Toronto Univ. (Canada). School of the Environment

    2015-03-01

    This book contains the five chapters with the following topics: 1. SOURCES OF PGE EMISSIONS ELEMENTS: Sources of Platinum Group Elements (PGE) in the Environment; Impact of Platinum Group Element Emissions from Mining and Production Activities. 2. ANALYTICAL METHODS FOR THE DETERMINATION OF PGE IN BIOLOGICAL AND ENVIRONMENTAL MATRICES: Appraisal of Biosorption for Recovery, Separation and Determination of Platinum, Palladium and Rhodium in Environmental Samples; On the Underestimated Factors Influencing the Accuracy of Determination of Pt and Pd by Electrothermal Atomic Absorption Spectrometry in Road Dust Samples; Application of Solid Sorbents for Enrichment and Separation of Platinum Metal Ions; Voltammetric Analysis of Platinum in Environmental Matrices; Speciation Analysis of Chloroplatinates; Analysis of Platinum Group Elements in Environmental Samples: A Review. 3. OCCURRENCE, CHEMICAL BEHAVIOR AND FATE OF PGE IN THE ENVIRONMENT: Brazilian PGE Research Data Survey on Urban and Roadside Soils; Platinum, Palladium and Rhodium in a Bavarian Roadside Soil; Increase of Platinum Group Element Concentrations in Soils and Airborne Dust During the Period of Vehicular Exhaust Catalysts Introduction; Platinum-Group Elements in Urban Fluvial Bed Sediments-Hawaii; Long-Term Monitoring of Palladium and Platinum Contents in Road Dust of the City of Munich, Germany; Characterization of PGEs and Other Elements in Road Dusts and Airborne Particles in Houston, Texas; Accumulation and Distribution of Pt and Pd in Roadside Dust, Soil and Vegetation in Bulgaria; Increase of the Environmental Pt Concentration in the Metropolitan Area of Mexico City Associated to the Use of Automobile Catalytic Converters; Solubility of Emitted Platinum Group Elements (Pt, Pd and Rh) in Airborne Particulate Matter (PM10) in the Presence of Organic Complexing Agents; The Influence of Anionic Species (Cl{sup -}, NO{sub 3}{sup -}, SO{sub 4}{sup 2-}) on the Transformation and Solubility of Platinum in

  9. On the role of reactant transport and (surface) alloy formation for the CO tolerance of carbon supported PtRu polymer electrolyte fuel cell catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Kaiser, J.; Colmenares, L.; Jusys, Z.; Behm, R.J. [Abt. Oberflaechenchemie und Katalyse, Universitaet Ulm (Germany); Moertel, R.; Boennemann, H. [Max-Planck-Institut fuer Kohlenforschung, Muelheim a.d. Ruhr (Germany); Koehl, G.; Modrow, H.; Hormes, J. [Physikalisches Institut, Universitaet Bonn (Germany)

    2006-07-15

    The role of atomic scale intermixing for the electrocatalytic activity of bimetallic PtRu anode catalysts in reformate operated polymer electrolyte fuel cells (PEFC) was investigated, exploiting the specific properties of colloid based catalyst synthesis for the selective preparation of alloyed and non-alloyed bimetallic catalysts. Three different carbon supported PtRu catalysts with different degrees of Pt and Ru intermixing, consisting of (i) carbon supported PtRu alloy particles (PtRu/C), (ii) Pt and Ru particles co-deposited on the same carbon support (Pt+Ru/C), and (iii) a mixture of carbon supported Pt and carbon supported Ru (Pt/C+Ru/C) as well as the respective monometallic Pt/C and Ru/C catalysts were prepared and characterized by electron microscopy (TEM), X-ray absorption spectroscopy, and CO stripping. Their performance as PEFC anode catalysts was evaluated by oxidation of a H{sub 2}/2%CO gas mixture (simulated reformate) under fuel cell relevant conditions (elevated temperature, continuous reaction and controlled reactant transport) in a rotating disk electrode (RDE) set-up. The CO tolerance and H{sub 2} oxidation activity of the three catalysts is comparable and distinctly different from that of the monometallic catalysts. The results indicate significant transport of the reactants, CO{sub ad} and/or OH{sub ad}, between Pt and Ru surface areas and particles for all three catalysts, with only subtle differences from the alloy catalyst to the physical mixture. The high activity and CO tolerance of the bimetallic catalysts, through the formation of bimetallic surfaces, is explained, e.g., by contact formation in nanoparticle agglomerates or by material transport and subsequent surface decoration/surface alloy formation during catalyst preparation, conditioning, and operation. The instability and mobility of the catalysts under these conditions closely resembles concepts in gas phase catalysis. (Abstract Copyright [2006], Wiley Periodicals, Inc.)

  10. Titania Supported Pt and Pt/Pd Nano-particle Catalysts for the Oxidation of Sulfur Dioxide

    DEFF Research Database (Denmark)

    Koutsopoulos, Sotiris; Johannessen, Tue; Eriksen, Kim Michael

    2006-01-01

    Several types of titania (anatase) were used as supports for pure platinum and Pt–Pd bimetallic alloy catalysts. The preparation methods, normal wet impregnation technique and flame aerosol synthesis, obtained metal loadings of 2% by weight. The prepared catalysts were tested for SO2 oxidation...... activity at atmospheric pressure in the temperature range 250–600 °C. The SO2 to SO3 conversion efficiency of the Pt–Pd alloy was significantly higher than that of the individual metals. The effects of the preparation method and the titania type used on the properties and activity of the resulting catalyst...

  11. Pt/C催化邻硝基氯苯加氢反应的动力学研究%Kinetics of Ortho-nitrochlorobenzene Hydrogenation on Platinum/Carbon Catalyst

    Institute of Scientific and Technical Information of China (English)

    蒋成君; 尹红; 陈志荣

    2004-01-01

    The kinetics of catalytic hydrogenation of ortho-nitrochlorobenzene to 2,2′-dichloroazoxybenzene on platinum/carbon catalyst is investigated in a slurry reactor with the temperature range of 313-343 K, and orthochloroaniline is formed as a byproduct. Models based on Rideal-Eley and Langmuir-Hinshelwood mechanism have been proposed based on the rate data and the kinetic regime. The former model can be used to fit the experimental data better. Reaction controlling steps are physical adsorption of hydrogen and adsorbed ortho-nitrochlorobenzene reacted on the surface of catalyst.

  12. Pd-Au bimetallic catalysts: understanding alloy effects from planar models and (supported) nanoparticles.

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Feng; Goodman, Wayne D.

    2012-12-21

    Pd-Au bimetallic catalysts often display enhanced catalytic activities and selectivities compared with Pd-alone catalysts. This enhancement is often caused by two alloy effects, i.e., ensemble and ligand effects. The ensemble effect is dilution of surface Pd by Au. With increasing surface Au coverages, contiguous Pd ensembles disappear and isolated Pd ensembles form. For certain reactions, for example vinyl acetate synthesis, this effect is responsible for reaction rate enhancement via the formation of highly active surface sites, e.g., isolated Pd pairs. The disappearance of contiguous Pd ensembles also switches off side reactions catalyzed by these sites. This explains selectivity increase of certain reactions, for example direct H2O2 synthesis. The ligand effect is electronic perturbation of Au to Pd. By direct charge transfer or affecting bond length, the ligand effect causes the Pd d band to be more filled and the d-band center away from the Fermi level. Both changes make Pd more "atomic like" therefore binding reactants and products weaker. For certain reactions, this eliminates the so-called "self poisoning" and enhances activity/selectivity.

  13. Characterization of the surfaces of platinum/tin oxide based catalysts by Fourier Transform Infrared Spectroscopy (FTIR)

    Science.gov (United States)

    Keiser, Joseph T.; Upchurch, Billy T.

    1990-01-01

    A Pt/SnO2 catalyst has been developed at NASA Langley that is effective for the oxidation of CO at room temperature (1). A mechanism has been proposed to explain the effectiveness of this catalyst (2), but most of the species involved in this mechanism have not been observed under actual catalytic conditions. A number of these species are potentially detectable by Fourier Transform Infrared Spectroscopy (FTIR), e.g., HOSnO sub x, HO sub y PtO sub z, Pt-CO, and SnHCO3. Therefore a preliminary investigation was conducted to determine what might be learned about this particular catalyst by transmission FTIR. The main advantage of FTIR for this work is that the catalyst can be examined under conditions similar to the actual catalytic conditions. This can be of critical importance since some surface species may exist only when the reaction gases are present. Another advantage of the infrared approach is that since vibrations are probed, subtle chemical details may be obtained. The main disadvantage of this approach is that FTIR is not nearly as sensitive as the Ultra High Vacuum (UHV) surface analytical techniques such as Auger, Electron Spectroscopy for Chemical Analysis (ESCA), Electron Energy Loss Spectroscopy (EELS), etc. Another problem is that the assignment of the observed infrared bands may be difficult.

  14. Influence of Preparation Method on the Metal Cluster Size of Platinum/ZSM-5 Catalysts as studied with EXAFS.

    NARCIS (Netherlands)

    Koningsberger, D.C.; Kampers, F.W.H.; Engelen, C.W.R.; Hooff, J.H.C. van

    1990-01-01

    The size of Pt particles introduced into the channels of ZSM-5 zeolite by two different preparation methods has been studied with EXAFS. ZSM-5 was loaded with 2 wt 5% Pt by ion exchange and by impregnation. By careful calcination of the catalysts the dispersion was maintained. The EXAFS measurements

  15. Hydriding/dehydriding properties of NdMgNi alloy with catalyst CeO2

    Institute of Scientific and Technical Information of China (English)

    李霞; 张羊换; 杨泰; 许剑轶; 赵栋梁

    2016-01-01

    Hydrogen storage composites Nd2Mg17-50 wt.%Ni-x wt.%CeO2 (x=0, 0.5, 1.0, 1.5, 2.0) were obtained by induction-ball milling method. The catalytic effect of CeO2 on hydriding kinetics of Nd2Mg17-50 wt.%Ni composite was investigated. X-ray diffrac-tion (XRD) and high resolution transmission electron microscopy (HRTEM), selected area electron diffraction (SAED) analyses showed that Nd2Mg17-50 wt.%Ni alloy had a multiphase structure, consisting of NdMg12, NdMg2Ni, Mg2Ni and Ni phases and the addition of catalyst CeO2 prompted the composites to be partly transformed into amorphous strucutre. The CeO2 improved the maxi-mum hydrogen capacity of Nd2Mg17-50 wt.%Ni alloy from 3.192 wt.% to 3.376 wt.% (x=1.0). What’s more, the increment of diffu-sion coefficientD led to the faster hydriding kinetics, which was calculated by Avrami-Erofeev equation. The dehydrogenation tem-perature reduced from 515.54 to 504.72 K was mainly caused by the decrease of activation energy from 93.28 to 69.36 kJ/mol, which was proved by the Kissinger equation.

  16. PREPARATION AND CHARACTERIZATION OF SPHERICAL PP/PB ALLOYS WITH MgCl2-SUPPORTED ZIEGLER-NATTA CATALYST

    Institute of Scientific and Technical Information of China (English)

    Ai-hua He; Yang-wei Shi; Guo-qing Liu; Wei Yao; Bao-chen Huang

    2012-01-01

    Polypropylene (PP)/polybutene-1 (PB) alloys within reactor were prepared by MgCl2-supported Ziegler-Natta catalyst with sequential two-stage polymerization technology.First,propylene homo-polymerizations were carried out to form isotactic polypropylene (iPP) particles containing active catalyst.Then,butene-1 was subsequently polymerized to form polybutene-1 phase inside the iPP particles.Finally,iPP/PB alloys with spherical shape and adjustable PB content were synthesized.The catalytic activity and catalytic stereospecificity of the Z-N catalyst in the two-stage polymerization process are discussed.The composition and physical properties of the PP alloys were characterized by FT-IR,13C-NMR,SEM,DSC and XRD.It was found that the in-reactor PP alloys are mainly composed of PP and PB with a little amount of poly(buteneco-propylene) random copolymers and poly(butene-block-propylene) block copolymers.SEM measurements verified that the PB phases with size in the range of 300-400 nm dispersed in the PP matrix uniformly.The incorporation of PB upon the PP matrix affects the properties of final products greatly.

  17. Preparation of carbon alloy catalysts for polymer electrolyte fuel cells from nitrogen-containing rigid-rod polymers

    Energy Technology Data Exchange (ETDEWEB)

    Chokai, Masayuki [Department of Organic and Polymeric Materials, Tokyo Institute of Technology, Ookayama, Meguro-ku, Tokyo 152-8552 (Japan); Integrative Technology Research Institute, Teijin Ltd., 4-3-2, Asahigaoka, Hino, Tokyo 191-8512 (Japan); Taniguchi, Masataka; Shinoda, Tsuyoshi; Nabae, Yuta; Kuroki, Shigeki; Hayakawa, Teruaki; Kakimoto, Masa-aki [Department of Organic and Polymeric Materials, Tokyo Institute of Technology, Ookayama, Meguro-ku, Tokyo 152-8552 (Japan); Moriya, Shogo; Matsubayashi, Katsuyuki [Department of Organic and Polymeric Materials, Tokyo Institute of Technology, Ookayama, Meguro-ku, Tokyo 152-8552 (Japan); Business Development Division, Nisshinbo Holdings, Inc., 1-2-3, Onodai, Midori-ku, Chiba 267-0056 (Japan); Ozaki, Jun-ichi [Department of Organic and Polymeric Materials, Tokyo Institute of Technology, Ookayama, Meguro-ku, Tokyo 152-8552 (Japan); Department of Nanomaterial Systems, Graduate School of Engineering, Gunma University, 1-5-1, Tenjin-cho, Kiryu, Gunma 376-8515 (Japan); Miyata, Seizo [Department of Organic and Polymeric Materials, Tokyo Institute of Technology, Ookayama, Meguro-ku, Tokyo 152-8552 (Japan); New Energy and Industrial Technology Development Organization, 1310 Omiya-cho, Saiwai-ku, Kawasaki, Kanagawa 212-8554 (Japan)

    2010-09-15

    Carbon alloy catalysts (CAC), non-precious metal catalysts for the oxygen reduction reaction (ORR), were prepared from various kinds of nitrogen-containing rigid-rod aromatic polymers, polyimides, polyamides and azoles, by carbonization at 900 C under nitrogen flow. The catalytic activity for ORR was evaluated by the onset potential, which was taken at a current density of -2 {mu}A cm{sup -2}. Carbonized polymers having high nitrogen content showed higher onset potential. In particular, CACs derived from azole (Az5) had an onset potential of 0.8 V, despite being was prepared without any metals. (author)

  18. Design of Highly Selective Platinum Nanoparticle Catalysts for the Aerobic Oxidation of KA-Oil using Continuous-Flow Chemistry.

    Science.gov (United States)

    Gill, Arran M; Hinde, Christopher S; Leary, Rowan K; Potter, Matthew E; Jouve, Andrea; Wells, Peter P; Midgley, Paul A; Thomas, John M; Raja, Robert

    2016-03-01

    Highly active and selective aerobic oxidation of KA-oil to cyclohexanone (precursor for adipic acid and ɛ-caprolactam) has been achieved in high yields using continuous-flow chemistry by utilizing uncapped noble-metal (Au, Pt & Pd) nanoparticle catalysts. These are prepared using a one-step in situ methodology, within three-dimensional porous molecular architectures, to afford robust heterogeneous catalysts. Detailed spectroscopic characterization of the nature of the active sites at the molecular level, coupled with aberration-corrected scanning transmission electron microscopy, reveals that the synthetic methodology and associated activation procedures play a vital role in regulating the morphology, shape and size of the metal nanoparticles. These active centers have a profound influence on the activation of molecular oxygen for selective catalytic oxidations.

  19. Influence of complexing agents on the preparation of bimetallic platinum-ruthenium catalysts supported on O-functionalized graphite cloths

    Energy Technology Data Exchange (ETDEWEB)

    Sieben, J.M., E-mail: jmsieben@uns.edu.a [Instituto de Ingenieria Electroquimica y Corrosion (INIEC), Universidad Nacional del Sur., Av. Alem 1253, (B8000CPB) Bahia Blanca (Argentina); Duarte, M.M.E.; Mayer, C.E. [Instituto de Ingenieria Electroquimica y Corrosion (INIEC), Universidad Nacional del Sur., Av. Alem 1253, (B8000CPB) Bahia Blanca (Argentina)

    2010-02-18

    Electrodeposition of bimetallic Pt-Ru catalysts on O-functionalized graphite cloths from H{sub 2}PtCl{sub 6} and RuCl{sub 3} solutions containing trisodium citrate (Cit) and disodium dihydrogen ethylenediaminetetraacetate (Na{sub 2}H{sub 2}EDTA) was investigated. SEM analysis of the electrode prepared without complexant showed a relatively compact and rough deposit displaying a 'tree cortex' structure, whereas uniform size and globular shape particles regularly distributed over the support surface were obtained using citrate and Na{sub 2}H{sub 2}EDTA as complexants. In addition, XRD diffraction and EDX analysis revealed that the catalysts prepared using the complexants showed smaller size particles and lower Ru content. Electrocatalytic activity measurements indicated that the most active electrode for methanol oxidation was obtained with Na{sub 2}H{sub 2}EDTA as additive.

  20. Platinum Metal-Free Catalysts for Selective Soft Oxidative Methane → Ethylene Coupling. Scope and Mechanistic Observations.

    Science.gov (United States)

    Peter, Matthias; Marks, Tobin J

    2015-12-09

    Using abundant soft oxidants, a high methane-to-ethylene conversion might be achievable due to the low thermodynamic driving force for over-oxidation. Here we report on the oxidative coupling of methane by gaseous S2 (SOCM). The catalytic properties of Pd/Fe3O4 are compared with those of Fe3O4, and it is found that high ethylene selectivities can be achieved without noble metals; conversion and selectivity on Fe3O4 are stable for at least 48 h at SOCM conditions. SOCM data for 10 oxides are compared, and ethylene selectivities as high as 33% are found; the C2H4/C2H6 ratios of 9-12 observed at the highest S2 conversions are significantly higher than the C2H4/C2H6 ratios usually found in the CH4 coupling with O2. Complementary in-detail analytical studies show that, on Mg, Zr, Sm, W, and La catalysts, which strongly coke during the reaction, lower ethylene selectivities are observed than on Fe, Ti, and Cr catalysts, which only coke to a minor extent. Further catalyst-dependent changes during SOCM in surface area, surface composition, and partial conversion to oxysulfides and sulfides are discussed. Evidence concerning the reaction mechanism is obtained taking into account the selectivity for the different reaction products versus the contact time. CH4 coupling proceeds non-oxidatively with the evolution of H2 on some catalysts, and evidence is presented that C2H4 and C2H2 formation occur via C2H6 and C2H4 dehydrogenation, respectively.

  1. Study of the re-dispersion of platinum containing bimetallic phases supported on chlorinated or neutralized alumina; Etude de la redispersion de phases bimetalliques a base de platine supportees sur alumine chloree ou neutralisee

    Energy Technology Data Exchange (ETDEWEB)

    Cholley, T.

    1997-01-31

    The re-dispersion by oxy-chlorination of platinum-tin catalysts supported on alumina constitute the matter of this work. Influence of parameters like the nature of the platinum-tin phases and particles size has been examined. The use of organometallic precursors has allowed an optimum control of the preparation and of the particles growth of the catalysts. Characterization by programmed temperature reduction (TPR), X-ray photoelectron spectroscopy (XPS), Moessbauer spectroscopy, near-edge absorption spectra (XANES) and X-ray absorption fine structure (EXAFS) has led to a better understanding of the phenomena ruling the tin reducibility. Sintering has been studied, showing that only platinum-tin alloy can sinter, while tin oxides are strongly stabilized by the support. It is shown similarly that oxy-chlorination of these catalysts causes the re-dispersion of the platinum and the platinum-tin alloy only. A re-dispersion mechanism through platinum-tin oxychloride species has been proposed. Furthermore, the main parameters influencing the re-dispersion have been highlighted. (author) 175 refs.

  2. Confined-space alloying of nanoparticles for the synthesis of efficient PtNi fuel-cell catalysts.

    Science.gov (United States)

    Baldizzone, Claudio; Mezzavilla, Stefano; Carvalho, Hudson W P; Meier, Josef Christian; Schuppert, Anna K; Heggen, Marc; Galeano, Carolina; Grunwaldt, Jan-Dierk; Schüth, Ferdi; Mayrhofer, Karl J J

    2014-12-15

    The efficiency of polymer electrolyte membrane fuel cells is strongly depending on the electrocatalyst performance, that is, its activity and stability. We have designed a catalyst material that combines both, the high activity for the decisive cathodic oxygen reduction reaction associated with nanoscale Pt alloys, and the excellent durability of an advanced nanostructured support. Owing to the high specific activity and large active surface area, the catalyst shows extraordinary mass activity values of 1.0 A mgPt(-1). Moreover, the material retains its initial active surface area and intrinsic activity during an extended accelerated aging test within the typical operation range. This excellent performance is achieved by confined-space alloying of the nanoparticles in a controlled manner in the pores of the support.

  3. Copolymers Based on Indole-6-Carboxylic Acid and 3,4-Ethylenedioxythiophene as Platinum Catalyst Support for Methanol Oxidation

    Directory of Open Access Journals (Sweden)

    Tzi-Yi Wu

    2015-10-01

    Full Text Available Indole-6-carboxylic acid (ICA and 3,4-ethylenedioxythiophene (EDOT are copolymerized electrochemically on a stainless steel (SS electrode to obtain poly(indole-6-carboxylic acid-co-3,4-ethylenedioxythiophenes (P(ICA-co-EDOTs. The morphology of P(ICA-co-EDOTs is checked using scanning electron microscopy (SEM, and the SEM images reveal that these films are composed of highly porous fibers when the feed molar ratio of ICA/EDOT is greater than 3/2. Platinum particles can be electrochemically deposited into the P(ICA-co-EDOTs and PICA films to obtain P(ICA-co-EDOTs-Pt and PICA-Pt composite electrodes, respectively. These composite electrodes are further characterized using X-ray photoelectron spectroscopy (XPS, SEM, X-ray diffraction analysis (XRD, and cyclic voltammetry (CV. The SEM result indicates that Pt particles disperse more uniformly into the highly porous P(ICA3-co-EDOT2 fibers (feed molar ratio of ICA/EDOT = 3/2. The P(ICA3-co-EDOT2-Pt nanocomposite electrode exhibited excellent catalytic activity for the electrooxidation of methanol in these electrodes, which reveals that P(ICA3-co-EDOT2-Pt nanocomposite electrodes are more promising for application in an electrocatalyst as a support material.

  4. High Specific and Mass Activity for the Oxygen Reduction Reaction for Thin Film Catalysts of Sputtered Pt3Y

    DEFF Research Database (Denmark)

    Lindahl, Niklas; Zamburlini, Eleonora; Feng, Ligang

    2017-01-01

    Fuel cells have the potential to play an important role in sustainable energy systems, provided that catalysts with higher activity and stability are developed. In this work, it is found that thin alloy films of single-target cosputtered platinum-yttrium exhibit up to seven times higher specific ...

  5. A microstructural investigation of gas atomized Raney type Al-27.5 at.% Ni catalyst precursor alloys

    Energy Technology Data Exchange (ETDEWEB)

    Mullis, A.M., E-mail: a.m.mullis@leeds.ac.uk [Institute for Materials Research, University of Leeds, Leeds LS2 9JT (United Kingdom); Bigg, T.D., E-mail: t.bigg@leeds.ac.uk [Institute for Materials Research, University of Leeds, Leeds LS2 9JT (United Kingdom); Adkins, N.J., E-mail: n.j.e.adkins@bham.ac.uk [IRC in Materials Processing, University of Birmingham, Edgbaston, Birmingham B15-2TT (United Kingdom)

    2015-11-05

    Quantitative image analysis has been used to investigate the phase composition of gas atomized powders of a Raney type Ni catalyst precursor alloys of composition Al-27.5 at.% Ni in the powder size range 150–212 μm. We find that there are considerable variations in phase composition both between powders from the same batch and as a function distance from the particle surface within individual particles. Such variations may have significant implications for the future production and uptake of such catalysts, including the necessity for post-production crushing of gas atomized powders. Models are proposed to account for both variations. - Highlights: • The phase composition of powder Raney-Ni catalysts has been investigated. • Image analysis is used to quantify differences between and within particles. • Phase composition can vary by up to 10% between the particle surface and centre. • Differences of up to 10% in the mean composition are also found between particles.

  6. Lanthanum oxide promoted rhodium/titania and rhodium-platinum/titania catalysts for alcohol formation from synthesis gas

    Energy Technology Data Exchange (ETDEWEB)

    Bond, G.C.; Richards, D.G.

    1986-12-15

    TiO/sub 2/-supported Rh and Rh-Pt catalysts have been studied for the selective formation of oxygenates from synthesis gas. The addition of La/sub 2/O/sub 3/ as a promoter significantly increased the C/sub 2/H/sub 5/OH selectivities and formation rates. Pt addition increased the overall activity and in combination with La/sub 2/O/sub 3/ led to higher alcohol selectivities of 25% compared with 6% for an unpromoted Rh catalyst. A pronounced induction period was observed for CH/sub 3/OH and C/sub 2/H/sub 5/OH formation, attributed to changes in the nature of the catalytically active sites. A simple theoretical model is used to illustrate the parallel trends in C/sub 2/H/sub 5/OH and hydrocarbon formation after the induction period. Temperature-programmed reduction showed that the La/sub 2/O/sub 3/ increased the stability of Rh oxide. The main role of La/sub 2/O/sub 3/ appears to be promotion of the formation of the C/sub 2/H/sub 5/OH precursor, while Pt increased the rate of hydrogenation. 26 refs., 8 figs., 3 tabs.

  7. Novel RuCoSe as non-platinum catalysts for oxygen reduction reaction in microbial fuel cells

    Science.gov (United States)

    Rozenfeld, Shmuel; Schechter, Michal; Teller, Hanan; Cahan, Rivka; Schechter, Alex

    2017-09-01

    Microbial electrochemical cells (MECs) are explored for the conversion of acetate directly to electrical energy. This device utilizes a Geobacter sulfurreducens anode and a novel RuCoSe air cathode. RuCoSe synthesized in selected compositions by a borohydride reduction method produces amorphous structures of powdered agglomerates. Oxygen reduction reaction (ORR) was measured in a phosphate buffer solution pH 7 using a rotating disc electrode (RDE), from which the kinetic current (ik) was measured as a function of potential and composition. The results show that ik of RuxCoySe catalysts increases in the range of XRu = 0.25 > x > 0.7 and y < 0.15 for all tested potentials. A poisoning study of RuCoSe and Pt catalysts in a high concentration acetate solution shows improved tolerance of RuCoSe to this fuel at acetate concentration ≥500 mM. MEC discharge plots under physiological conditions show that ∼ RuCo2Se (sample S3) has a peak power density of 750 mW cm-2 which is comparable with Pt 900 mW cm-2.

  8. Platinum availability for future automotive technologies.

    Science.gov (United States)

    Alonso, Elisa; Field, Frank R; Kirchain, Randolph E

    2012-12-04

    Platinum is an excellent catalyst, can be used at high temperatures, and is stable in many aggressive chemical environments. Consequently, platinum is used in many current industrial applications, notably automotive catalytic converters, and prospective vehicle fuel cells are expected to rely upon it. Between 2005 and 2010, the automotive industry used approximately 40% of mined platinum. Future automotive industry growth and automotive sales shifts toward new technologies could significantly alter platinum demand. The potential risks for decreased platinum availability are evaluated, using an analysis of platinum market characteristics that describes platinum's geophysical constraints, institutional efficiency, and dynamic responsiveness. Results show that platinum demand for an automotive fleet that meets 450 ppm greenhouse gas stabilization goals would require within 10% of historical growth rates of platinum supply before 2025. However, such a fleet, due largely to sales growth in fuel cell vehicles, will more strongly constrain platinum supply in the 2050 time period. While current platinum reserves are sufficient to satisfy this increased demand, decreasing platinum ore grade and continued concentration of platinum supply in a single geographic area are availability risk factors to platinum end-users.

  9. Platinum–nickel nanowire catalysts with composition-tunable alloying and faceting for the oxygen reduction reaction

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Fangfang; Yu, Gang; Shan, Shiyao; Skeete, Zakiya; Wu, Jinfang; Luo, Jin; Ren, Yang; Petkov, Valeri; Zhong, Chuan-Jian

    2017-01-01

    The ability to tune the alloying properties and faceting characteristics of bimetallic nanocatalysts is essential for designing catalysts with enhanced activity and stability through optimizing strain and ligand effects, which is an important frontier for designing advanced materials as catalysts for fuel cell applications. This report describes composition-controlled alloying and faceting of platinum–nickel nanowires (PtNi NWs) for the electrocatalytic oxygen reduction reaction. The PtNi NWs are synthesized by a surfactant-free method and are shown to display bundled morphologies of nano-tetrahedra or nanowires, featuring an ultrathin and irregular helix morphology with composition-tunable facets. Using high-energy synchrotron X-ray diffraction coupled with atomic pair distribution function analysis, lattice expansion and shrinking are revealed, with the Pt : Ni ratio of ~3 : 2 exhibiting a clear expansion, which coincides with the maximum electrocatalytic activity for the ORR. In comparison with PtNi nanoparticles (NPs), the PtNi NWs display remarkably higher electrocatalytic activity and stability as a result of the composition dependent atomic-scale alloying and faceting, demonstrating a new pathway to the design of alloy nanocatalysts with enhanced activity and durability for fuel cells.

  10. Mechanical alloying of a hydrogenation catalyst used for the remediation of contaminated compounds

    Science.gov (United States)

    Quinn, Jacqueline W. (Inventor); Clausen, Christian A. (Inventor); Geiger, Cherie L. (Inventor); Aitken, Brian S. (Inventor)

    2012-01-01

    A hydrogenation catalyst including a base material coated with a catalytic metal is made using mechanical milling techniques. The hydrogenation catalysts are used as an excellent catalyst for the dehalogenation of contaminated compounds and the remediation of other industrial compounds. Preferably, the hydrogenation catalyst is a bimetallic particle including zero-valent metal particles coated with a catalytic material. The mechanical milling technique is simpler and cheaper than previously used methods for producing hydrogenation catalysts.

  11. Photo-Promoted Platinum Nanoparticles Decorated MoS2@Graphene Woven Fabric Catalyst for Efficient Hydrogen Generation.

    Science.gov (United States)

    Li, Xiao; Zhang, Li; Zang, Xiaobei; Li, Xinming; Zhu, Hongwei

    2016-05-01

    Hydrogen production from water splitting has been considered as an effective and sustainable method to solve future energy related crisis. Molybdenum sulfides (e.g., MoS2) show promising catalytic ability in hydrogen evolution reaction (HER). Combining MoS2 with conductive carbon-based materials has aroused tremendous research interest recently. In this work, a highly efficient multiple-catalyst is developed for HER by decorating Pt nanoparticles (Pt NPs) on MoS2@graphene protected nickel woven fabrics (NiWF) substrate, which comprises the following components: (i) Graphene protected NiWF acts as the underlying substrate, supporting the whole structure; (ii) MoS2 nanoplates serve as a central and essential photosensitive component, forming a heterostructure with graphene simultaneously; and (iii) on the basis of the intrinsic photoluminescence effect of MoS2, together with the photoelectric response at the MoS2/graphene interface, Pt NPs are successfully deposited on the whole structure under illumination. Particularly and foremost, this work emphasizes on discussion and verification of the underlying mechanism for photopromoted electroless Pt NPs deposition. Due to this assembly approach, the usage amount of Pt is controlled at ∼5 wt % (∼0.59 at. %) with respect to the whole catalyst. MoS2@Substrate with Pt NPs deposited under 643 nm illumination, with the synergistic effect of MoS2 active sites and Pt NPs, demonstrates the most superior electrocatalytic performance, with negligible overpotential and low Tafel slope of 39.4 mV/dec.

  12. Preparation and Properties of Supported Platinum Catalyst for Methanol Catalytic Combustion at Room Temperature%甲醇室温催化燃烧负载型铂催化剂的制备及性能研究

    Institute of Scientific and Technical Information of China (English)

    张春; 王晓红; 曾志刚; 胡志宇

    2011-01-01

    以铂为活性组分,氧化铝颗粒、单晶硅片及单晶硅片支撑的氧化铝薄膜为载体,制备了甲醇室温催化燃烧催化剂,研究了载体种类、载体性质、制备方法及铂负载量对催化剂活性的影响.结果表明,所制备的催化剂均可使甲醇在室温下燃烧;作为甲醇燃烧催化剂的载体,氧化铝优于单晶硅,薄膜状氧化铝优于颗粒状氧化铝.当载体种类和性质均相同时,化学分散法制备的催化剂活性高于磁控溅射法.就活性组分而言,增大其负载量并不一定能提高催化活性,本实验中,当铂的负载量下降两个数量级后,单位质量铂上甲醇的转化量提高了26倍.%Different kinds of Pt catalysts were prepared to study their room-temperature combustion of methanol. The effect of support species, support properties and platinum loading on the performance of the catalysts were studied. The results showed that all these catalysts can catalyze the methanol combusting at room temperature. As the catalyst support, alumina film/Si is better than alumina paritcle. When the species and properties of the support are all same, the catalysts prepared by chemical dispersion method is better than that prepared by magnetron sputtering method. Besides, increasing the platinum loading may not reasonably increase the catalytic activity. In our experiments , the methanol conversion of unit mass of platinum increased by 26 times when platinum loading decreased two orders of magnitude.

  13. Simultaneous Laser Thermal Lens Spectrometric Determination of Trace Platinum and Palladium in an Aqueous Solution

    Institute of Scientific and Technical Information of China (English)

    ZHANG,Xiao-Ling(张小玲); YAN,Hong-Tao(阎宏涛)

    2002-01-01

    A selective and sensitive method for determination of platinum and palladium(Ⅱ) in an aqueous solntion simultaneously by laser thermal lens spectrometry, based on the complex reaction of 2- (3,5-dichloropyridylazo)-5- dimethylaminoamiline (3,5-diCl-PADMA) with platinum and palladium, has been developed. It is shown that the palladium complex can be formed at room temperature, while the platinum complex can be only formed after being heated in a boiling water bath. By using this difference of reaction temperature and the characteristic of the complexes mentioned above, the method for simultaneous determination of platinum and palladium was established in an aqueous solution without a pre-separation. The results show that the dynamic linear ranges of determination for platinum and pallladium are 0.005-0.04 μg/mL and 0.005-0.25 μg/mL respectively, and that the detection limits are both 0.002 μg/mL. The method has been applied to the determination of platinum and palladium simultaneously in alloy and catalyst samples with satisfactory results.

  14. Simultaneous Laser Thermal Lens Spectrometric Determination of Trace Platinum and Palladium in an Aquesous Solution

    Institute of Scientific and Technical Information of China (English)

    张小玲; 阎宏涛

    2002-01-01

    A selective and sensitive method for determination of platinum and palladium(Ⅱ)in an aqueous solution simultaneously by laser thermal lens spectrometry,based on the complex reaction of 2-(3,5-dichloropyridylazo)-5-dimethylaminoamiline(3,5-diCl-PADMA) with platinum and palladium,has been developed.It is shown that the palladium complex can be fromed at room temperature, while the platinum complex can be only formed after being heated in a boiling water bath.By using this difference of reaction temperature and the characteristic of the complexes mentioned above,the method for simultaneous determination of platinum and palladium was established in an aqueous solution without a pre-separation.The results show that the dynamic linear ranges of determination for platinum and palladium are 0.005-0.04μg/mL and 0.005-0.25μg/mL respectively,and that the detection limits are both 0.002/μg/mL.The method has been applied to the determination of platinum and palladium simultaneously in alloy and catalyst samples with satisfactory results.

  15. High-performance core-shell PdPt@Pt/C catalysts via decorating PdPt alloy cores with Pt

    Science.gov (United States)

    Wu, Yan-Ni; Liao, Shi-Jun; Liang, Zhen-Xing; Yang, Li-Jun; Wang, Rong-Fang

    A core-shell structured low-Pt catalyst, PdPt@Pt/C, with high performance towards both methanol anodic oxidation and oxygen cathodic reduction, as well as in a single hydrogen/air fuel cell, is prepared by a novel two-step colloidal approach. For the anodic oxidation of methanol, the catalyst shows three times higher activity than commercial Tanaka 50 wt% Pt/C catalyst; furthermore, the ratio of forward current I f to backward current I b is high up to 1.04, whereas for general platinum catalysts the ratio is only ca. 0.70, indicating that this PdPt@Pt/C catalyst has high activity towards methanol anodic oxidation and good tolerance to the intermediates of methanol oxidation. The catalyst is characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS). The core-shell structure of the catalyst is revealed by XRD and TEM, and is also supported by underpotential deposition of hydrogen (UPDH). The high performance of the PdPt@Pt/C catalyst may make it a promising and competitive low-Pt catalyst for hydrogen fueled polymer electrolyte membrane fuel cell (PEMFC) or direct methanol fuel cell (DMFC) applications.

