WorldWideScience

Sample records for platinum alloy catalysts

  1. Structure, activity, and stability of platinum alloys as catalysts for the oxygen reduction reaction

    DEFF Research Database (Denmark)

    Vej-Hansen, Ulrik Grønbjerg

    In this thesis I present our work on theoretical modelling of platinum alloys as catalysts for the Oxygen Reduction Reaction (ORR). The losses associated with the kinetics of the ORR is the main bottleneck in low-temperature fuel cells for transport applications, and more active catalysts...... are essential for wide-spread use of this technology. platinum alloys have shown great promise as more active catalysts, which are still stable under reaction conditions. We have investigated these systems on multiple scales, using either Density Functional Theory (DFT) or Effective Medium Theory (EMT......), depending on the length and time scales involved. Using DFT, we show how diffusion barriers in transition metal alloys in the L12 structure depend on the alloying energy, supporting the assumption that an intrinsically more stable alloy is also more stable towards diffusion-related degradation...

  2. Low platinum catalyst and method of preparation

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Di-Jia; Chong, Lina

    2017-11-21

    A low platinum catalyst and method for making same. The catalyst comprises platinum-transition metal bimetallic alloy microcrystallites over a transition metal-nitrogen-carbon composite. A method of making a catalyst comprises preparation of transition metal organic frameworks, infusion of platinum, thermal treatment, and reduction to form the microcrystallites and composite.

  3. Nanostructured Platinum Alloys for Use as Catalyst Materials

    Science.gov (United States)

    Narayan, Sri R. (Inventor); Hays, Charles C. (Inventor)

    2015-01-01

    A series of binary and ternary Pt-alloys, that promote the important reactions for catalysis at an alloy surface; oxygen reduction, hydrogen oxidation, and hydrogen and oxygen evolution. The first two of these reactions are essential when applying the alloy for use in a PEMFC.

  4. Highly Durable Platinum Single-Atom Alloy Catalyst for Electrochemical Reactions

    DEFF Research Database (Denmark)

    Kim, Jiwhan; Roh, Chi-Woo; Sahoo, Suman Kalyan

    2018-01-01

    Single atomic Pt catalyst can offer efficient utilization of the expensive platinum and provide unique selectivity because it lacks ensemble sites. However, designing such a catalyst with high Pt loading and good durability is very challenging. Here, single atomic Pt catalyst supported on antimony...... functional theory calculations show that replacing Sb sites with Pt atoms in the bulk phase or at the surface of SbSn or ATO is energetically favorable. The Pt1/ATO shows superior activity and durability for formic acid oxidation reaction, compared to a commercial Pt/C catalyst. The single atomic Pt...... structure is retained even after a harsh durability test, which is performed by repeating cyclic voltammetry in the range of 0.05–1.4 V for 1800 cycles. A full cell is fabricated for direct formic acid fuel cell using the Pt1/ATO as an anode catalyst, and an order of magnitude higher cell power is obtained...

  5. In situ XAFS studies of the oxygen reduction reaction on carbon supported platinum and platinum nickel nano-scale alloys as cathode catalysts in fuel cells

    Science.gov (United States)

    Jia, Qingying

    Platinum based bimetallic alloys have been investigated by conducting Pt L3 and Ni K edge in situ XAFS measurements on carbon supported Pt and PtNi(1:1) nanoscale catalysts under a wide range of operating potentials. We observed that (1) the Pt-Pt bond distance in PtNi alloys is shorter than that of Pt, and the bond distance between Pt and oxygen adsorbate is longer for PtNi. (2) Pt has a tendency to stay on the surface while Ni is mostly underneath the surface. (3) While a change in oxidation of pure Pt was clearly observed at different potentials, the Pt in the PtNi alloy remained nearly oxygen-free at all potentials, but an accompanying oxidation change of Ni was observed instead. (4) PtNi has higher open circuit voltage than Pt/C. These results indicate that the chemisorption energy between Pt and oxygen adsorbate is reduced in PtNi alloys, which prevents the poison of oxygen adsorbate and hence improves the reactivity. In addition, the strain and ligand effects in PtNi nanoparticle alloys were studied by FEW calculations using experimental data as a guide to understand the factors causing the reduction of chemisorptions energy of Pt. Our calculation indicates that Pt d-band is broader and lower in energy when the bond distance between Pt is shorter, resulting in weaker chemisorption energy between Pt and absorbed oxygen atom on top, and vice verse. Meanwhile, the investigation of ligand effect shows two trends in modifying Pt's properties within alloyed transition metals. The strain effect dominates in PtNi bimetallic system, corresponding to weaker chemisorptions energy and lower white intensity of Pt L3 edge, which is in consistent with our experimental results. The implications of these results afford a good guideline in understanding the reactivity enhancement mechanism and in the context of alloy catalysts design.

  6. Development of Ultra-Low Platinum Alloy Cathode Catalysts for PEM Fuel Cells

    Energy Technology Data Exchange (ETDEWEB)

    Popov, Branko N. [Univ. of South Carolina, Columbia, SC (United States). Dept. of Chemical Engineering; Weidner, John [Univ. of South Carolina, Columbia, SC (United States)

    2016-01-07

    The goal of this project is to synthesize a low cost PEM fuel cell cathode catalyst and support with optimized average mass activity, stability of mass activity, initial high current density performance under H2/air (power density), and catalyst and support stability able to meet 2017 DOE targets for electrocatalysts for transportation applications. Pt*/ACCS-2 catalyst was synthesized according to a novel methodology developed at USC through: (i) surface modification, (ii) metal catalyzed pyrolysis and (iii) chemical leaching to remove excess meal used to dope the support. Pt* stands for suppressed platinum catalyst synthesized with Co doped platinum. The procedure results in increasing carbon graphitization, inclusion of cobalt in the bulk and formation of non-metallic active sites on the carbon surface. Catalytic activity of the support shows an onset potential of 0.86 V for the oxygen reduction reaction (ORR) with well-defined kinetic and mass transfer regions and 2.5% H2O2 production. Pt*/ACCS-2 catalyst durability under 0.6-1.0 V potential cycling and support stability under 1.0-1.5 V potential cycling was evaluated. The results indicated excellent catalyst and support performance under simulated start-up/shut down operating conditions (1.0 – 1.5 V, 5000 cycles) which satisfy DOE 2017 catalyst and support durability and activity. The 30% Pt*/ACCS-2 catalyst showed high initial mass activity of 0.34 A/mgPGM at 0.9 ViR-free and loss of mass activity of 45% after 30,000 cycles (0.6-1.0 V). The catalyst performance under H2-air fuel cell operating conditions showed only 24 mV (iR-free) loss at 0.8 A/cm2 with an ECSA loss of 42% after 30,000 cycles (0.6-1.0 V). The support stability under 1.0-1.5 V potential cycling showed mass activity loss of 50% and potential loss of 8 mV (iR-free) at 1.5 A/cm2. The ECSA loss was 22% after 5,000 cycles. Furthermore, the Pt*/ACCS-2 catalyst showed an

  7. Synthesis, characterization and optimization of platinum-alloy nanoparticle catalysts in proton exchange membrane fuel cells

    Science.gov (United States)

    Srivastava, Ratndeep

    Renewable hydrogen-fuelled proton exchange membrane (PEMFC) fuel cells have consistently demonstrated great promise as a future source of energy due to their high conversion efficiency, lower temperature of operation and lack of greenhouse emissions. One of the major impediments in the commercialization of polymer electrolyte membrane fuel cells is the insufficient catalytic reactivity and higher cost of Pt electrocatalysts which are utilized for the electroreduction of oxygen from air. This dissertation focuses primarily on a family of Pt alloy fuel cell electrocatalysts referred to as de-alloyed core-shell electrocatalysts. These materials are bimetallic or multimetallic nanoparticles, mostly supported on conductive supports which were first described in a dissertation by Dr. S. Koh earlier in 2009.1 De-alloyed Pt nanoparticle electrocatalysts are formed from base metal rich binary Pt-M and ternary Pt-M1-M 2 (M, M1, M2 = Cu, Co, Ni, Fe and Cr) alloy nanoparticle precursors. The precursors are transformed and activated by electrochemical selective dissolution of the less noble metal component of the precursors (de-alloying). They have shown exceptional activity for oxygen reduction reaction (ORR) in idealized electrochemical half cell measurements, in particular rotating disk electrode experiments. However, these materials were never tested or implemented in realistic Membrane Electrode Assemblies (MEA) and single PEM fuel cells. The objective of this work was to implement de-alloyed Pt particle catalysts in realistic fuel cell electrode layers as well as a detailed characterization of their behavior and stability. The major challenges of MEA implementation consists of the behavior of the new nanostructured electrocatalysts inside the complex three-phase interface of polymer membrane ionomer, liquid water, metal catalyst, support, and reactant gas. Activity measurements were followed by medium and long-term durability analysis by potential cycling of the membrane

  8. Novel non-platinum metal catalyst material

    DEFF Research Database (Denmark)

    2014-01-01

    The present invention relates to a novel non-platinum metal catalyst material for use in low temperature fuel cells and electrolysers and to fuel cells and electrolysers comprising the novel non-platinum metal catalyst material. The present invention also relates to a novel method for synthesizing...... the novel non-platinum metal catalyst material....

  9. A Platinum Monolayer Core-Shell Catalyst with a Ternary Alloy Nanoparticle Core and Enhanced Stability for the Oxygen Reduction Reaction

    Directory of Open Access Journals (Sweden)

    Haoxiong Nan

    2015-01-01

    Full Text Available We synthesize a platinum monolayer core-shell catalyst with a ternary alloy nanoparticle core of Pd, Ir, and Ni. A Pt monolayer is deposited on carbon-supported PdIrNi nanoparticles using an underpotential deposition method, in which a copper monolayer is applied to the ternary nanoparticles; this is followed by the galvanic displacement of Cu with Pt to generate a Pt monolayer on the surface of the core. The core-shell Pd1Ir1Ni2@Pt/C catalyst exhibits excellent oxygen reduction reaction activity, yielding a mass activity significantly higher than that of Pt monolayer catalysts containing PdIr or PdNi nanoparticles as cores and four times higher than that of a commercial Pt/C electrocatalyst. In 0.1 M HClO4, the half-wave potential reaches 0.91 V, about 30 mV higher than that of Pt/C. We verify the structure and composition of the carbon-supported PdIrNi nanoparticles using X-ray powder diffraction, X-ray photoelectron spectroscopy, thermogravimetry, transmission electron microscopy, and energy dispersive X-ray spectrometry, and we perform a stability test that confirms the excellent stability of our core-shell catalyst. We suggest that the porous structure resulting from the dissolution of Ni in the alloy nanoparticles may be the main reason for the catalyst’s enhanced performance.

  10. Adsorption and temperature-programmed desorption of hydrogen with dispersed platinum and platinum-gold catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, J.R.; Foger, K.; Breakspere, R.J.

    1979-05-01

    Adsorption and temperature-programmed desorption of hydrogen with dispersed platinum and platinum-gold catalysts was studied with 0.9-3Vertical Bar3< platinum on silica gel, aerosil, sodium and lanthanum Y zeolites, and ..gamma..-alumina, and on aerosil-supported gold-platinum alloys containing 2, 10, 24, 33, and 85Vertical Bar3< gold. Surface enrichment with gold in the alloy systems, as derived from hydrogen adsorption data and predicted from surface enrichment theory and electron microscopic measurements of particle size, were in good agreement, which indicated that equilibrium was achieved by the thermal treatment (oxygen at 573/sup 0/K, hydrogen at 620/sup 0/K, repeated cycles) used. Hydrogen spillover to gold was observed at the higher hydrogen pressures tested on the alloys with high gold content, and to the zeolite supports. The temperature-programed desorption profiles were independent of gold content, which indicated that gold acts only as diluent, and that isolated surface platinum atoms become populated with hydrogen atoms either by hydrogen atom spillover from platinum ensembles to gold and from the gold to the isolated platinum, and/or by adsorption of a molecule directly on the isolated platinum and chemisorption of one H atom at an adjacent gold atom. The distribution of surface platinum ensembles was evaluated by a computer simulation method.

  11. Alloy catalyst material

    DEFF Research Database (Denmark)

    2014-01-01

    The present invention relates to a novel alloy catalyst material for use in the synthesis of hydrogen peroxide from oxygen and hydrogen, or from oxygen and water. The present invention also relates to a cathode and an electrochemical cell comprising the novel catalyst material, and the process use...... of the novel catalyst material for synthesising hydrogen peroxide from oxygen and hydrogen, or from oxygen and water....

  12. Platinum-Bismuth Bimetallic Catalysts: Synthesis, Characterization and Applications

    OpenAIRE

    Saucedo, Jose A, Jr; Xiao, Yang; Varma, Arvind

    2015-01-01

    Bimetallic catalysts have been explored and shown to exhibit unique characteristics which are not present in monometallic catalysts. Platinum is well known as an effective catalyst for oxidation and reduction reactions, and it can be made more effective when bismuth is introduced as a promotor. Thus, the effectiveness of the Pt-Bi catalyst was demonstrated in prior work. What is not clear, however, is the mechanism behind the catalyst function; why addition of bismuth to platinum decreases de...

  13. Formic acid oxidation at platinum-bismuth catalysts

    Directory of Open Access Journals (Sweden)

    Popović Ksenija Đ.

    2015-01-01

    Full Text Available The field of heterogeneous catalysis, specifically catalysis on bimetallic surfaces, has seen many advances over the past few decades. Bimetallic catalysts, which often show electronic and chemical properties that are distinct from those of their parent metals, offer the opportunity to obtain new catalysts with enhanced selectivity, activity, and stability. The oxidation of formic acid is of permanent interest as a model reaction for the mechanistic understanding of the electrooxidation of small organic molecules and because of its technical relevance for fuel cell applications. Platinum is one of the most commonly used catalysts for this reaction, despite the fact that it shows a few significant disadvantages: high cost and extreme susceptibility to poisoning by CO. To solve this problem, several approaches have been used, but generally, they all consist in the modification of platinum with a second element. Especially, bismuth has received significant attention as Pt modifier. According to the results presented in this survey dealing with the effects influencing the formic acid oxidation it was found that two types of Pt-Bi bimetallic catalysts (bulk and low loading deposits on GC showed superior catalytic activity in terms of the lower onset potential and oxidation current density, as well as exceptional stability compared to Pt. The findings in this report are important for the understanding of mechanism of formic acid electrooxidation on a bulk alloy and decorated surface, for the development of advanced anode catalysts for direct formic acid fuel cells, as well as for the synthesis of novel low-loading bimetallic catalysts. The use of bimetallic compounds as the anode catalysts is an effective solution to overcoming the problems of the formic acid oxidation current stability for long term applications. In the future, the tolerance of both CO poisoning and electrochemical leaching should be considered as the key factors in the development

  14. Development of radioactive platinum group metal catalysts

    International Nuclear Information System (INIS)

    Chung, H.S.; Kim, Y.S.; Kim, Y.E.

    1999-03-01

    The fission product nuclides generated during the irradiation of reactor fuel include many useful elements, among them platinum group metals such as ruthenium, rhodium and palladium which are of great industrial importance, occur rarely in nature and are highly valuable. In this research, the authors reviewed various PGM recovery methods. Recovery of palladium from seven-component simulated waste solutions was conducted by selective precipitation method. The recovery yield was more than 99.5% and the purity of the product was more than 99%. Wet-proof catalyst was prepared with the recovered palladium. The specific surface area of the catalyst support was more than 400m 2 /g. The content of palladium impregnated on the support was 1 to 10 wt. %. Hydrogen isotope exchange efficiency of more than 93% to equilibrium with small amount of the catalyst was obtained. It was turned out possible to consider using such palladium or other very low active PGM materials in applications where its activity is unimportant as in nuclear industries. (author). 86 refs., 44 tabs., 88 figs

  15. Development of radioactive platinum group metal catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Chung, H.S.; Kim, Y.S.; Kim, Y.E. [and others

    1999-03-01

    The fission product nuclides generated during the irradiation of reactor fuel include many useful elements, among them platinum group metals such as ruthenium, rhodium and palladium which are of great industrial importance, occur rarely in nature and are highly valuable. In this research, the authors reviewed various PGM recovery methods. Recovery of palladium from seven-component simulated waste solutions was conducted by selective precipitation method. The recovery yield was more than 99.5% and the purity of the product was more than 99%. Wet-proof catalyst was prepared with the recovered palladium. The specific surface area of the catalyst support was more than 400m{sup 2}/g.The content of palladium impregnated on the support was 1 to 10 wt. %. Hydrogen isotope exchange efficiency of more than 93% to equilibrium with small amount of the catalyst was obtained. It was turned out possible to consider using such palladium or other very low active PGM materials in applications where its activity is unimportant as in nuclear industries. (author). 86 refs., 44 tabs., 88 figs.

  16. De-alloyed platinum nanoparticles

    Science.gov (United States)

    Strasser, Peter [Houston, TX; Koh, Shirlaine [Houston, TX; Mani, Prasanna [Houston, TX; Ratndeep, Srivastava [Houston, TX

    2011-08-09

    A method of producing de-alloyed nanoparticles. In an embodiment, the method comprises admixing metal precursors, freeze-drying, annealing, and de-alloying the nanoparticles in situ. Further, in an embodiment de-alloyed nanoparticle formed by the method, wherein the nanoparticle further comprises a core-shell arrangement. The nanoparticle is suitable for electrocatalytic processes and devices.

  17. Engineering Platinum Alloy Electrocatalysts in Nanoscale for PEMFC Application

    Energy Technology Data Exchange (ETDEWEB)

    He, Ting [Idaho National Laboratory

    2016-03-01

    Fuel cells are expected to be a key next-generation energy source used for vehicles and homes, offering high energy conversion efficiency and minimal pollutant emissions. However, due to large overpotentials on anode and cathode, the efficiency is still much lower than theoretically predicted. During the past decades, considerable efforts have been made to investigate synergy effect of platinum alloyed with base metals. But, engineering the alloy particles in nanoscale has been a challenge. Most important challenges in developing nanostructured materials are the abilities to control size, monodispersity, microcomposition, and even morphology or self-assembly capability, so called Nanomaterials-by-Design, which requires interdisciplinary collaborations among computational modeling, chemical synthesis, nanoscale characterization as well as manufacturing processing. Electrocatalysts, particularly fuel cell catalysts, are dramatically different from heterogeneous catalysts because the surface area in micropores cannot be electrochemically controlled on the same time scale as more transport accessible surfaces. Therefore, electrocatalytic architectures need minimal microporous surface area while maximizing surfaces accessible through mesopores or macropores, and to "pin" the most active, highest performance physicochemical state of the materials even when exposed to thermodynamic forces, which would otherwise drive restructuring, crystallization, or densification of the nanoscale materials. In this presentation, results of engineering nanoscale platinum alloy particles down to 2 ~ 4 nm will be discussed. Based on nature of alloyed base metals, various synthesis technologies have been studied and developed to achieve capabilities of controlling particle size and particle microcomposition, namely, core-shell synthesis, microemulsion technique, thermal decomposition process, surface organometallic chemical method, etc. The results show that by careful engineering the

  18. Recycling of platinum group metals from the automotive catalysts

    International Nuclear Information System (INIS)

    Benevit, Mariana; Petter, Patricia Melo Halmenschlager; Veit, Hugo Marcelo

    2014-01-01

    Currently it is very important to use alternative sources of raw material for obtaining metals, avoiding the traditional mining. This work aims to characterize and evaluate the recoverability of platinum group metals present in automotive catalysts. Thus, the catalysts were divided into two groups: the first was catalysts used in 1.0 cars and the second was catalyst used in 2.0 cars. DRX and FRX techniques and chemical analysis performed by ICP/OES was used to characterized these materials. The results showed that there is a significant amount of platinum group elements in catalyst waste, which can be separated and reused. In the next step, hydro and pyrometallurgical routes, for metals extraction from catalyst waste, will be studied. (author)

  19. Ruthenium–Platinum Catalysts and Direct Methanol Fuel Cells (DMFC: A Review of Theoretical and Experimental Breakthroughs

    Directory of Open Access Journals (Sweden)

    Ana S. Moura

    2017-02-01

    Full Text Available The increasing miniaturization of devices creates the need for adequate power sources and direct methanol fuel cells (DMFC are a strong option in the various possibilities under current development. DMFC catalysts are mostly based on platinum, for its outperformance in three key areas (activity, selectivity and stability within methanol oxidation framework. However, platinum poisoning with products of methanol oxidation led to the use of alloys. Ruthenium–platinum alloys are preferred catalysts active phases for methanol oxidation from an industrial point of view and, indeed, ruthenium itself is a viable catalyst for this reaction. In addition, the route of methanol decomposition is crucial in the goal of producing H2 from water reaction with methanol. However, the reaction pathway remains elusive and new approaches, namely in computational methods, have been ensued to determine it. This article reviews the various recent theoretical approaches for determining the pathway of methanol decomposition, and systematizes their validation with experimental data, within methodological context.

  20. Oxidation of 4-methoxy-1-naphthol on promoted platinum catalysts

    CSIR Research Space (South Africa)

    Maphoru, MV

    2017-07-01

    Full Text Available , July 2017, Volume 58, Issue 4, pp 441–447 Oxidation of 4-methoxy-1-naphthol on promoted platinum catalysts M. V. Maphoru J. Heveling S. Kesavan Pillai Abstract Oxidative coupling of naphthols is a useful method for the formation of new...

  1. Electrodeposition of platinum metals and alloys from chloride melts

    Directory of Open Access Journals (Sweden)

    Saltykova N.A.

    2003-01-01

    Full Text Available The structure of platinum metals and their alloys deposited by the electrolysis of chloride melts have been investigated. The cathodic deposits were both in the form of compact layers and dendrites. All the alloys of platinum metals obtained are solid solutions in the whole range of composition. Depending on the experimental conditions the layers had columnar, stratum and spiral (dissipative structures. The stratum and dissipative structures were observed in the case of alloys only.

  2. Sulfur tolerant zeolite supported platinum catalysts for aromatics hydrogenation

    Energy Technology Data Exchange (ETDEWEB)

    Bergem, Haakon

    1997-12-31

    The increased demand for transportation fuels at the expence of heavier fuel oil has forced the refinery industry to expand their conversion capacity with hydrotreating as one of the key processes. A shift towards more diesel powered vehicles along with tightening fuel regulations demanding cleaner fuels has lead to increasing interest in catalytic processes for the manufacturing of such environmentally acceptable fuels. This provides the motivation for this thesis. Its main objective was to study possible catalysts active for desulfurization, hydrogenation, and ring-opening of aromatics all in the presence of sulfur. A close examination of the physical properties and kinetical behaviour of the chosen catalysts has been performed. A high pressure reactor setup was designed and built for activity measurements. Zeolite supported platinum catalysts were prepared and both the metal and acid functions were characterized utilizing various experimental techniques. Hydrogenation of toluene was used as a model reaction and the effect of sulfur adsorption on the activity and kinetic behaviour of the catalysts was investigated. The catalyst samples showed hydrogenation activities comparable to a commercial Pt/Al2O3 catalyst. There were no clear differences in the effect of the various sulfur compounds studied. Platinum supported on zeolite Y gave considerably more sulfur tolerant catalysts compared to Al2O3 as support. 155 refs., 58 figs., 36 tabs.

  3. Reactions of neopentane and neohexane on platinum/Y-zeolite and platinum/silica catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Foger, K.; Anderson, J.R.

    1978-10-13

    The hydrocracking/hydroisomerization reaction of 20:1 hydrogen/neopentane at 455-625/sup 0/K was studied on platinum-exchanged sodium, calcium, and lanthanum Y zeolites and Aerosil-supported platinum of 1-20 nm average platinum particle size, by analysis of the product distribution, ESCA, and temperature-programed desorption. The results suggested that the reaction occurs only on platinum and that it proceeds by two parallel pathways which have different activation energies and whose relative proportion depends on the particle size. One pathway is the conventionally accepted one on low-index crystallite facets; the other proceeds on single-surface platinum atoms of low coordination (corner or edge atoms) which become more abundant at lower crystallite size. In both cases, the adsorbed intermediate may undergo either isomerization or hydrogenolysis; the selectivity depends on the hydrogen partial pressure and the relative strength of adsorption of hydrogen and neopentane. Neohexane isomerization selectivity on the same catalysts is consistent with a carbonium ion mechanism on a dual-function catalyst.

  4. Bimetallic alloy electrocatalysts with multilayered platinum-skin surfaces

    Science.gov (United States)

    Stamenkovic, Vojislav R.; Wang, Chao; Markovic, Nenad M.

    2016-01-26

    Compositions and methods of preparing a bimetallic alloy having enhanced electrocatalytic properties are provided. The composition comprises a PtNi substrate having a surface layer, a near-surface layer, and an inner layer, where the surface layer comprises a nickel-depleted composition, such that the surface layer comprises a platinum skin having at least one atomic layer of platinum.

  5. Platinum catalyst formed on carbon nanotube by the in-liquid plasma method for fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Show, Yoshiyuki; Hirai, Akira; Almowarai, Anas; Ueno, Yutaro

    2015-12-01

    In-liquid plasma was generated in the carbon nanotube (CNT) dispersion fluid using platinum electrodes. The generated plasma spattered the surface of the platinum electrodes and dispersed platinum particles into the CNT dispersion. Therefore, the platinum nanoparticles were successfully formed on the CNT surface in the dispersion. The platinum nanoparticles were applied to the proton exchange membrane fuel cell (PEMFC) as a catalyst. The electrical power of 108 mW/cm{sup 2} was observed from the fuel cell which was assembled with the platinum catalyst formed on the CNT by the in-liquid plasma method. - Highlights: • The platinum catalyst was successfully formed on the CNT surface in the dispersion by the in-liquid plasma method. • The electrical power of 108 mW/cm{sup 2} was observed from the fuel cell which was assembled with the platinum catalyst formed on the CNT by the in-liquid plasma method.

  6. Pretreatment of Platinum/Tin Oxide-Catalyst

    Science.gov (United States)

    Hess, Robert V.; Paulin, Patricia A.; Miller, Irvin M.; Schryer, David R.; Sidney, Barry D.; Wood, George M.; Upchurch, Billy T.; Brown, Kenneth G.

    1987-01-01

    Addition of CO to He pretreatment doubles catalytic activity. In sealed, high-energy, pulsed CO2 laser, CO and O2 form as decomposition products of CO2 in laser discharge zone. Products must be recombined, because oxygen concentration of more than few tenths of percent causes rapid deterioration of power, ending in unstable operation. Promising low-temperature catalyst for combining CO and O2 is platinum on tin oxide. New development increases activity of catalyst so less needed for recombination process.

  7. Platinum-nickel alloy nanoparticles supported on carbon for 3-pentanone hydrogenation

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Lihua, E-mail: lihuazhu@stu.xmu.edu.cn [School of Metallurgy and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, Jiang Xi (China); Department of Chemical and Biochemical Engineering, National Engineering Laboratory for Green Productions of Alcohols-Ethers-Esters, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005 (China); Zheng, Tuo; Yu, Changlin [School of Metallurgy and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, Jiang Xi (China); Zheng, Jinbao [Department of Chemical and Biochemical Engineering, National Engineering Laboratory for Green Productions of Alcohols-Ethers-Esters, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005 (China); Tang, Zhenbiao [School of Metallurgy and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, Jiang Xi (China); Zhang, Nuowei [Department of Chemical and Biochemical Engineering, National Engineering Laboratory for Green Productions of Alcohols-Ethers-Esters, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005 (China); Shu, Qing [School of Metallurgy and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, Jiang Xi (China); Chen, Bing H., E-mail: chenbh@xmu.edu.cn [Department of Chemical and Biochemical Engineering, National Engineering Laboratory for Green Productions of Alcohols-Ethers-Esters, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005 (China)

    2017-07-01

    Highlights: • The PtNi/Ni(OH){sub 2}/C catalyst was successfully synthesized at room temperature. • PtNi alloy/C was obtained after PtNi/Ni(OH){sub 2}/C reduced in hydrogen at 300 °C. • Nanostructures of the PtNi catalysts were characterized by numerous techniques. • PtNi alloy/C exhibited high catalytic activity for 3-pentanone hydrogenation. - Abstract: In this work, we prepared the Ni/Ni(OH){sub 2}/C sample at room temperature by hydrazine hydrate reducing method. The galvanic replacement reaction method was applied to deposit platinum on the Ni/Ni(OH){sub 2} nanoparticles, to prepare the PtNi/Ni(OH){sub 2}/C catalyst. The catalyst of platinum-nickel alloy nanoparticles supported on carbon (signed as PtNi/C) was obtained by the thermal treatment of PtNi/Ni(OH){sub 2}/C in flowing hydrogen at 300 °C for 2 h. The size, nanostructure, surface properties, Pt and Ni chemical states of the PtNi/C catalyst were analyzed using powder X-ray diffraction (XRD), transmission electron microscope (TEM) and high resolution transmission electron microscope (HRTEM), high-angle annular dark-field scanning TEM (HAADF-STEM) and elemental energy dispersive X-ray spectroscopy (EDS) line scanning, X-ray photoelectron spectroscopy (XPS) and high-sensitivity low-energy ion scattering spectroscopy (HS-LEIS) techniques. The as-synthesized PtNi/C catalyst showed enhanced catalytic performance relative to the Ni/Ni(OH){sub 2}/C, Ni/C, Pt/C and PtNi/Ni(OH){sub 2}/C catalysts for 3-pentanone hydrogenation due to electron synergistic effect between Pt and Ni species in the PtNi/C catalyst. The PtNi/C catalyst also had exceling stability, with industrial application value.

  8. Recovery of Platinum Group Metals from Spent Catalysts Using Iron Chloride Vapor Treatment

    Science.gov (United States)

    Taninouchi, Yu-ki; Okabe, Toru H.

    2018-05-01

    The recovery of platinum group metals (PGMs) from spent automobile catalysts is a difficult process because of their relatively low contents in the scrap. In this study, to improve the efficiency of the existing recycling techniques, a novel physical concentration method involving treatment with FeCl2 vapor has been examined. The reactions occurring between typical catalyst components and FeCl2 vapor are discussed from the thermodynamic point of view, and the validity of the proposed technique was experimentally verified. The obtained results indicate that the vapor treatment at around 1200 K (927 °C) can effectively alloy PGMs (Pt, Pd, and Rh) with Fe, resulting in the formation of a ferromagnetic alloy. It was also confirmed that cordierite and alumina (the major catalyst components) remained unreacted after the vapor treatment, while ceria species were converted into oxychlorides. The samples simulating the automobile catalyst were also subjected to magnetic separation after the treatment with FeCl2 vapor; as a result, PGMs were successfully extracted and concentrated in the form of a magnetic powder. Thus, the FeCl2 vapor treatment followed by magnetic separation can be utilized for recovering PGMs directly from spent catalysts as an effective pretreatment for the currently used recycling methods.

  9. Structure-activity relationships of carbon-supported platinum-bismuth and platinum-antimony oxidation catalysts

    CSIR Research Space (South Africa)

    Maphoru, MV

    2017-04-01

    Full Text Available Compositional and morphological studies on supported platinum are important for the improvement and expanded use of catalysts for oxidative coupling reactions. Nanocomposites consisting of 5% Pt supported on activated carbon and promoted with 5% Bi...

  10. Rapid and Efficient Collection of Platinum from Karstedt's Catalyst Solution via Ligands-Exchange-Induced Assembly.

    Science.gov (United States)

    Yang, Gonghua; Wei, Yanlong; Huang, Zhenzhu; Hu, Jiwen; Liu, Guojun; Ou, Ming; Lin, Shudong; Tu, Yuanyuan

    2018-02-21

    Reported herein is a novel strategy for the rapid and efficient collection of platinum from Karstedt's catalyst solution. By taking advantage of a ligand-exchange reaction between alkynols and the 1,3-divinyltetramethyldisiloxane ligand (M Vi M Vi ) that coordinated with platinum (Pt(0)), the Karstedt's catalyst particles with a size of approximately 2.5 ± 0.7 nm could be reconstructed and assembled into larger particles with a size of 150 ± 35 nm due to the hydrogen bonding between the hydroxyl groups of the alkynol. In addition, because the silicone-soluble M Vi M Vi ligand of the Karstedt's catalyst was replaced by water-soluble alkynol ligands, the resultant large particles were readily dispersed in water, resulting in rapid, efficient, and complete collection of platinum from the Karstedt's catalyst solutions with platinum concentrations in the range from ∼20 000 to 0.05 ppm. Our current strategy not only was used for the rapid and efficient collection of platinum from the Karstedt's catalyst solutions, but it also enabled the precise evaluation of the platinum content in the Karstedt's catalysts, even if this platinum content was extremely low (i.e., 0.05 ppm). Moreover, these platinum specimens that were efficiently collected from the Karstedt's catalyst solutions could be directly used for the evaluation of platinum without the need for pretreatment processes, such as calcination and digestion with hydrofluoric acid, that were traditionally used prior to testing via inductively coupled plasma mass spectrometry in conventional methods.

  11. Single-Atom Catalyst of Platinum Supported on Titanium Nitride for Selective Electrochemical Reactions.

    Science.gov (United States)

    Yang, Sungeun; Kim, Jiwhan; Tak, Young Joo; Soon, Aloysius; Lee, Hyunjoo

    2016-02-05

    As a catalyst, single-atom platinum may provide an ideal structure for platinum minimization. Herein, a single-atom catalyst of platinum supported on titanium nitride nanoparticles were successfully prepared with the aid of chlorine ligands. Unlike platinum nanoparticles, the single-atom active sites predominantly produced hydrogen peroxide in the electrochemical oxygen reduction with the highest mass activity reported so far. The electrocatalytic oxidation of small organic molecules, such as formic acid and methanol, also exhibited unique selectivity on the single-atom platinum catalyst. A lack of platinum ensemble sites changed the reaction pathway for the oxygen-reduction reaction toward a two-electron pathway and formic acid oxidation toward direct dehydrogenation, and also induced no activity for the methanol oxidation. This work demonstrates that single-atom platinum can be an efficient electrocatalyst with high mass activity and unique selectivity. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Platinum-gold nanoclusters as catalyst for direct methanol fuel cells.

    Science.gov (United States)

    Giorgi, L; Giorgi, R; Gagliardi, S; Serra, E; Alvisi, M; Signore, M A; Piscopiello, E

    2011-10-01

    Nanosized platinum-gold alloys clusters have been deposited on gas diffusion electrode by sputter deposition. The deposits were characterized by FE-SEM, TEM and XPS in order to verify the formation of alloy nanoparticles and to study the influence of deposition technique on the nanomorphology. The deposition by sputtering process allowed a uniform distribution of metal particles on porous surface of carbon supports. Typical island growth mode was observed with the formation of a dispersed metal nanoclusters (mean size about 5 nm). Cyclic voltammetry was used to determine the electrochemical active surface and the electrocatalytic performance of the PtAu electrocatalysts for methanol oxidation reaction. The data were re-calculated in the form of mass specific activity (MSA). The sputter-catalyzed electrodes showed higher performance and stability compared to commercial catalysts.

  13. Reaction pathways for reduction of nitrate ions on platinum, rhodium, and platinum-rhodium alloy electrodes

    International Nuclear Information System (INIS)

    Cunha, M.C.P.M. da; De Souza, J.P.I.; Nart, F.C.

    2000-01-01

    The reduction of nitrate ions on platinum, rhodium, and platinum-rhodium alloy electrodes has been investigated using differential electrochemical mass spectrometry and in situ FTIR measurements. For 3 M HNO 3 concentration it has been found that nitrate starts the reduction with partial N-O bond dissociation and N-N bond formation generating NO and N 2 O. At potentials lower than 0.2 V the reaction proceeds forming dissolved NH 4 + . For potentials lower than 0 V the reduction continues via a multiple pathway reaction leading to the nonselective production of N 2 , NH 2 OH, and N 2 H 2 . On the alloyed electrodes, the production of NO and N 2 O has been observed in both cathodic and anodic scans, while on pure platinum and rhodium electrodes the reaction has been observed only during the cathodic scan. Contrasting with the pure platinum and rhodium alloys, where the N-O bond break starts forming NO and N 2 O, on the alloys HNO 2 has been observed as the first reaction step. For alloys with higher rhodium composition, like Pt 75 Rh 25 , no N 2 has been detected for potentials lower than 0 V

  14. Monodisperse Platinum and Rhodium Nanoparticles as Model Heterogeneous Catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Grass, Michael Edward [Univ. of California, Berkeley, CA (United States)

    2008-09-01

    Model heterogeneous catalysts have been synthesized and studied to better understand how the surface structure of noble metal nanoparticles affects catalytic performance. In this project, monodisperse rhodium and platinum nanoparticles of controlled size and shape have been synthesized by solution phase polyol reduction, stabilized by polyvinylpyrrolidone (PVP). Model catalysts have been developed using these nanoparticles by two methods: synthesis of mesoporous silica (SBA-15) in the presence of nanoparticles (nanoparticle encapsulation, NE) to form a composite of metal nanoparticles supported on SBA-15 and by deposition of the particles onto a silicon wafer using Langmuir-Blodgett (LB) monolayer deposition. The particle shapes were analyzed by transmission electron microscopy (TEM) and high resolution TEM (HRTEM) and the sizes were determined by TEM, X-ray diffraction (XRD), and in the case of NE samples, room temperature H2 and CO adsorption isotherms. Catalytic studies were carried out in homebuilt gas-phase reactors. For the nanoparticles supported on SBA-15, the catalysts are in powder form and were studied using the homebuilt systems as plug-flow reactors. In the case of nanoparticles deposited on silicon wafers, the same systems were operated as batch reactors. This dissertation has focused on the synthesis, characterization, and reaction studies of model noble metal heterogeneous catalysts. Careful control of particle size and shape has been accomplished though solution phase synthesis of Pt and Rh nanoparticles in order to elucidate further structure-reactivity relationships in noble metal catalysis.

  15. Platinum group metal recovery and catalyst manufacturing process

    Energy Technology Data Exchange (ETDEWEB)

    Chung, H. S.; Kim, Y. S.; Yoo, J. H.; Lee, H. S.; Ahn, D. H.; Kim, K. R.; Lee, S. H.; Paek, S. W.; Kang, H. S.

    1998-03-01

    The fission product nuclides generated during the irradiation of reactor fuel include many useful elements, among them platinum group metal such as ruthenium, rhodium and palladium which are of great industrial importance, occur rarely in nature and are highly valuable. In this research, the authors reviewed various PGM recovery methods. Recovery of palladium from seven-component simulated waste solution was conducted by selective precipitation method. The recovery yield was more than 99.5% and the purity of the product was more than 99%. Wet-proof catalyst was prepared with the recovered palladium. The specific surface area of the catalyst support was more than 400 m{sup 2}/g. The content of palladium impregnated on the support was 10 wt.%. Hydrogen isotope exchange efficiency of 93 % to equilibrium with small amount of the catalyst was obtained. It was turned out possible to consider using such palladium or other very low active PGM materials in applications where its actively is unimportant as in nuclear industries. (author). 63 refs., 38 tabs., 36 figs.

  16. Determination of surface coverage of catalysts : temperature programmed experiments on platinum and iridium sponge catalysts after low temperature ammonia oxidation

    NARCIS (Netherlands)

    van den Broek, A.C.M.; Grondelle, van J.; Santen, van R.A.

    1999-01-01

    The activity of iridium and platinum sponge catalysts was studied in the low temperature gas phase oxidation of ammonia with oxygen. Under the reaction conditions used, iridium was found to be more active and more selective to nitrogen than platinum. Furthermore it was established from activity

  17. Platinum and palladium alloys suitable as fuel cell electrodes

    DEFF Research Database (Denmark)

    2014-01-01

    The present invention concerns electrode catalysts used in fuel cells, such as proton exchange membrane (PEM) fuel cells. The invention is related to the reduction of the noble metal content and the improvement of the catalytic efficiency by low level substitution of the noble metal to provide new...... and innovative catalyst compositions in fuel cell electrodes. The novel electrode catalysts of the invention comprise a noble metal selected from Pt and Pd alloyed with an alkaline earth metal....

  18. Platinum and palladium alloys suitable as fuel cell electrodes

    DEFF Research Database (Denmark)

    2014-01-01

    The present invention concerns electrode catalysts used in fuel cells, such as proton exchange membrane (PEM) fuel cells. The invention is related to the reduction of the noble metal content and the improvement of the catalytic5 efficiency by low level substitution of the noble metal to provide new...... and innovative catalyst compositions in fuel cell electrodes. The novel electrode catalysts of the invention comprise a noble metal selected from Pt and Pd alloyed with a lanthanide metal....

  19. Graphite-supported platinum catalysts: Effects of gas and aqueous phase treatments

    Energy Technology Data Exchange (ETDEWEB)

    Vleeming, J.H.; Kuster, B.F.M.; Marin, G.B. [Eindhoven Univ. of Technology (Netherlands)] [and others

    1997-03-01

    The effects on the platinum particle diameter and the available platinum surface area of a graphite-supported platinum catalyst resulting from pretreatments and from performing a selective oxidation reaction are investigated. In the gas phase considerable catalyst sintering occurs only in the presence of oxygen at 773 K due to extensive carbon burn-off, whereas in an aqueous phase platinum particle growth is limited upon oxidative treatment. A hydrogen treatment in aqueous phase at 363 K causes platinum particle growth, aggregate formation, and covering of metal sites. These phenomena become more important with increasing pH. Platinum particle growth and aggregate formation are attributed to platinum particle rather than platinum adatom mobility and is caused by the destruction of the oxygen-containing surface groups on the graphite support, which serve as anchorage sites for the platinum particles. Site covering is caused by products originating from the graphite support, which are formed as a result of the reductive treatments. When performing the aqueous phase oxidation of methyl {alpha}-D-glucopyranoside at 323 K and a pH of 9, catalyst modifications are small under oxidative conditions. Exposure of the catalyst for several hours to methyl {alpha}-D-glucopyranoside under the same conditions but in the absence of oxygen causes site covering. 50 refs., 9 figs., 1 tab.

  20. Platinum and Palladium Alloys Suitable as Fuel Cell Electrodes

    DEFF Research Database (Denmark)

    2011-01-01

    The present invention concerns electrode catalysts used in fuel cells, such as proton exchange membrane (PEM) fuel cells. The invention is related to the reduction of the noble metal content and the improvement of the catalytic efficiency by low level substitution of the noble metal to provide new...... and innovative catalyst compositions in fuel cell electrodes. The novel electrode catalysts of the invention comprise a noble metal selected from Pt, Pd and mixtures thereof alloyed with a further element selected from Sc, Y and La as well as any mixtures thereof, wherein said alloy is supported on a conductive...

  1. Development of Water Detritiation Process Using the Hydrophobic Platinum Catalyst

    International Nuclear Information System (INIS)

    Ahn, D.H.; Paek, S.; Choi, H.J.; Kim, K.R.; Chung, H.; Yim, S.P.; Lee, M.S.

    2006-01-01

    Radioactive emissions and occupational doses by tritium are mainly caused by tritiated water escaping from equipment in the nuclear industry. Improving the leak-tightness of equipment is effective in reducing emissions and internal dose but is not a long-term solution. Water detritiation was consider to be the most effective tritium control option since tritium is removed right from the source. The WTRF (Wolsong Tritium Removal Facility) is under construction now with the completion date of June, 2006 in Korea. It is designed to remove tritium from tritiated heavy water in each of the existing four Candu units at Wolsong site. We developed a hydrophobic platinum catalyst (Pt/SDBC catalyst) that would be used at the LPCE (Liquid Phase Catalytic Exchange) column in the WTRF. The catalytic rate constants of the newly developed catalyst for the deuterium exchange reaction between water vapor and hydrogen gas were measured in a recycle reactor. The catalytic rate constants of the Pt/SDBC catalyst decreased with reaction time and were much greater than that required, 2.0 x 10 -4 mol (D 2 )/s/g(pellet) in the design of the WTRF. Tritium removal efficiency of the WTRF, which is important for a safe and reliable operation of the facility, depends on the design and operating variables. A theoretical model based on the design and operating variables of the LPCE process was set up, and the equations between the parameters were derived. Numerical calculation result from a computer program shows steep increase of the detritiation factor of the LPCE process with respect to temperature increase and mild increase with respect to pressure decrease. The other parametric study shows that the calculated detritiation factors increase as the catalyst efficiency, number of theoretical stages of hydrophilic packing, the detritiation factor of cryogenic distillation system and the total number of sections increase. We also proceeded with the experiments for the hydrogen isotopic exchange

  2. Effect of titania on the characteristics of a Tin-Platinum catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Morales-Gil, P., E-mail: moralesp@imp.mx; Nava, N. [Instituto Mexicano del Petróleo (Mexico); Baggio-Saitovitch, E. [Centro Brasileiro de Pesquisas Físicas (Brazil)

    2015-06-15

    Pt-Sn bimetallic catalysts dispersed on alumina are commonly used for reforming and dehydrogenation reactions. In this research work, Pt and Sn were supported on titania. The resulting interactions between the components in the prepared samples, before and after treatment with hydrogen, were studied by Mössbauer spectroscopy, X-ray diffraction and Rietveld refinement. The results show the presence of Pt and SnO{sub 2} after calcinations. After the reduction process, metallic Pt, PtSn, and Pt{sub 3}Sn alloys were identified. The Rietveld refinement analysis shows that some Ti{sup 4+} atoms were replaced by Sn{sup 4+} atoms in the titania structure. Finally, the Mössbauer spectroscopy and X-ray diffraction results indicate that metallic platinum and SnO{sub 2} are encapsulated by a TiOx layer.

  3. Synthesis and characterization of platinum supported on alumina doped with cerium catalyst

    International Nuclear Information System (INIS)

    Yusof Abdullah; Abd Fatah Awang Mat; Mohd Ali Sufi; Sarimah Mahat; Razali Kassim; Nurhaslinda Abdullah.

    1996-03-01

    The synthesis and characterization of gamma-alumina doped with cerium as platinum support for the automobile exhaust catalyst are described. Platinum/alumina/ceria catalyst were prepared by impregnation of hexachloroplatinic acid and sintered at 500 degree Celsius to obtain metal dispersions of 1.0 wt%. Catalyst distribution inside the powder and the effects of the addition of cerium to alumina were analyzed by the scanning electron microscopy (SEM) and x-ray fluorescence spectroscopy (XRF). The results showed that the alumina - supported catalysts contained well dispersion of the noble metal

  4. Separation of deuterium by H2/H2O reaction with hydrophobic platinum catalyst

    International Nuclear Information System (INIS)

    Kitamoto, A.; Takashima, Y.; Shimizu, M.

    The separation performance of a trickle bed exchange column packed with a hydrophobic or waterproof catalyst is related to operating conditions such as hydrogen surface velocity, water flow rate, and temperature. The optimum carrier type and catalyst platinum content were determined. The continuous injection of roughly 10 3 ppm O 2 regenerates the catalyst effectively. The ratio of hydrophobic catalyst to hydrophilic packing is an important factor in increasing the exchange rate in deuterium extraction

  5. To alloy or not to alloy? Cr modified Pt/C cathode catalysts for PEM fuel cells.

    Science.gov (United States)

    Wells, Peter P; Qian, Yangdong; King, Colin R; Wiltshire, Richard J K; Crabb, Eleanor M; Smart, Lesley E; Thompsett, David; Russell, Andrea E

    2008-01-01

    The cathode electrocatalysts for proton exchange membrane (PEM) fuel cells are commonly platinum and platinum based alloy nanoparticles dispersed on a carbon support. Control over the particle size and composition has, historically, been attained empirically, making systematic studies of the effects of various structural parameters difficult. The controlled surface modification methodology used in this work has enabled the controlled modification of carbon supported Pt nanoparticles by Cr so as to yield nanoalloy particles with defined compositions. Subsequent heat treatment in 5% H2 in N2 resulted in the formation of a distinct Pt3Cr alloy phase which was either restricted to the surface of the particles or present throughout the bulk of the particle structure. Measurement of the oxygen reduction activity of the catalysts was accomplished using the rotating thin film electrode method and the activities obtained were related to the structure of the nanoalloy catalyst particles, largely determined using Cr K edge and Pt L3 edge XAS.

  6. The effects of thermal-neutron irradiation on platinum and dilute platinum-gold alloys

    International Nuclear Information System (INIS)

    Piani, C.S.B.

    1978-12-01

    The effect of varying defect concentrations on the recovery spectrum of thermal-neutron-irradiated pure platinum after isochronal anneals was investigated. The dose-independence of substages I(A), I(B) and I(C), and the dose dependence of substage I(D) and I(E), were observed to be in agreement with electron-irradiated studies. The 120 K substage in pure platinum was shown not to be due to interstitial-interstitial reactions, but could possibly be accounted for in terms of detrapping of interstitials from impurities or intrinsic immobile defects. The 360 K stage was shown to shift and was suppressed with increasing defect concentration. The possible conversion of the crowdion to a dumbbell near 160 K in Stage ll in platinum, as predicted by the two-interstitial model, was investigated by consideration of the initial slopes of the production curves between 80 K and 300 K. A minimum in these slopes was observed near 160 K and could be interpreted as due to the conversion of the highly mobile crowdion to an immobile dumbbell at this temperature. The influence of varying gold concentrations on the recovery spectrum of platinum was investigated in dilute platinum-gold alloys. The characteristics of several additional substages in Stage ll, due to the gold alloying were comparable to the results of electron-irradiation experiments. The observations made with regard to the impurity (gold) dependence of these substages could be interpreted in terms of the concentrations of the interstitials, vacancies and impurities present in the material. The interpretation of these substages was found to be consistent, if the recovery spectrum was investigated as a function of defect concentration [af

  7. Silica Supported Platinum Catalysts for Total Oxidation of the Polyaromatic Hydrocarbon Naphthalene: An Investigation of Metal Loading and Calcination Temperature

    Directory of Open Access Journals (Sweden)

    David R. Sellick

    2015-04-01

    Full Text Available A range of catalysts comprising of platinum supported on silica, prepared by an impregnation method, have been studied for the total oxidation of naphthalene, which is a representative Polycyclic Aromatic Hydrocarbon. The influence of platinum loading and calcination temperature on oxidation activity was evaluated. Increasing the platinum loading up to 2.5 wt.% increased the catalyst activity, whilst a 5.0 wt.% catalyst was slightly less active. The catalyst containing the optimum 2.5 wt.% loading was most active after calcination in air at 550 °C. Characterisation by carbon monoxide chemisorption and X-ray photoelectron spectroscopy showed that low platinum dispersion to form large platinum particles, in combination with platinum in metallic and oxidised states was important for high catalyst activity. Catalyst performance improved after initial use in repeat cycles, whilst there was slight deactivation after prolonged time-on-stream.

  8. Hydrogen Temperature-Programmed Desorption (H2 TPD) of Supported Platinum Catalysts.

    NARCIS (Netherlands)

    Koningsberger, D.C.; Miller, J.T.; Meyers, B.L.; Modica, F.S.; Lane, G.S.; Vaarkamp, M.

    1993-01-01

    Hydrogen temperature-programmed desorption (TPD) of supported platinum catalysts, Pt/KLTL, Pt/H-LTL, Pt/K-MAZ, Pt/H-MAZ, Pt/-Al2O3, and Pt/SiO2, was performed after hydrogen reduction at 300, 450, or 650°C. For all catalysts, reversible desorption of chemisorbed hydrogen occurred at approximately

  9. The role of support and promoter on the oxidation of sulfur dioxide using platinum based catalysts

    DEFF Research Database (Denmark)

    Koutsopoulos, Sotiris; Rasmussen, Søren Birk; Eriksen, Kim Michael

    2006-01-01

    The catalytic oxidation of SO2 to SO3 was studied over platinum based catalysts in the absence and the presence of dopants. The active metal was supported on silica gel or titania (anatase) by impregnation. The activities of the silica supported catalysts were found to follow the order PtRh/SiO2 ...

  10. Gaseous exchange reaction of deuterium between hydrogen and water on hydrophobic catalyst supporting platinum

    International Nuclear Information System (INIS)

    Izawa, Hirozumi; Isomura, Shohei; Nakane, Ryohei.

    1979-01-01

    The deuterium exchange reaction between hydrogen and water in the gas phase where the fed hydrogen gas is saturated with water vapor is studied experimentally by use of the proper hydrophobic catalysts supporting platinum. It is found that the activities of those catalysts for this reaction system are very high compared with the other known ones for the systems in which gas and liquid should coexist on catalyst surfaces, and that the apparent catalytic activity becomes larger as the amount of platinum supported on a catalyst particle increases. By analyses of the data the following informations are obtained. The exchange reaction can be expressed by a first order reversible reaction kinetics. The pore diffusion in the catalyst particles has significant effect on the overall reaction mechanisms. (author)

  11. Nano carbon supported platinum catalyst interaction behavior with perfluorosulfonic acid ionomer and their interface structures

    DEFF Research Database (Denmark)

    Andersen, Shuang Ma

    2016-01-01

    behavior of Nafion ionomer on platinized carbon nano fibers (CNFs), carbon nano tubes (CNTs) and amorphous carbon (Vulcan). The interaction is affected by the catalyst surface oxygen groups as well as porosity. Comparisons between the carbon supports and platinized equivalents are carried out. It reveals......The interaction between perfluorosulfonic acid ionomer and supported platinum catalyst is essential. It directly influences platinum accessibility, stability of carbon support and platinum, proton conductivity and electron conductivity in an electrode. In this study, we compare the adsorption...... that the platinization step modifies the surface nature of the carbon supports in terms of specific surface area, crystallinity and especially porosity; therefore, ionomer adsorption over carbon is not always representative for the ionomer adsorption over carbon supported catalyst, though indicative. Moreover...

  12. Ruthenium-platinum bimetallic catalysts supported on silica: characterization and study of benzene hydrogenation and CO methanation

    Energy Technology Data Exchange (ETDEWEB)

    Chakrabarty, D.K.; Rao, K.M.; Sundararaman, N.; Chandavar, K.

    1986-12-15

    Ru-Pt/SiO/sub 2/ bimetallic catalysts with varying Ru:Pt ratio have been prepared and studied with the aim to establish if they contain coclusters or isolated ruthenium and platinum particles. X-ray diffraction studies show that individual crystallites of ruthenium and platinum are present and no coclusters are formed. Metal dispersion has been determined by hydrogen chemisorption and surface composition of the catalysts has been obtained from XPS. It was found that preoxidation of the catalysts prior to reduction is essential for good platinum dispersion. The experimental turnover number (TN) for benzene hydrogenation on the bimetallic catalysts agrees very well with that of the weighted average on the individual metal catalysts and this may be taken as a kinetic evidence for the absence of coclusters. Carbon monoxide methanation activity of the bimetallic catalysts is quite similar to that of the supported platinum catalyst. 6 refs., 6 figs., 2 tabs.

  13. Dearomatization of jet fuel on irradiated platinum-supported catalyst

    International Nuclear Information System (INIS)

    Mucka, V.; Ostrihonova, A.; Kopernicky, I.; Mikula, O.

    1983-01-01

    The effect of ionizing radiation ( 60 Co #betta#-rays) on Pt-supported catalyst used for the dearomatization of jet fuel with distillation in the range 395 to 534 K has been studied. Pre-irradiation of the catalyst with doses in the range 10 2 to 5 x 10 4 Gy leads to the partial catalyst activation. Irradiation of the catalyst enhances its resistance to catalyst poisons, particularly to sulphur-compounds, and this is probably the reason for its catalytic activity being approx. 60 to 100% greater than that of un-irradiated catalyst. Optimum conditions for dearomatization on the irradiated catalyst were found and, by means of a rotary three-factorial experiment, it was shown that these lie at lower temperatures and lower pressures than those for un-irradiated catalyst. (author)

  14. Methanol oxidation at platinum electrodes in acid solution: comparison between model and real catalysts

    Directory of Open Access Journals (Sweden)

    A. V. TRIPKOVIC

    2006-12-01

    Full Text Available Methanol oxidation in acid solution was studied at platinum single crystals, Pt(hkl, as the model catalyst, and at nanostructural platinum supported on high surface area carbon, Pt/C, as the real catalyst. The linear extrapolation method was used to determine the beginning of hydroxyl anion adsorption. Structural sensitivity of the adsorption was proved and a correlation with the onset of the methanol oxidation current was established at all catalysts. Bisulfate and chloride anions were found to decrease the methanol oxidation rate, but probably did not influence the reaction parth. The specific activity for the reaction increased in the sequence Pt(110 < Pt/C < Pt(111, suggesting that the activity of the supported Pt catalyst can be correlated with the activities of the dominating crystal planes on its surface.

  15. Highly Dispersed Alloy Catalyst for Durability

    Energy Technology Data Exchange (ETDEWEB)

    Murthi, Vivek S.; Izzo, Elise; Bi, Wu; Guerrero, Sandra; Protsailo, Lesia

    2013-01-08

    Achieving DOE's stated 5000-hr durability goal for light-duty vehicles by 2015 will require MEAs with characteristics that are beyond the current state of the art. Significant effort was placed on developing advanced durable cathode catalysts to arrive at the best possible electrode for high performance and durability, as well as developing manufacturing processes that yield significant cost benefit. Accordingly, the overall goal of this project was to develop and construct advanced MEAs that will improve performance and durability while reducing the cost of PEMFC stacks. The project, led by UTC Power, focused on developing new catalysts/supports and integrating them with existing materials (membranes and gas diffusion layers (GDLs)) using state-of-the-art fabrication methods capable of meeting the durability requirements essential for automotive applications. Specifically, the project work aimed to lower platinum group metals (PGM) loading while increasing performance and durability. Appropriate catalysts and MEA configuration were down-selected that protects the membrane, and the layers were tailored to optimize the movements of reactants and product water through the cell to maximize performance while maintaining durability.

  16. BOWIEITE: A NEW RHODIUM-IRIDIUM-PLATINUM SULFIDE IN PLATINUM-ALLOY NUGGETS, GOODNEWS BAY, ALASKA.

    Science.gov (United States)

    Desborough, George A.; Criddle, Alan J.

    1984-01-01

    Bowieite (Rh,Ir,Pt)//2S//3, a new mineral species, is found in three nuggets of platinum from Goodnews Bay, Alaska. In linearly polarized reflected light, and compared to the host, higher reflecting white platinum-iridium alloy, bowieite is pale gray to pale gray-brown; neither bireflectance nor reflectance pleochroism is apparent. With polars crossed, its anisotropic rotation tints vary from gray to dark brown. Luminance values (relative to the CIE illuminant C) for R//1 and R//2, computed from full spectral data for the most bireflectant grain, are 45. 8% and 48. 2% in air, and 30. 5% and 33. 0% in oil, respectively. VHN//1//0//0 1288 (858 to 1635). Bowieite is orthorhombic, space group Pnca, with a 8. 454(7) -8. 473(8), b 5. 995(1)-6. 002(7), c 6. 143(1)-6. 121(8) A, Z equals 4. Some grains that are 2. 6 to 3. 8 atomic % metal-deficient occur as an optically coherent rim on bowieite; the rim and the bowieite grain are not optically continuous.

  17. Oxidative dehydrogenation of aqueous ethanol on a carbon supported platinum catalyst

    NARCIS (Netherlands)

    Tillaart, van den J.A.A.; Kuster, B.F.M.; Marin, G.B.M.M.

    1994-01-01

    The kinetics of the selective oxidative dehydrogenation of ethanol to ethanal over a platinum on graphite catalyst with oxygen in water was investigated in a three-phase continuous stirred tank reactor by variation of temp., pH and reactant concns. No effect of the pH on the disappearance rate of

  18. Oxygen reduction on carbon supported platinum catalysts in high temperature polymer electrolytes

    DEFF Research Database (Denmark)

    Qingfeng, Li; Bergqvist, R. S.; Hjuler, H. A.

    1999-01-01

    Oxygen reduction on carbon supported platinum catalysts has been investigated in H3PO4, H3PO4-doped Nafion and PBI polymer electrolytes in a temperature range from 80 to 190°C. Compared with pure H3PO4, using the H3PO4 doped Nafion and PBI polymer electrolytes can significantly improve the oxygen...

  19. Homogeneous deuterium exchange using rhenium and platinum chloride catalysts

    International Nuclear Information System (INIS)

    Fawdry, R.M.

    1979-01-01

    Previous studies of homogeneous hydrogen isotope exchange are mostly confined to one catalyst, the tetrachloroplatinite salt. Recent reports have indicated that chloride salts of iridium and rhodium may also be homogeneous exchange catalysts similar to the tetrachloroplatinite, but with much lower activities. Exchange by these homogeneous catalysts is frequently accompanied by metal precipitation with the termination of homogeneous exchange, particularly in the case of alkane exchange. The studies presented in this thesis describe two different approaches to overcome this limitation of homogeneous hydrogen isotope exchange catalysts. The first approach was to improve the stability of an existing homogeneous catalyst and the second was to develop a new homogeneous exchange catalyst which is free of the instability limitation

  20. Elaboration, physical and electrochemical characterizations of CO tolerant PEMFC anode materials. Study of platinum-molybdenum and platinum-tungsten alloys and composites; Elaborations et caracterisations electrochimiques et physiques de materiaux d'anode de PEMFC peu sensibles a l'empoisonnement par CO: etude d'alliages et de composites a base de platine-molybdene et de platine-tungstene

    Energy Technology Data Exchange (ETDEWEB)

    Peyrelade, E.

    2005-06-15

    PEMFC development is hindered by the CO poisoning ability of the anode platinum catalyst. It has been previously shown that the oxidation potential of carbon monoxide adsorbed on the platinum atoms can be lowered using specific Pt based catalysts, either metallic alloys or composites. The objective is then to realize a catalyst for which the CO oxidation is compatible with the working potential of a PEMFC anode. In our approach, to enhance the CO tolerance of platinum based catalyst supported on carbon, we studied platinum-tungsten and platinum-molybdenum alloys and platinum-metal oxide materials (Pt-WO{sub x} and Pt-MoO{sub x}). The platinum based alloys demonstrate a small effect of the second metal towards the oxidation of carbon monoxide. The platinum composites show a better tolerance to carbon monoxide. Electrochemical studies on both Pt-MoO{sub x} and Pt-WO{sub x} demonstrate the ability of the metal-oxides to promote the ability of Pt to oxidize CO at low potentials. However, chrono-amperometric tests reveal a bigger influence of the tungsten oxide. Complex chemistry reactions on the molybdenum oxide surface make it more difficult to observe. (author)

  1. Single crystal studies of platinum alloys for oxygen reduction electrodes

    DEFF Research Database (Denmark)

    Ulrikkeholm, Elisabeth Therese

    /Pt(111) in the following. The prepared alloys were investigate using Low Energy Electron Diffraction (LEED), Xray Photoelectron Spectroscopy (XPS), Ion Scattering Spectroscopy (ISS) and temperature Programmed Desorption (TPD). The LEED pattern indicated that the Y/Pt(111) sample had formed a 1...... peaks with a large shift towards lower temperatures. The change in desorption temperature was ∆T = −180°C for the Y/Pt(111) sample and ∆T = −200°C for the Gd/Pt(111) sample. The ORR activity was measured showing a large enhancement for both alloys. Angle resolved XPS performed on the samples after.......89×1.89 structure, and the Gd/Pt(111) sample has formed a 1.90×1.90 structure compared to pure platinum. From the XPS measurements, it is most likely that alloys with the Pt5Y and Pt5Gd stoichiometry have been formed. The reactivity of the surfaces were probed using TPD. These measurements showed sharp desorption...

  2. Electrochemical titration of hydrogen adsorbed on supported platinum catalysts

    Czech Academy of Sciences Publication Activity Database

    Paseka, Ivo

    2007-01-01

    Roč. 329, - (2007), s. 161-163 ISSN 0926-860X R&D Projects: GA ČR GA104/03/0409 Institutional research plan: CEZ:AV0Z40320502 Keywords : platinum * hydrogen adsorption * specific surface area Subject RIV: CA - Inorganic Chemistry Impact factor: 3.166, year: 2007

  3. Characteristics improvement of hydrophobic polytetrafluoroethylene-platinum catalysts for tritium separation

    International Nuclear Information System (INIS)

    Popescu, I.; Ionita, Gh.; Dobrinescu, D.; Varlam, C.; Stefanescu, I.

    2006-01-01

    Full text: Based on the long experience of the authors in the preparation, testing and evaluation of the performances of hydrophobic catalysts and based on the reviewed references, this paper presents up-to-date R and D activities on the preparation methods and applications of the hydrophobic catalysts in tritium separation. The objectives of the paper are: how to improve the characteristics and performance of platinum hydrophobic catalysts; to assess and find a new procedure for the preparation of a new improved hydrophobic catalyst. From reviewed references one can conclude that platinum is the most active and efficient catalytic metal while the polytetrafluoroethylene is the best wet-proofing agent. A new improved hydrophobic Pt-catalyst has been proposed and its testing is now underway. The main steps and experimental conditions of preparation are thoroughly discussed. A new wet-proofing agent and new binders (titanium dioxide, cerium dioxide, zirconium dioxide) with a catalytic role are proposed and tested. The physico-structural parameters of the improved catalyst have been determined and are discussed in detail. The new proposal is a promising idea to improve the performance of conventional hydrophobic Pt-catalysts. (authors)

  4. Methanol Steam Reforming Promoted by Molten Salt-Modified Platinum on Alumina Catalysts

    Science.gov (United States)

    Kusche, Matthias; Agel, Friederike; Ní Bhriain, Nollaig; Kaftan, Andre; Laurin, Mathias; Libuda, Jörg; Wasserscheid, Peter

    2014-01-01

    We herein describe a straight forward procedure to increase the performance of platinum-on-alumina catalysts in methanol steam reforming by applying an alkali hydroxide coating according to the “solid catalyst with ionic liquid layer” (SCILL) approach. We demonstrate by diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) and temperature-programmed desorption (TPD) studies that potassium doping plays an important role in the catalyst activation. Moreover, the hygroscopic nature and the basicity of the salt modification contribute to the considerable enhancement in catalytic performance. During reaction, a partly liquid film of alkali hydroxides/carbonates forms on the catalyst/alumina surface, thus significantly enhancing the availability of water at the catalytically active sites. Too high catalyst pore fillings with salt introduce a considerable mass transfer barrier into the system as indicated by kinetic studies. Thus, the optimum interplay between beneficial catalyst modification and detrimental mass transfer effects had to be identified and was found on the applied platinum-on-alumina catalyst at KOH loadings around 7.5 mass %. PMID:25124120

  5. Nanolithographic Fabrication and Heterogeneous Reaction Studies ofTwo-Dimensional Platinum Model Catalyst Systems

    Energy Technology Data Exchange (ETDEWEB)

    Contreras, Anthony Marshall [Univ. of California, Berkeley, CA (United States)

    2006-05-20

    In order to better understand the fundamental components that govern catalytic activity, two-dimensional model platinum nanocatalyst arrays have been designed and fabricated. These catalysts arrays are meant to model the interplay of the metal and support important to industrial heterogeneous catalytic reactions. Photolithography and sub-lithographic techniques such as electron beam lithography, size reduction lithography and nanoimprint lithography have been employed to create these platinum nanoarrays. Both in-situ and ex-situ surface science techniques and catalytic reaction measurements were used to correlate the structural parameters of the system to catalytic activity.

  6. Platinum nanocube catalysts for methanol and ethanol electrooxidation

    Energy Technology Data Exchange (ETDEWEB)

    Han, Sang-Beom; Song, You-Jung; Lee, Jong-Min; Kim, Jy-Yeon; Park, Kyung-Won [Department of Chemical and Environmental Engineering, Soongsil University, Seoul 156-743 (Korea)

    2008-07-15

    We prepared Pt nanocube catalyst with about 3.6 nm in size by a polyol process in the presence of PVP as a stabilizer and Fe ion as a kinetic controller. The crystal structure of Pt nanocube with {l_brace}1 0 0{r_brace} faces was confirmed by field-emission transmission electron microscopy. In a cyclic voltammogram, we found that the Pt nanocube catalyst showed relatively high ratio of the forward anodic peak current to the reverse anodic peak current resulting in less accumulation of residues on the catalyst. The Pt nanocube catalyst with the edge of stepped {l_brace}1 0 0{r_brace} faces was preferable to breakage of CH{sub 3}OH and CH{sub 3}CH{sub 2}OH compared to polycrystalline Pt nanocatalyst. In an electrochemical measurement for methanol and ethanol electrooxidation, the Pt nanocube catalyst showed an excellent catalytic activity, i.e., lower onset potential and higher current density, compared to the polycrystalline Pt nanocatalyst. (author)

  7. Tin-Platinum catalysts interactions on titania and silica

    International Nuclear Information System (INIS)

    Nava, N.; Del Angel, P.; Salmones, J.; Baggio-Saitovitch, E.; Santiago, P.

    2007-01-01

    Pt-Sn was supported on titania and silica, and the resulting interactions between the components in prepared samples and the resulting interactions between the components before and after treatment with hydrogen were characterized by Moessbauer spectroscopy, X-ray diffraction, Rietveld refinement, high-resolution transmission electron microscopy (HRTEM) and catalytic tests data. Results show the presence of Pt and SnO 2 after calcinations, and Pt 3 Sn, PtSn and PtSn 3 after reduction. Rietveld analysis shows that some Ti 4+ are replaced by Sn 4+ atoms in the titania structure. Finally, HRTEM and the practically absence of activity observed confirms that metallic platinum is encapsulated

  8. Graphene-supported platinum catalysts for fuel cells

    DEFF Research Database (Denmark)

    Seselj, Nedjeljko; Engelbrekt, Christian; Zhang, Jingdong

    2015-01-01

    Increasing concerns with non-renewable energy sources drive research and development of sustainable energy technology. Fuel cells have become a central part in solving challenges associated with energy conversion. This review summarizes recent development of catalysts used for fuel cells over the...

  9. Ionic Liquids as Solvents for Rhodium and Platinum Catalysts Used in Hydrosilylation Reaction

    Directory of Open Access Journals (Sweden)

    Witold Zielinski

    2016-08-01

    Full Text Available A group of imidazolium and pyridinium based ionic liquids has been synthetized, and their ability to dissolve and activate the catalysts used in hydrosilylation reaction of 1-octane and 1,1,1,3,5,5,5-heptamethyltrisiloxane was investigated. An organometallic catalyst as well as inorganic complexes of platinum and rhodium dissolved in ionic liquids were used, forming liquid solutions not miscible with the substrates or with the products of the reaction. The results show that application of such a simple biphasic catalytic system enables reuse of ionic liquid phase with catalysts in multiple reaction cycles reducing the costs and decreasing the amount of catalyst needed per mole of product.

  10. A Robust Fiber Bragg Grating Hydrogen Gas Sensor Using Platinum-Supported Silica Catalyst Film

    OpenAIRE

    Marina Kurohiji; Seiji Ichiriyama; Naoki Yamasaku; Shinji Okazaki; Naoya Kasai; Yusuke Maru; Tadahito Mizutani

    2018-01-01

    A robust fiber Bragg grating (FBG) hydrogen gas sensor for reliable multipoint-leakage monitoring has been developed. The sensing mechanism is based on shifts of center wavelength of the reflection spectra due to temperature change caused by catalytic combustion heat. The sensitive film which consists of platinum-supported silica (Pt/SiO2) catalyst film was obtained using sol-gel method. The precursor solution was composed of hexachloroplatinic acid and commercially available silica precursor...

  11. Oxygen reduction on carbon supported platinum catalysts in high temperature polymer electrolytes

    DEFF Research Database (Denmark)

    Qingfeng, Li; Hjuler, Hans Aage; Bjerrum, Niels

    2000-01-01

    Oxygen reduction on carbon supported platinum catalysts has been investigated in H3PO4, H3PO4-doped Nafion and polybenzimidazole (PBI) polymer electrolytes in a temperature range up to 190 degrees C. Compared with pure H3PO4, the combination of H3PO4 and polymer electrolytes can significantly...... membrane fuel cell based on H3PO4-doped PBI for operation at temperatures between 150 and 200 degrees C. (C) 2000 Elsevier Science Ltd. All rights reserved....

  12. Platinum-TM (TM = Fe, Co) alloy nanoparticles dispersed nitrogen doped (reduced graphene oxide-multiwalled carbon nanotube) hybrid structure cathode electrocatalysts for high performance PEMFC applications.

    Science.gov (United States)

    Vinayan, B P; Ramaprabhu, S

    2013-06-07

    The efforts to push proton exchange membrane fuel cells (PEMFC) for commercial applications are being undertaken globally. In PEMFC, the sluggish kinetics of oxygen reduction reactions (ORR) at the cathode can be improved by the alloying of platinum with 3d-transition metals (TM = Fe, Co, etc.) and with nitrogen doping, and in the present work we have combined both of these aspects. We describe a facile method for the synthesis of a nitrogen doped (reduced graphene oxide (rGO)-multiwalled carbon nanotubes (MWNTs)) hybrid structure (N-(G-MWNTs)) by the uniform coating of a nitrogen containing polymer over the surface of the hybrid structure (positively surface charged rGO-negatively surface charged MWNTs) followed by the pyrolysis of these (rGO-MWNTs) hybrid structure-polymer composites. The N-(G-MWNTs) hybrid structure is used as a catalyst support for the dispersion of platinum (Pt), platinum-iron (Pt3Fe) and platinum-cobalt (Pt3Co) alloy nanoparticles. The PEMFC performances of Pt-TM alloy nanoparticle dispersed N-(G-MWNTs) hybrid structure electrocatalysts are 5.0 times higher than that of commercial Pt-C electrocatalysts along with very good stability under acidic environment conditions. This work demonstrates a considerable improvement in performance compared to existing cathode electrocatalysts being used in PEMFC and can be extended to the synthesis of metal, metal oxides or metal alloy nanoparticle decorated nitrogen doped carbon nanostructures for various electrochemical energy applications.

  13. Synthesis and characterization of Pt-Sn-Ni alloys to application as catalysts for direct ethanol fuel cells

    International Nuclear Information System (INIS)

    Silva, E.L. da; Correa, P.S.; Oliveira, E.L. de; Takimi, A.S.; Malfatti, C.F.; Radtke, C.

    2010-01-01

    Direct ethanol fuel cells (DEFCs) have been the focus of recent research due its application in mobile energy sources. In order to obtain the maximum efficiency from these systems, it is necessary the total ethanol oxidation, which implies in C-C bond break. Different catalysts described in literature are employed with this intent. This work consists in studying PtSnNi catalysts supported on carbon Vulcan XC72R, to application in DEFCs. Thus, it was used the impregnation/reduction method, varying the atomic proportion among Pt, Sn and Ni. The alloys were characterized by X-Ray Diffraction, Cyclic Voltammetry and Transmission Microscopy. Preliminary results show that predominant structure on the catalysts is the face centered cubic platinum and the densities currents are dependent on the platinum amount. (author)

  14. Platinum/ceria/alumina catalysts on microstructures for carbon monoxide conversion

    Energy Technology Data Exchange (ETDEWEB)

    Germani, G.; Schuurman, Y.; Mirodatos, C. [Institut de Recherches sur la Catalyse, CNRS, 2 Avenue Albert Einstein, 69626 Villeurbanne (France); Alphonse, P.; Courty, M. [CIRIMAT, UMR-CNRS 5085, Universite Paul Sabatier, 118 route de Narbonne, 31062 Toulouse Cedex 04 (France)

    2005-12-15

    Platinum/ceria/alumina catalysts have been prepared by a sol-gel method and coated in the microchannels of stainless steel platelets. These catalysts are very active for the water-gas shift reaction between 300 and 400{sup o}C. Moreover, they are non-pyrophoric and thus well suited for the purification of hydrogen for PEM fuel cells. The obtained coatings show good adherence and catalytic activity. The influence of the amount of platinum and ceria as well as the effect of a binder on the catalytic performance has been investigated. The samples have been characterized before reaction by XRD, SEM and by N{sub 2} adsorption measurements. The kinetics, free from internal diffusion limitations, over these thin films have been described by a power law rate equation. An activation energy of 86kJ/mol has been found and at 260{sup o}C the TOF corresponds to 0.6+/-0.1s{sup -1} for all investigated samples. The superior activity of the platelets compared to the powder samples is attributed to the diffusion limitations inside the powder pellets. Thus catalysts deposited on microstructured platelets lead to a better platinum utilization.

