WorldWideScience

Sample records for plating soil extracts

  1. Some plant extracts retarde nitrification in soil

    Directory of Open Access Journals (Sweden)

    Abdul–Mehdi S. AL-ANSARI

    2015-12-01

    Full Text Available An incubation experiment was conducted to evaluate the effect of aqueous extracts of 17 plant materials on nitrification inhibition of urea- N in soil as compared with chemical inhibitor Dicyandiamide (DCD. Plant materials used in study were collected from different areas of Basrah province, south of Iraq. Aqueous extracts were prepared at ratio of 1:10 (plant material: water and added at conc. of 0.05, 0.10 and 0.20 ml g– 1 soil to loamy sand soil. DCD was added to soil at rate of 50 µg g-1 soil . Soil received urea at rate of 1000 µg N g-1 soil. Treated soils were incubated at 30 OC for 40 days. Results showed that application of all plant extracts, except those of casuarina, date palm and eucalyptus to soil retarded nitrification in soil. Caper, Sowthistle ,bladygrass and pomegranate extracts showed highest inhibition percentage (51, 42, 40 and 40 %, respectively and were found to be more effective than DCD (33 %. Highest inhibition was achieved by using those extracts at conc. of 0.1 ml g-1 soil after 10 days of incubation . Data also revealed that treated soil with these plant extracts significantly increased amount of NH4+–N and decreased amount of NO3-–N accumulation in soil compared with DCD and control treatments. Results of the study suggested a possibility of using aqueous extracts of some studied plants as potent nitrification inhibitor in soil.

  2. Soil vapor extraction with dewatering

    Energy Technology Data Exchange (ETDEWEB)

    Thomson, N.R. [Univ. of Waterloo, Ontario (Canada)

    1996-08-01

    The physical treatment technology of soil vapor extraction (SVE) is reliable, safe, robust, and able to remove significant amounts of mass at a relatively low cost. SVE combined with a pump-and-treat system to create a dewatered zone has the opportunity to remove more mass with the added cost of treating the extracted groundwater. Various limiting processes result in a significant reduction in the overall mass removal rates from a SVE system in porous media. Only pilot scale, limited duration SVE tests conducted in low permeability media have been reported in the literature. It is expected that the presence of a fracture network in low permeability media will add another complexity to the limiting conditions surrounding the SVE technology. 20 refs., 4 figs.

  3. Plating isolation of various catalase-negative microorganisms from soil

    Science.gov (United States)

    Labeda, D. P.; Hunt, C. M.; Casida, L. E., Jr.

    1974-01-01

    A unique plating procedure was developed that allows isolation, but not enumeration, of representatives of the catalase-negative soil microflora. The numbers recovered, however, are low as compared to the numbers recovered when the modified dilution-to-extinction isolation procedure is used. The latter procedure provides prolonged inoculation in sealed tubes containing a nutritionally rich broth medium over small submerged agar slants. In contrast, the plating procedure utilizes nutritionally minimal media and the shorter incubations mandated by the inherent problems associated with plating.

  4. Plating isolation of various catalase-negative microorganisms from soil

    Science.gov (United States)

    Labeda, D. P.; Hunt, C. M.; Casida, L. E., Jr.

    1974-01-01

    A unique plating procedure was developed that allows isolation, but not enumeration, of representatives of the catalase-negative soil microflora. The numbers recovered, however, are low as compared to the numbers recovered when the modified dilution-to-extinction isolation procedure is used. The latter procedure provides prolonged inoculation in sealed tubes containing a nutritionally rich broth medium over small submerged agar slants. In contrast, the plating procedure utilizes nutritionally minimal media and the shorter incubations mandated by the inherent problems associated with plating.

  5. Extraction Techniques for Polycyclic Aromatic Hydrocarbons in Soils

    Directory of Open Access Journals (Sweden)

    E. V. Lau

    2010-01-01

    Full Text Available This paper aims to provide a review of the analytical extraction techniques for polycyclic aromatic hydrocarbons (PAHs in soils. The extraction technologies described here include Soxhlet extraction, ultrasonic and mechanical agitation, accelerated solvent extraction, supercritical and subcritical fluid extraction, microwave-assisted extraction, solid phase extraction and microextraction, thermal desorption and flash pyrolysis, as well as fluidised-bed extraction. The influencing factors in the extraction of PAHs from soil such as temperature, type of solvent, soil moisture, and other soil characteristics are also discussed. The paper concludes with a review of the models used to describe the kinetics of PAH desorption from soils during solvent extraction.

  6. Soil plate bioassay: an effective method to determine ecotoxicological risks.

    Science.gov (United States)

    Boluda, R; Roca-Pérez, L; Marimón, L

    2011-06-01

    Heavy metals have become one of the most serious anthropogenic stressors for plants and other living organisms. Having efficient and feasible bioassays available to assess the ecotoxicological risks deriving from soil pollution is necessary. This work determines pollution by Cd, Co, Cr, Cu, Ni, Pb, V and Zn in two soils used for growing rice from the Albufera Natural Park in Valencia (Spain). Both were submitted to a different degree of anthropic activity, and their ecotoxicological risk was assessed by four ecotoxicity tests to compare their effectiveness: Microtox test, Zucconi test, pot bioassay (PB) and soil plate bioassay (SPB). The sensitivity of three plant species (barley, cress and lettuce) was also assessed. The results reveal a different degree of effectiveness and level of inhibition in the target organisms' growth depending on the test applied, to such an extent that the one-way analysis of variance showed significant differences only for the plate bioassay results, with considerable inhibition of root and shoot elongation in seedlings. Of the three plant species selected, lettuce was the most sensitive species to toxic effects, followed by cress and barley. Finally, the results also indicate that the SPB is an efficient, simple and economic alternative to other ecotoxicological assays to assess toxicity risks deriving from soil pollution.

  7. A Computational Model of Soil Adhesion and Resistance for a Non-smooth Bulldozing Plate

    Institute of Scientific and Technical Information of China (English)

    Shi Wei-ping; Ren Lu-quan; Tian Li-mei

    2005-01-01

    Adhesive forces exist between soil and the surfaces of soil-engaging components; they increase working resistance and energy consumption. This paper tries to find an approach to reduce the adhesion and resistance of bulldozing plate. A simplified mechanical model of adhesion and resistance between soil and a non-smooth bulldozing plate is proposed. The interaction force between moist soil and a non-smooth bulldozing plate is analyzed. The pressure and friction distribution on the bulldozing plate are computed, and the anti-adhesive effect of a corrugated bulldozing plate is simulated numerically.Numerical results show that the wavy bulldozing plate achieves an effective drag reduction in moist soil. The optimal wavy shape of the corrugated bulldozing plate with the minimal resistance is designed. The basic principle of reducing soil adhesion of the non-smooth surface is discovered.

  8. Electrokinetic extraction of chromate from unsaturated soils

    Energy Technology Data Exchange (ETDEWEB)

    Mattson, E.D. [SAT-UNSAT, Inc., Albuquerque, NM (United States); Lindgren, E.R. [Sandia National Labs., Albuquerque, NM (United States)

    1993-11-01

    Heavy-metal contamination of soil and groundwater is a widespread problem in industrial nations. Remediation by excavation of such sites may not be cost effective or politically acceptable. Electrokinetic remediation is one possible remediation technique for in situ removal of such contaminants from unsaturated soils. Previous papers discussing the work performed by researchers at Sandia National Laboratories (SNL) and Sat-Unsat, Inc. (SUI) (Lindgren et al., 1991, 1992, 1993) focused on the transport of contaminants and dyes by electrokinetics in unsaturated soils. These experiments were conducted with graphite electrodes with no extraction system. As the contaminants migrated through the soil, they increased in concentration at the electrode creating a diffusion flux in the opposite direction. This paper discusses a technique to remove the contaminants from unsaturated soils once they have reached an electrode.

  9. Surface Patterning of Ceramic Phosphor Plate for Light Extraction

    Science.gov (United States)

    Mao, An

    Light-Emitting Diodes (LEDs) are expected to replace traditional lighting sources in the near future due to their energy-efficiency, optical design flexibility and good reliability over traditional lighting sources. III-V nitride blue LEDs with powdered phosphors have been used commercially to get white emission. However, due to scattering losses, thermal issues as well as the surface reactivity with common encapsulants, LEDs fabricated with powdered phosphors have limitations in achieving high luminous efficacy, high chromatic stability and good color-rendering properties. Solid, non-scattering phosphors could avoid many of these limitations, but issues of light extraction and coupling of excitation radiation to the phosphor require development to insure efficient operation. Photonic crystal structures fabricated into or on non-scattering phosphors can be used to address these challenges. In this thesis, a lift-off process with bilayer resist system is developed to create nanopatterns. A photonic crystal structure is fabricated by low cost molecular transfer lithography (MxL) with bi-layer resist system on non-scattering phosphor plate used for white emission to increase the extraction efficiency. In Chapter 1, some basic background concepts which appear frequently in this thesis are introduced. These concepts include the Stokes shift and backscattering phenomenon for powder phosphors as well as non-scattering phosphors. In Chapter 2, a non-scattering single crystal phosphor with a patterned surface is proposed to replace the powdered phosphors used for color converted LEDs. A non-scattering phosphor YAG:Ce ceramic phosphor plate (CPP) patterned with TiO2 photonic crystal structure is selected for convenience to demonstrate the concept. The physical origin of light extraction of the proposed structure is discussed. The simulation principles and results are discussed in this chapter to find the optimized photonic crystal structure for light extraction. In Chapter 3

  10. Mass transfer coeficients in pulsed perforated-plate extraction columns

    Directory of Open Access Journals (Sweden)

    M. Torab-Mostaedi

    2010-06-01

    Full Text Available This study examined the mass transfer performance in a pulsed perforated-plate extraction column with diameter of 50 mm using two different liquid systems. Mass transfer coefficients have been interpreted in terms of the axial diffusion model. The effects of pulsation intensity and dispersed and continuous phase velocities on the mass transfer performance have been investigated. Three different operating regimes, namely mixer-settler, transition, and emulsion regimes, were observed when the input energy was changed. Effective diffusivity is substituted for molecular diffusivity in the Gröber equation for prediction of dispersed phase overall mass transfer coefficients. A single correlation is derived in terms of Reynolds number, Eötvös number and dispersed phase holdup for prediction of the enhancement factor in all operating regimes. The prediction of overall mass transfer coefficients from the presented model is in good agreement with experimental results.

  11. Combination cellulose plate (non-agar solid support) and agar plate method improves isolation of fungi from soil.

    Science.gov (United States)

    Nonaka, Kenichi; Todaka, Nemuri; Ōmura, Satoshi; Masuma, Rokuro

    2014-11-01

    This is the first report describing the improved isolation of common filamentous fungi via a method combining cellulose plate and agar plate system. A cellulose plate is a porous plate made of nanofibrous crystaline cellulose. Isolating fungi from soils using these types of media separately resulted in the number of fungal colonies appearing on cellulose plates being lower than that on agar plates. However, the number of actual fungal species isolated using cellulose plates alone was more or less the same as that found using agar plates. Significantly, the diversity of isolates using a combination of the two media was greater than using each media individually. As a result, numerous new or rare fungal species with potential, including previously proposed new species, were isolated successfully in this way. All fungal colonies, including the Penicillium species, that appeared on the cellulose plate penetrated in potato dextrose were either white or yellow. Cultivation on cellulose plates with added copper ion overcomes the change in coloration, the colonies appearing as they do following cultivation on potato dextrose agar.

  12. Extraction of nerve agent VX from soils.

    Science.gov (United States)

    Montauban, Cécile; Bégos, Arlette; Bellier, Bruno

    2004-05-15

    The development and optimization of a method allowing the extraction of intact organophosphorus chemical warfare agent O-ethyl S-(2-diisopropylaminoethyl) methylphosphonothiolate (VX) from several types of soils are presented here. This involved the selection of an appropriate buffer to bring the sample to a pH close to the pK(a) of VX but sufficiently low to avoid its basic hydrolysis. Buffering with Tris (pH 9) and subsequent extraction of the aqueous layer by a 85:15 (v/v) hexane/dichloromethane mixture allows rapid and sensitive flame photometric detection of VX at spiking levels lower than 10 microg x g(-1), even after 3 months of aging. Extraction yields were close to 60% in complex matrixes. This method also allows recovery and identification of a characteristic degradation product of VX, bis(2-diisopropylaminoethyl) disulfide, which appears to be formed during the aging process. The performance of this method is far better than that of OPCW reference operating procedure, which does not allow extraction of detectable amounts of VX (spiked at 10 microg x g(-1)) in one of the soils used for this study.

  13. Soil metaproteomics – Comparative evaluation of protein extraction protocols

    OpenAIRE

    Keiblinger, Katharina M.; Wilhartitz, Inés C.; Schneider, Thomas; Roschitzki, Bernd; Schmid, Emanuel; Eberl, Leo; Riedel, Kathrin; Zechmeister-Boltenstern, Sophie

    2012-01-01

    Metaproteomics and its potential applications are very promising to study microbial activity in environmental samples and to obtain a deeper understanding of microbial interactions. However, due to the complexity of soil samples the exhaustive extraction of proteins is a major challenge. We compared soil protein extraction protocols in terms of their protein extraction efficiency for two different soil types. Four different protein extraction procedures were applied based on (a) SDS extractio...

  14. Soil metaproteomics - Comparative evaluation of protein extraction protocols.

    Science.gov (United States)

    Keiblinger, Katharina M; Wilhartitz, Inés C; Schneider, Thomas; Roschitzki, Bernd; Schmid, Emanuel; Eberl, Leo; Riedel, Kathrin; Zechmeister-Boltenstern, Sophie

    2012-11-01

    Metaproteomics and its potential applications are very promising to study microbial activity in environmental samples and to obtain a deeper understanding of microbial interactions. However, due to the complexity of soil samples the exhaustive extraction of proteins is a major challenge. We compared soil protein extraction protocols in terms of their protein extraction efficiency for two different soil types. Four different protein extraction procedures were applied based on (a) SDS extraction without phenol, (b) NaOH and subsequent phenol extraction, (c) SDS-phenol extraction and (d) SDS-phenol extraction with prior washing steps. To assess the suitability of these methods for the functional analysis of the soil metaproteome, they were applied to a potting soil high in organic matter and a forest soil. Proteins were analyzed by two-dimensional liquid chromatography/tandem mass spectrometry (2D-LC-MS/MS) and the number of unique spectra as well as the number of assigned proteins for each of the respective protocols was compared. In both soil types, extraction with SDS-phenol (c) resulted in "high" numbers of proteins. Moreover, a spiking experiment was conducted to evaluate protein recovery. To this end sterilized forest soil was amended with proteins from pure cultures of Pectobacterium carotovorum and Aspergillus nidulans. The protein recovery in the spiking experiment was almost 50%. Our study demonstrates that a critical evaluation of the extraction protocol is crucial for the quality of the metaproteomics data, especially in highly complex samples like natural soils.

  15. Successive DNA extractions improve characterization of soil microbial communities

    Directory of Open Access Journals (Sweden)

    Mauricio R. Dimitrov

    2017-02-01

    Full Text Available Currently, characterization of soil microbial communities relies heavily on the use of molecular approaches. Independently of the approach used, soil DNA extraction is a crucial step, and success of downstream procedures will depend on how well DNA extraction was performed. Often, studies describing and comparing soil microbial communities are based on a single DNA extraction, which may not lead to a representative recovery of DNA from all organisms present in the soil. The use of successive DNA extractions might improve soil microbial characterization, but the benefit of this approach has only been limitedly studied. To determine whether successive DNA extractions of the same soil sample would lead to different observations in terms of microbial abundance and community composition, we performed three successive extractions, with two widely used commercial kits, on a range of clay and sandy soils. Successive extractions increased DNA yield considerably (1–374%, as well as total bacterial and fungal abundances in most of the soil samples. Analysis of the 16S and 18S ribosomal RNA genes using 454-pyrosequencing, revealed that microbial community composition (taxonomic groups observed in the successive DNA extractions were similar. However, successive DNA extractions did reveal several additional microbial groups. For some soil samples, shifts in microbial community composition were observed, mainly due to shifts in relative abundance of a number of microbial groups. Our results highlight that performing successive DNA extractions optimize DNA yield, and can lead to a better picture of overall community composition.

  16. Microwave Acid Extraction to Analyze K and Mg Reserves in the Clay Fraction of Soils

    Directory of Open Access Journals (Sweden)

    Araína Hulmann Batista

    Full Text Available ABSTRACT: Extraction of K and Mg with boiling 1 mol L-1 HNO3 in an open system for predicting K and Mg uptake by plants is a method of low reproducibility. The aim of this study was to compare the extraction capacity of different acid methods relative to hydrofluoric acid extraction for K and Mg. A further objective was to develop a chemical extraction method using a closed system (microwave for nonexchangeable and structural forms of these nutrients in order to replace the traditional method of extraction with boiling HNO3 on a hot plate (open system. The EPA 3051A method can be used to estimate the total content of K in the clay fraction of soils developed from carbonate and phyllite/mica schist rocks. In the clay fraction of soils developed from basalt, recoveries of K by the EPA 3051A (pseudo-total method were higher than for the EPA 3052 (total hydrofluoric extraction method. The relative abundance of K and Mg for soils in carbonate rocks, phyllite/mica schist, granite/gneiss, and basalt determined by aqua regia digestion is unreliable. The method using 1 mol L-1 HNO3 in an closed system (microwave showed potential for replacing the classical method of extraction of nonexchangeable forms of K (boiling 1 mol L-1 HNO3 in an open system - hot plate and reduced the loss of Si by volatilization.

