WorldWideScience

Sample records for platinum acetylide oligomers

  1. Intramolecular triplet energy transfer in anthracene-based platinum acetylide oligomers.

    Science.gov (United States)

    Li, Yongjun; Köse, Muhammet E; Schanze, Kirk S

    2013-08-01

    Platinum acetylide oligomers that contain an anthracene moiety have been synthesized and subjected to photophysical characterization. Spectroscopic measurement and DFT calculations reveal that both the singlet and triplet energy levels of the anthracene segment are lower than those of the platinum acetylide segment. Thus, the platinum acetylide segment acts as a sensitizer to populate the triplet state of the anthrancene segment via intramolecular triplet-triplet energy transfer. The objective of this work is to understand the mechanisms of energy-transfer dynamics in these systems. Fluorescence quenching and the dominant triplet absorption that arises from the anthracene segment in the transient absorption spectrum of Pt4An give clear evidence that energy transfer adopts an indirect mechanism, which begins with singlet-triplet energy transfer from the anthracene segment to the platinum acetylide segment followed by triplet-triplet energy transfer to the anthracene segment.

  2. Synthesis and characterization of novel platinum acetylide oligomers

    Science.gov (United States)

    Cooper, Thomas M.; Krein, Douglas M.; Burke, Aaron R.; McLean, Daniel G.; Rogers-Haley, Joy E.; Slagle, Jonathan; Monahan, Jennifer; Urbas, Augustine

    2008-08-01

    To learn about excited state geometry in biphenyl-containing platinum acetylides, we synthesized a series of compounds that have biphenyl ligands. The ligands consisted of biphenyl(I), the hindered 2'-methyl biphenyl(III) and planar fluorenyl(IV) groups. We also synthesized a "half" complex(II) consisting of one ligand attached to the platinum atom. The optical properties of these compounds were measured by ground state absorption, phosphorescence, ultrafast transient absorption and nanosecond transient absorption spectroscopy. DFT calculations were performed to determine the ground state and triplet state geometries and the lowest triplet energy. TDDFT calculations were performed to determine singlet excited state energies. Compared to the reference compound I, ground state spectra show a blue shift in II and III and red shift in IV, showing the singlet energy is sensitive to conjugation and biphenyl twist angle. Comparison of the phosphorescence spectra of I and II shows the triplet exciton is confined to one ligand. The time behavior of the ultrafast excited state absorption spectrum of I shows a red shift within 1 ps from the initial spectrum. This behavior is not seen in IV. The different behavior suggests formation of the triplet state of I is accompanied by conversion from a non-planar to a planar conformation while IV retains a planar conformation.

  3. Platinum Acetylide Two-Photon Chromophores (Preprint)

    Science.gov (United States)

    2007-04-01

    the higher energy range that lead to its photodegradation . Secondly, because there is a quadratic dependence of two-photon absorption (2PA) on the...to either an electron donating amino- fluorenyl or electron withdrawing benzothiazolyl-fluorene that are themselves known as two-photon absorbing dyes ...groups in place of phenyl groups have shown a doubling of the intrinsic cr2value at 740 nm.40,41In this paper we describe novel platinum dyes that

  4. Liquid Crystals of Dendron-Like Pt Complexes Processable Into Nanofilms Dendrimers. Phase 2. Cholesteric Liquid Crystal Glass Platinum Acetylides

    Science.gov (United States)

    2014-08-01

    ciqa.edu.mx AFOSR FA9550-12-1-0234 August 2014 Cholesteric liquid crystal glass platinum acetylides Eduardo Arias...to be vitrified on cooling and form long time stability cholesteric glasses at room temperature, a series of platinum acetylide complexes modified...OCH3 and F, the cholesteric pitch was determined to be 1.7, 3.4 and 9.0 µ, respectively. INTRODUCTION Platinum acetylides are nonlinear

  5. Triplet Energy Transport in Platinum-Acetylide Light Harvesting Arrays.

    Science.gov (United States)

    Chen, Zhuo; Hsu, Hsien-Yi; Arca, Mert; Schanze, Kirk S

    2015-06-18

    Light harvesting and triplet energy transport is investigated in chromophore-functionalized polystyrene polymers featuring light harvesting and energy acceptor chromophores (traps) at varying loading. The series of precision polymers was constructed via reversible addition-fragmentation transfer polymerization and functionalized with platinum acetylide triplet chromophores by using an azide-alkyne "click" reaction. The polymers have narrow polydispersity and degree of polymerization ∼60. The chromophores have the general structure, trans-[-R-C6H4-C≡C-Pt(PBu3)2-C≡C-Ar], where R is the attachment point to the polystyrene backbone and Ar is either -C6H4-C≡C-Ph or -pyrenyl (PE2-Pt and Py-Pt, respectively, with triplet energies of 2.35 and 1.88 eV). The polychromophores contain mainly the high-energy PE2-Pt units (light absorber and energy donor), with randomly distributed Py-Pt units (3-20% loading, energy acceptor). Photophysical methods are used to study the dynamics and efficiency of energy transport from the PE2-Pt to Py-Pt units in the polychromophores. The energy transfer efficiency is >90% for copolymers that contain 5% of the Py-Pt acceptor units. Time-resolved phosphorescence measurements combined with Monte Carlo exciton dynamics simulations suggest that the mechanism of exciton transport is exchange energy transfer hopping between PE2-Pt units.

  6. Synthesis and Luminescent Properties of an Acetylide-Bridged Dinuclear Platinum(II) Terpyridyl Complex

    Institute of Scientific and Technical Information of China (English)

    WANG,You-Wei(王幼薇); YANG,Qing-Zheng(杨清正); WU,Li-Zhu(吴骊珠); ZHANG,Li-Ping(张丽萍); TUNG,Chen-Ho(佟振合)

    2004-01-01

    An acetylide-bridged dinuclear platinum(II) terpyridyl complex, [Pt(4'-p-tolyl-terpy)-≡-phenyl-≡-(4'-p-tolyl- terpy)Pt](ClO4)2 (1), has been successfully synthesized and its photophysical properties are reported.

  7. Cyclometalated NCN platinum(II) acetylide complexes - Synthesis, photophysics and OLEDs fabrication

    Science.gov (United States)

    Szafraniec-Gorol, Grazyna; Slodek, Aneta; Schab-Balcerzak, Ewa; Grucela, Marzena; Siwy, Mariola; Filapek, Michal; Matussek, Marek; Zych, Dawid; Mackowski, Sebastian; Buczynska, Dorota; Grzelak, Justyna; Erfurt, Karol; Chrobok, Anna; Krompiec, Stanislaw

    2016-12-01

    The novel cyclometalated NCN platinum(II) acetylide complexes were synthesized. As precursors of acetylide ligands were used 9,9-dibutyl-2-ethynylfluorene, 9-butyl-3-ethynylcarbazole, and 5-ethynyl-2,2‧-bithiophene, whereas 1,3-di(2-pirydyl)benzene derivatives were cyclometalating NCN ligands. Variable character of ligands allowed to prepare a series of novel platinum(II) complexes, which showed light emission in a wide wavelength range from 410 to 625 nm. The optical and electrochemical properties of new complexes were examined and compared with theoretical DFT calculations. Complexes containing fluorenyl and carbazyl motif were used as emitters in an organic light-emitting diodes. The applicability of these Pt(II) complexes for electroluminescence was examined.

  8. Structure-spectroscopic property relationships in a series of platinum acetylides

    Science.gov (United States)

    Cooper, Thomas M.; Haley, Joy E.; Krein, Douglas M.; Burke, Aaron R.; Slagle, Jonathan E.

    2016-09-01

    In order to understand electronic and conformational effects on structure-spectroscopic property relationships in platinum acetylides, we synthesized a model series of chromophores trans-Pt(PBu3)2(C-CPhenyl-X)2, where X = NH2, OCH3, diphenylamino, t-Bu, methyl, H, F, benzothiazole, trifluoromethyl, CN and nitro. We collected linear spectra, including ground state absorption, phosphorescence and phosphorescence excitation spectra. We also performed DFT and TDDFT calculations on the ground and excited state properties of these compounds. The calculations and experimental data show the excited state properties are a function of the electronic properties of the substituents and the molecular conformation.

  9. Synthesis and Characterization of Phenothiazine-Based Platinum(II)-Acetylide Photosensitizers for Efficient Dye-Sensitized Solar Cells.

    Science.gov (United States)

    Siu, Chi-Ho; Lee, Lawrence Tien Lin; Yiu, Sze-Chun; Ho, Po-Yu; Zhou, Panwang; Ho, Cheuk-Lam; Chen, Tao; Liu, Jianyong; Han, Keli; Wong, Wai-Yeung

    2016-03-07

    Three new unsymmetrical phenothiazine-based platinum(II) bis(acetylide) complexes PT1-PT3 with different electron-donating arylacetylide ligands were synthesized and characterized. Their photophysical, electrochemical, and photovoltaic properties have been fully investigated and the density functional theory (DFT) calculations have been carried out. Under AM 1.5 irradiation (100 mW cm(-2)), the PT1-based dye-sensitized solar cell (DSSC) device exhibited an attractive power conversion efficiency (η) up to 5.78 %, with a short-circuit photocurrent density (J(sc)) of 10.98 mA cm(-2), an open-circuit photovoltage (V(oc)) of 0.738 V, and a fill factor (ff) of 0.713. These findings provide strong evidence that platinum-acetylide complexes have great potential as promising photosensitizers in DSSC applications.

  10. Restricted rotation of σ-bonds through a rigidified donor structure to increase the ICT ability of platinum-acetylide-based DSSCs.

    Science.gov (United States)

    Li, Zhong-Yu; Wu, Wenjun; Zhang, Qiong; Jin, Bin; Hua, Jianli; Yang, Hai-Bo; Tian, He

    2013-11-01

    A series of new triarylamine-based platinum-acetylide complexes (WYs) have been designed and synthesized as new sensitizers for applications in dye-sensitized solar cells (DSSCs). With the aim of investigating the effect of a rigidifying donor structure on the photoelectrical parameters of the corresponding DSSCs, two new sensitizers, WY1 and WY2, with rigid and coplanar fluorene units as an electron donor, were prepared. Moreover, two sensitizers that contained triphenylamine units as an electron donor, WY3 and WY4, were also synthesized for comparison. The photo- and electrochemical properties of all of these new complexes have been extensively explored. We found that the dimethyl-fluorene unit exhibited a stronger electron-donating ability and better photovoltaic performance compared to the triphenylamine unit, owing to its rigidifying structure, which restricted the rotation of σ bonds, thus increasing the conjugation efficiency. Furthermore, WY2, which contained a dimethyl-fluorene unit as an electron donor and bithiophene as a π bridge, showed a relatively high open-circuit voltage (V(oc)) of 640 mV and a PCE of 4.09%. This work has not only expanded the choice of platinum-acetylide sensitizers, but also demonstrates the advantages of restricted rotation of donor σ bonds for improved behavior of the corresponding DSSCs.

  11. Symmetry Breaking in Platinum Acetylide Chromophores Studied by Femtosecond Two-Photon Absorption Spectroscopy

    Science.gov (United States)

    2014-02-01

    The 1PA spectrum in toluene (solid line, top and right axes) and NLT of blank sample (filled black diamonds ) are shown for comparison. The Journal of...G.W., and M.D. ■ REFERENCES (1) Guha, S.; Frazier, C. C.; Porter , P. L.; Kang, K.; Finberg, S. E. Measurement of the 3rd-Order Hyperpolarizability of Pt...Poly-Ynes. Opt. Lett. 1989, 14, 952−954. (2) Guha, S.; kang, K.; Porter , P. L. Two-Photon Absorption-Induced Thermal Effects in Platinum Poly-Ynes

  12. Nafion-Induced Metal-Metal Interactions in a Platinum(Ⅱ) Terpyridyl Acetylide Complex:a Luminescent Sensor for Detection of Volatile Organic Compounds

    Institute of Scientific and Technical Information of China (English)

    TONG,Qing-Xiao(佟庆笑); LI,Xiao-Hong(李晓红); WU,Li-Zhu(吴骊珠); YANG,Qing-Zheng(杨清正); ZHANG,Li-Ping(张丽萍); TUNG,Chen-Ho(佟振合)

    2004-01-01

    The platinum(Ⅱ) terpyridyl acetylide complex [Pt(terpy)(C≡CR)]C1O4 (terpy=2,2′: 6′2″-terpyridine, R=CH2CH2CH3) (1) was incorporated into Nafion membranes. At high loading the dry membranes exhibit intense photoluminescence with λmax at 707 nm from the 3MMLCT state, which was not observed in fluid solution. Upon exposure to the vapor of polar volatile organic compounds (VOC), this photoluminescence was significantly red-shifed. This process was fully reversible when the VOC-incorporated membrane was dried in air. The dramatic and reversible changes in the emission spectra made the Nafion-supported complex as an interesting sensor candidate for polar VOC.

  13. Cholesteric Liquid Crystal Glass Platinum Acetylides

    Science.gov (United States)

    2014-06-01

    M. Krein AFRL/RXAP Ronald F. Ziolo, Eduardo Arias, and Ivana Moggio 2Centro de Investigacion en Quimica Aplicada(CIQA) Albert Fratini... Quimica Aplicada(CIQA), Boulevard Enrique Reyna Albert Fratini - Department of Chemistry, University of Dayton Yuriy Garbovskiy and Anatoliy...Force Research Laboratory Materials and Manufacturing Directorate Wright-Patterson Air Force Base, OH 45433-7750 Centro de Investigacion en Quimica

  14. Platinum Acetylide Two-Photon Chromophores (Postprint)

    Science.gov (United States)

    2007-01-01

    advantageous for two reasons. First, by using lower-energy photons, a material will be protected from photodegradation effects. Second, the quadratic...absorbing dyes .19,20,33-39 We show the chromophores depicted in Figure 1 exhibit a remarkable increase in the 2PA cross-section (σ2) over PE2 mentioned

  15. Synthesis and photoelectric properties of new Dawson-type polyoxometalate-based dimeric and oligomeric Pt(II)-acetylide inorganic-organic hybrids.

    Science.gov (United States)

    Liu, Li; Hu, Lei; Liu, Qian; Du, Zu-Liang; Li, Fa-Bao; Li, Guang-Hua; Zhu, Xun-Jin; Wong, Wai-Yeung; Wang, Lei; Li, Hua

    2015-01-07

    A new synthesis route for preparing Dawson-type polyoxometalate (POM) based inorganic-organic hybrid materials is presented. Two new heteropolytungstate-based dimeric and oligomeric Pt(II) acetylide inorganic-organic hybrid compounds (2PtOD and PPtOD) were prepared by Hagihara's dehydrohalogenating coupling of a terminal diacetylene POM hybrid containing diphosphoryl functionality and an appropriate platinum(II) halide precursor. This method provides a rigid covalent linkage between the POM and the organometallic Pt(II) acetylide moiety. The redox potential of the polyanion can be tuned by grafting the organic and organometallic groups on it. The photoelectric properties of hybrid LB films derived from these inorganic-organic composites were studied.

  16. Photophysics and non-linear absorption of Au(I) and Pt(II) acetylide complexes of a thienyl-carbazole chromophore.

    Science.gov (United States)

    Goswami, Subhadip; Wicks, Geoffrey; Rebane, Aleksander; Schanze, Kirk S

    2014-12-21

    In order to understand the photophysics and non-linear optical properties of carbazole containing π-conjugated oligomers of the type ET-Cbz-TE (E = ethynylene, T = 2,5-thienylene, Cbz = 3,6-carbazole), a detailed investigation was carried out on a series of oligomers that feature Au(i) or Pt(ii) acetylide "end groups", as well as a Pt(ii)-acetylide linked polymer (CBZ-Au-1 and CBZ-Pt-1, CBZ-Poly-Pt). These organometallic chromophores were characterized by UV-visible absorption and variable temperature photoluminescence spectroscopy, nanosecond transient absorption spectroscopy, open aperture nanosecond z-scan and two photon absorption (2PA) spectroscopy. The Au(i) and Pt(ii) oligomers and polymer exhibit weak fluorescence in fluid solution at room temperature. Efficient phosphorescence is observed from the Pt(ii) systems below 150 K in a solvent glass; however, the Au(i) oligomer exhibits only weak phosphorescence at 77 K. Taken together, the emission results indicate that the intersystem crossing efficiency for the Pt(ii) chromophores is greater than for the Au(i) oligomer. Nonetheless, nanosecond transient absorption indicates that direct excitation affords moderately long-lived triplet states for all of the chromophores. Open aperture z-scan measurement shows effective optical attenuation can be achieved by using these materials. The 2PA cross section in the degenerate S0→S1 transition region was in the range 10-100 GM, and increased monotonically toward shorter wavelengths, reaching 800-1000 GM at 550 nm.

  17. Photophysics of organometallic platinum(II) derivatives of the diketopyrrolopyrrole chromophore

    KAUST Repository

    Goswami, Subhadip

    2014-12-18

    A pair of diketopyrrolopyrrole (DPP) chromophores that are end-functionalized with platinum containing "auxochromes" were subjected to electrochemical and photophysical study. The chromophores contain either platinum acetylide or ortho-metalated 2-thienylpyridinyl(platinum) end-groups (DPP-Pt(CC) and DPP-Pt(acac), respectively). The ground state redox potentials of the chromophores were determined by solution electrochemistry, and the HOMO and LUMO levels were estimated. The chromophores\\' photophysical properties were characterized by absorption, photoluminescence, and time-resolved absorption spectroscopy on time scales from sub-picoseconds to microseconds. Density functional theory (DFT) computations were performed to understand the molecular orbitals involved in both the singlet and triplet excited state photophysics. The results reveal that in both platinum DPP derivatives the organometallic auxochromes have a significant effect on the chromophores\\' photophysics. The most profound effect is a reduction in the fluorescence yields accompanied by enhanced triplet yields due to spin-orbit coupling induced by the metal centers. The effects are most pronounced in DPP-Pt(acac), indicating that the orthometalated platinum auxochrome is able to induce spin-orbital coupling to a greater extent compared to the platinum acetylide units. (Figure Presented).

  18. Copper(I)-catalyzed cycloaddition of silver acetylides and azides: incorporation of volatile acetylenes into the triazole core.

    Science.gov (United States)

    Proietti Silvestri, Ilaria; Andemarian, Fikre; Khairallah, George N; Yap, Su Wan; Quach, Tim; Tsegay, Sammi; Williams, Craig M; O'Hair, Richard A J; Donnelly, Paul S; Williams, Spencer J

    2011-09-07

    Silver acetylides and organic azides react under copper(I) catalysis to afford 1,4-disubstituted 1,2,3-triazoles. Mechanistic studies implicate a process involving transmetallation to copper acetylides prior to cycloaddition. This work demonstrates that silver acetylides serve as suitable precursors for entry into copper-mediated coupling reactions. This methodology allows the incorporation of volatile and difficult-to-handle acetylenes into the triazole core.

  19. Cyclometalated platinum(II) with ethynyl-linked azobenzene ligands: an original switching mode.

    Science.gov (United States)

    Savel, Paul; Latouche, Camille; Roisnel, Thierry; Akdas-Kilig, Huriye; Boucekkine, Abdou; Fillaut, Jean-Luc

    2013-12-28

    The photophysical properties of 6-phenyl-2,2'-bipyridyl platinum(ii) complexes bearing different σ-alkynyl-linked azobenzene ancillary ligands were investigated. These complexes exhibited strong, broad, structureless charge-transfer bands in the visible region, which were red-shifted when the electron-donating ability of the para substituent on the azo-acetylide ligand increased. When excited at the charge-transfer absorption band, the complexes exhibited weak green emission, which was assigned to a triplet metal-to-ligand charge transfer/interligand charge transfer emission ((3)MLCT/(3)L'LCT). The presence of an amino substituent in the azobenzene moiety opened the possibility of protonation, which led to the formation of an azonium based derivative and resulted in drastic perturbations of the molecular orbitals and photophysical properties of the Pt-acetylide complex. These studies are fully supported by DFT and TD-DFT calculations.

  20. Understanding the Two-Photon Absorption Spectrum of PE2 Platinum Acetylide Complex

    Science.gov (United States)

    2014-07-09

    Materials Division Marcelo G. Vivas - Instituto de Ciência de Tecnologia , Universidade Federal de Alfenas, Cidade Universitári, BR Leonardo De Boni...Instituto de Ciência de Tecnologia , Universidade Federal de Alfenas, Cidade Universitári, BR 267 Km 533, 37715- 400 Poços de Caldas, MG Brazil...Saõ Paulo, CP 369, 13560-970, Saõ Carlos, SP Brazil ‡Instituto de Cien̂cia de Tecnologia , Universidade Federal de Alfenas, Cidade UniversitaŕiaBR

  1. Synthesis of acetylenic azomethines from imidoyl chlorides and copper(I) acetylides, catalyzed by palladium compounds

    Energy Technology Data Exchange (ETDEWEB)

    Ukhin, L.Yu.; Orlova, Zh.I.; Tokarskaya, O.A.

    1988-04-20

    The synthesis of acetylenic azomethines from N-phenylbenzimidoyl chloride and copper butylacetylide in the presence of lithium iodide, from imidoyl chlorides and copper and silver acetylides in boiling acetonitrile, and from imidoyl chloride and trimethylsilylacetylene with lead acetate and triphenylphosphine as catalyst (80/degree/C, 2 h) has been described. The authors have found that acetylenic azomethines are formed readily from imidoyl chlorides and copper acetylides at room temperature in the presence of the phosphine complexes of Pd(0), produced in situ.

  2. The Synthesis of Ternary Acetylides with Tellurium: Li2TeC2 and Na2TeC2

    OpenAIRE

    Nemeth, Karoly; Unni, Aditya K.; Kalnmals, Christopher; Segre, Carlo U.; Kaduk, James

    2015-01-01

    The synthesis of ternary acetylides Li2TeC2 and Na2TeC2 is presented as the first example of ternary acetylides with metalloid elements instead of transition metals. The synthesis was carried out by the direct reaction of the corresponding bialkali acetylides with tellurium powder in liquid ammonia. Alternatively, the synthesis of Na2TeC2 was also carried out by the direct reaction of tellurium powder and two equivalents of NaC2H in liquid ammonia leading to Na2TeC2 and acetylene gas through ...

  3. Tuning the Excited—state Properties of Cyclometalated Platinum(Ⅱ)Complexes of 6—Pheny1—2,2’bipyridine by Ancillary Acetylide Ligand

    Institute of Scientific and Technical Information of China (English)

    吴梓新; 吴骊珠; 杨清正; 张丽萍; 佟振合

    2003-01-01

    A series of luminescent cyclometalated platinum(Ⅱ)complexes,(CNN)Pt(C≡CR)[HCNN=4-(4-tolyl)-6-phenyl-2,2’-bipyridine;R=4-chlorophenyl(1),phenyl(2) and 4-tolyl(3)],were synthesized,and their spectroscopic properties have been examined.These complexes are brightly emissive both in fluid solution and in the solid state,attributed to triplet metal-to-ligand charge transfer(3MLCT)state.The excited state energy can be tuned by ancillary acetylide ligands.The emission lifetimes in dichloromethand solution at room temperature were up to 1.64 μs and the emission quantum yields were in the range of 0.03-0.15.

  4. Enhanced reactivity of dinuclear Copper(I) acetylides in dipolar cycloadditions

    DEFF Research Database (Denmark)

    Ahlquist, Mårten Sten Gösta; Fokin, V.V.

    2007-01-01

    Dinuclear alkynyl copper(I) complexes exhibit superior reactivity toward organic azides compared to their monomeric analogues. DFT studies indicate that the second copper center facilitates the formation of the cupracycle in the rate-determining step and stabilizes the metallacycle intermediate...... itself. These findings support the experimentally determined rate law and shed light on the origin of high reactivity of the in situ generated copper acetylides....

  5. Induced Circular Dichroism in Phosphine Gold(I) Aryl Acetylide Urea Complexes through Hydrogen-Bonded Chiral Co-Assemblies.

    Science.gov (United States)

    Dubarle-Offner, Julien; Moussa, Jamal; Amouri, Hani; Jouvelet, Benjamin; Bouteiller, Laurent; Raynal, Matthieu

    2016-03-14

    Phosphine gold(I) aryl acetylide complexes equipped with a central bis(urea) moiety form 1D hydrogen-bonded polymeric assemblies in solution that do not display any optical activity. Chiral co-assemblies are formed by simple addition of an enantiopure (metal-free) complementary monomer. Although exhibiting an intrinsically achiral linear geometry, the gold(I) aryl acetylide fragment is located in the chiral environment displayed by the hydrogen-bonded co-assemblies, as demonstrated by induced circular dichroism (ICD). © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Platinum impact assessment

    OpenAIRE

    Yip, Joyce Pui Yan

    2007-01-01

    This paper presents a comprehensive strategic analysis of Company X's strategies to mitigate its risks from volatile platinum prices, since Platinum is a critical component of fuel cells. It is recommended that Company X consider leasing platinum to lower cash flow requirements to meet its platinum demand over the next 5 years. A shorter platinum leasing period will reduce Company X's platinum market risk. OEMs can set up metal accounts with catalyst suppliers to eliminate Company X from plat...

  7. Direct measurement of interaction forces between a platinum dichloride complex and DNA molecules.

    Science.gov (United States)

    Muramatsu, Hiroshi; Shimada, Shogo; Okada, Tomoko

    2017-06-29

    The interaction forces between a platinum dichloride complex and DNA molecules have been studied using atomic force microscopy (AFM). The platinum dichloride complex, di-dimethylsulfoxide-dichloroplatinum (II) (Pt(DMSO)2Cl2), was immobilized on an AFM probe by coordinating the platinum to two amino groups to form a complex similar to Pt(en)Cl2, which is structurally similar to cisplatin. The retraction forces were measured between the platinum complex and DNA molecules immobilized on mica plates using force curve measurements. The histogram of the retraction force for λ-DNA showed several peaks; the unit retraction force was estimated to be 130 pN for a pulling rate of 60 nm/s. The retraction forces were also measured separately for four single-base DNA oligomers (adenine, guanine, thymine, and cytosine). Retraction forces were frequently observed in the force curves for the DNA oligomers of guanine and adenine. For the guanine DNA oligomer, the most frequent retraction force was slightly lower than but very similar to the retraction force for λ-DNA. A higher retraction force was obtained for the adenine DNA oligomer than for the guanine oligomer. This result is consistent with a higher retraction activation energy of adenine with the Pt complex being than that of guanine because the kinetic rate constant for retraction correlates to exp(FΔx - ΔE) where ΔE is an activation energy, F is an applied force, and Δx is a displacement of distance.

  8. PIPERIDINE OLIGOMERS AND COMBINATORIAL LIBRARIES THEREOF

    DEFF Research Database (Denmark)

    1999-01-01

    The present invention relates to piperidine oligomers, methods for the preparation of piperidine oligomers and compound libraries thereof, and the use of piperidine oligomers as drug substances. The present invention also relates to the use of combinatorial libraries of piperidine oligomers...... in libraries (arrays) of compounds especially suitable for screening purposes....

  9. PLATINUM AND FUEL CELLS

    Science.gov (United States)

    Platinum requirements for fuel cell vehicles (FCVS) have been identified as a concern and possible problem with FCV market penetration. Platinum is a necessary component of the electrodes of fuel cell engines that power the vehicles. The platinum is deposited on porous electrodes...

  10. Copper(I)-catalyzed cycloaddition of bismuth(III) acetylides with organic azides: synthesis of stable triazole anion equivalents.

    Science.gov (United States)

    Worrell, Brady T; Ellery, Shelby P; Fokin, Valery V

    2013-12-02

    Fully loaded: Readily accessible and shelf-stable 1-bismuth(III) acetylides react rapidly and regiospecifically with organic azides in the presence of a copper(I) catalyst. The reaction tolerates many functional groups and gives excellent yields of the previously unreported 5-bismuth triazolides. This uniquely reactive intermediate is functionalized under mild reaction conditions to give fully substituted 1,2,3-triazoles. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Vanadate oligomer interactions with myosin.

    Science.gov (United States)

    Aureliano, M

    2000-05-30

    'Monovanadate' containing a mixture of at least four different vanadate species and 'decavanadate' containing apparently only two vanadate species, mainly decameric species, inhibit myosin and actomyosin ATPase activities. The addition of myosin to 'monovanadate' and 'decavanadate' solutions promotes differential increases on the 51V NMR spectral linewidths of vanadate oligomers. The relative order of line broadening upon myosin addition, reflecting the interaction of the vanadate oligomers with the protein, was V10 > V4 > V1 = 1, whereas no changes were observed for monomeric vanadate species. It is concluded that decameric and tetrameric vanadate species interact quite potently with the protein and affect myosin as well actomyosin ATPase activities.

  12. Synthesis, photovoltaic performances and TD-DFT modeling of push-pull diacetylide platinum complexes in TiO2 based dye-sensitized solar cells.

    Science.gov (United States)

    Gauthier, Sébastien; Caro, Bertrand; Robin-Le Guen, Françoise; Bhuvanesh, Nattamai; Gladysz, John A; Wojcik, Laurianne; Le Poul, Nicolas; Planchat, Aurélien; Pellegrin, Yann; Blart, Errol; Jacquemin, Denis; Odobel, Fabrice

    2014-08-07

    In this joint experimental-theoretical work, we present the synthesis and optical and electrochemical characterization of five new bis-acetylide platinum complex dyes end capped with diphenylpyranylidene moieties, as well as their performances in dye-sensitized solar cells (DSCs). Theoretical calculations relying on Time-Dependent Density Functional Theory (TD-DFT) and a range-separated hybrid show a very good match with experimental data and allow us to quantify the charge-transfer character of each compound. The photoconversion efficiency obtained reaches 4.7% for 8e (see TOC Graphic) with the tri-thiophene segment, which is among the highest efficiencies reported for platinum complexes in DSCs.

  13. Targeting Cancer with Antisense Oligomers

    Energy Technology Data Exchange (ETDEWEB)

    Hnatowich, DJ

    2008-10-28

    With financial assistance from the Department of Energy, we have shown definitively that radiolabeled antisense DNAs and other oligomers will accumulate in target cancer cells in vitro and in vivo by an antisense mechanism. We have also shown that the number of mRNA targets for our antisense oligomers in the cancer cell types that we have investigated so far is sufficient to provide and antisense image and/or radiotherapy of cancer in mice. These studies have been reported in about 10 publications. However our observation over the past several years has shown that radiolabeled antisense oligomers administered intravenously in their native and naked form will accumulate and be retained in target xenografts by an antisense mechanism but will also accumulate at high levels in normal organs such as liver, spleen and kidneys. We have investigated unsuccessfully several commercially available vectors. Thus the use of radiolabeled antisense oligomers for the imaging of cancer must await novel approaches to delivery. This laboratory has therefore pursued two new paths, optical imaging of tumor and Auger radiotherapy. We are developing a novel method of optical imaging tumor using antisense oligomers with a fluorophore is administered while hybridized with a shorter complementary oligomer with an inhibitor. In culture and in tumored mice that the duplex remains intact and thus nonfluorescent until it encounters its target mRNA at which time it dissociates and the antisense oligomer binds along with its fluorophore to the target. Simultaneous with the above, we have also observed, as have others, that antisense oligomers migrate rapidly and quantitatively to the nucleus upon crossing cell membranes. The Auger electron radiotherapy path results from this observation since the nuclear migration properties could be used effectively to bring and to retain in the nucleus an Auger emitting radionuclide such as 111In or 125I bound to the antisense oligomer. Since the object becomes

  14. Behind platinum's sparkle.

    Science.gov (United States)

    Yam, Vivian W W

    2010-09-01

    As a rare and precious metal that is also resistant to wear and tarnish, platinum is known to be particularly well-suited to jewellery. Vivian Yam reflects on how, beyond its prestigious image, platinum has also found its way into a variety of fields ranging from the petrochemical to the pharmaceutical industry.

  15. The synthesis of ternary acetylides with tellurium: Li 2 TeC 2 and Na 2 TeC 2

    Energy Technology Data Exchange (ETDEWEB)

    Németh, Károly; Unni, Aditya K.; Kalnmals, Christopher; Segre, Carlo U.; Kaduk, James; Bloom, Ira D.; Maroni, Victor A.

    2015-01-01

    The synthesis of ternary acetylides Li2TeC2 and Na2TeC2 is presented as the first example of ternary acetylides with metalloid elements instead of transition metals. The synthesis was carried out by the direct reaction of the corresponding bialkali acetylides with tellurium powder in liquid ammonia. Alternatively, the synthesis of Na2TeC2 was also carried out by the direct reaction of tellurium powder and two equivalents of NaC2H in liquid ammonia leading to Na2TeC2 and acetylene gas through an equilibrium containing the assumed NaTeC2H molecules besides the reactants and the products. The resulting disordered crystalline materials were characterized by X-ray diffraction and Raman spectroscopy. Implications of these new syntheses on the synthesis of other ternary acetylides with metalloid elements and transition metals are also discussed.

  16. Pt(II) diimine complexes bearing carbazolyl-capped acetylide ligands: synthesis, tunable photophysics and nonlinear absorption.

    Science.gov (United States)

    Liu, Rui; Chen, Hongbin; Chang, Jin; Li, Yuhao; Zhu, Hongjun; Sun, Wenfang

    2013-01-01

    A series of new Pt(II) diimine complexes with different carbazolyl-capped acetylide ligands (Pt-1–Pt-5) were synthesized and characterized. Their photophysical properties were investigated systematically via spectroscopic and theoretical methods. All complexes exhibit ligand-centered 1π,π* transitions in the UV region, and broad, structureless metal-to-ligand charge transfer (1MLCT)/ligand-to-ligand charge transfer (1LLCT) absorption bands in the visible spectral region. All complexes are emissive in solution at room temperature, with the emitting state being tentatively assigned to the 3MLCT/3LLCT states for Pt-1–Pt-4, and the emitting state of Pt-5 exhibiting a switch from the 3π,π* state in high-polarity solvents to the 3MLCT state in low-polarity solvents. Complexes Pt-1–Pt-5 all exhibit moderate triplet transient absorption (TA) from the visible to the NIR region, where reverse saturable absorption (RSA) could occur. The spectroscopic studies and theoretical calculations indicate that the photophysical properties of these Pt complexes can be tuned drastically by the carbazolyl-capped acetylide ligand, which would be useful for rational design of transition-metal complexes with high emission quantum yield, long excited-state lifetime, broadband excited-state absorption, and strong nonlinear transmittance for organic light-emitting and/or broadband nonlinear transmission applications.

  17. Ultrafast Photoinduced Electron Transfer in a π-Conjugated Oligomer/Porphyrin Complex

    KAUST Repository

    Aly, Shawkat Mohammede

    2014-10-02

    Controlling charge transfer (CT), charge separation (CS), and charge recombination (CR) at the donor-acceptor interface is extremely important to optimize the conversion efficiency in solar cell devices. In general, ultrafast CT and slow CR are desirable for optimal device performance. In this Letter, the ultrafast excited-state CT between platinum oligomer (DPP-Pt(acac)) as a new electron donor and porphyrin as an electron acceptor is monitored for the first time using femtosecond (fs) transient absorption (TA) spectroscopy with broad-band capability and 120 fs temporal resolution. Turning the CT on/off has been shown to be possible either by switching from an organometallic oligomer to a metal-free oligomer or by controlling the charge density on the nitrogen atom of the porphyrin meso unit. Our time-resolved data show that the CT and CS between DPP-Pt(acac) and cationic porphyrin are ultrafast (approximately 1.5 ps), and the CR is slow (ns time scale), as inferred from the formation and the decay of the cationic and anionic species. We also found that the metallic center in the DPP-Pt(acac) oligomer and the positive charge on the porphyrin are the keys to switching on/off the ultrafast CT process.

  18. Synthesis of a new π-conjugated redox oligomer: Electrochemical and optical investigation

    Science.gov (United States)

    Blili, Saber; Zaâboub, Zouhour; Maaref, Hassen; Haj Said, Ayoub

    2017-01-01

    A new π-conjugated redox oligomer was prepared according a two-Step Synthesis. Firstly, an oligophenylene (OMPA) was obtained from the anodic oxidation of the (4-methoxyphenyl)acetonitrile. Then, the resulting material was chemically modified by the Knoevenagel condensation with the ferrocenecarboxaldehyde. This reaction led to a redox-conjugated oligomer the Fc-OMPA. The synthesized material was characterized using different spectroscopic techniques: NMR, FTIR, UV-vis and photoluminescence (PL) spectroscopy. The Fc-OMPA was used to modify a platinum electrode surface and the electrochemical response of the ferrocene redox-center was investigated by cyclic voltammetry. Moreover, the room temperature PL spectra of Fc-OMPA revealed that the ferrocene moiety, which acts as an electron donor, can effectively quench the oligomer luminescence. However, when ferrocene was oxidized to ferrocenium ion, the intramolecular charge transfer process was prevented which consequently enhanced the light emission. Thus, the oligomer light-emission can be, chemically or electrochemically tuned. The obtained results showed that the prepared material is a good candidate for the elaboration of electrochemical sensors and for the development of luminescent Redox-switchable devices.

  19. Hyperphosphorylation-induced tau oligomers

    Directory of Open Access Journals (Sweden)

    Khalid eIqbal

    2013-08-01

    Full Text Available In normal adult brain the microtubule associated protein tau contains 2–3 phosphates per mole of the protein and at this level of phosphorylation it is a soluble cytosolic protein. The normal brain tau interacts with tubulin and promotes its assembly into microtubules and stabilizes these fibrils. In Alzheimer disease (AD brain tau is three to four fold hyperphosphorylated. The abnormally hyperphosphorylated tau binds to normal tau instead of the tubulin and this binding leads to the formation of tau oligomers. The tau oligomers can be sedimented at 200,000 x g whereas the normal tau under these conditions remains in the supernatant. The abnormally hyperphosphorylated tau is capable of sequestering not only normal tau but also microtubule associated protein (MAP MAP1 and MAP2 and causing disruption of the microtubule network promoted by these proteins. Unlike ABeta and prion protein (PrP oligomers, tau oligomerization in AD and related tauopathies is hyperphosphorylation-dependent; in vitro dephosphorylation of AD P-tau with protein phosphatase 2A (PP2A inhibits and rehyperphosphorylation of the PP2A-AD P-tau with more than one combination of tau protein kinases promotes its oligomerization. In physiological assembly conditions the AD P-tau readily self-assembles into paired helical filaments. Missense tau mutations found in frontotemporal dementia apparently lead to tau oligomerization and neurofibrillary pathology by promoting its abnormal hyperphosphorylation. Dysregulation of the alternative splicing of tau that alters the 1 : 1 ratio of the 3-repeat : 4-repeat taus such as in Down syndrome, Pick disease and progressive supranuclear palsy leads to the abnormal hyperphosphorylation of tau.

  20. Hyperphosphorylation-induced tau oligomers.

    Science.gov (United States)

    Iqbal, Khalid; Gong, Cheng-Xin; Liu, Fei

    2013-01-01

    In normal adult brain the microtubule associated protein (MAP) tau contains 2-3 phosphates per mol of the protein and at this level of phosphorylation it is a soluble cytosolic protein. The normal brain tau interacts with tubulin and promotes its assembly into microtubules and stabilizes these fibrils. In Alzheimer disease (AD) brain tau is three to fourfold hyperphosphorylated. The abnormally hyperphosphorylated tau binds to normal tau instead of the tubulin and this binding leads to the formation of tau oligomers. The tau oligomers can be sedimented at 200,000 × g whereas the normal tau under these conditions remains in the supernatant. The abnormally hyperphosphorylated tau is capable of sequestering not only normal tau but also MAP MAP1 and MAP2 and causing disruption of the microtubule network promoted by these proteins. Unlike Aβ and prion protein (PrP) oligomers, tau oligomerization in AD and related tauopathies is hyperphosphorylation-dependent; in vitro dephosphorylation of AD P-tau with protein phosphatase 2A (PP2A) inhibits and rehyperphosphorylation of the PP2A-AD P-tau with more than one combination of tau protein kinases promotes its oligomerization. In physiological assembly conditions the AD P-tau readily self-assembles into paired helical filaments. Missense tau mutations found in frontotemporal dementia apparently lead to tau oligomerization and neurofibrillary pathology by promoting its abnormal hyperphosphorylation. Dysregulation of the alternative splicing of tau that alters the 1:1 ratio of the 3-repeat: 4-repeat taus such as in Down syndrome, Pick disease, and progressive supranuclear palsy leads to the abnormal hyperphosphorylation of tau.

  1. Platinum hypersensitivity and desensitization.

    Science.gov (United States)

    Miyamoto, Shingo; Okada, Rika; Ando, Kazumichi

    2015-09-01

    Platinum agents are drugs used for various types of cancer. With increased frequency of administration of platinum agents, hypersensitivity reactions appear more frequently, occurring in over 25% of cases from the seventh cycle or second line onward. It then becomes difficult to conduct treatment using these agents. Various approaches have been investigated to address hypersensitivity reactions to platinum agents. Desensitization, which gradually increases the concentration of the anticancer drug considered to be the antigen until the target dosage, has been reported as being particularly effective, with a success rate of 80-100%. The aims of this paper are to present the current findings regarding hypersensitivity reactions to platinum agents and to discuss attempts of using desensitization against hypersensitivity reactions worldwide. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  2. Targeting α-synuclein oligomers

    DEFF Research Database (Denmark)

    van Diggelen, Femke

    2017-01-01

    . Although there is currently no cure for PD, αSn oligomers (αSOs) are a potential therapeutic target, but a major drawback it that little is known about the nature of PD-associated αSOs. The scientific literature describes a wide variety of protocols to generate αSOs in vitro, with a subsequent......+/K+ ATPase, V-type ATPase, VDAC, CaMKII and Rab-3A. The identification of these targets is a first step towards unravelling the toxic pathways which are activated upon synaptic binding of extracellularly added αSOs, and hopefully will contribute to the discovery of new disease modifying compounds, which can...

  3. Heterogeneous platinum-catalyzed hydrogenation of dialkyl(diolefin)platinum(II) complexes: A new route to platinum surface alkyls

    OpenAIRE

    McCarthy, Thomas J.; Shih, Yen-Shiang; Whitesides, George M.

    1981-01-01

    Platinum metal catalyzes the reduction of dialkyl(diolefin)platinum(II) complexes by dihydrogen to alkanes and platinum(0). The reaction involves adsorption of the platinum(II) complex on the platinum(0) catalyst surface with conversion of the alkyl moieties to platinum surface alkyls; these appear as alkane products. The platinum atom originally present in the soluble organoplatinum species becomes part of the platinum(0) surface.

  4. Prion protein oligomer and its neurotoxicity

    Institute of Scientific and Technical Information of China (English)

    Pei Huang; Fulin Lian; Yi Wen; Chenyun Guo; Donghai Lin

    2013-01-01

    The prion diseases,also known as transmissible spongiform encephalopathies,are fatal neurodegenerative disorders.According to the 'protein only' hypothesis,the key molecular event in the pathogenesis of prion disease is the conformational conversion of the host-derived cellular prion protein (PrPC) into a misfolded form (scrapie PrP,prpSc).Increasing evidence has shown that the most infectious factor is the smaller subfibrillar oligomers formed by prion proteins.Both the prion oligomer and PrPSc are rich in β-sheet structure and resistant to the proteolysis of proteinase K.The prion oligomer is soluble in physiologic environments whereas PrPSc is insoluble.Various prion oligomers are formed in different conditions.Prion oligomers exhibited more neurotoxicity both in vitro and in vivo than the fibrillar forms of PrPSc,implying that prion oligomers could be potential drug targets for attacking prion diseases.In this article,we describe recent experimental evidence regarding prion oligomers,with a special focus on prion oligomer formation and its neurotoxicity.

  5. SYNTHESIS OF OLIGOMERS CONTAINING 5-FLUOROURACIL

    Institute of Scientific and Technical Information of China (English)

    PIAO Aichih; SUN Shumen

    1983-01-01

    The condensation oligomers of 5-fluorouracil were prepared by reaction of 2,4-bis-(trimethyl-silyloxy)-5-fluoropyrimidine) with various dicarboxylic chlorides, e.g.R=(-CH2-)2, (-CH2-)4, (-CH2-)6, p-C6H4-, m-C6H4-, o-C6H4- The structures of obtained oligomers were characterized by IR and the oligomers were then hydrolyzed in acid, alkaline and neutral media at room temperature respectively. The amount of 5-fluorouracil released was quantitated by measuring its UV absorbance at 265.5nm. However in the case of oligomers containing phenylene moiety, 5-fluorouracil was not detected when the hydrolysis was conducted in acid or neutral medium, while in the case of oligomers containing methylene moiety, hydrolysis proceeded easily in acid, alkaline and neutral media.

  6. Toxicity of platinum compounds.

    Science.gov (United States)

    Hartmann, Jörg Thomas; Lipp, Hans-Peter

    2003-06-01

    Since the introduction of platinum-based combination chemotherapy, particularly cisplatin, the outcome of the treatment of many solid tumours has changed. The leading platinum compounds in cancer chemotherapy are cisplatin, carboplatin and oxaliplatin. They share some structural similarities; however, there are marked differences between them in therapeutic use, pharmacokinetics and adverse effects profiles [1-4]. Compared to cisplatin, carboplatin has inferior efficacy in germ-cell tumour, head and neck cancer and bladder and oesophageal carcinoma, whereas both drugs seem to have comparable efficacy in advanced non-small cell and small cell lung cancer as well as ovarian cancer [5-7]. Oxaliplatin belongs to the group of diaminocyclohexane platinum compounds. It is the first platinum-based drug that has marked efficacy in colorectal cancer when given in combination with 5-fluorouracil and folinic acid [8,9]. Other platinum compounds such as oral JM216, ZD0473, BBR3464 and SPI-77, which is a pegylated liposomal formulation of cisplatin, are still under investigation [10-13], whereas nedaplatin has been approved in Japan for the treatment of non-small cell lung cancer and other solid tumours. This review focuses on cisplatin, carboplatin and oxaliplatin.

  7. [Cu13 {S2 CN(n) Bu2 }6 (acetylide)4 ](+) : A Two-Electron Superatom.

    Science.gov (United States)

    Chakrahari, Kiran Kumarvarma; Liao, Jian-Hong; Kahlal, Samia; Liu, Yu-Chiao; Chiang, Ming-Hsi; Saillard, Jean-Yves; Liu, C W

    2016-11-14

    The first structurally characterized copper cluster with a Cu13 centered cuboctahedral arrangement, a model of the bulk copper fcc structure, was observed in [Cu13 (S2 CN(n) Bu2 )6 (C≡CR)4 ](PF6 ) (R=C(O)OMe, C6 H4 F) nanoclusters. Four of the eight triangular faces of the cuboctahedron are capped by acetylide groups in μ3  fashion, and each of the six square faces is bridged by a dithiolate ligand in μ2 ,μ2 fashion, which leads to a truncated tetrahedron of twelve sulfur atoms. DFT calculations are fully consistent with the description of these Cu13 clusters as two-electron superatoms, that is, a [Cu13 ](11+) core passivated by ten monoanionic ligands, with an a1 HOMO containing two 1S jellium electrons.

  8. Stable uranium(VI) methyl and acetylide complexes and the elucidation of an inverse trans influence ligand series.

    Science.gov (United States)

    Lewis, Andrew J; Carroll, Patrick J; Schelter, Eric J

    2013-09-04

    Thermally stable uranium(VI)-methyl and -acetylide complexes: U(VI)OR[N(SiMe3)2]3 R = -CH3, -C≡CPh were prepared in which coordination of the hydrocarbyl group is directed trans to the uranium-oxo multiple bond. The stability of the uranium-carbon bond is attributed to an inverse trans influence. The hydrocarbyl complexes show greater ITI stabilization than that of structurally related U(VI)OX[N(SiMe3)2]3 (X = F(-), Cl(-), Br(-)) complexes, demonstrated both experimentally and computationally. An inverse trans influence ligand series is presented, developed from a union of theoretical and experimental results and based on correlations between the extent of cis-destabilization, the complexes stabilities toward electrochemical reduction, the thermodynamic driving forces for U═O bond formation, and the calculated destabilization of axial σ* and π* antibonding interactions.

  9. Copper-catalyzed azide-alkyne cycloaddition (CuAAC) and beyond: new reactivity of copper(I) acetylides.

    Science.gov (United States)

    Hein, Jason E; Fokin, Valery V

    2010-04-01

    Copper-catalyzed azide-alkyne cycloaddition (CuAAC) is a widely utilized, reliable, and straightforward way for making covalent connections between building blocks containing various functional groups. It has been used in organic synthesis, medicinal chemistry, surface and polymer chemistry, and bioconjugation applications. Despite the apparent simplicity of the reaction, its mechanism involves multiple reversible steps involving coordination complexes of copper(I) acetylides of varying nuclearity. Understanding and controlling these equilibria is of paramount importance for channeling the reaction into the productive catalytic cycle. This tutorial review examines the history of the development of the CuAAC reaction, its key mechanistic aspects, and highlights the features that make it useful to practitioners in different fields of chemical science.

  10. Ballistic Energy Transport in Oligomers.

    Science.gov (United States)

    Rubtsova, Natalia I; Qasim, Layla N; Kurnosov, Arkady A; Burin, Alexander L; Rubtsov, Igor V

    2015-09-15

    The development of nanocomposite materials with desired heat management properties, including nanowires, layered semiconductor structures, and self-assembled monolayer (SAM) junctions, attracts broad interest. Such materials often involve polymeric/oligomeric components and can feature high or low thermal conductivity, depending on their design. For example, in SAM junctions made of alkane chains sandwiched between metal layers, the thermal conductivity can be very low, whereas the fibers of ordered polyethylene chains feature high thermal conductivity, exceeding that of many pure metals. The thermal conductivity of nanostructured materials is determined by the energy transport between and within each component of the material, which all need to be understood for optimizing the properties. For example, in the SAM junctions, the energy transport across the metal-chain interface as well as the transport through the chains both determine the overall heat conductivity, however, to separate these contributions is difficult. Recently developed relaxation-assisted two-dimensional infrared (RA 2DIR) spectroscopy is capable of studying energy transport in individual molecules in the time domain. The transport in a molecule is initiated by exciting an IR-active group (a tag); the method records the influence of the excess energy on another mode in the molecule (a reporter). The energy transport time can be measured for different reporters, and the transport speed through the molecule is evaluated. Various molecules were interrogated by RA 2DIR: in molecules without repeating units (disordered), the transport mechanism was expected and found to be diffusive. The transport via an oligomer backbone can potentially be ballistic, as the chain offers delocalized vibrational states. Indeed, the transport regime via three tested types of oligomers, alkanes, polyethyleneglycols, and perfluoroalkanes was found to be ballistic, whereas the transport within the end groups was diffusive

  11. Structural study of a novel acetylide-thiourea derivative and its evaluation as a detector of benzene

    Science.gov (United States)

    Khairul, Wan M.; Daud, Adibah Izzati; Mohd Hanifaah, Noor Azura; Arshad, Suhana; Razak, Ibrahim Abdul; Zuki, Hafiza Mohamed; Erben, Mauricio F.

    2017-07-01

    The new derivative 1-hexanoyl-3-(4-p-tolylethynyl-phenyl)-thiourea (APHX) was synthesised by the addition reaction between 4[4-aminophenyl] ethynyltoluene and hexanoyl isothiocyanate in acetone. The acetylide group was incorporated by using Sonogashira cross-coupling reaction allowing for the preparation of acetylide-thiourea compound. APHX was then elucidated via single crystal X-ray crystallography analysis, spectroscopic and elemental analysis by Fourier Transform Infrared (FT-IR) spectroscopy, 1H and 13C Nuclear Magnetic Resonance (NMR), UV-visible analysis, CHNS-elemental analysis. APHX was also evaluated theoretically via density functional theory (DFT) approach. APHX was fabricated onto glass substrate via drop-cast technique prior to act as optical thin-film and its performance as volatile organic compounds (VOCs) sensor was investigated through the difference in UV-vis profile before and after exposure towards benzene. Preliminary findings revealed that APHX showed interaction towards benzene with about 48% sensitivity. According to thermogravimetric studies, APHX showed good thermal stability, without decomposition up to ca. 190 °C. Whilst, crystal structure of APHX consists in a nearly planar acylthiourea moiety with the Cdbnd O and Cdbnd S bonds utilizing trans position, favoring by an intramolecular Nsbnd H⋯Odbnd C hydrogen bonds. The alkyl chain is oriented 90° with respect to acylthiourea group. The phenyls group in the 1-methyl-4-(phenylethynyl)benzene moieties are mutually planar and slightly twisted with respect to the acylthiourea plane. Centrosymmetric dimers generated by intermolecular Nsbnd H⋯Sdbnd C and Csbnd H⋯Sdbnd C hydrogen bonds forming R22 (8) and R21(6) motifs are present in the crystals. The interaction between APHX with benzene has been modelled and calculated using density functional theory (DFT) via Gaussian 09 software package and the preferred sites of binding are located at the acylthiourea group.

  12. Oxygen Reduction on Platinum

    DEFF Research Database (Denmark)

    Nesselberger, Markus

    This thesis investigates the electro reduction of oxygen on platinum nanoparticles, which serve as catalyst in low temperature fuel cells. Kinetic studies on model catalysts as well as commercially used systems are presented in order to investigate the particle size effect, the particle proximity...... carbon (HSAC) supported Pt nanoparticle (Pt/C) catalysts (of various size between 1 and 5 nm). The difference in SA between the individual Pt/C catalysts (1 to 5 nm) is very small and within the error of the measurements. The factor four of loss in SA when comparing platinum bulk and Pt/C can largely...

  13. Biomineralization of platinum by microorganisms

    Science.gov (United States)

    Pavlova, L. M.; Radomskaya, V. I.; Shumilova, L. P.; Ionov, A. M.; Sorokin, P.

    2017-04-01

    The mechanism of platinum biomineralization by microscopic fungi is displayed based on data of electron microscopy, infrared and X-ray photoelectronic spectroscopy. It was suggested the platinum sorption process by microscopic fungi has some stages. The initial interaction is carried out by the mechanisms of physical and chemical sorption. Hereafter the reduction process of adsorbed platinum ions up to zero state is performed, probably, for account of organic compounds, which are produced by fungi biomass as metabolism result, and the process terminates by nulvalent particles aggregating up to nanosize forms. Obtained data on the platinum biomineralization extends the concept concerning the character of forming platinum nanoparticles in carbonous paleobasin.

  14. Platinum metals in the environment

    Energy Technology Data Exchange (ETDEWEB)

    Zereini, Fathi [Frankfurt Univ. (Germany). Dept. of Environmental Analytical Chemistry; Wiseman, Clare L.S. (ed.) [Toronto Univ. (Canada). School of the Environment

    2015-03-01

    This book contains the five chapters with the following topics: 1. SOURCES OF PGE EMISSIONS ELEMENTS: Sources of Platinum Group Elements (PGE) in the Environment; Impact of Platinum Group Element Emissions from Mining and Production Activities. 2. ANALYTICAL METHODS FOR THE DETERMINATION OF PGE IN BIOLOGICAL AND ENVIRONMENTAL MATRICES: Appraisal of Biosorption for Recovery, Separation and Determination of Platinum, Palladium and Rhodium in Environmental Samples; On the Underestimated Factors Influencing the Accuracy of Determination of Pt and Pd by Electrothermal Atomic Absorption Spectrometry in Road Dust Samples; Application of Solid Sorbents for Enrichment and Separation of Platinum Metal Ions; Voltammetric Analysis of Platinum in Environmental Matrices; Speciation Analysis of Chloroplatinates; Analysis of Platinum Group Elements in Environmental Samples: A Review. 3. OCCURRENCE, CHEMICAL BEHAVIOR AND FATE OF PGE IN THE ENVIRONMENT: Brazilian PGE Research Data Survey on Urban and Roadside Soils; Platinum, Palladium and Rhodium in a Bavarian Roadside Soil; Increase of Platinum Group Element Concentrations in Soils and Airborne Dust During the Period of Vehicular Exhaust Catalysts Introduction; Platinum-Group Elements in Urban Fluvial Bed Sediments-Hawaii; Long-Term Monitoring of Palladium and Platinum Contents in Road Dust of the City of Munich, Germany; Characterization of PGEs and Other Elements in Road Dusts and Airborne Particles in Houston, Texas; Accumulation and Distribution of Pt and Pd in Roadside Dust, Soil and Vegetation in Bulgaria; Increase of the Environmental Pt Concentration in the Metropolitan Area of Mexico City Associated to the Use of Automobile Catalytic Converters; Solubility of Emitted Platinum Group Elements (Pt, Pd and Rh) in Airborne Particulate Matter (PM10) in the Presence of Organic Complexing Agents; The Influence of Anionic Species (Cl{sup -}, NO{sub 3}{sup -}, SO{sub 4}{sup 2-}) on the Transformation and Solubility of Platinum in

  15. Pressure induced polymerization of acetylide anions in CaC 2 and 10 7 fold enhancement of electrical conductivity

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Haiyan; Wang, Lijuan; Li, Kuo; Yang, Youyou; Wang, Yajie; Wu, Jiajia; Dong, Xiao; Wang, Chun-Hai; Tulk, Christopher A.; Molaison, Jamie J.; Ivanov, Ilia N.; Feygenson, Mikhail; Yang, Wenge; Guthrie, Malcolm; Zhao, Yusheng; Mao, Ho-Kwang; Jin, Changqing (ORNL); (CIW); (CHPSTAR- China); (Agilent); (SUSTC); (Chinese Aca. Sci.); (COFCO); (Durham)

    2016-08-17

    Transformation between different types of carbon–carbon bonding in carbides often results in a dramatic change of physical and chemical properties. Under external pressure, unsaturated carbon atoms form new covalent bonds regardless of the electrostatic repulsion. It was predicted that calcium acetylide (also known as calcium carbide, CaC2) polymerizes to form calcium polyacetylide, calcium polyacenide and calcium graphenide under high pressure. In this work, the phase transitions of CaC2 under external pressure were systematically investigated, and the amorphous phase was studied in detail for the first time. Polycarbide anions like C66- are identified with gas chromatography-mass spectrometry and several other techniques, which evidences the pressure induced polymerization of the acetylide anions and suggests the existence of the polyacenide fragment. Additionally, the process of polymerization is accompanied with a 107 fold enhancement of the electrical conductivity. The polymerization of acetylide anions demonstrates that high pressure compression is a viable route to synthesize novel metal polycarbides and materials with extended carbon networks, while shedding light on the synthesis of more complicated metal organics.

  16. Adding Effects of Reactive Oligomers for Epoxy Resin

    OpenAIRE

    山田, 英介; 稲垣, 慎二; 岡本, 弘

    1991-01-01

    Reactive oligomers with both functional end groups were prepared by the radical telomerization and the effect of oligomers added to bisphenol-A-glycidylehter type epoxy resin was investigated by measuring mechanical properties, adhesive properties and dynamic viscoelasticities. These oligomers were high viscous liquid except the one prepared from methyl methacrylate, therefore the blend of oligomers with epoxy resin is easy. Adding oligomers, the cured epoxy resins showed the lower glass-tran...

  17. Raman study of the photopolymer formation in the {Pt(dbdtc)2}·C60 fullerene complex and the decomposition kinetics of the photo-oligomers

    Science.gov (United States)

    Meletov, K. P.; Velkos, G.; Arvanitidis, J.; Christofilos, D.; Kourouklis, G. A.

    2017-08-01

    The photopolymer formation in the fullerene layers of the C60 complex with platinum dibenzyldithiocarbamate is reported for the first time. The photo-oligomer peaks appear in the Raman spectra near the Ag(2) mode of the C60 molecule upon sample illumination with various laser wavelengths. The photo-oligomers are unstable upon heating and revert back to the C60 monomeric state. The activation energy of the thermal decomposition, obtained from the Arrhenius dependence of the decay time constant on temperature, is (1.12 ± 0.11) eV and the photo-oligomers decompose at ∼130 °C, being more fragile than the crystalline polymers of C60.

  18. Reaction of alkynes and azides: not triazoles through copper-acetylides but oxazoles through copper-nitrene intermediates.

    Science.gov (United States)

    Haldón, Estela; Besora, Maria; Cano, Israel; Cambeiro, Xacobe C; Pericàs, Miquel A; Maseras, Feliu; Nicasio, M Carmen; Pérez, Pedro J

    2014-03-17

    Well-defined copper(I) complexes of composition [Tpm*(,Br) Cu(NCMe)]BF4 (Tpm*(,Br) =tris(3,5-dimethyl-4-bromo-pyrazolyl)methane) or [Tpa(*) Cu]PF6 (Tpa(*) =tris(3,5-dimethyl-pyrazolylmethyl)amine) catalyze the formation of 2,5-disubstituted oxazoles from carbonyl azides and terminal alkynes in a direct manner. This process represents a novel procedure for the synthesis of this valuable heterocycle from readily available starting materials, leading exclusively to the 2,5-isomer, attesting to a completely regioselective transformation. Experimental evidence and computational studies have allowed the proposal of a reaction mechanism based on the initial formation of a copper-acyl nitrene species, in contrast to the well-known mechanism for the copper-catalyzed alkyne and azide cycloaddition reactions (CuAAC) that is triggered by the formation of a copper-acetylide complex. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Structural behavior of the acetylide carbides Li2C2 and CaC2 at high pressure

    Science.gov (United States)

    Nylén, Johanna; Konar, Sumit; Lazor, Peter; Benson, Daryn; Häussermann, Ulrich

    2012-12-01

    The effects of high pressure (up to 30 GPa) on the structural properties of lithium and calcium carbide, Li2C2 and CaC2, were studied at room temperature by Raman spectroscopy in a diamond anvil cell. Both carbides consist of C2 dumbbells which are coordinated by metal atoms. At standard pressure and temperature two forms of CaC2 co-exist. Monoclinic CaC2-II is not stable at pressures above 2 GPa and tetragonal CaC2-I possibly undergoes a minor structural change between 10 and 12 GPa. Orthorhombic Li2C2 transforms to a new structure type at around 15 GPa. At pressures above 18 GPa (CaC2) and 25 GPa (Li2C2) Raman spectra become featureless, and remain featureless upon decompression which suggests an irreversible amorphization of the acetylide carbides. First principles calculations were used to analyze the pressure dependence of Raman mode frequencies and structural stability of Li2C2 and CaC2. A structure model for the high pressure phase of Li2C2 was searched by applying an evolutionary algorithm.

  20. Lactic acid oligomers (OLAs) as prodrug moieties.

    Science.gov (United States)

    Kruse, J; Lachmann, B; Lauer, R; Eppacher, S; Noe, C R

    2013-02-01

    In this paper we propose the use of lactic acid oligomers (OLAs) as prodrug moieties. Two synthetic approaches are presented, on the one hand a non selective oligomerisation of lactic acid and on the other hand a block synthesis to tetramers of lactic acid. Dimers of lactic acid were investigated with respect to their plasma stability and their adsorption to albumine. Ibuprofen was chosen as the first drug for OLAylation. The ester 19 of LA(1)-ibuprofen was evaluated with respect to the degradation to human plasma and the adsorption to albumine. All results indicate that lactic acid oligomers are promising prodrug moieties.

  1. Platinum nitride with fluorite structure

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Rong; Zhang, Xiao-Feng

    2005-01-31

    The mechanical stability of platinum nitride has been studied using first-principles calculations. By calculating the single-crystal elastic constants, we show that platinum nitride can be stabilized in the fluorite structure, in which the nitrogen atoms occupy all the tetrahedral interstitial sites of the metal lattice. The stability is attributed to the pseudogap effect from analysis of the electronic structure.

  2. The Toxicity of Amyloid ß Oligomers

    Directory of Open Access Journals (Sweden)

    Lock Yue Chew

    2012-06-01

    Full Text Available Abstract: In this review, we elucidate the mechanisms of Aβ oligomer toxicity which may contribute to Alzheimer’s disease (AD. In particular, we discuss on the interaction of Aβ oligomers with the membrane through the process of adsorption and insertion. Such interaction gives rises to phase transitions  in the sub-structures of the Aβ peptide from α-helical to β-sheet  structure. By means of a coarse-grained model, we exhibit the tendency of β-sheet structures to aggregate, thus providing further insights to the process of membrane induced aggregation. We show that the aggregated oligomer causes membrane invagination, which is a precursor to the formation of pore structures and ion channels. Other pathological progressions to AD due to Aβ oligomers  are also covered,  such as their interaction with the membrane receptors, and their direct versus indirect effects on oxidative  stress and intraneuronal accumulation.  We further illustrate that the molecule curcumin is a potential Aβ toxicity inhibitor as a β-sheet breaker by having  a high propensity to interact with certain Aβ residues without  binding to them. The comprehensive understanding gained from these current  researches on the various toxicity mechanisms show promises in the provision of better therapeutics and treatment strategies in the near future.

  3. Highly trifluoromethylated platinum compounds.

    Science.gov (United States)

    Martínez-Salvador, Sonia; Forniés, Juan; Martín, Antonio; Menjón, Babil

    2011-07-11

    The homoleptic, square-planar organoplatinum(II) compound [NBu(4)](2) [Pt(CF(3))(4)] (1) undergoes oxidative addition of CF(3) I under mild conditions to give rise to the octahedral organoplatinum(IV) complex [NBu(4)](2) [Pt(CF(3))(5)I] (2). This highly trifluoromethylated species reacts with Ag(+) salts of weakly coordinating anions in Me(2)CO under a wet-air stream to afford the aquo derivative [NBu(4)][Pt(CF(3))(5) (OH(2))] (4) in around 75% yield. When the reaction of 2 with the same Ag(+) salts is carried out in MeCN, the solvento compound [NBu(4) ][Pt(CF(3))(5)(NCMe)] (5) is obtained in around 80% yield. The aquo ligand in 4 as well as the MeCN ligand in 5 are labile and can be cleanly replaced by neutral and anionic ligands to furnish a series of pentakis(trifluoromethyl)platinate(IV) compounds with formulae [NBu(4)][Pt(CF(3))(5) (L)] (L=CO (6), pyridine (py; 7), tetrahydrothiophene (tht; 8)) and [NBu(4)](2) [Pt(CF(3))(5)X] (X=Cl (9), Br (10)). The unusual carbonyl-platinum(IV) derivative [NBu(4)][Pt(CF(3))(5) (CO)] (6) is thermally stable and has a ν(CO) of 2194 cm(-1). The crystal structures of 2⋅CH(2)Cl(2), 5, [PPh(4) ][Pt(CF(3))(5)(CO)] (6'), and 7 have been established by X-ray diffraction methods. Compound 2 has shown itself to be a convenient entry to the chemistry of highly trifluoromethylated platinum compounds. To the best of our knowledge, compounds 2 and 4-10 are the organoelement compounds with the highest CF(3) content to have been isolated and adequately characterized to date.

  4. Understanding platinum-induced ototoxicity.

    Science.gov (United States)

    Langer, Thorsten; am Zehnhoff-Dinnesen, Antoinette; Radtke, Susanne; Meitert, Johannes; Zolk, Oliver

    2013-08-01

    Childhood cancer survival rates are now nearly 80% in more developed European countries because of improved therapies and better supportive care. Platinum chemotherapy drugs, such as cisplatin and carboplatin, are the cornerstone of many effective therapeutic protocols for childhood cancer. However, the antitumor efficacy of cisplatin and carboplatin comes at the cost of ototoxicity, which affects at least 60% of pediatric patients. Although ototoxicity is not life threatening, it can have debilitating effects on patients' quality of life. Recently, many initiatives have been launched with the ultimate goal of reducing cisplatin and high-dose carboplatin ototoxicity without compromising antitumor efficacy. This review addresses the incidence of platinum ototoxicity and its clinical presentation, time course, and early diagnostic evaluation. Genetic and non-genetic risk factors for platinum-associated ototoxicity, and their predictive value, are discussed. Recent developments in the prevention of platinum ototoxicity are also summarized. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. On the fluorescence of pyrrole derivative oligomer

    Energy Technology Data Exchange (ETDEWEB)

    Guimaraes, Jeconias Rocha; Amazonas, Jarlesson Gama; Alberto Brito Silva Junior, Carlos [Pos-Graduacao em Fisica, Universidade Federal do Para, 66075-110 Belem, Para (Brazil); Melo, Celso P. de [Departamento de Fisica, Universidade Federal de Pernambuco, 50670-020 Recife, Pernambuco (Brazil); Laks, Bernardo [Instituto de Fisica, UNICAMP, 13083-970 Campinas, Sao Paulo (Brazil); Nero, Jordan del [Departamento de Fisica, Universidade Federal do Para, 66075-110 Belem, Para (Brazil)], E-mail: jordan@ufpa.br

    2008-08-01

    In this work we have investigated the ground state and others eletronic properties of the biosensor 3-methyl pyrrole-4-carboxilic acid (MPC) oligomers and related compounds. We considered the systems described by a DFT/B3LYP/6-31G* type Hamiltonian and explored the effects due to the presence of conformational defects. Furthermore the excited states have been determined by a post Hartree-Fock CI methodology. The results revealed the existence of different electronic patterns for the MPC if compared to the ones existing for the oligopyrrole derivative systems. The response of one of investigated polymers (MPC) was found to be critically dependent on the radicals linked to the studied oligomer chain structure so that the electronic structure analyses should be easily improved by choosing a proper set of preparation parameters to design conducting polymers with desirable properties.