  15. Tin-Platinum catalysts interactions on titania and silica

    Energy Technology Data Exchange (ETDEWEB)

    Nava, N. [Instituto Mexicano del Petroleo Lazaro Cardenas 152, 07730 Mexico, D.F. (Mexico)], E-mail: tnava@imp.mx; Del Angel, P. [Instituto Mexicano del Petroleo Lazaro Cardenas 152, 07730 Mexico, D.F. (Mexico); Salmones, J. [Instituto Politecnico Nacional-ESIQIE UPALM, 07738 Mexico, D.F. (Mexico); Baggio-Saitovitch, E. [Centro Brasileiro de Pesquisas Fisicas, Rua Dr. Xavier Sigaud 150, 22290-180 Rio de Janeiro, Brasil (Brazil); Santiago, P. [Instituto de Fisica, UNAM, Mexico, D. F., 04510 Mexico (Mexico)

    2007-09-30

    Pt-Sn was supported on titania and silica, and the resulting interactions between the components in prepared samples and the resulting interactions between the components before and after treatment with hydrogen were characterized by Moessbauer spectroscopy, X-ray diffraction, Rietveld refinement, high-resolution transmission electron microscopy (HRTEM) and catalytic tests data. Results show the presence of Pt and SnO{sub 2} after calcinations, and Pt{sub 3}Sn, PtSn and PtSn{sub 3} after reduction. Rietveld analysis shows that some Ti{sup 4+} are replaced by Sn{sup 4+} atoms in the titania structure. Finally, HRTEM and the practically absence of activity observed confirms that metallic platinum is encapsulated.

  16. A phenyl-sulfonic acid anchored carbon-supported platinum catalyst for polymer electrolyte fuel cell electrodes

    International Nuclear Information System (INIS)

    Selvarani, G.; Sahu, A.K.; Choudhury, N.A.; Sridhar, P.; Pitchumani, S.; Shukla, A.K.

    2007-01-01

    A method, to anchor phenyl-sulfonic acid functional groups with the platinum catalyst supported onto a high surface-area carbon substrate, is reported. The use of the catalyst in the electrodes of a polymer electrolyte fuel cell (PEFC) helps enhancing its performance. Characterization of the catalyst by Fourier transform infra red (FTIR) spectroscopy, X-ray photoelectron spectroscopy (XPS) and point-of-zero-charge (PZC) studies suggests that the improvement in performance of the PEFC is facilitated not only by enlarging the three-phase boundary in the catalyst layer but also by providing ionic-conduction paths as well as by imparting negative charge to platinum sites with concomitant oxidation of sulfur present in the carbon support. It is argued that the negatively charged platinum sites help repel water facilitating oxygen to access the catalyst sites. The PEFC with modified carbon-supported platinum catalyst electrodes exhibits 40% enhancement in its power density as compared to the one with unmodified carbon-supported platinum catalyst electrodes

  17. Palladium-alloy catalysts as ethanol tolerant cathodes for direct alcohol fuel cell applications

    Energy Technology Data Exchange (ETDEWEB)

    Savadogo, O. [Ecole Polytechnique de Montreal, Montreal, PQ (Canada). Laboratoire de nouveaux materiaux pour l' energie et l' electrochimie; Varela, F.J.R. [Centro de Investigacion y de Estudios Avanzados, Coahuila (Mexico). Unidad Saltillo

    2008-07-01

    Recent studies have demonstrated that electroactive palladium (Pd) and Pd-alloy catalysts prepared using a sputtering technique possess a similar degree of activity as platinum (Pt) electrodes. This study demonstrated that Pd and Pd-alloys show a high degree of tolerance to ethanol during oxygen reduction reaction (ORR) processes. The onset potential of the ORR process in the presence of 0.5M of ethanol decreased by only 33 mV and 18 mV on Pd and Pd-cobalt (Co) catalysts. Linear sweep voltammetry experiments showed that no peak current density caused by the electro-oxidation of ethanol was observed in the Pd-based catalysts. The selective behaviour of the Pd and Pd-Co catalysts was attributed to a slow rate of adsorption of the ethanol as well as the presence of reaction intermediates on the catalytic surface. Results suggested that the Pd and Pd-Co catalysts are suitable candidates for direct alcohol fuel cell applications. 10 refs., 2 figs.

  18. Structural consideration with respect to the thermal stability of a new platinum supported lanthanum-alumina catalyst

    International Nuclear Information System (INIS)

    Oudet, F.; Bordes, E.; Courtine, P.; Maxant, G.; Lambert, C.; Guerlet, J.P.

    1987-01-01

    The influence of lanthanum aluminate, LaAlO 3 , on the thermal stability of both alumina and platinum supported alumina catalysts is investigated. In the case of alumina, the stabilization is interpreted in terms of structural coherence between δ-Al 2 O 3 and a three-fold superstructure of LaAlO 3 . The addition of LaAlO 3 , is shown to increase both the dispersion and the resistance to sintering of the platinum supported alumina catalyst. Moreover, lanthanum hexa-aluminate (La-β-Al 2 O 3 ) is present in the platinum catalyst fired at 1150 0 C. These observations are assumed to result for the epitaxial relations between platinum and the lanthanum-alumina support. 23 refs.; 8 figs.; 2 tabs

  19. Determination of phosphorus traces in platinum alloys by two-phase isotope exchange

    International Nuclear Information System (INIS)

    Vlacil, F.

    1980-01-01

    The method of ZEMAN and KRATZER for the determination of phosphorus traces by means of two-phase isotope exchange was modified for the determination of phosphorus in pure platinum or pure platinum alloys. It was found that Pt, Rh, Ag and As do not interfere with the determination. Among the elements usually present in platinum metal or platinum alloys, only gold interferes. It was removed by extraction from 7M HCl by MIBK and AmOAc. Hydrochloric acid also interferes but it can be removed by evaporation. The analytical procedure is given for the solution obtained by pressure decomposition of the sample (0.5 g) in a steel bomb with PTFE inlay. It is possible to determine > 2 ppm P (approximate error -10%). If using calibration dependence instead of the well known equation for isotope exchange it is not necessary to know the content of P in the standard solution labelled with 32 P. (author)

  20. Recycling of platinum group metals from the automotive catalysts; Reciclagem de metais do grupo da platina proveniente de catalisadores automotivos

    Energy Technology Data Exchange (ETDEWEB)

    Benevit, Mariana; Petter, Patricia Melo Halmenschlager; Veit, Hugo Marcelo, E-mail: patymhp@yahoo.com.br [Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS (Brazil). Faculdade de Engenharia. Departamento de Materiais

    2014-07-01

    Currently it is very important to use alternative sources of raw material for obtaining metals, avoiding the traditional mining. This work aims to characterize and evaluate the recoverability of platinum group metals present in automotive catalysts. Thus, the catalysts were divided into two groups: the first was catalysts used in 1.0 cars and the second was catalyst used in 2.0 cars. DRX and FRX techniques and chemical analysis performed by ICP/OES was used to characterized these materials. The results showed that there is a significant amount of platinum group elements in catalyst waste, which can be separated and reused. In the next step, hydro and pyrometallurgical routes, for metals extraction from catalyst waste, will be studied. (author)

  1. Formation of Platinum Catalyst on Carbon Black Using an In‐Liquid Plasma Method for Fuel Cells

    Directory of Open Access Journals (Sweden)

    Yoshiyuki Show

    2017-01-01

    Full Text Available Platinum (Pt catalyst was formed on the surface of carbon black using an in‐liquid plasma method. The formed Pt catalyst showed the average particle size of 4.1 nm. This Pt catalyst was applied to a polymer electrolyte membrane fuel cell (PEMFC. The PEMFC showed an open voltage of 0.85 V and a maximum output power density of 216 mW/cm2.

  2. Electrochemical Insights into Platinum Catalysts for Fuel Cells

    DEFF Research Database (Denmark)

    Jensen, Kim Degn

    . A preliminary electrochemical study of in-house synthesized Pt-Y nanoparticles have also been presented revealing specific mass actives of 0.3 ± 0.1A/mgPt in HClO4. The study revealed that extensive optimizations of the Pt-Y nanoparticles are required and their performance is severely impeded by poor......Development of sustainable energy production, conversion and storage technologies must be considered one of the major challenges of the 21st century. Insight and understanding of the oxygen reduction reaction is imperative in these pursuits. In this work electrochemical investigations and physical...... characterization of various model systems ranging from extended surfaces, to thin films and nanoparticle electrocatalysts have been presented and discussed. This have been done with a special focus on governing factors controlling the electroreduction of oxygen. Preparation of Cu/Pt(111) near-surface alloys...

  3. Dynamic environmental transmission electron microscopy observation of platinum electrode catalyst deactivation in a proton-exchange-membrane fuel cell.

    Science.gov (United States)

    Yoshida, Kenta; Xudong, Zhang; Bright, Alexander N; Saitoh, Koh; Tanaka, Nobuo

    2013-02-15

    Spherical-aberration-corrected environmental transmission electron microscopy (AC-ETEM) was applied to study the catalytic activity of platinum/amorphous carbon electrode catalysts in proton-exchange-membrane fuel cells (PEMFCs). These electrode catalysts were characterized in different atmospheres, such as hydrogen and air, and a conventional high vacuum of 10(-5) Pa. A high-speed charge coupled device camera was used to capture real-time movies to dynamically study the diffusion and reconstruction of nanoparticles with an information transfer down to 0.1 nm, a time resolution below 0.2 s and an acceleration voltage of 300 kV. With such high spatial and time resolution, AC-ETEM permits the visualization of surface-atom behaviour that dominates the coalescence and surface-reconstruction processes of the nanoparticles. To contribute to the development of robust PEMFC platinum/amorphous carbon electrode catalysts, the change in the specific surface area of platinum particles was evaluated in hydrogen and air atmospheres. The deactivation of such catalysts during cycle operation is a serious problem that must be resolved for the practical use of PEMFCs in real vehicles. In this paper, the mechanism for the deactivation of platinum/amorphous carbon electrode catalysts is discussed using the decay rate of the specific surface area of platinum particles, measured first in a vacuum and then in hydrogen and air atmospheres for comparison.

  4. Preparation of Carbon-Platinum-Ceria and Carbon-Platinum-Cerium catalysts and its application in Polymer Electrolyte Fuel Cell: Hydrogen, Methanol, and Ethanol

    Science.gov (United States)

    Guzman Blas, Rolando Pedro

    This thesis is focused on fuel cells using hydrogen, methanol and ethanol as fuel. Also, in the method of preparation of catalytic material for the anode: Supercritical Fluid Deposition (SFD) and impregnation method using ethylenediaminetetraacetic acid (EDTA) as a chelating agent. The first part of the thesis describes the general knowledge about Hydrogen Polymer Exchange Membrane Fuel Cell (HPEMFC),Direct Methanol Fuel Cell (DMFC) and Direct Ethanol Fuel Cell (DEFC), as well as the properties of Cerium and CeO2 (Ceria). The second part of the thesis describes the preparation of catalytic material by Supercritical Fluid Deposition (SFD). SFD was utilized to deposit Pt and ceria simultaneously onto gas diffusion layers. The Pt-ceria catalyst deposited by SFD exhibited higher methanol oxidation activity compared to the platinum catalyst alone. The linear sweep traces of the cathode made for the methanol cross over study indicate that Pt-Ceria/C as the anode catalyst, due to its better activity for methanol, improves the fuel utilization, minimizing the methanol permeation from anode to cathode compartment. The third and fourth parts of the thesis describe the preparation of material catalytic material Carbon-Platinum-Cerium by a simple and cheap impregnation method using EDTA as a chelating agent to form a complex with cerium (III). This preparation method allows the mass production of the material catalysts without additional significant cost. Fuel cell polarization and power curves experiments showed that the Carbon-Platinum-Cerium anode materials exhibited better catalytic activity than the only Vulcan-Pt catalysts for DMFC, DEFC and HPEMFC. In the case of Vulcan-20%Pt-5%w Cerium, this material exhibits better catalytic activity than the Vulcan-20%Pt in DMFC. In the case of Vulcan-40% Pt-doped Cerium, this material exhibits better catalytic activity than the Vulcan-40% Pt in DMFC, DEFC and HPEMFC. Finally, I propose a theory that explains the reason why the

  5. Reaction selectivity studies on nanolithographically-fabricated platinum model catalyst arrays

    Energy Technology Data Exchange (ETDEWEB)

    Grunes, Jeffrey Benjamin [Univ. of California, Berkeley, CA (United States)

    2004-05-01

    In an effort to understand the molecular ingredients of catalytic activity and selectivity toward the end of tuning a catalyst for 100% selectivity, advanced nanolithography techniques were developed and utilized to fabricate well-ordered two-dimensional model catalyst arrays of metal nanostructures on an oxide support for the investigation of reaction selectivity. In-situ and ex-situ surface science techniques were coupled with catalytic reaction data to characterize the molecular structure of the catalyst systems and gain insight into hydrocarbon conversion in heterogeneous catalysis. Through systematic variation of catalyst parameters (size, spacing, structure, and oxide support) and catalytic reaction conditions (hydrocarbon chain length, temperature, pressures, and gas composition), the data presented in this dissertation demonstrate the ability to direct a reaction by rationally adjusting, through precise control, the design of the catalyst system. Electron beam lithography (EBL) was employed to create platinum nanoparticles on an alumina (Al2O3) support. The Pt nanoparticle spacing (100-150-nm interparticle distance) was varied in these samples, and they were characterized using x-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), scanning electron microscopy (SEM), and atomic force microscopy (AFM), both before and after reactions. The TEM studies showed the 28-nm Pt nanoparticles with 100 and 150-nm interparticle spacing on alumina to be polycrystalline in nature, with crystalline sizes of 3-5 nm. The nanoparticle crystallites increased significantly after heat treatment. The nanoparticles were still mostly polycrystalline in nature, with 2-3 domains. The 28-nm Pt nanoparticles deposited on alumina were removed by the AFM tip in contact mode with a normal force of approximately 30 nN. After heat treatment at 500 C in vacuum for 3 hours, the AFM tip, even at 4000 nN, could not remove the platinum

  6. The Reduction Reaction of Dissolved Oxygen in Water by Hydrazine over Platinum Catalyst Supported on Activated Carbon Fiber

    Energy Technology Data Exchange (ETDEWEB)

    Park, K.K.; Moon, J.S. [Korea Electric Power Research Institute, Taejon (Korea)

    1999-07-01

    The reduction reaction of dissolved oxygen (DO) by hydrazine was investigated on activated carbon fiber (ACF) and Pt/ACF catalysts using a batch reactor with an external circulating loop. The ACF itself showed catalytic activity and this was further improved by supporting platinum on ACF. The catalytic role platinum is ascribed to its acceleration of hydrazine decomposition, based on electric potential and current measurements as well as the kinetic study. (author). 15 refs., 13 figs.

  7. The development of platinum-based alloys and their thermodynamic database

    OpenAIRE

    Cornish L.A.; Hohls J.; Hill P.J.; Prins S.; Süss R.; Compton D.N.

    2002-01-01

    A series of quaternary platinum-based alloys have been demonstrated to exhibit the same two-phase structure as Ni-based superalloys and showed good mechanical properties. The properties of ternary alloys were a good indication that the quaternary alloys, with their better microstructure, will be even better. The quaternary alloy composition has been optimised at Pt84:Al11:Ru2:Cr3 for the best microstructure and hardness. Work has begun on establishing a thermodynamic database for Pt-Al-Ru-Cr ...

  8. Platinum Group Metal-free Catalysts for Hydrogen Evolution Reaction in Microbial Electrolysis Cells.

    Science.gov (United States)

    Yuan, Heyang; He, Zhen

    2017-07-01

    Hydrogen gas is a green energy carrier with great environmental benefits. Microbial electrolysis cells (MECs) can convert low-grade organic matter to hydrogen gas with low energy consumption and have gained a growing interest in the past decade. Cathode catalysts for the hydrogen evolution reaction (HER) present a major challenge for the development and future applications of MECs. An ideal cathode catalyst should be catalytically active, simple to synthesize, durable in a complex environment, and cost-effective. A variety of noble-metal free catalysts have been developed and investigated for HER in MECs, including Nickel and its alloys, MoS 2 , carbon-based catalysts and biocatalysts. MECs in turn can serve as a research platform to study the durability of the HER catalysts. This personal account has reviewed, analyzed, and discussed those catalysts with an emphasis on synthesis and modification, system performance and potential for practical applications. It is expected to provide insights into the development of HER catalysts towards MEC applications. © 2017 The Chemical Society of Japan & Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Recovery of platinum-group metals (PGMS from spent automotive catalysts: Part II: Automotive catalysts: Structures and principle of operation

    Directory of Open Access Journals (Sweden)

    Dimitrijević Mile D.

    2015-01-01

    Full Text Available Catalytic converters are incorporated into motor vehicle emission systems (passenger cars, trucks and other motor vehicles, as well as civil and agricultural machines, as of lately to reduce air pollution as well as to meet the emission standards. Their purpose is to convert toxic emissions generated by combustion of liquid fossil fuels into less harmful products. In catalytic converters, rhodium is used for the reduction of gasses, whereas platinum and palladium are used for the oxidation of gasses. This paper presents the structure and operating principle of automotive catalysts in view of the fact that cars are the most prevalent motor vehicles worldwide and due to the fact that the production of cars with gasoline and diesel engines will dominate until at least 2020.

  10. Elucidation of the Oxygen Reduction Volcano in Alkaline Media using a Copper-Platinum(111) Alloy

    DEFF Research Database (Denmark)

    Jensen, Kim Degn; Tymoczko, Jakub; Rossmeisl, Jan

    2018-01-01

    catalyst should exhibit OH binding circa 0.1 eV weaker than Pt(111), via a Sabatier volcano; this observation suggests that the reaction is mediated via the same surface bound intermediates as in acid, in contrast to previous reports. In 0.1 m KOH, the alloy catalyst at the peak of the volcano exhibits...

  11. Elucidation of the Oxygen Reduction Volcano in Alkaline Media using a Copper-Platinum(111) Alloy

    DEFF Research Database (Denmark)

    Jensen, Kim Degn; Tymoczko, Jakub; Rossmeisl, Jan

    2018-01-01

    catalyst should exhibit OH binding circa 0.1 eV weaker than Pt(111), via a Sabatier volcano; this observation suggests that the reaction is mediated via the same surface bound intermediates as in acid, in contrast to previous reports. In 0.1(M) KOH, the alloy catalyst at the peak of the volcano exhibits...

  12. The development of platinum-based alloys and their thermodynamic database

    Directory of Open Access Journals (Sweden)

    Cornish L.A.

    2002-01-01

    Full Text Available A series of quaternary platinum-based alloys have been demonstrated to exhibit the same two-phase structure as Ni-based superalloys and showed good mechanical properties. The properties of ternary alloys were a good indication that the quaternary alloys, with their better microstructure, will be even better. The quaternary alloy composition has been optimised at Pt84:Al11:Ru2:Cr3 for the best microstructure and hardness. Work has begun on establishing a thermodynamic database for Pt-Al-Ru-Cr alloys, and further work will be done to enhance the mechanical and oxidation properties of the alloys by adding small amounts of other elements to the base composition of Pt84:Al11:Ru2:Cr3.

  13. Design of a surface alloy catalyst for steam reforming

    DEFF Research Database (Denmark)

    Besenbacher, F.; Chorkendorff, Ib; Clausen, B.S.

    1998-01-01

    Detailed studies of elementary chemical processes on well-characterized single crystal surfaces have contributed substantially to the understanding of heterogeneous catalysis. insight into the structure of surface alloys combined with an understanding of the relation between the surface compositi...... and reactivity is shown to lead directly to new ideas for catalyst design, The feasibility of such an approach is illustrated by the synthesis, characterization, and tests of a high-surface area gold-nickel catalyst for steam reforming....

  14. Electrooxidation of ethanol on novel multi-walled carbon nanotube supported platinum-antimony tin oxide nanoparticle catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Dao-Jun [School of Chemistry and Chemical Engineering, The Key Laboratory of Life-Organic Analysis, Qufu Normal University, Qufu, Shandong 273165 (China)

    2011-01-15

    We synthesize the new Pt based catalyst for direct ethanol fuel cells using novel multi-walled carbon nanotubes supported platinum-antimony tin oxide (Pt-ATO/MWCNT) nanoparticle as new catalyst support for the first time. The structure of Pt-ATO/MWCNT catalyst is characterized by transmission electron micrograph (TEM) and X-ray diffraction (XRD). The electrocatalytic properties of Pt-ATO/MWCNT catalyst for ethanol electrooxidation reactions are investigated by cyclic voltammetry (CV) and chronoamperometric experiments in acidic medium. The electrocatalytic activity for ethanol electrooxidation reaction shows that high carbon monoxide tolerance and good stability of Pt-ATO/MWCNT catalyst compared with Pt-SnO{sub 2}/MWCNT and commercial Pt/C are observed. These results imply that Pt-ATO/MWCNT catalyst has promising potential applications in direct alcohol fuel cells. (author)

  15. Power generation in microbial fuel cells using platinum group metal-free cathode catalyst: Effect of the catalyst loading on performance and costs.

    Science.gov (United States)

    Santoro, Carlo; Kodali, Mounika; Herrera, Sergio; Serov, Alexey; Ieropoulos, Ioannis; Atanassov, Plamen

    2018-02-28

    Platinum group metal-free (PGM-free) catalyst with different loadings was investigated in air breathing electrodes microbial fuel cells (MFCs). Firstly, the electrocatalytic activity towards oxygen reduction reaction (ORR) of the catalyst was investigated by rotating ring disk electrode (RRDE) setup with different catalyst loadings. The results showed that higher loading led to an increased in the half wave potential and the limiting current and to a further decrease in the peroxide production. The electrons transferred also slightly increased with the catalyst loading up to the value of ≈3.75. This variation probably indicates that the catalyst investigated follow a 2x2e - transfer mechanism. The catalyst was integrated within activated carbon pellet-like air-breathing cathode in eight different loadings varying between 0.1 mgcm -2 and 10 mgcm -2 . Performance were enhanced gradually with the increase in catalyst content. Power densities varied between 90 ± 9 μWcm -2 and 262 ± 4 μWcm -2 with catalyst loading of 0.1 mgcm -2 and 10 mgcm -2 respectively. Cost assessments related to the catalyst performance are presented. An increase in catalyst utilization led to an increase in power generated with a substantial increase in the whole costs. Also a decrease in performance due to cathode/catalyst deterioration over time led to a further increase in the costs.

  16. Activity targets for nanostructured platinum-group-metal-free catalysts in hydroxide exchange membrane fuel cells

    Science.gov (United States)

    Setzler, Brian P.; Zhuang, Zhongbin; Wittkopf, Jarrid A.; Yan, Yushan

    2016-12-01

    Fuel cells are the zero-emission automotive power source that best preserves the advantages of gasoline automobiles: low upfront cost, long driving range and fast refuelling. To make fuel-cell cars a reality, the US Department of Energy has set a fuel cell system cost target of US$30 kW-1 in the long-term, which equates to US$2,400 per vehicle, excluding several major powertrain components (in comparison, a basic, but complete, internal combustion engine system costs approximately US$3,000). To date, most research for automotive applications has focused on proton exchange membrane fuel cells (PEMFCs), because these systems have demonstrated the highest power density. Recently, however, an alternative technology, hydroxide exchange membrane fuel cells (HEMFCs), has gained significant attention, because of the possibility to use stable platinum-group-metal-free catalysts, with inherent, long-term cost advantages. In this Perspective, we discuss the cost profile of PEMFCs and the advantages offered by HEMFCs. In particular, we discuss catalyst development needs for HEMFCs and set catalyst activity targets to achieve performance parity with state-of-the-art automotive PEMFCs. Meeting these targets requires careful optimization of nanostructures to pack high surface areas into a small volume, while maintaining high area-specific activity and favourable pore-transport properties.

  17. Outstanding low temperature HC-SCR of NOx over platinum-group catalysts supported on mesoporous materials expecting diesel-auto emission regulation

    International Nuclear Information System (INIS)

    Komatsu, Tamikuni; Tomokuni, Keizou; Yamada, Issaku

    2006-01-01

    Outstanding low temperature HC-SCR of NOx over platinum-group catalysts supported on mesoporous materials, which does not rely on the conventional NOx-absorption-reduction-catalysts, is presented for the purpose of de-NOx of diesel-auto emissions. The established catalysts basically consist of mesoporous silica or metal-substituted mesoporous silicates for supports and platinum for active species, which is operated under lean- and rich-conditions. The new catalysts are very active at 150-200 o C and free from difficult problems of SOx-deactivation and hydrothermal ageing of the NOx-absorption-reduction catalyst. (author)

  18. Genetic Algorithm Procreation Operators for Alloy Nanoparticle Catalysts

    DEFF Research Database (Denmark)

    Lysgaard, Steen; Landis, David Dominic; Bligaard, Thomas

    2014-01-01

    The long-term stability of binary nanoparticles and clusters is one of the main challenges in the development of novel (electro-)catalysts for e.g. CO2 reduction. Here, we present a method for predicting the optimal composition and structure of alloy nanoparticles and clusters, with particular...

  19. Role of bonding mechanisms during transfer hydrogenation reaction on heterogeneous catalysts of platinum nanoparticles supported on zinc oxide nanorods

    Science.gov (United States)

    Al-Alawi, Reem A.; Laxman, Karthik; Dastgir, Sarim; Dutta, Joydeep

    2016-07-01

    For supported heterogeneous catalysis, the interface between a metal nanoparticle and the support plays an important role. In this work the dependency of the catalytic efficiency on the bonding chemistry of platinum nanoparticles supported on zinc oxide (ZnO) nanorods is studied. Platinum nanoparticles were deposited on ZnO nanorods (ZnO NR) using thermal and photochemical processes and the effects on the size, distribution, density and chemical state of the metal nanoparticles upon the catalytic activities are presented. The obtained results indicate that the bonding at Pt-ZnO interface depends on the deposition scheme which can be utilized to modulate the surface chemistry and thus the activity of the supported catalysts. Additionally, uniform distribution of metal on the catalyst support was observed to be more important than the loading density. It is also found that oxidized platinum Pt(IV) (platinum hydroxide) provided a more suitable surface for enhancing the transfer hydrogenation reaction of cyclohexanone with isopropanol compared to zero valent platinum. Photochemically synthesized ZnO supported nanocatalysts were efficient and potentially viable for upscaling to industrial applications.

  20. Bimetallic Catalysts and Platinum Surfaces Studied by X-ray Absorption Spectroscopy and Scanning Tunnelling Microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Roenning, Magnus

    2000-07-01

    Bimetallic catalyst systems used in Fischer-Tropsch synthesis (Co-Re/Al{sub 2}O{sub 3}) and in the naphtha reforming process (Pt-Re/Al{sub 2}O{sub 3}) have been studied in situ using X-ray absorption spectroscopy (EXAFS). Additionally, the adsorption of ethene on platinum single crystal surfaces has been investigated using scanning tunnelling microscopy. In situ EXAFS at the cobalt K absorption edge have been carried out at 450{sup o}C on the hydrogen reduction of a rhenium-promoted Co{sub 3}O{sub 4}/Al{sub 2}O{sub 3} catalyst. Reductions carried out using 100% hydrogen and 5% hydrogen in helium gave different results. Whereas the reduction using dilute hydrogen leads to bulk-like metallic cobalt particles (hcp or fcc), reaction with pure hydrogen yields a more dispersed system with smaller cobalt metal particles (< 40 A). The results are rationalised in terms of different degrees of reoxidation of cobalt by the higher and lower concentrations of water generated during the reduction of cobalt oxide by 100% and 5% hydrogen, respectively. Additionally, in both reduction protocols a small fraction (3 -4 wt%) of the cobalt content is randomly dispersed over the tetrahedral vacancies of the alumina support. This dispersion occurs during reduction and not calcination. The cobalt in these sites cannot be reduced at 450 {sup o}C. The local environments about the rhenium atoms in Co-Re/{gamma}-A1{sub 2}O{sub 3} catalyst after different reduction periods have been studied by X-ray absorption spectroscopy. A bimetallic catalyst containing 4.6 wt% cobalt and 2 wt% rhenium has been compared with a corresponding monometallic sample with 2 wt% rhenium on the same support. The rhenium L{sub III} EXAFS analysis shows that bimetallic particles are formed after reduction at 450{sup o}C with the average particle size being 10-15 A. Rhenium is shown to be reduced at a later stage than cobalt. The fraction of cobalt atoms entering the support obstructs the access to the support for the

  1. Nanotemplated platinum fuel cell catalysts and copper-tin lithium battery anode materials for microenergy devices

    Energy Technology Data Exchange (ETDEWEB)

    Rohan, J.F., E-mail: james.rohan@tyndall.ie [Tyndall National Institute, University College Cork, Lee Maltings, Cork (Ireland); Hasan, M.; Holubowitch, N. [Tyndall National Institute, University College Cork, Lee Maltings, Cork (Ireland)

    2011-11-01

    Highlights: > Anodic Aluminum oxide formation on Si substrate. > High density nanotemplated Pt catalyst on Si for integrated energy and electronics. > CuSn alloy deposition from a single, high efficiency methanesulfonate plating bath. > Nanotemplated CuSn Li anode electrodes with high capacity retention. - Abstract: Nanotemplated materials have significant potential for applications in energy conversion and storage devices due to their unique physical properties. Nanostructured materials provide additional electrode surface area beneficial for energy conversion or storage applications with short path lengths for electronic and ionic transport and thus the possibility of higher reaction rates. We report on the use of controlled growth of metal and alloy electrodeposited templated nanostructures for energy applications. Anodic aluminium oxide templates fabricated on Si for energy materials integration with electronic devices and their use for fuel cell and battery materials deposition is discussed. Nanostructured Pt anode catalysts for methanol fuel cells are shown. Templated CuSn alloy anodes that possess high capacity retention with cycling for lithium microbattery integration are also presented.

  2. pH-dependent release of trace elements including platinum group elements (PGEs) from gasoline and diesel catalysts

    Science.gov (United States)

    Sucha, Veronika; Mihaljevic, Martin; Ettler, Vojtech; Strnad, Ladislav

    2014-05-01

    The release of trace metals and platinum group elements (PGEs) from automobile exhaust catalysts represents a remarkable source of higly dispersed environmental contamination. Especially, PGEs have shown increasing research interest due to their possible bioaccessibility. In our research, we focused on leaching behaviour of trace metals from gasoline and diesel automobile catalysts. While catalysts for gasoline engines contain a mixture of Pt-Pd-Rh or Pd-Rh, catalysts for diesel engines are composed only of Pt. We used dust from two crushed gasoline and two crushed diesel catalysts (new and aged). The dust of gasoline catalysts contains significant concentrations of Pt (700 mg.kg-1), Pd (11 000 mg.kg-1) and Rh (700 mg.kg-1). And the dust of diesel catalysts are composed of Pt (3 900 mg.kg-1) and they contains negligible amounts of Pd dan Rh (leaching of trace metals from dust we used pH-stat leaching test according to the European standard CEN/TS 14997. The concentrations of cations: PGEs (Pt, Pd a Rh), K, Na, Ca, Mg, Al, Ti, Cr, Mn, Fe, Co, Ni, Cu, Zn, Cd, Pb, La and Ce were determined by inductively coupled plasma mass spectrometry (ICP-MS) and atomic absorption spectrometry (AAS), and anions: F-, Cl-, SO42- and NO3- by high-performance liquid chromatography. Although the dusts from catalysts were relatively stable to acid/base influence, the leaching of trace metals from catalysts showed a dependence on pH. Generally, the highest concentrations were released under acidic conditions. The leaching of PGEs was higher for Pt in diesel catalysts and for Pd and Rh in gasoline catalysts. The highest concentrations of Zn and Pb were observed in old catalysts. The rare earth metals were released more from gasoline catalysts. Catalysts particles represent health risk especially with respect to their PGEs contents.

  3. Pt-Ni/WC Alloy Nanorods Arrays as ORR Catalyst for PEM Fuel Cells

    Energy Technology Data Exchange (ETDEWEB)

    Begum, Mahbuba; Yurukcu, Mesut; Yurtsever, Fatma; Ergul, Busra; Kariuki, Nancy; Myers, Deborah J.; Karabacak, Tansel

    2017-08-24

    Polymer electrolyte membrane fuel cells (PEMFCs) among the other types of fuel cell technology are attractive power sources, especially for electric vehicle applications. While significant progress and plausible prospects of PEMFCs have been achieved, there are still some challenges related to the performance, durability, and cost that need to be overcome to make them economically viable for widespread commercialization. Our strategy is to develop thin films of high-active and stable catalyst coated on vertically aligned nanorod arrays of conductive and stable support. In this work, we fabricated tungsten carbide (WC) nanorods as support and coated them with a platinum-nickel (Pt-Ni) alloy shell denoted as Pt-Ni/WC catalysts. The Pt- Ni/WC nanorods were deposited on glassy carbon disks as well as on silicon substrates for evaluation of their electrocatalytic oxygen reduction reaction (ORR) activity and physical properties. Cyclic voltammetry experiments using rotating disk electrode were performed in perchloric acid (0.1 M HClO4) electrolyte at room temperature to characterize the ORR activity and stability of Pt-Ni/WC nanorods catalysts. Scanning electron microscopy and X-ray diffraction techniques were utilized to study the morphology and crystallographic properties, respectively.

  4. Analysis of proton exchange membrane fuel cell catalyst layers for reduction of platinum loading at Nissan

    International Nuclear Information System (INIS)

    Ohma, Atsushi; Mashio, Tetsuya; Sato, Kazuyuki; Iden, Hiroshi; Ono, Yoshitaka; Sakai, Kei; Akizuki, Ken; Takaichi, Satoshi; Shinohara, Kazuhiko

    2011-01-01

    The biggest issue that must be addressed in promoting widespread use of fuel cell vehicles (FCVs) is to reduce the cost of the fuel cell system. Especially, it is of vital importance to reduce platinum (Pt) loading of catalyst layers (CLs) in the membrane electrode assembly (MEA) of a proton exchange membrane fuel cell (PEMFC). In order to lower the Pt loading of the MEA, mass transport of reactants related to the performance in high current density should be enhanced significantly as well as kinetics of the catalyst, which can result in the better Pt utilization and effectiveness. In this study, we summarized our analytical approach and methods for reduction of Pt loading in CLs. Microstructure, mass transport properties of the reactants, and their relation in CLs were elucidated by applying experimental analyses and computational methods. A simple CL model for I–V performance prediction was then established, where experimentally elucidated parameters of the microstructure and the properties in CLs were taken into account. Finally, we revealed the impact of lowering the Pt loading on the transport properties, polarization, and the I–V performance.

  5. Reduction of Furfural to Furfuryl Alcohol in Liquid Phase over a Biochar-Supported Platinum Catalyst

    Directory of Open Access Journals (Sweden)

    Ariadna Fuente-Hernández

    2017-02-01

    Full Text Available In this work, the liquid phase hydrogenation of furfural has been studied using a biochar-supported platinum catalyst in a batch reactor. Reactions were performed between 170 °C and 320 °C, using 3 wt % and 5 wt % of Pt supported on a maple-based biochar under hydrogen pressure varying from 500 psi to 1500 psi for reaction times between 1 h and 6 h in various solvents. Under all reactive conditions, furfural conversion was significant, whilst under specific conditions furfuryl alcohol (FA was obtained in most cases as the main product showing a selectivity around 80%. Other products as methylfuran (MF, furan, and trace of tetrahydrofuran (THF were detected. Results showed that the most efficient reaction conditions involved a 3% Pt load on biochar and operations for 2 h at 210 °C and 1500 psi using toluene as solvent. When used repetitively, the catalyst showed deactivation although only a slight variation in selectivity toward FA at the optimal experimental conditions was observed.

  6. Influence of platinum group metal-free catalyst synthesis on microbial fuel cell performance

    Science.gov (United States)

    Santoro, Carlo; Rojas-Carbonell, Santiago; Awais, Roxanne; Gokhale, Rohan; Kodali, Mounika; Serov, Alexey; Artyushkova, Kateryna; Atanassov, Plamen

    2018-01-01

    Platinum group metal-free (PGM-free) ORR catalysts from the Fe-N-C family were synthesized using sacrificial support method (SSM) technique. Six experimental steps were used during the synthesis: 1) mixing the precursor, the metal salt, and the silica template; 2) first pyrolysis in hydrogen rich atmosphere; 3) ball milling; 4) etching the silica template using harsh acids environment; 5) the second pyrolysis in ammonia rich atmosphere; 6) final ball milling. Three independent batches were fabricated following the same procedure. The effect of each synthetic parameters on the surface chemistry and the electrocatalytic performance in neutral media was studied. Rotating ring disk electrode (RRDE) experiment showed an increase in half wave potential and limiting current after the pyrolysis steps. The additional improvement was observed after etching and performing the second pyrolysis. A similar trend was seen in microbial fuel cells (MFCs), in which the power output increased from 167 ± 2 μW cm-2 to 214 ± 5 μW cm-2. X-ray Photoelectron Spectroscopy (XPS) was used to evaluate surface chemistry of catalysts obtained after each synthetic step. The changes in chemical composition were directly correlated with the improvements in performance. We report outstanding reproducibility in both composition and performance among the three different batches.

  7. Mesostructured platinum-free anode and carbon-free cathode catalysts for durable proton exchange membrane fuel cells.

    Science.gov (United States)

    Cui, Xiangzhi; Shi, Jianlin; Wang, Yongxia; Chen, Yu; Zhang, Lingxia; Hua, Zile

    2014-01-01

    As one of the most important clean energy sources, proton exchange membrane fuel cells (PEMFCs) have been a topic of extensive research focus for decades. Unfortunately, several critical technique obstacles, such as the high cost of platinum electrode catalysts, performance degradation due to the CO poisoning of the platinum anode, and carbon corrosion by oxygen in the cathode, have greatly impeded its commercial development. A prototype of a single PEMFC catalyzed by a mesostructured platinum-free WO3/C anode and a mesostructured carbon-free Pt/WC cathode catalysts is reported herein. The prototype cell exhibited 93% power output of a standard PEMFC using commercial Pt/C catalysts at 50 and 70 °C, and more importantly, CO poisoning-free and carbon corrosion-resistant characters of the anode and cathode, respectively. Consequently, the prototype cell demonstrated considerably enhanced cell operation durability. The mesostructured electrode catalysts are therefore highly promising in the future development and application of PEMFCs. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. l-Glutamic acid assisted eco-friendly one-pot synthesis of sheet-assembled platinum-palladium alloy networks for methanol oxidation and oxygen reduction reactions.

    Science.gov (United States)

    Shi, Ya-Cheng; Mei, Li-Ping; Wang, Ai-Jun; Yuan, Tao; Chen, Sai-Sai; Feng, Jiu-Ju

    2017-10-15

    In this work, bimetallic platinum-palladium sheet-assembled alloy networks (PtPd SAANs) were facilely synthesized by an eco-friendly one-pot aqueous approach under the guidance of l-glutamic acid at room temperature, without any additive, seed, toxic or organic solvent involved. l-Glutamic acid was served as the green shape-director and weak-stabilizing agent. A series of characterization techniques were employed to examine the morphology, structure and formation mechanism of the product. The architectures exhibited improved electrocatalytic activity and durable ability toward methanol oxidation reaction (MOR) and oxygen reduction reaction (ORR) in contrast with commercial Pt black and Pd black catalysts. This is ascribed to the unique structures of the obtained PtPd SAANs and the synergistic effects of the bimetals. These results demonstrate the potential application of the prepared catalyst in fuel cells. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Nanostructured platinum-free electrocatalysts in alkaline direct alcohol fuel cells: catalyst design, principles and applications

    CSIR Research Space (South Africa)

    Ozoemena, Kenneth I

    2016-01-01

    Full Text Available in nanoparticles and semi-innite surfaces. Table 1Table 1 Typical calculated segregation energies (eV) for binary alloy nanoparticles Core Shell Ag Pd Ni Ir Co Fe Ag 0 �0.82 �2.29 �3.54 �2.15 �5.20 Pd 0.70 0 �1.09 �1.71 �1.29 �3.26 Ni 0.67 0.46 0 �0.67 �0.20 �2... compares the Wigner–Seitz radii and electron densities of somemetallic elements that are useful for making alloy catalysts for AFC systems. Table 2 clearly indicates that Pd, for example, has a stronger tendency to surface-segregate in Ni, Fe, or Fe...

  10. High-performance Platinum-free oxygen reduction reaction and hydrogen oxidation reaction catalyst in polymer electrolyte membrane fuel cell.

    Science.gov (United States)

    Chandran, Priji; Ghosh, Arpita; Ramaprabhu, Sundara

    2018-02-26

    The integration of polymer electrolyte membrane fuel cell (PEMFC) stack into vehicles necessitates the replacement of high-priced platinum (Pt)-based electrocatalyst, which contributes to about 45% of the cost of the stack. The implementation of high-performance and durable Pt metal-free catalyst for both oxygen reduction reaction (ORR) and hydrogen oxidation reaction (HOR) could significantly enable large-scale commercialization of fuel cell-powered vehicles. Towards this goal, a simple, scalable, single-step synthesis method was adopted to develop palladium-cobalt alloy supported on nitrogen-doped reduced graphene oxide (Pd 3 Co/NG) nanocomposite. Rotating ring-disk electrode (RRDE) studies for the electrochemical activity towards ORR indicates that ORR proceeds via nearly four-electron mechanism. Besides, the mass activity of Pd 3 Co/NG shows an enhancement of 1.6 times compared to that of Pd/NG. The full fuel cell measurements were carried out using Pd 3 Co/NG at the anode, cathode in conjunction with Pt/C and simultaneously at both anode and cathode. A maximum power density of 68 mW/cm 2 is accomplished from the simultaneous use of Pd 3 Co/NG as both anode and cathode electrocatalyst with individual loading of 0.5 mg/cm 2 at 60 °C without any backpressure. To the best of our knowledge, the present study is the first of its kind of a fully non-Pt based PEM full cell.

  11. Biogenic platinum and palladium nanoparticles as new catalysts for the removal of pharmaceutical compounds.

    Science.gov (United States)

    Martins, Mónica; Mourato, Cláudia; Sanches, Sandra; Noronha, João Paulo; Crespo, M T Barreto; Pereira, Inês A C

    2017-01-01

    Pharmaceutical products (PhP) are one of the most alarming emergent pollutants in the environment. Therefore, it is of extreme importance to investigate efficient PhP removal processes. Biologic synthesis of platinum nanoparticles (Bio-Pt) has been reported, but their catalytic activity was never investigated. In this work, we explored the potential of cell-supported platinum (Bio-Pt) and palladium (Bio-Pd) nanoparticles synthesized with Desulfovibrio vulgaris as biocatalysts for removal of four PhP: ciprofloxacin, sulfamethoxazole, ibuprofen and 17β-estradiol. The catalytic activity of the biological nanoparticles was compared with the PhP removal efficiency of D. vulgaris whole-cells. In contrast with Bio-Pd, Bio-Pt has a high catalytic activity in PhP removal, with 94, 85 and 70% removal of 17β-estradiol, sulfamethoxazole and ciprofloxacin, respectively. In addition, the estrogenic activity of 17β-estradiol was strongly reduced after the reaction with Bio-Pt, showing that this biocatalyst produces less toxic effluents. Bio-Pt or Bio-Pd did not act on ibuprofen, but this could be completely removed by D. vulgaris whole-cells, demonstrating that sulfate-reducing bacteria are among the microorganisms capable of biotransformation of ibuprofen in anaerobic environments. This study demonstrates for the first time that Bio-Pt has a high catalytic activity, and is a promising catalyst to be used in water treatment processes for the removal of antibiotics and endocrine disrupting compounds, the most problematic PhP. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Catalytic wet oxidation of ammonia solution: Activity of the nanoscale platinum-palladium-rhodium composite oxide catalyst

    International Nuclear Information System (INIS)

    Hung, C.-M.

    2009-01-01

    Aqueous solutions of 400-1000 mg/L of ammonia were oxidized in a trickle-bed reactor (TBR) in this study of nanoscale platinum-palladium-rhodium composite oxide catalysts, which were prepared by the co-precipitation of H 2 PtCl 6 , Pd(NO 3 ) 3 and Rh(NO 3 ) 3 . Hardly any of the dissolved ammonia was removed by wet oxidation in the absence of any catalyst, whereas about 99% of the ammonia was reduced during wet oxidation over nanoscale platinum-palladium-rhodium composite oxide catalysts at 503 K in an oxygen partial pressure of 2.0 MPa. A synergistic effect exists in the nanoscale platinum-palladium-rhodium composite structure, which is the material with the highest ammonia reduction activity. The nanometer-sized particles were characterized by TEM, XRD and FTIR. The effect of the initial concentration and reaction temperature on the removal of ammonia from the effluent streams was also studied at a liquid hourly space velocity of under 9 h -1 in the wet catalytic processes

  13. Catalytic wet oxidation of ammonia solution: Activity of the nanoscale platinum-palladium-rhodium composite oxide catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Hung, C.-M. [Department of Industry Engineering and Management, Yung-Ta Institute of Technology and Commerce, 316 Chung-shan Road, Linlo, Pingtung 909, Taiwan (China)], E-mail: hungcm1031@gmail.com

    2009-04-15

    Aqueous solutions of 400-1000 mg/L of ammonia were oxidized in a trickle-bed reactor (TBR) in this study of nanoscale platinum-palladium-rhodium composite oxide catalysts, which were prepared by the co-precipitation of H{sub 2}PtCl{sub 6}, Pd(NO{sub 3}){sub 3} and Rh(NO{sub 3}){sub 3}. Hardly any of the dissolved ammonia was removed by wet oxidation in the absence of any catalyst, whereas about 99% of the ammonia was reduced during wet oxidation over nanoscale platinum-palladium-rhodium composite oxide catalysts at 503 K in an oxygen partial pressure of 2.0 MPa. A synergistic effect exists in the nanoscale platinum-palladium-rhodium composite structure, which is the material with the highest ammonia reduction activity. The nanometer-sized particles were characterized by TEM, XRD and FTIR. The effect of the initial concentration and reaction temperature on the removal of ammonia from the effluent streams was also studied at a liquid hourly space velocity of under 9 h{sup -1} in the wet catalytic processes.

  14. Catalytic wet oxidation of ammonia solution: activity of the nanoscale platinum-palladium-rhodium composite oxide catalyst.

    Science.gov (United States)

    Hung, Chang-Mao

    2009-04-15

    Aqueous solutions of 400-1000 mg/L of ammonia were oxidized in a trickle-bed reactor (TBR) in this study of nanoscale platinum-palladium-rhodium composite oxide catalysts, which were prepared by the co-precipitation of H(2)PtCl(6), Pd(NO(3))(3) and Rh(NO(3))(3). Hardly any of the dissolved ammonia was removed by wet oxidation in the absence of any catalyst, whereas about 99% of the ammonia was reduced during wet oxidation over nanoscale platinum-palladium-rhodium composite oxide catalysts at 503 K in an oxygen partial pressure of 2.0 MPa. A synergistic effect exists in the nanoscale platinum-palladium-rhodium composite structure, which is the material with the highest ammonia reduction activity. The nanometer-sized particles were characterized by TEM, XRD and FTIR. The effect of the initial concentration and reaction temperature on the removal of ammonia from the effluent streams was also studied at a liquid hourly space velocity of under 9 h(-1) in the wet catalytic processes.

  15. High-temperature thermodynamic activities of zirconium in platinum alloys determined by nitrogen-nitride equilibria

    International Nuclear Information System (INIS)

    Goodman, D.A.

    1980-05-01

    A high-temperature nitrogen-nitride equilibrium apparatus is constructed for the study of alloy thermodynamics to 2300 0 C. Zirconium-platinum alloys are studied by means of the reaction 9ZrN + 11Pt → Zr 9 Pt 11 + 9/2 N 2 . Carful attention is paid to the problems of diffusion-limited reaction and ternary phase formation. The results of this study are and a/sub Zr//sup 1985 0 C/ = 2.4 x 10 -4 in Zr 9 Pt 11 ΔG/sub f 1985 0 C/ 0 Zr 9 Pt 11 less than or equal to -16.6 kcal/g atom. These results are in full accord with the valence bond theory developed by Engel and Brewer; this confirms their prediction of an unusual interaction of these alloys

  16. A Robust Fiber Bragg Grating Hydrogen Gas Sensor Using Platinum-Supported Silica Catalyst Film

    Directory of Open Access Journals (Sweden)

    Marina Kurohiji

    2018-01-01

    Full Text Available A robust fiber Bragg grating (FBG hydrogen gas sensor for reliable multipoint-leakage monitoring has been developed. The sensing mechanism is based on shifts of center wavelength of the reflection spectra due to temperature change caused by catalytic combustion heat. The sensitive film which consists of platinum-supported silica (Pt/SiO2 catalyst film was obtained using sol-gel method. The precursor solution was composed of hexachloroplatinic acid and commercially available silica precursor solution. The atom ratio of Si : Pt was fixed at 13 : 1. A small amount of this solution was dropped on the substrate and dried at room temperature. After that, the film was calcined at 500°C in air. These procedures were repeated and therefore thick hydrogen-sensitive films were obtained. The catalytic film obtained by 20-time coating on quartz glass substrate showed a temperature change 75 K upon exposure to 3 vol.% H2. For realizing robust sensor device, this catalytic film was deposited and FBG portion was directly fixed on titanium substrate. The sensor device showed good performances enough to detect hydrogen gas in the concentration range below lower explosion limit at room temperature. The enhancement of the sensitivity was attributed to not only catalytic combustion heat but also related thermal strain.

  17. Sinter-Resistant Platinum Catalyst Supported by Metal-Organic Framework.

    Science.gov (United States)

    Kim, In Soo; Li, Zhanyong; Zheng, Jian; Platero-Prats, Ana E; Mavrandonakis, Andreas; Pellizzeri, Steven; Ferrandon, Magali; Vjunov, Aleksei; Gallington, Leighanne C; Webber, Thomas E; Vermeulen, Nicolaas A; Penn, R Lee; Getman, Rachel B; Cramer, Christopher J; Chapman, Karena W; Camaioni, Donald M; Fulton, John L; Lercher, Johannes A; Farha, Omar K; Hupp, Joseph T; Martinson, Alex B F

    2018-01-22

    Single atoms and few-atom clusters of platinum are uniformly installed on the zirconia nodes of a metal-organic framework (MOF) NU-1000 via targeted vapor-phase synthesis. The catalytic Pt clusters, site-isolated by organic linkers, are shown to exhibit high catalytic activity for ethylene hydrogenation while exhibiting resistance to sintering up to 200 °C. In situ IR spectroscopy reveals the presence of both single atoms and few-atom clusters that depend upon synthesis conditions. Operando X-ray absorption spectroscopy and X-ray pair distribution analyses reveal unique changes in chemical bonding environment and cluster size stability while on stream. Density functional theory calculations elucidate a favorable reaction pathway for ethylene hydrogenation with the novel catalyst. These results provide evidence that atomic layer deposition (ALD) in MOFs is a versatile approach to the rational synthesis of size-selected clusters, including noble metals, on a high surface area support. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Conical nano-structure arrays of Platinum cathode catalyst for enhanced cell performance in PEMFC (proton exchange membrane fuel cell)

    International Nuclear Information System (INIS)

    Khan, Aziz; Nath, Bhabesh Kumar; Chutia, Joyanti

    2015-01-01

    Conical nanostructure arrays of Pt (Platinum) as cathode catalyst are developed using a novel integrated plasma sputtering technique. The integration method involves successive deposition of Pt catalyst arrays one upon another maintaining a uniform time gap. Deposition by integrated approach results in the formation of dense arrays of Pt nanostructure as compared to continuous deposition. These high number density integrated arrays with low Pt loading of 0.10 mg cm −2 at the cathode provide enhanced performance compared to non-integrated cathode catalyst prepared by continuous deposition and standard commercial electrodes with Pt loadings of 1 mg cm −2 . The performance is compared on the basis of polarization curve measurements and the calculated power density values. PEM fuel cell with dual integrated cathode showed an improved power density of 0.90 W cm −2 , which is higher than continuously deposited cathode catalyst with maximum power density of 0.67 W cm −2 for the same Pt loading of 0.10 mg cm −2 . - Highlights: • Conical nanostructures with high number density are prepared by a novel integrated deposition technique. • Electrode with such catalyst shows maximum performance of 0.9 W cm −2 . • Integrated catalyst performs better than continuously prepared nanostructure catalyst.

  19. High utilization platinum deposition on single-walled carbon nanotubes as catalysts for direct methanol fuel cell

    International Nuclear Information System (INIS)

    Wang, J.J.; Yin, G.P.; Zhang, J.; Wang, Z.B.; Gao, Y.Z.

    2007-01-01

    This research aims to enhance the activity of Pt catalysts, thus to lower the loading of Pt metal in fuel cell. Highly dispersed platinum supported on single-walled carbon nanotubes (SWNTs) as catalyst was prepared by ion exchange method. The homemade Pt/SWNTs underwent a repetition of ion exchange and reduction process in order to achieve an increase of the metal loading. For comparison, the similar loading of Pt catalyst supported on carbon nanotubes was prepared by borohydride reduction method. The catalysts were characterized by using energy dispersive analysis of X-ray (EDAX), transmission electron micrograph (TEM), X-ray diffraction (XRD), and X-ray photoelectron spectrum (XPS). Compared with the Pt/SWNTs catalyst prepared by borohydride method, higher Pt utilization was achieved on the SWNTs by ion exchange method. Furthermore, in comparison to the E-TEK 20 wt.% Pt/C catalyst with the support of carbon black, the results from electrochemical measurement indicated that the Pt/SWNTs prepared by ion exchange method displayed a higher catalytic activity for methanol oxidation and higher Pt utilization, while no significant increasing in the catalytic activity of the Pt/SWNTs catalyst obtained by borohydride method

  20. Tuning of platinum nano-particles by Au usage in their binary alloy for direct ethanol fuel cell: Controlled synthesis, electrode kinetics and mechanistic interpretation

    Science.gov (United States)

    Dutta, Abhijit; Mondal, Achintya; Datta, Jayati

    2015-06-01

    Understanding of the electrode-kinetics and mechanism of ethanol oxidation reaction (EOR) is of considerable interest for optimizing electro-catalysis in direct ethanol fuel cell (DEFC). This work attempts to design Pt based electro-catalyst on carbon support, tuned with gold nano-particles (NPs), for their use in DEFC operating in alkaline medium. The platinum-gold alloyed NPs are synthesized at desired compositions and size (2-10 nm) by controlled borohydride reduction method and successfully characterized by XRD, TEM, EDS and XPS techniques. The kinetic parameters along with the activation energies for the EOR are evaluated over the temperature range 20-80 °C and the oxidation reaction products estimated through ion chromatographic analysis. Compared to single Pt/C catalyst, the over potential of EOR is reduced by ca. 500 mV, at the onset during the reaction, for PtAu/C alloy with only 23% Pt content demonstrating the ability of Au and/or its surface oxides providing oxygen species at much lower potentials compared to Pt. Furthermore, a considerable increase in the peak power density (>191%) is observed in an in-house fabricated direct ethanol anion exchange membrane fuel cell, DE(AEM)FC using the best performing Au covered Pt electrode (23% Pt) compared to the monometallic Pt catalyst.

  1. Electronic states of carbon alloy catalysts and nitrogen substituent effects on catalytic activity

    Science.gov (United States)

    Hata, Tomoyuki; Ushiyama, Hiroshi; Yamashita, Koichi

    2013-03-01

    In recent years, Carbon Alloy Catalysts (CACs) are attracting attention as a candidate for non-platinum-based cathode catalysts in fuel cells. Oxygen reduction reactions at the cathode are divided into two elementary processes, electron transfer and oxygen adsorption. The electron transfer reaction is the rate-determining, and by comparison of energy levels, catalytic activity can be evaluated quantitatively. On the other hand, to begin with, adsorption mechanism is obscure. The purpose of this study is to understand the effect of nitrogen substitution and oxygen adsorption mechanism, by first-principle electronic structure calculations for nitrogen substituted models. To reproduce the elementary processes of oxygen adsorption, we assumed that the initial structures are formed based on the Pauling model, a CACs model and nitrogen substituted CACs models in which various points are replaced with nitrogen. When we try to focus only on the DOS peaks of oxygen, in some substituted model that has high adsorption activity, a characteristic partial occupancy state was found. We conclude that this state will affect the adsorption activity, and discuss on why partially occupied states appear with simplification by using an orbital correlation diagram.

  2. Selective hydrogenation of halogenated arenes using porous manganese oxide (OMS-2) and platinum supported OMS-2 catalysts.

    Science.gov (United States)

    McManus, Iain J; Daly, Helen; Manyar, Haresh G; Taylor, S F Rebecca; Thompson, Jillian M; Hardacre, Christopher

    2016-07-04

    Porous manganese oxide (OMS-2) and platinum supported on OMS-2 catalysts have been shown to facilitate the hydrogenation of the nitro group in chloronitrobenzene to give chloroaniline with no dehalogenation. Complete conversion was obtained within 2 h at 25 °C and, although the rate of reaction increased with increasing temperature up to 100 °C, the selectivity to chloroaniline remained at 99.0%. Use of Pd/OMS-2 or Pt/Al2O3 resulted in significant dechlorination even at 25 °C and 2 bar hydrogen pressure giving a selectivity to chloroaniline of 34.5% and 77.8%, respectively, at complete conversion. This demonstrates the potential of using platinum group metal free catalysts for the selective hydrogenation of halogenated aromatics. Two pathways were observed for the analogous nitrobenzene hydrogenation depending on the catalyst used. The hydrogenation of nitrobenzene was found to follow a direct pathway to aniline and nitrosobenzene over Pd/OMS-2 in contrast to the OMS and Pt/OMS-2 catalysts which resulted in formation of nitrosobenzene, azoxybenzene and azobenzene/hydrazobenzene intermediates before complete conversion to aniline. These results indicate that for Pt/OMS-2 the hydrogenation proceeds predominantly over the support with the metal acting to dissociate hydrogen. In the case of Pd/OMS-2 both the hydrogenation and hydrogen adsorption occur on the metal sites.

  3. Effect of glassy carbon properties on the electrochemical deposition of platinum nano-catalyst and its activity for methanol oxidation

    Directory of Open Access Journals (Sweden)

    SANJA TERZIC

    2007-02-01

    Full Text Available The effects of the properties of glassy carbon on the deposition of platinum particles and the electrocatalytic activity of platinum supported on glassy carbon (GC/Pt for methanol oxidation in alkaline and acidic solutions were studied. Platinum was potentiostatically deposited on two glassy carbon samples, thermally treated at different temperatures, which were either polished or anodicaly polarised in acid (GCOX-AC/Pt and in alkali (GCOX-AL/Pt. Anodic polarisation of glassy carbon, either in alkaline or acidic solution, enhances the activity of both types of GC/Pt electrodes for methanol oxidation. The activity of the catalysts follows the change in the properties of the glassy carbon support upon anodic treatment. The specific activity of the GCOX-AL/Pt electrode for this reaction in alkali is increased only a few times in comparison with the activity of the GC/Pt one. On the other hand, the specific activity of the GCOX-AC/Pt electrode for methanol oxidation in acid is about one order of magnitude higher than that of the GC/Pt electrode. The role of the substrate on the properties of catalyst is discussed in detail.

  4. Carbon formation on nickel and nickel-copper alloy catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Alstrup, I.; Soerensen, O.; Rostrup-Nielsen, J.R. [Haldor Topsoe Research Labs., Lyngby (Denmark); Tavares, M.T.; Bernardo, C.A.

    1998-05-01

    Equilibrium, kinetic and morphological studies of carbon formation in CH{sub 4} + H{sub 2}, CO, and CO + H{sub 2} gases on silica supported nickel and nickel-copper catalysts are reviewed. The equilibrium deviates in all cases from graphite equilibrium and more so in CO + CO{sub 2} than in CH{sub 4} + H{sub 2}. A kinetic model based on information from surface science results with chemisorption of CH{sub 4} and possibly also the first dehydrogenation step as rate controlling describes carbon formation on nickel catalyst in CH{sub 4} + H{sub 2} well. The kinetics of carbon formation in CO and CO + H{sub 2} gases are in agreement with CO disproportionation as rate determining step. The presence of hydrogen influences strongly the chemisorption of CO. Carbon filaments are formed when hydrogen is present in the gas while encapsulating carbon dominates in pure CO. Small amounts of Cu alloying promotes while larger amounts (Cu : Ni {>=} 0.1) inhibits carbon formation and changes the morphology of the filaments (``octopus`` carbon formation). Adsorption induced nickel segregation changes the kinetics of the alloy catalysts at high carbon activities. Modifications suggested in some very recent papers on the basis of new results are also briefly discussed. (orig.) 31 refs.

  5. Hydrogenation of o-cresol on platinum catalyst: Catalytic experiments and first-principles calculations

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yaping [Department of Physics and Engineering Physics, The University of Tulsa, Tulsa, OK 74104 (United States); Liu, Zhimin [School of Chemical, Biological and Materials Engineering, University of Oklahoma, Norman, OK 73019 (United States); Xue, Wenhua [Department of Physics and Engineering Physics, The University of Tulsa, Tulsa, OK 74104 (United States); Crossley, Steven P.; Jentoft, Friederike C. [School of Chemical, Biological and Materials Engineering, University of Oklahoma, Norman, OK 73019 (United States); Wang, Sanwu, E-mail: sanwu-wang@utulsa.edu [Department of Physics and Engineering Physics, The University of Tulsa, Tulsa, OK 74104 (United States)

    2017-01-30

    Highlights: • Hydrogenation of o-cresol over Pt results in formation of two products. • Dissociation of hydrogen from the −OH group involves a low activation energy. • Following hydrogenation of the aromatic ring forms 2-methyl-cyclohexanone. • Further hydrogenation produces the final product, 2-methyl-cyclohexanol. - Abstract: Catalytic experiments were performed for the hydrogenation of o-cresol in n-dodecane over a platinum catalyst. Batch reactions analyzed with an in-situ ATR IR probe suggest that the hydrogenation results in the formation of the final product, 2-methyl-cyclohexanol, with 2-methyl-cyclohexanone as the intermediate product. Ab initio density-functional theory was employed to investigate the atomic-scale mechanism of o-cresol hydrogenation on the Pt(111) surface. The formation of 2-methyl-cyclohexanone was found to involve two steps. The first step is a hydrogen abstraction, that is, the H atom in the hydroxyl group migrates to the Pt surface. The second step is hydrogenation, that is, the pre-existing H atoms on Pt react with the carbon atoms in the aromatic ring. On the other hand, 2-methyl-cyclohexanonol may be produced through two paths, with activation energies slightly greater than that for the formation of 2-methyl-cyclohexanone. One path involves direct hydrogenation of the aromatic ring. Another path involves three steps, with the partial hydrogenation of the ring as the first step, hydrogen abstraction of the −OH group as the second, and hydrogenation of remaining C atoms and the O atom the last.

  6. Platinum and palladium nano-structured catalysts for polymer electrolyte fuel cells and direct methanol fuel cells.

    Science.gov (United States)

    Long, Nguyen Viet; Thi, Cao Minh; Yong, Yang; Nogami, Masayuki; Ohtaki, Michitaka

    2013-07-01

    In this review, we present the synthesis and characterization of Pt, Pd, Pt based bimetallic and multi-metallic nanoparticles with mixture, alloy and core-shell structure for nano-catalysis, energy conversion, and fuel cells. Here, Pt and Pd nanoparticles with modified nanostructures can be controllably synthesized via chemistry and physics for their uses as electro-catalysts. The cheap base metal catalysts can be studied in the relationship of crystal structure, size, morphology, shape, and composition for new catalysts with low cost. Thus, Pt based alloy and core-shell catalysts can be prepared with the thin Pt and Pt-Pd shell, which are proposed in low and high temperature proton exchange membrane fuel cells (PEMFCs), and direct methanol fuel cells (DMFCs). We also present the survey of the preparation of Pt and Pd based catalysts for the better catalytic activity, high durability, and stability. The structural transformations, quantum-size effects, and characterization of Pt and Pd based catalysts in the size ranges of 30 nm (1-30 nm) are presented in electro-catalysis. In the size range of 10 nm (1-10 nm), the pure Pt catalyst shows very large surface area for electro-catalysis. To achieve homogeneous size distribution, the shaped synthesis of the polyhedral Pt nanoparticles is presented. The new concept of shaping specific shapes and morphologies in the entire nano-scale from nano to micro, such as polyhedral, cube, octahedra, tetrahedra, bar, rod, and others of the nanoparticles is proposed, especially for noble and cheap metals. The uniform Pt based nanosystems of surface structure, internal structure, shape, and morphology in the nanosized ranges are very crucial to next fuel cells. Finally, the modifications of Pt and Pd based catalysts of alloy, core-shell, and mixture structures lead to find high catalytic activity, durability, and stability for nano-catalysis, energy conversion, fuel cells, especially the next large-scale commercialization of next

  7. Platinum catalysts recovery of the proton exchange membrane fuel cell; Recuperacao de catalisadores de platina da celula a combustibel de membrana polimerica trocadora de protons

    Energy Technology Data Exchange (ETDEWEB)

    Fukurozaki, S.H.; Seo, E.S.M. [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil). Centro de Ciencia e Tecnologia de Materiais. Lab. de Processamento de Residuos

    2006-07-01

    Currently, platinum is the most feasible catalyst for the Proton Exchange Membrane Fuel Cells - PEMFC. Along with platinum's significant importance in this energy system are the high cost of this noble metal and its detrimental effects on the environment. Therefore, recycling this material seems as an alternative to decrease its impacts on the environment and, at the same time, to provide a reduction of the system's costs. A search was conducted for literature and studies about platinum recycling methods. However, only two techniques of platinum recovery, which are still in development, were found. In face of this situation, a recovery method of platinum from deactivated Membrane Electrode Assembly - MEA's was developed, with attention to aspects related to the environment and the necessary requirements for its primary recycling. The results found showed a high recovery ratio and a possibility to reintroduce this metal into the production cycle. (author)

  8. Evaluation of the isotope separation rate of deuterium exchange reaction between H2 and H2O with platinum catalyst

    International Nuclear Information System (INIS)

    Kitamoto, Asashi; Takashima, Yoichi; Shimizu, Masami.

    1983-01-01

    The high performance catalysts of hydrophobic carrier with fully dispersed platinum were used to measure the isotope separation performance of hydrogen by the chemical exchange method. The continuous injection of oxygen on the order of 10 3 ppm was effective in regenerating catalyst activity and in maintaining high performance for a long time. The separation performance in a trickle bed column should be evaluated by using two parameters, ksub(g) and ksub(l). These two parameters were unified to the overall transfer coefficient ksub(fg), which may be sufficient in the estimation of overall performance or the design of a separation plant by the chemical exchange method. When one wants to increase the transfer rate in a chemical exchange column, the improvement of ksub(l) rather than ksub(g) may be more effective in increasing the overall transfer rate (its coefficient is expressed by ksub(fg) in this paper). (author)

  9. Development of Sulfur and Carbon Tolerant Reforming Alloy Catalysts Aided Fundamental Atomistic Insights

    Energy Technology Data Exchange (ETDEWEB)

    Suljo Linic

    2008-12-31

    Current hydrocarbon reforming catalysts suffer from rapid carbon and sulfur poisoning. Even though there is a tremendous incentive to develop more efficient catalysts, these materials are currently formulated using inefficient trial and error experimental approaches. We have utilized a hybrid experimental/theoretical approach, combining quantum Density Functional Theory (DFT) calculations and various state-of-the-art experimental tools, to formulate carbon tolerant reforming catalysts. We have employed DFT calculations to develop molecular insights into the elementary chemical transformations that lead to carbon poisoning of Ni catalysts. Based on the obtained molecular insights, we have identified, using DFT quantum calculation, various Ni alloy catalysts as potential carbon tolerant reforming catalysts. The alloy catalysts were synthesized and tested in steam reforming and partial oxidation of methane, propane, and isooctane. We demonstrated that the alloy catalysts are much more carbon-tolerant than monometallic Ni catalysts under nearly stoichiometric steam-to-carbon ratios. Under these conditions, monometallic Ni is rapidly poisoned by sp2 carbon deposits. The research approach is distinguished by two characteristics: (a) knowledge-based, bottomup approach, compared to the traditional trial and error approach, allows for a more efficient and systematic discovery of improved catalysts. (b) the focus is on exploring alloy materials which have been largely unexplored as potential reforming catalysts.

  10. Hydrogen solubility in iron, platinum and their alloys under pressure up to 67 kbars

    International Nuclear Information System (INIS)

    Belash, I.T.; Antonov, V.E.; Ponyatovskij, E.G.

    1979-01-01

    The solubility of hydrogen was studied in iron, nickel and Fe-Pt-H alloy at a high pressure. It was shown that at T=250 deg C and psub(Hsub(2))=67 kbar, the solubility hy of hydrogen in α-iron and platinum is below the sensitivity threshold of the employed method of chemical analysis, deltasub(n) approximately 0.05 (n - atomic ratio hydrogen metal). At this pressure and at a temperature of T=150 deg C, the equilibrium concentration of hydrogen in non-ordered Fe-Pt alloys with a FCC lattice, containing 25 and 32 at. % Pt, attains, respectively, n = (5+-2)x10 -2 and (2+-5)x10 -2 . Ordering of the alloy with 25 at. % Pt produces no substantial change in the solubility of hydrogen. In a hydrogen atmosphere, the dependence of the Curie point Tsub(c)(psub(Hsub(2)) deviates from Tsub(c)(p). In an inert medium, at p=67 kbar, ΔTsub(c)=Tsub(c)(psub(Hsub(2)) - Tsub(c)(p) = 35+-10 deg C

  11. Synthesis and characterization of Pt-Sn-Ni alloys to application as catalysts for direct ethanol fuel cells; Sintese e caracterizacao de ligas de Pt-Sn-Ni para aplicacao como caztalisadores em celulas a combustivel do tipo DEFC

    Energy Technology Data Exchange (ETDEWEB)

    Silva, E.L. da; Correa, P.S.; Oliveira, E.L. de; Takimi, A.S.; Malfatti, C.F., E-mail: celia.malfatti@ufrgs.b [Universidade Federal do Rio Grande do Sul (LAPEC/UFRGS), Porto Alegre, RS (Brazil). Programa de Pos-Graduacao em Engenharia Mecanica. Lab. de Pesquisa em Corrosao; Radtke, C. [Universidade Federal do Rio Grande do Sul (IQ/UFRGS), Porto Alegre, RS (Brazil). Inst. de Quimica

    2010-07-01

    Direct ethanol fuel cells (DEFCs) have been the focus of recent research due its application in mobile energy sources. In order to obtain the maximum efficiency from these systems, it is necessary the total ethanol oxidation, which implies in C-C bond break. Different catalysts described in literature are employed with this intent. This work consists in studying PtSnNi catalysts supported on carbon Vulcan XC72R, to application in DEFCs. Thus, it was used the impregnation/reduction method, varying the atomic proportion among Pt, Sn and Ni. The alloys were characterized by X-Ray Diffraction, Cyclic Voltammetry and Transmission Microscopy. Preliminary results show that predominant structure on the catalysts is the face centered cubic platinum and the densities currents are dependent on the platinum amount. (author)

  12. Pd-Au/C catalysts with different alloying degrees for ethanol oxidation in alkaline media

    International Nuclear Information System (INIS)

    Qin, Yuan-Hang; Li, Yunfeng; Lv, Ren-Liang; Wang, Tie-Lin; Wang, Wei-Guo; Wang, Cun-Wen

    2014-01-01

    High alloyed Pd-Au/C catalyst is prepared through a rate-limiting strategy in water/ethylene glycol solution. Pd/C and low alloyed Pd-Au/C catalysts are prepared with trisodium citrate and sodium borohydride as stabilizing and reducing agents, respectively. Transmission electron microscopy (TEM) shows that the synthesized Pd(Au) particles are well dispersed on the catalysts. X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) show that the high alloyed Pd-Au/C catalyst presents a relatively homogenous structure while the low alloyed Pd-Au/C catalyst presents a Pd-rich shell/Au-rich core structure. Electrochemical characterization shows that the low alloyed Pd-Au/C catalyst exhibits the best catalytic activity for ethanol oxidation reaction (EOR) in alkaline media, which could be attributed to its relatively large exposed Pd surface area as compared with the high alloyed Pd-Au/C catalyst due to its Pd-rich shell structure and its enhanced adsorption of OH ads as compared with Pd/C catalyst due to its core-shell structure

  13. Electrode kinetics of ethanol oxidation on novel CuNi alloy supported catalysts synthesized from PTFE suspension

    Science.gov (United States)

    Sen Gupta, S.; Datta, J.

    An understanding of the kinetics and mechanism of the electrochemical oxidation of ethanol is of considerable interest for the optimization of the direct ethanol fuel cell. In this paper, the electro-oxidation of ethanol in sodium hydroxide solution has been studied over 70:30 CuNi alloy supported binary platinum electrocatalysts. These comprised mixed deposits of Pt with Ru or Mo. The electrodepositions were carried out under galvanostatic condition from a dilute suspension of polytetrafluoroethylene (PTFE) containing the respective metal salts. Characterization of the catalyst layers by scanning electron microscope (SEM)-energy dispersive X-ray (EDX) indicated that this preparation technique yields well-dispersed catalyst particles on the CuNi alloy substrate. Cyclic voltammetry, polarization study and electrochemical impedance spectroscopy were used to investigate the kinetics and mechanism of ethanol electro-oxidation over a range of NaOH and ethanol concentrations. The relevant parameters such as Tafel slope, charge transfer resistance and the reaction orders in respect of OH - ions and ethanol were determined.

  14. Electrocatalytic properties of graphite nanofibers-supported platinum catalysts for direct methanol fuel cells.

    Science.gov (United States)

    Park, Soo-Jin; Park, Jeong-Min; Seo, Min-Kang

    2009-09-01

    Graphite nanofibers (GNFs) treated at various temperatures were used as carbon supports to improve the efficiency of PtRu catalysts. The electrochemical properties of the PtRu/GNFs catalysts were then investigated to evaluate their potential for application in DMFCs. The results indicated that the particle size and dispersibility of PtRu in the catalysts were changed by heat treatment, and the electrochemical activity of the catalysts was improved. Consequently, it was found that heat treatments could have an influence on the surface and structural properties of GNFs, resulting in enhancing an electrocatalytic activity of the catalysts for DMFCs.