  16. Evaluating the role of Lead In A Novel Ternary Catalysts For DMFCs

    CERN Document Server

    Halder, Aditi; Trahan, Matthew; Mukerjee, Sanjeev

    2012-01-01

    The current density at lower potential is highly desirable in fuel cell technology and crucial center point for designing a new catalyst. By alloying platinum with various other metals, the improvisation of the fuel cell catalyst has achieved a lot of attention and interests. In this article, a novel porous ternary alloy PtPb@Ru as anode catalysts for direct methanol fuel cell had been synthesized by micro-emulsion technique. The catalysts had been characterized by various spectroscopic and microscopic techniques. The activity and durability of the catalysts had been tested by running cyclic voltammetry in 0.1 M HClO4 and 1M Methanol. To explain the many fold increase in current density of the PtPb@Ru catalysts in comparison to the commercial available PtRu catalysts, in situ X-ray absorption spectroscopy (XAS) measurements, at the PtL3 edge (XANES and EXAFS) were carried out on the PtPb@Ru catalysts in an electrochemical cell. The down-shift in the d-band center of platinum observed in the XAS study, might b...

  17. Methanol-Tolerant Cathode Catalyst Composite For Direct Methanol Fuel Cells

    Science.gov (United States)

    Zhu, Yimin; Zelenay, Piotr

    2006-03-21

    A direct methanol fuel cell (DMFC) having a methanol fuel supply, oxidant supply, and its membrane electrode assembly (MEA) formed of an anode electrode and a cathode electrode with a membrane therebetween, a methanol oxidation catalyst adjacent the anode electrode and the membrane, an oxidant reduction catalyst adjacent the cathode electrode and the membrane, comprises an oxidant reduction catalyst layer of a platinum-chromium alloy so that oxidation at the cathode of methanol that crosses from the anode through the membrane to the cathode is reduced with a concomitant increase of net electrical potential at the cathode electrode.

  18. Platinum-alloy and sulfur saturation in an arc-related basalt to rhyolite suite: Evidence from the Pual Ridge lavas, the Eastern Manus Basin

    Science.gov (United States)

    Park, Jung-Woo; Campbell, Ian H.; Arculus, Richard J.

    2013-01-01

    We have measured the platinum group element (PGE) and Re concentrations of arc-type lavas from the Pual Ridge and the surrounding area in the Eastern Manus Basin. These magmas followed an Fe-enrichment trend to produce a wide range of compositions with MgO varying between 8 and 0.1 wt.%. We found distinct differences in the PGE geochemistry of the high (>3 wt.% MgO) and the low-Mg lavas (high-Mg lavas suggest that the depletion of these elements is due to Pt-rich alloy saturation. This is consistent with the high Pt contents in the high-Mg lavas, which is close to the solubility of Pt in the basaltic melt at similar conditions. In contrast, the concentrations of all PGE and Re drop rapidly in the low-Mg lavas (except for Ru and Ir), with the PGE concentrations falling at a rate that is appreciably faster than Cu, which we attribute to sulfide saturation. As a consequence, there is a marked decline in Pd/Cu in the low-Mg lavas and we suggest that this ratio is the best indicator of sulfide saturation in an evolving magmatic system. A feature of the data is that duplicate analyses of the same sample often do not agree within error. We attribute this scatter to the nugget effect, with nuggets of a Pt-rich alloy in the high-Mg lavas and sulfide blebs in the low-Mg lavas. The PGE concentrations of phenocryst-bearing high-Mg lavas are higher than in the associated glassy lavas, and scatter on MgO variation diagrams is significantly reduced if only glassy lavas are considered, which indicates that the micron scale Pt-rich alloy grains are intimately associated with the phenocrysts. Our results provide strong evidence that Pt-rich alloys can crystallize from a basaltic-andesitic magma, along with the silicate minerals, and fractionate Pt from Pd during magmatic differentiation. As a consequence, Pd/Pt increases during Pt alloy fractionation and this ratio can be used to identify Pt-rich metal saturation. The Pual Ridge alloys are Pt-rich because the primary magmas are Pt

  19. The Origin of Sulfur Tolerance in Supported Platinum Catalysts: The Relationship between Structural and Catalytic Properties in Acidic and Alkaline Pt/LTL.

    NARCIS (Netherlands)

    Koningsberger, D.C.; Miller, J.T.

    1996-01-01

    The reactivity, structure, and sulfur tolerance is compared for platinum supported on acidic and alkaline LTL zeolite. In the absence of sulfur, EXAFS spectroscopy indicates that small metallic platinum particles of approximately 6 to 14 atoms/cluster are present. The TOF for neopentane hydrogenolys

  20. Au-Pt alloy nanoparticles obtained by nanosecond laser irradiation of gold and platinum bulk targets in an ethylene glycol solution

    Science.gov (United States)

    Moniri, Samira; Reza Hantehzadeh, Mohammad; Ghoranneviss, Mahmood; Asadi Asadabad, Mohsen

    2017-07-01

    Au-Pt alloy nanoparticles (NPs) of different compositions ( Au0Pt100 , Au30Pt70 , Au50Pt50 , Au70Pt30 , and Au100Pt0 were obtained using the nanosecond laser ablation of gold and platinum bulk targets in ethylene glycol, followed by mixing highly monodisperse Au and Pt nanocolloids, for the first time. UV-vis absorption spectra of NPs showed that by increasing the Au content in the Au-Pt NPs, the surface plasmon resonance (SPR) peak red-shifted, from 260 to 573nm in a nonlinear way. In addition, the mean crystalline size, crystal structure, d-spacing, and lattice parameters of NPs were estimated from the XRD spectra. Microscopy studies revealed the most NPs have a spherical or near-spherical shape, and the average sizes of Au0Pt100 , Au30Pt70 , Au50Pt50 , Au70Pt30 , and Au100Pt0 NPs were calculated to be 12.50, 14.15, 18.53, 19.29, and 26.38nm, respectively. Also, the chemical identity of the molecules adhering to the NPs surface was considered by Raman and FT-IR spectroscopy techniques. Among different synthesis methods, the demonstrated technique allows easy synthesis of alloy NPs in aqueous media at room temperature with no formation of by-products.

  1. The electro-oxidation of H{sub 2} and H{sub 2}/CO mixtures on carbon-supported Pt{sub x}Mo{sub y} alloy catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Grgur, B.N.; Markovic, N.M.; Ross, P.N. [Lawrence Berkeley National Lab., CA (United States)]|[Univ. of California, Berkeley, CA (United States). Materials Sciences Div.

    1999-05-01

    Electro-oxidation kinetics of H{sub 2} and H{sub 2}/CO mixture were studied on bimetallic Pt-Mo catalysts supported on a high-surface-area carbon black. The Pt:Mo atomic ratios in the catalysts were 3:1 and 4:1. Characterization of these catalysts by X-ray diffraction indicated the existence of a face-centered cubic metallic phase with an average particle size of ca. 4 nm. Because the lattice constants for the Pt-Mo solid solutions are so close to those of pure Pt, the composition of the nanocrystalline phase could not be determined. The kinetic results with the supported catalysts were compared quantitatively with results from bulk alloy electrodes having well-characterized surface compositions varying from 15 to 33 atom % Mo. The kinetic properties of the supported catalysts were comparable to those of bulk alloys having somewhat higher Mo concentrations than the atomic ratios in the catalysts. This suggests that either the surface segregation phenomena in the alloy nanocrystals are different from those in the bulk or that the alloying by Pt is incomplete, and the alloy nanocrystals are rich in Mo relative to the atomic ratios in the catalysts. The authors prefer the latter interpretation. These Pt-Mo alloy catalysts are predicted to have significantly better CO tolerance in polymer electrolyte membrane fuel cells than Pt-Ru alloy catalysts, consistent with previous predictions based on studies of bulk alloy electrodes.

  2. Nanoporous PdNi Alloy Nanowires As Highly Active Catalysts for the Electro-Oxidation of Formic Acid.

    Science.gov (United States)

    Du, Chunyu; Chen, Meng; Wang, Wengang; Yin, Geping

    2011-02-01

    Highly active and durable catalysts for formic acid oxidation are crucial to the development of direct formic acid fuel cell. In this letter, we report the synthesis, characterization, and electrochemical testing of nanoporous Pd(57)Ni(43) alloy nanowires for use as the electrocatalyst towards formic acid oxidation (FAO). These nanowires are prepared by chemically dealloying of Ni from Ni-rich PdNi alloy nanowires, and have high surface area. X-ray diffraction data show that the Pd(57)Ni(43) nanowires have the face-centered cubic crystalline structure of pure Pd, whereas X-ray photoelectron spectroscopy confirm the modification of electronic structure of Pd by electron transfer from Ni to Pd. Electrocatalytic activity of the nanowires towards FAO exceeds that of the state-of-the-art Pd/C. More importantly, the nanowires are highly resistant to deactivation. It is proposed that the high active surface area and modulated surface properties by Ni are responsible for the improvement of activity and durability. Dealloyed nanoporous Pd(57)Ni(43) alloy nanowires are thus proposed as a promising catalyst towards FAO.

  3. Growing Platinum-Ruthenium-Tin ternary alloy nanoparticles on reduced graphene oxide for strong ligand effect toward enhanced ethanol oxidation reaction.

    Science.gov (United States)

    Xia, Qing Qing; Zhang, Lian Ying; Zhao, Zhi Liang; Li, Chang Ming

    2017-11-15

    Uniform Pt1Ru0.5Sn0.5 ternary alloy nanoparticles are in situ deposited on reduced graphene oxide (Pt1Ru0.5Sn0.5-RGO) through its functional groups and defects as nucleation sites to greatly electrocatalyze ethanol oxidation reaction for much higher mass current densities, larger apparent specific current densities and better stability than commercial Pt-C catalyst (Pt-C(commer)). Mechanistic studies indicate that the excellent electrocatalytic activity and anti-poisoning are resulted from a strong ligand effect of the ternary alloy components, in which the charge transfer is boosted while decreasing the density of states close to the Fermi level of Pt to reduce bond energy between Pt and CO-like adsorbates for greatly improved anti-poisoning ability. This work holds a great promise to fabricate a high performance anode catalyst with a low Pt loading for direct ethanol fuel cells. Copyright © 2017. Published by Elsevier Inc.

  4. Electro-oxidation of ethanol on ternary non-alloyed Pt-Sn-Pr/C catalysts

    Science.gov (United States)

    Corradini, Patricia G.; Antolini, Ermete; Perez, Joelma

    2015-02-01

    Ternary Pt-Sn-Pr/C (70:10:20), (70:15:15) and (45:45:10) electro-catalysts were prepared by a modified formic acid method, and their activity for the ethanol oxidation reaction (EOR) was compared with that of Pt-Pr/C catalysts prepared by the same methods and that of commercial Pt-Sn/C (75:25) and Pt/C catalysts. Among all the catalysts, the Pt-Sn-Pr/C (45:45:10) catalyst presented both the highest mass activity and the highest specific activity. The steady state electrochemical stability of ternary Pt-Sn-Pr catalysts increased with the surface Sn/Pt atomic ratio. Following repetitive potential cycling (RPC), the activity for ethanol oxidation of Pt-Sn-Pr/C catalysts with high surface Sn/Pt atomic ratio was considerably higher than that of the corresponding as-prepared catalysts, and increased with increasing the Sn/Pt ratio. The increase of the EOR mass activity following RPC was ascribed to the increase of either the specific activity (for the Pt-Sn-Pr/C (70:15:15) catalyst) or the electrochemically active surface area (for the Pt-Sn-Pr/C (45:45:10) catalyst). Dissolution of Sn and Pr oxides from Pt-Sn-Pr/C catalyst surface was observed following RPC.

  5. Experimental partitioning of Zr, Ti, and Nb between silicate liquid and a complex noble metal alloy and the partitioning of Ti between perovskite and platinum metal

    Science.gov (United States)

    Jurewicz, Stephen R.; Jones, John H.

    1993-01-01

    El Goresy et al.'s observation of Nb, Zr, and Ta in refractory platinum metal nuggets (RPMN's) from Ca-Al-rich inclusions (CAI's) in the Allende meteorite led them to propose that these lithophile elements alloyed in the metallic state with noble metals in the early solar nebula. However, Grossman pointed out that the thermodynamic stability of Zr in the oxide phase is vastly greater than metallic Zr at estimated solar nebula conditions. Jones and Burnett suggested this discrepancy may be explained by the very non-ideal behavior of some lithophile transition elements in noble metal solutions and/or intermetallic compounds. Subsequently, Fegley and Kornacki used thermodynamic data taken from the literature to predict the stability of several of these intermetallic compounds at estimated solar nebula conditions. Palme and Schmitt and Treiman et al. conducted experiments to quantify the partitioning behavior of certain lithophile elements between silicate liquid and Pt-metal. Although their results were somewhat variable, they did suggest that Zr partition coefficients were too small to explain the observed 'percent' levels in some RPMN's. Palme and Schmitt also observed large partition coefficients for Nb and Ta. No intermetallic phases were identified. Following the work of Treiman et al., Jurewicz and Jones performed experiments to examine Zr, Nb, and Ti partitioning near solar nebula conditions. Their results showed that Zr, Nb, and Ti all have an affinity for the platinum metal, with Nb and Ti having a very strong preference for the metal. The intermetallic phases (Zr,Fe)Pt3, (Nb,Fe)Pt3, and (Ti,Fe)Pt3 were identified. Curiously, although both experiments and calculations indicate that Ti should partition strongly into Pt-metal (possibly as TiPt3), no Ti has ever been observed in any RPMN's. Fegley and Kornacki also noticed this discrepancy and hypothesized that the Ti was stabilized in perovskite which is a common phase in Allende CAI's.

  6. Platinum Group Metals New Material

    Institute of Scientific and Technical Information of China (English)

    XIE Ming; ZHANG Jiankang; WANG Saibei; HU Jieqiong; LIU Manmen; CHEN Yongtai; ZHANG Jiming; YANG Youcai; YANG Yunfeng; ZHANG Guoquan

    2012-01-01

    Platinum group metals (PGM) include six elements,namely Pt,Pd,Rh,Ir,Os and Ru.PGM and their alloys are the important fundamental materials for modern industry and national defense construction,they have special physical and chemical properties,widely used in metallurgy,chemical,electric,electronic,information,energy,environmental protection,aviation,aerospace,navigation and other high technology industry.Platinum group metals and their alloys,which have good plasticity and processability,can be processed to electrical contact materials,resistance materials,solder,electronic paste,temperature-measurement materials,elastic materials,magnetic materials and high temperature structural materials.

  7. Enhancing the cyclability of Li-O2 batteries using PdM alloy nanoparticles anchored on nitrogen-doped reduced graphene as the cathode catalyst

    Science.gov (United States)

    Leng, Limin; Li, Jing; Zeng, Xiaoyuan; Song, Huiyu; Shu, Ting; Wang, Haishui; Liao, Shijun

    2017-01-01

    An efficient ORR/OER catalyst was developed by anchoring highly dispersed bimetallic PdM (M = Fe, Co, Ni) alloy nanoparticles on nitrogen-doped reduced graphene oxide (N-rGO). This new type of catalyst exhibited excellent ORR/OER activity, and the addition of transition metals also significantly improved catalytic stability, with the catalyst containing Fe (PdFe/N-rGO) exhibiting the best stability. A battery using this PdFe/N-rGO catalyst was capable of long-term stable cycling for 400 cycles (2000 h) with a limited capacity of 1000 mAh g-1 at 400 mA g-1, which was much longer than a battery with Pd/N-rGO as the catalyst (only 80 cycles, 400 h). We attribute the high performance of these catalysts to the high surface area of N-rGO, the anchoring of highly dispersed Pd alloy nanoparticles, and the prevention of Pd alloy nanoparticle aggregation and dissolution by the presence of the transition metals.

  8. Synthesis of hollow and nanoporous gold/platinum alloy nanoparticles and their electrocatalytic activity for formic acid oxidation.

    Science.gov (United States)

    Lee, Doori; Jang, Ho Young; Hong, Soonchang; Park, Sungho

    2012-12-15

    In this work, hollow Au/Pt alloy nanoparticles (NPs) with porous surfaces were synthesized in a two-step procedure. In the first step, tri-component Ag/Au/Pt alloy NPs were synthesized through the galvanic replacement reaction between Ag NPs and aqueous solutions containing a mixture of HAuCl(4) and H(2)PtCl(4). In the second step, the Ag component was selectively dealloyed with nitric acid (HNO(3)), resulting in hollow di-component Au/Pt alloy NPs with a porous surface morphology. The atomic ratio of Au to Pt in the NPs was easily tunable by controlling the molar ratio of the precursor solution (HAuCl(4) and H(2)PtCl(6)). Hollow, porous Au/Pt alloy NPs showed enhanced catalytic activity toward formic acid electrooxidation compared to the analogous pure Pt NPs. This improved activity can be attributable to the suppression of CO poisoning via the "ensemble" effect. Copyright © 2012 Elsevier Inc. All rights reserved.

  9. Alloyed Ni-Fe nanoparticles as catalysts for NH3 decomposition

    DEFF Research Database (Denmark)

    Simonsen, Søren Bredmose; Chakraborty, Debasish; Chorkendorff, Ib

    2012-01-01

    temperatures and a low NH3-to-H2 ratio, the catalytic activity of the best Ni-Fe/Al2O3 catalyst was found to be comparable or even better to that of a more expensive Ru-based catalyst. Small Ni-Fe nanoparticle sizes are crucial for an optimal overall NH3 conversion because of a structural effect favoring...

  10. Unsupported NiPt alloy metal catalysts prepared by water-in-oil (W/O) microemulsion method for methane cracking

    KAUST Repository

    Zhou, Lu

    2016-05-18

    Unsupported NiPt metal catalyst with Ni/Pt molar ratio of 88/12 is prepared by water-in-oil (W/O) microemulsion method in this study. Compared to monometallic Ni and Pt catalysts, the NiPt catalyst exhibits superior activity and stability for methane cracking. By XRD (X-ray powder diffraction), XPS (X-ray photoelectron spectroscopy) and TEM (Transmission electron microscopy) analyses, the formation of Ni(0)Pt(0) alloy is believed to be the main reason for the reactivity improvement of this catalyst. Carbon nano tube (CNT) with Ni(0)Pt(0) particles anchored on the top of tube are found for the NiPt catalyst. © 2016 Elsevier Ltd.

  11. Fate of platinum metals in the environment.

    Science.gov (United States)

    Pawlak, Justyna; Łodyga-Chruścińska, Elżbieta; Chrustowicz, Jakub

    2014-07-01

    For many years now automotive exhaust catalysts have been used to reduce the significant amounts of harmful chemical substances generated by car engines, such as carbon monoxide, nitrogen oxides, and aromatic hydrocarbons. Although they considerably decrease environmental contamination with the above-mentioned compounds, it is known that catalysts contribute to the environmental load of platinum metals (essential components of catalysts), which are released with exhaust fumes. Contamination with platinum metals stems mainly from automotive exhaust converters, but other major sources also exist. Since platinum group elements (PGEs): platinum (Pt), palladium (Pd), rhodium (Rh), ruthenium (Ru) and iridium (Ir) seem to spread in the environment and accumulate in living organisms, they may pose a threat to animals and humans. This paper discusses the modes and forms of PGE emission as well as their impact on the environment and living organisms.

  12. Carbon monoxide tolerant platinum electrocatalysts on niobium doped titania and carbon nanotube composite supports

    Science.gov (United States)

    Rigdon, William A.; Huang, Xinyu

    2014-12-01

    In the anode of electrochemical cells operating at low temperature, the hydrogen oxidation reaction is susceptible to poisoning from carbon monoxide (CO) which strongly adsorbs on platinum (Pt) catalysts and increases activation overpotential. Adsorbed CO is removed by oxidative processes such as electrochemical stripping, though cleaning can also cause corrosion. One approach to improve the tolerance of Pt is through alloying with less-noble metals, but the durability of alloyed electrocatalysts is a critical concern. Without sacrificing stability, tolerance can be improved by careful design of the support composition using metal oxides. The bifunctional mechanism is promoted at junctions of the catalyst and metal oxides used in the support. Stable metal oxides can also form strong interactions with catalysts, as is the case for platinum on titania (TiOx). In this study, niobium (Nb) serves as an electron donor dopant in titania. The transition metal oxides are joined to functionalized multi-wall carbon nanotube (CNT) supports in order to synthesize composite supports. Pt is then deposited to form electrocatalysts which are characterized before fabrication into anodes for tests as an electrochemical hydrogen pump. Comparisons are made between the control from Pt-CNT to Pt-TiOx-CNT and Pt-Ti0.9Nb0.1Ox-CNT in order to demonstrate advantages.

  13. Catalytic Hydrogenation of Levulinic Acid in Water into g-Valerolactone over Bulk Structure of Inexpensive Intermetallic Ni-Sn Alloy Catalysts

    Directory of Open Access Journals (Sweden)

    Rodiansono Rodiansono

    2015-07-01

    Full Text Available A bulk structure of inexpensive intermetallic nickel-tin (Ni-Sn alloys catalysts demonstrated highly selective in the hydrogenation of levulinic acid in water into g-valerolactone. The intermetallic Ni-Sn catalysts were synthesized via a very simple thermochemical method from non-organometallic precursor at low temperature followed by hydrogen treatment at 673 K for 90 min. The molar ratio of nickel salt and tin salt was varied to obtain the corresponding Ni/Sn ratio of 4.0, 3.0, 2.0, 1.5, and 0.75. The formation of Ni-Sn alloy species was mainly depended on the composition and temperature of H2 treatment. Intermetallics Ni-Sn that contain Ni3Sn, Ni3Sn2, and Ni3Sn4 alloy phases are known to be effective heterogeneous catalysts for levulinic acid hydrogenation giving very excellence g-valerolactone yield of >99% at 433 K, initial H2 pressure of 4.0 MPa within 6 h. The effective hydrogenation was obtained in H2O without the formation of by-product. Intermetallic Ni-Sn(1.5 that contains Ni3Sn2 alloy species demonstrated very stable and reusable catalyst without any significant loss of its selectivity. © 2015 BCREC UNDIP. All rights reserved. Received: 26th February 2015; Revised: 16th April 2015; Accepted: 22nd April 2015  How to Cite: Rodiansono, R., Astuti, M.D., Ghofur, A., Sembiring, K.C. (2015. Catalytic Hydrogenation of Levulinic Acid in Water into g-Valerolactone over Bulk Structure of Inexpensive Intermetallic Ni-Sn Alloy Catalysts. Bulletin of Chemical Reaction Engineering & Catalysis, 10 (2: 192-200. (doi:10.9767/bcrec.10.2.8284.192-200Permalink/DOI: http://dx.doi.org/10.9767/bcrec.10.2.8284.192-200  

  14. Thermal Stability of Platinum-Cobalt Bimetallic Nanoparticles: Chemically Disordered Alloys, Ordered Intermetallics, and Core-Shell Structures.

    Science.gov (United States)

    Huang, Rao; Shao, Gui-Fang; Zhang, Yang; Wen, Yu-Hua

    2017-04-12

    Pt-Co bimetallic nanoparticles are promising candidates for Pt-based nanocatalysts and magnetic-storage materials. By using molecular dynamics simulations, we here present a detailed examination on the thermal stabilities of Pt-Co bimetallic nanoparticles with three configurations including chemically disordered alloy, ordered intermetallics, and core-shell structures. It has been revealed that ordered intermetallic nanoparticles possess better structural and thermal stability than disordered alloyed ones for both Pt3Co and PtCo systems, and Pt3Co-Pt core-shell nanoparticles exhibit the highest melting points and the best thermal stability among Pt-Co bimetallic nanoparticles, although their meltings all initiate at the surface and evolve inward with increasing temperatures. In contrast, Co-Pt core-shell nanoparticles display the worst thermal stability compared with the aforementioned nanoparticles. Furthermore, their melting initiates in the core and extends outward surface, showing a typical two-stage melting mode. The solid-solid phase transition is discovered in Co core before its melting. This work demonstrates the importance of composition distribution to tuning the properties of binary nanoparticles.

  15. Synthesis and characterization of potential iron–platinum drugs and supplements by laser liquid photolysis

    CSIR Research Space (South Africa)

    Nkosi, SS

    2013-06-01

    Full Text Available , and structure was systematically investigated. Different nanostructures of iron–platinum alloy and chemically disordered iron–platinum L10 phase were obtained without annealing. The prepared precursor solution underwent deep photolysis to polycrystalline iron...

  16. Hydrogenation of furfuryl alcohol to tetrahydrofurfuryl alcohol on NiB/SiO2 amorphous alloy catalyst

    Institute of Scientific and Technical Information of China (English)

    SONG Yun; LI Wei; ZHANG Minghui; TAO Keyi

    2007-01-01

    NiB/SiO2 amorphous alloy catalyst was prepared by power electroless plating method and characterized by induction coupled plasma (ICP),Brunauer-Emmett-Teller method (BET),transmission electron microscope (TEM)and X-ray diffraction (XRD) techniques.The catalytic performance of NiB/SiO2 was investigated for the hydrogenation of furfuryl alcohol (FA) to tetrahydrofurfuryl alcohol (THFA).The effects of operational conditions,such as reaction temperature,pressure,and stirring rate were carefully studied.The proper conditions were determined as the following:pressure 2.0 MPa,temperature 120℃ and stirring rate 550 r/min.A typical result with FA conversion of 99%and THFA selectivity of 100% was obtained under such conditions,which was close to that over Raney Ni.

  17. L-S mass transfer in G-L-S countercurrent magnetically stabilized bed with amorphous alloy SRNA-4 catalyst

    Institute of Scientific and Technical Information of China (English)

    Wei; Li; Baoning; Zong; Xiaofang; Li; Xiangkun; Meng; Jinli; Zhang

    2007-01-01

    Liquid-solid (L-S) mass transfer coefficients (Ks) were characterized in a gas-liquid-solid (G-L-S) three-phase countercurrent magnetically stabilized bed (MSB) using amorphous alloy SRNA-4 as the solid phase. Effects of superficial liquid velocity, superficial gas velocity, magnetic field strength, liquid viscosity and surface tension were investigated. Experimental results indicated that the external magnetic field increased Ks in three-phase MSB, as compared to those in conventional G-L-S fluidized beds; that Ks increased with magnetic field strength, superficial gas and liquid velocities and decreased with liquid viscosity and surface tension; and that Ks showed uniform axial and radial distributions except for small increases close to the wall. Dimensionless correlations were established to estimate Ks of the G-L-S countercurrent MSB using SRNA-4catalyst, with an average error of 3.6%.

  18. Platinum Group Organometallics Based on "Pincer" Complexes: Sensors, Switches, and Catalysts In memory of Prof. Dr. Luigi M. Venanzi and his pioneering work in organometallic chemistry, particularly in PCP pincer chemistry.

    Science.gov (United States)

    Albrecht, Martin; van Koten, Gerard

    2001-10-15

    Since the first reports in the late 1970s on transition metal complexes containing pincer-type ligands-named after the particular coordination mode of these ligands-these systems have attracted increasing interest owing to the unusual properties of the metal centers imparted by the pincer ligand. Typically, such a ligand comprises an anionic aryl ring which is ortho,ortho-disubstituted with heteroatom substituents, for example, CH(2)NR(2), CH(2)PR(2) or CH(2)SR, which generally coordinate to the metal center, and therefore support the M-C sigma bond. This commonly results in a terdentate and meridional coordination mode consisting of two metallacycles which share the M-C bond. Detailed studies of the formation and the properties of a large variety of pincers containing platinum group metal complexes have provided direct access to both a fundamental understanding of a variety of reactions in organometallic chemistry and to a range of new applications of these complexes. The discovery of alkane dehydrogenation catalysts, the mechanistic elucidation of fundamental transformations (for example, C-C bond activation), the construction of the first metallodendrimers for sustainable homogeneous catalysis, and the engineering of crystalline switches for materials processing represent only a few of the many highlights which have emanated from these numerous investigations. This review discusses the synthetic methodologies that are currently available for the preparation of platinum group metal complexes containing pincer ligands and especially emphasizes different applications that have been realized in materials science such as the development and engineering of sensors, switches, and catalysts.

  19. Catalytic activity of Pd-doped Cu nanoparticles for hydrogenation as a single-atom-alloy catalyst.

    Science.gov (United States)

    Cao, Xinrui; Fu, Qiang; Luo, Yi

    2014-05-14

    The single atom alloy of extended surfaces is known to provide remarkably enhanced catalytic performance toward heterogeneous hydrogenation. Here we demonstrate from first principles calculations that this approach can be extended to nanostructures, such as bimetallic nanoparticles. The catalytic properties of the single-Pd-doped Cu55 nanoparticles have been systemically examined for H2 dissociation as well as H atom adsorption and diffusion, following the concept of single atom alloy. It is found that doping a single Pd atom at the edge site of the Cu55 shell can considerably reduce the activation energy of H2 dissociation, while the single Pd atom doped at the top site or in the inner layers is much less effective. The H atom adsorption on Cu55 is slightly stronger than that on the Cu(111) surface; however, a larger nanoparticle that contains 147 atoms could effectively recover the weak binding of the H atoms. We have also investigated the H atom diffusion on the 55-atom nanoparticle and found that spillover of the produced H atoms could be a feasible process due to the low diffusion barriers. Our results have demonstrated that facile H2 dissociation and weak H atom adsorption could be combined at the nanoscale. Moreover, the effects of doping one more Pd atom on the H2 dissociation and H atom adsorption have also been investigated. We have found that both the doping Pd atoms in the most stable configuration could independently exhibit their catalytic activity, behaving as two single-atom-alloy catalysts.

  20. Phosphoric acid fuel cell platinum use study

    Science.gov (United States)

    Lundblad, H. L.

    1983-01-01

    The U.S. Department of Energy is promoting the private development of phosphoric acid fuel cell (PAFC) power plants for terrestrial applications. Current PAFC technology utilizes platinum as catalysts in the power electrodes. The possible repercussions that the platinum demand of PAFC power plant commercialization will have on the worldwide supply and price of platinum from the outset of commercialization to the year 2000 are investigated. The platinum demand of PAFC commercialization is estimated by developing forecasts of platinum use per unit of generating capacity and penetration of PAFC power plants into the electric generation market. The ability of the platinum supply market to meet future demands is gauged by assessing the size of platinum reserves and the capability of platinum producers to extract, refine and market sufficient quantities of these reserves. The size and timing of platinum price shifts induced by the added demand of PAFC commercialization are investigated by several analytical methods. Estimates of these price shifts are then used to calculate the subsequent effects on PAFC power plant capital costs.

  1. Application of Ion Beam Processing Technology in Production of Catalysts

    Directory of Open Access Journals (Sweden)

    Mykola G. Bannikov, Javed A. Chattha

    2012-08-01

    Full Text Available In this paper, the applicability of Ion Beam Processing Technology for making catalysts has been inves-tigated. Ceramic substrates of different shapes and metal fibre tablets were implanted by platinum ions and tested in nitrogen oxides (NOx and carbon monoxide (CO conversion reactions. Effectiveness of the implanted catalysts was compared to that of the commercially produced platinum catalysts made by impregnation. Platinum-implanted catalyst having fifteen times less platinum content showed the same CO conversion efficiency as the commercially pro-duced catalyst. It was revealed that the effectiveness of the platinum-implanted catalyst has complex dependence on the process parameters and the optimum can be achieved by varying the ions energy and the duration of implantation. Investigation of the pore structure showed that ion implantation did not decrease the specific surface area of the catalyst.Key Words: Catalyst, Ion Implantation, Noble metals.

  2. Stabilizing platinum in phosphoric acid fuel cells

    Science.gov (United States)

    Remick, R. J.

    1982-01-01

    Platinum sintering on phosphoric acid fuel cell cathodes is discussed. The cathode of the phosphoric acid fuel cell uses a high surface area platinum catalyst dispersed on a conductive carbon support to minimize both cathode polarization and fabrication costs. During operation, however, the active surface area of these electrodes decreases, which in turn leads to decreased cell performance. This loss of active surface area is a major factor in the degradation of fuel cell performance over time.

  3. Methanol-Tolerant Platinum-Palladium Catalyst Supported on Nitrogen-Doped Carbon Nanofiber for High Concentration Direct Methanol Fuel Cells

    Directory of Open Access Journals (Sweden)

    Jiyoung Kim

    2016-08-01

    Full Text Available Pt-Pd catalyst supported on nitrogen-doped carbon nanofiber (N-CNF was prepared and evaluated as a cathode electrode of the direct methanol fuel cell (DMFC. The N-CNF, which was directly synthesized by the catalytic chemical vapor deposition from acetonitrile at 640 °C, was verified as having a change of electrochemical surface properties such as oxygen reduction reaction (ORR activities and the electrochemical double layer compared with common carbon black (CB. To attain the competitive oxygen reduction reaction activity with methanol tolerance, the Pt and Pd metals were supported on the CB or the N-CNF. The physical and electrochemical characteristics of the N-CNF–supported Pt-Pd catalyst were examined and compared with catalyst supported on the CB. In addition, DMFC single cells using these catalysts as the cathode electrode were applied to obtain I-V polarization curves and constant current operating performances with high-concentration methanol as the fuel. Pt-Pd catalysts had obvious ORR activity even in the presence of methanol. The higher power density was obtained at all the methanol concentrations when it applied to the membrane electrode assembly (MEA of the DMFC. When the N-CNF is used as the catalyst support material, a better performance with high-concentration methanol is expected.

  4. Effect of Ni, Fe and Fe-Ni alloy catalysts on the synthesis of metal contained carbon nano-onions and studies of their electrochemical hydrogen storage properties

    Institute of Scientific and Technical Information of China (English)

    Chenguang Zhang; Jiajun Li; Chunsheng Shi; Chunnian He; Enzuo Liu; Naiqin Zhao

    2014-01-01

    Three types of carbon nano-onions (CNOs) including Ni@CNOs, Fe3C@CNOs and Fe0.64Ni0.36@CNOs nanoparticles have been synthesized by catalytic decomposition of methane at 850◦C using nickel, iron and iron-nickel alloy catalysts. Comparative and systematic studies have been carried out on the morphology, structural characteristics and graphitic crystallinity of these CNOs products. Furthermore, the electro-chemical hydrogen storage properties of three types of CNOs have been investigated. Measurements show that the Ni@CNOs have the highest discharge capacity of 387.2 mAh/g, corresponding to a hydrogen storage of 1.42%. This comparison study shows the advantages of each catalyst in the growth of CNOs, enabling the controllable synthesis and tuning the properties of CNOs by mediating different metals and their alloy for using in the fuel cell system.

  5. Stabilizing platinum in phosphoric acid fuel cells

    Science.gov (United States)

    Remick, R. J.

    1981-10-01

    A carbon substrate for use in fabricating phosphoric acid fuel cell cathodes was modified by catalytic oxidation to stabilize the platinum catalyst by retarding the sintering of small platinum crystallites. Results of 100-hour operational tests confirmed that the rate of platinum surface area loss observed on catalytically oxidized supports was less than that observed with unmodified supports of the same starting material. Fuel cell electrodes fabricated from Vulcan XC-72R, which was modified by catalytic in a nitric oxide atmosphere, produced low platium sintering rates and high activity for the reduction of oxygen in the phosphoric acid environment.

  6. Catalytic oxidation of formaldehyde over activated carbon-supported platinum catalysts at room temperature%室温下活性炭载纳米铂催化剂对空气中甲醛的去除效果

    Institute of Scientific and Technical Information of China (English)

    黄海保; 张路; 梁耀彰; 叶信国

    2013-01-01

    Objective To explore catalytic oxidation of gaseous formaldehyde over activated carbon- supported platinum catalysts (Pt/AC) at room temperature. Methods Pt/AC catalysts were prepared by liquid reduction method using NaBH4 as the reducing agent. The effect of Pt loading (0.1% ,0.5% and 1% ) on formaldehyde removal was investigated. Results Reduced Pt nanoparticles of 18 ran diameter could be observed by transmission electron microscope. Formaldehyde removal efficiency was 98.2% in case of 0.5% Pt loading after reaction for 5 h. Conclusion The prepared Pt/AC catalysts in this study can be used for the efficient removal of formaldehyde in air.%目的 探讨活性炭载纳米铂催化剂对空气中甲醛的去除效果.方法 采用硼氢化钠液相还原法制备活性炭载纳米铂催化剂,观察不同载铂量(0.1%,0.5%和1%)对甲醛去除率的影响.结果 透射电镜观察显示,活性炭载铂为还原态纳米粒子(d≈18 nm),铂负载量为0.5%时,反应5h甲醛去除率为98.2%.结论 本研究制备的活性炭载纳米铂催化剂可有效去除空气中甲醛.

  7. Nitrogen-doped graphene/CoNi alloy encased within bamboo-like carbon nanotube hybrids as cathode catalysts in microbial fuel cells

    Science.gov (United States)

    Hou, Yang; Yuan, Heyang; Wen, Zhenhai; Cui, Shumao; Guo, Xiaoru; He, Zhen; Chen, Junhong

    2016-03-01

    Cost-effective catalysts are of key importance to the successful deployment of microbial fuel cells (MFCs) for electricity generation from organic wastes. Herein, a novel catalyst prepared by one-step synthesis strategy is reported. The catalyst features N-doped bamboo-like carbon nanotube (BCNT) in which CoNi-alloy is encapsulated at the end and/or the middle section of the tube with many graphene layers inside inner cavities of BCNT (N-G@CoNi/BCNT). The prepared N-G@CoNi/BCNT exhibits a high oxygen reduction reaction (ORR) activity with an early onset potential of 0.06 V vs. Ag/AgCl and a comparable exchange current density to that of commercial Pt/C. The excellent catalytic activity is further evidenced by a high electron transfer number of 3.63. When being applied in MFCs, the N-G@CoNi/BCNT yields an average current density of 6.7 A m-2, slightly lower than that of Pt/C but with a less mass transfer potential loss. The cost of the N-G@CoNi/BCNT for constructing a 1-m2 cathode electrode is 200 times lower than that of Pt/C. With such a competitive price and excellent electrocatalytic-activity resulting from its unique morphology, CoNi-alloy/nitrogen dopants, considerable specific surface area, and carbon-coated alloy/graphene hybridization, the present catalyst is a promising candidate for ORR catalysts in MFCs for energy recovery from wastes.