  6. Oligomer functionalized nanotubes and composites formed therewith

    Energy Technology Data Exchange (ETDEWEB)

    Zettl, Alexander K; Sainsbury, Toby; Frechet, Jean M.J.

    2014-03-18

    Disclosed herein is a sequential functionalization methodology for the covalent modification of nanotubes with between one and four repeat units of a polymer. Covalent attachment of oligomer units to the surface of nanotubes results in oligomer units forming an organic sheath around the nanotubes, polymer-functionalized-nanotubes (P-NTs). P-NTs possess chemical functionality identical to that of the functionalizing polymer, and thus provide nanoscale scaffolds which may be readily dispersed within a monomer solution and participate in the polymerization reaction to form a polymer-nanotube/polymer composite. Formation of polymer in the presence of P-NTs leads to a uniform dispersion of nanotubes within the polymer matrix, in contrast to aggregated masses of nanotubes in the case of pristine-NTs. The covalent attachment of oligomeric units to the surface of nanotubes represents the formation of a functional nanoscale building block which can be readily dispersed and integrated within the polymer to form a novel composite material.

  7. Ethynyl terminated ester oligomers and polymers therefrom

    Science.gov (United States)

    Hergenrother, Paul M. (Inventor); hesives and composite matrices. (Inventor)

    1987-01-01

    A new class of ethynyl-terminated oligomers and the process for preparing same are disclosed. Upon the application of heat, with or without a catalyst, the ethynyl groups react to provide crosslinking and chain extension to increase the polymer use temperature and improve the polymer solvent resistance. These improved polyesters are potentially useful in packaging, magnetic tapes, capacitors, industrial belting, protective coatings, structural adhesives and composite matrices.

  8. Inorganic nanocarriers for platinum drug delivery

    Directory of Open Access Journals (Sweden)

    Ping’an Ma

    2015-12-01

    Full Text Available Nowadays platinum drugs take up almost 50% of all the clinically used anticancer drugs. Besides cisplatin, novel platinum agents including sterically hindered platinum (II drugs, chemically reductive platinum (IV drugs, photosensitive platinum (IV drugs, and multinuclear platinum drugs have been developed recently, with a few entering clinic trials. Rapid development of nanobiotechnology makes targeted delivery of anticancer platinum agents to the tumor site possible, while simultaneously minimizing toxicity and maximizing the drug efficacy. Being versatile drug carriers to deliver platinum drugs, inorganic nanovehicles such as gold nanoparticles, iron oxide nanomaterials, carbon nanotubes, mesoporous nanosilica, metal-organic frameworks (MOFs, have been extensively studied over the past decades. In contrast to conventional polymeric and lipid nanoparticles, inorganic nanoparticles based drug carriers are peculiar as they have shown excellent theranostic effects, revealing themselves an indispensable part of future nanomedicine. Here, we will elaborate recent research advances on fabrication of inorganic nanoparticles for platinum drug delivery.

  9. Platinum availability for future automotive technologies.

    Science.gov (United States)

    Alonso, Elisa; Field, Frank R; Kirchain, Randolph E

    2012-12-04

    Platinum is an excellent catalyst, can be used at high temperatures, and is stable in many aggressive chemical environments. Consequently, platinum is used in many current industrial applications, notably automotive catalytic converters, and prospective vehicle fuel cells are expected to rely upon it. Between 2005 and 2010, the automotive industry used approximately 40% of mined platinum. Future automotive industry growth and automotive sales shifts toward new technologies could significantly alter platinum demand. The potential risks for decreased platinum availability are evaluated, using an analysis of platinum market characteristics that describes platinum's geophysical constraints, institutional efficiency, and dynamic responsiveness. Results show that platinum demand for an automotive fleet that meets 450 ppm greenhouse gas stabilization goals would require within 10% of historical growth rates of platinum supply before 2025. However, such a fleet, due largely to sales growth in fuel cell vehicles, will more strongly constrain platinum supply in the 2050 time period. While current platinum reserves are sufficient to satisfy this increased demand, decreasing platinum ore grade and continued concentration of platinum supply in a single geographic area are availability risk factors to platinum end-users.

  10. Liquid-phase benzene isopropylation using alumina solid lewis superacid-supported platinum catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Yamada, K.; Honda, K.; Kitahara, D.; Miyamoto, M.; Shiga, M.; Ayame, A. [Muroran Inst. of Tech., Hokkaido (Japan)

    2000-03-01

    Supporting platinum on alumina solid Lewis superacid (AmLSA; J. C. S., Chem. Commun., 645 (1989)) was prepared by using of the in situ CVD technique at 773 K with Ar{sup +}-sputtered platinum fine particles and dry chlorine, followed by reduction with hydrogen at 673 K. The AmLSA-supported platinum catalyst (Pt/AmLSA) was applied to isopropylation of benzene with propene in the hydrogen stream at ambient temperature, using a semibatch reactor. Products were mono-, di-, tri-, and tetra-isopropylbenzenes. Conversion of propene to propane was below 1 %, and a trace amount of cyclohexane from benzene was also observed. Deactivation of AmLSA due to strong adsorption of poly-substituted benzenes and/or propene oligomers was remarkably depressed by supporting platinum and supplying hydrogen into the propene stream. Consequently, the activity of Pt/AmLSA catalyst had increased almost 1.5 times that of AmLSA. At the same level of benzene conversion, the product distribution f isopropyl-substituted benzenes obtained on Pt/AmLSA was identical to that on AmLSA, and had shifted slightly into the mono-substituted benzene side compared with the result on AmLSA in the absence of hydrogen. In the isopropylation of benzene with 2-chloropropane, the results quite similar to those described above were obtained. From the above observations, synergetic effects of platinum supporting and hydrogen supplying were considered to be due to the presence of hydrogen atoms spilled over from the platinum surface to the strong Lewis acid sites. (author)

  11. Cross-reactivity of Halogenated Platinum Salts

    Science.gov (United States)

    Halogenated platinum (Pt) salts are well-known respiratory sensitizers associated with the development of asthma. People may be exposed to a variety of platinum compounds in different contexts (e.g. occupationally, automobile exhaust). Published reports suggest that sensitizati...

  12. Peptide oligomers for holographic data storage

    DEFF Research Database (Denmark)

    Berg, Rolf Henrik; Hvilsted, Søren; Ramanujam, P.S.

    1996-01-01

    SEVERAL classes of organic materials (such as photoanisotropic liquid-crystalline polymers(1-4) and photorefractive polymers(5-7)) are being investigated for the development of media for optical data storage. Here we describe a new family of organic materials-peptide oligomers containing azobenzene...... chromophores-which appear particularly promising for erasable holographic data storage applications. The rationale for our approach is to use the structural properties of peptide-like molecules to impose orientational order on the chromophores, and thereby optimize the optical properties of the resulting...

  13. Macrocyclic 2,7-Anthrylene Oligomers.

    Science.gov (United States)

    Yamamoto, Yuta; Wakamatsu, Kan; Iwanaga, Tetsuo; Sato, Hiroyasu; Toyota, Shinji

    2016-05-06

    A macrocyclic compound consisting of six 2,7-anthrylene units was successfully synthesized by Ni-mediated coupling of the corresponding dibromo precursor as a novel π-conjugated compound. This compound was sufficiently stable and soluble in organic solvents due to the presence of mesityl groups. X-ray analysis showed that the molecule had a nonplanar and hexagonal wheel-shaped framework of approximately S6 symmetry. The dynamic process between two S6 structures was observed by using the dynamic NMR technique, the barrier being 58 kJ mol(-1) . The spectroscopic properties of the hexamer were compared with those of analogous linear oligomers.

  14. Novel non-platinum metal catalyst material

    DEFF Research Database (Denmark)

    2014-01-01

    The present invention relates to a novel non-platinum metal catalyst material for use in low temperature fuel cells and electrolysers and to fuel cells and electrolysers comprising the novel non-platinum metal catalyst material. The present invention also relates to a novel method for synthesizing...... the novel non-platinum metal catalyst material....

  15. Coating Carbon Fibers With Platinum

    Science.gov (United States)

    Effinger, Michael R.; Duncan, Peter; Coupland, Duncan; Rigali, Mark J.

    2007-01-01

    A process for coating carbon fibers with platinum has been developed. The process may also be adaptable to coating carbon fibers with other noble and refractory metals, including rhenium and iridium. The coated carbon fibers would be used as ingredients of matrix/fiber composite materials that would resist oxidation at high temperatures. The metal coats would contribute to oxidation resistance by keeping atmospheric oxygen away from fibers when cracks form in the matrices. Other processes that have been used to coat carbon fibers with metals have significant disadvantages: Metal-vapor deposition processes yield coats that are nonuniform along both the lengths and the circumferences of the fibers. The electrical resistivities of carbon fibers are too high to be compatible with electrolytic processes. Metal/organic vapor deposition entails the use of expensive starting materials, it may be necessary to use a furnace, and the starting materials and/or materials generated in the process may be hazardous. The present process does not have these disadvantages. It yields uniform, nonporous coats and is relatively inexpensive. The process can be summarized as one of pretreatment followed by electroless deposition. The process consists of the following steps: The surfaces of the fiber are activated by deposition of palladium crystallites from a solution. The surface-activated fibers are immersed in a solution that contains platinum. A reducing agent is used to supply electrons to effect a chemical reduction in situ. The chemical reduction displaces the platinum from the solution. The displaced platinum becomes deposited on the fibers. Each platinum atom that has been deposited acts as a catalytic site for the deposition of another platinum atom. Hence, the deposition process can also be characterized as autocatalytic. The thickness of the deposited metal can be tailored via the duration of immersion and the chemical activity of the solution.

  16. Platinum Group Metals New Material

    Institute of Scientific and Technical Information of China (English)

    XIE Ming; ZHANG Jiankang; WANG Saibei; HU Jieqiong; LIU Manmen; CHEN Yongtai; ZHANG Jiming; YANG Youcai; YANG Yunfeng; ZHANG Guoquan

    2012-01-01

    Platinum group metals (PGM) include six elements,namely Pt,Pd,Rh,Ir,Os and Ru.PGM and their alloys are the important fundamental materials for modern industry and national defense construction,they have special physical and chemical properties,widely used in metallurgy,chemical,electric,electronic,information,energy,environmental protection,aviation,aerospace,navigation and other high technology industry.Platinum group metals and their alloys,which have good plasticity and processability,can be processed to electrical contact materials,resistance materials,solder,electronic paste,temperature-measurement materials,elastic materials,magnetic materials and high temperature structural materials.

  17. Cooperative Switching in Nanofibers of Azobenzene Oligomers

    Science.gov (United States)

    Weber, Christopher; Liebig, Tobias; Gensler, Manuel; Zykov, Anton; Pithan, Linus; Rabe, Jürgen P.; Hecht, Stefan; Bléger, David; Kowarik, Stefan

    2016-05-01

    Next-generation molecular devices and machines demand the integration of molecular switches into hierarchical assemblies to amplify the response of the system from the molecular level to the meso- or macro-scale. Here, we demonstrate that multi-azobenzene oligomers can assemble to form robust supramolecular nanofibers in which they can be switched repeatedly between the E- and Z-configuration. While in isolated oligomers the azobenzene units undergo reversible photoisomerization independently, in the nanofibers they are coupled via intermolecular interactions and switch cooperatively as evidenced by unusual thermal and kinetic behavior. We find that the photoisomerization rate from the Z-isomer to the E-isomer depends on the fraction of Z-azobenzene in the nanofibers, and is increased by more than a factor of 4 in Z-rich fibers when compared to E-rich fibers. This demonstrates the great potential of coupling individual photochromic units for increasing their quantum efficiency in the solid state with potential relevance for actuation and sensing.

  18. Highly Stable Foams from Block Oligomers Synthesized by Enzymatic Reactions

    NARCIS (Netherlands)

    Sagis, L.M.C.; Boeriu, C.G.; Frissen, A.E.; Schols, H.A.; Wierenga, P.A.

    2008-01-01

    We have synthesized a new amphiphilic block oligomer by the enzymatic linking of a fatty acid (lauric acid) to a fructan oligomer (inulin) and tested the functionality of this carbohydrate derivative in foam stabilization. The structure of the modified oligosaccharide was found to be (Fruc)n(Glc)1CO

  19. The Challenge of Synthesizing Oligomers for Molecular Wires

    DEFF Research Database (Denmark)

    Søndergaard, Roar; Krebs, Frederik C

    2011-01-01

    Controlling the size of the oligomer and introducing functional groups at the ends of the oligomer that allow it to react with separate electrodes are critical issues when preparing materials for molecular wires. We demonstrate a general synthetic approach to oligophenylenevinylene (OPV) derivative...

  20. Statistical mechanics of thermal denaturation of DNA oligomers

    Indian Academy of Sciences (India)

    Navin Singh; Yashwant Singh

    2003-08-01

    Double stranded DNA chain is known to have non-trivial elasticity. We study the effect of this elasticity on the denaturation profile of DNA oligomer by constraining one base pair at one end of the oligomer to remain in unstretched (or intact) state. The effect of this constraint on the denaturation profile of the oligomer has been calculated using the Peyrard–Bishop Hamiltonian. The denaturation profile is found to be very different from the free (i.e. without the constraint) oligomer. We have also examined how this constraint affects the denaturation profile of the oligomer having a segment of defect sites located at different parts of the chain.

  1. Origin and diversification of a metabolic cycle in oligomer world.

    Science.gov (United States)

    Nishio, Tomoaki; Narikiyo, Osamu

    2013-02-01

    Based on the oligomer-world hypothesis we propose an abstract model where the molecular recognition among oligomers is described in the shape space. The origin of life in the oligomer world is regarded as the establishment of a metabolic cycle in a primitive cell. The cycle is sustained by the molecular recognition. If an original cell acquires the ability of the replication of oligomers, the relationship among oligomers changes due to the poor fidelity of the replication. This change leads to the diversification of metabolic cycles. The selection among diverse cycles is the basis of the evolution. The evolvability is one of the essential characters of life. We demonstrate the origin and diversification of the metabolic cycle by the computer simulation of our model. Such a simulation is expected to be the simplified demonstration of what actually occurred in the primordial soup. Our model describes an analog era preceding the digital era based on the genetic code.

  2. Atomic View of a Toxic Amyloid Small Oligomer

    Energy Technology Data Exchange (ETDEWEB)

    Laganowsky, Arthur; Liu, Cong; Sawaya, Michael R.; Whitelegge, Julian P.; Park, Jiyong; Zhao, Minglei; Pensalfini, Anna; Soriaga, Angela B.; Landau, Meytal; Teng, Poh K.; Cascio, Duilio; Glabe, Charles; Eisenberg, David (UCI); (UCLA)

    2012-04-30

    Amyloid diseases, including Alzheimer's, Parkinson's, and the prion conditions, are each associated with a particular protein in fibrillar form. These amyloid fibrils were long suspected to be the disease agents, but evidence suggests that smaller, often transient and polymorphic oligomers are the toxic entities. Here, we identify a segment of the amyloid-forming protein {alpha}{beta} crystallin, which forms an oligomeric complex exhibiting properties of other amyloid oligomers: {beta}-sheet-rich structure, cytotoxicity, and recognition by an oligomer-specific antibody. The x-ray-derived atomic structure of the oligomer reveals a cylindrical barrel, formed from six antiparallel protein strands, that we term a cylindrin. The cylindrin structure is compatible with a sequence segment from the {beta}-amyloid protein of Alzheimer's disease. Cylindrins offer models for the hitherto elusive structures of amyloid oligomers.

  3. Properties of Surface Cyclic Oligomers Present on Polyester Fiber

    Institute of Scientific and Technical Information of China (English)

    郑敏; 宋心远

    2003-01-01

    The effects of different treatments, such as dry heat,wet heat, solvent vapor and ultrasonic, on properties of the cyclic oligomers on the surface of polyester fiber are studied. The components of surface oligomers are analyzed through Thin-Layer Chromatograph. The result shows that: all of the treatments, especially solvent vapor treatment, can significantly increase the content of surface cyclic oligomers. The content of cyclic trimer is increased more considerably than other oligomers. Moreover, the morphology and the distribution of surface cyclic oligomers are also different from different treatments: Dry heat and wet heat cause larger polygonal solids distributed evenly on the surface of fiber; solvent vapor makes fiber surface exhibit irregular rodlike crystal shapes randomly; ultrasonic treatment induces some obscure and smaller deposits on the surface of fiber.

  4. Nanocarriers for delivery of platinum anticancer drugs☆

    Science.gov (United States)

    Oberoi, Hardeep S.; Nukolova, Natalia V.; Kabanov, Alexander V.; Bronich, Tatiana K.

    2014-01-01

    Platinum based anticancer drugs have revolutionized cancer chemotherapy, and continue to be in widespread clinical use especially for management of tumors of the ovary, testes, and the head and neck. However, several dose limiting toxicities associated with platinum drug use, partial anti-tumor response in most patients, development of drug resistance, tumor relapse, and many other challenges have severely limited the patient quality of life. These limitations have motivated an extensive research effort towards development of new strategies for improving platinum therapy. Nanocarrier-based delivery of platinum compounds is one such area of intense research effort beginning to provide encouraging preclinical and clinical results and may allow the development of the next generation of platinum chemotherapy. This review highlights current understanding on the pharmacology and limitations of platinum compounds in clinical use, and provides a comprehensive analysis of various platinum–polymer complexes, micelles, dendrimers, liposomes and other nanoparticles currently under investigation for delivery of platinum drugs. PMID:24113520

  5. [Formylation of porphyrin platinum complexes].

    Science.gov (United States)

    Rumiantseva, V D; Konovalenko, L I; Nagaeva, E A; Mironov, A F

    2005-01-01

    The formylation reaction of platinum complexes of beta-unsubstituted porphyrins was studied. The interaction of deuteroporphyrin IX derivatives with the Vilsmeyer reagent led to the selective formylation of their macrocycles in the beta position. The resulting formyl derivatives of the porphyrins are of interest for fluorescent immunoassay.

  6. Phosphorescent PtAu2 Complexes with Differently Positioned Carbazole-Acetylide Ligands for Solution-Processed Organic Light-Emitting Diodes with External Quantum Efficiencies of over 20.

    Science.gov (United States)

    Xu, Liang-Jin; Zeng, Xian-Chong; Wang, Jin-Yun; Zhang, Li-Yi; Chi, Yun; Chen, Zhong-Ning

    2016-08-10

    The utilization of phosphorescent metal cluster complexes as new types of emitting materials in organic light-emitting diodes (OLEDs) is becoming an alternative and viable approach for achieving high-efficiency electroluminescence. We report herein the design of cationic PtAu2 cluster complexes with differently positioned 9-phenylcarbazole-acetylides to serve as phosphorescent emitters in OLEDs. The rigid structures of PtAu2 complexes cause intense phosphorescence with quantum yields of over 85%, which originates from (3)[π(phenylcarbazole-acetylide) → π*(dpmp)] ligand-to-ligand and (3)[π(phenylcarbazole-acetylide) → p/s(PtAu2)] ligand-to-metal charge-transfer triplet excited states. When 8 wt % PtAu2 is doped to blended host materials of TCTA and OXD-7 (2:1 weight ratio) as light-emitting layers, solution-processed OLEDs give a current efficiency of 78.2 cd A(-1) and an external quantum efficiency (EQE) of 21.5% at a practical luminance of 1029 cd m(-2) with a slow efficiency roll-off upon increasing luminance. This represents the best device performance and the highest efficiency recorded at practical luminance for solution-processed OLEDs.

  7. Design, synthesis, and characterization of biomimetic oligomers

    DEFF Research Database (Denmark)

    Laursen, Jonas Striegler

    . Using NMR spectroscopy, X-ray crystallographic analysis, and density functional theory (DFT) calculations, we found evidence for the presence of thioamide–aromatic interactions through Csp2-H···Samide hydrogen bonding. Based on these studies we designed a ß-peptoid oligomer from residues prone to fit......Peptides and proteins made from the 20 canonical amino acids are responsible for many processes necessary for organisms to function. Beside their composition, proteins obtain their activity and unique selectivity through an ability to display functionalities accurately in the three......, for their ability to mimic the structural elements seen in proteins. Two prominent peptidomimetics are ß-peptides and a-peptoids (N-alkylglycines), which have been shown to fold into helical and sheet-like arrangements. To expand the chemical space available for mimicking protein structure their features have been...

  8. Toxic species in amyloid disorders: Oligomers or mature fibrils

    Directory of Open Access Journals (Sweden)

    Meenakshi Verma

    2015-01-01

    Full Text Available Protein aggregation is the hallmark of several neurodegenerative disorders. These protein aggregation (fibrillization disorders are also known as amyloid disorders. The mechanism of protein aggregation involves conformation switch of the native protein, oligomer formation leading to protofibrils and finally mature fibrils. Mature fibrils have long been considered as the cause of disease pathogenesis; however, recent evidences suggest oligomeric intermediates formed during fibrillization to be toxic. In this review, we have tried to address the ongoing debate for these toxic amyloid species. We did an extensive literature search and collated information from Pubmed (http://www.ncbi.nlm.nih.gov and Google search using various permutations and combinations of the following keywords: Neurodegeneration, amyloid disorders, protein aggregation, fibrils, oligomers, toxicity, Alzheimer′s Disease, Parkinson′s Disease. We describe different instances showing the toxicity of mature fibrils as well as oligomers in Alzheimer′s Disease and Parkinson′s Disease. Distinct structural framework and morphology of amyloid oligomers suggests difference in toxic effect between oligomers and fibrils. We highlight the difference in structure and proposed toxicity pathways for fibrils and oligomers. We also highlight the evidences indicating that intermediary oligomeric species can act as potential diagnostic biomarker. Since the formation of these toxic species follow a common structural switch among various amyloid disorders, the protein aggregation events can be targeted for developing broad-range therapeutics. The therapeutic trials based on the understanding of different protein conformers (monomers, oligomers, protofibrils and fibrils in amyloid cascade are also described.

  9. Surface characterization of platinum electrodes.

    Science.gov (United States)

    Solla-Gullón, José; Rodríguez, Paramaconi; Herrero, Enrique; Aldaz, Antonio; Feliu, Juan M

    2008-03-14

    The quantitative analysis of the different surface sites on platinum samples is attempted from pure voltammetric data. This analysis requires independent knowledge of the fraction of two-dimensional (111) and (100) domains. Specific site-probe reactions are employed to achieve this goal. Irreversibly-adsorbed bismuth and tellurium have been revealed to be sensitive to the presence of (111) terrace domains of different width whereas almost all sites involved in (100) ordered domains have been characterized through germanium adatoms. The experimental protocol follows that used with well-defined single-crystal electrodes and, therefore, requires careful control of the surface cleanliness. Platinum basal planes and their vicinal stepped surfaces have been employed to obtain calibration plots between the charge density measured under the adatom redox peak, specific for the type of surface site, and the corresponding terrace size. The evaluation of the (100) bidimensional domains can also be achieved using the voltammetric profiles, once the fraction of (111) ordered domains present in the polyoriented platinum has been determined and their featureless contribution has been subtracted from the whole voltammetric response. Using that curve, it is possible to perform a deconvolution of the adsorption states of the polycrystalline sample different from those related to (111) domains. The fraction of (100)-related states in the deconvoluted voltammogram can then be compared to that expected from the independent estimation coming from the charge involved in the redox process undergone by the irreversibly-adsorbed germanium and thus check the result of the deconvolution. The information about the surface-site distribution can also be applied to analyze the voltammetric profile of nanocrystalline platinum electrodes.

  10. Request for Correction 11001 Toxicological Review of Halogenated Platinum Salts and Platinum Compounds

    Science.gov (United States)

    Request for Correction by the International Platinum Group Metals Association seeking the correction of information disseminated in the draft EPA document Toxicological Review of Halogenated Platinum Salts and Platinum Compounds: In Support of Summary Information on the Integrated Risk Information System (IRIS).

  11. The Challenge of Synthesizing Oligomers for Molecular Wires

    Directory of Open Access Journals (Sweden)

    Frederik C. Krebs

    2011-02-01

    Full Text Available Controlling the size of the oligomer and introducing functional groups at the ends of the oligomer that allow it to react with separate electrodes are critical issues when preparing materials for molecular wires. We demonstrate a general synthetic approach to oligophenylenevinylene (OPV derivative molecules with a molecular length up to 9–10 nm which allow for the introduction of aromatic thioacetate functionality in fully conjugated oligomer systems. Oligomers containing 3–15 phenyl units were synthesized by step wise Horner-Wadsworth-Emmons (HWE reactions of a bifunctional OPV-monomer, which demonstrated good control of the size of the OPVs. Workup after each reaction step ensures a high purity of the final products. End group functionalization was introduced as a last step.

  12. Phosphoric acid fuel cell platinum use study

    Science.gov (United States)

    Lundblad, H. L.

    1983-01-01

    The U.S. Department of Energy is promoting the private development of phosphoric acid fuel cell (PAFC) power plants for terrestrial applications. Current PAFC technology utilizes platinum as catalysts in the power electrodes. The possible repercussions that the platinum demand of PAFC power plant commercialization will have on the worldwide supply and price of platinum from the outset of commercialization to the year 2000 are investigated. The platinum demand of PAFC commercialization is estimated by developing forecasts of platinum use per unit of generating capacity and penetration of PAFC power plants into the electric generation market. The ability of the platinum supply market to meet future demands is gauged by assessing the size of platinum reserves and the capability of platinum producers to extract, refine and market sufficient quantities of these reserves. The size and timing of platinum price shifts induced by the added demand of PAFC commercialization are investigated by several analytical methods. Estimates of these price shifts are then used to calculate the subsequent effects on PAFC power plant capital costs.

  13. Synthesis and Characterization of Thermosetting Polyimide Oligomers for Microelectronics Packaging

    OpenAIRE

    2000-01-01

    A series of reactive phenylethynyl endcapped imide oligomers has been prepared in either fully cyclized or amic acid precursor form. Soluble oligomers have been synthesized with controlled molecular weights ranging from 2- to 12 Kg/mol. Molecular weight characterization was performed using SEC (size exclusion chromatography) and 13C-NMR, revealing good agreement between the theoretical and experimental (Mn) values. Crosslinked polyimides were obtained by solution or melt processing the oli...

  14. Subdiffusion of proteins and oligomers on membranes

    Science.gov (United States)

    Lepzelter, David; Zaman, Muhammad

    2012-11-01

    Diffusion of proteins on lipid membranes plays a central role in cell signaling processes. From a mathematical perspective, most membrane diffusion processes are explained by the Saffman-Delbrück theory. However, recent studies have suggested a major limitation in the theoretical framework, the lack of complexity in the modeled lipid membrane. Lipid domains (sometimes termed membrane rafts) are known to slow protein diffusion, but there have been no quantitative theoretical examinations of how much diffusion is slowed in a general case. We provide an overall theoretical framework for confined-domain ("corralled") diffusion. Further, there have been multiple apparent contradictions of the basic conclusions of Saffman and Delbrück, each involving cases in which a single protein or an oligomer has multiple transmembrane regions passing through a lipid phase barrier. We present a set of corrections to the Saffman-Delbrück theory to account for these experimental observations. Our corrections are able to provide a quantitative explanation of numerous cellular signaling processes that have been considered beyond the scope of the Saffman-Delbrück theory, and may be extendable to other forms of subdiffusion.

  15. Density functional theory study of neutral and oxidized thiophene oligomers

    Energy Technology Data Exchange (ETDEWEB)

    Dai, Yafei; Wei, Chengwei [School of Physics Science and Technology and Jiangsu Key Laboratory for NSLSCS, Nanjing Normal University, Nanjing 210023 (China); Blaisten-Barojas, Estela, E-mail: blaisten@gmu.edu [Computational Materials Science Center and School of Physics, Astronomy and Computational Sciences, George Mason University, Fairfax, Virginia 22030 (United States)

    2013-11-14

    The effect of oxidation on the energetics and structure of thiophene (Th) oligomers is studied with density functional theory at the B3PW91/6-311++G(d,p) level. Neutral n-Th oligomers (2 < n < 13) are gently curved planar chains. Ionization potential and electron affinity results show that n-Th oligomers are easier to be oxidized as their chain length increases. Oxidation states +2, +4, +6, and +8 are energetically stable in 12-Th. Upon oxidation the conjugated backbone of 12-Th switches from extended benzenoid phase to quinoid phase localized on groups of monomers regularly spaced along the chain. Oxidized states +2, +4, +6, and +8 of 12-Th display two +1e localized at the ends of their chains only because of the finite size of the chains. In 12-Th this end-effect extends over the two terminal monomers forming a positive-negative charge duet. This peculiar charge localization makes n-Th oligomers different from other conducting polymers with similar structure, such as polypyrrole. The spectrum of single-electron molecular states of oxidized 12-Th displays two localized single-electron states in the HOMO-LUMO energy gap per +2 oxidation state. Oligothiophene 12-Th doped with F atoms at 1:2 concentration presents a charge transfer of 3.4 e from oligomer to dopants that increases to 4.8 e in the presence of solvent. The charge distribution in these F-doped oligomers is similar to the +4 oxidation state of 12-Th. It is predicted that dopants produce an enhanced charge transfer localized in the proximity of their locations enhancing the formation of bipolarons in the central part of the oligomer chain.

  16. [Platinum compounds: metabolism, toxicity and supportive strategies].

    Science.gov (United States)

    Lipp, H P; Hartmann, J T

    2005-02-09

    Although the leading platinum compounds, cisplatin, carboplatin, and oxaliplatin, share some structural similarities, there are marked differences between them in therapeutic uses, pharmacokinetics, and adverse effects profiles. Compared with cisplatin, carboplatin has inferior efficacy in germ-cell tumors, head and neck cancers, and bladder and esophageal carcinomas, whereas the two drugs appear to have comparable efficacy in ovarian cancer, extensive small-cell lung cancers (SCLC), and advanced non-small-cell lung cancers (NSCLC). Oxaliplatin belongs to the group of diaminocyclohexane (DACH) platinum compounds. It is the first platinum-based drug that has marked efficacy in colorectal cancer when given in combination with 5-fluorouracil and folinic acid. Nedaplatin has been registered in Japan, whereas other derivatives, like JM216 (which is the only orally available platinum derivative), ZD0473, BBR3464, and SPI-77 (a liposomal formulation of cisplatin), are still under investigation. The adverse effects of platinum compounds are reviewed together with possible prevention strategies.

  17. Amyloid oligomer conformation in a group of natively folded proteins.

    Directory of Open Access Journals (Sweden)

    Yuji Yoshiike

    Full Text Available Recent in vitro and in vivo studies suggest that destabilized proteins with defective folding induce aggregation and toxicity in protein-misfolding diseases. One such unstable protein state is called amyloid oligomer, a precursor of fully aggregated forms of amyloid. Detection of various amyloid oligomers with A11, an anti-amyloid oligomer conformation-specific antibody, revealed that the amyloid oligomer represents a generic conformation and suggested that toxic beta-aggregation processes possess a common mechanism. By using A11 antibody as a probe in combination with mass spectrometric analysis, we identified GroEL in bacterial lysates as a protein that may potentially have an amyloid oligomer conformation. Surprisingly, A11 reacted not only with purified GroEL but also with several purified heat shock proteins, including human Hsp27, 40, 70, 90; yeast Hsp104; and bovine Hsc70. The native folds of A11-reactive proteins in purified samples were characterized by their anti-beta-aggregation activity in terms of both functionality and in contrast to the beta-aggregation promoting activity of misfolded pathogenic amyloid oligomers. The conformation-dependent binding of A11 with natively folded Hsp27 was supported by the concurrent loss of A11 reactivity and anti-beta-aggregation activity of heat-treated Hsp27 samples. Moreover, we observed consistent anti-beta-aggregation activity not only by chaperones containing an amyloid oligomer conformation but also by several A11-immunoreactive non-chaperone proteins. From these results, we suggest that the amyloid oligomer conformation is present in a group of natively folded proteins. The inhibitory effects of A11 antibody on both GroEL/ES-assisted luciferase refolding and Hsp70-mediated decelerated nucleation of Abeta aggregation suggested that the A11-binding sites on these chaperones might be functionally important. Finally, we employed a computational approach to uncover possible A11-binding sites on

  18. Effect of procyandin oligomers on oxidative hair damage.

    Science.gov (United States)

    Kim, Moon-Moo

    2011-02-01

    Procyanidins are a subclass of flavonoids and consist of oligomers of catechin that naturally occur in plants and are known to exert many physiological effects, including antioxidant, anti-inflammatory, and enzyme inhibitory effects. These possible inhibitory effects of the procyanidins were known to involve metal chelation, radical trapping, or direct enzyme binding. The purpose of this study was to investigate the effect of procyandin oligomers on hair damage induced by oxidative stress. In this study, several methods for evaluating oxidative damage in bleached hair are utilized to analyze the protective effect of procyandin oligomers against oxidative hair damage. It was observed that procyanidin oligomers strongly bind to keratin in hair and inhibit the breakdown of hair caused by oxidative damage in an analysis of hair using electrophoresis, transmission electron microscope, and fluorescence dye. These results confirm that procyanidin oligomers can be applicable as a potential candidate to the development of hair care with protective effect on hair damage. © 2011 John Wiley & Sons A/S.

  19. Preparation and applications of a variety of fluoroalkyl end-capped oligomer/hydroxyapatite composites.

    Science.gov (United States)

    Takashima, Hiroki; Iwaki, Ken-Ichi; Furukuwa, Rika; Takishita, Katsuhisa; Sawada, Hideo

    2008-04-15

    A variety of fluoroalkyl end-capped oligomers were applied to the preparation of fluorinated oligomer/hydroxyapatite (HAp) composites (particle size: 38-356 nm), which exhibit a good dispersibility in water and traditional organic solvents. These fluoroalkyl end-capped oligomer/HAp composites were easily prepared by the reactions of disodium hydrogen phosphate and calcium chloride in the presence of self-assembled molecular aggregates formed by fluoroalkyl end-capped oligomers in aqueous solutions. In these fluorinated HAp composites thus obtained, fluoroalkyl end-capped acrylic acid oligomers and 2-methacryloyloxyethanesulfonic acid oligomer/HAp nanocomposites afforded transparent colorless solutions toward water; however, fluoroalkyl end-capped N,N-dimethylacrylamide oligomer and acryloylmorpholine oligomer were found to afford transparent colorless solutions with trace amounts of white-colored HAp precipitants under similar conditions. HAp could be encapsulated more effectively into fluorinated 2-methacryloyloxyethanesulfonic acid oligomeric aggregate cores to afford colloidal stable fluorinated oligomer/HAp composites, compared to that of fluorinated acrylic acid oligomers. These fluorinated oligomer/HAp composites were applied to the surface modification of glass and PVA to exhibit a good oleophobicity imparted by fluorine. HAp formation was newly observed on the modified polyethylene terephthalate film surface treated with fluorinated 2-methacryloyloxyethanesulfonic acid oligomers and acrylic acid oligomer/HAp composites by soaking these films into the simulated body fluid.

  20. Characterization of electrochemically modified polycrystalline platinum surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Krebs, L.C.; Ishida, Takanobu.

    1991-12-01

    The characterization of electrochemically modified polycrystalline platinum surfaces has been accomplished through the use of four major electrochemical techniques. These were chronoamperometry, chronopotentiommetry, cyclic voltammetry, and linear sweep voltammetry. A systematic study on the under-potential deposition of several transition metals has been performed. The most interesting of these were: Ag, Cu, Cd, and Pb. It was determined, by subjecting the platinum electrode surface to a single potential scan between {minus}0.24 and +1.25 V{sub SCE} while stirring the solution, that the electrocatalytic activity would be regenerated. As a consequence of this study, a much simpler method for producing ultra high purity water from acidic permanganate has been developed. This method results in water that surpasses the water produced by pyrocatalytic distillation. It has also been seen that the wettability of polycrystalline platinum surfaces is greatly dependent on the quantity of oxide present. Oxide-free platinum is hydrophobic and gives a contact angle in the range of 55 to 62 degrees. We have also modified polycrystalline platinum surface with the electrically conducting polymer poly-{rho}-phenylene. This polymer is very stable in dilute sulfuric acid solutions, even under applied oxidative potentials. It is also highly resistant to electrochemical hydrogenation. The wettability of the polymer modified platinum surface is severely dependent on the choice of supporting electrolyte chosen for the electrochemical polymerization. Tetraethylammonium tetrafluoroborate produces a film that is as hydrophobic as Teflon, whereas tetraethylammonium perchlorate produces a film that is more hydrophilic than oxide-free platinum.

  1. Electronic coherence dynamics in trans-polyacetylene oligomers

    CERN Document Server

    Franco, Ignacio

    2011-01-01

    Electronic decoherence processes in trans-polyacetylene oligomers are considered by explicitly computing the time dependent molecular polarization from the coupled dynamics of electronic and vibrational degrees of freedom in a mean-field mixed quantum-classical approximation. The oligomers are described by the SSH Hamiltonian and the effect of decoherence is incorporated by propagating an ensemble of quantum-classical trajectories with initial conditions obtained by sampling the Wigner distribution of the nuclear degrees of freedom. The decoherence for superpositions between the ground and excited and between pairs of excited states is considered for chains of different length, and the dynamics is discussed in terms of the nuclear overlap function that appears in the off-diagonal elements of the electronic reduced density matrix. For long oligomers the loss of coherence occurs in tens of femtoseconds. This timescale is determined by the initial decay of the nuclear overlap and by the decay of population into ...

  2. A Brief Review of Chelators for Radiolabeling Oligomers

    Directory of Open Access Journals (Sweden)

    Yuxia Liu

    2010-05-01

    Full Text Available The chemical modification of oligomers such as DNA, PNA, MORF, LNA to attach radionuclides for nuclear imaging and radiotherapy applications has become a field rich in innovation as older methods are improved and new methods are introduced. This review intends to provide a brief overview of several chelators currently in use for the labeling of oligomers with metallic radionuclides such as 99mTc, 111In and 188Re. While DNA and its analogs have been radiolabeled with important radionuclides of nonmetals such as 32P, 35S, 14C, 18F and 125I, the labeling methods for these isotopes involve covalent chemistry that is quite distinct from the coordinate-covalent chelation chemistry described herein. In this review, we provide a summary of the several chelators that have been covalently conjugated to oligomers for the purpose of radiolabeling with metallic radionuclides by chelation and including details on the conjugation, the choice of radionuclides and labeling methods.

  3. Oligomer formation within secondary organic aerosol: equilibrium and dynamic considerations

    Directory of Open Access Journals (Sweden)

    E. R. Trump

    2013-09-01

    Full Text Available We present a model based on the volatility basis set to consider the potential influence of oligomer content on volatility-driven SOA yields. The implications for aerosol evaporation studies, including dilution, chamber thermo-equilibration, and thermodenuder studies are also considered. A simplified description of oligomer formation reproduces essentially all of the broad classes of equilibrium and dynamical observations related to SOA formation and evaporation: significant oligomer content may be consistent with mass yields that increase with organic aerosol mass concentration; reversible oligomerization can explain the hysteresis between the rate of SOA formation and its evaporation rate upon dilution; and the model is consistent with both chamber thermo-equilibration studies and thermodenuder studies of SOA evaporation.

  4. Resveratrol Oligomers for the Prevention and Treatment of Cancers

    Directory of Open Access Journals (Sweden)

    You-Qiu Xue

    2014-01-01

    Full Text Available Resveratrol (3,4′,5-trihydroxystilbene is a naturally derived phytoalexin stilbene isolated from grapes and other plants, playing an important role in human health and is well known for its extensive bioactivities, such as antioxidation, anti-inflammatory, anticancer. In addition to resveratrol, scientists also pay attention to resveratrol oligomers, derivatives of resveratrol, which are characterized by the polymerization of two to eight, or even more resveratrol units, and are the largest group of oligomeric stilbenes. Resveratrol oligomers have multiple beneficial properties, of which some are superior in activity, stability, and selectivity compared with resveratrol. The complicated structures and diverse biological activities are of significant interest for drug research and development and may provide promising prospects as cancer preventive and therapeutical agents. This review presents an overview on preventive or anticancer properties of resveratrol oligomers.

  5. Room temperature synthesis of colloidal platinum nanoparticles

    Indian Academy of Sciences (India)

    G Sarala Devi; V J Rao

    2000-12-01

    Efficient preparation of stable dispersions of platinum nanoparticles from platinous chloride (K2PtCl4) was achieved by simultaneous addition of capping polymer material. The size of platinum nanoparticles was controlled by changing the ratio of concentration of capping polymer material to the concentration of platinum cation used. The morphology of colloidal particles were studied by means of UV-visible spectrophotometry and transmission electron microscopy (TEM). Particle size increased with low reagent concentration. The change in absorption spectra with the particle size was observed, i.e. blue shift attributed to decrease in particle size.

  6. Stabilizing platinum in phosphoric acid fuel cells

    Science.gov (United States)

    Remick, R. J.

    1981-10-01

    A carbon substrate for use in fabricating phosphoric acid fuel cell cathodes was modified by catalytic oxidation to stabilize the platinum catalyst by retarding the sintering of small platinum crystallites. Results of 100-hour operational tests confirmed that the rate of platinum surface area loss observed on catalytically oxidized supports was less than that observed with unmodified supports of the same starting material. Fuel cell electrodes fabricated from Vulcan XC-72R, which was modified by catalytic in a nitric oxide atmosphere, produced low platium sintering rates and high activity for the reduction of oxygen in the phosphoric acid environment.

  7. Antitumor effect of arabinogalactan and platinum complex.

    Science.gov (United States)

    Starkov, A K; Zamay, T N; Savchenko, A A; Ingevatkin, E V; Titova, N M; Kolovskaya, O S; Luzan, N A; Silkin, P P; Kuznetsova, S A

    2016-03-01

    The article presents the results of investigation of antitumor properties of platinum-arabinogalactan complex. We showed the ability of the complex to inhibit the growth of Ehrlich ascites tumor cells. It is found that the distribution of the platinum-arabinogalactan complex is not specific only for tumor cells in mice. The complex was found in all tissues and organs examined (ascites cells, embryonic cells, kidney, and liver). The mechanism of action of the arabinogalactan-platinum complex may be similar to cisplatin as the complex is able to accumulate in tumor cells.

  8. Mechanism of Platinum Derivatives Induced Kidney Injury

    Directory of Open Access Journals (Sweden)

    Feifei YAN

    2015-09-01

    Full Text Available Platinum derivatives are the most widely used chemotherapeutic agents to treat solid tumors including ovarian, head and neck, and testicular germ cell tumors, lung cancer, and colorectal cancer. Two major problems exist, however, in the clinic use of platinum derivatives. One is the development of tumor resistance to the drug during therapy, leading to treatment failure. The other is the drug’s toxicity such as the cisplatin’s nephrotoxicity, which limits the dose that can be administered. This paper describes the mechanism of platinum derivatives induced kidney injury.

  9. Size-dependent neurotoxicity of β-amyloid oligomers

    OpenAIRE

    Cizas, Paulius; Budvytyte, Rima; Morkuniene, Ramune; Moldovan, Radu; Broccio, Matteo; Lösche, Mathias; Niaura, Gediminas; Valincius, Gintaras; Borutaite, Vilmante

    2010-01-01

    The link between the size of soluble amyloid β (Aβ) oligomers and their toxicity to rat cerebellar granule cells (CGC) was investigated. Variation in conditions during in vitro oligomerization of Aβ1-42 resulted in peptide assemblies with different particle size as measured by atomic force microscopy and confirmed by the dynamic light scattering and fluorescence correlation spectroscopy. Small oligomers of Aβ1-42 with a mean particle z-height of 1-2 nm exhibited propensity to bind to the phos...

  10. Gas chromatographic retention characteristics of different polysiloxane oligomers

    Energy Technology Data Exchange (ETDEWEB)

    Van Lenten, F. J.; Conaway, J. E.; Rogers, L. B.

    1975-01-01

    The effects on the Kovats and McReynolds indices for a modified set of Rohrschneider solutes have been examined using two different batches of a commercial polysiloxane stationary phase, Dow-Corning DC-710, and five pure oligomers isolated from the mixture. The significant differences that were found between batches appear to be due primarily to changes in the percentage of one oligomer, the cyclic pentamer. This finding emphasizes the desirability of using a pure stationary phase as well as carefully specifying the column temperature in order to improve intra- and inter- laboratory comparisons of retention indices.

  11. Oligomer Molecules for Efficient Organic Photovoltaics.

    Science.gov (United States)

    Lin, Yuze; Zhan, Xiaowei

    2016-02-16

    Solar cells, a renewable, clean energy technology that efficiently converts sunlight into electricity, are a promising long-term solution for energy and environmental problems caused by a mass of production and the use of fossil fuels. Solution-processed organic solar cells (OSCs) have attracted much attention in the past few years because of several advantages, including easy fabrication, low cost, lightweight, and flexibility. Now, OSCs exhibit power conversion efficiencies (PCEs) of over 10%. In the early stage of OSCs, vapor-deposited organic dye materials were first used in bilayer heterojunction devices in the 1980s, and then, solution-processed polymers were introduced in bulk heterojunction (BHJ) devices. Relative to polymers, vapor-deposited small molecules offer potential advantages, such as a defined molecular structure, definite molecular weight, easy purification, mass-scale production, and good batch-to-batch reproducibility. However, the limited solubility and high crystallinity of vapor-deposited small molecules are unfavorable for use in solution-processed BHJ OSCs. Conversely, polymers have good solution-processing and film-forming properties and are easily processed into flexible devices, whereas their polydispersity of molecular weights and difficulty in purification results in batch to batch variation, which may hamper performance reproducibility and commercialization. Oligomer molecules (OMs) are monodisperse big molecules with intermediate molecular weights (generally in the thousands), and their sizes are between those of small molecules (generally with molecular weights 10000). OMs not only overcome shortcomings of both vapor-deposited small molecules and solution-processed polymers, but also combine their advantages, such as defined molecular structure, definite molecular weight, easy purification, mass-scale production, good batch-to-batch reproducibility, good solution processability, and film-forming properties. Therefore, OMs are a

  12. Platinum-Resistor Differential Temperature Sensor

    Science.gov (United States)

    Kolbly, R. B.; Britcliffe, M. J.

    1985-01-01

    Platinum resistance elements used in bridge circuit for measuring temperature difference between two flowing liquids. Temperature errors with circuit are less than 0.01 degrees C over range of 100 degrees C.

  13. Fate of platinum metals in the environment.

    Science.gov (United States)

    Pawlak, Justyna; Łodyga-Chruścińska, Elżbieta; Chrustowicz, Jakub

    2014-07-01

    For many years now automotive exhaust catalysts have been used to reduce the significant amounts of harmful chemical substances generated by car engines, such as carbon monoxide, nitrogen oxides, and aromatic hydrocarbons. Although they considerably decrease environmental contamination with the above-mentioned compounds, it is known that catalysts contribute to the environmental load of platinum metals (essential components of catalysts), which are released with exhaust fumes. Contamination with platinum metals stems mainly from automotive exhaust converters, but other major sources also exist. Since platinum group elements (PGEs): platinum (Pt), palladium (Pd), rhodium (Rh), ruthenium (Ru) and iridium (Ir) seem to spread in the environment and accumulate in living organisms, they may pose a threat to animals and humans. This paper discusses the modes and forms of PGE emission as well as their impact on the environment and living organisms.

  14. VB Platinum Tile & Carpet, Inc. Information Sheet

    Science.gov (United States)

    VB Platinum Tile & Carpet, Inc. (the Company) is located in Bristow, Virginia. The settlement involves renovation activities conducted at a property constructed prior to 1978, located in Washington, DC.

  15. Stabilizing platinum in phosphoric acid fuel cells

    Science.gov (United States)

    Remick, R. J.

    1982-01-01

    Platinum sintering on phosphoric acid fuel cell cathodes is discussed. The cathode of the phosphoric acid fuel cell uses a high surface area platinum catalyst dispersed on a conductive carbon support to minimize both cathode polarization and fabrication costs. During operation, however, the active surface area of these electrodes decreases, which in turn leads to decreased cell performance. This loss of active surface area is a major factor in the degradation of fuel cell performance over time.

  16. Alpha-Synuclein Oligomers: an Amyloid Pore? Insights into Mechanisms of alpha-Synuclein Oligomer-Lipid Interactions

    NARCIS (Netherlands)

    Stockl, Martin T.; Zijlstra, Niels; Subramaniam, Vinod

    2013-01-01

    In many human diseases, oligomeric species of amyloid proteins may play a pivotal role in cytotoxicity. Many lines of evidence indicate that permeabilization of cellular membranes by amyloid oligomers may be the key factor in disrupting cellular homeostasis. However, the exact mechanisms by which th

  17. alpha-Synuclein Oligomers: an Amyloid Pore? : Insights into Mechanisms of alpha-Synuclein Oligomer-Lipid Interactions

    NARCIS (Netherlands)

    Stockl, M.T.; Zijlstra, N.; Subramaniam, V.

    2013-01-01

    In many human diseases, oligomeric species of amyloid proteins may play a pivotal role in cytotoxicity. Many lines of evidence indicate that permeabilization of cellular membranes by amyloid oligomers may be the key factor in disrupting cellular homeostasis. However, the exact mechanisms by which th

  18. Platinum in Earth surface environments

    Science.gov (United States)

    Reith, F.; Campbell, S. G.; Ball, A. S.; Pring, A.; Southam, G.

    2014-04-01

    Platinum (Pt) is a rare precious metal that is a strategic commodity for industries in many countries. The demand for Pt has more than doubled in the last 30 years due to its role in the catalytic conversion of CO, hydrocarbons and NOx in modern automobiles. To explore for new Pt deposits, process ores and deal with ecotoxicological effects of Pt mining and usage, the fundamental processes and pathways of Pt dispersion and re-concentration in surface environments need to be understood. Hence, the aim of this review is to develop a synergistic model for the cycling of Pt in Earth surface environments. This is achieved by integrating the geological/(biogeo)chemical literature, which focuses on naturally occurring Pt mobility around ore deposits, with the environmental/ecotoxicological literature dealing with anthropogenic Pt dispersion. In Pt deposits, Pt occurs as sulfide-, telluride- and arsenide, native metal and alloyed to other PGEs and iron (Fe). Increased mining and utilization of Pt combined with the burning of fossil fuels have led to the dispersion of Pt-containing nano- and micro-particles. Hence, soils and sediments in industrialized areas, urban environments and along major roads are now commonly Pt enriched. Platinum minerals, nuggets and anthropogenic particles are transformed by physical and (bio)geochemical processes. Complexation of Pt ions with chloride, thiosulfate, ammonium, cyanide, low- and high molecular weight organic acids (LMWOAs and HMWOAs) and siderophores can facilitate Pt mobilization. Iron-oxides, clays, organic matter and (micro)biota are known to sequester Pt-complexes and -particles. Microbes and plants are capable of bioaccumulating and reductively precipitating mobile Pt complexes. Bioaccumulation can lead to toxic effects on plants and animals, including humans. (Bio)mineralization in organic matter-rich sediments can lead to the formation of secondary Pt particles and -grains. Ultimately, Pt is enriched in oceanic sediments

  19. Induction of volatile organic compound in the leaves of Lycopersicon esculentum by chitosan oligomer

    Institute of Scientific and Technical Information of China (English)

    He Peiqing; Lin Xuezheng; Shen Jihong; Huang Xiaohang; Chen Kaoshan; Li Guangyou

    2005-01-01

    Induction of VOCs (volatile organic compounds) in the leaves of Lycopersicon esculentum by chitosan oligomer elictor was studied. The results demonstrated that VOCs in chitosan oligomer-treated leaves showed stronger inhibitory activity against Botrytis cinerea than that in water-treated leaves, and the spore germination was reduced by 22.1% in 144h after elicitor treatment at a concentration of 1.0%. A total of 16 constituents were detected in water-treated leaves, and chitosan oligomer treatment increased the amount of VOCs production. Chitosan oligomer at different concentration and different time courses of induction treatment could induce different amount of VOCs. Chitosan oligomer resulted in an optimal production of VOCs in 144h after elicitation at concentration of 0.6%. Chitosan oligomer also enhanced activtity of PAL and LOX. The results showed that the enhancement of VOCs production after chitosan oligomer treatment might be an important agent for L.esculentum acquiring resistance against pathogen.

  20. Alzheimer's therapeutics targeting amyloid beta 1-42 oligomers II: Sigma-2/PGRMC1 receptors mediate Abeta 42 oligomer binding and synaptotoxicity.

    Science.gov (United States)

    Izzo, Nicholas J; Xu, Jinbin; Zeng, Chenbo; Kirk, Molly J; Mozzoni, Kelsie; Silky, Colleen; Rehak, Courtney; Yurko, Raymond; Look, Gary; Rishton, Gilbert; Safferstein, Hank; Cruchaga, Carlos; Goate, Alison; Cahill, Michael A; Arancio, Ottavio; Mach, Robert H; Craven, Rolf; Head, Elizabeth; LeVine, Harry; Spires-Jones, Tara L; Catalano, Susan M

    2014-01-01

    Amyloid beta (Abeta) 1-42 oligomers accumulate in brains of patients with Mild Cognitive Impairment (MCI) and disrupt synaptic plasticity processes that underlie memory formation. Synaptic binding of Abeta oligomers to several putative receptor proteins is reported to inhibit long-term potentiation, affect membrane trafficking and induce reversible spine loss in neurons, leading to impaired cognitive performance and ultimately to anterograde amnesia in the early stages of Alzheimer's disease (AD). We have identified a receptor not previously associated with AD that mediates the binding of Abeta oligomers to neurons, and describe novel therapeutic antagonists of this receptor capable of blocking Abeta toxic effects on synapses in vitro and cognitive deficits in vivo. Knockdown of sigma-2/PGRMC1 (progesterone receptor membrane component 1) protein expression in vitro using siRNA results in a highly correlated reduction in binding of exogenous Abeta oligomers to neurons of more than 90%. Expression of sigma-2/PGRMC1 is upregulated in vitro by treatment with Abeta oligomers, and is dysregulated in Alzheimer's disease patients' brain compared to age-matched, normal individuals. Specific, high affinity small molecule receptor antagonists and antibodies raised against specific regions on this receptor can displace synthetic Abeta oligomer binding to synaptic puncta in vitro and displace endogenous human AD patient oligomers from brain tissue sections in a dose-dependent manner. These receptor antagonists prevent and reverse the effects of Abeta oligomers on membrane trafficking and synapse loss in vitro and cognitive deficits in AD mouse models. These findings suggest sigma-2/PGRMC1 receptors mediate saturable oligomer binding to synaptic puncta on neurons and that brain penetrant, small molecules can displace endogenous and synthetic oligomers and improve cognitive deficits in AD models. We propose that sigma-2/PGRMC1 is a key mediator of the pathological effects of

  1. Alzheimer's therapeutics targeting amyloid beta 1-42 oligomers II: Sigma-2/PGRMC1 receptors mediate Abeta 42 oligomer binding and synaptotoxicity.

    Directory of Open Access Journals (Sweden)

    Nicholas J Izzo

    Full Text Available Amyloid beta (Abeta 1-42 oligomers accumulate in brains of patients with Mild Cognitive Impairment (MCI and disrupt synaptic plasticity processes that underlie memory formation. Synaptic binding of Abeta oligomers to several putative receptor proteins is reported to inhibit long-term potentiation, affect membrane trafficking and induce reversible spine loss in neurons, leading to impaired cognitive performance and ultimately to anterograde amnesia in the early stages of Alzheimer's disease (AD. We have identified a receptor not previously associated with AD that mediates the binding of Abeta oligomers to neurons, and describe novel therapeutic antagonists of this receptor capable of blocking Abeta toxic effects on synapses in vitro and cognitive deficits in vivo. Knockdown of sigma-2/PGRMC1 (progesterone receptor membrane component 1 protein expression in vitro using siRNA results in a highly correlated reduction in binding of exogenous Abeta oligomers to neurons of more than 90%. Expression of sigma-2/PGRMC1 is upregulated in vitro by treatment with Abeta oligomers, and is dysregulated in Alzheimer's disease patients' brain compared to age-matched, normal individuals. Specific, high affinity small molecule receptor antagonists and antibodies raised against specific regions on this receptor can displace synthetic Abeta oligomer binding to synaptic puncta in vitro and displace endogenous human AD patient oligomers from brain tissue sections in a dose-dependent manner. These receptor antagonists prevent and reverse the effects of Abeta oligomers on membrane trafficking and synapse loss in vitro and cognitive deficits in AD mouse models. These findings suggest sigma-2/PGRMC1 receptors mediate saturable oligomer binding to synaptic puncta on neurons and that brain penetrant, small molecules can displace endogenous and synthetic oligomers and improve cognitive deficits in AD models. We propose that sigma-2/PGRMC1 is a key mediator of the pathological

  2. computer modeling ter modeling ter modeling of platinum reforming ...

    African Journals Online (AJOL)

    eobe

    naphtha to complex chemical reactions, at h temperature and ... at is leaving any stage of the platinum reforming reactors in terms of ... In this study, only platinum reforming .... IV. Hydrocracking of paraffinic hydrocarbons: +. →. ( +. +. +. +. ) (18).

  3. Novel platinum black electroplating technique improving mechanical stability.

    Science.gov (United States)

    Kim, Raeyoung; Nam, Yoonkey

    2013-01-01

    Platinum black microelectrodes are widely used as an effective neural signal recording sensor. The simple fabrication process, high quality signal recording and proper biocompatibility are the main advantages of platinum black microelectrodes. When microelectrodes are exposed to actual biological system, various physical stimuli are applied. However, the porous structure of platinum black is vulnerable to external stimuli and destroyed easily. The impedance level of the microelectrode increases when the microelectrodes are damaged resulting in decreased recording performance. In this study, we developed mechanically stable platinum black microelectrodes by adding polydopamine. The polydopamine layer was added between the platinum black structures by electrodeposition method. The initial impedance level of platinum black only microelectrodes and polydopamine added microelectrodes were similar but after applying ultrasonication the impedance value dramatically increased for platinum black only microelectrodes, whereas polydopamine added microelectrodes showed little increase which were nearly retained initial values. Polydopamine added platinum black microelectrodes are expected to extend the availability as neural sensors.

  4. Platinum uptake from chloride solutions using biosorbents

    Directory of Open Access Journals (Sweden)

    Mehmet Hakan Morcali

    2013-04-01

    Full Text Available Present work investigates platinum uptake from synthetically prepared, dilute platinum-bearing solutions using biomass residues, i.e. pistachio nut shell and rice husk, which are abundant in Turkey, and provides a comparison between these two biosorbents. Effects of the different uptake parameters, sorbent dosage, contact time, temperature and pH of solution on platinum uptake (% were studied in detail on a batch sorption. Before the pistachio nut shell was activated, platinum uptake (% was poor compared to the rice husk. However, after the pistachio nut shell was activated at 1000 °C under an argon atmosphere, the platinum uptake (% increased two-fold. The pistachio nut shell (original and activated and rice husk were shown to be better than commercially available activated carbon in terms of adsorption capacity. These two sorbents have also been characterized by FTIR and SEM. Adsorption equilibrium data best complied with the Langmuir isotherm model. Maximum adsorption capacities, Qmax, at 25 °C were found to be 38.31 and 42.02 mg.g- 1for the activated pistachio nut shell and rice husk, respectively. Thermodynamic calculations using the measured ∆H°, ∆S° and ∆G° values indicate that the uptake process was spontaneous and endothermic. The experimental data were shown to be fit the pseudo-second-order kinetic model.

  5. Electrochemical Fabrication and Electrocatalytic Properties of Nanostructured Mesoporous Platinum Microelectrodes

    Institute of Scientific and Technical Information of China (English)

    Mengyan NIE; Joanne M. Elliott

    2005-01-01

    Electrodeposition from a lyotropic liquid crystal template medium was used to produce nanostructured platinum microelectrodes with high specific surface area and high mass transport efficiency. Compared to polished and conventional platinized microelectrodes, well-ordered nanostructured platinum microelectrodes exhibited enhanced electrocatalytic properties for oxygen and ascorbic acid, whilst well-ordered nanostructured platinum microelectrodes offered improved electrocatalytic properties for oxygen reduction compared to disordered nanostructured platinum microelectrodes.

  6. Charge transfer in conjugated oligomers encapsulated into carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Almadori, Y.; Alvarez, L.; Michel, T.; Le Parc, R.; Bantignies, J.L.; Hermet, P.; Sauvajol, J.L. [Laboratoire Charles Coulomb UMR 5521, Universite Montpellier 2, 34095 Montpellier (France); Laboratoire Charles Coulomb UMR 5521, CNRS, 34095 Montpellier (France); Arenal, R. [Laboratoire d' Etude des Microstructures, CNRS-ONERA, 92322 Chatillon (France); Laboratorio de Microscopias Avanzadas, Instituto de Nanociencia de Aragon, U. Zaragoza, 50018 Zaragoza (Spain); Babaa, R. [Laboratoire de Chimie des Surfaces et Interfaces, CEA, IRAMIS, SPCSI, 91191 Gif-sur-Yvette Cedex (France); Chemical Engineering Department, University of Technology PETRONAS, UTP, Ipoh-Perak (Malaysia); Jouselme, B.; Palacin, S. [Laboratoire de Chimie des Surfaces et Interfaces, CEA, IRAMIS, SPCSI, 91191 Gif-sur-Yvette Cedex (France)

    2011-11-15

    This study deals with a hybrid system consisting in quaterthiophene derivative encapsulated inside single-walled and multi-walled carbon nanotubes. Investigations of the encapsulation step are performed by transmission electron microscopy. Raman spectroscopy data point out different behaviors depending on the laser excitation energy with respect to the optical absorption of quaterthiophene. At low excitation energy (far from the oligomer resonance window) there is no significant modification of the Raman spectra before and after encapsulation. By contrast, at high excitation energy (close to the oligomer resonance window), Raman spectra exhibit a G-band shift together with an important RBM intensity loss, suggesting a significant charge transfer between the inserted molecule and the host nanotubes. Those results suggest a photo induced process leading to a significant charge transfer. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  7. Extensions of Callendar's equations for platinum resistance thermometry

    DEFF Research Database (Denmark)

    Diamond, Joseph M.

    1969-01-01

    measurements where the platinum thermometer and the measurement means may be less than ideal. To this end. Callendar's definition of platinum temperature is generalized to mean the temperature found by linear interpolation with a platinum thermometer between given fixed points and using a given measurement...

  8. Platinum Publications as of April 30, 2014 | Poster

    Science.gov (United States)

    Platinum Publications are selected from articles by NCI at Frederick scientists published in 21 prestigious science journals. This list represents new publications generated from PubMed as of the date shown above. Articles designated as Platinum Highlights are noteworthy articles selected by Dr. Craig Reynolds, associate director, National Cancer Institute, from among the most recently published Platinum Publications.

  9. Platinum Publications, September 30–October 27, 2016 | Poster

    Science.gov (United States)

    Platinum Publications are selected from articles by NCI at Frederick scientists published in 42 prestigious science journals. This list represents articles published during the time period shown above, as generated from PubMed. Articles designated as Platinum Highlights are noteworthy articles selected by Dr. Craig Reynolds, associate director, National Cancer Institute, from among the most recently published Platinum Publications.

  10. Platinum Publications as of June 25, 2014 | Poster

    Science.gov (United States)

    Platinum Publications are selected from articles by NCI at Frederick scientists published in 21 prestigious science journals. This list represents new publications generated from PubMed as of the date shown above. Articles designated as Platinum Highlights are noteworthy articles selected by Dr. Craig Reynolds, associate director, National Cancer Institute, from among the most recently published Platinum Publications.

  11. Platinum Publications, July 1–July 28, 2016 | Poster

    Science.gov (United States)

    Platinum Publications are selected from articles by NCI at Frederick scientists published in 42 prestigious science journals. This list represents articles published during the time period shown above, as generated from PubMed. Articles designated as Platinum Highlights are noteworthy articles selected by Dr. Craig Reynolds, associate director, National Cancer Institute, from among the most recently published Platinum Publications.

  12. Platinum Publications as of March 6, 2014 | Poster

    Science.gov (United States)

    Platinum Publications are selected from articles by NCI at Frederick scientists published in 21 prestigious science journals. This list represents new publications generated from PubMed as of the date shown above. Articles designated as Platinum Highlights are noteworthy articles selected by Dr. Craig Reynolds, associate director, National Cancer Institute, from among the most recently published Platinum Publications.

  13. Platinum Publications, October 1–29, 2015 | Poster

    Science.gov (United States)

    Platinum Publications are selected from articles by NCI at Frederick scientists published in 42 prestigious science journals. This list represents articles published during the time period shown above, as generated from PubMed. Articles designated as Platinum Highlights are noteworthy articles selected by Dr. Craig Reynolds, associate director, National Cancer Institute, from among the most recently published Platinum Publications.

  14. Platinum Publications, December 1–December 29, 2016 | Poster

    Science.gov (United States)

    Platinum Publications are selected from articles by NCI at Frederick scientists published in 42 prestigious science journals. This list represents articles published during the time period shown above, as generated from PubMed. Articles designated as Platinum Highlights are noteworthy articles selected from among the most recently published Platinum Publications.

  15. Platinum Publications as of May 29, 2014 | Poster

    Science.gov (United States)

    Platinum Publications are selected from articles by NCI at Frederick scientists published in 21 prestigious science journals. This list represents new publications generated from PubMed as of the date shown above. Articles designated as Platinum Highlights are noteworthy articles selected by Dr. Craig Reynolds, associate director, National Cancer Institute, from among the most recently published Platinum Publications.

  16. Platinum Publications as of September 25, 2014 | Poster

    Science.gov (United States)

    Platinum Publications are selected from articles by NCI at Frederick scientists published in 21 prestigious science journals. This list represents new publications generated from PubMed as of the date shown above. Articles designated as Platinum Highlights are noteworthy articles selected by Dr. Craig Reynolds, associate director, National Cancer Institute, from among the most recently published Platinum Publications.

  17. Platinum Publications, January 26–February 28, 2017 | Poster

    Science.gov (United States)

    Platinum Publications are selected from articles by NCI at Frederick scientists published in 42 prestigious science journals. This list represents articles published during the time period shown above, as generated from PubMed. Articles designated as Platinum Highlights are noteworthy articles selected from among the most recently published Platinum Publications.

  18. Platinum Publications as of December 3, 2013 | Poster

    Science.gov (United States)

    Platinum Publications are selected from articles by NCI at Frederick scientists published in 21 prestigious science journals. This list represents new publications generated from PubMed as of the date shown above. Articles designated as Platinum Highlights are noteworthy articles selected by Dr. Craig Reynolds, associate director, National Cancer Institute, from among the most recently published Platinum Publications.

  19. Deposition of the platinum crystals on the carbon nanotubes

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    A new technique and the affecting factors for depositing platinum on the carbon nanotubes were investigated. The results show that the deposited platinum crystals in the atmosphere of hydrogen or nitrogen have a small size and a homogeneous distribution on the surface of the carbon nanotubes. The pretreatment would decrease the platinum particles on the carbon nanotubes significantly.

  20. 76 FR 8627 - Revision of Class E Airspace; Platinum, AK

    Science.gov (United States)

    2011-02-15

    ... Federal Aviation Administration 14 CFR Part 71 Revision of Class E Airspace; Platinum, AK AGENCY: Federal... Platinum, AK, to accommodate the addition of a Standard Instrument Approach Procedure (SIAP), at the Platinum Airport. The FAA is taking this action to enhance safety and management of Instrument Flight...

  1. Alpha-synuclein oligomers and fibrils originate in two distinct conformer pools: a small angle X-ray scattering and ensemble optimisation modelling study.

    Science.gov (United States)

    Curtain, Cyril C; Kirby, Nigel M; Mertens, Haydyn D T; Barnham, Kevin J; Knott, Robert B; Masters, Colin L; Cappai, Roberto; Rekas, Agata; Kenche, Vijaya B; Ryan, Timothy

    2015-01-01

    The 140 residue intrinsically disordered protein α-synuclein (α-syn) self-associates to form fibrils that are the major constituent of the Lewy body intracellular protein inclusions, and neurotoxic oligomers. Both of these macromolecular structures are associated with a number of neurodegenerative diseases, including Parkinson's disease and dementia with Lewy bodies. Using ensemble optimisation modelling (EOM) and small angle X-ray scattering (SAXS) on a size-exclusion column equipped beamline, we studied how the distribution of structural conformers in α-syn may be influenced by the presence of the familial early-onset mutations A30P, E45K and A53T, by substituting the four methionine residues with alanines and by reaction with copper (Cu2+) or an anti-fibril organic platinum (Pt) complex. We found that the WT had two major conformer groups, representing ensembles of compact and extended structures. The population of the extended group was increased in the more rapidly fibril-forming E45K and A53T mutants, while the compact group was enlarged in the oligomer-forming A30P mutant. Addition of Cu2+ resulted in the formation of an ensemble of compact conformers, while the anti-fibril agent and alanine substitution substantially reduced the population of extended conformers. Since our observations with the mutants suggest that fibrils may be drawn from the extended conformer ensemble, we propose that the compact and extended ensembles represent the beginning of oligomer and fibril formation pathways respectively, both of which have been reported to lead to a toxic gain of function. Manipulating these pathways and monitoring the results by EOM and SAXS may be useful in the development of anti-Parkinson's disease therapies.