  15. Current status for applications of hydrophobic platinum catalysts in tritium removal from nuclear effluents

    International Nuclear Information System (INIS)

    Vagner, Irina; Ionita, Gheorghe; Varlam, Carmen

    2008-01-01

    Full text: Based on the long experience of the authors, in the preparation, testing and evaluation of the performances of hydrophobic catalysts, and based on the reviewed references, this paper presents up-to-date R and D results on the preparation methods and applications of the hydrophobic catalysts, in deuterium and tritium separation. The objectives of the paper are: 1. to provide a database for selection of the most appropriate catalyst and catalytic packing for above mentioned processes; 2. to evaluate the potentiality of hydrophobic Pt-catalysts in the deuterium and tritium separation; 3. to assess and find a new procedure for preparation of a new improved hydrophobic catalyst. The merits of the hydrophobic catalysts are shown in comparison to hydrophilic catalysts. As results of the review some general conclusions about the applications of hydrophobic catalysts in environmental field are as follow: 1. the hydrophobic Pt-catalysts packed in the trickle bed reactors showed a high catalytic activity and long stability; 2. the utilization of the hydrophobic Pt-catalysts for tritium removal from liquid and gaseous effluent in nuclear field was entirely confirmed on industrial scale; 3. the extension of the utilization of the hydrophobic Pt-catalysts to other new processes, which take place in presence of liquid water or high humidity, like VOCs oxidation from wastewater or H 2 -O 2 catalytic recombination, are subject to testing

  16. Pt -based anode catalysts for direct ethanol fuel cells

    International Nuclear Information System (INIS)

    Hoyos, Bibian; Sanchez, Carlos; Gonzalez, Javier

    2007-01-01

    In this work it is studied the electro-catalytic behavior of pure platinum and platinum-based alloys with Ru, Sn, Ir, and Os supported on carbon to the ethanol electro-oxidation in aims to develop anodic catalysts for direct ethanol fuel cells, additionally, porous electrodes and membrane electrode assemblies were built for proton exchange membrane fuel cells in which the electrodes were tested. Catalysts characterization was made by cyclic voltammetry whereas the fuel cells behavior tests were made by current-potential polarization curves. in general, all alloys show a lower on-set reaction potential and a higher catalytic activity than pure platinum. However, in the high over potential zone, pure platinum has higher catalytic activity than the alloys. In agreement with these results, the alloys studied here could be useful in fuel cells operating on moderated and low current

  17. Alloy catalysts for fuel cell-based alcohol sensors

    Science.gov (United States)

    Ghavidel, Mohammadreza Zamanzad

    Direct ethanol fuel cells (DEFCs) are attractive from both economic and environmental standpoints for generating renewable energy and powering vehicles and portable electronic devices. There is a great interest recently in developing DEFC systems. The cost and performance of the DEFCs are mainly controlled by the Pt-base catalysts used at each electrode. In addition to energy conversion, DEFC technology is commonly employed in the fuel-cell based breath alcohol sensors (BrAS). BrAS is a device commonly used to measure blood alcohol concentration (BAC) and enforce drinking and driving laws. The BrAS is non-invasive and has a fast respond time. However, one of the most important drawback of the commercially available BrAS is the very high loading of Pt employed. One well-known and cost effective method to reduce the Pt loading is developing Pt-alloy catalysts. Recent studies have shown that Pt-transition metal alloy catalysts enhanced the electroactivity while decreasing the required loadings of the Pt catalysts. In this thesis, carbon supported Pt-Mn and Pt-Cu electrocatalysts were synthesized by different methods and the effects of heat treatment and structural modification on the ethanol oxidation reaction (EOR) activity, oxygen reduction reaction (ORR) activity and durability of these samples were thoroughly studied. Finally, the selected Pt-Mn and Pt-Cu samples with the highest EOR activity were examined in a prototype BrAS system and compared to the Pt/C and Pt 3Sn/C commercial electrocatalysts. Studies on the Pt-Mn catalysts produced with and without additives indicate that adding trisodium citrate (SC) to the impregnation solution improved the particle dispersion, decreased particle sizes and reduced the time required for heat treatment. Further studies show that the optimum weight ratio of SC to the metal loading in the impregnation solution was 2:1 and optimum results achieved at pH lower than 4. In addition, powder X-ray diffraction (XRD) analyses indicate

  18. LDRD final report on synthesis of shape-and size-controlled platinum and platinum alloy nanostructures on carbon with improved durability.

    Energy Technology Data Exchange (ETDEWEB)

    Shelnutt, John Allen; Garcia, Robert M.; Song, Yujiang; Moreno, Andres M.; Stanis, Ronald J.

    2008-10-01

    This project is aimed to gain added durability by supporting ripening-resistant dendritic platinum and/or platinum-based alloy nanostructures on carbon. We have developed a new synthetic approach suitable for directly supporting dendritic nanostructures on VXC-72 carbon black (CB), single-walled carbon nanotubes (SWCNTs), and multi-walled carbon nanotubes (MWCNTs). The key of the synthesis is to creating a unique supporting/confining reaction environment by incorporating carbon within lipid bilayer relying on a hydrophobic-hydrophobic interaction. In order to realize size uniformity control over the supported dendritic nanostructures, a fast photocatalytic seeding method based on tin(IV) porphyrins (SnP) developed at Sandia was applied to the synthesis by using SnP-containing liposomes under tungsten light irradiation. For concept approval, one created dendritic platinum nanostructure supported on CB was fabricated into membrane electrode assemblies (MEAs) for durability examination via potential cycling. It appears that carbon supporting is essentially beneficial to an enhanced durability according to our preliminary results.

  19. Controlled surface segregation leads to efficient coke-resistant nickel/platinum bimetallic catalysts for the dry reforming of methane

    KAUST Repository

    Li, Lidong; Zhou, Lu; Ould-Chikh, Samy; Anjum, Dalaver; Kanoun, Mohammed; Scaranto, Jessica; Hedhili, Mohamed Nejib; Khalid, Syed; Laveille, Paco; D'Souza, Lawrence; Clo, Alain M.; Basset, Jean-Marie

    2015-01-01

    Surface composition and structure are of vital importance for heterogeneous catalysts, especially for bimetallic catalysts, which often vary as a function of reaction conditions (known as surface segregation). The preparation of bimetallic catalysts with controlled metal surface composition and structure is very challenging. In this study, we synthesize a series of Ni/Pt bimetallic catalysts with controlled metal surface composition and structure using a method derived from surface organometallic chemistry. The evolution of the surface composition and structure of the obtained bimetallic catalysts under simulated reaction conditions is investigated by various techniques, which include CO-probe IR spectroscopy, high-angle annular dark-field scanning transmission electron microscopy, energy-dispersive X-ray spectroscopy, extended X-ray absorption fine structure analysis, X-ray absorption near-edge structure analysis, XRD, and X-ray photoelectron spectroscopy. It is demonstrated that the structure of the bimetallic catalyst is evolved from Pt monolayer island-modified Ni nanoparticles to core-shell bimetallic nanoparticles composed of a Ni-rich core and a Ni/Pt alloy shell upon thermal treatment. These catalysts are active for the dry reforming of methane, and their catalytic activities, stabilities, and carbon formation vary with their surface composition and structure. The reform of reforming: A series of alumina-supported Ni/Pt bimetallic nanoparticles (NPs) with controlled surface composition and structure are prepared. Remarkable surface segregation for these bimetallic NPs is observed upon thermal treatment. These bimetallic NPs are active catalysts for CO2 reforming of CH4, and their catalytic activities, stabilities, and carbon formation vary with their surface composition and structure.

  20. Controlled surface segregation leads to efficient coke-resistant nickel/platinum bimetallic catalysts for the dry reforming of methane

    KAUST Repository

    Li, Lidong

    2015-02-03

    Surface composition and structure are of vital importance for heterogeneous catalysts, especially for bimetallic catalysts, which often vary as a function of reaction conditions (known as surface segregation). The preparation of bimetallic catalysts with controlled metal surface composition and structure is very challenging. In this study, we synthesize a series of Ni/Pt bimetallic catalysts with controlled metal surface composition and structure using a method derived from surface organometallic chemistry. The evolution of the surface composition and structure of the obtained bimetallic catalysts under simulated reaction conditions is investigated by various techniques, which include CO-probe IR spectroscopy, high-angle annular dark-field scanning transmission electron microscopy, energy-dispersive X-ray spectroscopy, extended X-ray absorption fine structure analysis, X-ray absorption near-edge structure analysis, XRD, and X-ray photoelectron spectroscopy. It is demonstrated that the structure of the bimetallic catalyst is evolved from Pt monolayer island-modified Ni nanoparticles to core-shell bimetallic nanoparticles composed of a Ni-rich core and a Ni/Pt alloy shell upon thermal treatment. These catalysts are active for the dry reforming of methane, and their catalytic activities, stabilities, and carbon formation vary with their surface composition and structure. The reform of reforming: A series of alumina-supported Ni/Pt bimetallic nanoparticles (NPs) with controlled surface composition and structure are prepared. Remarkable surface segregation for these bimetallic NPs is observed upon thermal treatment. These bimetallic NPs are active catalysts for CO2 reforming of CH4, and their catalytic activities, stabilities, and carbon formation vary with their surface composition and structure.

  1. Fine platinum nanoparticles supported on a porous ceramic membrane as efficient catalysts for the removal of benzene.

    Science.gov (United States)

    Liu, Hui; Li, Chengyin; Ren, Xiaoyong; Liu, Kaiqi; Yang, Jun

    2017-11-29

    It would be desirable to remove volatile organic compounds (VOCs) while we eliminate the dusts using silicon carbide (SiC)-based porous ceramics from the hot gases. Aiming at functionalizing SiC-based porous ceramics with catalytic capability, we herein report a facile strategy to integrate high efficient catalysts into the porous SiC substrates for the VOC removal. We demonstrate an aqueous salt method for uniformly distributing fine platinum (Pt) particles on the alumina (Al 2 O 3 ) layers, which are pre-coated on the SiC substrates as supports for VOC catalysts. We confirm that at a Pt mass loading as low as 0.176% and a weight hourly space velocity of 6000 mL g -1 h -1 , the as-prepared Pt/SiC@Al 2 O 3 catalysts can convert 90% benzene at a temperature of ca. 215 °C. The results suggest a promising way to design ceramics-based bi-functional materials for simultaneously eliminating dusts and harmful VOCs from various hot gases.

  2. Platinum Catalysts Supported on Ce, Zr, Pr - Oxides in Catalytic Wet Air Oxidation of Acetic Acid

    Czech Academy of Sciences Publication Activity Database

    Mikulová, Jana; Rossignol, S.; Barbier Jr., J.; Duprez, D.; Kappenstein, C.

    2007-01-01

    Roč. 146, č. 3 (2007), s. 1248-1253 ISSN 0304-3894 Institutional research plan: CEZ:AV0Z40720504 Keywords : platinum * cerium oxide * carbonate species Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.337, year: 2007

  3. Total Oxidation of Ethanol and Toluene over Ceria-Zirconia Supported Platinum Catalysts.

    Czech Academy of Sciences Publication Activity Database

    Topka, Pavel; Kaluža, Luděk; Gaálová, Jana

    2016-01-01

    Roč. 70, č. 7 (2016), s. 898-906 ISSN 0366-6352 R&D Projects: GA ČR GP13-24186P Institutional support: RVO:67985858 Keywords : oxidation * volatile organic compounds * platinum Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 1.258, year: 2016

  4. UV-induced polymerization of size-controlled platinum/poly[styrene-divinylbenzene-tri(propylene glycol) diacrylate] hydrophobic catalyst beads in microfluidics

    International Nuclear Information System (INIS)

    Wi, Jun; Li, Xiang; Song, Tong; Song, Zi Fan; Chang, Zhen Qi; Meng, Da Qiao

    2015-01-01

    The catalytic exchange of hydrogen isotopes between hydrogen and water has been known to be a very useful process for the separation of tritium from tritiated water. For the process, a highly active hydrophobic catalyst is needed. This study provides an effective fabrication method of size-controlled platinum/poly[styrene-divinylbenzene-tri(propylene glycol) diacrylate] [Pt/poly(SDB-TPGDA)] hydrophobic catalyst beads with a narrow size distribution. Platinum nanoparticles were prepared by γ-ray-induced reduction in the aqueous phase first, and then uniformly dispersed in SDB-TPGDA comonomer after the hydrophobization of platinum nanoparticles with alkylamine stabilizers. The porous Pt/poly(SDB-TPGDA) hydrophobic catalyst beads were synthesized by the UV-initiated polymerization of the mixture droplets prepared in a capillary-based microfluidic system. The size of as-prepared catalyst beads can be controlled in the range of 200-1,000 μm by adjusting the flow rate of dispersed and continuous phases, as well as the viscosity of the continuous phase. Sorbitan monooleate and cyclohexanol were used as coporogens to control the porosities of the catalyst beads

  5. UV-induced polymerization of size-controlled platinum/poly[styrene-divinylbenzene-tri(propylene glycol) diacrylate] hydrophobic catalyst beads in microfluidics

    Energy Technology Data Exchange (ETDEWEB)

    Wi, Jun; Li, Xiang; Song, Tong; Song, Zi Fan; Chang, Zhen Qi [School of Nuclear Science and Technology, University of Science and Technology of China, Hefei (China); Meng, Da Qiao [Si Chuan Institute of Materials and Technology, Jiang You (China)

    2015-10-15

    The catalytic exchange of hydrogen isotopes between hydrogen and water has been known to be a very useful process for the separation of tritium from tritiated water. For the process, a highly active hydrophobic catalyst is needed. This study provides an effective fabrication method of size-controlled platinum/poly[styrene-divinylbenzene-tri(propylene glycol) diacrylate] [Pt/poly(SDB-TPGDA)] hydrophobic catalyst beads with a narrow size distribution. Platinum nanoparticles were prepared by γ-ray-induced reduction in the aqueous phase first, and then uniformly dispersed in SDB-TPGDA comonomer after the hydrophobization of platinum nanoparticles with alkylamine stabilizers. The porous Pt/poly(SDB-TPGDA) hydrophobic catalyst beads were synthesized by the UV-initiated polymerization of the mixture droplets prepared in a capillary-based microfluidic system. The size of as-prepared catalyst beads can be controlled in the range of 200-1,000 μm by adjusting the flow rate of dispersed and continuous phases, as well as the viscosity of the continuous phase. Sorbitan monooleate and cyclohexanol were used as coporogens to control the porosities of the catalyst beads.

  6. The platinum catalyst layer in polymer-electrolyte fuel cells[Dissertation 17127]; Die Platinkatalysatorschicht in Polymerelektrolyt-Brennstoffzellen. Beitraege zum Verstaendnis und zur Optimierung

    Energy Technology Data Exchange (ETDEWEB)

    Reiner, A.

    2007-07-01

    This illustrated, comprehensive dissertation by Dr. Andreas Reiner presents an in-depth analysis of polymer electrolyte fuel cells (PEFC) and in particular, their platinum catalyst layer. First of all, the thermodynamics and kinetics involved are reviewed, along with components, their efficiencies and the catalyst layer. The methods used, including scanning electron microscope, x-ray and Rutherford spectroscopy are discussed. The structure and composition of co-sputtered catalyst layers and their production are described. Electro-chemical activation and the electro-chemical properties of the layers are discussed. The second part of the dissertation deals with the principle of hydrogen under-potential deposition. This method provides information about the electrochemically active platinum surface fraction. The results of investigations made are presented and discussed.

  7. Obtaining of platinum-titanium alloys by sol-gel and their performance for the detachment reactions and oxygen reduction

    International Nuclear Information System (INIS)

    Regueira R, B. I.

    2011-01-01

    In the present work, platinum-titanium (Pt-Ti) alloys were prepared, characterized and evaluated in acid media as bifunctional electrocatalysts for the oxygen evolution reaction (Oer) and oxygen reduction reactions (Orr) in acid media. The alloys were synthesized by sol-gel method, heating the gel at temperatures of 400 and 600 C. The alloys characterization was realized by X-ray diffraction, scanning electron microscopy and EDS. Both alloys were formed by agglomerates of nanometer particles. The particle sizes were lower for the alloy obtained at 400 C (120 nm to 257 nm) compared to the alloy prepared at 600 C (555 nm to 833 nm). Cyclic and linear voltammetry techniques were used for the electrochemical evaluation of the alloy obtained at both temperatures for the Oer and Orr, in a 0.5 M sulfuric acid solution. The materials have response for both electrochemical reactions, therefore the best performance was for the Pt-Ti alloy, obtained at 400 C and it was stable for the oxygen evolution reaction. The alloy obtained at 400 C presents satisfactory electrocatalytic characteristics to be used as bifunctional material in a unified regenerative fuel cell. (Author)

  8. Isotopic exchange between deuterium and neohexane on supported platinum and palladium catalysts

    International Nuclear Information System (INIS)

    Eskinazi, V.

    1979-01-01

    The isotopic exchange reaction between neohexane and deuterium on supported Pt/SiO 2 and Pd/SiO 2 catalysts has been investigated in the temperature range 86.5 to 110 0 C. Rates of exchange were studied as functions of percentage of metal atoms exposed, the conditions of catalyst pretreatment, and the reaction temperature. The rates of exchange were not strongly dependent upon percentage exposed; however, the relative yields of d 1 through d 5 in the ethyl moiety or neohexane were dependent on the percentage metal atoms exposed. The Pt/SiO 2 catalysts were found to be more active for exchange than the Pd/SiO 2 catalysts by an order of magnitude. Both the turnover frequencies and the exchange pattern were observed to be influenced by the pretreatment of the catalyst. Maxima in the exchange pattern occurred at d 3 and d 5 in the case of Pt/SiO 2 and at d 5 only in the case of the Pd/SiO 2 catalysts. In order to account for the d 3 maximum observed for Pt catalysts, some extension of the Horiuti-Polanyi mechanism is required. Mechanisms by which the d 3 species might be formed are proposed and discussed. On Pd/SiO 2 catalysts exchange occurs preferentially in the ethyl substituent of the quaternary carbon atom rather than on the three methyl substituents of the quaternary carbon atom. Such preference is not observed on Pt/SiO 2 catalysts; in fact, in some cases, this preference is reversed. Whenever exchange occurs in the three methyl substituents, mostly the d 1 product is obtained. For Pt/SiO 2 catalysts, the exchange pattern appears to be influenced by steric effects, but the data suggest that factors other than steric effects are important on Pd

  9. Performance of Platinum Nanoparticles / Multiwalled Carbon Nanotubes / Bacterial Cellulose Composite as Anode Catalyst for Proton Exchange Membrane Fuel Cells

    Directory of Open Access Journals (Sweden)

    Henry Fonda Aritonang

    2017-05-01

    Full Text Available Highly dispersed platinum (Pt nanoparticles / multiwalled carbon nanotubes (MWCNTs on bacterial cellulose (BC as anode catalysts for proton exchange membrane fuel cells (PEMFC were prepared with various precursors and their electro-catalytic activities towards hydrogen oxidation at 70 oC under non-humidified conditions. The composite was prepared by deposition of Pt nanoparticles and MWCNTs on BC gel by impregnation method using a water solution of metal precursors and MWCNTs followed by reducing reaction using a hydrogen gas. The composite was characterized by using TEM (transmission electron microscopy, EDS (energy dispersive spectroscopy, and XRD (X-ray diffractometry techniques. TEM images and XRD patterns both lead to the observation of spherical metallic Pt nanoparticles with mean diameter of 3-11 nm well impregnated into the BC fibrils. Preliminary tests on a single cell indicate that renewable BC is a good prospect to be explored as a membrane in fuel cell field. Copyright © 2017 BCREC Group. All rights reserved Received: 21st November 2016; Revised: 26th February 2017; Accepted: 27th February 2017 How to Cite: Aritonang, H.F., Kamu, V.S., Ciptati, C., Onggo, D., Radiman, C.L. (2017. Performance of Platinum Nanoparticles / Multiwalled Carbon Nanotubes / Bacterial Cellulose Composite as Anode Catalyst for Proton Exchange Membrane Fuel Cells. Bulletin of Chemical Reaction Engineering & Catalysis, 12 (2: 287-292 (doi:10.9767/bcrec.12.2.803.287-292 Permalink/DOI: http://dx.doi.org/10.9767/bcrec.12.2.803.287-292

  10. Development of Sulfur and Carbon Tolerant Reforming Alloy Catalysts Aided by Fundamental Atomistics Insights

    Energy Technology Data Exchange (ETDEWEB)

    Suljo Linic

    2006-08-31

    Current hydrocarbon reforming catalysts suffer from rapid carbon and sulfur poisoning. Even though there is a tremendous incentive to develop more efficient catalysts, these materials are currently formulated using inefficient trial and error experimental approaches. We have utilized a novel hybrid experimental/theoretical approach, combining quantum Density Functional Theory (DFT) calculations and various state-of-the-art experimental tools, to formulate carbon tolerant reforming catalysts. We have employed DFT calculations to develop molecular insights into the elementary chemical transformations that lead to carbon poisoning of Ni catalysts. Based on the obtained molecular insights, we have identified, using DFT quantum calculation, Sn/Ni alloy as a potential carbon tolerant reforming catalyst. Sn/Ni alloy was synthesized and tested in steam reforming of methane, propane, and isooctane. We demonstrated that the alloy catalyst is carbon-tolerant under nearly stoichiometric steam-to-carbon ratios. Under these conditions, monometallic Ni is rapidly poisoned by sp2 carbon deposits. The research approach is distinguished by a few characteristics: (a) Knowledge-based, bottom-up approach, compared to the traditional trial and error approach, allows for a more efficient and systematic discovery of improved catalysts. (b) The focus is on exploring alloy materials which have been largely unexplored as potential reforming catalysts.

  11. Polyol Synthesis of Cobalt–Copper Alloy Catalysts for Higher Alcohol Synthesis from Syngas

    DEFF Research Database (Denmark)

    Mendes, Laiza V.P.; Snider, Jonathan L.; Fleischman, Samuel D.

    2017-01-01

    Novel catalysts for the selective production of higher alcohols from syngas could offer improved pathways towards synthetic fuels and chemicals. Cobalt–copper alloy catalysts have shown promising results for this reaction. To improve control over particle properties, a liquid phase nanoparticle s...

  12. Investigation of LMFBR prototype 7A heaters and the metallurgy of the platinum-8 weight percent tungsten alloy

    International Nuclear Information System (INIS)

    Ludwig, R.L.

    1976-09-01

    A Liquid Metal Fast Breeder Reactor 7A prototype heater failure was analyzed. The failure was due to melting of the platinum-8 weight percent tungsten alloy (Pt-8 W) alloy winding caused by a loss of contact with the inside boron nitride insulation. An attempt to simulate a failure revealed that elemental boron forms a low-melting mixture with Pt-8 W, but a means by which boron might be present in an actual heater was not determined. A time/temperature/grain size study of various Pt-8 W alloy samples resulted in behavior which would be expected from a single-phase, solid-solution alloy. The results of the study were useful in estimating the temperatures reached at various locations along the length of two failed 7A prototype heaters

  13. Durable platinum/graphene catalysts assisted with polydiallyldimethylammonium for proton-exchange membrane fuel cells

    International Nuclear Information System (INIS)

    Lei, M.; Liang, C.; Wang, Y.J.; Huang, K.; Ye, C.X.; Liu, G.; Wang, W.J.; Jin, S.F.; Zhang, R.; Fan, D.Y.; Yang, H.J.; Wang, Y.G.

    2013-01-01

    High performance and electrochemically stable Pt/graphene catalysts assisted with polydiallyldimethylammonium (PDDA) have been synthesized for PEM fuel cells. The preparation procedure and properties of the catalysts are investigated in detail. With the introduction of PDDA molecules, Pt nanoparticles can be well-dispersed on graphene support, resulting in improved electrochemical surface area and enhanced electrocatalytic activity. The corresponding electrochemical surface areas (ECSA) of catalyst layers calculated from the hydrogen desorption peak on cyclic voltammogram curves are 78.3, 72.5 and 73.6 cm 2 g −1 for catalyst layers with Pt/graphene, Pt-PDDA/graphene, and Pt/graphene-PDDA catalysts, respectively. Both PDDA modified Pt nanoparticles and PDDA modified graphene supports also exhibit high durability toward electrochemical oxidation cycles compared with the conventional produced Pt/graphene catalyst at the same conditions. After 3000 cycles, only 23.52% of the initial ECSA remains for Pt/graphene electrocatalyst whereas 43.04% and 37.7% of the initial ECSA for the Pt/graphene-PDDA and Pt-PDDA/graphene catalysts remain, respectively

  14. Sum Frequency Generation Vibrational Spectroscopy of Colloidal Platinum Nanoparticle Catalysts: Disordering versus Removal of Organic Capping

    KAUST Repository

    Krier, James M.; Michalak, William D.; Baker, L. Robert; An, Kwangjin; Komvopoulos, Kyriakos; Somorjai, Gabor A.

    2012-01-01

    Recent work with nanoparticle catalysts shows that size and shape control on the nanometer scale influences reaction rate and selectivity. Sum frequency generation (SFG) vibrational spectroscopy is a powerful tool for studying heterogeneous

  15. Tuning the structure of platinum particles on ceria in situ for enhancing the catalytic performance of exhaust gas catalysts

    International Nuclear Information System (INIS)

    Gaenzler, Andreas M.; Casapu, Maria; Grunwaldt, Jan-Dierk; Vernoux, Philippe; Loridant, Stephane; Cadete Santos Aires, Francisco J.; Epicier, Thierry; Betz, Benjamin; Hoyer, Ruediger

    2017-01-01

    A dynamic structural behavior of Pt nanoparticles on the ceria surface under reducing/oxidizing conditions was found at moderate temperatures (<500 C) and exploited to enhance the catalytic activity of Pt/CeO 2 -based exhaust gas catalysts. Redispersion of platinum in an oxidizing atmosphere already occurred at 400 C. A protocol with reducing pulses at 250-400 C was applied in a subsequent step for controlled Pt-particle formation. Operando X-ray absorption spectroscopy unraveled the different extent of reduction and sintering of Pt particles: The choice of the reductant allowed the tuning of the reduction degree/particle size and thus the catalytic activity (CO>H 2 >C 3 H 6 ). This dynamic nature of Pt on ceria at such low temperatures (250-500 C) was additionally confirmed by in situ environmental transmission electron microscopy. A general concept is proposed to adjust the noble metal dispersion (size, structure), for example, during operation of an exhaust gas catalyst. (copyright 2017 Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim)

  16. Tuning the structure of platinum particles on ceria in situ for enhancing the catalytic performance of exhaust gas catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Gaenzler, Andreas M.; Casapu, Maria; Grunwaldt, Jan-Dierk [Institute for Chemical Technology and Polymer Chemistry (ITCP), Karlsruhe Institute of Technology (KIT), Karlsruhe (Germany); Vernoux, Philippe; Loridant, Stephane; Cadete Santos Aires, Francisco J. [Institut de Recherches sur la Catalyse et l' Environnement de Lyon, UMR 5256, CNRS, Universite Claude Bernard Lyon 1, Universite de Lyon, Villeurbanne (France); Epicier, Thierry [Materiaux, Ingenierie et Science, UMR 5510, CNRS, INSA de Lyon, Universite de Lyon, Villeurbanne (France); Betz, Benjamin [Umicore AG and Co. KG, Hanau (Germany); Ernst-Berl Institut, Technische Universitaet Darmstadt (Germany); Hoyer, Ruediger [Umicore AG and Co. KG, Hanau (Germany)

    2017-10-09

    A dynamic structural behavior of Pt nanoparticles on the ceria surface under reducing/oxidizing conditions was found at moderate temperatures (<500 C) and exploited to enhance the catalytic activity of Pt/CeO{sub 2}-based exhaust gas catalysts. Redispersion of platinum in an oxidizing atmosphere already occurred at 400 C. A protocol with reducing pulses at 250-400 C was applied in a subsequent step for controlled Pt-particle formation. Operando X-ray absorption spectroscopy unraveled the different extent of reduction and sintering of Pt particles: The choice of the reductant allowed the tuning of the reduction degree/particle size and thus the catalytic activity (CO>H{sub 2}>C{sub 3}H{sub 6}). This dynamic nature of Pt on ceria at such low temperatures (250-500 C) was additionally confirmed by in situ environmental transmission electron microscopy. A general concept is proposed to adjust the noble metal dispersion (size, structure), for example, during operation of an exhaust gas catalyst. (copyright 2017 Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim)

  17. bis-Nitrile and bis-Dialkylcyanamide Platinum(II) Complexes as Efficient Catalysts for Hydrosilylation Cross-Linking of Siloxane Polymers.

    Science.gov (United States)

    Islamova, Regina M; Dobrynin, Mikhail V; Ivanov, Daniil M; Vlasov, Andrey V; Kaganova, Elena V; Grigoryan, Galina V; Kukushkin, Vadim Yu

    2016-03-05

    cis- and trans-Isomers of the platinum(II) nitrile complexes [PtCl2(NCR)2] (R = NMe2, N(C₅H10), Ph, CH2Ph) were examined as catalysts for hydrosilylation cross-linking of vinyl-terminated polydimethylsiloxane and trimethylsilyl-terminated poly(dimethylsiloxane-co-ethylhydrosiloxane) producing high quality silicone rubbers. Among the tested platinum species the cis-complexes are much more active catalysts than their trans-congeners and for all studied platinum complexes cis-[PtCl2(NCCH2Ph)2] exhibits the best catalytic activity (room temperature, c = 1.0 × 10(-4) mol/L, τpot-life 60 min, τcuring 6 h). Although cis-[PtCl₂(NCCH2Ph)2] is less active than the widely used Karstedt's catalyst, its application for the cross-linking can be performed not only at room temperature (c = 1.0 × 10(-4) mol/L), but also, more efficiently, at 80 °C (c = 1.0 × 10(-4)-1.0 × 10(-5) mol/L) and it prevents adherence of the formed silicone rubbers to equipment. The usage of the cis- and trans-[PtCl2(NCR)2] complexes as the hydrosilylation catalysts do not require any inhibitors and, moreover, the complexes and their mixtures with vinyl- and trimethylsilyl terminated polysiloxanes are shelf-stable in air. Tested catalysts do not form colloid platinum particles after the cross-linking.

  18. Methanol electro-oxidation and direct methanol fuel cell using Pt/Rh and Pt/Ru/Rh alloy catalysts

    International Nuclear Information System (INIS)

    Choi, Jong-Ho; Park, Kyung-Won; Park, In-Su; Nam, Woo-Hyun; Sung, Yung-Eun

    2004-01-01

    Pt-based binary or ternary catalysts containing Rh for use as anodes in direct methanol fuel cells (DMFC) were synthesized by borohydride reduction method combined with freeze-drying. The resulting catalysts had a specific surface area of approximately 65-75 m 2 /g. X-ray diffraction (XRD) patterns indicated that the catalysts were well alloyed and the average size of alloy catalysts was confirmed by transmission electron microscopy (TEM). The Pt/Rh (2:1) and Pt/Ru/Rh (5:4:1) alloy catalysts showed better catalytic activities for methanol electro-oxidation than Pt or Pt/Ru (1:1), respectively

  19. Determination of platinum group metal catalyst residues in active pharmaceutical ingredients by means of total reflection X-ray spectrometry

    International Nuclear Information System (INIS)

    Marguí, Eva; Queralt, Ignasi; Hidalgo, Manuela

    2013-01-01

    The control of metal catalyst residues (i.e., platinum group metals (PGMs)) in different stages of the manufacturing processes of the active pharmaceutical ingredients (APIs) and, especially, in the final product is crucial. For API specimens, there are strict guidelines to limit the levels of metal residues based on their individual levels of safety concern. For PGMs the concentration limit has been established at 10 mg/kg in the API. Therefore great effort is currently being devoted to the development of new and simple procedures to control metals in pharmaceuticals. In the present work, an analytical methodology based on benchtop total reflection X-ray fluorescence spectrometry (TXRF) has been developed for the rapid and simple determination of some PGM catalyst impurities (Rh, Pd, Ir and Pt) in different types of API samples. An evaluation of different sample treatments (dissolution and digestion of the solid pharmaceutical samples) has been carried out and the developed methodologies have been validated according to the analytical parameters to be considered and acceptance criteria for PGM determination according to the United States Pharmacopeia (USP). Limits of quantification obtained for PGM metals were in the range of 2–4 mg/kg which are satisfactory according to current legislation. From the obtained results it is shown that the developed TXRF method can be implemented in the pharmaceutical industries to increase productivity of the laboratory; offering an interesting and complementary analytical tool to other atomic spectroscopic methods. - Highlights: • A TXRF method for PGM catalyst residue determination in API samples is presented. • Analysis can be performed using 10 μL of the internal standardized dissolved API. • The method is rapid, simple and suitable according to the USP requirements

  20. Electro catalyst of platinum prepared by CVD for the oxygen reduction reaction

    International Nuclear Information System (INIS)

    Garcia C, M.A.; Fernandez V, S.M.; Vargas G, J.R.

    2004-01-01

    In this work it is reported the preparation and characterization of platinum films obtained by the technique of chemical vapor deposition at low pressure, better well-known as LPCVD for their initials in English (Low Pressure Chemical Vapor Deposition). The technique has several industrial applications and in this work it is explored their possible use to prepare applicable electrocatalysts in fuel cells. The films were characterized by XRD, SEM, EDS and they were proven for to determine their acting in the Oxygen reduction reaction (Orr) in sulfuric acid 0.5 M, the results show that the material presents good activity for the reaction in study. (Author)

  1. Synergistic effect and mechanism of platinum catalyst and nitrogen-containing silane on the thermal stability of silicone rubber

    International Nuclear Information System (INIS)

    Chen, Wanjuan; Zeng, Xingrong; Lai, Xuejun; Li, Hongqiang; Fang, Weizhen; Liu, Tian

    2016-01-01

    Highlights: • Platinum (Pt) and nitrogen-containing silane (NS) were introduced into silicone rubber. • The thermal stability was improved by Pt/NS both under nitrogen and air atmosphere. • The TG-FTIR of evolved gases during degradation was performed. • The synergistic effect and mechanism of Pt and NS were proposed. - Abstract: Platinum (Pt) catalyst and nitrogen-containing silane (NS) were introduced to improve the thermal stability of silicone rubber. The effects of Pt and NS on thermal stability and degradation mechanism of silicone rubber were investigated by thermogravimetry (TG), thermogravimetry-Fourier transform infrared spectrometry (TG-FTIR), scanning electron microscope-energy dispersive X-ray spectroscopy (SEM-EDXS) and Fourier transform infrared spectrometry (FTIR). A significant synergism was found between Pt and NS for improving the thermal stability of silicone rubber. When 6.67 ppm of Pt and 1.4 phr of NS were introduced, the temperature of 10% and 20% weight loss under nitrogen atmosphere were respectively increased by 36 °C and 119 °C. Meanwhile, the residue weight at 900 °C was doubled to 68% in the presence of Pt/NS. The synergistic mechanism might be that the nitrogen atom coordinated with Pt and improved the catalytic efficiency of Pt. Additionally, NS preserved the catalytic activity of Pt under air atmosphere. Hence, Pt/NS efficiently catalyzed thermal crosslinking and suppressed degradation of silicone chains. Moreover, it revealed that the presence of Pt/NS protected silicone chains from oxidation. Thus, the unzipping depolymerization by silanol groups was reduced significantly.

  2. Synergistic effect and mechanism of platinum catalyst and nitrogen-containing silane on the thermal stability of silicone rubber

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Wanjuan; Zeng, Xingrong, E-mail: psxrzeng@gmail.com; Lai, Xuejun; Li, Hongqiang; Fang, Weizhen; Liu, Tian

    2016-05-20

    Highlights: • Platinum (Pt) and nitrogen-containing silane (NS) were introduced into silicone rubber. • The thermal stability was improved by Pt/NS both under nitrogen and air atmosphere. • The TG-FTIR of evolved gases during degradation was performed. • The synergistic effect and mechanism of Pt and NS were proposed. - Abstract: Platinum (Pt) catalyst and nitrogen-containing silane (NS) were introduced to improve the thermal stability of silicone rubber. The effects of Pt and NS on thermal stability and degradation mechanism of silicone rubber were investigated by thermogravimetry (TG), thermogravimetry-Fourier transform infrared spectrometry (TG-FTIR), scanning electron microscope-energy dispersive X-ray spectroscopy (SEM-EDXS) and Fourier transform infrared spectrometry (FTIR). A significant synergism was found between Pt and NS for improving the thermal stability of silicone rubber. When 6.67 ppm of Pt and 1.4 phr of NS were introduced, the temperature of 10% and 20% weight loss under nitrogen atmosphere were respectively increased by 36 °C and 119 °C. Meanwhile, the residue weight at 900 °C was doubled to 68% in the presence of Pt/NS. The synergistic mechanism might be that the nitrogen atom coordinated with Pt and improved the catalytic efficiency of Pt. Additionally, NS preserved the catalytic activity of Pt under air atmosphere. Hence, Pt/NS efficiently catalyzed thermal crosslinking and suppressed degradation of silicone chains. Moreover, it revealed that the presence of Pt/NS protected silicone chains from oxidation. Thus, the unzipping depolymerization by silanol groups was reduced significantly.

  3. Development of inductively coupled plasma atomic emission spectrometry for palladium and Rhodium determination in platinum-based alloy

    International Nuclear Information System (INIS)

    Kovacevic, R.; Todorovic, M.; Manojlovic, D.; Mutic, J.

    2008-01-01

    Inductively coupled plasma atomic emission spectroscopy with internal standardization was applied for the analysis of an in-house reference platinum alloy containing palladium and rhodium (approximately 5% by weight). In order to compensate for variations in signal recovery due to matrix interferences, and therefore to improve the precision, platinum. the major component, was chosen as an internal standard. Quantitative analysis was based on calibration using a set of matrix-matched calibration standards with and without employing the internal standard. These results were compared with those obtained by X-ray fluorescence spectroscopy. The results for both techniques were in a good agreement, although the precision was slightly better in the inductively coupled plasma atomic emission spectroscopy technique, with or without the internal standard

  4. Treatment of ammonia by catalytic wet oxidation process over platinum-rhodium bimetallic catalyst in a trickle-bed reactor: effect of pH.

    Science.gov (United States)

    Hung, Chang-Mao; Lin, Wei-Bang; Ho, Ching-Lin; Shen, Yun-Hwei; Hsia, Shao-Yi

    2010-08-01

    This work adopted aqueous solutions of ammonia for use in catalytic liquid-phase reduction in a trickle-bed reactor with a platinum-rhodium bimetallic catalyst, prepared by the co-precipitation of chloroplatinic acid (H2PtCl6) and rhodium nitrate [Rh(NO3)3]. The experimental results demonstrated that a minimal amount of ammonia was removed from the solution by wet oxidation in the absence of any catalyst, while approximately 97.0% of the ammonia was removed by wet oxidation over the platinum-rhodium bimetallic catalyst at 230 degrees C with an oxygen partial pressure of 2.0 MPa. The oxidation of ammonia has been studied as a function of pH, and the main reaction products were determined. A synergistic effect is manifest in the platinum-rhodium bimetallic structure, in which the material has the greatest capacity to reduce ammonia. The reaction pathway linked the oxidizing ammonia to nitric oxide, nitrogen, and water.

  5. Modeling Low-Platinum-Loading Effects in Fuel-Cell Catalyst Layers

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Wonseok; Weber, Adam Z.

    2011-01-01

    The cathode catalyst layer within a proton-exchange-membrane fuel cell is the most complex and critical, yet least understood, layer within the cell. The exact method and equations for modeling this layer are still being revised and will be discussed in this paper, including a 0.8 reaction order, existence of Pt oxides, possible non-isopotential agglomerates, and the impact of a film resistance towards oxygen transport. While the former assumptions are relatively straightforward to understand and implement, the latter film resistance is shown to be critically important in explaining increased mass-transport limitations with low Pt-loading catalyst layers. Model results demonstrate agreement with experimental data that the increased oxygen flux and/or diffusion pathway through the film can substantially decrease performance. Also, some scale-up concepts from the agglomerate scale to the more macroscopic porous-electrode scale are discussed and the resulting optimization scenarios investigated.

  6. High sintering resistance of size-selected platinum cluster catalysts by suppressed ostwald ripening

    DEFF Research Database (Denmark)

    Wettergren, Kristina; Schweinberger, Florian F.; Deiana, Davide

    2014-01-01

    on different supports exhibit remarkable intrinsic sintering resistance even under reaction conditions. The observed stability is related to suppression of Ostwald ripening by elimination of its main driving force via size-selection. This study thus constitutes a general blueprint for the rational design...... of sintering resistant catalyst systems and for efficient experimental strategies to determine sintering mechanisms. Moreover, this is the first systematic experimental investigation of sintering processes in nanoparticle systems with an initially perfectly monomodal size distribution under ambient conditions....

  7. Revealing the Dynamics of Platinum Nanoparticle Catalysts on Carbon in Oxygen and Water Using Environmental TEM

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Langli [Environmental; Engelhard, Mark H. [Environmental; Shao, Yuyan [Environmental; Wang, Chongmin [Environmental

    2017-10-02

    Deactivation of supported metal nanoparticle catalysts, especially in relevant gas condition, is a critical challenge for many technological applications, including heterogeneous catalysis, electrocatalysis, fuel cells, biomedical imaging and drug delivery. It has been far more commonly realized that deactivation of catalysts stems from surface area loss due to particle coarsening, however, for which the mechanism remains largely unclear. Herein, we use aberration corrected environmental transmission electron microscopy, at atomic level, to in-situ observe the dynamics of Pt catalyst in fuel cell relevant gas conditions. Particles migration and coalescence is observed to be the dominant coarsening process. As compared with the case of H2O, O2 promotes Pt nanoparticle migration on carbon surface. Surprisingly, coating Pt/carbon with a nanofilm of electrolyte (Nafion ionomer) leads to a faster migration of Pt in H2O than in O2, a consequence of Nafion-carbon interface water “lubrication” effect. Atomically, the particles coalescence is featured by re-orientation of particles towards lattice matching, a process driven by orientation dependent van der Waals force. These results provide direct observations of dynamics of metal nanoparticles at critical surface/interface under relevant conditions and yield significant insights into the multi-phase interaction in related technological processes.

  8. Beneficial effects of rhodium and tin oxide on carbon supported platinum catalysts for ethanol electrooxidation

    Science.gov (United States)

    Soares, Layciane A.; Morais, Claudia; Napporn, Teko W.; Kokoh, K. Boniface; Olivi, Paulo

    2016-05-01

    This work investigates ethanol electrooxidation on Pt/C, PtxRhy/C, Pt-SnO2/C, and PtxRhy-SnO2/C catalysts synthesized by the Pechini and microwave-assisted polyol methods. The catalysts are characterized by energy dispersive X-ray analysis (EDX), transmission electron microscopy (TEM), and X-ray diffraction (XRD) techniques. The electrochemical properties of these electrode materials are examined by cyclic voltammetry and chronoamperometry experiments in acid medium. The products obtained during ethanol electrolysis are identified by high performance liquid chromatography (HPLC). The adsorbed intermediates are evaluated by an in situ reflectance Infrared Spectroscopy technique combined with cyclic voltammetry. Catalysts performance in a direct ethanol fuel cell (DEFC) is also assessed. The electrical performance of the electrocatalysts in a single DEFC at 80 °C decreases in the following order Pt70Rh30SnO2 > Pt80Rh20SnO2 > Pt60Rh40SnO2 ∼ PtSnO2 > PtxRhy ∼ Pt, showing that the presence of SnO2 enhances the ability of Pt to catalyze ethanol electrooxidation.

  9. Pt/Cr and Pt/Ni catalysts for oxygen reduction reaction: to alloy or not to alloy?

    Science.gov (United States)

    Escaño, Mary Clare; Gyenge, Elod; Nakanishi, Hiroshi; Kasai, Hideaki

    2011-04-01

    Bimetallic systems such as Pt-based alloys or non-alloys have exhibited interesting catalytic properties but pose a major challenge of not knowing a priori how the electronic and chemical properties will be modified relative to the parent metals. In this work, we present the origin of the changes in the reactivity of Pt/Cr and Pt/Ni catalysts, which have been of wide interest in fuel cell research. Using spin-polarized density functional theory calculations, we have shown that the modification of Pt surface reactivity in Pt/Ni is purely of geometric origin (strain). We have also found that the Pt-Ni bonding is very weak, which explains the observed instability of Pt-Ni catalysts under electrochemical measurements. On the other hand, Pt/Cr systems are governed by strong ligand effect (metal-metal interaction), which explains the experimentally observed reactivity dependence on the relative composition of the alloying components. The general characteristics of the potential energy curves for O2 dissociative adsorption on the bimetallic systems and the pure Pt clarify why the d-band center still works for Pt/Cr despite the strong Pt-Cr bonding and high spin polarization of Pt d-states. On the basis of the above clarifications, viable Pt-Cr and Pt-Ni structures, which involve nano-sized alloys and non-alloy bulk catalyst, which may strike higher than the currently observed oxidation reduction reaction activity are proposed.

  10. A micro alkaline direct ethanol fuel cell with platinum-free catalysts

    Science.gov (United States)

    Verjulio, R. W.; Alcaide, F.; Álvarez, G.; Sabaté, N.; Torres-Herrero, N.; Esquivel, J. P.; Santander, J.

    2013-11-01

    This paper presents the fabrication and characterization of a micro alkaline direct ethanol fuel cell. The device has been conceived as a feasibility demonstrator, using microtechnologies for the fabrication of the current collectors and traditional techniques for the membrane electrode assembly production. The fuel cell works in passive mode, as expected for the simplicity required for micro power systems. Non-noble catalysts have been used in order to implement the main advantage of alkaline systems, showing the feasibility of such a device as a potential very-low-cost power device at mini- and micro scales.

  11. A micro alkaline direct ethanol fuel cell with platinum-free catalysts

    International Nuclear Information System (INIS)

    Verjulio, R W; Sabaté, N; Torres-Herrero, N; Esquivel, J P; Santander, J; Alcaide, F; Álvarez, G

    2013-01-01

    This paper presents the fabrication and characterization of a micro alkaline direct ethanol fuel cell. The device has been conceived as a feasibility demonstrator, using microtechnologies for the fabrication of the current collectors and traditional techniques for the membrane electrode assembly production. The fuel cell works in passive mode, as expected for the simplicity required for micro power systems. Non-noble catalysts have been used in order to implement the main advantage of alkaline systems, showing the feasibility of such a device as a potential very-low-cost power device at mini- and micro scales. (paper)

  12. Platinum(0-1,3-divinyl-1,1,3,3-tetramethyldisiloxane Complex as a Pt Source for Pt/SnO2 Catalyst

    Directory of Open Access Journals (Sweden)

    Agnieszka Martyla

    2014-01-01

    Full Text Available This paper presents new preparation method of Pt/SnO2, an important catalytic system. Besides of its application as a heterogenic industrial catalyst, it is also used as a catalyst in electrochemical processes, especially in fuel cells. Platinum is commonly used as an anode catalyst in low temperature fuel cells, fuelled with alcohols of low molecular weight such as methanol. Platinum(0-1,3-divinyl-1,1,3,3-tetramethyldisiloxane complex was used as a precursor of metallic phase. The aim of the research was to obtain a highly active in electrochemical system Pt/SnO2 catalyst with low metal load. Considering small size of Pt crystallites, it should result in high activity of Pt/SnO2 system. The presented method of SnO2 synthesis allows for obtaining support consisting of nanoparticles. The effect of the thermal treatment on activity of Pt/SnO2 gel was demonstrated. The system properties were investigated using TEM, FTIR (ATR, and XRD techniques to describe its thermal structural evolution. The results showed two electrocatalytical activity peaks for drying at a temperature of 430 K and above 650 K.

  13. Stabilization of supported platinum nanoparticles on γ-alumina catalysts by addition of tungsten

    International Nuclear Information System (INIS)

    Contreras, Jose L.; Fuentes, Gustavo A.; Zeifert, Beatriz; Salmones, Jose

    2009-01-01

    The thermal stabilization of Al 2 O 3 using W 6+ ions has been found useful to the synthesis of Pt/Al 2 O 3 catalysts. The simultaneous and sequential methods were used to study the effect of W 6+ upon Pt/γ-Al 2 O 3 reducibility, Pt dispersion, and benzene hydrogenation. The W/Pt atomic ratios were from 0.49 to 12.4. In the first method we found that the W 6+ ions delayed reduction of a fraction of Pt 4+ atoms beyond 773 K. At the same time, W 6+ inhibited sintering of the metallic crystallites once they were formed on the surface. For the sequential sample with a W/Pt atomic ratio of 3.28 W 6+ did not inhibit the H 2 reduction of Pt oxides even below of 773 K, the Pt oxides were reduced completely. After reduction at 1073 K, sequential samples impregnating Pt on WO x -γ-Al 2 O 3 were more active and stable during benzene hydrogenation. TOF of the reaction did not change when the W/Pt atomic ratio, preparation technique and reduction temperature changed and its value was of 1.1 s -1 . W 6+ ions promoted high thermal stability of Pt crystallites when sequential catalysts were reduced at 1073 K and decreased their Lewis acidity.

  14. Direct Olefination of Alcohols with Sulfones by Using Heterogeneous Platinum Catalysts.

    Science.gov (United States)

    Siddiki, S M A Hakim; Touchy, Abeda Sultana; Kon, Kenichi; Shimizu, Ken-Ichi

    2016-04-18

    Carbon-supported Pt nanoparticles (Pt/C) were found to be effective heterogeneous catalysts for the direct Julia olefination of alcohols in the presence of sulfones and KOtBu under oxidant-free conditions. Primary alcohols, including aryl, aliphatic, allyl, and heterocyclic alcohols, underwent olefination with dimethyl sulfone and aryl alkyl sulfones to give terminal and internal olefins, respectively. Secondary alcohols underwent methylenation with dimethyl sulfone. Under 2.5 bar H2, the same reaction system was effective for the transformation of alcohol OH groups to alkyl groups. Structural and mechanistic studies of the terminal olefination system suggested that Pt(0) sites on the Pt metal particles are responsible for the rate-limiting dehydrogenation of alcohols and that KOtBu may deprotonate the sulfone reagent. The Pt/C catalyst was reusable after the olefination, and this method showed a higher turnover number (TON) and a wider substrate scope than previously reported methods, which demonstrates the high catalytic efficiency of the present method. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Sinter-Resistant Platinum Catalyst Supported by Metal-Organic Framework

    Energy Technology Data Exchange (ETDEWEB)

    Kim, In Soo [Materials Science Division, Argonne National Lab, 9700 S Cass Ave. Argonne IL 60439 USA; Nanophotonics Center, Korea Institute of Science and Technology, Seoul 02792 South Korea; Li, Zhanyong [Department of Chemistry, Northwestern University, 2145 Sheridan Rd. Evanston IL 60208 USA; Zheng, Jian [Institute for Integrated Catalysis, Pacific Northwest National Lab, P.O. Box 999 Richland WA 99352 USA; Platero-Prats, Ana E. [X-ray Science Division, Argonne National Lab, 9700 S Cass Ave. Argonne IL 60439 USA; Mavrandonakis, Andreas [Department of Chemistry, University of Minnesota, 207 Pleasant St. SE Minneapolis MN 55455 USA; Pellizzeri, Steven [Chemical and Biomolecular Engineering, Clemson University, 205 Earle Hall Clemson SC 29634 USA; Ferrandon, Magali [Chemical Sciences and Engineering Division, Argonne National Lab, 9700 S. Cass Ave. Argonne IL 60439 USA; Vjunov, Aleksei [Institute for Integrated Catalysis, Pacific Northwest National Lab, P.O. Box 999 Richland WA 99352 USA; Gallington, Leighanne C. [X-ray Science Division, Argonne National Lab, 9700 S Cass Ave. Argonne IL 60439 USA; Webber, Thomas E. [Department of Chemistry, University of Minnesota, 207 Pleasant St. SE Minneapolis MN 55455 USA; Vermeulen, Nicolaas A. [Department of Chemistry, Northwestern University, 2145 Sheridan Rd. Evanston IL 60208 USA; Penn, R. Lee [Department of Chemistry, University of Minnesota, 207 Pleasant St. SE Minneapolis MN 55455 USA; Getman, Rachel B. [Chemical and Biomolecular Engineering, Clemson University, 205 Earle Hall Clemson SC 29634 USA; Cramer, Christopher J. [Department of Chemistry, University of Minnesota, 207 Pleasant St. SE Minneapolis MN 55455 USA; Chapman, Karena W. [X-ray Science Division, Argonne National Lab, 9700 S Cass Ave. Argonne IL 60439 USA; Camaioni, Donald M. [Institute for Integrated Catalysis, Pacific Northwest National Lab, P.O. Box 999 Richland WA 99352 USA; Fulton, John L. [Institute for Integrated Catalysis, Pacific Northwest National Lab, P.O. Box 999 Richland WA 99352 USA; Lercher, Johannes A. [Institute for Integrated Catalysis, Pacific Northwest National Lab, P.O. Box 999 Richland WA 99352 USA; Department of Chemistry and Catalysis Research Institute, Technische Universität München, Lichtenbergstrasse 4 85748 Garching Germany; Farha, Omar K. [Department of Chemistry, Northwestern University, 2145 Sheridan Rd. Evanston IL 60208 USA; Hupp, Joseph T. [Materials Science Division, Argonne National Lab, 9700 S Cass Ave. Argonne IL 60439 USA; Department of Chemistry, Northwestern University, 2145 Sheridan Rd. Evanston IL 60208 USA; Martinson, Alex B. F. [Materials Science Division, Argonne National Lab, 9700 S Cass Ave. Argonne IL 60439 USA

    2018-01-02

    Installed on the zirconia nodes of a metal-organic framework (MOF) NU-1000 via targeted vapor-phase synthesis. The catalytic Pt clusters, site-isolated by organic linkers, are shown to exhibit high catalytic activity for ethylene hydrogenation while exhibiting resistance to sintering up to 200 degrees C. In situ IR spectroscopy reveals the presence of both single atoms and few-atom clusters that depend upon synthesis conditions. Operando X-ray absorption spectroscopy and Xray pair distribution analyses reveal unique changes in chemical bonding environment and cluster size stability while on stream. Density functional theory calculations elucidate a favorable reaction pathway for ethylene hydrogenation with the novel catalyst. These results provide evidence that atomic layer deposition (ALD) in MOFs is a versatile approach to the rational synthesis of size-selected clusters, including noble metals, on a high surface area support.

  16. Iodometric determination of platinum(4) using amperometry

    International Nuclear Information System (INIS)

    Zakharov, V.A.; Gavva, N.F.; Songina, O.A.

    1976-01-01

    The possibility of iodometric determination of platinum (4) by amperometric titration has been investigated. Titration has been conducted at zero potential of platinum reference electrode. Voltampere curves and absorption spectra of the solutions have been recorded to elucidate the nature of platinum (4) interaction with iodide-ion. It has been established that in the case of small excess of iodide complex [PtI 6 ] 2- is formed. When there is a considerable excess of KI, platinum (4) is reduced to Pt(2) with the formation of [PtI 4 ] 2 - and liberation of free iodine. Optimal for iodometric titration of Pt(4) is the use of acetate ot phosphate background solution with pH 6-8 with respect to 1M KI which is attained by adding 3 g of solid KI to 20 ml of the solution being titrated. Under these conditions the limit of platinum detection is 0.5 mkg/ml. Determination of Pt (4) is not hindered by the presence of 200-fold amounts of Cr(6), V(5), and Ni(2) as well as by 20-10-fold amounts of As(5), Sb(5), Se(4), Te(4), Rh(3), and Ir(3), Determination is hindered by the presence of Pd(2), Fe(3), Ir(4), and Cu(2) which, however, can easily be overcome. The possibility has been shown of using the developed technique for analysis of platinum catalysts and alloys

  17. Stabilization of supported platinum nanoparticles on gamma-alumina catalysts by addition of tungsten

    Energy Technology Data Exchange (ETDEWEB)

    Contreras, Jose L., E-mail: jlcl@correo.azc.uam.m [Universidad Autonoma Metropolitana-Azcapotzalco. Energia, CBI, Av. Sn. Pablo 180, Col. Reynosa, 02200, Mexico, D.F. (Mexico); Universidad Autonoma Metropolitana-Iztapalapa Depto. Ingenieria de Procesos e Hidraulica, A.P. 55-534, 09340 Mexico, D.F. (Mexico); Fuentes, Gustavo A. [Universidad Autonoma Metropolitana-Iztapalapa Depto. Ingenieria de Procesos e Hidraulica, A.P. 55-534, 09340 Mexico, D.F. (Mexico); Zeifert, Beatriz; Salmones, Jose [Instituto Politecnico Nacional, ESIQIE, Av. IPN s/n Edif. 8, UPALM, Mexico, D.F. 07738 (Mexico)

    2009-08-26

    The thermal stabilization of Al{sub 2}O{sub 3} using W{sup 6+} ions has been found useful to the synthesis of Pt/Al{sub 2}O{sub 3} catalysts. The simultaneous and sequential methods were used to study the effect of W{sup 6+} upon Pt/gamma-Al{sub 2}O{sub 3} reducibility, Pt dispersion, and benzene hydrogenation. The W/Pt atomic ratios were from 0.49 to 12.4. In the first method we found that the W{sup 6+} ions delayed reduction of a fraction of Pt{sup 4+} atoms beyond 773 K. At the same time, W{sup 6+}inhibited sintering of the metallic crystallites once they were formed on the surface. For the sequential sample with a W/Pt atomic ratio of 3.28 W{sup 6+} did not inhibit the H{sub 2} reduction of Pt oxides even below of 773 K, the Pt oxides were reduced completely. After reduction at 1073 K, sequential samples impregnating Pt on WO{sub x}-gamma-Al{sub 2}O{sub 3} were more active and stable during benzene hydrogenation. TOF of the reaction did not change when the W/Pt atomic ratio, preparation technique and reduction temperature changed and its value was of 1.1 s{sup -1}. W{sup 6+} ions promoted high thermal stability of Pt crystallites when sequential catalysts were reduced at 1073 K and decreased their Lewis acidity.

  18. Catalysts for oxidation of mercury in flue gas

    Science.gov (United States)

    Granite, Evan J [Wexford, PA; Pennline, Henry W [Bethel Park, PA

    2010-08-17

    Two new classes of catalysts for the removal of heavy metal contaminants, especially mercury (Hg) from effluent gases. Both of these classes of catalysts are excellent absorbers of HCl and Cl.sub.2 present in effluent gases. This adsorption of oxidizing agents aids in the oxidation of heavy metal contaminants. The catalysts remove mercury by oxidizing the Hg into mercury (II) moieties. For one class of catalysts, the active component is selected from the group consisting of iridium (Ir) and iridum-platinum (Ir/Pt) alloys. The Ir and Ir/Pt alloy catalysts are especially corrosion resistant. For the other class of catalyst, the active component is partially combusted coal or "Thief" carbon impregnated with Cl.sub.2. Untreated Thief carbon catalyst can be self-activating in the presence of effluent gas streams. The Thief carbon catalyst is disposable by means of capture from the effluent gas stream in a particulate collection device (PCD).

  19. CORRELATION BETWEEN PREEXPONENTIAL FACTOR AND ACTIVATION ENERGY OF ISOAMYLALCOHOL HYDROGENOLYSIS ON PLATINUM CATALYSTS

    Directory of Open Access Journals (Sweden)

    Triyono Triyono

    2010-06-01

    Full Text Available Arrhenius equation stated that reaction will proceed faster at higher temperature and with lower activation energy (Ea. Many literatures reported that preexponential factor (A is constant for certain reaction and there is no relation between A and Ea. Experiment on the reaction of isoamylalcohol hydrogenolysis showed that logarithm of A increased linearly with Ea. The result of this investigation suggests that the rate of a process is affected by the number of active centers on the surface of a catalysts, which influences the value of the pre-exponential term in the expression for the rate constant of a reaction. An increase in the number of active centers corresponds to a higher value of A, the active centers would be less effective and is attended by a growth in the value of Ea. Therefore, reaction with lower activation energy will not always has higher reaction rate due to decreasing of Ea.   Keywords: isoamylalcohol hydrogenolysis, preexponential factor, activation  energy.

  20. Sum Frequency Generation Vibrational Spectroscopy of Colloidal Platinum Nanoparticle Catalysts: Disordering versus Removal of Organic Capping

    KAUST Repository

    Krier, James M.

    2012-08-23

    Recent work with nanoparticle catalysts shows that size and shape control on the nanometer scale influences reaction rate and selectivity. Sum frequency generation (SFG) vibrational spectroscopy is a powerful tool for studying heterogeneous catalysis because it enables the observation of surface intermediates during catalytic reactions. To control the size and shape of catalytic nanoparticles, an organic ligand was used as a capping agent to stabilize nanoparticles during synthesis. However, the presence of an organic capping agent presents two major challenges in SFG and catalytic reaction studies: it blocks a significant fraction of active surface sites and produces a strong signal that prevents the detection of reaction intermediates with SFG. Two methods for cleaning Pt nanoparticles capped with poly (vinylpyrrolidone) (PVP) are examined in this study: solvent cleaning and UV cleaning. Solvent cleaning leaves more PVP intact and relies on disordering with hydrogen gas to reduce the SFG signal of PVP. In contrast, UV cleaning depends on nearly complete removal of PVP to reduce SFG signal. Both UV and solvent cleaning enable the detection of reaction intermediates by SFG. However, solvent cleaning also yields nanoparticles that are stable under reaction conditions, whereas UV cleaning results in aggregation during reaction. The results of this study indicate that solvent cleaning is more advantageous for studying the effects of nanoparticle size and shape on catalytic selectivity by SFG vibrational spectroscopy. © 2012 American Chemical Society.

  1. Electrochemical promotion of oxidative coupling of methane on platinum/polybenzimidazole catalyst

    DEFF Research Database (Denmark)

    Petrushina, Irina; Bandur, Viktor; Bjerrum, Niels

    2002-01-01

    The electrochemical promotion of catalytic methane oxidation was studied using a (CH4,O-2,Ar), Pt\\polybenzimidazole (PBI)-H3PO4\\Pt,(H-2,Ar) fuel cell at 135degreesC. It has been found that C2H2, CO2, and water are the main oxidation products. Without polarization the yield of C2H2 was 0......, meaning that there was a maximum promotion effect at a polarization of -0.15 V, or 0.45 V catalyst potential vs. a hydrogen electrode (3.8% C2H2 yield). The catalytic rate enhancement ratio, r(C-2)/r(o)(C-2), at this maximum was 4.2. There was no C2H2 production at polarization greater than or equal to0.......9% and the yield of CO2 was 7.3%. This means that C-2 open-circuit selectivity was approximately 11%. Open-circuit voltage was around 0.6 V. It has been shown that the CH4 --> C2H2 catalytic reaction can be electrochemically promoted at negative polarization and exhibits a clear "volcano-type'' promotion behavior...

  2. Alloyed Ni-Fe nanoparticles as catalysts for NH3 decomposition

    DEFF Research Database (Denmark)

    Simonsen, Søren Bredmose; Chakraborty, Debasish; Chorkendorff, Ib

    2012-01-01

    A rational design approach was used to develop an alloyed Ni-Fe/Al2O3 catalyst for decomposition of ammonia. The dependence of the catalytic activity is tested as a function of the Ni-to-Fe ratio, the type of Ni-Fe alloy phase, the metal loading and the type of oxide support. In the tests with high...... temperatures and a low NH3-to-H2 ratio, the catalytic activity of the best Ni-Fe/Al2O3 catalyst was found to be comparable or even better to that of a more expensive Ru-based catalyst. Small Ni-Fe nanoparticle sizes are crucial for an optimal overall NH3 conversion because of a structural effect favoring...

  3. Electrochemical performance for the electro-oxidation of ethylene glycol on a carbon-supported platinum catalyst at intermediate temperature

    International Nuclear Information System (INIS)

    Kosaka, Fumihiko; Oshima, Yoshito; Otomo, Junichiro

    2011-01-01

    Highlights: → High oxidation current in ethylene glycol electro-oxidation at intermediate temperature. → High C-C bond dissociation ratio of ethylene glycol at intermediate temperature. → Low selectivity for CH 4 in ethylene glycol electro-oxidation. → High selectivity for CO 2 according to an increase in steam to carbon ratios. - Abstract: To determine the kinetic performance of the electro-oxidation of a polyalcohol operating at relatively high temperatures, direct electrochemical oxidation of ethylene glycol on a carbon supported platinum catalyst (Pt/C) was investigated at intermediate temperatures (235-255 o C) using a single cell fabricated with a proton-conducting solid electrolyte, CsH 2 PO 4 , which has high proton conductivity (>10 -2 S cm -1 ) in the intermediate temperature region. A high oxidation current density was observed, comparable to that for methanol electro-oxidation and also higher than that for ethanol electro-oxidation. The main products of ethylene glycol electro-oxidation were H 2 , CO 2 , CO and a small amount of CH 4 formation was also observed. On the other hand, the amounts of C 2 products such as acetaldehyde, acetic acid and glycolaldehyde were quite small and were lower by about two orders of magnitude than the gaseous reaction products. This clearly shows that C-C bond dissociation proceeds almost to completion at intermediate temperatures and the dissociation ratio reached a value above 95%. The present observations and kinetic analysis suggest the effective application of direct alcohol fuel cells operating at intermediate temperatures and indicate the possibility of total oxidation of alcohol fuels.

  4. Electrochemical performance for the electro-oxidation of ethylene glycol on a carbon-supported platinum catalyst at intermediate temperature

    Energy Technology Data Exchange (ETDEWEB)

    Kosaka, Fumihiko; Oshima, Yoshito [Department of Environment Systems, Graduate School of Frontier Sciences, University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8563 (Japan); Otomo, Junichiro, E-mail: otomo@k.u-tokyo.ac.jp [Department of Environment Systems, Graduate School of Frontier Sciences, University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8563 (Japan)

    2011-11-30

    Highlights: > High oxidation current in ethylene glycol electro-oxidation at intermediate temperature. > High C-C bond dissociation ratio of ethylene glycol at intermediate temperature. > Low selectivity for CH{sub 4} in ethylene glycol electro-oxidation. > High selectivity for CO{sub 2} according to an increase in steam to carbon ratios. - Abstract: To determine the kinetic performance of the electro-oxidation of a polyalcohol operating at relatively high temperatures, direct electrochemical oxidation of ethylene glycol on a carbon supported platinum catalyst (Pt/C) was investigated at intermediate temperatures (235-255 {sup o}C) using a single cell fabricated with a proton-conducting solid electrolyte, CsH{sub 2}PO{sub 4}, which has high proton conductivity (>10{sup -2} S cm{sup -1}) in the intermediate temperature region. A high oxidation current density was observed, comparable to that for methanol electro-oxidation and also higher than that for ethanol electro-oxidation. The main products of ethylene glycol electro-oxidation were H{sub 2}, CO{sub 2}, CO and a small amount of CH{sub 4} formation was also observed. On the other hand, the amounts of C{sub 2} products such as acetaldehyde, acetic acid and glycolaldehyde were quite small and were lower by about two orders of magnitude than the gaseous reaction products. This clearly shows that C-C bond dissociation proceeds almost to completion at intermediate temperatures and the dissociation ratio reached a value above 95%. The present observations and kinetic analysis suggest the effective application of direct alcohol fuel cells operating at intermediate temperatures and indicate the possibility of total oxidation of alcohol fuels.

  5. Pt Monolayer Shell on Nitrided Alloy Core—A Path to Highly Stable Oxygen Reduction Catalyst

    Directory of Open Access Journals (Sweden)

    Jue Hu

    2015-07-01

    Full Text Available The inadequate activity and stability of Pt as a cathode catalyst under the severe operation conditions are the critical problems facing the application of the proton exchange membrane fuel cell (PEMFC. Here we report on a novel route to synthesize highly active and stable oxygen reduction catalysts by depositing Pt monolayer on a nitrided alloy core. The prepared PtMLPdNiN/C catalyst retains 89% of the initial electrochemical surface area after 50,000 cycles between potentials 0.6 and 1.0 V. By correlating electron energy-loss spectroscopy and X-ray absorption spectroscopy analyses with electrochemical measurements, we found that the significant improvement of stability of the PtMLPdNiN/C catalyst is caused by nitrogen doping while reducing the total precious metal loading.

  6. Electrochemical deposition of gold-platinum alloy nanoparticles on an indium tin oxide electrode and their electrocatalytic applications

    Energy Technology Data Exchange (ETDEWEB)

    Song Yan; Ma Yuting; Wang Yuan [Department of Chemistry, Soochow University, Suzhou, Jiangsu 215123 (China); Di Junwei, E-mail: djw@suda.edu.c [Department of Chemistry, Soochow University, Suzhou, Jiangsu 215123 (China); Tu Yifeng [Department of Chemistry, Soochow University, Suzhou, Jiangsu 215123 (China)

    2010-07-01

    Gold-platinum (Au-Pt) hybrid nanoparticles (Au-PtNPs) were successfully deposited on an indium tin oxide (ITO) surface using a direct electrochemical method. The resulting nanoparticles were characterized by scanning electron microscopy (SEM), UV-vis spectroscopy, X-ray diffraction (XRD), energy-dispersive X-ray spectroscopy (EDX), and electrochemical methods. It was found that the size of the Au-PtNPs depends on the number of electrodeposition cycles. Au-PtNPs obtained by 20 electrodeposition cycles had a cauliflower-shaped structure with an average diameter of about 60 nm. These Au-PtNPs exhibited alloy properties. Electrochemical measurements showed that the charge transfer resistivity was significantly decreased for the Au-PtNPs/ITO electrode. Additionally, the Au-PtNPs displayed an electrocatalytic activity for nitrite oxidation and oxygen reduction. The Au-PtNPs/ITO electrodes reported herein could possibly be used as electrocatalysts and sensors.

  7. Hierarchical Pd-Sn alloy nanosheet dendrites: an economical and highly active catalyst for ethanol electrooxidation.

    Science.gov (United States)

    Ding, Liang-Xin; Wang, An-Liang; Ou, Yan-Nan; Li, Qi; Guo, Rui; Zhao, Wen-Xia; Tong, Ye-Xiang; Li, Gao-Ren

    2013-01-01

    Hierarchical alloy nanosheet dendrites (ANSDs) are highly favorable for superior catalytic performance and efficient utilization of catalyst because of the special characteristics of alloys, nanosheets, and dendritic nanostructures. In this paper, we demonstrate for the first time a facile and efficient electrodeposition approach for the controllable synthesis of Pd-Sn ANSDs with high surface area. These synthesized Pd-Sn ANSDs exhibit high electrocatalytic activity and superior long-term cycle stability toward ethanol oxidation in alkaline media. The enhanced electrocataytic activity of Pd-Sn ANSDs may be attributed to Pd-Sn alloys, nanosheet dendrite induced promotional effect, large number of active sites on dendrite surface, large surface area, and good electrical contact with the base electrode. Because of the simple implement and high flexibility, the proposed approach can be considered as a general and powerful strategy to synthesize the alloy electrocatalysts with high surface areas and open dendritic nanostructures.

  8. Platinum-group elements

    Science.gov (United States)

    Zientek, Michael L.; Loferski, Patricia J.; Parks, Heather L.; Schulte, Ruth F.; Seal, Robert R.; Schulz, Klaus J.; DeYoung,, John H.; Seal, Robert R.; Bradley, Dwight C.

    2017-12-19

    The platinum-group elements (PGEs)—platinum, palladium, rhodium, ruthenium, iridium, and osmium—are metals that have similar physical and chemical properties and tend to occur together in nature. PGEs are indispensable to many industrial applications but are mined in only a few places. The availability and accessibility of PGEs could be disrupted by economic, environmental, political, and social events. The United States net import reliance as a percentage of apparent consumption is about 90 percent.PGEs have many industrial applications. They are used in catalytic converters to reduce carbon monoxide, hydrocarbon, and nitrous oxide emissions in automobile exhaust. The chemical industry requires platinum or platinum-rhodium alloys to manufacture nitric oxide, which is the raw material used to manufacture explosives, fertilizers, and nitric acid. In the petrochemical industry, platinum-supported catalysts are needed to refine crude oil and to produce aromatic compounds and high-octane gasoline. Alloys of PGEs are exceptionally hard and durable, making them the best known coating for industrial crucibles used in the manufacture of chemicals and synthetic materials. PGEs are used by the glass manufacturing industry in the production of fiberglass and flat-panel and liquid crystal displays. In the electronics industry, PGEs are used in computer hard disks, hybridized integrated circuits, and multilayer ceramic capacitors.Aside from their industrial applications, PGEs are used in such other fields as health, consumer goods, and finance. Platinum, for example, is used in medical implants, such as pacemakers, and PGEs are used in cancer-fighting drugs. Platinum alloys are an ideal choice for jewelry because of their white color, strength, and resistance to tarnish. Platinum, palladium, and rhodium in the form of coins and bars are also used as investment commodities, and various financial instruments based on the value of these PGEs are traded on major exchanges

  9. Controllable deposition of platinum nanoparticles on single-wall carbon nanohorns as catalyst for direct methanol fuel cells.

    Science.gov (United States)

    Niu, Ben; Xu, Wei; Guo, Zhengduo; Zhou, Nengzhi; Liu, Yang; Shi, Zujin; Lian, Yongfu

    2012-09-01

    Uniform and well dispersed platinum nanoparticles were successfully deposited on single-walled carbon nanohorns with the assistance of 4,4-dipydine and ion liquids, respectively. In particular, the size of platinum nanoparticles could be controlled in a very narrow range (2.2 to 2.5 nm) when ion liquids were applied. The crystalline nature of these platinum nanoparticles was confirmed by high resolution transmission electron microscopy observation and X-ray power diffraction analysis, and two species of platinum Pt(0) and Pt(II) were detected by X-ray photoelectron spectroscopy. Electrochemical studies revealed that thus obtained nanocomposites had much better electrocatalytic activity for the methanol oxidation than those prepared with carbon nanotubes as supporter.

  10. Poisoning by carbon monoxide in the hydrogen exchange reaction between deuterium gas and water preadsorbed on a platinum--alumina catalyst

    International Nuclear Information System (INIS)

    Iida, I.; Tamaru, K.

    1979-01-01

    Poisoning by carbon monoxide in the exchange reaction between deuterium and the water preadsorbed on a platinum--alumina catalyst was studied, by measuring not only the rate of reaction but also its kinetic behavior and the adsorption of reactants on the catalyst surface. The shape of the poisoning curve is closely associated with the kinetic behavior and exhibited an abrupt change on freezing the adsorbed water below 273 0 K. When the rate is proportional to deuterium pressure and independent of the amount of water adsorbed, the exchange rate dropped sharply by carbon monoxide adsorbed of a few percent coverage without any marked changes in the amount and the rate of hydrogen adsorption on the platinum surface. However, at temperatures lower than 273 0 K and at higher deuterium pressures, the rate depends not on the deuterium pressure but on the amount of water adsorbed. The migration of hydrogen in or through the adsorbed water is seemingly sufficiently suppressed by freezing to control the overall reaction rate. In this case, a small amount of adsorption of carbon monoxide did not show any toxicity, but then a steep poisoning started accompanying a change in the kinetic behavior. It was accordingly demonstrated that the mechanism of the reaction may be better understood by studying poisoning and measuring adsorption, overall rate, and kinetic behavior

  11. Characterization of Pt/Sn catalyst for the electrochemical oxidation of methanol

    Energy Technology Data Exchange (ETDEWEB)

    Andrew, M.R.; Drury, J.S.; McNicol, B.D.; Pinnington, C.; Short, R.T.