  17. Methods for microbial DNA extraction from soil for PCR amplification

    OpenAIRE

    Yeates C; Gillings, MR; Davison AD; Altavilla N; Veal DA

    1998-01-01

    Amplification of DNA from soil is often inhibited by co-purified contaminants. A rapid, inexpensive, large-scale DNA extraction method involving minimal purification has been developed that is applicable to various soil types (1). DNA is also suitable for PCR amplification using various DNA targets. DNA was extracted from 100g of soil using direct lysis with glass beads and SDS followed by potassium acetate precipitation, polyethylene glycol precipitation, phenol extraction and isopropanol pr...

  18. Enhanced Attenuation Technologies: Passive Soil Vapor Extraction

    Energy Technology Data Exchange (ETDEWEB)

    Vangelas, K.; Looney, B.; Kamath, R.; Adamson, D.; Newell, C.

    2010-03-15

    Passive soil vapor extraction (PSVE) is an enhanced attenuation (EA) approach that removes volatile contaminants from soil. The extraction is driven by natural pressure gradients between the subsurface and atmosphere (Barometric Pumping), or by renewable sources of energy such as wind or solar power (Assisted PSVE). The technology is applicable for remediating sites with low levels of contamination and for transitioning sites from active source technologies such as active soil vapor extraction (ASVE) to natural attenuation. PSVE systems are simple to design and operate and are more cost effective than active systems in many scenarios. Thus, PSVE is often appropriate as an interim-remedial or polishing strategy. Over the past decade, PSVE has been demonstrated in the U.S. and in Europe. These demonstrations provide practical information to assist in selecting, designing and implementing the technology. These demonstrations indicate that the technology can be effective in achieving remedial objectives in a timely fashion. The keys to success include: (1) Application at sites where the residual source quantities, and associated fluxes to groundwater, are relatively low; (2) Selection of the appropriate passive energy source - barometric pumping in cases with a deep vadose zone and barrier (e.g., clay) layers that separate the subsurface from the atmosphere and renewable energy assisted PSVE in other settings and where higher flow rates are required. (3) Provision of sufficient access to the contaminated vadose zones through the spacing and number of extraction wells. This PSVE technology report provides a summary of the relevant technical background, real-world case study performance, key design and cost considerations, and a scenario-based cost evaluation. The key design and cost considerations are organized into a flowchart that dovetails with the Enhanced Attenuation: Chlorinated Organics Guidance of the Interstate Technology and Regulatory Council (ITRC). The PSVE

  19. Supercritical Fluid Extraction of Aflatoxin B 1 from Soil

    Science.gov (United States)

    This research describes the development of a Supercritical Fluid Extraction (SFE) method to recover aflatoxin B1 from fortified soil. The effects of temperature, pressure, modifier (identity and percentage), and extraction type were assessed. Using the optimized SFE conditions, ...

  20. Supercritical Fluid Extraction of Aflatoxin B 1 from Soil

    Science.gov (United States)

    This research describes the development of a Supercritical Fluid Extraction (SFE) method to recover aflatoxin B1 from fortified soil. The effects of temperature, pressure, modifier (identity and percentage), and extraction type were assessed. Using the optimized SFE conditions, ...

  1. Studies on the extraction of sulfonamides from agricultural soils.

    Science.gov (United States)

    Raich-Montiu, J; Beltrán, J L; Prat, M D; Granados, M

    2010-05-01

    The extraction of six sulfonamides (sulfadiazine, sulfadimidine, sulfathiazole, sulfachloropiridazine, sulfadimethoxine, and sulfaquinoxaline) from soils with different physicochemical characteristics and at several aging times was investigated. Conventional mechanical shaking, microwave-assisted extraction, ultrasound probe-assisted extraction and pressurized liquid extraction techniques were evaluated. The four techniques provided similar results when applied to freshly contaminated soils. However, microwave-assisted extraction was the most suitable to extract sulfonamide aged residues from soils. Microwave-assisted extraction was applied to eight soils aged for 3 months, using acetonitrile:buffer pH 9 (20:80) as the extraction solvent, and recoveries ranged from 15-25% for STZ to 42-64% for SDM.

  2. Successive DNA extractions improve characterization of soil microbial communities

    NARCIS (Netherlands)

    Dimitrov, M.R.; Veraart, A.J.; De Hollander, M.; Smidt, H.; van Veen, J.A.; Kuramae, E.E.

    2017-01-01

    Currently, characterization of soil microbial communities relies heavily on the use of molecular approaches. Independently of the approach used, soil DNA extraction is a crucial step, and success of downstream procedures will depend on how well DNA extraction was performed. Often, studies describing

  3. Successive DNA extractions improve characterization of soil microbial communities

    NARCIS (Netherlands)

    Rocha Dimitrov, Mauricio; Veraart, Annelies J.; Hollander, de Mattias; Smidt, Hauke; Veen, van Johannes A.; Kuramae, Eiko E.

    2017-01-01

    Currently, characterization of soil microbial communities relies heavily on the use of molecular approaches. Independently of the approach used, soil DNA extraction is a crucial step, and success of downstream procedures will depend on how well DNA extraction was performed. Often, studies

  4. Rare earth elements in soil extracts by ICP-MS

    Energy Technology Data Exchange (ETDEWEB)

    Tobler, L.; Furrer, V.; Wyttenbach, A. [Paul Scherrer Inst. (PSI), Villigen (Switzerland); Burger, M.; Jakob, A. [AC-Laboratorium Spiez (Switzerland)

    1997-09-01

    Three different horizons of a soil profile were extracted with water and with a complexing solution. 14 REEs were determined in the extracts. The distribution patterns obtained from the different horizons were rather similar and did not show the large fractionations observed between different plant species growing on this soil. (author) 2 figs., 1 ref.

  5. Oxygen extraction from lunar soil by fluorination

    Science.gov (United States)

    Seboldt, W.; Lingner, S.; Hoernes, S.; Grimmeisen, W.

    1991-01-01

    Mining and processing of lunar material could possibly lead to more cost-efficient scenarios for permanent presence of man in space and on the Moon. Production of oxygen for use as propellant seems especially important. Different candidate processes for oxygen-extraction from lunar soil were proposed, of which the reduction of ilmenite by hydrogen was studied most. This process, however, needs the concentration of ilmenite from lunar regolith to a large extent and releases oxygen only with low efficiency. Another possibility - the fluorination method - which works with lunar bulk material as feedstock is discussed. Liberation of oxygen from silicate or oxide materials by fluorination methods has been applied in geoscience since the early sixties. The fact that even at moderate temperatures 98 to 100 percent yields can be attained, suggests that fluorination of lunar regolith could be an effective way of propellant production. Lunar soil contains about 50 percent oxygen by weight which is gained nearly completely through this process as O2 gas. The second-most element Si is liberated as gaseous SiF4. It could be used for production of Si-metal and fluorine-recycling. All other main elements of lunar soil will be converted into solid fluorides which also can be used for metal-production and fluorine-recycling. Preliminary results of small scale experiments with different materials are discussed, giving information on specific oxygen-yields and amounts of by-products as functions of temperature. These experiments were performed with an already existing fluorine extraction and collection device at the University of Bonn, normally used for determination of oxygen-isotopic abundances. Optimum conditions, especially concerning energy consumption, are investigated. Extrapolation of the experimental results to large industrial-type plants on the Moon is tried and seems to be promising at first sight. The recycling of the fluorine is, however, crucial for the process. It

  6. Direct Cellular Lysis/Protein Extraction Protocol for Soil Metaproteomics

    Energy Technology Data Exchange (ETDEWEB)

    Chourey, Karuna [ORNL; Jansson, Janet [Lawrence Berkeley National Laboratory (LBNL); Verberkmoes, Nathan C [ORNL; Shah, Manesh B [ORNL; Chavarria, Krystle L. [Lawrence Berkeley National Laboratory (LBNL); Tom, Lauren M [Lawrence Berkeley National Laboratory (LBNL); Brodie, Eoin L. [Lawrence Berkeley National Laboratory (LBNL); Hettich, Robert {Bob} L [ORNL

    2010-01-01

    We present a novel direct protocol for deep proteome characterization of microorganisms in soil. The method employs thermally assisted detergent-based cellular lysis (SDS) of soil samples, followed by TCA precipitation for proteome extraction/cleanup prior to liquid chromatography-mass spectrometric characterization. This approach was developed and optimized using different soils inoculated with genome-sequenced bacteria (Gram-negative Pseudomonas putida or Gram-positive Arthrobacter chlorophenolicus). Direct soil protein extraction was compared to protein extraction from cells isolated from the soil matrix prior to lysis (indirect method). Each approach resulted in identification of greater than 500 unique proteins, with a wide range in molecular mass and functional categories. To our knowledge, this SDS-TCA approach enables the deepest proteome characterizations of microbes in soil to date, without significant biases in protein size, localization, or functional category compared to pure cultures. This protocol should provide a powerful tool for ecological studies of soil microbial communities.

  7. Direct cellular lysis/protein extraction protocol for soil metaproteomics.

    Science.gov (United States)

    Chourey, Karuna; Jansson, Janet; VerBerkmoes, Nathan; Shah, Manesh; Chavarria, Krystle L; Tom, Lauren M; Brodie, Eoin L; Hettich, Robert L

    2010-12-03

    We present a novel direct protocol for deep proteome characterization of microorganisms in soil. The method employs thermally assisted detergent-based cellular lysis (SDS) of soil samples, followed by TCA precipitation for proteome extraction/cleanup prior to liquid chromatography-mass spectrometric characterization. This approach was developed and optimized using different soils inoculated with genome-sequenced bacteria (Gram-negative Pseudomonas putida or Gram-positive Arthrobacter chlorophenolicus). Direct soil protein extraction was compared to protein extraction from cells isolated from the soil matrix prior to lysis (indirect method). Each approach resulted in identification of greater than 500 unique proteins, with a wide range in molecular mass and functional categories. To our knowledge, this SDS-TCA approach enables the deepest proteome characterizations of microbes in soil to date, without significant biases in protein size, localization, or functional category compared to pure cultures. This protocol should provide a powerful tool for ecological studies of soil microbial communities.

  8. Predicting ion flux uniformity at the ion extraction plate in a 3D ICP reactor

    Science.gov (United States)

    Roy, Abhra; Bhoj, Ananth

    2016-09-01

    In order to achieve better control in processing the wafer surface, the ion fluxes in a remote plasma system are often focused through one or more ion extraction plates between the main plasma chamber and the downstream wafer plane. The ion extraction plates are typically of showerhead pattern with multiple holes. The focus of this particular study is to predict the ion flux uniformity over the ion extraction plate for a full 3D inductively coupled discharge reactor model using Argon chemistry. We will use the commercial modeling tool, CFD-ACE +, which can address such a process involving gas flow, heat transfer, plasma physics, reaction chemistry and electromagnetics in a coupled fashion. The plasma characteristics in the chamber and uniformity of the ion fluxes at ion extraction plate are discussed. Parametric studies varying the geometrical dimensions and process conditions to determine the effect on ion flux uniformity are presented. The showerhead-like ion extraction plate will be modeled as a porous media with a specified porosity. Further, a spatially varying porosity of the ion extraction plate is used to simulate ion recombination in order to reduce the ion flux non-uniformity. The goal is to optimize the system maximizing the ion flux while maintaining the uniformity.

  9. Methods for microbial DNA extraction from soil for PCR amplification

    Directory of Open Access Journals (Sweden)

    Yeates C

    1998-01-01

    Full Text Available Amplification of DNA from soil is often inhibited by co-purified contaminants. A rapid, inexpensive, large-scale DNA extraction method involving minimal purification has been developed that is applicable to various soil types (1. DNA is also suitable for PCR amplification using various DNA targets. DNA was extracted from 100g of soil using direct lysis with glass beads and SDS followed by potassium acetate precipitation, polyethylene glycol precipitation, phenol extraction and isopropanol precipitation. This method was compared to other DNA extraction methods with regard to DNA purity and size.

  10. Supercritical Fluid Extraction of Plutonium and Americium from Soil

    Energy Technology Data Exchange (ETDEWEB)

    Fox, R.V.; Mincher, B.J.

    2002-05-23

    Supercritical fluid extraction (SFE) of plutonium and americium from soil was successfully demonstrated using supercritical fluid carbon dioxide solvent augmented with organophosphorus and beta-diketone complexants. Spiked Idaho soils were chemically and radiologically characterized, then extracted with supercritical fluid carbon dioxide at 2,900 psi and 65 C containing varying concentrations of tributyl phosphate (TBP) and thenoyltrifluoroacetone (TTA). A single 45 minute SFE with 2.7 mol% TBP and 3.2 mol% TTA provided as much as 88% {+-} 6.0 extraction of americium and 69% {+-} 5.0 extraction of plutonium. Use of 5.3 mol% TBP with 6.8 mol% of the more acidic beta-diketone hexafluoroacetylacetone (HFA) provided 95% {+-} 3.0 extraction of americium and 83% {+-} 5.0 extraction of plutonium in a single 45 minute SFE at 3,750 psi and 95 C. Sequential chemical extraction techniques were used to chemically characterize soil partitioning of plutonium and americium in pre-SFE soil samples. Sequential chemical extraction techniques demonstrated that spiked plutonium resides primarily (76.6%) in the sesquioxide fraction with minor amounts being absorbed by the oxidizable fraction (10.6%) and residual fractions (12.8%). Post-SFE soils subjected to sequential chemical extraction characterization demonstrated that 97% of the oxidizable, 78% of the sesquioxide and 80% of the residual plutonium could be removed using SFE. These preliminary results show that SFE may be an effective solvent extraction technique for removal of actinide contaminants from soil.

  11. Wavelet packet based feature extraction and recognition of license plate characters

    Institute of Scientific and Technical Information of China (English)

    HUANG Wei; LU Xiaobo; LING Xiaojing

    2005-01-01

    To study the characteristics of license plate characters recognition, this paper proposes a method for feature extraction of license plate characters based on two-dimensional wavelet packet. We decompose license plate character images with two dimensional-wavelet packet and search for the optimal wavelet packet basis. This paper presents a criterion of searching for the optimal wavelet packet basis, and a practical algorithm. The obtained optimal wavelet packet basis is used as the feature of license plate character, and a BP neural network is used to classify the character.The testing results show that the proposed method achieved higher recognition rate than the traditional methods.

  12. Microbial protein in soil: influence of extraction method and C amendment on extraction and recovery.

    Science.gov (United States)

    Taylor, Erin B; Williams, Mark A

    2010-02-01

    The capacity to study the content and resolve the dynamics of the proteome of diverse microbial communities would help to revolutionize the way microbiologists study the function and activity of microorganisms in soil. To better understand the limitations of a proteomic approach to studying soil microbial communities, we characterized extractable soil microbial proteins using sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). Two methods were utilized to extract proteins from microorganisms residing in a Quitman and Benfield soil: (1) direct extraction of bulk protein from soil and (2) separation of the microorganisms from soil using density gradient centrifugation and subsequent extraction (DGC-EXT) of microbial protein. In addition, glucose and toluene amendments to soil were used to stimulate the growth of a subset of the microbial community. A bacterial culture and bovine serum albumin (BSA) were added to the soil to qualitatively assess their recovery following extraction. Direct extraction and resolution of microbial proteins using SDS-PAGE generally resulted in smeared and unresolved banding patterns on gels. DGC-EXT of microbial protein from soil followed by separation using SDS-PAGE, however, did resolve six to 10 bands in the Benfield but not the Quitman soil. DGC-EXT of microbial protein, but not direct extraction following the addition of glucose and toluene, markedly increased the number of bands (approximately 40) on the gels in both Benfield and Quitman soils. Low recoveries of added culture and BSA proteins using the direct extraction method suggest that proteins either bind to soil organic matter and mineral particles or that partial degradation takes place during extraction. Interestingly, DGC may have been preferentially selected for actively growing cells, as gauged by the 10-100x lower cy19:0/18:1omega7 ratio of the fatty acid methyl esters in the isolated community compared to that for the whole soil. DGC can be used to

  13. Biodegradability of soil water soluble organic carbon extracted from seven different soils

    Institute of Scientific and Technical Information of China (English)

    SCAGLIA Barbara; ADANI Fabrizio

    2009-01-01

    Water soluble organic carbon (WSOC) is considered the most mobile and reactive soil carbon source and its characterization is an important issue for soil ecology study. A biodegradability test was set up to study WSOC extracted from 7 soils differently managed. WSOC was extracted from soil with water (soil/water ratio of 1:2, W/V) for 30 min, and then tested for biodegradability by a liquid state respirometric test. Result obtained confirmed the finding that WSOC biodegradability depended on both land use and management practice. These results suggested the biodegradability test as suitable method to characterize WSOC, adding useful information to soil fertility.

  14. Extraction Efficiency of Belonolaimus longicaudatus from Sandy Soil.

    Science.gov (United States)

    McSorley, R; Frederick, J J

    1991-10-01

    Numbers of Belonolaimus longicaudatus extracted from sandy soils (91-92% sand) by sieving and centrifugation were only 40-55% of those extracted by sieving and incubation on a Baermann tray. Residues normally discarded at each step of the sieving plus Baermann tray extraction procedure were examined for nematodes to obtain estimates of extraction efficiencies. For third-stage and fourth-stage juveniles, males, and females, estimates of extraction efficiency ranged from 60 to 65% in one experiment and 73 to 82% in another. Estimated extraction efficiencies for second-stage juveniles were lower (33% in one experiment, 67% in another) due to losses during sieving. When sterilized soil was seeded with known numbers of B. longicaudatus, 60% of second-stage juveniles and 68-76% of other stages were recovered. Most stages of B. longicaudatus could be extracted from these soils by sieving plus Baermann incubation with an efficiency of 60-70%.