  8. Electro catalyst of platinum prepared by CVD for the oxygen reduction reaction; Electrocatalizador de platino preparado por CVD para la reaccion de reduccion de oxigeno

    Energy Technology Data Exchange (ETDEWEB)

    Garcia C, M.A.; Fernandez V, S.M. [ININ, 52045 Ocoyoacac, Estado de Mexico (Mexico); Vargas G, J.R. [IPN, ESIQIE, 07300 Mexico D.F. (Mexico)

    2004-07-01

    In this work it is reported the preparation and characterization of platinum films obtained by the technique of chemical vapor deposition at low pressure, better well-known as LPCVD for their initials in English (Low Pressure Chemical Vapor Deposition). The technique has several industrial applications and in this work it is explored their possible use to prepare applicable electrocatalysts in fuel cells. The films were characterized by XRD, SEM, EDS and they were proven for to determine their acting in the Oxygen reduction reaction (Orr) in sulfuric acid 0.5 M, the results show that the material presents good activity for the reaction in study. (Author)

  9. Performance enhancement of air-breathing proton exchange membrane fuel cell through utilization of an effective self-humidifying platinum-carbon catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Poh, Chee Kok; Lin, Jianyi [Institute of Chemical Engineering and Sciences, 1 Pesek Road, Jurong Island, Singapore 627833 (Singapore); Department of Physics, National University of Singapore, Singapore 117542 (Singapore); Tian, Zhiqun; Lim, San Hua [Institute of Chemical Engineering and Sciences, 1 Pesek Road, Jurong Island, Singapore 627833 (Singapore); Bussayajarn, Narissara [Singapore Institute of Manufacturing Technology, 71 Nanyang Drive, Singapore 638075 (Singapore); Tang, Zhe; Chua, Daniel [Department of Materials Science and Engineering, National University of Singapore, Singapore (Singapore); Su, Fabing [State Key Laboratory of Multi-phase Complex System, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190 (China); Feng, Yuan Ping [Department of Physics, National University of Singapore, Singapore 117542 (Singapore)

    2010-12-15

    One issue with air-breathing proton exchange membrane fuel cells (AB-PEMFCs) is that the reactants are not externally humidified, and thus the membrane or the catalyst layers might dry out due to electro-osmotic drag, diffusion and evaporation at the opening cathode. This results in a drop in internal ionic conductivity and thus in cell performance. Here, the preparation and characterization of self-humidifying carbon-supported Pt catalyst using citric acid modified carbon black (CA-CB) as the catalyst support are reported. Pt/CA-CB is highly hydrophilic due to the functional groups attached on the carbon support, which endows the ability to retain water in the membrane electrolyte assembly (MEA) and thereby help to improve the performance of AB-PEMFCs. A maximum power density of 204 mW cm{sup -2} can be achieved in an air-breathing PEMFC stack using Pt/CA-CB, a thick polymer membrane (NRE212) and a circular opening cathode. A 23.4% enhancement in the output power density is obtained by using Pt/CA-CB in place of a commercial catalyst when oblique slit cathodes are employed. This self-humidifying catalyst is particularly suitable for portable PEMFC applications. (author)

  10. Catalyst with core-shell structure and low platinum loading:A review on their design,preparation and the effects of core structure and composition on catalyst performance%核壳结构低铂催化剂:设计、制备及核的组成及结构的影响

    Institute of Scientific and Technical Information of China (English)

    陈丹; 舒婷; 廖世军

    2013-01-01

      核壳结构低铂催化剂具有可大幅提高贵金属铂的利用率、有效降低燃料电池铂使用量及成本的重要特点,被誉为质子交换膜燃料电池大规模商业化的希望之所在,相关研究已成为燃料电池领域最为热门的课题之一。本文综述了近年来提出的各种高性能核壳结构催化剂的设计思路及新型制备技术,介绍了各种不同组成和结构的核壳结构催化剂性能及特点以及在核壳结构催化剂表征技术方面的最新进展。最后对核壳结构催化剂制备技术的发展和应用前景进行了展望:通过发展或改进制备工艺,制备各种形貌组成可控以及高活性低Pt载量的核壳结构催化剂,有望实现质子交换膜燃料电池商业化。%Core-shell structured catalyst is recognized as a promising catalyst for large scale commercialization of PEM fuel cells,as it can significantly enhance the utilization of precious platinum,reduce the amount of platinum catalyst used and sharply save the cost of fuel cells. Investigation on core-shell structured catalyst is becoming one of the hottest topics in fuel cell field. This paper is aimed to introduce the latest developments and achievements on the design,preparation technology,and investigations on the effects of core composition and structure on the performance of core-shell structured catalyst,as well as the latest development of characterization techniques for core-shell structure. Furthermore,prospects for the development of new preparation technology and the application of this type catalyst are discussed. Research directions are suggested to advance the future works in this field,i.e.,it is expected to achieve the commercialization of proton exchange membrane fuel cell through the development or improvement of the preparation process of the core-shell structured catalysts with controllability on morphology,high activity and low Pt platinum loading.

  11. Combined high-pressure cell-ultrahigh vacuum system for fast testing of model metal alloy catalysts using scanning mass spectrometry

    DEFF Research Database (Denmark)

    Johansson, Martin; Jørgensen, Jan Hoffmann; Chorkendorff, Ib

    2004-01-01

    An apparatus for fabrication, surface analysis in ultrahigh vacuum, and testing of the catalytic activity of model metal alloy catalysts is described. Arrays of model catalysts are produced by electron-beam deposition of up to four metals simultaneously onto a substrate. The surface analysis...... techniques available are scanning electron microscopy, x-ray photoemission spectroscopy, ion scattering spectroscopy, Auger electron spectroscopy, sputter profiling, and temperature programmed desorption. The catalytic activity of the model catalysts is tested individually by scanning a combined gas delivery...... be studied on a substrate 10 mm in diameter. A high pressure cell with an all-metal sealed ultrahigh vacuum lock is also described as part of the work. ©2004 American Institute of Physics....

  12. The effects of platinum on nickel electrodes in the nickel hydrogen cell

    Science.gov (United States)

    Zimmerman, Albert H.

    1991-01-01

    Interactions of platinum and platinum compounds with the nickel electrode that are possible in the nickel hydrogen cell, where both the nickel electrode and a platinum catalyst hydrogen electrode are in intimate contact with the alkaline electrolyte, are examined. Additionally, a mechanism of nickel cobalt oxyhydroxide formation in NiH2 cells is presented.

  13. A kinetic rate expression for the time-dependent coke formation rate during propane dehydrogenation over a platinum alumina monolithic catalyst.

    NARCIS (Netherlands)

    van Sint Annaland, M.; Kuipers, J.A.M.; van Swaaij, Willibrordus Petrus Maria

    2001-01-01

    Coke formation rates under propane dehydrogenation reaction conditions on a used monolithic Pt/y-Al2O3 catalyst have been experimentally determined in a thermogravimetric analyser (TGA) as a function of time on stream covering wide temperature and concentration ranges. For relatively short times on

  14. Development of a reliable analytical method for extraction spectrophotometric determination of ruthenium(III) from catalyst and fissium alloy using o-methylphenyl thiourea as a chromogenic chelating ligand

    Science.gov (United States)

    Kuchekar, Shashikant R.; Shelar, Yogesh S.; Aher, Haribhau R.; Han, Sung H.

    2013-04-01

    A simple and selective method is developed for the extraction spectrophotometric determination of ruthenium(III) using o-methylphenyl thiourea (OMPT) as a chromogenic chelating ligand. The basis of the proposed method is ruthenium(III)-OMPT complex formation in aqueous hydrochloric acid media (3.0 mol L-1) after 5.0 min heating on a boiling water bath and the complex formed is extracted into chloroform. The absorbance of green colored ruthenium(III)-OMPT complex is measured at 590 nm against the reagent blank. Beer's law was obeyed up to 42.5 μg mL-1 of ruthenium(III) and the optimum concentration range is 7.56-39.81 μg mL-1 of ruthenium(III) as evaluated by Ringbom's plot. Molar absorptivity and Sandell's sensitivity of ruthenium(III)-OMPT complex in chloroform are 2.34 × 103 L mol-1 cm-1 and 0.043 μg cm-2 respectively. The composition of ruthenium(III):OMPT complex (1:2) was established from slope ratio method, mole ratio method and Job's continuous variation method. Complex was stable for more than 48 h. The interfering effect of various foreign ions was studied and suitable masking agents are used wherever necessary to enhance the selectivity of the method. Proposed method is successfully applied for determination of ruthenium(III) from binary and ternary synthetic mixtures, synthetic mixtures corresponding to fissium alloy and ruthenium catalyst. Repetition of the method was checked by finding relative standard deviation (R.S.D) for 10 determinations which was 0.23%. A scheme for sequential separation of palladium(II), ruthenium(III), rhodium(III) and platinum(IV) has been developed.

  15. Effect of P on the electrochemical activity of carbon supported Pt-Ru alloy catalyst for methanol oxidation.

    CSIR Research Space (South Africa)

    Mohlala, M

    2007-11-01

    Full Text Available In polymer electrolyte membrane fuel cell (PEMFC), platinum is recognized to be the most active metal for methanol oxidation, however there is a strong CO adsorption tendency, which blocks the surface for further methanol adsorption and leads...

  16. CuAu–ZnO–graphene nanocomposite: A novel graphene-based bimetallic alloy-semiconductor catalyst with its enhanced photocatalytic degradation performance

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Hong [College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000 (China); Ye, Xiaoliang [College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000 (China); College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005 (China); Duan, Kaiyue; Xue, Muyin; Du, Yongling; Ye, Weichun [College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000 (China); Wang, Chunming, E-mail: wangcm@lzu.edu.cn [College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000 (China)

    2015-07-05

    Graphical abstract: In this work, we have successfully synthesized a novel graphene-based bimetallic alloy-semiconductor catalyst: CuAu–ZnO–Gr nanocomposite, and which behaved an enhanced photocatalytic activity. - Highlights: • A bimetallic alloy-based catalyst: CuAu–ZnO–Gr is synthesized. • CuAu–ZnO–Gr behaves an enhanced photocatalytic activity. • The detailed explanation of photocatalytic mechanism of CuAu–ZnO–Gr. - Abstract: The bimetallic alloy CuAu nanoparticles (NPs) can produce more photogenerated electrons when compared with single metal Au NPs. Moreover, graphene (Gr) sheets can help the charge separation and slow down the recombination of the electron hole pairs of ZnO. Hence, a novel graphene-based bimetallic alloy-semiconductor catalyst: CuAu–ZnO–Gr nanocomposite is synthesized. Due to the synergistic effect among CuAu NPs, ZnO nanopyramids, and Gr sheets, CuAu–ZnO–Gr behaves an enhanced photocatalytic activity for the photocatalytic degradation of synthetic colorants methyl orange (MO), methylene blue (MB), indigotin (IN), sunset yellow (SY), and tartrazine (TT) under the simulated sunlight irradiation. Furthermore, the apparent rate constants (k{sub app}) of MO, MB, IN, SY, and TT degradation are estimated respectively. In addition, the as-prepared CuAu–ZnO–Gr nanocomposite is characterized by X-ray diffraction, UV–vis spectrum, transmission electron microscopy, energy dispersive X-ray analysis (EDX), and EDX mapping. As a result of the facile synthesis route and the enhanced photocatalytic activity, this new material CuAu–ZnO–Gr can be a promising photocatalyst for the degradation of dyes.

  17. The Role of Non-Conventional Supports for Single-Atom Platinum-Based Catalysts in Fuel-Cell Technology: A Theoretical Surface Science Approach

    Science.gov (United States)

    2013-02-05

    on the thermodynamic stability of platinized TiN. 15. SUBJECT TERMS fuel cells , Theoretical modeling , electrodes 16. SECURITY CLASSIFICATION OF...system are reported for various surface coverages of Pt. We find that atomic Pt does not bind preferably to the clean TiN surface, but under typical PEM ...could be a promising catalyst for PEM fuel cells. Introduction: Proton exchange membrane fuel cells (PEMFCs) have found wide potential

  18. A Model gamma-Alumina-Supported Rhenium-Platinum Catalyst Prepared from [Re2Pt(CO)12]: 1. Synthesis and Spectroscopic Characterization.

    NARCIS (Netherlands)

    Koningsberger, D.C.; Fung, A.S.; McDeVitt, M.R.; Tooley, P.A.; Kelley, M.J.; Gates, B.C.

    1993-01-01

    Catalysts supported on -Al2O3 were prepared from [Re2Pt(CO)12], and from Pt (NH3)4(NO3)2 and NH4ReO4. The former samples were characterized by infrared and X-ray photoelectron spectroscopies (XPS) and by temperature-programmed reduction (TPR); the latter were characterized by TPR. [Re2Pt(CO)12] was

  19. Challenges for new electro catalysts development for the ORR in acid medium for PEM fuel cell applications

    Energy Technology Data Exchange (ETDEWEB)

    Savadogo, O. [Ecole Polytechnique, Montreal, PQ (Canada). Laboratory of New Materials for Electrochemistry and Energy

    2010-07-01

    The low kinetic rate at the oxygen reduction reaction (ORR) of platinum (Pt) electrocatalysts in acid mediums is one of the most limiting factors for the industrial mass production of proton exchange membrane fuel cells (PEMFCs). New electrocatalyst materials are currently being investigated by researchers as a replacement for Pt include lignited ruthenium-based chalcogenides; pyrolized iron (Fe) porphyrins; metal carbides; and molybdenum (Mo), iridium (Ir) and cobalt (Co) based catalysts. Co-polypyrrole is also being considered as a non-noble catalyst. This presentation discussed the main parameters that limit the ORR of non-noble catalysts in PEMFC applications. Palladium (Pa) based bi-metallic alloys were investigated. The study showed that Pd-alloy catalysts exhibit excellent activity for the ORR in acidic media. The highest electrocatalytic activity was demonstrated in an alloy composition of 60 per cent Pd. The cost of Pd was compared to the cost of Pt. The intrinsic metal surface properties of Pd-alloys were also discussed, and the onset potential of the ORR was compared for various alloys. 31 refs., 1 tab.

  20. Preparation and influence of performance of anodic catalysts for direct methanol fuel cell

    Institute of Scientific and Technical Information of China (English)

    WANG Zhenbo; YIN Geping; SHI Pengfei

    2007-01-01

    This research aims at increasing the utilization of platinum-ruthenium alloy (Pt-Ru) catalysts and thus lowering the catalyst loading in anodes for methanol electrooxidation.The direct methanol fuel cell's (DMFC) anodic catalysts,Pt-Ru/C,were prepared by chemical reduction with a reducing agent added in two kinds of solutions under different circumstances.The reducing agent was added in hot solution with the protection of inert gases or just air,and in cold solution with inert gases.The catalysts were treated at different temperatures.Their performance was tested by cyclic voltammetry and potentiostatic polarization by utilizing their inherent powder microelectrode in 0.5 mol/L CH3OH and 0.5 mol/L H2SO4 solution.The structures and micro-surface images ofthe catalysts were determined and observed by X-ray diffraction and transmission electron microscopy,respectively.The catalyst prepared in inert gases showed a better catalytic performance for methanol electrooxidation than that prepared in air.It resulted in a more homogeneous distribution of the Pt-Ru alloy in carbon.Its size is small,only about 4.5 nm.The catalytic performance is affected by the order of the reducing agent added.The performance of the catalyst prepared by adding the reductant at constant temperature of the solution is better than that prepared by adding it in the solution at 0℃ and then heating it up to the reducing temperature.The structure of the catalyst was modified,and there was an increase in the conversion of ruthenium into the alloyed state and an increase in particle size with the ascension of heat treatment temperature.In addition,the stability of the catalyst was improved after heat treatment.

  1. Design of heterogeneous catalysts

    DEFF Research Database (Denmark)

    Frey, Anne Mette

    was inspired by a computational screening, suggesting that alloys such as Ni-Fe, Co-Ni, and Co-Fe should show superior activity to the industrially used nickel catalyst. Especially the Ni-Fe system was considered to be interesting, since such alloy catalysts should be both more active and cheaper than the Ni...... well, and the best catalyst prepared had a C5+ yield almost a factor of two higher than a standard air calcined Co catalyst. In the NH3-SCR reaction it is desirable to develop an active and stable catalyst for NOx removal in automotive applications, since the traditionally used vanadium-based catalyst...... pose an environmental risk. The focus was put on iron-containing zeolite catalysts, since these recently have shown great potential as catalysts for the process. A number of different zeolites were compared. BEA was found to be the most active, thus focus was put on this material. Different preparation...

  2. 电感耦合等离子体原子发射光谱法测定银合金中的铂钯%Determination of Platinum and Palladium in Silver Alloy by Inductively Coupled Plasma Atomic Emission Spectrometry

    Institute of Scientific and Technical Information of China (English)

    佡云; 褚晓君

    2016-01-01

    采用硝酸溶解样品,盐酸沉淀分离银,过滤洗涤后,在5%(体积分数)硝酸介质中,用电感耦合等离子体原子发射光谱法(ICP-AES)测定银合金样品中的铂、钯,该方法用于多个银合金中铂钯的测定,加标回收率在96%~101%,相对标准偏差(RSD,n=10)小于5%。%The sample was dissolved with nitric acidhydrochloric acid was added to the sample to produce precipitation of silver chloridethen filter and wash it.Platinum and palladium in silver alloy samples are determinated by inductively coupled plasma atomic emission spectrometryICP-AES in a 5% volume fraction nitric acid .The method was applied to the determination of platinum and palladium in silver al-lay samples.The recovery rate was in the range of 96%~101% and the relative standard deviationRSDn=10 was less than 5%.

  3. Facile synthesis of platinum-gold alloyed string-bead nanochain networks with the assistance of allantoin and their enhanced electrocatalytic performance for oxygen reduction and methanol oxidation reactions

    Science.gov (United States)

    He, Li-Li; Zheng, Jie-Ning; Song, Pei; Zhong, Shu-Xian; Wang, Ai-Jun; Chen, Zhaojiang; Feng, Jiu-Ju

    2015-02-01

    In this work, a facile one-pot wet-chemical method is developed for preparation of bimetallic platinum-gold (Pt-Au) alloyed string-bead nanochain networks, using allantoin as a structure-directing agent, without any template, surfactant, or seed. The characterization experiments are mainly performed by transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), and X-ray diffraction (XRD) spectroscopy. The as-prepared Pt-Au nanocrystals show enhanced electrocatalytic performance toward oxygen reduction reaction (ORR) mainly predominated by a four-electron pathway, and display improved catalytic activity and high stability for methanol oxidation reaction (MOR) over commercial Pt black and Pt-Ru black.

  4. Preparation and characterization of nano-sized Pt-Ru/C catalysts and their superior catalytic activities for methanol and ethanol oxidation.

    Science.gov (United States)

    Şen, Selda; Şen, Fatih; Gökağaç, Gülsün

    2011-04-21

    Carbon-supported PtRu nanoparticles (Ru/Pt: 0.25) were prepared by three different methods; simultaneous reduction of PtCl(4) and RuCl(3) (catalyst I) and changing the reduction order of PtCl(4) and RuCl(3) (catalysts II and III) to enhance the performance of the anodic catalysts for methanol and ethanol oxidation. Structure, microstructure and surface characterizations of all the catalysts were carried out by X-ray diffraction (XRD), transmission electron microscopy (TEM) coupled with energy dispersive X-ray spectroscopy (EDS) and X-ray photoelectron spectroscopy (XPS). The results of the XRD analysis showed that all catalysts had a face-centered cubic (fcc) structure with different and smaller lattice parameters than that of pure platinum, showing that the Ru incorporates into the Pt fcc structure by different ratios in all the catalysts. The typical particle sizes of all catalysts were in the range of 2-3 nm. The most active and stable catalyst for methanol and ethanol oxidation is catalyst III, in which a large amount (more than 90%) of PtRu alloy formation was observed. It has been found that this catalyst is about 8.0 and 33.4 times more active at ∼0.60 V towards the methanol and ethanol oxidation reactions, respectively, compared to the commercial Pt catalyst.

  5. Electrocatalysts having platium monolayers on palladium, palladium alloy, and gold alloy core-shell nanoparticles, and uses thereof

    Energy Technology Data Exchange (ETDEWEB)

    Adzic, Radoslav (Setauket, NY); Mo, Yibo (Naperville, IL); Vukmirovic, Miomir (Port Jefferson Station, NY); Zhang, Junliang (Rochester, NY)

    2010-12-21

    The invention relates to platinum-coated particles useful as fuel cell electrocatalysts. The particles are composed of a noble metal or metal alloy core at least partially encapsulated by an atomically thin surface layer of platinum atoms. The invention particularly relates to such particles having a palladium, palladium alloy, gold alloy, or rhenium alloy core encapsulated by an atomic monolayer of platinum. In other embodiments, the invention relates to fuel cells containing these electrocatalysts and methods for generating electrical energy therefrom.

  6. Controlled synthesis of porous platinum nanostructures for catalytic applications.

    Science.gov (United States)

    Cao, Yanqin; Zhang, Junwei; Yang, Yong; Huang, Zhengren; Long, Nguyen Viet; Nogami, Masayuki

    2014-02-01

    Porous platinum, that has outstanding catalytic and electrical properties and superior resistant characteristics to corrosion, has been widely applied in chemical, petrochemical, pharmaceutical, electronic, and automotive industries. As the catalytic activity and selectivity depend on the size, shape and structure of nanomaterials, the strategies for controlling these factors of platinum nanomaterials to get excellent catalytic properties are discussed. Here, recent advances in the design and preparation of various porous platinum nanostructures are reviewed, including wet-chemical synthesis, electro-deposition, galvanic replacement reaction and de-alloying technology. The applications of various platinum nanostructures are also discussed, especially in fuel cells.

  7. Characterization of Catalyst Materials for Production of Aerospace Fuels

    Science.gov (United States)

    Best, Lauren M.; De La Ree, Ana B.; Hepp, Aloysius F.

    2012-01-01

    Due to environmental, economic, and security issues, there is a greater need for cleaner alternative fuels. There will undoubtedly be a shift from crude oil to non-petroleum sources as a feedstock for aviation (and other transportation) fuels. Additionally, efforts are concentrated on reducing costs coupled with fuel production from non-conventional sources. One solution to this issue is Fischer-Tropsch gas-to-liquid technology. Fischer-Tropsch processing of synthesis gas (CO/H2) produces a complex product stream of paraffins, olefins, and oxygenated compounds such as alcohols and aldehydes. The Fisher-Tropsch process can produce a cleaner diesel oil fraction with a high cetane number (typically above 70) without any sulfur or aromatic compounds. This process is most commonly catalyzed by heterogeneous (in this case, silver and platinum) catalysts composed of cobalt supported on alumina or unsupported alloyed iron powders. Physisorption, chemisorptions, scanning electron microscopy (SEM), and energy dispersive spectroscopy (EDS) are described to better understand the potential performance of Fischer-Tropsch cobalt on alumina catalysts promoted with silver and platinum. The overall goal is to preferentially produce C8 to C18 paraffin compounds for use as aerospace fuels. Progress towards this goal will eventually be updated and achieved by a more thorough understanding of the characterization of catalyst materials. This work was supported by NASA s Subsonic Fixed Wing and In-situ Resource Utilization projects.

  8. Influence of nickel-chromium alloy and gold-platinum alloy PFM on canine gingival tissues%镍铬合金与金铂合金烤瓷熔附金属全冠对犬牙龈组织的形态学影响

    Institute of Scientific and Technical Information of China (English)

    李新; 巴彩凤; 周蕊; 王稚英

    2009-01-01

    目的:比较镍铬合金和金铂合金2 种烤瓷熔附金属全冠(porcelain fused to metal,PFM)对犬牙龈组织结构的影响,观察PFM修复术的生物学效果,为临床上选择烤瓷熔附金属材料提供参考.方法:将3 只健康犬以镍铬合金和金铂合金2 种PFM修复犬牙,通过光镜和透射电镜观察犬牙龈组织的结构,用TUNEL方法检测细胞凋亡,并进行统计学分析.结果:镍铬合金PFM修复犬的牙龈组织,光镜下可见大量的炎性细胞浸润,局部血管出血;电镜下有大量细胞凋亡,凋亡指数为58.63%±11.12%,有细胞核固缩等反应.金铂合金PFM修复犬的牙龈组织光镜下未见大量的炎性细胞浸润及局部血管出血;电镜下少有细胞凋亡;凋亡指数为(26.90±17.35)%.统计分析显示镍铬合金PFM组和金铂合金PFM组的凋亡数与对照组都具有统计学意义,镍铬合金PFM组和金铂合金PFM组细胞凋亡数量有明显差异(P<0.05),镍铬合金组凋亡指数高.结论:镍铬合金PFM对犬牙龈组织结构的影响大,而金铂合金PFM对犬牙龈组织结构的影响小.临床PFM修复时,尽可能选择金铂合金制作PFM基底冠.%Objective: To compare the influence of nickel-chromium alloy and gold-platinum alloy porcelain-fused-to-metal ( PFM ) on ultramicrostructure of canine gingival tissues, to survey the biological effects after PFM full crown restoration, and to provide data for selection of PFM materials. Methods; The nickel-chromium alloy and gold-platinum alloy PFM full crowns were used to repair canines in 3 healthy dogs. The microstructure of canine gingival tissue was observed through light microscope and transmission electron microscope. Apoptosis of canine gingival cells was detected by TUNEL method. Results; Under light microscope, inflammatory cell infiltration and partial bleeding were seen in the nickel-chromium alloy PFM full crown repaired canine gingival tissues. Under transmission electron microscope, large amount of

  9. Platinum and Other Transition Metal Nanoclusters (Pd, Rh) Stabilized by PAMAM Dendrimer as Excellent Heterogeneous Catalysts: Application to the Methylcyclopentane (MCP) Hydrogenative Isomerization.

    Science.gov (United States)

    Deraedt, Christophe; Melaet, Gérôme; Ralston, Walter T; Ye, Rong; Somorjai, Gabor A

    2017-03-08

    Pt, Rh, and Pd nanoclusters stabilized by PAMAM dendrimer are used for the first time in a gas flow reactor at high temperature (150-250 °C). Pt nanoclusters show a very high activity for the hydrogenation of the methylcyclopentane (MCP) at 200-225 °C with turnover freqency (TOF) up to 334 h(-1) and selectivity up to 99.6% for the ring opening isomerization at very high conversion (94%). Rh nanoclusters show different selectivity for the reaction, that is, ring opening isomerization at 175 °C and cracking at higher temperature whereas Pd nanoclusters perform ring enlargement plus dehydrogenation, while maintaining a high activity. The difference in these results as compared to unsupported/uncapped nanoparticles, demonstrates the crucial role of dendrimer. The tunability of the selectivity of the reaction as well as the very high activity of the metal nanoclusters stabilized by dendrimer under heterogeneous conditions open a new application for dendrimer catalysts.

  10. Bridging the pressure gap: In situ atomic-level investigations of model platinum catalyst surfaces under reaction conditions by scanning tunneling microscopy

    Energy Technology Data Exchange (ETDEWEB)

    McIntyre, B.J.

    1994-05-01

    Results of this thesis show that STM measurements can provide information about the surfaces and their adsorbates. Stability of Pt(110) under high pressures of H2, O2, and CO was studied (Chap. 4). In situ UHV and high vacuum experiments were carried out for sulfur on Pt(111) (Chap.5). STM studies of CO/S/Pt(111) in high CO pressures showed that the Pt substrate undergoes a stacking-fault-domain reconstruction involving periodic transitions from fcc to hcp stacking of top-layer atoms (Chap.6). In Chap.7, the stability of propylene on Pt(111) and the decomposition products were studied in situ with the HPSTM. Finally, in Chap.8, results are presented which show how the Pt tip of the HPSTM was used to locally rehydrogenate and oxidize carbonaceous clusters deposited on the Pt(111) surface; the Pt tip acted as a catalyst after activation by short voltage pulses.

  11. Oxygen-reducing catalyst layer

    Energy Technology Data Exchange (ETDEWEB)

    O' Brien, Dennis P. (Maplewood, MN); Schmoeckel, Alison K. (Stillwater, MN); Vernstrom, George D. (Cottage Grove, MN); Atanasoski, Radoslav (Edina, MN); Wood, Thomas E. (Stillwater, MN); Yang, Ruizhi (Halifax, CA); Easton, E. Bradley (Halifax, CA); Dahn, Jeffrey R. (Hubley, CA); O' Neill, David G. (Lake Elmo, MN)

    2011-03-22

    An oxygen-reducing catalyst layer, and a method of making the oxygen-reducing catalyst layer, where the oxygen-reducing catalyst layer includes a catalytic material film disposed on a substrate with the use of physical vapor deposition and thermal treatment. The catalytic material film includes a transition metal that is substantially free of platinum. At least one of the physical vapor deposition and the thermal treatment is performed in a processing environment comprising a nitrogen-containing gas.

  12. 电感耦合等离子体发射光谱法测定铂钯合金中的铑和铱%Determination of Rhodium and Iridium in Platinum Palladium Alloys by ICP-AES

    Institute of Scientific and Technical Information of China (English)

    宫嘉辰; 张颖; 王艳红; 褚晓君

    2015-01-01

    Simultaneous determination of Rh and Ir in environmental samples was carried out by inductively coupled plasma atomic emission spectrometry ( ICP -AES) after platinum palladium alloys dissolved with hydriochloric acid and nitric acid . Optimal experimental conditions including analytical spectral line , back‐ground interference and instrument parameter were investigated and established according to the different proportion of Rh and Ir in alloys .The present methodology gave recoveries between 99 .83% and 100 .15%and RSD less than 1 .5% , w hich make the result satisfactory .%铂钯合金用盐酸、硝酸溶解,采用电感耦合等离子体发射光谱法测定合金中的铑和铱。针对该合金中铂、钯所占比例不同,准确建立了铑、铱的元素分析谱线、背景干扰、仪器参数等实验条件。测定的铑、铱相对标准偏差均小于1.5%,加标后的回收率在99.83%~100.15%,分析结果令人满意。

  13. Formation of Pt-Zn Alloy Nanoparticles by Electron-Beam Irradiation of Wurtzite ZnO in the TEM

    Science.gov (United States)

    Lee, Sung Bo; Park, Jucheol; van Aken, Peter A.

    2016-07-01

    As is well documented, platinum nanoparticles, promising for catalysts for fuel cells, exhibit better catalytic activities, when alloyed with Zn. Pre-existing syntheses of Pt-Zn alloy catalysts are composed of a number of complex steps. In this study, we have demonstrated that nanoparticles of Pt-Zn alloys are simply generated by electron-beam irradiation in a transmission electron microscope of a wurtzite ZnO single-crystal specimen. The initial ZnO specimen is considered to have been contaminated by Pt during specimen preparation by focused ion beam milling. The formation of the nanoparticle is explained within the framework of ionization damage (radiolysis) by electron-beam irradiation and accompanying electrostatic charging.

  14. Radiolytically prepared Ni-Pd sols as catalysts for water photoreduction

    Energy Technology Data Exchange (ETDEWEB)

    Amouyal, E.; Georgopoulos, M.; Delcourt, M.O. (Paris-11 Univ., 91 - Orsay (FR). Lab. de Physico-Chimie des Rayonnements)

    1989-07-01

    Ni-Pd sols containing 10% Pd, prepared via radiolytic reduction, display a catalytic activity notably enhanced, compared to pure nickel sols, towards the water photoreduction to hydrogen. The test system is Ru(bipy){sub 3}{sup 2+}/methylviologen/N-phenylglycine: a favourable pH effect is shown at pH 2.5. Hydrogen evolution rate is not far from the optimal values obtained with platinum sols in acidic medium. These Ni-Pd aggregates are the first example of an aqueous colloid metal catalyst being improved by alloying effect.

  15. 改性介孔硅负载铂催化合成农用增效剂%Modified mesoporous silica supporting platinum catalyst for synthesis of agricultural synergist

    Institute of Scientific and Technical Information of China (English)

    谢慧琳; 张蔚欣; 朱贵有; 胡文斌; 廖列文; 贾振宇; 刘其海

    2016-01-01

    Pt/CS-SiO2 catalyst was prepared by impregnating platinum on chitosan modified mesoporous silica and characterized by Fourier Transform Infrared Spectroscopy (FTIR), nitrogen adsorption-desorption (BET), thermogravimetric analysis (TGA). Catalytic performance was evaluated in hydrosilylation of polyether and trisiloxane for synthesizing agricultural synergist. The experimental results showed that Pt was successfully incorporated on modified mesoporous silica at content of 0.85%. The new catalyst had excellent reusability, which still maintained high activity with greater than 90% of both conversion and selectivity after reused seven times. The optimal synthesis condition for agricultural synergist was a mixture of polyether and trisiloxane at a molar ratio of 1:1.1 and 105℃ for 3 h. The agricultural synergist exhibited excellent stability in neutral aqueous solution by hydrolysis assessment at various pH conditions.%通过壳聚糖(CS)改性介孔二氧化硅,并负载铂得到 Pt/CS-SiO2催化剂,采用红外光谱(FTIR)、氮气吸附脱附(BET)、热重分析(TG)等对催化剂进行表征,同时考察了 Pt/CS-SiO2催化聚醚和三硅氧烷反应合成农用增效剂。结果表明:Pt成功负载在改性介孔硅上,Pt含量为0.85%;催化剂具有良好的重复使用性,使用7次后仍有较高活性,转化率和选择性均在90%以上;合成农用增效剂的最优工艺为 n(MDHM):n(HDE)=1:1.1,反应温度为105℃,反应时间为3 h。测试产物在不同pH的水溶液中的水解性能,发现其在中性条件下可以比较稳定地存在。

  16. Obtaining of platinum-titanium alloys by sol-gel and their performance for the detachment reactions and oxygen reduction; Obtencion de aleaciones de platino-titanio por sol-gel y su desempeno para las reacciones de desprendimiento y reduccion de oxigeno

    Energy Technology Data Exchange (ETDEWEB)

    Regueira R, B. I.

    2011-07-01

    In the present work, platinum-titanium (Pt-Ti) alloys were prepared, characterized and evaluated in acid media as bifunctional electrocatalysts for the oxygen evolution reaction (Oer) and oxygen reduction reactions (Orr) in acid media. The alloys were synthesized by sol-gel method, heating the gel at temperatures of 400 and 600 C. The alloys characterization was realized by X-ray diffraction, scanning electron microscopy and EDS. Both alloys were formed by agglomerates of nanometer particles. The particle sizes were lower for the alloy obtained at 400 C (120 nm to 257 nm) compared to the alloy prepared at 600 C (555 nm to 833 nm). Cyclic and linear voltammetry techniques were used for the electrochemical evaluation of the alloy obtained at both temperatures for the Oer and Orr, in a 0.5 M sulfuric acid solution. The materials have response for both electrochemical reactions, therefore the best performance was for the Pt-Ti alloy, obtained at 400 C and it was stable for the oxygen evolution reaction. The alloy obtained at 400 C presents satisfactory electrocatalytic characteristics to be used as bifunctional material in a unified regenerative fuel cell. (Author)

  17. Negative resistance for methanol electro-oxidation on platinum/carbon (Pt/C) catalyst investigated by an electrochemical impedance spectroscopy

    Science.gov (United States)

    Cai, Guang-Xu; Guo, Jian-Wei; Wang, Jia; Li, Song

    2015-02-01

    The poisoning of Pt-based catalyst occurs generally during methanol electro-oxidation. Though traditional electrochemical techniques have probed these issues intensively, it is amazing to find that the negative resistance presents in the intermediate potential zone during an electrochemical impedance spectroscopy (EIS) measurement. Based on the chemical reaction analysis, we establish an EIS model and make some numerical analyses, thus determining the specific EIS shapes and equivalent circuits relating to various potential zones. These results not only compensate the drawback for traditional electrochemical approaches, but also reveal the dynamic adsorption of CO and OH species on Pt surfaces, providing a chance for understanding bifunctional mechanism towards quantitative manners. Significantly, we clarify that the negative resistance begins from the maximum catalysis of methanol electro-catalysis and ends in the initial passive state on Pt surfaces, offering a tool for further improvement. Interestingly, our discovery for negative resistance is consistent with that in general electrochemical system, facilitating its extension and direction in future.