    1976-03-01

    Pt/Sn electrodeposited catalysts have been prepared, characterized and tested for the electro-oxidation of methanol. Catalyst activities were measured in 3 M H/sub 2/SO/sub 4/ electrolyte between ambient temperature and 95/sup 0/C. Enhancement in specific activity by a factor of about 50 was found over electrodeposited platinum black. This behavior is in contrast to that of alloys of platinum and tin which were found to have very low activities compared with platinum catalysts and to be readily corroded in H/sub 2/SO/sub 4/ electrolyte. ESCA (electron spectroscopy for chemical analysis) studies and Moessbauer spectroscopy showed the majority of the tin in the deposit to be present in an oxidized form. A small amount (approximately 17%) was present as a dilute alloy of tin in platinum. Surface area measurements and X-ray powder diffraction indicated that the increase in activity over platinum black was not attributable to smaller platinum particle size. It seems that the combination of platinum and tin results in a decrease in the poisoning effect by strongly adsorbed organic residues. Whether this arises from the operation of a cyclic Sn(II)/Sn(IV) redox system or from modification of the platinum surface remains unresolved.

  12. A comparative study on the influence of the platinum catalyst in poly(dimethylsiloxane) based networks synthesis

    DEFF Research Database (Denmark)

    Bejenariu, Anca Gabriela; Poulsen, Julie Øblom; Skov, Anne Ladegaard

    2009-01-01

    The aim of the project is to find the best of three Pt catalysts and their appropriate quantity in order to obtain soft networks in one hour at room temperature. How the choice of catalyst influences the final elastomeric properties is also evaluated. The differences between the catalysts...

  13. Hydrothermal Synthesis of Co-Ru Alloy Particle Catalysts for Hydrogen Generation from Sodium Borohydride

    Directory of Open Access Journals (Sweden)

    Marija Kurtinaitienė

    2013-01-01

    Full Text Available We report the synthesis of μm and sub-μm-sized Co, Ru, and Co-Ru alloy species by hydrothermal approach in the aqueous alkaline solutions (pH ≥ 13 containing CoCl2 and/or RuCl3, sodium citrate, and hydrazine hydrate and a study of their catalytic properties for hydrogen generation by hydrolysis of sodium borohydride solution. This way provides a simple platform for fabrication of the ball-shaped Co-Ru alloy catalysts containing up to 12 wt% Ru. Note that bimetallic Co-Ru alloy bowls containing even 7 at.% Ru have demonstrated catalytic properties that are comparable with the ones of pure Ru particles fabricated by the same method. This result is of great importance in view of the preparation of cost-efficient catalysts for hydrogen generation from borohydrides. The morphology and composition of fabricated catalyst particles have been characterized using scanning electron microscopy, energy dispersive X-ray diffraction, and inductively coupled plasma optical emission spectrometry.

  14. Influence of adsorbed carbon dioxide on hydrogen electrosorption in palladium-platinum-rhodium alloys

    International Nuclear Information System (INIS)

    Lukaszewski, M.; Grden, M.; Czerwinski, A.

    2004-01-01

    Carbon dioxide electroreduction was applied to examine the processes of hydrogen electrosorption (adsorption, absorption and desorption) by thin electrodeposits of Pd-Pt-Rh alloys under conditions of cyclic voltammetric (CV) experiments. Due to different adsorption characteristics towards the adsorption product of the electroreduction of CO 2 (reduced CO 2 ) exhibited by the alloy components hydrogen adsorption and hydrogen absorption signals can be distinguished on CV curves. Reduced CO 2 causes partial blocking of hydrogen adsorbed on surface Pt and Rh atoms, without any significant effect on hydrogen absorption into alloy. It reflects the fact that adsorbed hydrogen bonded to Pd atoms does not participate in CO 2 reduction, while hydrogen adsorbed on Pt and Rh surface sites is inactive in the absorption reaction. In contrast, CO is adsorbed on all alloy components and causes a marked inhibition of hydrogen sorption (both adsorption and absorption)/desorption reactions

  15. Activity of platinum/carbon and palladium/carbon catalysts promoted by Ni2 P in direct ethanol fuel cells.

    Science.gov (United States)

    Li, Guoqiang; Feng, Ligang; Chang, Jinfa; Wickman, Björn; Grönbeck, Henrik; Liu, Changpeng; Xing, Wei

    2014-12-01

    Ethanol is an alternative fuel for direct alcohol fuel cells, in which the electrode materials are commonly based on Pt or Pd. Owing to the excellent promotion effect of Ni2 P that was found in methanol oxidation, we extended the catalyst system of Pt or Pd modified by Ni2 P in direct ethanol fuel cells. The Ni2 P-promoted catalysts were compared to commercial catalysts as well as to reference catalysts promoted with only Ni or only P. Among the studied catalysts, Pt/C and Pd/C modified by Ni2 P (30 wt %) showed both the highest activity and stability. Upon integration into the anode of a homemade direct ethanol fuel cell, the Pt-Ni2 P/C-30 % catalyst showed a maximum power density of 21 mW cm(-2) , which is approximately two times higher than that of a commercial Pt/C catalyst. The Pd-Ni2 P/C-30 % catalyst exhibited a maximum power density of 90 mW cm(-2) . This is approximately 1.5 times higher than that of a commercial Pd/C catalyst. The discharge stability on both two catalysts was also greatly improved over a 12 h discharge operation. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. A Facile Synthesis of Hollow Palladium/Copper Alloy Nanocubes Supported on N-Doped Graphene for Ethanol Electrooxidation Catalyst

    OpenAIRE

    Zhengyu Bai; Rumeng Huang; Lu Niu; Qing Zhang; Lin Yang; Jiujun Zhang

    2015-01-01

    In this paper, a catalyst of hollow PdCu alloy nanocubes supported on nitrogen-doped graphene support (H-PdCu/ppy-NG) is successfully synthesized using a simple one-pot template-free method. Two other catalyst materials such as solid PdCu alloy particles supported on this same nitrogen-doped graphene support (PdCu/ppy-NG) and hollow PdCu alloy nanocubes supported on the reduced graphene oxide support (H-PdCu/RGO) are also prepared using the similar synthesis conditions for comparison. It is f...

  17. Studies on PEM fuel cell noble metal catalyst dissolution

    DEFF Research Database (Denmark)

    Andersen, S. M.; Grahl-Madsen, L.; Skou, E. M.

    2011-01-01

    A combination of electrochemical, spectroscopic and gravimetric methods was carried out on Proton Exchange Membrane (PEM) fuel cell electrodes with the focus on platinum and ruthenium catalysts dissolution, and the membrane degradation. In cyclic voltammetry (CV) experiments, the noble metals were...... found to dissolve in 1 M sulfuric acid solution and the dissolution increased exponentially with the upper potential limit (UPL) between 0.6 and 1.6 vs. RHE. 2-20% of the Pt (depending on the catalyst type) was found to be dissolved during the experiments. Under the same conditions, 30-100% of the Ru...... (depending on the catalyst type) was found to be dissolved. The faster dissolution of ruthenium compared to platinum in the alloy type catalysts was also confirmed by X-ray diffraction measurements. The dissolution of the carbon supported catalyst was found one order of magnitude higher than the unsupported...

  18. Design criteria for stable Pt/C fuel cell catalysts

    Directory of Open Access Journals (Sweden)

    Josef C. Meier

    2014-01-01

    Full Text Available Platinum and Pt alloy nanoparticles supported on carbon are the state of the art electrocatalysts in proton exchange membrane fuel cells. To develop a better understanding on how material design can influence the degradation processes on the nanoscale, three specific Pt/C catalysts with different structural characteristics were investigated in depth: a conventional Pt/Vulcan catalyst with a particle size of 3–4 nm and two Pt@HGS catalysts with different particle size, 1–2 nm and 3–4 nm. Specifically, Pt@HGS corresponds to platinum nanoparticles incorporated and confined within the pore structure of the nanostructured carbon support, i.e., hollow graphitic spheres (HGS. All three materials are characterized by the same platinum loading, so that the differences in their performance can be correlated to the structural characteristics of each material. The comparison of the activity and stability behavior of the three catalysts, as obtained from thin film rotating disk electrode measurements and identical location electron microscopy, is also extended to commercial materials and used as a basis for a discussion of general fuel cell catalyst design principles. Namely, the effects of particle size, inter-particle distance, certain support characteristics and thermal treatment on the catalyst performance and in particular the catalyst stability are evaluated. Based on our results, a set of design criteria for more stable and active Pt/C and Pt-alloy/C materials is suggested.

  19. Investigation of platinum alloys for melting of inclusion free laser glass: Final report

    International Nuclear Information System (INIS)

    Izumitani, T.; Toratani, H.; Meissner, H.E.

    1986-01-01

    The objective of this work is to evaluate the suitability of Pt alloys as crucible materials for melting LHG-8 phosphate laser glass. The tendency of forming metallic inclusions and ionic dissolution of alloy components in the glass is to be compared with that of pure Pt. Ionic Pt is introduced into the glass melt by direct dissolution of Pt at the crucible-melt interface and by vapor phase transport. It was felt that a Pt-alloy may behave sufficiently differently from Pt that a number of alloys should be studied. Pt inclusions may originate from Pt which reprecipitates from the glass melt on cooling or change in redox-conditions; from volatilized Pt which deposits in colder zones of the melting environment as crystallites which may drop back into the glass melt; and/or from Pt particles which are mechanically removed from the crucible and drop into the glass melt. Besides pure Pt, the following alloys have been tested: Pt/ 10 Ir, Pt/ 10 Rh, Pt/ 5 Au, Pt-ZGS, Pt/ 5 Au-ZGS, Pt/ 10 Rh-ZGS

  20. Total Oxidation of Dichloromethane and Ethanol over Ceria-Zirconia Mixed Oxide Supported Platinum and Gold Catalysts

    Czech Academy of Sciences Publication Activity Database

    Matějová, Lenka; Topka, Pavel; Kaluža, Luděk; Pitkäaho, S.; Ojala, S.; Gaálová, Jana; Keiski, R.L.

    142-143, OCT-NOV (2013), s. 54-64 ISSN 0926-3373 R&D Projects: GA ČR GP13-24186P Institutional support: RVO:67985858 Keywords : gold * platinum * ceria Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 6.007, year: 2013

  1. Electrodeposition of gold-platinum alloy nanoparticles on carbon nanotubes as electrochemical sensing interface for sensitive detection of tumor marker

    Energy Technology Data Exchange (ETDEWEB)

    Li Ya [Key Laboratory on Luminescence and Real-Time Analysis, Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715 (China); Yuan Ruo, E-mail: yuanruo@swu.edu.cn [Key Laboratory on Luminescence and Real-Time Analysis, Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715 (China); Chai Yaqin; Song Zhongju [Key Laboratory on Luminescence and Real-Time Analysis, Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715 (China)

    2011-07-30

    Graphical abstract: Electrodeposition of gold-platinum alloy (Au-PtNPs) on carbon nanotubes as electrochemical sensing interface and HRP as blocking agent for the fabrication of high sensitive immunosensor. Display Omitted Highlights: > In this work, we proposed a novel electrochemical sensing surface. > The sensing surface possessed larger electro-active areas and higher conductivity due to the introduction of MWCNTs. > The signal could be amplified effectively by synergetic catalysis effect of Au-PtNPs and HRP towards the reduction of H{sub 2}O{sub 2}. > Biomolecules could be immobilized on the surface of Au-PtNPs tightly with the bioactivity kept well. > The simple fabrication method provided a new potential for the future development of practical devices for clinical diagnosis application. - Abstract: A novel electrochemical sensing interface, electrodeposition of gold-platinum alloy nanoparticles (Au-PtNPs) on carbon nanotubes, was proposed and used to fabricate a label-free amperometric immunosensor. On the one hand, the multiwalled carbon nanotubes (MWCNTs) could increase active area of the electrode and enhance the electron transfer ability between the electrode and redox probe; on the other hand, the Au-PtNPs not only could be used to assemble biomolecules with bioactivity kept well, but also could further facilitate the shuttle of electrons. In the meanwhile, horseradish peroxidase (HRP) instead of bovine serum albumin (BSA) was employed to block the possible remaining active sites and avoid the nonspecific adsorption. With the synergetic catalysis effect of Au-PtNPs and HRP towards the reduction of hydrogen peroxide (H{sub 2}O{sub 2}), the signal could be amplified and the sensitivity could be enhanced. Using alpha-fetoprotein (AFP) as model analyte, the fabricated immunosensor exhibited two wide linear ranges in the concentration ranges of 0.5-20 ng mL{sup -1} and 20-200 ng mL{sup -1} with a detection limit of 0.17 ng mL{sup -1} at a signal-to-noise of

  2. Corrosion of Fe-25 Cr Alloy with microconstituent additions of hafnium and platinum

    International Nuclear Information System (INIS)

    Srinivasan, V.

    1989-01-01

    The study reported was performed with a view to understanding the effects of minor additions of Hf and Pt on the corrosion behavior of a model chromia former, Fe-25Cr. Bulk addition of Hf or Pt was made at 1 wt.% level to the base alloy, Fe-25 Cr, and the experimental alloys were made by an ingot metallurgy route. Coupons were machined from the as-cast rods or forged prismatic bars, and metallographically polished to 1 μ alumina. Multiple samples were exposed to an H 2 /H 2 S/H 2 O/Ar gas mixture at 700 degrees C for times up to 192 hrs. Planar and cross-sections of scales formed on the substrate alloys were examined using a scanning electron microscope with an energy dispersive x-ray spectrometer (SEM/EDAX). A uniform chromia scale formed initially. This scale was broken down locally and slowly by the overgrowth of sulfide rich nodules. The effects of minor additions of Hf or Pt on the growth and breakdown of protective chromia scales are discussed in this paper

  3. Structure and Stability of Pt-Y Alloy Particles for Oxygen Reduction Studied by Electron Microscopy

    DEFF Research Database (Denmark)

    Deiana, Davide; Wagner, Jakob Birkedal; Hansen, Thomas Willum

    2015-01-01

    Platinum-yttrium alloy nanoparticles show both a high activity and stability for the oxygen reduction reaction. The catalysts were prepared by magnetron sputter aggregation and mass filtration providing a model catalyst system with a narrow size distribution. The structure and stability of nanost...... the catalyst after reaction and after aging tests shows the development of a core-shell type structure after being exposed to reaction conditions....

  4. Tailoring the properties of Platinum supported catalysts by irreversible adsorbed adatoms toward ethanol oxidation for direct ethanol fuel cells

    OpenAIRE

    Costa Figueiredo, Marta; Santasalo-Aarnio, A.; Vidal-Iglesias, F.J.; Solla-Gullón, J.; Feliu, J.M.; Kontturi, K.; Kallio, T.

    2013-01-01

    In this work ethanol oxidation on carbon supported Pt catalysts modified with irreversibly adsorbed adatoms is reported. This study concerns understanding of the effect of a second metal on real catalysts in conditions as close as possible to those applied in fuel cells systems. The results were acquired using cyclic voltammetry, chronoamperometry and in situ infra-red techniques always taking into account the future application of the electrocatalyst materials in fuel cells. Foreign adatoms,...

  5. Process for the separation and recovery of palladium and platinum from spent automobile catalyst leach liquor using LIX 84I and Alamine 336.

    Science.gov (United States)

    Reddy, B Ramachandra; Raju, B; Lee, Jin Young; Park, Hyung Kyu

    2010-08-15

    Spent catalysts from automobile industry contain environmentally critical and economically valuable metals such as Pt, Pd, Fe, Ni, Mn, and Cr. In this paper, we present a process for the selective separation and complete recovery of palladium (Pd) and platinum (Pt) from hydrochloric acid leach liquors of spent automobile catalyst employing solvent extraction method. Typical composition of leach liquor used for the present study contains (mg/L): Pd-150, Pt-550, Mn-500, Ni-1000, Fe-1500, Cr-100 and 3 M HCl. Selective separation of Pd from the leach liquor is achieved with 0.5 vol.% LIX 84I (2-hydroxy-5-nonylacetophenone oxime in a mixture with a high flash point hydrocarbon diluent) in kerosene at an aqueous to organic (A/O) ratio of 3 in 2 stages, with an enrichment factor of three. Quantitative stripping of Pd from loaded organic is achieved with 0.5 M thiourea and 1 M HCl. Co-extraction of Fe and Pt with 5 vol.% Alamine 336 (tertiary amine of mixed tri-octyl/decyl amine) in kerosene followed by selective scrubbing of Fe with dilute HCl and complete stripping of Pt from loaded organic was proposed with 0.5 M thiourea and 0.1 M HCl. Purity of Pd and Pt strip solutions are 99.7%. Finally, the present process can solve environmental related issues and at the same time recover valuable metals in pure form. Copyright 2010 Elsevier B.V. All rights reserved.

  6. A Pd/C-CeO2 Anode Catalyst for High-Performance Platinum-Free Anion Exchange Membrane Fuel Cells.

    Science.gov (United States)

    Miller, Hamish A; Lavacchi, Alessandro; Vizza, Francesco; Marelli, Marcello; Di Benedetto, Francesco; D'Acapito, Francesco; Paska, Yair; Page, Miles; Dekel, Dario R

    2016-05-10

    One of the biggest obstacles to the dissemination of fuel cells is their cost, a large part of which is due to platinum (Pt) electrocatalysts. Complete removal of Pt is a difficult if not impossible task for proton exchange membrane fuel cells (PEM-FCs). The anion exchange membrane fuel cell (AEM-FC) has long been proposed as a solution as non-Pt metals may be employed. Despite this, few examples of Pt-free AEM-FCs have been demonstrated with modest power output. The main obstacle preventing the realization of a high power density Pt-free AEM-FC is sluggish hydrogen oxidation (HOR) kinetics of the anode catalyst. Here we describe a Pt-free AEM-FC that employs a mixed carbon-CeO2 supported palladium (Pd) anode catalyst that exhibits enhanced kinetics for the HOR. AEM-FC tests run on dry H2 and pure air show peak power densities of more than 500 mW cm(-2) . © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Fabrication and characterization of nanostructured mechanically alloyed Pt-Co catalyst for oxygen gas-diffusion-electrode

    International Nuclear Information System (INIS)

    Pharkya, P.; Farhat, Z.; Czech, E.; Hawthorne, H.; Alfantazi, A.

    2003-01-01

    The use of PEM fuel cells depends largely upon the cost of materials, processing and fabrication. The cost of Pt catalyst is a significant cost of a fuel cell. Alternative low cost catalyst that promotes high rate of oxygen reduction is needed. To achieve this, a mechanochemical technique was employed to refine the catalyst layer structure (i.e. increasing the effective catalyst surface area) and reducing the amount of Pt used, by alloying with a cheaper element. An investigation is carried out to study the relationship between the new catalyst structure refinement, morphology, microstructure and its electrocatalytic behaviour. Nanostructured Pt, Co and Pt 0.2 5 Co 0.75 alloy was fabricated from high purity Pt (99.9%) and Co (99.5%) powders using a Laboratory Planetary Ball Mill 'Pulverisette 6'. Optimum milling conditions, that produce fine, uniform and mechanically alloyed microstructure, were determined during fabrication, by varying process parameters (i.e., rpm, milling time, ball to powder ratio, milling atmosphere, surface-agents and milling/cooling cycle). Mechanically induced chemical and physical reactions and thermal effects were monitored 'in-situ' using a GTM system, which recorded temperature and pressure changes during milling. The alloy catalysts were characterized using TEM, SEM, EDX, XRD and BET techniques. Electrochemical tests were carried out on prepared powders. Exchange currents were determined from a potentiodynamic polarization tests and used to compare relative electrocatalytic behaviour of the new catalyst. Structure/property relationships were discussed and conclusions were drawn on the production of improved low cost catalyst. (author)

  8. The Integration of a Structural Water Gas Shift Catalyst with a Vanadium Alloy Hydrogen Transport Device

    Energy Technology Data Exchange (ETDEWEB)

    Barton, Thomas; Argyle, Morris; Popa, Tiberiu

    2009-06-30

    This project is in response to a requirement for a system that combines water gas shift technology with separation technology for coal derived synthesis gas. The justification of such a system would be improved efficiency for the overall hydrogen production. By removing hydrogen from the synthesis gas stream, the water gas shift equilibrium would force more carbon monoxide to carbon dioxide and maximize the total hydrogen produced. Additional benefit would derive from the reduction in capital cost of plant by the removal of one step in the process by integrating water gas shift with the membrane separation device. The answer turns out to be that the integration of hydrogen separation and water gas shift catalysis is possible and desirable. There are no significant roadblocks to that combination of technologies. The problem becomes one of design and selection of materials to optimize, or at least maximize performance of the two integrated steps. A goal of the project was to investigate the effects of alloying elements on the performance of vanadium membranes with respect to hydrogen flux and fabricability. Vanadium was chosen as a compromise between performance and cost. It is clear that the vanadium alloys for this application can be produced, but the approach is not simple and the results inconsistent. For any future contracts, large single batches of alloy would be obtained and rolled with larger facilities to produce the most consistent thin foils possible. Brazing was identified as a very likely choice for sealing the membranes to structural components. As alloying was beneficial to hydrogen transport, it became important to identify where those alloying elements might be detrimental to brazing. Cataloging positive and negative alloying effects was a significant portion of the initial project work on vanadium alloying. A water gas shift catalyst with ceramic like structural characteristics was the second large goal of the project. Alumina was added as a

  9. Ultrasmall PdmMn1-mOx binary alloyed nanoparticles on graphene catalysts for ethanol oxidation in alkaline media

    Science.gov (United States)

    Ahmed, Mohammad Shamsuddin; Park, Dongchul; Jeon, Seungwon

    2016-03-01

    A rare combination of graphene (G)-supported palladium and manganese in mixed-oxides binary alloyed catalysts (BACs) have been synthesized with the addition of Pd and Mn metals in various ratios (G/PdmMn1-mOx) through a facile wet-chemical method and employed as an efficient anode catalyst for ethanol oxidation reaction (EOR) in alkaline fuel cells. The as prepared G/PdmMn1-mOx BACs have been characterized by several instrumental techniques; the transmission electron microscopy images show that the ultrafine alloyed nanoparticles (NPs) are excellently monodispersed onto the G. The Pd and Mn in G/PdmMn1-mOx BACs have been alloyed homogeneously, and Mn presents in mixed-oxidized form that resulted by X-ray diffraction. The electrochemical performances, kinetics and stability of these catalysts toward EOR have been evaluated using cyclic voltammetry in 1 M KOH electrolyte. Among all G/PdmMn1-mOx BACs, the G/Pd0.5Mn0.5Ox catalyst has shown much superior mass activity and incredible stability than that of pure Pd catalysts (G/Pd1Mn0Ox, Pd/C and Pt/C). The well dispersion, ultrafine size of NPs and higher degree of alloying are the key factor for enhanced and stable EOR electrocatalysis on G/Pd0.5Mn0.5Ox.

  10. Facile synthesis of a platinum-lead oxide nanocomposite catalyst with high activity and durability for ethanol electrooxidation.

    Science.gov (United States)

    Yang, Wei-Hua; Wang, Hong-Hui; Chen, De-Hao; Zhou, Zhi-You; Sun, Shi-Gang

    2012-12-21

    Aimed at searching for highly active and stable nano-scale Pt-based catalysts that can improve significantly the energy conversion efficiency of direct ethanol fuel cells (DEFCs), a novel Pt-PbO(x) nanocomposite (Pt-PbO(x) NC) catalyst with a mean size of 3.23 nm was synthesized through a simple wet chemistry method without using a surfactant, organometallic precursors and high temperature. Electrocatalytic tests demonstrated that the as-prepared Pt-PbO(x) NC catalyst possesses a much higher catalytic activity and a longer durability than Pt nanoparticles (nm-Pt) and commercial Pt black catalysts for ethanol electrooxidation. For instance, Pt-PbO(x) NC showed an onset potential that was 30 mV and 44 mV less positive, together with a peak current density 1.7 and 2.6 times higher than those observed for nm-Pt and Pt black catalysts in the cyclic voltammogram tests. The ratio of current densities per unit Pt mass on Pt-PbO(x) NC, nm-Pt and Pt black catalysts is 27.3 : 3.4 : 1 for the long-term (2 hours) chronoamperometric experiments measured at -0.4 V (vs. SCE). In situ FTIR spectroscopic studies revealed that the activity of breaking C-C bonds of ethanol of the Pt-PbO(x) NC is as high as 5.17 times that of the nm-Pt, which illustrates a high efficiency of ethanol oxidation to CO(2) on the as-prepared Pt-PbO(x) NC catalyst.

  11. High temperature oxidation behavior of gamma-nickel+gamma'-nickel aluminum alloys and coatings modified with platinum and reactive elements

    Science.gov (United States)

    Mu, Nan

    was also inferred that Pt enhances the diffusive flux of aluminum from the substrate to the scale/alloy interface. Relatively low levels of hafnium addition to Pt-free gamma'-Ni 3Al increased the extent of external NiO formation due to non-protective HfO2 formation. Accordingly, this effect intensified with increasing Hf content from 0.2 to 0.5at.%. The synergistic effect of Pt and Hf co-addition was realized by examining Pt+Hf-modified gamma'-Ni3Al alloys. It was inferred that Pt decreases the chemical activity of Hf so that HfO2 formation could be suppressed with increasing Pt content. Thus, the early-stage Al2O3 formation facilitated by Pt additions and NiO development assisted by Hf additions are the competing scale growth processes that are influenced by the relative contents of Pt and Hf. Large interfacial voids were observed on the gamma'-Ni 3Al alloy after 4-days isothermal oxidation at 1150°C, which could be attributed to the Kirkendall effect. Platinum addition was also found to improve Al2O3-scale adhesion. Pt and Hf effects on two-phase gamma-Ni+gamma'-Ni3Al alloys of compositions Ni-20Al-20Pt-xHf (x ranges from 0 to 0.91) were examined by both thermal gravimetric analyses and cyclic oxidation tests. Scale microstructures were characterized by confocal photo-stimulated microspectroscopy (CPSM), in-lens SEM, and FIB-TEM. Hafnium additions up to about 0.48at.% markedly decreased the weight change of isothermally oxidized Pt-modified gamma+gamma' alloys by forming thinner oxide scales than that on the Hf-free Ni-20Al-20Pt base alloy. This could be attributed to an Al2O3 grain boundary blocking effect imparted by the segregated Hf. However, an over-doped alloy with 0.91at.% Hf exhibited detrimental effect by forming internal HfO 2. It was observed that Hf additions altered the Al2O3 scale microstructure. The most remarkable difference was that the columnar width of the Al2O3 scale grains formed on Ni-20Al-20Pt was much larger than it was on Ni-20Al-20Pt-0

  12. Bi-Sn alloy catalyst for simultaneous morphology and doping control of silicon nanowires in radial junction solar cells

    International Nuclear Information System (INIS)

    Yu, Zhongwei; Lu, Jiawen; Qian, Shengyi; Xu, Jun; Xu, Ling; Wang, Junzhuan; Shi, Yi; Chen, Kunji; Misra, Soumyadeep; Roca i Cabarrocas, Pere; Yu, Linwei

    2015-01-01

    Low-melting point metals such as bismuth (Bi) and tin (Sn) are ideal choices for mediating a low temperature growth of silicon nanowires (SiNWs) for radial junction thin film solar cells. The incorporation of Bi catalyst atoms leads to sufficient n-type doping in the SiNWs core that exempts the use of hazardous dopant gases, while an easy morphology control with pure Bi catalyst has never been demonstrated so far. We here propose a Bi-Sn alloy catalyst strategy to achieve both a beneficial catalyst-doping and an ideal SiNW morphology control. In addition to a potential of further growth temperature reduction, we show that the alloy catalyst can remain quite stable during a vapor-liquid-solid growth, while providing still sufficient n-type catalyst-doping to the SiNWs. Radial junction solar cells constructed over the alloy-catalyzed SiNWs have demonstrated a strongly enhanced photocurrent generation, thanks to optimized nanowire morphology, and largely improved performance compared to the reference samples based on the pure Bi or Sn-catalyzed SiNWs

  13. A Facile Synthesis of Hollow Palladium/Copper Alloy Nanocubes Supported on N-Doped Graphene for Ethanol Electrooxidation Catalyst

    Directory of Open Access Journals (Sweden)

    Zhengyu Bai

    2015-04-01

    Full Text Available In this paper, a catalyst of hollow PdCu alloy nanocubes supported on nitrogen-doped graphene support (H-PdCu/ppy-NG is successfully synthesized using a simple one-pot template-free method. Two other catalyst materials such as solid PdCu alloy particles supported on this same nitrogen-doped graphene support (PdCu/ppy-NG and hollow PdCu alloy nanocubes supported on the reduced graphene oxide support (H-PdCu/RGO are also prepared using the similar synthesis conditions for comparison. It is found that, among these three catalyst materials, H-PdCu/ppy-NG gives the highest electrochemical active area and both the most uniformity and dispersibility of H-PdCu particles. Electrochemical tests show that the H-PdCu/ppy-NG catalyst can give the best electrocatalytic activity and stability towards the ethanol electrooxidation when compared to other two catalysts. Therefore, H-PdCu/ppy-NG should be a promising catalyst candidate for anodic ethanol oxidation in direct ethanol fuel cells.

  14. Carbon-supported co-pyridine as non-platinum cathode catalyst for alkaline membrane fuel cells

    International Nuclear Information System (INIS)

    Qiao, Jinli; Xu, Li; Liu, Yuyu; Xu, Pan; Shi, Jingjing; Liu, Shiyao; Tian, Binglun

    2013-01-01

    Development of high-performance cost-effective electrocatalyts that can replace Pt catalyst have been a central theme in polymer electrolyte membrane fuel cells (PEMFCs) including direct methanol fuel cells (DMFCs). Here we show that carbon-supported pyridine–cobalt nanoparticles (CoPy/C) can generate a high catalytic activity toward the oxygen reduction reaction (ORR). The catalysts are synthesized using cobalt sulfate heptahydrate (CoSO 4 ·7H 2 O) and pyridine (Py) as the Co and N precursors via a solid state reaction by heat-treatment in an inert atmosphere at 800 °C. In particular, the ORR kinetics on these catalyst materials are evaluated using rotating disk electrode (RDE) technique in electrolytes of various KOH concentrations, ranging from 0.05 to 12 M. The Koutecky–Levich equation analyses indicate that the transferred electron number, n, per oxygen molecule on CoPy/C electrode depend on the low negative ovevrpotentials in low KOH concentrations, whereas in high KOH concentrations the values of n for oxygen reduction depend on the high negative overpotentials, and varies between 3.5 and 4.0. These catalysts exhibit the superior methanol tolerance to commercial 40%Pt/C catalyst, and the negative effect of high KOH concentration is much less for CoPy/C than for Pt/C, suggesting the promising utilization of CoPy/C as electrocatalysts for alkaline polymer electrolyte membrane fuel cells

  15. Density functional theory study for the enhanced sulfur tolerance of Ni catalysts by surface alloying

    Science.gov (United States)

    Hwang, Bohyun; Kwon, Hyunguk; Ko, Jeonghyun; Kim, Byung-Kook; Han, Jeong Woo

    2018-01-01

    Sulfur compounds in fuels deactivate the surface of anode materials in solid oxide fuel cells (SOFCs), which adversely affect the long-term durability. To solve this issue, it is important to design new SOFC anode materials with high sulfur tolerance. Unfortunately, it is difficult to completely replace the traditional Ni anode owing to its outstanding reactivity with low cost. As an alternative, alloying Ni with transition metals is a practical strategy to enhance the sulfur resistance while taking advantage of Ni metal. Therefore, in this study, we examined the effects of transition metal (Cu, Rh, Pd, Ag, Pt, and Au) doping into a Ni catalyst on not only the adsorption of H2S, HS, S, and H but also H2S decomposition using density functional theory (DFT) calculations. The dopant metals were selected rationally by considering the stability of the Ni-based binary alloys. The interactions between sulfur atoms produced by H2S dissociation and the surface are weakened by the dopant metals at the topmost layer. In addition, the findings show that H2S dissociation can be suppressed by doping transition metals. It turns out that these effects are maximized in the Au-doped Ni catalyst. Our DFT results will provide useful insights into the design of sulfur-tolerant SOFC anode materials.

  16. Enhanced activity and durability of platinum anode catalyst by the modification of cobalt phosphide for direct methanol fuel cells

    International Nuclear Information System (INIS)

    Li, Xiang; Wang, Hongjuan; Yu, Hao; Liu, Ziwu; Wang, Haihui; Peng, Feng

    2015-01-01

    Graphical abstract: A novel Pt/CoP/CNTs electrocatalyst with has been designed and prepared, which exhibits high activity and stability for methanol oxidation reaction. - Highlights: • Pt-cobalt phosphide catalyst supported on carbon nanotubes (Pt/CoP/CNTs) is designed. • Pt/CoP/CNTs exhibit high activity and stability for methanol oxidation reaction(MOR). • The effect of CoP content on electrocatalytic performances for MOR is studied. • CoP decreases the Pt particle size and increases the electrochemical surface areas. • The interaction between Pt and CoP is evidenced by X-ray photoelectron spectroscopy. - Abstract: In this study, carbon nanotubes (CNTs) supported Pt-cobalt phosphide (CoP) electrocatalyst (Pt/CoP/CNTs) is designed and prepared for methanol oxidation (MOR) for the first time. The modification of CoP decreases the Pt particle size significantly and increases the electrochemical surface areas due to the interaction between Pt and CoP, which is evidenced by transmission electron microscopy, X-ray diffraction and X-ray photoelectron spectroscopy. Among all these catalysts, Pt/4%CoP/CNTs catalyst exhibits the best MOR activity of 1600 mA mg −1 Pt , which is six times that of Pt/CNTs. Moreover, this catalyst also exhibits the higher onset current density and steady current density than the other Pt-based catalysts. The work provides a promising method to develop the highly active and stable Pt-based catalyst for direct methanol fuel cells.

  17. Tungsten carbide/porous carbon composite as superior support for platinum catalyst toward methanol electro-oxidation

    International Nuclear Information System (INIS)

    Jiang, Liming; Fu, Honggang; Wang, Lei; Mu, Guang; Jiang, Baojiang; Zhou, Wei; Wang, Ruihong

    2014-01-01

    Graphical abstract: The WC nanoparticles are well dispersed in the carbon matrix. The size of WC nanoparticles is about 30 nm. It can be concluded that tungsten carbide and carbon composite was successfully prepared by the present synthesis conditions. - Highlights: • The WC/PC composite with high specific surface area was prepared by a simple way. • The Pt/WC/PC catalyst has superior performance toward methanol electro-oxidation. • The current density for methanol electro-oxidation is as high as 595.93 A g −1 Pt. • The Pt/WC/PC catalyst shows better durability and stronger CO electro-oxidation. • The performance of Pt/WC/PC is superior to the commercial Pt/C (JM) catalyst. - Abstract: Tungsten carbide/porous carbon (WC/PC) composites have been successfully synthesized through a surfactant assisted evaporation-induced-assembly method, followed by a thermal treatment process. In particular, WC/PC-35-1000 composite with tungsten content of 35% synthesized at the carbonized temperature of 1000 °C, exhibited a specific surface area (S BET ) of 457.92 m 2 g −1 . After loading Pt nanoparticles (NPs), the obtained Pt/WC/PC-35-1000 catalyst exhibits the highest unit mass electroactivity (595.93 A g −1 Pt) toward methanol electro-oxidation, which is about 2.6 times as that of the commercial Pt/C (JM) catalyst. Furthermore, the Pt/WC/PC-35-1000 catalyst displays much stronger resistance to CO poisoning and better durability toward methanol electrooxidation compared with the commercial Pt/C (JM) catalyst. The high electrocatalytic activity, strong poison-resistivity and good stability of Pt/WC/PC-35-1000 catalyst are attributed to the porous structures and high specific surface area of WC/PC support could facilitate the rapid mass transportation. Moreover, synergistic effect between WC and Pt NPs is favorable to the higher catalytic performance

  18. Tungsten carbide/porous carbon composite as superior support for platinum catalyst toward methanol electro-oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Liming [School of Chemical Engineering and Technology, Harbin Institute of Technology, Harbin 150001 (China); Fu, Honggang, E-mail: fuhg@vip.sina.com [School of Chemical Engineering and Technology, Harbin Institute of Technology, Harbin 150001 (China); Key Laboratory of Functional Inorganic Material Chemistry, Heilongjiang University, Harbin 150080 (China); Wang, Lei; Mu, Guang; Jiang, Baojiang; Zhou, Wei; Wang, Ruihong [Key Laboratory of Functional Inorganic Material Chemistry, Heilongjiang University, Harbin 150080 (China)

    2014-01-01

    Graphical abstract: The WC nanoparticles are well dispersed in the carbon matrix. The size of WC nanoparticles is about 30 nm. It can be concluded that tungsten carbide and carbon composite was successfully prepared by the present synthesis conditions. - Highlights: • The WC/PC composite with high specific surface area was prepared by a simple way. • The Pt/WC/PC catalyst has superior performance toward methanol electro-oxidation. • The current density for methanol electro-oxidation is as high as 595.93 A g{sup −1} Pt. • The Pt/WC/PC catalyst shows better durability and stronger CO electro-oxidation. • The performance of Pt/WC/PC is superior to the commercial Pt/C (JM) catalyst. - Abstract: Tungsten carbide/porous carbon (WC/PC) composites have been successfully synthesized through a surfactant assisted evaporation-induced-assembly method, followed by a thermal treatment process. In particular, WC/PC-35-1000 composite with tungsten content of 35% synthesized at the carbonized temperature of 1000 °C, exhibited a specific surface area (S{sub BET}) of 457.92 m{sup 2} g{sup −1}. After loading Pt nanoparticles (NPs), the obtained Pt/WC/PC-35-1000 catalyst exhibits the highest unit mass electroactivity (595.93 A g{sup −1} Pt) toward methanol electro-oxidation, which is about 2.6 times as that of the commercial Pt/C (JM) catalyst. Furthermore, the Pt/WC/PC-35-1000 catalyst displays much stronger resistance to CO poisoning and better durability toward methanol electrooxidation compared with the commercial Pt/C (JM) catalyst. The high electrocatalytic activity, strong poison-resistivity and good stability of Pt/WC/PC-35-1000 catalyst are attributed to the porous structures and high specific surface area of WC/PC support could facilitate the rapid mass transportation. Moreover, synergistic effect between WC and Pt NPs is favorable to the higher catalytic performance.

  19. High Specific and Mass Activity for the Oxygen Reduction Reaction for Thin Film Catalysts of Sputtered Pt3Y

    DEFF Research Database (Denmark)

    Lindahl, Niklas; Zamburlini, Eleonora; Feng, Ligang

    2017-01-01

    Fuel cells have the potential to play an important role in sustainable energy systems, provided that catalysts with higher activity and stability are developed. In this work, it is found that thin alloy films of single-target cosputtered platinum-yttrium exhibit up to seven times higher specific...... additional chemical or thermal treatment. The films show an improvement in stability over the same materials in nanoparticulate form. Physical characterization shows that the thin films form a platinum overlayer supported on an underlying alloy. The high activity is likely related to compressive strain...... in that overlayer. As sputtering can be used to mass-produce fuel cell electrodes, the results open new possibilities for the preparation of platinum-rare earth metal alloy catalysts in commercial devices....

  20. Synthesis of Platinum Nanotubes and Nanorings via Simultaneous Metal Alloying and Etching

    KAUST Repository

    Huang, Zhiqi

    2016-04-19

    Metallic nanotubes represent a class of hollow nanostructures with unique catalytic properties. However, the wet-chemical synthesis of metallic nanotubes remains a substantial challenge, especially for those with dimensions below 50 nm. This communication describes a simultaneous alloying-etching strategy for the synthesis of Pt nanotubes with open ends by selective etching Au core from coaxial Au/Pt nanorods. This approach can be extended for the preparation of Pt nanorings when Saturn-like Au core/Pt shell nanoparticles are used. The diameter and wall thickness of both nanotubes and nanorings can be readily controlled in the range of 14-37 nm and 2-32 nm, respectively. We further demonstrated that the nanotubes with ultrathin side walls showed superior catalytic performance in oxygen reduction reaction. © 2016 American Chemical Society.

  1. Thermochemical Properties of Group IVB and VB Transition Metal Alloys with Platinum Group Metals: Acid - Stabilization.

    Science.gov (United States)

    Cima, Michael John

    Solid-state galvanic cell measurements and oxide equilibration experiments are used to derive thermochemical quantities for a variety of acid-base stabilized alloys such as Nb-Pd, Nb-Rh, Ti-Pd, and Ti-Rh. The experiments have effectively resulted in the titration of palladium by niobium metal. The excess partial molar Gibbs energy of niobium at infinite dilution was determined to be -62 kcal/mole at 1000^circ C and the Gibbs energy of formation of {rm NbPd}_{3.55} is -42 kcal/mole. These results and those for the other systems are used to assess the importance of crystal field effects in the context of the generalized Lewis acid-base theory.

  2. Platinum metals in the environment

    Energy Technology Data Exchange (ETDEWEB)

    Zereini, Fathi [Frankfurt Univ. (Germany). Dept. of Environmental Analytical Chemistry; Wiseman, Clare L.S. (ed.) [Toronto Univ. (Canada). School of the Environment

    2015-03-01

    This book contains the five chapters with the following topics: 1. SOURCES OF PGE EMISSIONS ELEMENTS: Sources of Platinum Group Elements (PGE) in the Environment; Impact of Platinum Group Element Emissions from Mining and Production Activities. 2. ANALYTICAL METHODS FOR THE DETERMINATION OF PGE IN BIOLOGICAL AND ENVIRONMENTAL MATRICES: Appraisal of Biosorption for Recovery, Separation and Determination of Platinum, Palladium and Rhodium in Environmental Samples; On the Underestimated Factors Influencing the Accuracy of Determination of Pt and Pd by Electrothermal Atomic Absorption Spectrometry in Road Dust Samples; Application of Solid Sorbents for Enrichment and Separation of Platinum Metal Ions; Voltammetric Analysis of Platinum in Environmental Matrices; Speciation Analysis of Chloroplatinates; Analysis of Platinum Group Elements in Environmental Samples: A Review. 3. OCCURRENCE, CHEMICAL BEHAVIOR AND FATE OF PGE IN THE ENVIRONMENT: Brazilian PGE Research Data Survey on Urban and Roadside Soils; Platinum, Palladium and Rhodium in a Bavarian Roadside Soil; Increase of Platinum Group Element Concentrations in Soils and Airborne Dust During the Period of Vehicular Exhaust Catalysts Introduction; Platinum-Group Elements in Urban Fluvial Bed Sediments-Hawaii; Long-Term Monitoring of Palladium and Platinum Contents in Road Dust of the City of Munich, Germany; Characterization of PGEs and Other Elements in Road Dusts and Airborne Particles in Houston, Texas; Accumulation and Distribution of Pt and Pd in Roadside Dust, Soil and Vegetation in Bulgaria; Increase of the Environmental Pt Concentration in the Metropolitan Area of Mexico City Associated to the Use of Automobile Catalytic Converters; Solubility of Emitted Platinum Group Elements (Pt, Pd and Rh) in Airborne Particulate Matter (PM10) in the Presence of Organic Complexing Agents; The Influence of Anionic Species (Cl{sup -}, NO{sub 3}{sup -}, SO{sub 4}{sup 2-}) on the Transformation and Solubility of Platinum in

  3. In vitro biocompatibility and electrical stability of thick-film platinum/gold alloy electrodes printed on alumina

    Science.gov (United States)

    Carnicer-Lombarte, Alejandro; Lancashire, Henry T.; Vanhoestenberghe, Anne

    2017-06-01

    Objective. High-density electrode arrays are a powerful tool in both clinical neuroscience and basic research. However, current manufacturing techniques require the use of specialised techniques and equipment, which are available to few labs. We have developed a high-density electrode array with customisable design, manufactured using simple printing techniques and with commercially available materials. Approach. Electrode arrays were manufactured by thick-film printing a platinum-gold alloy (Pt/Au) and an insulating dielectric on 96% alumina ceramic plates. Arrays were conditioned in serum and serum-free conditions, with and without 1 kHz, 200 µA, charge balanced stimulation for up to 21 d. Array biocompatibility was assessed using an extract assay and a PC-12 cell contact assay. Electrode impedance, charge storage capacity and charge injection capacity were before and after array conditioning. Main results. The manufactured Pt/Au electrodes have a highly porous surface and exhibit electrical properties comparable to arrays manufactured using alternative techniques. Materials used in array manufacture were found to be non-toxic to L929 fibroblasts by extract assay, and neuronal-like PC-12 cells adhered and extended neurites on the array surfaces. Arrays remained functional after long-term delivery of electrical pulses while exposed to protein-rich environments. Charge storage capacities and charge injection capacities increased following stimulation accounted for by an increase in surface index (real surface area) observed by vertical scanning interferometry. Further, we observed accumulation of proteins at the electrode sites following conditioning in the presence of serum. Significance. This study demonstrates the in vitro biocompatibility of commercially available thick-film printing materials. The printing technique is both simple and versatile, with layouts readily modified to produce customized electrode arrays. Thick-film electrode arrays are an

  4. Non-carbon titanium cobalt nitride nanotubes supported platinum catalyst with high activity and durability for methanol oxidation reaction

    Science.gov (United States)

    Chen, Xiaoxiang; Li, Wuyi; Pan, Zhanchang; Xu, Yanbin; Liu, Gen; Hu, Guanghui; Wu, Shoukun; Li, Jinghong; Chen, Chun; Lin, Yingsheng

    2018-05-01

    Titanium cobalt nitride nanotubes (Ti0.95Co0.05N NTs) hybrid support, a novel robust non-carbon support material prepared by solvothermal and post-nitriding processes, is further decorated with Pt nanoparticles for the electrooxidation of methanol. The catalyst is characterized by X-ray diffraction (XRD), nitrogen adsorption/desorption, transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS) and electrochemical measurements. The morphology, structure and composition of the synthesized Ti0.95Co0.05N NTs suggest that the nanotube wall is porous and consists of homogeneous cohesively attached nitrides nanocube particles. Notable, Ti0.95Co0.05N NTs supported Pt catalyst exhibits significantly improved catalytic activity and durability for methanol electrooxidation compared with the conventional JM Pt/C catalyst. The experimental data indicate that enhanced catalytic activity and stability of Pt/Ti0.95Co0.05N NTs towards methanol electrooxidation might be mainly attributed to the tubular nanostructures and synergistic effect introduced by the Co doping. Both of them are playing an important role in improving the activity and durability of the Ti0.95Co0.05N NTs catalyst.

  5. Hydrodeoxygenation of phenols as lignin models under acid-free conditions with carbon-supported platinum catalysts.

    Science.gov (United States)

    Ohta, Hidetoshi; Kobayashi, Hirokazu; Hara, Kenji; Fukuoka, Atsushi

    2011-11-28

    Carbon-supported Pt catalysts are highly active and reusable for the aqueous-phase hydrodeoxygenation of phenols as lignin models without adding any acids. It is suggested that Pt/carbon facilitates the hydrogenation of phenols and the hydrogenolysis of the resulting cyclohexanols.

  6. Hydrogen Temperature-Programmed Desorption in Platinum Catalysts: Decomposition and Isotopic Exchange by Spillover Hydrogen of Chemisorbed Ammonia.

    NARCIS (Netherlands)

    Koningsberger, D.C.; Miller, J.T.; Meyers, B.L.; Barr, M.K.; Modica, F.S.

    1996-01-01

    H{2}-TPD of Pt/alumina catalysts display multiple hydrogendesorptions. In addition to chemisorbed hydrogen (Peak I) atapproximately 175}o{C, there is a small hydrogen desorption (PeakII) at about 250}o{C and a large, irreversible hydrogen desorption(Peak III) at 450}o{C. The quantity of hydrogen

  7. Electrocatalysts of platinum, cobalt and nickel prepared by mechanical alloying for the oxygen reduction reaction in H2SO4 0.5M

    International Nuclear Information System (INIS)

    Garcia C, M.A.; Fernandez V, S.M.; Vargas G, J.R.

    2007-01-01

    Metallic powders of Pt, Co and Nickel were processed by mechanical alloyed and electrocatalysts were synthesized for the oxygen reduction reaction, applicable in fuel cells. The structural and morphological characterization was carried out using X-ray Diffraction, scanning electron microscopy and transmission electron microscopy. It was found that the alloyed powders formed agglomerates that consist of crystalline particles of nano metric size. Its were obtained polarization curves by the Electrode of Rotational Disk technique in a solution of H 2 SO 4 0.5 M, used as electrolyte, to evaluate the electrocatalytic activity of mechanically alloyed powders. Tafel graphics were built to determine the kinetic parameters of each electro catalyst. The PtCoNi alloy exhibited the biggest electrocatalytic activity, with the smallest over potential for the oxygen reduction reaction. (Author)

  8. Design of Highly Selective Platinum Nanoparticle Catalysts for the Aerobic Oxidation of KA-Oil using Continuous-Flow Chemistry.

    Science.gov (United States)

    Gill, Arran M; Hinde, Christopher S; Leary, Rowan K; Potter, Matthew E; Jouve, Andrea; Wells, Peter P; Midgley, Paul A; Thomas, John M; Raja, Robert

    2016-03-08

    Highly active and selective aerobic oxidation of KA-oil to cyclohexanone (precursor for adipic acid and ɛ-caprolactam) has been achieved in high yields using continuous-flow chemistry by utilizing uncapped noble-metal (Au, Pt & Pd) nanoparticle catalysts. These are prepared using a one-step in situ methodology, within three-dimensional porous molecular architectures, to afford robust heterogeneous catalysts. Detailed spectroscopic characterization of the nature of the active sites at the molecular level, coupled with aberration-corrected scanning transmission electron microscopy, reveals that the synthetic methodology and associated activation procedures play a vital role in regulating the morphology, shape and size of the metal nanoparticles. These active centers have a profound influence on the activation of molecular oxygen for selective catalytic oxidations. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. The thermal properties of controllable diameter carbon nanotubes synthesized by using AB5 alloy of micrometer magnitude as catalyst

    International Nuclear Information System (INIS)

    Zhang Haiyan; Chen Yiming; Zeng Guoxun; Huang Huiping; Xie Zhiwei; Jie Xiaohua

    2007-01-01

    We have synthesized multi-wall carbon nanotubes by catalytic chemical vapour deposition (CCVD) method using an AB 5 hydrogen storage alloy with diameter ranging from 38 to 150 μm as a catalyst. The H 2 uptake capacity of the carbon nanotubes prepared using an AB 5 alloy as a catalyst is about 4 wt.% through to the pressure of 8 MPa at room temperature. Differential thermal analysis-thermogravimetric analysis (DTA-TGA) technique has been applied to investigate the effect of the diameters of the AB 5 alloy catalyst of micrometer magnitude and the technique conditions in the CCVD process on the thermal properties of carbon nanotubes. As the catalyst diameter increases from 38 to 150 μm, the average diameter of the prepared carbon nanotubes increases and the diameter distribution also enlarges. Electron microscope, Raman spectrum and thermal analysis all indicated that the catalyst sizes affect the diameter and the thermal properties of the carbon nanotubes. When the catalyst diameter increases, the initial weight loss temperature and the differential thermal peak temperature of the carbon nanotubes increases, which shows that the lager the diameter of the carbon nanotubes is, the higher the oxidation temperature, and the better the anti-oxidizablity. However, if the diameter of the catalyst is larger than 100 μm, the anti-oxidizablity does not rise anymore but tend to be invariableness. In the CCVD preparation process, the anti-oxidizability of the carbon nanotubes increases, when raising the ratio of the hydrogen gas in the reaction gas in our experimental range (4:1, 3:1, and 2:1, respectively)

  10. Ganoderma-Like MoS2 /NiS2 with Single Platinum Atoms Doping as an Efficient and Stable Hydrogen Evolution Reaction Catalyst.

    Science.gov (United States)

    Guan, Yongxin; Feng, Yangyang; Wan, Jing; Yang, Xiaohui; Fang, Ling; Gu, Xiao; Liu, Ruirui; Huang, Zhengyong; Li, Jian; Luo, Jun; Li, Changming; Wang, Yu

    2018-05-27

    Herein, a unique ganoderma-like MoS 2 /NiS 2 hetero-nanostructure with isolated Pt atoms anchored is reported. This novel ganoderma-like heterostructure can not only efficiently disperse and confine the few-layer MoS 2 nanosheets to fully expose the edge sites of MoS 2 , and provide more opportunity to capture the Pt atoms, but also tune the electronic structure to modify the catalytic activity. Because of the favorable dispersibility and exposed large specific surface area, single Pt atoms can be easily anchored on MoS 2 nanosheets with ultrahigh loading of 1.8 at% (the highest is 1.3 at% to date). Owing to the ganoderma-like structure and platinum atoms doping, this catalyst shows Pt-like catalytic activity for the hydrogen evolution reaction with an ultralow overpotential of 34 mV and excellent durability of only 2% increase in overpotential for 72 h under the constant current density of 10 mA cm -2 . © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Titania Supported Pt and Pt/Pd Nano-particle Catalysts for the Oxidation of Sulfur Dioxide

    DEFF Research Database (Denmark)

    Koutsopoulos, Sotiris; Johannessen, Tue; Eriksen, Kim Michael

    2006-01-01

    Several types of titania (anatase) were used as supports for pure platinum and Pt–Pd bimetallic alloy catalysts. The preparation methods, normal wet impregnation technique and flame aerosol synthesis, obtained metal loadings of 2% by weight. The prepared catalysts were tested for SO2 oxidation...... activity at atmospheric pressure in the temperature range 250–600 °C. The SO2 to SO3 conversion efficiency of the Pt–Pd alloy was significantly higher than that of the individual metals. The effects of the preparation method and the titania type used on the properties and activity of the resulting catalyst...

  12. The forming of coke by catalytic cracking of black mineral oil by catalysts on the base of activated aluminium alloys

    International Nuclear Information System (INIS)

    Mirzaeva, L.M.; Akhverdiev, R.B.; Aliev, Eh.T.; Gusejnova, A.D.; Gadzhi-Kasumov, V.S.; Akerson, V.I.; Sarmurzina, R.G.

    1995-01-01

    The paper deals with an investigation in coke formation under black mineral oil reactions on oxide catalysts which care based on activated aluminium alloys containing 2-20% of active components of In and Ga. The coke yield is of extreme nature and depends on the content of active components in the catalyst composition. The application of thermogravimetric method shows that the oxidation of coke depositions after black mineral oil cracking proceeds in the same temperature range while after the steam-water treatment of coked catalysts the oxidation of coke deposition proceeds at higher temperatures with different temperature maximums which points to the inhomogeneity of coke depositions. It is shown that the catalyst phase composition changes significantly during the reaction under the effect of reaction mixture. 4 refs., 3 figs

  13. Copolymers Based on Indole-6-Carboxylic Acid and 3,4-Ethylenedioxythiophene as Platinum Catalyst Support for Methanol Oxidation

    Directory of Open Access Journals (Sweden)

    Tzi-Yi Wu

    2015-10-01

    Full Text Available Indole-6-carboxylic acid (ICA and 3,4-ethylenedioxythiophene (EDOT are copolymerized electrochemically on a stainless steel (SS electrode to obtain poly(indole-6-carboxylic acid-co-3,4-ethylenedioxythiophenes (P(ICA-co-EDOTs. The morphology of P(ICA-co-EDOTs is checked using scanning electron microscopy (SEM, and the SEM images reveal that these films are composed of highly porous fibers when the feed molar ratio of ICA/EDOT is greater than 3/2. Platinum particles can be electrochemically deposited into the P(ICA-co-EDOTs and PICA films to obtain P(ICA-co-EDOTs-Pt and PICA-Pt composite electrodes, respectively. These composite electrodes are further characterized using X-ray photoelectron spectroscopy (XPS, SEM, X-ray diffraction analysis (XRD, and cyclic voltammetry (CV. The SEM result indicates that Pt particles disperse more uniformly into the highly porous P(ICA3-co-EDOT2 fibers (feed molar ratio of ICA/EDOT = 3/2. The P(ICA3-co-EDOT2-Pt nanocomposite electrode exhibited excellent catalytic activity for the electrooxidation of methanol in these electrodes, which reveals that P(ICA3-co-EDOT2-Pt nanocomposite electrodes are more promising for application in an electrocatalyst as a support material.

  14. Novel RuCoSe as non-platinum catalysts for oxygen reduction reaction in microbial fuel cells

    Science.gov (United States)

    Rozenfeld, Shmuel; Schechter, Michal; Teller, Hanan; Cahan, Rivka; Schechter, Alex

    2017-09-01

    Microbial electrochemical cells (MECs) are explored for the conversion of acetate directly to electrical energy. This device utilizes a Geobacter sulfurreducens anode and a novel RuCoSe air cathode. RuCoSe synthesized in selected compositions by a borohydride reduction method produces amorphous structures of powdered agglomerates. Oxygen reduction reaction (ORR) was measured in a phosphate buffer solution pH 7 using a rotating disc electrode (RDE), from which the kinetic current (ik) was measured as a function of potential and composition. The results show that ik of RuxCoySe catalysts increases in the range of XRu = 0.25 > x > 0.7 and y < 0.15 for all tested potentials. A poisoning study of RuCoSe and Pt catalysts in a high concentration acetate solution shows improved tolerance of RuCoSe to this fuel at acetate concentration ≥500 mM. MEC discharge plots under physiological conditions show that ∼ RuCo2Se (sample S3) has a peak power density of 750 mW cm-2 which is comparable with Pt 900 mW cm-2.

  15. Electrocatalytic properties of carbon-supported Pt-Ru catalysts with the high alloying degree for formic acid electrooxidation

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yu.; Zhou, Yiming; Tang, Yawen; Lu, Tianhong [College of Chemistry and Environmental Science, Nanjing Normal University, Nanjing 210097 (China)

    2010-07-01

    A series of carbon-supported bimetallic Pt-Ru catalysts with high alloying degree and different Pt/Ru atomic ratio have been prepared by a chemical reduction method in the H{sub 2}O/ethanol/tetrahydrofuran (THF) mixture solvent. The structural and electronic properties of catalysts are characterized using X-ray reflection (XRD), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM). The electrooxidation of formic acid on these Pt-Ru nanoparticles are investigated by using cyclic voltammetry, chronoamperometry and CO-stripping measurements. The results of electrochemical measurements illustrate that the alloying degree and Pt/Ru atomic ratio of Pt-Ru catalyst play an important role in the electrocatalytic activity of the Pt-Ru/C catalyst for formic acid electrooxidation due to the bifunctional mechanism and the electronic effect. Since formic acid is an intermediate in the methanol electrooxidation on Pt electrode in acidic electrolyte, the observation provides an additional fundamental understanding of the structure-activity relationship of Pt-Ru catalyst for methanol electrooxidation. (author)

  16. Study of the re-dispersion of platinum containing bimetallic phases supported on chlorinated or neutralized alumina; Etude de la redispersion de phases bimetalliques a base de platine supportees sur alumine chloree ou neutralisee

    Energy Technology Data Exchange (ETDEWEB)

    Cholley, T

    1997-01-31

    The re-dispersion by oxy-chlorination of platinum-tin catalysts supported on alumina constitute the matter of this work. Influence of parameters like the nature of the platinum-tin phases and particles size has been examined. The use of organometallic precursors has allowed an optimum control of the preparation and of the particles growth of the catalysts. Characterization by programmed temperature reduction (TPR), X-ray photoelectron spectroscopy (XPS), Moessbauer spectroscopy, near-edge absorption spectra (XANES) and X-ray absorption fine structure (EXAFS) has led to a better understanding of the phenomena ruling the tin reducibility. Sintering has been studied, showing that only platinum-tin alloy can sinter, while tin oxides are strongly stabilized by the support. It is shown similarly that oxy-chlorination of these catalysts causes the re-dispersion of the platinum and the platinum-tin alloy only. A re-dispersion mechanism through platinum-tin oxychloride species has been proposed. Furthermore, the main parameters influencing the re-dispersion have been highlighted. (author) 175 refs.

  17. Characterization of platinum catalysts supported on substoichiometric oxides of Zr, Ti and Ce by the electric impedance spectroscopy

    International Nuclear Information System (INIS)

    Eder, D.

    2003-09-01

    Noble metal catalysts show enhanced catalytic activities towards hydrocarbon C-O bond reactions, when they are supported on reducible oxides (titania or ceria) compared to silica or alumina. Active sites on the surface of such species are probably electronic or structural defects which lower the bonding strength of adsorbed molecules and favor subsequent reactions at the triple phase boundary between the metal, the oxide and the atmosphere. On the other hand, a pre-treatment of these catalysts in hydrogen at higher temperatures leads to a reversed effect. Noble metal catalysts supported on reducible oxides suffer from the so called SMSI-effect ('strong metal support interaction'), when they are reduced at temperatures above 400 o C. The adsorption capacity for hydrogen and for carbon monoxide and the catalytic activity for hydrocarbon skeletal reactions are decreased, the reason for this is mostly agreed to be the reduction of the support. Aim of this work was to characterize the electronic structure of two reducible oxides (TiO 2 and CeO 2 ) as a support for noble metal catalysts and compare them to the non-reducible ZrO 2 . The formation of oxygen vacancies during a typical catalytic pre-treatment in hydrogen was studied quantitatively by the volumetric oxygen titration and by temperature controlled oxidation/Desorption (TPO, TPD), as well as qualitatively by Electron Paramagnetic Resonance (EPR) and Fourier Transformation Infrared Spectroscopy (FTIR). The materials used in this work were of polycrystalline type, their specific surface area was controlled by calcinations at different temperatures. The reduction was performed in flowing dry hydrogen with varied flow rates at different temperatures. In some experiments, a water vapour pressure of 6.1 mbar was added to the gas stream to study the influence of humidity on the formation of oxygen vacancies. The treatment in hydrogen at low temperatures leads to the formation of oxygen vacancies located at the surface

  18. Iridium-decorated palladium-platinum core-shell catalysts for oxygen reduction reaction in proton exchange membrane fuel cell.

    Science.gov (United States)

    Wang, Chen-Hao; Hsu, Hsin-Cheng; Wang, Kai-Ching

    2014-08-01

    Carbon-supported Pt, Pd, Pd-Pt core-shell (Pt(shell)-Pd(core)/C) and Ir-decorated Pd-Pt core-shell (Ir-decorated Pt(shell)-Pd(core)/C) catalysts were synthesized, and their physical properties, electrochemical behaviors, oxygen reduction reaction (ORR) characteristics and proton exchange membrane fuel cell (PEMFC) performances were investigated herein. From the XRD patterns and TEM images, Ir-decorated Pt(shell)-Pd(core)/C has been confirmed that Pt was deposited on the Pd nanoparticle which had the core-shell structure. Ir-decorated Pt(shell)-Pd(core)/C has more positive OH reduction peak than Pt/C, which is beneficial to weaken the binding energy of Pt-OH during the ORR. Thus, Ir-decorated Pt(shell)-Pd(core)/C has higher ORR activity than Pt/C. The maximum power density of H2-O2 PEMFC using Ir-decorated Pt(shell)-Pd(core)/C is 792.2 mW cm(-2) at 70°C, which is 24% higher than that using Pt/C. The single-cell accelerated degradation test of PEMFC using Ir-decorated Pt(shell)-Pd(core)/C shows good durability by the potential cycling of 40,000 cycles. This study concludes that Ir-decorated Pt(shell)-Pd(core)/C has the low Pt content, but it can facilitate the low-cost and high-efficient PEMFC. Copyright © 2013 Elsevier Inc. All rights reserved.

  19. Investigation of altenative carbon materials for fuel-cell catalyst support

    DEFF Research Database (Denmark)

    Larsen, Mikkel Juul

    In order to ensure high utilization of the catalyst material in a polymer electrolyte membrane fuel cell (PEMFC) it is usually fixed in the form of nanoparticles on a supporting material. The catalyst is platinum or a platinum alloy, and the commonly used support is carbon black (CB). Although...... structured carbon forms such as graphitized CBs, carbon nanotubes (CNTs), and carbon nanofibres (CNFs). This thesis concerns the investigation of an array of different materials which may prospec-tively replace the conventional materials used in the catalyst. The study comprised 13 carbon samples which...... nanotubes (GMWCNTs), and graphitized carbon nanofibre (CNF), while the Pt/C samples were platinized samples of some of the CNTs and CNFs (Pt/FWCNT, Pt/GMWCNT, and Pt/CNF, respectively) as well as two commercial Pt/CB reference catalysts. Comparative analyses have been performed in order to be able to assess...

  20. The Origin of Sulfur Tolerance in Supported Platinum Catalysts: The Relationship between Structural and Catalytic Properties in Acidic and Alkaline Pt/LTL.

    NARCIS (Netherlands)

    Koningsberger, D.C.; Miller, J.T.

    1996-01-01

    The reactivity, structure, and sulfur tolerance is compared for platinum supported on acidic and alkaline LTL zeolite. In the absence of sulfur, EXAFS spectroscopy indicates that small metallic platinum particles of approximately 6 to 14 atoms/cluster are present. The TOF for neopentane

  1. Mechanical alloying of a hydrogenation catalyst used for the remediation of contaminated compounds

    Science.gov (United States)

    Quinn, Jacqueline W. (Inventor); Clausen, Christian A. (Inventor); Geiger, Cherie L. (Inventor); Aitken, Brian S. (Inventor)

    2012-01-01

    A hydrogenation catalyst including a base material coated with a catalytic metal is made using mechanical milling techniques. The hydrogenation catalysts are used as an excellent catalyst for the dehalogenation of contaminated compounds and the remediation of other industrial compounds. Preferably, the hydrogenation catalyst is a bimetallic particle including zero-valent metal particles coated with a catalytic material. The mechanical milling technique is simpler and cheaper than previously used methods for producing hydrogenation catalysts.

  2. Methanol-Tolerant Cathode Catalyst Composite For Direct Methanol Fuel Cells

    Science.gov (United States)

    Zhu, Yimin; Zelenay, Piotr

    2006-03-21

    A direct methanol fuel cell (DMFC) having a methanol fuel supply, oxidant supply, and its membrane electrode assembly (MEA) formed of an anode electrode and a cathode electrode with a membrane therebetween, a methanol oxidation catalyst adjacent the anode electrode and the membrane, an oxidant reduction catalyst adjacent the cathode electrode and the membrane, comprises an oxidant reduction catalyst layer of a platinum-chromium alloy so that oxidation at the cathode of methanol that crosses from the anode through the membrane to the cathode is reduced with a concomitant increase of net electrical potential at the cathode electrode.

  3. Platinum recycling in the United States in 1998

    Science.gov (United States)

    Hilliard, Henry E.

    2001-01-01

    In the United States, catalytic converters are the major source of secondary platinum for recycling. Other sources of platinum scrap include reforming and chemical process catalysts. The glass industry is a small but significant source of platinum scrap. In North America, it has been estimated that in 1998 more than 20,000 kilograms per year of platinum-group metals from automobile catalysts were available for recycling. In 1998, an estimated 7,690 kilograms of platinum were recycled in the United States. U.S. recycling efficiency was calculated to have been 76 percent in 1998; the recycling rate was estimated at 16 percent.

  4. Electrocatalytic approach for the efficiency increase of electrolytic hydrogen production: Proof-of-concept using platinum-dysprosium alloys

    International Nuclear Information System (INIS)

    Santos, D.M.F.; Šljukić, B.; Sequeira, C.A.C.; Macciò, D.; Saccone, A.; Figueiredo, J.L.

    2013-01-01

    Development of electrocatalytic materials for the hydrogen evolution reaction (HER) is attempted with the aim of reducing the water electrolysis overpotential and increasing its efficiency. Using linear scan voltammetry measurements of the hydrogen discharge enables evaluation of the electrocatalytic activity for the HER of platinum–dysprosium (Pt–Dy) intermetallic alloy electrodes of different compositions. Understanding of materials electrocatalytic performance is based on determination of several crucial kinetic parameters, including the Tafel coefficients, b, charge transfer coefficients, α, exchange current densities, j 0 , and activation energies, E a . Influence of temperature on HER is investigated by performing studies at temperatures ranging from 25 °C to 85 °C. The effect of the Dy amount in the efficiency of the HER on the Pt–Dy alloys is analysed. Results demonstrate that Dy can substantially increase the electrocatalytic activity of the Pt alloys, in comparison to the single Pt electrode. Efforts are made to correlate the microstructure of the alloys with their performance towards the HER. - Highlights: ► Development of electrocatalysts to increase efficiency of electrolytic hydrogen production. ► Synthesis and evaluation of composition and morphology of platinum–dysprosium (Pt–Dy) alloys. ► Hydrogen evolution reaction on Pt–Dy alloys electrodes studied using linear scan voltammetry in alkaline medium. ► Pt–Dy alloy with equiatomic composition enhances kinetics of hydrogen discharge compared to single Pt

  5. Growing Platinum-Ruthenium-Tin ternary alloy nanoparticles on reduced graphene oxide for strong ligand effect toward enhanced ethanol oxidation reaction.

    Science.gov (United States)

    Xia, Qing Qing; Zhang, Lian Ying; Zhao, Zhi Liang; Li, Chang Ming

    2017-11-15

    Uniform Pt 1 Ru 0.5 Sn 0.5 ternary alloy nanoparticles are in situ deposited on reduced graphene oxide (Pt 1 Ru 0.5 Sn 0.5 -RGO) through its functional groups and defects as nucleation sites to greatly electrocatalyze ethanol oxidation reaction for much higher mass current densities, larger apparent specific current densities and better stability than commercial Pt-C catalyst (Pt-C(commer)). Mechanistic studies indicate that the excellent electrocatalytic activity and anti-poisoning are resulted from a strong ligand effect of the ternary alloy components, in which the charge transfer is boosted while decreasing the density of states close to the Fermi level of Pt to reduce bond energy between Pt and CO-like adsorbates for greatly improved anti-poisoning ability. This work holds a great promise to fabricate a high performance anode catalyst with a low Pt loading for direct ethanol fuel cells. Copyright © 2017. Published by Elsevier Inc.

  6. Hierarchical nanoporous platinum-copper alloy for simultaneous electrochemical determination of ascorbic acid, dopamine, and uric acid

    International Nuclear Information System (INIS)

    Zhao, Dianyun; Fan, Dawei; Wang, Jinping; Xu, Caixia

    2015-01-01

    A hierarchical nanoporous PtCu alloy was fabricated by two-step dealloying of a PtCuAl precursor alloy followed by annealing. The new alloy possesses interconnected hierarchical network architecture with bimodal distributions of ligaments and pores. It exhibits high electrochemical activity towards the oxidation of ascorbic acid (AA), dopamine (DA), and uric acid (UA) at working potentials of 0.32, 0.47 and 0.61 V (vs. a mercury sulfate reference electrode), respectively. The new alloy was placed on a glassy carbon electrode and then displayed a wide linear response to AA, DA, and UA in the concentration ranges from 25 to 800 μM, 4 to 20 μM, and 10 to 70 μM, respectively. The lower detection limits are 17.5 μM, 2.8 µM and 5.7 μM at an S/N ratio of 3. (author)

  7. Non-platinum electrocatalysts for PEM fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Lee, K.; Zhang, L.; Shi, Z.; Hui, R.; Zhang, J. [National Research Council of Canada, Vancouver, BC (Canada). Inst. For Fuel Cell Innovation

    2008-07-01

    High cost, low reliability and durability are the main barriers preventing widespread commercialization of fuel cells. In particular, the platinum (Pt)-based electrocatalysts used in proton exchange membrane (PEM) fuel cells, including direct methanol fuel cells (DMFCs) are major contributors to the high cost of PEM fuel cells. The Institute for Fuel Cell Innovation at the National Research Council of Canada has developed several new non-Pt electrocatalysts for PEM fuel cell applications. This paper presented the research results on these catalysts, including transition metal macrocycles, chalcogenides, and Ir- or Pd-based alloys. It also described catalyst structure modes via theoretical density functional theory (DFT) calculations. Research activities on these electrocatalysts was summarized in terms of catalytic activity and the oxygen reduction reaction (ORR). Typical catalysts such as cobalt(Co)-polypyrrole (PPy) and the chalcogenides show promising results in terms of catalytic activity and a 4-electron reaction mechanism. Efforts are underway to modify both catalyst structure and synthesis methods in order to further improve catalyst performance. 4 refs., 2 figs.

  8. Rudimentary simple, single step fabrication of nano-flakes like AgCd alloy electro-catalyst for oxygen reduction reaction in alkaline fuel cell

    International Nuclear Information System (INIS)

    Bhandary, Nimai; Basu, Suddhasatwa; Ingole, Pravin P.

    2016-01-01

    In this work, for the first time, we report rudimentary simple, single step fabrication of an electro-catalyst based on AgCd alloy nanoparticles with flakes like geometry which shows highly efficient activity towards oxygen reduction reaction (ORR). A simple potentiostatic deposition method has been employed for co-depositing AgCd alloy nanostructures with flakes like shapes along with dendrites on the surface of carbon fibre paper. The chemico-physical properties of the catalyst are investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS) and energy dispersive X-ray spectroscopy (EDXS). Electro-catalytic activity of AgCd alloy based electro-catalyst towards ORR is studied in alkaline medium by cyclic voltammetry and rotating ring disk electrode (RRDE) technique. Electrochemical in-situ FTIR measurements are also performed to identify the species generated during ORR process. Based on the results from electro-catalysis experiment, it is concluded that nano-alloyed AgCd electrodeposited on carbon paper shows excellent activity for ORR, following four electron pathways with H_2O_2 yield less than 15%. The combination of low cost of Ag and Cd, fast and facile method of its fabrication and higher activity towards ORR makes the AgCd electro-catalyst an attractive catalyst of choice for alkaline fuel cell.

  9. Colloidal Au and Au-alloy catalysts for direct borohydride fuel cells: Electrocatalysis and fuel cell performance

    Science.gov (United States)

    Atwan, Mohammed H.; Macdonald, Charles L. B.; Northwood, Derek O.; Gyenge, Elod L.

    Supported colloidal Au and Au-alloys (Au-Pt and Au-Pd, 1:1 atomic ratio) on Vulcan XC-72 (with 20 wt% metal load) were prepared by the Bönneman method. The electrocatalytic activity of the colloidal metals with respect to borohydride electro-oxidation for fuel cell applications was investigated by voltammetry on static and rotating electrodes, chronoamperometry, chronopotentiometry and fuel cell experiments. The fundamental electrochemical techniques showed that alloying Au, a metal that leads to the maximum eight-electron oxidation of BH 4 -, with Pd or Pt, well-known catalysts of dehydrogenation reactions, improved the electrode kinetics of BH 4 - oxidation. Fuel cell experiments corroborated the kinetic studies. Using 5 mg cm -2 colloidal metal load on the anode, it was found that Au-Pt was the most active catalyst giving a cell voltage of 0.47 V at 100 mA cm -2 and 333 K, while under identical conditions the cell voltage using colloidal Au was 0.17 V.