  15. Dynamic Response of a Rigid Pavement Plate Based on an Inertial Soil.

    Science.gov (United States)

    Gibigaye, Mohamed; Yabi, Crespin Prudence; Alloba, I Ezéchiel

    2016-01-01

    This work presents the dynamic response of a pavement plate resting on a soil whose inertia is taken into account in the design of pavements by rational methods. Thus, the pavement is modeled as a thin plate with finite dimensions, supported longitudinally by dowels and laterally by tie bars. The subgrade is modeled via Pasternak-Vlasov type (three-parameter type) foundation models and the moving traffic load is expressed as a concentrated dynamic load of harmonically varying magnitude, moving straight along the plate with a constant acceleration. The governing equation of the problem is solved using the modified Bolotin method for determining the natural frequencies and the wavenumbers of the system. The orthogonal properties of eigenfunctions are used to find the general solution of the problem. Considering the load over the center of the plate, the results showed that the deflections of the plate are maximum about the middle of the plate but are not null at its edges. It is therefore observed that the deflection decreased 18.33 percent when the inertia of the soil is taken into account. This result shows the possible economic gain when taking into account the inertia of soil in pavement dynamic design.

  16. Dynamic Response of a Rigid Pavement Plate Based on an Inertial Soil

    Science.gov (United States)

    Gibigaye, Mohamed; Yabi, Crespin Prudence; Alloba, I. Ezéchiel

    2016-01-01

    This work presents the dynamic response of a pavement plate resting on a soil whose inertia is taken into account in the design of pavements by rational methods. Thus, the pavement is modeled as a thin plate with finite dimensions, supported longitudinally by dowels and laterally by tie bars. The subgrade is modeled via Pasternak-Vlasov type (three-parameter type) foundation models and the moving traffic load is expressed as a concentrated dynamic load of harmonically varying magnitude, moving straight along the plate with a constant acceleration. The governing equation of the problem is solved using the modified Bolotin method for determining the natural frequencies and the wavenumbers of the system. The orthogonal properties of eigenfunctions are used to find the general solution of the problem. Considering the load over the center of the plate, the results showed that the deflections of the plate are maximum about the middle of the plate but are not null at its edges. It is therefore observed that the deflection decreased 18.33 percent when the inertia of the soil is taken into account. This result shows the possible economic gain when taking into account the inertia of soil in pavement dynamic design. PMID:27382639

  17. Extraction agents for the removal of polycyclic aromatic hydrocarbons (PAHs) from soil in soil washing technologies.

    Science.gov (United States)

    Lau, Ee Von; Gan, Suyin; Ng, Hoon Kiat; Poh, Phaik Eong

    2014-01-01

    Polycyclic aromatic hydrocarbons (PAHs) in soil have been recognised as a serious health and environmental issue due to their carcinogenic, mutagenic and teratogenic properties. One of the commonly employed soil remediation techniques to clean up such contamination is soil washing or solvent extraction. The main factor which governs the efficiency of this process is the solubility of PAHs in the extraction agent. Past field-scale soil washing treatments for PAH-contaminated soil have mainly employed organic solvents or water which is either toxic and costly or inefficient in removing higher molecular weight PAHs. Thus, the present article aims to provide a review and discussion of the alternative extraction agents that have been studied, including surfactants, biosurfactants, microemulsions, natural surfactants, cyclodextrins, vegetable oil and solution with solid phase particles. These extraction agents have been found to remove PAHs from soil at percentages ranging from 47 to 100% for various PAHs.

  18. Organic compounds of different extractability in total solvent extracts from soils of contrasting water repellency

    Science.gov (United States)

    Atanassova, Irena; Doerr, Stefan H.

    2010-05-01

    Previous studies examining organic compounds that may cause water-repellent behaviour of soils have typically focussed on analysing only the lipophilic fraction of extracted material. This study aimed to provide a more comprehensive examination by applying single- and sequential-accelerated solvent extraction (ASE), separation and analysis by GC/MS of the total solvent extracts of three soils taken from under eucalypt vegetation with different levels of water repellency. Water repellency increased in all the soils after extraction with DCM:MeOH (95:5), but was eliminated with iso-propanol/ammonia (95:5). Quantities of major lipid compound classes varied between solvents and soils. Iso-propanol/ammonia (95:5) solvent released saccharides, glycerol, aromatic acids and other polar organic compounds, which were more abundant in fractionated extracts from the single extraction and the third step sequential ASE extraction, than in the extracts from the DCM:MeOH ASE solvent. Dominant compounds extracted from all soils were long-chain alkanols (>C22), palmitic acid, C29 alkane, β-sitosterol, terpenes, terpenoids and other polar compounds. The soil with smallest repellency lacked >C18 fatty acids and had smallest concentrations of alkanols (C26, C28 and C30) and alkanes (C29, C31), but a greater abundance of more complex polar compounds than the more repellent soils. We therefore speculate that the above compounds play an important role in determining the water repellency of the soils tested. The results suggest that one-stage and sequential ASE extractions with iso-propanol:ammonia and subsequent fractionation of extracts are a useful approach in providing a comprehensive assessment of the potential compounds involved in causing soil water repellency.

  19. Model analysis of mechanisms controlling pneumatic soil vapor extraction

    DEFF Research Database (Denmark)

    Høier, Camilla Kruse; Sonnenborg, Torben Obel; Jensen, Karsten Høgh;

    2009-01-01

    The efficiency of traditional soil venting or soil vapor extraction (SVE) highly depends on the architecture of the subsurface because imposed advective air flow tends to bypass low-permeable contaminated areas. Pneumatic SVE is a technique developed to enhance remediation efficiency of heterogen...... level the pneumatic venting technology is superior to the traditional technique, and that the method is particularly efficient in cases where large permeability contrasts exist between soil units in the subsurface.......The efficiency of traditional soil venting or soil vapor extraction (SVE) highly depends on the architecture of the subsurface because imposed advective air flow tends to bypass low-permeable contaminated areas. Pneumatic SVE is a technique developed to enhance remediation efficiency...... of heterogeneous soils by enforcing large fluctuating pressure fronts through the contaminated area. Laboratory experiments have suggested that pneumatic SVE considerably improves the recovery rate from low-permeable units. We have analyzed the experimental results using a numerical code and quantified...

  20. Membrane-assisted culture of fungal mycelium on agar plates for RNA extraction and pharmacological analyses.

    Science.gov (United States)

    Lange, Mario; Müller, Carolin; Peiter, Edgar

    2014-05-15

    Fungal mycelium grown in liquid culture is easy to harvest for RNA extraction and gene expression analyses, but liquid cultures often develop rather heterogeneously. In contrast, growth of fungal mycelium on agar plates is highly reproducible. However, this biological material cannot be harvested easily for downstream analyses. This article describes a PVDF (polyvinylidene difluoride) membrane-assisted agar plate culture method that enables the harvest of mycelium grown on agar plates. This culture method leads to a strongly reduced variation in gene expression between biological replicates and requires less growth space as compared with liquid cultures.

  1. Prediction of reducible soil iron content from iron extraction data

    NARCIS (Netherlands)

    Bodegom, van P.M.; Reeven, van J.; Denier van der Gon, H.A.C.

    2003-01-01

    Soils contain various iron compounds that differ in solubility, reducibility and extractability. Moreover, the contribution of the various iron compounds to total iron (Fe) and total Fe concentrations differs highly among soils. As a result, the total reducible Fe content can also differ among

  2. System of extraction of volatiles from soil using microwave processes

    Science.gov (United States)

    Ethridge, Edwin C. (Inventor); Kaukler, William F. (Inventor)

    2013-01-01

    A device for the extraction and collection of volatiles from soil or planetary regolith. The device utilizes core drilled holes to gain access to underlying volatiles below the surface. Microwave energy beamed into the holes penetrates through the soil or regolith to heat it, and thereby produces vapor by sublimation. The device confines and transports volatiles to a cold trap for collection.

  3. Selenium speciation and extractability in Dutch agricultural soils

    NARCIS (Netherlands)

    Supriatin, Supriatin; Weng, Liping; Comans, Rob N.J.

    2015-01-01

    The study aimed to understand selenium (Se) speciation and extractability in Dutch agricultural soils. Top soil samples were taken from 42 grassland fields and 41 arable land fields in the Netherlands. Total Se contents measured in aqua regia were between 0.12 and 1.97mgkg-1(on average

  4. Mild extractability and bioavailability of polycyclic aromatic hydrocarbons in soil

    Energy Technology Data Exchange (ETDEWEB)

    Tang, J.; Alexander, M.

    1999-12-01

    A study was conducted to determine the relationship between bioavailability of unaged and aged polycyclic aromatic hydrocarbons (PAHs) in soil and the amounts detected by mild solvent extraction. More aged than unaged anthracene remained in Lima loam following introduction of earthworms (Eisenia foetida), a mixed culture containing anthracene-degrading microorganisms, or earthworms or wheat after bacterial biodegradation of the compound. Aging decreased the percentage of anthracene recovered by mild extraction with n-butanol from soil following introduction of earthworms, growth of wheat, biodegradation by bacteria, or when maintained sterile. Biodegradation resulted in a marked decrease in the percentage of aged and unaged anthracene recovered from soil by mild extraction with n-butanol or ethyl acetate. Aging of fluoranthene and pyrene decreased the amount removed by mild extraction with n-butanol, ethyl acetate, and propanol. The uptake of aged and unaged anthracene, fluoranthene, and pyrene by earthworms was correlated with the amounts recovered from soil by mild extraction with n-butanol, propanol, and ethyl acetate. The retention of aged and unaged anthracene by wheat and barley was correlated with the amounts recovered from soil by the same procedure. The authors suggest that mild extraction with organic solvents can be used to predict the bioavailability of PAHs in soil.

  5. Difficultly Extractable Fixed Ammonium in Some Soils of China

    Institute of Scientific and Technical Information of China (English)

    CHENBIYUN; CHENGLILI; 等

    1999-01-01

    Ninety-three soil samples and 19 sedimentary rock samples collected from 21 provinces of China were analyzed for their contents of fixed ammonium and total N by Kjeldahl-HF method.Results showed that amount of difficultly extractable fixed ammonium(the fixed ammonium that is not determinable by Kjeldahl procedures commonly used for soils) in soils ranged from 0 to 202 mg kg-1,It was generally more than 50 mg kg-1 in soils in Changji and Turpan districts,Xinjiang,accounting for 3.2%-36.8% with an average of 13.9% of the total N.For some Orthents derived from purple shale and purple sandstone in Sichuan and Hunan provinces and Chao soils derived from secondary loess in Henan Province and Ningxia Autonomous Region it was generally around 30 mg kg-1,accounting for 4%-7% of the total soil N,and for most of the rest of soils studied,with the exception of some subsoils,no or trace difficultly extractable fixed ammonium could be detected.It was sugested that the difficultly extractable fixed ammonium was originated from parent rock,and for slightly weathered soils derived from parent materials rich in this form of N the Kjeldahl method might give underestimation of total soil N.

  6. Supercritical Fluid Extraction of Plutonium and Americium from Soil

    Energy Technology Data Exchange (ETDEWEB)

    Fox, Robert Vincent; Mincher, Bruce Jay

    2002-08-01

    Supercritical fluid extraction (SFE) of plutonium and americium from soil was successfully demonstrated using supercritical fluid carbon dioxide solvent augmented with organophosphorus and beta-diketone complexants. Spiked Idaho soils were chemically and radiologically characterized, then extracted with supercritical fluid carbon dioxide at 2,900 psi and 65°C containing varying concentrations of tributyl phosphate (TBP) and thenoyltrifluoroacetone (TTA). A single 45 minute SFE with 2.7 mol% TBP and 3.2 mol% TTA provided as much as 88% ± 6.0 extraction of americium and 69% ± 5.0 extraction of plutonium. Use of 5.3 mol% TBP with 6.8 mol% of the more acidic beta-diketone hexafluoroacetylacetone (HFA) provided 95% ± 3.0 extraction of americium and 83% ± 5.0 extraction of plutonium in a single 45 minute SFE at 3,750 psi and 95°C. Sequential chemical extraction techniques were used to chemically characterize soil partitioning of plutonium and americium in pre-SFE soil samples. Sequential chemical extraction techniques demonstrated that spiked plutonium resides primarily (76.6%) in the sesquioxide fraction with minor amounts being absorbed by the oxidizable fraction (10.6%) and residual fractions (12.8%). Post-SFE soils subjected to sequential chemical extraction characterization demonstrated that 97% of the oxidizable, 78% of the sesquioxide and 80% of the residual plutonium could be removed using SFE. These preliminary results show that SFE may be an effective solvent extraction technique for removal of actinide contaminants from soil.

  7. Selenium speciation and extractability in Dutch agricultural soils.

    Science.gov (United States)

    Supriatin, Supriatin; Weng, Liping; Comans, Rob N J

    2015-11-01

    The study aimed to understand selenium (Se) speciation and extractability in Dutch agricultural soils. Top soil samples were taken from 42 grassland fields and 41 arable land fields in the Netherlands. Total Se contents measured in aqua regia were between 0.12 and 1.97 mg kg(-1) (on average 0.58 mg kg(-1)). Organic Se after NaOCl oxidation-extraction accounted for on average 82% of total Se, whereas inorganic selenite (selenate was not measurable) measured in ammonium oxalate extraction using HPLC-ICP-MS accounted for on average 5% of total Se. The predominance of organic Se in the soils is supported by the positive correlations between total Se (aqua regia) and total soil organic matter content, and Se and organic C content in all the other extractions performed in this study. The amount of Se extracted followed the order of aqua regia > 1 M NaOCl (pH8) > 0.1 M NaOH>ammonium oxalate (pH3) > hot water>0.43 M HNO3 > 0.01 M CaCl2. None of these extractions selectively extracts only inorganic Se, and relative to other extractions 0.43 M HNO3 extraction contains the lowest fraction of organic Se, followed by ammonium oxalate extraction. In the 0.1M NaOH extraction, the hydrophobic neutral (HON) fraction of soil organic matter is richer in Se than in the hydrophilic (Hy) and humic acid (HA) fractions. The organic matter extracted in 0.01 M CaCl2 and hot water is in general richer in Se compared to the organic matter extracted in 0.1M NaOH, and other extractions (HNO3, ammonium oxalate, NaOCl, and aqua regia). Although the extractability of Se follows to a large extent the extractability of soil organic carbon, there is several time variations in the Se to organic C ratios, reflecting the changes in composition of organic matter extracted. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Extraction of heavy metals from soils using biodegradable chelating agents.

    Science.gov (United States)

    Tandy, Susan; Bossart, Karin; Mueller, Roland; Ritschel, Jens; Hauser, Lukas; Schulin, Rainer; Nowack, Bernd

    2004-02-01

    Metal pollution of soils is widespread across the globe, and the clean up of these soils is a difficulttask. One possible remediation technique is ex-situ soil washing using chelating agents. Ethylenediaminetetraacetic acid (EDTA) is a very effective chelating agent for this purpose but has the disadvantage that it is quite persistent in the environment due to its low biodegradability. The aim of our work was to investigate the biodegradable chelating agents [S,S]-ethylenediaminedisuccinic acid (EDDS), iminodisuccinic acid (IDSA), methylglycine diacetic acid (MGDA), and nitrilotriacetic acid (NTA) as potential alternatives and compare them with EDTA for effectiveness. Kinetic experiments showed for all metals and soils that 24 h was the optimum extraction time. Longer times only gave minor additional benefits for heavy metal extraction but an unwanted increase in iron mobilization. For Cu at pH 7, the order of the extraction efficiency for equimolar ratios of chelating agent to metal was EDDS > NTA> IDSA > MGDA > EDTA and for Zn it was NTA > EDDS > EDTA >MGDA > IDSA. The comparatively low efficiency of EDTA resulted from competition between the heavy metals and co-extracted Ca. For Pb the order of extraction was EDTA > NTA >EDDS due to the much stronger complexation of Pb by EDTA compared to EDDS. At higher concentration of complexing agent, less difference between the agents was found and less pH dependence. There was an increase in heavy metal extraction with decreasing pH, but this was offset by an increase in Ca and Fe extraction. In sequential extractions EDDS extracted metals almost exclusively from the exchangeable, mobile, and Mn-oxide fractions. We conclude that the extraction with EDDS at pH 7 showed the best compromise between extraction efficiency for Cu, Zn, and Pb and loss of Ca and Fe from the soil.

  9. Extracting Quantitative Data from Lunar Soil Spectra

    Science.gov (United States)

    Noble, S. K.; Pieters, C. M.; Hiroi, T.

    2005-01-01

    Using the modified Gaussian model (MGM) developed by Sunshine et al. [1] we compared the spectral properties of the Lunar Soil Characterization Consortium (LSCC) suite of lunar soils [2,3] with their petrologic and chemical compositions to obtain quantitative data. Our initial work on Apollo 17 soils [4] suggested that useful compositional data could be elicited from high quality soil spectra. We are now able to expand upon those results with the full suite of LSCC soils that allows us to explore a much wider range of compositions and maturity states. The model is shown to be sensitive to pyroxene abundance and can evaluate the relative portion of high-Ca and low-Ca pyroxenes in the soils. In addition, the dataset has provided unexpected insights into the nature and causes of absorption bands in lunar soils. For example, it was found that two distinct absorption bands are required in the 1.2 m region of the spectrum. Neither of these bands can be attributed to plagioclase or agglutinates, but both appear to be largely due to pyroxene.

  10. Residual soil DNA extraction increases the discriminatory power between samples.

    Science.gov (United States)

    Young, Jennifer M; Weyrich, Laura S; Clarke, Laurence J; Cooper, Alan

    2015-06-01

    Forensic soil analysis relies on capturing an accurate and reproducible representation of the diversity from limited quantities of soil; however, inefficient DNA extraction can markedly alter the taxonomic abundance. The performance of a standard commercial DNA extraction kit (MOBIO PowerSoil DNA Isolation kit) and three modified protocols of this kit: soil pellet re-extraction (RE); an additional 24-h lysis incubation step at room temperature (RT); and 24-h lysis incubation step at 55°C (55) were compared using high-throughput sequencing of the internal transcribed spacer I ribosomal DNA. DNA yield was not correlated with fungal diversity and the four DNA extraction methods displayed distinct fungal community profiles for individual samples, with some phyla detected exclusively using the modified methods. Application of a 24 h lysis step will provide a more complete inventory of fungal biodiversity, and re-extraction of the residual soil pellet offers a novel tool for increasing discriminatory power between forensic soil samples.