  2. Ethynyl-terminated ester oligomers and polymers therefrom

    Science.gov (United States)

    Hergenrother, Paul M. (Inventor); Havens, Stephen J. (Inventor)

    1986-01-01

    A class of ethynyl terminated oligomers and the process for preparing the same are disclosed. Upon the application of heat, with or without a catalyst, the ethynyl groups react to provide crosslinking and chain extension to increase the polymer use temperature and improve the polymer solvent resistance. These polyesters are potentially useful in packaging, magnetic tapes, capacitors, industrial belting, protective coatings, structural adhesives and composite matrices.

  3. Electroactive Reactive Oligomers and Polymers as Device Components

    Science.gov (United States)

    2009-02-03

    development of conjugated. conducting and electroactive oligomers, polymers and multi-component materials is proposed for application to photovoltaic...characteristics. Intense research has focused on oligo- and polythiophenes , as such materials early showed high hole mobilities. While vapor deposited a...to atmospheric oxygen, air stability now becomes an issue. The research conducted in this project focuses on the study of a soluble polymer consisting

  4. Changes of adiponectin oligomer composition by moderate weight reduction.

    Science.gov (United States)

    Bobbert, Thomas; Rochlitz, Helmut; Wegewitz, Uta; Akpulat, Suzan; Mai, Knut; Weickert, Martin O; Möhlig, Matthias; Pfeiffer, Andreas F H; Spranger, Joachim

    2005-09-01

    Adiponectin affects lipid metabolism and insulin sensitivity. However, adiponectin circulates in three different oligomers that may also have distinct biological functions. We aimed to analyze the role of these oligomers in obesity and lipid metabolism after weight reduction. A total of 17 obese volunteers (15 women and 2 men) participated in a weight reduction program. Individuals were characterized before and after 6 months of a balanced diet. Adiponectin was determined by enzyme-linked immunosorbent assay, and oligomers were detected by nondenaturating Western blot. BMI decreased (35.1 +/- 1.2 to 32.8 +/- 1.1 kg/m(2), P < 0.001), which was associated with an improved metabolite profile. Total adiponectin increased from 5.3 +/- 0.5 to 6.1 +/- 0.6 microg/ml (P = 0.076). High (HMW) and medium molecular weight (MMW) adiponectin oligomers significantly increased during weight reduction (HMW: 0.37 +/- 0.07 to 0.4 +/- 0.08 microg/ml, P = 0.042; MMW: 2.3 +/- 0.2 to 2.9 +/- 0.3 microg/ml, P = 0.007), while low molecular weight (LMW) did not significantly change. Body weight inversely correlated with HMW (r = -0.695, P = 0.002) and positively with LMW (r = 0.579, P = 0.015). Interestingly, HDL cholesterol and HMW were strongly correlated (r = 0.665, P = 0.007). Indeed, HMW and free fatty acids before weight reduction predicted approximately 60% of HDL changes during intervention. In conclusion, weight reduction results in a relative increase of HMW/MMW adiponectin and a reduction of LMW adiponectin. Total adiponectin and especially HMW adiponectin are related to circulating HDL cholesterol.

  5. Surface decorated platinum carbonyl clusters

    Science.gov (United States)

    Ciabatti, Iacopo; Femoni, Cristina; Iapalucci, Maria Carmela; Longoni, Giuliano; Zacchini, Stefano; Zarra, Salvatore

    2012-06-01

    Four molecular Pt-carbonyl clusters decorated by Cd-Br fragments, i.e., [Pt13(CO)12{Cd5(μ-Br)5Br2(dmf)3}2]2- (1), [Pt19(CO)17{Cd5(μ-Br)5Br3(Me2CO)2}{Cd5(μ-Br)5Br(Me2CO)4}]2- (2), [H2Pt26(CO)20(CdBr)12]8- (3) and [H4Pt26(CO)20(CdBr)12(PtBr)x]6- (4) (x = 0-2), have been obtained from the reactions between [Pt3n(CO)6n]2- (n = 2-6) and CdBr2.H2O in dmf at 120 °C. The structures of these molecular clusters with diameters of 1.5-2 nm have been determined by X-ray crystallography. Both 1 and 2 are composed of icosahedral or bis-icosahedral Pt-CO cores decorated on the surface by Cd-Br motifs, whereas 3 and 4 display a cubic close packed Pt26Cd12 metal frame decorated by CO and Br ligands. An oversimplified and unifying approach to interpret the electron count of these surface decorated platinum carbonyl clusters is suggested, and extended to other low-valent organometallic clusters and Au-thiolate nanoclusters.Four molecular Pt-carbonyl clusters decorated by Cd-Br fragments, i.e., [Pt13(CO)12{Cd5(μ-Br)5Br2(dmf)3}2]2- (1), [Pt19(CO)17{Cd5(μ-Br)5Br3(Me2CO)2}{Cd5(μ-Br)5Br(Me2CO)4}]2- (2), [H2Pt26(CO)20(CdBr)12]8- (3) and [H4Pt26(CO)20(CdBr)12(PtBr)x]6- (4) (x = 0-2), have been obtained from the reactions between [Pt3n(CO)6n]2- (n = 2-6) and CdBr2.H2O in dmf at 120 °C. The structures of these molecular clusters with diameters of 1.5-2 nm have been determined by X-ray crystallography. Both 1 and 2 are composed of icosahedral or bis-icosahedral Pt-CO cores decorated on the surface by Cd-Br motifs, whereas 3 and 4 display a cubic close packed Pt26Cd12 metal frame decorated by CO and Br ligands. An oversimplified and unifying approach to interpret the electron count of these surface decorated platinum carbonyl clusters is suggested, and extended to other low-valent organometallic clusters and Au-thiolate nanoclusters. CCDC 867747 and 867748. For crystallographic data in CIF or other electronic format see DOI: 10.1039/c2nr30400g

  6. Autonomous movement of platinum-loaded stomatocytes.

    Science.gov (United States)

    Wilson, Daniela A; Nolte, Roeland J M; van Hest, Jan C M

    2012-02-26

    Polymer stomatocytes are bowl-shaped structures of nanosize dimensions formed by the controlled deformation of polymer vesicles. The stable nanocavity and strict control of the opening are ideal for the physical entrapment of nanoparticles which, when catalytically active, can turn the stomatocyte morphology into a nanoreactor. Herein we report an approach to generate autonomous movement of the polymer stomatocytes by selectively entrapping catalytically active platinum nanoparticles within their nanocavities and subsequently using catalysis as a driving force for movement. Hydrogen peroxide is free to access the inner stomatocyte cavity, where it is decomposed by the active catalyst (the entrapped platinum nanoparticles) into oxygen and water. This generates a rapid discharge, which induces thrust and directional movement. The design of the platinum-loaded stomatocytes resembles a miniature monopropellant rocket engine, in which the controlled opening of the stomatocytes directs the expulsion of the decomposition products away from the reaction chamber (inner stomatocyte cavity).

  7. 2-Methoxycycloocta-1,5-dienyl platinum complexes as precursors for platinum nanoparticles

    Indian Academy of Sciences (India)

    Ninad Ghavale; Sandip Dey; Vimal K Jain; R Tewari

    2009-02-01

    Thermolysis of [Pt2 (-OR)2 (C8H12OMe)2] (R = Me or Ac) in hexadecylamine (HDA) at 210°C under argon atmosphere gave platinum nanoparticles which were characterized by XRD, EDAX and TEM analysis. Both spherical (∼ 10 nm) and rod-like (∼ 19 nm length with aspect ratio of 2.3) face centred cubic (fcc) platinum metal nanoparticles could be isolated. The thermogravimetric analyses of these complexes revealed that they undergo a single step decomposition leading to the formation of platinum metal powder.

  8. Size-dependent neurotoxicity of β-amyloid oligomers

    Science.gov (United States)

    Cizas, Paulius; Budvytyte, Rima; Morkuniene, Ramune; Moldovan, Radu; Broccio, Matteo; Lösche, Mathias; Niaura, Gediminas; Valincius, Gintaras; Borutaite, Vilmante

    2010-01-01

    The link between the size of soluble amyloid β (Aβ) oligomers and their toxicity to rat cerebellar granule cells (CGC) was investigated. Variation in conditions during in vitro oligomerization of Aβ1-42 resulted in peptide assemblies with different particle size as measured by atomic force microscopy and confirmed by the dynamic light scattering and fluorescence correlation spectroscopy. Small oligomers of Aβ1-42 with a mean particle z-height of 1-2 nm exhibited propensity to bind to the phospholipid vesicles and they were the most toxic species that induced rapid neuronal necrosis at submicromolar concentrations whereas the bigger aggregates (z-height above 4-5 nm) did not bind vesicles and did not cause detectable neuronal death. Similar neurotoxic pattern was also observed in primary cultures of cortex neurons whereas Aβ1–42 oligomers, monomers and fibrils were non-toxic to glial cells in CGC cultures or macrophage J774 cells. However, both oligomeric forms of Aβ1-42 induced reduction of neuronal cell densities in the CGC cultures. PMID:20153288

  9. Size-dependent neurotoxicity of beta-amyloid oligomers.

    Science.gov (United States)

    Cizas, Paulius; Budvytyte, Rima; Morkuniene, Ramune; Moldovan, Radu; Broccio, Matteo; Lösche, Mathias; Niaura, Gediminas; Valincius, Gintaras; Borutaite, Vilmante

    2010-04-15

    The link between the size of soluble amyloid beta (Abeta) oligomers and their toxicity to rat cerebellar granule cells (CGC) was investigated. Variation in conditions during in vitro oligomerization of Abeta(1-42) resulted in peptide assemblies with different particle size as measured by atomic force microscopy and confirmed by dynamic light scattering and fluorescence correlation spectroscopy. Small oligomers of Abeta(1-42) with a mean particle z-height of 1-2 nm exhibited propensity to bind to phospholipid vesicles and they were the most toxic species that induced rapid neuronal necrosis at submicromolar concentrations whereas the bigger aggregates (z-height above 4-5 nm) did not bind vesicles and did not cause detectable neuronal death. A similar neurotoxic pattern was also observed in primary cultures of cortex neurons whereas Abeta(1-42) oligomers, monomers and fibrils were non-toxic to glial cells in CGC cultures or macrophage J774 cells. However, both oligomeric forms of Abeta(1-42) induced reduction of neuronal cell densities in the CGC cultures.

  10. Oligomers, organosulfates, and nitroxy organosulfates identified in rainwater

    Science.gov (United States)

    Altieri, K. E.; Turpin, B. J.; Seitzinger, S. P.

    2008-12-01

    Wet deposition is an important removal mechanism for atmospheric organic matter, and a potentially important input for receiving ecosystems, yet less than 50 percent of rainwater organic matter is considered chemically characterized. Precipitation samples collected in New Jersey, USA, were analyzed by negative ion ultra-high resolution electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS). We document the presence of 552 unique compounds in the rainwater over a mass range of 50-500 Da, in four compound classes (i.e., CHO, CHOS, CHON, and CHONS). The presence of oligomers, organosulfates, nitroxy organosulfates, organic acids, and linear alkylbenzene sulfonates is reported. Some compounds detected have distinct primary sources; however, the composition of the bulk of this material suggests it is formed in the atmosphere and composed of known contributors to secondary organic aerosol. For example, eight oligomer series known to form through aqueous photooxidation of methylglyoxal and organosulfate compounds known to form from 4 precursors in smog chamber experiments were identified in the rainwater samples. The oligomers, organosulfates, and nitroxy organosulfates detected in the rainwater could all contribute to the HULIS fraction of atmospheric organic matter.

  11. Molecular simulation of oligomer inhibitors for calcite scale

    Institute of Scientific and Technical Information of China (English)

    Qiuyu Zhang; Hua Ren; Wenwen Wang; Junping Zhang; Hepeng Zhang

    2012-01-01

    Molecular simulation was performed to study the interaction between CaCO3 crystal and several oligomer inhibitors,by using the equilibrium morphology method to calculate the growth morphology of CaCO3 without inhibitors.The calculated morphology agreed well with SEM photographs.Then,a double-layer model was built to investigate the interaction between calcite crystal and oligomer inhibitors containing maleic anhydride (MA) and acrylic acid (AA).Interaction energy per gram of an oligomer inhibitor was introduced as a scale of inhibition efficiency of different monomers.The results indicated that,for calcite scale inhibition,acrylamide (AM) and vinyl phosphonic acid (VPA) were the most efficient monomers,while allylsulfonic acid (AS) was the poorest.Increasing proportion of AM in dimer inhibitor molecule would improve the inhibition efficiency of MA,though,for a trimer,such as MA-AA-AM,certain sequence of monomers in the inhibitor molecule was necessary besides higher proportion of AM.

  12. α-Synuclein oligomers and clinical implications for Parkinson disease.

    Science.gov (United States)

    Kalia, Lorraine V; Kalia, Suneil K; McLean, Pamela J; Lozano, Andres M; Lang, Anthony E

    2013-02-01

    Protein aggregation within the central nervous system has been recognized as a defining feature of neurodegenerative diseases since the early 20th century. Since that time, there has been a growing list of neurodegenerative disorders, including Parkinson disease, which are characterized by inclusions of specific pathogenic proteins. This has led to the long-held dogma that these characteristic protein inclusions, which are composed of large insoluble fibrillar protein aggregates and visible by light microscopy, are responsible for cell death in these diseases. However, the correlation between protein inclusion formation and cytotoxicity is inconsistent, suggesting that another form of the pathogenic proteins may be contributing to neurodegeneration. There is emerging evidence implicating soluble oligomers, smaller protein aggregates not detectable by conventional microscopy, as potential culprits in the pathogenesis of neurodegenerative diseases. The protein α-synuclein is well recognized to contribute to the pathogenesis of Parkinson disease and is the major component of Lewy bodies and Lewy neurites. However, α-synuclein also forms oligomeric species, with certain conformations being toxic to cells. The mechanisms by which these α-synuclein oligomers cause cell death are being actively investigated, as they may provide new strategies for diagnosis and treatment of Parkinson disease and related disorders. Here we review the possible role of α-synuclein oligomers in cell death in Parkinson disease and discuss the potential clinical implications.

  13. Electrochemical Analysis of the Electrodeposition of Platinum Nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hae-Min; Cho, Sung-Woon; Kim, Jun-Hyun; Kim, Chang-Koo [Ajou University, Suwon (Korea, Republic of)

    2015-10-15

    A bath for electrodeposition of platinum nanoparticles on low-cost graphite substrates was developed to attach nanoparticles directly onto a substrate, and electrochemical characteristics of the electrodeposition of platinum nanoparticles were investigated. The reaction mechanism was examined by the analysis of polarization behavior. Cyclic voltammetry measurements revealed that the electrodeposition of platinum nanoparticles was limited by mass transfer. The chronoamperometric study showed an instantaneous nucleation mechanism during the electrodeposition of platinum nanoparticles on graphite. Because graphite is much cheaper than other carbon-based substrates, the electrodeposition of platinum nanoparticles on the graphite is expected to have useful applications.

  14. Outpatient desensitization in selected patients with platinum hypersensitivity reactions.

    Science.gov (United States)

    O'Malley, David M; Vetter, Monica Hagan; Cohn, David E; Khan, Ambar; Hays, John L

    2017-06-01

    Platinum-based chemotherapies are a standard treatment for both initial and recurrent gynecologic cancers. Given this widespread use, it is important to be aware of the features of platinum hypersensitivity reactions and the subsequent treatment of these reactions. There is also increasing interest in the development of desensitization protocols to allow patients with a history of platinum hypersensitivity to receive further platinum based therapy. In this review, we describe the management of platinum hypersensitivity reactions and the desensitization protocols utilized at our institution. We also describe the clinical categorizations utilized to triage patients to appropriate desensitization protocols. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Synthesis and characterization of new platinum(II) and platinum(IV) triphyrin complexes.

    Science.gov (United States)

    Xue, Zhaoli; Kuzuhara, Daiki; Ikeda, Shinya; Okujima, Tetsuo; Mori, Shigeki; Uno, Hidemitsu; Yamada, Hiroko

    2013-02-18

    Metalation of 6,13,20,21-tetrakis(4-methylphenyl)-22H-tribenzo[14]triphyrin(2.1.1) with PtCl(2) gave a platinum(II) complex having a square-planar coordination structure with two pyrrolic nitrogen atoms and two chloride ions, with a saddle-shaped macrocycle. This platinum(II) complex was easily oxidized by air to an octahedral platinum(IV) complex coordinated by three pyrrolic nitrogen atoms as a tridentate monoanionic cyclic ligand and three chloride ions. When platinum(II) triphyrin was crystallized in air, an oxygen atom was incorporated between two α-carbon atoms of the pyrroles as an oxygen bridge to intercept the 14π aromatic system.

  16. Influence of thermalization on thermal conduction through molecular junctions: Computational study of PEG oligomers

    Science.gov (United States)

    Pandey, Hari Datt; Leitner, David M.

    2017-08-01

    Thermalization in molecular junctions and the extent to which it mediates thermal transport through the junction are explored and illustrated with computational modeling of polyethylene glycol (PEG) oligomer junctions. We calculate rates of thermalization in the PEG oligomers from 100 K to 600 K and thermal conduction through PEG oligomer interfaces between gold and other materials, including water, motivated in part by photothermal applications of gold nanoparticles capped by PEG oligomers in aqueous and cellular environments. Variation of thermalization rates over a range of oligomer lengths and temperatures reveals striking effects of thermalization on thermal conduction through the junction. The calculated thermalization rates help clarify the scope of applicability of approaches that can be used to predict thermal conduction, e.g., where Fourier's law breaks down and where a Landauer approach is suitable. The rates and nature of vibrational energy transport computed for PEG oligomers are compared with available experimental results.

  17. Anticancer platinum (IV) prodrugs with novel modes of activity.

    Science.gov (United States)

    Chin, Chee Fei; Wong, Daniel Yuan Qiang; Jothibasu, Ramasamy; Ang, Wee Han

    2011-01-01

    Over the past four decades, the search for improved platinum drugs based on the classical platinum (II)-diam(m)ine pharmacophore has yielded only a handful of successful candidates. New methodologies centred on platinum (IV) complexes, with better stability and expanded coordination spheres, offer the possibility of overcoming limitations inherent to platinum (II) drugs. In this review, novel strategies of targeting and killing cancer cells using platinum (IV) constructs are discussed. These approaches exploit the unique electrochemical characteristics and structural attributes of platinum (IV) complexes as a means of developing anticancer prodrugs that can target and selectively destroy cancer cells. Anticancer platinum (IV) prodrugs represent promising new strategies as targeted chemotherapeutic agents in the ongoing battle against cancer.

  18. The Dynamics of Platinum Precipitation in an Ion Exchange Membrane

    CERN Document Server

    Burlatsky, S F; Atrazhev, V V; Dmitriev, D V; Kuzminyh, N Y; Erikhman, N S

    2013-01-01

    Microscopy of polymer electrolyte membranes that have undergone operation under fuel cell conditions, have revealed a well defined band of platinum in the membrane. Here, we propose a physics based model that captures the mechanism of platinum precipitation in the polymer electrolyte membrane. While platinum is observed throughout the membrane, the preferential growth of platinum at the band of platinum is dependent on the electrochemical potential distribution in the membrane. In this paper, the location of the platinum band is calculated as a function of the gas concentration at the cathode and anode, gas diffusion coefficients and solubility constants of the gases in the membrane, which are functions of relative humidity. Under H2/N2 conditions the platinum band is located near the cathode-membrane interface, as the oxygen concentration in the cathode gas stream increases and/or the hydrogen concentration in the anode gas stream decreases, the band moves towards the anode. The model developed in this paper...

  19. Chitosan polymer sizes effective in inducing phytoalexin accumulation and fungal suppression are verified with synthesized oligomers.

    Science.gov (United States)

    Hadwiger, L A; Ogawa, T; Kuyama, H

    1994-01-01

    Biologically derived chitosan has been reported to induce pisatin and disease resistance response proteins in pea tissue and also to inhibit the germination and growth of some fungal pathogens. Stereo-controlled synthesis of chitosan tetramer, hexamer, and octamer allowed the precise verification of oligomer size required for biological activity. The octameric oligomer optimally induced pisatin accumulation and inhibited fungal growth, verifying previous results obtained with column-purified oligomers derived from crab shells.

  20. Platinum compounds with anti-tumour activity

    NARCIS (Netherlands)

    Plooy, A.C.M.; Lohman, P.H.M.

    1980-01-01

    Ten platinum (Pt) coordination complexes with different ligands, comprising both Pt(II) and Pt(IV) complexes of which the cis-compounds all possessed at least some anti-tumour activity and the trans-compounds were inactive, were tested as to their effect on cell survival and the induction and repair

  1. On the enzymatic formation of platinum nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Govender, Y.; Riddin, T. L. [Rhodes University, Department of Biochemistry, Microbiology and Biotechnology (South Africa); Gericke, M. [MINTEK (South Africa); Whiteley, C. G., E-mail: C.Whiteley@ru.ac.z [Rhodes University, Department of Biochemistry, Microbiology and Biotechnology (South Africa)

    2010-01-15

    A dimeric hydrogenase enzyme (44.5 and 39.4 kDa sub units) was isolated in a 39.5% yield from the fungus Fusarium oxysporum and purified 4.64-fold by ion exchange chromatography on Sephacryl S-200. Characterisation of the enzyme afforded pH and temperature optima of 7.5 and 38 {sup o}C, respectively, a half-life stability of 36 min and a V{sub max} and K{sub m} of 3.57 nmol min{sup -1} mL{sup -1} and 2.25 mM, respectively. This enzyme was inhibited (non-competitively) by hydrogen hexachloroplatinic acid (H{sub 2}PtCl{sub 6}) at 1 or 2 mM with a K{sub i} value of 118 {mu}M. Incubation of the platinum salt with the pure enzyme under an atmosphere of hydrogen and optimum enzyme conditions (pH 7.5, 38 {sup o}C) afforded <10% bioreduction after 8 h while at conditions suitable for platinum nanoparticle formation (pH 9, 65 {sup o}C) over 90% reduction took place after the same length of time. Cell-free extract from the fungal isolates produced nearly 90% bioreduction of the platinum salt under both pH and temperature conditions. The bioreduction of the platinum salt by a hydrogenase enzyme takes place by a passive process and not an active one as previously understood.

  2. Platinum catalysed hydrolytic amidation of unactivated nitriles

    NARCIS (Netherlands)

    Cobley, Christopher J.; Heuvel, Marco van den; Abbadi, Abdelilah; Vries, Johannes G. de

    2000-01-01

    The platinum(II) complex, [(Me2PO··H··OPMe2)PtH(PMe2OH)], efficiently catalyses the direct conversion of unactivated nitriles to N-substituted amides with both primary and secondary amines. Possible mechanisms for this reaction are discussed and evidence for initial amidine formation is reported.

  3. Targeting Platinum Compounds: synthesis and biological activity

    OpenAIRE

    VAN ZUTPHEN, Steven

    2005-01-01

    Inspired by cisplatin, the inorganic drug discovered by Barnett Rosenberg in 1965, the research described in this thesis uses targeting ligands, or ligands varied in a combinatorial fashion, to find platinum complexes with more specific modes of action. These studies have lead to the development of novel (solid-phase) synthetic methods and to the discovery of several compounds with promising biological properties.

  4. Targeting Platinum Compounds : synthesis and biological activity

    NARCIS (Netherlands)

    Zutphen, Steven van

    2005-01-01

    Inspired by cisplatin, the inorganic drug discovered by Barnett Rosenberg in 1965, the research described in this thesis uses targeting ligands, or ligands varied in a combinatorial fashion, to find platinum complexes with more specific modes of action. These studies have lead to the development of

  5. Skin Sensitizing Potency of Halogenated Platinum Salts.

    Science.gov (United States)

    The relationship between occupational exposure to halogenated platinum (Pt) salts and Pt-specific allergic sensitization is well-established. Although human case reports and clinical studies demonstrate that Pt salts are potent skin sensitizers, no studies have been published tha...

  6. Platinum catalysed hydrolytic amidation of unactivated nitriles

    NARCIS (Netherlands)

    Cobley, Christopher J.; Heuvel, Marco van den; Abbadi, Abdelilah; Vries, Johannes G. de

    2000-01-01

    The platinum(II) complex, [(Me2PO··H··OPMe2)PtH(PMe2OH)], efficiently catalyses the direct conversion of unactivated nitriles to N-substituted amides with both primary and secondary amines. Possible mechanisms for this reaction are discussed and evidence for initial amidine formation is reported. Is

  7. Adsorption behavior of conjugated {C}3-oligomers on Si(100) and HOPG surfaces

    CERN Document Server

    Mahieu, G; Stiévenard, Didier; Krzeminski, Christophe; Delerue, Christophe; Roncali, Jean; Martineau, C; 10.1021/la026907n

    2012-01-01

    A pi-conjugated {C}3h-oligomer involving three dithienylethylene branches bridged at the meta positions of a central benzenic core has been synthesized and deposited either on the Si(100) surface or on the HOPG surface. On the silicon surface, scanning tunneling microscopy allows the observation of isolated molecules. Conversely, by substituting the thiophene rings of the oligomers with alkyl chains, a spontaneous ordered film is observed on the HOPG surface. As the interaction of the oligomers is different with both surfaces, the utility of the Si(100) surface to characterize individual oligomers prior to their use into a 2D layer is discussed.

  8. Fibril specific, conformation dependent antibodies recognize a generic epitope common to amyloid fibrils and fibrillar oligomers that is absent in prefibrillar oligomers

    Directory of Open Access Journals (Sweden)

    Rasool Suhail

    2007-09-01

    Full Text Available Abstract Background Amyloid-related degenerative diseases are associated with the accumulation of misfolded proteins as amyloid fibrils in tissue. In Alzheimer disease (AD, amyloid accumulates in several distinct types of insoluble plaque deposits, intracellular Aβ and as soluble oligomers and the relationships between these deposits and their pathological significance remains unclear. Conformation dependent antibodies have been reported that specifically recognize distinct assembly states of amyloids, including prefibrillar oligomers and fibrils. Results We immunized rabbits with a morphologically homogeneous population of Aβ42 fibrils. The resulting immune serum (OC specifically recognizes fibrils, but not random coil monomer or prefibrillar oligomers, indicating fibrils display a distinct conformation dependent epitope that is absent in prefibrillar oligomers. The fibril epitope is also displayed by fibrils of other types of amyloids, indicating that the epitope is a generic feature of the polypeptide backbone. The fibril specific antibody also recognizes 100,000 × G soluble fibrillar oligomers ranging in size from dimer to greater than 250 kDa on western blots. The fibrillar oligomers recognized by OC are immunologically distinct from prefibrillar oligomers recognized by A11, even though their sizes overlap broadly, indicating that size is not a reliable indicator of oligomer conformation. The immune response to prefibrillar oligomers and fibrils is not sequence specific and antisera of the same specificity are produced in response to immunization with islet amyloid polypeptide prefibrillar oligomer mimics and fibrils. The fibril specific antibodies stain all types of amyloid deposits in human AD brain. Diffuse amyloid deposits stain intensely with anti-fibril antibody although they are thioflavin S negative, suggesting that they are indeed fibrillar in conformation. OC also stains islet amyloid deposits in transgenic mouse models of type

  9. Molecular determinants of S100B oligomer formation.

    Directory of Open Access Journals (Sweden)

    Eva Thulin

    Full Text Available BACKGROUND: S100B is a dimeric protein that can form tetramers, hexamers and higher order oligomers. These forms have been suggested to play a role in RAGE activation. METHODOLOGY/PRINCIPAL FINDINGS: Oligomerization was found to require a low molecular weight trigger/cofactor and could not be detected for highly pure dimer, irrespective of handling. Imidazol was identified as a substance that can serve this role. Oligomerization is dependent on both the imidazol concentration and pH, with optima around 90 mM imidazol and pH 7, respectively. No oligomerization was observed above pH 8, thus the protonated form of imidazol is the active species in promoting assembly of dimers to higher species. However, disulfide bonds are not involved and the process is independent of redox potential. The process was also found to be independent of whether Ca(2+ is bound to the protein or not. Tetramers that are purified from dimers and imidazol by gel filtration are kinetically stable, but dissociate into dimers upon heating. Dimers do not revert to tetramer and higher oligomer unless imidazol is again added. Both tetramers and hexamers bind the target peptide from p53 with retained stoichiometry of one peptide per S100B monomer, and with high affinity (lgK = 7.3±0.2 and 7.2±0.2, respectively in 10 mM BisTris, 5 mM CaCl(2, pH 7.0, which is less than one order of magnitude reduced compared to dimer under the same buffer conditions. CONCLUSION/SIGNIFICANCE: S100B oligomerization requires protonated imidazol as a trigger/cofactor. Oligomers are kinetically stable after imidazol is removed but revert back to dimer if heated. The results underscore the importance of kinetic versus thermodynamic control of S100B protein aggregation.

  10. Acute hyperinsulinaemia and hyperlipidaemia modify circulating adiponectin and its oligomers.

    Science.gov (United States)

    Bobbert, Thomas; Weicht, Jessica; Mai, Knut; Möhlig, Matthias; Pfeiffer, Andreas F H; Spranger, Joachim

    2009-10-01

    Obesity and insulin resistance are associated with low adiponectin levels, although adiponectin is exclusively expressed in white adipose tissue. The mechanism beyond that paradox is not entirely clear, although insulin itself may reduce circulating adiponectin levels. However, obesity is also associated with hyperlipidaemia and the effects of free fatty acids (FFAs) and triglycerides (TG) on circulating adiponectin levels have not yet been investigated. We analysed the effect of an acute and euglycaemic elevation of insulin on adiponectin oligomers in 23 healthy individuals. In a subgroup including 11 healthy men, FFAs and TG were acutely elevated by infusion of heparin/lipids over 120 min. Again the effect on circulating adiponectin and its oligomers was investigated. Adiponectin was determined by ELISA, oligomers were detected by nondenaturating Western blot. Acute hyperinsulinaemia resulted in a significant reduction of total adiponectin to 7.74 +/- 0.98 microg/ml (P = 0.004). High molecular weight (HMW) adiponectin did not change (0.80 +/- 0.12 to 0.81 +/- 0.14 microg/ml; P = 0.887), whereas MMW adiponectin decreased from 4.30 +/- 0.51 to 3.78 +/- 0.48 microg/ml (P = 0.005) and LMW adiponectin from 3.63 +/- 0.42 to 3.15 +/- 0.46 microg/ml (P = 0.048). Interestingly, heparin/lipid infusion also reduced circulating adiponectin levels (P = 0.001), which was primarily the result of reduced MMW adiponectin (P = 0.004), whereas LMW and HMW were not significantly affected. The presented data suggest that both, hyperinsulinaemia and hyperlipidaemia, may contribute to low adiponectin levels in states of obesity.

  11. Expression of enzymes in yeast for lignocellulose derived oligomer CBP

    Energy Technology Data Exchange (ETDEWEB)

    McBride, John E.; Wiswall, Erin; Shikhare, Indraneel; Xu, Haowen; Thorngren, Naomi; Hau, Heidi H.; Stonehouse, Emily

    2017-08-29

    The present invention provides a multi-component enzyme system that hydrolyzes hemicellulose oligomers from hardwood which can be expressed, for example, in yeast such as Saccharomyces cerevisiae. In some embodiments, this invention provides for the engineering of a series of biocatalysts combining the expression and secretion of components of this enzymatic system with robust, rapid xylose utilization, and ethanol fermentation under industrially relevant process conditions for consolidated bioprocessing. In some embodiments, the invention utilizes co-cultures of strains that can achieve significantly improved performance due to the incorporation of additional enzymes in the fermentation system.

  12. Structural Transitions of Solvent-Free Oligomer-Grafted Nanoparticles

    KAUST Repository

    Chremos, Alexandros

    2011-09-01

    Novel structural transitions of solvent-free oligomer-grafted nanoparticles are investigated by using molecular dynamics simulations of a coarse-grained bead-spring model. Variations in core size and grafting density lead to self-assembly of the nanoparticles into a variety of distinct structures. At the boundaries between different structures, the nanoparticle systems undergo thermoreversible transitions. This structural behavior, which has not been previously reported, deviates significantly from that of simple liquids. The reversible nature of these transitions in solvent-free conditions offers new ways to control self-assembly of nanoparticles at experimentally accessible conditions. © 2011 American Physical Society.

  13. Concurrent chemoradiotherapy comparison of taxanes and platinum versus 5-fluorouracil and platinum in nasopharyngeal carcinoma treatment

    Institute of Scientific and Technical Information of China (English)

    Chen Xichuang; Hong Yuan; Feng Jinhua; Ye Jianlin; Zheng Panpan; Guan Xiyin; You Xiaohong

    2014-01-01

    Background Nasopharyngeal carcinoma (NPC) is a squamous-cell carcinoma especially prevailing among the natives of southern China.The regimen of concurrent chemoradiotherapy (CCRT) that include platinum and 5-fluorouracil (5-FU)is considered to be the standard treatment for NPC.However,its clinical use is limited by its toxicity.Our purpose was to evaluate the efficacy and safety of the regimen of CCRT with taxanes and platinum versus the regimen of CCRT with 5-FU and platinum in NPC treatment.Methods Medline,the Cochrane library,and the Chinese medical literature database were searched for eligible studies.Meta-analysis was performed using Review Manager (Version 5.2).Results Six random controlled trials (RCTs) including 514 patients met our criteria.Meta-analysis showed that the regimen of CCRT with taxanes and platinum had an improved significant difference in complete remission (CR) and less incidence rate in adverse reactions such as gastrointestinal impairment grades Ⅲll-Ⅳ,liver and kidney impairment grades Ⅰ-Ⅱ,and radiodermatitis grades Ⅲ-Ⅳ versus the conventional regimen of CCRT with 5-FU and platinum,while the long-term effectiveness rate of overall survival,Iocoregional failure-free survival,or distant metastasis failure-free survival between the two groups was therapeutic equivalence.Conclusions The regimen of CCRT with taxanes and platinum in NPC therapy may be more efficient and safe compared to the conventional modality of 5-FU and platinum in CCRT.However,we need more high-quality studies of multi-center and randomized double-blind clinical trials to further compare,analyze,and confirm the findings.

  14. Chromophores and Materials for Temporal and Frequency Agile Non-Linear Absorption

    Science.gov (United States)

    2014-05-31

    S. Synthesis and Photophyscial Properties of Trans-Platinum Acetylide Complexes Featuring N- Heterocyclic Carbene Ligands. Dalton Transactions 2014...Effects on Two-Photon Absorbing Platinum Acetylides. submitted to Inorganic Chemistry . (7) Shelton, A. H.; Price, R. S.; Brokmann, L.; Dettlaff, B

  15. Lipid raft disruption protects mature neurons against amyloid oligomer toxicity.

    Science.gov (United States)

    Malchiodi-Albedi, Fiorella; Contrusciere, Valentina; Raggi, Carla; Fecchi, Katia; Rainaldi, Gabriella; Paradisi, Silvia; Matteucci, Andrea; Santini, Maria Teresa; Sargiacomo, Massimo; Frank, Claudio; Gaudiano, Maria Cristina; Diociaiuti, Marco

    2010-04-01

    A specific neuronal vulnerability to amyloid protein toxicity may account for brain susceptibility to protein misfolding diseases. To investigate this issue, we compared the effects induced by oligomers from salmon calcitonin (sCTOs), a neurotoxic amyloid protein, on cells of different histogenesis: mature and immature primary hippocampal neurons, primary astrocytes, MG63 osteoblasts and NIH-3T3 fibroblasts. In mature neurons, sCTOs increased apoptosis and induced neuritic and synaptic damages similar to those caused by amyloid beta oligomers. Immature neurons and the other cell types showed no cytotoxicity. sCTOs caused cytosolic Ca(2+) rise in mature, but not in immature neurons and the other cell types. Comparison of plasma membrane lipid composition showed that mature neurons had the highest content in lipid rafts, suggesting a key role for them in neuronal vulnerability to sCTOs. Consistently, depletion in gangliosides protected against sCTO toxicity. We hypothesize that the high content in lipid rafts makes mature neurons especially vulnerable to amyloid proteins, as compared to other cell types; this may help explain why the brain is a target organ for amyloid-related diseases.

  16. Amyloid oligomer structure characterization from simulations: A general method

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, Phuong H., E-mail: phuong.nguyen@ibpc.fr [Laboratoire de Biochimie Théorique, UPR 9080, CNRS Université Denis Diderot, Sorbonne Paris Cité IBPC, 13 rue Pierre et Marie Curie, 75005 Paris (France); Li, Mai Suan [Institute of Physics, Polish Academy of Sciences, Al. Lotnikow 32/46, 02-668 Warsaw (Poland); Derreumaux, Philippe, E-mail: philippe.derreumaux@ibpc.fr [Laboratoire de Biochimie Théorique, UPR 9080, CNRS Université Denis Diderot, Sorbonne Paris Cité IBPC, 13 rue Pierre et Marie Curie, 75005 Paris (France); Institut Universitaire de France, 103 Bvd Saint-Germain, 75005 Paris (France)

    2014-03-07

    Amyloid oligomers and plaques are composed of multiple chemically identical proteins. Therefore, one of the first fundamental problems in the characterization of structures from simulations is the treatment of the degeneracy, i.e., the permutation of the molecules. Second, the intramolecular and intermolecular degrees of freedom of the various molecules must be taken into account. Currently, the well-known dihedral principal component analysis method only considers the intramolecular degrees of freedom, and other methods employing collective variables can only describe intermolecular degrees of freedom at the global level. With this in mind, we propose a general method that identifies all the structures accurately. The basis idea is that the intramolecular and intermolecular states are described in terms of combinations of single-molecule and double-molecule states, respectively, and the overall structures of oligomers are the product basis of the intramolecular and intermolecular states. This way, the degeneracy is automatically avoided. The method is illustrated on the conformational ensemble of the tetramer of the Alzheimer's peptide Aβ{sub 9−40}, resulting from two atomistic molecular dynamics simulations in explicit solvent, each of 200 ns, starting from two distinct structures.

  17. Amyloid oligomer structure characterization from simulations: a general method.

    Science.gov (United States)

    Nguyen, Phuong H; Li, Mai Suan; Derreumaux, Philippe

    2014-03-07

    Amyloid oligomers and plaques are composed of multiple chemically identical proteins. Therefore, one of the first fundamental problems in the characterization of structures from simulations is the treatment of the degeneracy, i.e., the permutation of the molecules. Second, the intramolecular and intermolecular degrees of freedom of the various molecules must be taken into account. Currently, the well-known dihedral principal component analysis method only considers the intramolecular degrees of freedom, and other methods employing collective variables can only describe intermolecular degrees of freedom at the global level. With this in mind, we propose a general method that identifies all the structures accurately. The basis idea is that the intramolecular and intermolecular states are described in terms of combinations of single-molecule and double-molecule states, respectively, and the overall structures of oligomers are the product basis of the intramolecular and intermolecular states. This way, the degeneracy is automatically avoided. The method is illustrated on the conformational ensemble of the tetramer of the Alzheimer's peptide Aβ9-40, resulting from two atomistic molecular dynamics simulations in explicit solvent, each of 200 ns, starting from two distinct structures.

  18. Broadband terahertz dynamics of propylene glycol monomer and oligomers

    Science.gov (United States)

    Koda, Shota; Mori, Tatsuya; Kojima, Seiji

    2016-12-01

    We investigated the broadband terahertz spectra (0.1-5.0 THz) of glass-forming liquids, propylene glycol (PG), its oligomers poly (propylene glycol)s (PPGs), and poly (propylene glycol) diglycidyl ether (PPG-de) using broadband terahertz time-domain spectroscopy and low-frequency Raman scattering. The numerical value of the dielectric loss at around 1.5 THz, which is the peak position of broad peaks in all samples, decreased as the molecular weight increased. Furthermore, the peak at around 1.5 THz is insensitive to the molecular weight. For PPGs, the side chain effect of the oligomer was observed in the terahertz region. Based on the experimental and calculation results for the PPGs and PPG-de, whose end groups are epoxy groups, the beginnings of the increases in the observed dielectric loss above 3.5 THz of the PPGs are assigned to the OH bending vibration. The higher value of the dielectric loss in the terahertz region for the PPG-de can be the tail of a broad peak located in the MHz region. The difference between the Raman susceptibility and dielectric loss reflects the difference in the observable molecular dynamics between the infrared and Raman spectroscopies.

  19. Charge Separation and Recombination in Small Band Gap Oligomer-Fullerene Triads

    NARCIS (Netherlands)

    Karsten, Bram P.; Bouwer, Ricardo K. M.; Hummelen, Jan C.; Williams, Rene M.; Janssen, Rene A. J.

    2010-01-01

    Synthesis and photophysics of a series of thiophene-thienopyrazine small band gap oligomers end-capped at both ends with C(60) are presented In these triads a photoinduced electron transfer reaction occurs between the oligomer as a donor and the fullerene as an acceptor Femtosecond photoinduced

  20. Amyloid-beta Oligomers Relate to Cognitive Decline in Alzheimer's Disease

    NARCIS (Netherlands)

    Jongbloed, W.; Bruggink, K.A.; Kester, M.I.; Visser, P.J.; Scheltens, P.; Blankenstein, M.A.; Verbeek, M.M.; Teunissen, C.E.; Veerhuis, R.

    2015-01-01

    BACKGROUND: Amyloid-beta (Abeta)-oligomers are neurotoxic isoforms of Abeta and are a potential diagnostic biomarker for Alzheimer's disease (AD). OBJECTIVES: 1) Analyze the potential of Abeta-oligomer concentrations in cerebrospinal fluid (CSF) to diagnose and predict progression to AD in a large c

  1. Tau oligomers impair memory and induce synaptic and mitochondrial dysfunction in wild-type mice

    Science.gov (United States)

    2011-01-01

    Background The correlation between neurofibrillary tangles of tau and disease progression in the brains of Alzheimer's disease (AD) patients remains an area of contention. Innovative data are emerging from biochemical, cell-based and transgenic mouse studies that suggest that tau oligomers, a pre-filament form of tau, may be the most toxic and pathologically significant tau aggregate. Results Here we report that oligomers of recombinant full-length human tau protein are neurotoxic in vivo after subcortical stereotaxic injection into mice. Tau oligomers impaired memory consolidation, whereas tau fibrils and monomers did not. Additionally, tau oligomers induced synaptic dysfunction by reducing the levels of synaptic vesicle-associated proteins synaptophysin and septin-11. Tau oligomers produced mitochondrial dysfunction by decreasing the levels of NADH-ubiquinone oxidoreductase (electron transport chain complex I), and activated caspase-9, which is related to the apoptotic mitochondrial pathway. Conclusions This study identifies tau oligomers as an acutely toxic tau species in vivo, and suggests that tau oligomers induce neurodegeneration by affecting mitochondrial and synaptic function, both of which are early hallmarks in AD and other tauopathies. These results open new avenues for neuroprotective intervention strategies of tauopathies by targeting tau oligomers. PMID:21645391

  2. Tau oligomers impair memory and induce synaptic and mitochondrial dysfunction in wild-type mice

    Directory of Open Access Journals (Sweden)

    Jackson George R

    2011-06-01

    Full Text Available Abstract Background The correlation between neurofibrillary tangles of tau and disease progression in the brains of Alzheimer's disease (AD patients remains an area of contention. Innovative data are emerging from biochemical, cell-based and transgenic mouse studies that suggest that tau oligomers, a pre-filament form of tau, may be the most toxic and pathologically significant tau aggregate. Results Here we report that oligomers of recombinant full-length human tau protein are neurotoxic in vivo after subcortical stereotaxic injection into mice. Tau oligomers impaired memory consolidation, whereas tau fibrils and monomers did not. Additionally, tau oligomers induced synaptic dysfunction by reducing the levels of synaptic vesicle-associated proteins synaptophysin and septin-11. Tau oligomers produced mitochondrial dysfunction by decreasing the levels of NADH-ubiquinone oxidoreductase (electron transport chain complex I, and activated caspase-9, which is related to the apoptotic mitochondrial pathway. Conclusions This study identifies tau oligomers as an acutely toxic tau species in vivo, and suggests that tau oligomers induce neurodegeneration by affecting mitochondrial and synaptic function, both of which are early hallmarks in AD and other tauopathies. These results open new avenues for neuroprotective intervention strategies of tauopathies by targeting tau oligomers.

  3. Amyloid-beta Oligomers Relate to Cognitive Decline in Alzheimer's Disease

    NARCIS (Netherlands)

    Jongbloed, W.; Bruggink, K.A.; Kester, M.I.; Visser, P.J.; Scheltens, P.; Blankenstein, M.A.; Verbeek, M.M.; Teunissen, C.E.; Veerhuis, R.

    2015-01-01

    BACKGROUND: Amyloid-beta (Abeta)-oligomers are neurotoxic isoforms of Abeta and are a potential diagnostic biomarker for Alzheimer's disease (AD). OBJECTIVES: 1) Analyze the potential of Abeta-oligomer concentrations in cerebrospinal fluid (CSF) to diagnose and predict progression to AD in a large

  4. Oligomer-fullerene dyads and triads as model compounds for bulk-heterojunction PV cells

    NARCIS (Netherlands)

    Janssen, R.A.J.; Peeters, E.; Langeveld-Voss, B.M.W.; Hal, P.A. van; Knol, J.; Hummelen, J.C.

    1999-01-01

    Covalent oligomer-fullerene donor-acceptor structures can serve as important model systems for plastic PV cells, based on interpenetrating networks of conjugated polymers and fullerene derivatives. Several series of [60]fullerene-oligomer dyads and triads were prepared. Photoinduced electron

  5. Photo-Electron Spectroscopy Study of Energy Levels in Conjugated Oligomers

    NARCIS (Netherlands)

    Veenstra, Sjoerd; Heeres, A.; Stalmach, U.; Wildeman, J.; Hadziioannou, G.; Sawatzky, G.A.; Jonkman, H.T.

    2002-01-01

    We report on the valence orbital structure of poly(para-phenylenevinylene) (PPV)-like oligomers. We studied these molecules as isolated oligomers in the gas phase, as well as in thin films deposited on metal substrates. We use a simple model based on a previously reported Hamiltonian that accurately

  6. Alzheimer's therapeutics targeting amyloid beta 1-42 oligomers I: Abeta 42 oligomer binding to specific neuronal receptors is displaced by drug candidates that improve cognitive deficits.

    Science.gov (United States)

    Izzo, Nicholas J; Staniszewski, Agnes; To, Lillian; Fa, Mauro; Teich, Andrew F; Saeed, Faisal; Wostein, Harrison; Walko, Thomas; Vaswani, Anisha; Wardius, Meghan; Syed, Zanobia; Ravenscroft, Jessica; Mozzoni, Kelsie; Silky, Colleen; Rehak, Courtney; Yurko, Raymond; Finn, Patricia; Look, Gary; Rishton, Gilbert; Safferstein, Hank; Miller, Miles; Johanson, Conrad; Stopa, Edward; Windisch, Manfred; Hutter-Paier, Birgit; Shamloo, Mehrdad; Arancio, Ottavio; LeVine, Harry; Catalano, Susan M

    2014-01-01

    Synaptic dysfunction and loss caused by age-dependent accumulation of synaptotoxic beta amyloid (Abeta) 1-42 oligomers is proposed to underlie cognitive decline in Alzheimer's disease (AD). Alterations in membrane trafficking induced by Abeta oligomers mediates reduction in neuronal surface receptor expression that is the basis for inhibition of electrophysiological measures of synaptic plasticity and thus learning and memory. We have utilized phenotypic screens in mature, in vitro cultures of rat brain cells to identify small molecules which block or prevent the binding and effects of Abeta oligomers. Synthetic Abeta oligomers bind saturably to a single site on neuronal synapses and induce deficits in membrane trafficking in neuronal cultures with an EC50 that corresponds to its binding affinity. The therapeutic lead compounds we have found are pharmacological antagonists of Abeta oligomers, reducing the binding of Abeta oligomers to neurons in vitro, preventing spine loss in neurons and preventing and treating oligomer-induced deficits in membrane trafficking. These molecules are highly brain penetrant and prevent and restore cognitive deficits in mouse models of Alzheimer's disease. Counter-screening these compounds against a broad panel of potential CNS targets revealed they are highly potent and specific ligands of the sigma-2/PGRMC1 receptor. Brain concentrations of the compounds corresponding to greater than 80% receptor occupancy at the sigma-2/PGRMC1 receptor restore cognitive function in transgenic hAPP Swe/Ldn mice. These studies demonstrate that synthetic and human-derived Abeta oligomers act as pharmacologically-behaved ligands at neuronal receptors--i.e. they exhibit saturable binding to a target, they exert a functional effect related to their binding and their displacement by small molecule antagonists blocks their functional effect. The first-in-class small molecule receptor antagonists described here restore memory to normal in multiple AD models

  7. Alzheimer's therapeutics targeting amyloid beta 1-42 oligomers I: Abeta 42 oligomer binding to specific neuronal receptors is displaced by drug candidates that improve cognitive deficits.

    Directory of Open Access Journals (Sweden)

    Nicholas J Izzo

    Full Text Available Synaptic dysfunction and loss caused by age-dependent accumulation of synaptotoxic beta amyloid (Abeta 1-42 oligomers is proposed to underlie cognitive decline in Alzheimer's disease (AD. Alterations in membrane trafficking induced by Abeta oligomers mediates reduction in neuronal surface receptor expression that is the basis for inhibition of electrophysiological measures of synaptic plasticity and thus learning and memory. We have utilized phenotypic screens in mature, in vitro cultures of rat brain cells to identify small molecules which block or prevent the binding and effects of Abeta oligomers. Synthetic Abeta oligomers bind saturably to a single site on neuronal synapses and induce deficits in membrane trafficking in neuronal cultures with an EC50 that corresponds to its binding affinity. The therapeutic lead compounds we have found are pharmacological antagonists of Abeta oligomers, reducing the binding of Abeta oligomers to neurons in vitro, preventing spine loss in neurons and preventing and treating oligomer-induced deficits in membrane trafficking. These molecules are highly brain penetrant and prevent and restore cognitive deficits in mouse models of Alzheimer's disease. Counter-screening these compounds against a broad panel of potential CNS targets revealed they are highly potent and specific ligands of the sigma-2/PGRMC1 receptor. Brain concentrations of the compounds corresponding to greater than 80% receptor occupancy at the sigma-2/PGRMC1 receptor restore cognitive function in transgenic hAPP Swe/Ldn mice. These studies demonstrate that synthetic and human-derived Abeta oligomers act as pharmacologically-behaved ligands at neuronal receptors--i.e. they exhibit saturable binding to a target, they exert a functional effect related to their binding and their displacement by small molecule antagonists blocks their functional effect. The first-in-class small molecule receptor antagonists described here restore memory to normal in

  8. Alzheimer's Therapeutics Targeting Amyloid Beta 1–42 Oligomers I: Abeta 42 Oligomer Binding to Specific Neuronal Receptors Is Displaced by Drug Candidates That Improve Cognitive Deficits

    Science.gov (United States)

    Izzo, Nicholas J.; Staniszewski, Agnes; To, Lillian; Fa, Mauro; Teich, Andrew F.; Saeed, Faisal; Wostein, Harrison; Walko, Thomas; Vaswani, Anisha; Wardius, Meghan; Syed, Zanobia; Ravenscroft, Jessica; Mozzoni, Kelsie; Silky, Colleen; Rehak, Courtney; Yurko, Raymond; Finn, Patricia; Look, Gary; Rishton, Gilbert; Safferstein, Hank; Miller, Miles; Johanson, Conrad; Stopa, Edward; Windisch, Manfred; Hutter-Paier, Birgit; Shamloo, Mehrdad; Arancio, Ottavio; LeVine, Harry; Catalano, Susan M.

    2014-01-01

    Synaptic dysfunction and loss caused by age-dependent accumulation of synaptotoxic beta amyloid (Abeta) 1–42 oligomers is proposed to underlie cognitive decline in Alzheimer's disease (AD). Alterations in membrane trafficking induced by Abeta oligomers mediates reduction in neuronal surface receptor expression that is the basis for inhibition of electrophysiological measures of synaptic plasticity and thus learning and memory. We have utilized phenotypic screens in mature, in vitro cultures of rat brain cells to identify small molecules which block or prevent the binding and effects of Abeta oligomers. Synthetic Abeta oligomers bind saturably to a single site on neuronal synapses and induce deficits in membrane trafficking in neuronal cultures with an EC50 that corresponds to its binding affinity. The therapeutic lead compounds we have found are pharmacological antagonists of Abeta oligomers, reducing the binding of Abeta oligomers to neurons in vitro, preventing spine loss in neurons and preventing and treating oligomer-induced deficits in membrane trafficking. These molecules are highly brain penetrant and prevent and restore cognitive deficits in mouse models of Alzheimer's disease. Counter-screening these compounds against a broad panel of potential CNS targets revealed they are highly potent and specific ligands of the sigma-2/PGRMC1 receptor. Brain concentrations of the compounds corresponding to greater than 80% receptor occupancy at the sigma-2/PGRMC1 receptor restore cognitive function in transgenic hAPP Swe/Ldn mice. These studies demonstrate that synthetic and human-derived Abeta oligomers act as pharmacologically-behaved ligands at neuronal receptors - i.e. they exhibit saturable binding to a target, they exert a functional effect related to their binding and their displacement by small molecule antagonists blocks their functional effect. The first-in-class small molecule receptor antagonists described here restore memory to normal in multiple AD

  9. Remarkable NO oxidation on single supported platinum atoms.

    Science.gov (United States)

    Narula, Chaitanya K; Allard, Lawrence F; Stocks, G M; Moses-DeBusk, Melanie

    2014-11-28

    Our first-principles density functional theoretical modeling suggests that NO oxidation is feasible on fully oxidized single θ-Al2O3 supported platinum atoms via a modified Langmuir-Hinshelwood pathway. This is in contrast to the known decrease in NO oxidation activity of supported platinum with decreasing Pt particle size believed to be due to increased platinum oxidation. In order to validate our theoretical study, we evaluated single θ-Al2O3 supported platinum atoms and found them to exhibit remarkable NO oxidation activity. A comparison of turnover frequencies (TOF) of single supported Pt atoms with those of platinum particles for NO oxidation shows that single supported Pt atoms are as active as fully formed platinum particles. Thus, the overall picture of NO oxidation on supported Pt is that NO oxidation activity decreases with decreasing Pt particle size but accelerates when Pt is present only as single atoms.

  10. Synthesis of Bimetallic Platinum Nanoparticles for Biosensors

    Directory of Open Access Journals (Sweden)

    Gerard M. Leteba

    2013-08-01

    Full Text Available The use of magnetic nanomaterials in biosensing applications is growing as a consequence of their remarkable properties; but controlling the composition and shape of metallic nanoalloys is problematic when more than one precursor is required for wet chemistry synthesis. We have developed a successful simultaneous reduction method for preparation of near-spherical platinum-based nanoalloys containing magnetic solutes. We avoided particular difficulties in preparing platinum nanoalloys containing Ni, Co and Fe by the identification of appropriate synthesis temperatures and chemistry. We used transmission electron microscopy (TEM to show that our particles have a narrow size distribution, uniform size and morphology, and good crystallinity in the as-synthesized condition. Energy dispersive spectroscopy (EDS and X-ray diffraction (XRD confirms the coexistence of Pt with the magnetic solute in a face-centered cubic (FCC solid solution.

  11. Catalytic converters as a source of platinum

    Directory of Open Access Journals (Sweden)

    A. Fornalczyk

    2011-10-01

    Full Text Available The increase of Platinum Group Metals demand in automotive industry is connected with growing amount of cars equipped with the catalytic converters. The paper presents the review of available technologies during recycling process. The possibility of removing platinum from the used catalytic converters applying pyrometallurgical and hyrdometallurgical methods were also investigated. Metals such as Cu, Pb, Ca, Mg, Cd were used in the pyrometallurgical research (catalytic converter was melted with Cu, Pb and Ca or Mg and Cd vapours were blown through the whole carrier. In hydrometallurgical research catalytic converters was dissolved in aqua regia. Analysis of Pt contents in the carrier before and after the process was performed by means of atomic absorption spectroscopy. Obtained result were discussed.

  12. Examining the surfaces in used platinum catalysts

    Directory of Open Access Journals (Sweden)

    Trumić B.

    2009-01-01

    Full Text Available For the purpose of finding more advanced platinum catalyst manufacturing technologies and achieving a higher degree of ammonia oxidation, metallographic characterization has been done on the surface of catalyst gauzes and catalyst gripper gauzes made from platinum and palladium alloys. For the examined samples of gauzes as well as the cross section of the wires, a chemical analysis was provided. The purpose of this paper is the metallographic characterization of examined alloys carried out by way of electronic microscopic scanning, X-rays as well as chemical assays which contributed greatly to a better understanding of the surface deactivation, in other words a better consideration of structural changes occurring on the wire surface.

  13. Stability of Porous Platinum Nanoparticles: Combined In Situ TEM and Theoretical Study

    DEFF Research Database (Denmark)

    Chang, Shery L. Y.; Barnard, Amanda S.; Dwyer, Christian

    2012-01-01

    Porous platinum nanoparticles provide a route for the development of catalysts that use less platinum without sacrificing catalytic performance. Here, we examine porous platinum nanoparticles using a combination of in situ transmission electron microscopy and calculations based on a first...

  14. Preparation of Chito-Oligomers by Hydrolysis of Chitosan in the Presence of Zeolite as Adsorbent

    Directory of Open Access Journals (Sweden)

    Khalid A. Ibrahim

    2016-07-01

    Full Text Available An increasing interest has recently been shown to use chitin/chitosan oligomers (chito-oligomers in medicine and food fields because they are not only water-soluble, nontoxic, and biocompatible materials, but they also exhibit numerous biological properties, including antibacterial, antifungal, and antitumor activities, as well as immuno-enhancing effects on animals. Conventional depolymerization methods of chitosan to chito-oligomers are either chemical by acid-hydrolysis under harsh conditions or by enzymatic degradation. In this work, hydrolysis of chitosan to chito-oligomers has been achieved by applying adsorption-separation technique using diluted HCl in the presence of different types of zeolite as adsorbents. The chito-oligomers were retrieved from adsorbents and characterized by differential scanning calorimetry (DSC, liquid chromatography/mass spectroscopy (LC/MS, and ninhydrin test.

  15. Star-shaped tetrathiafulvalene oligomers towards the construction of conducting supramolecular assembly

    Science.gov (United States)

    Hasegawa, Masashi

    2015-01-01

    Summary The construction of redox-active supramolecular assemblies based on star-shaped and radially expanded tetrathiafulvalene (TTF) oligomers with divergent and extended conjugation is summarized. Star-shaped TTF oligomers easily self-aggregate with a nanophase separation to produce supramolecular structures, and their TTF units stack face-to-face to form columnar structures using the fastener effect. Based on redox-active self-organizing supramolecular structures, conducting nanoobjects are constructed by doping of TTF oligomers with oxidants after the formation of such nanostructures. Although radical cations derived from TTF oligomers strongly interact in solution to produce a mixed-valence dimer and π-dimer, it seems to be difficult to produce nanoobjects of radical cations different from those of neutral TTF oligomers. In some cases, however, radical cations form nanostructured fibers and rods by controlling the supramolecular assembly, oxidation states, and counter anions employed. PMID:26664579

  16. Redeposition of electrochemically dissolved platinum as nanoparticles on carbon

    DEFF Research Database (Denmark)

    Norgaard, C. F.; Stamatin, S. N.; Skou, E. M.

    2014-01-01

    Electrochemical dissolution of platinum has been proposed by several research groups as an environmentally friendly way to recover platinum from catalytic structures such as fuel cell electrodes. For the case of electrochemical dissolution of platinum in hydrochloric acid electrolyte, the present...... on carbon was then identified, quantified, and the particle size evaluated by powder X-ray diffraction, thermogravimetric analysis and cyclic voltammetry. Copyright (C) 2014, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved....

  17. Platinum germanium ordering in UPtGe

    Science.gov (United States)

    Hoffmann, Rolf-Dieter; Pöttgen, Rainer; Lander, Gerry H.; Rebizant, Jean

    2001-09-01

    The non-centrosymmetric structure of UPtGe was investigated by X-ray diffraction on both powders and single crystals: EuAuGe type, Imm2, a=432.86(5), b=718.81(8), c=751.66(9) pm, wR2=0.0738 for 399 F2 values and 22 variables. The platinum and germanium atoms form two-dimensional layers of puckered Pt 3Ge 3 hexagons with short PtGe intralayer distances of 252 and 253 pm. These condensed two-dimensionally infinite nets are interconnected to each other via weak PtPt contacts with bond distances of 300 pm. The two crystallographically independent uranium atoms are situated above and below the six-membered platinum-germanium rings. The U1 atoms have six closer germanium neighbors while the U2 atoms have six closer platinum neighbors. The group-subgroup relation with the KHg 2 type structure is presented.

  18. Preparation and Electrochemical Properties of Porous Platinum Electrode

    Institute of Scientific and Technical Information of China (English)

    HE Xin; CHEN Boxun; CHEN Qiao

    2012-01-01

    Porous platinum electrodes were prepared by adding YSZ,as an active material,in platinum paste.Relationship between microstructure and electrochemical performance of O2(g),Pt/YSZ electrode have been characterized by SEM and cyclic voltammetry.Results showed that the microstructure of platinum electrode is a significant impact on the cyclic voltammetry.With the increase of platinum electrode's porosity,the area of three-phase boundary of O2(g)/Pt/YSZ was increased.The electrochemical reactivity was also enhanced.These were presented as the increase of current density and cathode voltage in cyclic voltammetry.

  19. Controlled synthesis of porous platinum nanostructures for catalytic applications.

    Science.gov (United States)

    Cao, Yanqin; Zhang, Junwei; Yang, Yong; Huang, Zhengren; Long, Nguyen Viet; Nogami, Masayuki

    2014-02-01

    Porous platinum, that has outstanding catalytic and electrical properties and superior resistant characteristics to corrosion, has been widely applied in chemical, petrochemical, pharmaceutical, electronic, and automotive industries. As the catalytic activity and selectivity depend on the size, shape and structure of nanomaterials, the strategies for controlling these factors of platinum nanomaterials to get excellent catalytic properties are discussed. Here, recent advances in the design and preparation of various porous platinum nanostructures are reviewed, including wet-chemical synthesis, electro-deposition, galvanic replacement reaction and de-alloying technology. The applications of various platinum nanostructures are also discussed, especially in fuel cells.

  20. One-Step Synthesis of Precursor Oligomers for Organic Photovoltaics: A Comparative Study between Polymers and Small Molecules.

    Science.gov (United States)

    Li, Wei; Wang, Daojuan; Wang, Suhao; Ma, Wei; Hedström, Svante; James, David Ian; Xu, Xiaofeng; Persson, Petter; Fabiano, Simone; Berggren, Magnus; Inganäs, Olle; Huang, Fei; Wang, Ergang

    2015-12-16

    Two series of oligomers TQ and rhodanine end-capped TQ-DR were synthesized using a facile one-step method. Their optical, electrical, and thermal properties and photovoltaic performances were systematically investigated and compared. The TQ series of oligomers were found to be amorphous, whereas the TQ-DR series are semicrystalline. For the TQ oligomers, the results obtained in solar cells show that as the chain length of the oligomers increases, an increase in power conversion efficiency (PCE) is obtained. However, when introducing 3-ethylrhodanine into the TQ oligomers as end groups, the PCE of the TQ-DR series of oligomers decreases as the chain length increases. Moreover, the TQ-DR series of oligomers give much higher performances compared to the original amorphous TQ series of oligomers owing to the improved extinction coefficient (ε) and crystallinity afforded by the rhodanine. In particular, the highly crystalline oligomer TQ5-DR, which has the shortest conjugation length shows a high hole mobility of 0.034 cm(2) V(-1) s(-1) and a high PCE of 3.14%, which is the highest efficiency out of all of the six oligomers. The structure-property correlations for all of the oligomers and the TQ1 polymer demonstrate that structural control of enhanced intermolecular interactions and crystallinity is a key for small molecules/oligomers to achieve high mobilities, which is an essential requirement for use in OPVs.

  1. Amyloid β oligomers in Alzheimer's disease pathogenesis, treatment, and diagnosis.

    Science.gov (United States)

    Viola, Kirsten L; Klein, William L

    2015-02-01

    Protein aggregation is common to dozens of diseases including prionoses, diabetes, Parkinson's and Alzheimer's. Over the past 15 years, there has been a paradigm shift in understanding the structural basis for these proteinopathies. Precedent for this shift has come from investigation of soluble Aβ oligomers (AβOs), toxins now widely regarded as instigating neuron damage leading to Alzheimer's dementia. Toxic AβOs accumulate in AD brain and constitute long-lived alternatives to the disease-defining Aβ fibrils deposited in amyloid plaques. Key experiments using fibril-free AβO solutions demonstrated that while Aβ is essential for memory loss, the fibrillar Aβ in amyloid deposits is not the agent. The AD-like cellular pathologies induced by AβOs suggest their impact provides a unifying mechanism for AD pathogenesis, explaining why early stage disease is specific for memory and accounting for major facets of AD neuropathology. Alternative ideas for triggering mechanisms are being actively investigated. Some research favors insertion of AβOs into membrane, while other evidence supports ligand-like accumulation at particular synapses. Over a dozen candidate toxin receptors have been proposed. AβO binding triggers a redistribution of critical synaptic proteins and induces hyperactivity in metabotropic and ionotropic glutamate receptors. This leads to Ca(2+) overload and instigates major facets of AD neuropathology, including tau hyperphosphorylation, insulin resistance, oxidative stress, and synapse loss. Because different species of AβOs have been identified, a remaining question is which oligomer is the major pathogenic culprit. The possibility has been raised that more than one species plays a role. Despite some key unknowns, the clinical relevance of AβOs has been established, and new studies are beginning to point to co-morbidities such as diabetes and hypercholesterolemia as etiological factors. Because pathogenic AβOs appear early in the disease, they

  2. The fabrication of highly ordered silver nanodot patterns by platinum assisted nanoimprint lithography

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Hae-Wook; Jung, Jin-Mi; Lee, Su-kyung; Jung, Hee-Tae, E-mail: heetae@kaist.ac.kr [Department of Chemical and Biomolecular Engineering (BK-21), Korea Advanced Institute of Science and Technology, Daejeon 305-701 (Korea, Republic of)

    2011-03-04

    Silver has been widely used for optical sensing and imaging applications which benefit from localized surface plasmon resonance (LSPR) in a nanoscale configuration. Many attempts have been made to fabricate and control silver nanostructures in order to improve the high performance in sensing and other applications. However, a fatal mechanical weakness of silver and a lack of durability in oxygen-rich conditions have disrupted the manufacturing of reproducible nanostructures by the top-down lithography approach. In this study, we suggest a steady fabrication strategy to obtain highly ordered silver nanopatterns that are able to provide tunable LSPR characteristics. By using a protecting layer of platinum on a silver surface in the lithography process, we successfully obtained large-area (2.7 x 2.7 mm{sup 2}) silver nanopatterns with high reproducibility. This large-area silver nanopattern was capable of enhancing the low concentration of a Cy3 fluorescence signal ({approx}10{sup -10} M) which was labeled with DNA oligomers.

  3. How much platinum passes the placental barrier? Analysis of platinum applications in 21 patients with cervical cancer during pregnancy.