  10. Colloidal Au and Au-alloy catalysts for direct borohydride fuel cells: Electrocatalysis and fuel cell performance

    Energy Technology Data Exchange (ETDEWEB)

    Atwan, Mohammed H.; Northwood, Derek O. [Department of Mechanical, Auto and Materials Engineering, University of Windsor, Windsor (Canada N9B 3P4); Macdonald, Charles L.B. [Department of Chemistry and Biochemistry, University of Windsor, Windsor (Canada N9B 3P4); Gyenge, Elod L. [Department of Chemical and Biological Engineering, The University of British Columbia, Vancouver, BC (Canada V6T 1Z4)

    2006-07-14

    Supported colloidal Au and Au-alloys (Au-Pt and Au-Pd, 1:1 atomic ratio) on Vulcan XC-72 (with 20wt% metal load) were prepared by the Bonneman method. The electrocatalytic activity of the colloidal metals with respect to borohydride electro-oxidation for fuel cell applications was investigated by voltammetry on static and rotating electrodes, chronoamperometry, chronopotentiometry and fuel cell experiments. The fundamental electrochemical techniques showed that alloying Au, a metal that leads to the maximum eight-electron oxidation of BH{sub 4}{sup -}, with Pd or Pt, well-known catalysts of dehydrogenation reactions, improved the electrode kinetics of BH{sub 4}{sup -} oxidation. Fuel cell experiments corroborated the kinetic studies. Using 5mgcm{sup -2} colloidal metal load on the anode, it was found that Au-Pt was the most active catalyst giving a cell voltage of 0.47V at 100mAcm{sup -2} and 333K, while under identical conditions the cell voltage using colloidal Au was 0.17V. (author)

  11. Unsupported NiPt alloy metal catalysts prepared by water-in-oil (W/O) microemulsion method for methane cracking

    KAUST Repository

    Zhou, Lu

    2016-05-18

    Unsupported NiPt metal catalyst with Ni/Pt molar ratio of 88/12 is prepared by water-in-oil (W/O) microemulsion method in this study. Compared to monometallic Ni and Pt catalysts, the NiPt catalyst exhibits superior activity and stability for methane cracking. By XRD (X-ray powder diffraction), XPS (X-ray photoelectron spectroscopy) and TEM (Transmission electron microscopy) analyses, the formation of Ni(0)Pt(0) alloy is believed to be the main reason for the reactivity improvement of this catalyst. Carbon nano tube (CNT) with Ni(0)Pt(0) particles anchored on the top of tube are found for the NiPt catalyst. © 2016 Elsevier Ltd.

  12. Electrodeposition of gold-platinum alloy nanoparticles on ionic liquid-chitosan composite film and its application in fabricating an amperometric cholesterol biosensor.

    Science.gov (United States)

    Safavi, Afsaneh; Farjami, Fatemeh

    2011-01-15

    An electrodeposition method was applied to form gold-platinum (AuPt) alloy nanoparticles on the glassy carbon electrode (GCE) modified with a mixture of an ionic liquid (IL) and chitosan (Ch) (AuPt-Ch-IL/GCE). AuPt nanoparticles were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and electrochemical methods. AuPt-Ch-IL/GCE electrocatalyzed the reduction of H(2)O(2) and thus was suitable for the preparation of biosensors. Cholesterol oxidase (ChOx) was then, immobilized on the surface of the electrode by cross-linking ChOx and chitosan through addition of glutaraldehyde (ChOx/AuPt-Ch-IL/GCE). The fabricated biosensor exhibited two wide linear ranges of responses to cholesterol in the concentration ranges of 0.05-6.2 mM and 6.2-11.2 mM. The sensitivity of the biosensor was 90.7 μA mM(-1) cm(-2) and the limit of detection was 10 μM of cholesterol. The response time was less than 7 s. The Michaelis-Menten constant (K(m)) was found as 0.24 mM. The effect of the addition of 1 mM ascorbic acid and glucose was tested on the amperometric response of 0.5 mM cholesterol and no change in response current of cholesterol was observed. Copyright © 2010 Elsevier B.V. All rights reserved.

  13. High-performance bimetallic alloy catalyst using Ni and N co-doped composite carbon for the oxygen electro-reduction.

    Science.gov (United States)

    Jung, Won Suk

    2018-03-15

    In this study, a novel synthesis method for the bimetallic alloy catalyst is reported, which is subsequently used as an oxygen reduction catalyst in polymer electrolyte membrane fuel cells (PEMFCs). The support prepared from the Ni-chelate complex shows a mesoporous structure with a specific surface area of ca. 400 m 2  g -1 indicating the suitable support for PEMFC applications. Ethylenediamine is converted to the nitrogen and carbon layers to protect the Ni particles which will diffuse into the Pt lattice at 800 °C. The PtNi/NCC catalyst with PtNi cores and Pt-rich shells is successfully formed when acid-treated as evidenced by line scan profiles. The catalyst particles thus synthesized are well-dispersed on the N-doped carbon support, while the average particle size is ca. 3 nm. In the PEMFC test, the maximum power density of the PtNi/NCC catalyst shows approximately 25% higher than that of the commercial Pt/C catalyst. The mass activity of the PtNi/NCC catalyst showed approximately 3-fold higher than that of the commercial Pt/C catalyst. The mass activity strongly depends on the ratio of Pt to Ni since the strain effect can be strong for catalysts due to the mismatch of lattice parameters of the Ni and Pt. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Catalyst for hydrocarbon conversion

    International Nuclear Information System (INIS)

    Duhaut, P.; Miquel, J.

    1975-01-01

    A description is given for a catalyst and process for hydrocarbon conversions, e.g., reforming. The catalyst contains an alumina carrier, platinum, iridium, at least one metal selected from uranium, vanadium, and gallium, and optionally halogen in the form of metal halide of one of the aforesaid components. (U.S.)

  15. Hydrogenation of hexene over platinum on alumina vs. platinum in a Na-Y zeolite

    International Nuclear Information System (INIS)

    Miner, R.S. Jr.; Ione, K.G.; Namba, S.; Turkevich, J.

    1978-01-01

    In order to study the efficacy of zeolites as supports, several platinum H--Y zeolites were prepared by ion exchanging an H--Y zeolite with Pt(NH 3 ) 4 Cl 2 and reducing these products with hydrazine hydrate (A, B, C). Another preparation was made by adsorbing 32-A platinum sol on the zeolite crystallites (D). These catalysts were studied for hydrogenation and isomerization of hexene-1, ethylene hydrogenation, hydrogen chemisorption, and poison titration. They were compared with monodisperse Pt (32 A diameter) on alumina. A marked difference was found between the behavior of hexene-1 with the platinum-in-zeolite and with the platinum-on-alumina

  16. Electrocatalysts with platinum, cobalt and nickel preparations by mechanical alloyed and CVD for the reaction of oxygen reduction

    International Nuclear Information System (INIS)

    Garcia C, M. A.

    2008-01-01

    In this research, the molecular oxygen reduction reaction (ORR) was investigated on electrocatalysts of Co, Ni, Pt and their alloys CoNi, PtCo, PtNi and PtCoNi by using H 2 SO 4 0.5 and KOH 0.5 M solutions as electrolytes. The electrocatalysts were synthesized by Mechanical Alloying (MA) and Chemical Vapor Deposition (CVD) processes. For MA, metallic powders were processed during 20 h of milling in a high energy SPEX 8000 mill. For CVD, a hot-wall reactor was utilized and Co, Ni and Pt acetilactetonates were used as precursors. Films were deposited at a total pressure of 1 torr and temperatures of 400-450 C. Electrocatalysts were characterized by X-Ray Diffraction (XRD). Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM) and Energy Dispersive X-Ray Spectroscopy (EDS). Electrocatalysts prepared by mechanical alloying showed a homogeneously dispersed agglomeration of particles with nano metric size. Electrocatalysts obtained by CVD showed, in some cases, non uniform films, with particles of nano metric size, as well. The electrocatalytic performance was evaluated by using the Rotating Disk Electrode technique (RDE). Electrocatalysts prepared by MA showed higher activity than those obtained by CVD. All electrocatalysts were evaluated in alkaline media. Only electrocatalysts containing Pt were evaluated in acid media, because those materials with Co, Ni and their alloys showed instability in acidic media. Most electrocatalysts followed a mechanism for the ORR producing a certain proportion of H 2 O 2 . All electrocatalysts, exhibited a fair or good electrocatalytic activity in comparison with other similar reported materials. It was found that MA and CVD are appropriate processes to prepare electrocatalysts for the ORR with particles of nano metric size and performing with an acceptable catalytic activity. PtCoNi 70-23-7% by MA and PtCoNi-CVD electrocatalysts showed the highest activity in alkaline media, while in acidic electrolyte PtCoNi 70

  17. Electrostatic layer-by-layer a of platinum-loaded multiwall carbon nanotube multilayer: A tunable catalyst film for anodic methanol oxidation

    International Nuclear Information System (INIS)

    Yuan Junhua; Wang Zhijuan; Zhang Yuanjian; Shen Yanfei; Han Dongxue; Zhang Qixian; Xu Xiaoyu; Niu Li

    2008-01-01

    A simple layer-by-layer (LBL) electrostatic adsorption technique was developed for deposition of films composed of alternating layers of positively charged poly(diallyldimethylammonium chloride) (PDDA) and negatively charged multiwall carbon nanotubes bearing platinum nanoparticles (Pt-CNTs). PDDA/Pt-CNT film structure and morphology up to six layers were characterized by scanning electron microscopy and ultraviolet-visible spectroscopy, showing the Pt-CNT layers to be porous and uniformly deposited within the multilayer films. Electrochemical properties of the PDDA/Pt-CNT films, as well as electrocatalytic activity toward methanol oxidation, were investigated with cyclic voltammetry. Significant activity toward anodic methanol oxidation was observed and is readily tunable through changing film thickness and/or platinum-nanoparticle loading. Overall, the observed properties of these PDDA/Pt-CNT multilayer films indicated unique potential for application in direct methanol fuel cell

  18. Environmental routes for platinum group elements to biological materials. A review

    Energy Technology Data Exchange (ETDEWEB)

    Ek, Kristine H.; Morrison, Gregory M. [Water Environment Transport, Chalmers University of Technology, SE 412 96 Goteborg (Sweden); Rauch, Sebastien [R.M. Parsons Laboratory 48-108, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States)

    2004-12-01

    The increased use of platinum group elements (PGE) in automobile catalysts has led to concern over potential environmental and biological accumulation. Platinum (Pt), palladium (Pd) and rhodium (Rh) concentrations have increased in the environment since the introduction of automobile catalysts. This review summarises current knowledge concerning the environmental mobility, speciation and bioavailability of Pt, Pd and Rh. The greater proportion of PGE emissions is from automobile catalysts, in the form of nanometer-sized catalyst particles, which deposit on roadside surfaces, as evidenced in samples of road dust, grass and soil. In soil, PGE can be transformed into more mobile species through complexation with organic matter and can be solubilised in low pH rainwater. There are indications that environmentally formed Pd species are more soluble and hence more mobile in the environment than Rh and Pt. PGE can reach waterbodies through stormwater transport and deposition in sediments. Besides external contamination of grass close to roads, internal PGE uptake has been observed for plants growing on soil contaminated with automobile catalyst PGE. Fine particles of PGE were also detected on the surface of feathers sampled from passerines and raptors in their natural habitat, and internal organs of these birds also contained PGE. Uptake has been observed in sediment-dwelling invertebrates, and laboratory studies have shown an uptake of PGE in eel and fish exposed to water containing road dust.The available evidence indicates that the PGE, especially Pd, are transported to biological materials through deposition in roots by binding to sulphur-rich low molecular weight species in plants. PGE uptake to exposed animals have uptake rates in the following order: Pd>Pt>Rh. The liver and kidney accumulate the highest levels of PGE, especially Pd. Urinary Pd and Rh, but not Pt, levels are correlated with traffic intensity. Dental alloys may lead to elevated urinary Pt levels

  19. Catalytic Hydrogenation of Levulinic Acid in Water into g-Valerolactone over Bulk Structure of Inexpensive Intermetallic Ni-Sn Alloy Catalysts

    Directory of Open Access Journals (Sweden)

    Rodiansono Rodiansono

    2015-07-01

    Full Text Available A bulk structure of inexpensive intermetallic nickel-tin (Ni-Sn alloys catalysts demonstrated highly selective in the hydrogenation of levulinic acid in water into g-valerolactone. The intermetallic Ni-Sn catalysts were synthesized via a very simple thermochemical method from non-organometallic precursor at low temperature followed by hydrogen treatment at 673 K for 90 min. The molar ratio of nickel salt and tin salt was varied to obtain the corresponding Ni/Sn ratio of 4.0, 3.0, 2.0, 1.5, and 0.75. The formation of Ni-Sn alloy species was mainly depended on the composition and temperature of H2 treatment. Intermetallics Ni-Sn that contain Ni3Sn, Ni3Sn2, and Ni3Sn4 alloy phases are known to be effective heterogeneous catalysts for levulinic acid hydrogenation giving very excellence g-valerolactone yield of >99% at 433 K, initial H2 pressure of 4.0 MPa within 6 h. The effective hydrogenation was obtained in H2O without the formation of by-product. Intermetallic Ni-Sn(1.5 that contains Ni3Sn2 alloy species demonstrated very stable and reusable catalyst without any significant loss of its selectivity. © 2015 BCREC UNDIP. All rights reserved. Received: 26th February 2015; Revised: 16th April 2015; Accepted: 22nd April 2015  How to Cite: Rodiansono, R., Astuti, M.D., Ghofur, A., Sembiring, K.C. (2015. Catalytic Hydrogenation of Levulinic Acid in Water into g-Valerolactone over Bulk Structure of Inexpensive Intermetallic Ni-Sn Alloy Catalysts. Bulletin of Chemical Reaction Engineering & Catalysis, 10 (2: 192-200. (doi:10.9767/bcrec.10.2.8284.192-200Permalink/DOI: http://dx.doi.org/10.9767/bcrec.10.2.8284.192-200  

  20. The Role of Non-Conventional Supports for Single-Atom Platinum-Based Catalysts in Fuel-Cell Technology: A Theoretical Surface Science Approach

    Science.gov (United States)

    2013-02-05

    could be a promising catalyst for PEM fuel cells. Introduction: Proton exchange membrane fuel cells ( PEMFCs ) have found wide potential...Unfortunately, due to their high cost and low lifespan, wide-scale commercialization of PEMFCs has been greatly impeded and much effort has been made to...lower its cost as well as to improve its durability over time. In an attempt to alleviate the high-cost associated with conventional PEMFC catalysts

  1. Methanol-Tolerant Platinum-Palladium Catalyst Supported on Nitrogen-Doped Carbon Nanofiber for High Concentration Direct Methanol Fuel Cells.

    Science.gov (United States)

    Kim, Jiyoung; Jang, Jin-Sung; Peck, Dong-Hyun; Lee, Byungrok; Yoon, Seong-Ho; Jung, Doo-Hwan

    2016-08-15

    Pt-Pd catalyst supported on nitrogen-doped carbon nanofiber (N-CNF) was prepared and evaluated as a cathode electrode of the direct methanol fuel cell (DMFC). The N-CNF, which was directly synthesized by the catalytic chemical vapor deposition from acetonitrile at 640 °C, was verified as having a change of electrochemical surface properties such as oxygen reduction reaction (ORR) activities and the electrochemical double layer compared with common carbon black (CB). To attain the competitive oxygen reduction reaction activity with methanol tolerance, the Pt and Pd metals were supported on the CB or the N-CNF. The physical and electrochemical characteristics of the N-CNF-supported Pt-Pd catalyst were examined and compared with catalyst supported on the CB. In addition, DMFC single cells using these catalysts as the cathode electrode were applied to obtain I-V polarization curves and constant current operating performances with high-concentration methanol as the fuel. Pt-Pd catalysts had obvious ORR activity even in the presence of methanol. The higher power density was obtained at all the methanol concentrations when it applied to the membrane electrode assembly (MEA) of the DMFC. When the N-CNF is used as the catalyst support material, a better performance with high-concentration methanol is expected.

  2. Methanol-Tolerant Platinum-Palladium Catalyst Supported on Nitrogen-Doped Carbon Nanofiber for High Concentration Direct Methanol Fuel Cells

    Directory of Open Access Journals (Sweden)

    Jiyoung Kim

    2016-08-01

    Full Text Available Pt-Pd catalyst supported on nitrogen-doped carbon nanofiber (N-CNF was prepared and evaluated as a cathode electrode of the direct methanol fuel cell (DMFC. The N-CNF, which was directly synthesized by the catalytic chemical vapor deposition from acetonitrile at 640 °C, was verified as having a change of electrochemical surface properties such as oxygen reduction reaction (ORR activities and the electrochemical double layer compared with common carbon black (CB. To attain the competitive oxygen reduction reaction activity with methanol tolerance, the Pt and Pd metals were supported on the CB or the N-CNF. The physical and electrochemical characteristics of the N-CNF–supported Pt-Pd catalyst were examined and compared with catalyst supported on the CB. In addition, DMFC single cells using these catalysts as the cathode electrode were applied to obtain I-V polarization curves and constant current operating performances with high-concentration methanol as the fuel. Pt-Pd catalysts had obvious ORR activity even in the presence of methanol. The higher power density was obtained at all the methanol concentrations when it applied to the membrane electrode assembly (MEA of the DMFC. When the N-CNF is used as the catalyst support material, a better performance with high-concentration methanol is expected.

  3. Phosphoric acid fuel cell platinum use study

    Science.gov (United States)

    Lundblad, H. L.

    1983-05-01

    The U.S. Department of Energy is promoting the private development of phosphoric acid fuel cell (PAFC) power plants for terrestrial applications. Current PAFC technology utilizes platinum as catalysts in the power electrodes. The possible repercussions that the platinum demand of PAFC power plant commercialization will have on the worldwide supply and price of platinum from the outset of commercialization to the year 2000 are investigated. The platinum demand of PAFC commercialization is estimated by developing forecasts of platinum use per unit of generating capacity and penetration of PAFC power plants into the electric generation market. The ability of the platinum supply market to meet future demands is gauged by assessing the size of platinum reserves and the capability of platinum producers to extract, refine and market sufficient quantities of these reserves. The size and timing of platinum price shifts induced by the added demand of PAFC commercialization are investigated by several analytical methods. Estimates of these price shifts are then used to calculate the subsequent effects on PAFC power plant capital costs.

  4. Pt/Cu single-atom alloys as coke-resistant catalysts for efficient C-H activation

    Science.gov (United States)

    Marcinkowski, Matthew D.; Darby, Matthew T.; Liu, Jilei; Wimble, Joshua M.; Lucci, Felicia R.; Lee, Sungsik; Michaelides, Angelos; Flytzani-Stephanopoulos, Maria; Stamatakis, Michail; Sykes, E. Charles H.

    2018-03-01

    The recent availability of shale gas has led to a renewed interest in C-H bond activation as the first step towards the synthesis of fuels and fine chemicals. Heterogeneous catalysts based on Ni and Pt can perform this chemistry, but deactivate easily due to coke formation. Cu-based catalysts are not practical due to high C-H activation barriers, but their weaker binding to adsorbates offers resilience to coking. Using Pt/Cu single-atom alloys (SAAs), we examine C-H activation in a number of systems including methyl groups, methane and butane using a combination of simulations, surface science and catalysis studies. We find that Pt/Cu SAAs activate C-H bonds more efficiently than Cu, are stable for days under realistic operating conditions, and avoid the problem of coking typically encountered with Pt. Pt/Cu SAAs therefore offer a new approach to coke-resistant C-H activation chemistry, with the added economic benefit that the precious metal is diluted at the atomic limit.

  5. Pt/Cu single-atom alloys as coke-resistant catalysts for efficient C–H activation

    Energy Technology Data Exchange (ETDEWEB)

    Marcinkowski, Matthew D.; Darby, Matthew T.; Liu, Jilei; Wimble, Joshua M.; Lucci, Felicia R.; Lee, Sungsik; Michaelides, Angelos; Flytzani-Stephanopoulos, Maria; Stamatakis, Michail; Sykes, E. Charles H.

    2018-01-08

    The recent availability of shale gas has led to a renewed interest in C-H bond activation as the first step towards synthesis of fuels and fine chemicals. Heterogeneous catalysts based on Ni and Pt can perform this chemistry, but deactivate easily due to coke formation. Cu- based catalysts are not practical for this chemistry due to high C-H activation barriers, but their weaker binding to adsorbates offers resilience to coking. Utilizing Pt/Cu single atom alloys (SAAs) we examine C-H activation in a number of systems including methyl groups, methane, and butane using a combination of simulations, surface science, and catalysis studies. We find that Pt/Cu SAAs activate C-H bonds more efficiently than Cu, are stable for days under realistic operating conditions, and avoid the problem of coking typically encountered with Pt. Pt/Cu SAAs therefore offer a new approach to coke resistant C-H activation chemistry with the added economic benefit that the precious metal is diluted at the atomic limit.

  6. Iron alloy Fischer-tropsch catalysts--1. Oxidation-reduction studies of the Fe-Ni system

    Energy Technology Data Exchange (ETDEWEB)

    Unmuth, E.E.; Schwartz, L.H.; Butt, J.B.

    1980-01-01

    Catalysts containing 5% iron, nickel, or 4:1 iron-nickel on silica were hydrogen-reduced at 425/sup 0/C for 12 or 24 hr, reoxidized in air for 2 or 4 hr, reduced again in hydrogen for 12 hr, and studied at each treatment step by Moessbauer spectroscopy, X-ray diffraction, and temperature-programed desorption. The nickel was reduced directly to the metal, redispersed during the oxidation, and gave 20% smaller particles in the second reduction than in the first reduction. The ..cap alpha..-Fe/sub 2/O/sub 3/ reduced via an Fe/sub 3/O/sub 4/ intermediate and yielded approx. 70% metallic iron and the second reduction produced about the same particle size as the first reduction. The alloy catalyst reduced into a mixture of two phases, a face-centered cubic phase containing approx. 37.5% Ni, i.e., the bulk equilibrium value, and a body-centered cubic phase, and the particle sizes obtained in the first and second reductions were similar. The activation energies for the reduction were determined.

  7. Deoxyribonucleic acid directed metallization of platinum nanoparticles on graphite nanofibers as a durable oxygen reduction catalyst for polymer electrolyte fuel cells

    Science.gov (United States)

    Peera, S. Gouse; Sahu, A. K.; Arunchander, A.; Nath, Krishna; Bhat, S. D.

    2015-11-01

    Effective surface functionalization to the hydrophobic graphite nanofibers (GNF) is performed with the biomolecule, namely deoxy-ribo-nucleic-acid (DNA) via π-π interactions. Pt nanoparticles are impregnated on GNF-DNA composite by ethylene glycol reduction method (Pt/GNF-DNA) and its effect on electro catalytic activity for oxygen reduction reaction (ORR) is systemically studied. Excellent dispersion of Pt nanoparticles over GNF-DNA surfaces with no evidence on particle aggregation is a remarkable achievement in this study. This result in higher electro chemical surface area of the catalyst, enhanced ORR behavior with significant enhancement in mass activity. The catalyst is validated in H2-O2 polymer electrolyte fuel cell (PEFC) and a peak power density of 675 mW cm-2 is achieved at a load current density of 1320 mA cm-2 with a minimal catalyst loading of 0.1 mg cm-2 at a cell temperature of 70 °C and 2 bar absolute pressure. Repeated potential cycling up to 10000 cycles in acidic media is also performed for this catalyst and found excellent stability with only 60 mV drop in the ORR half wave potential. The superior behavior of Pt/GNF-DNA catalyst is credited to the robust fibrous structure of GNF and its effective surface functionalization process via π-π interaction.

  8. Electro catalyst of platinum prepared by CVD for the oxygen reduction reaction; Electrocatalizador de platino preparado por CVD para la reaccion de reduccion de oxigeno

    Energy Technology Data Exchange (ETDEWEB)

    Garcia C, M.A.; Fernandez V, S.M. [ININ, 52045 Ocoyoacac, Estado de Mexico (Mexico); Vargas G, J.R. [IPN, ESIQIE, 07300 Mexico D.F. (Mexico)

    2004-07-01

    In this work it is reported the preparation and characterization of platinum films obtained by the technique of chemical vapor deposition at low pressure, better well-known as LPCVD for their initials in English (Low Pressure Chemical Vapor Deposition). The technique has several industrial applications and in this work it is explored their possible use to prepare applicable electrocatalysts in fuel cells. The films were characterized by XRD, SEM, EDS and they were proven for to determine their acting in the Oxygen reduction reaction (Orr) in sulfuric acid 0.5 M, the results show that the material presents good activity for the reaction in study. (Author)

  9. Catalytic activity of Pd-doped Cu nanoparticles for hydrogenation as a single-atom-alloy catalyst.

    Science.gov (United States)

    Cao, Xinrui; Fu, Qiang; Luo, Yi

    2014-05-14

    The single atom alloy of extended surfaces is known to provide remarkably enhanced catalytic performance toward heterogeneous hydrogenation. Here we demonstrate from first principles calculations that this approach can be extended to nanostructures, such as bimetallic nanoparticles. The catalytic properties of the single-Pd-doped Cu55 nanoparticles have been systemically examined for H2 dissociation as well as H atom adsorption and diffusion, following the concept of single atom alloy. It is found that doping a single Pd atom at the edge site of the Cu55 shell can considerably reduce the activation energy of H2 dissociation, while the single Pd atom doped at the top site or in the inner layers is much less effective. The H atom adsorption on Cu55 is slightly stronger than that on the Cu(111) surface; however, a larger nanoparticle that contains 147 atoms could effectively recover the weak binding of the H atoms. We have also investigated the H atom diffusion on the 55-atom nanoparticle and found that spillover of the produced H atoms could be a feasible process due to the low diffusion barriers. Our results have demonstrated that facile H2 dissociation and weak H atom adsorption could be combined at the nanoscale. Moreover, the effects of doping one more Pd atom on the H2 dissociation and H atom adsorption have also been investigated. We have found that both the doping Pd atoms in the most stable configuration could independently exhibit their catalytic activity, behaving as two single-atom-alloy catalysts.

  10. Selective oxidation of methyl {alpha}-D-glucopyranoside with oxygen over supported platinum: Kinetic modeling in the presence of deactivation by overoxidation of the catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Vleeming, J.H.; Kuster, B.F.M.; Marin, G.B. [Eindhoven Univ. of Technology (Netherlands)

    1997-09-01

    The selective oxidation of alcohols and carbohydrates with molecular oxygen in aqueous media is an industrial and environmental attractive process. A kinetic model is presented, which describes the platinum-catalyzed selective oxidation of methyl {alpha}-D-glucopyranoside to sodium methyl {alpha}-D-glucuronate with molecular oxygen in the presence of deactivation by overoxidation. Overoxidation is completely reversible and most adequately described by a reversible transformation of oxygen adatoms into inactive subsurface oxygen. A clear distinction is made between the rapid establishment of the steady-state degree of coverage by the reaction intermediates at the platinum surface and the much slower reversible process of overoxidation. This clear distinction is reflected in the rate equation, which can be written as the product of an initial rate and a deactivation function. The deactivation function is given as a function of the degree of coverage by inactive subsurface oxygen. The rate-determining step in the selective oxidation consists of the reaction between dissociatively chemisorbed oxygen and physisorbed methyl {alpha}-D-glucopyranoside. The corresponding standard activation entropy and enthalpy amount to respectively {minus}111 {+-} 12 J/mol K and 51 {+-} 4 kJ/mol. The standard reaction entropy for the transformation of oxygen atoms into subsurface oxygen amounts to {minus}35 {+-} 16 J/mol K and the standard reaction enthalpy to {minus}36 {+-} 15 kJ/mol.

  11. New Catalysts for Direct Methanol Oxidation Fuel Cells

    Energy Technology Data Exchange (ETDEWEB)

    Adzic, Radoslav

    1998-08-01

    A new class of efficient electrocatalytic materials based on platinum - metal oxide systems has been synthetized and characterized by several techniques. Best activity was found with NiWO{sub 4}-, CoWO{sub 4}-, and RuO{sub 2}- sr¡pported platinum catalysts. A very similar activity at room temperature was observed with the electrodes prepared with the catalyst obtained from International Fuel Cells Inc. for the same Pt loading. Surprisingly, the two tungstates per se show a small activity for methanol oxidation without any Pt loading. Synthesis of NiWO{sub 4} and CoWO{sub 4} were carried out by solid-state reactions. FTIR spectroscopy shows that the tungstates contain a certain amount of physically adsorbed water even after heating samples at 200{degrees}C. A direct relationship between the activity for methanol oxidation and the amount of adsorbed water on those oxides has been found. The Ru(0001) single crystal shows a very small activity for CO adsorption and oxidation, in contrast to the behavior of polycrystalline Ru. In situ extended x-ray absorption fine structure spectroscopy (EXAFS) and x-ray absorption near edge spectroscopy (XANES) showed that the OH adsorption on Ru in the Pt-Ru alloy appears to be the limiting step in methanol oxidation. This does not occur for Pt-RuO{SUB 2} electrocatalyst, which explains its advantages over the Pt-Ru alloys. The IFCC electrocatalyst has the properties of the Pt-Ru alloy.

  12. A kinetic rate expression for the time-dependent coke formation rate during propane dehydrogenation over a platinum alumina monolithic catalyst

    NARCIS (Netherlands)

    Sint Annaland, van M.; Kuipers, J.A.M.; van Swaaij, W.P.M.

    2001-01-01

    Coke formation rates under propane dehydrogenation reaction conditions on a used monolithic Pt/¿-Al2O3 catalyst have been experimentally determined in a thermogravimetric analyser (TGA) as a function of time on stream covering wide temperature and concentration ranges. For relatively short times on

  13. A kinetic rate expression for the time-dependent coke formation rate during propane dehydrogenation over a platinum alumina monolithic catalyst.

    NARCIS (Netherlands)

    van Sint Annaland, M.; Kuipers, J.A.M.; van Swaaij, Willibrordus Petrus Maria

    2001-01-01

    Coke formation rates under propane dehydrogenation reaction conditions on a used monolithic Pt/y-Al2O3 catalyst have been experimentally determined in a thermogravimetric analyser (TGA) as a function of time on stream covering wide temperature and concentration ranges. For relatively short times on

  14. Formic acid decomposition on Pt1/Cu (111) single platinum atom catalyst: Insights from DFT calculations and energetic span model analysis

    Science.gov (United States)

    Wang, Ying-Fan; Li, Kun; Wang, Gui-Chang

    2018-04-01

    Inspired by the recent surface experimental results that the monatomic Pt catalysts has more excellent hydrogen production that Cu(111) surface, the mechanism of decomposition of formic acid on Cu(111) and single atom Pt1/Cu(111) surface was studied by periodic density functional theory calculations in the present work. The results show that the formic acid tends to undergo dehydrogenation on both surfaces to obtain the hydrogen product of the target product, and the selectivity and catalytic activity of Pt1/Cu (111) surface for formic acid dehydrogenation are better. The reason is that the single atom Pt1/Cu(111) catalyst reduces the reaction energy barrier (i.e., HCOO → CO2 + H) of the critical step of the dehydrogenation reaction due to the fact that the single atom Pt1/Cu(111) catalyst binds formate weakly compared to that of Cu (111) one. Moreover, it was found that the Pt1/Cu (111) binds CO more strongly than that of Cu (111) one and thus leading to the difficult for the formation of CO. These two factors would make the single Pt atom catalyst had the high selectivity for the H2 production. It is hoped that the present work may help people to design the efficient H2 production from HCOOH decomposition by reduce the surface binding strength of HCOO species, for example, using the low coordination number active site like single atom or other related catalytic system.

  15. Carbon monoxide tolerant anodes for proton exchange membrane (PEM) fuel cells. 1. Catalyst development approach

    Energy Technology Data Exchange (ETDEWEB)

    Holleck, G L; Pasquariello, D M; Clauson, S L

    1998-07-01

    PEM fuel cells are highly attractive for distributed power and cogeneration systems. They are efficient and function virtually without noise or pollution. To be competitive PEM fuel cells must operate on fuel mixtures obtained by reforming of widely available natural gas or liquid hydrocarbons. Reformed fuel gas mixtures invariably contain CO, a strong poison for Pt. Therefore CO tolerant anode catalysts are essential for wide spread PEMFC introduction. It is the objective to develop effective CO tolerant fuel cell catalysts based on multi-component platinum-transition metal alloys. Towards this goal the authors have developed a novel approach for the synthesis and performance evaluation of multifunctional ternary alloy fuel cell catalysts. The alloys are prepared as well-defined thin films on standard TFE-bonded carbon substrates via a dc magnetron sputtering technique. The anodes are laminated to Nafion membranes and the electrochemical performance is measured in a representative fuel cell configuration with H{sub 2} and H{sub 2}/CO gas mixtures. The multi-target sputtering technique permits one to reproducibly synthesize true alloy films of controlled composition. The deposit morphology and electrode structure are determined by the standardized TFE bonded carbon substrate. The thin catalyst layer is concentrated at the electrode ionomer interface where it can be fully utilized in a representative fuel cell configuration. Thus, a true comparative fuel cell catalyst evaluation is possible. The effectiveness of this approach will be demonstrated with Pt, Pt-Ru and Pt-Ru-X catalyzed anodes.

  16. Carbon-Supported Pd and PdFe Alloy Catalysts for Direct Methanol Fuel Cell Cathodes

    Directory of Open Access Journals (Sweden)

    Luis M. Rivera Gavidia

    2017-05-01

    Full Text Available Direct methanol fuel cells (DMFCs are electrochemical devices that efficiently produce electricity and are characterized by a large flexibility for portable applications and high energy density. Methanol crossover is one of the main obstacles for DMFC commercialization, forcing the search for highly electro-active and methanol tolerant cathodes. In the present work, carbon-supported Pd and PdFe catalysts were synthesized using a sodium borohydride reduction method and physico-chemically characterized using transmission electron microscopy (TEM and X-ray techniques such as photoelectron spectroscopy (XPS, diffraction (XRD and energy dispersive spectroscopy (EDX. The catalysts were investigated as DMFC cathodes operating at different methanol concentrations (up to 10 M and temperatures (60 °C and 90 °C. The cell based on PdFe/C cathode presented the best performance, achieving a maximum power density of 37.5 mW·cm−2 at 90 °C with 10 M methanol, higher than supported Pd and Pt commercial catalysts, demonstrating that Fe addition yields structural changes to Pd crystal lattice that reduce the crossover effects in DMFC operation.

  17. Design of heterogeneous catalysts

    DEFF Research Database (Denmark)

    Frey, Anne Mette

    was inspired by a computational screening, suggesting that alloys such as Ni-Fe, Co-Ni, and Co-Fe should show superior activity to the industrially used nickel catalyst. Especially the Ni-Fe system was considered to be interesting, since such alloy catalysts should be both more active and cheaper than the Ni...... catalyst. The results from the screening were experimentally verified for CO hydrogenation, CO2 hydrogenation, and simultaneous CO and CO2 hydrogenation by bimetallic Ni-Fe catalysts. These catalysts were found to be highly active and selective. The Co-Ni and Co-Fe systems were investigated for CO...... well, and the best catalyst prepared had a C5+ yield almost a factor of two higher than a standard air calcined Co catalyst. In the NH3-SCR reaction it is desirable to develop an active and stable catalyst for NOx removal in automotive applications, since the traditionally used vanadium-based catalyst...

  18. Platinum-group elements and gold in base metal sulfides, platinum-group minerals, and Re-Os isotope compositions of the Uitkomst complex, South Africa

    Czech Academy of Sciences Publication Activity Database

    Trubač, Jakub; Ackerman, Lukáš; Gauert, Ch.; Ďurišová, Jana; Hrstka, Tomáš

    2018-01-01

    Roč. 113, č. 2 (2018), s. 439-461 ISSN 0361-0128 R&D Projects: GA ČR GA13-15390S Institutional support: RVO:67985831 Keywords : binary alloys * copper compounds * economic geology * gold * iridium * isotopes * ore deposits * osmium * palladium * platinum * platinum metals * pyrites * Rhenium * rhenium alloys * ruthenium * solid solutions * sulfur compounds * crustal materials * mass-balance calculations * massive sulfides * mineralized zone * monosulfide solid solutions * platinum group elements * platinum group elements (PGEs) * platinum group minerals Subject RIV: DB - Geology ; Mineralogy; AC - Archeology, Anthropology, Ethnology (ARUB-Q) OBOR OECD: Geology; Archaeology (ARUB-Q) Impact factor: 2.519, year: 2016

  19. Oxygen reduction reaction of Pt–In alloy: Combined theoretical and experimental investigations

    International Nuclear Information System (INIS)

    Pašti, Igor A.; Gavrilov, Nemanja M.; Baljozović, Miloš; Mitrić, Miodrag; Mentus, Slavko V.

    2013-01-01

    Graphical abstract: Upon DFT prediction of improved electrocatalytic activity of Pt–In alloys toward ORR, the alloy Pt-10 at% In was synthesized on glassy carbon disc, simultaneously with pure Pt reference catalyst. Improved catalytic activity of the alloy was evidenced by voltammetry on RDE in 0.1 mol dm −3 KOH solution. -- Highlights: •The adsorption of O atoms on Pt–In alloys model surfaces was investigated by DFT. •The improvement of catalytic activity toward ORR was predicted by DFT. •Pt-10 at% In alloy was synthesized on glassy carbon disk surface. •By voltammetry on RDE improvement of activity toward ORR was evidenced. -- Abstract: By means of the density functional theory (DFT) calculations, using the adsorption energy of oxygen on single crystal surfaces as criterion, it was predicted that the alloying of Pt with In should improve kinetics of oxygen reduction reaction (ORR). To prove this, the Pt–In alloy having nominal composition Pt 9 In was synthesized by heating H 2 PtCl 6 –InCl 3 mixture in hydrogen stream. The XRD characterization confirmed that Pt–In alloy was formed. The electrochemical measurements by rotating disk technique in alkaline 0.1 mol dm −3 KOH solution evidenced faster ORR kinetics for factor 2.6 relative to the one on pure platinum. This offers the possibility of searching for new ORR electrocatalysts by alloying platinum with p-elements

  20. Synthesis and characterization of ternary Pt-Ni-M/C (M=Cu, Fe, Ce, Mo, W) nano-catalysts for low temperature fuel cells

    International Nuclear Information System (INIS)

    Ahmed, Riaz; Jamil, Rabia; Ansari, Muhammad Shahid

    2014-01-01

    Ternary metal catalysts were synthesized by impregnation method. The mixture of metal solutions was reduced slowly under inert atmosphere and the reduced metals were deposited on the Vulcan Carbon(VC). Tungsten, molybdenum, cerium, iron and copper were added to specified amounts of platinum and nickel. Addition of nickel generally improves catalytic activity of platinum. The XRD of the catalysts was done and the crystallite size and other parameters were calculated. Crystallite sizes were in the range of 5 to 16 nm. Electrochemical surface areas of the catalysts were determined by cyclic voltammetry (CV) in acidic media and are compared. Electro oxidation of methanol on the catalysts was done and peak potential, peak current, mass activity of the catalysts were calculated and are compared. These parameters were determined in acidic and basic media. It was found that mass activity increased significantly in basic media. Rate constants for the electro oxidation of methanol were also calculated in acidic and basic media and are compared and discussed. Rate constants were generally higher in basic media. Ternary catalysts showed improved catalytic activity than the binary catalyst. Nano alloying improved the catalytic activity and stability of the ternary catalysts

  1. Intermetallic Alloys as CO Electroreduction Catalysts-Role of Isolated Active Sites

    DEFF Research Database (Denmark)

    Karamad, Mohammadreza; Tripkovic, Vladimir; Rossmeisl, Jan

    2014-01-01

    One of the main challenges associated with the electrochemical CO or CO2 reduction is poor selectivity toward energetically rich products. In order to promote selectivity toward hydrocarbons and alcohols, most notably, the hydrogen evolution reaction (HER) should be suppressed. To achieve this goal...... potentially selective intermetallic surfaces on which CO can be reduced to methanol at potentials comparable to or even slightly positive than those for CO/CO2 reduction to methane on Cu. Common features shared by most of the selective alloys are single TM sites. The role of single sites is to block parasitic...... HER and thereby promote CO reduction....

  2. A study of Rh xS y/C and RuSe x/C as methanol-tolerant oxygen reduction catalysts for mixed-reactant fuel cell applications

    International Nuclear Information System (INIS)

    Papageorgopoulos, Dimitrios C.; Liu, Fang; Conrad, Olaf

    2007-01-01

    For efficient operation, mixed-reactant fuel cells utilise highly selective anode and cathode electrocatalysts. While platinum and its alloys are the most widely used ORR electrocatalysts in conventional DMFCs, they suffer from both their very high activity for methanol oxidation and their inherent cost. Platinum-free precious metal chalcogenides have been suggested as alternatives with comparable oxygen reduction activity in the presence of methanol. Of these, commercially available carbon supported rhodium sulphide and developmental ruthenium selenium were electrochemically tested and assessed for their potential as selective ORR cathode catalysts. Both materials exhibited oxygen reduction activity approaching that of platinum, albeit at potentials 150 and 80 mV more negative. The three materials' ability to maintain their oxygen reduction activity in the presence of methanol ranks ruthenium selenium > rhodium sulphide >> platinum

  3. RuP{sub 2}-based catalysts with platinum-like activity and higher durability for the hydrogen evolution reaction at all pH values

    Energy Technology Data Exchange (ETDEWEB)

    Pu, Zonghua; Amiinu, Ibrahim Saana; Kou, Zongkui; Li, Wenqiang; Mu, Shichun [State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology (China)

    2017-09-11

    Highly active, stable, and cheap Pt-free catalysts for the hydrogen evolution reaction (HER) are under increasing demand for future energy conversion systems. However, developing HER electrocatalysts with Pt-like activity that can function at all pH values still remains as a great challenge. Herein, based on our theoretical predictions, we design and synthesize a novel N,P dual-doped carbon-encapsulated ruthenium diphosphide (RuP{sub 2} rate at NPC) nanoparticle electrocatalyst for HER. Electrochemical tests reveal that, compared with the Pt/C catalyst, RuP{sub 2} rate at NPC not only has Pt-like HER activity with small overpotentials at 10 mA cm{sup -2} (38 mV in 0.5 m H{sub 2}SO{sub 4}, 57 mV in 1.0 m PBS and 52 mV in 1.0 m KOH), but demonstrates superior stability at all pH values, as well as 100 % Faradaic yields. Therefore, this work adds to the growing family of transition-metal phosphides/heteroatom-doped carbon heterostructures with advanced performance in HER. (copyright 2017 Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim)

  4. Atomic layer deposition of ruthenium surface-coating on porous platinum catalysts for high-performance direct ethanol solid oxide fuel cells

    Science.gov (United States)

    Jeong, Heon Jae; Kim, Jun Woo; Jang, Dong Young; Shim, Joon Hyung

    2015-09-01

    Pt-Ru bi-metallic catalysts are synthesized by atomic layer deposition (ALD) of Ru surface-coating on sputtered Pt mesh. The catalysts are evaluated in direct ethanol solid oxide fuel cells (DESOFCs) in the temperature range of 300-500 °C. Island-growth of the ALD Ru coating is confirmed by transmission electron microscopy and X-ray photoelectron spectroscopy (XPS) analyses. The performance of the DESOFCs is evaluated based on the current-voltage output and electrochemical impedance spectroscopy. Genuine reduction of the polarization impedance, and enhanced power output with improved surface kinetics are achieved with the optimized ALD Ru surface-coating compared to bare Pt. The chemical composition of the Pt/ALD Ru electrode surface after fuel cell operation is analyzed via XPS. Enhanced cell performance is clearly achieved, attributed to the effective Pt/ALD Ru bi-metallic catalysis, including oxidation of Cdbnd O by Ru, and de-protonation of ethanol and cleavage of C-C bonds by Pt, as supported by surface morphology analysis which confirms formation of a large amount of carbon on bare Pt after the ethanol-fuel-cell test.

  5. CuAu–ZnO–graphene nanocomposite: A novel graphene-based bimetallic alloy-semiconductor catalyst with its enhanced photocatalytic degradation performance

    International Nuclear Information System (INIS)

    Xie, Hong; Ye, Xiaoliang; Duan, Kaiyue; Xue, Muyin; Du, Yongling; Ye, Weichun; Wang, Chunming

    2015-01-01

    Graphical abstract: In this work, we have successfully synthesized a novel graphene-based bimetallic alloy-semiconductor catalyst: CuAu–ZnO–Gr nanocomposite, and which behaved an enhanced photocatalytic activity. - Highlights: • A bimetallic alloy-based catalyst: CuAu–ZnO–Gr is synthesized. • CuAu–ZnO–Gr behaves an enhanced photocatalytic activity. • The detailed explanation of photocatalytic mechanism of CuAu–ZnO–Gr. - Abstract: The bimetallic alloy CuAu nanoparticles (NPs) can produce more photogenerated electrons when compared with single metal Au NPs. Moreover, graphene (Gr) sheets can help the charge separation and slow down the recombination of the electron hole pairs of ZnO. Hence, a novel graphene-based bimetallic alloy-semiconductor catalyst: CuAu–ZnO–Gr nanocomposite is synthesized. Due to the synergistic effect among CuAu NPs, ZnO nanopyramids, and Gr sheets, CuAu–ZnO–Gr behaves an enhanced photocatalytic activity for the photocatalytic degradation of synthetic colorants methyl orange (MO), methylene blue (MB), indigotin (IN), sunset yellow (SY), and tartrazine (TT) under the simulated sunlight irradiation. Furthermore, the apparent rate constants (k app ) of MO, MB, IN, SY, and TT degradation are estimated respectively. In addition, the as-prepared CuAu–ZnO–Gr nanocomposite is characterized by X-ray diffraction, UV–vis spectrum, transmission electron microscopy, energy dispersive X-ray analysis (EDX), and EDX mapping. As a result of the facile synthesis route and the enhanced photocatalytic activity, this new material CuAu–ZnO–Gr can be a promising photocatalyst for the degradation of dyes

  6. CuAu–ZnO–graphene nanocomposite: A novel graphene-based bimetallic alloy-semiconductor catalyst with its enhanced photocatalytic degradation performance

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Hong [College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000 (China); Ye, Xiaoliang [College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000 (China); College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005 (China); Duan, Kaiyue; Xue, Muyin; Du, Yongling; Ye, Weichun [College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000 (China); Wang, Chunming, E-mail: wangcm@lzu.edu.cn [College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000 (China)

    2015-07-05

    Graphical abstract: In this work, we have successfully synthesized a novel graphene-based bimetallic alloy-semiconductor catalyst: CuAu–ZnO–Gr nanocomposite, and which behaved an enhanced photocatalytic activity. - Highlights: • A bimetallic alloy-based catalyst: CuAu–ZnO–Gr is synthesized. • CuAu–ZnO–Gr behaves an enhanced photocatalytic activity. • The detailed explanation of photocatalytic mechanism of CuAu–ZnO–Gr. - Abstract: The bimetallic alloy CuAu nanoparticles (NPs) can produce more photogenerated electrons when compared with single metal Au NPs. Moreover, graphene (Gr) sheets can help the charge separation and slow down the recombination of the electron hole pairs of ZnO. Hence, a novel graphene-based bimetallic alloy-semiconductor catalyst: CuAu–ZnO–Gr nanocomposite is synthesized. Due to the synergistic effect among CuAu NPs, ZnO nanopyramids, and Gr sheets, CuAu–ZnO–Gr behaves an enhanced photocatalytic activity for the photocatalytic degradation of synthetic colorants methyl orange (MO), methylene blue (MB), indigotin (IN), sunset yellow (SY), and tartrazine (TT) under the simulated sunlight irradiation. Furthermore, the apparent rate constants (k{sub app}) of MO, MB, IN, SY, and TT degradation are estimated respectively. In addition, the as-prepared CuAu–ZnO–Gr nanocomposite is characterized by X-ray diffraction, UV–vis spectrum, transmission electron microscopy, energy dispersive X-ray analysis (EDX), and EDX mapping. As a result of the facile synthesis route and the enhanced photocatalytic activity, this new material CuAu–ZnO–Gr can be a promising photocatalyst for the degradation of dyes.

  7. Enhanced catalytic activity of nanoscale platinum islands loaded ...

    Indian Academy of Sciences (India)

    2016-08-26

    Aug 26, 2016 ... In the present study, different catalysts (∼ 10 nm thick) including metals, noble metals and metal oxides, were loaded in dotted island form over SnO2 thin film for LPG gas detection. A comparison of various catalysts indicated that the presence of platinum dotted islands over SnO2 thin film deposited by r.f. ...

  8. Characterization of Catalyst Materials for Production of Aerospace Fuels

    Science.gov (United States)

    Best, Lauren M.; De La Ree, Ana B.; Hepp, Aloysius F.

    2012-01-01

    Due to environmental, economic, and security issues, there is a greater need for cleaner alternative fuels. There will undoubtedly be a shift from crude oil to non-petroleum sources as a feedstock for aviation (and other transportation) fuels. Additionally, efforts are concentrated on reducing costs coupled with fuel production from non-conventional sources. One solution to this issue is Fischer-Tropsch gas-to-liquid technology. Fischer-Tropsch processing of synthesis gas (CO/H2) produces a complex product stream of paraffins, olefins, and oxygenated compounds such as alcohols and aldehydes. The Fisher-Tropsch process can produce a cleaner diesel oil fraction with a high cetane number (typically above 70) without any sulfur or aromatic compounds. This process is most commonly catalyzed by heterogeneous (in this case, silver and platinum) catalysts composed of cobalt supported on alumina or unsupported alloyed iron powders. Physisorption, chemisorptions, scanning electron microscopy (SEM), and energy dispersive spectroscopy (EDS) are described to better understand the potential performance of Fischer-Tropsch cobalt on alumina catalysts promoted with silver and platinum. The overall goal is to preferentially produce C8 to C18 paraffin compounds for use as aerospace fuels. Progress towards this goal will eventually be updated and achieved by a more thorough understanding of the characterization of catalyst materials. This work was supported by NASA s Subsonic Fixed Wing and In-situ Resource Utilization projects.

  9. A novel reusable platinum nanocatalyst

    International Nuclear Information System (INIS)

    Zhou Weiqiang; Wang Jing; Wang Chuanyi; Du Yukou; Xu Jingkun; Yang Ping

    2010-01-01

    Recyclability of noble metal catalysts is a challenging issue when dealing with their industrial applications. Smart pH-sensitive Pt nanoparticles were successfully prepared for the first time by using octa(N,N-diacetic acid phenylamine)silsesquioxane (OAPAS) as a macromolecular protective agent. As-prepared Pt nanoparticles can self-aggregate or redisperse by only changing the pH of the system solution. In the weak acidic or alkaline solution (pH > 4.0), the Pt nanoparticles dispersed homogenously; while in the acidic solution (pH = 2.5), they self-aggregated. The dynamic self-aggregation and redispersion processes of the Pt nanoparticles driven by pH changes were revealed by transmission electron microscopy measurements. Electrocatalytic experiments proved that the platinum nanoparticles as a recyclable catalyst showed excellent activity for the hydrogenation of aldehyde after runs of five times. Such platinum nanoparticles are thereby anticipated to have great potential functioning as 'smart' catalysts for industrial applications.

  10. Oxygen-reducing catalyst layer

    Science.gov (United States)

    O'Brien, Dennis P [Maplewood, MN; Schmoeckel, Alison K [Stillwater, MN; Vernstrom, George D [Cottage Grove, MN; Atanasoski, Radoslav [Edina, MN; Wood, Thomas E [Stillwater, MN; Yang, Ruizhi [Halifax, CA; Easton, E Bradley [Halifax, CA; Dahn, Jeffrey R [Hubley, CA; O'Neill, David G [Lake Elmo, MN

    2011-03-22

    An oxygen-reducing catalyst layer, and a method of making the oxygen-reducing catalyst layer, where the oxygen-reducing catalyst layer includes a catalytic material film disposed on a substrate with the use of physical vapor deposition and thermal treatment. The catalytic material film includes a transition metal that is substantially free of platinum. At least one of the physical vapor deposition and the thermal treatment is performed in a processing environment comprising a nitrogen-containing gas.

  11. Platinum-modified cobalt nanosheets supported on three-dimensional carbon sponge as a high-performance catalyst for hydrogen peroxide electroreduction

    International Nuclear Information System (INIS)

    Ye, Ke; Zhang, Dongming; Zhang, Hongyu; Cheng, Kui; Wang, Guiling; Cao, Dianxue

    2015-01-01

    Graphical abstract: - Highlights: • The Pt-Co NS@carbon sponge electrode shows unique nanosheet structure on the three-dimensional (3D) porous network skeleton with a large surface area. • The Pt-Co NS@carbon sponge electrode achieves a reduction current density of −1.38 A cm"−"2 mg"−"1 in 3.0 mol L"−"1 KOH and 1.5 mol L"−"1 H_2O_2 at −0.50 V (vs. Ag/AgCl) • The Pt-Co NS@carbon sponge electrode exhibits a desirable stability for the H_2O_2 electroreduction. - Abstract: Pt-modified Co nanosheet@carbon sponge (Pt-Co NS@carbon sponge) electrode is synthesized via a facile sponge carbonization method coupled with a direct Co electrodeposition and Pt chemical-deposition. The obtained electrodes are characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX) and transmission electron microscopy (TEM). The catalytic performances of H_2O_2 electroreduction in alkaline medium are investigated by cyclic voltammetry (CV), chronoamperometry (CA) and electrochemical impedance spectroscopy (EIS). The Pt-Co NS@carbon sponge electrode exhibits unique nanosheet structure on the three-dimensional (3D) porous network skeleton with a large surface area and displays excellent catalytic performance. The Pt-Co NS@carbon sponge electrode achieves a reduction current density of −1.38 A cm"−"2 mg"−"1 in 3.0 mol L"−"1 KOH and 1.5 mol L"−"1 H_2O_2 at −0.50 V (vs. Ag/AgCl) accompanied with a desirable stability, which is significantly higher than the catalytic activity of H_2O_2 electroreduction achieved previously with precious metals as catalysts. The impressive electrocatalytic performance is largely attributed to the superior 3D open structure and high electronic conductivity, which ensures the full utilization of Pt surfaces and makes the electrode have higher electrochemical activity. Original Pt-Co NS@carbon sponge electordes have a great potential for the

  12. Stage II recovery behavior of a series of ion-irradiated platinum (gold) alloys as studied by field-ion microscopy. [0. 10, 0. 62, and 4. 0 at. percent Au and pure Pt

    Energy Technology Data Exchange (ETDEWEB)

    Wei, C.Y.; Seidman, D.N.

    1976-11-01

    Direct and visible evidence was obtained for long-range migration of self-interstitial atoms (SIAs) in Stage II of three different ion-irradiated platinum (gold) alloys. Field-ion microscope (FIM) specimens of Pt--0.10, 0.62 and 4.0 at. percent Au alloys were irradiated in-situ with 30-keV W/sup +/ or Pt/sup +/ ions at a tip temperature of 35 to 41 K at 2 x 10/sup -9/ torr. Direct observation of the surfaces of the FIM specimens during isochronal warming experiments to 100 K showed that a flux of SIAs crossed the surfaces of the specimens between 40 to 100 K. The spectrum for each alloy consisted of two recovery peaks (substages II/sub B/ and II/sub C/). The results are explained on the basis of an impurity-delayed diffusion mechanism employing a two-level trapping model. The application of this diffusion model to the isochronal recovery spectra yielded a dissociation enthalpy (DELTAh/sub li-Au//sup diss/) and an effective diffusion coefficient for each substage; for substage II/sub B/ DELTAh/sub li-Au//sup diss/ (II/sub B/) = 0.15 eV and for substage II/sub C/ DELTAh/sub li-Au//sup diss/ (II/sub C/) = 0.24 eV. A series of detailed control experiments was also performed to show that the imaging electric field had not caused the observed long-range migration of SIAs and that the observed effects were not the result of surface artifacts. 14 figures, 6 tables.

  13. Obtaining of platinum-titanium alloys by sol-gel and their performance for the detachment reactions and oxygen reduction; Obtencion de aleaciones de platino-titanio por sol-gel y su desempeno para las reacciones de desprendimiento y reduccion de oxigeno

    Energy Technology Data Exchange (ETDEWEB)

    Regueira R, B. I.

    2011-07-01

    In the present work, platinum-titanium (Pt-Ti) alloys were prepared, characterized and evaluated in acid media as bifunctional electrocatalysts for the oxygen evolution reaction (Oer) and oxygen reduction reactions (Orr) in acid media. The alloys were synthesized by sol-gel method, heating the gel at temperatures of 400 and 600 C. The alloys characterization was realized by X-ray diffraction, scanning electron microscopy and EDS. Both alloys were formed by agglomerates of nanometer particles. The particle sizes were lower for the alloy obtained at 400 C (120 nm to 257 nm) compared to the alloy prepared at 600 C (555 nm to 833 nm). Cyclic and linear voltammetry techniques were used for the electrochemical evaluation of the alloy obtained at both temperatures for the Oer and Orr, in a 0.5 M sulfuric acid solution. The materials have response for both electrochemical reactions, therefore the best performance was for the Pt-Ti alloy, obtained at 400 C and it was stable for the oxygen evolution reaction. The alloy obtained at 400 C presents satisfactory electrocatalytic characteristics to be used as bifunctional material in a unified regenerative fuel cell. (Author)

  14. Carbon nanotubes and other nanostructures as support material for nanoparticulate noble-metal catalysts in fuel cells

    DEFF Research Database (Denmark)

    Veltzé, Sune; Larsen, Mikkel Juul; Elina, Yli-Rantala

    or platinum-alloy catalysts in the electrodes are required. To maximize the utilization of the noble metal it is frequently deposited as nanoparticles (1–5 nm) on a stabilizing support of carbon black. Carbon black provides good anchoring of the catalyst particles, but is prone to severe destructive oxidation...... at high electrical potentials encountered occasionally in fuel cells. Other nanostructures of carbon are being investigated as alternatives to carbon black as they have several beneficial properties. Multi-walled carbon nanotubes (MW-CNT) are an example of one type of these promising materials. Like...... of the fuel-cell electrodes. However, the low concentration of structural defects also poses challenges with regard to anchoring of the catalyst particles on the CNT surface. Thus, activation treatments introducing surface functional groups may be necessary. Also, the surface properties are responsible...

  15. Quantification of zinc atoms in a surface alloy on copper in an industrial-type methanol synthesis catalyst

    DEFF Research Database (Denmark)

    Kuld, Sebastian; Moses, Poul Georg; Sehested, Jens

    2014-01-01

    Methanol has recently attracted renewed interest because of its potential importance as a solar fuel. Methanol is also an important bulk chemical that is most efficiently formed over the industrial Cu/ZnO/Al2O3 catalyst. The identity of the active site and, in particular, the role of ZnO as a pro......Methanol has recently attracted renewed interest because of its potential importance as a solar fuel. Methanol is also an important bulk chemical that is most efficiently formed over the industrial Cu/ZnO/Al2O3 catalyst. The identity of the active site and, in particular, the role of Zn......O as a promoter for this type of catalyst is still under intense debate. Structural changes that are strongly dependent on the pretreatment method have now been observed for an industrial-type methanol synthesis catalyst. A combination of chemisorption, reaction, and spectroscopic techniques provides a consistent...

  16. Elaboration and characterisation of Pd-Cr alloys for PEM fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Souleymane, B.; Fouda-Onana, F.; Savadogo, O. [Ecole Polytechnique de Montreal, Montreal, PQ (Canada). Laboratoire de nouveaux materiaux pour l' energie et l' electrochimie

    2008-07-01

    Palladium (Pd) alloys have been considered as alternative catalyst cathodes for the oxygen reduction reaction (ORR) in proton exchange membrane (PEM) fuel cells, particularly in liquid fuel cells. The purpose of this study was to investigate the ORR on various Pd-Cr alloys. Pd-Cr alloys were deposited on glassy carbon support and the electrocatalytic parameters for the ORR were determined in acid medium. The effect of the Pd-Cr alloy deposition parameters on its composition and electrocatalytic behaviour were determined. The study showed that there is a relationship between the composition of the alloy and the power of the Pd and Cr cathode. The parameters of the ORR were correlated to the alloy chemical and physical properties. EDS and XPS analysis revealed a segregation of Cr in the alloy.The variation of the work function (W) of the alloy with the alloy composition has shown a minimum value of W of 0.287 for a composition of the alloy of 70 per cent of Pd and 30 per cent of Cr. The electrochemically active surface area and the exchange current density of the ORR indicated that the mechanism of the ORR on Pd-Cr is similar to that on platinum. 9 refs., 2 figs.

  17. Carbon nanotube-supported Au-Pd alloy with cooperative effect of metal nanoparticles and organic ketone/quinone groups as a highly efficient catalyst for aerobic oxidation of amines.

    Science.gov (United States)

    Deng, Weiping; Chen, Jiashu; Kang, Jincan; Zhang, Qinghong; Wang, Ye

    2016-05-21

    Functionalised carbon nanotube (CNT)-supported Au-Pd alloy nanoparticles were highly efficient catalysts for the aerobic oxidation of amines. We achieved the highest turnover frequencies (>1000 h(-1)) for the oxidative homocoupling of benzylamine and the oxidative dehydrogenation of dibenzylamine. We discovered a cooperative effect between Au-Pd nanoparticles and ketone/quinone groups on CNTs.

  18. Metal Oxide-Supported Platinum Overlayers as Proton-Exchange Membrane Fuel Cell Cathodes

    DEFF Research Database (Denmark)

    Tripkovic, Vladimir; Abild-Pedersen, Frank; Studt, Felix

    2012-01-01

    We investigated the activity and stability of n=(1, 2, 3) platinum layers supported on a number of rutile metal oxides (MO2; M=Ti, Sn, Ta, Nb, Hf and Zr). A suitable oxide support can alleviate the problem of carbon corrosion and platinum dissolution in Pt/C catalysts. Moreover, it can increase t...

  19. Phase-field model for deposition process of platinum nanoparticles on carbon substrate

    International Nuclear Information System (INIS)

    Yamakawa, S; Hyodo, S; Okazaki-Maeda, K; Kohyama, M

    2008-01-01

    Platinum supported on a carbon carrier is widely used as a catalyst for polymer electrolyte membrane fuel cells. The catalytic activity is significantly affected by the size distribution and morphologies of the platinum particles. The objective of this study is to extend the phase-field approach to describe the formation process of platinum particles onto the substrate. The microstructural evolution of a nanoparticle was represented by the temporal evolution of the field variables related to the platinum concentration, long-range crystallographic ordering and phase transition. First-principles calculations were performed in order to estimate the interaction energies between several different types of platinum clusters and a graphene sheet. The platinum density profile concentrated over the substrate surface led to the formation of three-dimensional islands in accordance with the Volmer-Weber mode of growth. The size distributions of the platinum particles were sensitive to the heterogeneity of the substrate surface and to the competitive nucleation and growth processes

  20. Bio-inspired routes for synthesizing efficient nanoscale platinum electrocatalysts

    Energy Technology Data Exchange (ETDEWEB)

    Cha, Jennifer N. [Univ. of California, San Diego, CA (United States); Wang, Joseph [Univ. of California, San Diego, CA (United States)

    2014-08-31

    The overall objective of the proposed research is to use fundamental advances in bionanotechnology to design powerful platinum nanocrystal electrocatalysts for fuel cell applications. The new economically-viable, environmentally-friendly, bottom-up biochemical synthetic strategy will produce platinum nanocrystals with tailored size, shape and crystal orientation, hence leading to a maximum electrochemical reactivity. There are five specific aims to the proposed bio-inspired strategy for synthesizing efficient electrocatalytic platinum nanocrystals: (1) isolate peptides that both selectively bind particular crystal faces of platinum and promote the nucleation and growth of particular nanocrystal morphologies, (2) pattern nanoscale 2-dimensional arrays of platinum nucleating peptides from DNA scaffolds, (3) investigate the combined use of substrate patterned peptides and soluble peptides on nanocrystal morphology and growth (4) synthesize platinum crystals on planar and large-area carbon electrode supports, and (5) perform detailed characterization of the electrocatalytic behavior as a function of catalyst size, shape and morphology. Project Description and Impact: This bio-inspired collaborative research effort will address key challenges in designing powerful electrocatalysts for fuel cell applications by employing nucleic acid scaffolds in combination with peptides to perform specific, environmentally-friendly, simultaneous bottom-up biochemical synthesis and patterned assembly of highly uniform and efficient platinum nanocrystal catalysts. Bulk synthesis of nanoparticles usually produces a range of sizes, accessible catalytic sites, crystal morphologies, and orientations, all of which lead to inconsistent catalytic activities. In contrast, biological systems routinely demonstrate exquisite control over inorganic syntheses at neutral pH and ambient temperature and pressures. Because the orientation and arrangement of the templating biomolecules can be precisely

  1. Atoms diffusion-induced phase engineering of platinum-gold alloy nanocrystals with high electrocatalytic performance for the formic acid oxidation reaction.

    Science.gov (United States)

    Li, Fu-Min; Kang, Yong-Qiang; Liu, Hui-Min; Zhai, Ya-Nan; Hu, Man-Cheng; Chen, Yu

    2018-03-15

    Bimetallic noble metal nanocrystals have been widely applied in many fields, which generally are synthesized by the wet-chemistry reduction method. This work presents a purposely designed atoms diffusion induced phase engineering of PtAu alloy nanocrystals on platy Au substrate (PtAu-on-Au nanostructures) through simple hydrothermal treatment. Benefitting from the synergistic effects of component and structure, PtAu-on-Au nanostructures remarkably enhance the dehydrogenation pathway of the formic acid oxidation reaction (FAOR), and thus exhibit much higher FAOR activity and durability compared with Pt nanocrystals on platy Au substrate (Pt-on-Au nanostructures) and commercial Pd black due to an excellent stability of platy Au substrate and a high oxidation resistance of PtAu alloy nanocrystals. The atoms diffusion-induced phase engineering demonstrated in this work builds a bridge between the traditional metallurgy and modern nanotechnologies, which also provides some useful insights in developing noble metals based alloyed nanostructures for the energy and environmental applications. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Quantification of zinc atoms in a surface alloy on copper in an industrial-type methanol synthesis catalyst

    DEFF Research Database (Denmark)

    Kuld, Sebastian; Moses, Poul Georg; Sehested, Jens

    2014-01-01

    Methanol has recently attracted renewed interest because of its potential importance as a solar fuel.1 Methanol is also an important bulk chemical that is most efficiently formed over the industrial Cu/ZnO/Al2O3 catalyst. The identity of the active site and, in particular, the role of ZnO as a pr...

  3. Effect of P on the electrochemical activity of carbon supported Pt-Ru alloy catalyst for methanol oxidation.

    CSIR Research Space (South Africa)

    Mohlala, M

    2007-11-01

    Full Text Available for direct alcohol fuel cell is lower than that of the hydrogen PEMFC [3, 4, and 5]. This study aims at improving the performance of the binary catalyst through the addition of phosphorus group following the sodium hypophosphite method [6]. The optimum amount...

  4. Invited: Tailoring Platinum Group Metals Towards Optimal Activity for Oxygen Electroreduction to H2o and H2O2: From Extended Surfaces to Nanoparticles

    DEFF Research Database (Denmark)

    Stephens, Ifan

    2014-01-01

    ). The figure shows transmission electron miscroscopy images of 9 nm diameter PtxY nanoparticles, based on high angle annular dark field –scanning transmission electron microscopy (left) and Y, Pt and combined Pt+Y X-ray energy dispersive X-ray spectroscopy elemental maps. (a) as-prepared catalyst and (b) after......The slow kinetics of the 4-electron reduction of oxygen to H2O imposes a bottleneck against the widespread uptake of low temperature fuel cells in automotive vehicles. High loadings of platinum are required to drive the reaction; the limited supply of this precious metal limits the extent to which...... fuel cell technology could be scaled up.(1) The most widely used strategy towards decreasing the Pt loading is to alloy Pt with other late transition metals, in particular Ni or Co. (2-5) However, when tested in a fuel cell, these alloys are often susceptible towards degradation via dealloying.(6, 7...

  5. Thermodynamic Constraints in Using AuM (M = Fe, Co, Ni, and Mo) Alloys as N₂ Dissociation Catalysts: Functionalizing a Plasmon-Active Metal.

    Science.gov (United States)

    Martirez, John Mark P; Carter, Emily A

    2016-02-23

    The Haber-Bosch process for NH3 synthesis is arguably one of the greatest inventions of the 20th century, with a massive footprint in agriculture and, historically, warfare. Current catalysts for this reaction use Fe for N2 activation, conducted at high temperatures and pressures to improve conversion rate and efficiency. A recent finding shows that plasmonic metal nanoparticles can either generate highly reactive electrons and holes or induce resonant surface excitations through plasmonic decay, which catalyze dissociation and redox reactions under mild conditions. It is therefore appealing to consider AuM (M = Fe, Co, Ni, and Mo) alloys to combine the strongly plasmonic nature of Au and the catalytic nature of M metals toward N2 dissociation, which together might facilitate ammonia production. To this end, through density functional theory, we (i) explore the feasibility of forming these surface alloys, (ii) find a pathway that may stabilize/deactivate surface M substituents during fabrication, and (iii) define a complementary route to reactivate them under operational conditions. Finally, we evaluate their reactivity toward N2, as well as their ability to support a pathway for N2 dissociation with a low thermodynamic barrier. We find that AuFe possesses similar appealing qualities, including relative stability with respect to phase separation, reversibility of Fe oxidation and reduction, and reactivity toward N2. While AuMo achieves the best affinity toward N2, its strong propensity toward oxidation could greatly limit its use.

  6. Effect of Particle Size and Operating Conditions on Pt3Co PEMFC Cathode Catalyst Durability

    Directory of Open Access Journals (Sweden)

    Mallika Gummalla

    2015-05-01

    Full Text Available The initial performance and decay trends of polymer electrolyte membrane fuel cells (PEMFC cathodes with Pt3Co catalysts of three mean particle sizes (4.9 nm, 8.1 nm, and 14.8 nm with identical Pt loadings are compared. Even though the cathode based on 4.9 nm catalyst exhibited the highest initial electrochemical surface area (ECA and mass activity, the cathode based on 8.1 nm catalyst showed better initial performance at high currents. Owing to the low mass activity of the large particles, the initial performance of the 14.8 nm Pt3Co-based electrode was the lowest. The performance decay rate of the electrodes with the smallest Pt3Co particle size was the highest and that of the largest Pt3Co particle size was lowest. Interestingly, with increasing number of decay cycles (0.6 to 1.0 V, 50 mV/s, the relative improvement in performance of the cathode based on 8.1 nm Pt3Co over the 4.9 nm Pt3Co increased, owing to better stability of the 8.1 nm catalyst. The electron microprobe analysis (EMPA of the decayed membrane-electrode assembly (MEA showed that the amount of Co in the membrane was lower for the larger particles, and the platinum loss into the membrane also decreased with increasing particle size. This suggests that the higher initial performance at high currents with 8.1 nm Pt3Co could be due to lower contamination of the ionomer in the electrode. Furthermore, lower loss of Co from the catalyst with increased particle size could be one of the factors contributing to the stability of ECA and mass activity of electrodes with larger cathode catalyst particles. To delineate the impact of particle size and alloy effects, these results are compared with prior work from our research group on size effects of pure platinum catalysts. The impact of PEMFC operating conditions, including upper potential, relative humidity, and temperature on the alloy catalyst decay trends, along with the EMPA analysis of the decayed MEAs, are reported.

  7. Stimulated-healing of proton exchange membrane fuel cell catalyst

    NARCIS (Netherlands)

    Latsuzbaia, R.; Negro, E.; Koper, G.J.M.

    2013-01-01

    Platinum nanoparticles, which are used as catalysts in Proton Exchange Membrane Fuel Cells (PEMFC), tend to degrade after long-term operation. We discriminate the following mechanisms of the degradation: poisoning, migration and coalescence, dissolution, and electrochemical Ostwald ripening. There

  8. Porous platinum mesoflowers with enhanced activity for methanol oxidation reaction

    Energy Technology Data Exchange (ETDEWEB)

    Zhuang Lina; Wang Wenjin; Hong Feng [School of Science, MOE Key Laboratory for Non-equilibrium Synthesis and Modulation of Condensed Matter, Xi' an Jiaotong University, Xi' an 710049 (China); Yang Shengchun, E-mail: ysch1209@mail.xjtu.edu.cn [School of Science, MOE Key Laboratory for Non-equilibrium Synthesis and Modulation of Condensed Matter, Xi' an Jiaotong University, Xi' an 710049 (China); You Hongjun, E-mail: hjyou@mail.xjtu.edu.cn [School of Science, MOE Key Laboratory for Non-equilibrium Synthesis and Modulation of Condensed Matter, Xi' an Jiaotong University, Xi' an 710049 (China); Fang Jixiang; Ding Bingjun [School of Science, MOE Key Laboratory for Non-equilibrium Synthesis and Modulation of Condensed Matter, Xi' an Jiaotong University, Xi' an 710049 (China)

    2012-07-15

    Porous Pt and Pt-Ag alloy mesoflowers (MFs) with about 2 {mu}m in diameter and high porosity were synthesized using Ag mesoflowers as sacrificial template by galvanic reaction. The silver content in Pt-Ag alloys can be facilely controlled by nitric acid treatment. And the pure Pt MFs can be obtained by selective removal of silver element from Pt{sub 72}Ag{sub 28} MFs electrochemically. Both Pt{sub 45}Ag{sub 55}, Pt{sub 72}Ag{sub 28} and pure Pt show a high catalytic performance in methanol oxidation reaction (MOR). Especially, pure Pt MFs exhibited a 2 to 3 times current density enhancement in MOR compared with the commercial used Pt black, which can be attributed to their porous nanostructure with 3-dimentional nature and small crystal sizes. - Graphical Abstract: The CVs of MOR on Pt (red) and Pt black (green) catalysts in 0.1 M HClO{sub 4} and 0.5 M CH{sub 3}OH for specific mass current. The insert shows the SEM images of two porous Pt MFs. Platinum mesoflowers (MFs) with about 2 {mu}m in diameter and high porosity were synthesised with Ag mesoflowers as sacrificial template by galvanic replacement. The porous Pt MFs exhibited a more than 3 times enhancement in electrocatalytic performance for methanol oxidation reaction compared the commercial used Pt black. Highlights: Black-Right-Pointing-Pointer Porous Pt and Pt-Ag mesoflowers (MFs) were synthesized using Ag MFs sacrifical template. Black-Right-Pointing-Pointer Pt MFs presents an improved catalytic activity in MOR compared with Pt black. Black-Right-Pointing-Pointer We provided a facile approach for the development of high performance Pt electrocatalysts for fuel cells.

  9. Morphology controlled graphene-alloy nanoparticle hybrids with tunable carbon monoxide conversion to carbon dioxide.

    Science.gov (United States)

    Devi, M Manolata; Dolai, N; Sreehala, S; Jaques, Y M; Mishra, R S Kumar; Galvao, Douglas S; Tiwary, C S; Sharma, Sudhanshu; Biswas, Krishanu

    2018-05-10

    Selective oxidation of CO to CO2 using metallic or alloy nanoparticles as catalysts can solve two major problems of energy requirements and environmental pollution. Achieving 100% conversion efficiency at a lower temperature is a very important goal. This requires sustained efforts to design and develop novel supported catalysts containing alloy nanoparticles. In this regard, the decoration of nanoalloys with graphene, as a support for the catalyst, can provide a novel structure due to the synergic effect of the nanoalloys and graphene. Here, we demonstrate the effect of nano-PdPt (Palladium-Platinum) alloys having different morphologies on the catalytic efficiency for the selective oxidation of CO. Efforts were made to prepare different morphologies of PdPt alloy nanoparticles with the advantage of tuning the capping agent (PVP - polyvinyl pyrollidone) and decorating them on graphene sheets via the wet-chemical route. The catalytic activity of the G-PdPt hybrids with an urchin-like morphology has been found to be superior (higher % conversion at 135 °C lower) to that with a nanoflower morphology. The above experimental observations are further supported by molecular dynamics (MD) simulations.