  11. PAH desorption from river floodplain soils using supercritical fluid extraction.

    Science.gov (United States)

    Yang, Yi; Cajthaml, Tomás; Hofmann, Thilo

    2008-12-01

    Sequential supercritical fluid extraction (SFE) was performed in order to estimate desorption of PAHs from river floodplain soils which contain coal and coal-derived particles. Original soils, soils' light fractions (rhoextractable contaminants ranged from decades for 2-4-ring PAHs and hundreds of years for 5-6-ring PAHs. We demonstrate that, despite high soil PAH concentrations which are due to coal and coal-derived particles, the general environmental risk is reduced by the very slow and extremely slow desorption rates.

  12. Experimental PCR Data on Soil DNA Extracts

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Bacillus species and B. anthracis presence/absence data were determined in 4,770 soil samples collected across the contiguous United States, in cooperation with the...

  13. Experimental PCR Data on Soil DNA Extracts

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Bacillus species and B. anthracis presence/absence data were determined in 4,770 soil samples collected across the contiguous United States, in cooperation with the...

  14. Estimating the extractability of potentially toxic metals in urban soils: A comparison of several extracting solutions

    Energy Technology Data Exchange (ETDEWEB)

    Madrid, F. [Instituto de Recursos Naturales y Agrobiologia de Sevilla (CSIC), Apartado 1052, 41080 Sevilla (Spain); Reinoso, R. [Instituto de Recursos Naturales y Agrobiologia de Sevilla (CSIC), Apartado 1052, 41080 Sevilla (Spain); Florido, M.C. [Departamento de Cristalografia, Mineralogia y Quimica Agricola, Universidad de Sevilla, Avda. Reina Mercedes, s/n, 41012 Sevilla (Spain); Diaz Barrientos, E. [Instituto de Recursos Naturales y Agrobiologia de Sevilla (CSIC), Apartado 1052, 41080 Sevilla (Spain); Ajmone-Marsan, F. [DI.VA.P.R.A., Chimica Agraria, Universita di Torino, Via Leonardo da Vinci, 44, 10095 Grugliasco, Torino (Italy); Davidson, C.M. [Department of Pure and Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow G1 1XL, Scotland (United Kingdom); Madrid, L. [Instituto de Recursos Naturales y Agrobiologia de Sevilla (CSIC), Apartado 1052, 41080 Sevilla (Spain)]. E-mail: madrid@irnase.csic.es

    2007-06-15

    Metals released by the extraction with aqua regia, EDTA, dilute HCl and sequential extraction (SE) by the BCR protocol were studied in urban soils of Sevilla, Torino, and Glasgow. By multivariate analysis, the amounts of Cu, Pb and Zn liberated by any method were statistically associated with one another, whereas other metals were not. The mean amounts of all metals extracted by HCl and by SE were well correlated, but SE was clearly underestimated by HCl. Individual data for Cu, Pb and Zn by both methods were correlated only if each city was considered separately. Other metals gave poorer relationships. Similar conclusions were reached comparing EDTA and HCl, with much lower values for EDTA. Dilute HCl extraction cannot thus be recommended for general use as alternative to BCR SE in urban soils. - Dilute HCl extraction is tested as an alternative to the BCR sequential extraction in urban soils.

  15. Subcritical Water Extraction of Amino Acids from Atacama Desert Soils

    Science.gov (United States)

    Amashukeli, Xenia; Pelletier, Christine C.; Kirby, James P.; Grunthaner, Frank J.

    2007-01-01

    Amino acids are considered organic molecular indicators in the search for extant and extinct life in the Solar System. Extraction of these molecules from a particulate solid matrix, such as Martian regolith, will be critical to their in situ detection and analysis. The goals of this study were to optimize a laboratory amino acid extraction protocol by quantitatively measuring the yields of extracted amino acids as a function of liquid water temperature and sample extraction time and to compare the results to the standard HCl vapor- phase hydrolysis yields for the same soil samples. Soil samples from the Yungay region of the Atacama Desert ( Martian regolith analog) were collected during a field study in the summer of 2005. The amino acids ( alanine, aspartic acid, glutamic acid, glycine, serine, and valine) chosen for analysis were present in the samples at concentrations of 1 - 70 parts- per- billion. Subcritical water extraction efficiency was examined over the temperature range of 30 - 325 degrees C, at pressures of 17.2 or 20.0 MPa, and for water- sample contact equilibration times of 0 - 30 min. None of the amino acids were extracted in detectable amounts at 30 degrees C ( at 17.2 MPa), suggesting that amino acids are too strongly bound by the soil matrix to be extracted at such a low temperature. Between 150 degrees C and 250 degrees C ( at 17.2 MPa), the extraction efficiencies of glycine, alanine, and valine were observed to increase with increasing water temperature, consistent with higher solubility at higher temperatures, perhaps due to the decreasing dielectric constant of water. Amino acids were not detected in extracts collected at 325 degrees C ( at 20.0 MPa), probably due to amino acid decomposition at this temperature. The optimal subcritical water extraction conditions for these amino acids from Atacama Desert soils were achieved at 200 degrees C, 17.2 MPa, and a water- sample contact equilibration time of 10 min.

  16. Subcritical Water Extraction of Amino Acids from Atacama Desert Soils

    Science.gov (United States)

    Amashukeli, Xenia; Pelletier, Christine C.; Kirby, James P.; Grunthaner, Frank J.

    2007-01-01

    Amino acids are considered organic molecular indicators in the search for extant and extinct life in the Solar System. Extraction of these molecules from a particulate solid matrix, such as Martian regolith, will be critical to their in situ detection and analysis. The goals of this study were to optimize a laboratory amino acid extraction protocol by quantitatively measuring the yields of extracted amino acids as a function of liquid water temperature and sample extraction time and to compare the results to the standard HCl vapor- phase hydrolysis yields for the same soil samples. Soil samples from the Yungay region of the Atacama Desert ( Martian regolith analog) were collected during a field study in the summer of 2005. The amino acids ( alanine, aspartic acid, glutamic acid, glycine, serine, and valine) chosen for analysis were present in the samples at concentrations of 1 - 70 parts- per- billion. Subcritical water extraction efficiency was examined over the temperature range of 30 - 325 degrees C, at pressures of 17.2 or 20.0 MPa, and for water- sample contact equilibration times of 0 - 30 min. None of the amino acids were extracted in detectable amounts at 30 degrees C ( at 17.2 MPa), suggesting that amino acids are too strongly bound by the soil matrix to be extracted at such a low temperature. Between 150 degrees C and 250 degrees C ( at 17.2 MPa), the extraction efficiencies of glycine, alanine, and valine were observed to increase with increasing water temperature, consistent with higher solubility at higher temperatures, perhaps due to the decreasing dielectric constant of water. Amino acids were not detected in extracts collected at 325 degrees C ( at 20.0 MPa), probably due to amino acid decomposition at this temperature. The optimal subcritical water extraction conditions for these amino acids from Atacama Desert soils were achieved at 200 degrees C, 17.2 MPa, and a water- sample contact equilibration time of 10 min.

  17. Metal Concentrations in Soil Paste Extracts as Affected by Extraction Ratio

    Directory of Open Access Journals (Sweden)

    Filip M.G. Tack

    2002-01-01

    Full Text Available Saturated paste extracts are sometimes used to estimate metal levels in the soil solution. To assess the significance of heavy-metal concentrations measured in saturation extracts, soil paste extracts were prepared with distilled water in amounts ranging from 60–200% of the moisture content at saturation. Trace metals behaved as if a small pool consistently was dissolved independent of the extraction ratio applied. Metal concentrations in the solution hence were not buffered by the solid phase, but the observed behaviour would allow the estimation of metal concentrations in the soil solution as a function of moisture content. The behaviour of iron and manganese suggested that some microbial reduction occurred. The intensity increased with increasing extraction ratio but not to the extent of affecting dissolution of trace elements.

  18. Remediation of Contaminated Soils By Supercritical Carbon Dioxide Extraction

    Science.gov (United States)

    Ferri, A.; Zanetti, M. C.; Banchero, M.; Fiore, S.; Manna, L.

    The contaminants that can be found in soils are many, inorganic, like heavy metals, as well as organic. Among the organic contaminants, oil and coal refineries are responsi- ble for several cases of soil contamination with PAHs (Polycyclic Aromatic Hydrocar- bons). Polynuclear aromatic hydrocarbons (PAHs) have toxic, carcinogenic and mu- tagenic effects. Limits have been set on the concentration of most contaminants, and growing concern is focusing on soil contamination issues. USA regulations set the maximum acceptable level of contamination by PAHs equal to 40 ppm at residential sites and 270 ppm at industrial sites. Stricter values are usually adopted in European Countries. Supercritical carbon dioxide extraction is a possible alternative technology to remove volatile organic compounds from contaminated soils. Supercritical fluid extraction (SFE) offers many advantages over conventional solvent extraction. Super- critical fluids combine gaseous properties as a high diffusion coefficient, and liquid properties as a high solvent power. The solvent power is strongly pressure-dependent near supercritical conditions: selective extractions are possible without changing the solvent. Solute can be separate from the solvent depressurising the system; therefore, it is possible to recycle the solvent and recover the contaminant. Carbon dioxide is frequently used as supercritical fluid, because it has moderate critical conditions, it is inert and available in pure form. In this work, supercritical fluid extraction technology has been used to remove a polynuclear aromatic hydrocarbon from contaminated soils. The contaminant choice for the experiment has been naphthalene since several data are available in literature. G. A. Montero et al. [1] studied soil remediation with supercrit- ical carbon dioxide extraction technology; these Authors have found that there was a mass-transfer limitation. In the extraction vessel, the mass transfer coefficient in- creases with the

  19. Monitoring soil bacteria with community-level physiological profiles using Biolog™ ECO-plates in the Netherlands and Europe

    DEFF Research Database (Denmark)

    Rutgers, Michiel; Wouterse, Marja; Drost, Sytske M.

    2016-01-01

    Soil samples were analyzed with community-level physiological profiles (CLPP) using Biolog™ ECO-plates in the Netherlands Soil Monitoring Network (NSMN; 704 samples) and in a European-wide transect (73 samples). The selection of sites was based on a representative sample of major soil texture typ...

  20. Resistive heating enhanced soil vapor extraction of chlorinated solvents from trichloroethylene contaminated silty, low permeable soil

    NARCIS (Netherlands)

    Zutphen, M. van; Heron, G.; Enfield, C.G.; Christensen, T.H.

    1998-01-01

    A 2D-laboratory box experiment (12 x 56 x 116 cm) was conducted to simulate the enhancement of soil vapor extraction by the application of low frequency electrical heating Uoule heating) for the remediation of a low permeable, silty soil contaminated with trichloroethylene. Joule heating enlarged th

  1. Electrodynamic soil plate oscillator: Modeling nonlinear mesoscopic elastic behavior and hysteresis in nonlinear acoustic landmine detection

    Science.gov (United States)

    Korman, M. S.; Duong, D. V.; Kalsbeck, A. E.

    2015-10-01

    An apparatus (SPO), designed to study flexural vibrations of a soil loaded plate, consists of a thin circular elastic clamped plate (and cylindrical wall) supporting a vertical soil column. A small magnet attached to the center of the plate is driven by a rigid AC coil (located coaxially below the plate) to complete the electrodynamic soil plate oscillator SPO design. The frequency dependent mechanical impedance Zmech (force / particle velocity, at the plate's center) is inversely proportional to the electrical motional impedance Zmot. Measurements of Zmot are made using the complex output to input response of a Wheatstone bridge that has an identical coil element in one of its legs. Near resonance, measurements of Zmot (with no soil) before and after a slight point mass loading at the center help determine effective mass, spring, damping and coupling constant parameters of the system. "Tuning curve" behavior of real{ Zmot } and imaginary{ Zmot } at successively higher vibration amplitudes of dry sifted masonry sand are measured. They exhibit a decrease "softening" in resonance frequency along with a decrease in the quality Q factor. In soil surface vibration measurements a bilinear hysteresis model predicts the tuning curve shape for this nonlinear mesoscopic elastic SPO behavior - which also models the soil vibration over an actual plastic "inert" VS 1.6 buried landmine. Experiments are performed where a buried 1m cube concrete block supports a 12 inch deep by 30 inch by 30 inch concrete soil box for burying a VS 1.6 in dry sifted masonry sand for on-the-mine and off-the-mine soil vibration experiments. The backbone curve (a plot of the peak amplitude vs. corresponding resonant frequency from a family of tuning curves) exhibits mostly linear behavior for "on target" soil surface vibration measurements of the buried VS 1.6 or drum-like mine simulants for relatively low particle velocities of the soil. Backbone curves for "on target" measurements exhibit

  2. The applicability of Accelerated Solvent Extraction (ASE) to extract lipid biomarkers from soils

    NARCIS (Netherlands)

    B. Jansen; K.G.J. Nierop; M.C. Kotte; P. de Voogt; J.M. Verstraten

    2006-01-01

    We investigated the ability of accelerated solvent extraction (ASE) to extract selected lipid biomarkers (C-19=C-34 n-alkanes, n-alcohols and n-fatty acids as well as dehydroabietic acid and P-sitosterol) from a sandy soil profile under Corsican pine. Two organic layers (moss and F1) as well as two

  3. Necessity of Purification during Bacterial DNA Extraction with Environmental Soils.

    Science.gov (United States)

    Lim, Hyun Jeong; Choi, Jung-Hyun; Son, Ahjeong

    2017-08-08

    Complexity and heterogeneity of soil samples have often implied the inclusion of purification steps in conventional DNA extraction for PCR assays. Unfortunately the purification steps are also time and labor intensive. Therefore the necessity of DNA purification was re-visited and investigated for a variety of environmental soil samples that contained various amounts of PCR inhibitors. Bead beating and centrifugation was used as the baseline (without purification) method for DNA extraction. Its performance was compared with that of conventional DNA extraction kit (with purification). The necessity criteria for DNA purification were established with environmental soil samples. Using lysis conditions at 3000 rpm for 3 minutes with 0.1 mm glass beads, centrifugation time of 10 minutes and 1:10 dilution ratio, the baseline method outperformed conventional DNA extraction on cell seeded sand samples. Further investigation with PCR inhibitors (i.e., humic acids, clay, and magnesium) showed that sand samples containing less than 10 ug/g humic acids and 70% clay may not require purifications. Interestingly, the inhibition pattern of magnesium ion was different from other inhibitors due to the complexation interaction of magnesium ion with DNA fragments. It was concluded that DNA extraction method without purification is suitable for soil samples that have less than 10 ug/g of humic acids, less than 70% clay content and less than 0.01% magnesium ion content.

  4. A Device for Simulating Soil Nutrient Extraction and Plant Uptake

    Institute of Scientific and Technical Information of China (English)

    YANG Xu-Jian; LAI Yong-Lin; MO Jin-Yu; SHEN Hong

    2012-01-01

    In situ evaluating the availability of soil nutrients has been a challenge.In this study,a new type of Device for Simulating Soil Nutrient Extraction and Plant Uptake (DSSNEPU) and its operating procedures were introduced.The device consists of a sampling tube,a fluid supply system,a low pressure system,a tube sheath and an elution cylinder.The sampling tube was firstly soaked in the solution of 0.5 mol L-1 NaHCO3 and then buried into soils.The fluid supply system was connected to the sampling tube and the deionized water was supplied.During the period,low pressure system started a vacuum for 3 min every 10 min interval.After extraction,the sampling tube was removed and the nutrients on the sampling tube were eluted with 0.5 mol L-1 HC1.The elution solution was used for nutrient measurement.The amounts of P and K extracted by DSSNEPU reached the maximal values after 4 h.No significant increases of P and K were observed for longer extraction duration.The optimal temperature for extracting P and K was 30 ℃ in this experiment.Extracted P and K were increased by 83.3% and 84.6% with the employment of low pressure system in comparison to those without employing low pressure system.Correlation analysis indicated that P and K extracted by DSSNEPU were highly correlated with those by conventional chemical extraction and by plant uptake.The above results suggest that this device is applicable to assess the availability of nutrients in soils.

  5. Pyrophosphate coupling with chelant-enhanced soil flushing of field contaminated soils for heavy metal extraction.

    Science.gov (United States)

    Yan, Dickson Y S; Lo, Irene M C

    2012-01-15

    This study investigated the influence of flushing duration, [S,S]-ethylenediaminedisuccinic acid (EDDS) dosage, humic acid and various combinations of ethylenediaminetetraacetic acid (EDTA), EDDS and tetrasodium pyrophosphate (Na(4)P(2)O(7)) on metal extraction during soil flushing, through column experiments. A lesser extent of enhancement in metal extraction efficiencies was found when the flushing duration and the dosage of EDDS was doubled, compared to their efficiencies measured at pore volume 100. Metal extraction efficiency was mainly influenced by the initial metal distribution in the soils rather than the flushing duration and the EDDS-to-metal molar ratio. Humic acid of less than 10mg/L as dissolved organic carbon (DOC) posed an insignificant effect on metal extraction during EDDS enhanced soil flushing. The extraction rate of Ni by EDTA and EDDS was time dependent, and was initially fast in the case of EDDS, whereas it was slow for EDTA. However, the overall Ni extraction efficiency by EDTA was higher when the flushing time was longer. Na(4)P(2)O(7) promoted the mineral dissolution which enhanced the metal extraction as a result of soil disruption. The order of metal extraction by Na(4)P(2)O(7) was Ni>Cr>Cu, probably be due to the different affinities between metals and P(2)O(7)(4-). Copyright © 2011 Elsevier B.V. All rights reserved.