    Science.gov (United States)

    Köhler, Christhardt; Oppelt, Peter; Favero, Giovanni; Morgenstern, Bernd; Runnebaum, Ingo; Tsunoda, Audrey; Schmittel, Alexander; Schneider, Achim; Mueller, Michael; Marnitz, Simone

    2015-08-01

    Cervical cancer is the most common solid cancer diagnosed in pregnancy. Platinum is an active drug in the treatment of patients with cervical cancer. In the second and third trimesters, platinum is used to prevent cancer progression until fetal maturity is reached. However, knowledge about the transplacental passage of platinum is very limited. Between May 2008 and June 2014, platinum-based neoadjuvant chemotherapy was applied to 21 consecutive patients with cervical cancer diagnosed in their second trimester. At the time of delivery by cesarean delivery, synchronous samples from maternal blood, umbilical cord blood, and amniotic fluid were taken and analyzed for platinum concentrations. The mean week of gestation at cancer diagnosis was 17 (13-23). On average 3 (range, 2-4) cycles of chemotherapy were applied. Cesarean deliveries were carried out between 30.4 and 36.5 weeks of gestation. Twenty-two healthy babies without renal, hepatic, auditory, or hematopoietic impairment were delivered. Platinum concentrations in umbilical cord blood and amniotic fluid were 23-65% and 11-42% of the maternal blood, respectively. This series on in vivo measurement of platinum concentrations in the fetomaternal compartment observed that because of consistently lower platinum values in the fetoplacental unit, a placental filtration mechanism of platinum may be assumed. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Distortion of ethyne on coordination to silver acetylide, C{sub 2}H{sub 2}⋅⋅⋅AgCCH, characterised by broadband rotational spectroscopy and ab initio calculations

    Energy Technology Data Exchange (ETDEWEB)

    Stephens, Susanna L.; Zaleski, Daniel P.; Walker, Nicholas R., E-mail: nick.walker@newcastle.ac.uk, E-mail: a.c.legon@bristol.ac.uk [School of Chemistry, Bedson Building, Newcastle University, Newcastle upon Tyne, Tyne and Wear NE1 7RU (United Kingdom); Mizukami, Wataru; Tew, David P.; Legon, Anthony C., E-mail: nick.walker@newcastle.ac.uk, E-mail: a.c.legon@bristol.ac.uk [School of Chemistry, University of Bristol, Bristol BS8 1TS (United Kingdom)

    2014-03-28

    The rotational spectra of six isotopologues of a complex of ethyne and silver acetylide, C{sub 2}H{sub 2}⋅⋅⋅AgCCH, are measured by both chirped-pulse and Fabry-Perot cavity versions of Fourier-transform microwave spectroscopy. The complex is generated through laser ablation of a silver target in the presence of a gas sample containing 1% C{sub 2}H{sub 2}, 1% SF{sub 6}, and 98% Ar undergoing supersonic expansion. Rotational, A{sub 0}, B{sub 0}, C{sub 0}, and centrifugal distortion Δ{sub J} and Δ{sub JK} constants are determined for all isotopologues of C{sub 2}H{sub 2}⋅⋅⋅AgCCH studied. The geometry is planar, C{sub 2v} and T-shaped in which the C{sub 2}H{sub 2} sub-unit comprises the bar of the “T” and binds to the metal atom through its π electrons. In the r{sub 0} geometry, the distance of the Ag atom from the centre of the triple bond in C{sub 2}H{sub 2} is 2.2104(10) Å. The r(HC≡CH) parameter representing the bond distance separating the two carbon atoms and the angle, ∠(CCH), each defined within the C{sub 2}H{sub 2} sub-unit, are determined to be 1.2200(24) Å and 186.0(5)°, respectively. This distortion of the linear geometry of C{sub 2}H{sub 2} involves the hydrogen atoms moving away from the silver atom within the complex. The results thus reveal that the geometry of C{sub 2}H{sub 2} changes measurably on coordination to AgCCH. A value of 59(4) N m{sup −1} is determined for the intermolecular force constant, k{sub σ}, confirming that the complex is significantly more strongly bound than hydrogen and halogen-bonded analogues. Ab initio calculations of the r{sub e} geometry at the CCSD(T)(F12{sup *})/ACVTZ level of theory are consistent with the experimental results. The spectra of the {sup 107}Ag{sup 13}C{sup 13}CH and {sup 109}Ag{sup 13}C{sup 13}CH isotopologues of free silver acetylide are also measured for the first time allowing the geometry of the AgCCH monomer to be examined in greater detail than previously.

  5. Formation of RNA oligomers on montmorillonite: site of catalysis

    Science.gov (United States)

    Ertem, G.; Ferris, J. P.

    1998-01-01

    Certain montmorillonites catalyze the self condensation of the 5'-phosphorimidazolide of nucleosides in pH 8 aqueous electrolyte solutions at ambient temperatures leading to formation of RNA oligomers. In order to establish the nature of the sites on montmorillonite responsible for this catalytic activity, oligomerization reactions were run with montmorillonites which had been selectively modified (I) at the edges by (a) fluoride treatment, (b) silylation, (c) metaphosphate treatment of the anion exchange sites (II) in the interlayer by (a) saturation with quaternary alkylammonium ions of increasing size, (b) aluminum polyoxo cations. High pressure liquid chromatography, HPLC, analysis of condensation products for their chain lengths and yields indicated that modification at the edges did not affect the catalytic activity to a significant extent, while blocking the interlayer strongly inhibited product formation.

  6. Tau oligomers and fibrils induce activation of microglial cells.

    Science.gov (United States)

    Morales, Inelia; Jiménez, José M; Mancilla, Marcela; Maccioni, Ricardo B

    2013-01-01

    Neuroinflammation is a process related to the onset of several neurodegenerative disorders, including Alzheimer's disease (AD). Increasing sets of evidence support the major role of deregulation of the interaction patterns between glial cells and neurons in the pathway toward neuronal degeneration, a process we are calling neuroimmunomodulation in AD. On the basis of the hypothesis that pathological tau aggregates induce microglial activation with the subsequent events of the neuroinflammatory cascade, we have studied the effects of tau oligomeric species and filamentous structures over microglial cells in vitro. Tau oligomers and fibrils were induced by arachidonic acid and then their actions assayed upon addition to microglial cells. We showed activation of the microglia, with significant morphological alterations as analyzed by immunofluorescence. The augmentation of nitrites and the proinflammatory cytokine IL-6 was evaluated in ELISA assays. Furthermore, conditioned media of stimulated microglia cells were exposed to hippocampal neurons generating altered patterns in these cells, including shortening of neuritic processes and cytoskeleton reorganization.

  7. Diffusivities and Viscosities of Poly(ethylene oxide) Oligomers

    KAUST Repository

    Hong, Bingbing

    2010-10-14

    Diffusivities and viscosities of poly(ethylene oxide) (PEO) oligomer melts with 1 to 12 repeat units have been obtained from equilibrium molecular dynamics simulations using the TraPPE-UA force field. The simulations generated diffusion coefficients with high accuracy for all of the molar masses studied, but the statistical uncertainties in the viscosity calculations were significantly larger for longer chains. There is good agreement of the calculated viscosities and densities with available experimental data, and thus, the simulations can be used to bridge gaps in the data and for extrapolations with respect to chain length, temperature, and pressure. We explored the convergence characteristics of the Green-Kubo formulas for different chain lengths and propose minimal production times required for convergence of the transport properties. The chain-length dependence of the transport properties suggests that neither Rouse nor reptation models are applicable in the short-chain regime investigated. © 2010 American Chemical Society.

  8. Fluorene- and benzofluorene-cored oligomers as low threshold and high gain amplifying media

    Energy Technology Data Exchange (ETDEWEB)

    Kazlauskas, Karolis, E-mail: karolis.kazlauskas@ff.vu.lt; Kreiza, Gediminas; Bobrovas, Olegas; Adomėnienė, Ona; Adomėnas, Povilas; Juršėnas, Saulius [Institute of Applied Research, Vilnius University, Saulėtekio 9-III, LT-10222 Vilnius (Lithuania); Jankauskas, Vygintas [Department of Solid State Electronics, Vilnius University, Saulėtekio 9-III, LT-10222 Vilnius (Lithuania)

    2015-07-27

    Deliberate control of intermolecular interactions in fluorene- and benzofluorene-cored oligomers was attempted via introduction of different-length alkyl moieties to attain high emission amplification and low amplified spontaneous emission (ASE) threshold at high oligomer concentrations. Containing fluorenyl peripheral groups decorated with different-length alkyl moieties, the oligomers were found to express weak concentration quenching of emission, yet excellent carrier drift mobilities (close to 10{sup −2} cm{sup 2}/V/s) in the amorphous films. Owing to the larger radiative decay rates (>1.0 × 10{sup 9 }s{sup −1}) and smaller concentration quenching, fluorene-cored oligomers exhibited down to one order of magnitude lower ASE thresholds at higher concentrations as compared to those of benzofluorene counterparts. The lowest threshold (300 W/cm{sup 2}) obtained for the fluorene-cored oligomers at the concentration of 50 wt % in polymer matrix is among the lowest reported for solution-processed amorphous films in ambient conditions, what makes the oligomers promising for lasing application. Great potential in emission amplification was confirmed by high maximum net gain (77 cm{sup −1}) revealed for these compounds. Although the photostability of the oligomers was affected by photo-oxidation, it was found to be comparable to that of various organic lasing materials including some commercial laser dyes evaluated under similar excitation conditions.

  9. SYNTHESIS, CHARACTERIZATION AND RING-OPENING POLYMERIZATION OF CYCLIC (ARYLENE PHOSPHONATE) OLIGOMERS

    Institute of Scientific and Technical Information of China (English)

    Hong-ming Zhang; Qing-zhong Guo; Tian-lu Chen

    2004-01-01

    A series of cyclic (arylene phosphonate) oligomers were prepared by reaction of phenylphosphonic dichloride (PPD) with various bisphenols under pseudo-high dilution conditions via interfacial polycondensation. The yield of cyclic (arylenc phosphonate) oligomers is over 85% by using hexadecyltrimethylammonium bromide as phase transfer catalyst (PTC) at 0 ℃. The structures of the cyclic oligomers were confirmed by a combination of matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) and IR analysis. These cyclic oligomers undergo facile ring-opening polymerization in the melt by using potassium 4,4'-biphenoxide as the initiator to give linear polyphosphonate. Free-radical ring-opening polymerization of cyclic(arylene phosphonate) oligomers containing sulfur linkages was also performed in the melt using 2,2'-dithiobis(benzothiazole) (DTB) as the initiator at 270℃ and the resulting polymer had a Mw of 8 × 103 with a molecular weight distribution of 4. Ring-opening copolymerization of these cyclic oligomers with cyclic carbonate oligomers was also achieved. The average molecular weight of the resulting copolymer is higher than the corresponding homopolymer and the thermal stability of the copolymer is better than the corresponding homopolymer.

  10. Conformational stability of fibrillar amyloid-beta oligomers via protofilament pair formation - a systematic computational study.

    Science.gov (United States)

    Kahler, Anna; Sticht, Heinrich; Horn, Anselm H C

    2013-01-01

    Amyloid-[Formula: see text] (A[Formula: see text]) oligomers play a crucial role in Alzheimer's disease due to their neurotoxic aggregation properties. Fibrillar A[Formula: see text] oligomerization can lead to protofilaments and protofilament pairs via oligomer elongation and oligomer association, respectively. Small fibrillar oligomers adopt the protofilament topology, whereas fibrils contain at least protofilament pairs. To date, the underlying growth mechanism from oligomers to the mature fibril still remains to be elucidated. Here, we performed all-atom molecular dynamics simulations in explicit solvent on single layer-like protofilaments and fibril-like protofilament pairs of different size ranging from the tetramer to the 48-mer. We found that the initial U-shaped topology per monomer is maintained over time in all oligomers. The observed deviations of protofilaments from the starting structure increase significantly with size due to the twisting of the in-register parallel [Formula: see text]-sheets. This twist causes long protofilaments to be unstable and leads to a breakage. Protofilament pairs, which are stabilized by a hydrophobic interface, exhibit more fibril-like properties such as the overall structure and the twist angle. Thus, they can act as stable conformational templates for further fibril growth. Key properties like the twist angle, shape complementarity, and energetics show a size-dependent behavior so that small oligomers favor the protofilament topology, whereas large oligomers favor the protofilament pair topology. The region for this conformational transition is at the size of approximately twelve A[Formula: see text] monomers. From that, we propose the following growth mechanism from A[Formula: see text] oligomers to fibrils: (1) elongation of short protofilaments; (2) breakage of large protofilaments; (3) formation of short protofilament pairs; and (4) elongation of protofilament pairs.

  11. Conformational stability of fibrillar amyloid-beta oligomers via protofilament pair formation - a systematic computational study.

    Directory of Open Access Journals (Sweden)

    Anna Kahler

    Full Text Available Amyloid-[Formula: see text] (A[Formula: see text] oligomers play a crucial role in Alzheimer's disease due to their neurotoxic aggregation properties. Fibrillar A[Formula: see text] oligomerization can lead to protofilaments and protofilament pairs via oligomer elongation and oligomer association, respectively. Small fibrillar oligomers adopt the protofilament topology, whereas fibrils contain at least protofilament pairs. To date, the underlying growth mechanism from oligomers to the mature fibril still remains to be elucidated. Here, we performed all-atom molecular dynamics simulations in explicit solvent on single layer-like protofilaments and fibril-like protofilament pairs of different size ranging from the tetramer to the 48-mer. We found that the initial U-shaped topology per monomer is maintained over time in all oligomers. The observed deviations of protofilaments from the starting structure increase significantly with size due to the twisting of the in-register parallel [Formula: see text]-sheets. This twist causes long protofilaments to be unstable and leads to a breakage. Protofilament pairs, which are stabilized by a hydrophobic interface, exhibit more fibril-like properties such as the overall structure and the twist angle. Thus, they can act as stable conformational templates for further fibril growth. Key properties like the twist angle, shape complementarity, and energetics show a size-dependent behavior so that small oligomers favor the protofilament topology, whereas large oligomers favor the protofilament pair topology. The region for this conformational transition is at the size of approximately twelve A[Formula: see text] monomers. From that, we propose the following growth mechanism from A[Formula: see text] oligomers to fibrils: (1 elongation of short protofilaments; (2 breakage of large protofilaments; (3 formation of short protofilament pairs; and (4 elongation of protofilament pairs.

  12. Modelling Ser129 phosphorylation inhibits membrane binding of pore-forming alpha-synuclein oligomers.

    Directory of Open Access Journals (Sweden)

    Georg Sebastian Nübling

    Full Text Available BACKGROUND: In several neurodegenerative diseases, hyperphosphorylation at position Ser129 is found in fibrillar deposits of alpha-synuclein (asyn, implying a pathophysiological role of asyn phosphorylation in neurodegeneration. However, recent animal models applying asyn phosphorylation mimics demonstrated a protective effect of phosphorylation. Since metal-ion induced asyn oligomers were identified as a potential neurotoxic aggregate species with membrane pore-forming abilities, the current study was undertaken to determine effects of asyn phosphorylation on oligomer membrane binding. METHODS: We investigated the influence of S129 phosphorylation on interactions of metal-ion induced asyn oligomers with small unilamellar lipid vesicles (SUV composed of POPC and DPPC applying the phosphorylation mimic asyn129E. Confocal single-particle fluorescence techniques were used to monitor membrane binding at the single-particle level. RESULTS: Binding of asyn129E monomers to gel-state membranes (DPPC-SUV is slightly reduced compared to wild-type asyn, while no interactions with membranes in the liquid-crystalline state (POPC-SUV are seen for both asyn and asyn129E. Conversely, metal-ion induced oligomer formation is markedly increased in asyn129E. Surprisingly, membrane binding to POPC-SUV is nearly absent in Fe(3+ induced asyn129E oligomers and markedly reduced in Al(3+ induced oligomers. CONCLUSION: The protective effect of pseudophosphorylation seen in animal models may be due to impeded oligomer membrane binding. Phosphorylation at Ser129 may thus have a protective effect against neurotoxic asyn oligomers by preventing oligomer membrane binding and disruption of the cellular electrophysiological equilibrium. Importantly, these findings put a new complexion on experimental pharmaceutical interventions against POLO-2 kinase.

  13. Modelling and sensitivity analysis of urinary platinum excretion in anticancer chemotherapy for the recovery of platinum

    DEFF Research Database (Denmark)

    Folens, Karel; Mortier, Séverine Thérèse F C; Baeten, Janis

    2016-01-01

    Platinum (Pt) based antineoplastics are important in cancer therapy. To date the Pt which is urinary excreted by the patients ends up in wastewater. This is disadvantageous from both an economic as from an ecological point of view because Pt is a valuable material and the excretion products are t...

  14. Exhaust system having a gold-platinum group metal catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Ragle, Christie Susan [Havana, IL; Silver, Ronald G [Peoria, IL; Zemskova, Svetlana Mikhailovna [Edelstein, IL; Eckstein, Colleen J [Metamora, IL

    2011-12-06

    A method of providing an exhaust treatment device is disclosed. The method includes applying a catalyst including gold and a platinum group metal to a particulate filter. The concentration of the gold and the platinum group metal is sufficient to enable oxidation of carbon monoxide and nitric oxide.

  15. Corrosion Studies of Platinum Nano-Particles for Fuel Cells

    DEFF Research Database (Denmark)

    Shim, Signe Sarah

    The main focus of the present thesis is on corrosion and prevention of corrosion of platinum particles supported on carbon. This is important for instance in connection with start up and shutdown of fuel cells. The degradation mechanism of platinum particles supported on carbon has been...

  16. Oligomers Solidification Depending on the Nature, Molecular Mass, Type and Reactional Group Containing

    Directory of Open Access Journals (Sweden)

    Vasiliyp. Medvedev

    2017-02-01

    Full Text Available The article is devoted to regularity defining of curing oligomers, and prepolymers with hydroxyl and isocyanate groups and double bonds reactive oligomers.The features of the spatial structure of elasticpolyurethane based oligomers and prepolymers with the definition of the physical and chemical bonds share, as well as the chain interval length between grid points were researched. The possibility of oligodiendiolecuring in the presence of a methacrylate component on the mechanism of radical polymerization was experimentally confirmed.To achieve the objectives rheokinetic method of analysis (rotational viscometer, thermometric and iodometric methods, IR spectroscopy, differential scanning calorimetrywere used.

  17. Electrochemical and optical properties of biphenyl bridged-dicarbazole oligomer films: Electropolymerization and electrochromism

    Energy Technology Data Exchange (ETDEWEB)

    Koyuncu, Sermet [Department of Chemistry, Faculty of Sciences and Arts, Canakkale Onsekiz Mart University, 17020 Canakkale (Turkey); Can Vocational School, Canakkale Onsekiz Mart University, 17400 Canakkale (Turkey)], E-mail: sermetkoyuncu@hotmail.com; Gultekin, Burak [Solar Energy Institute, Ege University, 35100 Bornova, Izmir (Turkey); Zafer, Ceylan [Solar Energy Institute, Ege University, 35100 Bornova, Izmir (Turkey)], E-mail: ceylan.zafer@ege.edu.tr; Bilgili, Hakan; Can, Mustafa; Demic, Serafettin [Solar Energy Institute, Ege University, 35100 Bornova, Izmir (Turkey); Kaya, Ismet [Department of Chemistry, Faculty of Sciences and Arts, Canakkale Onsekiz Mart University, 17020 Canakkale (Turkey); Icli, Siddik [Solar Energy Institute, Ege University, 35100 Bornova, Izmir (Turkey)

    2009-10-01

    4,4'-Di(N-carbazoyl)biphenyl monomer (CBP) was synthesized and coated onto ITO-glass surface by electrochemical oxidative polymerization. Its CV shows two distinct one-electron and stepwise oxidation processes occurred at 1.29 and 1.61 V. By using this property, the monomer was electrochemically polymerized separately at these oxidation states and thus, two different oligomer films were obtained afterwards. Their spectro-electrochemical and electrochromic properties were also investigated. Switching ability of the oligomers was evaluated by kinetic studies upon measuring the percent transmittance (%T) at their maximum contrast point, indicating that these oligomers were found to be suitable material for electrochromic devices.

  18. Platinum contamination issues in ferroelectric memories

    Science.gov (United States)

    Boubekeur, H.; Mikolajick, T.; Pamler, W.; Hopfner, J.; Frey, L.; Ryssel, H.

    2002-09-01

    The contamination risk of processing with platinum electrodes on device performance in ferroelectric memories is assessed in this work. Details of platinum diffusion to the active regions at annealing temperatures of 800 degC are investigated by secondary ion mass spectroscopy, deep level transient spectroscopy, and Rutherford backscattering spectrometry techniques. Cross sectional transmission electron microscopy and local elemental analysis by energy dispersive x-ray spectroscopy were used to examine the precipitation of Pt in defect free silicon as an eventual cause of gate oxide degradation. The impact of platinum contamination on device performance is evaluated under the typical ferroelectric memory processing conditions. Results from leakage current and charge to breakdown measurements of intentionally contaminated diode and metal-oxide-semiconductor (MOS) structures, respectively, are presented. The results show that the degradation depends strongly on device design and configuration. A phosphorus doped polysilicon plug, which has the function of connecting the select transistor to the capacitor module, provides effective gettering regions and prevents the diffusion of Pt atoms to the active regions. Under typical processing conditions, no evident Pt precipitates were observed and up to a concentration level of 4 x1014 atoms/cm2, the leakage current of intentionally contaminated diodes does not increase, if the contamination occurs after front-end phosphorus doped poly-Si processing. Results from constant current charge to breakdown show a small number of breakdown events due to redeposition of Pt at the periphery of the MOS structure. The risk of processing with Pt electrodes in ferroelectric memories requires great care. Precautions like sealing the back surface and incorporating phosphorus doped polysilicon as the plug material are necessary to avoid the detrimental effects of Pt.

  19. Coulombic free energy and salt ion association per phosphate of all-atom models of DNA oligomer: dependence on oligomer size.

    Science.gov (United States)

    Shkel, Irina A; Record, M Thomas

    2012-08-23

    We investigate how the coulombic Gibbs free energy and salt ion association per phosphate charge of DNA oligomers vary with oligomer size (i.e. number of charged residues ∣ZD∣) at 0.15 M univalent salt by non-linear Poisson Boltzmann (NLPB) analysis of all-atom DNA models. Calculations of these quantities ([Formula: see text], [Formula: see text]) are performed for short and long double-stranded (ds) and single-stranded (ss) DNA oligomers, ranging from 4 to 118 phosphates (ds) and from 2 to 59 phosphates (ss). Behaviors of [Formula: see text] and [Formula: see text] as functions of ∣ZD∣ provide a measure of the range of the coulombic end effect and determine the size of an oligomer at which an interior region with the properties (per charge) of the infinite-length polyelectrolyte first appears. This size (10-11 phosphates at each end for ds DNA and 6-9 for ss DNA at 0.15 M salt) is in close agreement with values obtained previously by Monte Carlo and NLPB calculations for cylindrical models of polyions, and by analysis of binding of oligocations to DNA oligomers. Differences in [Formula: see text] and in [Formula: see text] between ss and ds DNA are used to predict effects of oligomeric size and salt concentration on duplex stability in the vicinity of 0.15 M salt. Results of all-atom calculations are compared with results of less structurally detailed models and with experimental data.

  20. Platinum-induced neurotoxicity: A review of possible mechanisms.

    Science.gov (United States)

    Kanat, Ozkan; Ertas, Hulya; Caner, Burcu

    2017-08-10

    Patients treated with platinum-based chemotherapy frequently experience neurotoxic symptoms, which may lead to premature discontinuation of therapy. Despite discontinuation of platinum drugs, these symptoms can persist over a long period of time. Cisplatin and oxaliplatin, among all platinum drugs, have significant neurotoxic potential. A distal dose-dependent symmetrical sensory neuropathy is the most common presentation of platinum neurotoxicity. DNA damage-induced apoptosis of dorsal root ganglion (DRG) neurons seems to be the principal cause of neurological symptoms. However, DRG injury alone cannot explain some unique symptoms such as cold-aggravated burning pain affecting distal extremities that is observed with oxaliplatin administration. In this article, we briefly reviewed potential mechanisms for the development of platinum drugs-associated neurological manifestations.

  1. Under-Reported Aspects of Platinum Drug Pharmacology

    Directory of Open Access Journals (Sweden)

    Dirk Theile

    2017-02-01

    Full Text Available Platinum drugs remain the backbone of many antineoplastic regimens. Among the numerous chemical or pharmacological effects of platinum drugs, some aspects tend to be under-reported. Thus, this perspective paper intends to stress some neglected properties of platinum drugs: first, the physico-chemical characteristics (aquation reaction kinetics that determine site-specific toxicity; second, the impact on RNA molecules. Knowledge of the ‘RNA world’ has dramatically changed our understanding of cellular and molecular biology. The inherent RNA-crosslinking properties should make platinum-based drugs interact with coding and non-coding RNAs. Third, we will discuss the impact on the immune system, which is now recognized to substantially contribute to chemotherapy efficacy. Together, platinum drugs are in fact old drugs, but are worth re-focusing on. Many aspects are still mysterious but can pave the way to new drugs or an improved application of the already existing compounds.

  2. Diffusion of oligomers in latex systems A route to low volatile organic compound (VOC) coatings

    National Research Council Canada - National Science Library

    Fasano, David M; Fitzwater, Susan J; Lau, Willie; Sheppard, Aurelia C

    2010-01-01

    We synthesize specially designed latex polymer systems by an in situ emulsion polymerization process that yields latex particles with both a high molecular weight polymer phase and a low molecular weight oligomer phase...

  3. Direct Correlation Between Ligand-Induced α-Synuclein Oligomers and Amyloid-like Fibril Growth

    DEFF Research Database (Denmark)

    Pedersen, Martin Nors; Foderà, Vito; Horvath, Istvan

    2015-01-01

    Aggregation of proteins into amyloid deposits is the hallmark of several neurodegenerative diseases such as Alzheimer's and Parkinson's disease. The suggestion that intermediate oligomeric species may be cytotoxic has led to intensified investigations of pre-fibrillar oligomers, which...

  4. PHOTOPHYSICAL BEHAVIORS OF OLIGOMER BASED ON 1,1'-BINAPHTHOL WITH 3,3'-ACETYLENE SPACER

    Institute of Scientific and Technical Information of China (English)

    1998-01-01

    The photophysical behaviors of the oligomer based on 1,1'-binaphthol with 3,3'-acetylene spacer were investigated. The oligomer molecule has a naphthyl-acetylenenaphthyl effective conjugation segment. The atropic of the 1,1'-binaphthyl moiety led to twisted and rigid main chain in the oligomer. With the changes of the external environment such as solvents used, solvent viscosity and ambient temperature, the wavelengths of absorption and the intensities of fluorescence and absorption are changed slightly, but the fluorescent intensity and quantum yield can be influenced. The luminescent behaviors of the oligomer exhibit twisted intramolecular charge transfer characteristics, which could have a potential application in wavelength-stable light emitting material adaptable to ambient temperature and the solvents used in wide range.

  5. Salt anions promote the conversion of HypF-N into amyloid-like oligomers and modulate the structure of the oligomers and the monomeric precursor state.

    Science.gov (United States)

    Campioni, Silvia; Mannini, Benedetta; López-Alonso, Jorge P; Shalova, Irina N; Penco, Amanda; Mulvihill, Estefania; Laurents, Douglas V; Relini, Annalisa; Chiti, Fabrizio

    2012-12-07

    An understanding of the solution factors contributing to the rate of aggregation of a protein into amyloid oligomers, to the modulation of the conformational state populated prior to aggregation and to the structure/morphology of the resulting oligomers is one of the goals of present research in this field. We have studied the influence of six different salts on the conversion of the N-terminal domain of Escherichiacoli HypF (HypF-N) into amyloid-like oligomers under conditions of acidic pH. Our results show that salts having different anions (NaCl, NaClO(4), NaI, Na(2)SO(4)) accelerate oligomerization with an efficacy that follows the electroselectivity series of the anions (SO(4)(2-)≥ ClO(4)(-)>I(-)>Cl(-)). By contrast, salts with different cations (NaCl, LiCl, KCl) have similar effects. We also investigated the effect of salts on the structure of the final and initial states of HypF-N aggregation. The electroselectivity series does not apply to the effect of anions on the structure of the oligomers. By contrast, it applies to their effect on the content of secondary structure and on the exposure of hydrophobic clusters of the monomeric precursor state. The results therefore indicate that the binding of anions to the positively charged residues of HypF-N at low pH is the mechanism by which salts modulate the rate of oligomerization and the structure of the monomeric precursor state but not the structure of the resulting oligomers. Overall, the data contribute to rationalize the effect of salts on amyloid-like oligomer formation and to explain the role of charged biological macromolecules in protein aggregation processes.

  6. Bacterial resistance to antisense peptide phosphorodiamidate morpholino oligomers.

    Science.gov (United States)

    Puckett, Susan E; Reese, Kaleb A; Mitev, Georgi M; Mullen, Valerie; Johnson, Rudd C; Pomraning, Kyle R; Mellbye, Brett L; Tilley, Lucas D; Iversen, Patrick L; Freitag, Michael; Geller, Bruce L

    2012-12-01

    Peptide phosphorodiamidate morpholino oligomers (PPMOs) are synthetic DNA mimics that bind cRNA and inhibit bacterial gene expression. The PPMO (RFF)(3)RXB-AcpP (where R is arginine, F, phenylalanine, X is 6-aminohexanoic acid, B is β-alanine, and AcpP is acyl carrier protein) is complementary to 11 bases of the essential gene acpP (which encodes acyl carrier protein). The MIC of (RFF)(3)RXB-AcpP was 2.5 μM (14 μg/ml) in Escherichia coli W3110. The rate of spontaneous resistance of E. coli to (RFF)(3)RXB-AcpP was 4 × 10(-7) mutations/cell division. A spontaneous (RFF)(3)RXB-AcpP-resistant mutant (PR200.1) was isolated. The MIC of (RFF)(3)RXB-AcpP was 40 μM (224 μg/ml) for PR200.1. The MICs of standard antibiotics for PR200.1 and W3110 were identical. The sequence of acpP was identical in PR200.1 and W3110. PR200.1 was also resistant to other PPMOs conjugated to (RFF)(3)RXB or peptides with a similar composition or pattern of cationic and nonpolar residues. Genomic sequencing of PR200.1 identified a mutation in sbmA, which encodes an active transport protein. In separate experiments, a (RFF)(3)RXB-AcpP-resistant isolate (RR3) was selected from a transposome library, and the insertion was mapped to sbmA. Genetic complementation of PR200.1 or RR3 with sbmA restored susceptibility to (RFF)(3)RXB-AcpP. Deletion of sbmA caused resistance to (RFF)(3)RXB-AcpP. We conclude that resistance to (RFF)(3)RXB-AcpP was linked to the peptide and not the phosphorodiamidate morpholino oligomer, dependent on the composition or repeating pattern of amino acids, and caused by mutations in sbmA. The data further suggest that (RFF)(3)R-XB PPMOs may be transported across the plasma membrane by SbmA.

  7. Identification And Characterization Of Oligomers As Major Components Of Atmospheric Organic Aerosols

    Energy Technology Data Exchange (ETDEWEB)

    Kalberer, M. [ETH Zuerich (Switzerland); Paulsen, D. [PSI and ETH Zuerich (Switzerland); Sax, M. [ETH Zuerich and PSI (Switzerland); Steinbacher, M.; Dommen, J.; Prevot, A.S.H.; Fisseha, R.; Richter, R.; Weingartner, E.; Frankevich, V. [ETH Zuerich (Switzerland); Zenobi, R. [ETH Zuerich (Switzerland); Baltensperger, U.

    2005-03-01

    The chemical composition and volatility of organic aerosols formed during photo-oxidation of volatile organic compounds were measured in the PSI smog chamber. With mass spectrometric and aerosol volatility methods, oligomers were identified for the first time as main constituents of these organic aerosols. Measurements showed that oligomers account for about 50% of the aerosol mass after more than 20 hours of aging. (author)

  8. KCTD Hetero-oligomers Confer Unique Kinetic Properties on Hippocampal GABAB Receptor-Induced K+ Currents.

    Science.gov (United States)

    Fritzius, Thorsten; Turecek, Rostislav; Seddik, Riad; Kobayashi, Hiroyuki; Tiao, Jim; Rem, Pascal D; Metz, Michaela; Kralikova, Michaela; Bouvier, Michel; Gassmann, Martin; Bettler, Bernhard

    2017-02-01

    GABAB receptors are the G-protein coupled receptors for the main inhibitory neurotransmitter in the brain, GABA. GABAB receptors were shown to associate with homo-oligomers of auxiliary KCTD8, KCTD12, KCTD12b, and KCTD16 subunits (named after their T1 K(+)-channel tetramerization domain) that regulate G-protein signaling of the receptor. Here we provide evidence that GABAB receptors also associate with hetero-oligomers of KCTD subunits. Coimmunoprecipitation experiments indicate that two-thirds of the KCTD16 proteins in the hippocampus of adult mice associate with KCTD12. We show that the KCTD proteins hetero-oligomerize through self-interacting T1 and H1 homology domains. Bioluminescence resonance energy transfer measurements in live cells reveal that KCTD12/KCTD16 hetero-oligomers associate with both the receptor and the G-protein. Electrophysiological experiments demonstrate that KCTD12/KCTD16 hetero-oligomers impart unique kinetic properties on G-protein-activated Kir3 currents. During prolonged receptor activation (one min) KCTD12/KCTD16 hetero-oligomers produce moderately desensitizing fast deactivating K(+) currents, whereas KCTD12 and KCTD16 homo-oligomers produce strongly desensitizing fast deactivating currents and nondesensitizing slowly deactivating currents, respectively. During short activation (2 s) KCTD12/KCTD16 hetero-oligomers produce nondesensitizing slowly deactivating currents. Electrophysiological recordings from hippocampal neurons of KCTD knock-out mice are consistent with these findings and indicate that KCTD12/KCTD16 hetero-oligomers increase the duration of slow IPSCs. In summary, our data demonstrate that simultaneous assembly of distinct KCTDs at the receptor increases the molecular and functional repertoire of native GABAB receptors and modulates physiologically induced K(+) current responses in the hippocampus.

  9. Mitochondrial oligomers boost glycolysis in cancer stem cells to facilitate blebbishield-mediated transformation after apoptosis

    OpenAIRE

    Jinesh, GG; Molina, JR; Huang, L.; Laing, NM; Mills, GB; Bar-Eli, M; Kamat, AM

    2016-01-01

    Apoptosis culminates in secondary necrosis due to lack of ATP. Cancer stem cells form spheres after apoptosis by evoking the blebbishield emergency program. Hence, determining how blebbishields avoid secondary necrosis is crucial. Here we demonstrate that N-Myc and VEGFR2 control transformation from blebbishields, during which oligomers of K-Ras, p27, BAD, Bax, and Bak boost glycolysis to avoid secondary necrosis. Non-apoptotic cancer cells also utilize oligomers to boost glycolysis, which di...

  10. Distinct annular oligomers captured along the assembly and disassembly pathways of transthyretin amyloid protofibrils.

    Directory of Open Access Journals (Sweden)

    Ricardo H Pires

    Full Text Available BACKGROUND: Defects in protein folding may lead to severe degenerative diseases characterized by the appearance of amyloid fibril deposits. Cytotoxicity in amyloidoses has been linked to poration of the cell membrane that may involve interactions with amyloid intermediates of annular shape. Although annular oligomers have been detected in many amyloidogenic systems, their universality, function and molecular mechanisms of appearance are debated. METHODOLOGY/PRINCIPAL FINDINGS: We investigated with high-resolution in situ atomic force microscopy the assembly and disassembly of transthyretin (TTR amyloid protofibrils formed of the native protein by pH shift. Annular oligomers were the first morphologically distinct intermediates observed in the TTR aggregation pathway. Morphological analysis suggests that they can assemble into a double-stack of octameric rings with a 16 ± 2 nm diameter, and displaying the tendency to form linear structures. According to light scattering data coupled to AFM imaging, annular oligomers appeared to undergo a collapse type of structural transition into spheroid oligomers containing 8-16 monomers. Disassembly of TTR amyloid protofibrils also resulted in the rapid appearance of annular oligomers but with a morphology quite distinct from that observed in the assembly pathway. CONCLUSIONS/SIGNIFICANCE: Our observations indicate that annular oligomers are key dynamic intermediates not only in the assembly but also in the disassembly of TTR protofibrils. The balance between annular and more compact forms of aggregation could be relevant for cytotoxicity in amyloidogenic disorders.

  11. Genome-scale DNA sequence recognition by hybridization to short oligomers.

    Science.gov (United States)

    Milosavljević, A; Savković, S; Crkvenjakov, R; Salbego, D; Serrato, H; Kreuzer, H; Gemmell, A; Batus, S; Grujić, D; Carnahan, S; Tepavcević, J

    1996-01-01

    Recently developed hybridization technology (Drmanac et al. 1994) enables economical large-scale detection of short oligomers within DNA fragments. The newly developed recognition method (Milosavljević 1995b) enables comparison of lists of oligomers detected within DNA fragments against known DNA sequences. We here describe an experiment involving a set of 4,513 distinct genomic E.coli clones of average length 2kb, each hybridized with 636 randomly selected short oligomer probes. High hybridization signal with a particular probe was used as an indication of the presence of a complementary oligomer in the particular clone. For each clone, a list of oligomers with highest hybridization signals was compiled. The database consisting of 4,513 oligomer lists was then searched using known E.coli sequences as queries in an attempt to identify the clones that match the query sequence. Out of a total of 11 clones that were recognized at highest significance level by our method, 8 were single-pass sequenced from both ends. The single-pass sequenced ends were then compared against the query sequences. The sequence comparisons confirmed 7 out of the total of 8 examined recognitions. This experiment represents the first successful example of genome-scale sequence recognition based on hybridization data.

  12. Monofunctional and Higher-Valent Platinum Anticancer Agents

    Science.gov (United States)

    Johnstone, Timothy C.; Wilson, Justin J.

    2013-01-01

    Platinum compounds represent one of the great success stories of metals in medicine. Following the serendipitous discovery of the anticancer activity of cisplatin by Rosenberg, a large number of cisplatin variants have been prepared and tested for their ability to kill cancer cells and inhibit tumor growth. These efforts continue today with increased realization that new strategies are needed to overcome issues of toxicity and resistance inherent to treatment by the approved platinum anticancer agents. One approach has been the use of so-called “non-traditional” platinum(II) and platinum(IV) compounds that violate the structure-activity relationships that governed platinum drug-development research for many years. Another is the use of specialized drug delivery strategies. Here we describe recent developments from our laboratory involving monofunctional platinum(II) complexes together with an historical account of the manner by which we came to investigate these compounds and their relationship to previously studied molecules. We also discuss work carried out using platinum(IV) prodrugs and the development of nanoconstructs designed to deliver them in vivo. PMID:23738524

  13. Surface Analysis of 4-Aminothiophenol Adsorption at Polycrystalline Platinum Electrodes

    Science.gov (United States)

    Rosario-Castro, Belinda I.; Fachini, Estevao R.; Contes, Enid J.; Perez-Davis, Marla E.; Cabrera, Carlos R.

    2008-01-01

    Formation of self-assembled monolayer (SAM) of 4-aminothiophenol (4-ATP) on polycrystalline platinum electrodes has been studied by surface analysis and electrochemistry techniques. The 4-ATP monolayer was characterized by cyclic voltammetry (CV), Raman spectroscopy, reflection absorption infrared (RAIR) spectroscopy, and X-ray photoelectron spectroscopy (XPS). Cyclic voltammetry (CV) experiments give an idea about the packing quality of the monolayer. RAIR and Raman spectra for 4-ATP modified platinum electrodes showed the characteristic adsorption bands for neat 4-ATP indicating the adsorption of 4-ATP molecules on platinum surface. The adsorption on platinum was also evidenced by the presence of sulfur and nitrogen peaks by XPS survey spectra of the modified platinum electrodes. High resolution XPS studies and RAIR spectrum for platinum electrodes modified with 4-ATP indicate that molecules are sulfur-bonded to the platinum surface. The formation of S-Pt bond suggests that ATP adsorption gives up an amino terminated SAM. Thickness of the monolayer was evaluated via angle-resolved XPS (AR-XPS) analyses. Derivatization of 4-ATP SAM was performed using 16-Br hexadecanoic acid.

  14. Cisplatin and platinum drugs at the molecular level. (Review).

    Science.gov (United States)

    Boulikas, Teni; Vougiouka, Maria

    2003-01-01

    Over twenty years of intensive work toward improvement of cisplatin, and with hundreds of platinum drugs tested, has resulted in the introduction of the widely used carboplatin and of oxaliplatin used only for a very narrow spectrum of cancers. A number of interesting platinum compounds including the orally administered platinum drug JM216, nedaplatin, the sterically hindered platinum(II) complex ZD0473, the trinuclear platinum complex BBR3464, and the liposomal forms Lipoplatin and SPI-77 are under clinical evaluation. This review summarizes the molecular mechanisms of platinum compounds for DNA damage, DNA repair and induction of apoptosis via activation or modulation of signaling pathways and explores the basis of platinum resistance. Cisplatin, carboplatin, oxaliplatin and most other platinum compounds induce damage to tumors via induction of apoptosis; this is mediated by activation of signal transduction leading to the death receptor mechanisms as well as mitochondrial pathways. Apoptosis is responsible for the characteristic nephrotoxicity, ototoxicity and most other toxicities of the drugs. The major limitation in the clinical applications of cisplatin has been the development of cisplatin resistance by tumors. Mechanisms explaining cisplatin resistance include the reduction in cisplatin accumulation inside cancer cells because of barriers across the cell membrane, the faster repair of cisplatin adducts, the modulation of apoptotic pathways in various cells, the upregulation in transcription factors, the loss of p53 and other protein functions and a higher concentration of glutathione and metallothioneins in some type of tumors. A number of experimental strategies to overcome cisplatin resistance are at the preclinical or clinical level such as introduction of the bax gene, inhibition of the JNK pathway, introduction of a functional p53 gene, treatment of tumors with aldose reductase inhibitors and others. Particularly important are combinations of platinum

  15. Carboxybetaine methacrylate oligomer modified nylon for circulating tumor cells capture.

    Science.gov (United States)

    Dong, Chaoqun; Wang, Huiyu; Zhang, Zhuo; Zhang, Tao; Liu, Baorui

    2014-10-15

    Circulating tumor cells (CTC) capture is one of the most effective approaches in diagnosis and treatment of cancers in the field of personalized cancer medicine. In our study, zwitterionic carboxybetaine methacrylate (CBMA) oligomers were grafted onto nylon via atomic transfer random polymerization (ATRP) which would serve as a novel material for the development of convenient CTC capture interventional medical devices. The chemical, physical and biological properties of pristine and modified nylon surfaces were assessed by Fourier transform infrared spectra, atomic force microscope, water contact angle measurements, X-ray photoelectron spectroscopy, protein adsorption, platelet adhesion, and plasma recalcification time (PRT) determinations, etc. The results, including the significant decrease of proteins adsorption and platelets adhesion, as well as prolonged PRTs demonstrated the extraordinary biocompatibility and blood compatibility of the modified surface. Furthermore, we showed that upon immobilization of anti-epithelial cell adhesion molecular (anti-EpCAM) antibody onto the CBMA moiety, the modified nylon surface can selectively capture EpCAM positive tumor cells from blood with high efficiency, indicating the potential of the modified nylon in the manufacture of convenient interventional CTC capture medical devices.

  16. Oligomer formation of tau protein hyperphosphorylated in cells.

    Science.gov (United States)

    Tepper, Katharina; Biernat, Jacek; Kumar, Satish; Wegmann, Susanne; Timm, Thomas; Hübschmann, Sabrina; Redecke, Lars; Mandelkow, Eva-Maria; Müller, Daniel J; Mandelkow, Eckhard

    2014-12-05

    Abnormal phosphorylation ("hyperphosphorylation") and aggregation of Tau protein are hallmarks of Alzheimer disease and other tauopathies, but their causative connection is still a matter of debate. Tau with Alzheimer-like phosphorylation is also present in hibernating animals, mitosis, or during embryonic development, without leading to pathophysiology or neurodegeneration. Thus, the role of phosphorylation and the distinction between physiological and pathological phosphorylation needs to be further refined. So far, the systematic investigation of highly phosphorylated Tau was difficult because a reliable method of preparing reproducible quantities was not available. Here, we generated full-length Tau (2N4R) in Sf9 cells in a well defined phosphorylation state containing up to ∼20 phosphates as judged by mass spectrometry and Western blotting with phospho-specific antibodies. Despite the high concentration in living Sf9 cells (estimated ∼230 μm) and high phosphorylation, the protein was not aggregated. However, after purification, the highly phosphorylated protein readily formed oligomers, whereas fibrils were observed only rarely. Exposure of mature primary neuronal cultures to oligomeric phospho-Tau caused reduction of spine density on dendrites but did not change the overall cell viability. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  17. Oligomer Formation of Tau Protein Hyperphosphorylated in Cells*

    Science.gov (United States)

    Tepper, Katharina; Biernat, Jacek; Kumar, Satish; Wegmann, Susanne; Timm, Thomas; Hübschmann, Sabrina; Redecke, Lars; Mandelkow, Eva-Maria; Müller, Daniel J.; Mandelkow, Eckhard

    2014-01-01

    Abnormal phosphorylation (“hyperphosphorylation”) and aggregation of Tau protein are hallmarks of Alzheimer disease and other tauopathies, but their causative connection is still a matter of debate. Tau with Alzheimer-like phosphorylation is also present in hibernating animals, mitosis, or during embryonic development, without leading to pathophysiology or neurodegeneration. Thus, the role of phosphorylation and the distinction between physiological and pathological phosphorylation needs to be further refined. So far, the systematic investigation of highly phosphorylated Tau was difficult because a reliable method of preparing reproducible quantities was not available. Here, we generated full-length Tau (2N4R) in Sf9 cells in a well defined phosphorylation state containing up to ∼20 phosphates as judged by mass spectrometry and Western blotting with phospho-specific antibodies. Despite the high concentration in living Sf9 cells (estimated ∼230 μm) and high phosphorylation, the protein was not aggregated. However, after purification, the highly phosphorylated protein readily formed oligomers, whereas fibrils were observed only rarely. Exposure of mature primary neuronal cultures to oligomeric phospho-Tau caused reduction of spine density on dendrites but did not change the overall cell viability. PMID:25339173

  18. HAMLET forms annular oligomers when deposited with phospholipid monolayers.

    Science.gov (United States)

    Baumann, Anne; Gjerde, Anja Underhaug; Ying, Ming; Svanborg, Catharina; Holmsen, Holm; Glomm, Wilhelm R; Martinez, Aurora; Halskau, Oyvind

    2012-04-20

    Recently, the anticancer activity of human α-lactalbumin made lethal to tumor cells (HAMLET) has been linked to its increased membrane affinity in vitro, at neutral pH, and ability to cause leakage relative to the inactive native bovine α-lactalbumin (BLA) protein. In this study, atomic force microscopy resolved membrane distortions and annular oligomers (AOs) produced by HAMLET when deposited at neutral pH on mica together with a negatively charged lipid monolayer. BLA, BAMLET (HAMLET's bovine counterpart) and membrane-binding Peptide C, corresponding to BLA residues 75-100, also form AO-like structures under these conditions but at higher subphase concentrations than HAMLET. The N-terminal Peptide A, which binds to membranes at acidic but not at neutral pH, did not form AOs. This suggests a correlation between the capacity of the proteins/peptides to integrate into the membrane at neutral pH-as observed by liposome content leakage and circular dichroism experiments-and the formation of AOs, albeit at higher concentrations. Formation of AOs, which might be important to HAMLET's tumor toxic action, appears related to the increased tendency of the protein to populate intermediately folded states compared to the native protein, the formation of which is promoted by, but not uniquely dependent on, the oleic acid molecules associated with HAMLET. Copyright © 2012 Elsevier Ltd. All rights reserved.

  19. Simulation of force spectroscopy experiments on galacturonic acid oligomers.

    Directory of Open Access Journals (Sweden)

    Justyna Cybulska

    Full Text Available Pectins, forming a matrix for cellulose and hemicellulose, determine the mechanics of plant cell walls. They undergo salient structural changes during their development. In the presence of divalent cations, usually calcium, pectins can form gel-like structures. Because of their importance they have been the subject of many force spectroscopy experiments, which have examined the conformational changes and molecular tensions due to external forces. The most abundant unit present in the pectin backbone is polygalacturonic acid. Unfortunately, experimental force spectroscopy on polygalacturonic acid molecules is still not a trivial task. The mechanism of the single-molecule response to external forces can be inferred by theoretical methods. Therefore, in this work we simulated such force spectroscopy experiments using the Enforced Geometry Optimization (EGO method. We examined the oligomeric (up to hexamer structures of α-D-galacturonic acid exposed to external stretching forces. The EGO simulation of the force spectroscopy appropriately reproduced the experimental course of the enforced conformational transition: chair →inverted chair via the twisted boat conformation(s in the pyranose ring of α-D-galacturonic acid. Additionally, our theoretical approach also allowed to determine the minimum oligomer size adequate for the description of nano-mechanical properties of (poly-α-D-galacturonic acid.

  20. Simulation of force spectroscopy experiments on galacturonic acid oligomers.

    Science.gov (United States)

    Cybulska, Justyna; Brzyska, Agnieszka; Zdunek, Artur; Woliński, Krzysztof

    2014-01-01

    Pectins, forming a matrix for cellulose and hemicellulose, determine the mechanics of plant cell walls. They undergo salient structural changes during their development. In the presence of divalent cations, usually calcium, pectins can form gel-like structures. Because of their importance they have been the subject of many force spectroscopy experiments, which have examined the conformational changes and molecular tensions due to external forces. The most abundant unit present in the pectin backbone is polygalacturonic acid. Unfortunately, experimental force spectroscopy on polygalacturonic acid molecules is still not a trivial task. The mechanism of the single-molecule response to external forces can be inferred by theoretical methods. Therefore, in this work we simulated such force spectroscopy experiments using the Enforced Geometry Optimization (EGO) method. We examined the oligomeric (up to hexamer) structures of α-D-galacturonic acid exposed to external stretching forces. The EGO simulation of the force spectroscopy appropriately reproduced the experimental course of the enforced conformational transition: chair →inverted chair via the twisted boat conformation(s) in the pyranose ring of α-D-galacturonic acid. Additionally, our theoretical approach also allowed to determine the minimum oligomer size adequate for the description of nano-mechanical properties of (poly)-α-D-galacturonic acid.

  1. Unique copper-induced oligomers mediate alpha-synuclein toxicity.

    Science.gov (United States)

    Wright, Josephine A; Wang, Xiaoyan; Brown, David R

    2009-08-01

    Parkinson's disease and a number of other neurodegenerative diseases have been linked to either genetic mutations in the alpha-synuclein gene or show evidence of aggregates of the alpha-synuclein protein, sometimes in the form of Lewy bodies. There currently is no clear evidence of a distinct neurotoxic species of alpha-synuclein to explain the death of neurons in these diseases. We undertook to assess the toxicity of alpha-synuclein via exogenous application in cell culture. Initially, we showed that only aggregated alpha-synuclein is neurotoxic and requires the presence copper but not iron. Other members of the synuclein family showed no toxicity in any form and inherited point mutations did not alter the effective toxic concentration of alpha-synuclein. Through protein fractionation techniques, we were able to isolate an oligomeric species responsible for the toxicity of alpha-synuclein. This oligomeric species has a unique stellate appearance under EM and again, requires association with copper to induce cell death. The results allow us to suggest that the toxic species of alpha-synuclein in vivo could possibly be these stellate oligomers and not fibrils. Our data provide a link between the recently noted association of copper and alpha-synuclein and a potential role for the combination in causing neurodegeneration.

  2. Mapping eGFP oligomer mobility in living cell nuclei.

    Science.gov (United States)

    Dross, Nicolas; Spriet, Corentin; Zwerger, Monika; Müller, Gabriele; Waldeck, Waldemar; Langowski, Jörg

    2009-01-01

    Movement of particles in cell nuclei can be affected by viscosity, directed flows, active transport, or the presence of obstacles such as the chromatin network. Here we investigate whether the mobility of small fluorescent proteins is affected by the chromatin density. Diffusion of inert fluorescent proteins was studied in living cell nuclei using fluorescence correlation spectroscopy (FCS) with a two-color confocal scanning detection system. We first present experiments exposing FCS-specific artifacts encountered in live cell studies as well as strategies to prevent them, in particular those arising from the choice of the fluorophore used for calibration of the focal volume, as well as temperature and acquisition conditions used for fluorescence fluctuation measurements. After defining the best acquisition conditions, we show for various human cell lines that the mobility of GFP varies significantly within the cell nucleus, but does not correlate with chromatin density. The intranuclear diffusional mobility strongly depends on protein size: in a series of GFP-oligomers, used as free inert fluorescent tracers, the diffusion coefficient decreased from the monomer to the tetramer much more than expected for molecules free in aqueous solution. Still, the entire intranuclear chromatin network is freely accessible for small proteins up to the size of eGFP-tetramers, regardless of the chromatin density or cell line. Even the densest chromatin regions do not exclude free eGFP-monomers or multimers.

  3. Mapping eGFP oligomer mobility in living cell nuclei.

    Directory of Open Access Journals (Sweden)

    Nicolas Dross

    Full Text Available Movement of particles in cell nuclei can be affected by viscosity, directed flows, active transport, or the presence of obstacles such as the chromatin network. Here we investigate whether the mobility of small fluorescent proteins is affected by the chromatin density. Diffusion of inert fluorescent proteins was studied in living cell nuclei using fluorescence correlation spectroscopy (FCS with a two-color confocal scanning detection system. We first present experiments exposing FCS-specific artifacts encountered in live cell studies as well as strategies to prevent them, in particular those arising from the choice of the fluorophore used for calibration of the focal volume, as well as temperature and acquisition conditions used for fluorescence fluctuation measurements. After defining the best acquisition conditions, we show for various human cell lines that the mobility of GFP varies significantly within the cell nucleus, but does not correlate with chromatin density. The intranuclear diffusional mobility strongly depends on protein size: in a series of GFP-oligomers, used as free inert fluorescent tracers, the diffusion coefficient decreased from the monomer to the tetramer much more than expected for molecules free in aqueous solution. Still, the entire intranuclear chromatin network is freely accessible for small proteins up to the size of eGFP-tetramers, regardless of the chromatin density or cell line. Even the densest chromatin regions do not exclude free eGFP-monomers or multimers.

  4. Bio-inspired routes for synthesizing efficient nanoscale platinum electrocatalysts

    Energy Technology Data Exchange (ETDEWEB)

    Cha, Jennifer N. [Univ. of California, San Diego, CA (United States); Wang, Joseph [Univ. of California, San Diego, CA (United States)

    2014-08-31

    The overall objective of the proposed research is to use fundamental advances in bionanotechnology to design powerful platinum nanocrystal electrocatalysts for fuel cell applications. The new economically-viable, environmentally-friendly, bottom-up biochemical synthetic strategy will produce platinum nanocrystals with tailored size, shape and crystal orientation, hence leading to a maximum electrochemical reactivity. There are five specific aims to the proposed bio-inspired strategy for synthesizing efficient electrocatalytic platinum nanocrystals: (1) isolate peptides that both selectively bind particular crystal faces of platinum and promote the nucleation and growth of particular nanocrystal morphologies, (2) pattern nanoscale 2-dimensional arrays of platinum nucleating peptides from DNA scaffolds, (3) investigate the combined use of substrate patterned peptides and soluble peptides on nanocrystal morphology and growth (4) synthesize platinum crystals on planar and large-area carbon electrode supports, and (5) perform detailed characterization of the electrocatalytic behavior as a function of catalyst size, shape and morphology. Project Description and Impact: This bio-inspired collaborative research effort will address key challenges in designing powerful electrocatalysts for fuel cell applications by employing nucleic acid scaffolds in combination with peptides to perform specific, environmentally-friendly, simultaneous bottom-up biochemical synthesis and patterned assembly of highly uniform and efficient platinum nanocrystal catalysts. Bulk synthesis of nanoparticles usually produces a range of sizes, accessible catalytic sites, crystal morphologies, and orientations, all of which lead to inconsistent catalytic activities. In contrast, biological systems routinely demonstrate exquisite control over inorganic syntheses at neutral pH and ambient temperature and pressures. Because the orientation and arrangement of the templating biomolecules can be precisely

  5. The RSC Faraday prize lecture of 1989 on platinum.

    Science.gov (United States)

    Thomas, John Meurig

    2017-08-25

    In 1861, Michael Faraday gave one of his last Friday Evening Discourses at the Royal Institution of Great Britain, London, on platinum, which he described as "this beautiful, magnificent and valuable metal". More than a hundred and twenty years later (in 1989), the author re-enacted, at the Royal Institution, many of the demonstrations that Faraday carried out in his memorable Discourse. This article outlines many of Faraday's views on, and experiments with, platinum. It also describes the continuing importance and utilization of platinum, both as perceived in 1989 and from present perspectives.

  6. New Perfluorophtalate Complexes of Platinum(II) With Chemotherapeutic Potential

    OpenAIRE

    de Oliveira, M. B.; J. Miller; Banks, R. E.; Kelland, L R; McAuliffe, C. A.; Mahmood, N; Rowland, I. J.

    1996-01-01

    Two new platinum(II) complexes have been synthesized and their anti-tumour and anti-HIV activities have been evaluated. The new complexes are: (i) cis-tetrafluorophthalate-ammine-morpholine-platinum(II) or MMF3 and (ii) cis-tetrafluorophthalate- ammine-piperidine-platinum(II) or MPF4. They were characterized by elemental analysis, IR spectra and 1H and 13C NMR spectra. They were tested against five human ovarian carcinoma cell lines, viz., CH1, CH1cisR, A2780, A2780cisR and SKOV-3. They were ...

  7. Study of supported platinum catalysts by anomalous scattering

    Energy Technology Data Exchange (ETDEWEB)

    Georgopoulos, P.; Cohen, J.B.

    1985-01-01

    Platinum metal catalysts supported on silica gel and alumina were examined by wide-angle anomalous x-ray scattering at the Cornell High Energy Synchrotron Source. Complete removal of the support background features is achieved by this method, eliminating errors due to inaccurate background estimation. Platinum diffraction patterns from very-high-percentage metal-exposed catalysts were obtained for the first time, as well as from platinum supported on alumina. This technique is suitable for examining catalysts under working conditions and is superior to EXAFS for determinations of particle morphology and size distribution. 10 references, 8 figures.

  8. Interaction of novel bis(platinum) complexes with DNA.

    OpenAIRE

    Roberts, J D; Van Houten, B; Qu, Y; Farrell, N P

    1989-01-01

    Bis(platinum) complexes [[cis-PtCl2(NH3)]2H2N(CH2)nNH2] are a novel series of potential anticancer agents in which two cis-diamine(platinum) groups are linked by an alkyldiamine of variable length. These complexes are potentially tetrafunctional, a unique feature in comparison with known anticancer agents. Studies of DNA interactions of bis(platinum) complexes in comparison with cisplatin demonstrate significant differences. Investigations of interstrand crosslink formation in which crosslink...

  9. Platinum(II) and platinum(IV) complexes stabilized by abnormal/mesoionic C4-bound dicarbenes.

    Science.gov (United States)

    Khlebnikov, Vsevolod; Heckenroth, Marion; Müller-Bunz, Helge; Albrecht, Martin

    2013-03-28

    Platinum(II) complexes comprising abnormal diimidazolylidene ligands were synthesized from cis-PtMe(2)(DMSO)(2) using microwave-assisted double C-H bond activation. NMR analysis revealed an unusual solvolysis process, induced by coordinating solvents such as DMSO and MeCN, which has not been observed in related normal dicarbene complexes. NMR and IR spectroscopy and crystallographic analysis of the mono-substituted DMSO complex indicate a sulfur-bonding of the DMSO ligand to the platinum(II) center. Analysis of the DMSO exchange kinetics provided for the first time a quantitative measure of the trans effect of abnormal carbene ligands. The kinetic exchange rate in these bidentate abnormal dicarbene complexes is 0.050(±2) s(-1) and thus similar to analogous platinum(II) complexes containing phenylpyridine, yet significantly slower than that induced by pyridylidene pyridine. Reaction of the dicarbene platinum(II) complexes with PhICl(2), Br(2) and I(2) afforded the corresponding platinum(IV) complexes. Linkage isomerism of the Pt(IV)-bound DMSO was observed when the bromination reaction was performed in DMSO solution. Moreover, solvolysis was less pronounced in the platinum(IV) complexes than in the corresponding platinum(II) analogues.

  10. E platinum, a newly synthesized platinum compound, induces apoptosis through ROS-triggered ER stress in gastric carcinoma cells.

    Science.gov (United States)

    Wang, Xiaoping; Guo, Qinglong; Tao, Lei; Zhao, Li; Chen, Yan; An, Teng; Chen, Zhen; Fu, Rong

    2017-01-01

    Gastric cancer (GC) is still one of the leading causes of death in cancer-related diseases. In this study, we aimed to investigate the antitumor effect of E Platinum, a newly platinum-based chemotherapeutic agent bearing the basic structure of Oxaliplatin, in a variety of gastric carcinoma cells and the underlying mechanisms. We demonstrated that E Platinum significantly induced apoptosis in gastric cancer cells via mitochondrial apoptotic pathway as a result of increased reactive oxygen species (ROS). We also found that E Platinum enhanced Ca(2+) flux out from the endoplasmic reticulum by increasing the protein expression of IP3R type 1 (IP3R1) and decreasing the expression of ERp44. Dysfunction of Ca(2+) homeostasis in endoplasmic reticulum (ER) leads to accumulation of unfolded proteins and ER stress. Mechanically, E Platinum increased ER stress associated protein expression such as GRP78, p-PERK, p-eIF2α, ATF4, and CHOP. However, knocking down CHOP reversed E Platinum-induced apoptosis by blocking mitochondrial apoptotic pathway. Furthermore, 10 mg/kg of E Platinum significantly suppressed BGC-823 tumor growth in vivo without toxicity, which correlated with induction of apoptosis and expression of ER stress related proteins in tumor tissues. Taken together, E Platinum inhibited tumor growth and induced apoptosis by ROS-mediated ER stress activation both in vitro and in vivo. Our study indicated that E Platinum may be a potential and effective treatment for gastric cancer in clinical. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  11. Electrooxidation of saccharides at platinum electrode

    Science.gov (United States)

    Han, Ji-Hyung; Chung, Taek Dong

    2012-10-01

    Saccharides have been emerging as promising fuels for future energy industry because they possess high energy density and tremendous amount of them can be obtained from abundant biomass. Direct electrochemical oxidation of saccharides to generate electricity is a potentially competitive approach in terms of the demand for small, handy, and cost-effective electric power sources. To develop efficient sugar fuel cell, it is necessary to understand mechanism of electrooxidation of saccharide at electrode surface. Although glucose oxidation at platinum surface has been well known, fundamental mechanism study on electrooxidation of other sugars is still in its infancy. Based on research of glucose oxidation, we will predict the electrooxidation of other saccharides such as fructose.

  12. Thermodynamic ground states of platinum metal nitrides

    Energy Technology Data Exchange (ETDEWEB)

    Aberg, D; Sadigh, B; Crowhurst, J; Goncharov, A

    2007-10-09

    We have systematically studied the thermodynamic stabilities of various phases of the nitrides of the platinum metal elements using density functional theory. We show that for the nitrides of Rh, Pd, Ir and Pt two new crystal structures, in which the metal ions occupy simple tetragonal lattice sites, have lower formation enthalpies at ambient conditions than any previously proposed structures. The region of stability can extend up to 17 GPa for PtN{sub 2}. Furthermore, we show that according to calculations using the local density approximation, these new compounds are also thermodynamically stable at ambient pressure and thus may be the ground state phases for these materials. We further discuss the fact that the local density and generalized gradient approximations predict different values of the absolute formation enthalpies as well different relative stabilities between simple tetragonal and the pyrite or marcasite structures.

  13. Fabrication of iron-platinum ferromagnetic nanoparticles

    Science.gov (United States)

    Elkins, Kevin Eugene

    Fabrication of chemically disordered FePt particles ranging from 2--9 nm with a precision of 1 nm has been achieved through modification of key process variables including surfactant concentration, heating rates and the type of iron precursor. In addition, the shape evolution of the FePt nanoparticles during particle growth can be manipulated to give cubic or rod geometries through changes to the surfactant injection sequence and solvent system. The primary method for synthesis of the disordered FePt nanoparticles is the polyol reduction reported by Fievet et al., which has been modified and used extensively for synthesis of differing nanoparticle systems. Our procedures use platinum acetylacetonate, iron pentacarbonyl or ferric acetylacetonate as precursors for the FePt alloy, oleic acid and oleyl amine for the surfactants, 1,2-hexadecanediol to assist with the reduction of the precursors and either dioctyl ether or phenyl ether for the solvent system. For iron pentacarbonyl based reactions, adjustment of heating rates to reflux temperatures from 1--15°C per minute allows control of FePt particle diameters from 3--8 nm. Substitution of iron pentacarbonyl with ferric acetylacetonate as the iron source results in 2 nm particles. A high platinum to surfactant ratio of 10 to 1 will yield 9 nm FePt particles when iron pentacarbonyl is used as the precursor. For use of these particles in advanced applications, the synthesized particles must be transformed to the L1o phase through annealing at temperatures above 500°C. Inhibition of particle sintering can be avoided through dispersion in a NaCl matrix at a weight ratio of 400 to 1 salt to fcc FePt particles. Production of L1o FePt nanoparticles with high magnetic anisotropy with this process has been successful, allowing the original size and size distribution of the particles.

  14. Self-propagative replication of Aβ oligomers suggests potential transmissibility in Alzheimer disease.

    Directory of Open Access Journals (Sweden)

    Amit Kumar

    Full Text Available The aggregation of amyloid-β (Aβ peptide and its deposition in parts of the brain form the central processes in the etiology of Alzheimer disease (AD. The low-molecular weight oligomers of Aβ aggregates (2 to 30 mers are known to be the primary neurotoxic agents whose mechanisms of cellular toxicity and synaptic dysfunction have received substantial attention in the recent years. However, how these toxic agents proliferate and induce widespread amyloid deposition throughout the brain, and what mechanism is involved in the amplification and propagation of toxic oligomer species, are far from clear. Emerging evidence based on transgenic mice models indicates a transmissible nature of Aβ aggregates and implicates a prion-like mechanism of oligomer propagation, which manifests as the dissemination and proliferation of Aβ toxicity. Despite accumulating evidence in support of a transmissible nature of Aβ aggregates, a clear, molecular-level understanding of this intriguing mechanism is lacking. Recently, we reported the characterization of unique replicating oligomers of Aβ42 (12-24 mers in vitro called Large Fatty Acid-derived Oligomers (LFAOs (Kumar et al., 2012, J. Biol. Chem. In the current report, we establish that LFAOs possess physiological activity by activating NF-κB in human neuroblastoma cells, and determine the experimental parameters that control the efficiency of LFAO replication by self-propagation. These findings constitute the first detailed report on monomer - oligomer lateral propagation reactions that may constitute potential mechanism governing transmissibility among Aβ oligomers. These data support the previous reports on transmissible mechanisms observed in transgenic animal models.

  15. Solvent free low-melt viscosity imide oligomers and thermosetting polymide composites

    Science.gov (United States)

    Chuang, Chun-Hua (Inventor)

    2012-01-01

    .[.This invention relates to the composition and a solvent-free process for preparing novel imide oligomers and polymers specifically formulated with effective amounts of a dianhydride such as 2,3,3',4-biphenyltetra carboxylic dianydride (a-BPDA), at least one aromatic diamine and an endcapped of 4-phenylethynylphthalic anhydride (PEPA) or nadic anhydride to produce imide oligomers that possess a low-melt viscosity of 1-60 poise at 260-280.degree. C. When the imide oligomer melt is cured at about 371.degree. C. in a press or autoclave under 100-500 psi, the melt resulted in a thermoset polyimide having a glass transition temperature (T.sub.g) equal to and above 310.degree. C. A novel feature of this process is that the monomers; namely the dianhydrides, diamines and the endcaps, are melt processable to form imide oligomers at temperatures ranging between 232-280.degree. C. (450-535.degree. F.) without any solvent. These low-melt imide oligomers can be easily processed by resin transfer molding (RTM), vacuum-assisted resin transfer molding (VARTM) or the resin infusion process with fiber preforms e.g. carbon, glass or quartz preforms to produce polyimide matrix composites with 288-343.degree. C. (550-650.degree. F.) high temperature performance capability..]. .Iadd.This invention relates to compositions and a solvent-free reaction process for preparing imide oligomers and polymers specifically derived from effective amounts of dianhydrides such as 2,3,3',4'-biphenyltetracarboxylic dianhydride (a-BPDA), at least one aromatic polyamine and an end-cap such as 4-phenylethynyphthalic anhydride (PEPA) or nadic anhydride to produce imide oligomers that possess a low-melt viscosity of 1-60 poise at 260.degree. C.-280.degree. C..Iaddend.

  16. Self-assembly of conjugated oligomers and polymers at the interface: structure and properties.

    Science.gov (United States)

    Xu, Lirong; Yang, Liu; Lei, Shengbin

    2012-08-01

    In this review, we give a brief account on the recent scanning tunneling microscopy investigation of interfacial structures and properties of π-conjugated semiconducting oligomers and polymers, either at the solid-air (including solid-vacuum) or at the solid-liquid interface. The structural aspects of the self-assembly of both oligomers and polymers are highlighted. Conjugated oligomers can form well ordered supramolecular assemblies either at the air-solid or liquid-solid interface, thanks to the relatively high mobility and structural uniformity in comparison with polymers. The backbone structure, substitution of side chains and functional groups can affect the assembling behavior significantly, which offers the opportunity to tune the supramolecular structure of these conjugated oligomers at the interface. For conjugated polymers, the large molecular weight limits the mobility on the surface and the distribution in size also prevents the formation of long range ordered supramolecular assembly. The submolecular resolution obtained on the assembling monolayers enables a detailed investigation of the chain folding at the interface, both the structural details and the effect on electronic properties. Besides the ability in studying the assembling structures at the interfaces, STM also provides a reasonable way to evaluate the distribution of the molecular weight of conjugated polymers by statistic of the contour length of the adsorbed polymer chains. Both conjugated oligomers and polymers can form composite assemblies with other materials. The ordered assembly of oligomers can act as a template to controllably disperse other molecules such as coronene or fullerene. These investigations open a new avenue to fine tune the assembling structure at the interface and in turn the properties of the composite materials. To summarize scanning tunneling microscopy has demonstrated its surprising ability in the investigation of the assembling structures and properties of

  17. Platinum-Catalyzed Selective Tin-Carbon Bond Formation

    NARCIS (Netherlands)

    Thoonen, Sander Hendrikus Lambertus

    2003-01-01

    In conclusion, two improved methods for the selective synthesis of monoorganotin trihalides were developed. The platinum-catalyzed Kocheshkov redistribution reaction of dialkyltin dichlorides with tin tetrachloride is the most interesting. Contrary to the other two methods described (the direct

  18. Wireless gas sensing in South African underground platinum mines

    CSIR Research Space (South Africa)

    Abu-Mahfouz, Adnan M

    2014-04-01

    Full Text Available Approximately 70% of South African mines are classified as fiery, where methane gas potentially could cause explosions. The number of flammable gas reports and accidents are increasing steadily for both gold and platinum mines. However...