  18. Synthesis of platinum nanoparticle electrocatalysts by atomic layer deposition

    Science.gov (United States)

    Lubers, Alia Marie

    Demand for energy continues to increase, and without alternatives to fossil fuel combustion the effects on our environment will become increasingly severe. Fuel cells offer a promising improvement on current methods of energy generation; they are able to convert hydrogen fuel into electricity with a theoretical efficiency of up to 83% and interface smoothly with renewable hydrogen production. Fuel cells can replace internal combustion engines in vehicles and are used in stationary applications to power homes and businesses. The efficiency of a fuel cell is maximized by its catalyst, which is often composed of platinum nanoparticles supported on carbon. Economical production of fuel cell catalysts will promote adoption of this technology. Atomic layer deposition (ALD) is a possible method for producing catalysts at a large scale when employed in a fluidized bed. ALD relies on sequential dosing of gas-phase precursors to grow a material layer by layer. We have synthesized platinum nanoparticles on a carbon particle support (Pt/C) by ALD for use in proton exchange membrane fuel cells (PEMFCs) and electrochemical hydrogen pumps. Platinum nanoparticles with different characteristics were deposited by changing two chemistries: the carbon substrate through functionalization; and the deposition process by use of either oxygen or hydrogen as ligand removing reactants. The metal depositing reactant was trimethyl(methylcyclopentadienyl)platinum(IV). Functionalizing the carbon substrate increased nucleation during deposition resulting in smaller and more dispersed nanoparticles. Use of hydrogen produced smaller nanoparticles than oxygen, due to a gentler hydrogenation reaction compared to using oxygen's destructive combustion reaction. Synthesized Pt/C materials were used as catalysts in an electrochemical hydrogen pump, a device used to separate hydrogen fuel from contaminants. Catalysts deposited by ALD on functionalized carbon using a hydrogen chemistry were the most

  19. Stage II recovery behavior of a series of ion-irradiated platinum (gold) alloys as studied by field-ion microscopy. [0. 10, 0. 62, and 4. 0 at. percent Au and pure Pt

    Energy Technology Data Exchange (ETDEWEB)

    Wei, C.Y.; Seidman, D.N.

    1976-11-01

    Direct and visible evidence was obtained for long-range migration of self-interstitial atoms (SIAs) in Stage II of three different ion-irradiated platinum (gold) alloys. Field-ion microscope (FIM) specimens of Pt--0.10, 0.62 and 4.0 at. percent Au alloys were irradiated in-situ with 30-keV W/sup +/ or Pt/sup +/ ions at a tip temperature of 35 to 41 K at 2 x 10/sup -9/ torr. Direct observation of the surfaces of the FIM specimens during isochronal warming experiments to 100 K showed that a flux of SIAs crossed the surfaces of the specimens between 40 to 100 K. The spectrum for each alloy consisted of two recovery peaks (substages II/sub B/ and II/sub C/). The results are explained on the basis of an impurity-delayed diffusion mechanism employing a two-level trapping model. The application of this diffusion model to the isochronal recovery spectra yielded a dissociation enthalpy (DELTAh/sub li-Au//sup diss/) and an effective diffusion coefficient for each substage; for substage II/sub B/ DELTAh/sub li-Au//sup diss/ (II/sub B/) = 0.15 eV and for substage II/sub C/ DELTAh/sub li-Au//sup diss/ (II/sub C/) = 0.24 eV. A series of detailed control experiments was also performed to show that the imaging electric field had not caused the observed long-range migration of SIAs and that the observed effects were not the result of surface artifacts. 14 figures, 6 tables.

  20. Synthesis, characterization and electrochemical studies of novel platinum-based nanomaterials

    Science.gov (United States)

    Wang, Jingpeng

    2009-12-01

    Platinum (Pt) as well as its alloys represent some of the most efficient catalyst materials among intermetallic compounds and alloys. An important clue throughout this work is the development of a desired synthetic approach of Pt-based nanomaterials---a one-step hydrothermal co-reduction of inorganic metal precursors. Slight modifications in experimental conditions have led to the production of Pt-based nanostructured materials with two distinct morphologies: (i) three-dimensional (3D) nanoporous Pt-M networks (M= Ru, Ir, Pb, Pd) when formaldehyde is used as a reducing agent; and (ii) 3D intermetallic Pt-M nanodendrites (M= Au, Pb, Bi or Pd) when formate ligands are present as multi-functional reagents in the hydrothermal process. Those as-synthesized Pt-based nanoporous catalysts not only possess significantly high surface areas, but also exhibit superb electrocatalytic activities towards the electrochemical oxidation of methanol and formic acid. Among them, the nanoporous PtPb networks were further tested towards the electro-oxidation of glucose. Voltammetric and amperometric results demonstrate that the PtPb electrodes have strong and sensitive current responses to the incremental glucose concentrations, and are capable of sensing glucose with excellent selectivity in neutral media. In the case of synthesizing Pt-based nanodendritic materials, ammonium formate and formic acid were used as multi-functional reagents in the hydrothermal-assisted fabrication of alloyed PtAu and PtPb nanodendrites, respectively. Electrochemical studies reveal that both PtAu and PtPb nanodendrites exhibit exceptionally high electrocatalytic activities in formic acid oxidation owing to their unique alloyed intermetallic crystal structures. The proposed coordination and co-reduction alloying mechanism together with the foreign particle-induced dendritic growth mechanism have been further proved to be universal for fabricating a wide range of intermetallic nanodendrites, including

  1. A new application of photocatalysts: synthesis of nano-sized metal and alloy catalysts by a photo-assisted deposition method.

    Science.gov (United States)

    Mori, Kohsuke; Araki, Takashi; Takasaki, Tomoya; Shironita, Sayoko; Yamashita, Hiromi

    2009-05-01

    Supported Pd catalysts were synthesized using various semiconductor materials by a photo-assisted deposition method under UV-light irradiation. The Pd precursor was deposited and partially reduced by the direct interaction with the photo-excited state of the semiconductor materials, and subsequently transformed into metal particles by H(2) reduction. CO adsorption and Pd K-edge XAFS measurements demonstrated that the mean diameter of the deposited Pd particles can be controlled by the type of employed semiconductor materials. The catalytic activities in the direct synthesis of hydrogen peroxide (H(2)O(2)) using H(2) and O(2) gases under atmospheric pressure were strongly dependent on the type of supports. Here, the use of TiO(2) comprising a mixed phase of anatase and rutile was the most efficient based on the amount of Pd. The photo-assisted deposition also provides a simple and straightforward method to synthesize PdAu alloy nanoparticles. For the structural model of PdAu nanoparticles, we suggest that most of the Au atoms are preferentially located in the core region, whereas the Pd atoms are preferentially located in the shell region. The PdAu/TiO(2) catalysts prepared by the photo-assisted deposition method were shown to perform significantly better than the pure Pd/TiO(2) catalysts.

  2. Alloy

    Science.gov (United States)

    Cabeza, Sandra; Garcés, Gerardo; Pérez, Pablo; Adeva, Paloma

    2014-07-01

    The Mg98.5Gd1Zn0.5 alloy produced by a powder metallurgy route was studied and compared with the same alloy produced by extrusion of ingots. Atomized powders were cold compacted and extruded at 623 K and 673 K (350 °C and 400 °C). The microstructure of extruded materials was characterized by α-Mg grains, and Mg3Gd and 14H-LPSO particles located at grain boundaries. Grain size decreased from 6.8 μm in the extruded ingot, down to 1.6 μm for powders extruded at 623 K (350 °C). Grain refinement resulted in an increase in mechanical properties at room and high temperatures. Moreover, at high temperatures the PM alloy showed superplasticity at high strain rates, with elongations to failure up to 700 pct.

  3. Raney-platinum film electrodes for potentially implantable glucose fuel cells. Part 1: Nickel-free glucose oxidation anodes

    Energy Technology Data Exchange (ETDEWEB)

    Kerzenmacher, S.; von Stetten, F. [Laboratory for MEMS Applications, Department of Microsystems Engineering- IMTEK, University of Freiburg, Georges-Koehler-Allee 106, 79110 Freiburg (Germany); Schroeder, M. [Institut fuer Anorganische und Analytische Chemie, University of Freiburg, Albertstrasse 21, 79104 Freiburg (Germany); Braemer, R. [Hochschule Offenburg- University of Applied Sciences, Badstrasse 24, 79652 Offenburg (Germany); Zengerle, R. [Laboratory for MEMS Applications, Department of Microsystems Engineering- IMTEK, University of Freiburg, Georges-Koehler-Allee 106, 79110 Freiburg (Germany); Centre for Biological Signalling Studies (bioss), Albert-Ludwigs-Universitaet Freiburg (Germany)

    2010-10-01

    We present a novel fabrication route yielding Raney-platinum film electrodes intended as glucose oxidation anodes for potentially implantable fuel cells. Fabrication roots on thermal alloying of an extractable metal with bulk platinum at 200 C for 48 h. In contrast to earlier works using carcinogenic nickel, we employ zinc as potentially biocompatible alloying partner. Microstructure analysis indicates that after removal of extractable zinc the porous Raney-platinum film (roughness factor {proportional_to}2700) consists predominantly of the Pt{sub 3}Zn phase. Release of zinc during electrode operation can be expected to have no significant effect on physiological normal levels in blood and serum, which promises good biocompatibility. In contrast to previous anodes based on hydrogel-bound catalyst particles the novel anodes exhibit excellent resistance against hydrolytic and oxidative attack. Furthermore, they exhibit significantly lower polarization with up to approximately 100 mV more negative electrode potentials in the current density range relevant for fuel cell operation. The anodes' amenability to surface modification with protective polymers is demonstrated by the exemplary application of an approximately 300 nm thin Nafion coating. This had only a marginal effect on the anode long-term stability and amino acid tolerance. While in physiological glucose solution after approximately 100 h of operation gradually increasing performance degradation occurs, rapid electrode polarization within 24 h is observed in artificial tissue fluid. Optimization approaches may include catalyst enhancement by adatom surface modification and the application of specifically designed protective polymers with controlled charge and mesh size. (author)

  4. Quantification of zinc atoms in a surface alloy on copper in an industrial-type methanol synthesis catalyst

    DEFF Research Database (Denmark)

    Kuld, Sebastian; Moses, Poul Georg; Sehested, Jens;

    2014-01-01

    Methanol has recently attracted renewed interest because of its potential importance as a solar fuel.1 Methanol is also an important bulk chemical that is most efficiently formed over the industrial Cu/ZnO/Al2O3 catalyst. The identity of the active site and, in particular, the role of ZnO...... as a promoter for this type of catalyst is still under intense debate.2 Structural changes that are strongly dependent on the pretreatment method have now been observed for an industrial-type methanol synthesis catalyst. A combination of chemisorption, reaction, and spectroscopic techniques provides...

  5. Quantification of zinc atoms in a surface alloy on copper in an industrial-type methanol synthesis catalyst

    DEFF Research Database (Denmark)

    Kuld, Sebastian; Moses, Poul Georg; Sehested, Jens;

    2014-01-01

    Methanol has recently attracted renewed interest because of its potential importance as a solar fuel. Methanol is also an important bulk chemical that is most efficiently formed over the industrial Cu/ZnO/Al2O3 catalyst. The identity of the active site and, in particular, the role of ZnO...... as a promoter for this type of catalyst is still under intense debate. Structural changes that are strongly dependent on the pretreatment method have now been observed for an industrial-type methanol synthesis catalyst. A combination of chemisorption, reaction, and spectroscopic techniques provides a consistent...

  6. PLATINUM AND FUEL CELLS

    Science.gov (United States)

    Platinum requirements for fuel cell vehicles (FCVS) have been identified as a concern and possible problem with FCV market penetration. Platinum is a necessary component of the electrodes of fuel cell engines that power the vehicles. The platinum is deposited on porous electrodes...

  7. Microwave-induced formation of platinum nanostructured networks with superior electrochemical activity and stability.

    Science.gov (United States)

    Jia, Falong; Wang, Fangfang; Lin, Yun; Zhang, Lizhi

    2011-12-16

    Platinum nanostructured networks (PNNs) can be synthesized through the chemical reduction of H(2)PtCl(6) by benzyl alcohol under microwave irradiation without the introduction of any surfactants, templates, or seeds. The synthesis route utilizes benzyl alcohol as both the reductant and the structure-directing agent, and thus, the process is particularly simple and highly repeatable. The formation of the PNN structure was ascribed to the collision-induced fusion of Pt nanocrystals owing to the cooperative functions of microwave irradiation and benzyl alcohol. Compared with a commercial Pt/C catalyst, the as-prepared PNNs possessed superior electrochemical activity and stability on the oxidation of methanol because of the unique 3D nanostructured networks and abundant defects formed during the assembly process. This study may provide a facile microwave-induced approach for the synthesis of other 3D nanostructured noble metals or their alloys.

  8. Mineral resource of the month: platinum group metals

    Science.gov (United States)

    Loferski, Patricia J.

    2010-01-01

    The article focuses on platinum group metals (PGMs) and their properties. According to the author, PGMs, which include iridium, osmium, palladium, platinum, rhodium, and ruthenium, are among the rarest mineral commodities in the Earth's crust. PGMs are primarily used as catalytic converters that clean harmful exhaust from vehicle engines. They are also used in the chemical industry as catalysts in the production of nitric acid and in the petroleum refining industry.

  9. Autonomous movement of platinum-loaded stomatocytes.

    Science.gov (United States)

    Wilson, Daniela A; Nolte, Roeland J M; van Hest, Jan C M

    2012-02-26

    Polymer stomatocytes are bowl-shaped structures of nanosize dimensions formed by the controlled deformation of polymer vesicles. The stable nanocavity and strict control of the opening are ideal for the physical entrapment of nanoparticles which, when catalytically active, can turn the stomatocyte morphology into a nanoreactor. Herein we report an approach to generate autonomous movement of the polymer stomatocytes by selectively entrapping catalytically active platinum nanoparticles within their nanocavities and subsequently using catalysis as a driving force for movement. Hydrogen peroxide is free to access the inner stomatocyte cavity, where it is decomposed by the active catalyst (the entrapped platinum nanoparticles) into oxygen and water. This generates a rapid discharge, which induces thrust and directional movement. The design of the platinum-loaded stomatocytes resembles a miniature monopropellant rocket engine, in which the controlled opening of the stomatocytes directs the expulsion of the decomposition products away from the reaction chamber (inner stomatocyte cavity).

  10. The Science and Engineering of Durable Ultralow PGM Catalysts- 2012 DOE-EERE-FCT annual progress report

    Energy Technology Data Exchange (ETDEWEB)

    Garzon, Fernando H. [Los Alamos National Laboratory

    2012-07-16

    Minimizing the quantity of Pt group metals used in polymer membrane fuel cells (PEMFCs) is one of the remaining grand challenges for fuel cell commercialization. Tremendous progress has been achieved over the last two decades in decreasing the Pt loading required for efficient fuel cell performance. Unfortunately, the fluctuations in the price of Pt represent a substantial barrier to the economics of widespread fuel cell use. Durability and impurity tolerance are also challenges that are tightly coupled to fuel cell Pt electrode loading. Traditional approaches to decreasing the amount of Pt required for good performance include: (1) Increasing mass activity by decreasing Pt particle size by supporting on carbon; (2) Alloy formulation Pt-Co, Pt-Cr alloys to improve mass activity; (3) Increasing Pt utilization by optimization of electronic and ionic contact of the Pt particles; (4) Improving conductivity of the electronic and ionic conducting constituents of the membrane electrode assembly; and (5) Improving reactant to and product mass transport away from the electroactive sites. Recent novel approaches include the nanoengineering of core shell catalysts and Pt particles of unusual geometries such as nanowires/whiskers. The success of the aforementioned approaches has been great; however further advances using such approaches have been hampered by a lack of underlining scientific understanding of the catalyst activity, particle growth mechanisms, and optimization strategies for designing composite electrodes The objectives of this report are: (1) Development of durable, high mass activity Platinum Group Metal (PGM) cathode catalysts-enabling lower cost fuel cells; (2) Elucidation of the fundamental relationships between PGM catalyst shape, particle size and activity to help design better catalysts; (3) Optimization of the cathode electrode layer to maximize the performance of PGM catalysts-improving fuel cell performance and lowering cost; (4) Understanding the

  11. Widely tunable alloy composition and crystal structure in catalyst-free InGaAs nanowire arrays grown by selective area molecular beam epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Treu, J., E-mail: Julian.Treu@wsi.tum.de, E-mail: Gregor.Koblmueller@wsi.tum.de; Speckbacher, M.; Saller, K.; Morkötter, S.; Xu, X.; Riedl, H.; Abstreiter, G.; Finley, J. J.; Koblmüller, G., E-mail: Julian.Treu@wsi.tum.de, E-mail: Gregor.Koblmueller@wsi.tum.de [Walter Schottky Institut, Physik Department, Center of Nanotechnology and Nanomaterials, Technische Universität München, Am Coulombwall 4, Garching 85748 (Germany); Döblinger, M. [Department of Chemistry, Ludwig-Maximilians-Universität München, Butenandtstr. 5-13, Munich 81377 (Germany)

    2016-02-01

    We delineate the optimized growth parameter space for high-uniformity catalyst-free InGaAs nanowire (NW) arrays on Si over nearly the entire alloy compositional range using selective area molecular beam epitaxy. Under the required high group-V fluxes and V/III ratios, the respective growth windows shift to higher growth temperatures as the Ga-content x(Ga) is tuned from In-rich to Ga-rich InGaAs NWs. Using correlated x-ray diffraction, transmission electron microscopy, and micro-photoluminescence spectroscopy, we identify structural defects to govern luminescence linewidths in In-rich (x(Ga) < 0.4) and Ga-rich (x(Ga) > 0.6) NWs, whereas limitations at intermediate Ga-content (0.4 < x(Ga) < 0.6) are mainly due to compositional inhomogeneities. Most remarkably, the catalyst-free InGaAs NWs exhibit a characteristic transition in crystal structure from wurtzite to zincblende (ZB) dominated phase near x(Ga) ∼ 0.4 that is further reflected in a cross-over from blue-shifted to red-shifted photoluminescence emission relative to the band edge emission of the bulk ZB InGaAs phase.

  12. Metal Oxide-Supported Platinum Overlayers as Proton-Exchange Membrane Fuel Cell Cathodes

    DEFF Research Database (Denmark)

    Tripkovic, Vladimir; Abild-Pedersen, Frank; Studt, Felix

    2012-01-01

    We investigated the activity and stability of n=(1, 2, 3) platinum layers supported on a number of rutile metal oxides (MO2; M=Ti, Sn, Ta, Nb, Hf and Zr). A suitable oxide support can alleviate the problem of carbon corrosion and platinum dissolution in Pt/C catalysts. Moreover, it can increase t...

  13. Bio-inspired routes for synthesizing efficient nanoscale platinum electrocatalysts

    Energy Technology Data Exchange (ETDEWEB)

    Cha, Jennifer N. [Univ. of California, San Diego, CA (United States); Wang, Joseph [Univ. of California, San Diego, CA (United States)

    2014-08-31

    The overall objective of the proposed research is to use fundamental advances in bionanotechnology to design powerful platinum nanocrystal electrocatalysts for fuel cell applications. The new economically-viable, environmentally-friendly, bottom-up biochemical synthetic strategy will produce platinum nanocrystals with tailored size, shape and crystal orientation, hence leading to a maximum electrochemical reactivity. There are five specific aims to the proposed bio-inspired strategy for synthesizing efficient electrocatalytic platinum nanocrystals: (1) isolate peptides that both selectively bind particular crystal faces of platinum and promote the nucleation and growth of particular nanocrystal morphologies, (2) pattern nanoscale 2-dimensional arrays of platinum nucleating peptides from DNA scaffolds, (3) investigate the combined use of substrate patterned peptides and soluble peptides on nanocrystal morphology and growth (4) synthesize platinum crystals on planar and large-area carbon electrode supports, and (5) perform detailed characterization of the electrocatalytic behavior as a function of catalyst size, shape and morphology. Project Description and Impact: This bio-inspired collaborative research effort will address key challenges in designing powerful electrocatalysts for fuel cell applications by employing nucleic acid scaffolds in combination with peptides to perform specific, environmentally-friendly, simultaneous bottom-up biochemical synthesis and patterned assembly of highly uniform and efficient platinum nanocrystal catalysts. Bulk synthesis of nanoparticles usually produces a range of sizes, accessible catalytic sites, crystal morphologies, and orientations, all of which lead to inconsistent catalytic activities. In contrast, biological systems routinely demonstrate exquisite control over inorganic syntheses at neutral pH and ambient temperature and pressures. Because the orientation and arrangement of the templating biomolecules can be precisely

  14. Correlation between diffusion barriers and alloying energy in binary alloys

    DEFF Research Database (Denmark)

    Vej-Hansen, Ulrik Grønbjerg; Rossmeisl, Jan; Stephens, Ifan;

    2016-01-01

    In this paper, we explore the notion that a negative alloying energy may act as a descriptor for long term stability of Pt-alloys as cathode catalysts in low temperature fuel cells.......In this paper, we explore the notion that a negative alloying energy may act as a descriptor for long term stability of Pt-alloys as cathode catalysts in low temperature fuel cells....

  15. Electrocatalysts having gold monolayers on platinum nanoparticle cores, and uses thereof

    Science.gov (United States)

    Adzic, Radoslav; Zhang, Junliang

    2010-04-27

    The invention relates to gold-coated particles useful as fuel cell electrocatalysts. The particles are composed of an electrocatalytically active core at least partially encapsulated by an outer shell of gold or gold alloy. The invention more particularly relates to such particles having a noble metal-containing core, and more particularly, a platinum or platinum alloy core. In other embodiments, the invention relates to fuel cells containing these electrocatalysts and methods for generating electrical energy therefrom.

  16. Production of Nanopowders of Platinum Metals Using the Chemical Reduction Method

    Institute of Scientific and Technical Information of China (English)

    PYATAKHINA E. S.; BUSLAYEVA T. M.; VOLCHKOVA E. V.; KHRISTICH E. A.; SERGEYEVA T. Yu.

    2012-01-01

    The literary data on the application of various methods for the production of nanopowders of platinum metals and alloys have been summarized,and the selection of the method of chemical reduction from salt solutions has been substantiated as the simplest and most affordable.The optimum conditions for the production of nanoparticles of metal palladium and platinum/cobalt alloy,using the effect of boranes with various structures,have been selected.

  17. Behind platinum's sparkle.

    Science.gov (United States)

    Yam, Vivian W W

    2010-09-01

    As a rare and precious metal that is also resistant to wear and tarnish, platinum is known to be particularly well-suited to jewellery. Vivian Yam reflects on how, beyond its prestigious image, platinum has also found its way into a variety of fields ranging from the petrochemical to the pharmaceutical industry.

  18. Electrocatalysts of platinum, cobalt and nickel prepared by mechanical alloying for the oxygen reduction reaction in H{sub 2}SO{sub 4} 0.5M; Electrocatalizadores de Platino, Cobalto y Niquel preparados por Aleado Mecanico para la reaccion de reduccion de oxigeno en H{sub 2}SO{sub 4} 0.5M

    Energy Technology Data Exchange (ETDEWEB)

    Garcia C, M.A.; Fernandez V, S.M.; Vargas G, J.R. [lNIN, Depto. de Quimica, 52750 La Marquesa, Estado de Mexico (Mexico)

    2007-07-01

    Metallic powders of Pt, Co and Nickel were processed by mechanical alloyed and electrocatalysts were synthesized for the oxygen reduction reaction, applicable in fuel cells. The structural and morphological characterization was carried out using X-ray Diffraction, scanning electron microscopy and transmission electron microscopy. It was found that the alloyed powders formed agglomerates that consist of crystalline particles of nano metric size. Its were obtained polarization curves by the Electrode of Rotational Disk technique in a solution of H{sub 2}SO{sub 4} 0.5 M, used as electrolyte, to evaluate the electrocatalytic activity of mechanically alloyed powders. Tafel graphics were built to determine the kinetic parameters of each electro catalyst. The PtCoNi alloy exhibited the biggest electrocatalytic activity, with the smallest over potential for the oxygen reduction reaction. (Author)

  19. Chemistry of Platinum and Palladium Metal Complexes in Homogeneous and Heterogeneous Catalysis: A Mini Review

    Directory of Open Access Journals (Sweden)

    Mehrban Ashiq

    2013-04-01

    Full Text Available Transition metal complexes of platinum and palladium are most widely used in catalysis. Many synthetic reactions have been carried out with such complexes (used as a catalyst which have specifically polymer ligands, through hydrosilylation, acetoxylation, hydrogenation, hydro-formylation, oligo-merisation and polymerization. Almost many platinum and palladium catalysts are heterogeneous in nature i.e. the reaction taking place on a solid surface. Now from few years homogeneous catalysts which are completely soluble in the liquid phase reactant, has acknowledged too much attention, yet having small industrial applications, mainly due to the striving of platinum and palladium complexes separation from the catalytic products. More recently a transitional type of platinum and palladium catalysts have been synthesized through attachment of the activated transition metal complexes on the surface of polymer support particularly insoluble which has been establish to offer encouraging new collection of catalysts for effective research on synthesis. Many of such complexes will be based on the palladium and platinum metals group. The major objective of this review is to inaugurate the relationship among the reactivity’s of homogeneous platinum and palladium complexes and heterogeneous complexes of these metals (those bonded to the surface of metals.

  20. The role of Pt and Pd in enhancing the conversion of sorbitol to hydrogen over supported Ni-Pt and Ni-Pd catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Tanksale, A.; Lu, G.Q. [Queensland Univ., Brisbane (Australia); Beltramini, J.N. [Queensland Univ., Brisbane (Australia). ARC Centre of Excellence for Functional Nanomaterials

    2009-07-01

    This study investigated the enhanced activity of bimetallic nickel-platinum (Ni-Pt) and nickel-palladium (Ni-Pd) catalysts for the production of hydrogen from reformed biomass-based products. The catalysts were prepared on an aluminum oxide (Al203) nanofibre. Mesoporous zirconia and composite silica-zirconia-ceria were used to determine the role of noble metals and supports. Desorption, oxidation, and temperature programmed reduction studies were conducted to investigate metal-metal and metal-support interactions. The study showed that Pt and Pd additions increased the reducibility of Ni catalysts. The bimetallic catalysts exhibited rates of hydrogen production 6 times higher than rates observed in pure metal catalysts. Sorbitol conversion increased from 35 per cent for the Ni catalyst to 62 per cent for the Ni-Pt catalyst. It was concluded that the alloying effect of the Ni-Pt and Ni-Pd systems lowered the carbon monoxide (CO) adsorption heat, and facilitated removal of the adsorbed CO by the water gas shift reaction.

  1. Platinum recycling going green via induced surface potential alteration enabling fast and efficient dissolution

    Science.gov (United States)

    Hodnik, Nejc; Baldizzone, Claudio; Polymeros, George; Geiger, Simon; Grote, Jan-Philipp; Cherevko, Serhiy; Mingers, Andrea; Zeradjanin, Aleksandar; Mayrhofer, Karl J. J.

    2016-01-01

    The recycling of precious metals, for example, platinum, is an essential aspect of sustainability for the modern industry and energy sectors. However, due to its resistance to corrosion, platinum-leaching techniques rely on high reagent consumption and hazardous processes, for example, boiling aqua regia; a mixture of concentrated nitric and hydrochloric acid. Here we demonstrate that complete dissolution of metallic platinum can be achieved by induced surface potential alteration, an ‘electrode-less' process utilizing alternatively oxidative and reductive gases. This concept for platinum recycling exploits the so-called transient dissolution mechanism, triggered by a repetitive change in platinum surface oxidation state, without using any external electric current or electrodes. The effective performance in non-toxic low-concentrated acid and at room temperature is a strong benefit of this approach, potentially rendering recycling of industrial catalysts, including but not limited to platinum-based systems, more sustainable. PMID:27767178

  2. Platinum recycling going green via induced surface potential alteration enabling fast and efficient dissolution

    Science.gov (United States)

    Hodnik, Nejc; Baldizzone, Claudio; Polymeros, George; Geiger, Simon; Grote, Jan-Philipp; Cherevko, Serhiy; Mingers, Andrea; Zeradjanin, Aleksandar; Mayrhofer, Karl J. J.

    2016-10-01

    The recycling of precious metals, for example, platinum, is an essential aspect of sustainability for the modern industry and energy sectors. However, due to its resistance to corrosion, platinum-leaching techniques rely on high reagent consumption and hazardous processes, for example, boiling aqua regia; a mixture of concentrated nitric and hydrochloric acid. Here we demonstrate that complete dissolution of metallic platinum can be achieved by induced surface potential alteration, an `electrode-less' process utilizing alternatively oxidative and reductive gases. This concept for platinum recycling exploits the so-called transient dissolution mechanism, triggered by a repetitive change in platinum surface oxidation state, without using any external electric current or electrodes. The effective performance in non-toxic low-concentrated acid and at room temperature is a strong benefit of this approach, potentially rendering recycling of industrial catalysts, including but not limited to platinum-based systems, more sustainable.

  3. Enhancement of Platinum Cathode Catalysis by Addition of Transition Metals

    Science.gov (United States)

    Duong, Hung Tuan

    2009-01-01

    The sluggish kinetics of oxygen reduction reaction (ORR) contributes significantly to the loss of cathode overpotential in fuel cells, thus requiring high loadings of platinum (Pt), which is an expensive metal with limited supply. However, Pt and Pt-based alloys are still the best available electrocatalysts for ORR thus far. The research presented…

  4. Phase transformations during sintering of mechanically alloyed TiPt

    CSIR Research Space (South Africa)

    Nxumalo, S

    2010-10-01

    Full Text Available A TiPt alloy was produced by mechanically alloying the desired quantities of titanium and platinum. The resultant TiPt alloy powder was cold pressed to produce green bodies. Several sintering conditions were used to sinter this alloy...

  5. Development of large aperture projection scatterometry for catalyst loading evaluation in proton exchange membrane fuel cells

    Science.gov (United States)

    Stocker, Michael T.; Barnes, Bryan M.; Sohn, Martin; Stanfield, Eric; Silver, Richard M.

    2017-10-01

    Widespread commercialization of proton exchange membrane fuel cells remains curbed by various manufacturing and infrastructure challenges. One such technical barrier identified by the U. S. Department of Energy is the need for high-speed, in-line process control of platinum-based catalyst layers in the membrane electrode assembly of the fuel cell. Using multiple reflectivity-based optical methods, such as optical scatterometry and large aperture projection scatterometry, we demonstrate in-line-capable catalyst loading measurements of carbon-supported Pt nanoparticle and Pt-alloy nanostructured thin film catalyst coated membranes. Large aperture projection scatterometry is a new high-throughput approach developed at the National Institute of Standards and Technology specifically for fuel cell manufacturing metrology. Angle- and wavelength-resolved measurements of these fuel cell soft goods validate the ability of reflectivity-based measurements to produce industrially relevant sensitivities to changes in Pt and Pt-alloy loading. The successful application of these optical methods to fuel cell manufacturing metrology directly addresses the shortage of high-throughput process control approaches needed to facilitate performance improvements and manufacturing cost-reductions required to make fuel cells commercially viable.

  6. Decomposition of the Precursor [Pt(NH3)4](OH)2, Genesis and Structure of the Metal-Support Interface of Alumina Supported Platinum Particles: A Structural Study Using TPR, MS and XAFS Spectroscopy.

    NARCIS (Netherlands)

    Koningsberger, D.C.; Muñoz-Paez, A.

    1995-01-01

    During the preparation of alumina supported platinum catalysts, the precursor [Pt(NH3)4](OH)2 decomposes to a neutral Pt(NH3)zO species during the drying process at 120 'C. Treatment in flowing hydrogen at 180 'C leads to partial reduction of the platinum ammine complex and formation of platinum met

  7. Phase properties of carbon-supported platinum-gold nanoparticles for formic acid eletro-oxidation

    Science.gov (United States)

    Liao, Mengyin; Xiong, Jihai; Fan, Min; Shi, Jinming; Luo, Chenglong; Zhong, Chuan-Jian; Chen, Bing H.

    2015-10-01

    The design of active and robust bimetallic nanocatalysts requires the control of the nanoscale alloying, phase-segregation and the correlation between nanoscale phase-segregation and catalytic properties. To enhance the performance and durability of formic acid oxidation reaction in fuel-cell applications, we prepared a platinum-gold (PtAu) nanocatalyst with controlled morphology and composition. The catalyst is further treated by calcination under controlled temperature and atmosphere. The morphology of the bimetallic nanoparticles is determined by transmission electron microscopy. The nanoscale phase properties and surface composition are carried out by X-ray diffraction and X-ray photoelectron spectroscopy. Cyclic voltammetry measurements demonstrated that the catalytic activity is highly dependent on the nanoscale evolution of alloying and phase segregation. The mass activity of as-prepared Pt50Au50/C with 600 °C treatment temperature is about 11 times higher than that of commercial Pt/C. Stability tests showed no obvious loss of activity after 500 potential cycles. The high activity and stability are attributed to lattice contraction effect as a result of the high thermal treatment condition. Our findings demonstrate the importance of phase segregation at the nanoscale in harnessing the true electrocatalytic potential of bimetallic nanoparticles.

  8. Platinum hypersensitivity and desensitization.

    Science.gov (United States)

    Miyamoto, Shingo; Okada, Rika; Ando, Kazumichi

    2015-09-01

    Platinum agents are drugs used for various types of cancer. With increased frequency of administration of platinum agents, hypersensitivity reactions appear more frequently, occurring in over 25% of cases from the seventh cycle or second line onward. It then becomes difficult to conduct treatment using these agents. Various approaches have been investigated to address hypersensitivity reactions to platinum agents. Desensitization, which gradually increases the concentration of the anticancer drug considered to be the antigen until the target dosage, has been reported as being particularly effective, with a success rate of 80-100%. The aims of this paper are to present the current findings regarding hypersensitivity reactions to platinum agents and to discuss attempts of using desensitization against hypersensitivity reactions worldwide. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  9. Platinum group element mineralization of the Svetly Bor and Veresovy Bor clinopyroxenite-dunite massifs, Middle Urals, Russia

    Science.gov (United States)

    Stepanov, S. Yu.; Malitch, K. N.; Kozlov, A. V.; Badanina, I. Yu; Antonov, A. V.

    2017-05-01

    The new data for the geology and mineralogy of the platinum group element (PGE) mineralization related to the chromite-platinum ore zones within the dunite of the Svetly Bor and Veresovy Bor massifs in the Middle Urals are discussed. The geological setting of the chromite-platinum ore zones, their platinum content, compositional and morphological features of the platinum group minerals (PGM) are compared to those within the Nizhny Tagil massif, the world standard of the zonal complexes in the Platinum Ural belt. The chromite-platinum orebodies are spatially related to the contacts between differently granular dunites. Majority of PGM are formed by Pt-Fe alloys that are close in terms of stoichiometry to isoferroplatinum (Pt3Fe), and associated with Os-Ir alloys, Ru-Os and Ir-Rh sulfides, and Ir-Rh thiospinels of the cuproiridsite-cuprorhodsite-ferrorhodsite solid solution. The tetraferroplatinum (PtFe)-tulameenite (PtFe0.5Cu0.5) solid solution and Pt-Cu alloys belong to the later PGM assemblage. The established features of the chromite-platinum ore zones testify to the highly probable identification of the PGE mineralization within the dunite of the Svetly Bor and Vesesovy Bor massifs and could be used in prospecting and exploration for platinum.

  10. 火焰原子吸收光谱法测定尾气净化金属载体催化剂中铂钯铑%Determination of platinum, palladium, rhodium in metal carrier catalyst for exhaust gas purification by flame atomic absorption spectrometry

    Institute of Scientific and Technical Information of China (English)

    施意华; 王晟; 杨仲平; 靳晓珠; 胡圣虹; 邓水平

    2012-01-01

    建立了火焰原子吸收光谱法测定尾气净化金属载体催化剂中Pt、Pd、Rh含量的新方法.研究了试样分解方法、共沉淀条件、测定干扰因素及消除方法.采用盐酸-超声波处理尾气净化金属载体催化剂,过滤,不溶物用过氧化钠分解,盐酸酸化后全部转化为样品溶液.在含2~3 mol/L盐酸的样品溶液.中,加入10 mg氧化碲和10 mL 200 g/L氯化亚锡溶液共沉淀富集样品溶液中的Pt、Pd、Rh,与基体元素Fe、Ni、Al、Cr、Na等完全分离,共沉淀物用王水溶解后,采用火焰原子吸收光谱法测定Pt、Pd、Rh.方法的检出限分别为:Pt 4.72 μg/g,Pd1.13μg/g,Rh 1.06 μg/g.将本方法用于实际样品分析,结果与电感耦合等离子体原子发射光谱法测定值一致,相对标准偏差(RSD,n=11)分别为:3.0%(Pt),1.9%(Pd),4.2%(Rh).%A novel method for the determination of platinum, palladium and rhodium in metal carrier catalyst for exhaust gas purification was established by flame atomic absorption spectrometrometry (FAAS). The sample decomposition method) coprecipitation condition, interference factor and elimination method were studied. The metal carrier catalyst sample for exhaust gas purification was treated by hydrochloric acid-ultrasonic wave, and filtrated. The insoluble substance was decomposed with sodium peroxide and acidized with hydrochloric acid, and then it was mixed with sample solution. 10 mg of tellurium oxide and 10 mL of 200 g/L SnCl2 solution were added to sample solution in the medium of 2-3 mol/L hydrochloric acid for the coprecipitation, enrichment and separation of palladium, platinum and rhodium from matrix elements such as Fe, Ni, Al, Cr and Na. After the coprecipitate was dissolved with aqua regia, the content of palladium, platinum and rhodium was determined by flame a-tomic absorption spectrometry. The detection limits of method for Pt, Pd and Rh are 4. 72,1.13 and 1. 06,respectively. The proposed method was applied to

  11. Autothermal reforming catalyst having perovskite structure

    Science.gov (United States)

    Krumpel, Michael; Liu, Di-Jia

    2009-03-24

    The invention addressed two critical issues in fuel processing for fuel cell application, i.e. catalyst cost and operating stability. The existing state-of-the-art fuel reforming catalyst uses Rh and platinum supported over refractory oxide which add significant cost to the fuel cell system. Supported metals agglomerate under elevated temperature during reforming and decrease the catalyst activity. The catalyst is a perovskite oxide or a Ruddlesden-Popper type oxide containing rare-earth elements, catalytically active firs row transition metal elements, and stabilizing elements, such that the catalyst is a single phase in high temperature oxidizing conditions and maintains a primarily perovskite or Ruddlesden-Popper structure under high temperature reducing conditions. The catalyst can also contain alkaline earth dopants, which enhance the catalytic activity of the catalyst, but do not compromise the stability of the perovskite structure.