  6. Uplift of Symmetrical Anchor Plates by Using Grid-Fixed Reinforced Reinforcement in Cohesionless Soil

    Institute of Scientific and Technical Information of China (English)

    Hamed Niroumand; Khairul Anuar Kassim

    2014-01-01

    Uplift response of symmetrical anchor plates with and without grid fixed reinforced (GFR) reinforcement was evaluated in model tests and numerical simulations by Plaxis. Many variations of reinforcement layers were used to reinforce the sandy soil over symmetrical anchor plates. In the current research, different factors such as relative density of sand, embedment ratios, and various GFR parameters including size, number of layers, and the proximity of the layer to the symmetrical anchor plate were investigated in a scale model. The failure mechanism and the associated rupture surface were observed and evaluated. GFR, a tied up system made of fiber reinforcement polymer (FRP) strips and end balls, was connected to the geosynthetic material and anchored into the soil. Test results showed that using GFR reinforcement significantly improved the uplift capacity of anchor plates. It was found that the inclusion of one layer of GFR, which rested directly on the top of the anchor plate, was more effective in enhancing the anchor capacity itself than other methods. It was found that by including GFR the uplift response was improved by 29%. Multi layers of GFR proved more effective in enhancing the uplift capacity than a single GFR reinforcement. This is due to the additional anchorage provided by the GFR at each level of reinforcement. In general, the results show that the uplift capacity of symmetrical anchor plates in loose and dense sand can be significantly increased by the inclusion of GFR. It was also observed that the inclusion of GFR reduced the requirement for a large L/D ratio to achieve the required uplift capacity. The laboratory and numerical analysis results are found to be in agreement in terms of breakout factor and failure mechanism pattern.

  7. Acid Release from an Acid Sulfate Soil Sample Under Successive Extractions with Different Extractants

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    An acid sulfate soil sample was successively extracted with deionized water, 1 mol L-1 KCI and 0.000 5 mol L-1 Ca(OH)2 solutions. The results showed that only very small amounts of acidity were extracted by deionized water, possibly through slow jarosite hydrolysis. Acid release through jarosite hydrolysis was greatly enhanced by Ca(OH)2 extraction at the expense of the added OH- being neutralized by the acid released. Successive extraction of the sample with KCI removed the largest amounts of acidity from the sample. However, it is likely that the major form of acidity released by KC1 extraction was exchangeable acidity. The results also show the occurrence of low or non charged A1 and Fe species in water and Ca(OH)2 extracts after first a few extractions. It appears that such a phenomenon was related to a decreasing EC value with increasing number of extractions.

  8. Direct Extraction and Amplification of DNA from Soil.

    Science.gov (United States)

    Trevors, Jack T.; Leung, K.

    1998-01-01

    Presents an exercise that describes the direct extraction and purification of DNA from a small soil sample. Also discusses the subsequent amplification of a 343-bp Tn7 transposate A gene fragment (tnsA) from a strain of Pseudomonas aureofaciens 3732RNL11. Contains 21 references. (DDR)

  9. Direct Extraction and Amplification of DNA from Soil.

    Science.gov (United States)

    Trevors, Jack T.; Leung, K.

    1998-01-01

    Presents an exercise that describes the direct extraction and purification of DNA from a small soil sample. Also discusses the subsequent amplification of a 343-bp Tn7 transposate A gene fragment (tnsA) from a strain of Pseudomonas aureofaciens 3732RNL11. Contains 21 references. (DDR)

  10. Soil Water Thermodynamic to Unify Water Retention Curve by Pressure Plates and Tensiometer

    Directory of Open Access Journals (Sweden)

    Erik eBraudeau

    2014-10-01

    Full Text Available The pressure plate method is a standard method for measuring the pF curves, also called soil water retention curves, in a large soil moisture range from saturation to a dry state corresponding to a tension pressure of near 1500 kPa. However, the pressure plate can only provide discrete water retention curves represented by a dozen measured points. In contrast, the measurement of the soil water retention curves by tensiometer is direct and continuous, but limited to the range of the tensiometer reading: from saturation to near 70-80 kPa. The two methods stem from two very different concepts of measurement and the compatibility of both methods has never been demonstrated. The recently established thermodynamic formulation of the pedostructure water retention curve, will allow the compatibility of the two curves to be studied, both theoretically and experimentally. This constitutes the object of the present article. We found that the pressure plate method provides accurate measurement points of the pedostructure water retention curve h(W, conceptually the same as that accurately measured by the tensiometer. However, contrarily to what is usually thought, h is not equal to the applied air pressure on the sample, but rather, is proportional to its logarithm, in agreement with the thermodynamic theory developed in the article. The pF curve and soil water retention curve, as well as their methods of measurement are unified in a same physical theory. It is the theory of the soil medium organization (pedostructure and its interaction with water. We show also how the hydrostructural parameters of the theoretical curve equation can be estimated from any measured curve, whatever the method of measurement. An application example using published pF curves is given.

  11. Effects of soil oven-drying on concentrations and speciation of trace metals and dissolved organic matter in soil solution extracts of sandy soils

    NARCIS (Netherlands)

    Koopmans, G.F.; Groenenberg, J.E.

    2011-01-01

    Weak salt extracts can be used to assess the availability of trace metals for leaching and uptake by soil organisms and plants in soil. Before extraction, the International Organization for Standardization recommends to dry soils in an oven at a temperature of 40 °C. Effects of soil oven-drying on

  12. Effects of soil oven-drying on concentrations and speciation of trace metals and dissolved organic matter in soil solution extracts of sandy soils

    NARCIS (Netherlands)

    Koopmans, G.F.; Groenenberg, J.E.

    2011-01-01

    Weak salt extracts can be used to assess the availability of trace metals for leaching and uptake by soil organisms and plants in soil. Before extraction, the International Organization for Standardization recommends to dry soils in an oven at a temperature of 40 °C. Effects of soil oven-drying on d

  13. TORSIONAL VIBRATIONS OF RIGID CIRCULAR PLATE ON TRANSVERSELY ISOTROPIC SATURATED SOIL

    Institute of Scientific and Technical Information of China (English)

    WU Da-zhi; CAI Yuan-qiang; XU Chang-jie; ZHAN Hong

    2006-01-01

    An analytical method was presented for the torsional vibrations of a rigid disk resting on transversely isotropic saturated soil. By Hankel transform, the dynamic governing differential equations for transversely isotropic saturated poroelastic medium were solved. Considering the mixed boundary-value conditions, the dual integral equations of torsional vibrations of a rigid circular plate resting on transversely isotropic saturated soil were established. By appropriate transform, the dual integral equations were converted into a Fredholm integral equation of the second kind. Subsequently, the dynamic compliance coefficient, the torsional angular amplitude of the foundation and the contact shear stress were expressed explicitly. Selected examples were presented to analyse the influence of saturated soil's anisotropy on the foundation's vibrations.

  14. PLATE

    DEFF Research Database (Denmark)

    Kling, Joyce; Hjulmand, Lise-Lotte

    2008-01-01

    ’s level of English is sufficient for the increasing number of courses offered in English each semester. This paper addresses these concerns and describes a pilot project initiated in 2003 at CBS to gauge the overall English language proficiency of those teaching content courses in English. Through......Copenhagen Business School (CBS) finds itself needing to address the issue of English-medium instruction for its increasing number of foreign exchange and full degree students. With internationalisation as a main pillar of the institution’s agenda, there are concerns whether the teaching faculty...... the Project in Language Assessment for Teaching in English (PLATE) language professionals from CBS’s Language Center observe teachers and provide feedback using evaluation criteria from the Common European Framework for Reference (CEFR) supplemented by some additional criteria which take the LSP nature...

  15. PLATE

    DEFF Research Database (Denmark)

    Kling, Joyce; Hjulmand, Lise-Lotte

    2008-01-01

    Copenhagen Business School (CBS) finds itself needing to address the issue of English-medium instruction for its increasing number of foreign exchange and full degree students. With internationalisation as a main pillar of the institution’s agenda, there are concerns whether the teaching faculty......’s level of English is sufficient for the increasing number of courses offered in English each semester. This paper addresses these concerns and describes a pilot project initiated in 2003 at CBS to gauge the overall English language proficiency of those teaching content courses in English. Through...... the Project in Language Assessment for Teaching in English (PLATE) language professionals from CBS’s Language Center observe teachers and provide feedback using evaluation criteria from the Common European Framework for Reference (CEFR) supplemented by some additional criteria which take the LSP nature...

  16. Anchorage of mature conifers: resistive turning moment, root-soil plate geometry and root growth orientation.

    Science.gov (United States)

    Lundström, Tor; Jonas, Tobias; Stöckli, Veronika; Ammann, Walter

    2007-09-01

    Eighty-four mature Norway spruce (Picea abies L. Karst), silver fir (Abies alba Mill) and Scots pine (Pinus sylvestris L.) trees were winched over to determine the maximum resistive turning moment (M(a)) of the root-soil system, the root-soil plate geometry, the azimuthal orientation of root growth, and the occurrence of root rot. The calculation of M(a), based on digital image tracking of stem deflection, accounted not only for the force application and its changing geometry, but also for the weight of the overhanging tree, representing up to 42% of M(a). Root rot reduced M(a) significantly and was detected in 25% of the Norway spruce and 5% of the silver fir trees. Excluding trees with root rot, differences in M(a) between species were small and insignificant. About 75% of the variance in M(a) could be explained by one of the four variables--tree mass, stem mass, stem diameter at breast height squared times tree height, and stem diameter at breast height squared. Among the seven allometric variables assessed above ground, stem diameter at breast height best described the root-soil plate dimensions, but the correlations were weak and the differences between species were insignificant. The shape of the root-soil plate was well described by a depth-dependent taper model with an elliptical cross section. Roots displayed a preferred azimuthal orientation of growth in the axis of prevailing winds, and the direction of frequent weak winds matched the orientation of growth better than that of rare strong winds. The lack of difference in anchorage parameters among species probably reflects the similar belowground growth conditions of the mature trees.

  17. An Experimental Method to Quantify Extractable Amino Acids in Soils from Southeast China

    Institute of Scientific and Technical Information of China (English)

    CHEN Xian-you; WU Liang-huan; CAO Xiao-chuang; Sarkar Animesh; ZHU Yuan-hong

    2013-01-01

    The extraction and comparison of soil amino acids using different extractants (deionized water, K2SO4, Na2SO4, NaCl, KCl) were reported. Results showed that 0.5 mol L-1 K2SO4 with a 5 times extraction was a better method to assess the concentration of extractable amino acids in soils. The total amino acids extracted from soil planted for tea were similar to the total inorganic nitrogen. While they extracted from vegetable soil and paddy soil were much lower than the total inorganic nitrogen.

  18. Evaluation of a simple, non-alkaline extraction protocol to quantify soil ergosterol

    NARCIS (Netherlands)

    De Ridder-Duine, A.S.; Smant, W.; Van der Wal, A.; Van Veen, J.A.; De Boer, W.

    2006-01-01

    Quantification of soil ergosterol is increasingly used as an estimate for soil fungal biomass. Several methods for extraction of ergosterol from soil have been published, perhaps the simplest being that described by Gong, P., Guan, X., Witter, E. [2001. A rapid method to extract ergosterol from soil

  19. Extraction DNA from Activated Sludge-Comparing with Soil Sample

    Institute of Scientific and Technical Information of China (English)

    谢冰; 奚旦立; 陈季华

    2003-01-01

    DNA directly extraction from activated sludge and soil sample with enzyme lyses methods was investigated in this paper. DNA yield from activated sludge was 3.0 mg/g. VLSS, and 28.2-43.8 μg/g soil respectively. The resulting DNA is suitable for PCR.By studied methods, higher quality and quantity of sludge DNA could be obtained rapidly and inexpensively from large number of samples, and the PCR product obtained from this protocol was not affected by contaminated higher concentration of heavy metals.

  20. Transport of bromide measured by soil coring, suction plates, and lysimeters under transient flow conditions.

    Science.gov (United States)

    Kasteel, R.; Pütz, Th.; Vereecken, H.

    2003-04-01

    Lysimeter studies are one step within the registration procedure of pesticides. Flow and transport in these free-draining lysimeters do not reflect the field situation mainly because of the occurence of a zone of local saturation at the lower boundary (seepage face). The objective of this study is to evaluate the impact of flow and transport behaviour of bromide detected with different measuring devices (lysimeters, suction plates, and soil coring) by comparing experimental results with numerical simulations in heterogeneous flow domains. We applied bromide as a small pulse to the bare soil surface (Orthic Luvisol) of the three devices and the displacement of bromide was regurlarly sampled for three years under natural wheather conditions. Based on the mean breakthrough curves we observe experimentally that lysimeters have a lower effective pore-water velocity and exhibit more solute spreading resulting in a larger dispersivity than the suction plates. This can be ascribed to the artefact of the lower boundary. We performed numerical transport simulations in 2-D heterogeneous flow fields (scaling approach) choosing appropriate boundary conditions for the various devices. The simulations allow to follow the temporal evolution of flow and transport processes in the various devices and to gain additional process understanding. We conclude that the model is essentially capable to reproduce the main experimental findings only if we account for the spatial correlation structure of the hydraulic properties, i.e. soil heterogeneity.

  1. Sequential Application of Soil Vapor Extraction and Bioremediation Processes for the Remediation of Ethylbenzene-Contaminated Soils

    DEFF Research Database (Denmark)

    Soares, António Carlos Alves; Pinho, Maria Teresa; Albergaria, José Tomás;

    2012-01-01

    Soil vapor extraction (SVE) is an efficient, well-known and widely applied soil remediation technology. However, under certain conditions it cannot achieve the defined cleanup goals, requiring further treatment, for example, through bioremediation (BR). The sequential application...

  2. Chemical extraction to assess the bioavailability of chlorobenzenes in soil with different aging periods

    Energy Technology Data Exchange (ETDEWEB)

    Song, Yang; Wang, Fang; Yang, Xinglun; Liu, Cuiying; Jin, Xin; Jiang, Xin [Chinese Academy of Sciences, Nanjing (China). State Key Lab. of Soil and Sustainable Agriculture; Kengara, Fredrick Orori [Maseno Univ. (Kenya). Dept. of Chemistry

    2011-12-15

    Bioavailability is mainly influenced by aging and desorption of contaminants in soil. The purpose of this study was to investigate the desorption kinetics of chlorobenzenes (CBs) in soil and to investigate whether chemical extractions are suitable for the bioavailability assessment of CBs in soil. A soil spiked with CBs and aged for different periods was extracted with Tenax, hydroxypropyl-{beta}-cyclodextrin (HPCD), and butanol to assess the bioavailability of CBs in soil, respectively. Earthworm (Eisenia foetida) accumulation was used as bioassay in parallel experiments to evaluate the chemical extractions. The results showed that desorption of CBs from soil with consecutive Tenax extraction fitted into triphasic kinetics model. Different chemical methods extracted different amounts of CBs over different aging periods. For hexachlorobenzene (HCB), the extraction efficiency was in the order of butanol > Tenax-6h > HPCD extraction, while the order of butanol > HPCD > Tenax-6h extraction for pentachlorobenzene (PeCB). The bioaccumulation by earthworm decreased with increasing aging period and was significantly higher for HCB than for PeCB (p < 0.05). Earthworm accumulated CBs correlated well with all the three chemical extracted CBs. However, HPCD extraction showed the converse extraction tendency with earthworm uptake of CBs. Chemical extraction could be used to assess the bioavailability of contaminants in soil; however, they were method and compound specific. Tenax and butanol extractions were more reliable than HPCD extraction for bioavailability assessment of the tested CBs and the soil used since they showed the consistent extraction tendency with earthworm uptake of CBs.

  3. A method suitable for DNA extraction from humus-rich soil.

    Science.gov (United States)

    Miao, Tianjin; Gao, Song; Jiang, Shengwei; Kan, Guoshi; Liu, Pengju; Wu, Xianming; An, Yingfeng; Yao, Shuo

    2014-11-01

    A rapid and convenient method for extracting DNA from soil is presented. Soil DNA is extracted by direct cell lysis in the presence of EDTA, SDS, phenol, chloroform and isoamyl alcohol (3-methyl-1-butanol) followed by precipitation with 2-propanol. The extracted DNA is purified by modified DNA purification kit and DNA gel extraction kit. With this method, DNA extracted from humus-rich dark brown forest soil was free from humic substances and, therefore, could be used for efficient PCR amplification and restriction digestion. In contrast, DNA sample extracted with the traditional CTAB-based method had lower yield and purity, and no DNA could be extracted from the same soil sample with a commonly-used commercial soil DNA isolation kit. In addition, this method is time-saving and convenient, providing an efficient choice especially for DNA extraction from humus-rich soils.

  4. Drop size in a liquid pulsed sieve-plate extraction column

    Directory of Open Access Journals (Sweden)

    M. R. Usman

    2009-12-01

    Full Text Available The (Benzoic acid + kerosene + water system was studied in a 5.0 cm diameter liquid pulsed liquid-liquid extraction column with a total number of 80 sieve plates. The effect of pulsation intensity, dispersed phase superficial velocity, and continuous phase superficial velocity on volume-surface mean diameter was studied. Generally, the mean drop diameter decreased more rapidly with the increase of pulsation intensities and superficial velocities at low pulsation intensities and superficial velocities. However, the effect was not found to be significant at higher pulsation intensities and higher superficial velocities. In the interpretation of the experimental results, the drop size was observed to be a function of the operating regimes (mixer-settler, dispersion, and emulsion of the pulsed sieve-plate extraction column. The experimental mean drop diameters were compared to the most acceptable analytical drop size correlation developed by Kumar and Hartland (1986. The correlation proved to be in good agreement for the column operating in the dispersion regime.