  10. Preparation of Pt-SDB hydrophobic catalyst used in H2-H2O isotope exchange reaction

    International Nuclear Information System (INIS)

    Li Junhua; Kang Yi; Ruan Hao; Dou Qincheng; Han Yande; Hu Shilin

    2001-01-01

    The preparation of Pt-SDB hydrophobic catalyst is studied, in which platinum as active metal and polystyrene divinylbenzene (SDB) as the carrier. Hydrogen isotope exchange reaction is carried out with Pt-SDB catalyst in counter-current in the trickle bed. The effect of preparing condition on the activity of catalyst is discussed. The results show that the excellent catalyst is obtained by reduced at the temperature of 200 degree C over 8 hours. Hydrophobic catalyst is high activity and stability as the amount of platinum content is 3%, the platinum can reach the economic use with the content of (1-2)%

  11. Growth of vertically aligned multiwalled carbon nanotubes forests on metal alloy Ni-Nb-N with low content of catalyst

    Science.gov (United States)

    Dubkov, S.; Trifonov, A.; Shaman, Yu; Pavlov, A.; Shulyat'ev, A.; Skorik, S.; Kirilenko, E. P.; Rygalin, B.

    2016-08-01

    This research shows the possibility of carbon nanotubes (CNTs) formation on the surface of low nickel (∼ 10 at.%) Ni-Nb-N amorphous metal alloy film by CVD method at 550 °C of the gas mixture based on acetylene. The structure of CNT were studied by transmission and scanning-electron microscopy, energy-dispersive X-ray and the Raman spectroscopy.

  12. One-step electrochemically-codeposited polyaniline-platinum for dye-sensitized solar cell applications

    Energy Technology Data Exchange (ETDEWEB)

    Thiangkaew, Anongnad; Keothongkham, Khamsone; Maiaugree, Wasan; Jarernboon, Wirat [Khon Kaen University, Khon Kaen (Thailand); Kamwanna, Teerasak; Pimanpang, Samuk; Amornkitbamrung, Vittaya [Khon Kaen University, Khon Kaen (Thailand); Nanotec-KKU Center of Excellence on Advanced Nanomaterials for Energy Production and Storage, Khon Kaen (Thailand)

    2014-05-15

    Platinum, polyaniline and composite polyaniline-platinum films were coated on conductive glass by using electrochemical deposition. They were then used as dye-sensitized solar cell counter electrodes. The efficiencies of platinum, polyaniline and composite polyaniline-platinum cells were 2.47, 4.47 and 6.62%, respectively. The improvement of composite polyaniline-platinum solar cell efficiency over pure polyaniline and platinum cells is because of an increase in the film's catalytic activity and a decrease in charge-transfer resistance between its counter electrode and electrolyte, as observed by using cyclic voltammogram and electrochemical impedance spectroscopy measurements, respectively. Co-deposition of polyaniline and Pt catalysts was confirmed by the presence of Pt and N peaks in the X-ray photoelectron spectroscopy spectrum.

  13. Synthesis of platinum nanowheels using a bicellar template.

    Science.gov (United States)

    Song, Yujiang; Dorin, Rachel M; Garcia, Robert M; Jiang, Ying-Bing; Wang, Haorong; Li, Peng; Qiu, Yan; van Swol, Frank; Miller, James E; Shelnutt, John A

    2008-09-24

    Disk-like surfactant bicelles provide a unique meso-structured reaction environment for templating the wet-chemical reduction of platinum(II) salt by ascorbic acid to produce platinum nanowheels. The Pt wheels are 496 +/-55 nm in diameter and possess thickened centers and radial dendritic nanosheets (about 2-nm in thickness) culminating in flared dendritic rims. The structural features of the platinum wheels arise from confined growth of platinum within the bilayer that is also limited at edges of the bicelles. The size of CTAB/FC7 bicelles is observed to evolve with the addition of Pt(II) complex and ascorbic acid. Synthetic control is demonstrated by varying the reaction parameters including metal salt concentration, temperature, and total surfactant concentration. This study opens up opportunities for the use of other inhomogeneous soft templates for synthesizing metals, metal alloys, and possibly semiconductors with complex nanostructures.

  14. Simple one-pot synthesis of platinum-palladium nanoflowers with enhanced catalytic activity and methanol-tolerance for oxygen reduction in acid media

    International Nuclear Information System (INIS)

    Zheng, Jie-Ning; He, Li-Li; Chen, Fang-Yi; Wang, Ai-Jun; Xue, Meng-Wei; Feng, Jiu-Ju

    2014-01-01

    Graphical abstract: PtPd nanoflowers were fabricated by one-pot solvothermal co-reduction method in oleylamine system, which exhibited the improved electrocatalytic activity and higher methanol tolerance for oxygen reduction, compared with commercial Pt and Pd black catalysts. - Highlights: • Bimetallic alloyed PtPd nanoflowers are prepared by a simple one-pot solvothermal co-reduction method. • PtPd nanoflowers display high catalytic performance for ORR dominated by a four-electron pathway. • PtPd nanoflowers show good methanol tolerance for ORR. - Abstract: In this work, bimetallic alloyed platinum-palladium (PtPd) nanoflowers are fabricated by one-pot solvothermal co-reduction of Pt (II) acetylacetonate and Pd (II) acetylacetonate in oleylamine system. The as-prepared nanostructures show the enhanced electrocatalytic activity for oxygen reduction reaction (ORR), dominated by a four-electron pathway based on the Koutecky-Levich plots, mainly owing to the inhibition of the formation of Pt–OH ad via the downshift of d-band center for Pt. Meanwhile, PtPd nanoflowers display good methanol tolerance and improved stability for ORR. The chronoamperometry test reveals that the current of PtPd nanoflowers remains 45.9% of its original value within 6000 s, much higher than those of commercial Pt (36.7%) and Pd (32.2%) black catalysts. Therefore, PtPd nanoflowers with unique interconnected structures can be used as a promising cathode catalyst in direct methanol fuel cells

  15. Electrocatalysts of platinum, cobalt and nickel prepared by mechanical alloying for the oxygen reduction reaction in H{sub 2}SO{sub 4} 0.5M; Electrocatalizadores de Platino, Cobalto y Niquel preparados por Aleado Mecanico para la reaccion de reduccion de oxigeno en H{sub 2}SO{sub 4} 0.5M

    Energy Technology Data Exchange (ETDEWEB)

    Garcia C, M.A.; Fernandez V, S.M.; Vargas G, J.R. [lNIN, Depto. de Quimica, 52750 La Marquesa, Estado de Mexico (Mexico)

    2007-07-01

    Metallic powders of Pt, Co and Nickel were processed by mechanical alloyed and electrocatalysts were synthesized for the oxygen reduction reaction, applicable in fuel cells. The structural and morphological characterization was carried out using X-ray Diffraction, scanning electron microscopy and transmission electron microscopy. It was found that the alloyed powders formed agglomerates that consist of crystalline particles of nano metric size. Its were obtained polarization curves by the Electrode of Rotational Disk technique in a solution of H{sub 2}SO{sub 4} 0.5 M, used as electrolyte, to evaluate the electrocatalytic activity of mechanically alloyed powders. Tafel graphics were built to determine the kinetic parameters of each electro catalyst. The PtCoNi alloy exhibited the biggest electrocatalytic activity, with the smallest over potential for the oxygen reduction reaction. (Author)

  16. Correlation between diffusion barriers and alloying energy in binary alloys

    DEFF Research Database (Denmark)

    Vej-Hansen, Ulrik Grønbjerg; Rossmeisl, Jan; Stephens, Ifan

    2016-01-01

    In this paper, we explore the notion that a negative alloying energy may act as a descriptor for long term stability of Pt-alloys as cathode catalysts in low temperature fuel cells.......In this paper, we explore the notion that a negative alloying energy may act as a descriptor for long term stability of Pt-alloys as cathode catalysts in low temperature fuel cells....

  17. Electro-oxidation of Ethanol on Carbon Supported PtSn and PtSnNi Catalysts

    Directory of Open Access Journals (Sweden)

    Nur Hidayati

    2016-03-01

    Full Text Available Even though platinum is known as an active electro-catalyst for ethanol oxidation at low temperatures (< 100 oC, choosing the electrode material for ethanol electro-oxidation is a crucial issue. It is due to its property which easily poisoned by a strong adsorbed species such as CO. PtSn-based electro-catalysts have been identified as better catalysts for ethanol electro-oxidation. The third material is supposed to improved binary catalysts performance. This work presents a study of the ethanol electro-oxidation on carbon supported Pt-Sn and Pt-Sn-Ni catalysts. These catalysts were prepared by alcohol reduction. Nano-particles with diameters between 2.5-5.0 nm were obtained. The peak of (220 crystalline face centred cubic (fcc Pt phase for PtSn and PtSnNi alloys was repositioned due to the presence of Sn and/or Ni in the alloy. Furthermore, the modification of Pt with Sn and SnNi improved ethanol and CO electro-oxidation. Copyright © 2016 BCREC GROUP. All rights reserved Received: 10th November 2015; Revised: 1st February 2016; Accepted: 1st February 2016 How to Cite: Hidayati, N., Scott, K. (2016. Electro-oxidation of Ethanol on Carbon Supported PtSn and PtSnNi Catalysts. Bulletin of Chemical Reaction Engineering & Catalysis, 11 (1: 10-20. (doi:10.9767/bcrec.11.1.394.10-20 Permalink/DOI: http://dx.doi.org/10.9767/bcrec.11.1.394.10-20

  18. Analysis of noble metal on automotive exhaust catalysts by radioisotope-induce x-ray fluorescence

    International Nuclear Information System (INIS)

    Elgart, M.F.

    1976-01-01

    A technique was developed for the in-situ analysis of noble metals deposited on monolithic automotive exhaust catalysts. This technique is based on radioisotope-induced x-ray fluorescence, and provides a detailed picture of the distribution of palladium and platinum on catalyst samples. The experimental results for the cross section of a monolithic exhaust catalyst, analyzed in increments of 0.2 cm 3 , are compared with analyses for palladium and platinum obtained by instrumental neutron activation analysis

  19. Vapor-solid-solid growth mechanism driven by an epitaxial match between solid Au Zn alloy catalyst particle and Zn O nano wire at low temperature

    International Nuclear Information System (INIS)

    Campos, Leonardo C.; Tonezzer, Matteo; Ferlauto, Andre S.; Magalhaes-Paniago, Rogerio; Oliveira, Sergio; Ladeira, Luiz O.; Lacerda, Rodrigo G.

    2008-01-01

    Nowadays, the growth of nano materials, like nano wires and nano tubes, is one of the key research areas of nano technology. However, a full picture of the growth mechanism of these quasi-one dimensional systems still needs to be achieved if these materials are to be applied electronics, biology and medicinal fields. Nevertheless, in spite of considerable advances on the growth of numerous nano wires, a clear understanding of the growth mechanism is still controversial and highly discussed. The present work provides a comprehensive picture of the precise mechanism of Zn O vapor-solid-solid (VSS) nano wire growth at low temperatures and gives the fundamental reasons responsible. We demonstrate by using a combination of synchrotron XRD and high resolution TEM that the growth dynamics at low temperatures is not governed by the well-known vapor-liquid solid (VLS) mechanisms. A critical new insight on the driving factor of VSS growth is proposed in which the VSS process occurs by a solid diffusion mechanism that is driven by a preferential oxidation process of the Zn inside the alloy catalyst induced by an epitaxial match between the Zn O(10-10) plane and the γ-Au Zn(222) plane. We believe that these results are not only important for the understanding of Zn O nano wire growth but could also have significant impact on the understanding of growth mechanisms of other nano wire systems. (author)

  20. The exchange reaction between deuterium and water vapour on platinum deposited over a hydrophobic support

    International Nuclear Information System (INIS)

    Itsuo, Iida; Junko, Kato; Kenzi, Tamuru

    1977-01-01

    Isotope exchange reaction between deuterium gas and water vapour at room temperature and below on platinum deposited on hydrophobic supports such as polytetrafluoroethylene (PTFE) or Porapak Q (copolymer of styrene and divinylbenzene) was studied and the results were compared with those of the exchange reaction on platinum over hydrophilic support such as alumina. It was demonstrated that the exchange reaction at temperatures below the boiling point of water is markedly retarded by the multilayer adsorption of water over the platinum catalyst deposited on hydrophilic support, whereas the platinum catalyst on hydrophobic support exhibited a high catalytic activity, being not retarded by the water, forming no multilayer of adsorbed water over platinum surface. Therefore in the case of the hydrogen isotope exchange reaction on platinum over hydrophobic support, the chemical exchange rate can be measured even under a saturated vapour pressure of water. The surface area of platinum was estimated by hydrogen chemisorption and hydrogen titration and specific activities of the catalyst were calculated at both room temperature and freezing point of water, which revealed that the specific rate of this reaction does not differ so much over various supports. (orig.) [de

  1. Novel catalysts for isotopic exchange between hydrogen and liquid water

    International Nuclear Information System (INIS)

    Butler, J.P.; Rolston, J.H.; Stevens, W.H.

    1978-01-01

    Catalytic isotopic exchange between hydrogen and liquid water offers many inherent potential advantages for the separation of hydrogen isotopes which is of great importance in the Canadian nuclear program. Active catalysts for isotopic exchange between hydrogen and water vapor have long been available, but these catalysts are essentially inactive in the presence of liquid water. New, water-repellent platinum catalysts have been prepared by: (1) treating supported catalysts with silicone, (2) depositing platinum on inherently hydrophobic polymeric supports, and (3) treating platinized carbon with Teflon and bonding to a carrier. The activity of these catalysts for isotopic exchange between countercurrent streams of liquid water and hydrogen saturated with water vapor has been measured in a packed trickle bed integral reactor. The performance of these hydrophobic catalysts is compared with nonwetproofed catalysts. The mechanism of the overall exchange reaction is briefly discussed. 6 figures

  2. A new catalyst for heavy water production and its prospect

    International Nuclear Information System (INIS)

    Sato, Toshio; Ohkoshi, Sumio; Takahashi, Tomiki

    1978-01-01

    The heavy water production process utilizing isotope exchange reaction between liquid water and hydrogen is the most promising method. Study was made for developing highly active and long life catalyst practically applied for this process. As platinum is used as this catalyst, catalytic activities using varieties of Polapacs and Shodexes instead of active carbon as the carriers of platinum catalyst were investigated. It became clear that the catalytic activity using Pt/Shodex 104 (3 wt %) was 1000 times as high as the activity using Pt/active carbon (1 wt %). This method is considered to be reasonable enough economically. There are many problems which must be solved hereafter for its practical use, and the further studies are required regarding the following points; forming of catalyst, life of catalyst, mass production of catalyst, most appropriate counter flow reacting device of hydrophobic catalyst, pressure and temperature effects on reaction. (Kobatake, H.)

  3. High performance platinum single atom electrocatalyst for oxygen reduction reaction

    Science.gov (United States)

    Liu, Jing; Jiao, Menggai; Lu, Lanlu; Barkholtz, Heather M.; Li, Yuping; Wang, Ying; Jiang, Luhua; Wu, Zhijian; Liu, Di-Jia; Zhuang, Lin; Ma, Chao; Zeng, Jie; Zhang, Bingsen; Su, Dangsheng; Song, Ping; Xing, Wei; Xu, Weilin; Wang, Ying; Jiang, Zheng; Sun, Gongquan

    2017-07-01

    For the large-scale sustainable implementation of polymer electrolyte membrane fuel cells in vehicles, high-performance electrocatalysts with low platinum consumption are desirable for use as cathode material during the oxygen reduction reaction in fuel cells. Here we report a carbon black-supported cost-effective, efficient and durable platinum single-atom electrocatalyst with carbon monoxide/methanol tolerance for the cathodic oxygen reduction reaction. The acidic single-cell with such a catalyst as cathode delivers high performance, with power density up to 680 mW cm-2 at 80 °C with a low platinum loading of 0.09 mgPt cm-2, corresponding to a platinum utilization of 0.13 gPt kW-1 in the fuel cell. Good fuel cell durability is also observed. Theoretical calculations reveal that the main effective sites on such platinum single-atom electrocatalysts are single-pyridinic-nitrogen-atom-anchored single-platinum-atom centres, which are tolerant to carbon monoxide/methanol, but highly active for the oxygen reduction reaction.

  4. Autothermal reforming catalyst having perovskite structure

    Science.gov (United States)

    Krumpel, Michael [Naperville, IL; Liu, Di-Jia [Naperville, IL

    2009-03-24

    The invention addressed two critical issues in fuel processing for fuel cell application, i.e. catalyst cost and operating stability. The existing state-of-the-art fuel reforming catalyst uses Rh and platinum supported over refractory oxide which add significant cost to the fuel cell system. Supported metals agglomerate under elevated temperature during reforming and decrease the catalyst activity. The catalyst is a perovskite oxide or a Ruddlesden-Popper type oxide containing rare-earth elements, catalytically active firs row transition metal elements, and stabilizing elements, such that the catalyst is a single phase in high temperature oxidizing conditions and maintains a primarily perovskite or Ruddlesden-Popper structure under high temperature reducing conditions. The catalyst can also contain alkaline earth dopants, which enhance the catalytic activity of the catalyst, but do not compromise the stability of the perovskite structure.

  5. EFFECT OF IMPREGNATION PROCEDURE OF Pt/γ-Al2O3 CATALYSTS UPON CATALYTIC OXIDATION OF CO

    Directory of Open Access Journals (Sweden)

    Triyono Triyono

    2010-06-01

    Full Text Available The oxidation of carbon monoxide by oxygen using two catalysts prepared by two different methods has been investigated. In the first method, catalyst prepared by immersing γ-Al2O3 into the hexa-chloroplatinic acid solution at 80oC for 4 h, resulted Pt/γ-Al2O3 catalyst having platinum highly dispersed on the support. While that of immersing γ-Al2O3 in the hexa-chloroplatinic acid solution at room temperature for 12 h, produced Pt/ γ-Al2O3 catalyst where platinum dispersion was much lower. Catalytic activity test showed that platinum well dispersed on the support enhanced the activity of oxidation of carbon monoxide. The platinum impregnated at room temperature resulted in the poor activity.   Keyword: Catalyst, CO Oxidation, Platinum.

  6. Oxidation catalyst

    Science.gov (United States)

    Ceyer, Sylvia T.; Lahr, David L.

    2010-11-09

    The present invention generally relates to catalyst systems and methods for oxidation of carbon monoxide. The invention involves catalyst compositions which may be advantageously altered by, for example, modification of the catalyst surface to enhance catalyst performance. Catalyst systems of the present invention may be capable of performing the oxidation of carbon monoxide at relatively lower temperatures (e.g., 200 K and below) and at relatively higher reaction rates than known catalysts. Additionally, catalyst systems disclosed herein may be substantially lower in cost than current commercial catalysts. Such catalyst systems may be useful in, for example, catalytic converters, fuel cells, sensors, and the like.

  7. One-step flame synthesis of an active Pt/TiO2 catalyst for SO2 oxidation

    DEFF Research Database (Denmark)

    Johannessen, Tue; Koutsopoulos, Sotiris

    2002-01-01

    Flame synthesis as a route for production of composite metal oxides has been employed for the one-step synthesis of a supported noble metal catalyst, i.e. a Pt/TiO2 catalyst, by simultaneous combustion of Ti-isopropoxide and platinum acetylacetonate in a quench-cooled flame reactor. The average...... size of the platinum particles supported on aggregated nano-particles of TiO2 is approximately 2 nm. The high SO2-oxidation activity of the catalyst proves that platinum is not hidden in the titania matrix. The flame-produced catalyst showed catalytic activity similar to samples prepared by wet...

  8. Determination of palladium, platinum and rhodium in used automobile catalysts and active pharmaceutical ingredients using high-resolution continuum source graphite furnace atomic absorption spectrometry and direct solid sample analysis

    Energy Technology Data Exchange (ETDEWEB)

    Resano, Martín, E-mail: mresano@unizar.es [Department of Analytical Chemistry, Aragón Institute of Engineering Research (I3A), University of Zaragoza, Pedro Cerbuna 12, 50009 Zaragoza (Spain); Flórez, María del Rosario [Department of Analytical Chemistry, Aragón Institute of Engineering Research (I3A), University of Zaragoza, Pedro Cerbuna 12, 50009 Zaragoza (Spain); Queralt, Ignasi [Institute of Earth Sciences Jaume Almera ICTJA-CSIC, Sole Sabarís s/n, 08028 Barcelona (Spain); Marguí, Eva [Department of Chemistry, Faculty of Sciences, Universitat de Girona, Campus Montilivi s/n, 17071 Girona (Spain)

    2015-03-01

    This work investigates the potential of high-resolution continuum source graphite furnace atomic absorption spectrometry for the direct determination of Pd, Pt and Rh in two samples of very different nature. While analysis of active pharmaceutical ingredients is straightforward and it is feasible to minimize matrix effects, to the point that calibration can be carried out against aqueous standard solutions, the analysis of used automobile catalysts is more challenging requiring the addition of a chemical modifier (NH{sub 4}F·HF) to help in releasing the analytes, a more vigorous temperature program and the use of a solid standard (CRM ERM®-EB504) for calibration. However, in both cases it was possible to obtain accurate results and precision values typically better than 10% RSD in a fast and simple way, while only two determinations are needed for the three analytes, since Pt and Rh can be simultaneously monitored in both types of samples. Overall, the methods proposed seem suited for the determination of these analytes in such types of samples, offering a greener and faster alternative that circumvents the traditional problems associated with sample digestion, requiring a small amount of sample only (0.05 mg per replicate for catalysts, and a few milligrams for the pharmaceuticals) and providing sufficient sensitivity to easily comply with regulations. The LODs achieved were 6.5 μg g{sup −1} (Pd), 8.3 μg g{sup −1} (Pt) and 9.3 μg g{sup −1} (Rh) for catalysts, which decreased to 0.08 μg g{sup −1} (Pd), 0.15 μg g{sup −1} (Pt) and 0.10 μg g{sup −1} (Rh) for pharmaceuticals. - Highlights: • Solid sampling HR CS GFAAS permits the fast and direct determination of Pd, Pt and Rh. • 2 determinations suffice for the 3 elements (2 of them can be measured simultaneously). • Samples as different as car catalysts and pharmaceuticals can be accurately analyzed. • Aqueous standards (pharmaceuticals) or a solid CRM (catalysts) is used for calibration.

  9. Observation of ionomer in catalyst ink of polymer electrolyte fuel cell using cryogenic transmission electron microscopy

    International Nuclear Information System (INIS)

    Takahashi, Shinichi; Shimanuki, Junichi; Mashio, Tetsuya; Ohma, Atsushi; Tohma, Hajime; Ishihara, Ayumi; Ito, Yoshiko; Nishino, Yuri; Miyazawa, Atsuo

    2017-01-01

    Optimizing the catalyst layer structure is one of the key issues for improving performance despite lower platinum loading. The catalyst ink, consisting of platinum-loaded carbon particles and ionomer dispersed in an aqueous solvent, is a key factor for controlling the structure of the catalyst layer because the catalyst layer is prepared in a wet coating process. For that purpose, we visualized the nanostructure of the ionomer in the catalyst ink by cryogenic electron microscopy, especially cryogenic transmission electron microscopy (cryo-TEM). By cryo-TEM, it was revealed that ionomer molecules formed rod-like aggregates macro-homogeneously in the solvent, and a similar morphology was observed in a carbon-particle-containing solvent. In contrast, ionomer aggregates in the catalyst ink containing platinum nanoparticles loaded on carbon particles were denser in the vicinity of the platinum-loaded carbon particles. That can be attributed to strong interaction between platinum nanoparticles and sulfonic acid groups in the ionomer. It also implies that a good understanding of ionomer morphology in the catalyst ink can play an important role in controlling the catalyst layer microstructure for reducing platinum loading.

  10. Effect of the platinum content on the microstructure and micropore size distribution of Pt/alumina-pillared clays.

    Science.gov (United States)

    Barrera-Vargas, M; Valencia-Rios, J; Vicente, M A; Korili, S A; Gil, A

    2005-12-15

    The aim of this work is to study the effect of the platinum content (0-1.8 wt % Pt) on the microstructure of an alumina-pillared clay. For this purpose, the nitrogen physisorption data at -196 degrees C, the micropore size distributions of the supported platinum catalysts, and the hydrogen chemisorption results at 30 degrees C have been analyzed and compared. The preparation of the catalysts has modified the textural properties of the Al-pillared clay support, giving rise to a loss of surface area and micropore volume. After reduction at 420 degrees C, the presence of dispersed metallic platinum with mean crystallite size in the 22-55 A range has been found by hydrogen adsorption. Comparison of all results reveals that the platinum species block the micropore entrances by steric hindrance to nitrogen access as the platinum content increases.

  11. Fischer-Tropsch Catalyst for Aviation Fuel Production

    Science.gov (United States)

    DeLaRee, Ana B.; Best, Lauren M.; Bradford, Robyn L.; Gonzalez-Arroyo, Richard; Hepp, Aloysius F.

    2012-01-01

    As the oil supply declines, there is a greater need for cleaner alternative fuels. There will undoubtedly be a shift from crude oil to nonpetroleum sources as a feedstock for aviation (and other transportation) fuels. The Fischer-Tropsch process uses a gas mixture of carbon monoxide and hydrogen which is converted into various liquid hydrocarbons; this versatile gas-to-liquid technology produces a complex product stream of paraffins, olefins, and oxygenated compounds such as alcohols and aldehydes. The Fischer-Tropsch process can produce a cleaner diesel oil fraction with a high cetane number (typically above 70) without any sulfur and aromatic compounds. It is most commonly catalyzed by cobalt supported on alumina, silica, or titania or unsupported alloyed iron powders. Cobalt is typically used more often than iron, in that cobalt is a longer-active catalyst, has lower water-gas shift activity, and lower yield of modified products. Promoters are valuable in improving Fischer-Tropsch catalyst as they can increase cobalt oxide dispersion, enhance the reduction of cobalt oxide to the active metal phase, stabilize a high metal surface area, and improve mechanical properties. Our goal is to build up the specificity of the Fischer-Tropsch catalyst while adding less-costly transition metals as promoters; the more common promoters used in Fischer-Tropsch synthesis are rhenium, platinum, and ruthenium. In this report we will describe our preliminary efforts to design and produce catalyst materials to achieve our goal of preferentially producing C8 to C18 paraffin compounds in the NASA Glenn Research Center Gas-To-Liquid processing plant. Efforts at NASA Glenn Research Center for producing green fuels using non-petroleum feedstocks support both the Sub-sonic Fixed Wing program of Fundamental Aeronautics and the In Situ Resource Utilization program of the Exploration Technology Development and Demonstration program.

  12. Platinum incorporation in the Na Y zeolite through impregnation method, and characterization by XRD, FTIR and nitrogen adsorption

    International Nuclear Information System (INIS)

    Araujo, A.S.; Sousa, B.V.; Andrade, A.C.C.; Rodrigues, M.G.F.; Rangel, M.C.

    2007-01-01

    Supported metal catalysts are widely used in petroleum refining, chemical and petroleum industries. These catalysts are important in ammonia synthesis, conversion of hydrocarbons with water vapor to synthesis gas, reforming, hydrocracking, ... Platinum has long been used in cracking, hydrogenation and dehydrogenation processes. The aim of this project is the Na Y zeolitic sample preparation through impregnation for incipient humidity, with 0,5% concentration of platinum, aiming its use as a catalyst in the steam reforming reaction. The characterization techniques used were: X Rays Diffraction (XRD), Fourier Transform Infrared spectroscopy (FTIR) and Nitrogen Adsorption (BET Method). From the obtained results through the techniques mentioned previously it is possible to evidence that the platinum impregnation process did not change the Na Y zeolite structure. Through the superficial specific area (BET) it was possible to observe that the platinum impregnation process caused a decrease in the specific area due to the reduction to the accessibility to the micropores of the zeolitic structure. (author)

  13. Seawater splitting for high-efficiency hydrogen evolution by alloyed PtNix electrocatalysts

    Science.gov (United States)

    Zheng, Jingjing

    2017-08-01

    Robust electrocatalyst is a prerequisite to realize high-efficiency hydrogen evolution by water splitting. Expensive platinum (Pt) is a preferred electrode catalyst for state-of-the-art hydrogen evolution reaction (HER). We present here a category of alloyed PtNix electrocatalysts by a facile green chemical reduction method, which are used to catalyze HER during seawater splitting. The catalytic performances are optimized by tuning stoichiometric Pt/Ni ratio, yielding a maximized catalytic behavior for PtNi5 electrode. The minimized onset potential is as low as -0.38 V and the corresponding Tafel slope is 119 mV dec-1. Moreover, the launched alloy electrodes have remarkable stability at -1.2 V over 12 h. The high efficiency as well as good durability demonstrates the PtNix electrocatalysts to be promising in practical applications.

  14. Stability of Porous Platinum Nanoparticles: Combined In Situ TEM and Theoretical Study

    DEFF Research Database (Denmark)

    Chang, Shery L. Y.; Barnard, Amanda S.; Dwyer, Christian

    2012-01-01

    Porous platinum nanoparticles provide a route for the development of catalysts that use less platinum without sacrificing catalytic performance. Here, we examine porous platinum nanoparticles using a combination of in situ transmission electron microscopy and calculations based on a first-principles......-parametrized thermodynamic model. Our experimental observations show that the initially irregular morphologies of the as-sythesized porous nanoparticles undergo changes at high temperatures to morphologies having faceted external surfaces with voids present in the interior of the particles. The increasing size of stable...

  15. CATALYSTS NHI Thermochemical Systems FY 2009 Year-End Report

    International Nuclear Information System (INIS)

    Ginosar, Daniel M.

    2009-01-01

    Fiscal Year 2009 work in the Catalysts project focused on advanced catalysts for the decomposition of sulfuric acid, a reaction common to both the Sulfur-Iodine (S-I) cycle and the Hybrid Sulfur cycle. Prior years effort in this project has found that although platinum supported on titanium oxide will be an acceptable catalyst for sulfuric acid decomposition in the integrated laboratory scale (ILS) project, the material has short comings, including significant cost and high deactivation rates due to sintering and platinum evaporation. For pilot and larger scale systems, the catalyst stability needs to be improved significantly. In Fiscal Year 2008 it was found that at atmospheric pressure, deactivation rates of a 1 wt% platinum catalyst could be reduced by 300% by adding either 0.3 wt% iridium (Ir) or 0.3 wt% ruthenium (Ru) to the catalyst. In Fiscal Year 2009, work focused on examining the platinum group metal catalysts activity and stability at elevated pressures. In addition, simple and complex metal oxides are known to catalyze the sulfuric acid decomposition reaction. These metal oxides could offer activities comparable to platinum but at significantly reduced cost. Thus a second focus for Fiscal Year 2009 was to explore metal oxide catalysts for the sulfuric acid decomposition reaction. In Fiscal Year 2007 several commercial activated carbons had been identified for the HI decomposition reaction; a reaction specific to the S-I cycle. Those materials should be acceptable for the pilot scale project. The activated carbon catalysts have some disadvantages including low activity at the lower range of reactor operating temperature (350 to 400 C) and a propensity to generate carbon monoxide in the presence of water that could contaminate the hydrogen product, but due to limited funding, this area had low priority in Fiscal Year 2009. Fiscal Year 2009 catalyst work included five tasks: development, and testing of stabilized platinum based H2SO4 catalysts

  16. Electrochemical behavior of titanium implanted with platinum

    International Nuclear Information System (INIS)

    Thompson, N.G.; Lichter, B.D.; Appleton, B.R.; Kelly, E.J.; White, C.W.

    1979-01-01

    The following conclusions apply to Ti(Pt) near-surface alloys studied. (1) Open-circuit corrosion measurements show that accumulation of platinum may occur at a surface concentration of 0.32 atomic percent Pt while no accumulation occurs at 0.16 atomic percent Pt. However, these results do not allow a distinction as to cause of accumulation to be made between concentration effects and effects due to the presence of an oxide film. (2) Potentiostatic corrosion at -0.450 V (active corrosion) establish that little or no accumulation of platinum occurs at an oxide-free surface for concentrations less than 0.086 atomic percent Pt; whereas, a large amount of accumulation occurs for a distribution with a peak concentration of 0.83 atomic percent Pt. (3) An initial distribution having a peak concentration of 0.32 atomic percent platinum is sufficient to induce natural passivity in titanium and bring a freely corroding sample to a potential of 0.269 V. This is nearly the applicable reversible potential (-0.260 V) for the hydrogen reaction in 1N H 2 SO 4 . (4) Of three samples which showed accumulation, platinum was eventually lost for two of these samples (0.32 atomic percent, open-circuit corrosion; 0.83 atomic percent, potentiostatic corrosion). The remaining sample (9.1 atomic percent, open-circuit corrosion) maintained the maximum possible potential of -0.260 V for the length of the experiment (approx. 30 days). (5) For samples which had been polarized at -0.300 to -0.340 V and which had eventually reverted to the behavior of pure Ti, post corrosion RBS measurements reveal that a substantial fraction of the Pt fluence is retained on the surface in an electrochemically inactive state

  17. Electrochemical reduction of oxygen on small platinum particles supported on carbon in concentrated phosphoric acid. 2. Effects of teflon content in the catalyst layer and baking temperature of the electrode

    Energy Technology Data Exchange (ETDEWEB)

    Maoka, T.

    1988-03-01

    A relation between hydrophobicity (or wettability) of a porous gas diffusion electrode for use in a phosphoric acid fuel cell and its cathode performance (activity toward electrochemical oxygen reduction) was examined. The hydrophobicity of the gas diffusion electrode was regulated by changing either the amount of Teflon (PTFE) content in the catalyst layer or baking temperature of the electrode. The Tafel slope or electrochemical oxygen reduction became twice as high as that of the ordinary electrode when the wettability of electrode toward phosphoric acid was high. This fact supports a flooded agglomerate model as the mode of this type of porous gas diffusion electrode.

  18. Ni/La2O3 catalyst containing low content platinum-rhodium for the dehydrogenation of N2H4·H2O at room temperature

    Science.gov (United States)

    O, Song-Il; Yan, Jun-Min; Wang, Hong-Li; Wang, Zhi-Li; Jiang, Qing

    2014-09-01

    Ni/La2O3 nanocatalyst with Pt and Rh content as low as 5 mol%, respectively, is successfully synthesized by a facile co-reduction method in the presence of hexadecyl trimethyl ammonium chloride aqueous solution under ambient atmosphere. Interestingly, the resulted Ni/La2O3 catalyst with low cost exhibits excellent catalytic activity to dehydrogenation of hydrous hydrazine (N2H4·H2O), producing hydrogen with 100% selectivity at room temperature (298 K), which represents a promising step toward the practical application for N2H4·H2O system on fuel cells.

  19. The deuterium-exchange reaction between water and hydrogen with the thin-film hydrophobic catalyst

    International Nuclear Information System (INIS)

    Yamashita, Hisao; Mizumoto, Mamoru; Matsuda, Shimpei

    1985-01-01

    The deuterium-exchange reaction between water and hydrogen with a hydrophobic catalyst was studied. The hydrophobic catalyst was composed of platinum as an active component and porous poly(tetrafluoroethylene) (PTFE) as a support. The PTFE support was in two forms, i.e., (a) a pellet and (b) a thin-film with the thickness of 50 μm. The primary purpose of the thin film hydrophobic catalyst was to reduce the platinum usage in the reactor. The activity of the catalyst was measured in a trickle bed reactor at atmospheric pressure and temperature of 20 ∼ 70 deg C. It has been found that the employment of the thin-film catalyst reduced the platinum usage to 1/5 of the reactor in the case of using a conventional catalyst. Platinum particles on the thin-film catalyst work efficiently because the reactants were easily diffused to the active sites. It has also been found that the isotopic exchange rate with the thin-film catalyst increased with the increase in the ratio of liquid/gas and increased with the rise of the reaction temperature. It was found from an endurance test that the activity of the thin-film catalyst decreased gradually due to the condensation of water vapor in the catalyst, but was regenarated by heating the catalyst to remove the condensed water. (author)

  20. Characterization of three-way automotive catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Kenik, E.A.; More, K.L. [Oak Ridge National Laboratory, TN (United States); LaBarge, W. [General Motors-AC Delco Systems, Flint, MI (United States)] [and others

    1995-05-01

    This has been the second year of a CRADA between General Motors - AC Delco Systems (GM-ACDS) and Martin Marietta Energy Systems (MMES) aimed at improved performance/lifetime of platinum-rhodium based three-way-catalysts (TWC) for automotive emission control systems. While current formulations meet existing emission standards, higher than optimum Pt-Rh loadings are often required. In additionk, more stringent emission standards have been imposed for the near future, demanding improved performance and service life from these catalysts. Understanding the changes of TWC conversion efficiency with ageing is a critical need in improving these catalysts.

  1. Tailoring Ruthenium Exposure to Enhance the Performance of fcc Platinum@Ruthenium Core-Shell Electrocatalysts in the Oxygen Evolution Reaction

    KAUST Repository

    AlYami, Noktan

    2016-05-17

    The catalytic properties of noble metal nanocrystals are a function of their size, structure, and surface composition. In particular, achieving high activity without sacrificing stability is essential for designing commercially viable catalysts. A major challenge in designing state-of-the-art Ru-based catalysts for the oxygen evolution reaction (OER), which is a key step in water splitting, is the poor stability and surface tailorability of these catalysts. In this study, we designed rapidly synthesizable size-controlled, morphology-selective, and surface-tailored platinum-ruthenium core-shell (Pt@Ru) and alloy (PtRu) nanocatalysts in a scalable continuous-flow reactor. These core-shell nanoparticles with atomically precise shells were produced in a single synthetic step with carbon monoxide as the reducing agent. By varying the metal precursor concentration, a dendritic or layer-by-layer ruthenium shell can be grown. The catalytic activities of the synthesized Pt@Ru and PtRu nanoparticles exhibit noticeably higher electrocatalytic activity in the OER compared to that of pure Pt and Ru nanoparticles. Promisingly, Pt@Ru nanocrystals with a ~2-3 atomic layer Ru cuboctahedral shell surpass conventional Ru nanoparticles in terms of both durability and activity.

  2. Tailoring Ruthenium Exposure to Enhance the Performance of fcc Platinum@Ruthenium Core-Shell Electrocatalysts in the Oxygen Evolution Reaction

    KAUST Repository

    AlYami, Noktan; LaGrow, Alec P.; Joya, khurram; Hwang, Jinyeon; Katsiev, Khabiboulakh; Anjum, Dalaver H.; Losovyj, Yaroslav; Sinatra, Lutfan; Kim, Jin Young; Bakr, Osman

    2016-01-01

    The catalytic properties of noble metal nanocrystals are a function of their size, structure, and surface composition. In particular, achieving high activity without sacrificing stability is essential for designing commercially viable catalysts. A major challenge in designing state-of-the-art Ru-based catalysts for the oxygen evolution reaction (OER), which is a key step in water splitting, is the poor stability and surface tailorability of these catalysts. In this study, we designed rapidly synthesizable size-controlled, morphology-selective, and surface-tailored platinum-ruthenium core-shell (Pt@Ru) and alloy (PtRu) nanocatalysts in a scalable continuous-flow reactor. These core-shell nanoparticles with atomically precise shells were produced in a single synthetic step with carbon monoxide as the reducing agent. By varying the metal precursor concentration, a dendritic or layer-by-layer ruthenium shell can be grown. The catalytic activities of the synthesized Pt@Ru and PtRu nanoparticles exhibit noticeably higher electrocatalytic activity in the OER compared to that of pure Pt and Ru nanoparticles. Promisingly, Pt@Ru nanocrystals with a ~2-3 atomic layer Ru cuboctahedral shell surpass conventional Ru nanoparticles in terms of both durability and activity.

  3. Point defects in platinum

    International Nuclear Information System (INIS)

    Piercy, G.R.

    1960-01-01

    An investigation was made of the mobility and types of point defect introduced in platinum by deformation in liquid nitrogen, quenching into water from 1600 o C, or reactor irradiation at 50 o C. In all cases the activation energy for motion of the defect was determined from measurements of electrical resistivity. Measurements of density, hardness, and x-ray line broadening were also made there applicable. These experiments indicated that the principal defects remaining in platinum after irradiation were single vacant lattice sites and after quenching were pairs of vacant lattice sites. Those present after deformation In liquid nitrogen were single vacant lattice sites and another type of defect, perhaps interstitial atoms. (author)

  4. Synergistic effect of Brønsted acid and platinum on purification of automobile exhaust gases.

    Science.gov (United States)

    Fu, Wei; Li, Xin-Hao; Bao, Hong-Liang; Wang, Kai-Xue; Wei, Xiao; Cai, Yi-Yu; Chen, Jie-Sheng

    2013-01-01

    The catalytic purification of automobile exhaust gases (CO, NOx and hydrocarbons) is one of the most practiced conversion processes used to lower the emissions and to reduce the air pollution. Nevertheless, the good performance of exhaust gas purification catalysts often requires the high consumption of noble metals such as platinum. Here we report that the Brønsted acid sites on the external surface of a microporous silicoaluminophosphate (SAPO) act as a promoter for exhaust gas purification, effectively cutting the loading amount of platinum in the catalyst without sacrifice of performance. It is revealed that in the Pt-loaded SAPO-CHA catalyst, there exists a remarkable synergistic effect between the Brønsted acid sites and the Pt nanoparticles, the former helping to adsorb and activate the hydrocarbon molecules for NO reduction during the catalytic process. The thermal stability of SAPO-CHA also makes the composite catalyst stable and reusable without activity decay.

  5. Synergistic effect of Brønsted acid and platinum on purification of automobile exhaust gases

    Science.gov (United States)

    Fu, Wei; Li, Xin-Hao; Bao, Hong-Liang; Wang, Kai-Xue; Wei, Xiao; Cai, Yi-Yu; Chen, Jie-Sheng

    2013-01-01

    The catalytic purification of automobile exhaust gases (CO, NOx and hydrocarbons) is one of the most practiced conversion processes used to lower the emissions and to reduce the air pollution. Nevertheless, the good performance of exhaust gas purification catalysts often requires the high consumption of noble metals such as platinum. Here we report that the Brønsted acid sites on the external surface of a microporous silicoaluminophosphate (SAPO) act as a promoter for exhaust gas purification, effectively cutting the loading amount of platinum in the catalyst without sacrifice of performance. It is revealed that in the Pt-loaded SAPO-CHA catalyst, there exists a remarkable synergistic effect between the Brønsted acid sites and the Pt nanoparticles, the former helping to adsorb and activate the hydrocarbon molecules for NO reduction during the catalytic process. The thermal stability of SAPO-CHA also makes the composite catalyst stable and reusable without activity decay. PMID:23907148

  6. High-temperature electrochemical characterization of Ru core Pt shell fuel cell catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Bokach, D.; Fuente, J.L.G. de la; Tsypkin, M.; Ochal, P.; Tunold, R.; Sunde, S.; Seland, F. [Department of Materials Science and Engineering, Norwegian University of Science and Technology (NTNU), Sem Saelands veg 12, N-7491 Trondheim (Norway); Endsjoe, I.C. [Washington Mills AS, NO-7300 Orkanger (Norway)

    2011-12-15

    The electrooxidation of methanol was studied at elevated temperature and pressure by cyclic voltammetry and constant potential experiments at real fuel cell electrocatalysts. Ruthenium core and platinum shell nanoparticles were synthesized by a sequential polyol route, and characterized electrochemically by CO stripping at room temperature to quickly confirm the structure of the synthesized core-shell structure as compared to pure commercial Pt/C and Pt-Ru/C alloy catalysts. A significant promotional effect of Pt decorated Ru cores in the methanol oxidation was found at elevated temperatures and rather high-electrode potentials. A negative potential shift of the methanol oxidation peak is observed for the Ru rate at Pt/C core-shell catalyst at moderate temperatures, while a significant shift to positive potentials of the methanol oxidation peak occurs for Pt/C catalysts. The onset potential for methanol oxidation is lowered some 200 mV from room temperature and up to 120 C for all electrocatalysts, indicating that it is the thermal activity of water adsorption that dictates the onset potential. Direct methanol fuel cell experiments showed only small performance differences between Ru rate at Pt/C and Pt/C anode electrocatalysts, suggesting the necessity of render possible the formation of surface oxygen species at lower electrode potentials. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  7. Palladium-Based Catalysts as Electrodes for Direct Methanol Fuel Cells: A Last Ten Years Review

    Directory of Open Access Journals (Sweden)

    Juan Carlos Calderón Gómez

    2016-08-01

    Full Text Available Platinum-based materials are accepted as the suitable electrocatalysts for anodes and cathodes in direct methanol fuel cells (DMFCs. Nonetheless, the increased demand and scarce world reserves of Pt, as well as some technical problems associated with its use, have motivated a wide research focused to design Pd-based catalysts, considering the similar properties between this metal and Pt. In this review, we present the most recent advancements about Pd-based catalysts, considering Pd, Pd alloys with different transition metals and non-carbon supported nanoparticles, as possible electrodes in DMFCs. In the case of the anode, different reported works have highlighted the capacity of these new materials for overcoming the CO poisoning and promote the oxidation of other intermediates generated during the methanol oxidation. Regarding the cathode, the studies have showed more positive onset potentials, as fundamental parameter for determining the mechanism of the oxygen reduction reaction (ORR and thus, making them able for achieving high efficiencies, with less production of hydrogen peroxide as collateral product. This revision suggests that it is possible to replace the conventional Pt catalysts by Pd-based materials, although several efforts must be made in order to improve their performance in DMFCs.

  8. Recent developments of nano-structured materials as the catalysts for oxygen reduction reaction

    Science.gov (United States)

    Kang, SungYeon; Kim, HuiJung; Chung, Yong-Ho

    2018-04-01

    Developments of high efficient materials for electrocatalyst are significant topics of numerous researches since a few decades. Recent global interests related with energy conversion and storage lead to the expansion of efforts to find cost-effective catalysts that can substitute conventional catalytic materials. Especially, in the field of fuel cell, novel materials for oxygen reduction reaction (ORR) have been noticed to overcome disadvantages of conventional platinum-based catalysts. Various approaching methods have been attempted to achieve low cost and high electrochemical activity comparable with Pt-based catalysts, including reducing Pt consumption by the formation of hybrid materials, Pt-based alloys, and not-Pt metal or carbon based materials. To enhance catalytic performance and stability, numerous methods such as structural modifications and complex formations with other functional materials are proposed, and they are basically based on well-defined and well-ordered catalytic active sites by exquisite control at nanoscale. In this review, we highlight the development of nano-structured catalytic materials for ORR based on recent findings, and discuss about an outlook for the direction of future researches.

  9. Development of styrene divinyl benzene catalyst in isotopic exchange reaction of water and hydrogen

    International Nuclear Information System (INIS)

    Morishita, Teizo; Noda, Shigeyuki; Tan, Tsutomu; Noguchi, Hiroshi

    1982-01-01

    Styrene divinyl benzene copolymer (SDBC) is hydrophobic, and porous with large specific surface area. Utilizing these properties, the SDBC was used for the carrier of catalyst in water-hydrogen exchange reaction process, and the hydrophobic platinum catalyst with very high performance was able to be developed. However, the SDBC is usually fine particles smaller than 1 mm, and is not suitable as the filling catalyst for exchange reaction towers. Therefore, in this study, using only platinum as a catalyst metal, the improvement of the property of carriers was emphatically examined, and platinum bearing was proved with an optical or electron microscope. As the result, it was found that the SDBC catalyst showed high activity practically usable as the hydrophobic catalyst for heavy water or tritium exchange reaction. The characteristics of SDBC are explained. The manufacturing processes of the catalyst by making SDBC carriers with fine particles and letting them bear platinum are described. The results of the trial manufacture of spherical, extrusion-formed and honeycomb carrier catalysts are reported. Platinum must be dispersed over the large specific surface area of SDBC carriers. (Kako, I.)

  10. Catalyst layers for PEMFC manufactured by flexography printing process: performances and structure

    Energy Technology Data Exchange (ETDEWEB)

    Bois, C.; Blayo, A.; Chaussy, D. [Laboratory of Pulp and Paper Science and Graphic Arts (LGP2) (UMR 5518 CNRS-CTP-INPG), Grenoble Institute of Technology (INP Grenoble - PAGORA), St Martin d' Heres (France); Vincent, R.; Mercier, A.G.; Nayoze, C. [Commissariat a l' Energie Atomique et aux Energies Alternatives (CEA)/DRT/LITEN, Laboratoire des Composants Piles a Combustible, Electrolyse et Modelisation (LCPEM), Grenoble (France)

    2012-04-15

    This article focuses on the potential of a classic printing process, flexography, for manufacturing proton exchange membrane fuel cells (PEMFCs). Gas diffusion electrodes (GDEs) are produced by deposition of a water-based catalyst ink on a gas diffusion layer (GDL). The affinity between the ink and the GDL is quantified. Thus, the strong hydrophobic character of the GDL and the poor printability of the ink are demonstrated. However, the permeability of the GDL allows developing a multilayer protocol. The deposition by superimposition of ink layers allows control of the platinum amount and to obtain catalyst layers with a similar density of platinum nanoparticles to coated samples. At similar platinum loading, flexography and coating made catalyst layers offer similar performances, which confirm the relevance of flexography in catalyst layer manufacturing. Structural characterization shows that manufacturing protocol and process has an influence on catalyst layer microstructure. However, catalyst layer cracking and aggregation are increased with the catalyst layer thickness, diminishing the charge and gas diffusion into the catalyst layer resulting in performance degradation. Consequently, a catalyst layer with 0.46 mgPt cm{sup -2} reaches similar performances to catalyst layers with 1.77 and 2.01 times less platinum loading. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  11. Hydrophobic catalyst mixture for the isotopic exchange reaction between hydrogen and water

    Energy Technology Data Exchange (ETDEWEB)

    Paek, S.; Ahn, D. H.; Choi, H. J.; Kim, K. R.; Lee, M.; Yim, S. P.; Chung, H. [KAERI, Taejon (Korea, Republic of)

    2005-11-15

    Pt/SDBC catalyst, which is used for the hydrogen-water isotopic exchange reaction, was prepared. The various properties of the catalyst, such as the thermal stability, pore structure and the platinum dispersion, were investigated. A hydrophobic Pt/SDBC catalyst which has been developed for the LPCE column of the WTRF (Wolsong Tritium Removal Facility) was tested in a trickle bed reactor. An experimental apparatus was built for the test of the catalyst at various temperatures and gas velocities.

  12. Hydrophobic catalyst mixture for the isotopic exchange reaction between hydrogen and water

    International Nuclear Information System (INIS)

    Paek, S.; Ahn, D. H.; Choi, H. J.; Kim, K. R.; Lee, M.; Yim, S. P.; Chung, H.

    2005-01-01

    Pt/SDBC catalyst, which is used for the hydrogen-water isotopic exchange reaction, was prepared. The various properties of the catalyst, such as the thermal stability, pore structure and the platinum dispersion, were investigated. A hydrophobic Pt/SDBC catalyst which has been developed for the LPCE column of the WTRF (Wolsong Tritium Removal Facility) was tested in a trickle bed reactor. An experimental apparatus was built for the test of the catalyst at various temperatures and gas velocities

  13. Biocompatibility of dental alloys

    Energy Technology Data Exchange (ETDEWEB)

    Braemer, W. [Heraeus Kulzer GmbH and Co. KG, Hanau (Germany)

    2001-10-01

    Modern dental alloys have been used for 50 years to produce prosthetic dental restorations. Generally, the crowns and frames of a prosthesis are prepared in dental alloys, and then veneered by feldspar ceramics or composites. In use, the alloys are exposed to the corrosive influence of saliva and bacteria. Metallic dental materials can be classified as precious and non-precious alloys. Precious alloys consist of gold, platinum, and small amounts of non-precious components such as copper, tin, or zinc. The non-precious alloys are based on either nickel or cobalt, alloyed with chrome, molybdenum, manganese, etc. Titanium is used as Grade 2 quality for dental purposes. As well as the dental casting alloys, high purity electroplated gold (99.8 wt.-%) is used in dental technology. This review discusses the corrosion behavior of metallic dental materials with saliva in ''in vitro'' tests and the influence of alloy components on bacteria (Lactobacillus casei and Streptococcus mutans). The test results show that alloys with high gold content, cobalt-based alloys, titanium, and electroplated gold are suitable for use as dental materials. (orig.)

  14. Developments in platinum anticancer drugs

    Science.gov (United States)

    Tylkowski, Bartosz; Jastrząb, Renata; Odani, Akira

    2018-01-01

    Platinum compounds represent one of the great success stories of metals in medicine. Following the unexpected discovery of the anticancer activity of cisplatin (Fig. 1) in 1965 by Prof. Rosenberg [1], a large number of its variants have been prepared and tested for their ability to kill cancer cells and inhibit tumor growth. Although cisplatin has been in use for over four decades, new and more effective platinum-based therapeutics are finally on the horizon. A wide introduction to anticancer studies is given by the authors of the previous chapter. This chapter aims at providing the readers with a comprehensive and in-depth understanding of recent developments of platinum anticancer drugs and to review the state of the art. The chapter is divided into two parts. In the first part we present a historical aspect of platinum and its complexes, while in the second part we give an overview of developments in the field of platinum anticancer agents.

  15. Development of the kinetic model of platinum catalyzed ammonia oxidation in a microreactor

    NARCIS (Netherlands)

    Rebrov, E.V.; Croon, de M.H.J.M.; Schouten, J.C.

    2002-01-01

    The ammonia oxidation reaction on supported polycrystalline platinum catalyst was investigated in an aluminum-based microreactor. An extensive set of reactions was included in the chemical reactor modeling to facilitate the construction of a kinetic model capable of satisfactory predictions for a

  16. Study and development of membrane electrode assemblies for Proton Exchange Membrane Fuel Cell (PEMFC) with palladium based catalysts

    International Nuclear Information System (INIS)

    Bonifacio, Rafael Nogueira

    2013-01-01

    PEMFC systems are capable of generating electricity with high efficiency and low or no emissions, but durability and cost issues prevent its large commercialization. In this work MEA with palladium based catalysts were developed, Pd/C, Pt/C and alloys PdPt/C catalysts with different ratios between metals and carbon were synthesized and characterized. A study of the ratio between catalyst and Nafion Ionomer for formation of high performance triple-phase reaction was carried out, a mathematical model to implement this adjustment to catalysts with different relations between metal and support taking into account the volumetric aspects of the catalyst layer was developed and then a study of the catalyst layer thickness was performed. X-ray diffraction, Transmission and Scanning Electron Microscopy, X-ray Energy Dispersive, Gas Pycnometry, Mercury Intrusion Porosimetry, Gas adsorption according to the BET and BJH equations, and Thermo Gravimetric Analysis techniques were used for characterization and particle size, specific surface areas and lattice parameters determinations were also carried out. All catalysts were used on MEAs preparation and evaluated in 5 cm 2 single cell from 25 to 100 °C at 1 atm and the best composition was also evaluated at 3 atm. In the study of metals for reactions, to reduce the platinum applied to the electrodes without performance losses, Pd/C and PdPt/C 1:1 were selected for anodes and cathodes, respectively. The developed MEA structure used 0,25 mgPt.cm -2 , showing power densities up to 550 mW.cm -2 and power of 2.2 kW net per gram of platinum. The estimated costs showed that there was a reduction of up to 64.5 %, compared to the MEA structures previously known. Depending on the temperature and operating pressure, values from US$ 1,475.30 to prepare MEAs for each installed kilowatt were obtained. Taking into account recent studies, it was concluded that the cost of the developed MEA is compatible with PEMFC stationary application

  17. Electrochemical formation of a Pt/Zn alloy and its use as a catalyst for oxygen reduction reaction in fuel cells.

    Science.gov (United States)

    Sode, Aya; Li, Winton; Yang, Yanguo; Wong, Phillip C; Gyenge, Elod; Mitchell, Keith A R; Bizzotto, Dan

    2006-05-04

    The characterization of an electrochemically created Pt/Zn alloy by Auger electron spectroscopy is presented indicating the formation of the alloy, the oxidation of the alloy, and the room temperature diffusion of the Zn into the Pt regions. The Pt/Zn alloy is stable up to 1.2 V/RHE and can only be removed with the oxidation of the base Pt metal either electrochemically or in aqua regia. The Pt/Zn alloy was tested for its effectiveness toward oxygen reduction. Kinetics of the oxygen reduction reaction (ORR) were measured using a rotating disk electrode (RDE), and a 30 mV anodic shift in the potential of ORR was found when comparing the Pt/Zn alloy to Pt. The Tafel slope was slightly smaller than that measured for the pure Pt electrode. A simple procedure for electrochemically modifying a Pt-containing gas diffusion electrode (GDE) with Zn was developed. The Zn-treated GDE was pressed with an untreated GDE anode, and the created membrane electrode assembly was tested. Fuel cell testing under two operating conditions (similar anode and cathode inlet pressures, and a larger cathode inlet pressure) indicated that the 30 mV shift observed on the RDE was also evident in the fuel cell tests. The high stability of the Pt/Zn alloy in acidic environments has a potential benefit for fuel cell applications.

  18. Cu₂O template synthesis of high-performance PtCu alloy yolk-shell cube catalysts for direct methanol fuel cells.

    Science.gov (United States)

    Ye, Sheng-Hua; He, Xu-Jun; Ding, Liang-Xin; Pan, Zheng-Wei; Tong, Ye-Xiang; Wu, Mingmei; Li, Gao-Ren

    2014-10-21

    Novel PtCu alloy yolk-shell cubes were fabricated via the disproportionation and displacement reactions in Cu2O yolk-shell cubes, and they exhibit significantly improved catalytic activity and durability for methanol electrooxidation.

  19. Dissolved oxygen removal in a column packed with catalyst

    International Nuclear Information System (INIS)

    Lee, Han Soo; Chung, Hong Suk; Cho, Young Hyun; Ahn, Do Hee; Kim, Eun Kee

    1996-01-01

    The dissolved oxygen removed by H 2 -O 2 reaction in column packed with various catalysts was examined. The catalysts employed were the prepared polymeric catalyst, platinum on activated carbon, and Lewatit OC-1045 which is available commercially. The column experiments with the prepared polymeric catalyst showed the dissolved oxygen reduced to 35 ppb which is below the limit in feel water of power plants. This implies the likely application of the prepared catalyst for practical use. The activated carbon required the pre-treatment for the removed of dissolved oxygen, since the surface of activated carbon contains much oxygen adsorbed initially. The Lewatit catalyst exposed the best performance, however, the aged one showed the gradual loss of catalytic activity due to degradation of resin catalyst. 14 refs., 6 figs., 2 tabs. (author)

  20. Co-catalytic effect of Rh and Ru for the ethanol electro-oxidation in amorphous microparticulated alloys

    Energy Technology Data Exchange (ETDEWEB)

    Blanco, Tamara C.; Pierna, Angel R.; Barroso, Javier [Dpto. de Ingenieria Quimica y del Medio Ambiente, Universidad del Pais Vasco, San Sebastian (Spain)

    2011-11-15

    The ethanol electro-oxidation on platinum catalyst in acid media leads to the formation of acetaldehyde and acetic acid as main products. Another problem is the poisoning of the electro-catalyst surface with CO formed during the fuel oxidation reaction. To increase the performance of Direct Ethanol Fuel Cells (DEFCs) it is necessary to develop new electrode materials or modification of the existing Pt catalysts. This work presents the electrochemical response to ethanol and CO oxidation of different compositional amorphous alloys obtained by ball milling technique, used as electrodes. Alloys with Ni{sub 59}Nb{sub 40}Pt{sub 0.6}Rh{sub 0.4} and Ni{sub 59}Nb{sub 40}Pt{sub 0.6}Rh{sub 0.2}Ru{sub 0.2} composi-tions were studied. The current density towards ethanol oxidation decreases with the presence of ruthenium; however, this electrode shows the best tolerance to CO, with lower surface coverage (copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  1. Co-catalytic effect of Rh and Ru for the ethanol electro-oxidation in amorphous microparticulated alloys

    International Nuclear Information System (INIS)

    Blanco, Tamara C.; Pierna, Angel R.; Barroso, Javier

    2011-01-01

    The ethanol electro-oxidation on platinum catalyst in acid media leads to the formation of acetaldehyde and acetic acid as main products. Another problem is the poisoning of the electro-catalyst surface with CO formed during the fuel oxidation reaction. To increase the performance of Direct Ethanol Fuel Cells (DEFCs) it is necessary to develop new electrode materials or modification of the existing Pt catalysts. This work presents the electrochemical response to ethanol and CO oxidation of different compositional amorphous alloys obtained by ball milling technique, used as electrodes. Alloys with Ni 59 Nb 40 Pt 0.6 Rh 0.4 and Ni 59 Nb 40 Pt 0.6 Rh 0.2 Ru 0.2 composi-tions were studied. The current density towards ethanol oxidation decreases with the presence of ruthenium; however, this electrode shows the best tolerance to CO, with lower surface coverage (copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  2. Oxygen Reduction on Platinum

    DEFF Research Database (Denmark)

    Nesselberger, Markus

    . The influence of the ion adsorption strength, which is observed in the “particle size studies” on the oxygen reduction rate on Pt/C catalysts, is further investigated under similar reaction conditions by infrared spectroscopy. The designed in situ electrochemical ATR-FTIR setup features a high level...... of instrument automation and online data treatment, and provides welldefined mass transport conditions enabling kinetic measurements. A modified electrochemical / spectroscopic interface is presented allowing the exclusive investigation of the Pt/C catalyst layer. Three types of potential dependent adsorption...... adsorption on Pt does not block the ORR directly. Instead, the onset of oxide formation with the concomitant conversion of the anion adsorbate layer is the decisive blocking mechanism....

  3. Highly sensitive silicon microreactor for catalyst testing

    DEFF Research Database (Denmark)

    Henriksen, Toke Riishøj; Olsen, Jakob Lind; Vesborg, Peter Christian Kjærgaard

    2009-01-01

    by directing the entire gas flow through the catalyst bed to a mass spectrometer, thus ensuring that nearly all reaction products are present in the analyzed gas flow. Although the device can be employed for testing a wide range of catalysts, the primary aim of the design is to allow characterization of model...... catalysts which can only be obtained in small quantities. Such measurements are of significant fundamental interest but are challenging because of the low surface areas involved. The relationship between the reaction zone gas flow and the pressure in the reaction zone is investigated experimentally......, it is found that platinum catalysts with areas as small as 15 mu m(2) are conveniently characterized with the device. (C) 2009 American Institute of Physics. [doi:10.1063/1.3270191]...

  4. Highly active carbon supported Pd cathode catalysts for direct formic acid fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Mikolajczuk-Zychora, A., E-mail: amikolajczuk@ichf.edu.pl [Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw (Poland); Borodzinski, A.; Kedzierzawski, P.; Mierzwa, B. [Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw (Poland); Mazurkiewicz-Pawlicka, M. [Faculty of Materials Science and Engineering, Warsaw University of Technology, Wołoska 141, 02-507 Warsaw (Poland); Faculty of Chemical and Process Engineering, Warsaw University of Technology, Warynskiego 1, Warsaw (Poland); Stobinski, L. [Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw (Poland); Faculty of Chemical and Process Engineering, Warsaw University of Technology, Warynskiego 1, Warsaw (Poland); Ciecierska, E. [Faculty of Materials Science and Engineering, Warsaw University of Technology, Wołoska 141, 02-507 Warsaw (Poland); Zimoch, A.; Opałło, M. [Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw (Poland)

    2016-12-01

    Highlights: • Palladium catalyst used on the cathode DFAFC is comparable to commercial platinum catalyst. • The treatment of carbon supports in nitric acid(V) increases the electrochemically available metal surface area and the catalytic activity in oxygen reduction reaction of catalysts. - Abstract: One of the drawbacks of low-temperature fuel cells is high price of platinum-based catalysts used for the electroreduction of oxygen at the cathode of the fuel cell. The aim of this work is to develop the palladium catalyst that will replace commonly used platinum cathode catalysts. A series of palladium catalysts for oxygen reduction reaction (ORR) were prepared and tested on the cathode of Direct Formic Acid Fuel Cell (DFAFC). Palladium nanoparticles were deposited on the carbon black (Vulcan) and on multiwall carbon nanotubes (MWCNTs) surface by reduction of palladium(II) acetate dissolved in ethanol. Hydrazine was used as a reducing agent. The effect of functionalization of the carbon supports on the catalysts physicochemical properties and the ORR catalytic activity on the cathode of DFAFC was studied. The supports were functionalized by treatment in nitric acid for 4 h at 80 °C. The structure of the prepared catalysts has been characterized by thermogravimetric analysis (TGA), X-ray diffraction (XRD), transmission electron microscope (TEM) and cyclic voltammetry (CV). Hydrophilicity of the catalytic layers was determined by measuring contact angles of water droplets. The performance of the prepared catalysts has been compared with that of the commercial 20 wt.% Pt/C (Premetek) catalyst. The maximum power density obtained for the best palladium catalyst, deposited on the surface of functionalized carbon black, is the same as that for the commercial Pt/C (Premetek). Palladium is cheaper than platinum, therefore the developed cathode catalyst is promising for future applications.

  5. Properties and application of noble metal catalysts for heterogeneous catalytic hydrogenations

    Energy Technology Data Exchange (ETDEWEB)

    Horn, G; Frohning, C D; Cornils, B [Ruhrchemie A.G., Oberhausen (Germany, F.R.)

    1976-07-01

    The special properties of the six platinum group elements - ruthenium, rhodium, palladium, osmium, iridium, platinum - make them useful as active metals for catalytic reactions. Especially valuable is their property of favouring a single reaction even when the possibility of a number of parallel reactions exists under certain reaction conditions. This selectivity of the noble metal catalyst may be directed or enhanced through appropriate choise of the metal, the reaction conditions, the duration of the reaction, the amount of hydrogen etc. Even the physical state of the catalyst - supported or unsupported - is of influence when using noble metal catalysts as described in this report.

  6. Highly active carbon supported Pd cathode catalysts for direct formic acid fuel cells

    Science.gov (United States)

    Mikolajczuk-Zychora, A.; Borodzinski, A.; Kedzierzawski, P.; Mierzwa, B.; Mazurkiewicz-Pawlicka, M.; Stobinski, L.; Ciecierska, E.; Zimoch, A.; Opałło, M.

    2016-12-01

    One of the drawbacks of low-temperature fuel cells is high price of platinum-based catalysts used for the electroreduction of oxygen at the cathode of the fuel cell. The aim of this work is to develop the palladium catalyst that will replace commonly used platinum cathode catalysts. A series of palladium catalysts for oxygen reduction reaction (ORR) were prepared and tested on the cathode of Direct Formic Acid Fuel Cell (DFAFC). Palladium nanoparticles were deposited on the carbon black (Vulcan) and on multiwall carbon nanotubes (MWCNTs) surface by reduction of palladium(II) acetate dissolved in ethanol. Hydrazine was used as a reducing agent. The effect of functionalization of the carbon supports on the catalysts physicochemical properties and the ORR catalytic activity on the cathode of DFAFC was studied. The supports were functionalized by treatment in nitric acid for 4 h at 80 °C. The structure of the prepared catalysts has been characterized by thermogravimetric analysis (TGA), X-ray diffraction (XRD), transmission electron microscope (TEM) and cyclic voltammetry (CV). Hydrophilicity of the catalytic layers was determined by measuring contact angles of water droplets. The performance of the prepared catalysts has been compared with that of the commercial 20 wt.% Pt/C (Premetek) catalyst. The maximum power density obtained for the best palladium catalyst, deposited on the surface of functionalized carbon black, is the same as that for the commercial Pt/C (Premetek). Palladium is cheaper than platinum, therefore the developed cathode catalyst is promising for future applications.

  7. Ternary Pt9RhFex Nanoscale Alloys as Highly Efficient Catalysts with Enhanced Activity and Excellent CO-Poisoning Tolerance for Ethanol Oxidation.

    Science.gov (United States)

    Wang, Peng; Yin, Shibin; Wen, Ying; Tian, Zhiqun; Wang, Ningzhang; Key, Julian; Wang, Shuangbao; Shen, Pei Kang

    2017-03-22

    To address the problems of high cost and poor stability of anode catalysts in direct ethanol fuel cells (DEFCs), ternary nanoparticles Pt 9 RhFe x (x = 1, 3, 5, 7, and 9) supported on carbon powders (XC-72R) have been synthesized via a facile method involving reduction by sodium borohydride followed by thermal annealing in N 2 at ambient pressure. The catalysts are physically characterized by X-ray diffraction, scanning transmission electron microscopy, and X-ray photoelectron spectroscopy, and their catalytic performance for the ethanol oxidation reaction (EOR) is evaluated by cyclic and linear scan voltammetry, CO-stripping voltammograms, and chronopotentiometry. All the Pt 9 RhFe x /C catalysts of different atomic ratios produce high EOR catalytic activity. The catalyst of atomic ratio composition 9:1:3 (Pt/Rh/Fe) has the highest activity and excellent CO-poisoning tolerance. Moreover, the enhanced EOR catalytic activity on Pt 9 RhFe 3 /C when compared to Pt 9 Rh/C, Pt 3 Fe/C, and Pt/C clearly demonstrates the presence of Fe improves catalytic performance. Notably, the onset potential for CO oxidation on Pt 9 RhFe 3 /C (0.271 V) is ∼55, 75, and 191 mV more negative than on Pt 9 Rh/C (0.326 V), Pt 3 Fe/C (0.346 V), and Pt/C (0.462 V), respectively, which implies the presence of Fe atoms dramatically improves CO-poisoning tolerance. Meanwhile, compared to the commercial PtRu/C catalyst, the peak potential on Pt 9 RhFe 3 /C for CO oxidation was just slightly changed after several thousand cycles, which shows high stability against the potential cycling. The possible mechanism by which Fe and Rh atoms facilitate the observed enhanced performance is also considered herein, and we conclude Pt 9 RhFe 3 /C offers a promising anode catalyst for direct ethanol fuel cells.

  8. Optimization of the Pd-Fe-Mo Catalysts for Oxygen Reduction Reaction in Proton-Exchange Membrane Fuel Cells

    International Nuclear Information System (INIS)

    Lee, Yeayeon; Jang, Jeongseok; Lee, Jin Goo; Jeon, Ok Sung; Kim, Hyeong Su; Hwang, Ho Jung; Shul, Yong Gun

    2016-01-01

    Highlights: • Pd-Mo-Fe catalysts show high catalytic activity and stability for oxygen-reduction reactions in acid media. • The optimum compositions were 7.5:1.5:1.0 for Pd-Fe-Mo, and the optimum temperatures were 500 °C. • The Pd-Fe-Mo catalysts were successfully applied to the PEMFC cathode, showing ∼500 mA cm −1 at 0.6 V. • The lattice constant was strongly related to the activity and stability of the catalysts for oxygen-reduction reactions. - Abstract: Highly active and durable non-platinum catalysts for oxygen-reduction reaction (ORR) have been developed for energy conversion devices such as proton-exchange membrane fuel cells (PEMFCs). In this study, Pd-Fe-Mo catalyst is reported as a non-platinum catalyst for ORR. The atomic ratio and annealing temperatures are controlled on the catalysts to understand interplay between their physical and chemical properties and electrochemical activities. The Pd-Fe-Mo catalyst optimized with 7.5:1.5:1.0 of the atomic ratio and 500 °C of the annealing temperature shows 32.18 mA mg −1 PGM (PGM: platinum group metal) of the kinetic current density at 0.9 V for ORR, which is comparable to that of commercial Pt/C catalyst. The current density is degraded to 6.20 mA mg −1 PGM after 3000 cycling of cyclic voltammetry, but it is greatly enhanced value compared to other non-platinum catalysts. In actual application to PEMFCs, the 20% Pd-Fe-Mo catalyst supported on carbons exhibits a high performance of 506 mA cm −2 at 0.6 V. The results suggest that the Pd-Fe-Mo catalyst can be a good candidate for non-platinum ORR catalysts.

  9. Redeposition of electrochemically dissolved platinum as nanoparticles on carbon

    DEFF Research Database (Denmark)

    Norgaard, C. F.; Stamatin, S. N.; Skou, E. M.

    2014-01-01

    communication reports a simple chemical method for reprecipitating platinum as nanoparticles of reasonable particle size on a carbon substrate without intermediary separation and handling of solid platinum salt. After electrochemical dissolution, platinum was reprecipitated using a polyol based method. Platinum...

  10. Catalysts prepared by interaction of transition metal organometallic compounds with the surface of supporters

    International Nuclear Information System (INIS)

    Ryndin, Yu.A.; Kuznetsov, B.N.; Moroz, Eh.M.; Tripol'skij, A.A.; Ermakov, Yu.I.

    1977-01-01

    The phase composition and dispersion of the catalyst (W + Pt)/SiO 2 , subjected to oxidation and reduction at an elevated temperature was investigated by roentgenographic methods (radial distribution of atoms and broadening of X-ray lines). The X-ray data are compared with the results of chemisorption measurements of platinum dispersion in the specimens and their activity in reactions of benzene hydration and ethane hydrogenolysis. It has been established that catalysts reduced at 600 deg C and not subjected to oxidation, as well as catalysts oxidized at 200 deg C and then reduced at 600 deg C are characterized by a high platinum dispersion. The dispersion catalysts are noted for their activity in the reaction of benzene hydration and ethane hydrogenolysis. On the other hand, the activity of catalysts oxidized and reduced in rigid conditions (600 deg C, air) is much lower and is close to the activity of the coarsely dispersed PtSiO 2 catalyst

  11. Communicating catalysts

    Science.gov (United States)

    Weckhuysen, Bert M.

    2018-06-01

    The beauty and activity of enzymes inspire chemists to tailor new and better non-biological catalysts. Now, a study reveals that the active sites within heterogeneous catalysts actively cooperate in a fashion phenomenologically similar to, but mechanistically distinct, from enzymes.

  12. Unsupported NiPt alloy metal catalysts prepared by water-in-oil (W/O) microemulsion method for methane cracking

    KAUST Repository

    Zhou, Lu; Basset, Jean-Marie

    2016-01-01

    for methane cracking. By XRD (X-ray powder diffraction), XPS (X-ray photoelectron spectroscopy) and TEM (Transmission electron microscopy) analyses, the formation of Ni(0)Pt(0) alloy is believed to be the main reason for the reactivity improvement

  13. Two Catalysts for Selective Oxidation of Contaminant Gases

    Science.gov (United States)

    Wright, John D.