  12. Toxicity of platinum compounds.

    Science.gov (United States)

    Hartmann, Jörg Thomas; Lipp, Hans-Peter

    2003-06-01

    Since the introduction of platinum-based combination chemotherapy, particularly cisplatin, the outcome of the treatment of many solid tumours has changed. The leading platinum compounds in cancer chemotherapy are cisplatin, carboplatin and oxaliplatin. They share some structural similarities; however, there are marked differences between them in therapeutic use, pharmacokinetics and adverse effects profiles [1-4]. Compared to cisplatin, carboplatin has inferior efficacy in germ-cell tumour, head and neck cancer and bladder and oesophageal carcinoma, whereas both drugs seem to have comparable efficacy in advanced non-small cell and small cell lung cancer as well as ovarian cancer [5-7]. Oxaliplatin belongs to the group of diaminocyclohexane platinum compounds. It is the first platinum-based drug that has marked efficacy in colorectal cancer when given in combination with 5-fluorouracil and folinic acid [8,9]. Other platinum compounds such as oral JM216, ZD0473, BBR3464 and SPI-77, which is a pegylated liposomal formulation of cisplatin, are still under investigation [10-13], whereas nedaplatin has been approved in Japan for the treatment of non-small cell lung cancer and other solid tumours. This review focuses on cisplatin, carboplatin and oxaliplatin.

  13. One-step flame synthesis of an active Pt/TiO2 catalyst for SO2 oxidation

    DEFF Research Database (Denmark)

    Johannessen, Tue; Koutsopoulos, Sotiris

    2002-01-01

    size of the platinum particles supported on aggregated nano-particles of TiO2 is approximately 2 nm. The high SO2-oxidation activity of the catalyst proves that platinum is not hidden in the titania matrix. The flame-produced catalyst showed catalytic activity similar to samples prepared by wet......Flame synthesis as a route for production of composite metal oxides has been employed for the one-step synthesis of a supported noble metal catalyst, i.e. a Pt/TiO2 catalyst, by simultaneous combustion of Ti-isopropoxide and platinum acetylacetonate in a quench-cooled flame reactor. The average...

  14. One-step flame synthesis of an active Pt/TiO2 catalyst for SO2 oxidation

    DEFF Research Database (Denmark)

    Johannessen, Tue; Koutsopoulos, Sotiris

    2002-01-01

    Flame synthesis as a route for production of composite metal oxides has been employed for the one-step synthesis of a supported noble metal catalyst, i.e. a Pt/TiO2 catalyst, by simultaneous combustion of Ti-isopropoxide and platinum acetylacetonate in a quench-cooled flame reactor. The average...... size of the platinum particles supported on aggregated nano-particles of TiO2 is approximately 2 nm. The high SO2-oxidation activity of the catalyst proves that platinum is not hidden in the titania matrix. The flame-produced catalyst showed catalytic activity similar to samples prepared by wet...

  15. Fischer-Tropsch Catalyst for Aviation Fuel Production

    Science.gov (United States)

    DeLaRee, Ana B.; Best, Lauren M.; Bradford, Robyn L.; Gonzalez-Arroyo, Richard; Hepp, Aloysius F.

    2012-01-01

    As the oil supply declines, there is a greater need for cleaner alternative fuels. There will undoubtedly be a shift from crude oil to nonpetroleum sources as a feedstock for aviation (and other transportation) fuels. The Fischer-Tropsch process uses a gas mixture of carbon monoxide and hydrogen which is converted into various liquid hydrocarbons; this versatile gas-to-liquid technology produces a complex product stream of paraffins, olefins, and oxygenated compounds such as alcohols and aldehydes. The Fischer-Tropsch process can produce a cleaner diesel oil fraction with a high cetane number (typically above 70) without any sulfur and aromatic compounds. It is most commonly catalyzed by cobalt supported on alumina, silica, or titania or unsupported alloyed iron powders. Cobalt is typically used more often than iron, in that cobalt is a longer-active catalyst, has lower water-gas shift activity, and lower yield of modified products. Promoters are valuable in improving Fischer-Tropsch catalyst as they can increase cobalt oxide dispersion, enhance the reduction of cobalt oxide to the active metal phase, stabilize a high metal surface area, and improve mechanical properties. Our goal is to build up the specificity of the Fischer-Tropsch catalyst while adding less-costly transition metals as promoters; the more common promoters used in Fischer-Tropsch synthesis are rhenium, platinum, and ruthenium. In this report we will describe our preliminary efforts to design and produce catalyst materials to achieve our goal of preferentially producing C8 to C18 paraffin compounds in the NASA Glenn Research Center Gas-To-Liquid processing plant. Efforts at NASA Glenn Research Center for producing green fuels using non-petroleum feedstocks support both the Sub-sonic Fixed Wing program of Fundamental Aeronautics and the In Situ Resource Utilization program of the Exploration Technology Development and Demonstration program.

  16. Ru4+ ion in CeO2 (Ce0.95Ru0.05O2−): A non-deactivating, non-platinum catalyst for water gas shift reaction

    Indian Academy of Sciences (India)

    Preetam Singh; N Mahadevaiah; Sanjit K Parida; M S Hegde

    2011-09-01

    Hydrogen is a clean energy carrier and highest energy density fuel. Water gas shift (WGS) reaction is an important reaction to generate hydrogen from steam reforming of CO. A new WGS catalyst, Ce1−RuO2− (0 ≤ ≤ 0.1) was prepared by hydrothermal method using melamine as a complexing agent. The Catalyst does not require any pre-treatment. Among the several compositions prepared and tested, Ce0.95Ru0.05O2− (5% Ru4+ ion substituted in CeO2) showed very high WGS activity in terms of high conversion rate (20.5 mol.g-1.s-1 at 275°C) and low activation energy (12.1 kcal/mol). Over 99% conversion of CO to CO2 by H2O is observed with 100% H2 selectivity at ≥ 275°C. In presence of externally fed CO2 and H2 also, complete conversion of CO to CO2 was observed with 100% H2 selectivity in the temperature range of 305-385°C. Catalyst does not deactivate in long duration on/off WGS reaction cycle due to absence of surface carbon and carbonate formation and sintering of Ru. Due to highly acidic nature of Ru4+ ion, surface carbonate formation is also inhibited. Sintering of noble metal (Ru) is avoided in this catalyst because Ru remains in Ru4+ ionic state in the Ce1−RuO2− catalyst.

  17. Oxidation catalyst

    Science.gov (United States)

    Ceyer, Sylvia T.; Lahr, David L.

    2010-11-09

    The present invention generally relates to catalyst systems and methods for oxidation of carbon monoxide. The invention involves catalyst compositions which may be advantageously altered by, for example, modification of the catalyst surface to enhance catalyst performance. Catalyst systems of the present invention may be capable of performing the oxidation of carbon monoxide at relatively lower temperatures (e.g., 200 K and below) and at relatively higher reaction rates than known catalysts. Additionally, catalyst systems disclosed herein may be substantially lower in cost than current commercial catalysts. Such catalyst systems may be useful in, for example, catalytic converters, fuel cells, sensors, and the like.

  18. Biocompatibility of dental alloys

    Energy Technology Data Exchange (ETDEWEB)

    Braemer, W. [Heraeus Kulzer GmbH and Co. KG, Hanau (Germany)

    2001-10-01

    Modern dental alloys have been used for 50 years to produce prosthetic dental restorations. Generally, the crowns and frames of a prosthesis are prepared in dental alloys, and then veneered by feldspar ceramics or composites. In use, the alloys are exposed to the corrosive influence of saliva and bacteria. Metallic dental materials can be classified as precious and non-precious alloys. Precious alloys consist of gold, platinum, and small amounts of non-precious components such as copper, tin, or zinc. The non-precious alloys are based on either nickel or cobalt, alloyed with chrome, molybdenum, manganese, etc. Titanium is used as Grade 2 quality for dental purposes. As well as the dental casting alloys, high purity electroplated gold (99.8 wt.-%) is used in dental technology. This review discusses the corrosion behavior of metallic dental materials with saliva in ''in vitro'' tests and the influence of alloy components on bacteria (Lactobacillus casei and Streptococcus mutans). The test results show that alloys with high gold content, cobalt-based alloys, titanium, and electroplated gold are suitable for use as dental materials. (orig.)

  19. 应用于氧还原反应的石墨烯-无定形碳核壳结构复合材料载铂催化剂%Core-shell graphene@amorphous carbon composites supported platinum catalysts for oxygen reduction reaction

    Institute of Scientific and Technical Information of China (English)

    吴惠; 彭焘; 寇宗魁; 张建; 程坤; 何大平; 潘牧; 木士春

    2015-01-01

    采用氯化法制备石墨烯-无定型碳复合材料(GNS@a-C),并用作质子交换膜燃料电池(PEMFC)氧还原反应Pt催化剂的载体.结果显示,所制Pt/GNS@a-C催化剂与传统商业催化剂Pt/C相比,有较好的活性和较高的稳定性:质量活性(0.121 A/mg)几乎是Pt/C (0.064 A/mg)的两倍.更重要的是,该新型催化剂加速4000圈后其电化学活性面积保留了最初的51%,与Pt/C的33%相比,前者有更好的电化学稳定性,显示它在PEMFC中将具有较好的应用潜力.%A core‐shell graphene nanosheets (GNS) and amorphous carbon composite (GNS@a‐C) was pre‐pared by a chlorination method and used as a highly efficient catalyst support for oxygen reduction reaction. Herein, GNS as a shell, with excellent conductivity, high surface area, and corrosion re‐sistance, served as a protecting coating to alleviate the degradation of amorphous carbon core. Platinum nanoparticles were homogeneously deposited on the carbon support (Pt/GNS@a‐C) and showed a good catalytic activity and a higher electrochemical stability when compared with a commercial Pt/C catalyst. The mass activity of Pt/GNS@a‐C catalyst was 0.121 A/mg, which was almost twice as high as that of Pt/C (0.064 A/mg). Moreover, Pt/GNS@a‐C retained 51%of its initial electrochemical specific area after 4000 operating cycles when compared with Pt/C (33%). Thus, the prepared catalyst featured excellent electrochemical stability, showing promise for application in polymer electrolyte membrane fuel cells.

  20. Alloy hardening and softening in binary molybdenum alloys as related to electron concentration

    Science.gov (United States)

    Stephens, J. R.; Witzke, W. R.

    1972-01-01

    An investigation was conducted to determine the effects of alloy additions of hafnium, tantalum, tungsten, rhenium, osmium, iridium, and platinum on hardness of molybdenum. Special emphasis was placed on alloy softening in these binary molybdenum alloys. Results showed that alloy softening was produced by those elements having an excess of s+d electrons compared to molybdenum, while those elements having an equal number or fewer s+d electrons that molybdenum failed to produce alloy softening. Alloy softening and alloy hardening can be correlated with the difference in number of s+d electrons of the solute element and molybdenum.

  1. Platinum incorporation in the Na Y zeolite through impregnation method, and characterization by XRD, FTIR and nitrogen adsorption

    Energy Technology Data Exchange (ETDEWEB)

    Araujo, A.S.; Sousa, B.V.; Andrade, A.C.C.; Rodrigues, M.G.F. [Universidade Federal de Campina Grande (UFCG), PB (Brazil). Centro de Ciencias e Tecnologia. Unidade Academica de Engenharia Quimica], e-mail: alfredinad@yahoo.com.br, e-mail: biancaviana_cg@yahoo.com.br, e-mail: meiry@deq.ufcg.edu.br; Rangel, M.C. [Universidade Federal da Bahia (UFBA), Salvador, BA (Brazil). Inst. de Quimica. Grupo de Estudos em Cinetica e Catalise

    2007-07-01

    Supported metal catalysts are widely used in petroleum refining, chemical and petroleum industries. These catalysts are important in ammonia synthesis, conversion of hydrocarbons with water vapor to synthesis gas, reforming, hydrocracking, ... Platinum has long been used in cracking, hydrogenation and dehydrogenation processes. The aim of this project is the Na Y zeolitic sample preparation through impregnation for incipient humidity, with 0,5% concentration of platinum, aiming its use as a catalyst in the steam reforming reaction. The characterization techniques used were: X Rays Diffraction (XRD), Fourier Transform Infrared spectroscopy (FTIR) and Nitrogen Adsorption (BET Method). From the obtained results through the techniques mentioned previously it is possible to evidence that the platinum impregnation process did not change the Na Y zeolite structure. Through the superficial specific area (BET) it was possible to observe that the platinum impregnation process caused a decrease in the specific area due to the reduction to the accessibility to the micropores of the zeolitic structure. (author)

  2. 金鸡纳-铂催化2-氧代-4-苯基丁酸乙酯的不对称加氢%Enantioselective Hydrogenation of Ethyl 2-Oxo-4-phenylbutyrate on Cinchona-Platinum Catalysts

    Institute of Scientific and Technical Information of China (English)

    夏涛; 任其龙; 吴平东

    2005-01-01

    Enantioselective hydrogenation of ethyl 2-oxo-4-phenylbutyrate to ethyl (R)-2-hydroxy-4-phenyl- bu-tyrate on Pt/γ-Al2O3 modified by 10,11-dihydrocinchonidine was studied by investigating the influences of the amount of modifier, initial concentration of reactant, pressure and temperature on conversion and enantiometric excess in a stirred autoclave and the effects of the liquid velocity, gas velocity, modifier concentration and various catalytic beds in a trickle-bed reactor. The maximum optical yields were about 50% and 60% in the two types of reactors, respectively. It was assumed that the total hydrogenation rate included the reaction rates over the unmodified and modified active sites on platinum surface and a kinetic model, which fitted the experimental data well in autoclave, was obtained. A simplified plug-flow model was proposed to describe the bed average efficiency of trickle-bed reactor.

  3. Determination of palladium, platinum and rhodium in used automobile catalysts and active pharmaceutical ingredients using high-resolution continuum source graphite furnace atomic absorption spectrometry and direct solid sample analysis

    Energy Technology Data Exchange (ETDEWEB)

    Resano, Martín, E-mail: mresano@unizar.es [Department of Analytical Chemistry, Aragón Institute of Engineering Research (I3A), University of Zaragoza, Pedro Cerbuna 12, 50009 Zaragoza (Spain); Flórez, María del Rosario [Department of Analytical Chemistry, Aragón Institute of Engineering Research (I3A), University of Zaragoza, Pedro Cerbuna 12, 50009 Zaragoza (Spain); Queralt, Ignasi [Institute of Earth Sciences Jaume Almera ICTJA-CSIC, Sole Sabarís s/n, 08028 Barcelona (Spain); Marguí, Eva [Department of Chemistry, Faculty of Sciences, Universitat de Girona, Campus Montilivi s/n, 17071 Girona (Spain)

    2015-03-01

    This work investigates the potential of high-resolution continuum source graphite furnace atomic absorption spectrometry for the direct determination of Pd, Pt and Rh in two samples of very different nature. While analysis of active pharmaceutical ingredients is straightforward and it is feasible to minimize matrix effects, to the point that calibration can be carried out against aqueous standard solutions, the analysis of used automobile catalysts is more challenging requiring the addition of a chemical modifier (NH{sub 4}F·HF) to help in releasing the analytes, a more vigorous temperature program and the use of a solid standard (CRM ERM®-EB504) for calibration. However, in both cases it was possible to obtain accurate results and precision values typically better than 10% RSD in a fast and simple way, while only two determinations are needed for the three analytes, since Pt and Rh can be simultaneously monitored in both types of samples. Overall, the methods proposed seem suited for the determination of these analytes in such types of samples, offering a greener and faster alternative that circumvents the traditional problems associated with sample digestion, requiring a small amount of sample only (0.05 mg per replicate for catalysts, and a few milligrams for the pharmaceuticals) and providing sufficient sensitivity to easily comply with regulations. The LODs achieved were 6.5 μg g{sup −1} (Pd), 8.3 μg g{sup −1} (Pt) and 9.3 μg g{sup −1} (Rh) for catalysts, which decreased to 0.08 μg g{sup −1} (Pd), 0.15 μg g{sup −1} (Pt) and 0.10 μg g{sup −1} (Rh) for pharmaceuticals. - Highlights: • Solid sampling HR CS GFAAS permits the fast and direct determination of Pd, Pt and Rh. • 2 determinations suffice for the 3 elements (2 of them can be measured simultaneously). • Samples as different as car catalysts and pharmaceuticals can be accurately analyzed. • Aqueous standards (pharmaceuticals) or a solid CRM (catalysts) is used for calibration.

  4. Biomineralization of platinum by microorganisms

    Science.gov (United States)

    Pavlova, L. M.; Radomskaya, V. I.; Shumilova, L. P.; Ionov, A. M.; Sorokin, P.

    2017-04-01

    The mechanism of platinum biomineralization by microscopic fungi is displayed based on data of electron microscopy, infrared and X-ray photoelectronic spectroscopy. It was suggested the platinum sorption process by microscopic fungi has some stages. The initial interaction is carried out by the mechanisms of physical and chemical sorption. Hereafter the reduction process of adsorbed platinum ions up to zero state is performed, probably, for account of organic compounds, which are produced by fungi biomass as metabolism result, and the process terminates by nulvalent particles aggregating up to nanosize forms. Obtained data on the platinum biomineralization extends the concept concerning the character of forming platinum nanoparticles in carbonous paleobasin.

  5. Effect of Graphitic Content on Carbon Supported Catalyst Performance

    Energy Technology Data Exchange (ETDEWEB)

    Patel, Anant; Artyushkova, Kateryna; Atanassov, Plamen; Harvey, David; Dutta, Monica; Colbow, Vesna

    2011-07-01

    The effect of graphitic content on carbon supported platinum catalysts was investigated in order to investigate its influence on catalyst performance. Four catalysts of varying surface areas and graphitic content were analyzed using XPS, HREELS, and tested using RDE experiments. The catalysts were also heat treated at 150oC and 100%RH as means to uniformly age them. The heat treated samples were analyzed using the same methods to determine what changes had occurred due to this aging process. When compared to the BOL catalysts, heat treated catalysts displayed increased graphitic carbon and platinum metalic content, however they also showed depressed catalytic activity. The primary cause is still under investigation, though it is believed to be related to loss of amorphous carbon content.

  6. Effect of Graphitic Content on Carbon Supported Catalyst Performance

    Energy Technology Data Exchange (ETDEWEB)

    A. Patel; K. Artyushkova; P. Atanassov; David Harvey; M. Dutta; V. Colbow; S. Wessel

    2011-07-01

    The effect of graphitic content on carbon supported platinum catalysts was investigated in order to investigate its influence on catalyst performance. Four catalysts of varying surface areas and graphitic content were analyzed using XPS, HREELS, and tested using RDE experiments. The catalysts were also heat treated at 150 C and 100%RH as means to uniformly age them. The heat treated samples were analyzed using the same methods to determine what changes had occurred due to this aging process. When compared to the BOL catalysts, heat treated catalysts displayed increased graphitic carbon and platinum metallic content, however they also showed depressed catalytic activity. The primary cause is still under investigation, though it is believed to be related to loss of amorphous carbon content.

  7. High catalytic activity and pollutants resistivity using Fe-AAPyr cathode catalyst for microbial fuel cell application

    OpenAIRE

    Carlo Santoro; Alexey Serov; Claudia W. Narvaez Villarrubia; Sarah Stariha; Sofia Babanova; Kateryna Artyushkova; Schuler, Andrew J.; Plamen Atanassov

    2015-01-01

    For the first time, a new generation of innovative non-platinum group metal catalysts based on iron and aminoantipyrine as precursor (Fe-AAPyr) has been utilized in a membraneless single-chamber microbial fuel cell (SCMFC) running on wastewater. Fe-AAPyr was used as an oxygen reduction catalyst in a passive gas-diffusion cathode and implemented in SCMFC design. This catalyst demonstrated better performance than platinum (Pt) during screening in “clean” conditions (PBS), and no degradation in ...

  8. SILICA—BOUND 1,7—DITHIA—4—AZA—10,13,16—TRIOXACYCLOOCTADECANE AND ITS PLATINUM COMPLEX

    Institute of Scientific and Technical Information of China (English)

    CHENYuanyin; MENGLingzhi; 等

    1992-01-01

    Dithia-monoaza 18-Crown-6 and its immobilization product,silica-bound 1,7-dithia-4-aza-10,13,16-trioxa-cyclooctadecane via a spacer of three carbon atoms,and its platinum complex have been synthesized.It is found that the platinum complex is an efficient hydrosilylation catalyst for olefins.The XPS data of the platinum complex are reported.

  9. 21 CFR 872.3060 - Noble metal alloy.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Noble metal alloy. 872.3060 Section 872.3060 Food... DEVICES DENTAL DEVICES Prosthetic Devices § 872.3060 Noble metal alloy. (a) Identification. A noble metal alloy is a device composed primarily of noble metals, such as gold, palladium, platinum, or silver,...

  10. Transformation de l'heptane normal en présence de catalyseurs à base de mordénite larges pores échangée à l'argent et imprégnée de platine Transformation of Normal Heptanes in the Presence of Catalysts with a Large-Pore Mordenite Base Exchanged with Silver and Lmpregnated with Platinum

    Directory of Open Access Journals (Sweden)

    Montarnal R.

    2006-11-01

    Full Text Available Les résultats obtenus dans l'étude des transformations de l'heptane normal, sous pression d'hydrogène sur mordénite échangée à l'argent et imprégnée de 0,5 % en poids de platine, sont interprétés dans le cadre d'un mécanisme bifonctionnel. Toutefois, pour rendre compte de l'influence de la pression partielle d'hydrogène sur les vitesses d'isomérisation et de craquage, il est nécessaire de faire intervenir, pour le craquage par bêta scission des carbocations, un mécanisme bisite impliquant la participation d'un proton voisin du carbocation, tous deux liés au support acide. The results obtained from research on transformations of normal heptane, under hydrogen pressure and using silver-exchanged platinum-impregnated large-pore mordenite as catalyst, are interpreted within the framework of a bifunctional mechanism. However, to take into consideration the influence of hydrogen partial pressure on the isomerization and cracking rates, a twin-sitemechanism must be used for cracking by the beta cleavage of carbonium ions, implying the participation of a proton in the vicinity of the carbonium ion, and with both sites boing linked to the acid support.

  11. 通过Au修饰提高质子交换膜燃料电池PtCo合金催化剂稳定性%Improved Stability of PtCo Alloy Catalysts for Proton Exchange Membrane Fuel Cells by Gold Decoration

    Institute of Scientific and Technical Information of China (English)

    陈磊; 齐意; 木士春

    2015-01-01

    目的:解决质子交换膜燃料电池贵金属催化剂利用率低、电化学稳定性差的问题,从而堆动其产业化进程。方法通过湿化学共沉积法获得低Pt特征的PtCo合金催化剂,采用欠电位沉积方法制备Au修饰的PtCo合金催化剂,应用原子吸收光谱和电化学循环伏安加速测试技术研究Au修饰PtCo合金催化剂的电化学稳定性。结果成功制备了Au修饰的PtCo合金催化剂。 Au修饰后,PtCo合金催化剂的氧还原反应性能几乎没有改变,但Co的溶蚀率得到降低,而且电化学稳定性也得到提高。结论通过采用Au等具有高电化学腐蚀电位的金属修饰Pt合金催化剂,以提高催化剂电化学稳定性的研究思路是可行的。%ABSTRACT:Objective To facilitate the commercialization of proton exchange membrane fuel cells by revolving the key issues in-cluding low utilization and deteriorated stability of noble metal catalysts. Methods After preparation of PtCo alloy catalysts with low Pt loading by a chemical co-deposition method, the gold decorated PtCo alloy catalyst was prepared in terms of an under-potential-deposition method, and then the electrochemical stability of the gold-decorated PtCo alloy catalyst was characterized by atomic ab-sorption spectroscopy and electrochemical accelerated test technique. Results Au-decorated PtCo alloy catalyst was successfully prepared. After decoration of gold, the oxygen reduction reaction activity of PtCo alloy catalysts remained unchanged, and the ero-sion rate of Co element for PtCo alloy catalysts in electrolyte solutions decreased with an improved electrochemical stability. Con-clusion It was feasible to improve the stability of PtCo alloy catalysts by decoration with metals possessing a high corrosion potential such as Au.

  12. Tailoring ruthenium exposure to enhance the performance of fcc platinum@ruthenium core-shell electrocatalysts in the oxygen evolution reaction.

    Science.gov (United States)

    AlYami, Noktan M; LaGrow, Alec P; Joya, Khurram S; Hwang, Jinyeon; Katsiev, Khabiboulakh; Anjum, Dalaver H; Losovyj, Yaroslav; Sinatra, Lutfan; Kim, Jin Young; Bakr, Osman M

    2016-06-28

    The catalytic properties of noble metal nanocrystals are a function of their size, structure, and surface composition. In particular, achieving high activity without sacrificing stability is essential for designing commercially viable catalysts. A major challenge in designing state-of-the-art Ru-based catalysts for the oxygen evolution reaction (OER), which is a key step in water splitting, is the poor stability and surface tailorability of these catalysts. In this study, we designed rapidly synthesizable size-controlled, morphology-selective, and surface-tailored platinum-ruthenium core-shell (Pt@Ru) and alloy (PtRu) nanocatalysts in a scalable continuous-flow reactor. These core-shell nanoparticles with atomically precise shells were produced in a single synthetic step with carbon monoxide as the reducing agent. By varying the metal precursor concentration, a dendritic or layer-by-layer ruthenium shell can be grown. The synthesized Pt@Ru and PtRu nanoparticles exhibit noticeably higher electrocatalytic activity in the OER compared to that of pure Pt and Ru nanoparticles. Promisingly, Pt@Ru nanocrystals with a ∼2-3 atomic layer Ru cuboctahedral shell surpass conventional Ru nanoparticles in terms of both durability and activity.

  13. Tailoring Ruthenium Exposure to Enhance the Performance of fcc Platinum@Ruthenium Core-Shell Electrocatalysts in the Oxygen Evolution Reaction

    KAUST Repository

    AlYami, Noktan Mohammed

    2016-05-17

    The catalytic properties of noble metal nanocrystals are a function of their size, structure, and surface composition. In particular, achieving high activity without sacrificing stability is essential for designing commercially viable catalysts. A major challenge in designing state-of-the-art Ru-based catalysts for the oxygen evolution reaction (OER), which is a key step in water splitting, is the poor stability and surface tailorability of these catalysts. In this study, we designed rapidly synthesizable size-controlled, morphology-selective, and surface-tailored platinum-ruthenium core-shell (Pt@Ru) and alloy (PtRu) nanocatalysts in a scalable continuous-flow reactor. These core-shell nanoparticles with atomically precise shells were produced in a single synthetic step with carbon monoxide as the reducing agent. By varying the metal precursor concentration, a dendritic or layer-by-layer ruthenium shell can be grown. The catalytic activities of the synthesized Pt@Ru and PtRu nanoparticles exhibit noticeably higher electrocatalytic activity in the OER compared to that of pure Pt and Ru nanoparticles. Promisingly, Pt@Ru nanocrystals with a ~2-3 atomic layer Ru cuboctahedral shell surpass conventional Ru nanoparticles in terms of both durability and activity.

  14. NETWORK CROWN ETHER POLYMERS WITH CENTRIC FUNCTIONAL GROUP (Ⅳ) SYNTHESIS OF NETWORK CROWN ETHER POLYMER WITH PENDANT DIETHYLAMINO THIAALKYL GROUP AND ITS PLATINUM COMPLEX

    Institute of Scientific and Technical Information of China (English)

    CHEN Yuanyin; MENG Lingzhi; YIN Yihua; GENG Chengai

    1994-01-01

    The title polymer was prepared from 5-diethylamino-3-thia-pentyl glycidyl ether and diethylene glycol bisglycidyl ether via ring-opening copolymerization. It was found that this reaction could be catalyzed by sodium, but not Lewis acid. The obtained polymer can coordinate with platinum compound, and the platinum complex is a new kind of catalyst for the hydrosilylation of olefins with triethoxysilane.

  15. Potential of a Hydrometallurgical Recycling Process for Catalysts to Cover the Demand for Critical Metals, Like PGMs and Cerium

    Science.gov (United States)

    Steinlechner, Stefan; Antrekowitsch, Jürgen

    2015-02-01

    The metals from the platinum group are used in many different industries, for example dental, jewelry, and chemicals. Nevertheless, the most important use is based on their catalytic properties. Approximately 50% of platinum and palladium are used as automotive and industrial catalysts. In case of rhodium, an even higher percentage (around 80-90%) is used as an alloying element in the active layer of different catalysts. The high required amount of 300-900 kg of treated ore to obtain approximately 1 g of PGM is responsible for the high prices. On average, the contents in the ore of Pt and Pd are 5-10 times higher than Rh and Ru and around 50 times higher than Ir and Os. Additionally, the regional limitation of ore bodies leads to a strong dependence on mainly South Africa and Russia as PGM suppliers. Based on the strong discrepancy in supply and demand of PGM's around the world, recycling of catalysts is mandatory and meaningful from the ecological and economical point of view. Based on the high prices of PGM, the industry is forced to improve the efficiency of catalysts, which is done by improving the wash coat technology. By using rare-earth elements, like cerium oxide, the surface can be increased and the ability to supply oxygen is secured. As a side effect, cerium as an additional critical element is introduced into the recycling circuit of catalytic converters, forming a further valuable component and forming a major challenge for common pyrometallurgical converter recycling. Therefore, this article introduces a hydrometallurgical process, developed together with Railly&Hill Inc., for PGM as well as cerium recovery from catalytic converters.

  16. Characterization of three-way automotive catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Kenik, E.A.; More, K.L. [Oak Ridge National Laboratory, TN (United States); LaBarge, W. [General Motors-AC Delco Systems, Flint, MI (United States)] [and others

    1995-05-01

    This has been the second year of a CRADA between General Motors - AC Delco Systems (GM-ACDS) and Martin Marietta Energy Systems (MMES) aimed at improved performance/lifetime of platinum-rhodium based three-way-catalysts (TWC) for automotive emission control systems. While current formulations meet existing emission standards, higher than optimum Pt-Rh loadings are often required. In additionk, more stringent emission standards have been imposed for the near future, demanding improved performance and service life from these catalysts. Understanding the changes of TWC conversion efficiency with ageing is a critical need in improving these catalysts.

  17. Palladium-Based Catalysts as Electrodes for Direct Methanol Fuel Cells: A Last Ten Years Review

    Directory of Open Access Journals (Sweden)

    Juan Carlos Calderón Gómez

    2016-08-01

    Full Text Available Platinum-based materials are accepted as the suitable electrocatalysts for anodes and cathodes in direct methanol fuel cells (DMFCs. Nonetheless, the increased demand and scarce world reserves of Pt, as well as some technical problems associated with its use, have motivated a wide research focused to design Pd-based catalysts, considering the similar properties between this metal and Pt. In this review, we present the most recent advancements about Pd-based catalysts, considering Pd, Pd alloys with different transition metals and non-carbon supported nanoparticles, as possible electrodes in DMFCs. In the case of the anode, different reported works have highlighted the capacity of these new materials for overcoming the CO poisoning and promote the oxidation of other intermediates generated during the methanol oxidation. Regarding the cathode, the studies have showed more positive onset potentials, as fundamental parameter for determining the mechanism of the oxygen reduction reaction (ORR and thus, making them able for achieving high efficiencies, with less production of hydrogen peroxide as collateral product. This revision suggests that it is possible to replace the conventional Pt catalysts by Pd-based materials, although several efforts must be made in order to improve their performance in DMFCs.

  18. Nickel supported on nitrogen-doped carbon nanotubes as hydrogen oxidation reaction catalyst in alkaline electrolyte

    National Research Council Canada - National Science Library

    Zhuang, Zhongbin; Giles, Stephen A; Zheng, Jie; Jenness, Glen R; Caratzoulas, Stavros; Vlachos, Dionisios G; Yan, Yushan

    2016-01-01

    .... Here we report that a composite catalyst, nickel nanoparticles supported on nitrogen-doped carbon nanotubes, has hydrogen oxidation activity similar to platinum-group metals in alkaline electrolyte...

  19. Effect of Supports on the Catalytic Performance of Platinum Catalysts in Preparing o-Phenylphenol%载体对Pt催化剂制备邻苯基苯酚催化性能的影响

    Institute of Scientific and Technical Information of China (English)

    丁洁莲; 曾崇余

    2012-01-01

    分别以活性炭(AC)、γ-Al2O3 、MgO、TiO2为载体,氯铂酸为活性金属前驱体,采用等体积浸渍法制得不同载体负载的Pt催化剂,考察了它们对环己烯基环己酮(dimer)脱氢制备邻苯基苯酚(OPP)的催化活性和选择性.并用X射线衍射(XRD)、X射线光电子能谱(XPS)、H2程序升温脱附(H2-TPD)、CO2程序升温脱附(CO2TPD)等对催化剂进行表征.结果表明,载体对所制备的催化剂表面Pt含量、酸碱性和对氢吸附能力等微观性能有影响,以γ-Al2O3为载体制备的Pt-K/γ-Al2O3催化剂,由于催化剂表面Pt质量分数高达0.41%,碱性强和碱中心多,利于氢和中间产物在催化剂表面的吸附,从而提高环己烯基环己酮的转化率和OPP选择性.Pt/γ-Al2 O3催化剂在LHSV0.12h1、H2空速33 mL/(g·h)、反应温度380℃的条件下,在200 t/a的工业化装置运转8000h后,环己酮二聚物转化率仍能达99%以上,OPP选择性达90%以上.%Pt-K/AC,Pt-K/γ-Al2O3,Pl-K/MgO and Pt-K/TiO2 catalysts with different supports were prepared by impregnation method using AC.-γAl2O3 ,MgO and TiO2 as the support, respectively, and H2PtCl6 as the precursor. The catalytic performance of the catalysts in preparing o-phenylphenol(OPP) through dehydrogenation of cyclohexanone dimers was evaluated in a fixed bed reactor. These catalysts were characterized by means of X-ray diffraction, X-ray photoelectron spectroscopy, H2 temperature programmed desorption and CO2 temperature programmed desorption. The results show that the Pt content,basicity and adsorption of hydrogen of the Pt catalysts were influenced by the different supports. Pt-K/γ-Al2O3 had the highest surface Pt content (0. 41% ) ,and more surface base sites were favorable to the adsorption of hydrogen and intermediate products and consequently increased the conversion of dimers and the selectivity for OPP. The conversion of the dimers and the selectivity of OPP were respectively over 99% and 90% with 0. 12 h

  20. Platinum in Earth surface environments

    Science.gov (United States)

    Reith, F.; Campbell, S. G.; Ball, A. S.; Pring, A.; Southam, G.

    2014-04-01

    Platinum (Pt) is a rare precious metal that is a strategic commodity for industries in many countries. The demand for Pt has more than doubled in the last 30 years due to its role in the catalytic conversion of CO, hydrocarbons and NOx in modern automobiles. To explore for new Pt deposits, process ores and deal with ecotoxicological effects of Pt mining and usage, the fundamental processes and pathways of Pt dispersion and re-concentration in surface environments need to be understood. Hence, the aim of this review is to develop a synergistic model for the cycling of Pt in Earth surface environments. This is achieved by integrating the geological/(biogeo)chemical literature, which focuses on naturally occurring Pt mobility around ore deposits, with the environmental/ecotoxicological literature dealing with anthropogenic Pt dispersion. In Pt deposits, Pt occurs as sulfide-, telluride- and arsenide, native metal and alloyed to other PGEs and iron (Fe). Increased mining and utilization of Pt combined with the burning of fossil fuels have led to the dispersion of Pt-containing nano- and micro-particles. Hence, soils and sediments in industrialized areas, urban environments and along major roads are now commonly Pt enriched. Platinum minerals, nuggets and anthropogenic particles are transformed by physical and (bio)geochemical processes. Complexation of Pt ions with chloride, thiosulfate, ammonium, cyanide, low- and high molecular weight organic acids (LMWOAs and HMWOAs) and siderophores can facilitate Pt mobilization. Iron-oxides, clays, organic matter and (micro)biota are known to sequester Pt-complexes and -particles. Microbes and plants are capable of bioaccumulating and reductively precipitating mobile Pt complexes. Bioaccumulation can lead to toxic effects on plants and animals, including humans. (Bio)mineralization in organic matter-rich sediments can lead to the formation of secondary Pt particles and -grains. Ultimately, Pt is enriched in oceanic sediments

  1. Preparation and evaluation of advanced catalysts for phosphoric acid fuel cells

    Science.gov (United States)

    Stonehart, P.; Baris, J.; Hockmuth, J.; Pagliaro, P.