  5. Effects of Natural Environmental Changes on Soil-Vapor Extraction Rates

    Energy Technology Data Exchange (ETDEWEB)

    Martins, S; Gregory, S

    2006-03-23

    Remediation by soil-vapor extraction has been used for over a decade at Lawrence Livermore National Laboratory (LLNL). We have found that natural changes in environmental conditions affect the rate of soil-vapor extraction. Data on flow rate observations collected over this time are compared to in-situ measurements of several different environmental parameters (soil-gas pressure, soil-temperature, soil-moisture, Electrical Resistance Tomography (ERT), rainfall and barometric pressure). Environmental changes that lead to increased soil-moisture are associated with reduced soil-vapor extraction flow rates. We have found that the use of higher extraction vacuums combined with dual-phase extraction can help to increase pneumatic conductivity when vadose zone saturation is a problem. Daily changes in barometric pressure and soil-gas temperature were found to change flow rate measurements by as much as 10% over the course of a day.

  6. Changes in the extractability of heavy metals on the interaction of sewage sludge with soil

    Energy Technology Data Exchange (ETDEWEB)

    Wollan, E.; Beckett, P.H.T.

    1979-11-01

    To understand better the effects of heavy metals on crops grown on agricultural land, the extractabilities of zinc, copper, and nickel from soil amended with various amounts of sewage sludge were studied. The preparation of sludge-soil mixtures is described, and four experimental trials that measured the amounts of extractable zinc, copper, and nickel at different time intervals are reported. Chemical interactions between sludge and soil are considered. The amounts of copper, nickel, and zinc that could be extracted from the soils were shown to vary according to the time of extraction and in proportion to the sludge/soil ratio. (44 graphs, 25 references, 3 tables)

  7. Extraction of Pentachlorophenol from Soils using Environmentally Benign Lactic Acid Solutions

    Science.gov (United States)

    Soil contamination with pentachlorophenol (PCP) is widespread across the globe. Soil washing/extraction is a common technique to remove this compound. Several soil washing/extraction solutions have been used but a majority of them have the problem of persistence in the environmen...

  8. Extraction of Pentachlorophenol from Soils using Environmentally Benign Lactic Acid Solutions

    Science.gov (United States)

    Soil contamination with pentachlorophenol (PCP) is widespread across the globe. Soil washing/extraction is a common technique to remove this compound. Several soil washing/extraction solutions have been used but a majority of them have the problem of persistence in the environmen...

  9. A method to extract soil water for stable isotope analysis

    Science.gov (United States)

    Revesz, K.; Woods, P.H.

    1990-01-01

    A method has been developed to extract soil water for determination of deuterium (D) and 18O content. The principle of this method is based on the observation that water and toluene form an azeotropic mixture at 84.1??C, but are completely immiscible at ambient temperature. In a specially designed distillation apparatus, the soil water is distilled at 84.1??C with toluene and is separated quantitatively in the collecting funnel at ambient temperature. Traces of toluene are removed and the sample can be analyzed by mass spectrometry. Kerosene may be substituted for toluene. The accuracy of this technique is ?? 2 and ?? 0.2???, respectively, for ??D and ??18O. Reduced accuracy is obtained at low water contents. ?? 1990.

  10. A Soil-Plate Based Pipeline for Assessing Cereal Root Growth in Response to Polyethylene Glycol (PEG-Induced Water Deficit Stress

    Directory of Open Access Journals (Sweden)

    Sven K. Nelson

    2017-07-01

    Full Text Available Drought is a serious problem that causes losses in crop-yield every year, but the mechanisms underlying how roots respond to water deficit are difficult to study under controlled conditions. Methods for assaying root elongation and architecture, especially for seedlings, are commonly achieved on artificial media, such as agar, moistened filter paper, or in hydroponic systems. However, it has been demonstrated that measuring root characteristics under such conditions does not accurately mimic what is observed when plants are grown in soil. Morphological changes in root behavior occur because of differences in solute diffusion, mechanical impedance, exposure to light (in some designs, and gas exchange of roots grown under these conditions. To address such deficiencies, we developed a quantitative method for assaying seedling root lengths and germination in soil using a plate-based approach with wheat as a model crop. We also further developed the method to include defined water deficits stress levels using the osmotic properties of polyethylene glycol (PEG. Seeds were sown into soil-filled vertical plates and grown in the dark. Root length measurements were collected using digital photography through the transparent lid under green lighting to avoid effects of white light exposure on growth. Photographs were analyzed using the cross-platform ImageJ plugin, SmartRoot, which can detect root edges and partially automate root detection for extraction of lengths. This allowed for quick measurements and straightforward and accurate assessments of non-linear roots. Other measurements, such as root width or angle, can also be collected by this method. An R function was developed to collect exported root length data, process and reformat the data, and output plots depicting root/shoot growth dynamics. For water deficit experiments, seedlings were transplanted side-by-side into well-watered plates and plates containing PEG solutions to simulate precise

  11. Ultramicroband array electrode. 1. Analysis of mercury in contaminated soils and flue gas exposed samples using a gold-plated iridium portable system by anodic stripping voltammetry.

    Science.gov (United States)

    Xiao, Li; Dietze, William; Nyasulu, Frazier; Mibeck, Blaise A F

    2006-07-15

    The applicability of a gold-plated iridium Nano-Band array ultramicroelectrode (6 microm by 0.2 microm, 64-microm interspacing, 100 electrode bands) in the analysis of mercury using a portable system is demonstrated by anodic stripping voltammetry in real-life samples. Optimized measurement parameters, 0.1 M HCl electrolyte, plating potential of 0 mV, and staircase scan mode were identified. The dynamic linear range is 10-180 ppb at 5-s deposition time with 1.5 microC of gold plated. The experimental detection limit for Hg2+ in 0.1 M HCl was 0.5 ppb at a deposition time of 4 min and a scan rate of 10 V/s. Real-life samples, such as flue gas exposed samples from flue gas simulators could be analyzed within 5 min using the method of standard additions. We identified a field-portable extraction procedure for soil samples using 1:1 concentrated HNO3/30% H2O2 mixture, compatible with ASV and the iridium electrode. The detection limit for soils is 1 ppm. The results obtained using ASV are in good agreement with reference values using cold vapor atomic absorption for the sample matrixes studied here. To our knowledge, this is the first mercury application using a reusable iridium array ultramicroelectrode. The portable potentiostat is less than 500 g, and together with the portable digestion method, makes the Nano-Band Explorer system field applicable.

  12. Theoretical basics of applying the one dimensional problem of soils compression seal theory to large foundation plates calculation

    Directory of Open Access Journals (Sweden)

    Isaev Veniamin

    2016-01-01

    Full Text Available Calculation of compressed footings settlement is one of the most vital tasks of soil mechanics. The calculation method of layer-by-layer addition, which recommended by current regulations and used in structural engineering practice, is most suitable for determining the settlement of foundations with an area of less than 50 m2. The authors prove that it’s possible to apply the one-dimensional problem of soils compression seal theory to the calculation of the settlement of large foundation plates. The proposed method of determining the settlement of large foundation plates makes the calculations simpler. There are examples of comparable calculations using the existing and proposed methods.

  13. Predicting Soil-Air and Soil-Water Transport Properties During Soil Vapor Extraction

    DEFF Research Database (Denmark)

    Poulsen, Tjalfe

    designing and operating remediation systems. Simple and accurate models for estimating soil properties from soil parameters that are easy to measure are useful in connection with preliminary remedial investigations and evaluation of remedial technologies. In this work simple models for predicting transport...

  14. Effect of wettability of Wilhelmy plate and du Nouey ring on interfacial tension measurements in solvent extraction systems

    Energy Technology Data Exchange (ETDEWEB)

    Gaonkar, A.G.; Neuman, R.D.

    1984-03-01

    The interfacial tension, ..gamma.., of di(2-ethylhexyl)phosphoric acid/n-dodecane/0.0010 N HCl systems was investigated at 20/sup 0/C to develop appropriate experimental techniques for use in liquid-liquid solvent extraction studies. The stringent precautions and purification procedures necessary to ensure that the system is free from interfering surface-active impurities are discussed. The Wilhelmy plate method was found to be superior to the du Nouey ring technique. Sandblasted glass plates gave reliable and reproducible values of ..gamma... However, with sandblasted platinum plates, increasingly lower ..gamma.. values were obtained with higher HDEHP concentrations. This behavior was attributed to the change in the wetting characteristics of the platinum plate by the adsorption of HDEHP on the platinum plate during its passage through the n-dodecane phase containing HDEHP. 30 references, 4 figures.

  15. Comparison of inductively coupled plasma mass spectrometry and colorimetric determination of total and extractable phosphorus in soils

    Energy Technology Data Exchange (ETDEWEB)

    Ivanov, Krasimir, E-mail: kivanov1@abv.bg [Department of Chemistry, University of Agriculture, Plovdiv (Bulgaria); Zaprjanova, Penka [Tobacco and Tobacco Products Institute, Plovdiv (Bulgaria); Petkova, Milena [Department of Chemistry, University of Agriculture, Plovdiv (Bulgaria); Stefanova, Violeta; Kmetov, Veselin; Georgieva, Deyana [Department of Analytical Chemistry, Plovdiv University ' Paisii Hilendarski,' Plovdiv (Bulgaria); Angelova, Violina [Department of Chemistry, University of Agriculture, Plovdiv (Bulgaria)

    2012-05-15

    The most widely used method for determination of total phosphorus in soils is perchloric acid digestion, followed by a colorimetric assay to measure the concentration of P in solution. The first part of this study compares an alternative digestion method, using aqua regia (ISO 11466 and EPA Method 3052), with perchloric acid digestion procedure, and also compares inductively coupled plasma mass spectroscopy (ICP-MS) with colorimetry for the measurement of P on the basis of five internationally certified standard soils and 20 real-life soils with widely different extractability of phosphorus. The phosphorus concentration was determined by means of the reduced phosphomolybdenum blue and ICP-MS. The relationship between methods has been examined statistically. Good agreement of the results from colorimetry and ICP-MS was established for all certified soils. The microwave-assisted digestion with aqua regia was comparable, both in precision and accuracy, with the hot plate aqua regia method. The phosphorus concentration found with the HF + HClO{sub 4} digestion method was in good agreement with the certified mean values, while the superiority in extracting phosphorus, when compared to other methods, was obvious. Soil testing for plant-available phosphorus in Bulgaria and many European countries is most commonly conducted using acid Ca-lactate extraction (Egner-Riehm test) and alkaline sodium bicarbonate extraction (BDS ISO 11263:2002), based on Olsen test, followed by a colorimetric assay to measure the concentration of P in solution. The second part of this study reports the differences between Egner-Riehm test and BDS ISO 11263:2002 measured colorimetrically and by ICP-MS. Fifty soils were selected from South Bulgaria to represent a wide range of soil properties. It was established that ICP-MS consistently yielded significantly higher P concentrations than the colorimetric method in both extraction tests, and the relative differences were greatest in soils with lower

  16. Supercritical fluid extraction (SFE) of PCBs and organochlorine pesticides from soil. Comparison with conventional extraction methods and optimization for real soil samples

    NARCIS (Netherlands)

    Velde EG van der; Ramlal MR; Kootstra PR; Liem AKD; LOC

    1995-01-01

    This report describes the first results of Supercritical Fluid Extraction (SFE) as technique for the extraction of organic components from soil. SFE is based on the extraction properties of supercritical fluids - in this case CO2 - having liquidlike as well as gaslike behaviour as their low

  17. Selective Extraction of Organic Contaminants from Soil Using Pressurised Liquid Extraction

    Directory of Open Access Journals (Sweden)

    Rozita Osman

    2013-01-01

    Full Text Available This study focuses on the application of sorbents in pressurised liquid extraction (PLE cell to establish a selective extraction of a variety of organic contaminants (polycyclic aromatic hydrocarbons (PAHs, chlorpyrifos, phenol, pentachlorophenol, and sterols from soil. The selectivity and efficiency of each sorbent depend on the properties of the material, extracting solvent, capacity factor, organic compounds of interest, and PLE operating parameters (temperature, pressure, and extraction time. Several sorbents (silica, alumina, and Florisil were evaluated and with the proper choice of solvents, polar and nonpolar compounds were successfully separated in two fractions. Nonpolar compounds (PAHs, chlorpyrifos, and pentachlorophenol were recovered in the first fraction using a polar sorbent such as Florisil or alumina, and n-hexane as eluting solvent, while more polar compounds (phenol and sterols were recovered in the second fraction using methanol. Silica (5 g was found to be effective for selective extraction with the satisfactory recoveries for all compounds (PAHs from 87.1–96.2%, chlorpyrifos 102.9%, sterols from 93.7–100.5%, phenol 91.9%, and pentachlorophenol 106.2%. The efficiency and precision of this extraction approach and the existing EPA Method 3545 were compared.

  18. Solvent extraction of chlorinated compounds from soils and hydrodechlorination of the extract phase.

    Science.gov (United States)

    Murena, Fabio; Gioia, Francesco

    2009-03-15

    The remediation of soils contaminated with chlorinated compounds was investigated. The process consists of solvent extraction followed by catalytic hydroprocessing (hydrodechlorination) of the extract phase. A mixture of ethylacetate-acetone-water (E-A-W) was adopted as solvent in the extraction process. Tests of extraction of chlorobenzene from a model contaminated soil were carried out and the Langmuir adsorption equation was characterized. The solvent, contaminated with different chlorinated compounds was then hydrotreated with a Pd/C catalyst. The chlorinated compounds tested are: chlorobenzene, hexachlorobenzene and hexachloroethane at various initial concentrations. The reaction runs were carried out at room temperature and at a hydrogen pressure of 1bar. Hydrotreating of these compounds takes place according to a Langmuir-Hinshelwood mechanism whose kinetic parameters were determined. The experiments show that high destruction efficiencies may be reached in reasonably short times, particularly for hexachloroethane. Longer times are necessary for the aromatic compounds (chlorobenzene and hexachlorobenzene) for which the CCl bond is much stronger than that in the aliphatic compound. Time for a 95% destruction efficiency for all experimental runs was determined. A noteworthy finding is that ethylacetate and acetone do not undergo any reaction during hydrotreating. Thus the treated extract solution may be recycled inasmuch as it conserves its full extracting capacity towards chlorinated compounds. A limitation in recycling is the inhibiting effect of benzene on the HDCl rate: benzene produced by HDCl of chlorinated compounds, accumulates in the solvent mixture in the event of recycling. Simulation of the process with the recycling of the solvent was carried out, accounting for the inhibiting effect of benzene.

  19. Time and moisture effects on total and bioavailable copper in soil water extracts

    DEFF Research Database (Denmark)

    Tom-Petersen, Andreas; Hansen, H.C.B.; Nybroe, O.

    2004-01-01

    between total metal content and metal toxicity calls for integrated chemical and biological analysis. The aim of this work was to determine time- and moisture-dependent changes in total water-extractable Cu as well as bioavailable Cu in soil water extracts. Measurements of total water-extractable copper...... to increase with time. The moisture content of the soil was important for Cu retention. Dry soil had higher [Cu](tot) concentrations than humid soil, but the [Cu](bio) to [Cu](tot) ratio was lower in the dry soil. Alternating drying and wetting did not lead to a more rapid Cu retention than observed under...

  20. The existence state in the soil of radioactive cesium from the Fukushima Dai-ichi nuclear power plant accident by imaging plate photograph

    Science.gov (United States)

    Satou, Yukihiko; Sueki, Keisuke

    2013-04-01

    In the accident of the Fukushima Daiichi nuclear power plant, the wide area in east Japan was polluted seriously with radioactive cesium. But, unlike Chernobyl, reactor core explosion did not occur in Fukushima. Therefore, it is thought that many radioactive nuclides emitted into the atmosphere were in the gas state and aerosol. However, when the imaging plate photographs of the surface soils in Fukushima was observed, many granular radionuclides existed. Then, in order to confirm a radioactive cesium of particle state, the treatment for the soils contaminated with radioactive cesium by using chemical operation was tried. Three type soils, that is, paddy soil, river sediment, and sea sand, were made applicable to research. The contaminated soil samples were collected in Fukushima and Ibaraki prefecture. Radioactivity concentrations of 137Cs and 134Cs were measured by using gamma-ray spectrometry with a high pure germanium (HPGe) detector. After the radioactively measurement, soils had been burned in oven for five hours in 500 degree Celsius. Concentrated hydrochloric acid was added to soil samples, and they were heated for three hours. These samples were divided into residue and elution by centrifugal separation, and then radioactivity of cesium contained in residue was measured. After chemical operations, 70% and 85% of radioactive cesium from river sediment and sea sand were extracted approximately into elution, respectively. In contrast, in the soil of the paddy field, only 30% of radioactive cesium was approximately eluted. When radiation image photograph of the residues of all three types of soils were taken and observed, the granular radioactive nuclides remained clearly in paddy soil and river sediment. In contrast, all the granular radioactive nuclides in sea sand disappeared after treatment. The results of above things that desorption of radioactive cesium depend on the kind of soil. Furthermore, it was suggested that there was radioactive cesium of

  1. Extraction of amino acids from soils and sediments with superheated water

    Science.gov (United States)

    Cheng, C. N.; Ponnamperuma, C.

    1974-01-01

    A method of extraction for amino acids from soils and sediments involving superheated water has been investigated. About 75-97 per cent of the amino acids contained in four soils of a soil profile from Illinois were extracted by this method. Deep penetration of water into soil aggregates and partial hydrolysis of peptide bonds during this extraction by water at high temperature are likely mechanisms responsible for the release of amino acids from samples. This extraction method does not require subsequent desalting treatments when analyses are carried out with an ion-exchange amino acid analyzer.