    2011-01-01

    Two catalysts for the selective oxidation of trace amounts of contaminant gases in air have been developed for use aboard the International Space Station. These catalysts might also be useful for reducing concentrations of fumes in terrestrial industrial facilities especially facilities that use halocarbons as solvents, refrigerant liquids, and foaming agents, as well as facilities that generate or utilize ammonia. The first catalyst is of the supported-precious-metal type. This catalyst is highly active for the oxidation of halocarbons, hydrocarbons, and oxygenates at low concentrations in air. This catalyst is more active for the oxidation of hydrocarbons and halocarbons than are competing catalysts developed in recent years. This catalyst completely converts these airborne contaminant gases to carbon dioxide, water, and mineral acids that can be easily removed from the air, and does not make any chlorine gas in the process. The catalyst is thermally stable and is not poisoned by chlorine or fluorine atoms produced on its surface during the destruction of a halocarbon. In addition, the catalyst can selectively oxidize ammonia to nitrogen at a temperature between 200 and 260 C, without making nitrogen oxides, which are toxic. The temperature of 260 C is higher than the operational temperature of any other precious-metal catalyst that can selectively oxidize ammonia. The purpose of the platinum in this catalyst is to oxidize hydrocarbons and to ensure that the oxidation of halocarbons goes to completion. However, the platinum exhibits little or no activity for initiating the destruction of halocarbons. Instead, the attack on the halocarbons is initiated by the support. The support also provides a high surface area for exposure of the platinum. Moreover, the support resists deactivation or destruction by halogens released during the destruction of halocarbons. The second catalyst is of the supported- metal-oxide type. This catalyst can selectively oxidize ammonia to

  14. The platinum catalysed decomposition of hydrazine in acidic media

    International Nuclear Information System (INIS)

    Ananiev, A.V.; Tananaev, I.G.; Brossard, Ph.; Broudic, J.C.

    2000-01-01

    Kinetic study of the hydrazine decomposition in the solutions of HClO 4 , H 2 SO 4 and HNO 3 in the presence of Pt/SiO 2 catalyst has been undertaken. It was shown that the kinetics of the hydrazine catalytic decomposition in HClO 4 and H 2 SO 4 are identical. The process is determined by the heterogeneous catalytic auto-decomposition of N 2 H 4 on the catalyst's surface. The platinum catalysed hydrazine decomposition in the nitric acid solutions is a complex process, including heterogeneous catalytic auto-decomposition of N 2 H 4 , reaction of hydrazine with catalytically generated nitrous acid and the catalytic oxidation of hydrazine by nitric acid. The kinetic parameters of these reactions have been determined. The contribution of each reaction in the total process is determined by the liquid phase composition and by the temperature. (authors)

  15. Radiochemical neutron activation analysis of high pure palladium and platinum by ion exchange chromatography

    International Nuclear Information System (INIS)

    Sadikov, I.I.; Zinov'ev, V.G.; Sadikova, Z.O.; Salimov, M.I.

    2006-01-01

    Full text: The palladium and platinum are widely used for jewel manufacture because of their beautiful white color. However the most part of these metals are widely adopted in the world as catalysts. Many works on analytical chemistry of platinum group elements published during last years are devoted to determination of platinum and palladium in other materials. There are no articles on analysis technique of the palladium and platinum purity published during last 20 years. Available publications are very old and are published till 70th of the last century, and implement chemical and spectral methods. At the same time, the palladium and platinum are very suitable for NAA. Therefore the purpose of our research was development of high-sensitivity and multielement techniques of radiochemical neutron activation analysis of a high pure palladium and platinum. Research of nuclear characteristics of palladium and platinum has shown that radioactive nuclides with different yields are formed under the reactor neutrons. 109 , 111 , 111m Pd, 109m , 111 Ag, 191 , 197 , 199 Pt, 199 Au are the most important among them. 109Pd separation factor is equal to 1*10 5 at palladium analysis, whereas 197 Pt and 199 Au separation factor is equal to 1*10 4 at the platinum analysis every other day after irradiation. Palladium and platinum can be separated by precipitation, extraction and ion exchange methods. For separation of radioactive nuclide of the matrix elements from the impurity elements we used ion exchange chromatography system Dowex-1x8 - 1 M HNO 3 for palladium and Dowex-1x8 - 0.1 M HNO 3 for platinum. At the HNO 3 acid concentrations variation from 0,1 M to 1 M more then 25 elements have distribution factors less than 1 and 10 elements have distribution factors 5 while matrix elements have distribution factors higher than 100. It allows an effective separation of these elements from palladium and platinum. Optimum sizes of the chromatographic column and the column effluent

  16. A thermodynamic evaluation of the potential for cryptic formation of incidental Au-Fe alloy catalysts during flexible cell experimental studies of abiotic alkanogenesis during serpentinization

    Science.gov (United States)

    Lazar, C.

    2017-12-01

    The formation of abiotic alkanes via CO2 reduction during serpentinization is an important process in astrobiology and geochemistry. Aqueous alkane concentrations in natural settings are often non-equilibrated, thus motivating many experimental studies of CO2 reduction kinetics. A well-established result of such studies is the strong catalytic effect of metallic Feo on the conversion rate of CO2 to alkanes. Because alkanogenetic serpentinization experiments often feature Fe-bearing minerals contained in gold vessels, incidental metallic Feo may precipitate during an experiment as Au-Fe alloy. Such alloy may be catalytic, potentially leading to artificially rapid alkanogenesis and an overestimation of the catalytic strength of nominally nonmetallic Fe-bearing minerals, even if isotopically labeled 13C is used. To evaluate this potential for Au-Fe alloying, a thermodynamic analysis of the effect of oxygen fugacity on Au-Fe mixing has been performed at metamorphic grades relevant to experimental alkanogenesis. The results show that even relatively oxidized metal-free mineral assemblages such as the quartz-fayalite-magnetite buffer (QFM) can stably coexist with an Au-Fe alloy containing a few hundred ppm Fe. Given the strong catalytic effect of metallic Fe, any hydrocarbons generated during a hypothetical experiment containing, for example, the QFM assemblage might be catalyzed by trace Fe in an Au-Fe alloy, not by a QFM mineral. The effect is stronger for assemblages more reducing than QFM, which are notably common in serpentinites. This is a source of experimental uncertainty in reusable flexible gold cell apparatus that cannot be assessed by traditional blank experiments, which only demonstrate the effectiveness of post-run acid-cleaning procedures. A more effective approach would be the chemical analysis of a small, recoverable gold chip embedded into the experimental materials. By assuming that the experimental materials interact identically with the Au chip and

  17. Rhenium Nanochemistry for Catalyst Preparation

    Directory of Open Access Journals (Sweden)

    Vadim G. Kessler

    2012-08-01

    Full Text Available The review presents synthetic approaches to modern rhenium-based catalysts. Creation of an active center is considered as a process of obtaining a nanoparticle or a molecule, immobilized within a matrix of the substrate. Selective chemical routes to preparation of particles of rhenium alloys, rhenium oxides and the molecules of alkyltrioxorhenium, and their insertion into porous structure of zeolites, ordered mesoporous MCM matrices, anodic mesoporous alumina, and porous transition metal oxides are considered. Structure-property relationships are traced for these catalysts in relation to such processes as alkylation and isomerization, olefin metathesis, selective oxidation of olefins, methanol to formaldehyde conversion, etc.

  18. Using precipitated Cr on the surface of Cu-Cr alloy powders as catalyst synthesizing CNTs/Cu composite powders by water-assisted CVD

    Science.gov (United States)

    Zhou, Honglei; Liu, Ping; Chen, Xiaohong; Bi, Liming; Zhang, Ke; Liu, Xinkuan; Li, Wei; Ma, Fengcang

    2018-02-01

    Given that the conventional catalyst is easily soluble in the matrix to result in the poor performance of the CNTs/Cu composite materials, the Cr nano-particles precipitated on the surface of Cu-Cr particles are first used as catalysts to prepare the CNTs/Cu composite powders by means of water-assisted chemical vapor deposition in situ synthesis. The results show that the morphological difference of the precipitated Cr nano-particle is obvious with the change of solution and aging treatment, and the morphology, length and diameter of the synthetic CNTs are also different. The catalyst of Cr nano-particle has the best morphology and the synthesized CNTs had a good wettability with Cu particles when the Cu-Cr composite powders was solution-treated at 1023 K for 60 min and then was aged at 723 K for 120 min. The length, diameter, yield and purity of the synthesized CNTs can be also affected by the moisture content in the reaction gas. It is the most suitable for the growth of CNTs when the moisture content is 0.4%, and the high purity and defect-free CNTs with the smooth pipe wall, a diameter of 20 ˜ 30 nm and a length of up to 1800 nm can be obtained. The yield of CNTs with the moisture content of 0.4% reached to 138%, which was increased by 119% to compare with that without moisture. In this paper, a feasible technology was offered for the preparation of high performance CNTs/Cu composites.

  19. Characterizing Carbon Nanotube Supported Platinum Catalyst by Electrochemistry

    DEFF Research Database (Denmark)

    Veltzé, Sune; Andersen, Shuang Ma; Skou, Eivind Morten

    Den metode for hvorved forskellige platinbærende katalysatormaterialebærende kulstofunderlag vil blive testet elektrokemisk beskrives, hvor Elektrokemisk Masse Spektrometri nævnes som en mulighed sammen med mikroskopi....

  20. Development of industrial hydrogenating catalyst on rhenium base

    International Nuclear Information System (INIS)

    Chistyakova, G.A.; Bat', I.I.; Rebrova, V.V.

    1975-01-01

    Processes for forming rhenium catalysts on carbon carrier and their catalytic properties in nitrobenzene (NB) reduction were studied. Application of an ammonia preparation to the carbon surface produced impregnated carbon saturated at room temperature with a water solution of the ammonia preparation, taken in a volume equal to the volumetric capacity of the carbon. With one impregnation, 2% rhenium was taken up. Catalysts containing more than 5% rhenium were obtained by impregnating the carbon with heating and use of more concentrated solutions. Catalysts made in this way and dried at 100 0 C had the composition Re 2 OH/carbon/. The most active catalysts were those reduced at 200-250 0 C; higher temperatures, up to 300-500 0 C, decreased the activity. Study of the catalytic properties of the rhenium catalysts in a liquid phase reduction of NB showed that the specific activity of rhenium depends only slightly on the content of the active component in the catalyst and is close to the specific activity of palladium and considerably exceeds that of nickel. Study of the effect of the NB concentration and hydrogen pressure on the activity and stability of the 5% rhenium catalyst indicated that with NB concentrations from 50 to 10% the process takes place at an essentially constant rate; the order of the reaction was close to zero with an apparent activation energy of about 7000 cal/mole. At pressures of 15-200 atm the yield with the 5% catalyst was proportional to the hydrogen pressure. A big advantage of the rhenium catalysts in the reduction of NB is their high selectivity. With a higher activity than palladium and nickel catalysts, 5% rhenium catalyst produces a high operating capacity in a wide range of contact charges, which has considerable significance for industrial use in contact apparatus of the column type. Comparison of the costs of rhenium catalysts and granular carbon carrier with those of nickel, platinum, and palladium showed that 5% rhenium catalyst can

  1. Lunar CATALYST

    Data.gov (United States)

    National Aeronautics and Space Administration — Lunar Cargo Transportation and Landing by Soft Touchdown (Lunar CATALYST) is a NASA initiative to encourage the development of U.S. private-sector robotic lunar...

  2. Dissolution of Metal Supported Spent Auto Catalysts in Acids

    Directory of Open Access Journals (Sweden)

    Fornalczyk A.

    2016-03-01

    Full Text Available Metal supported auto catalysts, have been used in sports and racing cars initially, but nowadays their application systematically increases. In Metal Substrate (supported Converters (MSC, catalytic functions are performed by the Platinum Group Metals (PGM: Pt, Pd, Rh, similarly to the catalysts on ceramic carriers. The contents of these metals make that spent catalytic converters are valuable source of precious metals. All over the world there are many methods for the metals recovery from the ceramic carriers, however, the issue of platinum recovery from metal supported catalysts has not been studied sufficiently yet. The paper presents preliminary results of dissolution of spent automotive catalyst on a metal carrier by means of acids: H2SO4, HCl, HNO3, H3PO4. The main assumption of the research was the dissolution of base metals (Fe, Cr, Al from metallic carrier of catalyst, avoiding dissolution of PGMs. Dissolution was the most effective when concentrated hydrochloric acid, and 2M sulfuric acid (VI was used. It was observed that the dust, remaining after leaching, contained platinum in the level of 0.8% and 0.7%, respectively.

  3. Formic Acid Electrooxidation by a Platinum Nanotubule Array Electrode

    Directory of Open Access Journals (Sweden)

    Eric Broaddus

    2013-01-01

    Full Text Available One-dimensional metallic nanostructures such as nanowires, rods, and tubes have drawn much attention for electrocatalytic applications due to potential advantages that include fewer diffusion impeding interfaces with polymeric binders, more facile pathways for electron transfer, and more effective exposure of active surface sites. 1D nanostructured electrodes have been fabricated using a variety of methods, typically showing improved current response which has been attributed to improved CO tolerance, enhanced surface activity, and/or improved transport characteristics. A template wetting approach was used to fabricate an array of platinum nanotubules which were examined electrochemically with regard to the electrooxidation of formic acid. Arrays of 100 and 200 nm nanotubules were compared to a traditional platinum black catalyst, all of which were found to have similar surface areas. Peak formic acid oxidation current was observed to be highest for the 100 nm nanotubule array, followed by the 200 nm array and the Pt black; however, CO tolerance of all electrodes was similar, as were the onset potentials of the oxidation and reduction peaks. The higher current response was attributed to enhanced mass transfer in the nanotubule electrodes, likely due to a combination of both the more open nanostructure as well as the lack of a polymeric binder in the catalyst layer.

  4. Electrochemical characterization of platinum nanoparticles stabilized by amines

    International Nuclear Information System (INIS)

    Ramirez-Meneses, E.; Dominguez-Crespo, M.A.; Montiel-Palma, V.; Chavez-Herrera, V.H.; Gomez, E.; Hernandez-Tapia, G.

    2009-01-01

    In this work we present the synthesis by Chaudret approach of Pt nanoparticles stabilized by primary amine (-NH 2 ) compounds. Their electrochemical performance as cathodes in low temperature polymer electrolite fuel cells on the oxygen reduction reaction (ORR) is also presented. Transmission electron microscopy (TEM) images of the samples show Pt nanostructures with particle size varying from 10 to 100 nm depending on the kind of the stabilizer used during the catalyst preparation. In some cases well-dispersed isolated platinum nanoparticles were observed. The activity of the dispersed catalysts (Pt/C) with respect to the ORR was investigated using steady state polarization measurements. The kinetic parameters showed that although no significant differences between the Tafel slopes of the Pt catalysts exist, transfer coefficients and exchange current densities show higher activities when the Pt nanoparticles were stabilized by tert-butylamine (TBA). The performance with respect to the ORR of the Pt/C catalyst on vulcan carbon substrate is active and comparable to that reported in the literature for state-of-art electrocatalysts.

  5. Determination of platinum group metals by ICP-AES in environmental samples after preconcentration

    International Nuclear Information System (INIS)

    Vlasankova, R.; Sommer, L.

    1999-01-01

    Platinum group metal (PGM) may have toxic properties and their presence in the environment represent danger for human health. With the introduction of automobile catalytic converters containing PGM, the emission of these noble metals into atmosphere has increased. Platinum, palladium and rhodium are used in this catalytic converters to decrease toxic emissions of carbon monoxide, unburnt hydrocarbons and nitrogen oxides in vehicles exhaust gases. These catalysts are mobile sources of PGM into the environment. Thus, increased platinum concentrations have been found in various objects of environment because of the massive introduction of such catalytic converters are present. The preconcentration and separation of PGM and their determination by ICP-AES in environmental samples are described

  6. Electrocatalysts with platinum, cobalt and nickel preparations by mechanical alloyed and CVD for the reaction of oxygen reduction; Electrocatalizadores a base de platino, cobalto y niquel preparados por aleado mecanico y CVD para la reaccion de reduccion de oxigeno

    Energy Technology Data Exchange (ETDEWEB)

    Garcia C, M A [ININ, 52750 La Marquesa, Estado de Mexico (Mexico)

    2008-07-01

    In this research, the molecular oxygen reduction reaction (ORR) was investigated on electrocatalysts of Co, Ni, Pt and their alloys CoNi, PtCo, PtNi and PtCoNi by using H{sub 2}SO{sub 4} 0.5 and KOH 0.5 M solutions as electrolytes. The electrocatalysts were synthesized by Mechanical Alloying (MA) and Chemical Vapor Deposition (CVD) processes. For MA, metallic powders were processed during 20 h of milling in a high energy SPEX 8000 mill. For CVD, a hot-wall reactor was utilized and Co, Ni and Pt acetilactetonates were used as precursors. Films were deposited at a total pressure of 1 torr and temperatures of 400-450 C. Electrocatalysts were characterized by X-Ray Diffraction (XRD). Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM) and Energy Dispersive X-Ray Spectroscopy (EDS). Electrocatalysts prepared by mechanical alloying showed a homogeneously dispersed agglomeration of particles with nano metric size. Electrocatalysts obtained by CVD showed, in some cases, non uniform films, with particles of nano metric size, as well. The electrocatalytic performance was evaluated by using the Rotating Disk Electrode technique (RDE). Electrocatalysts prepared by MA showed higher activity than those obtained by CVD. All electrocatalysts were evaluated in alkaline media. Only electrocatalysts containing Pt were evaluated in acid media, because those materials with Co, Ni and their alloys showed instability in acidic media. Most electrocatalysts followed a mechanism for the ORR producing a certain proportion of H{sub 2}O{sub 2}. All electrocatalysts, exhibited a fair or good electrocatalytic activity in comparison with other similar reported materials. It was found that MA and CVD are appropriate processes to prepare electrocatalysts for the ORR with particles of nano metric size and performing with an acceptable catalytic activity. PtCoNi 70-23-7% by MA and PtCoNi-CVD electrocatalysts showed the highest activity in alkaline media, while in acidic

  7. Electrocatalytic activity mapping of model fuel cell catalyst films using scanning electrochemical microscopy

    International Nuclear Information System (INIS)

    Nicholson, P.G.; Zhou, S.; Hinds, G.; Wain, A.J.; Turnbull, A.

    2009-01-01

    Scanning electrochemical microscopy has been employed to spatially map the electrocatalytic activity of model proton exchange membrane fuel cell (PEMFC) catalyst films towards the hydrogen oxidation reaction (the PEMFC anode reaction). The catalyst films were composed of platinum-loaded carbon nanoparticles, similar to those typically used in PEMFCs. The electrochemical characterisation was correlated with a detailed physical characterisation using dynamic light scattering, transmission electron microscopy and field-emission scanning electron microscopy. The nanoparticles were found to be reasonably mono-dispersed, with a tendency to agglomerate into porous bead-type structures when spun-cast. The number of carbon nanoparticles with little or no platinum was surprisingly higher than would be expected based on the platinum-carbon mass ratio. Furthermore, the platinum-rich carbon particles tended to agglomerate and the clusters formed were non-uniformly distributed. This morphology was reflected in a high degree of heterogeneity in the film activity towards the hydrogen oxidation reaction.

  8. Reducing Stress-Corrosion Cracking in Bearing Alloys

    Science.gov (United States)

    Paton, N. E.; Dennies, D. P.; Lumsden, I., J.b.

    1986-01-01

    Resistance to stress-corrosion cracking in some stainless-steel alloys increased by addition of small amounts of noble metals. 0.75 to 1.00 percent by weight of palladium or platinum added to alloy melt sufficient to improve properties of certain stainless steels so they could be used in manufacture of high-speed bearings.

  9. Catalyst support effects on hydrogen spillover

    Science.gov (United States)

    Karim, Waiz; Spreafico, Clelia; Kleibert, Armin; Gobrecht, Jens; Vandevondele, Joost; Ekinci, Yasin; van Bokhoven, Jeroen A.

    2017-01-01

    Hydrogen spillover is the surface migration of activated hydrogen atoms from a metal catalyst particle, on which they are generated, onto the catalyst support. The phenomenon has been much studied and its occurrence on reducible supports such as titanium oxide is established, yet questions remain about whether hydrogen spillover can take place on nonreducible supports such as aluminium oxide. Here we use the enhanced precision of top-down nanofabrication to prepare controlled and precisely tunable model systems that allow us to quantify the efficiency and spatial extent of hydrogen spillover on both reducible and nonreducible supports. We place multiple pairs of iron oxide and platinum nanoparticles on titanium oxide and aluminium oxide supports, varying the distance between the pairs from zero to 45 nanometres with a precision of one nanometre. We then observe the extent of the reduction of the iron oxide particles by hydrogen atoms generated on the platinum using single-particle in situ X-ray absorption spectromicroscopy applied simultaneously to all particle pairs. The data, in conjunction with density functional theory calculations, reveal fast hydrogen spillover on titanium oxide that reduces remote iron oxide nanoparticles via coupled proton-electron transfer. In contrast, spillover on aluminium oxide is mediated by three-coordinated aluminium centres that also interact with water and that give rise to hydrogen mobility competing with hydrogen desorption; this results in hydrogen spillover about ten orders of magnitude slower than on titanium oxide and restricted to very short distances from the platinum particle. We anticipate that these observations will improve our understanding of hydrogen storage and catalytic reactions involving hydrogen, and that our approach to creating and probing model catalyst systems will provide opportunities for studying the origin of synergistic effects in supported catalysts that combine multiple functionalities.

  10. High platinum utilization in ultra-low Pt loaded PEM fuel cell cathodes prepared by electrospraying

    Energy Technology Data Exchange (ETDEWEB)

    Martin, S.; Garcia-Ybarra, P.L.; Castillo, J.L. [Dept. Fisica Matematica y de Fluidos, Facultad de Ciencias, UNED, Senda del Rey 9, 28040 Madrid (Spain)

    2010-10-15

    Cathode electrodes for proton exchange membrane fuel cells (PEMFCs) with ultra-low platinum loadings as low as 0.012 mg{sub Pt}cm{sup -2} have been prepared by the electrospray method. The electrosprayed layers have nanostructured fractal morphologies with dendrites formed by clusters (about 100 nm diameter) of a few single catalyst particles rendering a large exposure surface of the catalyst. Optimization of the control parameters affecting this morphology has allowed us to overcome the state of the art for efficient electrodes prepared by electrospraying. Thus, using these cathodes in membrane electrode assemblies (MEAs), a high platinum utilization in the range 8-10 kW g{sup -1} was obtained for the fuel cell operating at 40 C and atmospheric pressure. Moreover, a platinum utilization of 20 kW g{sup -1} was attained under more suitable operating conditions (70 C and 3.4 bar over-pressure). These results substantially improve the performances achieved previously with other low platinum loading electrodes prepared by electrospraying. (author)

  11. Electrocatalytic activity of carbon-supported catalysts for direct ethanol fuel cell applications

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez Varela, F.J. [CINVESTAV-Unidad Saltillo, Coahuila, (Mexico). Grupo de Investigacion en Energia; Savadogo, O. [Ecole Polytechnique de Montreal, Montreal, PQ (Canada). Laboratoire de nouveaux materiaux pour l' energie et l' electrochimie

    2008-07-01

    Proton exchange membrane fuel cells (PEMFCs) can be fueled with hydrogen, alcohols, hydrocarbons and acetals. Ethanol is an important fuel candidate because it can be electro-oxidized to carbon dioxide on platinum (Pt)-based electrocatalysts in a direct ethanol fuel cell (DEFC) at relatively low temperatures. This study investigated the electrocatalytic activity of some carbon-supported electrocatalysts towards the ethanol oxidation (EOR) and the oxygen reduction reaction (ORR) in the presence of ethanol. Compared to other anode catalysts such as Pt, PtRu and Pt oxide, anodes based on PtSn alloys have a higher catalytic activity for the EOR. When tested in a DEFC, the current density at 0.4V and 90 degrees C based on a PtSn/C anode and a Pt/C cathode was 2 times higher than that of a cell based on a PtRu/C-Pt/C membrane electrode assembly (MEA) configuration. In addition, cathode catalysts based on Ru/C had good catalytic activity for the ORR and exhibited high selectivity for this reaction in the presence of ethanol. The results showed that in the presence of 0.125, 0.25 or 0.5 M ethanol concentrations, a decrease in onset potential of about 60, 62 and 68 mV emerged, respectively. These values were about 10 times lower than those measured for some Pt-based cathode catalysts tested in this study in the presence of 0.125 M EtOH. 20 refs., 5 figs.

  12. Oxygen Reduction Reaction Activity of Platinum Thin Films with Different Densities

    Energy Technology Data Exchange (ETDEWEB)

    Ergul, Busra; Begum, Mahbuba; Kariuki, Nancy; Myers, Deborah J.; Karabacak, Tansel

    2017-08-24

    Platinum thin films with different densities were grown on glassy carbon electrodes by high pressure sputtering deposition and evaluated as oxygen reduction reaction catalysts for polymer electrolyte fuel cells using cyclic voltammetry and rotating disk electrode techniques in aqueous perchloric acid electrolyte. The electrochemically active surface area, ORR mass activity (MA) and specific activity (SA) of the thin film electrodes were obtained. MA and SA were found to be higher for low-density films than for high-density film.

  13. Reclaim/recycle of Pt/C catalysts for PEMFC

    International Nuclear Information System (INIS)

    Zhao, Jishi; He, Xiangming; Tian, Jianhua; Wan, Chunrong; Jiang, Changyin

    2007-01-01

    Platinum was reclaimed from Pt/C catalysts of the PEMFC by drying the degraded Pt/C catalysts at 80 o C for 3 h, followed by sintering at 600 o C for 6 h, dissolution by aqua fortis, purification with hydrochloric acid, reduction and filtration, successively. Pt/C catalysts were prepared again from the reclaimed Pt by two proposed processes, e.g., pH value control process and mass control process. The fuel cell with recycled catalysts presented a power density of over 0.18 W cm -2 . The reclaiming of Pt/C catalysts is a potential way for recycling Pt for PEMFC, reducing the cost of PEMFC

  14. Highly dispersed metal catalyst

    Science.gov (United States)

    Xiao, Xin; West, William L.; Rhodes, William D.

    2016-11-08

    A supported catalyst having an atomic level single atom structure is provided such that substantially all the catalyst is available for catalytic function. A process of forming a single atom catalyst unto a porous catalyst support is also provided.

  15. Catalytic transformation of carbon dioxide and methane into syngas over ruthenium and platinum supported hydroxyapatites

    Energy Technology Data Exchange (ETDEWEB)

    Rêgo De Vasconcelos, Bruna; Zhao, Lulu; Sharrock, Patrick; Nzihou, Ange; Pham Minh, Doan, E-mail: doan.phamminh@mines-albi.fr

    2016-12-30

    Highlights: • Formation of nanoparticles of Pt and Ru on hydroxyapatite surface support (HAP). • Pt catalyst more active and stable than Ru catalyst in dry reforming of methane (DRM). • Low carbon deposition on the surface of Pt catalyst after reaction. • Quantification of water as by-product of the reaction for the first time. • Good mass balance of the reaction. - Abstract: This work focused on the catalytic transformation of methane (CH{sub 4}) and carbon dioxide (CO{sub 2}) into syngas (mixture of CO and H{sub 2}). Ruthenium- and platinum-based catalysts were prepared using hydroxyapatite (HAP) as catalyst support. Different methods for metal deposition were used including incipient wetness impregnation (IWI), excess liquid phase impregnation (LIM), and cationic exchange (CEX). Metal particle size varied in large range from less than 1 nm to dozens nm. All catalysts were active at 400–700 °C but only Pt catalyst prepared by IWI method (Pt/HAP IWI) was found stable. The catalytic performance of Pt/HAP IWI could be comparable with the literature data on noble metal-based catalysts, prepared on metal oxide supports. For the first time, water was experimentally quantified as a by-product of the reaction. This helped to correctly buckle the mass balance of the process.

  16. Catalytic transformation of carbon dioxide and methane into syngas over ruthenium and platinum supported hydroxyapatites

    International Nuclear Information System (INIS)

    Rêgo De Vasconcelos, Bruna; Zhao, Lulu; Sharrock, Patrick; Nzihou, Ange; Pham Minh, Doan

    2016-01-01

    Highlights: • Formation of nanoparticles of Pt and Ru on hydroxyapatite surface support (HAP). • Pt catalyst more active and stable than Ru catalyst in dry reforming of methane (DRM). • Low carbon deposition on the surface of Pt catalyst after reaction. • Quantification of water as by-product of the reaction for the first time. • Good mass balance of the reaction. - Abstract: This work focused on the catalytic transformation of methane (CH 4 ) and carbon dioxide (CO 2 ) into syngas (mixture of CO and H 2 ). Ruthenium- and platinum-based catalysts were prepared using hydroxyapatite (HAP) as catalyst support. Different methods for metal deposition were used including incipient wetness impregnation (IWI), excess liquid phase impregnation (LIM), and cationic exchange (CEX). Metal particle size varied in large range from less than 1 nm to dozens nm. All catalysts were active at 400–700 °C but only Pt catalyst prepared by IWI method (Pt/HAP IWI) was found stable. The catalytic performance of Pt/HAP IWI could be comparable with the literature data on noble metal-based catalysts, prepared on metal oxide supports. For the first time, water was experimentally quantified as a by-product of the reaction. This helped to correctly buckle the mass balance of the process.

  17. Discovery of technical methanation catalysts based on computational screening

    DEFF Research Database (Denmark)

    Sehested, Jens; Larsen, Kasper Emil; Kustov, Arkadii

    2007-01-01

    Methanation is a classical reaction in heterogeneous catalysis and significant effort has been put into improving the industrially preferred nickel-based catalysts. Recently, a computational screening study showed that nickel-iron alloys should be more active than the pure nickel catalyst and at ...

  18. Catalyst for Carbon Monoxide Oxidation

    Science.gov (United States)

    Davis, Patricia; Brown, Kenneth; VanNorman, John; Brown, David; Upchurch, Billy; Schryer, David; Miller, Irvin

    2010-01-01

    In many applications, it is highly desirable to operate a CO2 laser in a sealed condition, for in an open system the laser requires a continuous flow of laser gas to remove the dissociation products that occur in the discharge zone of the laser, in order to maintain a stable power output. This adds to the operating cost of the laser, and in airborne or space applications, it also adds to the weight penalty of the laser. In a sealed CO2 laser, a small amount of CO2 gas is decomposed in the electrical discharge zone into corresponding quantities of CO and O2. As the laser continues to operate, the concentration of CO2 decreases, while the concentrations of CO and O2 correspondingly increase. The increasing concentration of O2 reduces laser power, because O2 scavenges electrons in the electrical discharge, thereby causing arcing in the electric discharge and a loss of the energetic electrons required to boost CO2 molecules to lasing energy levels. As a result, laser power decreases rapidly. The primary object of this invention is to provide a catalyst that, by composition of matter alone, contains chemisorbed water within and upon its structure. Such bound moisture renders the catalyst highly active and very long-lived, such that only a small quantity of it needs to be used with a CO2 laser under ambient operating conditions. This object is achieved by a catalyst that consists essentially of about 1 to 40 percent by weight of one or more platinum group metals (Pt, Pd, Rh, Ir, Ru, Os, Pt being preferred); about 1 to 90 percent by weight of one or more oxides of reducible metals having multiple valence states (such as Sn, Ti, Mn, Cu, and Ce, with SnO2 being preferred); and about 1 to 90 percent by weight of a compound that can bind water to its structure (such as silica gel, calcium chloride, magnesium sulfate, hydrated alumina, and magnesium perchlorate, with silica gel being preferred). Especially beneficial results are obtained when platinum is present in the

  19. Nuclear analytical methods for platinum group elements

    International Nuclear Information System (INIS)

    2005-04-01

    Platinum group elements (PGE) are of special interest for analytical research due to their economic importance like chemical peculiarities as catalysts, medical applications as anticancer drugs, and possible environmental detrimental impact as exhaust from automobile catalyzers. Natural levels of PGE are so low in concentration that most of the current analytical techniques approach their limit of detection capacity. In addition, Ru, Rh, Pd, Re, Os, Ir, and Pt analyses still constitute a challenge in accuracy and precision of quantification in natural matrices. Nuclear analytical techniques, such as neutron activation analysis, X ray fluorescence, or proton-induced X ray emission (PIXE), which are generally considered as reference methods for many analytical problems, are useful as well. However, due to methodological restrictions, they can, in most cases, only be applied after pre-concentration and under special irradiation conditions. This report was prepared following a coordinated research project and a consultants meeting addressing the subject from different viewpoints. The experts involved suggested to discuss the issue according to the (1) application, hence, the concentration levels encountered, and (2) method applied for analysis. Each of the different fields of application needs special consideration for sample preparation, PGE pre-concentration, and determination. Additionally, each analytical method requires special attention regarding the sensitivity and sample type. Quality assurance/quality control aspects are considered towards the end of the report. It is intended to provide the reader of this publication with state-of-the-art information on the various aspects of PGE analysis and to advise which technique might be most suitable for a particular analytical problem related to platinum group elements. In particular, many case studies described in detail from the authors' laboratory experience might help to decide which way to go. As in many cases

  20. Catalysts for Efficient Production of Carbon Nanotubes

    Science.gov (United States)

    Sun, Ted X.; Dong, Yi

    2009-01-01

    Several metal alloys have shown promise as improved catalysts for catalytic thermal decomposition of hydrocarbon gases to produce carbon nanotubes (CNTs). Heretofore almost every experiment on the production of carbon nanotubes by this method has involved the use of iron, nickel, or cobalt as the catalyst. However, the catalytic-conversion efficiencies of these metals have been observed to be limited. The identification of better catalysts is part of a continuing program to develop means of mass production of high-quality carbon nanotubes at costs lower than those achieved thus far (as much as $100/g for purified multi-wall CNTs or $1,000/g for single-wall CNTs in year 2002). The main effort thus far in this program has been the design and implementation of a process tailored specifically for high-throughput screening of alloys for catalyzing the growth of CNTs. The process includes an integral combination of (1) formulation of libraries of catalysts, (2) synthesis of CNTs from decomposition of ethylene on powders of the alloys in a pyrolytic chemical-vapor-decomposition reactor, and (3) scanning- electron-microscope screening of the CNTs thus synthesized to evaluate the catalytic efficiencies of the alloys. Information gained in this process is put into a database and analyzed to identify promising alloy compositions, which are to be subjected to further evaluation in a subsequent round of testing. Some of these alloys have been found to catalyze the formation of carbon nano tubes from ethylene at temperatures as low as 350 to 400 C. In contrast, the temperatures typically required for prior catalysts range from 550 to 750 C.

  1. Structural property of platinum mononitride

    International Nuclear Information System (INIS)

    Yu, L.H.; Yao, K.L.; Liu, Z.L.; Zhang, Y.S.

    2007-01-01

    The structural stability and pressure-induced structural phase transition of platinum mononitride (PtN), as well as its electronic structure, were studied using the full potential augmented plane wave plus local orbitals method with the generalized gradient approximation (GGA) exchange-correlation functional. The total energy calculations show that the optimized wurtzite structure is most stable energetically among four structures: zinc blende, rocksalt, CsCl and wurtzite, which reveals the platinum mononitride PtN perhaps crystallizes in the wurtzite structure; the pressure of phase transition from wurtzite to rocksalt is predicted to be 41.4 GPa.The calculated bulk modulus of the wurtzite structure is 99.41 GPa, which is smaller than that of the other three structures and face-centered cubic Pt. The band structure calculations show wurtzite PtN is metallic

  2. Rhenium–platinum antitumor systems

    Directory of Open Access Journals (Sweden)

    A. V. Shtemenko

    2017-04-01

    Full Text Available This review provides an overlook of design (in short, antitumor and other biological activity of quadruple-bonded cluster dirhenium(III compounds and their synergism with cisplatin. In particular, we describe the work of the rhenium-platinum antitumor system (introduction of rhenium and platinum compounds. Among known metal-based anticancer drugs and drug candidates dirhenium(III compounds differ profoundly due to their strong antiradical and antioxidant properties determined by quadruple bond unsaturation. Such advantages of metal complexes as more expressed redox chemical propertie should be exploited for creating more efficient anticancer drugs. Combination of drugs leads to synergistic effects and/or to lowe­ring toxicity of platinides and is very promising in cancer chemotherapy. The review covers the follo­wing items: design of quadruple bonded dirhenium(III clusters, their spectral and antiradical properties (in short; interaction of the dirhenium(III compounds with lipids and formation of liposomes; interaction of the dirhenium(III compounds with erythrocytes and their antihemolytic activity in the models of hemolytic anemia; anticancer activity of dirhenium clusters and work of the rhenium-platinum antitumor system; antianemic and antioxidant properties of the dirhenium(III compounds in the model of tumor growth; interaction of the dirhenium(III compounds with nucleobases and DNA. Some modern trends in the field of bioinorganic and medicinal chemi­stry are also considered regarding their connection to the rhenium-platinum system efficiency: use of combinational therapy and nanomaterials; involvement of some biologically active ligands and redox-activation strategy, etc.

  3. Radiation and platinum drug interaction

    International Nuclear Information System (INIS)

    Nias, A.H.W.

    1985-01-01

    The ideal platinum drug-radiation interaction would achieve radiosensitization of hypoxic tumour cells with the use of a dose of drug which is completely non-toxic to normal tissues. Electron-affinic agents are employed with this aim, but the commoner platinum drugs are only weakly electron-affinic. They do have a quasi-alkylating action however, and this DNA targeting may account for the radiosensitizing effect which occurs with both pre- and post-radiation treatments. Because toxic drug dosage is usually required for this, the evidence of the biological responses to the drug and to the radiation, as well as to the combination, requires critical analysis before any claim of true enhancement, rather than simple additivity, can be accepted. The amount of enhancement will vary with both the platinum drug dose and the time interval between drug administration and radiation. Clinical schedules may produce an increase in tumour response and/or morbidity, depending upon such dose and time relationships. (author)

  4. Formation, Characteristics and Electrocatalytic Properties of Nanoporous Metals Formed by Dealloying of Ternary-Noble Alloys

    Science.gov (United States)

    Vega Zuniga, Adrian A.

    Nanoporous metals formed by electrochemical dealloying of silver from Ag-Au-Pt alloys, with 77 at.% silver and platinum contents of 1, 2 and 3 at.%, have been studied. The presence of platinum, which is immobile relative to gold, refine the ligament size and stabilized the nanostructure against coarsening, even under experimental conditions that would be expected to promote coarsening (e.g., exposure to high temperature, longer dealloying times). By adding only 1 at.% Pt to the alloy precursor, the ligament/pore size was reduced by 50% with respect to that in nanoporous gold (NPG), which was formed on a Ag-Au alloy with the same silver content as ternary alloys. A further decrease in the ligament size was observed by increasing the platinum content of the precursor; however, most of the improvement occurred with 1 at.% Pt. The adsorbate-induced surface segregation of platinum was also investigated for these nanoporous metals. By exposing freshly-dealloyed nanostructures to moderate temperatures in the presence of air, platinum segregated to the ligament surface; in contrast, in an inert atmosphere (Ar-H 2), platinum mostly reverted to the bulk of the ligaments. This thermally activated process was thermodynamically driven by the interaction between platinum and oxygen; however, at the desorption temperature of oxygen, platinum de-segregated from the surface. Moreover, the co-segregation of platinum and oxygen hindered the thermal coarsening of the ligaments. Finally, the electrocatalytic abilities of these nanostructures were studied towards methanol and ethanol electro-oxidation, in alkaline and acidic media, showing significantly improved response in comparison to that observed in NPG. The synergistic effect between gold and platinum atoms and the smaller feature size of the nanostructures were directly associated with this behaviour. In alkaline electrolyte, the nanostructure formed on the alloy with 1 at.% Pt showed higher catalytic response than the other two

  5. Sputtered catalysts

    International Nuclear Information System (INIS)

    Tyerman, W.J.R.

    1978-01-01

    A method is described for preparing a supported catalyst by a sputtering process. A material that is catalytic, or which is a component of a catalytic system, is sputtered on to the surface of refractory oxide particles that are compatible with the sputtered material and the sputtered particles are consolidated into aggregate form. The oxide particles before sputtering should have a diameter in the range 1000A to 50μ and a porosity less than 0.4 ml/g, and may comprise MgO, Al 2 O 3 or SiO 2 or mixtures of these oxides, including hydraulic cement. The particles may possess catalytic activity by themselves or in combination with the catalytic material deposited on them. Sputtering may be effected epitaxially and consolidation may be effected by compaction pelleting, extrusion or spray drying of a slurry. Examples of the use of such catalysts are given. (U.K.)

  6. Sum Frequency Generation Studies of Hydrogenation Reactions on Platinum Nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Krier, James M. [Univ. of California, Berkeley, CA (United States)

    2013-08-31

    Sum Frequency Generation (SFG) vibrational spectroscopy is used to characterize intermediate species of hydrogenation reactions on the surface of platinum nanoparticle catalysts. In contrast to other spectroscopy techniques which operate in ultra-high vacuum or probe surface species after reaction, SFG collects information under normal conditions as the reaction is taking place. Several systems have been studied previously using SFG on single crystals, notably alkene hydrogenation on Pt(111). In this thesis, many aspects of SFG experiments on colloidal nanoparticles are explored for the first time. To address spectral interference by the capping agent (PVP), three procedures are proposed: UV cleaning, H2 induced disordering and calcination (core-shell nanoparticles). UV cleaning and calcination physically destroy organic capping while disordering reduces SFG signal through a reversible structural change by PVP.

  7. Platinum Group Metal Recycling Technology Development - Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Lawrence Shore

    2009-08-19

    BASF Catalysts LLC, formerly Engelhard Corporation, has completed a project to recover Pt from PEM fuel cell membrane electrode assemblies. The project, which began in 2003, has met the project objective of an environmentally-friendly, cost-effective method for recovery of platinum without release of hydrogen fluoride. This has been achieved using a combination of milling, dispersion and acid leaching. 99% recovery of Pt was achieved, and this high yield can be scaled up using one vessel for a single leach and rinse. Leaching was been successfully achieved using a 10% solids level, double the original target. At this solids content, the reagent and utility costs represent ~0.35% of the Pt value of a lot, using very conservative assumptions. The main cost of the process is capital depreciation, followed by labor.

  8. Nanoscale intimacy in bifunctional catalysts for selective conversion of hydrocarbons

    Science.gov (United States)

    Zecevic, Jovana; Vanbutsele, Gina; de Jong, Krijn P.; Martens, Johan A.

    2015-12-01

    The ability to control nanoscale features precisely is increasingly being exploited to develop and improve monofunctional catalysts. Striking effects might also be expected in the case of bifunctional catalysts, which are important in the hydrocracking of fossil and renewable hydrocarbon sources to provide high-quality diesel fuel. Such bifunctional hydrocracking catalysts contain metal sites and acid sites, and for more than 50 years the so-called intimacy criterion has dictated the maximum distance between the two types of site, beyond which catalytic activity decreases. A lack of synthesis and material-characterization methods with nanometre precision has long prevented in-depth exploration of the intimacy criterion, which has often been interpreted simply as ‘the closer the better’ for positioning metal and acid sites. Here we show for a bifunctional catalyst—comprising an intimate mixture of zeolite Y and alumina binder, and with platinum metal controllably deposited on either the zeolite or the binder—that closest proximity between metal and zeolite acid sites can be detrimental. Specifically, the selectivity when cracking large hydrocarbon feedstock molecules for high-quality diesel production is optimized with the catalyst that contains platinum on the binder, that is, with a nanoscale rather than closest intimacy of the metal and acid sites. Thus, cracking of the large and complex hydrocarbon molecules that are typically derived from alternative sources, such as gas-to-liquid technology, vegetable oil or algal oil, should benefit especially from bifunctional catalysts that avoid locating platinum on the zeolite (the traditionally assumed optimal location). More generally, we anticipate that the ability demonstrated here to spatially organize different active sites at the nanoscale will benefit the further development and optimization of the emerging generation of multifunctional catalysts.

  9. SEM method for direct visual tracking of nanoscale morphological changes of platinum based electrocatalysts on fixed locations upon electrochemical or thermal treatments

    Energy Technology Data Exchange (ETDEWEB)

    Zorko, Milena [National Institute of Chemistry, Hajdrihova 19, Ljubljana (Slovenia); Centre of Excellence for Low-Carbon Technologies, Hajdrihova 19, Ljubljana (Slovenia); Jozinović, Barbara [Centre of Excellence for Low-Carbon Technologies, Hajdrihova 19, Ljubljana (Slovenia); Bele, Marjan [National Institute of Chemistry, Hajdrihova 19, Ljubljana (Slovenia); Centre of Excellence for Low-Carbon Technologies, Hajdrihova 19, Ljubljana (Slovenia); Hodnik, Nejc, E-mail: nejc.hodnik@ki.si [National Institute of Chemistry, Hajdrihova 19, Ljubljana (Slovenia); Gaberšček, Miran [National Institute of Chemistry, Hajdrihova 19, Ljubljana (Slovenia); Centre of Excellence for Low-Carbon Technologies, Hajdrihova 19, Ljubljana (Slovenia)

    2014-05-01

    A general method for tracking morphological surface changes on a nanometer scale with scanning electron microscopy (SEM) is introduced. We exemplify the usefulness of the method by showing consecutive SEM images of an identical location before and after the electrochemical and thermal treatments of platinum-based nanoparticles deposited on a high surface area carbon. Observations reveal an insight into platinum based catalyst degradation occurring during potential cycling treatment. The presence of chloride clearly increases the rate of degradation. At these conditions the dominant degradation mechanism seems to be the platinum dissolution with some subsequent redeposition on the top of the catalyst film. By contrast, at the temperature of 60 °C, under potentiostatic conditions some carbon corrosion and particle aggregation was observed. Temperature treatment simulating the annealing step of the synthesis reveals sintering of small platinum based composite aggregates into uniform spherical particles. The method provides a direct proof of induced surface phenomena occurring on a chosen location without the usual statistical uncertainty in usual, random SEM observations across relatively large surface areas. - Highlights: • A new SEM method for observations of identical locations. • Nanoscale morphological consecutive changes on identical locations. • Electrochemical and thermal treatments on platinum based nanoparticles. • Potential cycling induces platinum dissolution with redeposition on top of the film. • At 1.4 V vs. RHE and 60 °C carbon corrosion and particle aggregation is observed.

  10. Platinum Monolayer Electrocatalysts for Anodic Oxidation of Alcohols.

    Science.gov (United States)

    Li, Meng; Liu, Ping; Adzic, Radoslav R

    2012-12-06

    The slow, incomplete oxidation of methanol and ethanol on platinum-based anodes as well as the high price and limited reserves of Pt has hampered the practical application of direct alcohol fuel cells. We describe the electrocatalysts consisting of one Pt monolayer (one atom thick layer) placed on extended or nanoparticle surfaces having the activity and selectivity for the oxidation of alcohol molecules that can be controlled with platinum-support interaction. The suitably expanded Pt monolayer (i.e., Pt/Au(111)) exhibits a factor of 7 activity increase in catalyzing methanol electrooxidation relative to Pt(111). Sizable enhancement is also observed for ethanol electrooxidation. Furthermore, a correlation between substrate-induced lateral strain in a Pt monolayer and its activity/selectivity is established and rationalized by experimental and theoretical studies. The knowledge we gained with single-crystal model catalysts was successfully applied in designing real nanocatalysts. These findings for alcohols are likely to be applicable for the oxidation of other classes of organic molecules.

  11. ENVIRONMENTAL TECHNOLOGY VERIFICATION, TEST REPORT OF MOBILE SOURCE EMISSIONS CONTROL DEVICES: CLEAN DIESEL TECHNOLOGIES FUEL-BORNE CATALYST WITH MITSUI/PUREARTH CATALYZED WIRE MESH FILTER

    Science.gov (United States)

    The Environmental Technology Verification report discusses the technology and performance of the Fuel-Borne Catalyst with Mitsui/PUREarth Catalyzed Wire Mesh Filter manufactured by Clean Diesel Technologies, Inc. The technology is a platinum/cerium fuel-borne catalyst in commerci...

  12. Catalyst design for carbon nanotube growth using atomistic modeling

    International Nuclear Information System (INIS)

    Pint, Cary L; Bozzolo, Guillermo; Hauge, Robert

    2008-01-01

    The formation and stability of bimetallic catalyst particles, in the framework of carbon nanotube growth, is studied using the Bozzolo-Ferrante-Smith (BFS) method for alloys. Monte Carlo-Metropolis simulations with the BFS method are utilized in order to predict and study equilibrium configurations for nanoscale catalyst particles which are directly relevant to the catalyst state prior to growth of carbon nanotubes. At the forefront of possible catalyst combinations is the popular Fe-Mo bimetallic catalyst, which we have recently studied experimentally. We explain our experimental results, which indicate that the growth observed is dependent on the order of co-catalyst deposition, in the straightforward interpretation of BFS strain and chemical energy contributions toward the formation of Fe-Mo catalyst prior to growth. We find that the competition between the formation of metastable inner Mo cores and clusters of surface-segregated Mo atoms in Fe-Mo catalyst particles influences catalyst formation, and we investigate the role of Mo concentration and catalyst particle size in this process. Finally, we apply the same modeling approach to other prominent bimetallic catalysts and suggest that this technique can be a powerful tool to understand and manipulate catalyst design for highly efficient carbon nanotube growth

  13. Applications Ni59Nb40Pt(1-x) Xx (X= Sn,Sby and Ru) amorphous alloy as anodes for direct methanol (DMFC) fuel cells

    International Nuclear Information System (INIS)

    Rodriguez Pierna, A

    2005-01-01

    The search of new anode materials of amorphous nature for methanol fuel cells is one of the aims of this work.The main problem that fuel cells present is related to the catalytic material and its distribution in a suitable matrix.Amorphous alloys are particularly attractive materials as catalyst supports because of their high conductivity, high corrosion resistance in sulphuric acid, as well as the possibility of a good distribution of the electrocatalytic particles, mainly platinum and platinum-tin, on a conducting matrix.The electrooxidation of methanol, in percloric acid medium, has been used as probe to evaluate the performance of metallic amorphous electrodes, with compositions Ni 5 9Nb 4 0Pt 1 , Ni 5 9Nb 4 0Pt 0 .6Sn0.4, Ni 5 9Nb 4 0Pt 0 .6Sb 0 .4 and Ni 5 9Nb 4 0Pt 0 .6Ru 0 .4.The electrocatalytic activity of the alloyed ribbons of compositions (x = 0.6, 1% at. in platinum) is improved considerably, so much for the change in their composition, as for the roughness degree that the catalytic surfaces present. The increase of the tolerance to adsorbed species, and better resistance to the poisoning of their catalytic centers, can be observed by means of voltammetric experiments at different activation times with HF 48%. The electrooxidation of methanol in the amorphous alloy of composition Ni 5 9Nb 4 0Pt 1 , is influenced by the nature of the used electrolyte, presenting smaller values of current density in solutions 1M H 2 SO 4 than in 1M of HClO 4 .This behavior is not observed in the alloy Ni 5 9Nb 4 0Pt 0 .6Sn 0 .4, Ni 5 9Nb 4 0Pt 0 .6Sb 0 .4 and Ni 5 9Nb 4 0Pt 0 .6Ru 0 .4which does not present a poisoning of the catalytic centers depending on the used electrolyte.Adding tin to the alloys showed the existence of a synergetic effect in the methanol electrooxidation process, attaining to a descent of 20 mV vs Ag/AgCl in the onset potential, and about 200 mV in the maximun peak potential

  14. Application of hydrophobic Pt catalysts in hydrogen isotopes separation from nuclear effluents

    Energy Technology Data Exchange (ETDEWEB)

    Ionita, G.; Popescu, I.; Stefanescu, I.; Retegan, T. [National Institute of Cryogenics and Isotopic Separation (Romania)

    2003-09-01

    According to reviewed references and to tests effected by authors the platinum/carbon/teflon is the most active and the most stable catalyst for removal of tritium from nuclear effluents by isotopic exchange between hydrogen and liquid water. To improve the performances of process it is recommended to use the catalyst as ordered or random mixed catalytic packing in a trickle bed reactor. (O.M.)

  15. Reverse microemulsion prepared Ni–Pt catalysts for methane cracking to produce COx-free hydrogen

    KAUST Repository

    Zhou, Lu

    2017-09-08

    A monodispersed 15 nm Ni9Pt1 catalyst synthesized via a reverse microemulsion method, shows a lower activation energy than both Ni and Pt catalysts during the methane cracking reaction. Thanks to the synergic effect of Ni–Pt alloy, this catalyst presents a stable H2 formation rate at 700 °C, and forms carbon nanotubes, anchoring the catalyst particles on top.

  16. Reverse microemulsion prepared Ni–Pt catalysts for methane cracking to produce COx-free hydrogen

    KAUST Repository

    Zhou, Lu; Harb, Moussab; Enakonda, Linga Reddy; Al Mana, Noor; Hedhili, Mohamed N.; Basset, Jean-Marie

    2017-01-01

    A monodispersed 15 nm Ni9Pt1 catalyst synthesized via a reverse microemulsion method, shows a lower activation energy than both Ni and Pt catalysts during the methane cracking reaction. Thanks to the synergic effect of Ni–Pt alloy, this catalyst presents a stable H2 formation rate at 700 °C, and forms carbon nanotubes, anchoring the catalyst particles on top.

  17. Room temperature synthesis of colloidal platinum nanoparticles

    Indian Academy of Sciences (India)

    Unknown

    platinum cation used. ... Particle size increased with low reagent concentration. ... 2,100) was added separately to the starting solution. Argon gas was bubbled in the solution for 20 min. Later, reduction of platinum ions was carried out by bubbling hydrogen gas ... plex to aquate (Cl– → H2O ligand exchange). ... copper grid.

  18. A Change to the Platinum Publications | Poster

    Science.gov (United States)

    Please be advised that the Poster will no longer publish the “Platinum Publications” series listing recent NCI at Frederick publications. All published research represents a valuable addition to the fight against cancer, AIDS, and infectious diseases—thus, the “Platinum Publications” did not adequately commend all of the important work done by NCI at Frederick researchers.

  19. Collective Behavior of Water on Platinum

    Science.gov (United States)

    Limmer, David; Willard, Adam; Chandler, David

    2012-02-01

    We present the results of molecular dynamics simulations of a interface between water and a platinum electrode. Using importance sampling techniques we probe a variety of collective phenomenon that emerge at the interface. We consider platinum electrodes with two different geometries and discuss how different behaviors result from a competition between geometrical frustration and favorable local interactions.

  20. Platinum-group element mineralization

    International Nuclear Information System (INIS)

    Gruenewaldt, G.

    1985-01-01

    The purpose of this investigation is to determine the geological processes responsible for the abnormal enrichment of the platinum-group elements (PGE) in the mineralized layers of the Bushveld Complex. Questions asked are: what processes caused enrichment of the Bushveld magma in the PGE ; by what processes were these PGE concentrated in the mineralized layers ; was contamination of the Bushveld magma from external sources important in the formation of the PGE enriched layers ; what are the effects of fractional crystallization on the PGE ratios

  1. Electrocatalysis on bimetallic and alloy surfaces

    NARCIS (Netherlands)

    Koper, M.T.M.

    2004-01-01

    Bimetallic surfaces and alloys are well known to have unique catalytic properties for many important chemical transformations [1]. In electrocatalysis, bimetallic and alloy catalysts have been a particularly active area of research in relation to low-temperature fuel cells [2]. On the anode side,

  2. Ruthenium cluster-like chalcogenide as a methanol tolerant cathode catalyst in air-breathing laminar flow fuel cells

    International Nuclear Information System (INIS)

    Whipple, Devin T.; Jayashree, Ranga S.; Egas, Daniela; Alonso-Vante, Nicolas; Kenis, Paul J.A.

    2009-01-01

    This paper reports the incorporation of a cluster-like Ru x Se y as a methanol tolerant cathode catalyst in a laminar flow fuel cell. The effect on cell performance of several concentrations of methanol in the cathode stream was investigated for the Ru x Se y catalyst and compared to a conventional platinum catalyst. While the Pt catalyst exhibited up to ∼80% drop in power density, the Ru x Se y catalyst showed no decrease in performance when the cathode was exposed to methanol. At several methanol concentrations the Ru x Se y catalyst performed better than the Pt catalyst. This demonstration of a methanol tolerant catalyst in a laminar flow fuel cell opens up the way for further miniaturization of the cell design and simplification of its operation as the need for an electrolyte stream to prevent fuel crossover has been eliminated.

  3. Spatio-temporal dynamics of oscillatory heterogeneous catalysis: CO oxidation on platinum

    Science.gov (United States)

    Yamamoto, S. Y.; Surko, C. M.; Maple, M. B.; Pina, R. K.

    1995-06-01

    Reaction-rate oscillations in the oxidation of carbon monoxide on the surface of platinum catalysts are studied in a continuous flow reactor at atmospheric pressure using infrared imaging. Small-amplitude temperature oscillations (0.2-8 K) result in approximately isothermal conditions, where changes in rate constants, for typical activation energies and temperatures, are small. The catalysts are in the form of platinum thin films on quartz substrates and provide highly repeatable oscillatory behavior. The platinum films are fabricated in the form of annular rings which provide a quasi-one-dimensional geometry in order to simplify comparison to theoretical models. Time-series measurements by means of thermocouples are used to characterize the oscillations. The infrared images show that most oscillations are spatially synchronized to within the 0.25 s time resolution of the experiment. The images also show that ``fine structure'' oscillations (i.e., small-amplitude, high frequency oscillations superimposed on larger-amplitude waveforms) are associated with spatially desynchronized patterns.

  4. Palladium alloy membrane process for the treatment of hydrogen isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Hongsuk; Paek, Seungwoo; Lee, Minsoo; Kim, Kwangrag; Yim, Sungpaal; Ahn, Dohee [KAERI, Daejeon (Korea, Republic of); Shim, Myunghwa [Univ. of Science and Technology, Daejeon (Korea, Republic of)

    2005-11-15

    Tritium is a radioactive isotope of hydrogen and it has a half-life of 12.3 years; it decays to He-3 by emitting a low energy beta radiation with an average energy of 5.7 keV and a maximum energy of 18.6 keV. Transfer of environmentally tritiated water to humans takes place via an inhalation, diffusion through the skin and ingestion. Radioactive waste containing tritium is continuously generated by the nuclear industry in, for example, nuclear reactor operations and a radioisotope production, as well as in medical research. Methods for removing tritium from liquid waste provide an alternative to the control of tritium emissions and a personnel exposure. A combined electrolysis and catalytic exchange process is a very effective method to remove small quantities of tritium from light or heavy waste water streams. The process consists of three main steps: (a) A front end step that exchanges the tritium to a less toxic hydrogen phase. This can be performed either through a chemical exchange in the presence of a platinum supported catalyst or through the decomposition of water. (b) A back end process that purifies the tritiated hydrogen gas which evolved from the electrolysis. This can be performed through a palladium alloy membrane separator. (c) A means of storing the concentrated gas safely. Uranium is used if the storage is temporary; titanium is usually employed for long term storage. To gain a better understanding of the tritiated hydrogen gas purification process, a mathematical model of the palladium alloy membrane has been used. This model is described herein, and the representative results of the model calculations are presented. The authors selected the palladium alloy membrane for the hydrogen purification process by considering the membrane properties, such as a chemical resistance, mechanical stability, thermal stability, high permeability, and a stable operation. The solution-diffusion model can be a useful tool for designing a membrane permeator. The

  5. Palladium alloy membrane process for the treatment of hydrogen isotopes

    International Nuclear Information System (INIS)

    Chung, Hongsuk; Paek, Seungwoo; Lee, Minsoo; Kim, Kwangrag; Yim, Sungpaal; Ahn, Dohee; Shim, Myunghwa

    2005-01-01

    Tritium is a radioactive isotope of hydrogen and it has a half-life of 12.3 years; it decays to He-3 by emitting a low energy beta radiation with an average energy of 5.7 keV and a maximum energy of 18.6 keV. Transfer of environmentally tritiated water to humans takes place via an inhalation, diffusion through the skin and ingestion. Radioactive waste containing tritium is continuously generated by the nuclear industry in, for example, nuclear reactor operations and a radioisotope production, as well as in medical research. Methods for removing tritium from liquid waste provide an alternative to the control of tritium emissions and a personnel exposure. A combined electrolysis and catalytic exchange process is a very effective method to remove small quantities of tritium from light or heavy waste water streams. The process consists of three main steps: (a) A front end step that exchanges the tritium to a less toxic hydrogen phase. This can be performed either through a chemical exchange in the presence of a platinum supported catalyst or through the decomposition of water. (b) A back end process that purifies the tritiated hydrogen gas which evolved from the electrolysis. This can be performed through a palladium alloy membrane separator. (c) A means of storing the concentrated gas safely. Uranium is used if the storage is temporary; titanium is usually employed for long term storage. To gain a better understanding of the tritiated hydrogen gas purification process, a mathematical model of the palladium alloy membrane has been used. This model is described herein, and the representative results of the model calculations are presented. The authors selected the palladium alloy membrane for the hydrogen purification process by considering the membrane properties, such as a chemical resistance, mechanical stability, thermal stability, high permeability, and a stable operation. The solution-diffusion model can be a useful tool for designing a membrane permeator. The

  6. An introduction to catalyst

    International Nuclear Information System (INIS)

    Jeon, Hak Je

    1988-11-01

    This book explains basic conception of catalyst such as definition, velocity of chemical reaction and velocity of catalyst reaction, absorption with absorption energy and chemical absorption, pore structure with the role of pore and measurement of pore structure, catalyst activity on solid structure, electrical property on catalyst activity, choice and design of catalyst, catalytic reaction with reaction velocity and chemical equilibrium and reaction velocity model, measurement of reaction velocity and material analysis, catalyst for mixed compound, catalyst for solid acid and catalyst for supported metal.

  7. Dissolution kinetics of Pd and Pt from automobile catalysts by naturally occurring complexing agents

    Czech Academy of Sciences Publication Activity Database

    Šebek, O.; Mihaljevič, M.; Strnad, L.; Ettler, V.; Ježek, J.; Štědrý, R.; Drahota, P.; Ackerman, Lukáš; Adamec, V.

    2011-01-01

    Roč. 198, December (2011), s. 331-339 ISSN 0304-3894 Institutional research plan: CEZ:AV0Z30130516 Keywords : automobile catalyst * Platinum group elements * mobilisation * leaching * kinetic Subject RIV: DD - Geochemistry Impact factor: 4.173, year: 2011

  8. Determination of the potentiostatic stability of PEMFC electro catalysts at elevated temperatures

    NARCIS (Netherlands)

    Dam, V.A.T.; Jayasayee, K.; Bruijn, de F.A.

    2009-01-01

    The electrochemical stability of platinum on carbon catalyst (Hispec TM 4000, Johnson Matthey) has been investigated predominantly at constant potentials ranging from 0.95 to 1.25 V at elevated temperatures. By combining a quartz crystal microbalance (QCM) with electrochemical techniques, dynamic

  9. Electrocatalytic activity of atomic layer deposited Pt-Ru catalysts onto N-doped carbon nanotubes

    NARCIS (Netherlands)

    Johansson, A.-C.; Larsen, J.V.; Verheijen, M.A.; Haugshøj, K.B.; Clausen, H.; Kessels, W.M.M.; Christensen, L.H.; Thomsen, E.V.

    2014-01-01

    Pt-Ru catalysts of various compositions, between 0 and 100 at.% of Ru, were deposited onto N-doped multi-walled carbon nanotubes (N-CNTs) by atomic layer deposition (ALD) at 250 C. The Pt and Ru precursors were trimethyl(methylcyclopentadienyl)platinum (MeCpPtMe3) and

  10. Oxidative coupling of 1-naphthols over noble and base metal catalysts

    CSIR Research Space (South Africa)

    Maphoru, MV

    2014-01-01

    Full Text Available Bismuth-promoted platinum catalysts were tested for the oxidative coupling of 2- and 4-substituted 1-naphthols at different temperatures and ambient pressure. The principal final products are the 3,3'-substituted 1,1'-binaphthalenylidene-4,4'-diones...

  11. Electrochemical behavior of platinum nanoparticles on a carbon xerogel support modified with a [(trifluoromethyl)-benzenesulfonyl]imide electrolyte.

    Science.gov (United States)

    Liu, Bing; Mei, Hua; DesMarteau, Darryl; Creager, Stephen E

    2014-12-11

    A monoprotic [(trifluoromethyl)benzenesulfonyl]imide (SI) superacid electrolyte was used to covalently modify a mesoporous carbon xerogel (CX) support via reaction of the corresponding trifluoromethyl aryl sulfonimide diazonium zwitterion with the carbon surface. Electrolyte attachment was demonstrated by elemental analysis, acid-base titration, and thermogravimetric analysis. The ion-exchange capacity of the fluoroalkyl-aryl-sulfonimide-grafted carbon xerogel (SI-CX) was ∼0.18 mequiv g(-1), as indicated by acid-base titration. Platinum nanoparticles were deposited onto the SI-grafted carbon xerogel samples by the impregnation and reduction method, and these materials were employed to fabricate polyelectrolyte membrane fuel-cell (PEMFC) electrodes by the decal transfer method. The SI-grafted carbon-xerogel-supported platinum (Pt/SI-CX) was characterized by X-ray diffraction and transmission electron microscopy to determine platinum nanoparticle size and distribution, and the findings are compared with CX-supported platinum catalyst without the grafted SI electrolyte (Pt/CX). Platinum nanoparticle sizes are consistently larger on Pt/SI-CX than on Pt/CX. The electrochemically active surface area (ESA) of platinum catalyst on the Pt/SI-CX and Pt/CX samples was measured with ex situ cyclic voltammetry (CV) using both hydrogen adsorption/desorption and carbon monoxide stripping methods and by in situ CV within membrane electrode assemblies (MEAs). The ESA values for Pt/SI-CX are consistently lower than those for Pt/CX. Some possible reasons for the behavior of samples with and without grafted SI layers and implications for the possible use of SI-grafted carbon layers in PEMFC devices are discussed.

  12. Robust Platinum-Based Electrocatalysts for Fuel Cell Applications

    Science.gov (United States)

    Coleman, Eric James

    Polymer electrolyte fuel cells (PEMFCs) are energy conversion devices that exploit the energetics of the reaction between hydrogen fuel and O 2 to generate electricity with water as the only byproduct. PEMFCs have attracted substantial attention due to their high conversion efficiency, high energy density, and low carbon footprint. However, PEMFC performance is hindered by the high activation barrier and slow reaction rates at the cathode where O2 undergoes an overall 4-electron reduction to water. The most efficient oxygen reduction reaction (ORR) catalyst materials to date are Pt group metals due to their high catalytic activity and stability in a wide range of operating conditions. Before fuel cells can become economically viable, efforts must be taken to decrease Pt content while maintaining a high level of ORR activity. This work describes the design and synthesis of a Pt-Cu electrocatalyst with ORR activity exceeding that of polycrystalline Pt. Production of this novel catalyst is quite simple and begins with synthesis of a porous Cu substrate, formed by etching Al from a Cu-Al alloy. The porous Cu substrate is then coated with a Pt layer via a spontaneous electrochemical process known as galvanic replacement. The Pt layer enhances the ORR activity (as measured by a rotating ring-disk electrode (RRDE)) and acts as a barrier towards corrosion of the Cu understructure. Growth of the Pt layer can be manipulated by time, temperature, concentration of Pt precursor, and convection rate during galvanic replacement. Data from analytical and electrochemical techniques confirm multiple Pt loadings have been achieved via the galvanic replacement process. The boost in ORR activity for the PtCu catalyst was determined to be a result of its lower affinity towards (site-blocking) OH adsorption. A unique catalyst degradation study explains the mechanism of initial catalyst ORR deactivation for both monometallic and bimetallic Pt-based catalysts. Finally, a rigorous and

  13. Characterization of electrochemically modified polycrystalline platinum surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Krebs, L.C.; Ishida, Takanobu.

    1991-12-01

    The characterization of electrochemically modified polycrystalline platinum surfaces has been accomplished through the use of four major electrochemical techniques. These were chronoamperometry, chronopotentiommetry, cyclic voltammetry, and linear sweep voltammetry. A systematic study on the under-potential deposition of several transition metals has been performed. The most interesting of these were: Ag, Cu, Cd, and Pb. It was determined, by subjecting the platinum electrode surface to a single potential scan between {minus}0.24 and +1.25 V{sub SCE} while stirring the solution, that the electrocatalytic activity would be regenerated. As a consequence of this study, a much simpler method for producing ultra high purity water from acidic permanganate has been developed. This method results in water that surpasses the water produced by pyrocatalytic distillation. It has also been seen that the wettability of polycrystalline platinum surfaces is greatly dependent on the quantity of oxide present. Oxide-free platinum is hydrophobic and gives a contact angle in the range of 55 to 62 degrees. We have also modified polycrystalline platinum surface with the electrically conducting polymer poly-{rho}-phenylene. This polymer is very stable in dilute sulfuric acid solutions, even under applied oxidative potentials. It is also highly resistant to electrochemical hydrogenation. The wettability of the polymer modified platinum surface is severely dependent on the choice of supporting electrolyte chosen for the electrochemical polymerization. Tetraethylammonium tetrafluoroborate produces a film that is as hydrophobic as Teflon, whereas tetraethylammonium perchlorate produces a film that is more hydrophilic than oxide-free platinum.

  14. Characterization of electrochemically modified polycrystalline platinum surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Krebs, Leonard C. [State Univ. of New York (SUNY), Stony Brook, NY (United States); Ishida, Takanobu [State Univ. of New York (SUNY), Stony Brook, NY (United States)

    1991-12-01

    The characterization of electrochemically modified polycrystalline platinum surfaces has been accomplished through the use of four major electrochemical techniques. These were chronoamperometry, chronopotentiommetry, cyclic voltammetry, and linear sweep voltammetry. A systematic study on the under-potential deposition of several transition metals has been performed. The most interesting of these were: Ag, Cu, Cd, and Pb. It was determined, by subjecting the platinum electrode surface to a single potential scan between -0.24 and +1.25 VSCE while stirring the solution, that the electrocatalytic activity would be regenerated. As a consequence of this study, a much simpler method for producing ultra high purity water from acidic permanganate has been developed. This method results in water that surpasses the water produced by pyrocatalytic distillation. It has also been seen that the wettability of polycrystalline platinum surfaces is greatly dependent on the quantity of oxide present. Oxide-free platinum is hydrophobic and gives a contact angle in the range of 55 to 62 degrees. We have also modified polycrystalline platinum surface with the electrically conducting polymer poly-ρ-phenylene. This polymer is very stable in dilute sulfuric acid solutions, even under applied oxidative potentials. It is also highly resistant to electrochemical hydrogenation. The wettability of the polymer modified platinum surface is severely dependent on the choice of supporting electrolyte chosen for the electrochemical polymerization. Tetraethylammonium tetrafluoroborate produces a film that is as hydrophobic as Teflon, whereas tetraethylammonium perchlorate produces a film that is more hydrophilic than oxide-free platinum.

  15. Study and development of membrane electrode assemblies for Proton Exchange Membrane Fuel Cell (PEMFC) with palladium based catalysts; Estudo e desenvolvimento de conjuntos membrana-eletrodos (MEA) para celula a combustivel de eletrolito polimerico condutor de protons (PEMFC) com eletrocatalisadores a base de paladio

    Energy Technology Data Exchange (ETDEWEB)

    Bonifacio, Rafael Nogueira

    2013-07-01

    PEMFC systems are capable of generating electricity with high efficiency and low or no emissions, but durability and cost issues prevent its large commercialization. In this work MEA with palladium based catalysts were developed, Pd/C, Pt/C and alloys PdPt/C catalysts with different ratios between metals and carbon were synthesized and characterized. A study of the ratio between catalyst and Nafion Ionomer for formation of high performance triple-phase reaction was carried out, a mathematical model to implement this adjustment to catalysts with different relations between metal and support taking into account the volumetric aspects of the catalyst layer was developed and then a study of the catalyst layer thickness was performed. X-ray diffraction, Transmission and Scanning Electron Microscopy, X-ray Energy Dispersive, Gas Pycnometry, Mercury Intrusion Porosimetry, Gas adsorption according to the BET and BJH equations, and Thermo Gravimetric Analysis techniques were used for characterization and particle size, specific surface areas and lattice parameters determinations were also carried out. All catalysts were used on MEAs preparation and evaluated in 5 cm{sup 2} single cell from 25 to 100 °C at 1 atm and the best composition was also evaluated at 3 atm. In the study of metals for reactions, to reduce the platinum applied to the electrodes without performance losses, Pd/C and PdPt/C 1:1 were selected for anodes and cathodes, respectively. The developed MEA structure used 0,25 mgPt.cm{sup -2}, showing power densities up to 550 mW.cm{sup -2} and power of 2.2 kW{sub net} per gram of platinum. The estimated costs showed that there was a reduction of up to 64.5 %, compared to the MEA structures previously known. Depending on the temperature and operating pressure, values from US$ 1,475.30 to prepare MEAs for each installed kilowatt were obtained. Taking into account recent studies, it was concluded that the cost of the developed MEA is compatible with PEMFC stationary

  16. Core-shell rhodium sulfide catalyst for hydrogen evolution reaction / hydrogen oxidation reaction in hydrogen-bromine reversible fuel cell

    Science.gov (United States)

    Li, Yuanchao; Nguyen, Trung Van

    2018-04-01

    Synthesis and characterization of high electrochemical active surface area (ECSA) core-shell RhxSy catalysts for hydrogen evolution oxidation (HER)/hydrogen oxidation reaction (HOR) in H2-Br2 fuel cell are discussed. Catalysts with RhxSy as shell and different percentages (5%, 10%, and 20%) of platinum on carbon as core materials are synthesized. Cyclic voltammetry is used to evaluate the Pt-equivalent mass specific ECSA and durability of these catalysts. Transmission electron microscopy (TEM), X-ray Photoelectron spectroscopy (XPS) and Energy-dispersive X-ray spectroscopy (EDX) techniques are utilized to characterize the bulk and surface compositions and to confirm the core-shell structure of the catalysts, respectively. Cycling test and polarization curve measurements in the H2-Br2 fuel cell are used to assess the catalyst stability and performance in a fuel cell. The results show that the catalysts with core-shell structure have higher mass specific ECSA (50 m2 gm-Rh-1) compared to a commercial catalyst (RhxSy/C catalyst from BASF, 6.9 m2 gm-Rh-1). It also shows better HOR/HER performance in the fuel cell. Compared to the platinum catalyst, the core-shell catalysts show more stable performance in the fuel cell cycling test.

  17. Importance of Electrode Hot-Pressing Conditions for the Catalyst Performance of Proton Exchange Membrane Fuel Cells

    DEFF Research Database (Denmark)

    Andersen, Shuang Ma; Dhiman, Rajnish; Larsen, Mikkel Juul

    2015-01-01

    The catalyst performance in a proton exchange membrane fuel cell (PEMFC) depends on not only the choice of materials, but also on the electrode structure and in particular on the interface between the components. In this work, we demonstrate that the hot-pressing conditions used during electrode...... lamination have a great influence on the catalyst properties of a low-temperature PEMFC, especially on its durability. Lamination pressure, temperature and duration were systematically studied in relation to the electrochemical surface area, platinum dissolution, platinum particle size and electrode surface...

  18. Sol-Gel Process for Making Pt-Ru Fuel-Cell Catalysts

    Science.gov (United States)

    Narayanan, Sekharipuram; Valdez, Thomas; Kumta, Prashant; Kim, Y.