  19. Safety profile of Colgate Platinum Professional Toothwhitening System.

    Science.gov (United States)

    Adam-Rodwell, G; Kong, B M; Bagley, D M; Tonucci, D; Christina, L M

    1994-01-01

    Colgate Platinum, a professional tooth-whitening paste containing 10% urea peroxide as the active ingredient, was evaluated for potential acute oral toxicity, genotoxicity, and irritation to oral mucosa. Oral administration to rats of a single dose of 5 g/kg of Colgate Platinum did not induce any adverse effects. Colgate Platinum was not mutagenic in Ames/Salmonella Plate Incorporation assay and did not induce primary DNA damage in the bone marrow hematopoietic cells of rats that were given oral doses of up to 1 g/kg for 5 consecutive days. Results of the oral mucosa irritation study in rats indicated that Colgate Platinum did not induce damage to soft and hard tissues of oral cavity after repeated applications for 28 days. Collectively, the data from these studies document the safety of the product for the intended use.

  20. Resolving the Structure of Active Sites on Platinum Catalytic Nanoparticles

    DEFF Research Database (Denmark)

    Chang, Lan Yun; Barnard, Amanda S.; Gontard, Lionel Cervera

    2010-01-01

    Accurate understanding of the structure of active sites is fundamentally important in predicting catalytic properties of heterogeneous nanocatalysts. We present an accurate determination of both experimental and theoretical atomic structures of surface monatomic steps on industrial platinum nanop...

  1. Defining Therapy for Recurrent Platinum-sensitive Ovarian Cancer

    Science.gov (United States)

    In this phase III clinical trial, women with platinum-sensitive, recurrent ovarian epithelial, fallopian tube, or primary peritoneal cancer will be randomly assigned to undergo secondary cytoreductive surgery, if they are candidates for such surgery, and

  2. Platinum single crystal electrodes for the electrocatalysis of methane oxidation

    Directory of Open Access Journals (Sweden)

    Mayara Munaretto

    2011-03-01

    Full Text Available The main objective of this paper is to characterize the voltammetric profiles of platinum single crystals of low Miller indexes Pt(100 and Pt(110 and study their catalytic activities on the oxidation of methane. In this way, it was developed a metallic surface modified by presence of other metal oxide, which presents catalytic activity for this reaction. It is well known that the electrooxidation of methane (CH4 leads mainly to the formation of CO2 and H2O, however, the oxidation can also lead to the formation of CO, a reaction intermediate that has strong interaction with metal surfaces, such as platinum. This molecule tends to accumulate on the platinum surface and to passive it, due to the self-poisoning, decreasing its catalytic activity. Therefore, the main aim of this work was the development of a platinum electrode modified by deposition of titanium oxide, which presented electrocatalytic properties for the oxidation of methane.

  3. Platinum blue staining of cells grown in electrospun scaffolds.

    Science.gov (United States)

    Yusuf, Mohammed; Millas, Ana Luiza G; Estandarte, Ana Katrina C; Bhella, Gurdeep K; McKean, Robert; Bittencourt, Edison; Robinson, Ian K

    2014-01-01

    Fibroblast cells grown in electrospun polymer scaffolds were stained with platinum blue, a heavy metal stain, and imaged using scanning electron microscopy. Good contrast on the cells was achieved compared with samples that were gold sputter coated. The cell morphology could be clearly observed, and the cells could be distinguished from the scaffold fibers. Here we optimized the required concentration of platinum blue for imaging cells grown in scaffolds and show that a higher concentration causes platinum aggregation. Overall, platinum blue is a useful stain for imaging cells because of its enhanced contrast using scanning electron microscopy (SEM). In the future it would be useful to investigate cell growth and morphology using three-dimensional imaging methods.

  4. Internalization of Ineffective Platinum Complex in Nanocapsules Renders It Cytotoxic.

    Science.gov (United States)

    Vrana, Oldrich; Novohradsky, Vojtech; Medrikova, Zdenka; Burdikova, Jana; Stuchlikova, Olga; Kasparkova, Jana; Brabec, Viktor

    2016-02-18

    Anticancer therapy by platinum complexes, based on nanocarrier-based delivery, may offer a new approach to improve the efficacy and tolerability of the platinum family of anticancer drugs. The original rules for the design of new anticancer platinum drugs were affected by the fact that, although cisplatin (cis-[PtCl2 (NH3)2) was an anticancer drug, its isomer transplatin was not cytotoxic. For the first time, it is demonstrated that simple encapsulation of an inactive platinum compound in phospholipid bilayers transforms it into an efficient cytotoxic agent. Notably, the encapsulation of transplatin makes it possible to overcome the resistance mechanisms operating in cancer cells treated with cisplatin and prevents inactivation of transplatin in the extracellular environment. It is also shown that transplatin delivered to the cells in nanocapsules, in contrast to free (nonencapsulated) complex, forms cytotoxic cross-links on DNA.

  5. Platinum electrodeposition from a dinitrosulfatoplatinate(II) electrolyte

    Science.gov (United States)

    Weiser, Mathias; Schulze, Claudia; Schneider, Michael; Michaelis, Alexander

    2016-12-01

    In this work a halogen-free electrolyte to deposit platinum nanoparticle is studied. The investigated [Pt(NO2)2SO4]2--complex is suitable for electrochemical deposition on halogen sensitive substrates. The mechanism and kinetic of particle deposition is investigated using a glassy carbon rotating disk electrode. Nano sized platinum particles are deposited by using pulse plating technique. The size of the smallest platinum nanoparticle is 5 nm. The shape of the particle distribution strictly depends on the plating time. The platinum deposition is usually superimposed with hydrogen evolution. A diffusion coefficient of the [Pt(NO2)2SO4]2--complex is determined to 5.4 × 10-6 cm2s-1. The current efficiency depends on the deposition parameters and amounts to 37% under the chosen pulse plating conditions.

  6. Interfacial electronic effects control the reaction selectivity of platinum catalysts

    Science.gov (United States)

    Chen, Guangxu; Xu, Chaofa; Huang, Xiaoqing; Ye, Jinyu; Gu, Lin; Li, Gang; Tang, Zichao; Wu, Binghui; Yang, Huayan; Zhao, Zipeng; Zhou, Zhiyou; Fu, Gang; Zheng, Nanfeng

    2016-05-01

    Tuning the electronic structure of heterogeneous metal catalysts has emerged as an effective strategy to optimize their catalytic activities. By preparing ethylenediamine-coated ultrathin platinum nanowires as a model catalyst, here we demonstrate an interfacial electronic effect induced by simple organic modifications to control the selectivity of metal nanocatalysts during catalytic hydrogenation. This we apply to produce thermodynamically unfavourable but industrially important compounds, with ultrathin platinum nanowires exhibiting an unexpectedly high selectivity for the production of N-hydroxylanilines, through the partial hydrogenation of nitroaromatics. Mechanistic studies reveal that the electron donation from ethylenediamine makes the surface of platinum nanowires highly electron rich. During catalysis, such an interfacial electronic effect makes the catalytic surface favour the adsorption of electron-deficient reactants over electron-rich substrates (that is, N-hydroxylanilines), thus preventing full hydrogenation. More importantly, this interfacial electronic effect, achieved through simple organic modifications, may now be used for the optimization of commercial platinum catalysts.

  7. Interactions of vanadate oligomers with sarcoplasmic reticulum Ca(2+)-ATPase.

    Science.gov (United States)

    Aureliano, M; Mdeira, V M

    1994-04-28

    Upon addition of sarcoplasmic reticulum (SR), the line width of tetrameric vanadate signal of 51V-NMR spectra narrowed in the presence of ATP and Ca2+, whereas monomeric vanadate line widths were broadened. Thus, ATP decreases the affinity of the enzyme for tetravanadate whereas it induces the interaction with monomeric vanadate. In the presence of Ca2+ it was observed that tetrameric and decameric vanadate bind to SR ATPase whereas monomeric vanadate only binds to SR when ATP is present. However, decameric vanadate clearly differs from vanadate oligomers present in monovanadate solutions in preventing the accumulation of Ca2+ by sarcoplasmic reticulum (SR) vesicles coupled to ATP hydrolysis. Mg2+ increased the inhibitory effect promoted by decavanadate whereas a slight enhancement of Ca2+ uptake was observed in the presence of monovanadate. For 5 mM Mg2+, a nominal 2 mM vanadium 'decavanadate' solution containing about 190 to 200 microM decameric and less than 100 microM monomeric species depressed the rate of Ca2+ uptake by 50% whereas a nominal 2 mM monovanadate solution containing about 662 microM monomeric, 143 microM dimeric and 252 microM tetrameric species had no effect on the rate of Ca2+ accumulation. However, 2 mM 'decavanadate' inhibits by 75% the SR Ca(2+)-ATPase activity whereas the presence of 2 mM 'monovanadate' produces an inhibitory effect below 50%. Therefore, the Ca:ATP stoichiometry of Ca2+ transport is enhanced by monovanadate. In the presence of oxalate, inhibition of SR Ca(2+)-ATPase activity by these solutions is enhanced to 97% and 86% whereas in the presence of the ionophore lasalocid, the inhibitory values were 87% and 19% for 2 mM decavanadate and 2 mM monovanadate solutions, respectively. Apparently, the increase of vesicular Ca2+ concentration counteracts monovanadate inhibition of SR Ca(2+)-ATPase activity but it does not significantly affect decavanadate inhibition.

  8. Platinum group metal nitrides and carbides: synthesis, properties and simulation

    Energy Technology Data Exchange (ETDEWEB)

    Ivanovskii, Alexander L [Institute of Solid State Chemistry, Urals Branch of the Russian Academy of Sciences, Ekaterinburg (Russian Federation)

    2009-04-30

    Experimental and theoretical data on new compounds, nitrides and carbides of the platinum group 4d and 5d metals (ruthenium, rhodium, palladium, osmium, iridium, platinum), published over the past five years are summarized. The extreme mechanical properties of platinoid nitrides and carbides, i.e., their high strength and low compressibility, are noted. The prospects of further studies and the scope of application of these compounds are discussed.

  9. Problems and Characteristics of Russian Platinum Metals Exporters

    Institute of Scientific and Technical Information of China (English)

    ANDREEV A. M.; KELCHEVSKAYA N. R.

    2012-01-01

    The paper revealed the place and role of Russia in the global market of platinum metals,highlighted features of pricing in the export of Russian platinum group metals,the main problems of pricing in the export contracts related to the instability of markets and imperfect currency and customs legislation of the Russian Federation,proposed innovative ways to solutions to existing problems in the preparation and conclusion of export contracts.

  10. CROWN FUNCTIONALIZED LINEAR POLYSILOXANE PLATINUM COMPLEX AS HYDROSILYLATION CATALYST

    Institute of Scientific and Technical Information of China (English)

    CHEN Yuanyin; LU Xueran; GONG Shuling; ZHANG Baolian

    1994-01-01

    A modified method of preparing crown functionalized linear polysiloxane has been described.4'-allylbenzo-15-crown-5 was subjected to hydrosilylation with methyldichlorosilane,followed by polycondensation with silanol-terminated polydimethylsiloxane to give the title crown functionalized linear polysiloxane. It was found that the polysiloxane could be coordinated with platinum salt to form platinum complex, which could catalyze the hydrosilylation of olefins with triethoxysilane efficiently.

  11. Mineral resource of the month: platinum group metals

    Science.gov (United States)

    Loferski, Patricia J.

    2010-01-01

    The article focuses on platinum group metals (PGMs) and their properties. According to the author, PGMs, which include iridium, osmium, palladium, platinum, rhodium, and ruthenium, are among the rarest mineral commodities in the Earth's crust. PGMs are primarily used as catalytic converters that clean harmful exhaust from vehicle engines. They are also used in the chemical industry as catalysts in the production of nitric acid and in the petroleum refining industry.

  12. CHIRAL CONJUGATED OLIGOMER BASED ON 1,1'-BINOL WITH 3,3'-ACETYLENE-PHENYLENE-ACETYLENE SPACER

    Institute of Scientific and Technical Information of China (English)

    Tian-jun Liu; Ke-shen Zhang; Yong-jun Chen; Dong Wang; Chao-jun Li

    2001-01-01

    The 1,1'-binaphthol based oligomers 3 and 7 with 3,3'-acetylene-phenylene-acetylene spacer were prepared from BINOL 1. The high optical rotation value and CD spectra demonstrated the main chain chirality of the oligomer molecule. The UV-VIS and fluorescent spectra evidence the characteristics of conjugated structure. In comparison with oligomer 2 bearing 3,3'-acetylene spacer, the oligomers 3 and 7 have longer efficient conjugation segment, and their fluorescent quantum yields (φ) increased (0.60-0.65 versus 0.14). Extending the effective conjugation segment would improve the photophysical properties of chiral conjugated polymers.``

  13. Synthesis of nanosized platinum based catalyst using sol-gel process

    Science.gov (United States)

    Ingale, S. V.; Wagh, P. B.; Bandyopadhyay, D.; Singh, I. K.; Tewari, R.; Gupta, S. C.

    2015-02-01

    The nano-sized platinum based catalysts using high surface area silica support have been prepared by sol-gel method. Tetramethoxysilane (TMOS) diluted in methanol was hydrolyzed to form a porous silica gel. Platinum (2%) was loaded at sol state using platinum chloride solution. After gelation, the solvent from the gel pores was extracted at ambient temperature which resulted in porous silica matrix incorporated with nanosized platinum. X-ray diffraction studies indicated the presence of elemental platinum in the silica-platinum composites. Transmission electron microscopy of the platinum -silica composites revealed that nanosized platinum particles of about 5-10 nm are homogeneously dispersed in silica matrix. Chemisorptions studies showed high dispersion (more than 50%) of platinum on silica support with specific surface area of 400 m2/g which puts them as promising candidates as catalyst in heterogeneous reactions.

  14. Platinum drugs and DNA repair mechanisms in lung cancer.

    Science.gov (United States)

    Bonanno, Laura; Favaretto, Adolfo; Rosell, Rafael

    2014-01-01

    The standard first-line treatment for around 80% of newly-diagnosed advanced non-small cell lung cancer (NSCLC) is chemotherapy. Currently, patients are allocated to chemotherapy on the basis of clinical conditions, comorbidities and histology. If feasible, platinum-based chemotherapy is considered as the most efficacious option. Due to the heterogeneity in terms of platinum-sensitivity among patients with NSCLC, great efforts have been made in order to identify molecular predictive markers of platinum resistance. Based on the mechanism of action of platinum, several components of DNA repair pathways have been investigated as potential predictive markers. The main DNA repair pathways involved in the repair of platinum-induced DNA damage are nucleotide excision repair and homologous recombination. The most studied potential predictive markers of platinum-sensitivity are Excision Repair Cross Complementing-1 (ERCC1) and Brest Cancer Type-I Susceptibility protein (BRCA1); however, increasing biological knowledge about DNA repair pathways suggests the potential clinical usefulness of integrated analysis of multiple DNA repair components.

  15. Liposomes, a promising strategy for clinical application of platinum derivatives.

    Science.gov (United States)

    Zalba, Sara; Garrido, María J

    2013-06-01

    Liposomes represent a versatile system for drug delivery in various pathologies. Platinum derivatives have been demonstrated to have therapeutic efficacy against several solid tumors. But their use is limited due to their side effects. Since liposomal formulations are known to reduce the toxicity of some conventional chemotherapeutic drugs, the encapsulation of platinum derivatives in these systems may be useful in reducing toxicity and maintaining an adequate therapeutic response. This review describes the strategies applied to platinum derivatives in order to improve their therapeutic activity, while reducing the incidence of side effects. It also reviews the results found in the literature for the different platinum-drugs liposomal formulations and their current status. The design of liposomes to achieve effectiveness in antitumor treatment is a goal for platinum derivatives. Liposomes can change the pharmacokinetic parameters of these encapsulated drugs, reducing their side effects. However, few liposomal formulations have demonstrated a significant advantage in therapeutic terms. Lipoplatin, a cisplatin formulation in Phase III, combines a reduction in the toxicity associated with an antitumor activity similar to the free drug. Thermosensitive or targeted liposomes for tumor therapy are also included in this review. Few articles about this strategy applied to platinum drugs can be found in the literature.

  16. In vitro permeation of platinum and rhodium through Caucasian skin.

    Science.gov (United States)

    Franken, A; Eloff, F C; Du Plessis, J; Badenhorst, C J; Jordaan, A; Du Plessis, J L

    2014-12-01

    During platinum group metals (PGMs) refining the possibility exists for dermal exposure to PGM salts. The dermal route has been questioned as an alternative route of exposure that could contribute to employee sensitisation, even though literature has been focused on respiratory exposure. This study aimed to investigate the in vitro permeation of platinum and rhodium through intact Caucasian skin. A donor solution of 0.3mg/ml of metal, K2PtCl4 and RhCl3 respectively, was applied to the vertical Franz diffusion cells with full thickness abdominal skin. The receptor solution was removed at various intervals during the 24h experiment, and analysed with high resolution ICP-MS. Skin was digested and analysed by ICP-OES. Results indicated cumulative permeation with prolonged exposure, with a significantly higher mass of platinum permeating after 24h when compared to rhodium. The mass of platinum retained inside the skin and the flux of platinum across the skin was significantly higher than that of rhodium. Permeated and skin retained platinum and rhodium may therefore contribute to sensitisation and indicates a health risk associated with dermal exposure in the workplace.

  17. Nitrogen Containing Organic Compounds and Oligomers in Secondary Organic Aerosol Formed by Photooxidation of Isoprene

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, Tran B.; Laskin, Julia; Laskin, Alexander; Nizkorodov, Serguei

    2011-07-06

    Electrospray ionization high-resolution mass spectrometry (ESI HR-MS) was used to probe molecular structures of oligomers in secondary organic aerosol (SOA) generated in laboratory experiments on isoprene photooxidation at low- and high-NOx conditions. Up to 80-90% of the observed products are oligomers and up to 33% are nitrogen-containing organic compounds (NOC). We observe oligomers with up to 8 monomer units in length. Tandem mass spectrometry (MSn) confirms NOC compounds are organic nitrates and elucidates plausible chemical building blocks contributing to oligomer formation. Most organic nitrates are comprised of methylglyceric acid units. Other important multifunctional C2-C5 monomer units are identified including methylglyoxal, hydroxyacetone, hydroxyacetic acid, glycolaldehyde, and 2-methyltetrols. The majority of the NOC oligomers contain only one nitrate moiety resulting in a low average N:C ratio of 0.019. Average O:C ratios of the detected SOA compounds are 0.54 under the low-NOx conditions and 0.83 under the high-NOx conditions. Our results underscore the importance of isoprene photooxidation as a source of NOC in organic particulate matter.

  18. Synthesis of poly(methyl urethane) acrylate oligomer using 2-isocyanatoethyl methacrylate for UV curable coating.

    Science.gov (United States)

    Park, M N; Oh, S W; Ahn, B H; Moon, M J; Kang, Y S

    2009-02-01

    The poly(methyl urethane) acrylate oligomer was obtained by the reaction of methyl acrylate oligomer and 2-isocyanatoethyl methacrylate. Synthesis of poly(methyl urethane) acrylate oligomer was done with 2-mercaptoethanol (2-MEOH), methyl acrylate, 2,2'-azobisisobutyronitrile (AIBN, initiator) and dibutyltin dilaurate as a catalyst. Then 2-MEOH was used for functional chain transfer agent. The structure and property of the synthesized oligomers were characterized by FT-IR, FT-NMR, rheometer, and DSC. In this study, by synthetic method including the addition of 2-isocyanatoethyl methacrylate, thermal behavior of synthesized material was improved more than that reported in the previous study. Poly(methyl urethane) oligomer can be used for UV curable coatings, inks and adhesives. UV curable coating have high resistance against weather, ozone, aging, frictional wear, and heat. Besides they can absorb the shock and resist rust according to the thickness of film. It is used as an adhesive, paint, optical fiber coating agent, and waterproof agent because of these advantages at the present time.

  19. Mitochondrial Ca2+ overload underlies Abeta oligomers neurotoxicity providing an unexpected mechanism of neuroprotection by NSAIDs.

    Directory of Open Access Journals (Sweden)

    Sara Sanz-Blasco

    Full Text Available Dysregulation of intracellular Ca(2+ homeostasis may underlie amyloid beta peptide (Abeta toxicity in Alzheimer's Disease (AD but the mechanism is unknown. In search for this mechanism we found that Abeta(1-42 oligomers, the assembly state correlating best with cognitive decline in AD, but not Abeta fibrils, induce a massive entry of Ca(2+ in neurons and promote mitochondrial Ca(2+ overload as shown by bioluminescence imaging of targeted aequorin in individual neurons. Abeta oligomers induce also mitochondrial permeability transition, cytochrome c release, apoptosis and cell death. Mitochondrial depolarization prevents mitochondrial Ca(2+ overload, cytochrome c release and cell death. In addition, we found that a series of non-steroidal anti-inflammatory drugs (NSAIDs including salicylate, sulindac sulfide, indomethacin, ibuprofen and R-flurbiprofen depolarize mitochondria and inhibit mitochondrial Ca(2+ overload, cytochrome c release and cell death induced by Abeta oligomers. Our results indicate that i mitochondrial Ca(2+ overload underlies the neurotoxicity induced by Abeta oligomers and ii inhibition of mitochondrial Ca(2+ overload provides a novel mechanism of neuroprotection by NSAIDs against Abeta oligomers and AD.

  20. Extracellular Tau Oligomers Induce Invasion of Endogenous Tau into the Somatodendritic Compartment and Axonal Transport Dysfunction.

    Science.gov (United States)

    Swanson, Eric; Breckenridge, Leigham; McMahon, Lloyd; Som, Sreemoyee; McConnell, Ian; Bloom, George S

    2017-01-01

    Aggregates composed of the microtubule associated protein, tau, are a hallmark of Alzheimer's disease and non-Alzheimer's tauopathies. Extracellular tau can induce the accumulation and aggregation of intracellular tau, and tau pathology can be transmitted along neural networks over time. There are six splice variants of central nervous system tau, and various oligomeric and fibrillar forms are associated with neurodegeneration in vivo. The particular extracellular forms of tau capable of transferring tau pathology from neuron to neuron remain ill defined, however, as do the consequences of intracellular tau aggregation on neuronal physiology. The present study was undertaken to compare the effects of extracellular tau monomers, oligomers, and filaments comprising various tau isoforms on the behavior of cultured neurons. We found that 2N4R or 2N3R tau oligomers provoked aggregation of endogenous intracellular tau much more effectively than monomers or fibrils, or of oligomers made from other tau isoforms, and that a mixture of all six isoforms most potently provoked intracellular tau accumulation. These effects were associated with invasion of tau into the somatodendritic compartment. Finally, we observed that 2N4R oligomers perturbed fast axonal transport of membranous organelles along microtubules. Intracellular tau accumulation was often accompanied by increases in the run length, run time and instantaneous velocity of membranous cargo. This work indicates that extracellular tau oligomers can disrupt normal neuronal homeostasis by triggering axonal tau accumulation and loss of the polarized distribution of tau, and by impairing fast axonal transport.

  1. Effect of pathogenic mutations on the structure and dynamics of Alzheimer's A beta 42-amyloid oligomers.

    Science.gov (United States)

    Kassler, Kristin; Horn, Anselm H C; Sticht, Heinrich

    2010-05-01

    Converging lines of evidence suggest that soluble A beta-amyloid oligomers play a pivotal role in the pathogenesis of Alzheimer's disease, and present direct effectors of synaptic and cognitive dysfunction. Three pathological E22-A beta-amyloid point mutants (E22G, E22K, E22Q) and the deletion mutant E22 Delta exhibit an enhanced tendency to form prefibrillar aggregates. The present study assessed the effect of these four mutations using molecular dynamics simulations and subsequent structural and energetic analyses. Our data shows that E22 plays a unique role in wild type A beta, since it has a destabilising effect on the oligomer structure due to electrostatic repulsion between adjacent E22 side chains. Mutations in which E22 is replaced by an uncharged residue result in higher oligomer stability. This effect is also observed to a lesser extent for the E22K mutation and is consistent with its lower pathogenicity compared to other mutants. Interestingly, deletion of E22 does not destroy the amyloid fold but is compensated by local changes in the backbone geometry that allow the preservation of a structurally important salt bridge. The finding that all mutant oligomers investigated exhibit higher internal stability than the wild type offers an explanation for the experimentally observed enhanced oligomer formation and stability.

  2. Migration of oligomers from PET: determination of diffusion coefficients and comparison of experimental versus modelled migration.

    Science.gov (United States)

    Hoppe, Maria; Fornari, Roberta; de Voogt, Pim; Franz, Roland

    2017-07-01

    Polyethylene terephthalate (PET) is increasingly used as food-contact material in, for example, containers for beverage such as bottles for soft drinks, mineral water, juices and beer. Mass transport of substances present in packaging materials into the packed food and beverages is monitored to verify the food law compliance of the materials. PET is known to contain or give rise to migrants that are oligomers derived from the polymeric material. Until now their actual migration potential has been investigated only poorly. A convenient way to determine their migration would be by using models. To verify existing models with experimental data, a migration kinetic study of PET oligomers was conducted. PET bottle material was submerged in 50% ethanol at 80°C for 15 h. The oligomer content in the migration solutions was determined every hour using LC-MS with the first-series cyclic PET trimer as standard. Diffusion coefficients of five PET oligomers (first-series dimer and trimer, second-series dimer and trimer, and third-series dimer) were calculated from the obtained data and compared with the calculated diffusion coefficients using the models of Welle and Piringer. This is the first study to provide diffusion characteristics of oligomers in PET other than the first-series cyclic trimer.

  3. Mitochondrial Ca2+ Overload Underlies Aβ Oligomers Neurotoxicity Providing an Unexpected Mechanism of Neuroprotection by NSAIDs

    Science.gov (United States)

    Sanz-Blasco, Sara; Valero, Ruth A.; Rodríguez-Crespo, Ignacio; Villalobos, Carlos; Núñez, Lucía

    2008-01-01

    Dysregulation of intracellular Ca2+ homeostasis may underlie amyloid β peptide (Aβ) toxicity in Alzheimer's Disease (AD) but the mechanism is unknown. In search for this mechanism we found that Aβ1–42 oligomers, the assembly state correlating best with cognitive decline in AD, but not Aβ fibrils, induce a massive entry of Ca2+ in neurons and promote mitochondrial Ca2+ overload as shown by bioluminescence imaging of targeted aequorin in individual neurons. Aβ oligomers induce also mitochondrial permeability transition, cytochrome c release, apoptosis and cell death. Mitochondrial depolarization prevents mitochondrial Ca2+ overload, cytochrome c release and cell death. In addition, we found that a series of non-steroidal anti-inflammatory drugs (NSAIDs) including salicylate, sulindac sulfide, indomethacin, ibuprofen and R-flurbiprofen depolarize mitochondria and inhibit mitochondrial Ca2+ overload, cytochrome c release and cell death induced by Aβ oligomers. Our results indicate that i) mitochondrial Ca2+ overload underlies the neurotoxicity induced by Aβ oligomers and ii) inhibition of mitochondrial Ca2+ overload provides a novel mechanism of neuroprotection by NSAIDs against Aβ oligomers and AD. PMID:18648507

  4. Antioxidant Activity of Hispidin Oligomers from Medicinal Fungi: A DFT Study

    Directory of Open Access Journals (Sweden)

    El Hassane Anouar

    2014-03-01

    Full Text Available Hispidin oligomers are styrylpyrone pigments isolated from the medicinal fungi Inonotus xeranticus and Phellinus linteus. They exhibit diverse biological activities and strong free radical scavenging activity. To rationalize the antioxidant activity of a series of four hispidin oligomers and determine the favored mechanism involved in free radical scavenging, DFT calculations were carried out at the B3P86/6-31+G (d, p level of theory in gas and solvent. The results showed that bond dissociation enthalpies of OH groups of hispidin oligomers (ArOH and spin density delocalization of related radicals (ArO• are the appropriate parameters to clarify the differences between the observed antioxidant activities for the four oligomers. The effect of the number of hydroxyl groups and presence of a catechol moiety conjugated to a double bond on the antioxidant activity were determined. Thermodynamic and kinetic studies showed that the PC-ET mechanism is the main mechanism involved in free radical scavenging. The spin density distribution over phenoxyl radicals allows a better understanding of the hispidin oligomers formation.

  5. Solvent Free Low-Melt Viscosity Imide Oligomers And Thermosetting Polyimide Composites

    Science.gov (United States)

    Chuang, CHun-Hua (Inventor)

    2006-01-01

    This invention relates to the composition and a solvent-free process for preparing novel imide oligomers and polymers specifically formulated with effective amounts of a dianhydride such as 2,3,3',4-biphenyltetra carboxylic dianydride (a-BPDA), at least one aromatic diamine' and an endcapped of 4-phenylethynylphthalic anhydride (PEPA) or nadic anhydride to produce imide oligomers that possess a low-melt viscosity of 1-60 poise at 260-280" C. When the imide oligomer melt is cured at about 371 C. in a press or autoclave under 100-500 psi, the melt resulted in a thermoset polyimide having a glass transition temperature (T(sub g)) equal to and above 310 C. A novel feature of this process is that the monomers; namely the dianhydrides, diamines and the endcaps, are melt processable to form imide oligomers at temperatures ranging between 232-280 C. (450-535 F) without any solvent. These low-melt imide oligomers can be easily processed by resin transfer molding (RTM), vacuum-assisted resin transfer molding (VARTM) or the resin infusion process with fiber preforms e.g. carbon, glass or quartz preforms to produce polyimide matrix composites with 288-343C (550-650 F) high temperature performance capability.

  6. Thin films of arylenevinylene oligomers prepared by MAPLE for applications in non-linear optics

    Energy Technology Data Exchange (ETDEWEB)

    Stanculescu, A., E-mail: sanca@infim.ro [National Institute of Materials Physics, Optics and Spectroscopy Laboratory, 105 bis Atomistilor Street, P.O. Box MG-7, Bucharest-Magurele 077125 (Romania); Vacareanu, L.; Grigoras, M. [P. Poni' Institute of Macromolecular Chemistry, 41 A Gr. Ghica Voda Alley, 700487 Iasi (Romania); Socol, M. [National Institute of Materials Physics, Optics and Spectroscopy Laboratory, 105 bis Atomistilor Street, P.O. Box MG-7, Bucharest-Magurele 077125 (Romania); Socol, G. [National Institute for Laser, Plasma and Radiation Physics, Str. Atomistilor, Nr. 409, P.O. Box MG-36, Magurele, Bucharest 077125 (Romania); Stanculescu, F. [Faculty of Physics, University of Bucharest, Str. Atomistilor nr.405, P.O. Box MG-11, Bucharest-Magurele 077125 (Romania); Preda, N.; Matei, E. [National Institute of Materials Physics, Optics and Spectroscopy Laboratory, 105 bis Atomistilor Street, P.O. Box MG-7, Bucharest-Magurele 077125 (Romania); Ionita, I. [Faculty of Physics, University of Bucharest, Str. Atomistilor nr.405, P.O. Box MG-11, Bucharest-Magurele 077125 (Romania); Girtan, M. [Laboratoire de Photonique d' Angers, Universite d' Angers, 2, Bd. Lavoisier, 49045 Angers (France); Mihailescu, I.N. [National Institute for Laser, Plasma and Radiation Physics, Str. Atomistilor, Nr. 409, P.O. Box MG-36, Magurele, Bucharest 077125 (Romania)

    2011-04-01

    This paper discusses two arylenevinylene oligomers with optical nonlinear properties. Their trans molecular structure was confirmed by Fourier Transform Infrared Spectroscopy and Nuclear Magnetic Resonance. Second Harmonic Generation and two-photon fluorescence have been observed on Matrix Assisted Pulsed Laser Evaporation-deposited thin films. We have seen two local maxima in UV-Vis spectra and a red shift of the photoluminescence peak for carbazole-based oligomer, which can be correlated with a higher conformational flexibility and with strong polarization interactions in the solid state. Scanning Electron Microscopy and Atomic Force Microscopy images have revealed a grainy morphology of the film deposited on titanium and a higher roughness for carbazole-based oligomer. Second harmonic measurements have shown nearly equal values of the second-order nonlinear optical coefficient for the triphenylamine and carbazole-based oligomers for P{sub laser} < 100 mW. z-Scan and x-scan representations of the carbazole-based oligomer film have shown strong two-photon fluorescence intensity inside the sample confirming a volume process, and a strong second harmonic at the surface of the sample determined by the surface morphology.

  7. Determination of the critical molar mass of ovalbumin oligomers degraded by ultrasound

    Directory of Open Access Journals (Sweden)

    BRATOLJUB H. MILOSAVLJEVIC

    2000-02-01

    Full Text Available An experimental method has been developed which enables the determination of the critical molar mass (Mmc of ovalbumin oligomers degraded by ultrasound of known frequency. To test the validity of the Mmc postulate, a series of ovalbumin oligomers was prepared by the radiolytic cross-linking of 1% solutions of ovalbumin monomer dissolved in 50 mM Na/K-phosphate buffer pH 7.0 saturated with N2O. Under these conditions, irradiation with 5 kGy from a 60Co source, yielded ovalbumin dimers, trimers, tetramers, and higher order oligomers. On the basis of the results obtained with the ovalbumin oligomers, it was concluded that for ultrasound of 23 kHz frequency and 5mm amplitude, the Mmc was 274000 + 14000 g/mol. Our results confirmed that the two postulates in the chemistry of polymer degradation by ultrasound are valid when ovalbumin oligomers are used as substrates, i.e., (1 that the higher the molar mass of the original macromolecule, the faster is its degradation rate, and (2 that a lower molar mass limit (LMmL exists below which the macromolecules are resistent to further degradation.

  8. Recent Progress on the Photonic Properties of Conjugated Organometallic Polymers Built Upon the trans-Bis(para-ethynylbenzene)bis(phosphine)platinum(II) Chromophore and Related Derivatives.

    Science.gov (United States)

    Wong, Wai-Yeung; Harvey, Pierre D

    2010-04-20

    This review article surveys the electronic and photophysical properties of conjugated organometallic polymers built upon the title compound and its related derivatives focussing primarily on systems investigated in our laboratories. The general structure of the polymers is (trans-bis(para-ethynylbenzene)bis(phosphine)platinum(II)-G)(n) where G is a conjugated group such as thiophene, fluorene, carbazole, substituted silole, quinone derivative, and metalloporphyrin residue, or a non-conjugated main-group moiety. Systems based on substituted phenylene units and other related fused rings are also discussed. The phosphine ligands are generally triethyl- or tri-n-butylphosphine groups. These trans-platinum(II) polymers and the corresponding model compounds are compared to the corresponding ortho-derivatives in the quinone series, and the newly prepared paracyclophane-containing polymers. For the porphyrin series, a comparison of fully conjugated oligomers exhibiting the general structure (trans-bis(para-ethynyl(zinc(porphyrin)))bis(phosphine)platinum(II))(n) (i.e., the C(6) H(4) group is absent from the main chain) will be made. This contribution also includes a description of the properties of the mononuclear chromophore itself, properties that define those of the polymers. Potential applications with regard to electronic and optical devices will be highlighted. These soluble and stable materials feature both the processing advantages of polymers and the functionality provided by the presence of metal centers. These multifunctional organometallic polyyne polymers exhibit convenient structural variability as well as optical and electronic properties, which renders them important for use in different research domains as chemical sensors and sensor protectors, as converters for light/electricity signals, and as patternable precursors to magnetic metal alloy nanoparticles.

  9. Platinum- and platinum alloy-coated palladium and palladium alloy particles and uses thereof

    Science.gov (United States)

    Adzic, Radoslav; Zhang, Junliang; Mo, Yibo; Vukmirovic, Miomir Branko

    2010-04-06

    The present invention relates to particle and nanoparticle composites useful as oxygen-reduction electrocatalysts. The particle composites are composed of a palladium or palladium-alloy particle or nanoparticle substrate coated with an atomic submonolayer, monolayer, bilayer, or trilayer of zerovalent platinum atoms. The invention also relates to a catalyst and a fuel cell containing the particle or nanoparticle composites of the invention. The invention additionally includes methods for oxygen reduction and production of electrical energy by using the particle and nanoparticle composites of the invention.

  10. A new source of oxygenated organic aerosol and oligomers

    Directory of Open Access Journals (Sweden)

    J. Liggio

    2013-03-01

    Full Text Available A large oxygenated organic uptake to aerosols was observed when exposing ambient urban air to inorganic acidic and non-acidic sulfate seed aerosol. For non-acidic seed aerosol the uptake was attributed to the direct dissolution of primary vehicle exhaust gases into the aqueous aerosol fraction, and was correlated to the initial seed sulphate mass. The uptake of primary oxygenated organic gases to aerosols in this study represents a significant amount of organic aerosol (OA that may be considered primary when compared to that reported for primary organic aerosol (POA, but is considerably more oxygenated (O : C ~ 0.3 than traditional POA. Consequently, a fraction of measured ambient oxygenated OA, which correlates with secondary sulphate, may in fact be of a primary, rather than secondary source. These results represent a new source of oxygenated OA on neutral aerosol and imply that the uptake of primary organic gases will occur in the ambient atmosphere, under dilute conditions, and in the presence of pre-existing SO4 aerosols which contain water. Conversely, under acidic seed aerosol conditions, oligomer formation was observed with the uptake of organics being enhanced by a factor of three or more compared to neutral aerosols, and in less than 2 min, representing an additional source of SOA to the atmosphere. This resulted in a trajectory in Van Krevelen space towards higher O : C (slope ~ −1.5, despite a lack of continual gas-phase oxidation in this closed system. The results demonstrate that high molecular weight species will form on acidic aerosols at the ambient level and mixture of organic gases, but are otherwise unaffected by subsequent aerosol neutralization, and that aerosol acidity will affect the organic O : C via aerosol-phase reactions. These two processes, forming oxygenated POA under neutral conditions and SOA under acidic conditions can contribute to the total ambient OA mass and the evolution of ambient aerosol O : C ratios

  11. Stress relaxation following uniaxial extension of polystyrene melt and oligomer dilutions

    DEFF Research Database (Denmark)

    Huang, Qian; Rasmussen, Henrik K.

    2016-01-01

    The filament stretching rheometer has been used to measure the stress relaxation following the startup of uniaxial extensional flow, on anarrow molar mass distribution (NMMD) polystyrene melt and styrene oligomer dilutions thereof. All samples used here were characterizedin molecular weight......, mechanical spectroscopy, and constant strain rate uniaxial extension in the work of Huang et al. [Macromolecules 46,5026–5035 (2013); ACS Macro Lett. 2, 741–744 (2013)]. The stress relaxation following the steady extensional stress was measured on a285 kg/mole NMMD polystyrene and two 1.92 kg/mole styrene...... oligomer dilutions thereof {PS-285k, PS-285k/2k-72, and PS-285k/2k-44 inthe work of Huang et al. [Macromolecules 46, 5026–5035 (2013)]}. The two dilutions contained 28 and 56 wt. % oligomer, respectively.Further, the stress relaxation on a 545 kg/mole NMMD polystyrene diluted with 48 wt. % 0.972 kg...

  12. Detection of Misfolded Aβ Oligomers for Sensitive Biochemical Diagnosis of Alzheimer’s Disease

    Directory of Open Access Journals (Sweden)

    Natalia Salvadores

    2014-04-01

    Full Text Available Alzheimer's disease (AD diagnosis is hampered by the lack of early, sensitive, and objective laboratory tests. We describe a sensitive method for biochemical diagnosis of AD based on specific detection of misfolded Aβ oligomers, which play a central role in AD pathogenesis. The protein misfolding cyclic amplification assay (Aβ-PMCA, exploits the functional property of Aβ oligomers to seed the polymerization of monomeric Aβ. Aβ-PMCA allowed detection of as little as 3 fmol of Aβ oligomers. Most importantly, using cerebrospinal fluid, we were able to distinguish AD patients from control individuals affected by a variety of other neurodegenerative disorders or nondegenerative neurological diseases with overall sensitivity of 90% and specificity of 92%. These findings provide the proof-of-principle basis for developing a highly sensitive and specific biochemical test for AD diagnosis.

  13. Near- and far-field properties of plasmonic oligomers under radially and azimuthally polarized light excitation.

    Science.gov (United States)

    Yanai, Avner; Grajower, Meir; Lerman, Gilad M; Hentschel, Mario; Giessen, Harald; Levy, Uriel

    2014-05-27

    We present a comprehensive experimental and theoretical study on the near- and far-field properties of plasmonic oligomers using radially and azimuthally polarized excitation. These unconventional polarization states are perfectly matched to the high spatial symmetry of the oligomers and thus allow for the excitation of some of the highly symmetric eigenmodes of the structures, which cannot be excited by linearly polarized light. In particular, we study hexamer and heptamer structures and strikingly find very similar optical responses, as well as the absence of a Fano resonance. Furthermore, we investigate the near-field distributions of the oligomers using near-field scanning optical microscopy (NSOM). We observe significantly enhanced near-fields, which arise from efficient excitation of the highly symmetric eigenmodes by the radially and azimuthally polarized light fields. Our study opens up possibilities for tailored light-matter interaction, combining the design freedom of complex plasmonic structures with the remarkable properties of radially and azimuthally polarized light fields.

  14. A mechanistic model of tau amyloid aggregation based on direct observation of oligomers

    Science.gov (United States)

    Shammas, Sarah L.; Garcia, Gonzalo A.; Kumar, Satish; Kjaergaard, Magnus; Horrocks, Mathew H.; Shivji, Nadia; Mandelkow, Eva; Knowles, Tuomas P. J.; Mandelkow, Eckhard; Klenerman, David

    2015-04-01

    Protein aggregation plays a key role in neurodegenerative disease, giving rise to small oligomers that may become cytotoxic to cells. The fundamental microscopic reactions taking place during aggregation, and their rate constants, have been difficult to determine due to lack of suitable methods to identify and follow the low concentration of oligomers over time. Here we use single-molecule fluorescence to study the aggregation of the repeat domain of tau (K18), and two mutant forms linked with familial frontotemporal dementia, the deletion mutant ΔK280 and the point mutant P301L. Our kinetic analysis reveals that aggregation proceeds via monomeric assembly into small oligomers, and a subsequent slow structural conversion step before fibril formation. Using this approach, we have been able to quantitatively determine how these mutations alter the aggregation energy landscape.

  15. Linear and Nonlinear Optical Properties of Novel Multi-branched Oligomers

    Institute of Scientific and Technical Information of China (English)

    Li-jing Gong; Ying-hui Wang; Zhi-hui Kang; Tian-hao Huang; Ran Lu; Han-zhuang Zhang

    2012-01-01

    We investigate the fluorene-vinylene unit dependent photo-physical properties of multibranched truxene based oligomers (Tr-OFVn,n=1-4) employing steady-state absorption and emission spectroscopy,transient absorption spectroscopy,two-photon fluorescence,and z-scan technique.The results show that the increasing of fluorene-vinylene unit leads to a red-shift in the spectra of absorption and fluorescence,and shortens the excited state lifetime.Meanwhile,two-photon fluorescence efficiency and two-photon absorption cross section of truxene based oligomers gradually enhance in company with the extension of π-conjugated length.In addition,the values of two-photon absorption cross section modeled on the sum-over-state approach agree well with the experimental ones.The results indicate multi-branched truxene based oligomers bearing oligo(fluorene-vinylene) arms are promising organic materials for two-photon applications.

  16. Exploring the assembly mechanism of tetrapeptide oligomers using the Activation-Relaxation Technique

    Science.gov (United States)

    Wei, Guanghong; Mousseau, Normand; Derreumaux, Philippe

    2004-03-01

    Alzheimer's disease and Parkinson's disease are associated with formation of amyloid fibrils. All amyloid fibrils seem to share a common cross β-sheet structure. Experimental studies have shown that peptides as short as 4 amino acids can form amyloid fibrils. It has also been shown that the oligomers that form early in the aggregation process of even non-disease-related proteins may be cytotoxic. We report a detailed study of the assembly mechanisms of the tetrapeptides into different size oligomers: trimers, hexamers and more. The assembly of the oligomers, in which the peptides form β-sheets through interpeptide interactions, are studied using the activation-relaxation technique (ART) in combination with a reduced off-lattice energy model (OPEP). We also describe the multiple pathways of oligomerization as well as categorize the various oligomeric intermediates, providing information of the early events of β-sheet formation.

  17. Oligomers of heat-shock proteins: Structures that don't imply function

    CERN Document Server

    Jacobs, William M; Frenkel, Daan

    2015-01-01

    Most proteins must remain soluble in the cytosol in order to perform their biological functions. To protect against undesired protein aggregation, living cells maintain a population of molecular chaperones that ensure the solubility of the proteome. Here we report simulations of a lattice model of interacting proteins to understand how low concentrations of passive molecular chaperones, such as small heat-shock proteins, suppress thermodynamic instabilities in protein solutions. Given fixed concentrations of chaperones and client proteins, the solubility of the proteome can be increased by tuning the chaperone--client binding strength. Surprisingly, we find that the binding strength that optimizes solubility while preventing irreversible chaperone binding also promotes the formation of weakly bound chaperone oligomers, although the presence of these oligomers does not significantly affect the thermodynamic stability of the solution. Such oligomers are commonly observed in experiments on small heat-shock prote...

  18. Biodegradable polyester-based eco-composites containing hemp fibers modified with macrocyclic oligomers

    Science.gov (United States)

    Conzatti, Lucia; Utzeri, Roberto; Hodge, Philip; Stagnaro, Paola

    2016-05-01

    An original compatibilizing pathway for hemp fibers/poly(1,4-butylene adipate-co-terephtalate) (PBAT) eco-composites was explored exploiting the capability of macrocyclic oligomers (MCOs), obtained by cyclodepolymerization (CDP) of PBAT at high dilution, of being re-converted into linear chains by entropically-driven ring-opening polymerization (ED-ROP) that occurs simply heating the MCOS in the bulk. CDP reaction of PBAT was carried out varying solvent, catalyst and reaction time. Selected MCOs were used to adjust the conditions of the ED-ROP reaction. The best experimental conditions were then adopted to modify hemp fibers. Eco-composites based on PBAT and hemp fibers as obtained or modified with PBAT macrocyclics or oligomers were prepared by different process strategies. The best fiber-PBAT compatibility was observed when the fibers were modified with PBAT oligomers before incorporation in the polyester matrix.

  19. Solution state structure determination of silicate oligomers by 29SI NMR spectroscopy and molecular modeling.

    Science.gov (United States)

    Cho, Herman; Felmy, Andrew R; Craciun, Raluca; Keenum, J Patrick; Shah, Neil; Dixon, David A

    2006-02-22

    Evidence for nine new solution state silicate oligomers has been discovered by (29)Si NMR homonuclear correlation experiments of (29)Si-enriched samples. In addition to enhancing signal sensitivity, the isotopic enrichment increases the probability of the (29)Si-(29)Si two-bond scalar couplings that are necessary for the observation of internuclear correlations in 2-D experiments. The proposed assignments are validated by comparisons of experimental and simulated cross-peaks obtained with high digital resolution. The internuclear connectivity indicated by the NMR data suggests that several of these oligomers can have multiple stereoisomers, including conformers and/or diastereomers. The stabilities of these oligomers and their possible stereoisomers have been investigated by electronic structure calculations.

  20. Clinical pharmacology and pharmacokinetics of cis-platinum and analogs.

    Science.gov (United States)

    Ribaud, P; Gouveia, J; Bonnay, M; Mathe, G

    1981-01-01

    cis-Platinum (DDP), the first metal coordination complex introduced into clinical trials, is remarkable for its therapeutic index. A short review of the numerator of this index, ie, the clinical activities of DDP given as a single agent or in combination therapy is presented. Toxicity of DDP, the denominator of the index, is given more attention, particularly nephrotoxicity, whose cumulative character and molecular mechanism are still in question and which can most often be prevented by following certain safety rules that are detailed in this paper. Pharmacokinetics data of free and filterable platinum are reviewed and discussed according to the different modalities of administration of DDP, and to what is known about its toxicity and its mechanism of cell kill. The rationale for using DDP in combination treatment is presented and the question of possible long-term toxicities is raised. cis-platinum analogs are sought for the purpose of enlarging the spectrum of activity, increasing selectivity and diminishing toxicity. Malonato-platinum has been shown not to be cross-resistant with DDP and to be clinically effective in adult acute leukemia. In a phase I study, malonato-platinum, which is poorly soluble, was administered in 6-24-hour infusions to 49 patients in doses ranging from 3 to 32 mg/kg. GI toxicity was universal. Hematological toxicity appeared to be mild and not clearly dose-related (the 3-32 mg/kg patients were not yet evaluable). Platinum pharmacokinetics in urine and plasma were performed using flameless absorption spectrophotometry. Preliminary results have suggested that malonato-platinum presented several pharmacokinetic features in common with DDP. Minor responses were seen in four solid tumor patients, three of whom were refractory to DDP. Other analogs soon to be introduced into clinical trials are listed.

  1. Thio-urethane oligomers improve the properties of light-cured resin cements.

    Science.gov (United States)

    Bacchi, Ataís; Consani, Rafael L; Martim, Gedalias C; Pfeifer, Carmem S

    2015-05-01

    Thio-urethanes were synthesized by combining 1,6-hexanediol-diissocyante (aliphatic) with pentaerythritol tetra-3-mercaptopropionate (PETMP) or 1,3-bis(1-isocyanato-1-methylethyl)benzene (aromatic) with trimethylol-tris-3-mercaptopropionate (TMP), at 1:2 isocyanate:thiol, leaving pendant thiols. Oligomers were added at 10-30 phr to BisGMA-UDMA-TEGDMA (5:3:2, BUT). 25 wt% silanated inorganic fillers were added. Commercial cement (Relyx Veneer, 3M-ESPE) was also evaluated with 10-20 phr of aromatic oligomer. Near-IR was used to follow methacrylate conversion (DC) and rate of polymerization (Rpmax). Mechanical properties were evaluated in three-point bending (ISO 4049) for flexural strength/modulus (FS/FM, and toughness), and notched specimens (ASTM Standard E399-90) for fracture toughness (KIC). Polymerization stress (PS) was measured on the Bioman. Volumetric shrinkage (VS, %) was measured with the bonded disk technique. Results were analyzed with ANOVA/Tukey's test (α=5%). In general terms, for BUT cements, conversion and mechanical properties in flexure increased for selected groups with the addition of thio-urethane oligomers. The aromatic versions resulted in greater FS/FM than aliphatic. Fracture toughness increased by two-fold in the experimental groups (from 1.17 ± 0.36 MPam(1/2) to around 3.23 ± 0.22 MPam(1/2)). Rpmax decreased with the addition of thio-urethanes, though the vitrification point was not statistically different from the control. VS and PS decreased with both oligomers. For the commercial cement, 20 phr of oligomer increased DC, vitrification, reduced Rpmax and also significantly increased KIC, and reduced PS and FM. Thio-urethane oligomers were shown to favorably modify conventional dimethacrylate networks. Significant reductions in polymerization stress were achieved at the same time conversion and fracture toughness increased.

  2. Platinum metals in magmatic sulfide ores

    Science.gov (United States)

    Naldrett, A.J.; Duke, J.M.

    1980-01-01

    Platinum-group elements (PGE) are mined predominantly from deposits that have formed by the segregation of molten iron-nickel-copper sulfides from silicate magmas. The absolute concentrations of PGE in sulfides from different deposits vary over a range of five orders of magnitude, whereas those of other chalcophile elements vary by factors of only 2 to 100. However, the relative proportions of the different PGE in a given deposit are systematically related to the nature of the parent magma. The absolute and relative concentrations of PGE in magmatic sulfides are explained in terms of the degree of partial melting of mantle peridotite required to produce the parent magma and the processes of batch equilibration and fractional segregation of sulfides. The Republic of South Africa and the U.S.S.R. together possess more than 97 percent of the world PGE reserves, but significant undeveloped resources occur in North America. The Stillwater complex in Montana is perhaps the most important example. Copyright ?? 1980 AAAS.

  3. Platinum states in citrate sols by EXAFS.

    Science.gov (United States)

    Lin, Chia-Shiang; Khan, Maksudur R; Lin, Shawn D

    2005-07-01

    Platinum sols have been prepared by citrate reduction in the temperature range of 343-363 K. The Pt state in the solution was examined by EXAFS (extended X-ray absorption fine-structure spectroscopy). It did not show any PtPt bonding, a characteristic for reduced Pt sols. EXAFS model fitting further proved the presence of PtO with 4 oxygen neighbors, which suggests a tetraplanar coordination configuration. The possibility of neighboring Pt sharing oxygen ligand or the formation of PtO(x) is rejected by EXAFS model fitting. Citrate was found to be the most likely ligand to orient its oxygen end toward a charged Pt center. Thus we have revealed that the citrate treatment at this temperature range was clearly insufficient to reduce H2PtCl(6(aq)). Neither an extended period of reaction time nor an excess citrate reduced the Pt precursor. It is therefore highly recommended that the citrate sols should be carefully prepared and used.

  4. Development of radioactive platinum group metal catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Chung, H.S.; Kim, Y.S.; Kim, Y.E. [and others

    1999-03-01

    The fission product nuclides generated during the irradiation of reactor fuel include many useful elements, among them platinum group metals such as ruthenium, rhodium and palladium which are of great industrial importance, occur rarely in nature and are highly valuable. In this research, the authors reviewed various PGM recovery methods. Recovery of palladium from seven-component simulated waste solutions was conducted by selective precipitation method. The recovery yield was more than 99.5% and the purity of the product was more than 99%. Wet-proof catalyst was prepared with the recovered palladium. The specific surface area of the catalyst support was more than 400m{sup 2}/g.The content of palladium impregnated on the support was 1 to 10 wt. %. Hydrogen isotope exchange efficiency of more than 93% to equilibrium with small amount of the catalyst was obtained. It was turned out possible to consider using such palladium or other very low active PGM materials in applications where its activity is unimportant as in nuclear industries. (author). 86 refs., 44 tabs., 88 figs.

  5. Development of radioactive platinum group metal catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Chung, H.S.; Kim, Y.S.; Kim, Y.E. [and others

    1999-03-01

    The fission product nuclides generated during the irradiation of reactor fuel include many useful elements, among them platinum group metals such as ruthenium, rhodium and palladium which are of great industrial importance, occur rarely in nature and are highly valuable. In this research, the authors reviewed various PGM recovery methods. Recovery of palladium from seven-component simulated waste solutions was conducted by selective precipitation method. The recovery yield was more than 99.5% and the purity of the product was more than 99%. Wet-proof catalyst was prepared with the recovered palladium. The specific surface area of the catalyst support was more than 400m{sup 2}/g.The content of palladium impregnated on the support was 1 to 10 wt. %. Hydrogen isotope exchange efficiency of more than 93% to equilibrium with small amount of the catalyst was obtained. It was turned out possible to consider using such palladium or other very low active PGM materials in applications where its activity is unimportant as in nuclear industries. (author). 86 refs., 44 tabs., 88 figs.

  6. Crystal structure of human prion protein fragment reveals a motif for oligomer formation

    Science.gov (United States)

    Apostol, Marcin I.; Perry, Kay; Surewicz, Witold K.

    2013-01-01

    The structural transition of the prion protein from α-helical to β-sheet rich underlies its conversion into infectious and disease-associated isoforms. Here we describe the crystal structure of a fragment from human prion protein consisting of the disulfide bond linked portions of helices 2 and 3. Instead of forming a pair-of-sheets steric zipper structure characteristic of amyloid fibers, this fragment crystallized into an β-sheet rich assembly of hexameric oligomers. This study reveals a never before observed structural motif for ordered protein aggregates, and suggests a possible mechanism for self-propagation of misfolded conformations by such non-amyloid oligomers. PMID:23808589

  7. Crystal structure of a human prion protein fragment reveals a motif for oligomer formation.

    Science.gov (United States)

    Apostol, Marcin I; Perry, Kay; Surewicz, Witold K

    2013-07-17

    The structural transition of the prion protein from α-helical- to β-sheet-rich underlies its conversion into infectious and disease-associated isoforms. Here we describe the crystal structure of a fragment from human prion protein consisting of the disulfide-bond-linked portions of helices 2 and 3. Instead of forming a pair-of-sheets steric zipper structure characteristic of amyloid fibers, this fragment crystallized into a β-sheet-rich assembly of hexameric oligomers. This study reveals a never before observed structural motif for ordered protein aggregates and suggests a possible mechanism for self-propagation of misfolded conformations by such nonamyloid oligomers.

  8. Asymmetric synthesis of vinylogous β-amino acids and their incorporation into mixed backbone oligomers.

    Science.gov (United States)

    Wu, Hao; An, Hongchan; Mo, Shuting Cynthia; Kodadek, Thomas

    2017-03-27

    Chiral vinylogous β-amino acids (VBAA) were synthesized using enantioselective Mannich reactions of aldehydes with in situ generated N-carbamoyl imines followed by a Horner-Wadsworth-Emmons reaction. The efficiency with which these units could be incorporated into oligomers with different moieties on the C- and N-terminal sides was established, as was the feasibility of sequencing oligomers containing VBAAs by tandem mass spectrometry. The data show that VBAAs will be useful building blocks for the construction of combinatorial libraries of peptidomimetic compounds.

  9. Synthesis and G-Quadruplex-Binding Properties of Defined Acridine Oligomers

    Directory of Open Access Journals (Sweden)

    Rubén Ferreira

    2010-01-01

    Full Text Available The synthesis of oligomers containing two or three acridine units linked through 2-aminoethylglycine using solid-phase methodology is described. Subsequent studies on cell viability showed that these compounds are not cytotoxic. Binding to several DNA structures was studied by competitive dialysis, which showed a clear affinity for DNA sequences that form G-quadruplexes and parallel triplexes. The fluorescence spectra of acridine oligomers were affected strongly upon binding to DNA. These spectral changes were used to calculate the binding constants (K. Log K were found to be in the order of 4–6.

  10. Cyclic oligomers in polyamide for food contact material: quantification by HPLC-CLND and single-substance calibration.

    Science.gov (United States)

    Heimrich, M; Bönsch, M; Nickl, H; Simat, T J

    2012-01-01

    Cyclic oligomers are the major substances migrating from polyamide (PA) food contact materials. However, no commercial standards are available for the quantification of these substances. For the first time the quantification of cyclic oligomers was carried out by HPLC coupled with a chemiluminescence nitrogen detector (CLND) and single-substance calibration. Cyclic monomer (MW = 226 Da) and dimer (MW = 452 Da) of PA66 were synthesised and equimolar N detection of CLND to synthesised oligomers, caprolactam, 6-aminohexanoic acid (monomers of PA6) and caffeine (a typical nitrogen calibrant) was proven. Relative response factors (UVD at 210 nm) referring to caprolactam were determined for cyclic PA6 oligomers from dimer to nonamer, using HPLC-CLND in combination with a UVD. A method for quantification of cyclic oligomer content in PA materials was introduced using HPLC-CLND analysis and caffeine as a single nitrogen calibrant. The method was applied to the quantification of cyclic PA oligomers in several PA granulates. For two PA6 granulates from different manufacturers markedly different oligomer contents were analysed (19.5 versus 13.4 g kg⁻¹). The elution pattern of cyclic oligomers offers the possibility of identifying the PA type and differentiating between PA copolymers and blends.

  11. Considerable Enhancement of Emission Yields of [Au(CN)2(-)] Oligomers in Aqueous Solutions by Coexisting Cations.

    Science.gov (United States)

    Wakabayashi, Ryo; Maeba, Junichi; Nozaki, Koichi; Iwamura, Munetaka

    2016-08-01

    The photophysical properties of [Au(CN)2(-)] oligomers in aqueous solutions were investigated as functions of coexisting cations as well as the viscosity and temperature of solutions. A solution of [Au(CN)2(-)] in the concentration range of 0.03-0.2 mol/dm(3) exhibited emission peaks at 460-480 nm because of the presence of oligomers larger than trimers. Although the emission yields (ϕem) of K[Au(CN)2] solutions were glycerol mixture indicated that the lifetimes were almost directly proportional to the inverse of the viscosity of the solution. On the other hand, the intrinsic lifetimes of dimers and trimers with weak emission in shorter wavelength regions were very short and independent of the viscosity of the solutions and coexisting cations (dimer, ∼25 ps; trimer, ∼2 ns). These results indicated that the deactivation of the excited-state [Au(CN)2(-)]n oligomers (n ≥ 4) was dominated by the dissociation of the oligomers to a shorter species (dimer or trimer). The hydrophobic interactions between tetraalkylammonium cations and CN ligands remarkably stabilized the larger oligomers and suppressed the dissociation of the excited-state oligomers, which enhanced the emission yield of the oligomers. This work provides a new method of "exciplex tuning" by changing the environment of excited-state [Au(CN)2(-)]n oligomers.

  12. Enzymatic production of defined chitosan oligomers with a specific pattern of acetylation using a combination of chitin oligosaccharide deacetylases

    Science.gov (United States)

    Hamer, Stefanie Nicole; Cord-Landwehr, Stefan; Biarnés, Xevi; Planas, Antoni; Waegeman, Hendrik; Moerschbacher, Bruno Maria; Kolkenbrock, Stephan

    2015-03-01

    Chitin and chitosan oligomers have diverse biological activities with potentially valuable applications in fields like medicine, cosmetics, or agriculture. These properties may depend not only on the degrees of polymerization and acetylation, but also on a specific pattern of acetylation (PA) that cannot be controlled when the oligomers are produced by chemical hydrolysis. To determine the influence of the PA on the biological activities, defined chitosan oligomers in sufficient amounts are needed. Chitosan oligomers with specific PA can be produced by enzymatic deacetylation of chitin oligomers, but the diversity is limited by the low number of chitin deacetylases available. We have produced specific chitosan oligomers which are deacetylated at the first two units starting from the non-reducing end by the combined use of two different chitin deacetylases, namely NodB from Rhizobium sp. GRH2 that deacetylates the first unit and COD from Vibrio cholerae that deacetylates the second unit starting from the non-reducing end. Both chitin deacetylases accept the product of each other resulting in production of chitosan oligomers with a novel and defined PA. When extended to further chitin deacetylases, this approach has the potential to yield a large range of novel chitosan oligomers with a fully defined architecture.

  13. Absorption enhancing effects of chitosan oligomers on the intestinal absorption of low molecular weight heparin in rats.

    Science.gov (United States)

    Zhang, Hailong; Mi, Jie; Huo, Yayu; Huang, Xiaoyan; Xing, Jianfeng; Yamamoto, Akira; Gao, Yang

    2014-05-15

    Absorption enhancing effects of chitosan oligomers with different type and varying concentration on the intestinal absorption of low molecular weight heparin (LMWH) were examined by an in situ closed loop method in different intestinal sections of rats. Chitosan hexamer with the optimal concentration of 0.5% (w/v) showed the highest absorption enhancing ability both in the small intestine and large intestine. The membrane toxicities of chitosan oligomers were evaluated by morphological observation and determining the biological markers including amount of protein and activity of lactate dehydrogenase (LDH) released from intestinal epithelium cells. There was no obvious change both in levels of protein and LDH and morphology in the intestinal membrane between control and various chitosan oligomers groups, suggesting that chitosan oligomers did not induce any significant membrane damage to the intestinal epithelium. In addition, zeta potentials became less negative and amount of free LMWH gradually decreased when various chitosan oligomers were added to LMWH solution, revealing that electrostatic interaction between positively charged chitosan oligomers and negative LMWH was included in the absorption enhancing mechanism of chitosan oligomers. In conclusion, chitosan oligomers, especially chitosan hexamer, are safe and efficient absorption enhancers and can be used promisingly to improve oral absorption of LMWH.

  14. Synthesis and characterization of potential iron–platinum drugs and supplements by laser liquid photolysis

    CSIR Research Space (South Africa)

    Nkosi, SS

    2013-06-01

    Full Text Available , and structure was systematically investigated. Different nanostructures of iron–platinum alloy and chemically disordered iron–platinum L10 phase were obtained without annealing. The prepared precursor solution underwent deep photolysis to polycrystalline iron...

  15. A dual-emissive ionic liquid based on an anionic platinum(II) complex

    OpenAIRE

    Ogawa, Tomohiro; Yoshida, Masaki; Ohara, Hiroki; Kobayashia, Atsushi; Kato, Masako

    2015-01-01

    An ionic liquid fabricated froman anionic cyclometalated platinum(II) complex and an imidazolium cation exhibits dual emission from the monomeric and aggregated forms of the platinum complex anions, leading to temperature-dependent color changes of luminescence.

  16. A dual-emissive ionic liquid based on an anionic platinum(ii) complex.

    Science.gov (United States)

    Ogawa, Tomohiro; Yoshida, Masaki; Ohara, Hiroki; Kobayashi, Atsushi; Kato, Masako

    2015-09-07

    An ionic liquid fabricated from an anionic cyclometalated platinum(ii) complex and an imidazolium cation exhibits dual emission from the monomeric and aggregated forms of the platinum complex anions, leading to temperature-dependent color changes of luminescence.

  17. Construction of human Fab library and screening of a single-domain antibody of amyloid-beta 42 oligomers

    Institute of Scientific and Technical Information of China (English)

    Zuanning Yuan; Minge Du; Yiwen Chen; Fei Dou

    2013-01-01

    Screening humanized antibodies from a human Fab phage display library is an effective and quick method to obtain beta-amyloid oligomers. Thus, the present study prepared amyloid-beta 42 oli-gomers and constructed a naïve human Fab phage display library based on blood samples from six healthy people. After three rounds of biopanning in vitro, a human single-domain antibody that spe-cifical y recognized amyloid-beta 42 oligomers was identified. Western blot and enzyme-linked immunosorbent assay demonstrated this antibody bound specifical y to human amyloid-beta 42 te-tramer and nonamer, but not the monomer or high molecular weight oligomers. This study suc-cessful y constructed a human phage display library and screened a single-domain antibody that specifical y recognized amyloid-beta 42 oligomers.

  18. Pharmacokinetics of Malonato (1,2 diaminocyclohexane) platinum.

    Science.gov (United States)

    Kelsen, D P; Ribaud, P; Alcock, N; Burchenal, J H; Young, C W; Mathe, G

    1981-01-01

    Malonato-(1,2 diaminocyclohexane) platinum (MP) is a new platinum analog currently undergoing phase I clinical trials. Using flameless atomic absorption spectrophotometry, the pharmacokinetics of MP were studied at five dosage levels. The drug was given as a prolonged intravenous infusion, lasting from 6 to 24 hours. Peak plasma platinum concentrations (Pt) were seen at the end of the infusion, and ranged from 1.1 microgram/ml when 3 mg/kg was given to 14-20.5 micrograms/ml at the 24-mg/kg level. Following completion of the infusion, a prolonged T1/2 beta (mean 63.5 hours) was noted. The percentage of free:total platinum was high (90-95%) at the beginning of the infusion but fell rapidly, to only 15-21% at the end of the 24-hour infusions. Urinary excretion accounted for 16-37.5% of the total administered dose. MP appears to have several pharmacokinetic features in common with cisplatin: rapid binding to protein, a prolonged terminal phase half-life involving primarily bound platinum, and incomplete excretion by the kidney.

  19. Neurotoxicity Caused by the Treatment with Platinum Analogues

    Directory of Open Access Journals (Sweden)

    Sousana Amptoulach

    2011-01-01

    Full Text Available Platinum agents (cisplatin, carboplatin, and oxaliplatin are a class of chemotherapy agents that have a broad spectrum of activity against several solid tumors. Toxicity to the peripheral nervous system is the major dose-limiting toxicity of at least some of the platinum drugs of clinical interest. Among the platinum compounds in clinical use, cisplatin is the most neurotoxic, inducing mainly sensory neuropathy of the upper and lower extremities. Carboplatin is generally considered to be less neurotoxic than cisplatin, but it is associated with a higher risk of neurological dysfunction if administered at high dose or in combination with agents considered to be neurotoxic. Oxaliplatin induces two types of peripheral neuropathy, acute and chronic. The incidence of oxaliplatin-induced neuropathy is related to various risk factors such as treatment schedule, cumulative dose, and time of infusion. To date, several neuroprotective agents including thiol compounds, vitamin E, various anticonvulsants, calcium-magnesium infusions, and other nonpharmacological strategies have been tested for their ability to prevent platinum-induced neurotoxicity with controversial results. Further studies on the prevention and treatment of neurotoxicity of platinum analogues are warranted.