  2. Comparison of three DNA extraction methods for recovery of soil protist DNA.

    Science.gov (United States)

    Santos, Susana S; Nielsen, Tue Kjærgaard; Hansen, Lars H; Winding, Anne

    2015-08-01

    The use of molecular methods to investigate protist communities in soil is in rapid development this decade. Molecular analysis of soil protist communities is usually dependant on direct genomic DNA extraction from soil and inefficient or differential DNA extraction of protist DNA can lead to bias in downstream community analysis. Three commonly used soil DNA extraction methods have been tested on soil samples from three European Long-Term Observatories (LTOs) with different land-use and three protist cultures belonging to different phylogenetic groups in different growth stages. The methods tested were: ISOm-11063 (a version of the ISO-11063 method modified to include a FastPrep ®-24 mechanical lysis step), GnS-GII (developed by the GenoSol platform to extract soil DNA in large-scale soil surveys) and a commercial DNA extraction kit - Power Lyzer™ PowerSoil® DNA Isolation Kit (MoBio). DNA yield and quality were evaluated along with DNA suitability for amplification of 18S rDNA fragments by PCR. On soil samples, ISOm-11063 yields significantly higher DNA for two of the three soil samples, however, MoBio extraction favors DNA quality. This method was also more effective to recover copies of 18S rDNA numbers from all soil types. In addition and despite the lower yields, higher DNA quality was observed with DNA extracted from protist cultures with the MoBio method. Likewise, a bead-beating step shows to be a good solution for DNA extraction of soil protists, since the recovery of DNA from protist cultures and from the different soil samples with the ISOm method proved to be efficient in recovering PCR-amplifiable DNA. This study showed that soil DNA extraction methods provide biased results towards the cyst stages of protist organism. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Comparison of commercial kits for the extraction of DNA from paddy soils.

    Science.gov (United States)

    Knauth, S; Schmidt, H; Tippkötter, R

    2013-03-01

    The objective of this study was to compare the extraction efficiency of commercial DNA kits by evaluating the quantity and purity of DNA extracts obtained from paddy soils. DNA was extracted from three paddy soils using the FastDNA® SPIN kit for soil (FD), the innuSPEED soil DNA kit (INS) and the NucleoSpin® soil kit (NSP). DNA extracts were analysed by agarose gel electrophoresis and UV spectroscopy. Polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) analyses were conducted to evaluate the potential bias of the DNA extractions on fingerprinting techniques. Regarding the quantity and the purity of the extracted DNA, the NSP kit was detected superior to the FD kit, while the INS kit failed to extract detectable amounts of DNA. DGGE fingerprints generated from PCR products (FD, NSP) showed high levels of similarity for the amplified 16S rRNA genes of methanogenic archaea (>95%) and bacteria (up to 100%) in each soil. This study suggested that the recently introduced NSP kit allowed for the adjustment of the lysis buffer composition to the soil of interest and is at least equivalent to the well-established FD kit for the extraction of DNA from paddy soils. The choice of commercial kits (FD, INS, NSP) has been of great importance regarding the quantity and purity of DNA extracted from paddy soils in this study. The composition of the cell lysis buffer represented a key component for successful extractions of DNA from different soils. The possibility of adjusting the lysis buffer to the soil of interest as well as the reproducibility of DGGE banding patterns makes the recently introduced NSP kit a strong competitor to the well-established FD kit for the extraction of DNA from paddy soils. © 2012 The Society for Applied Microbiology.

  4. Remediation of uranium contaminated soils with bicarbonate extraction and microbial U(VI) reduction

    Science.gov (United States)

    Philips , Elizabeth J.P.; Landa, Edward R.; Lovely, Derek R.

    1995-01-01

    A process for concentrating uranium from contaminated soils in which the uranium is first extracted with bicarbonate and then the extracted uranium is precipitated with U(VI)-reducing microorganisms was evaluated for a variety of uranuum-contaminated soils. Bicarbonate (100 mM) extracted 20–94% of the uranium that was extracted with nitric acid. The U(VI)-reducing microorganism,Desulfovibrio desulfuricans reduced the U(VI) to U(IV) in the bicarbonate extracts. In some instances unidentified dissolved extracted components, presumably organics, gave the extract a yellow color and inhibited U(VI) reduction and/or the precipitation of U(IV). Removal of the dissolved yellow material with the addition of hydrogen peroxide alleviated this inhibition. These results demonstrate that bicarbonate extraction of uranium from soil followed by microbial U(VI) reduction might be an effective mechanism for concentrating uranium from some contaminated soils.

  5. SUPERCRITICAL FLUID EXTRACTION OF POLYCYCLIC AROMATIC HYDROCARBON MIXTURES FROM CONTAMINATED SOILS

    Science.gov (United States)

    Highly contaminated (with PAHs) topsoils were extracted with supercritical CO2 to determine the feasibility and mechanism of supercritical fluid extraction (SFE). Effect of SCF density, temperature, cosolvent type and amount, and of slurrying the soil with water were ...

  6. Phytotoxicity of trace metals in spiked and field-contaminated soils: Linking soil-extractable metals with toxicity.

    Science.gov (United States)

    Hamels, Fanny; Malevé, Jasmina; Sonnet, Philippe; Kleja, Dan Berggren; Smolders, Erik

    2014-11-01

    Soil tests have been widely developed to predict trace metal uptake by plants. The prediction of metal toxicity, however, has rarely been tested. The present study was set up to compare 8 established soil tests for diagnosing phytotoxicity in contaminated soils. Nine soils contaminated with Zn or Cu by metal mining, smelting, or processing were collected. Uncontaminated reference soils with similar soil properties were sampled, and series of increasing contamination were created by mixing each with the corresponding soil. In addition, each reference soil was spiked with either ZnCl2 or CuCl2 at several concentrations. Total metal toxicity to barley seedling growth in the field-contaminated soils was up to 30 times lower than that in corresponding spiked soils. Total metal (aqua regia-soluble) toxicity thresholds of 50% effective concentrations (EC50) varied by factors up to 260 (Zn) or 6 (Cu) among soils. For Zn, variations in EC50 thresholds decreased as aqua regia > 0.43 M HNO3  > 0.05 M ethylenediamine tetraacetic acid (EDTA) > 1 M NH4 NO3  > cobaltihexamine > diffusive gradients in thin films (DGT) > 0.001 M CaCl2 , suggesting that the last extraction is the most robust phytotoxicity index for Zn. The EDTA extraction was the most robust for Cu-contaminated soils. The isotopically exchangeable fraction of the total soil metal in the field-contaminated soils markedly explained the lower toxicity compared with spiked soils. The isotope exchange method can be used to translate soil metal limits derived from soils spiked with metal salts to site-specific soil metal limits.

  7. Extractability of Cu in Alkaline Biosolids-Amended Soils as Influenced by γ-Irradiation

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    An incubation experiment was conducted to investigate the microbial biomass associated Cu in four contrasting soils to which an alkaline stabilised sewage sludge cake was applied. The organisms of sludgeamended and control soils were killed using γ-irradiation technique, and the aqueous and acid-extractable Cu concentrations were determined. Addition of the sludge product increased significantly the concentration of both the aqueous and dilute HOAc-extractable Cu in all the irradiated soils compared to the non-sterilised sludge/soil mixtures, but the increase was more pronounced in the dilute acid-extractable Cu, indicating that the Cu rendered extractable in water and dilute acetic acid by γ-irradiation existed in the both soil liquid and solid phases. The additional increase in extractable Cu following the biocidal treatment is likely to be due to release of Cu from the same fraction of soil microbial biomass.

  8. An Evaluation Method for the Suppression of Pathogenic Fusarium oxysporum by Soil Microorganisms Using the Dilution Plate Technique.

    Science.gov (United States)

    Mitsuboshi, Masahiro; Kioka, Yuuzou; Noguchi, Katsunori; Asakawa, Susumu

    2016-09-29

    Soil-borne diseases caused by pathogenic microorganisms are one of the main factors responsible for the decline in crop yields in farmlands. Pathogenic Fusarium oxysporum causes serious damage to various crops, and, thus, a feasible diagnostic method for soil-borne diseases is required. We herein examined a simple method to evaluate the suppressiveness of soil microorganisms against a pathogen by co-cultivating indigenous soil microorganisms and a pathogenic fungus (F. oxysporum f. sp. spinaciae). We inoculated F. oxysporum onto the center of agar medium plates mixed with a dilution series of a suspension of organic fertilizers or soil. After an approximately one-week cultivation, the growth degree of F. oxysporum was estimated based on the size of the colonies that formed on the plates. The growth degree of F. oxysporum significantly differed among the organic fertilizers tested, indicating the usefulness of the method for evaluating suppressiveness by organic fertilizers. Differences in the growth degrees of F. oxysporum were associated with the incidence of disease in spinach on soil treated with organic fertilizers and inoculated with a pathogenic F. oxysporum strain. These results suggested that this method provides some useful information on the suppressiveness of organic fertilizers and soil against Fusarium wilt.

  9. Bias in bacterial diversity as a result of Nycodenz extraction from bulk soil

    DEFF Research Database (Denmark)

    Holmsgaard, Peter Nikolai; Norman, Anders; Hede, Simon Christian

    2011-01-01

    , DNA was extracted directly from soil, from NDC-extracted cells, and from the soil pellets left after NDC. Bacterial diversity was assessed by PCR amplification of the V4-V6 regions of the 16S rRNA from the extracted DNA followed by sample-tagged amplicon-pyrosequencing using the 454 Genome Sequencer......Nycodenz density centrifugation (NDC) is an isolation method that allows extraction of both culturable and unculturable bacterial cells from soil, to be used in further downstream analysis; however, to date there has been a lack of information concerning the efficiency of this method. The aim...... of this study was therefore to investigate the overall efficiency of NDC extractions from soil and to identify sampling bias, if any. Bacterial cells were extracted from three soil plots from the Danish CRUCIAL field trial using an already established NDC protocol. To evaluate all aspects of the NDC procedure...

  10. MICHIGAN SOIL VAPOR EXTRACTION REMEDIATION (MISER) MODEL: A COMPUTER PROGRAM TO MODEL SOIL VAPORT EXTRACTION AND BIOVENTING OF ORGANIC MATERIALS IN UNSATURATED GEOLOGICAL MATERIAL

    Science.gov (United States)

    This report describes the formulation, numerical development, and use of a multiphase, multicomponent, biodegradation model designed to simulate physical, chemical, and biological interactions occurring primarily in field scale soil vapor extraction (SVE) and bioventing (B...

  11. In-Situ Containment and Extraction of Volatile Soil Contaminants

    Energy Technology Data Exchange (ETDEWEB)

    Varvel, Mark Darrell

    2005-12-27

    The invention relates to a novel approach to containing and removing toxic waste from a subsurface environment. More specifically the present invention relates to a system for containing and removing volatile toxic chemicals from a subsurface environment using differences in surface and subsurface pressures. The present embodiment generally comprises a deep well, a horizontal tube, at least one injection well, at least one extraction well and a means for containing the waste within the waste zone (in-situ barrier). During operation the deep well air at the bottom of well (which is at a high pressure relative to the land surface as well as relative to the air in the contaminated soil) flows upward through the deep well (or deep well tube). This stream of deep well air is directed into the horizontal tube, down through the injection tube(s) (injection well(s)) and into the contaminate plume where it enhances volatization and/or removal of the contaminants.

  12. Ultrasonic Extraction and TLC Determination of Glyphosate in the Spiked Red Soils

    Directory of Open Access Journals (Sweden)

    Sandra Babić

    2005-09-01

    Full Text Available Pesticides that get into soil bind mostly to its solid phase by physical or chemical processes. In the valley of the Neretva River the use of herbicides, especially of glyphosate is widespread and sometimes uncontrolled. In this work ultrasonic solvent extraction (USE followed by thin-layer chromatography (TLC was applied for determining glyphosate presence in soil. The experiments were conducted with two characterised soil types. The impact of soil composition on extraction efficiency is discussed. Chemical analysis showed that soil 1 contained much more iron and aluminium oxides than soil 2, which was richer in humic substances. Low glyphosate efficiency (ca 44 % in both soils could be attributed either to its binding to iron and aluminium oxides (soil 1, or to chemisorption on humic macromolecules (soil 2.

  13. MICHIGAN SOIL VAPOR EXTRACTION REMEDIATION (MISER) MODEL: A COMPUTER PROGRAM TO MODEL SOIL VAPOR EXTRACTION AND BIOVENTING OF ORGANIC CHEMICALS IN UNSATURATED GEOLOGICAL MATERIAL

    Science.gov (United States)

    Soil vapor extraction (SVE) and bioventing (BV) are proven strategies for remediation of unsaturated zone soils. Mathematical models are powerful tools that can be used to integrate and quantify the interaction of physical, chemical, and biological processes occurring in field sc...

  14. Soil sampling and extraction methods with possible application to pear thrips (Thysanoptera: Thripidae)

    Science.gov (United States)

    John E. Bater

    1991-01-01

    Techniques are described for the sampling and extraction of microarthropods from soil and the potential of these methods to extract the larval stages of the pear thrips, Taeniothrips inconsequens (Uzel), from soil cores taken in sugar maple stands. Also described is a design for an emergence trap that could be used to estimate adult thrips...

  15. An efficient and cost-effective method for DNA extraction from athalassohaline soil using a newly formulated cell extraction buffer.

    Science.gov (United States)

    Narayan, Avinash; Jain, Kunal; Shah, Amita R; Madamwar, Datta

    2016-06-01

    The present study describes the rapid and efficient indirect lysis method for environmental DNA extraction from athalassohaline soil by newly formulated cell extraction buffer. The available methods are mostly based on direct lysis which leads to DNA shearing and co-extraction of extra cellular DNA that influences the community and functional analysis. Moreover, during extraction of DNA by direct lysis from athalassohaline soil, it was observed that, upon addition of poly ethylene glycol (PEG), isopropanol or absolute ethanol for precipitation of DNA, salt precipitates out and affecting DNA yield significantly. Therefore, indirect lysis method was optimized for extraction of environmental DNA from such soil containing high salts and low microbial biomass (CFU 4.3 × 10(4) per gram soil) using newly formulated cell extraction buffer in combination with low and high speed centrifugation. The cell extraction buffer composition and its concentration were optimized and PEG 8000 (1 %; w/v) and 1 M NaCl gave maximum cell mass for DNA extraction. The cell extraction efficiency was assessed with acridine orange staining of soil samples before and after cell extraction. The efficiency, reproducibility and purity of extracted DNA by newly developed procedure were compared with previously recognized methods and kits having different protocols including indirect lysis. The extracted environmental DNA showed better yield (5.6 ± 0.7 μg g(-1)) along with high purity ratios. The purity of DNA was validated by assessing its usability in various molecular techniques like restriction enzyme digestion, amplification of 16S rRNA gene using PCR and UV-Visible spectroscopy analysis.

  16. Rapid extraction of PCDD/Fs from soil and fly ash samples. Pressurized fluid extraction (PFE) and microwave-assisted extraction (MAE)

    Energy Technology Data Exchange (ETDEWEB)

    Sanz, P.; Fabrellas, B. [Centro de Investigaciones Energeticas Medioambientales y Tecnologicas (CIEMAT), Madrid (Spain)

    2004-09-15

    The main reference extraction method in the analysis of polychlorinated dibenzop- dioxins and dibenzofurans (PCDD/Fs) is still the Soxhlet extraction. But it requires long extraction times (up to 24 hs), large volumes of hazardous organic solvents (100-300 ml) and its automation is limited. Pressurized Fluid Extraction (PFE) and Microwave-Assisted Extraction (MAE) are two relatively new extraction techniques that reduce the time and the volume of solvent required for extraction. However, very different PFE extraction conditions are found for the same enviromental matrices in the literature. MAE is not a extraction technique very applied for the analysis of PCDD/Fs yet, although it is used for the determination of other organic compounds, such as PCBs and PAHs. In this study, PFE and MAE extraction conditions were optimized to determine PCDDs y PCDFs in fly ash and soil/sediment samples. Conventional Soxhlet extraction with toluene was used to compare the extraction efficiency of both techniques.

  17. Soil Vapor Extraction System Optimization, Transition, and Closure Guidance

    Energy Technology Data Exchange (ETDEWEB)

    Truex, Michael J.; Becker, Dave; Simon, Michelle A.; Oostrom, Martinus; Rice, Amy K.; Johnson, Christian D.

    2013-02-08

    Soil vapor extraction (SVE) is a prevalent remediation approach for volatile contaminants in the vadose zone. A diminishing rate of contaminant extraction over time is typically observed due to 1) diminishing contaminant mass, and/or 2) slow rates of removal for contamination in low-permeability zones. After a SVE system begins to show indications of diminishing contaminant removal rate, SVE performance needs to be evaluated to determine whether the system should be optimized, terminated, or transitioned to another technology to replace or augment SVE. This guidance specifically addresses the elements of this type of performance assessment. While not specifically presented, the approach and analyses in this guidance could also be applied at the onset of remediation selection for a site as a way to evaluate current or future impacts to groundwater from vadose zone contamination. The guidance presented here builds from existing guidance for SVE design, operation, optimization, and closure from the U.S. Environmental Protection Agency, U.S. Army Corps of Engineers, and the Air Force Center for Engineering and the Environment. The purpose of the material herein is to clarify and focus on the specific actions and decisions related to SVE optimization, transition, and/or closure.

  18. Solvent-extractable lipids in an acid andic forest soil; variations with dept and season

    NARCIS (Netherlands)

    Naafs, Derck Ferdinand Werner; Bergen, P.F. van; Boogert, S.J.; Leeuw, J.W. de

    2004-01-01

    Total lipid extracts from an acid andic soil profile located on Madeira Island (Portugal) were analysed using gas chromatography (GC) and GC–mass spectrometry (GC/MS). The profile was covered mainly by grass. Bulk soil characteristics determined included soil pH (H2O) ranging from 4.5 to 4.0 and TOC

  19. Relationship between dieldrin uptake in cucumber and solvent-extractable residue in soil.

    Science.gov (United States)

    Sakai, Mizuki; Seike, Nobuyasu; Murano, Hirotatsu; Otani, Takashi

    2009-12-09

    To prevent the distribution of cucumbers with dieldrin contamination exceeding the limit set by the Japanese Food Sanitation Law, the extraction solvent for dieldrin-contaminated soil was selected prior to cultivation so that the dieldrin residue level in cucumber could be predicted. The exhaustive extraction from soil could not explain the dieldrin uptake by cucumber plants. However, significant correlation (R(2) = 0.966, P dieldrin concentrations in cucumber and dieldrin concentrations extracted with 50% (v/v) methanol-water solution from soils. This was a result of the phytoavailability of dieldrin to the cucumber plants. The extractability of soil dieldrin with the methanol-water solution decreased as the organic carbon content in the soils increased. This suggested that a 50% (v/v) methanol-water solution is the optimal solution for predicting dieldrin concentrations in cucumbers by soil analysis.