    2005-01-01

    A sol-gel process has been developed as a superior alternative to a prior process for making platinum-ruthenium alloy catalysts for electro-oxidation of methanol in fuel cells. The starting materials in the prior process are chloride salts of platinum and ruthenium. The process involves multiple steps, is time-consuming, and yields a Pt-Ru product that has relatively low specific surface area and contains some chloride residue. Low specific surface area translates to incomplete utilization of the catalytic activity that might otherwise be available, while chloride residue further reduces catalytic activity ("poisons" the catalyst). In contrast, the sol-gel process involves fewer steps and less time, does not leave chloride residue, and yields a product of greater specific area and, hence, greater catalytic activity. In this sol-gel process (see figure), the starting materials are platinum(II) acetylacetonate [Pt(C5H7O2)2, also denoted Pt-acac] and ruthenium(III) acetylacetonate [Ru(C5H7O2)3, also denoted Ru-acac]. First, Pt-acac and Ru-acac are dissolved in acetone at the desired concentrations (typically, 0.00338 moles of each salt per 100 mL of acetone) at a temperature of 50 C. A solution of 25 percent tetramethylammonium hydroxide [(CH3)4NOH, also denoted TMAH] in methanol is added to the Pt-acac/Ruacac/ acetone solution to act as a high-molecular-weight hydrolyzing agent. The addition of the TMAH counteracts the undesired tendency of Pt-acac and Ru-acac to precipitate as separate phases during the subsequent evaporation of the solvent, thereby helping to yield a desired homogeneous amorphous gel. The solution is stirred for 10 minutes, then the solvent is evaporated until the solution becomes viscous, eventually transforming into a gel. The viscous gel is dried in air at a temperature of 170 C for about 10 hours. The dried gel is crushed to make a powder that is the immediate precursor of the final catalytic product. The precursor powder is converted to the

  19. Iron catalyst for preparation of polymethylene from synthesis gas and method for producing the catalyst

    Science.gov (United States)

    Sapienza, R.S.; Slegeir, W.A.

    1990-05-15

    This invention relates to a process for synthesizing hydrocarbons; more particularly, the invention relates to a process for synthesizing long-chain hydrocarbons known as polymethylene from carbon monoxide and hydrogen or from carbon monoxide and water or mixtures thereof in the presence of a catalyst comprising iron and platinum or palladium or mixtures thereof which may be supported on a solid material, preferably an inorganic refractory oxide. This process may be used to convert a carbon monoxide containing gas to a product which could substitute for high density polyethylene.

  20. Mechanism of Platinum Derivatives Induced Kidney Injury

    Directory of Open Access Journals (Sweden)

    Feifei YAN

    2015-09-01

    Full Text Available Platinum derivatives are the most widely used chemotherapeutic agents to treat solid tumors including ovarian, head and neck, and testicular germ cell tumors, lung cancer, and colorectal cancer. Two major problems exist, however, in the clinic use of platinum derivatives. One is the development of tumor resistance to the drug during therapy, leading to treatment failure. The other is the drug’s toxicity such as the cisplatin’s nephrotoxicity, which limits the dose that can be administered. This paper describes the mechanism of platinum derivatives induced kidney injury.

  1. Enhanced activity of Pt/CNTs anode catalyst for direct methanol fuel cells using Ni2P as co-catalyst

    Science.gov (United States)

    Li, Xiang; Luo, Lanping; Peng, Feng; Wang, Hongjuan; Yu, Hao

    2018-03-01

    The direct methanol fuel cell is a promising energy conversion device because of the utilization of the state-of-the-art platinum (Pt) anode catalyst. In this work, novel Pt/Ni2P/CNTs catalysts were prepared by the H2 reduction method. It was found that the activity and stability of Pt for methanol oxidation reaction (MOR) could be significantly enhanced while using nickel phosphide (Ni2P) nanoparticles as co-catalyst. X-ray photoelectron spectroscopy revealed that the existence of Ni2P affected the particle size and electronic distribution of Pt obviously. Pt/CNTs catalyst, Pt/Ni2P/CNTs catalysts with different Ni2P amount were synthesized, among which Pt/6%Ni2P/CNTs catalyst exhibited the best MOR activity of 1400 mAmg-1Pt, which was almost 2.5 times of the commercial Pt/C-JM catalyst. Moreover, compared to other Pt-based catalysts, this novel Pt/Ni2P/CNTs catalyst also exhibited higher onset current density and better steady current density. The result of this work may provide positive guidance to the research on high efficiency and stability of Pt-based catalyst for direct methanol fuel cells.

  2. Development of low light-off catalyst; Teion kassei ni sugureta shokubai no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    Takemoto, T; Ichikawa, S; Koda, Y; Yamamoto, E; Sumida, H; Yamada, H; Shigetsu, M; Komatsu, K [Mazda Motor Corp., Tokyo (Japan)

    1997-10-01

    A new type of three way catalyst was developed in order to reduce HC, CO and NOx in cold exhaust gas. This catalyst consists of double layer, and has a base support material of alumina and oxygen storage components (OSC) loaded with active metals including platinum. palladium and rhodium. It has good light-off performance and high catalytic activity. This catalyst includes two types of OSC. One is CeO2, and the other is CePrO2 that makes possible to improve NOx conversion at high exhaust gas temperature. 8 refs., 13 figs., 2 tabs.

  3. A Study of Iron-Nitrogen-Carbon Fuel Cell Catalysts: Chemistry - Nanostructure - Performance

    Science.gov (United States)

    Workman, Michael J., Jr.

    Fuel cells have the potential to be a pollution-free, low-cost, and energy efficient alternative to the internal combustion engine for transportation and small-scale stationary power applications. The current state of fuel cell technology has already achieved two of these three lofty goals. The remaining barrier to wide-scale deployment is the high cost, which is primarily caused by dependence on large amounts of platinum to catalyze the energy conversion reactions. To overcome this barrier and facilitate the integration of fuel cells into mainstream applications, research into a new class of catalyst materials that do not require platinum is needed. There has been a significant amount of research effort directed toward the development of platinum-group metal free (PGM-free) catalysts, yet there is a lack of consensus on both the engineering parameters necessary to improve the technology and the fundamental science that would facilitate rational design. I have engaged in research on PGM-free catalysts based on inexpensive and abundant reagents, specifically: nicarbazin and iron. Catalysts made from these precursors have previously proven to be among the best PGM-free catalysts, but their continued advancement suffered from the same lack of understanding that besets all catalysts in this class. The work I have performed address both engineering concerns and fundamental underlying principles. I present results demonstrating correlations between physical structure, chemical speciation, and synthesis parameters, as well as addressing active site chemistry and likely locations. My research presented herein introduces new morphology analysis techniques and elucidates several key structure-to-property characteristics of catalysts derived from iron and nicarbazin. I discuss the development and application of a new length-scale specific surface analysis technique that allows for analysis of well-defined size ranges from a few nm to several microns. The existing technique of

  4. VB Platinum Tile & Carpet, Inc. Information Sheet

    Science.gov (United States)

    VB Platinum Tile & Carpet, Inc. (the Company) is located in Bristow, Virginia. The settlement involves renovation activities conducted at a property constructed prior to 1978, located in Washington, DC.

  5. Platinum-Resistor Differential Temperature Sensor

    Science.gov (United States)

    Kolbly, R. B.; Britcliffe, M. J.

    1985-01-01

    Platinum resistance elements used in bridge circuit for measuring temperature difference between two flowing liquids. Temperature errors with circuit are less than 0.01 degrees C over range of 100 degrees C.

  6. Nanostructured Mn{sub x}O{sub y} for oxygen reduction reaction (ORR) catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Delmondo, Luisa, E-mail: luisa.delmondo@polito.it [Department of Applied Science and Technology—DISAT, Politecnico di Torino, C.so Duca degli Abruzzi 24, 10129 Torino (Italy); Salvador, Gian Paolo; Muñoz-Tabares, José Alejandro; Sacco, Adriano; Garino, Nadia; Castellino, Micaela [Center for Space Human Robotics @PoliTo, Istituto Italiano di Tecnologia, C.so Trento 21, 10129 Torino (Italy); Gerosa, Matteo; Massaglia, Giulia [Department of Applied Science and Technology—DISAT, Politecnico di Torino, C.so Duca degli Abruzzi 24, 10129 Torino (Italy); Center for Space Human Robotics @PoliTo, Istituto Italiano di Tecnologia, C.so Trento 21, 10129 Torino (Italy); Chiodoni, Angelica; Quaglio, Marzia [Center for Space Human Robotics @PoliTo, Istituto Italiano di Tecnologia, C.so Trento 21, 10129 Torino (Italy)

    2016-12-01

    Highlights: • Good performance catalysts for oxygen reduction reaction. • Nanostructured low-cost catalysts respect to platinum ones. • Synthesis using environmental benign chemical reagents. - Abstract: In the field of fuel cells, oxygen plays a key role as the final electron acceptor. To facilitate its reduction (Oxygen Reduction Reaction—ORR), a proper catalyst is needed and platinum is considered the best one due to its low overpotential for this reaction. By considering the high price of platinum, alternative catalysts are needed and manganese oxides (Mn{sub x}O{sub y}) can be considered promising substitutes. They are inexpensive, environmental friendly and can be obtained into several forms; most of them show significant electro-catalytic performance, even if strategies are needed to increase their efficiency. In particular, by developing light and high-surface area materials and by optimizing the presence of catalytic sites, we can obtain a cathode with improved electro-catalytic performance. In this case, nanofibers and xerogels are two of the most promising nanostructures that can be used in the field of catalysis. In this work, a study of the morphological and catalytic behavior of Mn{sub x}O{sub y} nanofibers and xerogels is proposed. Nanofibers were obtained by electrospinning, while xerogels were prepared by sol-gel and freeze drying techniques. Despite of the different preparation approaches, the obtained nanostructured manganese oxides exhibited similar catalytic performance for the ORR, comparable to those obtained from Pt catalysts.

  7. The kinetics and mechanism of methanol oxidation on Pt and PtRu catalysts in alkaline and acid media

    Directory of Open Access Journals (Sweden)

    JELENA LOVIC

    2007-07-01

    Full Text Available The kinetic of methanol electrochemical oxidation for a series of platinum and platinum–ruthenium catalysts was investigated. A correlation between the beginning of OHad adsorption and methanol oxidation was demonstarated on Pt single crystals and Pt nanocatalyst. The activity of the nano-structured Pt catalyst was compared with single crystal platinum electrodes assuming the Kinoshita model of nanoparticles. The ruthenium-containing catalysts shifted the onset of methanol oxidation to more negative potentials. The effect was more pronounced in acid than in alkaline media. Based on the established diagnostic criteria, the reaction between COad and OHad species according to the Langmuir–Hinshelwood mechanism was proposed as the rate determining step in alkaline and acid media on Pt and PtRu catalysts.

  8. Non-platinum nanocatalyst on porous nitrogen-doped carbon fabricated by cathodic vacuum arc plasma technique

    Energy Technology Data Exchange (ETDEWEB)

    Sirirak, Reungruthai [Material Science Research Center, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Department of Chemistry and Center of Excellence for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Sarakonsri, Thapanee, E-mail: tsarakonsri@gmail.com [Material Science Research Center, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Department of Chemistry and Center of Excellence for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Medhesuwakul, Min [Plasma & Beam Physics Research Facility, Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand)

    2015-11-30

    Highlights: • High surface area porous coral-like nitrogen-doped carbon (NC) and non-platinum nanocatalysts were fabricated on proton exchange membrane using the cathodic vacuum arc plasma (CVAP) technique. • It is a one-step catalysts preparation directly on nafion proton exchange membrane. This CVAP technique is the first new method that was applied in a polymer electrolyte membrane fuel cells (PEMFCs) catalysts preparation. • Due to these excellent characteristics of nitrogen-doped carbon, it is expected to exhibit a good catalyst supporter for PEMFC. • In addition, the Fe–NC catalysts fabricated via this CVAP technique are sphere-like nanoparticle and well disperse on coral-like NC film, which particularity exhibits that these prepared catalysts ought to be a good oxygen reduction reaction (ORR) catalyst for PEMFC. • This approach can be extended to the synthesis of other non-platinum ORR catalyst for broad range applications in energy conversion. - Abstract: Polymer electrolyte membrane fuel cells (PEMFCs) convert chemical energy directly into electrical energy where catalysts composing of non-noble transition metals, nitrogen, and carbon compounds are the most promising materials to replace the expensive platinum catalysts for oxygen reduction reaction (ORR). In this research, cathodic vacuum arc plasma (CVAP) technique was used to fabricate porous nitrogen doped carbon (NC) and non-platinum catalyst on porous NC (Fe–NC) directly on ion exchange membrane for being used as an ORR catalyst at the cathode. The porous NC layer was fabricated on silicon wafer at 0.05 mTorr, 0.1 mTorr, 0.5 mTorr, 1 mTorr, and 5 mTorr of nitrogen gas inlet. The AFM, and SEM images are observed to be regularly big with quite high hillocks and thin NC layers; these results indicate that the optimum process pressure of nitrogen gas inlet is 5 mTorr for porous NC fabrication. The SEM–EDS detects Fe, N, and C elements in the prepared catalysts, and the XRD pattern reviews

  9. Non-platinum nanocatalyst on porous nitrogen-doped carbon fabricated by cathodic vacuum arc plasma technique

    International Nuclear Information System (INIS)

    Sirirak, Reungruthai; Sarakonsri, Thapanee; Medhesuwakul, Min

    2015-01-01

    Highlights: • High surface area porous coral-like nitrogen-doped carbon (NC) and non-platinum nanocatalysts were fabricated on proton exchange membrane using the cathodic vacuum arc plasma (CVAP) technique. • It is a one-step catalysts preparation directly on nafion proton exchange membrane. This CVAP technique is the first new method that was applied in a polymer electrolyte membrane fuel cells (PEMFCs) catalysts preparation. • Due to these excellent characteristics of nitrogen-doped carbon, it is expected to exhibit a good catalyst supporter for PEMFC. • In addition, the Fe–NC catalysts fabricated via this CVAP technique are sphere-like nanoparticle and well disperse on coral-like NC film, which particularity exhibits that these prepared catalysts ought to be a good oxygen reduction reaction (ORR) catalyst for PEMFC. • This approach can be extended to the synthesis of other non-platinum ORR catalyst for broad range applications in energy conversion. - Abstract: Polymer electrolyte membrane fuel cells (PEMFCs) convert chemical energy directly into electrical energy where catalysts composing of non-noble transition metals, nitrogen, and carbon compounds are the most promising materials to replace the expensive platinum catalysts for oxygen reduction reaction (ORR). In this research, cathodic vacuum arc plasma (CVAP) technique was used to fabricate porous nitrogen doped carbon (NC) and non-platinum catalyst on porous NC (Fe–NC) directly on ion exchange membrane for being used as an ORR catalyst at the cathode. The porous NC layer was fabricated on silicon wafer at 0.05 mTorr, 0.1 mTorr, 0.5 mTorr, 1 mTorr, and 5 mTorr of nitrogen gas inlet. The AFM, and SEM images are observed to be regularly big with quite high hillocks and thin NC layers; these results indicate that the optimum process pressure of nitrogen gas inlet is 5 mTorr for porous NC fabrication. The SEM–EDS detects Fe, N, and C elements in the prepared catalysts, and the XRD pattern reviews

  10. Synergistically Enhanced Electrochemical Performance of Ni3S4-PtX (X = Fe, Ni) Heteronanorods as Heterogeneous Catalysts in Dye-Sensitized Solar Cells.

    Science.gov (United States)

    Huang, Shoushuang; Ma, Dui; Hu, ZhangJun; He, Qingquan; Zai, Jiantao; Chen, Dayong; Sun, Huai; Chen, Zhiwen; Qiao, Qiquan; Wu, Minghong; Qian, Xuefeng

    2017-08-23

    Platinum (Pt)-based alloys are considerably promising electrocatalysts for the reduction of I - /I 3 - and Co 2+ /Co 3+ redox couples in dye-sensitized solar cells (DSSCs). However, it is still challenging to minimize the dosage of Pt to achieve comparable or even higher catalytic efficiency. Here, by taking full advantages of the Mott-Schottky (M-S) effect at the metal-semiconductor interface, we successfully strategize a low-Pt-based M-S catalyst with enhanced electrocatalytic performance and stability for the large-scale application of DSSCs. The optimized M-S electrocatalyst of Ni 3 S 4 -Pt 2 X 1 (X = Fe, Ni) heteronanorods is constructed by rationally controlling the ratio of Pt to transition metal in the hybrids. It was found that the electrons transferred from Ni 3 S 4 to Pt 2 X 1 at their interface under the Mott-Schottky effect result in the concentration of electrons onto Pt 2 X 1 domains, which subsequently accelerates the regeneration of both I - /I 3 - and Co 2+ /Co 3+ redox shuttles in DSSCs. As a result, the DSSC with Ni 3 S 4 -Pt 2 Fe 1 manifests an impressive power conversion efficiency (PCE) of 8.79% and 5.56% for iodine and cobalt-based electrolyte under AM1.5G illumination, respectively. These PCEs are obviously superior over those with Ni 3 S 4 -Pt, PtFe, Ni 3 S 4 , and pristine Pt electrodes. The strategy reported here is able to be further expanded to fabricate other low-Pt-alloyed M-S catalysts for wider applications in the fields of photocatalysis, water splitting, and heterojunction solar cells.

  11. Activation analysis for platinum in gold and metals of the platinum group through 199Au

    International Nuclear Information System (INIS)

    Foerster, H.

    1976-01-01

    Platinum was determined in gold and in metals of the platinum group through 199 Au by activation analysis. The matrix was separated at the end of irradiation before the daughter nuclide was formed. Gold was separated by extraction with MIBK from 1

  12. Process for Making a Noble Metal on Tin Oxide Catalyst

    Science.gov (United States)

    Davis, Patricia; Miller, Irvin; Upchurch, Billy

    2010-01-01

    To produce a noble metal-on-metal oxide catalyst on an inert, high-surface-area support material (that functions as a catalyst at approximately room temperature using chloride-free reagents), for use in a carbon dioxide laser, requires two steps: First, a commercially available, inert, high-surface-area support material (silica spheres) is coated with a thin layer of metal oxide, a monolayer equivalent. Very beneficial results have been obtained using nitric acid as an oxidizing agent because it leaves no residue. It is also helpful if the spheres are first deaerated by boiling in water to allow the entire surface to be coated. A metal, such as tin, is then dissolved in the oxidizing agent/support material mixture to yield, in the case of tin, metastannic acid. Although tin has proven especially beneficial for use in a closed-cycle CO2 laser, in general any metal with two valence states, such as most transition metals and antimony, may be used. The metastannic acid will be adsorbed onto the high-surface-area spheres, coating them. Any excess oxidizing agent is then evaporated, and the resulting metastannic acid-coated spheres are dried and calcined, whereby the metastannic acid becomes tin(IV) oxide. The second step is accomplished by preparing an aqueous mixture of the tin(IV) oxide-coated spheres, and a soluble, chloride-free salt of at least one catalyst metal. The catalyst metal may be selected from the group consisting of platinum, palladium, ruthenium, gold, and rhodium, or other platinum group metals. Extremely beneficial results have been obtained using chloride-free salts of platinum, palladium, or a combination thereof, such as tetraammineplatinum (II) hydroxide ([Pt(NH3)4] (OH)2), or tetraammine palladium nitrate ([Pd(NH3)4](NO3)2).

  13. Solvent extraction of platinum with thiobenzanilide. Separation of platinum from copper

    International Nuclear Information System (INIS)

    Shkil', A.N.; Zolotov, Yu.A.

    1989-01-01

    The solvent extraction of micro concentrations of platinum has been investigated from hydrochloric acid media using thiobenzanilide in the presence of SnCl 2 and KI. In the presence of SnCl 2 platinum is extracted rapidly and to significant completion. Conditions have been developed for the quantitative extraction of platinum. The authors have also examined the solvent extraction of copper(II) using thiobenzanilide, interference due to copper(II) and iron(III) on solvent extraction of platinum, and methods to suppress this interference. A procedure has also been developed for the separation of platinum from copper. Solvent extraction of metals was studied using radioactive isotopes: 197 Pt, 64 Cu, 59 Fe, 198 Au, 109 Pd, 110m Ag

  14. Effect of additions of cerium, lanthanum, and zirconium on the state of plantinum and the activity of aluminoplatinum catalysts for the complete oxidation of hydrocarbons

    International Nuclear Information System (INIS)

    Drozdov, V.A.; Davydov, A.A.; Popovskii, V.V.; Tsyrul'nikov, P.G.

    1986-01-01

    It is shown from an analysis of the diffuse reflectance spectra that additions of cerium, lanthanum or zirconium to aluminoplatinum catalyst stabilize the platinum in an oxidized state. This leads to a change in the specific catalytic activity (SCA) towards the total oxidation of methane and butane. The SCA of modified, reduced samples is greater than the SCA of samples that were calcined in air. This is because of the greater activity of metallic platinum compared to the ionic form

  15. Manganese dioxide as a new cathode catalyst in microbial fuel cells

    Science.gov (United States)

    Li, Xiang; Hu, Boxun; Suib, Steven; Lei, Yu; Li, Baikun

    This study focused on manganese oxides with a cryptomelane-type octahedral molecular sieve (OMS-2) structure to replace platinum as a cathode catalyst in microbial fuel cells (MFCs). Undoped (ud-OSM-2) and three catalysts doped with cobalt (Co-OMS-2), copper (Cu-OMS-2), and cerium (Ce-OMS-2) to enhance their catalytic performances were investigated. The novel OMS-2 cathodes were examined in granular activated carbon MFC (GACMFC) with sodium acetate as the anode reagent and oxygen in air as the cathode reagent. The results showed that after 400 h of operation, the Co-OMS-2 and Cu-OMS-2 exhibited good catalytic performance in an oxygen reduction reaction (ORR). The voltage of the Co-OMS-2 GACMFC was 217 mV, and the power density was 180 mW m -2. The voltage of the Cu-OMS-2 GACMFC was 214 mV and the power density was 165 mW m -2. The internal resistance (R in) of the OMS-2 GACMFCs (18 ± 1 Ω) was similar to that of the platinum GACMFCs (17 Ω). Furthermore, the degradation rates of organic substrates in the OMS-2 GACMFCs were twice those in the platinum GACMFCs, which enhance their wastewater treatment efficiencies. This study indicated that using OMS-2 manganese oxides to replace platinum as a cathodic catalyst enhances power generation, increases contaminant removal, and substantially reduces the cost of MFCs.

  16. Manganese dioxide as a new cathode catalyst in microbial fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Li, Xiang; Li, Baikun [Department of Civil and Environmental Engineering, University of Connecticut, Storrs, CT 06269 (United States); Hu, Boxun [Institute of Materials Science, University of Connecticut, Storrs, CT 06269 (United States); Suib, Steven [Institute of Materials Science, University of Connecticut, Storrs, CT 06269 (United States); Department of Chemistry, University of Connecticut, Storrs, CT 06269 (United States); Department of Chemical and Biomolecular Engineering, University of Connecticut, Storrs, CT 06269 (United States); Lei, Yu. [Department of Chemical and Biomolecular Engineering, University of Connecticut, Storrs, CT 06269 (United States)

    2010-05-01

    This study focused on manganese oxides with a cryptomelane-type octahedral molecular sieve (OMS-2) structure to replace platinum as a cathode catalyst in microbial fuel cells (MFCs). Undoped (ud-OSM-2) and three catalysts doped with cobalt (Co-OMS-2), copper (Cu-OMS-2), and cerium (Ce-OMS-2) to enhance their catalytic performances were investigated. The novel OMS-2 cathodes were examined in granular activated carbon MFC (GACMFC) with sodium acetate as the anode reagent and oxygen in air as the cathode reagent. The results showed that after 400 h of operation, the Co-OMS-2 and Cu-OMS-2 exhibited good catalytic performance in an oxygen reduction reaction (ORR). The voltage of the Co-OMS-2 GACMFC was 217 mV, and the power density was 180 mW m{sup -2}. The voltage of the Cu-OMS-2 GACMFC was 214 mV and the power density was 165 mW m{sup -2}. The internal resistance (R{sub in}) of the OMS-2 GACMFCs (18 {+-} 1 {omega}) was similar to that of the platinum GACMFCs (17 {omega}). Furthermore, the degradation rates of organic substrates in the OMS-2 GACMFCs were twice those in the platinum GACMFCs, which enhance their wastewater treatment efficiencies. This study indicated that using OMS-2 manganese oxides to replace platinum as a cathodic catalyst enhances power generation, increases contaminant removal, and substantially reduces the cost of MFCs. (author)

  17. Production of perovskite catalysts on ceramic monoliths with nanoparticles for dual fuel system automobiles

    International Nuclear Information System (INIS)

    Khanfekr, A.; Arzani, K.; Nemati, A.; Hosseini, M.

    2009-01-01

    (Lanthanum, Cerium)(Iron, Manganese, Cobalt, Palladium)(Oxygen) 3 ,-Perovskite catalyst was prepared by the citrate route and deposited on ceramic monoliths via dip coating procedure. The catalyst was applied on a car with X U 7 motors and the amount of emission was monitored with vehicle emission test systems in Sapco company. The results were compared with the imported catalyst with noble metals such as Palladium, Platinum and Rhodium by Iran Khodro company based on the Euro III standards. The catalysts were characterized by specific surface area measurements, scanning electron microscopy, X-ray diffraction, line scan and map. In the results, obtained in the home made sample, the amount of carbon monoxide, nitrogen oxides and hydrocarbons were lower than imported catalyst with Iran Khodro company with nobel metals. The illustration shows nano particles size on coat. The microstructure evaluation showed that the improved properties can be related to the existence of nano particles on coating

  18. Real life experimental determination of platinum group metals content in automotive catalytic converters

    Science.gov (United States)

    Yakoumis, I.; Moschovi, A. M.; Giannopoulou, I.; Panias, D.

    2018-03-01

    The real life experimental protocol for the preparation of spent automobile catalyst samples for elemental analysis is thoroughly described in the following study. Collection, sorting and dismantling, homogenization and sample preparation for X-Ray fluorescence spectroscopy and Atomic Adsorption Spectroscopy combined with Inductive coupled plasma mass spectrometry are discussed in detail for both ceramic and metallic spent catalysts. The concentrations of Platinum Group Metals (PGMs) in spent catalytic converters are presented based on typical consignments of recycled converters (more than 45,000 pieces) from the Greek Market. The conclusions clearly denoted commercial metallic catalytic foil contains higher PGMs loading than ceramic honeycombs. On the other hand, the total PGMs loading in spent ceramic catalytic converters has been found higher than the corresponding value for the metallic ones.

  19. Peruvian perovskite Between Transition-metal to PGM/PlatinumGroupMetal Catalytic Fusion

    Science.gov (United States)

    Maksoed, Wh-

    2016-11-01

    Strongly correlated electronic materials made of simple building blocks, such as a transition-metal ion in an octahedral oxygen cage forming a perovskite structure- Dagotto & Tokura for examples are the high-temperature superconductivity & the CMR/Colossal Magnetoresistance . Helium-4 denotes from LC Case,ScD: "Catalytic Fusion of Deuterium into Helium-4"- 1998 dealt with gaseous D2- "contacted with a supported metallic catalyst at superatmospheric pressure". The catalyst is a platinum-group metal, at about 0.5% - 1% by weight, on activated C. Accompanies Stephen J Geier, 2010 quotes "transition metal complexes", the Energy thus produced is enormous, and because the deuterium is very cheap in the form of heavy water (less than US 1/g), the fuel cost is very low (seas &Deuteronomy to be eternally preserves. Heartfelt Gratitudes to HE. Mr. Prof. Ir. HANDOJO.

  20. The electrochemical behavior of cobalt phthalocyanine/platinum as methanol-resistant oxygen-reduction electrocatalysts for DMFC

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Yuhao; Reddy, Ramana G. [Department of Metallurgical and Materials Engineering, The University of Alabama, P.O. Box 870202, Tuscaloosa, AL 35487 (United States)

    2007-02-01

    The electrochemical behavior of cobalt phthalocyanine/platinum as methanol-resistant oxygen-reduction electrocatalyst for DMFC was investigated. Platinum was chemically deposited on the carbon-supported cobalt phthalocyanine (CoPc), and then it was heat-treated in high purity nitrogen at 300 C, 635 C and 980 C. In order to evaluate the electrocatalytic behavior of CoPc-Pt/C, the PtCo/C and Pt/C as reference catalysts were employed. TGA, XRD, EDAX, XPS and electrochemical experiments were used to study the thermal stability, crystal structure, physical characterization and electrochemical behavior of these catalysts. These catalysts exhibited similar electrocatalytic activity for oxygen reaction in 0.5 M H{sub 2}SO{sub 4} solution. In methanol tolerance experiments, Pt/C, PtCo/C and CoPc-Pt/C heated at 980 C were active for the methanol oxidation reaction (MOR). The presence of Co did not improve resistance to methanol poisoning. However, the CoPc-Pt/C after 300 C or 635 C heat-treatment demonstrated significant inactivity for MOR, hence they have a good ability to resist methanol poisoning. The current study indicated that the macrocyclic structure of phthalocyanine is the most important factor to improve the methanol tolerance of CoPc-Pt/C as the oxygen-reduction reaction (ORR) electrocatalyst. The CoPc-Pt based catalyst should be a good alternation for oxygen electro-reduction reaction in DMFC. (author)

  1. Reactivation of a Tin-Oxide-Containing Catalyst

    Science.gov (United States)

    Hess, Robert; Sidney, Barry; Schryer, David; Miller, Irvin; Miller, George; Upchurch, Bill; Davis, Patricia; Brown, Kenneth

    2010-01-01

    The electrons in electric-discharge CO2 lasers cause dissociation of some CO2 into O2 and CO, and attach themselves to electronegative molecules such as O2, forming negative O2 ions, as well as larger negative ion clusters by collisions with CO or other molecules. The decrease in CO2 concentration due to dissociation into CO and O2 will reduce the average repetitively pulsed or continuous wave laser power, even if no disruptive negative ion instabilities occur. Accordingly, it is the primary object of this invention to extend the lifetime of a catalyst used to combine the CO and O2 products formed in a laser discharge. A promising low-temperature catalyst for combining CO and O2 is platinum on tin oxide (Pt/SnO2). First, the catalyst is pretreated by a standard procedure. The pretreatment is considered complete when no measurable quantity of CO2 is given off by the catalyst. After this standard pretreatment, the catalyst is ready for its low-temperature use in the sealed, high-energy, pulsed CO2 laser. However, after about 3,000 minutes of operation, the activity of the catalyst begins to slowly diminish. When the catalyst experiences diminished activity during exposure to the circulating gas stream inside or external to the laser, the heated zone surrounding the catalyst is raised to a temperature between 100 and 400 C. A temperature of 225 C was experimentally found to provide an adequate temperature for reactivation. During this period, the catalyst is still exposed to the circulating gas inside or external to the laser. This constant heating and exposing the catalyst to the laser gas mixture is maintained for an hour. After heating and exposing for an appropriate amount of time, the heated zone around the catalyst is allowed to return to the nominal operating temperature of the CO2 laser. This temperature normally resides in the range of 23 to 100 C. Catalyst activity can be measured as the percentage conversion of CO to CO2. In the specific embodiment

  2. Low Temperature Catalyst for NH3 Removal

    Science.gov (United States)

    Monje, Oscar; Melendez, Orlando

    2013-01-01

    Air revitalization technologies maintain a safe atmosphere inside spacecraft by the removal of C02, ammonia (NH3), and trace contaminants. NH3 onboard the International Space Station (ISS) is produced by crew metabolism, payloads, or during an accidental release of thermal control refrigerant. Currently, the ISS relies on removing NH3 via humidity condensate and the crew wears hooded respirators during emergencies. A different approach to cabin NH3 removal is to use selective catalytic oxidation (SCO), which builds on thermal catalytic oxidation concepts that could be incorporated into the existing TCCS process equipment architecture on ISS. A low temperature platinum-based catalyst (LTP-Catalyst) developed at KSC was used for converting NH3 to H20 and N2 gas by SCO. The challenge of implementing SCO is to reduce formation of undesirable byproducts like NOx (N20 and NO). Gas mixture analysis was conducted using FTIR spectrometry in the Regenerable VOC Control System (RVCS) Testbed. The RVCS was modified by adding a 66 L semi-sealed chamber, and a custom NH3 generator. The effect of temperature on NH3 removal using the LTP-Catalyst was examined. A suitable temperature was found where NH3 removal did not produce toxic NO, (NO, N02) and N20 formation was reduced.

  3. Advancements in rationally designed PGM-free fuel cell catalysts derived from metal–organic frameworks

    International Nuclear Information System (INIS)

    Barkholtz, Heather M.; Liu, Di-Jia

    2016-01-01

    Over the past several years, metal-organic framework (MOF)-derived platinum group metal free (PGM-free) electrocatalysts have gained considerable attention due to their high efficiency and low cost as potential replacement for platinum in catalyzing oxygen reduction reaction (ORR). In this review, we summarize the recent advancements in design, synthesis and characterization of MOF-derived ORR catalysts and their performances in acidic and alkaline media. As a result, we also discuss the key challenges such as durability and activity enhancement critical in moving forward this emerging electrocatalyst science.

  4. Platinum uptake from chloride solutions using biosorbents

    Directory of Open Access Journals (Sweden)

    Mehmet Hakan Morcali

    2013-04-01

    Full Text Available Present work investigates platinum uptake from synthetically prepared, dilute platinum-bearing solutions using biomass residues, i.e. pistachio nut shell and rice husk, which are abundant in Turkey, and provides a comparison between these two biosorbents. Effects of the different uptake parameters, sorbent dosage, contact time, temperature and pH of solution on platinum uptake (% were studied in detail on a batch sorption. Before the pistachio nut shell was activated, platinum uptake (% was poor compared to the rice husk. However, after the pistachio nut shell was activated at 1000 °C under an argon atmosphere, the platinum uptake (% increased two-fold. The pistachio nut shell (original and activated and rice husk were shown to be better than commercially available activated carbon in terms of adsorption capacity. These two sorbents have also been characterized by FTIR and SEM. Adsorption equilibrium data best complied with the Langmuir isotherm model. Maximum adsorption capacities, Qmax, at 25 °C were found to be 38.31 and 42.02 mg.g- 1for the activated pistachio nut shell and rice husk, respectively. Thermodynamic calculations using the measured ∆H°, ∆S° and ∆G° values indicate that the uptake process was spontaneous and endothermic. The experimental data were shown to be fit the pseudo-second-order kinetic model.

  5. Mixed ionic liquids/graphene-supported platinum nanoparticles as an electrocatalyst for methanol oxidation

    International Nuclear Information System (INIS)

    Shi, Guoyu; Wang, Zonghua; Xia, Jianfei; Bi, Sai; Li, Yue; Zhang, Feifei; Xia, Lin; Li, Yanhui; Xia, Yanzhi; Xia, Linhua

    2014-01-01

    Graphical abstract: A kind of mixed ionic liquids (ILs) of 1-butyl-3-methylimidazolium tetrafluoroborate ([bmim][BF4], IL1) and hexafluorophosphate ([bmim][PF6], IL2) was introduced to the functionalization of graphene (GN) nanosheets, which was used to the synthesis of platinum nanoparticles (Pt NPs) to obtain the Pt/IL1-IL2/GN nanocomposite. The as-prepared Pt/IL1-IL2/GN composites exhibited highly electrocatalytic activity (764.3 mA mg − 1Pt at 0.6 V vs. SCE) and stability toward methanol oxidation, demonstrating their promising potential as the anode catalyst for direct methanol fuel cells (DMFCs). - Highlights: • Pt/mixed ionic liquids/graphene composite catalyst was easily synthesized. • The special phase equilibrium characteristics exerted by the peculiar interactions between different ILs can promote the homogeneous growth of small Pt nanoparticles. • The as-made catalyst exhibited enhanced electro-catalytic performance for methanol oxidation. - Abstract: A kind of mixed ionic liquids (ILs) of 1-butyl-3-methylimidazolium tetrafluoroborate ([bmim][BF 4 ], IL 1 ) and hexafluorophosphate ([bmim][PF 6 ], IL 2 ) was introduced to the functionalization of graphene (GN) nanosheets, which was used to the synthesis of platinum nanoparticles (Pt NPs) to obtain the Pt/IL 1 -IL 2 /GN nanocomposite. The interaction between mixed ILs and GN achieved a stable performance due to the excellent electronic and interfacial property of the fabricated nanocomposites, which was favorable for effective loading of Pt NPs on the IL 1 -IL 2 /GN support. The as-prepared Pt/IL 1 -IL 2 /GN composites exhibited highly electrocatalytic activity (764.3 mA mg −1 Pt at 0.6 V vs. SCE) and stability toward methanol oxidation, demonstrating their promising potential as the anode catalyst for direct methanol fuel cells (DMFCs)

  6. Novel platinum black electroplating technique improving mechanical stability.

    Science.gov (United States)

    Kim, Raeyoung; Nam, Yoonkey

    2013-01-01

    Platinum black microelectrodes are widely used as an effective neural signal recording sensor. The simple fabrication process, high quality signal recording and proper biocompatibility are the main advantages of platinum black microelectrodes. When microelectrodes are exposed to actual biological system, various physical stimuli are applied. However, the porous structure of platinum black is vulnerable to external stimuli and destroyed easily. The impedance level of the microelectrode increases when the microelectrodes are damaged resulting in decreased recording performance. In this study, we developed mechanically stable platinum black microelectrodes by adding polydopamine. The polydopamine layer was added between the platinum black structures by electrodeposition method. The initial impedance level of platinum black only microelectrodes and polydopamine added microelectrodes were similar but after applying ultrasonication the impedance value dramatically increased for platinum black only microelectrodes, whereas polydopamine added microelectrodes showed little increase which were nearly retained initial values. Polydopamine added platinum black microelectrodes are expected to extend the availability as neural sensors.

  7. Mass-selected nanoparticles of PtxY as model catalysts for oxygen electroreduction

    DEFF Research Database (Denmark)

    Hernandez-Fernandez, Patricia; Masini, Federico; McCarthy, David Norman

    2014-01-01

    Low-temperature fuel cells are limited by the oxygen reduction reaction, and their widespread implementation in automotive vehicles is hindered by the cost of platinum, currently the best-known catalyst for reducing oxygen in terms of both activity and stability. One solution is to decrease...

  8. A Simple Synthesis of an N-Doped Carbon ORR Catalyst: Hierarchical Micro/Meso/Macro Porosity and Graphitic Shells

    NARCIS (Netherlands)

    Eisenberg, D.; Stroek, W.; Geels, N.J.; Sandu, C.S.; Heller, A.; Yan, N.; Rothenberg, G.

    2016-01-01

    Replacing platinum as an oxygen reduction catalyst is an important scientific and technological challenge. Herein we report a simple synthesis of a complex carbon with very good oxygen reduction reaction (ORR) activity at pH 13. Pyrolysis of magnesium nitrilotriacetate yields a carbon with

  9. CO Adsorption and Oxidation at the Catalyst-Water Interface: An Investigation by Attenuated Total Reflection Infrared Spectroscopy.

    NARCIS (Netherlands)

    Ebbesen, S.D.; Mojet, Barbara; Lefferts, Leonardus

    2006-01-01

    Adsorption of carbon monoxide and oxidation of preadsorbed carbon monoxide from gas and aqueous phases were studied on a platinum catalyst deposited on a ZnSe internal reflection element (IRE) using attenuated total reflection infrared (ATR-IR) spectroscopy. The results of this study convincingly

  10. Sequential Electrodeposition of Platinum-Ruthenium at Boron-Doped Diamond Electrodes for Methanol Oxidation

    Directory of Open Access Journals (Sweden)

    Ileana González-González

    2011-01-01

    Full Text Available Sequential electrodeposition of Pt and Ru on boron-doped diamond (BDD films, in 0.5 M H2SO4 by cyclic voltammetry, has been prepared. The potential cycling, in the aqueous solutions of the respective metals, was between 0.00 and 1.00 V versus Ag/AgCl. The catalyst composites, Pt and PtRu, deposited on BDD film substrates, were tested for methanol oxidation. The modified diamond surfaces were also characterized by scanning electron microscopy-X-ray fluorescence-energy dispersive spectroscopy, X-ray photoelectron spectroscopy, and Auger electron spectroscopy. The scanning Auger electron spectroscopy mapping showed the ruthenium signal only in areas where platinum was electrodeposited. Ruthenium does not deposit on the oxidized diamond surface of the boron-doped diamond. Particles with 5–10% of ruthenium with respect to platinum exhibited better performance for methanol oxidation in terms of methanol oxidation peak current and chronoamperometric current stability. The electrogenerated •OH radicals on BDD may interact with Pt surface, participating in the methanol oxidation as shown in oxidation current and the shift in the peak position. The conductive diamond surface is a good candidate as the support for the platinum electrocatalyst, because it ensures catalytic activity, which compares with the used carbon, and higher stability under severe anodic and cathodic conditions.

  11. Segregation of the elements of the platinum group in a simulated high-level waste glass

    International Nuclear Information System (INIS)

    Mitamura, H.; Banba, T.; Kamizono, H.; Kiriyama, Y.; Kumata, M.; Murakami, T.; Tashiro, S.

    1983-01-01

    Segregation of the elements of the platinum group occurred during vitrification of the borosilicate glass containing 20 wt% simulated high-level waste oxides. The segregated materials were composed of two crystalline phases: one was the solid solution of ruthenium and rhodium dioxides and the other was that of palladium and rhodium metals also with tellurium. The segregated materials were not distributed homogeneously throughout the glass: (i) on the surface of the glass, there occurred palladium, rhodium and tellurium alloy alone; and (ii) at the inner part of the glass, the agglomerates of the two phases were concentrated in one part and dispersed in the other

  12. ETEM observation of Pt/C electrode catalysts in a moisturized cathode atmosphere

    International Nuclear Information System (INIS)

    Yoshida, K; Zhang, X; Tanaka, N; Boyes, E D; Gai, P L

    2014-01-01

    There have been reports of challenges in designing platinum carbon (Pt/C) electrode catalysts for PEMFC. Pt/C electrode catalysts deactivate much faster on the cathode (in moisturized O 2 ) than on the anode (in H 2 ). To understand influences of moisture and oxygen on the deactivation of the Pt/C catalysts in proton-exchange-membrane fuel cells (PEMFCs), spherical-aberration-corrected environmental transmission electron microscopy (AC-ETEM) was applied with a high-speed CCD camera. Structural changes of the Pt/C electrode catalysts were dynamically recorded in moisturized nitrogen, oxygen and hydrogen. The mass spectrometry confirmed the moisture content (between 5 to 30 %) of nitrogen driving gas through a humidifier. Coalescence of platinum nanoparticles (D = 3.24 nm) was carefully evaluated in pure N 2 and moisturized N 2 atmosphere. The Pt/C showed considerable structural weakness in a moisturized N2 atmosphere. Comparable results obtained by AC-ETEM in different gas atmospheres also suggested ways to improve the oxygen reduction reaction (ORR). In this paper, the deactivation process due to moisture (hydroxylation) of carbon supports is discussed using for comparison the movement of platinum nanoparticles measured in moisturized nitrogen and pure nitrogen atmospheres

  13. Effects of K and Pt promoters on the performance of cobalt catalyst supported on CNTs

    International Nuclear Information System (INIS)

    Zabidi, Noor Asmawati Mohd; Ali, Sardar; Subbarao, Duvvuri

    2014-01-01

    This paper presents a comparative study on the effects of incorporation of potassium (K) and platinum (Pt) as promoters on the physicochemical properties of cobalt catalyst. The catalyst was prepared by a wet impregnation method on a CNTs support. Samples were characterized using transmission electron microscopy (TEM), H 2 -temperature-programmed reduction (TPR) and X-ray photoelectron spectroscopy (XPS) techniques. Fischer-Tropsch Synthesis (FTS) was carried out in a fixed-bed microreactor at 543 K and 1 atm, with H 2 /CO = 2v/v and space velocity, SV of 12 L/g.h for 5 hours. The K-promoted and Pt-promoted Co catalysts have different physicochemical properties and catalytic performances compared to that of the un-promoted Co catalyst. XPS analysis revealed that K and Pt promoters induced electronic modifications as exhibited by the shifts in the Co binding energies. Incorporation of 0.06 wt% K and 0.06 wt% Pt in Co/CNTs catalyst resulted in an increase in the CO conversion and C 5+ selectivity and a decrease in methane selectivity. Potassium was found to be a better promoter for Co/CNTs catalyst compared to platinum

  14. Effects of K and Pt promoters on the performance of cobalt catalyst supported on CNTs

    Energy Technology Data Exchange (ETDEWEB)

    Zabidi, Noor Asmawati Mohd, E-mail: noorasmawati-mzabidi@petronas.com.my [Department of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, 31750 Tronoh, Perak (Malaysia); Ali, Sardar, E-mail: alikhan-635@yahoo.com [Centralized Analytical Laboratory, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, 31750 Tronoh, Perak (Malaysia); Subbarao, Duvvuri, E-mail: duvvuri-subbarao@petronas.com.my [Department of Chemical Engineering, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, 31750 Tronoh, Perak (Malaysia)

    2014-10-24

    This paper presents a comparative study on the effects of incorporation of potassium (K) and platinum (Pt) as promoters on the physicochemical properties of cobalt catalyst. The catalyst was prepared by a wet impregnation method on a CNTs support. Samples were characterized using transmission electron microscopy (TEM), H{sub 2}-temperature-programmed reduction (TPR) and X-ray photoelectron spectroscopy (XPS) techniques. Fischer-Tropsch Synthesis (FTS) was carried out in a fixed-bed microreactor at 543 K and 1 atm, with H{sub 2}/CO = 2v/v and space velocity, SV of 12 L/g.h for 5 hours. The K-promoted and Pt-promoted Co catalysts have different physicochemical properties and catalytic performances compared to that of the un-promoted Co catalyst. XPS analysis revealed that K and Pt promoters induced electronic modifications as exhibited by the shifts in the Co binding energies. Incorporation of 0.06 wt% K and 0.06 wt% Pt in Co/CNTs catalyst resulted in an increase in the CO conversion and C{sub 5+} selectivity and a decrease in methane selectivity. Potassium was found to be a better promoter for Co/CNTs catalyst compared to platinum.

  15. Alloy materials

    Energy Technology Data Exchange (ETDEWEB)

    Hans Thieme, Cornelis Leo (Westborough, MA); Thompson, Elliott D. (Coventry, RI); Fritzemeier, Leslie G. (Acton, MA); Cameron, Robert D. (Franklin, MA); Siegal, Edward J. (Malden, MA)

    2002-01-01

    An alloy that contains at least two metals and can be used as a substrate for a superconductor is disclosed. The alloy can contain an oxide former. The alloy can have a biaxial or cube texture. The substrate can be used in a multilayer superconductor, which can further include one or more buffer layers disposed between the substrate and the superconductor material. The alloys can be made a by process that involves first rolling the alloy then annealing the alloy. A relatively large volume percentage of the alloy can be formed of grains having a biaxial or cube texture.

  16. Temperature-programmed reduction and cyclic voltammetry of Pt/carbon-fibre paper catalysts for methanol electrooxidation

    International Nuclear Information System (INIS)

    Attwood, P.A.; McNicol, B.D.; Short, R.T.

    1981-01-01

    Temperature-programmed reduction (TPR) and cyclic voltammetry (CV) studies of platinum catalysts supported on pyrographite-coated carbon-fibre paper, and prepared by either ion exchange or impregnation, clearly demonstrate the nature of the interactions between the platinum species and the support. After drying the above catalysts at 120 0 C, the ion-exchanged preparation exhibits the stronger interaction with the carbon support, as might be expected since a chemical interaction with carbon surface groups is known to occur in such catalysts. The presence of a fraction of bulk Pt(NH 3 ) 4 (OH) 2 impregnating salt in the impregnated catalyst has been detected using TPR. After air activation at 300 0 C, subambient reduction peaks were observed and the strength of binding of Pt in the ion-exchanged catalyst was reflected by its increased difficulty of reduction in comparison with that of the impregnated catalyst. The stoichiometry of reduction in ion-exchanged catalysts corresponds to Pt 2+ → Pt 0 in both dried and activated catalysts, with a small amount of Pt 4+ present in the latter. Upon activation the impregnated catalyst showed the presence of some Pt metal, which was thought to arise from the decomposition of the fraction of bulk Pt(NH 3 ) 4 (OH) 2 in the dried catalyst. Activation of ion-exchanged catalysts at temperatures higher than 300 0 C led to a progressive weakening of the Pt-support interaction and consequent smaller Pt surface areas. Activation at 500 0 C in air produced Pt metal exclusively and very low Pt surface areas. The strong interaction between Pt and the carbon support upon activation of the ion-exchanged catalyst at 300 0 C is thought to be the origin of the large metal surface area and the high catalytic activity for methanol electrooxidation found upon reduction

  17. Release of low molecular weight silicones and platinum from silicone breast implants.

    Science.gov (United States)

    Lykissa, E D; Kala, S V; Hurley, J B; Lebovitz, R M

    1997-12-01

    We have conducted a series of studies addressing the chemical composition of silicone gels from breast implants as well as the diffusion of low molecular weight silicones (LM-silicones) and heavy metals from intact implants into various surrounding media, namely, lipid-rich medium (soy oil), aqueous tissue culture medium (modified Dulbecco's medium, DMEM), or an emulsion consisting of DMEM plus 10% soy oil. LM-silicones in both implants and surrounding media were detected and quantitated using gas chromatography (GC) coupled with atomic emission (GC-AED) as well as mass spectrometric (GC/MS) detectors, which can detect silicones in the nanogram range. Platinum, a catalyst used in the preparation of silicone gels, was detected and quantitated using inductive argon-coupled plasma/mass spectrometry (ICP-MS), which can detect platinum in the parts per trillion range. Our results indicate that GC-detectable low molecular weight silicones contribute approximately 1-2% to the total gel mass and consist predominantly of cyclic and linear poly-(dimethylsiloxanes) ranging from 3 to 20 siloxane [(CH3)2-Si-O] units (molecular weight 200-1500). Platinum can be detected in implant gels at levels of approximately 700 micrograms/kg by ICP-MS. The major component of implant gels appears to be high molecular weight silicone polymers (HM-silicones) too large to be detected by GC. However, these HM-silicones can be converted almost quantitatively (80% by mass) to LM-silicones by heating implant gels at 150-180 degrees C for several hours. We also studied the rates at which LM-silicones and platinum leak through the intact implant outer shell into the surrounding media under a variety of conditions. Leakage of silicones was greatest when the surrounding medium was lipid-rich, and up to 10 mg/day LM-silicones was observed to diffuse into a lipid-rich medium per 250 g of implant at 37 degrees C. This rate of leakage was maintained over a 7-day experimental period. Similarly, platinum was

  18. A survey of the determination of the platinum group elements.

    Science.gov (United States)

    Kallmann, S

    1987-08-01

    The platinum-group metals (PGMs), Ru, Rh, Pd, Os, Ir and Pt, are widely used as catalysts in petroleum and chemical processes. They find wide applications in automotive exhaust-gas control converters and are of immense importance to the electronics industry. They are found in many items of jewellery and serve to an increasing extent as a form of investment. The PGMs are extracted in minute quantities from a limited number of ores, found mainly in S. Africa and the USSR. They are concentrated and separated from each other by elaborate chemical processes. Because of their great intrinsic value (Pt $650 per oz; Rh $1400 per oz), the recycling of the PGMs from literally hundreds of different forms of scrap is an essential factor in the overall management of the PGM economy. In this survey emphasis is placed on the need to tailor the analytical method according to (a) the environment in which the PGMs occur, (b) the individual PGM concentrations, and (c) the desired sensitivity and precision. The factors which determine the choice of chemical, physicochemical and/or instrumental approaches are discussed. They are further commented on in extensive presentations of dissolution and separation techniques and methods for the final measurement of individual PGMs. Appendices are provided which present the compositions and sources of the products most frequently encountered in PGM analysis, along with information on methods of decomposition, separations required, type of separation, and final determination.

  19. Nitrogen: Unraveling the Secret to Stable Carbon-Supported Pt-Alloy Electrocatalysts

    Science.gov (United States)

    2013-10-01

    release; distribution is unlimited. Nitrogen: unraveling the secret to stable carbon-supported Pt- alloy electrocatalysts The views, opinions and/or...Nitrogen: unraveling the secret to stable carbon-supported Pt-alloy electrocatalysts Report Title Nitrogen functionalities significantly improve...design and optimization of next generation high performance catalyst materials. Nitrogen: unraveling the secret to stable carbon-supported Pt-alloy

  20. Outpatient desensitization in selected patients with platinum hypersensitivity reactions.

    Science.gov (United States)

    O'Malley, David M; Vetter, Monica Hagan; Cohn, David E; Khan, Ambar; Hays, John L

    2017-06-01

    Platinum-based chemotherapies are a standard treatment for both initial and recurrent gynecologic cancers. Given this widespread use, it is important to be aware of the features of platinum hypersensitivity reactions and the subsequent treatment of these reactions. There is also increasing interest in the development of desensitization protocols to allow patients with a history of platinum hypersensitivity to receive further platinum based therapy. In this review, we describe the management of platinum hypersensitivity reactions and the desensitization protocols utilized at our institution. We also describe the clinical categorizations utilized to triage patients to appropriate desensitization protocols. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Study crevice corrosion alloys C-22 and 625 by electrochemical noise

    International Nuclear Information System (INIS)

    Ungaro, María L.; Carranza, Ricardo M.; Rodríguez, Martín A.

    2013-01-01

    C-22 and 625 alloys are two of the Ni –Cr-Mo alloys considered as candidate materials to form the corrosion resistance engineered barriers for nuclear waste repositories. The corrosion resistance of these alloys is remarkable in a wide variety of environments. Despite of their resistance these alloys are susceptible to crevice corrosion in a certain aggressive environments. This work presents the use of electrochemical noise technique to study crevice corrosion susceptibility of alloys C-22 and 625 in 1M NaCl acidic solutions at 60ºC and 90ºC. Asymmetrical electrodes and a complementary platinum electrode were used to assess the influence of cathodic reaction in crevice process. The obtained records were analyzed directly and through statistical parameters. The potential drop and the simultaneous increment of the current records indicated the occurrence of crevice corrosion. The alternative use of a platinum electrode resulted in higher currents and higher potentials and reduced the induction time to crevice formation. The reason for this behavior is that platinum surface allows faster cathodic reactions than C-22 and 625 alloys. The standard deviation of the current records was responsive to the crevice corrosion intensity. C-22 alloy had better crevice corrosion performance than 625 alloy. (author)

  2. In silico search for novel methane steam reforming catalysts

    International Nuclear Information System (INIS)

    Xu, Yue; Lausche, Adam C; Khan, Tuhin S; Abild-Pedersen, Frank; Studt, Felix; Nørskov, Jens K; Bligaard, Thomas; Wang, Shengguang

    2013-01-01

    This paper demonstrates a method for screening transition metal and metal alloy catalysts based on their predicted rates and stabilities for a given catalytic reaction. This method involves combining reaction and activation energies (available to the public via a web-based application ‘CatApp’) with a microkinetic modeling technique to predict the rates and selectivities of a prospective material. This paper illustrates this screening technique using the steam reforming of methane to carbon monoxide and hydrogen as a test reaction. While catalysts are already commercially available for this process, the method demonstrated in this paper is very general and could be applied to a wide range of catalytic reactions. Following the steps outlined herein, such an analysis could potentially enable researchers to understand reaction mechanisms on a fundamental level and, on this basis, develop leads for new metal alloy catalysts. (paper)

  3. Bifunctional anode catalysts for direct methanol fuel cells

    DEFF Research Database (Denmark)

    Rossmeisl, Jan; Ferrin, Peter; Tritsaris, Georgios

    2012-01-01

    Using the binding energy of OH* and CO* on close-packed surfaces as reactivity descriptors, we screen bulk and surface alloy catalysts for methanol electro-oxidation activity. Using these two descriptors, we illustrate that a good methanol electro-oxidation catalyst must have three key properties......: (1) the ability to activate methanol, (2) the ability to activate water, and (3) the ability to react off surface intermediates (such as CO* and OH*). Based on this analysis, an alloy catalyst made up of Cu and Pt should have a synergistic effect facilitating the activity towards methanol electro-oxidation....... Adding Cu to a Pt(111) surface increases the methanol oxidation current by more than a factor of three, supporting our theoretical predictions for improved electrocatalysts....

  4. Characterization of a titanium-promoted supported platinum electrocatalyst

    International Nuclear Information System (INIS)

    Beard, B.C.; Ross, P.N. Jr.

    1986-01-01

    X-ray photoelectron spectroscopy (XPS), x-ray diffraction (XRD), and extended x-ray adsorption fine structure (EXAFS) were used for the characte3rization of a highly dispersed Ti[promoted Pt electrocatalyst. This bimetallic catalyst was prepared by addition of TiCl/sub 4/ to a methanol-water solution containing Pt on carbon black catalyst in suspension. Following filtration and air drying (300 0 C), heat-treatments up to 1200 0 C under flowing helium were performed to promote the formation of Pt-Ti alloy phases. XPS indicated the development of a peak at a binding energy of 454.9 eV (assigned to Ti in Pt/sub 3/Ti), which increased in area with heat-treatment such that after the 1200 0 C heat-treatment ≅ 50% of the Ti was converted to the intermetallic phase, Pt/sub 3/Ti. The Pt (4f, 7/2) photoelectron line shifted (+0.3 eV) to 71.2 eV following the 1200 0 C heat-treatment, identical to the Pt(4f, 7/2) binding energy for bulk Pt/sub 3/Ti. XRD showed only fcc reflections, indicating the excess Ti present as TiO/sub 2/ was x-ray amorphous. Prior to heat-treatment of the Ti impregnated catalyst, the fcc reflections indicated a lattice parameter of 3.927 A, identical to that for pure Pt. As heat-treatment temperature increased the lattice parameter decreased to 3.906A, the value for bulk Pt/sub 3/Ti. Particle size estimates indicated a progressive increase in the crystallite size of Pt alloy phase with temperature to a final size of Β150A at 1200 0 C. Definitive proof of an ordered Pt/sub 3/Ti phase was the presence of superlattice diffraction lines from materials heated above 900 0 C. EXAFS of these catalysts confirmed the conversion of an initial Pt-TiO/sub 2/ mixture to Pt/sub 3/Ti at 900 0 -1200 0 C heat-treatment temperatures

  5. On the enzymatic formation of platinum nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Govender, Y.; Riddin, T. L. [Rhodes University, Department of Biochemistry, Microbiology and Biotechnology (South Africa); Gericke, M. [MINTEK (South Africa); Whiteley, C. G., E-mail: C.Whiteley@ru.ac.z [Rhodes University, Department of Biochemistry, Microbiology and Biotechnology (South Africa)

    2010-01-15

    A dimeric hydrogenase enzyme (44.5 and 39.4 kDa sub units) was isolated in a 39.5% yield from the fungus Fusarium oxysporum and purified 4.64-fold by ion exchange chromatography on Sephacryl S-200. Characterisation of the enzyme afforded pH and temperature optima of 7.5 and 38 {sup o}C, respectively, a half-life stability of 36 min and a V{sub max} and K{sub m} of 3.57 nmol min{sup -1} mL{sup -1} and 2.25 mM, respectively. This enzyme was inhibited (non-competitively) by hydrogen hexachloroplatinic acid (H{sub 2}PtCl{sub 6}) at 1 or 2 mM with a K{sub i} value of 118 {mu}M. Incubation of the platinum salt with the pure enzyme under an atmosphere of hydrogen and optimum enzyme conditions (pH 7.5, 38 {sup o}C) afforded <10% bioreduction after 8 h while at conditions suitable for platinum nanoparticle formation (pH 9, 65 {sup o}C) over 90% reduction took place after the same length of time. Cell-free extract from the fungal isolates produced nearly 90% bioreduction of the platinum salt under both pH and temperature conditions. The bioreduction of the platinum salt by a hydrogenase enzyme takes place by a passive process and not an active one as previously understood.

  6. Rockburst damage mechanism at Impala Platinum Mine

    CSIR Research Space (South Africa)

    Ledwaba, LS

    2012-05-01

    Full Text Available Impala Platinum Mine (Impala), situated north of the town of Rustenburg in the North West Province of South Africa, has experienced an increase in seismicity from ~841 seismic events in the year 2005 to ~1588 seismic events in 2008...

  7. SEM method for direct visual tracking of nanoscale morphological changes of platinum based electrocatalysts on fixed locations upon electrochemical or thermal treatments.

    Science.gov (United States)

    Zorko, Milena; Jozinović, Barbara; Bele, Marjan; Hodnik, Nejc; Gaberšček, Miran

    2014-05-01

    A general method for tracking morphological surface changes on a nanometer scale with scanning electron microscopy (SEM) is introduced. We exemplify the usefulness of the method by showing consecutive SEM images of an identical location before and after the electrochemical and thermal treatments of platinum-based nanoparticles deposited on a high surface area carbon. Observations reveal an insight into platinum based catalyst degradation occurring during potential cycling treatment. The presence of chloride clearly increases the rate of degradation. At these conditions the dominant degradation mechanism seems to be the platinum dissolution with some subsequent redeposition on the top of the catalyst film. By contrast, at the temperature of 60°C, under potentiostatic conditions some carbon corrosion and particle aggregation was observed. Temperature treatment simulating the annealing step of the synthesis reveals sintering of small platinum based composite aggregates into uniform spherical particles. The method provides a direct proof of induced surface phenomena occurring on a chosen location without the usual statistical uncertainty in usual, random SEM observations across relatively large surface areas. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. The synthesis of nanostructured, phase pure catalysts by hydrodynamic cavitation

    Energy Technology Data Exchange (ETDEWEB)

    Moser, W.R.; Sunstrom, J.E.; Marshik-Geurts, B.J. [Worcester Polytechnic Institute, Worcester, MA (United States)

    1995-12-01

    A new process for the synthesis of advanced catalytic materials based on performing the synthesis under hydrodynamic cavitation conditions has been discovered. This continuous process for catalyst synthesis resulted in the formation of both supported and unsupported catalysts. The advantage of the process over classical methods of synthesis is that it permits the formation of a wide variety of nanostructured catalysts in exceptionally high phase purities. The synthesis of platinum and palladium catalysts supported on alumina and other supports resulted in high dispersions of the noble metals. The synthesis of alpha, beta- and gamma-bismuth molybdates resulted in catalysts having superior phase purities as compared to several other classical methods of synthesis. The beta-bismuth molybdate was synthesized directly onto Cabosil. These studies showed that the particle size of the active component could be varied from a few manometers to much larger grains. The process enabled the synthesis of other complex metal oxides like perovskites as pure phases. The process uses a commercially available Microfluidizer.

  9. Effect of catalysts on lithium passivation in thionyl chloride electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Kanevskii, L.S.; Avdalyan, M.B.; Kulova, T.L. [Frumkin Institute of Electrochemistry, Moscow (Russian Federation)

    1995-04-01

    The effect that various catalysts added to the electrolyte or the cathode of lithium-thionyl chloride cells for promoting the cathodic process exert on lithium anodes is studied. It is shown that, in the presence of platinum, the lithium anode is subjected to intense corrosion, and this leads to the appearance of a great voltage delay. Macrocyclic complexes activate lithium electrodes. Impedance measurements showed that the introduction of such complexes in the system is accompanied by changes in the passive film characteristics, and this leads to a decrease in the corrosion rate of lithium and a noticeable reduction of the voltage delay.

  10. Low-Pt-Content Anode Catalyst for Direct Methanol Fuel Cells

    Science.gov (United States)

    Narayanan, Sekharipuram; Whitacre, Jay

    2008-01-01

    Combinatorial experiments have led to the discovery that a nanophase alloy of Pt, Ru, Ni, and Zr is effective as an anode catalyst material for direct methanol fuel cells. This discovery has practical significance in that the electronic current densities achievable by use of this alloy are comparable or larger than those obtained by use of prior Pt/Ru catalyst alloys containing greater amounts of Pt. Heretofore, the high cost of Pt has impeded the commercialization of direct methanol fuel cells. By making it possible to obtain a given level of performance at reduced Pt content (and, hence, lower cost), the discovery may lead to reduction of the economic impediment to commercialization.

  11. Inhibition of ammonia poisoning by addition of platinum to Ru/α-Al2 O3 for preferential CO oxidation in fuel cells.

    Science.gov (United States)

    Sato, Katsutoshi; Yagi, Sho; Zaitsu, Shuhei; Kitayama, Godai; Kayada, Yuto; Teramura, Kentaro; Takita, Yusaku; Nagaoka, Katsutoshi

    2014-12-01

    In polymer electrolyte fuel cell (PEFC) systems, small amounts of ammonia (NH3 ) present in the reformate gas deactivate the supported ruthenium catalysts used for preferential oxidation (PROX) of carbon monoxide (CO). In this study, we investigated how the addition of a small amount of platinum to a Ru/α-Al2 O3 catalyst (Pt/Ru=1:9 w/w) affected the catalyst's PROX activity in both the absence and the presence of NH3 (130 ppm) under conditions mimicking the reformate conditions during steam reforming of natural gas. The activity of undoped Ru/α-Al2 O3 decreased sharply upon addition of NH3 , whereas Pt/Ru/α-Al2 O3 exhibited excellent PROX activity even in the presence of NH3 . Ruthenium K-edge X-ray absorption near-edge structure (XANES) spectra indicated that in the presence of NH3 , some of the ruthenium in the undoped catalyst was oxidized in the presence of NH3 , whereas ruthenium oxidation was not observed with Pt/Ru/α-Al2 O3 . These results suggest that ruthenium oxidation is retarded by the platinum, so that the catalyst shows high activity even in the presence of NH3 . © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Improving the performances of hydrophobic catalysts used for tritium recovery and enrichment processes In liquid and gaseous effluents

    International Nuclear Information System (INIS)

    Popescu, Irina; Ionita, Gheorghe; Varlam, Carmen

    2007-01-01

    Full text: Based on the long experience of the authors in the preparation, testing and evaluation of the performances of hydrophobic catalysts and based also on the reviewed references, this paper presents up-to-date R and D activities on the preparation methods and applications of the hydrophobic catalysts in tritium separation. The objectives of the paper are: (1) how to improve the characteristics and performance of platinum hydrophobic catalysts; (2) to assess and find a new procedure for the preparation of a new improved hydrophobic catalyst. From reviewed references it results that platinum appears to be the most active and efficient catalytic metal while polytetrafluoroethylene is the best wetproofing agent. A new improved hydrophobic Pt-catalyst has been obtained and tests are now underway. The main steps and experimental conditions of preparation are largely discussed. A new wetproofing agent and new binding agents (titanium dioxide, cerium dioxide, zirconium dioxide) with a catalytic role are proposed and tested. The physico-structural parameters of the improved catalyst have been determined and are discussed in detail. The new proposal is a promising for improving the performance of conventional hydrophobic Pt-catalysts. (authors)

  13. Influence of cathodic current density and mechanical stirring on the electrodeposition of Cu-Co alloys in citrate bath

    OpenAIRE

    Leandro Trinta de Farias; Aderval Severino Luna; Dalva Cristina Baptista do Lago; Lilian Ferreira de Senna

    2008-01-01

    Cathodic polarization curves of Cu-Co alloys were galvanostatically obtained on a platinum net, using electrolytes containing copper and cobalt sulfates, sodium citrate and boric acid (pH values ranging from 4.88 to 6.00), with different mechanical stirring conditions. In order to evaluate quantitatively the influence of the applied current density and the mechanical stirring on the cathodic efficiency, the alloy composition for the Cu-Co alloy deposition process, and the average deposition p...

  14. Methods of making textured catalysts

    Science.gov (United States)

    Werpy, Todd [West Richland, WA; Frye, Jr., John G.; Wang, Yong [Richland, WA; Zacher, Alan H [Kennewick, WA

    2010-08-17

    A textured catalyst having a hydrothermally-stable support, a metal oxide and a catalyst component is described. Methods of conducting aqueous phase reactions that are catalyzed by a textured catalyst are also described. The invention also provides methods of making textured catalysts and methods of making chemical products using a textured catalyst.

  15. Pt/Ceria-based Catalysts for Small Alcohol Electrooxidation

    Science.gov (United States)

    Menendez-Mora, Christian L.

    High emissions of fossil-based energy sources have led to scientists around the world to develop new alternatives for the future. In this sense, fuel cells are a remarkable and promising energy option with less environmental impact. The most used fuels for this technology are hydrogen and small chain alcohols, which can be oxidized to transform their chemical energy into electrical power. To do this, fuel cells need catalysts that will act as an active surface where the oxidation can take place. The problem with platinum catalysts is its possible CO poisoning with intermediates that are produced before the complete oxidation of alcohol to CO2. Different approaches have been taken to try to resolve this issue. In this case, cerium oxide (ceria) was selected as a co-catalyst to mitigate the effect of CO poisoning of platinum. Ceria is a compound that has the ability to work as an "oxygen tank" and can donate oxygen to carbon monoxide that is strongly adsorbed at platinum surface to produce CO2 (carbon dioxide), regenerating the Pt surface for further alcohol oxidation. Therefore, enhancing the current density as well as the power output of a fuel cell. First, an occlusion deposition technique was used to prepare platinum/ceria composite electrodes and tested them towards small chain alcohol oxidation such as methanol oxidation reaction in acidic and alkaline media. The preliminary results demonstrated that the Pt/ceria electrodes were more efficient towards methanol electrooxidation when compared to Pt electrodes. This enhancement was attributed to the presence of ceria. A second preparation method was selected for the synthesis of ceria/Pt catalysts. In this case, a hydrothermal method was used and the catalysis were studied for the effect of MeOH, EtOH and n-BuOH oxidation. The observed effect was that electrodes made of Pt/Pt:CeO2-x showed better catalytic effect than Pt/ceria and platinum electrodes. Moreover, a comparison between ceria nanorods versus

  16. Influence of surface morphology on methanol oxidation at a glassy carbon-supported Pt catalyst

    Directory of Open Access Journals (Sweden)

    S. STEVANOVIC

    2008-08-01

    Full Text Available Platinum supported on glassy carbon (GC was used as a model system for studying the influence of the surface morphology of a Pt catalyst on methanol oxidation in alkaline and acidic solutions. Platinum was deposited by the potential step method on GC samples from H2SO4 + H2PtCl6 solution under the same conditions with loadings from 10 to 80 mg cm-2. AFM and STM images of the GC/Pt electrodes showed that the Pt was deposited in the form of 3D agglomerates composed of spherical particles. Longer deposition times resulted in increased growth of Pt forms and a decrease in the specific area of the Pt. The real surface area of Pt increased with loading but the changes were almost negligible at higher loadings. Nevertheless, both the specific and mass activity of platinum supported on glassy carbon for methanol oxidation in acidic and in alkaline solutions exhibit a volcanic dependence with respect to the platinum loading. The increase in the activity can be explained by the increasing the particle size with the loading and thus an increase in the contiguous Pt sites available for adsorption and decomposition of methanol. However, the decrease in the activity of the catalyst with further increase of loading and particle size after reaching the maximum is related to the decrease of active sites available for methanol adsorption and their accessibility as a result of more close proximity and pronounced coalescence of the Pt particles.

  17. Metal catalysts fight back

    OpenAIRE

    George Marsh

    1998-01-01

    In recent years organometallic catalysts, especially metallocenes, have been a major focus of attention in terms of polymerisation chemistry. But the news earlier this year of a family of iron-based catalysts able to rival the effectiveness of both conventional and metallocene catalysts in the polymerisation of ethylene has excited the plastics industry. Because of the impact of this discovery and its potential as a route to lower-priced commodity plastics in the future, it may be useful at t...

  18. Further studies on hydration of alkynes by the PtCl4-CO catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Israelsohn, Osnat; Vollhardt, K. Peter C.; Blum, Jochanan

    2002-01-18

    Under CO atmosphere, between 80 and 120 C, a glyme solution of PtCl{sub 4} forms a carbonyl compound that promotes hydration of internal as well as terminal alkynes to give aldehyde-free ketones. The catalytic process depends strongly on the electronic and steric nature of the substrates. Part of the carbonyl functions of the catalyst can be replaced by phosphine ligands. Chiral DIOP reacts with the PtCl{sub 4}-CO compound to give a catalyst that promotes partial kinetic resolution of a racemic alkyne. Replacement of part of the CO by polystyrene-bound diphenylphosphine enables to attach the catalyst to the polymeric support. Upon entrapment of the platinum compound in a silica sol-gel matrix, it reacts as a partially recyclable catalyst. A reformulated mechanism for the PdCl{sub 4}-CO catalyzed hydration is suggested on the basis of the present study.

  19. Alloy composition dependence of formation of porous Ni prepared by rapid solidification and chemical dealloying

    Energy Technology Data Exchange (ETDEWEB)

    Qi Zhen [Key Laboratory of Liquid Structure and Heredity of Materials, Shandong University, Jingshi Road 73, Jinan 250061 (China); Zhang Zhonghua [Key Laboratory of Liquid Structure and Heredity of Materials, Shandong University, Jingshi Road 73, Jinan 250061 (China)], E-mail: zh_zhang@sdu.edu.cn; Jia Haoling [Key Laboratory of Liquid Structure and Heredity of Materials, Shandong University, Jingshi Road 73, Jinan 250061 (China); Qu Yingjie [Shandong Labor Occupational Technology College, Jingshi Road 388, Jinan 250022 (China); Liu Guodong; Bian Xiufang [Key Laboratory of Liquid Structure and Heredity of Materials, Shandong University, Jingshi Road 73, Jinan 250061 (China)

    2009-03-20

    In this paper, the effect of alloy composition on the formation of porous Ni catalysts prepared by chemical dealloying of rapidly solidified Al-Ni alloys has been investigated using X-ray diffraction (XRD), scanning electron microscopy (SEM) with energy dispersive X-ray (EDX) analysis and N{sub 2} adsorption experiments. The experimental results show that rapid solidification and alloy composition have a significant effect on the phase constituent and microstructure of Al-Ni alloys. The melt spun Al-20 at.% Ni alloy consists of {alpha}-Al, NiAl{sub 3} and Ni{sub 2}Al{sub 3}, while the melt spun Al-25 and 31.5 at.% Ni alloys comprise NiAl{sub 3} and Ni{sub 2}Al{sub 3}. Moreover, the formation and microstructure of the porous Ni catalysts are dependent upon the composition of the melt spun Al-Ni alloys. The morphology and size of Ni particles in the Ni catalysts inherit from those of grains in the melt spun Al-Ni alloys. Rapid solidification can extend the alloy composition of Al-Ni alloys suitable for preparation of the Ni catalysts, and obviously accelerate the dealloying process of the Al-Ni alloys.

  20. Single-Atom Pt as Co-Catalyst for Enhanced Photocatalytic H2 Evolution.

    Science.gov (United States)

    Li, Xiaogang; Bi, Wentuan; Zhang, Lei; Tao, Shi; Chu, Wangsheng; Zhang, Qun; Luo, Yi; Wu, Changzheng; Xie, Yi

    2016-03-23

    Isolated single-atom platinum (Pt) embedded in the sub-nanoporosity of 2D g-C3 N4 as a new form of co-catalyst is reported. The highly stable single-atom co-catalyst maximizes the atom efficiency and alters the surface trap states of g-C3 N4 , leading to significantly enhanced photocatalytic H2 evolution activity, 8.6 times higher than that of Pt nanoparticles and up to 50 times that for bare g-C3 N4 . © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.