  20. Presentation and Diagnosis of Hypersensitivity to Platinum Drugs.

    Science.gov (United States)

    Caiado, Joana; Castells, Mariana

    2015-04-01

    Hypersensitivity reactions (HSRs) to platinum drugs are increasing due to their extensive use in a wide variety of malignancies and the repeated exposures in patients with increased life expectancy. Understanding the incidence of HSR to platinum drugs and associated risk factors can help with the diagnosis and may provide protection against severe HSRs. A thorough clinical history with identification of the typical and atypical symptoms, the relationship with the platin administration, and the number of previous exposures are the key to the diagnosis. An elevated serum tryptase at the time of the HSR indicates that IgE and/or mast cells/basophils were involved in the HSR. Skin testing to platinum drugs is a highly sensitive and specific diagnostic tool, which helps provide risk stratification and management recommendations. Platinum specific IgE measurement and basophil activation test (BAT) are emerging as new diagnostic tools and in combination with skin testing can help support the diagnosis and the cross-reactivity between the three most commonly used platinum drugs, namely carboplatin, cisplatin, and oxaliplatin.

  1. Structures of 38-atom gold-platinum nanoalloy clusters

    Energy Technology Data Exchange (ETDEWEB)

    Ong, Yee Pin; Yoon, Tiem Leong [School of Physics, Universiti Sains Malaysia, 11800 USM, Penang (Malaysia); Lim, Thong Leng [Faculty of Engineering and Technology, Multimedia University, Melaka Campus, 75450 Melaka (Malaysia)

    2015-04-24

    Bimetallic nanoclusters, such as gold-platinum nanoclusters, are nanomaterials promising wide range of applications. We perform a numerical study of 38-atom gold-platinum nanoalloy clusters, Au{sub n}Pt{sub 38−n} (0 ≤ n ≤ 38), to elucidate the geometrical structures of these clusters. The lowest-energy structures of these bimetallic nanoclusters at the semi-empirical level are obtained via a global-minimum search algorithm known as parallel tempering multi-canonical basin hopping plus genetic algorithm (PTMBHGA), in which empirical Gupta many-body potential is used to describe the inter-atomic interactions among the constituent atoms. The structures of gold-platinum nanoalloy clusters are predicted to be core-shell segregated nanoclusters. Gold atoms are observed to preferentially occupy the surface of the clusters, while platinum atoms tend to occupy the core due to the slightly smaller atomic radius of platinum as compared to gold’s. The evolution of the geometrical structure of 38-atom Au-Pt clusters displays striking similarity with that of 38-atom Au-Cu nanoalloy clusters as reported in the literature.

  2. The Researches on Performance and Technology of Strengthened Pure Platinum Wire

    Institute of Scientific and Technical Information of China (English)

    ZHAI Buying; WU Baoan; PAN Xiong; YANG Hao; WANG Yunchun; CHEN Xiaojun; WANG Jianshen; LI Guogang; XUE Liqian

    2012-01-01

    This paper discusses about the purity of strengthened pure platinum wire and the development method of platinum micro wire,in order to solve the difficulties of low tensile strength,easy to break,and low rate of micro wire.And it contrasts some performance of strengthened pure platinum wire and sponge Pt wire.The researches draw a conclusion that the thermoelectric properties of strengthened pure platinum micro wire was in accordance with national standards and satisfied users' requirements.

  3. The effects of platinum on nickel electrodes in the nickel hydrogen cell

    Science.gov (United States)

    Zimmerman, Albert H.

    1991-01-01

    Interactions of platinum and platinum compounds with the nickel electrode that are possible in the nickel hydrogen cell, where both the nickel electrode and a platinum catalyst hydrogen electrode are in intimate contact with the alkaline electrolyte, are examined. Additionally, a mechanism of nickel cobalt oxyhydroxide formation in NiH2 cells is presented.

  4. Preparation and Characterization of Atactic Poly(vinyl alcohol)/Platinum Nanocomposites by Electrospinning

    Science.gov (United States)

    Seok Lyoo, Won; Jae Lee, Young; Wook Cha, Jin; Jae Kim, Min; Woo Joo, Sang; Soon Gal, Yeong; Hwan Oh, Tae; Soo Han, Sung

    2010-06-01

    Poly(vinyl alcohol) (PVA)/platinum composite nanofibers were successfully prepared by the electrospinning method. Water-based colloidal platinum in a PVA solution was directly mixed without any chemical or structural modifications into PVA polymer fibers to form organic-inorganic composite nanofibers. The PVA/platinum composite nanofibers were characterized by field emission scanning electron microscopy (SEM).

  5. Platinum Publications, December 30, 2016–January 25, 2017 | Poster

    Science.gov (United States)

    Platinum Publications are selected from articles by NCI at Frederick scientists published in 42 prestigious science journals. This list represents articles published during the time period shown above, as generated from PubMed. Articles designated as Platinum Highlights are noteworthy articles selected from among the most recently published Platinum Publications.

  6. POLYMER-PLATINUM COMPLEX CATALYSTS FOR OXIDATION OF METHANOL TO FORMALDEHYDE

    Institute of Scientific and Technical Information of China (English)

    HUANG Meiyu; HUANG Li; ZHENG Qingyao; WANG Dianxun; JIANG Yingyan

    1984-01-01

    Two kinds of polymer-platinum complexes: silica-supported poly-γ-diphenylphosphinopropyl-siloxane-platinum complex and silica-supported polyphenylsilazane-platinum complex, have been found very active and selective in catalyzation of oxidation of methanol to formaldehyde at room temperature and under an atmospheric oxygen pressure. Their catalytic activities are greatly affected by P or N/Pt gram atomic ratio.

  7. 75 FR 77572 - Proposed Revision of Class E Airspace; Platinum AK

    Science.gov (United States)

    2010-12-13

    ... Federal Aviation Administration 14 CFR Part 71 Proposed Revision of Class E Airspace; Platinum AK AGENCY... action proposes to revise Class E airspace at Platinum AK. The creation of a new Standard Instrument Approach Procedure (SIAP) at the Platinum Airport has made this action necessary to enhance safety...

  8. 76 FR 67793 - Notification of Expanded Pricing Grid for Precious Metals Products Containing Platinum and Gold...

    Science.gov (United States)

    2011-11-02

    ... United States Mint Notification of Expanded Pricing Grid for Precious Metals Products Containing Platinum..., 2009, outlining the new pricing methodology for numismatic products containing platinum and gold. Since that time, the price of platinum and gold has increased considerably, and is approaching the...

  9. 40 CFR 440.110 - Applicability; description of the platinum ore subcategory.

    Science.gov (United States)

    2010-07-01

    ... platinum ore subcategory. 440.110 Section 440.110 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS ORE MINING AND DRESSING POINT SOURCE CATEGORY Platinum Ores Subcategory § 440.110 Applicability; description of the platinum ore subcategory. The provisions of...

  10. Flow Injection Analysis with Electrochemical Detection for Rapid Identification of Platinum-Based Cytostatics and Platinum Chlorides in Water

    Directory of Open Access Journals (Sweden)

    Marketa Kominkova

    2014-02-01

    Full Text Available Platinum-based cytostatics, such as cisplatin, carboplatin or oxaliplatin are widely used agents in the treatment of various types of tumors. Large amounts of these drugs are excreted through the urine of patients into wastewaters in unmetabolised forms. This phenomenon leads to increased amounts of platinum ions in the water environment. The impacts of these pollutants on the water ecosystem are not sufficiently investigated as well as their content in water sources. In order to facilitate the detection of various types of platinum, we have developed a new, rapid, screening flow injection analysis method with electrochemical detection (FIA-ED. Our method, based on monitoring of the changes in electrochemical behavior of analytes, maintained by various pH buffers (Britton-Robinson and phosphate buffer and potential changes (1,000, 1,100 and 1,200 mV offers rapid and cheap selective determination of platinum-based cytostatics and platinum chlorides, which can also be present as contaminants in water environments.

  11. Flow injection analysis with electrochemical detection for rapid identification of platinum-based cytostatics and platinum chlorides in water.

    Science.gov (United States)

    Kominkova, Marketa; Heger, Zbynek; Zitka, Ondrej; Kynicky, Jindrich; Pohanka, Miroslav; Beklova, Miroslava; Adam, Vojtech; Kizek, Rene

    2014-02-04

    Platinum-based cytostatics, such as cisplatin, carboplatin or oxaliplatin are widely used agents in the treatment of various types of tumors. Large amounts of these drugs are excreted through the urine of patients into wastewaters in unmetabolised forms. This phenomenon leads to increased amounts of platinum ions in the water environment. The impacts of these pollutants on the water ecosystem are not sufficiently investigated as well as their content in water sources. In order to facilitate the detection of various types of platinum, we have developed a new, rapid, screening flow injection analysis method with electrochemical detection (FIA-ED). Our method, based on monitoring of the changes in electrochemical behavior of analytes, maintained by various pH buffers (Britton-Robinson and phosphate buffer) and potential changes (1,000, 1,100 and 1,200 mV) offers rapid and cheap selective determination of platinum-based cytostatics and platinum chlorides, which can also be present as contaminants in water environments.

  12. Oscillatory instabilities in the electrooxidation of borohydride on platinum

    Energy Technology Data Exchange (ETDEWEB)

    Machado, Eduardo G.; Varela, Hamilton, E-mail: varela@iqsc.usp.br [Universidade de Sao Paulo (USP), Sao Carlos, SP (Brazil). Instituto de Quimica

    2014-03-15

    The borohydride ion has been pointed as a promising alternative fuel. Most of the investigation on its electrochemistry is devoted to the electrocatalytic aspects of its electrooxidation on platinum and gold surfaces. Besides the known kinetic limitations and intricate mechanism, our Group has recently found the occurrence of two regions of bi-stability and autocatalysis in the electrode potential during the open circuit interaction of borohydride and oxidized platinum surfaces. Following this previous contribution, the occurrence of more complicated phenomena is here presented: namely the presence of electrochemical oscillations during the electrooxidation of borohydride on platinum in alkaline media. Current oscillations were found to be associated to two distinct instability windows and characterized in the resistance-potential parameter plane. The dynamic features of such oscillations suggest the existence of distinct mechanisms according to the potential region. Previously published results obtained under non-oscillatory regime were used to give some hints on the surface chemistry behind the observed dynamics. (author)

  13. Current View in Platinum Drug Mechanisms of Peripheral Neurotoxicity

    Directory of Open Access Journals (Sweden)

    Alessia Chiorazzi

    2015-08-01

    Full Text Available Peripheral neurotoxicity is the dose-limiting factor for clinical use of platinum derivatives, a class of anticancer drugs which includes cisplatin, carboplatin, and oxaliplatin. In particular cisplatin and oxaliplatin induce a severe peripheral neurotoxicity while carboplatin is less neurotoxic. The mechanisms proposed to explain these drugs’ neurotoxicity are dorsal root ganglia alteration, oxidative stress involvement, and mitochondrial dysfunction. Oxaliplatin also causes an acute and reversible neuropathy, supposed to be due by transient dysfunction of the voltage-gated sodium channels of sensory neurons. Recent studies suggest that individual genetic variation may play a role in the pathogenesis of platinum drug neurotoxicity. Even though all these mechanisms have been investigated, the pathogenesis is far from clearly defined. In this review we will summarize the current knowledge and the most up-to-date hypotheses on the mechanisms of platinum drug-induced peripheral neurotoxicity.

  14. Preparation of platinum/iridium scanning probe microscopy tips

    DEFF Research Database (Denmark)

    Sørensen, Alexis Hammer; Hvid, U.; Mortensen, M.W.

    1999-01-01

    for the production of sharp tips. After being etched the tips are ready for use in scanning tunneling microscopes, or they may be bent to form integrated tip/cantilever systems in ordinary commercial atomic force microscopes, being applicable as tapping mode tips and as electrostatic force microscopy tips. ©1999......We report on the development of an etching setup for use in the preparation of platinum/iridium tips for atomic force microscopy and scanning electrostatic force microscopy as well as scanning tunneling microscopy. The etching process is based on a two step electrochemical procedure. The first step....... This mechanism is based on the formation of oxygen and hydrogen at the platinum/iridium electrode when the potential is above the dissociation potential of water (~ 1.23 V) and storage of these products interstitially in the outer layers of the platinum wire. This leads to "microexplosions" that detach fragments...

  15. Platinum-Iridium Alloy Films Prepared by MOCVD

    Institute of Scientific and Technical Information of China (English)

    WEI Yan; CHEN Li; CAI Hongzhong; ZHENG Xu; YANG Xiya; HU Changyi

    2012-01-01

    Platinum-Iridium alloy films were prepared by MOCVD on Mo substrate using metal-acetylacetonate precursors.Effects of deposition conditions on composition,microstructure and mechanical properties were determined.In these experimental conditions,the purities of films are high and more than 99.0%.The films are homogeneous and monophase solid solution of Pt and Ir.Weight percentage of platinum are much higher than iridium in the alloy.Lattice constant of the alloy changes with the platinum composition.Iridium composition showing an up-down-up trend at the precursor temperature of 190~230℃ and the deposition temperature at 400~550℃.The hardness of Pt-Ir alloys prepared by MOCVD is three times more than the alloys prepared by casting.

  16. Interaction of DNA with Bis(diiminosuccinonitrilo)platinum(Ⅱ)

    Institute of Scientific and Technical Information of China (English)

    ZHANG Zhi-Gang; SUN Yuan-Yuan; JIANG Xiao-Ming

    2008-01-01

    Interaction of DNA with bis(diiminosuccinonitrilo)platinum(Ⅱ) has been studied by UV-visible absorbance spectra, fluorescence spectra and viscosity measurements. The UV-visible absorption spectra of the metal complex exhibit hypochromism with a small blue shift on interaction with DNA. Scatchard plot analyses indicate that the binding sites of the metal complex on DNA are different from those of ethidium bromide. Viscosity experiments reveal that the binding of the metal complex decreases the relative viscosity of DNA. These results suggest that the platinum diimine complex interact with DNA by surface binding. These studies are helpful for us to understand the action mechanism of bis(diiminosuccinonitrilo)platinum(Ⅱ) as a potential photodynamic therapeutic agent, and further to develop it.

  17. Synthesis and Electrocatalytic Performance of BDD-Supported Platinum Nanoparticles

    Science.gov (United States)

    Lyu, Xiao; Hu, Jingping; Foord, John S.; Lou, Changsheng; Zhang, Weiqiang

    2015-02-01

    Platinum nanoparticles were deposited on boron-doped diamond substrate by electroless method without pre-activation. The mechanism of this deposition is a galvanic process along with a chemical process. Platinum particles are in nanoscale with diameter around 30-50 nm and height of around 3 nm observed from AFM and SEM images. The electrochemical activity of Pt nanoparticles was evaluated by cyclic voltammograms of hydrogen desorption process in 0.5 M H2SO4. The deposited platinum shows great stability in subsequent cycling in sulfuric acid and exhibits a high selectivity toward H2O2 detection in the range of 1 to 400 μM compared with those produced by electrochemical deposition.

  18. Decitabine reactivated pathways in platinum resistant ovarian cancer.

    Science.gov (United States)

    Fang, Fang; Zuo, Qingyao; Pilrose, Jay; Wang, Yinu; Shen, Changyu; Li, Meng; Wulfridge, Phillip; Matei, Daniela; Nephew, Kenneth P

    2014-06-15

    Combination therapy with decitabine, a DNMTi and carboplatin resensitized chemoresistant ovarian cancer (OC) to platinum inducing promising clinical activity. We investigated gene-expression profiles in tumor biopsies to identify decitabine-reactivated pathways associated with clinical response. Gene-expression profiling was performed using RNA from paired tumor biopsies before and 8 days after decitabine from 17 patients with platinum resistant OC. Bioinformatic analysis included unsupervised hierarchical-clustering, pathway and GSEA distinguishing profiles of "responders" (progression-free survival, PFS>6 months) and "non-responders" (PFSdecitabine (TGF-β and Hh). Gene-expression profiling identified specific pathways altered by decitabine and associated with platinum-resensitization and clinical benefit in OC. Our data could influence patient stratification for future studies using epigenetic therapies.

  19. Stabilizing Off-pathway Oligomers by Polyphenol Nanoassemblies for IAPP Aggregation Inhibition

    Science.gov (United States)

    Nedumpully-Govindan, Praveen; Kakinen, Aleksandr; Pilkington, Emily H.; Davis, Thomas P.; Chun Ke, Pu; Ding, Feng

    2016-01-01

    Experimental studies have shown that many naturally occurring polyphenols have inhibitory effect on the aggregation of several proteins. Here, we use discrete molecular dynamics (DMD) simulations and high-throughput dynamic light scattering (DLS) experiments to study the anti-aggregation effects of two polyphenols, curcumin and resveratrol, on the aggregation of islet amyloid polypeptide (IAPP or amylin). Our DMD simulations suggest that the aggregation inhibition is caused by stabilization of small molecular weight IAPP off-pathway oligomers by the polyphenols. Our analysis indicates that IAPP-polyphenol hydrogen bonds and π-π stacking combined with hydrophobic interactions are responsible for the stabilization of oligomers. The presence of small oligomers is confirmed with DLS measurements in which nanometer-sized oligomers are found to be stable for up to 7.5 hours, the time frame within which IAPP aggregates in the absence of polyphenols. Our study offers a general anti-aggregation mechanism for polyphenols, and further provides a computational framework for the future design of anti-amyloid aggregation therapeutics.

  20. Enhanced Volatile Organic Compounds emissions and organic aerosol mass increase the oligomer content of atmospheric aerosols

    Science.gov (United States)

    Kourtchev, Ivan; Giorio, Chiara; Manninen, Antti; Wilson, Eoin; Mahon, Brendan; Aalto, Juho; Kajos, Maija; Venables, Dean; Ruuskanen, Taina; Levula, Janne; Loponen, Matti; Connors, Sarah; Harris, Neil; Zhao, Defeng; Kiendler-Scharr, Astrid; Mentel, Thomas; Rudich, Yinon; Hallquist, Mattias; Doussin, Jean-Francois; Maenhaut, Willy; Bäck, Jaana; Petäjä, Tuukka; Wenger, John; Kulmala, Markku; Kalberer, Markus

    2016-10-01

    Secondary organic aerosol (SOA) accounts for a dominant fraction of the submicron atmospheric particle mass, but knowledge of the formation, composition and climate effects of SOA is incomplete and limits our understanding of overall aerosol effects in the atmosphere. Organic oligomers were discovered as dominant components in SOA over a decade ago in laboratory experiments and have since been proposed to play a dominant role in many aerosol processes. However, it remains unclear whether oligomers are relevant under ambient atmospheric conditions because they are often not clearly observed in field samples. Here we resolve this long-standing discrepancy by showing that elevated SOA mass is one of the key drivers of oligomer formation in the ambient atmosphere and laboratory experiments. We show for the first time that a specific organic compound class in aerosols, oligomers, is strongly correlated with cloud condensation nuclei (CCN) activities of SOA particles. These findings might have important implications for future climate scenarios where increased temperatures cause higher biogenic volatile organic compound (VOC) emissions, which in turn lead to higher SOA mass formation and significant changes in SOA composition. Such processes would need to be considered in climate models for a realistic representation of future aerosol-climate-biosphere feedbacks.

  1. Stress relaxation following uniaxial extension of polystyrene melt and oligomer dilutions

    DEFF Research Database (Denmark)

    Huang, Qian; Rasmussen, Henrik K.

    2016-01-01

    The filament stretching rheometer has been used to measure the stress relaxation following the startup of uniaxial extensional flow, on anarrow molar mass distribution (NMMD) polystyrene melt and styrene oligomer dilutions thereof. All samples used here were characterizedin molecular weight, mech...... ofconstitutive representation was observed for all measured relaxations.VC 2016 The Society of Rheology....

  2. Interchain tube pressure effect in extensional flows of oligomer diluted nearly monodisperse polystyrene melts

    DEFF Research Database (Denmark)

    Rasmussen, Henrik K.; Huang, Qian

    2014-01-01

    We have derived a constitutive equation to explain the extensional dynamics of oligomer-diluted monodisperse polymers, if the length of the diluent has at least two Kuhn steps. These polymer systems have a flow dynamics which distinguish from pure monodisperse melts and solutions thereof, if the ...

  3. Manipulating Fano resonance via fs-laser melting of hybrid oligomers at nanoscale

    Science.gov (United States)

    Lepeshov, S. I.; Zuev, D. A.; Makarov, S. V.; Milichko, V. A.; Mukhin, I. S.; Krasnok, A. E.; Belov, P. A.

    2016-08-01

    Here, the novel concept of asymmetric metal-dielectric (hybrid) nanoparticles is proposed. The experimental data and the results of numerical simulation of the optical properties of hybrid nanostructures are presented. The change of their optical response after fs- laser modification is shown. The possibility of manipulating Fano resonance in hybrid oligomers by the gold nanoparticles reshaping is demonstrated.

  4. High-capacity conductive nanocellulose paper sheets for electrochemically controlled extraction of DNA oligomers.

    Directory of Open Access Journals (Sweden)

    Aamir Razaq

    Full Text Available Highly porous polypyrrole (PPy-nanocellulose paper sheets have been evaluated as inexpensive and disposable electrochemically controlled three-dimensional solid phase extraction materials. The composites, which had a total anion exchange capacity of about 1.1 mol kg(-1, were used for extraction and subsequent release of negatively charged fluorophore tagged DNA oligomers via galvanostatic oxidation and reduction of a 30-50 nm conformal PPy layer on the cellulose substrate. The ion exchange capacity, which was, at least, two orders of magnitude higher than those previously reached in electrochemically controlled extraction, originated from the high surface area (i.e. 80 m(2 g(-1 of the porous composites and the thin PPy layer which ensured excellent access to the ion exchange material. This enabled the extractions to be carried out faster and with better control of the PPy charge than with previously employed approaches. Experiments in equimolar mixtures of (dT(6, (dT(20, and (dT(40 DNA oligomers showed that all oligomers could be extracted, and that the smallest oligomer was preferentially released with an efficiency of up to 40% during the reduction of the PPy layer. These results indicate that the present material is very promising for the development of inexpensive and efficient electrochemically controlled ion-exchange membranes for batch-wise extraction of biomolecules.

  5. Molecular mechanisms used by chaperones to reduce the toxicity of aberrant protein oligomers

    NARCIS (Netherlands)

    Mannini, Benedetta; Cascella, Roberta; Zampagni, Mariagioia; Van Waarde-Verhagen, Maria; Meehan, Sarah; Roodveldt, Cintia; Campioni, Silvia; Boninsegna, Matilde; Penco, Amanda; Relini, Annalisa; Kampinga, Harm H.; Dobson, Christopher M.; Wilson, Mark R.; Cecchi, Cristina; Chiti, Fabrizio

    2012-01-01

    Chaperones are the primary regulators of the proteostasis network and are known to facilitate protein folding, inhibit protein aggregation, and promote disaggregation and clearance of misfolded aggregates inside cells. We have tested the effects of five chaperones on the toxicity of misfolded oligom

  6. Optimization of the All-D Peptide D3 for Aβ Oligomer Elimination.

    Directory of Open Access Journals (Sweden)

    Antonia Nicole Klein

    Full Text Available The aggregation of amyloid-β (Aβ is postulated to be the crucial event in Alzheimer's disease (AD. In particular, small neurotoxic Aβ oligomers are considered to be responsible for the development and progression of AD. Therefore, elimination of thesis oligomers represents a potential causal therapy of AD. Starting from the well-characterized d-enantiomeric peptide D3, we identified D3 derivatives that bind monomeric Aβ. The underlying hypothesis is that ligands bind monomeric Aβ and stabilize these species within the various equilibria with Aβ assemblies, leading ultimately to the elimination of Aβ oligomers. One of the hereby identified d-peptides, DB3, and a head-to-tail tandem of DB3, DB3DB3, were studied in detail. Both peptides were found to: (i inhibit the formation of Thioflavin T-positive fibrils; (ii bind to Aβ monomers with micromolar affinities; (iii eliminate Aβ oligomers; (iv reduce Aβ-induced cytotoxicity; and (v disassemble preformed Aβ aggregates. The beneficial effects of DB3 were improved by DB3DB3, which showed highly enhanced efficacy. Our approach yielded Aβ monomer-stabilizing ligands that can be investigated as a suitable therapeutic strategy against AD.

  7. High-Capacity Conductive Nanocellulose Paper Sheets for Electrochemically Controlled Extraction of DNA Oligomers

    Science.gov (United States)

    Razaq, Aamir; Nyström, Gustav; Strømme, Maria; Mihranyan, Albert; Nyholm, Leif

    2011-01-01

    Highly porous polypyrrole (PPy)-nanocellulose paper sheets have been evaluated as inexpensive and disposable electrochemically controlled three-dimensional solid phase extraction materials. The composites, which had a total anion exchange capacity of about 1.1 mol kg−1, were used for extraction and subsequent release of negatively charged fluorophore tagged DNA oligomers via galvanostatic oxidation and reduction of a 30–50 nm conformal PPy layer on the cellulose substrate. The ion exchange capacity, which was, at least, two orders of magnitude higher than those previously reached in electrochemically controlled extraction, originated from the high surface area (i.e. 80 m2 g−1) of the porous composites and the thin PPy layer which ensured excellent access to the ion exchange material. This enabled the extractions to be carried out faster and with better control of the PPy charge than with previously employed approaches. Experiments in equimolar mixtures of (dT)6, (dT)20, and (dT)40 DNA oligomers showed that all oligomers could be extracted, and that the smallest oligomer was preferentially released with an efficiency of up to 40% during the reduction of the PPy layer. These results indicate that the present material is very promising for the development of inexpensive and efficient electrochemically controlled ion-exchange membranes for batch-wise extraction of biomolecules. PMID:22195031

  8. Facile Synthesis of Highly Crystalline and Large Areal Hexagonal Boron Nitride from Borazine Oligomers

    Science.gov (United States)

    Park, Sungchan; Seo, Tae Hoon; Cho, Hyunjin; Min, Kyung Hyun; Lee, Dong Su; Won, Dong-Il; Kang, Sang Ook; Kim, Myung Jong

    2017-01-01

    A novel and facile synthetic method for h-BN films from borazine oligomer (B3N3H4)x precursors has been developed. This method only includes spin-coating of borazine oligomer onto nickel catalysts and a subsequent annealing step. Large areal and highly crystalline h-BN films were obtained. The stoichiometric B/N ratio of borazine oligomer precursor was preserved in the final h-BN product such that it was close to 1 as revealed by XPS. Catalytic effect of nickel for h-BN formation was clearly demonstrated by lowering crystallization temperature compared to the growth condition in the absence of catalyst. The graphene field effect transistor (GFET) characterization has proved the high quality synthesis of h-BN films, showing the shift of neutrality point and the increase of the mobility. This method can also provide functional h-BN coating on various surfaces by annealing Ni-coated borazine oligomer films and subsequent removal of Ni catalyst. PMID:28074854

  9. Force spectroscopy reveals the presence of structurally modified dimers in transthyretin amyloid annular oligomers.

    Science.gov (United States)

    Pires, Ricardo H; Saraiva, Maria J; Damas, Ana M; Kellermayer, Miklós S Z

    2017-03-01

    Toxicity in amyloidogenic protein misfolding disorders is thought to involve intermediate states of aggregation associated with the formation of amyloid fibrils. Despite their relevance, the heterogeneity and transience of these oligomers have placed great barriers in our understanding of their structural properties. Among amyloid intermediates, annular oligomers or annular protofibrils have raised considerable interest because they may contribute to a mechanism of cellular toxicity via membrane permeation. Here we investigated, by using AFM force spectroscopy, the structural detail of amyloid annular oligomers from transthyretin (TTR), a protein involved in systemic and neurodegenerative amyloidogenic disorders. Manipulation was performed in situ, in the absence of molecular handles and using persistence length-fit values to select relevant curves. Force curves reveal the presence of dimers in TTR annular oligomers that unfold via a series of structural intermediates. This is in contrast with the manipulation of native TTR that was more often manipulated over length scales compatible with a TTR monomer and without unfolding intermediates. Imaging and force spectroscopy data suggest that dimers are formed by the assembly of monomers in a head-to-head orientation with a nonnative interface along their β-strands. Furthermore, these dimers stack through nonnative contacts that may enhance the stability of the misfolded structure. Copyright © 2016 John Wiley & Sons, Ltd.

  10. The role of stable α-synuclein oligomers in the molecular events underlying amyloid formation

    DEFF Research Database (Denmark)

    Lorenzen, Nikolai; Nielsen, Søren Bang; Buell, Alexander K.

    2014-01-01

    α-synuclein (αSN), whose aggregation is strongly implicated in the development of Parkinson’s disease (PD). The two types of oligomers are both formed under conditions where amyloid fibril formation is observed but differ in molecular weight by an order of magnitude. Both possess a degree of β...

  11. A cytotoxic amyloid oligomer self-triggered and NIR- enhanced amyloidosis therapeutic system

    Institute of Scientific and Technical Information of China (English)

    Can Xu[1,2; Peng Shi[1,2; Meng Li[1,2; Jinsong Ren[1; xiaogang Qu[1

    2015-01-01

    We report a new strategy for improving the efficiency of non-specific amyloidosis therapeutic drugs by coating amyloid-responsive lipid bilayers. The approach had drawn inspiration from amyloid oligomer-mediated cell membrane disruption in the pathogenesis of amyloidosis. A graphene-mesoporous silica hybrid (GMS)-supported lipid bilayer (GMS-Lip) system was used as a drug carrier, Drugs were well confined inside the nanocarrier until encountering amyloid oligomers, which could pierce the lipid bilayer coat and cause drug release. To ensure release efficiency, use of a near-infrared (NIR) laser was also introduced to facilitate drug release, taking advantage of the photothermal effect of GMS and thermal sensitivity of lipid bilayers. To facilitate tracking, fluorescent dyes were co-loaded with drugs within GMS-Lip and the NIR laser was used once the oligomer-triggered release had been signaled. Because of the spatially and temporally controllable property of light, the NIR-assisted release could be easily and selectively activated locally by tracking the fluorescence signal. Our design is based on arnyloidosis pathogenesis, the cytotoxic amyloid oligomer self-triggered release via cell membrane disruption, for the controlled release of drug molecules. The results may shed light on the development of pathogenesis- inspired drug delivery systems,

  12. Secondary vapor phase reactions of lignin-derived oligomers obtained by fast pyrolysis of pine wood

    NARCIS (Netherlands)

    Zhou, Shuai; Garcia-Perez, Manuel; Pecha, Brennan; McDonald, Armando G.; Kersten, Sascha R.A.; Westerhof, Roel J.M.

    2013-01-01

    In this paper, the effect of secondary reactions in vapor phase on the yield and composition of pyrolytic lignin (PL) oligomers was investigated. The Pine wood material was pyrolyzed at 500 °C in a fluidized bed reactor, and the vapors were transferred to a downstream tubular reactor operated at res

  13. Cholesterol facilitates interactions between α-synuclein oligomers and charge-neutral membranes

    DEFF Research Database (Denmark)

    van Maarschalkerweerd, Andreas; Vetri, Valeria; Vestergaard, Bente

    2015-01-01

    composed of anionic lipids, while the more physiologically relevant zwitterionic lipids remain intact. We present experimental evidence for significant morphological changes in zwitterionic membranes containing cholesterol, induced by α-synuclein oligomers. Depending on the lipid composition, model...... of cholesterol for mediating interactions between physiologically relevant membranes and α-synuclein....

  14. Student-Driven Design of Peptide Mimetics: Microwave-Assisted Synthesis of Peptoid Oligomers

    Science.gov (United States)

    Pohl, Nicola L. B.; Kirshenbaum, Kent; Yoo, Barney; Schulz, Nathan; Zea, Corbin J.; Streff, Jennifer M.; Schwarz, Kimberly L.

    2011-01-01

    An experiment for the undergraduate organic laboratory is described in which peptide mimetic oligomers called "peptoids" are built stepwise on a solid-phase resin. Students employ two modern strategies to facilitate rapid multistep syntheses: solid-phase techniques to obviate the need for intermediate purifications and microwave irradiation to…

  15. Optical Properties of Oligo(fluorene-vinylene) Functionalized Anthracene Linear Oligomers: Effect of π-extension

    Institute of Scientific and Technical Information of China (English)

    Tian-hao Huang; Li-li Qu; Zhi-hui Kang; Ying-hui Wang; Ran Lu; Er-long Miao; Fei Wang

    2013-01-01

    The photo-physical properties of oligo(fluorene-vinylene) functionalized anthracene linear oligomers (An-OFVn (n=1-4)) have been systemically investigated through experimental and theoretical methods.The steady-state spectral measurement shows that the increasing of fluorene-vinylene (FV) group could lead to the red shift of absorption spectra and restrain the excimer formation between oligomers.Quantum chemical calculations exhibit that the energy levels of HOMO,LUMO,and the band gap gradually converge to a constant in accompany with the increasing of FV unit.Meanwhile,the electronic cloud which distributes on the branch arms,also gradually enhances and makes the absorption spectral shape of oligomers become similar to that of branch arms step by step.The time-resolved fluorescence tests exhibits that the lifetime of excimer emission would be ahmost invariable after the number of FV group in oligomer is >2.In nonlinear optical test,the two-photon photoluminescence efficiency and two-photon absorption cross-section will both gradually enhance and be close to an extrenum after the number of FV unit is equal to 4.These results will provide a guideline for the design of novel photo-electronic materials.

  16. Annotation of Different Dehydrocatechin Oligomers by MS/MS and Their Occurrence in Black Tea

    NARCIS (Netherlands)

    Verloop, Annewieke J.W.; Gruppen, Harry; Vincken, Jean Paul

    2016-01-01

    Dehydrocatechins (DhC's), oligomeric oxidation products of (epi)catechins, were formed in model incubations of epicatechin with mushroom tyrosinase. DhC oligomers up to tetramers were detected by reversed-phase ultrahigh-performance liquid chromatography mass spectrometry (RP-UHPLC-MS) analysis.

  17. Rapid Multistep Synthesis of a Bioactive Peptidomimetic Oligomer for the Undergraduate Laboratory

    Science.gov (United States)

    Utku, Yeliz; Rohatgi, Abhinav; Yoo, Barney; Kirshenbaum, Kent; Zuckermann, Ronald N.; Pohl, Nicola L.

    2010-01-01

    Peptidomimetic compounds are increasingly important in drug-discovery applications. We introduce the synthesis of an N-substituted glycine oligomer, a bioactive "peptoid" trimer. The six-step protocol is conducted on solid-phase resin, enabling the synthesis to be performed by undergraduate organic chemistry students. This synthesis lab was…

  18. Annotation of Different Dehydrocatechin Oligomers by MS/MS and Their Occurrence in Black Tea

    NARCIS (Netherlands)

    Verloop, Annewieke J.W.; Gruppen, Harry; Vincken, Jean Paul

    2016-01-01

    Dehydrocatechins (DhC's), oligomeric oxidation products of (epi)catechins, were formed in model incubations of epicatechin with mushroom tyrosinase. DhC oligomers up to tetramers were detected by reversed-phase ultrahigh-performance liquid chromatography mass spectrometry (RP-UHPLC-MS) analysis.

  19. Amyloid-beta oligomer detection by ELISA in cerebrospinal fluid and brain tissue

    NARCIS (Netherlands)

    Bruggink, K.A.; Jongbloed, W.; Biemans, E.A.L.M.; Veerhuis, R.; Claassen, J.A.H.R.; Kuiperij, H.B.; Verbeek, M.M.

    2013-01-01

    Amyloid-beta (Abeta) deposits are important pathological hallmarks of Alzheimer's disease (AD). Abeta aggregates into fibrils; however, the intermediate oligomers are believed to be the most neurotoxic species and, therefore, are of great interest as potential biomarkers. Here, we have developed an

  20. Structural characterization of toxic oligomers that are kinetically trapped during α-synuclein fibril formation.

    Science.gov (United States)

    Chen, Serene W; Drakulic, Srdja; Deas, Emma; Ouberai, Myriam; Aprile, Francesco A; Arranz, Rocío; Ness, Samuel; Roodveldt, Cintia; Guilliams, Tim; De-Genst, Erwin J; Klenerman, David; Wood, Nicholas W; Knowles, Tuomas P J; Alfonso, Carlos; Rivas, Germán; Abramov, Andrey Y; Valpuesta, José María; Dobson, Christopher M; Cremades, Nunilo

    2015-04-21

    We describe the isolation and detailed structural characterization of stable toxic oligomers of α-synuclein that have accumulated during the process of amyloid formation. Our approach has allowed us to identify distinct subgroups of oligomers and to probe their molecular architectures by using cryo-electron microscopy (cryoEM) image reconstruction techniques. Although the oligomers exist in a range of sizes, with different extents and nature of β-sheet content and exposed hydrophobicity, they all possess a hollow cylindrical architecture with similarities to certain types of amyloid fibril, suggesting that the accumulation of at least some forms of amyloid oligomers is likely to be a consequence of very slow rates of rearrangement of their β-sheet structures. Our findings reveal the inherent multiplicity of the process of protein misfolding and the key role the β-sheet geometry acquired in the early stages of the self-assembly process plays in dictating the kinetic stability and the pathological nature of individual oligomeric species.

  1. Structure–property relationships of synthetic organophosphorus flame retardant oligomers by thermal analysis

    Energy Technology Data Exchange (ETDEWEB)

    Bai, Zhiman [State Key Lab of Fire Science, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026 (China); USTC-CityU Joint Advanced Research Centre, Suzhou Key Laboratory of Urban Public Safety, Suzhou Institute for Advanced Study, University of Science and Technology of China, 166 Ren’ai Road Suzhou, Jiangsu 215123 (China); Wang, Xin; Tang, Gang; Song, Lei [State Key Lab of Fire Science, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026 (China); Hu, Yuan, E-mail: yuanhu@ustc.edu.cn [State Key Lab of Fire Science, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026 (China); USTC-CityU Joint Advanced Research Centre, Suzhou Key Laboratory of Urban Public Safety, Suzhou Institute for Advanced Study, University of Science and Technology of China, 166 Ren’ai Road Suzhou, Jiangsu 215123 (China); Yuen, Richard K.K., E-mail: Richard.Yuen@cityu.edu.hk [USTC-CityU Joint Advanced Research Centre, Suzhou Key Laboratory of Urban Public Safety, Suzhou Institute for Advanced Study, University of Science and Technology of China, 166 Ren’ai Road Suzhou, Jiangsu 215123 (China); Department of Building and Construction, City University of Hong Kong, Tat Chee Avenue Kowloon (Hong Kong)

    2013-08-10

    Highlights: • Oligomers with different chemical components in molecular chains were synthesized. • FP-3 containing three IFR components possessed high thermal stability. • FP-3 possessed lowest flammability. • FP-3 exhibited a synergistic interaction between gas and condensed phase. - Abstract: A series of flame retardant oligomers with different chemical components in molecular chains, designated as FP-1, FP-2 and FP-3, respectively, were successfully synthesized using solution polycondensation and well characterized. The thermal properties and flammability of these oligomers were investigated by thermogravimetric analysis (TGA) and microscale combustion calorimeter (MCC). The results demonstrated that FP-3 had the lowest flammability in terms of the lowest maximum mass loss rate, and FP-1 possessed the highest thermal stability and char yield, due to its higher stable hexatomic ring structure of piperazine compared with the linear alkane chain structure of neopentyl glycol. The gases evolved during decomposition were analyzed using Fourier transform infrared coupled with the thermogravimetric analyzer (TG–IR) technique. The char residues of the flame retardant oligomers were investigated by scanning electron microscopy (SEM) and Raman spectroscopy. The results demonstrated that FP-3 exhibited a synergistic interaction between the gas phase and condensation phase, increasing its flame retardancy.

  2. An update on the physiological and therapeutic relevance of GPCR oligomers.

    Science.gov (United States)

    Farran, Batoul

    2017-03-01

    The traditional view on GPCRs held that they function as single monomeric units composed of identical subunits. This notion was overturned by the discovery that GPCRs can form homo- and hetero-oligomers, some of which are obligatory, and can further assemble into receptor mosaics consisting of three or more protomers. Oligomerisation exerts significant impacts on receptor function and physiology, offering a platform for the diversification of receptor signalling, pharmacology, regulation, crosstalk, internalization and trafficking. Given their involvement in the modulation of crucial physiological processes, heteromers could constitute important therapeutic targets for a wide range of diseases, including schizophrenia, Parkinson's disease, substance abuse or obesity. This review aims at depicting the current developments in GPCR oligomerisation research, documenting various class A, B and C GPCR heteromers detected in vitro and in vivo using biochemical and biophysical approaches, as well as recently identified higher-order oligomeric complexes. It explores the current understanding of dimerization dynamics and the possible interaction interfaces that drive oligomerisation. Most importantly, it provides an inventory of the wide range of physiological processes and pathophysiological conditions to which GPCR oligomers contribute, surveying some of the oligomers that constitute potential drug targets. Finally, it delineates the efforts to develop novel classes of ligands that specifically target and tether to receptor oligomers instead of a single monomeric entity, thus ameliorating their ability to modulate GPCR function.

  3. Alpha-synuclein oligomers - neurotoxic molecules in Parkinson’s disease and other Lewy body disorders

    Directory of Open Access Journals (Sweden)

    Martin Ingelsson

    2016-09-01

    Full Text Available Adverse intra- and extracellular effects of toxic α-synuclein are believed to be central to the pathogenesis in Parkinson’s disease and other disorders with Lewy body pathology in the nervous system. One of the physiological roles of α-synuclein relates to the regulation of neurotransmitter release at the presynapse, although it is still unclear whether this mechanism depends on the action of monomers or smaller oligomers. As for the pathogenicity, accumulating evidence suggest that prefibrillar species, rather than the deposits per se, are responsible for the toxicity in affected cells. In particular, larger oligomers or protofibrils of α-synuclein have been shown to impair protein degradation as well as the function of several organelles, such as the mitochondria and the endoplasmic reticulum. Accumulating evidence further suggest that oligomers/protofibrils may have a toxic effect on the synapse, which may lead to disrupted electrophysiological properties. In addition, recent data indicate that oligomeric α-synuclein species can spread between cells, either as free-floating proteins or via extracellular vesicles, and thereby act as seeds to propagate disease between interconnected brain regions. Taken together, several lines of evidence suggest that α-synuclein have neurotoxic properties and therefore should be an appropriate molecular target for therapeutic intervention in Parkinson’s disease and other disorders with Lewy pathology. In this context, immunotherapy with monoclonal antibodies against α-synuclein oligomers/protofibrils should be a particularly attractive treatment option.

  4. Diverse metastable structures formed by small oligomers of α-synuclein probed by force spectroscopy.

    Directory of Open Access Journals (Sweden)

    Krishna Neupane

    Full Text Available Oligomeric aggregates are widely suspected as toxic agents in diseases caused by protein aggregation, yet they remain poorly characterized, partly because they are challenging to isolate from a heterogeneous mixture of species. We developed an assay for characterizing structure, stability, and kinetics of individual oligomers at high resolution and sensitivity using single-molecule force spectroscopy, and applied it to observe the formation of transient structured aggregates within single oligomers of α-synuclein, an intrinsically-disordered protein linked to Parkinson's disease. Measurements of the molecular extension as the proteins unfolded under tension in optical tweezers revealed that even small oligomers could form numerous metastable structures, with a surprisingly broad range of sizes. Comparing the structures formed in monomers, dimers and tetramers, we found that the average mechanical stability increased with oligomer size. Most structures formed within a minute, with size-dependent rates. These results provide a new window onto the complex α-synuclein aggregation landscape, characterizing the microscopic structural heterogeneity and kinetics of different pathways.

  5. Genotoxicity of styrene oligomers extracted from polystyrene intended for use in contact with food

    Directory of Open Access Journals (Sweden)

    Makoto Nakai

    2014-01-01

    Full Text Available Here, we conducted in vitro genotoxicity tests to evaluate the genotoxicity of styrene oligomers extracted from polystyrene intended for use in contact with food. Styrene oligomers were extracted with acetone and the extract was subjected to the Ames test (OECD test guideline No. 471 and the in vitro chromosomal aberration test (OECD test guideline No. 473 under good laboratory practice conditions. The concentrations of styrene dimers and trimers in the concentrated extract were 540 and 13,431 ppm, respectively. Extraction with acetone provided markedly higher concentrations of styrene oligomers compared with extraction with 50% ethanol aqueous solution, which is the food simulant currently recommended for use in safety assessments of polystyrene by both the United States Food and Drug Administration and the European Food Safety Authority. And these high concentrations of styrene dimers and trimers were utilized for the evaluation of genotoxicity in vitro. Ames tests using five bacterial tester strains were negative both in the presence or absence of metabolic activation. The in vitro chromosomal aberration test using Chinese hamster lung cells (CHL/IU was also negative. Together, these results suggest that the risk of the genotoxicity of styrene oligomers that migrate from polystyrene food packaging into food is very low.

  6. Oligomer formation during gas-phase ozonolysis of small alkenes and enol ethers: new evidence for the central role of the Criegee Intermediate as oligomer chain unit

    Science.gov (United States)

    Sadezky, A.; Winterhalter, R.; Kanawati, B.; Römpp, A.; Spengler, B.; Mellouki, A.; Le Bras, G.; Chaimbault, P.; Moortgat, G. K.

    2008-05-01

    An important fraction of secondary organic aerosol (SOA) formed by atmospheric oxidation of diverse volatile organic compounds (VOC) has recently been shown to consist of high-molecular weight oligomeric species. In our previous study (Sadezky et al., 2006), we reported the identification and characterization of oligomers as main constituents of SOA from gas-phase ozonolysis of small enol ethers. These oligomers contained repeated chain units of the same chemical composition as the main Criegee Intermediates (CI) formed during the ozonolysis reaction, which were CH2O2 (mass 46) for alkyl vinyl ethers (AVE) and C2H4O2 (mass 60) for ethyl propenyl ether (EPE). In the present work, we extend our previous study to another enol ether (ethyl butenyl ether EBE) and a variety of structurally related small alkenes (trans-3-hexene, trans-4-octene and 2,3-dimethyl-2-butene). Experiments have been carried out in a 570 l spherical glass reactor at atmospheric conditions in the absence of seed aerosol. SOA formation was measured by a scanning mobility particle sizer (SMPS). SOA filter samples were collected and chemically characterized off-line by ESI(+)/TOF MS and ESI(+)/TOF MS/MS, and elemental compositions were determined by ESI(+)/FTICR MS and ESI(+)/FTICR MS/MS. The results for all investigated unsaturated compounds are in excellent agreement with the observations of our previous study. Analysis of the collected SOA filter samples reveal the presence of oligomeric compounds in the mass range 200 to 800 u as major constituents. The repeated chain units of these oligomers are shown to systematically have the same chemical composition as the respective main Criegee Intermediate (CI) formed during ozonolysis of the unsaturated compounds, which is C3H6O2 (mass 74) for ethyl butenyl ether (EBE), trans-3-hexene, and 2,3-dimethyl-2-butene, and C4H8O2 (mass 88) for trans-4-octene. Analogous fragmentation pathways among the oligomers formed by gas-phase ozonolysis of the different

  7. Oligomer formation during gas-phase ozonolysis of small alkenes and enol ethers: new evidence for the central role of the Criegee Intermediate as oligomer chain unit

    Directory of Open Access Journals (Sweden)

    A. Sadezky

    2008-05-01

    Full Text Available An important fraction of secondary organic aerosol (SOA formed by atmospheric oxidation of diverse volatile organic compounds (VOC has recently been shown to consist of high-molecular weight oligomeric species. In our previous study (Sadezky et al., 2006, we reported the identification and characterization of oligomers as main constituents of SOA from gas-phase ozonolysis of small enol ethers. These oligomers contained repeated chain units of the same chemical composition as the main Criegee Intermediates (CI formed during the ozonolysis reaction, which were CH2O2 (mass 46 for alkyl vinyl ethers (AVE and C2H4O2 (mass 60 for ethyl propenyl ether (EPE. In the present work, we extend our previous study to another enol ether (ethyl butenyl ether EBE and a variety of structurally related small alkenes (trans-3-hexene, trans-4-octene and 2,3-dimethyl-2-butene.

    Experiments have been carried out in a 570 l spherical glass reactor at atmospheric conditions in the absence of seed aerosol. SOA formation was measured by a scanning mobility particle sizer (SMPS. SOA filter samples were collected and chemically characterized off-line by ESI(+/TOF MS and ESI(+/TOF MS/MS, and elemental compositions were determined by ESI(+/FTICR MS and ESI(+/FTICR MS/MS. The results for all investigated unsaturated compounds are in excellent agreement with the observations of our previous study. Analysis of the collected SOA filter samples reveal the presence of oligomeric compounds in the mass range 200 to 800 u as major constituents. The repeated chain units of these oligomers are shown to systematically have the same chemical composition as the respective main Criegee Intermediate (CI formed during ozonolysis of the unsaturated compounds, which is C3H6O2 (mass 74 for ethyl butenyl ether (EBE, trans-3-hexene, and 2,3-dimethyl-2-butene, and C4H8

  8. Engineering Customized TALENs Using the Platinum Gate TALEN Kit.

    Science.gov (United States)

    Sakuma, Tetsushi; Yamamoto, Takashi

    2016-01-01

    Among various strategies for constructing customized transcription activator-like effector nucleases (TALENs), the Golden Gate assembly is the most widely used and most characterized method. The principle of Golden Gate assembly involves cycling reactions of digestion and ligation of multiple plasmids in a single tube, resulting in PCR-, fragmentation-, and purification-free concatemerization of DNA-binding repeats. Here, we describe the protocols for Golden Gate assembly-based TALEN construction using the Platinum Gate TALEN Kit, which allows generation of highly active Platinum TALENs.

  9. Distribution of platinum and cobalt atoms in a bimetallic nanoparticle

    Science.gov (United States)

    Chui, Yu Hang; Chan, Kwong-Yu

    2005-06-01

    Molecular dynamics simulations are performed to investigate the atomic distribution and the structure of platinum-cobalt nanoparticles. Heating and cooling techniques are applied before getting equilibrated structures at 298 K. Both crystalline (fcc) and amorphous structures are partly observed depending on cooling rates. The atomic distributions in different regions of a bimetallic nanoparticle are analyzed. Although platinum tends to occupy surface and near-surface sites of the bimetallic nanoparticle, a complete segregation to form a core-shell structure is not observed.

  10. Addition of platinum and silver nanoparticles to toughen dental porcelain.

    Science.gov (United States)

    Fujieda, Tokushi; Uno, Mitsunori; Ishigami, Hajime; Kurachi, Masakazu; Wakamatsu, Nobukazu; Doi, Yutaka

    2012-01-01

    Several studies have investigated toughening porcelain that is layered over a frame or a core. The introduction of residual compressive stress to the surface of porcelain has been shown to be effective to strengthen it. In the present study, nanoparticles of precious metals of silver and platinum (rather than non-precious metals) were used to evaluate if they could increase the fracture resistance of porcelain. The addition of silver and platinum nanoparticles was found to improve the mechanical properties of porcelain since it increased both the Young's modulus and the fracture toughness of commercial porcelain.

  11. Diffuse X-Ray Scattering from Several Platinum Chain Compounds

    DEFF Research Database (Denmark)

    Braude, A.; Lindegaard-Andersen, Asger; Carneiro, K.

    1980-01-01

    Values of the Fermi wavevector for several platinum based one-dimensional conductors were determined from diffuse X-ray scattering measurements. The values were compared with those expected from the chemical compositions. The importance of conclusive values of this parameter is stressed and the c......Values of the Fermi wavevector for several platinum based one-dimensional conductors were determined from diffuse X-ray scattering measurements. The values were compared with those expected from the chemical compositions. The importance of conclusive values of this parameter is stressed...

  12. Synthesis of platinum nanoparticle electrocatalysts by atomic layer deposition

    Science.gov (United States)

    Lubers, Alia Marie

    Demand for energy continues to increase, and without alternatives to fossil fuel combustion the effects on our environment will become increasingly severe. Fuel cells offer a promising improvement on current methods of energy generation; they are able to convert hydrogen fuel into electricity with a theoretical efficiency of up to 83% and interface smoothly with renewable hydrogen production. Fuel cells can replace internal combustion engines in vehicles and are used in stationary applications to power homes and businesses. The efficiency of a fuel cell is maximized by its catalyst, which is often composed of platinum nanoparticles supported on carbon. Economical production of fuel cell catalysts will promote adoption of this technology. Atomic layer deposition (ALD) is a possible method for producing catalysts at a large scale when employed in a fluidized bed. ALD relies on sequential dosing of gas-phase precursors to grow a material layer by layer. We have synthesized platinum nanoparticles on a carbon particle support (Pt/C) by ALD for use in proton exchange membrane fuel cells (PEMFCs) and electrochemical hydrogen pumps. Platinum nanoparticles with different characteristics were deposited by changing two chemistries: the carbon substrate through functionalization; and the deposition process by use of either oxygen or hydrogen as ligand removing reactants. The metal depositing reactant was trimethyl(methylcyclopentadienyl)platinum(IV). Functionalizing the carbon substrate increased nucleation during deposition resulting in smaller and more dispersed nanoparticles. Use of hydrogen produced smaller nanoparticles than oxygen, due to a gentler hydrogenation reaction compared to using oxygen's destructive combustion reaction. Synthesized Pt/C materials were used as catalysts in an electrochemical hydrogen pump, a device used to separate hydrogen fuel from contaminants. Catalysts deposited by ALD on functionalized carbon using a hydrogen chemistry were the most

  13. Thermodynamically stable amyloid-β monomers have much lower membrane affinity than the small oligomers.

    Science.gov (United States)

    Sarkar, Bidyut; Das, Anand K; Maiti, Sudipta

    2013-01-01

    Amyloid beta (Aβ) is an extracellular 39-43 residue long peptide present in the mammalian cerebrospinal fluid, whose aggregation is associated with Alzheimer's disease (AD). Small oligomers of Aβ are currently thought to be the key to toxicity. However, it is not clear why the monomers of Aβ are non-toxic, and at what stage of aggregation toxicity emerges. Interactions of Aβ with cell membranes is thought to be the initiator of toxicity, but membrane binding studies with different preparations of monomers and oligomers have not settled this issue. We have earlier found that thermodynamically stable Aβ monomers emerge spontaneously from oligomeric mixtures upon long term incubation in physiological solutions (Nag et al., 2011). Here we show that the membrane-affinity of these stable Aβ monomers is much lower than that of a mixture of monomers and small oligomers (containing dimers to decamers), providing a clue to the emergence of toxicity. Fluorescently labeled Aβ40 monomers show negligible binding to cell membranes of a neuronal cell line (RN46A) at physiological concentrations (250 nM), while oligomers at the same concentrations show strong binding within 30 min of incubation. The increased affinity most likely does not require any specific neuronal receptor, since this difference in membrane-affinity was also observed in a somatic cell-line (HEK 293T). Similar results are also obtained for Aβ42 monomers and oligomers. Minimal amount of cell death is observed at these concentrations even after 36 h of incubation. It is likely that membrane binding precedes subsequent slower toxic events induced by Aβ. Our results (a) provide an explanation for the non-toxic nature of Aβ monomers, (b) suggest that Aβ toxicity emerges at the initial oligomeric phase, and (c) provide a quick assay for monitoring the benign-to-toxic transformation of Aβ.

  14. Natural amyloid-β oligomers acutely impair the formation of a contextual fear memory in mice.

    Directory of Open Access Journals (Sweden)

    Kara A Kittelberger

    Full Text Available Memory loss is one of the hallmark symptoms of Alzheimer's disease (AD. It has been proposed that soluble amyloid-beta (Abeta oligomers acutely impair neuronal function and thereby memory. We here report that natural Abeta oligomers acutely impair contextual fear memory in mice. A natural Abeta oligomer solution containing Abeta monomers, dimers, trimers, and tetramers was derived from the conditioned medium of 7PA2 cells, a cell line that expresses human amyloid precursor protein containing the Val717Phe familial AD mutation. As a control we used 7PA2 conditioned medium from which Abeta oligomers were removed through immunodepletion. Separate groups of mice were injected with Abeta and control solutions through a cannula into the lateral brain ventricle, and subjected to fear conditioning using two tone-shock pairings. One day after fear conditioning, mice were tested for contextual fear memory and tone fear memory in separate retrieval trials. Three experiments were performed. For experiment 1, mice were injected three times: 1 hour before and 3 hours after fear conditioning, and 1 hour before context retrieval. For experiments 2 and 3, mice were injected a single time at 1 hour and 2 hours before fear conditioning respectively. In all three experiments there was no effect on tone fear memory. Injection of Abeta 1 hour before fear conditioning, but not 2 hours before fear conditioning, impaired the formation of a contextual fear memory. In future studies, the acute effect of natural Abeta oligomers on contextual fear memory can be used to identify potential mechanisms and treatments of AD associated memory loss.

  15. Major Reaction Coordinates Linking Transient Amyloid-β Oligomers to Fibrils Measured at Atomic Level.

    Science.gov (United States)

    Chandra, Bappaditya; Bhowmik, Debanjan; Maity, Barun Kumar; Mote, Kaustubh R; Dhara, Debabrata; Venkatramani, Ravindra; Maiti, Sudipta; Madhu, Perunthiruthy K

    2017-08-22

    The structural underpinnings for the higher toxicity of the oligomeric intermediates of amyloidogenic peptides, compared to the mature fibrils, remain unknown at present. The transient nature and heterogeneity of the oligomers make it difficult to follow their structure. Here, using vibrational and solid-state nuclear magnetic resonance spectroscopy, and molecular dynamics simulations, we show that freely aggregating Aβ40 oligomers in physiological solutions have an intramolecular antiparallel configuration that is distinct from the intermolecular parallel β-sheet structure observed in mature fibrils. The intramolecular hydrogen-bonding network flips nearly 90°, and the two β-strands of each monomeric unit move apart, to give rise to the well-known intermolecular in-register parallel β-sheet structure in the mature fibrils. Solid-state nuclear magnetic resonance distance measurements capture the interstrand separation within monomer units during the transition from the oligomer to the fibril form. We further find that the D23-K28 salt-bridge, a major feature of the Aβ40 fibrils and a focal point of mutations linked to early onset Alzheimer's disease, is not detectable in the small oligomers. Molecular dynamics simulations capture the correlation between changes in the D23-K28 distance and the flipping of the monomer secondary structure between antiparallel and parallel β-sheet architectures. Overall, we propose interstrand separation and salt-bridge formation as key reaction coordinates describing the structural transition of the small Aβ40 oligomers to fibrils. Copyright © 2017 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  16. Thermodynamically stable amyloid-β monomers have much lower membrane affinity than the small oligomers

    Directory of Open Access Journals (Sweden)

    Bidyut eSarkar

    2013-04-01

    Full Text Available Amyloid beta (Aβ is an extracellular 39-43 residue long peptide present in the mammalian cerebrospinal fluid, whose aggregation is associated with Alzheimer’s disease. Small oligomers of Aβ are currently thought to be the key to toxicity. However, it is not clear why the monomers of Aβ are non-toxic, and at what stage of aggregation toxicity emerges. Interactions of Aβ with cell membranes is thought to be the initiator of toxicity, but membrane-binding studies with different preparations of monomers and oligomers have not settled this issue. We have earlier found that thermodynamically stable Aβ monomers emerge spontaneously from oligomeric mixtures upon long term incubation in physiological solutions (Nag et al, JBC, 2011. Here we show that the membrane-affinity of these stable Aβ monomers is much lower than that of a mixture of small oligomers (containing dimers to decamers, providing a clue to the emergence of toxicity. Fluorescently labeled Aβ40 monomers show negligible binding to cell membranes of a neuronal cell line (RN46A at physiological concentrations (250 nM, while oligomers at the same concentrations show strong binding within 30 minutes of incubation. The increased affinity most likely does not require any specific neuronal receptor, since this difference in membrane-affinity was also observed in a somatic cell-line (HEK 293T. Similar results are also obtained for Aβ42 monomers and oligomers. Minimal amount of cell death is observed at these concentrations even after 36 hours of incubation. It is likely that membrane binding precedes subsequent slower toxic events induced by Aβ. Our results a provide an explanation for the non-toxic nature of Aβ monomers, b suggest that Aβ toxicity emerges at the initial oligomeric phase, and c provide a quick assay for monitoring the benign-to-toxic transformation of Aβ.

  17. Effects of Cluster Size on Platinum-Oxygen Bonds Formation in Small Platinum Clusters

    Science.gov (United States)

    Oemry, Ferensa; Padama, Allan Abraham B.; Kishi, Hirofumi; Kunikata, Shinichi; Nakanishi, Hiroshi; Kasai, Hideaki; Maekawa, Hiroyoshi; Osumi, Kazuo; Sato, Kaoru

    2012-03-01

    We present the results of density functional theory calculation in oxygen dissociative adsorption process on two types of isolated platinum (Pt) clusters: Pt4 and Pt10, by taking into account the effect of cluster reconstruction. The strength of Pt-Pt bonds in the clusters is mainly defined by d-d hybridization and interstitial bonding orbitals (IBO). Oxygen that adsorbed on the clusters is weakening the IBO and thus inducing geometry reconstruction as occurred in Pt10 cluster. However, cluster that could undergo structural deformation is found to promote oxygen dissociation with no energy barrier. The details show that maintaining well-balanced of attractive and repulsive (Hellmann-Feynman) forces between atoms is considered to be the main key to avoid any considerable rise of energy barrier. Furthermore, a modest energy barrier that gained in Pt4 cluster is presumed to be originate from inequality of intramolecular forces between atoms.

  18. Preparation of MgO supported platinum nanoparticle catalyst using toluene dispersed platinum sol

    Science.gov (United States)

    Seth, Jhumur; Nepak, Devadutta; Chaudhari, Vijay R.; Prasad, Bhagavatula L. V.

    2017-10-01

    An effective way of anchoring Pt nanoparticles on MgO using toluene dispersed platinum nanoparticles (Pt-NPs) as one of the ingredient is demonstrated. The usage of particles dispersed in toluene allows the retention of size and size distribution of preformed Pt-NPs even after deposition on MgO support with high active surface area, which is crucial for heterogeneous catalysis. The catalyst thus prepared, displayed selective hydrogenation of cinnamaldehyde to cinnamyl alcohol with high turn on frequency (TOF - 105 h-1) with respect to the total Pt content. We attribute this efficient catalytic performance to the uniform distribution and deposition of Pt on the active MgO support and its better accessible surface as evidenced by the cyclic-voltammetry results.

  19. Protective spin-labeled fluorenes maintain amyloid beta peptide in small oligomers and limit transitions in secondary structure

    Energy Technology Data Exchange (ETDEWEB)

    Altman, Robin [Univ. of California, Davis, CA (United States). Dept. of Biochemistry and Molecular Medicine; Ly, Sonny [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States). Physical and Life Science Directorate; Hilt, Silvia [Univ. of California, Davis, CA (United States). Dept. of Biochemistry and Molecular Medicine; Petrlova, Jitka [Univ. of California, Davis, CA (United States). Dept. of Biochemistry and Molecular Medicine; Maezawa, Izumi [Univ. of California Davis, Sacramento, CA (United States). MIND Inst. and Dept. of Pathology and Laboratory Medicine; Kálai, Tamás [Univ. of Pecs (Hungary). Inst. of Organic and Medicinal Chemistry; Hideg, Kálmán [Univ. of Pecs (Hungary). Inst. of Organic and Medicinal Chemistry; Jin, Lee-Way [Univ. of California Davis, Sacramento, CA (United States). MIND Inst. and Dept. of Pathology and Laboratory Medicine; Laurence, Ted A. [Univ. of California, Davis, CA (United States). Dept. of Biochemistry and Molecular Medicine; Voss, John C. [Univ. of California, Davis, CA (United States). Dept. of Biochemistry and Molecular Medicine

    2015-12-01

    Alzheimer’s disease is characterized by the presence of extracellular plaques comprised of amyloid beta (Aβ) peptides. Soluble oligomers of the Aβ peptide underlie a cascade of neuronal loss and dysfunction associated with Alzheimer's disease. Single particle analyses of Aβ oligomers in solution by fluorescence correlation spectroscopy (FCS) were used to provide real-time descriptions of how spin-labeled fluorenes (SLFs; bi-functional small molecules that block the toxicity of Aβ) prevent and disrupt oligomeric assemblies of Aβ in solution. The FCS results, combined with electron paramagnetic resonance spectroscopy and circular dichroism spectroscopy, demonstrate SLFs can inhibit the growth of Aβ oligomers and disrupt existing oligomers while retaining Aβ in a largely disordered state. Furthermore, while the ability of SLF to block Aβ toxicity correlates with a reduction in oligomer size, our results suggest the conformation of Aβ within the oligomer determines the toxicity of the species. Attenuation of Aβ toxicity, which has been associated primarily with the soluble oligomeric form, can be achieved through redistribution of the peptides into smaller oligomers and arrest of the fractional increase in beta secondary structure.

  20. Effect of Rotation Rate on the Formation of Platinum-modified Polyaniline Film and Electrocatalytic Oxidation of Methanol

    Institute of Scientific and Technical Information of China (English)

    Qiu Hong LI; Lin NIU; Chang Qiao ZHANG; Feng Hua WEI; Hu ZHANG

    2004-01-01

    The oxidation of methanol was investigated on platinum-modified polyaniline electrode. Changes in the electrode rotation rates (Ω) during platinum electrodeposition remarkably affect the formation and distribution of platinum in the polymer matrix and consequently lead to different currents of methanol oxidation. The results show that platinum loading is proportional to rotation ratesΩ1/2.

  1. Physical and electrochemical study of platinum thin films deposited by sputtering and electrochemical methods

    Energy Technology Data Exchange (ETDEWEB)

    Quinones, C. [Universidad de Cartagena, Cartagena de Indias (Colombia); Departamento de Quimica, Universidad Nacional de Colombia, Cra. 30 No 45-03, Bogota (Colombia); Vallejo, W., E-mail: wavallejol@unal.edu.co [Departamento de Quimica, Universidad Nacional de Colombia, Cra. 30 No 45-03, Bogota (Colombia); Mesa, F. [Departamento de Ciencias Basicas, Universidad Libre, Carrera 70 No 53-40, Bogota (Colombia)

    2011-06-15

    In this work platinum thin films deposited by sputtering and electrochemical methods were characterized through physical and electrochemical analysis. The as-grown platinum thin films were characterized through X-ray diffraction (XRD), atomic force microscopy (AFM); scanning electronic microscopy (SEM) and through electrochemical impedance spectroscopy (EIS) measurements. Structural studies indicated that platinum thin films were polycrystalline. Morphological characteristics were significantly affected by the substrate type and synthesis method. Finally the EIS analysis indicated that platinum films were electrochemically stable and present both low resistance of charge transfer and low series resistance; the equivalent circuit of platinum interface has been proposed.

  2. Recent strikes in South Africa’s platinum-group metal mines: effects upon world platinum-group metal supplies

    Science.gov (United States)

    Yager, Thomas R.; Soto-Viruet, Yadira; Barry, James J.

    2012-01-01

    The recent labor disputes over wages and working conditions that have affected South Africa’s three leading platinum-group metal (PGM) producers have affected an industry already plagued by market pressures and labor unrest and raised the specter of constraints in the world’s supply of these metals. Although low demand for these metals in 2011 and 2012 helped to offset production losses of recent years, and particularly those losses caused by the strikes in 2012, a prolonged resumption of strikes could cause severe shortages of iridium, platinum, rhodium, ruthenium, and, to a lesser extent, palladium.

  3. [Comparison of the effectiveness of platinum-based chemotherapy versus non-platinum-based chemotherapy for triple-negative breast cancer with metastases confined to the lungs].

    Science.gov (United States)

    Hong, Ruoxi; Ma, Fei; Shi, Xiuqing; Li, Qing; Zhang, Pin; Yuan, Peng; Wang, Jiayu; Fan, Ying; Cai, Ruigang; Li, Qiao; Xu, Binghe

    2014-10-01

    To compare the effect of first-line treatment with platinum-based chemotherapy and non-platinum-based chemotherapy in patients with lung metastases from triple negative breast cancer (TNBC). Sixty-five eligible patients were divided into platinum-treated group and non-platinum-treated group according to the first-line therapy. Factors predicting the chemotherapeutic efficacy included overall survival (OS), progression-free survival (PFS) and objective response (OR). In the platinum-treated group of 32 patients, 2 cases (6.3%) achieved CR, 16 cases (50.0%) achieved PR, 11 (34.4%) cases achieved SD, and 3 patients (9.4%) achieved PD. In the non-platinum-treated group of 33 patients, 2 cases (6.1%) achieved CR, 6 cases (18.2%) achieved PR, 16 cases (48.5%) achieved SD, and 9 cases (27.3%) achieved PD. Median PFS was significantly longer in the platinum-treated group than in the non-platinum-treated group (10 months vs. 6.0 months, P = 0.012), and OS was also improved (32 months vs. 22 months, P = 0.006). Multivariate analysis of several factors including local-regional lymph node involvement, lung metastasis-related symptoms, first-line platinum-based chemotherapy, disease-free interval, size and number of lung lesions, showed that first-line platinum-based chemotherapy was an independent prognostic factor for TNBC patients with lung metastases. Compared with non-platinum-based chemotherapy, the first-line platinum-based chemotherapy can improve PFS and OS in TNBC patients with metastases confined to the lungs.