    1984-01-01

    The platinum electrocatalysts were characterized for their crystallite sizes and the degree of dispersion on the carbon supports. One application of these electrocatalysts was for anodic oxidation of hydrogen in hot phosphoric acid fuel cells, coupled with the influence of low concentrations of carbon monoxide in the fuel gas stream. In a similar way, these platinum on carbon electrocatalysts were evaluated for oxygen reduction in hot phosphoric acid. Binary noble metal alloys were prepared for anodic oxidation of hydrogen and noble metal-refractory metal mixtures were prepared for oxygen reduction. An exemplar alloy of platinum and palladium (50/50 atom %) was discovered for anodic oxidation of hydrogen in the presence of carbon monoxide, and patent disclosures were submitted. For the cathode, platinum-vanadium alloys were prepared showing improved performance over pure platinum. Preliminary experiments on electrocatalyst utilization in electrode structures showed low utilization of the noble metal when the electrocatalyst loading exceeded one weight percent on the carbon.

  2. Investigation of Pt-Ti doped carbon aerogel as bi-metallic catalyst for H/D exchange process

    Science.gov (United States)

    Bhartiya, Sushmita; Kohli, D. K.; Singh, Ashish; Singh, Rashmi; Singh, M. K.

    2017-05-01

    Platinum (Pt) carbon based catalyst for hydrogen-deuterium (H/D) exchange between hydrogen and water is one of the benign processes being explored for heavy water production. Platinum being precious, presents a significant contribution on overall cost of catalyst. Titanium (Ti), a potential catalyst was explored for the H/D exchange to reduce the cost of catalyst. Titanium oxide co-doped with platinum in carbon aerogel (CA) was investigated for the exchange process. The present studies involve synthesis and characterization of TiO2 nanoparticles doped in carbon aerogel. Pt and TiO2 doping (5% by weight for both) in CA was used to prepare the bimetallic PtTi-CA catalyst. The H/D exchange efficiency obtained for the PtTi-CA catalyst (with 50% Pt economy) was 57% which compares well with Pt-CA catalyst having exchange efficiency of 67%.

  3. The study on carbon nanotubes-supported Pt catalysts for PEMFC

    Institute of Scientific and Technical Information of China (English)

    朱捷; 朱红; 康晓红; 葛奉娟; 杨玉国

    2004-01-01

    Carbon nanotube-supported-platinum (Pt/CNTs) and carbon-supported-platinum (Pt/C) catalysts were prepared by in situ chemical reduction method and analyzed by TEM and XRD. Then the experiments were carried out to test the performance of PEMFCs with the Pt electrodes. The results showed that in both catalyst, Pt was of small particle size (about 4 nm) and Pt/CNTs exhibited higher catalytic activity than Pt/C.

  4. Synergistic effect of Brønsted acid and platinum on purification of automobile exhaust gases.

    Science.gov (United States)

    Fu, Wei; Li, Xin-Hao; Bao, Hong-Liang; Wang, Kai-Xue; Wei, Xiao; Cai, Yi-Yu; Chen, Jie-Sheng

    2013-01-01

    The catalytic purification of automobile exhaust gases (CO, NOx and hydrocarbons) is one of the most practiced conversion processes used to lower the emissions and to reduce the air pollution. Nevertheless, the good performance of exhaust gas purification catalysts often requires the high consumption of noble metals such as platinum. Here we report that the Brønsted acid sites on the external surface of a microporous silicoaluminophosphate (SAPO) act as a promoter for exhaust gas purification, effectively cutting the loading amount of platinum in the catalyst without sacrifice of performance. It is revealed that in the Pt-loaded SAPO-CHA catalyst, there exists a remarkable synergistic effect between the Brønsted acid sites and the Pt nanoparticles, the former helping to adsorb and activate the hydrocarbon molecules for NO reduction during the catalytic process. The thermal stability of SAPO-CHA also makes the composite catalyst stable and reusable without activity decay.

  5. Electrocatalytic activity of PtAu/C catalysts for glycerol oxidation.

    Science.gov (United States)

    Jin, Changchun; Sun, Chao; Dong, Rulin; Chen, Zhidong

    2012-01-01

    The electrocatalytic oxidation of glycerol on PtAu/C catalysts has been investigated by cyclic voltammetry. PtAu bimetallic nanoparticles are prepared by chemical reduction. Carbon-supported PtAu catalysts are found to exhibit high electrocatalytic activity for the oxidation of glycerol in alkaline solution in terms of oxidation potential and current density as well as stability, and PtAu/C catalysts with different Pt:Au composition ratios show no much difference in catalytic activity. In acidic solution, PtAu/C catalysts exhibit similar to Pt/C catalysts in activity, but the advantage of the PtAu/C catalysts in terms of per unit mass of platinum is still obvious. The PtAu/C catalysts, in a wide Pt:Au ratio range, show a remarkable enhancement in the mass specific activity of platinum with decreasing platinum content in both alkaline and acidic solutions. This is of significance for reducing the usage of platinum and indicates that though platinum acts as main active sites, gold also plays an important role in the function of PtAu/C catalysts.

  6. Catalyst layers for PEMFC manufactured by flexography printing process: performances and structure

    Energy Technology Data Exchange (ETDEWEB)

    Bois, C.; Blayo, A.; Chaussy, D. [Laboratory of Pulp and Paper Science and Graphic Arts (LGP2) (UMR 5518 CNRS-CTP-INPG), Grenoble Institute of Technology (INP Grenoble - PAGORA), St Martin d' Heres (France); Vincent, R.; Mercier, A.G.; Nayoze, C. [Commissariat a l' Energie Atomique et aux Energies Alternatives (CEA)/DRT/LITEN, Laboratoire des Composants Piles a Combustible, Electrolyse et Modelisation (LCPEM), Grenoble (France)

    2012-04-15

    This article focuses on the potential of a classic printing process, flexography, for manufacturing proton exchange membrane fuel cells (PEMFCs). Gas diffusion electrodes (GDEs) are produced by deposition of a water-based catalyst ink on a gas diffusion layer (GDL). The affinity between the ink and the GDL is quantified. Thus, the strong hydrophobic character of the GDL and the poor printability of the ink are demonstrated. However, the permeability of the GDL allows developing a multilayer protocol. The deposition by superimposition of ink layers allows control of the platinum amount and to obtain catalyst layers with a similar density of platinum nanoparticles to coated samples. At similar platinum loading, flexography and coating made catalyst layers offer similar performances, which confirm the relevance of flexography in catalyst layer manufacturing. Structural characterization shows that manufacturing protocol and process has an influence on catalyst layer microstructure. However, catalyst layer cracking and aggregation are increased with the catalyst layer thickness, diminishing the charge and gas diffusion into the catalyst layer resulting in performance degradation. Consequently, a catalyst layer with 0.46 mgPt cm{sup -2} reaches similar performances to catalyst layers with 1.77 and 2.01 times less platinum loading. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  7. Adhesion enhancement for liquid silicone rubber and different surface by organosilane and Pt catalyst at room temperature

    Indian Academy of Sciences (India)

    Fang Wang; Yanni Li; Dan Wang

    2013-11-01

    Surface modification of aluminum, glass, epoxy resin, polypropylene and polyethylene via corona discharge pretreatment and platinum catalyst addition to promote their adhesion with liquid silicone rubber is reported. The corona-pretreated substrate surface was silanized with vinyltrimethoxysilane to generate vinyl groups on the surface, which could be initiated by platinum catalyst to form vinyl radicals. Then, the vinyltrimethoxysilane modified substrate was dipped into platinum catalyst solution to introduce platinum on the vinyltrimethoxysilane surface. The modified aluminum surface was characterized by X-ray photoelectron spectroscopy (XPS). The strong adhesion property between liquid silicone rubber and different surface was achieved by introducing a small amount of vinyltrimethoxysilane and platinum catalyst, followed by curing at low temperature. XPS result indicated the formation of vinyltrimethoxysilane coating on aluminum surface. Peel strength for liquid silicone rubber/vinyltrimethoxysilane–platinum surface was over 3.2 kN/m compared to only 1.1 kN/m for liquid silicone rubber/vinyltrimethoxysilane–aluminum. The cohesive failure in the bulk of liquid silicone rubber was observed for liquid silicone rubber/vinyltrimethoxysilane–platinum surface. It is assumed that the cross-linking reactions between vinyl groups in the vinyltrimethoxysilane coating and unsaturated terminal group of liquid silicone rubber occur due to the existence of platinum catalyst.

  8. Co-catalytic effect of Rh and Ru for the ethanol electro-oxidation in amorphous microparticulated alloys

    Energy Technology Data Exchange (ETDEWEB)

    Blanco, Tamara C.; Pierna, Angel R.; Barroso, Javier [Dpto. de Ingenieria Quimica y del Medio Ambiente, Universidad del Pais Vasco, San Sebastian (Spain)

    2011-11-15

    The ethanol electro-oxidation on platinum catalyst in acid media leads to the formation of acetaldehyde and acetic acid as main products. Another problem is the poisoning of the electro-catalyst surface with CO formed during the fuel oxidation reaction. To increase the performance of Direct Ethanol Fuel Cells (DEFCs) it is necessary to develop new electrode materials or modification of the existing Pt catalysts. This work presents the electrochemical response to ethanol and CO oxidation of different compositional amorphous alloys obtained by ball milling technique, used as electrodes. Alloys with Ni{sub 59}Nb{sub 40}Pt{sub 0.6}Rh{sub 0.4} and Ni{sub 59}Nb{sub 40}Pt{sub 0.6}Rh{sub 0.2}Ru{sub 0.2} composi-tions were studied. The current density towards ethanol oxidation decreases with the presence of ruthenium; however, this electrode shows the best tolerance to CO, with lower surface coverage (copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  9. Platinum nitride with fluorite structure

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Rong; Zhang, Xiao-Feng

    2005-01-31

    The mechanical stability of platinum nitride has been studied using first-principles calculations. By calculating the single-crystal elastic constants, we show that platinum nitride can be stabilized in the fluorite structure, in which the nitrogen atoms occupy all the tetrahedral interstitial sites of the metal lattice. The stability is attributed to the pseudogap effect from analysis of the electronic structure.

  10. Formic Acid Oxidation at Platinum-Bismuth Clusters

    DEFF Research Database (Denmark)

    Lovic, J. D.; Stevanovic, S. I.; Tripkovic, D. V.

    2014-01-01

    Formic acid oxidation was studied on platinum-bismuth deposits on glassy carbon (GC) substrate. The catalysts of equimolar ratio were prepared by potentiostatic deposition using chronocoulometry. Bimetallic structures obtained by two-step process, comprising deposition of Bi followed by deposition...... of Pt, were characterized by AFM spectroscopy which indicated that Pt crystallizes preferentially onto previously formed Bi particles. The issue of Bi leaching (dissolution) from PtBi catalysts, and their catalytic effect alongside the HCOOH oxidation is rather unresolved. In order to control Bi...... dissolution, deposits were subjected to electrochemical oxidation, in the relevant potential range and supporting electrolyte, prior to use as catalysts for HCOOH oxidation. Anodic striping charges indicated that along oxidation procedure most of deposited Bi was oxidized. ICP mass spectroscopy analysis...

  11. High Selective Hydrogenation of Acetophenone Catalyzed by Alumina Supported Platinum Nanoclusters

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    A new preparation and reduction method of γ-Al2O3 supported and PVP stabilized platinum nanoclusters was studied.The catalyst exhibited very high activity and selectivity for acetophenone hydrogenation in isopropanol-KOH solution at 25~60°C and P H2=1~5 MPa.

  12. Platinum monolayer electrocatalyst on gold nanostructures on silicon for photoelectrochemical hydrogen evolution.

    Science.gov (United States)

    Kye, Joohong; Shin, Muncheol; Lim, Bora; Jang, Jae-Won; Oh, Ilwhan; Hwang, Seongpil

    2013-07-23

    Pt monolayer decorated gold nanostructured film on planar p-type silicon is utilized for photoelectrochemical H2 generation in this work. First, gold nanostructured film on silicon was spontaneously produced by galvanic displacement of the reduction of gold ion and the oxidation of silicon in the presence of fluoride anion. Second, underpotential deposition (UPD) of copper under illumination produced Cu monolayer on gold nanostructured film followed by galvanic exchange of less-noble Cu monolayer with more-noble PtCl6(2-). Pt(shell)/Au(core) on p-type silicon showed the similar activity with platinum nanoparticle on silicon for photoelectrochemical hydrogen evolution reaction in spite of low platinum loading. From Tafel analysis, Pt(shell)/Au(core) electrocatalyst shows the higher area-specific activity than platinum nanoparticle on silicon demonstrating the significant role of underlying gold for charge transfer reaction from silicon to H(+) through platinum catalyst.

  13. Identification and quantification of Sn-based species in trimetallic Pt-Sn-In/Al2O3-Cl naphtha-reforming catalysts

    Science.gov (United States)

    Jumas, Jean-Claude; Sougrati, Moulay Tahar; Olivier-Fourcade, Josette; Jahel, Ali; Avenier, Priscilla; Lacombe, Sylvie

    2013-04-01

    Trimetallic Pt/Al2O3SnIn-Cl naphtha-reforming catalysts were prepared via co-precipitation route. Platinum and chlorine were introduced by the incipient wetness technique on the alumina support already doped with about 0.3 %wt of Sn to obtain about 0.3 %wt of Pt and 1.5 %wt of Cl. For the same Pt, Sn and Cl composition, indium loading ranged from 0.06 to 0.6 wt.%. The obtained catalysts were investigated by 119Sn Mössbauer spectroscopy between 95 and 300 K. Two Sn(IV), Sn(II) and Sn(0) environments have been identified and well characterized by their hyperfine parameters. The Lamb-Mössbauer factors have been determined for each environment and found to be 0.53, 0.27 and 0.31 for Sn(IV), Sn(II) and Sn(0) respectively. The addition of indium has been found to favour the formation of PtxSn alloys. 119Sn Mössbauer spectroscopy results show that addition of even small amount of In (0.06 wt.%) leads to the formation of a Pt3Sn alloy. At higher indium loadings, higher amounts of PtxSn alloys of almost equal Pt and Sn atomic concentrations were detected. The increasing formation of PtxSn alloys with higher indium loading is in good correlation with a decrease of catalyst's overall conversion and selectivity to C1 and C3-C4 paraffins and increase of isomerization selectivity.

  14. Synthesis of Pt-Fe alloy on MWCNTs as oxygen reduction electrocatalyst

    Energy Technology Data Exchange (ETDEWEB)

    Morales, D.; Arriaga, L.G. [Centro de Investigacion y Desarrollo Technologico en Electroquimica, Queretaro (Mexico); Alvarez-Contreras, L. [Centro de Investigacion en Materiales Avanzados, Chihuahua (Mexico); Baglio, V.; Arico, A.S. [CNR-ITAE, Messina (Italy); Ornelas, R. [Tozzi Renewable Energy SpA, Mezzano (Italy)

    2008-07-01

    Methanol crossover reduces the efficiency of direct methanol fuel cells (DMFC) as oxygen reduction and methanol oxidation reduction compete on the platinum (Pt) cathode. In this study, highly dispersed Pt and Pt-Fe alloys were placed on multi-walled carbon nanotubes (MWCNTs). The MWCNTs were functionalized by dispersion into concentrated HNO3 and then treated in an ultrasonic bath. An (NH4)2PtCl6 solution was then added, and a sodium (NaBH4) solution was used as a reducing agent. The stirred solution was then filtered, washed and dried at 60 degrees C. Polarization curves for the oxygen reduction reaction (ORR) in an oxygen-saturated sulfuric acid solution at 30 degrees C were presented. The study demonstrated that the enhanced electrocatalytic activity of the Pt-Fe/MWCNTs for the oxygen reduction reaction (ORR) was attributed to the high methanol tolerance of the catalyst. 19 refs., 1 fig.

  15. Supported bimetallic nano-alloys as highly active catalysts for the one-pot tandem synthesis of imines and secondary amines from nitrobenzene and alcohols

    NARCIS (Netherlands)

    Meenakshisundaram, Sankar; He, Qian; Dawson, Simon; Nowicka, Ewa; Lu, Li; Bruijnincx, Pieter C. A.; Beale, Andrew M.; Kiely, Christopher J.; Weckhuysen, Bert M.

    2016-01-01

    The synthesis and functionalization of imines and amines are key steps in the preparation of many fine chemicals and for pharmaceuticals in particular. Traditionally, metal complexes are used as homogeneous catalysts for these organic transformations. Here we report gold-palladium and ruthenium-pall

  16. Etat actuel des recherches fondamentales sur les catalyseurs bimétalliques à base de platine, sur support alumine, comparables à ceux utilisés dans l'industrie pétrolière. Current State of Fundamental Research on Platinum-Base Bimetallic Catalysts on an Alumina Support, Comparable to the Ones Used in the Petroleum Industry

    Directory of Open Access Journals (Sweden)

    Charcosset H.

    2006-11-01

    és promoteurs diminuant l'hydrogénolyse ou (et inhibiteurs par encrassement ; 6 le fait que dans les 158 références de l'article la moitié date de 1976 et après, souligne l'intérêt croissant porté aux recherches fondamentales dans ce domaine. This article mainly concerns the pairs (Pt, Re, (Pt, Ir and (Pt,Ru dealt with in the following order - catalyst preparation (impregnation of the support, reduction by hydrogen ; - characterization of reduced catalysts ; - catalytic activities ; - scale-up tests ta industriel catalysts , - conclusions. Special emphasis is placed on I the difficulty of obtaining data on the degree of reduction which are meaningful concerning the state of the catalyst under normal working conditions, hence the need ta combine several techniques such as DTA, TGA, volumetry, catharometry, ESCA, in-frared spectroscopy, HL thermodesorption and the measuring of catalytic activities ; 21 the dference between the phase diagrams of divided and massed systems ; 3 the usefulness of the hydrogen titration of the unsorbed oxygen ta give evidence for the presence of small pure Mell particles in (Pt, Mell/AI20a catalysts; 4 the dependence of the final state of the catalyst on the activation mode. The pair (Pt, Re con be stabilized in a state of alloy particles having similar superficial and mean composition or in a state of particle mixture of (Pt, Re with an Re content of less than the rated composition and of pure and well dispersed Re. The pairs (Pt, Ir and especially (Pt, Ru are characterized by the difficulty in obtaining on alloy state with a constant composition from one metal particle to another ; 5 variations in catalytic activity due ta the addition of Mell to Pt, reflecting one or several of the following effects a increase in the dispersion of Pt with (or without a change in its intrinsic properties by weak-valence ions of W, Mo, Cr, etc. ; b formation of Mell in a metallic state, eventually producing an alloy with Pt ; c the rote of promoter carbon

  17. Oxygen Reduction on Platinum

    DEFF Research Database (Denmark)

    Nesselberger, Markus

    bands are observed on the Pt/C layer: bands arising from the functional groups of the carbon support, bands related to water and hydronium, and bands related to the sulfur anion interaction with the catalyst. The correlation of the anion absorption to the ORR current leads to the proposition that anion...

  18. Design of colloidal Pt catalysts encapsulated by silica nano membranes for enhanced stability in H2S streams

    NARCIS (Netherlands)

    Calderone, V.R.; Schütz-Widoniak, J.; Bezemer, G.L.; Bakker, G.; Steurs, C.; Philipse, A.P.

    2010-01-01

    Poisoning of platinum catalysts by sulphur compounds is a significant problem that prevents their application in untreated gas streams. We introduce a novel concept to circumvent the poisoning problem by encapsulating individual platinum nano-particles with silica layers that act as selective membra

  19. CO methanation over supported bimetallic Ni-Fe catalysts: From computational studies towards catalyst optimization

    DEFF Research Database (Denmark)

    Kustov, Arkadii; Frey, Anne Mette; Larsen, Kasper Emil

    2007-01-01

    DFT calculations combined with a computational screening method have previously shown that bimetallic Ni-Fe alloys should be more active than the traditional Ni-based catalyst for CO methanation. That was confirmed experimentally for a number of bimetallic Ni-Fe catalysts supported on MgAl2O4. He...

  20. Off-gas catalyst. Abgaskatalysator

    Energy Technology Data Exchange (ETDEWEB)

    Saris, L.; Kloeck, H.

    1987-02-19

    The invention deals with a waste gas catalyst with a thermo-resistant SiO{sub 2} and Al{sub 2}O{sub 3} containing carrier of snarled ceramic fibres which form between themselves the flow paths for the waste gas to be purified and which are coated with platinum, palladium and/or rhodium. The ceramic fibres forming the carrier consist of SiO{sub 2} and Al{sub 2}O{sub 3} and have a diameter of 1 to 10 {mu}m. (orig./RB).

  1. Ternary Pt9RhFex Nanoscale Alloys as Highly Efficient Catalysts with Enhanced Activity and Excellent CO-Poisoning Tolerance for Ethanol Oxidation.

    Science.gov (United States)

    Wang, Peng; Yin, Shibin; Wen, Ying; Tian, Zhiqun; Wang, Ningzhang; Key, Julian; Wang, Shuangbao; Shen, Pei Kang

    2017-03-22

    To address the problems of high cost and poor stability of anode catalysts in direct ethanol fuel cells (DEFCs), ternary nanoparticles Pt9RhFex (x = 1, 3, 5, 7, and 9) supported on carbon powders (XC-72R) have been synthesized via a facile method involving reduction by sodium borohydride followed by thermal annealing in N2 at ambient pressure. The catalysts are physically characterized by X-ray diffraction, scanning transmission electron microscopy, and X-ray photoelectron spectroscopy, and their catalytic performance for the ethanol oxidation reaction (EOR) is evaluated by cyclic and linear scan voltammetry, CO-stripping voltammograms, and chronopotentiometry. All the Pt9RhFex/C catalysts of different atomic ratios produce high EOR catalytic activity. The catalyst of atomic ratio composition 9:1:3 (Pt/Rh/Fe) has the highest activity and excellent CO-poisoning tolerance. Moreover, the enhanced EOR catalytic activity on Pt9RhFe3/C when compared to Pt9Rh/C, Pt3Fe/C, and Pt/C clearly demonstrates the presence of Fe improves catalytic performance. Notably, the onset potential for CO oxidation on Pt9RhFe3/C (0.271 V) is ∼55, 75, and 191 mV more negative than on Pt9Rh/C (0.326 V), Pt3Fe/C (0.346 V), and Pt/C (0.462 V), respectively, which implies the presence of Fe atoms dramatically improves CO-poisoning tolerance. Meanwhile, compared to the commercial PtRu/C catalyst, the peak potential on Pt9RhFe3/C for CO oxidation was just slightly changed after several thousand cycles, which shows high stability against the potential cycling. The possible mechanism by which Fe and Rh atoms facilitate the observed enhanced performance is also considered herein, and we conclude Pt9RhFe3/C offers a promising anode catalyst for direct ethanol fuel cells.

  2. Catalysis on oriented ultrathin films of platinum on Al/sub 2/O/sub 3/

    Energy Technology Data Exchange (ETDEWEB)

    Glassl, H.; Hayek, K.

    1982-03-26

    The selectivity of the hydrogenolysis of methylcyclopentane on model thin film catalysts was investigated and the morphology of the particles was checked in parallel by transmission electron microscopy and transmission electron diffraction. The catalysts were island-stage platinum films of defined orientation obtained by evaporating platinum onto (100)- and (111)-oriented NaCl substrates, backing with Al/sub 2/O/sub 3/ and dissolving the substrate. The catalysts were quite inactive as long as the single-crystal surface was unchanged, and any increase in activity was accompanied by a change in morphology. The results are compared with those obtained on non-oriented films as well as on bulk single-crystal surfaces.

  3. Quasi-homogeneous hydrogenation with platinum and palladium nanoparticles stabilized by dendritic core-multishell architectures.

    Science.gov (United States)

    Schwarze, Michael; Keilitz, Juliane; Nowag, Sabrina; Parapat, Riny Y; Haag, Rainer; Schomäcker, Reinhard

    2011-05-17

    Platinum and palladium nanoparticles, supported and stabilized by polymeric core-shell architectures, proved to be active catalysts for hydrogenation reactions. Here, two different reactions were used as probes to investigate the influence of the polymeric support: the hydrogenation of α-methyl styrene (AMS) to cumene and the partial hydrogenation of 1,5-cyclooctadiene (COD). We found that the stability of the nanoparticles and the rate of reaction are higher in the presence of a hydrophobic octadecyl shell within a three-shell polymer system. The kinetic study of AMS hydrogenation showed much higher activities for palladium nanoparticles than for platinum nanoparticles, and the obtained results (e.g., 35 kJ/mol for the activation energy) are of the same order of magnitude as reported earlier for palladium supported on alumina. A methanol/n-heptane biphasic mixture was tested for catalyst recycling and allowed for highly efficient catalyst separation with very low metal leaching.

  4. Scalable Nanoporous (Pt1-xNix)3Al Intermetallic Compounds as Highly Active and Stable Catalysts for Oxygen Electroreduction.

    Science.gov (United States)

    Han, Gao-Feng; Gu, Lin; Lang, Xing-You; Xiao, Bei-Bei; Yang, Zhen-Zhong; Wen, Zi; Jiang, Qing

    2016-12-07

    Author: Bimetallic platinum-nickel (Pt-Ni) alloys as oxygen reduction reaction (ORR) electrocatalysts show genuine potential to boost widespread use of low-temperature fuel cells in vehicles by virtue of their high catalytic activity. However, their practical implementation encounters primary challenges in structural and catalytic durability caused by the low formation heat of Pt-Ni alloys. Here, we report nanoporous (NP) (Pt1-xNix)3Al intermetallic nanoparticles as oxygen electroreduction catalyst NP (Pt1-xNix)3Al, which circumvents this problem by making use of the extraordinarily negative formation heats of Pt-Al and Ni-Al bonds. The NP (Pt1-xNix)3Al nanocatalyst, which is mass-produced by alloying/dealloying and mechanical crushing technologies, exhibits specific activity of 3.6 mA cm(-2)Pt and mass activity of 2.4 A mg(-1)Pt at 0.90 V as a result of both ligand and compressive strain effects, while strong Ni-Al and Pt-Al bonds ensure their exceptional durability by alleviating evolution of Pt, Ni, and Al components and dissolutions of Ni and Al atoms.

  5. Highly trifluoromethylated platinum compounds.

    Science.gov (United States)

    Martínez-Salvador, Sonia; Forniés, Juan; Martín, Antonio; Menjón, Babil

    2011-07-11

    The homoleptic, square-planar organoplatinum(II) compound [NBu(4)](2) [Pt(CF(3))(4)] (1) undergoes oxidative addition of CF(3) I under mild conditions to give rise to the octahedral organoplatinum(IV) complex [NBu(4)](2) [Pt(CF(3))(5)I] (2). This highly trifluoromethylated species reacts with Ag(+) salts of weakly coordinating anions in Me(2)CO under a wet-air stream to afford the aquo derivative [NBu(4)][Pt(CF(3))(5) (OH(2))] (4) in around 75% yield. When the reaction of 2 with the same Ag(+) salts is carried out in MeCN, the solvento compound [NBu(4) ][Pt(CF(3))(5)(NCMe)] (5) is obtained in around 80% yield. The aquo ligand in 4 as well as the MeCN ligand in 5 are labile and can be cleanly replaced by neutral and anionic ligands to furnish a series of pentakis(trifluoromethyl)platinate(IV) compounds with formulae [NBu(4)][Pt(CF(3))(5) (L)] (L=CO (6), pyridine (py; 7), tetrahydrothiophene (tht; 8)) and [NBu(4)](2) [Pt(CF(3))(5)X] (X=Cl (9), Br (10)). The unusual carbonyl-platinum(IV) derivative [NBu(4)][Pt(CF(3))(5) (CO)] (6) is thermally stable and has a ν(CO) of 2194 cm(-1). The crystal structures of 2⋅CH(2)Cl(2), 5, [PPh(4) ][Pt(CF(3))(5)(CO)] (6'), and 7 have been established by X-ray diffraction methods. Compound 2 has shown itself to be a convenient entry to the chemistry of highly trifluoromethylated platinum compounds. To the best of our knowledge, compounds 2 and 4-10 are the organoelement compounds with the highest CF(3) content to have been isolated and adequately characterized to date.

  6. Surface engineering of hierarchical platinum-cobalt nanowires for efficient electrocatalysis

    Science.gov (United States)

    Bu, Lingzheng; Guo, Shaojun; Zhang, Xu; Shen, Xuan; Su, Dong; Lu, Gang; Zhu, Xing; Yao, Jianlin; Guo, Jun; Huang, Xiaoqing

    2016-06-01

    Despite intense research in past decades, the lack of high-performance catalysts for fuel cell reactions remains a challenge in realizing fuel cell technologies for transportation applications. Here we report a facile strategy for synthesizing hierarchical platinum-cobalt nanowires with high-index, platinum-rich facets and ordered intermetallic structure. These structural features enable unprecedented performance for the oxygen reduction and alcohol oxidation reactions. The specific/mass activities of the platinum-cobalt nanowires for oxygen reduction reaction are 39.6/33.7 times higher than commercial Pt/C catalyst, respectively. Density functional theory simulations reveal that the active threefold hollow sites on the platinum-rich high-index facets provide an additional factor in enhancing oxygen reduction reaction activities. The nanowires are stable in the electrochemical conditions and also thermally stable. This work may represent a key step towards scalable production of high-performance platinum-based nanowires for applications in catalysis and energy conversion.

  7. Understanding platinum-induced ototoxicity.

    Science.gov (United States)

    Langer, Thorsten; am Zehnhoff-Dinnesen, Antoinette; Radtke, Susanne; Meitert, Johannes; Zolk, Oliver

    2013-08-01

    Childhood cancer survival rates are now nearly 80% in more developed European countries because of improved therapies and better supportive care. Platinum chemotherapy drugs, such as cisplatin and carboplatin, are the cornerstone of many effective therapeutic protocols for childhood cancer. However, the antitumor efficacy of cisplatin and carboplatin comes at the cost of ototoxicity, which affects at least 60% of pediatric patients. Although ototoxicity is not life threatening, it can have debilitating effects on patients' quality of life. Recently, many initiatives have been launched with the ultimate goal of reducing cisplatin and high-dose carboplatin ototoxicity without compromising antitumor efficacy. This review addresses the incidence of platinum ototoxicity and its clinical presentation, time course, and early diagnostic evaluation. Genetic and non-genetic risk factors for platinum-associated ototoxicity, and their predictive value, are discussed. Recent developments in the prevention of platinum ototoxicity are also summarized. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Highly sensitive silicon microreactor for catalyst testing

    DEFF Research Database (Denmark)

    Henriksen, Toke Riishøj; Olsen, Jakob Lind; Vesborg, Peter Christian Kjærgaard;

    2009-01-01

    by directing the entire gas flow through the catalyst bed to a mass spectrometer, thus ensuring that nearly all reaction products are present in the analyzed gas flow. Although the device can be employed for testing a wide range of catalysts, the primary aim of the design is to allow characterization of model...... catalysts which can only be obtained in small quantities. Such measurements are of significant fundamental interest but are challenging because of the low surface areas involved. The relationship between the reaction zone gas flow and the pressure in the reaction zone is investigated experimentally......, it is found that platinum catalysts with areas as small as 15 mu m(2) are conveniently characterized with the device. (C) 2009 American Institute of Physics. [doi:10.1063/1.3270191]...

  9. Kinetics of methanol electrooxidation on Pt/C and PtRu/C catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Diaz, V.; Ohanian, M. [Instituto de Ingenieria Quimica, Facultad de Ingenieria, J. Herrera y Reissig 565, Universidad de la Republica, 11300 Montevideo (Uruguay); Zinola, C.F. [Laboratorio de Electroquimica Fundamental, Facultad de Ciencias, Igua 4225, Universidad de la Republica, 11400 Montevideo (Uruguay)

    2010-10-15

    This paper analyzes the performance of platinum and platinum:ruthenium carbon-supported catalysts modified by the application of in-situ cathodic polarizations towards the methanol oxidation reaction. These new electrodes are characterized by electrochemical techniques together with transmission electron microscopy images to envisage the dispersion of the catalyst. We measure methanol electrooxidation current transients, fitting the results with a general kinetic equation for a mixed mass and charge transfer processes for adsorbed reactant species. The kinetic equation also helps to predict the exponent of the chronoamperometric decay as directly related to the fractal dimension of the catalyst surface and to discuss the possible processes involved in the electrocatalytic reaction. (author)

  10. Inorganic nanocarriers for platinum drug delivery

    Directory of Open Access Journals (Sweden)

    Ping’an Ma

    2015-12-01

    Full Text Available Nowadays platinum drugs take up almost 50% of all the clinically used anticancer drugs. Besides cisplatin, novel platinum agents including sterically hindered platinum (II drugs, chemically reductive platinum (IV drugs, photosensitive platinum (IV drugs, and multinuclear platinum drugs have been developed recently, with a few entering clinic trials. Rapid development of nanobiotechnology makes targeted delivery of anticancer platinum agents to the tumor site possible, while simultaneously minimizing toxicity and maximizing the drug efficacy. Being versatile drug carriers to deliver platinum drugs, inorganic nanovehicles such as gold nanoparticles, iron oxide nanomaterials, carbon nanotubes, mesoporous nanosilica, metal-organic frameworks (MOFs, have been extensively studied over the past decades. In contrast to conventional polymeric and lipid nanoparticles, inorganic nanoparticles based drug carriers are peculiar as they have shown excellent theranostic effects, revealing themselves an indispensable part of future nanomedicine. Here, we will elaborate recent research advances on fabrication of inorganic nanoparticles for platinum drug delivery.

  11. Electrochemical Characteristics of LaNi4.5Al0.5 Alloy Used as Anodic Catalyst in a Direct Borohydride Fuel Cell

    Institute of Scientific and Technical Information of China (English)

    Lianbang Wang; Guobin Wu; Zhenzhen Yang; Yunfang Gao; Xinbiao Mao; Chun'an Ma

    2011-01-01

    Fuel cells using borohydride as the fuel have received much attention because of high energy density and theoretical working potential. In this work, LaNi4.5Al0.5 hydrogen storage alloy used as the anodic material has been investigated. It was found that the increasing; operation temperature was helpful to the open-circuit potential, the discharge potential and the power density, but showed a negative effect on the utilization of the fuel due to the accelerated hydrogen evolution. The high KOH concentration was favorable for high-rate discharge capability. The adsorption and transformation of hydrogen on LaNi4.5Al0.5 alloy electrode has been observed, but its contribution to the discharge capability during a high-rate discharge was small.

  12. Highly active carbon supported Pd cathode catalysts for direct formic acid fuel cells

    Science.gov (United States)

    Mikolajczuk-Zychora, A.; Borodzinski, A.; Kedzierzawski, P.; Mierzwa, B.; Mazurkiewicz-Pawlicka, M.; Stobinski, L.; Ciecierska, E.; Zimoch, A.; Opałło, M.

    2016-12-01

    One of the drawbacks of low-temperature fuel cells is high price of platinum-based catalysts used for the electroreduction of oxygen at the cathode of the fuel cell. The aim of this work is to develop the palladium catalyst that will replace commonly used platinum cathode catalysts. A series of palladium catalysts for oxygen reduction reaction (ORR) were prepared and tested on the cathode of Direct Formic Acid Fuel Cell (DFAFC). Palladium nanoparticles were deposited on the carbon black (Vulcan) and on multiwall carbon nanotubes (MWCNTs) surface by reduction of palladium(II) acetate dissolved in ethanol. Hydrazine was used as a reducing agent. The effect of functionalization of the carbon supports on the catalysts physicochemical properties and the ORR catalytic activity on the cathode of DFAFC was studied. The supports were functionalized by treatment in nitric acid for 4 h at 80 °C. The structure of the prepared catalysts has been characterized by thermogravimetric analysis (TGA), X-ray diffraction (XRD), transmission electron microscope (TEM) and cyclic voltammetry (CV). Hydrophilicity of the catalytic layers was determined by measuring contact angles of water droplets. The performance of the prepared catalysts has been compared with that of the commercial 20 wt.% Pt/C (Premetek) catalyst. The maximum power density obtained for the best palladium catalyst, deposited on the surface of functionalized carbon black, is the same as that for the commercial Pt/C (Premetek). Palladium is cheaper than platinum, therefore the developed cathode catalyst is promising for future applications.