  4. Causative factors for formation of toxic islet amyloid polypeptide oligomer in type 2 diabetes mellitus

    Directory of Open Access Journals (Sweden)

    Jeong HR

    2015-11-01

    Full Text Available Hye Rin Jeong, Seong Soo A AnDepartment of Bionano Technology, Gachon Medical Research Institute, Gachon University, Gyeonggi-do, Republic of KoreaAbstract: Human islet amyloid polypeptide (h-IAPP is a peptide hormone that is synthesized and cosecreted with insulin from insulin-secreting pancreatic β-cells. Recently, h-IAPP was proposed to be the main component responsible for the cytotoxic pancreatic amyloid deposits in patients with type 2 diabetes mellitus (T2DM. Since the causative factors of IAPP (or amylin oligomer aggregation are not fully understood, this review will discuss the various forms of h-IAPP aggregation. Not all forms of IAPP aggregates trigger the destruction of β-cell function and loss of β-cell mass; however, toxic oligomers do trigger these events. Once these toxic oligomers form under abnormal metabolic conditions in T2DM, they can lead to cell disruption by inducing cell membrane destabilization. In this review, the various factors that have been shown to induce toxic IAPP oligomer formation will be presented, as well as the potential mechanism of oligomer and fibril formation from pro-IAPPs. Initially, pro-IAPPs undergo enzymatic reactions to produce the IAPP monomers, which can then develop into oligomers and fibrils. By this mechanism, toxic oligomers could be generated by diverse pathway components. Thus, the interconnections between factors that influence amyloid aggregation (eg, absence of PC2 enzyme, deamidation, reduction of disulfide bonds, environmental factors in the cell, genetic mutations, copper metal ions, and heparin will be presented. Hence, this review will aid in understanding the fundamental causative factors contributing to IAPP oligomer formation and support studies for investigating novel T2DM therapeutic approaches, such as the development of inhibitory agents for preventing oligomerization at the early stages of diabetic pathology.Keywords: amyloid aggregation, causative factor, IAPP, islet

  5. Synthesis of Cycloveratrylene Macrocycles and Benzyl Oligomers Catalysed by Bentonite under Microwave/Infrared and Solvent-Free Conditions

    Directory of Open Access Journals (Sweden)

    Manuel Salmón

    2013-10-01

    Full Text Available Tonsil Actisil FF, which is a commercial bentonitic clay, promotes the formation of cycloveratrylene macrocycles and benzyl oligomers from the corresponding benzyl alcohols in good yields under microwave heating and infrared irradiation in the absence of solvent in both cases. The catalytic reaction is sensitive to the type of substituent on the aromatic ring. Thus, when benzyl alcohol was substituted with a methylenedioxy, two methoxy or three methoxy groups, a cyclooligomerisation process was induced. Unsubstituted, methyl and methoxy benzyl alcohols yielded linear oligomers. In addition, computational chemistry calculations were performed to establish a validated mechanistic pathway to explain the growth of the obtained linear oligomers.

  6. Thiophene-based donor–acceptor co-oligomers by copper-catalyzed 1,3-dipolar cycloaddition

    Directory of Open Access Journals (Sweden)

    Stefanie Potratz

    2012-05-01

    Full Text Available Herein we present a three-component one-pot procedure to synthesize co-oligomers of a donor–acceptor–donor type, in which thiophene moieties work as donor and 1,2,3-triazoles as acceptor units. In this respect, terminally ethynylated (oligothiophenes were coupled to halogenated (oligothiophenes in the presence of sodium azide and a copper catalyst. Optoelectronic properties of various thiophene-1,2,3-triazole co-oligomers were investigated by UV–vis spectroscopy and cyclic voltammetry. Several co-oligomers were electropolymerized to the corresponding conjugated polymers.

  7. Programmable oligomers targeting 5'-GGGG-3' in the minor groove of DNA and NF-kappaB binding inhibition.

    Science.gov (United States)

    Chenoweth, David M; Poposki, Julie A; Marques, Michael A; Dervan, Peter B

    2007-01-15

    A series of hairpin oligomers containing benzimidazole (Bi) and imidazopyridine (Ip) rings were synthesized and screened to target 5'-WGGGGW-3', a core sequence in the DNA-binding site of NF-kappaB, a prolific transcription factor important in biology and disease. Five Bi and Ip containing oligomers bound to the 5'-WGGGGW-3' site with high affinity. One of the oligomers (Im-Im-Im-Im-gamma-Py-Bi-Py-Bi-beta-Dp) was able to inhibit DNA binding by the transcription factor NF-kappaB.

  8. Single-Atom Catalyst of Platinum Supported on Titanium Nitride for Selective Electrochemical Reactions.

    Science.gov (United States)

    Yang, Sungeun; Kim, Jiwhan; Tak, Young Joo; Soon, Aloysius; Lee, Hyunjoo

    2016-02-05

    As a catalyst, single-atom platinum may provide an ideal structure for platinum minimization. Herein, a single-atom catalyst of platinum supported on titanium nitride nanoparticles were successfully prepared with the aid of chlorine ligands. Unlike platinum nanoparticles, the single-atom active sites predominantly produced hydrogen peroxide in the electrochemical oxygen reduction with the highest mass activity reported so far. The electrocatalytic oxidation of small organic molecules, such as formic acid and methanol, also exhibited unique selectivity on the single-atom platinum catalyst. A lack of platinum ensemble sites changed the reaction pathway for the oxygen-reduction reaction toward a two-electron pathway and formic acid oxidation toward direct dehydrogenation, and also induced no activity for the methanol oxidation. This work demonstrates that single-atom platinum can be an efficient electrocatalyst with high mass activity and unique selectivity.

  9. Purified high molecular weight synthetic Aβ(1-42) and biological Aβ oligomers are equipotent in rapidly inducing MTT formazan exocytosis.

    Science.gov (United States)

    Weidner, Adam M; Housley, Molly; Murphy, M Paul; Levine, Harry

    2011-06-15

    Synthetic soluble Aβ oligomers are often used as a surrogate for biologic material in a number of model systems. We compared the activity of Aβ oligomers (synthetic and cell culture media derived) on the human SH-SY5Y neuroblastoma and C2C12 mouse myoblast cell lines in a novel, modified MTT assay. Separating oligomers from monomeric peptide by size exclusion chromatography produced effects at peptide concentrations approaching physiologic levels (10-100 nM). Purified oligomers, but not monomers or fibrils, elicited an increase of a detergent-insoluble form of MTT formazan within 2h as opposed to a control toxin (H(2)O(2)). This effect was comparable for biological and synthetic peptide in both cell types. Monomeric Aβ attenuated the effect of soluble oligomers. This study suggests that the activities of biological and synthetic oligomers are indistinguishable during early stages of Aβ oligomer-cell interaction.

  10. Oligomer formation during gas-phase ozonolysis of small alkenes and enol ethers: new evidence for the central role of the Criegee Intermediate as oligomer chain unit

    Directory of Open Access Journals (Sweden)

    A. Sadezky

    2007-10-01

    Full Text Available An important fraction of secondary organic aerosol (SOA formed by atmospheric oxidation of diverse volatile organic compounds (VOC has recently been shown to consist of high-molecular weight oligomeric species. In our previous study (Sadezky et al., 2006, we reported the identification and characterization of oligomers as main constituents of SOA from gas-phase ozonolysis of small enol ethers. These oligomers contained repeated chain units of the same chemical composition as the main Criegee Intermediates (CI formed during the ozonolysis reaction, which were CH2O2 (mass 46 for alkyl vinyl ethers (AVE and C2H4O2 (mass 60 for ethyl propenyl ether (EPE. In the present work, we extend our previous study (Sadezky et al., 2006 to another enol ether (ethyl butenyl ether EBE and a variety of structurally related small alkenes (trans-3-hexene, trans-4-octene and 2,3-dimethyl-2-butene.

    Experiments have been carried out in a 570 l spherical glass reactor at atmospheric conditions in the absence of seed aerosol. SOA formation was measured by a scanning mobility particle sizer (SMPS. SOA filter samples were collected and chemically characterized off-line by ESI(+/MS-TOF and ESI(+/MS/MS-TOF, and elemental compositions were confirmed by ESI(+/MS/MS-FTICR. The results for all investigated unsaturated compounds are in excellent agreement with the observations of our previous study (Sadezky et al., 2006. Analysis of the collected SOA filter samples reveal the presence of oligomeric compounds in the mass range 200 to 800 u as major constituents. The repeated chain units of these oligomers are shown to systematically have the same chemical composition as the respective main Criegee Intermediate (CI formed during ozonolysis of the unsaturated compounds, which is C3H6O2 (mass 74 for ethyl butenyl ether (EBE, trans-3-hexene, and 2,3-dimethyl-2-butene

  11. A Density Functional Study of Bare and Hydrogenated Platinum Clusters

    CERN Document Server

    Sebetci, A

    2006-01-01

    We perform density functional theory calculations using Gaussian atomic-orbital methods within the generalized gradient approximation for the exchange and correlation to study the interactions in the bare and hydrogenated platinum clusters. The minimum-energy structures, binding energies, relative stabilities, vibrational frequencies and the highest occupied and lowest unoccupied molecular-orbital gaps of Pt_nH_m (n=1-5, m=0-2) clusters are calculated and compared with previously studied pure platinum and hydrogenated platinum clusters. We investigate any magic behavior in hydrogenated platinum clusters and find that Pt_4H_2 is more stable than its neighboring sizes. Our results do not agree with a previous conclusion that 3D geometries of Pt tetramer and pentamer are unfavored. On the contrary, the lowest energy structure of Pt_4 is found to be a distorted tetrahedron and that of Pt_5 is found to be a bridge site capped tetrahedron which is a new global minimum for Pt_5 cluster. The successive addition of H ...

  12. In situ measurements of Merensky pillar behaviour at Impala Platinum

    CSIR Research Space (South Africa)

    Watson, BP

    2009-12-01

    Full Text Available to stabilize the stoping excavations. This paper describes the in situ measurement, of stress within a Merensky pillar from Impala Platinum. These measurements were used to derive a stress-strain curve that includes pre and post failure behaviour. 2D FLAC...

  13. EGFR-targeting peptide-coupled platinum(IV) complexes.

    Science.gov (United States)

    Mayr, Josef; Hager, Sonja; Koblmüller, Bettina; Klose, Matthias H M; Holste, Katharina; Fischer, Britta; Pelivan, Karla; Berger, Walter; Heffeter, Petra; Kowol, Christian R; Keppler, Bernhard K

    2017-06-01

    The high mortality rate of lung cancer patients and the frequent occurrence of side effects during cancer therapy demonstrate the need for more selective and targeted drugs. An important and well-established target for lung cancer treatment is the occasionally mutated epidermal growth factor receptor (EGFR). As platinum(II) drugs are still the most important therapeutics against lung cancer, we synthesized in this study the first platinum(IV) complexes coupled to the EGFR-targeting peptide LARLLT (and the shuffled RTALLL as reference). Notably, HPLC-MS measurements revealed two different peaks with the same molecular mass, which turned out to be a transcyclization reaction in the linker between maleimide and the coupled cysteine moiety. With regard to the EGFR specificity, subsequent biological investigations (3-day viability, 14-day clonogenic assays and platinum uptake) on four different cell lines with different verified EGFR expression levels were performed. Unexpectedly, the results showed neither an enhanced activity nor an EGFR expression-dependent uptake of our new compounds. Consequently, fluorophore-coupled peptides were synthesized to re-evaluate the targeting ability of LARLLT itself. However, also with these molecules, flow cytometry measurements showed no correlation of drug uptake with the EGFR expression levels. Taken together, we successfully synthesized the first platinum(IV) complexes coupled to an EGFR-targeting peptide; however, the biological investigations revealed that LARLLT is not an appropriate peptide for enhancing the specific uptake of small-molecule drugs into EGFR-overexpressing cancer cells.

  14. Electroreduction of cefetamet on mercury platinum and gold electrodes

    Directory of Open Access Journals (Sweden)

    P. ZUMAN

    2000-01-01

    Full Text Available The electroreduction of cefetamet (CEF using gold and platinum electrodes has been investigated in slightly alkaline medium (pH 8.40 where adsorption, previously observed at mercury electrode, was pronounced. This investigation was performed in order to determine whether the adsorption interfers with the reduction process even at solid electrodes and to compare with a mercury electrode.

  15. Platinum on Carbon Nanofibers as Catalyst for Cinnamaldehyde Hydrogenation

    NARCIS (Netherlands)

    Plomp, A.J.

    2009-01-01

    The aim of the work described in this thesis was to investigate the role and nature of nanostructured carbon materials, oxygen surface groups and promoters on platinum-based catalysts for the selective hydrogenation of cinnamaldehyde. The selective hydrogenation of cinnamaldehyde to cinnamyl alcohol

  16. Platinum redispersion on metal oxides in low temperature fuel cells

    DEFF Research Database (Denmark)

    Tripkovic, Vladimir; Cerri, Isotta; Nagami, Tetsuo

    2013-01-01

    in detail; however, due to different operating conditions it is not straightforward to link the chemical and the electrochemical environment. The largest differences reflect in (1) the oxidation state of the surface (the oxygen species coverage), (2) temperature and (3) the possibility of platinum...

  17. Preparation of low-platinum-content platinum-nickel, platinum-cobalt binary alloy and platinum-nickel-cobalt ternary alloy catalysts for oxygen reduction reaction in polymer electrolyte fuel cells

    Science.gov (United States)

    Li, Mu; Lei, Yanhua; Sheng, Nan; Ohtsuka, Toshiaki

    2015-10-01

    A series of low-platinum-content platinum-nickel (Pt-Ni), platinum-cobalt (Pt-Co) binary alloys and platinum-nickel-cobalt (Pt-Ni-Co) ternary alloys electrocatalysts were successfully prepared by a three-step process based on electrodeposition technique and studied as electrocatalysts for oxygen reduction reaction (ORR) in polymer-electrolyte fuel cells. Kinetics of ORR was studied in 0.5 M H2SO4 solution on the Pt-Ni, Pt-Co and Pt-Ni-Co alloys catalysts using rotating disk electrode technique. Both the series of Pt-Ni, Pt-Co binary alloys and the Pt-Ni-Co ternary alloys catalysts exhibited an obvious enhancement of ORR activity in comparison with pure Pt. The significant promotion of ORR activities of Pt-Ni and Pt-Co binary alloys was attributed to the enhancement of the first electron-transfer step, whereas, Pt-Ni-Co ternary alloys presented a more complicated mechanism during the electrocatalysis process but a much more efficient ORR activities than the binary alloys.

  18. Polyamide platinum anticancer complexes designed to target specific DNA sequences.

    Science.gov (United States)

    Jaramillo, David; Wheate, Nial J; Ralph, Stephen F; Howard, Warren A; Tor, Yitzhak; Aldrich-Wright, Janice R

    2006-07-24

    Two new platinum complexes, trans-chlorodiammine[N-(2-aminoethyl)-4-[4-(N-methylimidazole-2-carboxamido)-N-methylpyrrole-2-carboxamido]-N-methylpyrrole-2-carboxamide]platinum(II) chloride (DJ1953-2) and trans-chlorodiammine[N-(6-aminohexyl)-4-[4-(N-methylimidazole-2-carboxamido)-N-methylpyrrole-2-carboxamido]-N-methylpyrrole-2-carboxamide]platinum(II) chloride (DJ1953-6) have been synthesized as proof-of-concept molecules in the design of agents that can specifically target genes in DNA. Coordinate covalent binding to DNA was demonstrated with electrospray ionization mass spectrometry. Using circular dichroism, these complexes were found to show greater DNA binding affinity to the target sequence: d(CATTGTCAGAC)(2), than toward either d(GTCTGTCAATG)(2,) which contains different flanking sequences, or d(CATTGAGAGAC)(2), which contains a double base pair mismatch sequence. DJ1953-2 unwinds the DNA helix by around 13 degrees , but neither metal complex significantly affects the DNA melting temperature. Unlike simple DNA minor groove binders, DJ1953-2 is able to inhibit, in vitro, RNA synthesis. The cytotoxicity of both metal complexes in the L1210 murine leukaemia cell line was also determined, with DJ1953-6 (34 microM) more active than DJ1953-2 (>50 microM). These results demonstrate the potential of polyamide platinum complexes and provide the structural basis for designer agents that are able to recognize biologically relevant sequences and prevent DNA transcription and replication.

  19. Molecular pathways: the immunogenic effects of platinum-based chemotherapeutics

    NARCIS (Netherlands)

    Hato, S.V.; Khong, A.; Vries, I.J.M. de; Lesterhuis, W.J.

    2014-01-01

    The platinum-based drugs cisplatin, carboplatin, and oxaliplatin belong to the most widely used chemotherapeutics in oncology, showing clinical efficacy against many solid tumors. Their main mechanism of action is believed to be the induction of cancer cell apoptosis as a response to their covalent

  20. Effect of heat leaks in platinum resistance thermometry.

    Science.gov (United States)

    Goldratt, E; Yeshurun, Y; Greenfield, A J

    1980-03-01

    The effect of heat leaks in platinum resistance thermometry is analyzed. An experimental method is proposed for estimating the magnitude of this effect. Results are reported for the measurement of the temperature of a hot, solid body under different heat-leak configurations. Design criteria for thermometers are presented which minimize the effect of such heat leaks.

  1. Production of platinum radioisotopes at Brookhaven Linac Isotope Producer (BLIP

    Directory of Open Access Journals (Sweden)

    Smith Suzanne V.

    2017-01-01

    Full Text Available The accelerator production of platinum isotopes was investigated at the Brookhaven Linac Isotope Producer (BLIP. In this study high purity natural platinum foils were irradiated at 53.2, 65.7, 105.2, 151.9, 162.9 and 173.3.MeV. The irradiated foils were digested in aqua regia and then converted to their hydrochloride salt with concentrated hydrochloric acid before analyzing by gamma spectrometry periodically for at least 10 days post end of bombardment. A wide range of platinum (Pt, gold (Au and iridium (Ir isotopes were identified. Effective cross sections at BLIP for Pt-188, Pt-189, Pt-191 and Pt-195m were compared to literature and theoretical cross sections determined using Empire-3.2. The majority of the effective cross sections (<70 MeV confirm those reported in the literature. While the absolute values of the theoretical cross sections were up to a factor of 3 lower, Empire 3.2 modeled thresholds and maxima correlated well with experimental values. Preliminary evaluation into a rapid separation of Pt isotopes from high levels of Ir and Au isotopes proved to be a promising approach for large scale production. In conclusion, this study demonstrated that with the use of isotopically enriched target material accelerator production of selected platinum isotopes is feasible over a wide proton energy range.

  2. A Multimethod Approach for Investigating Algal Toxicity of Platinum Nanoparticles

    DEFF Research Database (Denmark)

    Sørensen, Sara Nørgaard; Engelbrekt, Christian; Lützhøft, Hans-Christian Holten

    2016-01-01

    The ecotoxicity of platinum nanoparticles (PtNPs) widely used in for example automotive catalytic converters, is largely unknown. This study employs various characterization techniques and toxicity end points to investigate PtNP toxicity toward the green microalgae Pseudokirchneriella subcapitata...

  3. Responses of fibroblasts and glial cells to nanostructured platinum surfaces

    Science.gov (United States)

    Pennisi, C. P.; Sevcencu, C.; Dolatshahi-Pirouz, A.; Foss, M.; Lundsgaard Hansen, J.; Nylandsted Larsen, A.; Zachar, V.; Besenbacher, F.; Yoshida, K.

    2009-09-01

    The chronic performance of implantable neural prostheses is affected by the growth of encapsulation tissue onto the stimulation electrodes. Encapsulation is associated with activation of connective tissue cells at the electrode's metallic contacts, usually made of platinum. Since surface nanotopography can modulate the cellular responses to materials, the aim of the present work was to evaluate the 'in vitro' responses of connective tissue cells to platinum strictly by modulating its surface nanoroughness. Using molecular beam epitaxy combined with sputtering, we produced platinum nanostructured substrates consisting of irregularly distributed nanopyramids and investigated their effect on the proliferation, cytoskeletal organization and cellular morphology of primary fibroblasts and transformed glial cells. Cells were cultured on these substrates and their responses to surface roughness were studied. After one day in culture, the fibroblasts were more elongated and their cytoskeleton less mature when cultured on rough substrates. This effect increased as the roughness of the surface increased and was associated with reduced cell proliferation throughout the observation period (4 days). Morphological changes also occurred in glial cells, but they were triggered by a different roughness scale and did not affect cellular proliferation. In conclusion, surface nanotopography modulates the responses of fibroblasts and glial cells to platinum, which may be an important factor in optimizing the tissue response to implanted neural electrodes.

  4. Enhancement of Platinum Cathode Catalysis by Addition of Transition Metals

    Science.gov (United States)

    Duong, Hung Tuan

    2009-01-01

    The sluggish kinetics of oxygen reduction reaction (ORR) contributes significantly to the loss of cathode overpotential in fuel cells, thus requiring high loadings of platinum (Pt), which is an expensive metal with limited supply. However, Pt and Pt-based alloys are still the best available electrocatalysts for ORR thus far. The research presented…

  5. Platinum on Carbon Nanofibers as Catalyst for Cinnamaldehyde Hydrogenation

    NARCIS (Netherlands)

    Plomp, A.J.

    2009-01-01

    The aim of the work described in this thesis was to investigate the role and nature of nanostructured carbon materials, oxygen surface groups and promoters on platinum-based catalysts for the selective hydrogenation of cinnamaldehyde. The selective hydrogenation of cinnamaldehyde to cinnamyl alcohol

  6. SILICA-BOUND CROWN ETHERS PLATINUM COMPLEX AS HYDROSILYLATION CATALYST

    Institute of Scientific and Technical Information of China (English)

    CHEN Yuanyin; MENG Lingzhi; LI Liping; LUO Jieqi; HU Jinchang

    1993-01-01

    Silica-bound 15-Crown-5, 18-Crown-6 with a spacer of propyloxymethyl and their platinum complexes have been synthesized. It was found that they were efficient catalysts for the hydrosilylation of olefins with triethoxysilane in the temperature range of 60 to 130 ℃ .

  7. Niraparib Maintenance Therapy in Platinum-Sensitive, Recurrent Ovarian Cancer

    DEFF Research Database (Denmark)

    Mirza, Mansoor R; Monk, Bradley J; Herrstedt, Jørn

    2016-01-01

    Background Niraparib is an oral poly(adenosine diphosphate [ADP]-ribose) polymerase (PARP) 1/2 inhibitor that has shown clinical activity in patients with ovarian cancer. We sought to evaluate the efficacy of niraparib versus placebo as maintenance treatment for patients with platinum-sensitive, ...

  8. Stereocomplexation in Copolymer Networks Incorporating Enantiomeric Glycerol-Based 3-Armed Lactide Oligomers and a 2-Armed ɛ-Caprolactone Oligomer

    Directory of Open Access Journals (Sweden)

    Ayaka Shibita

    2016-07-01

    Full Text Available The reactions of enantiomeric glycerol-based 3-armed lactide oligomers (H3DLAO and H3LLAO and a diethylene glycol-based 2-armed ɛ-caprolactone oligomer (H2CLO with hexamethylene diisocyanate (HDI produced polyesterurethane copolymer networks (PEU-3scLAO/2CLOs 100/0, 75/25, 50/50, 25/75 and 0/100 with different feed ratios of stereocomplex (sc lactide oligomer (H3scLAO = H3DLAO + H3LLAO, H3DLAO/H3LLAO = 1/1 and H2CLO. Thermal and mechanical properties of the copolymer networks were compared with those of a simple homochiral (hc network (PEU-3DLAO produced by the reaction of H3DLAO and HDI. X-ray diffraction and differential scanning calorimetric analyses revealed that sc crystallites are formed without any hc crystallization for PEU-3scLAO/2CLOs, and that PEU-3DLAO is amorphous. The melting temperatures of sc crystallites for PEU-3scLAO/2CLOs were much higher than that of hc crystallites of H3DLAO. The polarized optical microscopic analysis revealed that the nucleation efficiency is enhanced with increasing feed of H3scLAO fraction, whereas the spherulite growth rate is accelerated with increasing feed H2CLO fraction over 100/0-50/50 networks. PEU-3scLAO/2CLO 100/0 (i.e., PEU-3scLAO exhibited a higher tensile strength and modulus than PEU-3DLAO. The elongation at break and tensile toughness for PEU-3scLAO/2CLOs increased with an increasing feed amount of H2CLO.

  9. Tissue Platinum Concentration and Tumor Response in Non–Small-Cell Lung Cancer

    Science.gov (United States)

    Kim, Eric S.; Lee, J. Jack; He, Guangan; Chow, Chi-Wan; Fujimoto, Junya; Kalhor, Neda; Swisher, Stephen G.; Wistuba, Ignacio I.; Stewart, David J.; Siddik, Zahid H.

    2012-01-01

    Purpose Platinum resistance is a major limitation in the treatment of advanced non–small-cell lung cancer (NSCLC). Reduced intracellular drug accumulation is one of the most consistently identified features of platinum-resistant cell lines, but clinical data are limited. We assessed the effects of tissue platinum concentrations on response and survival in NSCLC. Patients and Methods We measured total platinum concentrations by flameless atomic absorption spectrophotometry in 44 archived fresh-frozen NSCLC specimens from patients who underwent surgical resection after neoadjuvant platinum-based chemotherapy. Tissue platinum concentration was correlated with percent reduction in tumor size on post- versus prechemotherapy computed tomography scans. The relationship between tissue platinum concentration and survival was assessed by univariate and multicovariate Cox proportional hazards regression model analysis and Kaplan-Meier analysis. Results Tissue platinum concentration correlated significantly with percent reduction in tumor size (P < .001). The same correlations were seen with cisplatin, carboplatin, and all histology subgroups. Furthermore, there was no significant impact of potential variables such as number of cycles and time lapse from last chemotherapy on platinum concentration. Patients with higher platinum concentration had longer time to recurrence (P = .034), progression-free survival (P = .018), and overall survival (P = .005) in the multicovariate Cox model analysis after adjusting for number of cycles. Conclusion This clinical study established a relationship between tissue platinum concentration and response in NSCLC. It suggests that reduced platinum accumulation might be an important mechanism of platinum resistance in the clinical setting. Further studies investigating factors that modulate intracellular platinum concentration are warranted. PMID:22891266

  10. Amyloid β oligomers induce interleukin-1β production in primary microglia in a cathepsin B- and reactive oxygen species-dependent manner

    Energy Technology Data Exchange (ETDEWEB)

    Taneo, Jun; Adachi, Takumi [Department of Animal Development and Physiology, Kyoto University, Yoshida-Konoe, Sakyo, Kyoto 606-8501 (Japan); Yoshida, Aiko; Takayasu, Kunio [Responses to Environmental Signals and Stresses, Graduate School of Biostudies, Kyoto University, Yoshida-Konoe, Sakyo, Kyoto, Kyoto 606-8501 (Japan); Takahara, Kazuhiko, E-mail: ktakahar@zoo.zool.kyoto-u.ac.jp [Department of Animal Development and Physiology, Kyoto University, Yoshida-Konoe, Sakyo, Kyoto 606-8501 (Japan); Japan Science and Technology Agency, Core Research for Evolutional Science and Technology (CREST), Tokyo 102-0081 (Japan); Inaba, Kayo [Department of Animal Development and Physiology, Kyoto University, Yoshida-Konoe, Sakyo, Kyoto 606-8501 (Japan); Japan Science and Technology Agency, Core Research for Evolutional Science and Technology (CREST), Tokyo 102-0081 (Japan)

    2015-03-13

    Amyloid β (Aβ) peptide, a causative agent of Alzheimer's disease, forms two types of aggregates: oligomers and fibrils. These aggregates induce inflammatory responses, such as interleukin-1β (IL-1β) production by microglia, which are macrophage-like cells located in the brain. In this study, we examined the effect of the two forms of Aβ aggregates on IL-1β production in mouse primary microglia. We prepared Aβ oligomer and fibril from Aβ (1–42) peptide in vitro. We analyzed the characteristics of these oligomers and fibrils by electrophoresis and atomic force microscopy. Interestingly, Aβ oligomers but not Aβ monomers or fibrils induced robust IL-1β production in the presence of lipopolysaccharide. Moreover, Aβ oligomers induced endo/phagolysosome rupture, which released cathepsin B into the cytoplasm. Aβ oligomer-induced IL-1β production was inhibited not only by the cathepsin B inhibitor CA-074-Me but also by the reactive oxygen species (ROS) inhibitor N-acetylcysteine. Random chemical crosslinking abolished the ability of the oligomers to induce IL-1β. Thus, multimerization and fibrillization causes Aβ oligomers to lose the ability to induce IL-1β. These results indicate that Aβ oligomers, but not fibrils, induce IL-1β production in primary microglia in a cathepsin B- and ROS-dependent manner. - Highlights: • We prepared amyloid β (Aβ) fibrils with minimum contamination of Aβ oligomers. • Primary microglia (MG) produced IL-1β in response to Aβ oligomers, but not fibrils. • Only Aβ oligomers induced leakage of cathepsin B from endo/phagolysosomes. • IL-1β production in response to Aβ oligomers depended on both cathepsin B and ROS. • Crosslinking reduced the ability of the Aβ oligomers to induce IL-1β from MG.

  11. Study of gold-platinum and platinum-gold surface modification and its influence on hydrogen evolution and oxygen reduction

    Directory of Open Access Journals (Sweden)

    BRANIMIR N. GRGUR

    2005-02-01

    Full Text Available Surface modification of the electrodes was conducted from sulfuric acid solutions containing the corresponding metal–chloride complexes using cyclic voltammetry. Comparing the charges of the hydrogen underpotential deposition region, and the corresponding oxide reduction regions, it is concluded that a platinum overlayer on gold forms 3D islands, while gold on platinum forms 2D islands. Foreign metals present in an amount of up to one monolayer exert an influence on the change in reaction rate with respect to both hydrogen evolution (HER and oxygen reduction (ORR reactions. Aplatinum overlayer on a gold substrate increases the activity forHER and for ORR, compared with pure gold. These results can be understood in terms of a simple model, in which the change in the H and OH binding energies are directly proportional to the shift of the d-bond center of the overlayer. On the contrary, a gold layer on platinum slightly decreases the activity for both reactions compared with pure platinum.

  12. DNA sequence recognition by hybridization to short oligomers : experimental verification of the method on the E-coli genome.

    Energy Technology Data Exchange (ETDEWEB)

    Milosavljevic, A.; Savkovic, S.; Crkvenjakov, R.; Salbego, D.; Serrato, H.; Kreuzer, H.; Gemmell, A.; Batus, S.; Grujic, D.; Carnahan, S.; Tepavcevic, J.; Center for Mechanistic Biology and Biotechnology

    1996-10-01

    A newly developed method for sequence recognition by hybridization to short oligomers is verified for the first time in genome-scale experiments. The experiments involved hybridization of 15,328 randomly selected 2-kb genomic clones of Escherichia coli with 997 short oligomer probes to detect complementary oligomers within the clones. Lists of oligomers detected within individual clones were compiled into a database. The database was then searched using known E. coli sequences as queries. The goal was to recognize the clones that are identical or similar to the query sequences. A total of 76 putative recognitions were tested in two separate but complementary recognition experiments. The results indicate high specificity of recognition. Current and prospective applications of this novel method are discussed.

  13. DNA sequence recognition by hybridization to short oligomers: experimental verification of the method on the E. coli genome.

    Science.gov (United States)

    Milosavljević, A; Savković, S; Crkvenjakov, R; Salbego, D; Serrato, H; Kreuzer, H; Gemmell, A; Batus, S; Grujić, D; Carnahan, S; Paunesku, T; Tepavcević, J

    1996-10-01

    A newly developed method for sequence recognition by hybridization to short oligomers is verified for the first time in genome-scale experiments. The experiments involved hybridization of 15,328 randomly selected 2-kb genomic clones of Escherichia coli with 997 short oligomer probes to detect complementary oligomers within the clones. Lists of oligomers detected within individual clones were compiled into a database. The database was then searched using known E. coli sequences as queries. The goal was to recognize the clones that are identical or similar to the query sequences. A total of 76 putative recognitions were tested in two separate but complementary recognition experiments. The results indicate high specificity of recognition. Current and prospective applications of this novel method are discussed.

  14. Liquid Crystalline Thermosets from Ester, Ester-imide, and Ester-amide Oligomers

    Science.gov (United States)

    Dingemans, Theodorus J. (Inventor); Weiser, Erik S. (Inventor); St. Clair, Terry L. (Inventor)

    2009-01-01

    Main chain thermotropic liquid crystal esters, ester-imides, and ester-amides were prepared from AA, BB, and AB type monomeric materials and end-capped with phenylacetylene, phenylmaleimide, or nadimide reactive end-groups. The end-capped liquid crystal oligomers are thermotropic and have, preferably, molecular weights in the range of approximately 1000-15,000 grams per mole. The end-capped liquid crystaloligomers have broad liquid crystalline melting ranges and exhibit high melt stability and very low melt viscosities at accessible temperatures. The end-capped liquid crystal oli-gomers are stable forup to an hour in the melt phase. They are highly processable by a variety of melt process shape forming and blending techniques. Once processed and shaped, the end-capped liquid crystal oigomers were heated to further polymerize and form liquid crystalline thermosets (LCT). The fully cured products are rubbers above their glass transition temperatures.

  15. "Nail" and "comb" effects of cholesterol modified NIPAm oligomers on cancer targeting liposomes

    KAUST Repository

    Li, Wengang

    2014-01-01

    Thermosensitive liposomes are a promising approach to controlled release and reduced drug cytotoxicity. Low molecular weight N-isopropylacrylamide (NIPAm) oligomers (NOs) with different architectures (main chain NOs (MCNOs) and side chain NOs (SCNOs)) were synthesized by reversible addition-fragmentation chain transfer (RAFT) polymerization and radical polymerization and then separately used to prepare thermosensitive liposomes. A more controlled and enhanced release was observed for both NO liposomes compared to pristine ones. Two release mechanisms depending on the oligomer architecture, namely "nail" for MCNOs and "comb" for SCNOs, are proposed. In addition to thermosensitivity, the cancer targeting property of NO liposomes was achieved by further biotinylation of the delivery system. © The Royal Society of Chemistry.

  16. Structural Investigations of on-pathway Oligomers of α-Synuclein

    DEFF Research Database (Denmark)

    Pedersen, Martin Nors; Horvath, Istvan; Weise, Christoph F.;

    Here we present Small Angle X-ray (SAXS) data of α-synuclein oligomers obtained by incubation with the ligand FN075. Data from complementary methods such as NMR and CD are also shown. Aggregated α-synuclein is the major constituent of the Lewy Bodies regarded as the hallmark of Parkinson’s Disease...... and Dementia with Lewy Bodies (DLB) (Spillantini et al. 1997). The role of lewy bodies in the pathology of Parkinson’s Disease and DLB is however not well understood but in vitro experiments suggest that transient oligomeric species could be involved in cell toxicity (Giehm et al. 2011). The natural function...... of α-synuclein has also not been established (Drescher et al. 2012). The monomeric species of α-synuclein is intrinsically disordered meaning it does not have just one stable conformation in solution. The solution structure of an on pathway oligomer consisting of 16 monomers has been solved...

  17. Structure and Oligomers Distribution of Commercial Tara (Caesalpina spinosa Hydrolysable Tannin

    Directory of Open Access Journals (Sweden)

    Samuele GIOVANDO

    2013-03-01

    Full Text Available Solvent extracted commercial Tara tanninextract have been examined by Matrix Assisted LaserDesorption/Ionisation Time-of-Flight (MALDI-TOFmass spectrometry and by High Pressure LiquidChromatography (HPLC. The Tara extract has beenfound to be composed of a series of oligomers ofpolygallic acid attached by an ester link to one quinicacid. They constitute the oligomers in higherproportion in the extract. Other polygallic chains linkedto one only or two repeating units such as caffeic acidand methylated quinic, methylated gallic andmethylated caffeic acids are also present. Negativeion mode MALDI-TOF showed that somecarbohydrate residues appear to still be present,linked to the polyphenolic material of the extract buttheir proportion is very low as would be expected of asolvent extracted tannin.

  18. Similarities and differences in the influence of polycations and oligomers on DNA conformation and packaging.

    Science.gov (United States)

    Kasyanenko, Nina; Dribinsky, Boris

    2016-05-01

    A comparison of DNA conformational changes in a solution containing the poly-l-lysine with the number of monomers z=3, 5, 17, 20, 270, 325 and polyamines (spermine and spermidine) was carried out in 1M and 5mM NaCl solutions. It was shown that despite the identical results of DNA condensation induced by compounds, their influence on the DNA conformation prior to packaging depends on whether they belong to a long polycations or short oligomers. DNA secondary and tertiary structures were examined using Circular Dichroism, UV-vis Spectrophotometry, Dynamic Light Scattering, Low Gradient Viscometry, Flow Birefringence, and AFM. The phase diagrams for systems of DNA-polycations, DNA-oligomers, DNA-polyamines were drawn.

  19. Toxic tau oligomer formation blocked by capping of cysteine residues with 1,2-dihydroxybenzene groups.

    Science.gov (United States)

    Soeda, Yoshiyuki; Yoshikawa, Misato; Almeida, Osborne F X; Sumioka, Akio; Maeda, Sumihiro; Osada, Hiroyuki; Kondoh, Yasumitsu; Saito, Akiko; Miyasaka, Tomohiro; Kimura, Tetsuya; Suzuki, Masaaki; Koyama, Hiroko; Yoshiike, Yuji; Sugimoto, Hachiro; Ihara, Yasuo; Takashima, Akihiko

    2015-12-16

    Neurofibrillary tangles, composed of hyperphosphorylated tau fibrils, are a pathological hallmark of Alzheimer's disease; the neurofibrillary tangle load correlates strongly with clinical progression of the disease. A growing body of evidence indicates that tau oligomer formation precedes the appearance of neurofibrillary tangles and contributes to neuronal loss. Here we show that tau oligomer formation can be inhibited by compounds whose chemical backbone includes 1,2-dihydroxybenzene. Specifically, we demonstrate that 1,2-dihydroxybenzene-containing compounds bind to and cap cysteine residues of tau and prevent its aggregation by hindering interactions between tau molecules. Further, we show that orally administered DL-isoproterenol, an adrenergic receptor agonist whose skeleton includes 1,2-dihydroxybenzene and which penetrates the brain, reduces the levels of detergent-insoluble tau, neuronal loss and reverses neurofibrillary tangle-associated brain dysfunction. Thus, compounds that target the cysteine residues of tau may prove useful in halting the progression of Alzheimer's disease and other tauopathies.

  20. QIAD assay for quantitating a compound’s efficacy in elimination of toxic Aβ oligomers

    Science.gov (United States)

    Brener, Oleksandr; Dunkelmann, Tina; Gremer, Lothar; van Groen, Thomas; Mirecka, Ewa A.; Kadish, Inga; Willuweit, Antje; Kutzsche, Janine; Jürgens, Dagmar; Rudolph, Stephan; Tusche, Markus; Bongen, Patrick; Pietruszka, Jörg; Oesterhelt, Filipp; Langen, Karl-Josef; Demuth, Hans-Ulrich; Janssen, Arnold; Hoyer, Wolfgang; Funke, Susanne A.; Nagel-Steger, Luitgard; Willbold, Dieter

    2015-01-01

    Strong evidence exists for a central role of amyloid β-protein (Aβ) oligomers in the pathogenesis of Alzheimer’s disease. We have developed a fast, reliable and robust in vitro assay, termed QIAD, to quantify the effect of any compound on the Aβ aggregate size distribution. Applying QIAD, we studied the effect of homotaurine, scyllo-inositol, EGCG, the benzofuran derivative KMS88009, ZAβ3W, the D-enantiomeric peptide D3 and its tandem version D3D3 on Aβ aggregation. The predictive power of the assay for in vivo efficacy is demonstrated by comparing the oligomer elimination efficiency of D3 and D3D3 with their treatment effects in animal models of Alzheimer´s disease. PMID:26394756

  1. Characterisation of proanthocyanidins from black soybeans: isolation and characterisation of proanthocyanidin oligomers from black soybean seed coats.

    Science.gov (United States)

    Ito, Chiaki; Oki, Tomoyuki; Yoshida, Tadashi; Nanba, Fumio; Yamada, Katsushige; Toda, Toshiya

    2013-12-01

    Proanthocyanidin oligomers (dimers to tetramers) were isolated from black soybean seed coats, using Sephadex LH-20 column chromatography and reversed-phase preparative HPLC. The isolated oligomers consisted of only (-)-epicatechin units, which were linked through either 4β→8 or 4β→6 (B-type) bonds. Procyanidin B2, procyanidin C1, and cinnamtannin A2 were identified as the main compounds of the proanthocyanidin dimers, trimers, and tetramers, respectively.

  2. Quarternization of 3-azido-1-propyne oligomers obtained by copper(I-catalyzed azide–alkyne cycloaddition polymerization

    Directory of Open Access Journals (Sweden)

    Shun Nakano

    2015-06-01

    Full Text Available 3-Azido-1-propyne oligomer (oligoAP samples, prepared by copper(I-catalyzed azide–alkyne cycloaddition (CuAAC polymerization, were quarternized quantitatively with methyl iodide in sulfolane at 60 °C to obtain soluble oligomers. The conformation of the quarternized oligoAP in dilute DMSO-d6 solution was examined by pulse-field-gradient spin-echo NMR based on the touched bead model.

  3. Adiponectin oligomers in human serum during acute and chronic exercise: relation to lipid metabolism and insulin sensitivity.

    Science.gov (United States)

    Bobbert, T; Wegewitz, U; Brechtel, L; Freudenberg, M; Mai, K; Möhlig, M; Diederich, S; Ristow, M; Rochlitz, H; Pfeiffer, A F H; Spranger, J

    2007-01-01

    Beneficial effects of physical exercise include improved insulin sensitivity, which may be affected by a modulated release of adiponectin, which is exclusively synthesized in white adipose tissue and mediates insulin sensitivity. Adiponectin circulates in three different oligomers, which also have a distinct biological function. We therefore aimed to investigate the distribution of adiponectin oligomers in human serum in relation to physical activity. Thirty-eight lean and healthy individuals were investigated. Seven healthy women and 8 healthy men volunteered to investigate the effect of chronic exercise, at 3 different time points with different training intensities. These individuals were all highly trained and were compared to a control group with low physical activity (n = 15). For studying acute exercise effects, 8 healthy men participated in a bicycle test. Adiponectin was determined by ELISA, oligomers were detected by non-denaturating western blot. Total adiponectin and oligomers were unchanged by acute exercise. LDL cholesterol was significantly lower in the chronic exercise group (p = 0.03). Total adiponectin levels and oligomers were not different between these two groups and were unaltered by different training intensities. However, total adiponectin and specifically HMW oligomers correlated with HDL cholesterol (r = 0.459; p = 0.009). We conclude that acute and chronic exercise does not directly affect circulating adiponectin or oligomer distribution in lean and healthy individuals. Whether such regulation is relevant in individuals with a metabolic disorder remains to be determined. However, our data suggest that adiponectin oligomers have distinct physiological functions IN VIVO, and specifically HMW adiponectin is closely correlated with HDL cholesterol.

  4. Optimizing treatment of the partially platinum-sensitive ovarian cancer patient.

    Science.gov (United States)

    Colombo, Nicoletta

    2013-12-01

    Ovarian cancer is the leading cause of gynecological cancer deaths worldwide. Despite primary treatment with platinum-containing regimens, the majority of women will experience recurrent disease and subsequent death. Recurrent ovarian cancer remains a challenge for successful management, and the choice of second-line chemotherapy is complex due to the range of different factors that need to be considered. One of the main considerations is the platinum-free interval and, specifically, the optimal treatment for patients who are partially platinum-sensitive (platinum-free interval: 6-12 months). Data from the large, multicenter, randomized OVA-301 study have shown that combined trabectedin-pegylated liposomal doxorubicin (PLD) significantly prolonged median overall survival compared with PLD alone (p = 0.0027) in 214 patients with partially platinum-sensitive advanced relapsed ovarian cancer. Furthermore, in OVA-301 patients with partially platinum-sensitive disease who received platinum therapy immediately after disease progression (n = 94), final median overall survival was improved by 9 months (p = 0.0153) in trabectedin-PLD patients compared with PLD alone. In addition to demonstrating a survival advantage, trabectedin-PLD may also allow the treatment of patients having not yet recovered from previous platinum toxicity. In summary, the data suggest the use of combined trabectedin-PLD as a second-line treatment option in patients with partially platinum-sensitive recurrent ovarian cancer, followed by a third-line platinum-containing regimen.

  5. Application of liposomal technologies for delivery of platinum analogs in oncology

    Directory of Open Access Journals (Sweden)

    Liu D

    2013-08-01

    Full Text Available Demin Liu1, Chunbai He1, Andrew Z Wang2, Wenbin Lin1 1Department of Chemistry, University of Chicago, Chicago, IL, USA; 2Laboratory of Nano- and Translational Medicine, Department of Radiation Oncology, and Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, NC, USA Abstract: Platinum-based chemotherapy, such as cisplatin, oxaliplatin, and carboplatin, is one of the most widely utilized classes of cancer therapeutics. While highly effective, the clinical applications of platinum-based drugs are limited by their toxicity profiles as well as suboptimal pharmacokinetic properties. Therefore, one of the key research areas in oncology has been to develop novel platinum analog drugs and engineer new platinum drug formulations to improve the therapeutic ratio further. Such efforts have led to the development of platinum analogs including nedaplatin, heptaplatin, and lobaplatin. Moreover, reformulating platinum drugs using liposomes has resulted in the development of L-NDPP (Aroplatin™, SPI-77, Lipoplatin™, Lipoxal™, and LiPlaCis®. Liposomes possess several attractive biological activities, including biocompatibility, high drug loading, and improved pharmacokinetics, that are well suited for platinum drug delivery. In this review, we discuss the various platinum drugs and their delivery using liposome-based drug delivery vehicles. We compare and contrast the different liposome platforms as well as speculate on the future of platinum drug delivery research. Keywords: liposome, platinum analog, drug delivery, cancer

  6. Self-association of TPR domains: Lessons learned from a designed, consensus-based TPR oligomer.

    Science.gov (United States)

    Krachler, Anne Marie; Sharma, Amit; Kleanthous, Colin

    2010-07-01

    The tetratricopeptide repeat (TPR) motif is a protein-protein interaction module that acts as an organizing centre for complexes regulating a multitude of biological processes. Despite accumulating evidence for the formation of TPR oligomers as an additional level of regulation there is a lack of structural and solution data explaining TPR self-association. In the present work we characterize the trimeric TPR-containing protein YbgF, which is linked to the Tol system in Gram-negative bacteria. By subtracting previously identified TPR consensus residues required for stability of the fold from residues conserved across YbgF homologs, we identified residues involved in oligomerization of the C-terminal YbgF TPR domain. Crafting these residues, which are located in loop regions between TPR motifs, onto the monomeric consensus TPR protein CTPR3 induced the formation of oligomers. The crystal structure of this engineered oligomer shows an asymmetric trimer where stacking interactions between the introduced tyrosines and displacement of the C-terminal hydrophilic capping helix, present in most TPR domains, are key to oligomerization. Asymmetric trimerization of the YbgF TPR domain and CTPR3Y3 leads to the formation of higher order oligomers both in the crystal and in solution. However, such open-ended self-association does not occur in full-length YbgF suggesting that the protein's N-terminal coiled-coil domain restricts further oligomerization. This interpretation is borne out in experiments where the coiled-coil domain of YbgF was engineered onto the N-terminus of CTPR3Y3 and shown to block self-association beyond trimerization. Our study lays the foundations for understanding the structural basis for TPR domain self-association and how such self-association can be regulated in TPR domain-containing proteins.

  7. Conformational control in a bipyridine linked π-conjugated oligomer: cation mediated helix unfolding and refolding.

    Science.gov (United States)

    Divya, Kizhumuri P; Sreejith, Sivaramapanicker; Suresh, Cherumuttathu H; Ajayaghosh, Ayyappanpillai

    2010-11-28

    A chiral π-conjugated oligomer having alternate bipyridine and carbazole moieties connected through acetylinic bonds undergoes helical folding in chloroform-acetonitrile (40/60, v/v) as evident by fluorescence and circular dichroism changes. In the presence of transition metal cations such as Zn(2+) defolding of the helical conformation occurs. Upon decomplexation of the cation with EDTA, the helical conformation is regained.

  8. Single-molecule studies of oligomer extraction and uptake of dyes in poly(dimethylsiloxane) films.

    Science.gov (United States)

    Lange, Jeffrey J; Collinson, Maryanne M; Culbertson, Christopher T; Higgins, Daniel A

    2009-12-15

    Single-molecule microscopic methods were used to probe the uptake, mobility, and entrapment of dye molecules in cured poly(dimethylsiloxane) (PDMS) films as a function of oligomer extraction. The results are relevant to the use of PDMS in microfluidic separations, pervaporation, solid-phase microextraction, and nanofiltration. PDMS films were prepared by spin-casting dilute solutions of Sylgard 184 onto glass coverslips, yielding approximately 1.4 microm thick films after curing. Residual oligomers were subsequently extracted from the films by "spin extraction". In this procedure, 200 microL aliquots of isopropyl alcohol were repeatedly dropped onto the film surface and spun off at 2000 rpm. Samples extracted 5, 10, 20, and 40 times were investigated. Dye molecules were loaded into these films by spin-casting nanomolar dye solutions onto the films. Both neutral perylene diimide (N,N'-bis(butoxypropyl)perylene-3,4,9,10-tetracarboxylic diimide) and cationic rhodamine 6G (R6G) dyes were employed. The films were imaged by confocal fluorescence microscopy. The images obtained depict nonzero populations of fixed and mobile molecules in all films. Cross-correlation methods were used to quantitatively determine the population of fixed molecules in a given region, while a Bayesian burst analysis was used to obtain the total population of molecules. The results show that the total amount of dye loaded increases with increased oligomer extraction, while the relative populations of fixed and mobile molecules decrease and increase, respectively. Bulk R6G data also show greater dye loading with increased oligomer extraction.

  9. Formation and growth of oligomers: a Monte Carlo study of an amyloid tau fragment.

    Directory of Open Access Journals (Sweden)

    Da-Wei Li

    2008-12-01

    Full Text Available Small oligomers formed early in the process of amyloid fibril formation may be the major toxic species in Alzheimer's disease. We investigate the early stages of amyloid aggregation for the tau fragment AcPHF6 (Ac-VQIVYK-NH2 using an implicit solvent all-atom model and extensive Monte Carlo simulations of 12, 24, and 36 chains. A variety of small metastable aggregates form and dissolve until an aggregate of a critical size and conformation arises. However, the stable oligomers, which are beta-sheet-rich and feature many hydrophobic contacts, are not always growth-ready. The simulations indicate instead that these supercritical oligomers spend a lengthy period in equilibrium in which considerable reorganization takes place accompanied by exchange of chains with the solution. Growth competence of the stable oligomers correlates with the alignment of the strands in the beta-sheets. The larger aggregates seen in our simulations are all composed of two twisted beta-sheets, packed against each other with hydrophobic side chains at the sheet-sheet interface. These beta-sandwiches show similarities with the proposed steric zipper structure for PHF6 fibrils but have a mixed parallel/antiparallel beta-strand organization as opposed to the parallel organization found in experiments on fibrils. Interestingly, we find that the fraction of parallel beta-sheet structure increases with aggregate size. We speculate that the reorganization of the beta-sheets into parallel ones is an important rate-limiting step in the formation of PHF6 fibrils.

  10. Ferrocene-Based Monomers, Oligomers and Polymers as Electro-Active Materials

    OpenAIRE

    Al Khalyfeh, Khaled

    2016-01-01

    The present PhD thesis deals with the synthesis and characterization of functionalized ferrocenes with up to four aldehyde and vinyl groups and their usage as monomers to produce novel ferrocene-based oligomers with conjugated backbones via ADMET (acyclic diene metathesis) and HWE (Horner-Wadsworth-Emmons) reaction protocols. In addition, ferrocene-containing polymers (linear, cross-linked and co-polymers) with aliphatic backbones generated by anionic bulk and solution polymerization routes, ...

  11. Replication of proto-RNAs sustained by ligase-helicase cycle in oligomer world

    OpenAIRE

    Sato, Daisuke; Narikiyo, Osamu

    2013-01-01

    A mechanism of the replication of proto-RNAs in oligomer world is proposed. The replication is carried out by a minimum cycle which is sustained by a ligase and a helicase. We expect that such a cycle actually worked in the primordial soup and can be constructed in vitro. By computer simulation the products of the replication acquires diversity and complexity. Such diversity and complexity are the bases of the evolution.

  12. A model for non-obligate oligomer formation in protein aggregration

    Science.gov (United States)

    Healy, Eamonn F.

    2015-01-01

    Using solvent-exposed intramolecular backbone hydrogen bonds as physico-chemical descriptors for protein packing, a role for transient, non-obligate oligomers in the formation of aberrant protein aggregates is presented. Oligomeric models of the both wild type (wt) and select mutant variants of superoxide dismutase (SOD1) are proposed to provide a structural basis for investigating the etiology of Amyotrophic Lateral Sclerosis (ALS). PMID:26282203

  13. Chemical Modifications of Antisense Morpholino Oligomers Enhance Their Efficacy against Ebola Virus Infection

    Science.gov (United States)

    2009-05-01

    specific PMOs in infected cells and mice during lethal Ebola virus challenge. Members of the Filoviridae family of viruses , Ebola virus (EBOV) and Marburg ...American Society for Microbiology. All Rights Reserved. Chemical Modifications of Antisense Morpholino Oligomers Enhance Their Efficacy against Ebola Virus ...sequence is complementary to a region spanning the start codon of VP24 mRNA were protected against lethal Ebola virus challenge. In the present study, we

  14. PHASE Ⅱ STUDY OF GEMCITABINE COMBINED WITH PLATINUM CHEMOTHERAPY FOR RECURRENT EPITHELIAL OVARIAN CANCER

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Objective To evaluate the anti-tumor effect and toxicity of gemcitabine combined with platinum chemotherapy on recurrent epithelial ovarian cancer.Methods Phase Ⅱ study of gemcitabine combined with platinum chemotherapy was carried out in 22 patients with recurrent epithelial ovarian cancer. Median age of patients was 50. 5 years old. Seven patients were platinum-sensitive and 15 patients were platinum-resistant or -refractor. All patients received gemcitabine combined with carboplatin or oxaliplatin chemotherapy. Patients' response rate (RR) and toxicity of gemcitabine combined with platinum chemotherapy were evaluated.Results A total of 98 gemcitabine-based chemotherapy cycles were performed. Total RR was 36.4%, RR of platinum-sensitive patients was 4/7 and platinum-resistant and -refractory patients was 4/15. The estimated median survival time was 10. 0 months (95% CI: 7.0-13.0) after initiation of gemcitabine combined with platinum chemotherapy.There was no significant difference in survival time between platinum-resistant/refractory group and platinum-sensitive group (P = 0. 061 ). Side effects of gemcitabine combined with platinum chemotherapy were observed in 81.8 % of patients. Grade Ⅱ/Ⅲ anemia (54.5%) and grade Ⅲ/Ⅳ neutropenia (54.5%) were most common toxicities. Ten (45.5%) patients had to delay their chemotherapy cycles or reduce the dose of chemotherapeutic drugs because of the severe side effects. Fourteen (63.6%) patients received granulocyte colony-stimulating factor to relieve neutropenia,and 8 (36. 4% ) patients received component blood transfusion to treat anemia or thrombocytopenia. There was no treatment-associated death.Conclusion Gemcitabine combined with platinum chemotherapy appears to be an effective and well-tolerant treatment for recurrent epithelial ovarian cancer, including platinum-resistant or -refractory diseases.

  15. A lifespan observation of a novel mouse model: in vivo evidence supports aβ oligomer hypothesis.

    Directory of Open Access Journals (Sweden)

    Yichi Zhang

    Full Text Available Transgenic mouse models are powerful tools in exploring the mechanisms of AD. Most current transgenic models of AD mimic the memory impairment and the main pathologic features, among which the formation of beta-amyloid (Aβ plaques is considered a dominant pathologic event. Recently, Aβ oligomers have been identified as more neurotoxic than Aβ plaques. However, no ideal transgenic mouse model directly support Aβ oligomers as a neurotoxic species due to the puzzling effects of amyloid plaques in the more widely-used models. Here, we constructed a single-mutant transgenic (Tg model harboring the PS1V97L mutation and used Non-Tg littermates as a control group. Employing the Morris water maze, electrophysiology, immunohistochemistry, biochemistry, and electron microscopy, we investigated behavioral changes and pathology progression in our single-mutant transgenic model. We discovered the pathological alteration of intraneuronal accumulation of Aβ oligomers without Aβ plaques in the PS1V97L-Tg mouse model, which might be the result of PS1 gene mutation. Following Aβ oligomers, we detected synaptic alteration, tau hyperphosphorylation and glial activation. This model supports an initial role for Aβ oligomers in the onset of AD and suggests that Aβ plaques may not be the only prerequisite. This model provides a useful tool for studying the role of Aβ oligomers in AD pathogenesis.

  16. Theoretical design study on photophysical property on oligomers based on spirobifluorene and carbazole-triphenylamine for PLED applications.

    Science.gov (United States)

    Xie, Xiao-Hua; Shen, Wei; He, Rong-Xing; Li, Ming

    2013-01-01

    The photophysical properties of five blue light-emitting polymers based on spirobifluorene applied in polymer light-emitting diodes (PLED) materials have been studied by quantum chemistry. In order to understand the intrinsic reasons for the different performances displayed by the polymers, we carried out density functional theory (DFT) and Marcus theory investigations on their oligomers in terms of structure and properties stability, absorption and emission properties, and carrier injection and transport properties. Especially, some important parameters which had not been reported to our knowledge were given in this contribution, such as the ionization potentials (IPs), electron affinities (EAs), reorganization energies (λ), ke/kh (the ratio between the electron transfer rate (ke) and hole transfer rate (kh)), and the radiative lifetimes (τ). The main results indicate that the co-oligomers of PCC-1, PCC-2, and PCC-3 with push-pull interactions produced by the existing D-A segments have better carrier injection and transport properties than the oligomers of PSF and PCF. Especially PCC-2 co-oligomer, its large radiation lifetime (7.46 ns) and well balanced and adequate carrier transport guarantee its champion performance for PLED. The calculated results coincide with the experimental ones. Besides, PNF structurally similar to PCC-2 has similar photoelectric properties to PCC-2 in theory, and the fluorescence emission of PNF co-oligomer is superior to PCC-2 co-oligomer. Therefore, we predict that PNF is a promising candidate for PLED.

  17. STABILITY OF THE NEW ANTICANCER PLATINUM ANALOG 1,2-DIAMINOMETHYL-CYCLOBUTANE-PLATINUM(II)-LACTATE (LOBAPLATIN-D19466) IN INTRAVENOUS SOLUTIONS

    NARCIS (Netherlands)

    GUCHELAAR, HJ; UGES, DRA; AULENBACHER, P; DEVRIES, EGE; MULDER, NH

    The chemical stability of the new anticancer platinum analogue 1,2-diaminomethyl-cyclobutane-platinum(II)-lactate (D19466) in infusion media was studied in an accelerated stability testing experiment with a selective HPLC-UV method. Variables were time, temperature, light, concentration, and

  18. Comparison of Intracellular Stress Response of NCI-H526 Small Cell Lung Cancer (SCLC) Cells to Platinum(II) Cisplatin and Platinum(IV) Oxoplatin

    Energy Technology Data Exchange (ETDEWEB)

    Hamilton, Gerhard [Ludwig Boltzmann Cluster of Translational Oncology, A-1090 Vienna (Austria)

    2014-07-08

    In attempts to develop an orally applicable platinum-based drug, platinum(IV) drugs which exhibit higher in vivo stability compared to the platinum(II) drug cisplatin were formulated. The first such chemotherapeutic agent, namely satraplatin, failed to receive approval. In the present work, we checked the initial cellular stress response of the chemosensitive NCI-H526 small cell lung cancer (SCLC) cells by determination of the relative phosphorylation of 46 specific phosphorylation sites of 38 selected proteins in a six hours response to cisplatin (platinum(II)) or oxoplatin (platinum(IV)), respectively. Oxoplatin is considered as prodrug of cisplatin, although several findings point to differences in intracellular effects. Cisplatin induced hyperphosphorylation of p38α MAPK and AMPKα1, whereas oxoplatin treatment resulted in increased phosphorylation of a large number of signaling proteins involved in stress response/drug resistance, including JNK, GSK-3α, AMPKα1, src kinases, STATs, CHK-2 and especially focal adhesion kinase (FAK). Cisplatin exerts markedly higher cytotoxicity upon four hours short-term exposure in comparison to oxoplatin and, correspondingly, the extended initial stress response to the platinum(IV) drug oxoplatin thus is expected to increase clinical drug resistance. Induction of a substantial stress response to any prodrug of a platinum-based compound may likewise limit the effectivity of its active metabolite(s), such contributing to the failure of selected derivatized platinum complexes.

  19. Comparison of Intracellular Stress Response of NCI-H526 Small Cell Lung Cancer (SCLC Cells to Platinum(II Cisplatin and Platinum(IV Oxoplatin

    Directory of Open Access Journals (Sweden)

    Gerhard Hamilton

    2014-07-01

    Full Text Available In attempts to develop an orally applicable platinum-based drug, platinum(IV drugs which exhibit higher in vivo stability compared to the platinum(II drug cisplatin were formulated. The first such chemotherapeutic agent, namely satraplatin, failed to receive approval. In the present work, we checked the initial cellular stress response of the chemosensitive NCI-H526 small cell lung cancer (SCLC cells by determination of the relative phosphorylation of 46 specific phosphorylation sites of 38 selected proteins in a six hours response to cisplatin (platinum(II or oxoplatin (platinum(IV, respectively. Oxoplatin is considered as prodrug of cisplatin, although several findings point to differences in intracellular effects. Cisplatin induced hyperphosphorylation of p38α MAPK and AMPKα1, whereas oxoplatin treatment resulted in increased phosphorylation of a large number of signaling proteins involved in stress response/drug resistance, including JNK, GSK-3α, AMPKα1, src kinases, STATs, CHK-2 and especially focal adhesion kinase (FAK. Cisplatin exerts markedly higher cytotoxicity upon four hours short-term exposure in comparison to oxoplatin and, correspondingly, the extended initial stress response to the platinum(IV drug oxoplatin thus is expected to increase clinical drug resistance. Induction of a substantial stress response to any prodrug of a platinum-based compound may likewise limit the effectivity of its active metabolite(s, such contributing to the failure of selected derivatized platinum complexes.

  20. Platinum thickness dependence of the inverse spin-Hall voltage from spin pumping in a hybrid yttrium iron garnet/platinum system

    NARCIS (Netherlands)

    Castel, V.; Vlietstra, N.; Ben Youssef, J.; van Wees, B. J.

    2012-01-01

    We show the experimental observation of the platinum thickness dependence in a hybrid yttrium iron garnet/platinum system of the inverse spin-Hall effect from spin pumping, over a large frequency range and for different radio-frequency powers. From the measurement of the voltage at the resonant cond

  1. Dynamics in coarse-grained models for oligomer-grafted silica nanoparticles

    KAUST Repository

    Hong, Bingbing

    2012-01-01

    Coarse-grained models of poly(ethylene oxide) oligomer-grafted nanoparticles are established by matching their structural distribution functions to atomistic simulation data. Coarse-grained force fields for bulk oligomer chains show excellent transferability with respect to chain lengths and temperature, but structure and dynamics of grafted nanoparticle systems exhibit a strong dependence on the core-core interactions. This leads to poor transferability of the core potential to conditions different from the state point at which the potential was optimized. Remarkably, coarse graining of grafted nanoparticles can either accelerate or slowdown the core motions, depending on the length of the grafted chains. This stands in sharp contrast to linear polymer systems, for which coarse graining always accelerates the dynamics. Diffusivity data suggest that the grafting topology is one cause of slower motions of the cores for short-chain oligomer-grafted nanoparticles; an estimation based on transition-state theory shows the coarse-grained core-core potential also has a slowing-down effect on the nanoparticle organic hybrid materials motions; both effects diminish as grafted chains become longer. © 2012 American Institute of Physics.

  2. Synthesis and Electrochromic Properties of Star-Shaped Oligomers with Phenyl Cores.

    Science.gov (United States)

    Zeng, Jinming; Zhang, Xiaoyuan; Zhu, Xiaoting; Liu, Ping

    2017-09-05

    A series of star-shaped conjugated oligomers, 1,3,5-tri(2'-thienyl) benzene (3TB), 1,3,5-tri(3',4'-ethylenedioxythienyl) benzene (3EB), 1,3,5-tri[5',2"-(3",4"-ethylenedioxy-thienyl)-2'-thienyl] benzene (3ETB), and 1,3,5-tri[5',2"-(3",4"-ethylenedioxy-thienyl)-2'-thienyl]-4-(3',4'-ethylenedioxythienyl)benzene (3TB-4EDOT), were synthesized. The star-shaped polymer, poly(1,3,5-tri[5',2"-(3",4"-ethylenedioxythineyl)-2'-thienyl]benzene) (P3ETB), was also prepared. The electrochemical and electrochromic properties of these conjugated oligomers and polymer were investigated. These oligomer and polymer films showed reversible, clear color changes upon electrochemical doping and dedoping. The color of the P3ETB film reversibly changed from orange to blue under doping and dedoping. The switching times for doping and dedoping were 1.2 and 0.9 s, respectively. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. New strategy for stable-isotope-aided, multidimensional NMR spectroscopy of DNA oligomers

    Energy Technology Data Exchange (ETDEWEB)

    Ono, Okira; Tate, Shin-Ichi; Kainosho, Masatsune [Tokyo Metropolitan Univ., Tokyo (Japan)

    1994-12-01

    Nuclear Magnetic Resonance (NMR) is the most efficient method for determining the solution structures of biomolecules. By applying multidimensional heteronuclear NMR techniques to {sup 13}C/{sup 15}N-labeled proteins, we can determine the solution structures of proteins with molecular mass of 20 to 30kDa at an accuracy similar to that of x-ray crystallography. Improvements in NMR instrumentation and techniques as well as the development of protein engineering methods for labeling proteins have rapidly advanced multidimensional heteronuclear NMR of proteins. In contrast, multidimensional heteronuclear NMR studies of nucleic acids is less advanced because there were no efficient methods for preparing large amounts of labeled DNA/RNA oligomers. In this report, we focused on the chemical synthesis of DNA oligomers labeled at specific residue(s). RNA oligomers with specific labels, which are difficult to synthesize by the enzyme method, can be synthesized by the chemical method. The specific labels are useful for conformational analysis of larger molecules such as protein-nucleic acid complexes.

  4. Directing the oligomer size distribution of peroxidase-mediated cross-linked bovine alpha-lactalbumin.

    Science.gov (United States)

    Heijnis, Walter H; Wierenga, Peter A; van Berkel, Willem J H; Gruppen, Harry

    2010-05-12

    Enzymatic protein cross-linking is a powerful tool to change protein functionality. For optimal functionality in gel formation, the size of the cross-linked proteins needs to be controlled, prior to heating. In the current study, we addressed the optimization of the horseradish peroxidase-mediated cross-linking of calcium-depleted bovine alpha-lactalbumin. To characterize the formed products, the molecular weight distribution of the cross-linked protein was determined by size exclusion chromatography. At low ionic strength, more dimers of alpha-lactalbumin are formed than at high ionic strength, while the same conversion of monomers is observed. Similarly, at pH 5.9 more higher oligomers are formed than at pH 6.8. This is proposed to be caused by local changes in apo alpha-lactalbumin conformation as indicated by circular dichroism spectroscopy. A gradual supply of hydrogen peroxide improves the yield of cross-linked products and increases the proportion of higher oligomers. In conclusion, this study shows that the size distribution of peroxidase-mediated cross-linked alpha-lactalbumin can be directed toward the protein oligomers desired.

  5. NMR studies of DNA oligomers and their interactions with minor groove binding ligands

    Energy Technology Data Exchange (ETDEWEB)

    Fagan, Patricia A. [Univ. of California, Berkeley, CA (United States). Dept. of Chemistry

    1996-05-01

    The cationic peptide ligands distamycin and netropsin bind noncovalently to the minor groove of DNA. The binding site, orientation, stoichiometry, and qualitative affinity of distamycin binding to several short DNA oligomers were investigated by NMR spectroscopy. The oligomers studied contain A,T-rich or I,C-rich binding sites, where I = 2-desaminodeoxyguanosine. I•C base pairs are functional analogs of A•T base pairs in the minor groove. The different behaviors exhibited by distamycin and netropsin binding to various DNA sequences suggested that these ligands are sensitive probes of DNA structure. For sites of five or more base pairs, distamycin can form 1:1 or 2:1 ligand:DNA complexes. Cooperativity in distamycin binding is low in sites such as AAAAA which has narrow minor grooves, and is higher in sites with wider minor grooves such as ATATAT. The distamycin binding and base pair opening lifetimes of I,C-containing DNA oligomers suggest that the I,C minor groove is structurally different from the A,T minor groove. Molecules which direct chemistry to a specific DNA sequence could be used as antiviral compounds, diagnostic probes, or molecular biology tools. The author studied two ligands in which reactive groups were tethered to a distamycin to increase the sequence specificity of the reactive agent.

  6. Aβ40 oligomers identified as a potential biomarker for the diagnosis of Alzheimer's disease.

    Directory of Open Access Journals (Sweden)

    Carol Man Gao

    Full Text Available Alzheimer's Disease (AD is the most prevalent form of dementia worldwide, yet the development of therapeutics has been hampered by the absence of suitable biomarkers to diagnose the disease in its early stages prior to the formation of amyloid plaques and the occurrence of irreversible neuronal damage. Since oligomeric Aβ species have been implicated in the pathophysiology of AD, we reasoned that they may correlate with the onset of disease. As such, we have developed a novel misfolded protein assay for the detection of soluble oligomers composed of Aβ x-40 and x-42 peptide (hereafter Aβ40 and Aβ42 from cerebrospinal fluid (CSF. Preliminary validation of this assay with 36 clinical samples demonstrated the presence of aggregated Aβ40 in the CSF of AD patients. Together with measurements of total Aβ42, diagnostic sensitivity and specificity greater than 95% and 90%, respectively, were achieved. Although larger sample populations will be needed to confirm this diagnostic sensitivity, our studies demonstrate a sensitive method of detecting circulating Aβ40 oligomers from AD CSF and suggest that these oligomers could be a powerful new biomarker for the early detection of AD.

  7. Tumor delivery of antisense oligomer using trastuzumab within a streptavidin nanoparticle

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yi [University of Massachusetts Medical School, Division of Nuclear Medicine, Department of Radiology, Worcester, MA (United States); Yale University, Yale PET Center, Department of Diagnostic Radiology, New Haven, CT (United States); Liu, Xinrong; Chen, Ling; Cheng, Dengfeng; Rusckowski, Mary [University of Massachusetts Medical School, Division of Nuclear Medicine, Department of Radiology, Worcester, MA (United States); Hnatowich, Donald J. [University of Massachusetts Medical School, Division of Nuclear Medicine, Department of Radiology, Worcester, MA (United States); Umass Medical School, Department of Radiology, Worcester, MA (United States)

    2009-12-15

    Trastuzumab (Herceptin trademark) is often internalized following binding to Her2+ tumor cells. The objective of this study was to investigate whether trastuzumab can be used as a specific carrier to deliver antisense oligomers into Her2+ tumor cells both in vitro and in vivo. A biotinylated MORF oligomer antisense to RhoC mRNA and its biotinylated sense control were labeled with either lissamine for fluorescence detection or {sup 99m}Tc for radioactivity detection and were linked to biotinylated trastuzumab via streptavidin. The nanoparticles were studied in SUM190 (RhoC+, Her2+) study and SUM149 (RhoC+, Her2-) control cells in culture and as xenografts in mice. As evidence of unimpaired Her2+ binding of trastuzumab within the nanoparticle, accumulations were clearly higher in SUM190 compared to SUM149 cells and, by whole-body imaging, targeting of SUM190 tumor was similar to that expected for a radiolabeled trastuzumab. As evidence of internalization, fluorescence microscopy images of cells grown in culture and obtained from xenografts showed uniform cytoplasm distribution of the lissamine-MORF. An invasion assay showed decreased RhoC expression in SUM190 cells when incubated with the antisense MORF nanoparticles at only 100 nM. Both in cell culture and in animals, the nanoparticle with trastuzumab as specific carrier greatly improved tumor delivery of the antisense oligomer against RhoC mRNA into tumor cells overexpressing Her2 and may be of general utility. (orig.)

  8. Lysosomal Enzyme Glucocerebrosidase Protects against Aβ1-42 Oligomer-Induced Neurotoxicity

    Science.gov (United States)

    Kam, Tae-In; Yun, Seungpil; Kim, Sangjune; Park, Hyejin; Hwang, Heehong; Pletnikova, Olga; Troncoso, Juan C.; Dawson, Valina L.; Dawson, Ted M.; Ko, Han Seok

    2015-01-01

    Glucocerebrosidase (GCase) functions as a lysosomal enzyme and its mutations are known to be related to many neurodegenerative diseases, including Gaucher’s disease (GD), Parkinson’s disease (PD), and Dementia with Lewy Bodies (DLB). However, there is little information about the role of GCase in the pathogenesis of Alzheimer’s disease (AD). Here we demonstrate that GCase protein levels and enzyme activity are significantly decreased in sporadic AD. Moreover, Aβ1–42 oligomer treatment results in neuronal cell death that is concomitant with decreased GCase protein levels and enzyme activity, as well as impairment in lysosomal biogenesis and acidification. Importantly, overexpression of GCase promotes the lysosomal degradation of Aβ1–42 oligomers, restores the lysosomal impairment, and protects against the toxicity in neurons treated with Aβ1–42 oligomers. Our findings indicate that a deficiency of GCase could be involved in progression of AD pathology and suggest that augmentation of GCase activity may be a potential therapeutic option for the treatment of AD. PMID:26629917

  9. Lysosomal Enzyme Glucocerebrosidase Protects against Aβ1-42 Oligomer-Induced Neurotoxicity.

    Directory of Open Access Journals (Sweden)

    Seulah Choi

    Full Text Available Glucocerebrosidase (GCase functions as a lysosomal enzyme and its mutations are known to be related to many neurodegenerative diseases, including Gaucher's disease (GD, Parkinson's disease (PD, and Dementia with Lewy Bodies (DLB. However, there is little information about the role of GCase in the pathogenesis of Alzheimer's disease (AD. Here we demonstrate that GCase protein levels and enzyme activity are significantly decreased in sporadic AD. Moreover, Aβ1-42 oligomer treatment results in neuronal cell death that is concomitant with decreased GCase protein levels and enzyme activity, as well as impairment in lysosomal biogenesis and acidification. Importantly, overexpression of GCase promotes the lysosomal degradation of Aβ1-42 oligomers, restores the lysosomal impairment, and protects against the toxicity in neurons treated with Aβ1-42 oligomers. Our findings indicate that a deficiency of GCase could be involved in progression of AD pathology and suggest that augmentation of GCase activity may be a potential therapeutic option for the treatment of AD.

  10. Oligomers of Heat-Shock Proteins: Structures That Don't Imply Function.

    Directory of Open Access Journals (Sweden)

    William M Jacobs

    2016-02-01

    Full Text Available Most proteins must remain soluble in the cytosol in order to perform their biological functions. To protect against undesired protein aggregation, living cells maintain a population of molecular chaperones that ensure the solubility of the proteome. Here we report simulations of a lattice model of interacting proteins to understand how low concentrations of passive molecular chaperones, such as small heat-shock proteins, suppress thermodynamic instabilities in protein solutions. Given fixed concentrations of chaperones and client proteins, the solubility of the proteome can be increased by tuning the chaperone-client binding strength. Surprisingly, we find that the binding strength that optimizes solubility while preventing irreversible chaperone binding also promotes the formation of weakly bound chaperone oligomers, although the presence of these oligomers does not significantly affect the thermodynamic stability of the solution. Such oligomers are commonly observed in experiments on small heat-shock proteins, but their connection to the biological function of these chaperones has remained unclear. Our simulations suggest that this clustering may not have any essential biological function, but rather emerges as a natural side-effect of optimizing the thermodynamic stability of the proteome.

  11. Structural Properties of HIV Integrase. Lens Epithelium-derived Growth Factor Oligomers

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, K.; Diamond, T; Hwang, Y; Bushman, F; Van Duyne, G

    2010-01-01

    Integrase (IN) is the catalytic component of the preintegration complex, a large nucleoprotein assembly critical for the integration of the retroviral genome into a host chromosome. Although partial crystal structures of human immunodeficiency virus IN alone and its complex with the integrase binding domain of the host factor PSIP1/lens epithelium-derived growth factor (LEDGF)/p75 are available, many questions remain regarding the properties and structures of LEDGF-bound IN oligomers. Using analytical ultracentrifugation, multiangle light scattering, and small angle x-ray scattering, we have established the oligomeric state, stoichiometry, and molecular shapes of IN {center_dot} LEDGF complexes in solution. Analyses of intact IN tetramers bound to two different LEDGF truncations allow for placement of the integrase binding domain by difference analysis. Modeling of the small angle x-ray scattering envelopes using existing structural data suggests domain arrangements in the IN oligomers that support and extend existing biochemical data for IN {center_dot} LEDGF complexes and lend new insights into the quaternary structure of LEDGF-bound IN tetramers. These IN oligomers may be involved in stages of the viral life cycle other than integration, including assembly, budding, and early replication.

  12. Synaptic Amyloid-β Oligomers Precede p-Tau and Differentiate High Pathology Control Cases

    Science.gov (United States)

    Bilousova, Tina; Miller, Carol A.; Poon, Wayne W.; Vinters, Harry V.; Corrada, Maria; Kawas, Claudia; Hayden, Eric Y.; Teplow, David B.; Glabe, Charles; Albay, Ricardo; Cole, Gregory M.; Teng, Edmond; Gylys, Karen H.

    2017-01-01

    Amyloid-β (Aβ) and hyperphosphorylated tau (p-tau) aggregates form the two discrete pathologies of Alzheimer disease (AD), and oligomeric assemblies of each protein are localized to synapses. To determine the sequence by which pathology appears in synapses, Aβ and p-tau were quantified across AD disease stages in parietal cortex. Nondemented cases with high levels of AD-related pathology were included to determine factors that confer protection from clinical symptoms. Flow cytometric analysis of synaptosome preparations was used to quantify Aβ and p-tau in large populations of individual synaptic terminals. Soluble Aβ oligomers were assayed by a single antibody sandwich enzyme-linked immunosorbent assay. Total in situ Aβ was elevated in patients with early- and late-stage AD dementia, but not in high pathology nondemented controls compared with age-matched normal controls. However, soluble Aβ oligomers were highest in early AD synapses, and this assay distinguished early AD cases from high pathology controls. Overall, synapse-associated p-tau did not increase until late-stage disease in human and transgenic rat cortex, and p-tau was elevated in individual Aβ-positive synaptosomes in early AD. These results suggest that soluble oligomers in surviving neocortical synaptic terminals are associated with dementia onset and suggest an amyloid cascade hypothesis in which oligomeric Aβ drives phosphorylated tau accumulation and synaptic spread. These results indicate that antiamyloid therapies will be less effective once p-tau pathology is developed. PMID:26718979

  13. KARAKTERISASI ENZIM KITOSANASE DAR] ISOLAT BAKTERI KPU 2123 DAN APLIKASINYA UNTUK PRODUKS1 OLIGOMER KITOSAN

    Directory of Open Access Journals (Sweden)

    Yusro Nuri Fawzya

    2009-06-01

    Full Text Available Penelitian ini merupakan sebagian dari rangkaian penelitian mengenai eksplorasi enzim kitinolitik dari mikroba lingkungan laut, khususnya dari limbah udang. Tujuan penelitian ini adalah untuk mengidentifikasi isolat bakteri KPU 2123 dari limbah udang, mengkarakterisasi dan mengaplikasikan enzim kitosanase yang dihasilkan oleh bakteri tersebut untuk produksi oligomer kitosan dan menguji bioaktivitas oligomer kitosan tersebut sebagai antitumor dan antibakteri. Karakterisasi enzim dilakukan dengan menguji aktivitas enzim pada berbagai suhu dan pH. Selain itu juga ditentukan besarnya aktivitas yang tersisa setelah enzim diinkubasi pada suhu dan lama waktu tertentu. Pengaruh ion logam terhadap aktivitas enzim juga dilihat dengan mereaksikan enzim dengan 1 mM ion logam dalam bentuk larutan khlorida. Hasil penelitian menunjukkan bahwa berdasarkan analisis gen 16S-rRNA, isolat bakteri KPU 2123 memiliki kemiripan 95% dengan Stanotrophomonas maltophilia. Enzim kitosanase dari isolat ini bekerja optimal pada suhu 50 ºC dan pH 6. Enzim ini cukup stabil pada suhu 37 ºC selama 120 menit. Penambahan ion logam berpengaruh terhadap aktivitas enzim. Ion logam Zn²+ (sebagai garam klorida 1 mM menghambat 100% aktivitas enzim tersebut. Penggunaan enzim kitosanase dalam menghidrolisis substrat kitosan, menghasilkan oligomer kitosan yang mengandung tetramer, pentamer dan heksamer Oligor kitosan tersebut mampu menghambat pertumbuhan bakteri Staphylococcus aureus sebesar 10,06% dan dapat menyebabkan kematian sel HeLa dengan LC50 pada dosis 120 ppm.

  14. Oligomers Modulate Interfibril Branching and Mass Transport Properties of Collagen Matrices

    Science.gov (United States)

    Whittington, Catherine F.; Brandner, Eric; Teo, Ka Yaw; Han, Bumsoo; Nauman, Eric; Voytik-Harbin, Sherry L.

    2013-01-01

    Mass transport within collagen-based matrices is critical to tissue development, repair, and pathogenesis as well as the design of next generation tissue engineering strategies. This work shows how collagen precursors, specified by intermolecular cross-link composition, provide independent control of collagen matrix mechanical and transport properties. Collagen matrices were prepared from tissue-extracted monomers or oligomers. Viscoelastic behavior was measured in oscillatory shear and unconfined compression. Matrix permeability and diffusivity were measured using gravity-driven permeametry and integrated optical imaging, respectively. Both collagen types showed an increase in stiffness and permeability hindrance with increasing collagen concentration (fibril density); however, different physical property-concentration relationships were noted. Diffusivity wasn’t affected by concentration for either collagen type over the range tested. In general, oligomer matrices exhibited a substantial increase in stiffness and only a modest decrease in transport properties when compared to monomer matrices prepared at the same concentration. The observed differences in viscoelastic and transport properties were largely attributed to increased levels of interfibril branching within oligomer matrices. The ability to relate physical properties to relevant microstructure parameters, including fibril density and interfibril branching, is expected to advance the understanding of cell-matrix signaling as well as facilitate model-based prediction and design of matrix-based therapeutic strategies. PMID:23842082

  15. Aβ1-42 monomers or oligomers have different effects on autophagy and apoptosis.

    Science.gov (United States)

    Guglielmotto, Michela; Monteleone, Debora; Piras, Antonio; Valsecchi, Valeria; Tropiano, Marta; Ariano, Stefania; Fornaro, Michele; Vercelli, Alessandro; Puyal, Julien; Arancio, Ottavio; Tabaton, Massimo; Tamagno, Elena

    2014-10-01

    The role of autophagy and its relationship with apoptosis in Alzheimer disease (AD) pathogenesis is poorly understood. Disruption of autophagy leads to buildup of incompletely digested substrates, amyloid-β (Aβ) peptide accumulation in vacuoles and cell death. Aβ, in turn, has been found to affect autophagy. Thus, Aβ might be part of a loop in which it is both the substrate of altered autophagy and its cause. Given the relevance of different soluble forms of Aβ1-42 in AD, we have investigated whether monomers and oligomers of the peptide have a differential role in causing altered autophagy and cell death. Using differentiated SK-N-BE neuroblastoma cells, we found that monomers hamper the formation of the autophagic BCL2-BECN1/Beclin 1 complex and activate the MAPK8/JNK1-MAPK9/JNK2 pathway phosphorylating BCL2. Monomers also inhibit apoptosis and allow autophagy with intracellular accumulation of autophagosomes and elevation of levels of BECN1 and LC3-II, resulting in an inhibition of substrate degradation due to an inhibitory action on lysosomal activity. Oligomers, in turn, favor the formation of the BCL2-BECN1 complex favoring apoptosis. In addition, they cause a less profound increase in BECN1 and LC3-II levels than monomers without affecting the autophagic flux. Thus, data presented in this work show a link for autophagy and apoptosis with monomers and oligomers, respectively. These studies are likely to help the design of novel disease modifying therapies.

  16. Rapid α-oligomer formation mediated by the Aβ C terminus initiates an amyloid assembly pathway

    Science.gov (United States)

    Misra, Pinaki; Kodali, Ravindra; Chemuru, Saketh; Kar, Karunakar; Wetzel, Ronald

    2016-01-01

    Since early oligomeric intermediates in amyloid assembly are often transient and difficult to distinguish, characterize and quantify, the mechanistic basis of the initiation of spontaneous amyloid growth is often opaque. We describe here an approach to the analysis of the Aβ aggregation mechanism that uses Aβ-polyglutamine hybrid peptides designed to retard amyloid maturation and an adjusted thioflavin intensity scale that reveals structural features of aggregation intermediates. The results support an aggregation initiation mechanism for Aβ-polyQ hybrids, and by extension for full-length Aβ peptides, in which a modular Aβ C-terminal segment mediates rapid, non-nucleated formation of α-helical oligomers. The resulting high local concentration of tethered amyloidogenic segments within these α-oligomers facilitates transition to a β-oligomer population that, via further remodelling and/or elongation steps, ultimately generates mature amyloid. Consistent with this mechanism, an engineered Aβ C-terminal fragment delays aggregation onset by Aβ-polyglutamine peptides and redirects assembly of Aβ42 fibrils. PMID:27546208

  17. Some aspects of nanomodification of mineral dispersions by oligomers based on trifunctional oxyphenyl

    Directory of Open Access Journals (Sweden)

    : Shapovalov Nikolay Afanasyevich

    2016-12-01

    Full Text Available te size of the dispersion phase and other colloid-chemical characteristics of suspensions used in the building industry are determined by the peculiarities of the boundary layer structure. The authors have identified the adsorption parameters of resole oligomers synthesized on the base of trifunctionl oxyphenyls on the following adsorbents: CaCO3, ZnO. The most potential adsorption pattern of phloroglucinefurfural nanomodificator molecules on the surface of chalk particles have been suggested in the work. It has been stated that the molecules of oxyphenyl oligomers are adsorbed on the surface of disperse material particles forming monomolecular layer. The adsorption on the particles surface is provided by the ionic interaction of negative oxy groups of the phloroglicine unit or resocine with positively charged active centers of dispersion phase surface and dispersion forces of interaction between the system of oligomer aromatic rings and particles surface. It has been proved that the injection of optimal dose of phloroglucinefurfural nanomodificator into the chalk and zink oxide suspensions decreases the number average radius of nanomodified particles to the size of initial particles of the dispersions under study – from 7 to 1 mcm for chalk and from 5 mcm to 50 nm for zink oxide. It demonstrates the peptizing effect of the nanomodificator.

  18. Recent Advances in Platinum (IV) Complex-Based Delivery Systems to Improve Platinum (II) Anticancer Therapy.

    Science.gov (United States)

    Han, Xiaopeng; Sun, Jin; Wang, Yongjun; He, Zhonggui

    2015-11-01

    Cisplatin and its platinum (Pt) (II) derivatives play a key role in the fight against various human cancers such as testicular, ovarian, head and neck, lung tumors. However, their application in clinic is limited due to dose- dependent toxicities and acquired drug resistances, which have prompted extensive research effort toward the development of more effective Pt (II) delivery strategies. The synthesis of Pt (IV) complex is one such an area of intense research fields, which involves their in vivo conversion into active Pt (II) molecules under the reducing intracellular environment, and has demonstrated encouraging preclinical and clinical outcomes. Compared with Pt (II) complexes, Pt (IV) complexes not only exhibit an increased stability and reduced side effects, but also facilitate the intravenous-to-oral switch in cancer chemotherapy. The overview briefly analyzes statuses of Pt (II) complex that are in clinical use, and then focuses on the development of Pt (IV) complexes. Finally, recent advances in Pt (IV) complexes in combination with nanocarriers are highlighted, addressing the shortcomings of Pt (IV) complexes, such as their instability in blood and irreversibly binding to plasma proteins and nonspecific distribution, and taking advantage of passive and active targeting effect to improve Pt (II) anticancer therapy. © 2015 Wiley Periodicals, Inc.

  19. TP53 status and taxane-platinum versus platinum-based therapy in ovarian cancer patients: A non-randomized retrospective study

    Directory of Open Access Journals (Sweden)

    Markowska Janina

    2008-01-01

    Full Text Available Abstract Background Taxane-platinum therapy (TP has replaced platinum-based therapy (PC or PAC, DNA damaging chemotherapy in the postoperative treatment of ovarian cancer patients; however, it is not always effective. TP53 protein plays a differential role in response to DNA-damaging agents and taxanes. We sought to define profiles of patients who benefit the most from TP and also of those who can be treated with PC. Methods We compared the effectiveness of PC/PAC (n = 253 and TP (n = 199 with respect to tumor TP53 accumulation in ovarian cancer patients with FIGO stage IIB-IV disease; this was a non-randomized retrospective study. Immunohistochemical analysis was performed on 452 archival tumors; univariate and multivariate analysis by the Cox's and logistic regression models was performed in all patients and in subgroups with [TP53(+] and without TP53 accumulation [TP53(-]. Results The advantage of taxane-platinum therapy over platinum-based therapy was seen in the TP53(+, and not in the TP53(- group. In the TP53(+ group taxane-platinum therapy enhanced the probability of complete remission (p = .018, platinum sensitivity (p = .014, platinum highly sensitive response (p = .038 and longer survival (OS, p = .008. Poor tumor differentiation diminished the advantage from taxane-platinum therapy in the TP53(+ group. In the TP53(- group PC/PAC was at least equally efficient as taxane-platinum therapy and it enhanced the chance of platinum highly sensitive response (p = .010. However, in the TP53(- group taxane-platinum therapy possibly diminished the risk of death in patients over 53 yrs (p = .077. Among factors that positively interacted with taxane-platinum therapy in some analyses were endometrioid and clear cell type, FIGO III stage, bulky residual tumor, more advanced age of patient and moderate tumor differentiation. Conclusion Our results suggest that taxane-platinum therapy is particularly justified in patients with TP53(+ tumors or older

  20. Platinum recycling going green via induced surface potential alteration enabling fast and efficient dissolution

    Science.gov (United States)

    Hodnik, Nejc; Baldizzone, Claudio; Polymeros, George; Geiger, Simon; Grote, Jan-Philipp; Cherevko, Serhiy; Mingers, Andrea; Zeradjanin, Aleksandar; Mayrhofer, Karl J. J.

    2016-01-01

    The recycling of precious metals, for example, platinum, is an essential aspect of sustainability for the modern industry and energy sectors. However, due to its resistance to corrosion, platinum-leaching techniques rely on high reagent consumption and hazardous processes, for example, boiling aqua regia; a mixture of concentrated nitric and hydrochloric acid. Here we demonstrate that complete dissolution of metallic platinum can be achieved by induced surface potential alteration, an ‘electrode-less' process utilizing alternatively oxidative and reductive gases. This concept for platinum recycling exploits the so-called transient dissolution mechanism, triggered by a repetitive change in platinum surface oxidation state, without using any external electric current or electrodes. The effective performance in non-toxic low-concentrated acid and at room temperature is a strong benefit of this approach, potentially rendering recycling of industrial catalysts, including but not limited to platinum-based systems, more sustainable. PMID:27767178

  1. Platinum recycling going green via induced surface potential alteration enabling fast and efficient dissolution

    Science.gov (United States)

    Hodnik, Nejc; Baldizzone, Claudio; Polymeros, George; Geiger, Simon; Grote, Jan-Philipp; Cherevko, Serhiy; Mingers, Andrea; Zeradjanin, Aleksandar; Mayrhofer, Karl J. J.

    2016-10-01

    The recycling of precious metals, for example, platinum, is an essential aspect of sustainability for the modern industry and energy sectors. However, due to its resistance to corrosion, platinum-leaching techniques rely on high reagent consumption and hazardous processes, for example, boiling aqua regia; a mixture of concentrated nitric and hydrochloric acid. Here we demonstrate that complete dissolution of metallic platinum can be achieved by induced surface potential alteration, an `electrode-less' process utilizing alternatively oxidative and reductive gases. This concept for platinum recycling exploits the so-called transient dissolution mechanism, triggered by a repetitive change in platinum surface oxidation state, without using any external electric current or electrodes. The effective performance in non-toxic low-concentrated acid and at room temperature is a strong benefit of this approach, potentially rendering recycling of industrial catalysts, including but not limited to platinum-based systems, more sustainable.

  2. Tuning the activity of platinum(IV) anticancer complexes through asymmetric acylation.

    Science.gov (United States)

    Chin, Chee Fei; Tian, Quan; Setyawati, Magdiel Inggrid; Fang, Wanru; Tan, Emelyn Sue Qing; Leong, David Tai; Ang, Wee Han

    2012-09-13

    Platinum(II) anticancer drug cisplatin is one of the most important chemotherapeutic agents in clinical use but is limited by its high toxicity and severe side effects. Platinum(IV) anticancer prodrugs can overcome these limitations by resisting premature aquation and binding to essential plasma proteins. Structure-activity relationship studies revealed a link between the efficacy of platinum(IV) complexes with the nature of their axial ligands, which can be modified to enhance the properties of the prodrug. The existing paradigm of employing platinum(IV) complexes with symmetrical axial carboxylate ligands does not fully exploit their vast potential. A new approach was conceived to control properties of platinum(IV) prodrugs using contrasting axial ligands via sequential acylation. We report a novel class of asymmetric platinum(IV) carboxylates based on the cisplatin template containing both hydrophilic and lipophilic ligands on the same scaffold designed to improve their aqueous properties and enhance their efficacy against cancer cells in vitro.

  3. Platinum overlayers on Co(0001) and Ni(111): numerical simulation of surface alloying

    Science.gov (United States)

    Légaré, P.; Cabeza, G. F.; Castellani, N. J.

    1999-11-01

    The surface alloying of one and two monolayers (ML) of platinum deposited on Ni(111) and Co(0001) were studied by means of the ECT-BFS method. The 1 ML deposit appears to be very stable on both substrates. Platinum can diffuse at high temperature only, the large activation barrier being represented by the first substrate layer. On the contrary, the stability of the 2 ML deposit is poor so that alloying is easily obtained. In both cases, the platinum diffusion produces metastable states. The lowest-energy states exhibit a propensity for platinum dilution in a limited region below the surface. The initial platinum thickness determines not only the features of the alloyed region, but also the surface concentration. The surface alloys have features qualitatively similar to those reported for the (111) surface of bulk Pt-Ni and Pt-Co alloys: a platinum-rich surface and oscillating concentration profiles.

  4. Morphology of Platinum Nanowire Array Electrodeposited Within Anodic Aluminium Oxide Template Characterized by Atomic Force Microscopy

    Institute of Scientific and Technical Information of China (English)

    孔令斌; 陆梅; 李梦轲; 郭新勇; 力虎林

    2003-01-01

    Uniform platinum nanowires were synthesized by electrodepositing the platinum under a very low altering current frequency (20Hz) and increasing voltage (5-15 V) in the pores of anodic aluminium oxide (AAO) template.Atomic force microscopy observation indicates that the template membranes we obtained have hexagonally closepacked nanochannels. The platinum nanowires have highly ordered arrays after partially dissolving the aluminium oxide membrane. With the increasing dissolving time, the platinum nanowire array collapsed. A concave topography of the aluminium substrate was observed after the aluminium oxide membrane was dissolved completely and the platinum nanowires were released from the template. Platinum nanowires were also characterized by transmission electron microscopy and the phase structure of the Al/AAO/Pt composite was proven by x-ray diffraction.

  5. Platinum Migration at the Pt/YSZ Interface

    DEFF Research Database (Denmark)

    Nielsen, Jimmi; Jacobsen, Torben

    2006-01-01

    by potential sweep, step and impedance techniques. As expected, inductive behaviour and activation during step polarization is confirmed, but furthermore, a very accentuated noise pattern is seen during cathodic step polarization. Investigation of the YSZ and Pt surfaces afterwards reveals the growth......Electrode activation, inductive hysteresis and non-linearity are well known phenomena on Pt-YSZ electrodes, and recently also regular fluctuation patterns have been reported. The oxygen electrode on YSZ surfaces is studied at Pt micro-electrodes prepared by electrochemical etching of platinum wire...... of dendrite like Pt structures from the TPB. The formation of these may explain the observed noise and contribute to the explanation of the activation mechanism taking place at the platinum-YSZ interface....

  6. Nanostructured gold and platinum electrodes on silicon structures for biosensing

    Science.gov (United States)

    Ogurtsov, V. I.; Sheehan, M. M.

    2005-01-01

    Gold and platinum metal electrodes on Si/SiO2 having undergone anisotropic potassium hydroxide (KOH) etch treatment are considered. This treatment etches at different rates and directions in the material resulting in creation of numerous pyramid shaped holes in the silicon substrate. This surface is used to make metal electrodes with increased electrode efficiency. The electrodes can serve as the sensors or as the sensor substrates (for surface polymer modification) and because both gold and platinum are inert they have applications for food safety biosensing. Wine, an economically significant food product, was chosen as a matrix, and impedance spectroscopy (EIS) was selected as a method of investigation of electrode behaviour. Based on results of EIS, different complexity equivalent circuits were determined by applying fitting mean square root optimisation of sensor complex impedance measurements.

  7. Hollow platinum alloy tailored counter electrodes for photovoltaic applications

    Science.gov (United States)

    Li, Pinjiang; Zhang, Yange; Fa, Wenjun; Yang, Xiaogang; Wang, Liang

    2017-08-01

    Without sacrifice of photovoltaic performances, low-platinum alloy counter electrodes (CEs) are promising in bringing down the fabrication cost of dye-sensitized solar cells (DSSCs). We present here the realization of ZnO nanostructure assisted hollow platinum-nickel (PtNi) alloy microstructure CEs with a simple hydrothermal methods and maximization of electrocatalytic behaviors by tuning Zn precursors. The maximal power conversion efficiency is up to 8.74% for the liquid-junction dye-sensitized solar cells with alloyed PtNi0.41 electrode, yielding a 37.6% cell efficiency enhancement in comparison with pristine solar cell from planar Pt electrode. Moreover, the dissolution-resistant and charge-transfer abilities toward I-/I3- redox electrolyte have also been markedly enhanced due to competitive dissolution reactions and alloying effects.

  8. The extractive metallurgy of south africa's platinum ores

    Science.gov (United States)

    Cramer, Larry A.

    2001-10-01

    The extraction technology for platinum-group metals (PGMs) has changed dramatically in the last 80 years, and the changes are likely to continue for years to come. This article will review advances in PGM extraction, including developments in semi-autogenous and fully autogenous milling; flotation equipment applications for treating high-chrome ores; increases in power densities for future smelting furnaces, and new methods for meeting rising environmental standards.

  9. Phase I trials of WR-2721 and cis-platinum

    Energy Technology Data Exchange (ETDEWEB)

    Glover, D.; Glick, J.H.; Weiler, C.; Yuhas, J.; Kligerman, M.M.

    1984-09-01

    WR-2721 is a sulfhydryl compound which in the animal model improves renal tolerance to cis-platinum (DDP) by factors of 1.3 to 1.7. Phase I trials were initiated to establish the toxicity and dose modification factor when WR-2721 was given prior to escalating doses of DDP. Nineteen patients received 27 courses of WR-2721 (450-910 mg/m/sup 2/) 20 minutes prior to DDP (50-120 mg/m/sup 2/). Mild, transient nephrotoxicity was observed in only 2 of 15 courses of DDP 80-100 mg/m/sup 2/ when WR-2721 was given prior to DDP. Although 5 of 9 patients treated with WR-2721 prior to 120 mg/m/sup 2/ of DDP developed transient nephrotoxicity, their serum creatinines returned to normal baseline values within 1 to 2 weeks. Thirty-four courses of WR-2721 (740 mg/m/sup 2/) prior to DDP 120-150 mg/m/sup 2/ with mannitol diuresis were administered. Biweekly serum creatinine and monthly creatinine clearances have remained normal in all patients treated with 120 mg/m/sup 2/ of platinum and WR-2721. Four of 10 patients treated with 150 mg/m/sup 2/ of cis-platinum experienced transient nephrotoxicity 5-7 days after treatment. Mild ototoxicity was noted in 4 patients following 150 mg/m/sup 2/ of DDP. WR-2721 does not appear to protect against the antitumor efficacy of DDP. Compared to retrospective series, our data suggest that WR-2721 may provide some protection against platinum-induced nephrotoxicity, but the dose modification factors remain to be established.

  10. Experimental Studies on Thermal and Electrical Properties of Platinum Nanofilms

    Institute of Scientific and Technical Information of China (English)

    ZHANG Xing; ZHANG Qing-Guang; CAO Bing-Yang; FUJII Motoo; TAKAHASHI Koji; IKUTA Tatsuya

    2006-01-01

    @@ We experimentally studied the in-plane thermal and electrical properties of a suspended platinum nanofilm in thickness of 15 nm. The measured results show that the in-plane thermal conductivity, the electrical conductivity and the resistance-temperature coefficient of the studied nanofilm are much less than those of the bulk material,while the Lorenz number is greater than the bulk value.

  11. Stabilization of 200-atom platinum nanoparticles by organosilane fragments

    KAUST Repository

    Pelzer, Katrin

    2011-04-19

    Three\\'s a charm: Platinum nanoparticles of 2 nm diameter and containing approximately 200 atoms covered with n-octylsilyl groups (see picture, right; Pt blue, Si red, C gray, H turquoise) form when [Pt(dba)2] (dba=dibenzylideneacetone) decomposes in the presence of n-octylsilane. The particles adopt a cuboctahedral structure with an edge length of three atoms. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Treatment of pulmonary arteriovenous malformation using platinum coils: case report

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Man Deuk; Kim, Jeung Sook; Lim, Chang Young [College of Medicine, Pochon CHA University, Pochon (China)

    2005-07-15

    Pulmonary arteriovenous malformation (PAVM) is an abnormal direct communication between the pulmonary arteries and veins without any capillary network. The patients may be completely asymptomatic or may they develop serious complications including hemoptysis and brain abscess. We present here a case of incidentally found PAVM in a 33-year-old male who underwent embolization using platinum coils. Coil embolization is a safe, highly effective procedure that should be considered more often for the treatment of PAVM.

  13. Platinum(II) complexes as spectroscopic probes for biomolecules

    Energy Technology Data Exchange (ETDEWEB)

    Ratilla, E.

    1990-09-21

    The use of platinum(II) complexes as tags and probes for biomolecules is indeed advantageous for their reactivities can be selective for certain purposes through an interplay of mild reaction conditions and of the ligands bound to the platinum. The use of {sup 195}Pt NMR as a method of detecting platinum and its interactions with biomolecules was carried out with the simplest model of platinum(II) tagging to proteins. Variable-temperature {sup 195}Pt NMR spectroscopy proved useful in studying the stereodynamics of complex thioethers like methionine. The complex, Pt(trpy)Cl{sup +}, with its chromophore has a greater potential for probing proteins. It is a noninvasive and selective tag for histidine and cysteine residues on the surface of cytochrome c at pH 5. The protein derivatives obtained are separable, and the tags are easily quantitated and differentiated through the metal-to-ligand charge transfer bands which are sensitive to the environment of the tag. Increasing the pH to 7.0 led to the modification by Pt(trpy)Cl{sup +}of Arg 91 in cytochrome c. Further studies with guanidine-containing ligands as models for arginine modification by Pt(trpy)Cl{sup +} showed that guanidine can act as a terminal ligand and as a bridging ligand. Owing to the potential utility of Pt(trpy)L{sup n+} as electron dense probes of nucleic acid structure, interactions of this bis-Pt(trpy){sup 2+} complex with nucleic acids was evaluated. Indeed, the complex interacts non-covalently with nucleic acids. Its interactions with DNA are not exactly the same as those of its precedents. Most striking is its ability to form highly immobile bands of DNA upon gel electrophoresis. 232 refs.

  14. Modification of platinum surfaces by spontaneous deposition: Methanol oxidation electrocatalysis

    Energy Technology Data Exchange (ETDEWEB)

    MacDonald, J.P.; Gualtieri, B.; Runga, N.; Teliz, E.; Zinola, C.F. [Fundamental Electrochemistry Laboratory, School of Sciences, Universidad de la Republica, Igua Street No. 4225, CP 11400, Montevideo (Uruguay)

    2008-12-15

    The presence of a second metal on platinum surfaces affects the performance of methanol oxidation. However, most of the electrocatalytic reactions are studied by using electrochemically deposited platinum alloys, but in the case of spontaneous deposition the situation is not so clear since the surface distribution, stability and morphology are usually not well documented. The formation of surface decorated samples on mono- and poly-crystalline platinum is followed by electrochemical and spectroscopic techniques and analysis of their performance towards methanol adsorption and oxidation compared with that on pure platinum. Pt/Sn and Pt/Ru are of special interest because of their well-known performance in methanol fuel cells. Methanol oxidation on Pt(111)/Ru, Pt(111)/Sn and Pt(111) shows that ruthenium is the only one able to promote the reaction since the simultaneous dissolution of tin occurs and competes with the process of interest. The in situ infrared spectroscopy is used to compare methanol oxidation on Pt(111)/Ru and Pt(111) in acid media using p-polarized light. The formation of bridge bound carbon monoxide is inhibited in the presence of ruthenium ad-species, whereas on Pt(111) the three adsorption configurations are observed. Linear sweep polarization curves and Tafel slopes (calculated from steady state potentiostatic plots) for methanol oxidation are compared on polycrystalline surfaces modified by tin or ruthenium at different coverages. There is almost no change in the Tafel slopes due to the presence of the foreign metal except for Pt/Ru, where a 0.09 V decade{sup -1} slope was calculated below 0.55 V due to hydroxyl adsorbates on ruthenium islands. The anodic stripping of methanol residues on the three surfaces indicates a lower amount of carbon monoxide-type adsorbates on Pt/Ru, and the simultaneous tin dissolution process leading to residues oxidation on Pt/Sn electrodes. (author)

  15. Mechanistic basis for overcoming platinum resistance using copper chelating agents.

    Science.gov (United States)

    Liang, Zheng D; Long, Yan; Tsai, Wen-Bin; Fu, Siqing; Kurzrock, Razelle; Gagea-Iurascu, Mihai; Zhang, Fan; Chen, Helen H W; Hennessy, Bryan T; Mills, Gordon B; Savaraj, Niramol; Kuo, Macus Tien

    2012-11-01

    Platinum-based antitumor agents are widely used in cancer chemotherapy. Drug resistance is a major obstacle to the successful use of these agents because once drug resistance develops, other effective treatment options are limited. Recently, we conducted a clinical trial using a copper-lowering agent to overcome platinum drug resistance in ovarian cancer patients and the preliminary results are encouraging. In supporting this clinical study, using three pairs of cisplatin (cDDP)-resistant cell lines and two ovarian cancer cell lines derived from patients who had failed in platinum-based chemotherapy, we showed that cDDP resistance associated with reduced expression of the high-affinity copper transporter (hCtr1), which is also a cDDP transporter, can be preferentially resensitized by copper-lowering agents because of enhanced hCtr1 expression, as compared with their drug-sensitive counterparts. Such a preferential induction of hCtr1 expression in cDDP-resistant variants by copper chelation can be explained by the mammalian copper homeostasis regulatory mechanism. Enhanced cell-killing efficacy by a copper-lowering agent was also observed in animal xenografts bearing cDDP-resistant cells. Finally, by analyzing a public gene expression dataset, we found that ovarian cancer patients with elevated levels of hCtr1 in their tumors, but not ATP7A and ATP7B, had more favorable outcomes after platinum drug treatment than those expressing low hCtr1 levels. This study reveals the mechanistic basis for using copper chelation to overcome cDDP resistance in clinical investigations.

  16. Characterisation of carbon nanotubes decorated with platinum nanoparticles

    OpenAIRE

    M. Pawlyta; D. Łukowiec; A.D. Dobrzańska-Danikiewicz

    2012-01-01

    Purpose: In presented work results of synthesis of carbon nanotubes decorated with platinum nanoparticles by organic colloidal process as an example of direct formation of nanoparticles onto CNTs are reported.Design/methodology/approach: Powder XRD and transmission electron microscopy were used for characterisation of the morphology of composite as well as the distribution of nanocrystals on the CNTs surfaces.Findings: TEM results confirm that CNT were homogeneous and clean, without any admix...

  17. A Single Platinum Microelectrode for Identifying Soft Drink Samples

    OpenAIRE

    Lígia Bueno; Thiago R. L. C. Paixão

    2012-01-01

    Cyclic voltammograms recorded with a single platinum microelectrode were used along with a non-supervised pattern recognition, namely, Principal Component Analysis, to conduct a qualitative analysis of sixteen different brands of carbonated soft drinks (Kuat, Soda Antarctica, H2OH!, Sprite 2.0, Guarana Antarctica, Guarana Antarctica Zero, Coca-Cola, Coca-Cola Zero, Coca-Cola Plus, Pepsi, Pepsi Light, Pepsi Twist, Pepsi Twist Light, Pepsi Twist 3, Schin Cola, and Classic Dillar’s). In this ana...

  18. Determination of Platinum Metals in Carbonaceous Mineral Raw Materials by Stripping Voltammetry

    OpenAIRE

    Kolpakova, Nina Alexandrovna; Oskina, Yuliya Aleksandrovna; Dyachenko, Elena Nikolaevna; Pshenichkin, Anatoliy Yakovlevich

    2015-01-01

    The paper considers the possibility of determining platinum metals in mineral raw materials by stripping voltammetry on a graphite electrode modified by metals. Stripping voltammetry method is characterized by low determination limit, wide intervals of determined content and high sensitivity. As a result of the research the conditions for the determination of gold, platinum and palladium by stripping voltammetry have been selected. The comparison of the results of gold, palladium and platinum...

  19. Lowering the resistivity of polyacrylate ion-selective membranes by platinum nanoparticles addition.

    Science.gov (United States)

    Jaworska, Ewa; Kisiel, Anna; Maksymiuk, Krzysztof; Michalska, Agata

    2011-01-01

    The effect of platinum nanoparticles introduction into polyacrylate membranes was examined. Platinum nanoparticles were added to the membrane cocktail before photopolymerization of the poly(n-butyl acrylate) based ion-selective membranes. Thus obtained sensors were characterized with significantly lowered electrical resistance and increased stability of potential readings compared to classical poly(n-butyl acrylate) membranes. The analytical parameters of platinum nanoparticle containing membranes were well comparable with those of classical membranes.

  20. Elaboration and Properties of Nanocomposite Structures Based on Crown Modified Platinum Nanoparticles

    Institute of Scientific and Technical Information of China (English)

    H.Perez; S.Cavaliere-jaricot; P-A.Albouy; A.Etcheberry

    2007-01-01

    1 Results This paper presents the development of platinum nanocomposites structures based on organically modified c.a.2 nm core platinum nanoparticles.The chemical modification of the 4-mercaptoaniline functionalized particles by various in coming molecules is evidenced and precisely quantified.The particles can be dissolved like molecules in various solvents depending on the features of the new crown and X-rays shows that the interparticle distance is affected by the crown modification.These platinum n...

  1. Platinum-induced structural collapse in layered oxide polycrystalline films

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jianlin; Liu, Changhui [CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026 (China); Huang, Haoliang [CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026 (China); Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026 (China); Fu, Zhengping; Peng, Ranran, E-mail: pengrr@ustc.edu.cn, E-mail: yllu@ustc.edu.cn [CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026 (China); Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026 (China); Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026 (China); Zhai, Xiaofang [Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026 (China); Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026 (China); Lu, Yalin, E-mail: pengrr@ustc.edu.cn, E-mail: yllu@ustc.edu.cn [CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026 (China); Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026 (China); Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026 (China); Laser and Optics Research Center, Department of Physics, United States Air Force Academy, Colorado 80840 (United States)

    2015-03-30

    Effect of a platinum bottom electrode on the SrBi{sub 5}Fe{sub 1−x}Co{sub x}Ti{sub 4}O{sub 18} layered oxide polycrystalline films was systematically studied. The doped cobalt ions react with the platinum to form a secondary phase of PtCoO{sub 2}, which has a typical Delafossite structure with a weak antiferromagnetism and an exceptionally high in-plane electrical conductivity. Formation of PtCoO{sub 2} at the interface partially consumes the cobalt dopant and leads to the structural collapsing from 5 to 4 layers, which was confirmed by X-ray diffraction and high resolution transmission electron microscopy measurements. Considering the weak magnetic contribution from PtCoO{sub 2}, the observed ferromagnetism should be intrinsic of the Aurivillius compounds. Ferroelectric properties were also indicated by the piezoresponse force microscopy. In this work, the platinum induced secondary phase at the interface was observed, which has a strong impact on Aurivillius structural configuration and thus the ferromagnetic and ferroelectric properties.

  2. Organo-platinum complexes as antitumor agents (review).

    Science.gov (United States)

    Hill, J M; Speer, R J

    1982-01-01

    Rosenberg et al discovered in the coordination complexes of platinum a new, novel type of potential antitumor agent. Cisplatin [cis-dichlorodiammine platinum (II)4 proved active against a variety of rodent tumors and acted synergistically when combined with other chemotherapeutic agents. Initial clinical tests by Hill et al in 1971, showed cisplatin to be active against malignant lymphoma, Hodgkin's disease, and certain other malignancies. Significant nephrotoxicity, nausea, and vomiting were noted. Since then, cisplatin has been tested alone and in combination chemotherapy and has proven an efficacious anticancer agent in squamous cell carcinoma of head and neck, ovarian carcinoma, disseminated testicular cancer, and others. Its therapeutic value was acknowledged when approved in 1978 by the U.S. FDA for treatment of the latter cancer. The current clinical literature indicates clearly that the full potential of this drug has not yet been realized. Hydration and diuresis have served to mitigate much of the nephrotoxicity, while significant strides toward amelioration of the nausea and vomiting have also been achieved. Literally, thousands of chemically-related congeners have been synthesized, and many have shown marked potency against rodent tumors. Very few, however, have been evaluated clinically, vis-a-vis malonato trans(-)-1,2-diaminocyclohexane platinum(II); this appears a most promising and fertile area of future investigation.

  3. Upper eyelid platinum chain placement for treating paralytic lagophthalmos.

    Science.gov (United States)

    Bianchi, B; Ferri, A; Leporati, M; Ferrari, S; Lanfranco, D; Ferri, T; Sesenna, E

    2014-12-01

    For the definitive treatment of lagophthalmos and satisfactory rehabilitation of the affected eye, different surgical strategies have been proposed, including static or dynamic procedures. Although some of these can have good results, lid loading is now the most common technique for treating paralytic long-term lagophthalmos. Among the different types of loading, the use of a platinum chain is preferred to the use of a standard gold weight because platinum has a higher density than gold and is also more biocompatible. In this paper authors retrospectively analyzed 43 patients with regards to functional and cosmetic results. Questionnaires were also employed to assess changes and improvements in the patients' quality of life. Analysis of the excellent results achieved confirmed that platinum chain lid loading should be considered as a first-line treatment for paralytic lagophthalmos rehabilitation. It is a simple, reliable, and effective technique that significantly improves the health-related quality of life of patients. Copyright © 2014 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.

  4. First platinum moderated positron beam based on neutron capture

    CERN Document Server

    Hugenschmidt, C; Repper, R; Schreckenbach, K; Sperr, P; Triftshaeuser, W

    2002-01-01

    A positron beam based on absorption of high energy prompt gamma-rays from thermal neutron capture in sup 1 sup 1 sup 3 Cd was installed at a neutron guide of the high flux reactor at the ILL in Grenoble. Measurements were performed for various source geometries, dependent on converter mass, moderator surface and extraction voltages. The results lead to an optimised design of the in-pile positron source which will be implemented at the Munich research reactor FRM-II. The positron source consists of platinum foils acting as gamma-e sup + e sup - -converter and positron moderator. Due to the negative positron work function moderation in heated platinum leads to emission of monoenergetic positrons. The positron work function of polycrystalline platinum was determined to 1.95(5) eV. After acceleration to several keV by four electrical lenses the beam was magnetically guided in a solenoid field of 7.5 mT leading to a NaI-detector in order to detect the 511 keV gamma-radiation of the annihilating positrons. The posi...

  5. Optoelectronic method for determining platinum in biological products

    Science.gov (United States)

    Radu, Simona; Ionicǎ, Mihai; Macovei, Radu Alexandru; Caragea, Genica; Forje, Mǎrgǎrita; Grecu, Iulia; Vlǎdescu, Marian; Viscol, Oana

    2016-12-01

    Of all platinum metals, platinum has the most uses and it's the most abundant and most easily to be processed. Its use in auto catalysts results in environmental contamination of crowded cities and high-traffic roads. In medicine, Pt is used as a cytostatic drug. In order to study the degree of contamination of the population with Pt or the correctness of treatment with Pt, it has been developed a method for its determination from urine or blood samples with a system Graphite Furnance - Atomic Absorption Spectrometer, (GF-AAS) Varian. There are presented the methods of sampling processing for blood or urine that followed the digest of the organic matrix. In the determination of the operating parameters for the system GF-AAS, was aimed the reducing of the nonanatomic absorbance by optimizing the drying temperatures, the calcination and atomization temperatures and the removal of the nonanatomic absorbance with D2 lamp. As a result of the use of the method are presented the concentrations of Pt in the blood or urine of a group of patients in Bucharest, a city with heavy traffic of vehicles. GF-AAS method presented is sensitive, reproducible, and relatively easy to apply with an acceptable cost. With this method, the concentration of Pt can be determined from blood and urine, both in order to establish the degree of contamination with Pt and for monitoring cancer therapy with platinum compounds.

  6. Porous platinum-based catalysts for oxygen reduction

    Science.gov (United States)

    Erlebacher, Jonah D; Snyder, Joshua D

    2014-11-25

    A porous metal that comprises platinum and has a specific surface area that is greater than 5 m.sup.2/g and less than 75 m.sup.2/g. A fuel cell includes a first electrode, a second electrode spaced apart from the first electrode, and an electrolyte arranged between the first and the second electrodes. At least one of the first and second electrodes is coated with a porous metal catalyst for oxygen reduction, and the porous metal catalyst comprises platinum and has a specific surface area that is greater than 5 m.sup.2/g and less than 75 m.sup.2/g. A method of producing a porous metal according to an embodiment of the current invention includes producing an alloy consisting essentially of platinum and nickel according to the formula Pt.sub.xNi.sub.1-x, where x is at least 0.01 and less than 0.3; and dealloying the alloy in a substantially pH neutral solution to reduce an amount of nickel in the alloy to produce the porous metal.

  7. In vitro permeation of platinum through African and Caucasian skin.

    Science.gov (United States)

    Franken, A; Eloff, F C; du Plessis, J; Badenhorst, C J; Du Plessis, J L

    2015-02-03

    The majority of the South African workforce are Africans, therefore potential racial differences should be considered in risk and exposure assessments in the workplace. Literature suggests African skin to be a superior barrier against permeation and irritants. Previous in vitro studies on metals only included skin from Caucasian donors, whereas this study compared the permeation of platinum through African and Caucasian skin. A donor solution of 0.3 mg/ml of potassium tetrachloroplatinate (K₂PtCl₄) dissolved in synthetic sweat was applied to the vertical Franz diffusion cells with full thickness abdominal skin. Skin from three female African and three female Caucasian donors were included (n=21). The receptor solution was removed at various intervals during the 24 h experiment, and analysed with high resolution inductively coupled plasma-mass spectrometry (ICP-MS). Skin was digested and analysed by inductively coupled plasma-optical emission spectrometry (ICP-OES). Significantly higher permeation of platinum through intact African skin (p=0.044), as well as a significantly higher mass of platinum retention in African skin in comparison with Caucasian skin (p=0.002) occurred. Significant inter-donor variation was found in both racial groups (pplatinum salts. These results are contradictory to limited literature suggesting a superior barrier in African skin and further investigation is necessary to explain the higher permeation through African skin.

  8. A Single Platinum Microelectrode for Identifying Soft Drink Samples

    Directory of Open Access Journals (Sweden)

    Lígia Bueno

    2012-01-01

    Full Text Available Cyclic voltammograms recorded with a single platinum microelectrode were used along with a non-supervised pattern recognition, namely, Principal Component Analysis, to conduct a qualitative analysis of sixteen different brands of carbonated soft drinks (Kuat, Soda Antarctica, H2OH!, Sprite 2.0, Guarana Antarctica, Guarana Antarctica Zero, Coca-Cola, Coca-Cola Zero, Coca-Cola Plus, Pepsi, Pepsi Light, Pepsi Twist, Pepsi Twist Light, Pepsi Twist 3, Schin Cola, and Classic Dillar’s. In this analysis, soft drink samples were not subjected to pre-treatment. Good differentiation among all the analysed soft drinks was achieved using the voltammetric data. An analysis of the loading plots shows that the potentials of −0.65 V, −0.4 V, 0.4 V, and 0.750 V facilitated the discrimination process. The electrochemical processes related to this potential are the reduction of hydrogen ions and inhibition of the platinum oxidation by the caffeine adsorption on the electrode surface. Additionally, the single platinum microelectrode was useful for the quality control of the soft drink samples, as it helped to identify the time at which the beverage was opened.

  9. Application of liposomal technologies for delivery of platinum analogs in oncology.

    Science.gov (United States)

    Liu, Demin; He, Chunbai; Wang, Andrew Z; Lin, Wenbin

    2013-01-01

    Platinum-based chemotherapy, such as cisplatin, oxaliplatin, and carboplatin, is one of the most widely utilized classes of cancer therapeutics. While highly effective, the clinical applications of platinum-based drugs are limited by their toxicity profiles as well as suboptimal pharmacokinetic properties. Therefore, one of the key research areas in oncology has been to develop novel platinum analog drugs and engineer new platinum drug formulations to improve the therapeutic ratio further. Such efforts have led to the development of platinum analogs including nedaplatin, heptaplatin, and lobaplatin. Moreover, reformulating platinum drugs using liposomes has resulted in the development of L-NDPP (Aroplatin™), SPI-77, Lipoplatin™, Lipoxal™, and LiPlaCis®. Liposomes possess several attractive biological activities, including biocompatibility, high drug loading, and improved pharmacokinetics, that are well suited for platinum drug delivery. In this review, we discuss the various platinum drugs and their delivery using liposome-based drug delivery vehicles. We compare and contrast the different liposome platforms as well as speculate on the future of platinum drug delivery research.

  10. Effect of the Platinum Electroplated Layer Thickness on the Coatings' Microstructure

    Science.gov (United States)

    Zagula-Yavorska, Maryana; Gancarczyk, Kamil; Sieniawski, Jan

    2017-03-01

    CMSX 4 and Inconel 625 superalloys were coated by platinum layers (3 and 7 μm thick) in the electroplating process. The heat treatment of platinum layers (at 1,050 ˚C for 2 h) was performed to increase platinum adherence to the superalloys substrate. The diffusion zone obtained on CMSX 4 superalloy (3 and 7 μm platinum thick before heat treatment) consisted of two phases: γ-Ni(Al, Cr) and (Al0.25Pt0.75)Ni3. The diffusion zone obtained on Inconel 625 superalloy (3 μm platinum thick before heat treatment) consisted of the α-Pt(Ni, Cr, Al) phase. Moreover, γ-Ni(Cr, Al) phase was identified. The X-ray diffraction (XRD) results revealed the presence of platinum in the diffusion zone of the heat-treated coating (7 μm platinum thick) on Inconel 625 superalloy. The surface roughness parameter Ra of heat-treated coatings increased with the increase of platinum layers thickness. This was due to the unequal mass flow of platinum and nickel.

  11. Influence of Surface Structure of Platinum Electrodes on Electrooxidation of CO

    Institute of Scientific and Technical Information of China (English)

    XIA Xing-hua; ZHANG Dai; SONG Yan-yan

    2003-01-01

    The oxidation of CO on platinum electrodes in an acid solution was studied with the conventional electrochemical methods and the on-line electrochemical mass spectroscopy. It was found that this reaction is strongly determined by the surface morphology of platinum. The pretreatment of platinum electrodes can change the surface properties dramatically, in consequence it can improve the electrocatalytic activity towards the electrooxidation of CO. The existence of surface active sites on the roughened platinum electrodes can be used to explain its high electrocatalysis towards the oxidation of CO.

  12. Dialkyl bisphosphonate platinum(II) complex as a potential drug for metastatic bone tumor.

    Science.gov (United States)

    Nakatake, Hidetoshi; Ekimoto, Hisao; Aso, Mariko; Ogawa, Atsushi; Yamaguchi, Asami; Suemune, Hiroshi

    2011-01-01

    Bisphosphonates have high affinity for hydroxyapatite (HA), which is abundantly present in bone. Also, platinum complexes are known that have a wide spectrum of antitumor activities. The conjugate of bisphosphonate and a platinum complex might have HA affinity and antitumor activity, and become a drug for metastatic bone tumor. In this study, the authors synthesized platinum complexes that had dialkyl bisphosphonic acid as a ligand, and evaluated the possibility of the synthesized complexes as a drug for metastatic bone tumor. The synthesized dialkyl bisphosphonate platinum(II) complex was characterized, and its stability in an aqueous solution was also confirmed. The synthesized platinum complex showed higher HA affinity than other platinum complexes such as cisplatin and carboplatin in an experiment of adsorption to HA. In vitro, the platinum complex showed tumor growth inhibitory effect stronger than or equal to cisplatin, which is the most commonly used antitumor agent. Moreover, the platinum complex showed a bone absorption inhibitory effect on the osteoclast. These results suggest potential of dialkyl bisphosphonate platinum(II) complexes as a drug for metastatic bone tumor.

  13. Application of liposomal technologies for delivery of platinum analogs in oncology

    Science.gov (United States)

    Liu, Demin; He, Chunbai; Wang, Andrew Z; Lin, Wenbin

    2013-01-01

    Platinum-based chemotherapy, such as cisplatin, oxaliplatin, and carboplatin, is one of the most widely utilized classes of cancer therapeutics. While highly effective, the clinical applications of platinum-based drugs are limited by their toxicity profiles as well as suboptimal pharmacokinetic properties. Therefore, one of the key research areas in oncology has been to develop novel platinum analog drugs and engineer new platinum drug formulations to improve the therapeutic ratio further. Such efforts have led to the development of platinum analogs including nedaplatin, heptaplatin, and lobaplatin. Moreover, reformulating platinum drugs using liposomes has resulted in the development of L-NDPP (Aroplatin™), SPI-77, Lipoplatin™, Lipoxal™, and LiPlaCis®. Liposomes possess several attractive biological activities, including biocompatibility, high drug loading, and improved pharmacokinetics, that are well suited for platinum drug delivery. In this review, we discuss the various platinum drugs and their delivery using liposome-based drug delivery vehicles. We compare and contrast the different liposome platforms as well as speculate on the future of platinum drug delivery research. PMID:24023517

  14. Fabrication of platinum coated nanoporous gold film electrode: A nanostructured ultra low-platinum loading electrocatalyst for hydrogen evolution reaction

    Energy Technology Data Exchange (ETDEWEB)

    Kiani, Abolfazl; Hatami, Somayeh [Department of Chemistry, Faculty of Science, University of Isfahan, Isfahan (Iran)

    2010-06-15

    The electrolytic hydrogen evolution reaction (HER) on platinum coated nanoporous gold film (PtNPGF) electrode is demonstrated. The deposition of platinum occurred as a spontaneous redox process in which a copper layer, obtained by underpotential deposition, was oxidized by platinum ions, which were reduced and simultaneously deposited. The present method could provide a very low Pt-loading electrode and the results demonstrated that ultra thin Pt coating effected efficiently and behaved as the nanostructured Pt for electrocatalytic hydrogen evolution reaction. The loading of Pt was calculated as 4.2 x 10{sup -3} {mu}g cm{sup -2} for PtNPGF electrode. The current density at -0.4 V and -0.8 V vs. Ag/AgCl was as high as 0.66 A {mu}g{sup -1} Pt and 3 A {mu}g{sup -1} Pt, respectively and the j{sub 0} was evaluated as 0.03 mA cm{sup -2} or 8 mA {mu}g{sup -1} Pt. The results indicated that increasing electrode area had no catalytic effect, but the nanostructure nature of as-fabricated electrode and submonolayer deposition of copper resulted in electrocatalytic activity for PtNPGF electrode. (author)

  15. Mechanisms leading to oligomers and SOA through aqueous photooxidation: insights from OH radical oxidation of acetic acid and methylglyoxal

    Directory of Open Access Journals (Sweden)

    Y. Tan

    2012-01-01

    Full Text Available Previous experiments have demonstrated that the aqueous OH radical oxidation of methylglyoxal produces low volatility products including pyruvate, oxalate and oligomers. These products are found predominantly in the particle phase in the atmosphere, suggesting that methylglyoxal is a precursor of secondary organic aerosol (SOA. Acetic acid plays a central role in the aqueous oxidation of methylglyoxal and it is a ubiquitous product of gas phase photochemistry, making it a potential "aqueous" SOA precursor in its own right. However, the fate of acetic acid upon aqueous-phase oxidation is not well understood. In this research, acetic acid (20 μM–10 mM was oxidized by OH radicals, and pyruvic acid and methylglyoxal experimental samples were analyzed using new analytical methods, in order to better understand the formation of SOA from acetic acid and methylglyoxal. Glyoxylic, glycolic, and oxalic acids formed from acetic acid and OH radicals. In contrast to the aqueous OH radical oxidation of methylglyoxal, the aqueous OH radical oxidation of acetic acid did not produce succinic acid and oligomers. This suggests that the methylgloxal-derived oligomers do not form through the acid catalyzed esterification pathway proposed previously. Using results from these experiments, radical mechanisms responsible for oligomer formation from methylglyoxal oxidation in clouds and wet aerosols are proposed. The importance of acetic acid/acetate as an SOA precursor is also discussed. We hypothesize that this and similar chemistry is central to the daytime formation of oligomers in wet aerosols.

  16. The load of amyloid-β oligomers is decreased in the cerebrospinal fluid of Alzheimer's disease patients.

    Science.gov (United States)

    Sancesario, Giulia M; Cencioni, Maria T; Esposito, Zaira; Borsellino, Giovanna; Nuccetelli, Marzia; Martorana, Alessandro; Battistini, Luca; Sorge, Roberto; Spalletta, Gianfranco; Ferrazzoli, Davide; Bernardi, Giorgio; Bernardini, Sergio; Sancesario, Giuseppe

    2012-01-01

    Amyloid-β (Aβ) oligomers are heterogeneous and instable compounds of variable molecular weight. Flow cytometry and fluorescence resonance energy transfer (FRET)-based methods allow the simultaneous detection of Aβ oligomers with low and high molecular weight in their native form. We evaluated whether an estimate of different species of Aβ oligomers in the cerebrospinal fluid (CSF) with or without dilution with RIPA buffer could be more useful in the diagnosis of Alzheimer's disease (AD) than the measurement of Aβ42 monomers, total tau (t-tau), and phosphorylated tau (p-tau). Increased t-tau (p tau (p tau was lower in AD than in OD (p estimate of low and high molecular weight Aβ oligomers is as useful as the other biomarkers in the diagnosis of AD. The low amount of Aβ oligomers detected in native CSF of AD may be inversely related to their levels in the brain, as occurs for Aβ monomers, representing a biomarker for the amyloid pathogenic cascade.

  17. Selective amyloid β oligomer assay based on abasic site-containing molecular beacon and enzyme-free amplification.

    Science.gov (United States)

    Zhu, Linling; Zhang, Junying; Wang, Fengyang; Wang, Ya; Lu, Linlin; Feng, Chongchong; Xu, Zhiai; Zhang, Wen

    2016-04-15

    Amyloid-beta (Aβ) oligomers are highly toxic species in the process of Aβ aggregation and are regarded as potent therapeutic targets and diagnostic markers for Alzheimer's disease (AD). Herein, a label-free molecular beacon (MB) system integrated with enzyme-free amplification strategy was developed for simple and highly selective assay of Aβ oligomers. The MB system was constructed with abasic site (AP site)-containing stem-loop DNA and a fluorescent ligand 2-amino-5,6,7-trimethyl-1,8-naphyridine (ATMND), of which the fluorescence was quenched upon binding to the AP site in DNA stem. Enzyme-free amplification was realized by target-triggered continuous opening of two delicately designed MBs (MB1 and MB2). Target DNA hybridization with MB1 and then MB2 resulted in the release of two ATMND molecules in one binding event. Subsequent target recycling could greatly amplify the detection sensitivity due to the greatly enhanced turn-on emission of ATMND fluorescence. Combining with Aβ oligomers aptamers, the strategy was applied to analyze Aβ oligomers and the results showed that it could quantify Aβ oligomers with high selectivity and monitor the Aβ aggregation process. This novel method may be conducive to improve the diagnosis and pathogenic study of Alzheimer's disease.

  18. Isolation and Quantification of Polyamide Cyclic Oligomers in Kitchen Utensils and Their Migration into Various Food Simulants.

    Science.gov (United States)

    Abe, Yutaka; Mutsuga, Motoh; Ohno, Hiroyuki; Kawamura, Yoko; Akiyama, Hiroshi

    2016-01-01

    Small amounts of cyclic monomers and oligomers are present in polyamide (PA)-based kitchen utensils. In this study, we isolated eight PA-based cyclic monomers and oligomers from kitchen utensils made from PA6 (a polymer of ε-caprolactam) and PA66 (a polymer of 1,6-diaminohexane and adipic acid). Their structures were identified using high-resolution mass spectrometry and 1H- and 13C-nuclear magnetic resonance spectroscopy, and their residual levels in PA-based kitchen utensils and degree of migration into food simulants were quantified by high-performance liquid chromatography/mass spectrometry using purchased PA6 monomer and isolated PA66 monomers, and isolated PA6 and PA66 oligomers as calibration standards. Their total residual levels among 23 PA-based kitchen utensils made from PA6, PA66, and copolymers of PA6 and PA66 (PA6/66) ranged from 7.8 to 20 mg/g. Using water, 20% ethanol, and olive oil as food simulants, the total migration levels of the PA monomers and oligomers ranged from 0.66 to 100 μg/cm2 under most examined conditions. However, the total migration levels of the PA66 monomer and oligomers from PA66 and PA6/66 kitchen utensils into 20% ethanol at 95°C were very high (1,700 and 2,200 μg/cm2, respectively) due to swelling by high-temperature ethanol.

  19. Elution of platinum from carboplatin-impregnated calcium sulfate hemihydrate beads in vitro.

    Science.gov (United States)

    Tulipan, Rachel J; Phillips, Heidi; Garrett, Laura D; Dirikolu, Levent; Mitchell, Mark A

    2016-11-01

    OBJECTIVE To characterize the elution of platinum from carboplatin-impregnated calcium sulfate hemihydrate (CSH) beads in vitro. SAMPLE 60 carboplatin-impregnated CSH beads and 9 CSH beads without added carboplatin (controls). PROCEDURES Carboplatin-impregnated CSH beads (each containing 4.6 mg of carboplatin [2.4 mg of platinum]) were placed into separate 10-mL plastic tubes containing 5 mL of PBSS in groups of 1, 3, 6, or 10; 3 control beads were placed into a single tube of PBSS at the same volume. Experiments were conducted in triplicate at 37°C and a pH of 7.4 with constant agitation. Eluent samples were collected at 1, 2, 3, 6, 12, 24, and 72 hours. Samples were analyzed for platinum content by inductively coupled plasma-mass spectrometry. RESULTS The mean concentration of platinum released per carboplatin-impregnated bead over 72 hours was 445.3 mg/L. Cumulative concentrations of platinum eluted increased as the number of beads per tube increased. There was a significant difference in platinum concentrations over time, with values increasing over the first 12 hours and then declining for all tubes. There was also a significant difference in percentage of total incorporated platinum released into tubes with different numbers of beads: the percentage of eluted platinum was higher in tubes containing 1 or 3 beads than in those containing 6 or 10 beads. CONCLUSIONS AND CLINICAL RELEVANCE Carboplatin-impregnated CSH beads eluted platinum over 72 hours. Further studies are needed to determine whether implantation of carboplatin-impregnated CSH beads results in detectable levels of platinum systemically and whether the platinum concentrations eluted locally are toxic to tumor cells.

  20. Trp RNA-binding attenuation protein: modifying symmetry and stability of a circular oligomer.

    Directory of Open Access Journals (Sweden)

    Oliver W Bayfield

    Full Text Available BACKGROUND: Subunit number is amongst the most important structural parameters that determine size, symmetry and geometry of a circular protein oligomer. The L-tryptophan biosynthesis regulator, TRAP, present in several Bacilli, is a good model system for investigating determinants of the oligomeric state. A short segment of C-terminal residues defines whether TRAP forms an 11-mer or 12-mer assembly. To understand which oligomeric state is more stable, we examine the stability of several wild type and mutant TRAP proteins. METHODOLOGY/PRINCIPAL FINDINGS: Among the wild type B. stearothermophilus, B. halodurans and B. subtilis TRAP, we find that the former is the most stable whilst the latter is the least. Thermal stability of all TRAP is shown to increase with L-tryptophan concentration. We also find that mutant TRAP molecules that are truncated at the C-terminus - and hence induced to form 12-mers, distinct from their 11-mer wild type counterparts--have increased melting temperatures. We show that the same effect can be achieved by a point mutation S72N at a subunit interface, which leads to exclusion of C-terminal residues from the interface. Our findings are supported by dye-based scanning fluorimetry, CD spectroscopy, and by crystal structure and mass spectrometry analysis of the B. subtilis S72N TRAP. CONCLUSIONS/SIGNIFICANCE: We conclude that the oligomeric state of a circular protein can be changed by introducing a point mutation at a subunit interface. Exclusion (or deletion of the C-terminus from the subunit interface has a major impact on properties of TRAP oligomers, making them more stable, and we argue that the cause of these changes is the altered oligomeric state. The more stable TRAP oligomers could be used in potential applications of TRAP in bionanotechnology.