  13. ORR viability of alumina-supported platinum nanocluster: exploring oxidation behaviour by DFT.

    Science.gov (United States)

    Nigam, Sandeep; Majumder, Chiranjib

    2017-07-26

    While alumina-supported platinum particles are versatile for several oxidation reactions, their viability as ORR catalysts has not been explored to date. Therefore, to assess the prospects of alumina-supported platinum nanoclusters in ORRs, a systematic DFT study has been carried out to explore the oxidation behavior of a Ptn@Al2O3 (n = 1-7, 10) cluster. The results are compared with the oxidation behavior of the corresponding gas phase platinum cluster and that of an extended Pt(111) slab. Both supported and unsupported clusters activate adsorbed oxygen molecules and energetically favor dissociative chemisorption of oxygen, leading to stable oxide formation with Pt-O-Pt linkages. However, the influence of the alumina substrate downshifts the d-band centre of the platinum cluster, which not only reduces the reaction enthalpy of oxidation by 8-10%, but also elongates the Pt-O bond of the oxide product by 3-8%. These observations indicate that removal of oxide will be relatively easier for supported clusters than for unsupported clusters. Cluster binding is found to sustain during oxidation, as oxidation of the platinum host cluster results in reduction of the distance between the cluster and support surface. While the gas phase Pt10 cluster does not show any similarity to the oxidation behavior shown by THE Pt(111) slab, the Pt10@Al2O3 cluster reveals close resemblance. Both the Pt(111) slab and Pt10@Al2O3 cluster form similar oxide products, having tri-coordinated oxygen with comparable Pt-O bond distances. The observed resemblance has been attributed to the similarity in the electronic structure and d-band centre position of the platinum surface and alumina-supported Pt10 cluster. Whilst this similar oxidation behaviour of the Pt10@Al2O3 cluster endorses its viability as an ORR catalyst, further modulation of this catalyst is desirable to improve its potential.

  14. Homogeneous catalysts

    CERN Document Server

    Chadwick, John C; Freixa, Zoraida; van Leeuwen, Piet W N M

    2011-01-01

    This first book to illuminate this important aspect of chemical synthesis improves the lifetime of catalysts, thus reducing material and saving energy, costs and waste.The international panel of expert authors describes the studies that have been conducted concerning the way homogeneous catalysts decompose, and the differences between homogeneous and heterogeneous catalysts. The result is a ready reference for organic, catalytic, polymer and complex chemists, as well as those working in industry and with/on organometallics.

  15. Microwave synthesis of polymer-embedded Pt-Ru catalyst for direct methanol fuel cell.

    Science.gov (United States)

    Bensebaa, Farid; Farah, Abdiaziz A; Wang, Dashan; Bock, Christina; Du, Xiaomei; Kung, Judy; Le Page, Yvon

    2005-08-18

    Platinum-ruthenium nanoparticles stabilized within a conductive polymer matrix are prepared using microwave heating. Polypyrrole di(2-ethylhexyl) sulfosuccinate, or PPyDEHS, has been chosen for its known electrical conductivity, thermal stability, and solubility in polar organic solvents. A scalable and quick two-step process is proposed to fabricate alloyed nanoparticles dispersed in PPyDEHS. First a mixture of PPyDEHS and metallic precursors is heated in a microwave under reflux conditions. Then the nanoparticles are extracted by centrifugation. Physical characterization by TEM shows that crystalline and monodisperse alloyed nanoparticles with an average size of 2.8 nm are obtained. Diffraction data show that crystallite size is around 2.0 nm. Methanol electro-oxidation data allow us to propose these novel materials as potential candidates for direct methanol fuel cells (DMFC) application. The observed decrease in sulfur content in the polymer upon incorporation of PtRu nanoparticles may have adversely affected the measured catalytic activity by decreasing the conductivity of PPyDEHS. Higher concentration of polymer leads to lower catalyst activity. Design and synthesis of novel conductive polymers is needed at this point to enhance the catalytic properties of these hybrid materials.

  16. SYNTHESIS AND CATALYTIC BEHAVIOR OF POLYSILOXANE-SUPPORTED FULLERENE PLATINUM OR RHODIUM COMPLEXES

    Institute of Scientific and Technical Information of China (English)

    Peng-fei Fang; Yuan-yin Chen; Shu-ling Gong; Lei Guo; Qiu-sheng Lu; Ling Zhu

    1999-01-01

    Two polysiloxanes with pendant fullerene moieties and their platinum or rhodium complexes have been prepared from C60 via amination with ω-decenylamine, followed by hydrosilylation with triethoxysilane and immobilization on fumed silica or by hydrosilylation with methyldichlorosilane and polycondensation with polydimethylsiloxanol, and then by reacting them with potassium chloroplatinite or rhodium chloride in acetone respectively under argon atmosphere. It was found that the four noble metal complexes are effective catalysts for the hydrosilylation of olefins with triethoxysilane. The regioselectivity of platinum complexes for styrene increases remarkably by introducing C60 moiety. Factors influencing catalytic activity and the mechanism have been investigated.

  17. Stimulated-healing of proton exchange membrane fuel cell catalyst

    NARCIS (Netherlands)

    Latsuzbaia, R.; Negro, E.; Koper, G.J.M.

    2013-01-01

    Platinum nanoparticles, which are used as catalysts in Proton Exchange Membrane Fuel Cells (PEMFC), tend to degrade after long-term operation. We discriminate the following mechanisms of the degradation: poisoning, migration and coalescence, dissolution, and electrochemical Ostwald ripening. There a

  18. Innovative use of platinum compounds to selectively detect live microorganisms by polymerase chain reaction.

    Science.gov (United States)

    Soejima, Takashi; Minami, Jun-Ichi; Xiao, Jin-Zhong; Abe, Fumiaki

    2016-02-01

    PCR cannot distinguish live microorganisms from dead ones. To circumvent this disadvantage, ethidium/propidium-monoazide (EMA/PMA) and psoralen to discriminate live from dead bacteria have been used for 2 decades. These methods require the use of numerous laborious procedures. We introduce an innovative method that uses platinum compounds, which are primarily used as catalysts in organic chemistry and partly used as anti-cancer drugs. Microorganisms are briefly exposed to platinum compounds in vivo, and these compounds penetrate dead (compromised) microorganisms but not live ones and are chelated by chromosomal DNA. The use of platinum compounds permits clear discrimination between live and dead microorganisms in water and milk (including Cronobacter sakazakii and Escherichia coli) via PCR compared with typically used PMA. This platinum-PCR method could enable the specific detection of viable coliforms in milk at a concentration of 5-10 CFU mL(-1) specified by EU/USA regulations after a 4-h process. For sample components, environmental water contains lower levels of PCR inhibitors than milk does, and milk is similar to infant formula, skim milk and blood; thus, the use of the platinum-PCR method could also prevent food poisoning due to the presence of C. sakazakii in dairy products. This method could provide outstanding rapidity for use in environmental/food/clinical tests. Platinum-PCR could also be a substitute for the typical culture-based methods currently used.

  19. Synthesis and characterization of supported Pt and Pt alloys nanoparticles used for the catalytic oxidation of sulfur dioxide

    DEFF Research Database (Denmark)

    Koutsopoulos, Sotiris; Eriksen, Kim Michael; Fehrmann, Rasmus

    2006-01-01

    Controlled pore glass silica (CPG) was used as support to prepare platinum-based catalysts using the wet impregnation method and DMSO or CHCl3 as solvent. In all cases, the catalyst loading with the active phase was 2 wt%. The catalysts were tested for the SO2 oxidation reaction at atmospheric...

  20. Aligned carbon nanotube-Pt composite fuel cell catalyst by template electrodeposition

    Energy Technology Data Exchange (ETDEWEB)

    Nagle, Lorraine C.; Rohan, James F. [Tyndall National Institute, University College Cork, Lee Maltings, Prospect Row, Cork (Ireland)

    2008-10-15

    Solution phase deposition of aligned arrays of carbon nanotubes (CNTs) in a platinum (Pt) matrix composite is demonstrated. The catalyst material is electrodeposited in an oriented manner on the nanoscale using anodised aluminium oxide (AAO) templates. The catalyst performance of the composite for the oxidation of methanol is shown. The carbon monoxide (CO) tolerance is increased and the catalyst function is improved by minimising the influence of adsorbed CO on the kinetics of the methanol oxidation reaction. (author)

  1. Rhenium Nanochemistry for Catalyst Preparation

    Directory of Open Access Journals (Sweden)

    Vadim G. Kessler

    2012-08-01

    Full Text Available The review presents synthetic approaches to modern rhenium-based catalysts. Creation of an active center is considered as a process of obtaining a nanoparticle or a molecule, immobilized within a matrix of the substrate. Selective chemical routes to preparation of particles of rhenium alloys, rhenium oxides and the molecules of alkyltrioxorhenium, and their insertion into porous structure of zeolites, ordered mesoporous MCM matrices, anodic mesoporous alumina, and porous transition metal oxides are considered. Structure-property relationships are traced for these catalysts in relation to such processes as alkylation and isomerization, olefin metathesis, selective oxidation of olefins, methanol to formaldehyde conversion, etc.

  2. Electrocatalytic activity of platinum nanoparticles supported on nanosilicon

    Energy Technology Data Exchange (ETDEWEB)

    Miu, M.; Kleps, I.; Danila, M.; Ignat, T.; Simion, M.; Bragaru, A.; Dinescu, A. [Laboratory of Nanotechnology, National Institute for Research and Development in Microtechnologies, Bucharest (Romania)

    2010-04-15

    Platinum (Pt) nanocatalysts were deposited on/inside of nanostructured silicon (nanoSi) matrix using physico-chemical methods, i.e. E-beam high vacuum Pt thin film and, respectively, chemically loaded Pt nanoparticles from hexachloroplatinic acid aqueous or alcoholic precursor solutions. High resolution morphological characterisations, completed by microstructural and compositional analyses have been performed to characterise the nanoSi catalyst support and to investigate the Pt thin film nanostructuration as well as the nanoparticle attachment and clustering processes, evidencing the controlling factors and conditions of the size, morphology and distribution. Furthermore, the experimental structures have been subjected to different electrochemical tests and it was revealed that significant improvement of the long term catalyst stability was achieved when the metal-porous Si nanoassemblies is formed, which represents a step closer to the realisation of the monolithic integrated Si-based microfabricated fuel cell. (Abstract Copyright [2010], Wiley Periodicals, Inc.)

  3. Green Synthesis, Characterization and Uses of Palladium/Platinum Nanoparticles

    Science.gov (United States)

    Siddiqi, Khwaja Salahuddin; Husen, Azamal

    2016-11-01

    Biogenic synthesis of palladium (Pd) and platinum (Pt) nanoparticles from plants and microbes has captured the attention of many researchers because it is economical, sustainable and eco-friendly. Plant and their parts are known to have various kinds of primary and secondary metabolites which reduce the metal salts to metal nanoparticles. Shape, size and stability of Pd and Pt nanoparticles are influenced by pH, temperature, incubation time and concentrations of plant extract and that of the metal salt. Pd and Pt nanoparticles are broadly used as catalyst, as drug, drug carrier and in cancer treatment. They have shown size- and shape-dependent specific and selective therapeutic properties. In this review, we have discussed the biogenic fabrication of Pd/Pt nanoparticles, their potential application as catalyst, medicine, biosensor, medical diagnostic and pharmaceuticals.

  4. Electrocatalysts with platinum, cobalt and nickel preparations by mechanical alloyed and CVD for the reaction of oxygen reduction; Electrocatalizadores a base de platino, cobalto y niquel preparados por aleado mecanico y CVD para la reaccion de reduccion de oxigeno

    Energy Technology Data Exchange (ETDEWEB)

    Garcia C, M. A. [ININ, 52750 La Marquesa, Estado de Mexico (Mexico)

    2008-07-01

    In this research, the molecular oxygen reduction reaction (ORR) was investigated on electrocatalysts of Co, Ni, Pt and their alloys CoNi, PtCo, PtNi and PtCoNi by using H{sub 2}SO{sub 4} 0.5 and KOH 0.5 M solutions as electrolytes. The electrocatalysts were synthesized by Mechanical Alloying (MA) and Chemical Vapor Deposition (CVD) processes. For MA, metallic powders were processed during 20 h of milling in a high energy SPEX 8000 mill. For CVD, a hot-wall reactor was utilized and Co, Ni and Pt acetilactetonates were used as precursors. Films were deposited at a total pressure of 1 torr and temperatures of 400-450 C. Electrocatalysts were characterized by X-Ray Diffraction (XRD). Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM) and Energy Dispersive X-Ray Spectroscopy (EDS). Electrocatalysts prepared by mechanical alloying showed a homogeneously dispersed agglomeration of particles with nano metric size. Electrocatalysts obtained by CVD showed, in some cases, non uniform films, with particles of nano metric size, as well. The electrocatalytic performance was evaluated by using the Rotating Disk Electrode technique (RDE). Electrocatalysts prepared by MA showed higher activity than those obtained by CVD. All electrocatalysts were evaluated in alkaline media. Only electrocatalysts containing Pt were evaluated in acid media, because those materials with Co, Ni and their alloys showed instability in acidic media. Most electrocatalysts followed a mechanism for the ORR producing a certain proportion of H{sub 2}O{sub 2}. All electrocatalysts, exhibited a fair or good electrocatalytic activity in comparison with other similar reported materials. It was found that MA and CVD are appropriate processes to prepare electrocatalysts for the ORR with particles of nano metric size and performing with an acceptable catalytic activity. PtCoNi 70-23-7% by MA and PtCoNi-CVD electrocatalysts showed the highest activity in alkaline media, while in acidic

  5. Fabrication of iron-platinum ferromagnetic nanoparticles

    Science.gov (United States)

    Elkins, Kevin Eugene

    Fabrication of chemically disordered FePt particles ranging from 2--9 nm with a precision of 1 nm has been achieved through modification of key process variables including surfactant concentration, heating rates and the type of iron precursor. In addition, the shape evolution of the FePt nanoparticles during particle growth can be manipulated to give cubic or rod geometries through changes to the surfactant injection sequence and solvent system. The primary method for synthesis of the disordered FePt nanoparticles is the polyol reduction reported by Fievet et al., which has been modified and used extensively for synthesis of differing nanoparticle systems. Our procedures use platinum acetylacetonate, iron pentacarbonyl or ferric acetylacetonate as precursors for the FePt alloy, oleic acid and oleyl amine for the surfactants, 1,2-hexadecanediol to assist with the reduction of the precursors and either dioctyl ether or phenyl ether for the solvent system. For iron pentacarbonyl based reactions, adjustment of heating rates to reflux temperatures from 1--15°C per minute allows control of FePt particle diameters from 3--8 nm. Substitution of iron pentacarbonyl with ferric acetylacetonate as the iron source results in 2 nm particles. A high platinum to surfactant ratio of 10 to 1 will yield 9 nm FePt particles when iron pentacarbonyl is used as the precursor. For use of these particles in advanced applications, the synthesized particles must be transformed to the L1o phase through annealing at temperatures above 500°C. Inhibition of particle sintering can be avoided through dispersion in a NaCl matrix at a weight ratio of 400 to 1 salt to fcc FePt particles. Production of L1o FePt nanoparticles with high magnetic anisotropy with this process has been successful, allowing the original size and size distribution of the particles.

  6. Cross-reactivity of Halogenated Platinum Salts

    Science.gov (United States)

    Halogenated platinum (Pt) salts are well-known respiratory sensitizers associated with the development of asthma. People may be exposed to a variety of platinum compounds in different contexts (e.g. occupationally, automobile exhaust). Published reports suggest that sensitizati...

  7. Pd and PdCo alloy nanoparticles supported on polypropylenimine dendrimer-grafted graphene: A highly efficient anodic catalyst for direct formic acid fuel cells

    Science.gov (United States)

    Hosseini, Hadi; Mahyari, Mojtaba; Bagheri, Akbar; Shaabani, Ahmad

    2014-02-01

    For the first time, Pd and PdCo alloy nanoparticles supported on polypropylenimine dendrimer-grafted graphene (Pd and PdCo/PPI-g-G) are prepared and characterized with Fourier transform infrared spectroscopy (FTIR), nuclear magnetic resonance spectroscopy (NMR), thermogravimetric analysis (TGA), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and transmission electron microscopy (TEM). The electrocatalytic activity of Pd and PdCo/PPI-g-G are investigated in terms of formic acid electrooxidation in H2SO4 aqueous solution. The PdCo/PPI-g-G shows much higher formic acid oxidation activities in comparison with Pd/PPI-g-G, and it is more resistant to the surface poisoning. This improved electrocatalytic performance may be due to the fine dispersion of PdCo alloy nanoparticles and bi-functional effect. The kinetic parameters such as charge transfer coefficient and the diffusion coefficient of formic acid are estimated under the quasi steady-state conditions.

  8. Optoelectronic method for determining platinum in biological products

    Science.gov (United States)

    Radu, Simona; Ionicǎ, Mihai; Macovei, Radu Alexandru; Caragea, Genica; Forje, Mǎrgǎrita; Grecu, Iulia; Vlǎdescu, Marian; Viscol, Oana

    2016-12-01

    Of all platinum metals, platinum has the most uses and it's the most abundant and most easily to be processed. Its use in auto catalysts results in environmental contamination of crowded cities and high-traffic roads. In medicine, Pt is used as a cytostatic drug. In order to study the degree of contamination of the population with Pt or the correctness of treatment with Pt, it has been developed a method for its determination from urine or blood samples with a system Graphite Furnance - Atomic Absorption Spectrometer, (GF-AAS) Varian. There are presented the methods of sampling processing for blood or urine that followed the digest of the organic matrix. In the determination of the operating parameters for the system GF-AAS, was aimed the reducing of the nonanatomic absorbance by optimizing the drying temperatures, the calcination and atomization temperatures and the removal of the nonanatomic absorbance with D2 lamp. As a result of the use of the method are presented the concentrations of Pt in the blood or urine of a group of patients in Bucharest, a city with heavy traffic of vehicles. GF-AAS method presented is sensitive, reproducible, and relatively easy to apply with an acceptable cost. With this method, the concentration of Pt can be determined from blood and urine, both in order to establish the degree of contamination with Pt and for monitoring cancer therapy with platinum compounds.

  9. Synthesis and Characterization of Bimetallic Core-Shell-Supported Platinum Monolayer Electrocatalysts for the Oxygen Reduction Reaction

    Science.gov (United States)

    Kuttiyiel, Kurian Abraham

    Fuel cells are expected to be one of the major clean energy sources in the near future. However, the slow kinetics of electrocatalytic oxygen reduction reaction (ORR) and the high loading of Platinum (Pt) for the cathode material are the urgent issues to be addressed since they determine the efficiency and the cost of this energy source. In this study, a new approach was developed for designing electrocatalysts for the ORR in fuel cells. These electrocatalysts consist of only one Pt monolayer on suitable carbon-supported Iridium-Nickel (IrNi) core-shell nanoparticles. The synthesis involved depositing a monolayer of Copper (Cu) on IrNi metal alloy surface at under-potentials, followed by galvanic displacement of the Cu monolayer with Pt. It was found that the electronic properties of Pt monolayer could be fine-tuned by the electronic and geometric effects introduced by the substrate metal. The Pt mass activity of the new Pt monolayer IrNi electrocatalysts was up to six times higher than the state-of-the-art commercial Pt/C catalysts. The structure and composition of the core-shell nanoparticles were verified using transmission electron microscopy and in situ X-ray absorption spectroscopy, while potential cycling test was employed to confirm the stability of the electrocatalyst. The formation of Ir shell on IrNi alloy during annealing due to thermal segregation was monitored by time-resolved synchrotron XRD measurements. Our experimental results, supported by computations, demonstrated an effective way of using Pt that can resolve key ORR problems which include inadequate activity and durability while minimizing the Pt loading.

  10. Platinum-Catalyzed Selective Hydration of Hindered Nitriles and Nitriles with Acid- or Base-Sensitive Groups

    NARCIS (Netherlands)

    Jiang, Xiao-bin; Minnaard, Adriaan J.; Vries, Johannes G. de; Feringa, Bernard

    2004-01-01

    Hindered tertiary nitriles can be hydrolyzed under neutral and mild conditions to the corresponding amides using platinum(II) catalysts with dimethylphosphine oxide or other secondary phosphine oxides (SPOs, phosphinous acids) as ligands. We have found that this procedure also works well for

  11. New Dental Alloys with Special Consumer Properties

    Institute of Scientific and Technical Information of China (English)

    TYKOCHINSKIY D. S.; VASEKIN V. V.

    2012-01-01

    The purpose of the investigation was to create a new gold alloy of yellow for casting the frames of metal-ceramic dentures.The yellow color corresponds to the consumer and aesthetic needs of some patients,because it is a sign of the metal,which is noble and innocuous.The main alloying elements of the majority of gold alloys for metal-ceramics are platinum and palladium,which increase the strength characteristics.Copper,tin,and other precious metals and base metals are also introduced in these alloys.At the same time,it is necessary to ensure the correspondence of the properties of the alloy with those of the ceramics applied onto the metal frame.For this purpose,the thermal expansion coefficient of the alloy (TEC) should be in a range of 13.5~14.5 × 10-6 K-1 when heated from 20 to 600 ℃.The two-component alloys,alloying of gold with platinum and palladium results in a decrease in the TEC,and the introduction of copper,silver,and tin,increases it.Multidirectional influence of the alloying elements is a factor in achieving compliance of the TEC with the given values of the alloy.In multicomponent systems,however,the mutual influence of individual components on the properties of the alloy is unpredictable.This also applies to the color characteristics of the alloys,which vary in the direction of reducing the yellowness with increasing concentration of platinum and palladium,while other elements may have the opposite effect on the results.Yellowness index (YI),calculated according to the results of spectrophotometric studies,has been chosen as an objective indicator of color.In this study,the requirement for YI was given not less than 25; the color of such alloys can be called light yellow.All the alloys investigated contained 85% (by weight)of gold.Therefore,higher corrosion resistance and biological inertness of a finished dental products were ensured.Among the alloys that met the yellowness/TEC requirements,two alloys have been selected that were "most yellow

  12. Dissolution of Metal Supported Spent Auto Catalysts in Acids

    Directory of Open Access Journals (Sweden)

    Fornalczyk A.

    2016-03-01

    Full Text Available Metal supported auto catalysts, have been used in sports and racing cars initially, but nowadays their application systematically increases. In Metal Substrate (supported Converters (MSC, catalytic functions are performed by the Platinum Group Metals (PGM: Pt, Pd, Rh, similarly to the catalysts on ceramic carriers. The contents of these metals make that spent catalytic converters are valuable source of precious metals. All over the world there are many methods for the metals recovery from the ceramic carriers, however, the issue of platinum recovery from metal supported catalysts has not been studied sufficiently yet. The paper presents preliminary results of dissolution of spent automotive catalyst on a metal carrier by means of acids: H2SO4, HCl, HNO3, H3PO4. The main assumption of the research was the dissolution of base metals (Fe, Cr, Al from metallic carrier of catalyst, avoiding dissolution of PGMs. Dissolution was the most effective when concentrated hydrochloric acid, and 2M sulfuric acid (VI was used. It was observed that the dust, remaining after leaching, contained platinum in the level of 0.8% and 0.7%, respectively.

  13. Formic Acid Electrooxidation by a Platinum Nanotubule Array Electrode

    Directory of Open Access Journals (Sweden)

    Eric Broaddus

    2013-01-01

    Full Text Available One-dimensional metallic nanostructures such as nanowires, rods, and tubes have drawn much attention for electrocatalytic applications due to potential advantages that include fewer diffusion impeding interfaces with polymeric binders, more facile pathways for electron transfer, and more effective exposure of active surface sites. 1D nanostructured electrodes have been fabricated using a variety of methods, typically showing improved current response which has been attributed to improved CO tolerance, enhanced surface activity, and/or improved transport characteristics. A template wetting approach was used to fabricate an array of platinum nanotubules which were examined electrochemically with regard to the electrooxidation of formic acid. Arrays of 100 and 200 nm nanotubules were compared to a traditional platinum black catalyst, all of which were found to have similar surface areas. Peak formic acid oxidation current was observed to be highest for the 100 nm nanotubule array, followed by the 200 nm array and the Pt black; however, CO tolerance of all electrodes was similar, as were the onset potentials of the oxidation and reduction peaks. The higher current response was attributed to enhanced mass transfer in the nanotubule electrodes, likely due to a combination of both the more open nanostructure as well as the lack of a polymeric binder in the catalyst layer.

  14. Coating Carbon Fibers With Platinum

    Science.gov (United States)

    Effinger, Michael R.; Duncan, Peter; Coupland, Duncan; Rigali, Mark J.

    2007-01-01

    A process for coating carbon fibers with platinum has been developed. The process may also be adaptable to coating carbon fibers with other noble and refractory metals, including rhenium and iridium. The coated carbon fibers would be used as ingredients of matrix/fiber composite materials that would resist oxidation at high temperatures. The metal coats would contribute to oxidation resistance by keeping atmospheric oxygen away from fibers when cracks form in the matrices. Other processes that have been used to coat carbon fibers with metals have significant disadvantages: Metal-vapor deposition processes yield coats that are nonuniform along both the lengths and the circumferences of the fibers. The electrical resistivities of carbon fibers are too high to be compatible with electrolytic processes. Metal/organic vapor deposition entails the use of expensive starting materials, it may be necessary to use a furnace, and the starting materials and/or materials generated in the process may be hazardous. The present process does not have these disadvantages. It yields uniform, nonporous coats and is relatively inexpensive. The process can be summarized as one of pretreatment followed by electroless deposition. The process consists of the following steps: The surfaces of the fiber are activated by deposition of palladium crystallites from a solution. The surface-activated fibers are immersed in a solution that contains platinum. A reducing agent is used to supply electrons to effect a chemical reduction in situ. The chemical reduction displaces the platinum from the solution. The displaced platinum becomes deposited on the fibers. Each platinum atom that has been deposited acts as a catalytic site for the deposition of another platinum atom. Hence, the deposition process can also be characterized as autocatalytic. The thickness of the deposited metal can be tailored via the duration of immersion and the chemical activity of the solution.

  15. Anodic stripping tin titration: a method for the voltammetric determination of platinum at trace levels.

    Science.gov (United States)

    Giussani, Barbara; Roncoroni, Simone; Nemenyi, Anna; Dal Santo, Vladimiro; Monticelli, Damiano; Recchia, Sandro

    2014-07-01

    We propose here a novel voltammetric method for the determination of platinum at trace levels. The method is based on the interference that platinum generates on the anodic stripping signal of tin acidic solutions: in appropriate conditions platinum uses the intermediate formation of tin(II) ions, taking place during the tin cathodic reduction, to reduce itself and to form mixed Pt(II)-Sn(II) chloro-complexes. From the analysis of the anodic stripping plots obtained after subsequent additions of tin in a Pt-containing solution, it is possible to quantify accurately and precisely the Pt concentration from 3 ppb to more than 10 ppm. This novel method is validated for the analysis of Pt in heterogeneous catalysts, but in principle could be extended to other matrixes.

  16. Formic acid oxidation at platinum-bismuth catalysts

    National Research Council Canada - National Science Library

    Popović Ksenija Đ; Lović Jelena D

    2015-01-01

    ..., activity, and stability. The oxidation of formic acid is of permanent interest as a model reaction for the mechanistic understanding of the electrooxidation of small organic molecules and because of its technical relevance...

  17. Characterizing Carbon Nanotube Supported Platinum Catalyst by Electrochemistry

    DEFF Research Database (Denmark)

    Veltzé, Sune; Andersen, Shuang Ma; Skou, Eivind Morten

    Den metode for hvorved forskellige platinbærende katalysatormaterialebærende kulstofunderlag vil blive testet elektrokemisk beskrives, hvor Elektrokemisk Masse Spektrometri nævnes som en mulighed sammen med mikroskopi....

  18. Durable Catalysts for High Temperature Proton Exchange Membrane Fuel Cells

    DEFF Research Database (Denmark)

    Durability of proton exchange membrane fuel cells (PEMFCs) is recognized as one of the most important issues to be addressed before the commercialization. The failure mechanisms are not well understood, however, degradation of carbon supported noble metal catalysts is identified as a major failure...... corrosion, in turn, triggers the agglomeration of platinum particles resulting in reduction of the active surface area and catalytic activity. This is a major mechanism of the catalyst degradation and a key challenge to the PEMFC long-term durability. High temperature PEMFC, on the other hand, has attached...... the selectivity for platinum loading. Fuel cell durability tests in term of performance degradation were performed with acid doped polybenzimidazole membrane fuel cells at temperatures of up to 160°C. The tests were focused on catalyst degradation by means of a potential cycling protocol. The electrochemical...

  19. Platinum determination in nutrient plants by inductively coupled plasma mass spectrometry with special respect to the hafnium oxide interference

    Energy Technology Data Exchange (ETDEWEB)

    Lustig, S. [GSF-Research Centre for Environment and Health, Inst. for Ecological Chemistry, Neuherberg (Germany); Zang, S.; Michalke, B. [GSF-Research Centre for Environment and Health, Inst. for Ecological Chemistry, Neuherberg (Germany); Schramel, P. [GSF-Research Centre for Environment and Health, Inst. for Ecological Chemistry, Neuherberg (Germany); Beck, W. [Muenchen Univ. (Germany). Inst. for Inorganic Chemistry

    1997-04-01

    Platinum, emitted from automobile exhaust catalysts, is mainly oxidised in a humic soil, as described previously [1]. An experiment with nutrient plants was carried out to elucidate the bioavailability and accumulation of these platinum containing species. The plants [Allium cepa L. (Weiss, Fruehling), Rephanus sativus L. (Riesenbutter), Vicia faba L. (Hedin, Herzfreya), Zea mays L. (Delis) and Solanum tuberosum L. (Selma)] were grown under natural conditions. For mass balances all ways of platinum transport into and out of the system were monitored during the growing period. Plants growing in untreated soil took up less than 1% of the platinum naturally present in the soil [0.15{+-}0.11 {mu}g kg{sup -1} (78%)]. Plants growing in soil treated with a platinum containing tunnel dust took up slightly more platinum. The comparison of ICPquadrupole-MS results with those obtained by a double focusing magnetic sector ICP-MS showed a strong dependence of the platinum concentration on the Hf-content in the sample. An evaluation method for the correction of the Hf-influence for ICP-quadrupole-MS is presented. (orig.). With 1 fig., 3 tabs.

  20. Electrochemical characterization of platinum nanoparticles stabilized by amines

    Energy Technology Data Exchange (ETDEWEB)

    Ramirez-Meneses, E., E-mail: esthervincent@yahoo.co [Centro de Investigacion en Ciencia Aplicada y Tecnologia Avanzada, CICATA-IPN Unidad Altamira, Km 14.5 Carretera Tampico-Puerto Industrial, C.P. 89600 Altamira, Tamaulipas (Mexico); Dominguez-Crespo, M.A. [Centro de Investigacion en Ciencia Aplicada y Tecnologia Avanzada, CICATA-IPN Unidad Altamira, Km 14.5 Carretera Tampico-Puerto Industrial, C.P. 89600 Altamira, Tamaulipas (Mexico); Montiel-Palma, V. [Centro de Investigaciones Quimicas, Universidad Autonoma del Estado de Morelos, Av. Universidad 1001, Colonia Chamilpa, C.P. 62201 Cuernavaca, Morelos (Mexico); Chavez-Herrera, V.H. [Centro de Investigacion en Ciencia Aplicada y Tecnologia Avanzada, CICATA-IPN Unidad Altamira, Km 14.5 Carretera Tampico-Puerto Industrial, C.P. 89600 Altamira, Tamaulipas (Mexico); Gomez, E. [Instituto de Quimica-Universidad Nacional Autonoma de Mexico, Ciudad Universitaria, C.P. 04510 Mexico, D.F. (Mexico); Hernandez-Tapia, G. [Gerencia de Catalizadores y Proceso, Instituto Mexicano del Petroleo, Eje Central Lazaro Cardenas norte 152, 07730 Mexico, D.F. (Mexico)

    2009-08-26

    In this work we present the synthesis by Chaudret approach of Pt nanoparticles stabilized by primary amine (-NH{sub 2}) compounds. Their electrochemical performance as cathodes in low temperature polymer electrolite fuel cells on the oxygen reduction reaction (ORR) is also presented. Transmission electron microscopy (TEM) images of the samples show Pt nanostructures with particle size varying from 10 to 100 nm depending on the kind of the stabilizer used during the catalyst preparation. In some cases well-dispersed isolated platinum nanoparticles were observed. The activity of the dispersed catalysts (Pt/C) with respect to the ORR was investigated using steady state polarization measurements. The kinetic parameters showed that although no significant differences between the Tafel slopes of the Pt catalysts exist, transfer coefficients and exchange current densities show higher activities when the Pt nanoparticles were stabilized by tert-butylamine (TBA). The performance with respect to the ORR of the Pt/C catalyst on vulcan carbon substrate is active and comparable to that reported in the literature for state-of-art electrocatalysts.

  1. Catalysts for complete oxidation of gaseous fuels

    Energy Technology Data Exchange (ETDEWEB)

    Neyestanaki, A.K.

    1995-12-31

    This thesis presents a study on the complete oxidation of propane, natural gas and the conversion of car exhaust gases over two types of catalysts: (a) knitted silica-fibre supported catalysts and (b) metal-modified ZSM zeolite catalysts. A hybrid textile made up of an organic-inorganic hybrid fibre containing 70 % cellulose and 30 % silicic acid was used as the raw material for preparation of the fibre support for combustion catalysts. The hybrid textile was burnt to obtain a knitted silica-fibre. The changes in the surface area, pore volume and the crystallinity of the obtained support were studied as a function of burning temperature. The stability of the support in steam-rich atmospheres was tested. The knitted silica-fibre obtained by burning the hybrid textile at 1223 K was found to have sufficient strength and high BET specific surface area (140 m{sub 2}/g) to be used as a catalyst support. A series of knitted silica-fibre supported metal oxides (oxides of Co, Ni, Mn, Cr and Cu) and combinations of them, platinum-activated metal oxides (Pt-Co{sub 3}O{sub 4}, Pt-NiO, Pt-MnO{sub 2} and Pt-Cr{sub 2}O{sub 3}) as well as noble metal (Pt, Pd) catalysts were prepared. The location of the metal oxides on the catalyst was studied by SEM equipped with EDXA. The metal oxide was found to be located mostly inside the pores rather than on the exterior surface of the silica-fibre. The catalysts were characterized by XRD, N{sub 2}-physisorption, O{sub 2}-TPD and the chemisorption of propane, carbon monoxide and hydrogen. The activity of the catalysts was tested in the combustion of propane, natural gas and in the conversion of automobile exhaust gases. The effect of residence time and stoichiometry on the conversion behaviour of the catalysts was studied

  2. Catalyst mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Masel, Richard I.; Rosen, Brian A.

    2017-02-14

    Catalysts that include at least one catalytically active element and one helper catalyst can be used to increase the rate or lower the overpotential of chemical reactions. The helper catalyst can simultaneously act as a director molecule, suppressing undesired reactions and thus increasing selectivity toward the desired reaction. These catalysts can be useful for a variety of chemical reactions including, in particular, the electrochemical conversion of CO.sub.2 or formic acid. The catalysts can also suppress H.sub.2 evolution, permitting electrochemical cell operation at potentials below RHE. Chemical processes and devices using the catalysts are also disclosed, including processes to produce CO, OH.sup.-, HCO.sup.-, H.sub.2CO, (HCO.sub.2).sup.-, H.sub.2CO.sub.2, CH.sub.3OH, CH.sub.4, C.sub.2H.sub.4, CH.sub.3CH.sub.2OH, CH.sub.3COO.sup.-, CH.sub.3COOH, C.sub.2H.sub.6, O.sub.2, H.sub.2, (COOH).sub.2, or (COO.sup.-).sub.2, and a specific device, namely, a CO.sub.2 sensor.

  3. Photo-oxidation catalysts

    Science.gov (United States)

    Pitts, J. Roland; Liu, Ping; Smith, R. Davis

    2009-07-14

    Photo-oxidation catalysts and methods for cleaning a metal-based catalyst are disclosed. An exemplary catalyst system implementing a photo-oxidation catalyst may comprise a metal-based catalyst, and a photo-oxidation catalyst for cleaning the metal-based catalyst in the presence of light. The exposure to light enables the photo-oxidation catalyst to substantially oxidize absorbed contaminants and reduce accumulation of the contaminants on the metal-based catalyst. Applications are also disclosed.

  4. Membrane-electrode structures for molecular catalysts for use in fuel cells and other electrochemical devices

    Energy Technology Data Exchange (ETDEWEB)

    Kerr, John B.; Zhu, Xiaobing; Hwang, Gi Suk; Martin, Zulima; He, Qinggang; Driscoll, Peter; Weber, Adam; Clark, Kyle

    2016-09-27

    Water soluble catalysts, (M)meso-tetra(N-Methyl-4-Pyridyl)Porphinepentachloride (M=Fe, Co, Mn & Cu), have been incorporated into the polymer binder of oxygen reduction cathodes in membrane electrode assemblies used in PEM fuel cells and found to support encouragingly high current densities. The voltages achieved are low compared to commercial platinum catalysts but entirely consistent with the behavior observed in electroanalytical measurements of the homogeneous catalysts. A model of the dynamics of the electrode action has been developed and validated and this allows the MEA electrodes to be optimized for any chemistry that has been demonstrated in solution. It has been shown that improvements to the performance will come from modifications to the structure of the catalyst combined with optimization of the electrode structure and a well-founded pathway to practical non-platinum group metal catalysts exists.

  5. Extraction and separation studies of platinum(IV) with N-n-octylaniline.

    Science.gov (United States)

    Lokhande, T N; Anuse, M A; Chavan, M B

    1998-11-01

    N-n-octylaniline in xylene is used for the extractive separation of platinum(IV) from acidic media. Platinum(IV) was extracted quantitatively with 10 ml of 3% reagent in xylene from 0.5 to 10 and 2.5 to 10 M hydrochloric and sulphuric acid, respectively. It was stripped from organic phase with water and estimated photometrically with stannous chloride. The effect of metal ion, acids, reagent concentration and of various foreign ions has been investigated. The method affords binary separation of platinum(IV) from iron(III), cobalt(II), nickel(II) and copper(II), and is applicable to the analysis of synthetic mixtures and alloys. The method is fast, accurate and precise.

  6. Enhanced catalytic activity of solid and hollow platinum-cobalt nanoparticles towards reduction of 4-nitrophenol

    Science.gov (United States)

    Krajczewski, Jan; Kołątaj, Karol; Kudelski, Andrzej

    2016-12-01

    Previous investigations of hollow platinum nanoparticles have shown that such nanostructures are more active catalysts than their solid counterparts towards the following electrochemical reactions: reduction of oxygen, evolution of hydrogen, and oxidation of borohydride, methanol and formic acid. In this work we show that synthesised using standard galvanic replacement reaction (with Co templates) hollow platinum nanoparticles exhibit enhanced catalytic activity also towards reduction of 4-nitrophenol by sodium borohydride in water. Unlike in the case of procedures involving hollow platinum catalysts employed so far to carry out this reaction it is not necessary to couple analysed platinum nanoparticles to the surface of an electrode. Simplification of the analyzed reaction may eliminate same experimental errors. We found that the enhanced catalytic activity of hollow Pt nanoparticles is not only connected with generally observed larger surface area of hollow nanostructures, but is also due to the contamination of formed hollow nanostructures with cobalt, from which sacrificial templates used in the synthesis of hollow Pt nanostrustures have been formed. Because using sacrificial templates is a typical method of synthesis of hollow metal nanostructures, formed hollow nanoparticles are probably often contaminated, which may significantly influence their catalytic activity.

  7. Modification of platinum surfaces by spontaneous deposition: Methanol oxidation electrocatalysis

    Energy Technology Data Exchange (ETDEWEB)

    MacDonald, J.P.; Gualtieri, B.; Runga, N.; Teliz, E.; Zinola, C.F. [Fundamental Electrochemistry Laboratory, School of Sciences, Universidad de la Republica, Igua Street No. 4225, CP 11400, Montevideo (Uruguay)

    2008-12-15

    The presence of a second metal on platinum surfaces affects the performance of methanol oxidation. However, most of the electrocatalytic reactions are studied by using electrochemically deposited platinum alloys, but in the case of spontaneous deposition the situation is not so clear since the surface distribution, stability and morphology are usually not well documented. The formation of surface decorated samples on mono- and poly-crystalline platinum is followed by electrochemical and spectroscopic techniques and analysis of their performance towards methanol adsorption and oxidation compared with that on pure platinum. Pt/Sn and Pt/Ru are of special interest because of their well-known performance in methanol fuel cells. Methanol oxidation on Pt(111)/Ru, Pt(111)/Sn and Pt(111) shows that ruthenium is the only one able to promote the reaction since the simultaneous dissolution of tin occurs and competes with the process of interest. The in situ infrared spectroscopy is used to compare methanol oxidation on Pt(111)/Ru and Pt(111) in acid media using p-polarized light. The formation of bridge bound carbon monoxide is inhibited in the presence of ruthenium ad-species, whereas on Pt(111) the three adsorption configurations are observed. Linear sweep polarization curves and Tafel slopes (calculated from steady state potentiostatic plots) for methanol oxidation are compared on polycrystalline surfaces modified by tin or ruthenium at different coverages. There is almost no change in the Tafel slopes due to the presence of the foreign metal except for Pt/Ru, where a 0.09 V decade{sup -1} slope was calculated below 0.55 V due to hydroxyl adsorbates on ruthenium islands. The anodic stripping of methanol residues on the three surfaces indicates a lower amount of carbon monoxide-type adsorbates on Pt/Ru, and the simultaneous tin dissolution process leading to residues oxidation on Pt/Sn electrodes. (author)

  8. Nanocarriers for delivery of platinum anticancer drugs☆

    Science.gov (United States)

    Oberoi, Hardeep S.; Nukolova, Natalia V.; Kabanov, Alexander V.; Bronich, Tatiana K.

    2014-01-01

    Platinum based anticancer drugs have revolutionized cancer chemotherapy, and continue to be in widespread clinical use especially for management of tumors of the ovary, testes, and the head and neck. However, several dose limiting toxicities associated with platinum drug use, partial anti-tumor response in most patients, development of drug resistance, tumor relapse, and many other challenges have severely limited the patient quality of life. These limitations have motivated an extensive research effort towards development of new strategies for improving platinum therapy. Nanocarrier-based delivery of platinum compounds is one such area of intense research effort beginning to provide encouraging preclinical and clinical results and may allow the development of the next generation of platinum chemotherapy. This review highlights current understanding on the pharmacology and limitations of platinum compounds in clinical use, and provides a comprehensive analysis of various platinum–polymer complexes, micelles, dendrimers, liposomes and other nanoparticles currently under investigation for delivery of platinum drugs. PMID:24113520

  9. Catalyst support effects on hydrogen spillover

    Science.gov (United States)

    Karim, Waiz; Spreafico, Clelia; Kleibert, Armin; Gobrecht, Jens; Vandevondele, Joost; Ekinci, Yasin; van Bokhoven, Jeroen A.

    2017-01-01

    Hydrogen spillover is the surface migration of activated hydrogen atoms from a metal catalyst particle, on which they are generated, onto the catalyst support. The phenomenon has been much studied and its occurrence on reducible supports such as titanium oxide is established, yet questions remain about whether hydrogen spillover can take place on nonreducible supports such as aluminium oxide. Here we use the enhanced precision of top-down nanofabrication to prepare controlled and precisely tunable model systems that allow us to quantify the efficiency and spatial extent of hydrogen spillover on both reducible and nonreducible supports. We place multiple pairs of iron oxide and platinum nanoparticles on titanium oxide and aluminium oxide supports, varying the distance between the pairs from zero to 45 nanometres with a precision of one nanometre. We then observe the extent of the reduction of the iron oxide particles by hydrogen atoms generated on the platinum using single-particle in situ X-ray absorption spectromicroscopy applied simultaneously to all particle pairs. The data, in conjunction with density functional theory calculations, reveal fast hydrogen spillover on titanium oxide that reduces remote iron oxide nanoparticles via coupled proton-electron transfer. In contrast, spillover on aluminium oxide is mediated by three-coordinated aluminium centres that also interact with water and that give rise to hydrogen mobility competing with hydrogen desorption; this results in hydrogen spillover about ten orders of magnitude slower than on titanium oxide and restricted to very short distances from the platinum particle. We anticipate that these observations will improve our understanding of hydrogen storage and catalytic reactions involving hydrogen, and that our approach to creating and probing model catalyst systems will provide opportunities for studying the origin of synergistic effects in supported catalysts that combine multiple functionalities.

  10. Application of low-emissivity Pt layer on Ni alloy to high temperature

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Platinum films were sputter-deposited on two groups of nickel alloy substrates,in which the first group was the samples with rough surface,and the other group with polished surface.The platinum thin-films were applied to serve as the low-emissivity layers to reflect thermal radiation.Then,the platinum-coated samples were heated in air at 600℃ for 200 h to explore the effect of high-temperature environment on the emissivity of coated platinum film.After annealing,the average IR emissivity(at the wavelength o...

  11. [Formylation of porphyrin platinum complexes].

    Science.gov (United States)

    Rumiantseva, V D; Konovalenko, L I; Nagaeva, E A; Mironov, A F

    2005-01-01

    The formylation reaction of platinum complexes of beta-unsubstituted porphyrins was studied. The interaction of deuteroporphyrin IX derivatives with the Vilsmeyer reagent led to the selective formylation of their macrocycles in the beta position. The resulting formyl derivatives of the porphyrins are of interest for fluorescent immunoassay.

  12. Amorphous Pt@PdCu/CNT Catalyst for Methanol Electrooxidation ...

    African Journals Online (AJOL)

    A multi-walled carbon nanotube-supported, Pt decorated nano-sized ... alloy cores (denoted as Pt@PdCu/CNT) catalyst with lower Pt loading is synthesized via a ... The electrochemical activity of the Pt@PdCu/CNT catalyst is tested by cyclic ...

  13. Direct use of allylic alcohols for platinum-catalyzed monoallylation of amines.

    Science.gov (United States)

    Utsunomiya, Masaru; Miyamoto, Yoshiki; Ipposhi, Junji; Ohshima, Takashi; Mashima, Kazushi

    2007-08-16

    A new direct catalytic amination of allylic alcohols promoted by the combination of platinum and a large bite-angle ligand DPEphos was developed in which the allylic alcohol was effectively converted to a pi-allylplatinum intermediate without the use of an activating reagent. The use of the DPEphos ligand was essential for obtaining high catalyst activity and high monoallylation selectivity of primary amines, allowing the formation of a variety of monoallylation products in good to excellent yield.

  14. Catalysts for Efficient Production of Carbon Nanotubes

    Science.gov (United States)

    Sun, Ted X.; Dong, Yi

    2009-01-01

    Several metal alloys have shown promise as improved catalysts for catalytic thermal decomposition of hydrocarbon gases to produce carbon nanotubes (CNTs). Heretofore almost every experiment on the production of carbon nanotubes by this method has involved the use of iron, nickel, or cobalt as the catalyst. However, the catalytic-conversion efficiencies of these metals have been observed to be limited. The identification of better catalysts is part of a continuing program to develop means of mass production of high-quality carbon nanotubes at costs lower than those achieved thus far (as much as $100/g for purified multi-wall CNTs or $1,000/g for single-wall CNTs in year 2002). The main effort thus far in this program has been the design and implementation of a process tailored specifically for high-throughput screening of alloys for catalyzing the growth of CNTs. The process includes an integral combination of (1) formulation of libraries of catalysts, (2) synthesis of CNTs from decomposition of ethylene on powders of the alloys in a pyrolytic chemical-vapor-decomposition reactor, and (3) scanning- electron-microscope screening of the CNTs thus synthesized to evaluate the catalytic efficiencies of the alloys. Information gained in this process is put into a database and analyzed to identify promising alloy compositions, which are to be subjected to further evaluation in a subsequent round of testing. Some of these alloys have been found to catalyze the formation of carbon nano tubes from ethylene at temperatures as low as 350 to 400 C. In contrast, the temperatures typically required for prior catalysts range from 550 to 750 C.

  15. Raney copper catalysts for the water-gas shift reaction - II. Initial catalyst optimisation

    CSIR Research Space (South Africa)

    Mellor, JR

    1997-12-23

    Full Text Available -Zn-A1 catalyst. During the controlled passivation Table 2 Crystalline phase of alloys B, C and D and their product Raney copper catalysts before and after reaction Alloy Precursor alloy phases Cat. phases before reaction a Cat. phases after reaction a... L; dry gas composition=10% CO/90% N2; CO : H20=I : 22.5; catalyst volume=2i0.1 ml): (O)=Cat. A Cu(69.3)Zn(6.9)Al( 19.5); (~)=cat. B Cu(73.6)Zn(10.9)AI(14.8); (W1)=cat. C Cu(72.4)Zn(13.3)Al(12.9); ({))=cat. D Cu(61.5)Zn(15.1)AI(19.1). It can...

  16. Carbon-based metal-free catalysts

    Science.gov (United States)

    Liu, Xien; Dai, Liming

    2016-11-01

    Metals and metal oxides are widely used as catalysts for materials production, clean energy generation and storage, and many other important industrial processes. However, metal-based catalysts suffer from high cost, low selectivity, poor durability, susceptibility to gas poisoning and have a detrimental environmental impact. In 2009, a new class of catalyst based on earth-abundant carbon materials was discovered as an efficient, low-cost, metal-free alternative to platinum for oxygen reduction in fuel cells. Since then, tremendous progress has been made, and carbon-based metal-free catalysts have been demonstrated to be effective for an increasing number of catalytic processes. This Review provides a critical overview of this rapidly developing field, including the molecular design of efficient carbon-based metal-free catalysts, with special emphasis on heteroatom-doped carbon nanotubes and graphene. We also discuss recent advances in the development of carbon-based metal-free catalysts for clean energy conversion and storage, environmental protection and important industrial production, and outline the key challenges and future opportunities in this exciting field.

  17. Highly dispersed metal catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, Xin; West, William L.; Rhodes, William D.

    2016-11-08

    A supported catalyst having an atomic level single atom structure is provided such that substantially all the catalyst is available for catalytic function. A process of forming a single atom catalyst unto a porous catalyst support is also provided.

  18. Platinum Activated IrO2/SnO2 Nanocatalysts and Their Electrode Structures for High Performance Proton Exchange Membrane Water Electrolysis

    DEFF Research Database (Denmark)

    Xu, Junyuan; Li, Qingfeng; Christensen, Erik

    2013-01-01

    , which was attributed to the cooperative effects of improved electric conductivity and synergistic effect of Pt and IrO2/SnO2. Furthermore, catalyst layers based on IrO2/SnO2 catalysts were optimized with respect to microstructures, pore volume and pore size distribution. The performance was obviously...... improved due to the appropriate porosity and pore size distribution. The highest electrolyser performance of 1.63 V at 2 A cm-2 was achieved at 80 °C for optimized catalyst layers containing platinum activated IrO2/SnO2 catalyst....

  19. Synthesis and characterization of potential iron–platinum drugs and supplements by laser liquid photolysis

    Directory of Open Access Journals (Sweden)

    Forbes A

    2012-06-01

    Full Text Available Steven S Nkosi,1,2 Bonex W Mwakikunga,4 Elias Sideras-Haddad,2 Andrew Forbes1,31CSIR National Laser Centre, Pretoria, South Africa; 2DST/NRF Centre for Excellence in Strong Materials and School of Physics, University of the Witwatersrand, Johannesburg, 3School of Physics, University of KwaZulu-Natal, Durban, South Africa; 4DST/CSIR National Centre for Nano-Structured Materials, Pretoria, South AfricaAbstract: Highly crystalline nanospherical iron–platinum systems were produced by 248 nm laser irradiation of a liquid precursor at different laser fluences, ranging from 100–375 mJ/cm2. The influence of laser intensity on particle size, iron composition, and structure was systematically investigated. Different nanostructures of iron–platinum alloy and chemically disordered iron–platinum L10 phase were obtained without annealing. The prepared precursor solution underwent deep photolysis to polycrystalline iron–platinum nanoalloys through Fe(III acetylacetonate and Pt(II acetylacetonate. Fe(II and Pt(I acetylacetone decomposed into Fe0 and Pt0 nanoparticles. We found that the (001 diffraction peak shifted linearly to a lower angle, with the last peak shifting in opposition to the others. This caused the face-centered cubic L10 structure to change its composition according to laser fluence. The nanostructures were shown to contain iron and platinum only by energy-dispersive spectroscopy at several spots. The response of these iron–platinum nanoparticles to infrared depends on their stoichiometric composition, which is controlled by laser fluence.Keywords: nanostructures, iron, platinum, nanoparticles, laser liquid photolysis, composition

  20. Catalyst for Carbon Monoxide Oxidation

    Science.gov (United States)

    Davis, Patricia; Brown, Kenneth; VanNorman, John; Brown, David; Upchurch, Billy; Schryer, David; Miller, Irvin

    2010-01-01

    In many applications, it is highly desirable to operate a CO2 laser in a sealed condition, for in an open system the laser requires a continuous flow of laser gas to remove the dissociation products that occur in the discharge zone of the laser, in order to maintain a stable power output. This adds to the operating cost of the laser, and in airborne or space applications, it also adds to the weight penalty of the laser. In a sealed CO2 laser, a small amount of CO2 gas is decomposed in the electrical discharge zone into corresponding quantities of CO and O2. As the laser continues to operate, the concentration of CO2 decreases, while the concentrations of CO and O2 correspondingly increase. The increasing concentration of O2 reduces laser power, because O2 scavenges electrons in the electrical discharge, thereby causing arcing in the electric discharge and a loss of the energetic electrons required to boost CO2 molecules to lasing energy levels. As a result, laser power decreases rapidly. The primary object of this invention is to provide a catalyst that, by composition of matter alone, contains chemisorbed water within and upon its structure. Such bound moisture renders the catalyst highly active and very long-lived, such that only a small quantity of it needs to be used with a CO2 laser under ambient operating conditions. This object is achieved by a catalyst that consists essentially of about 1 to 40 percent by weight of one or more platinum group metals (Pt, Pd, Rh, Ir, Ru, Os, Pt being preferred); about 1 to 90 percent by weight of one or more oxides of reducible metals having multiple valence states (such as Sn, Ti, Mn, Cu, and Ce, with SnO2 being preferred); and about 1 to 90 percent by weight of a compound that can bind water to its structure (such as silica gel, calcium chloride, magnesium sulfate, hydrated alumina, and magnesium perchlorate, with silica gel being preferred). Especially beneficial results are obtained when platinum is present in the

  1. Catalyst Architecture

    DEFF Research Database (Denmark)

    Kiib, Hans; Marling, Gitte; Hansen, Peter Mandal

    2014-01-01

    How can architecture promote the enriching experiences of the tolerant, the democratic, and the learning city - a city worth living in, worth supporting and worth investing in? Catalyst Architecture comprises architectural projects, which, by virtue of their location, context and their combination...... of programs, have a role in mediating positive social and/or cultural development. In this sense, we talk about architecture as a catalyst for: sustainable adaptation of the city’s infrastructure appropriate renovation of dilapidated urban districts strengthening of social cohesiveness in the city development...

  2. 用于质子交换膜燃料电池的高活性、高稳定性PtIrFe/C三元合金催化剂∗%Remarkably Active and Durable PtIrFe/C Ternary Alloy Catalysts with Potential Application to Proton Exchange Membrane Fuel Cells

    Institute of Scientific and Technical Information of China (English)

    杜鑫鑫; 王晓霞; 贺阳; 王健农

    2016-01-01

    采用催化裂解法制备了多孔碳,将其作为催化剂载体,利用液相还原和真空热处理工艺制备出PtIrFe/C三元合金催化剂。采用 X射线衍射、透射电子显微镜等手段对样品的结构形貌进行表征。使用电化学测试手段研究了不同热处理温度对其催化性能的影响。实验结果表明,热处理带来的合金化作用使催化剂的催化活性和耐久性得到了极大的提高。经过700℃热处理的样品,其面积比活性和质量比活性分别是传统商业 Pt/C 催化剂的3~4倍。%Using a mesoporous carbon (prepared via catalyzed pyrolysis)as a support material,PtIrFe/C alloy catalysts were synthesized by a liquid reduction and heat treatment method,and characterized by transmission electron microscopy and powder X-ray diffraction to explore and study the morphologies and crystallization properties.The an-nealing of the as prepared catalysts was performed at different temperatures,tested by electrochemical measurements, and proved to be of great importance for the improvement of the catalyst′s activity and durability due to the alloying effect.The catalysts annealed at 700 ℃ exhibited the highest area-specific activity and mass-specific activity which were 3-4 times higher than those of a commercial Pt/C catalyst.

  3. Platinum Inhibits Low-Temperature Dry Lean Methane Combustion through Palladium Reduction in Pd-Pt/Al2 O3 : An In Situ X-ray Absorption Study.

    Science.gov (United States)

    Nassiri, Hanieh; Lee, Kee-Eun; Hu, Yongfeng; Hayes, Robert E; Scott, Robert W J; Semagina, Natalia

    2017-01-18

    Palladium-platinum bimetallic catalysts supported on alumina with palladium/platinum molar ratios ranging from 0.25 to 4 are studied in dry lean methane combustion in the temperature range of 200 to 500 °C. Platinum addition decreases the catalyst activity, which cannot be explained by the decrease in dispersion or the structure sensitivity of the reaction. In situ X-ray absorption near-edge structure and extended X-ray absorption fine structure spectroscopy measurements have been conducted for monometallic Pd, Pt, and 2:1 Pd-Pt catalysts. Monometallic palladium is fully oxidized in the full temperature range, whereas platinum addition promotes palladium reduction, even in a reactive oxidizing environment. The Pd/PdO weight ratio in bimetallic Pd-Pt 2:1 catalysts decreases from 98/2 to 10/90 in the 200-500 °C temperature range under the reaction conditions. Thus, platinum promotes the formation of the reduced palladium phase with a significantly lower activity than that of oxidized palladium. The study sheds light on the effect of platinum on the state of the active palladium surface under low-temperature dry lean methane combustion conditions, which is important for methane-emission control devices. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. SISGR: Theoretically relating the surface composition of Pt alloys to their performance as the electrocatalysts of low-temperature fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Guofeng

    2010-12-31

    The main goal of this project is to gain fundamental knowledge about the relation between surface composition and catalytic performance of Pt alloy catalysts for oxygen reduction reaction (ORR). Specific objectives are: to develop and improve a first-principles based multiscale computation approach to simulating surface segregation phenomena in Pt alloy surfaces; to evaluate the surface electronic structure and catalytic activity of Pt alloy catalysts and; to relate the surface composition to the catalytic performance of Pt alloy catalysts.

  5. Development of molecular and solid catalysts for the direct low-temperature oxidation of methane to methanol.

    Science.gov (United States)

    Palkovits, Regina; von Malotki, Christian; Baumgarten, Martin; Müllen, Klaus; Baltes, Christian; Antonietti, Markus; Kuhn, Pierre; Weber, Jens; Thomas, Arne; Schüth, Ferdi

    2010-02-22

    The direct low-temperature oxidation of methane to methanol is demonstrated on a highly active homogeneous molecular catalyst system and on heterogeneous molecular catalysts based on polymeric materials possessing ligand motifs within the material structure. The N-(2-methylpropyl)-4,5-diazacarbazolyl-dichloro-platinum(II) complex reaches significantly higher activity compared to the well-known Periana system and allows first conclusions on electronic and structural requirements for high catalytic activity in this reaction. Interestingly, comparable activities could be achieved utilizing a platinum modified poly(benzimidazole) material, which demonstrates for the first time a solid catalyst with superior activity compared to the Periana system. Although the material shows platinum leaching, improved activity and altered electronic properties, compared to the conventional Periana system, support the proposed conclusions on structure-activity relationships. In comparison, platinum modified triazine-based catalysts show lower catalytic activity, but rather stable platinum coordination even after several catalytic cycles. Based on these systems, further development of improved solid catalysts for the direct low-temperature oxidation of methane to methanol is feasible.

  6. Surface characterization of platinum electrodes.

    Science.gov (United States)

    Solla-Gullón, José; Rodríguez, Paramaconi; Herrero, Enrique; Aldaz, Antonio; Feliu, Juan M

    2008-03-14

    The quantitative analysis of the different surface sites on platinum samples is attempted from pure voltammetric data. This analysis requires independent knowledge of the fraction of two-dimensional (111) and (100) domains. Specific site-probe reactions are employed to achieve this goal. Irreversibly-adsorbed bismuth and tellurium have been revealed to be sensitive to the presence of (111) terrace domains of different width whereas almost all sites involved in (100) ordered domains have been characterized through germanium adatoms. The experimental protocol follows that used with well-defined single-crystal electrodes and, therefore, requires careful control of the surface cleanliness. Platinum basal planes and their vicinal stepped surfaces have been employed to obtain calibration plots between the charge density measured under the adatom redox peak, specific for the type of surface site, and the corresponding terrace size. The evaluation of the (100) bidimensional domains can also be achieved using the voltammetric profiles, once the fraction of (111) ordered domains present in the polyoriented platinum has been determined and their featureless contribution has been subtracted from the whole voltammetric response. Using that curve, it is possible to perform a deconvolution of the adsorption states of the polycrystalline sample different from those related to (111) domains. The fraction of (100)-related states in the deconvoluted voltammogram can then be compared to that expected from the independent estimation coming from the charge involved in the redox process undergone by the irreversibly-adsorbed germanium and thus check the result of the deconvolution. The information about the surface-site distribution can also be applied to analyze the voltammetric profile of nanocrystalline platinum electrodes.

  7. Heterogeneous Catalysts

    NARCIS (Netherlands)

    Dakka, J.; Sheldon, R.A.; Sanderson, W.A.

    1997-01-01

    Abstract of GB 2309655 (A) Heterogeneous catalysts comprising one or more metal compounds selected from the group consisting of tin, molybdenum, tungsten, zirconium and selenium compounds deposited on the surface of a silicalite are provided. Preferably Sn(IV) and/or Mo(VI) are employed. The cat

  8. Request for Correction 11001 Toxicological Review of Halogenated Platinum Salts and Platinum Compounds

    Science.gov (United States)

    Request for Correction by the International Platinum Group Metals Association seeking the correction of information disseminated in the draft EPA document Toxicological Review of Halogenated Platinum Salts and Platinum Compounds: In Support of Summary Information on the Integrated Risk Information System (IRIS).

  9. PGM-free Fe-N-C catalysts for oxygen reduction reaction: Catalyst layer design

    Science.gov (United States)

    Stariha, Sarah; Artyushkova, Kateryna; Workman, Michael J.; Serov, Alexey; Mckinney, Sam; Halevi, Barr; Atanassov, Plamen

    2016-09-01

    This work studies the morphology of platinum group metal-free (PGM-free) iron-nitrogen-carbon (Fe-N-C) catalyst layers for the oxygen reduction reaction (ORR) and compares catalytic performance via polarization curves. Three different nitrogen-rich organic precursors are used to prepare the catalysts. Using scanning electron microscopy (SEM) and focused ion beam (FIB) tomography, the porosity, Euler number (pore connectivity), overall roughness, solid phase size and pore size are calculated for catalyst surfaces and volumes. Catalytic activity is determined using membrane electrode assembly (MEA) testing. It is found that the dominant factor in MEA performance is transport limitations. Through the 2D and 3D metrics it is concluded that pore connectivity has the biggest effect on transport performance.

  10. Ruthenium versus platinum on cerium materials in wet air oxidation of acetic acid

    Energy Technology Data Exchange (ETDEWEB)

    Gaalova, J. [Institute of Chemical Process Fundamentals of the CAS, Rozvojova 135, 165 02 Prague 6, CZ (Czech Republic); Barbier, J., E-mail: Jacques.barbier.jr@univ-poitiers.fr [University of Poitiers, LACCO UMR 6503, Laboratoire de Catalyse par les Metaux, 40 Avenue du Recteur Pineau, F-86022 POITIERS Cedex (France); Rossignol, S. [University of Limoges, ENSCI, 47 Avenue Albert Thomas 87000 Limoges France (France)

    2010-09-15

    This study was a comparison between Ru-catalysts and similar, previously investigated, Pt-catalysts. In this paper, ruthenium catalysts for catalytic wet air oxidation are prepared, characterized and tested. Both catalysts were supported on commercial CeO{sub 2} as well as mixed oxide Zr{sub 0.1}(Ce{sub 0.75}Pr{sub 0.25}){sub 0.9}O{sub 2}. The catalysts were characterized by measuring the oxygen storage capacities (OSC), BET, XRD, FTIR and chemisorption of hydrogen. In addition, the effect of sintering (treatments under H{sub 2}) was compared with both of the catalysts. The comparison of the results showed that initial intrinsic activity of ruthenium is not significantly influenced by the type of the support, which is contrast to platinum. Furthermore, the particle size of Ru had an important effect on CWAO activity: the higher the particle size, the better the activity. This was different with Pt-catalysts, where the optimal particle size was smaller, having about 15% of metal dispersion.

  11. Catalyst-referred etching of silicon

    Directory of Open Access Journals (Sweden)

    Hideyuki Hara et al

    2007-01-01

    Full Text Available A Si wafer and polysilicon deposited on a Si wafer were planarized using catalyst-referred etching (CARE. Two apparatuses were produced for local etching and for planarization. The local etching apparatus was used to planarize polysilicon and the planarization apparatus was used to planarize Si wafers. Platinum and hydrofluoric acid were used as the catalytic plate and the source of reactive species, respectively. The processed surfaces were observed by optical interferometry, atomic force microscopy (AFM and scanning electron microscopy (SEM. The results indicate that the CARE-processed surface is flat and undamaged.

  12. Vapour Treatment Method Against Other Pyro- and Hydrometallurgical Processes Applied to Recover Platinum From Used Auto Catalytic Converters

    Institute of Scientific and Technical Information of China (English)

    Agnieszka FORNALCZYK; Mariola SATERNUS

    2013-01-01

    Today more and more cars are produced every year.All of them have to be equipped with catalytic converters,the main role of which is to obtain substances harmless to the environment instead of exhausted gases.Catalytic converters contain platinum group metals (PGM) especially platinum,palladium and rhodium.The price of these metals and their increasing demand are the reasons why today it is necessary to recycle used auto catalytic converters.There are many available methods of recovering PGM metals from them,especially platinum.These methods used mainly hydrometallurgical processes; however pyrometallurgical ones become more and more popular.The article presents results of the research mainly concerning pyrometallurgical processes.Two groups of research were carried out.In the first one different metals such as lead,magnesium and copper were used as a metal collector.During the tests,platinum went to those metals forming an alloy.In other research metal vapours were blown through catalytic converter carrier (grinded or whole).In the tests metals such as calcium,magnesium,cadmium and zinc were applied.As a result white or grey powder (metal plus platinum) was obtained.The tables present results of the research.Processing parameters and conclusions are also shown.To compare efficiency of pyrometallurgical and hydrometallurgical methods catalytic converter carrier and samples of copper with platinum obtained from pyrometallurgical method were solved in aqua regia,mixture of aqua regia and fluoric acid.

  13. Evaluation of low-cost cathode catalysts for high yield biohydrogen production in microbial electrolysis cell.

    Science.gov (United States)

    Wang, L; Chen, Y; Ye, Y; Lu, B; Zhu, S; Shen, S

    2011-01-01

    As an ideal fuel due to the advantages of no pollution, high combustion heat and abundant sources, hydrogen gas can be produced from organic matter through the electrohydrogenesis process in microbial electrolysis cells. But in many MECs, platinum is often used as catalyst, which limits the practical applications of MECs. To reduce the cost of the MECs, Ni-based alloy cathodes were developed by electrodepositing. In this paper hydrogen production using Ni-W-P cathode was studied for the first time in a single-chamber membrane-free MEC. At an applied voltage of 0.9 V, MECs with Ni-W-P cathodes obtained a hydrogen production rate of 1.09 m3/m3/day with an cathodic hydrogen recovery of 74%, a Coulombic efficiency of 56% and an electrical energy efficiency relative to electrical input of 139%, which was the best result of reports in this study. The Ni-W-P cathode demonstrated a better electrocatalytic activity than the Ni-Ce-P cathode and achieved a comparable performance to the Pt cathode in terms of hydrogen production rate, Coulombic efficiency, cathodic hydrogen recovery and electrical energy efficiency at 0.9 V.

  14. Formation of {open_quotes}metal wool{close_quotes} structures and dynamics of catalytic etching of platinum surfaces during ammonia oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Lyubovsky, M.R.; Barelko, V.V. [Institute of Chemical Physics in Chernogolovka, Moscow (Russian Federation)

    1994-09-01

    Reconstruction of a clean surface of a platinum catalyst and a platinum surface covered with gold during ammonia oxidation was studied by SEM observations. It was found that the process of catalytic etching had two sequential stages in which different crystal structures with different rates of growth formed on the surface. The first stage was the formation of parallel facets, and the second stage was the formation of individual microcrystals with perfect crystal faces. It was also found that the second state had a threshold character, beginning after some delay from the start of the reaction. A structure resembling metal wool and consisting of interlaced platinum filaments was found to form on the surface of gold-covered platinum catalysts. Characteristic features of this structure`s development are reported. The growth of filaments is attributed to the vapor-liquid-solid mechanism of whisker growth. On the basis of the observed platinum whisker formation and behavior during ammonia oxidation, a mechanism of catalyst surface reconstruction that explains observed characteristic features of the process of catalytic etching is proposed. 25 refs., 8 figs.

  15. Reverse microemulsion prepared Ni–Pt catalysts for methane cracking to produce COx-free hydrogen

    KAUST Repository

    Zhou, Lu

    2017-09-08

    A monodispersed 15 nm Ni9Pt1 catalyst synthesized via a reverse microemulsion method, shows a lower activation energy than both Ni and Pt catalysts during the methane cracking reaction. Thanks to the synergic effect of Ni–Pt alloy, this catalyst presents a stable H2 formation rate at 700 °C, and forms carbon nanotubes, anchoring the catalyst particles on top.

  16. A comparison of the marginal and internal adaptation of titanium and gold-platinum-palladium metal ceramic crowns.

    Science.gov (United States)

    Valderrama, S; Van Roekel, N; Andersson, M; Goodacre, C J; Munoz, C A

    1995-01-01

    The marginal and internal adaptation of metal ceramic crowns fabricated by electrical discharge machining and conventional metal ceramic alloys were compared. The crowns were cemented using zinc phosphate cement, embedded in epoxy resin, and sectioned in two planes: diagonal and buccolingual. The crowns were then measured at nine sites. The results showed that there were no statistical differences between the external marginal opening of the titanium and the gold-platinum-palladium crowns. The overall marginal discrepancies for the restorations in this study were 61 microns (+/- 34 microns) for the titanium metal ceramic crowns and 47 microns (+/- 17 microns) for the gold-platinum-palladium metal ceramic crowns.

  17. Catalyst materials based on plasma-processed alumina nanopowder

    Directory of Open Access Journals (Sweden)

    Dubencovs Konstantins

    2012-01-01

    Full Text Available A platinum catalyst for glycerol oxidation by molecular oxygen has been developed applying the extractive-pyrolytic method and using, as a support, a fine alumina powder with an average particle size of 30-60 nm processed by plasma technology. The extractive-pyrolytic method (EPM allows affixing small amounts of catalytic metals (1-5% with the particle size ranging from several nanometers to several tens of nanometers onto the surface of the support. The prepared material - 4.8 wt. % platinum on nano-sized alumina - can be used as a catalyst for glycerol oxidation by oxygen with conversion up to 84%, in order to produce some organic acids (glyceric and lactic acid with a selectivity of about 60%.

  18. Sum Frequency Generation Studies of Hydrogenation Reactions on Platinum Nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Krier, James M. [Univ. of California, Berkeley, CA (United States)

    2013-08-31

    Sum Frequency Generation (SFG) vibrational spectroscopy is used to characterize intermediate species of hydrogenation reactions on the surface of platinum nanoparticle catalysts. In contrast to other spectroscopy techniques which operate in ultra-high vacuum or probe surface species after reaction, SFG collects information under normal conditions as the reaction is taking place. Several systems have been studied previously using SFG on single crystals, notably alkene hydrogenation on Pt(111). In this thesis, many aspects of SFG experiments on colloidal nanoparticles are explored for the first time. To address spectral interference by the capping agent (PVP), three procedures are proposed: UV cleaning, H2 induced disordering and calcination (core-shell nanoparticles). UV cleaning and calcination physically destroy organic capping while disordering reduces SFG signal through a reversible structural change by PVP.

  19. Platinum Group Metal Recycling Technology Development - Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Lawrence Shore

    2009-08-19

    BASF Catalysts LLC, formerly Engelhard Corporation, has completed a project to recover Pt from PEM fuel cell membrane electrode assemblies. The project, which began in 2003, has met the project objective of an environmentally-friendly, cost-effective method for recovery of platinum without release of hydrogen fluoride. This has been achieved using a combination of milling, dispersion and acid leaching. 99% recovery of Pt was achieved, and this high yield can be scaled up using one vessel for a single leach and rinse. Leaching was been successfully achieved using a 10% solids level, double the original target. At this solids content, the reagent and utility costs represent ~0.35% of the Pt value of a lot, using very conservative assumptions. The main cost of the process is capital depreciation, followed by labor.

  20. Preparation and characterization of platinum/carbon and ruthenium/platinum/carbon nanocatalyst using the novel rotating disk-slurry electrode (RoDSE) technique

    Science.gov (United States)

    Santiago de Jesus, Diana

    An effort to develop electrochemically smaller and well-dispersed catalytic material on a high surface area carbon material is required for fuel cell applications. In terms of pure metal catalysts, platinum has shown to be the most common catalyst used in fuel cells, but suffers from poisoning when carbon monoxide is strongly adsorbed on its surface when used for direct methanol fuel cell applications. The addition of a metal with the ability to form oxides, such as ruthenium, helps to oxidize the carbon monoxide, freeing the platinum surface for new methanol oxidation. The deposition of catalysts of PtRu onto a carbon support helps to increase the active surface area of the catalyst. Vulcan X is the most commonly used of the amorphous carbon materials for fuel cell applications. Also, a high-surface-area carbon material of interest is carbon nano-onions (CNOs), also known as multilayer fullerenes. The most convenient synthetic method for CNOs is annealing nanodiamond particles, thus retaining the size of the precursors and providing the possibility to prepare very small nanocatalysts using electrochemical techniques. A rotating disk-slurry electrode (RoDSE) technique was developed as a unique method to electrochemically prepare bulk Pt/Carbon and PtRu/Carbon nanocatalysts avoiding a constant contact of the carbon support to an electrode surface during the electrodeposition process. The nanocatalysts were prepared by using a slurry that was saturated with functionalized Vulcan XC-72R and the metal precursor in sulfuric acid. The electrochemically prepared Pt/C and PtRu/C catalysts were characterized by using TEM, STEM, XRD, XRF, TGA, XPS and electrochemical techniques. A computational analysis also was done.