  20. Recovery of Minerals in Martian Soils Via Supercritical Fluid Extraction

    Science.gov (United States)

    Debelak, Kenneth A.; Roth, John A.

    2001-03-01

    We are investigating the use of supercritical fluids to extract mineral and/or carbonaceous material from Martian surface soils and its igneous crust. Two candidate supercritical fluids are carbon dioxide and water. The Martian atmosphere is composed mostly of carbon dioxide (approx. 95.3%) and could therefore provide an in-situ source of carbon dioxide. Water, although present in the Martian atmosphere at only approx. 0.03%, is also a candidate supercritical solvent. Previous work done with supercritical fluids has focused primarily on their solvating properties with organic compounds. Interestingly, the first work reported by Hannay and Hogarth at a meeting of the Royal Society of London in 1879 observed that increasing or decreasing the pressure caused several inorganic salts e.g., cobalt chloride, potassium iodide, and potassium bromide, to dissolve or precipitate in supercritical ethanol. In high-pressure boilers, silica, present in most boiler feed waters, is dissolved in supercritical steam and transported as dissolved silica to the turbine blades. As the pressure is reduced the silica precipitates onto the turbine blades eventually requiring the shutdown of the generator. In supercritical water oxidation processes for waste treatment, dissolved salts present a similar problem. The solubility of silicon dioxide (SiO2) in supercritical water is shown. The solubility curve has a shape characteristic of supercritical systems. At a high pressure (greater than 1750 atmospheres) increasing the temperature results in an increase in solubility of silica, while at low pressures, less than 400 atm., the solubility decreases as temperature increases. There are only a few studies in the literature where supercritical fluids are used in extractive metallurgy. Bolt modified the Mond process in which supercritical carbon monoxide was used to produce nickel carbonyl (Ni(CO)4). Tolley and Tester studied the solubility of titanium tetrachloride (TiCl4) in supercritical CO2

  1. Soil DNA Extraction Procedure Influences Protist 18S rRNA Gene Community Profiling Outcome

    DEFF Research Database (Denmark)

    Santos, Susana S; Nunes, Inês; Nielsen, Tue Kjærgaard

    2017-01-01

    Advances in sequencing technologies allow deeper studies of the soil protist diversity and function. However, little attention has been given to the impact of the chosen soil DNA extraction procedure to the overall results. We examined the effect of three acknowledged DNA recovery methods, two ma...... high replication reproducibility. A comprehensive understanding of the DNA extraction techniques impact on soil protist diversity can enable more accurate diversity assays....

  2. Effects of vegetable oil residue after soil extraction on physical-chemical properties of sandy soil and plant growth.

    Science.gov (United States)

    Gong, Zongqiang; Li, Peijun; Wilke, B M; Alef, Kassem

    2008-01-01

    Vegetable oil has the ability to extract polycyclic aromatic hydrocarbons (PAHs) from contaminated sandy soil for a remediation purpose, with some of the oil remaining in the soil. Although most of the PAHs were removed, the risk of residue oil in the soil was not known. The objective of this study was to evaluate the effects of the vegetable oil residue on higher plant growth and sandy soil properties after soil extraction for a better understanding of the soil remediation. Addition of sunflower oil and column experiment were performed on a PAH contaminated soil and/or a control soil, respectively. Soils were incubated for 90 d, and soil pH was measured during the soil incubation. Higher plant growth bioassays with Avena sativa L. (oat) and Brassica rapa L. (turnip) were performed after the incubation, and then soil organic carbon contents were measured. The results show that both the nutrient amendment and the sunflower oil degradation resulted in the decrease of soil pH. When these two process worked together, their effects were counteracted due to the consumption of the nutrients and oil removal, resulting in different pH profiles. Growth of A. sativa was adversely affected by the sunflower oil, and the nutrient amendments stimulated the A. sativa growth significantly. B. rapa was more sensitive to the sunflower oil than A. sativa. Only 1% sunflower oil addition plus nutrient amendment stimulated B. rapa growth. All the other treatments on B. rapa inhibited its growth significantly. The degradation of the sunflower oil in the soils was proved by the soil organic carbon content.

  3. Distributions and concentrations of thallium in Korean soils determined by single and sequential extraction procedures.

    Science.gov (United States)

    Lee, Jin-Ho; Kim, Dong-Jin; Ahn, Byung-Koo

    2015-06-01

    The objectives of this study were to investigate the distribution of thallium in soils collected near suspected areas such as cement plants, active and closed mines, and smelters and to examine the extraction of thallium in the soils using 19 single chemical and sequential chemical extraction procedures. Thallium concentrations in soils near cement plants were distributed between 1.20 and 12.91 mg kg(-1). However, soils near mines and smelters contained relatively low thallium concentrations ranging from 0.18 to 1.09 mg kg(-1). Thallium extractability with 19 single chemical extractants from selected soils near cement plants ranged from 0.10% to 8.20% of the total thallium concentration. In particular, 1.0 M NH4Cl, 1.0 M (NH4)2SO4, and 1.0 M CH3COONH4 extracted more thallium than other extractants. Sequential fractionation results of thallium from different soils such as industrially and artificially contaminated soils varied with the soil properties, especially soil pH and the duration of thallium contamination.

  4. Aluminum extractability in red soils as influenced by land use patterns

    Institute of Scientific and Technical Information of China (English)

    叶兰军; 谢正苗; 黄昌勇; 徐建明

    2002-01-01

    This study on the effect of land use on soil quality in relation to forms and toxicity of aluminum in red soils (Ultisol) in southeast China showed that in general, the extractable order for soil active aluminum by four extractants was: NaOH 0.5 mol/L > HCl 1 mol/L > NH4Ac 1 mol/L > KCl 1 mol/L . Different uses of the red soils, developed from Quarternary red clay with the similar hydrogeological environment, greatly affected the amount of active aluminum, especially the exchangeable Al3+. The order of exchangeable Al3+ (Al mg/kg) in the red soils with different land uses was: barren land (740) > tea garden (663) > peach garden (432) > citrus garden (234) > paddy soil (127). The content of water soluble aluminum in the red soils was highly sensitive to soil acidity.

  5. Synergistic effects of the combination of oxalate and ascorbate on arsenic extraction from contaminated soils.

    Science.gov (United States)

    Lee, Jae-Cheol; Kim, Eun Jung; Baek, Kitae

    2017-02-01

    Arsenic is often associated with iron oxides in soils due to its high affinity with iron oxides and the abundance of iron oxides in the environment. Dissolution of iron oxides can subsequently release arsenic associated with them into the environment, which results in the increase of arsenic mobility in the soil environment. In this study, arsenic extraction from soils via the dissolution of iron oxides was investigated using oxalate, ascorbate, and their combination in order to effectively remediate arsenic-contaminated soils. Oxalate mainly extracted iron from soils via a ligand-promoted reaction, while ascorbate extracted iron mainly via a reductive reaction. Arsenic extractions from soils by oxalate and ascorbate were shown to behave similarly to iron extractions, indicating the concurrent release of arsenic adsorbed on iron oxides upon the dissolution of iron oxides. The combination of oxalate and ascorbate greatly increased arsenic extraction, indicating the synergistic effects of the combination of oxalate and ascorbate on iron and arsenic extraction from soils. Oxalate and ascorbate are naturally-occurring organic reagents that have chelating and reducing capacity. Therefore, the use of oxalate and ascorbate is environmentally friendly and effective for the remediation of arsenic-contaminated soils.

  6. Rapid metal extractability tests from polluted mining soils by ultrasound probe sonication and microwave-assisted extraction systems.

    Science.gov (United States)

    García-Salgado, Sara; Quijano, M Ángeles

    2016-12-01

    Ultrasonic probe sonication (UPS) and microwave-assisted extraction (MAE) were used for rapid single extraction of Cd, Cr, Cu, Ni, Pb, and Zn from soils polluted by former mining activities (Mónica Mine, Bustarviejo, NW Madrid, Spain), using 0.01 mol L(-1) calcium chloride (CaCl2), 0.43 mol L(-1) acetic acid (CH3COOH), and 0.05 mol L(-1) ethylenediaminetetraacetic acid (EDTA) at pH 7 as extracting agents. The optimum extraction conditions by UPS consisted of an extraction time of 2 min for both CaCl2 and EDTA extractions and 15 min for CH3COOH extraction, at 30% ultrasound (US) amplitude, whereas in the case of MAE, they consisted of 5 min at 50 °C for both CaCl2 and EDTA extractions and 15 min at 120 °C for CH3COOH extraction. Extractable concentrations were determined by inductively coupled plasma atomic emission spectrometry (ICP-AES). The proposed methods were compared with a reduced version of the corresponding single extraction procedures proposed by the Standards, Measurements and Testing Programme (SM&T). The results obtained showed a great variability on extraction percentages, depending on the metal, the total concentration level and the soil sample, reaching high values in some areas. However, the correlation analysis showed that total concentration is the most relevant factor for element extractability in these soil samples. From the results obtained, the application of the accelerated extraction procedures, such as MAE and UPS, could be considered a useful approach to evaluate rapidly the extractability of the metals studied.

  7. Soil clean up by vapour extraction: parametrical study; Depollution des sols par extraction sous pression reduite: etude de quelques parametres

    Energy Technology Data Exchange (ETDEWEB)

    Dutheil, C.

    2003-05-15

    Soil vapour extraction is a treatment process for soils polluted by volatile organic compounds. Its principle relies on the circulation of gaseous flow in soil by the application of a depression of some hundreds milli-bars. A parametrical study has been led on a soil artificially polluted by tri-chloro-ethene. It shows that the gaseous flow rate has a slight influence on pollutants extraction yield. This is due to rate limited mass transfer processes. Soil moisture plays a negative role on treatment efficiency because of the reduction of the porosity available for the gas circulation. Tests have been performed on a soil polluted by a complex mixture of organic pollutants to elaborate a methodology of technical feasibility assessment. This methodology aims at identifying and limiting risks of site rehabilitation failure. Tests results show that soil vapour extraction was inadequate to treat the soil tested in this study because of the strong affinity between a dense organic phase (grease) and chlorinated solvents. (author)

  8. Prediction of mono- and polycyclic aromatic hydrocarbon degradation in spiked soils using cyclodextrin extraction

    Energy Technology Data Exchange (ETDEWEB)

    Allan, Ian J. [School of Environmental Sciences, University of East Anglia, Norwich NR4 7TJ (United Kingdom); Semple, Kirk T. [Department of Environmental Sciences, Lancaster University, LA1 4YQ (United Kingdom); Hare, Rina [Alcontrol Laboratories, Chester CH5 3US (United Kingdom); Reid, Brian J. [Alcontrol Laboratories, Chester CH5 3US (United Kingdom)]. E-mail: b.reid@uea.ac.uk

    2006-11-15

    In this study, an aqueous-based hydroxypropyl-{beta}-cyclodextrin (HPCD) extraction technique was assessed for its capacity to determine the microbially degradable fraction of mono- and polycyclic aromatic hydrocarbons in four dissimilar soils. A linear relationship (slope = 0.90; R {sup 2} = 0.89), approaching 1:1 between predicted and observed phenanthrene mineralization, was demonstrated for the cyclodextrin extraction; however, the water only extraction underestimated the microbially available fraction by a factor of three (slope = 3.35; R {sup 2} = 0.64). With respect to determining the mineralizable fraction of p-cresol in soils, the cyclodextrin extraction (slope = 0.94; R {sup 2} = 0.84) was more appropriate than the water extraction (slope = 1.50; R {sup 2} = 0.36). Collectively, these results suggested that the cyclodextrin extraction technique was suitable for the prediction of the mineralizable fraction of representative PAHs and phenols present in dissimilar soils following increasing soil-contaminant contact times. The assessment of the microbial availability of contaminants in soils is important for a more representative evaluation of soil contamination. - An aqueous-based HPCD extraction technique was more appropriate than the water extraction in prediction of the mineralizable fraction of phenanthrene and p-cresol present in a range of dissimilar soils.

  9. Prediction of PAH biodegradation in field contaminated soils using a cyclodextrin extraction technique.

    Science.gov (United States)

    Papadopoulos, Apostolos; Paton, Graeme I; Reid, Brian J; Semple, Kirk T

    2007-06-01

    Biodegradation has been identified as a major loss process for organic contaminants in soils and, as a result, microbial strategies have been developed for the remediation of contaminated land. Prediction of the biodegradable fraction would be important for determining bioremediation end-points in the clean-up of contaminated land. The aim of this study was to investigate the ability of a cyclodextrin extraction to predict the extent to which polycyclic aromatic hydrocarbons (PAHs) would be degraded microbiologically in field contaminated soils; further testing the robustness and reproducibility of this extraction in chemically complex systems. Dichloromethane and hydroxypropyl-beta-cyclodextrin (HPCD) extractable fractions were measured together with the PAH biodegradable fraction in each of the six field contaminated soils. The amounts of PAHs degraded by the catabolic activity of the indigenous microflora in each of the soils were correlated with HPCD-extractable PAH concentrations. The regressions showed that the amounts of lower molecular weight PAHs extracted by the HPCD were not significantly (P > 0.05) different to the amounts that were degraded. However, higher molecular weight PAHs that were extracted by HPCD did differ significantly (P PAHs, overall the correlations between the HPCD extractable fraction and the microbially degradable fraction were very close, with mean values of the slope of line for the six soils equalling 1. This study further describes the robust and reproducible nature of the aqueous-based soil extraction technique reliably measuring the extent to which PAHs will be microbially degraded in soil.

  10. Comparison of two sequential extraction procedures for uranium fractionation in contaminated soils.

    Science.gov (United States)

    Vandenhove, Hildegarde; Vanhoudt, Nathalie; Duquène, Lise; Antunes, Kenny; Wannijn, Jean

    2014-11-01

    Two sequential extraction procedures were carried out on six soils with different chemical properties and contamination history to estimate the partitioning of uranium (U) between different soil fractions. The first standard method (method of Schultz) was specifically developed for actinides, while the second one (method of Rauret) was initially created for heavy metals. Reproducibility of both methods was compared by means of the coefficient of variation (CV). A soil-to-plant transfer experiment was also carried out with ryegrass to verify if one of the extracted fractions efficiently predicted plant uptake. In artificially contaminated soils, most of the U was retrieved from the exchangeable and the carbonates fractions. In soils with high natural levels of U or contaminated by industrial activity, most of the U was found in the less available fractions. Different U concentrations were found in the fractions which were supposed to be comparable in the two methods. Extracted fractions following Schultz differentiated more strongly between the tested soils but no relationships with soil parameters could be established. As expected, the highest U transfer factors (TF) were observed for ryegrass grown on artificially contaminated soils and the lowest on soils with high natural concentrations or industrial contamination, in agreement with the extraction procedures. No good relation was found between the soil-to-shoot TF and the extracted U concentrations. On the other hand, the U concentration in the roots, the U concentration in the shoots and the soil-to-root TF are well correlated to the U concentration determined in the first extracted fractions (so called exchangeable fractions) from the method of Schultz. We conclude that the extraction method according to Schultz should be preferably used for U, and that the exchangeable fraction can be proposed as a potential indicator to evaluate plant uptake in soils.

  11. Comparison of solvent mixtures for pressurized solvent extraction of soil fatty acid biomarkers.

    Science.gov (United States)

    Jeannotte, Richard; Hamel, Chantal; Jabaji, Suha; Whalen, Joann K

    2008-10-19

    The extraction and transesterification of soil lipids into fatty acid methyl esters (FAMEs) is a useful technique for studying soil microbial communities. The objective of this study was to find the best solvent mixture to extract soil lipids with a pressurized solvent extractor system. Four solvent mixtures were selected for testing: chloroform:methanol:phosphate buffer (1:2:0.8, v/v/v), chloroform:methanol (1:2, v/v), hexane:2-propanol (3:2, v/v) and acetone. Soils were from agricultural fields and had a wide range of clay, organic matter and microbial biomass contents. Total lipid fatty acid methyl esters (TL-FAMEs) were the extractable soil lipids identified and quantified with gas chromatography and flame ionization detection. Concentrations of TL-FAMEs ranged from 57.3 to 542.2 nmole g(-1) soil (dry weight basis). The highest concentrations of TL-FAMEs were extracted with chloroform:methanol:buffer or chloroform:methanol mixtures than with the hexane:2-propanol or acetone solvents. The concentrations of TL-FAMEs in chemical groups, including saturated, branched, mono- and poly-unsaturated and hydroxy fatty acids were assessed, and biological groups (soil bacteria, mycorrhizal fungi, saprophytic fungi and higher plants) was distinguished. The extraction efficiency for the chemical and biological groups followed the general trend of: chloroform:methanol:buffer> or =chloroform:methanol>hexane:2-propanol=acetone. Discriminant analysis revealed differences in TL-FAME profiles based on the solvent mixture and the soil type. Although solvent mixtures containing chloroform and methanol were the most efficient for extracting lipids from the agricultural soils in this study, soil properties and the lipid groups to be studied should be considered when selecting a solvent mixture. According to our knowledge, this is the first report of soil lipid extraction with hexane:2-propanol or acetone in a pressurized solvent extraction system.

  12. AVAILABILITY OF COPPER AND ZINC IN SOILS EVALUATED BY SEQUENTIAL EXTRACTION PROCEDURE (BCR

    Directory of Open Access Journals (Sweden)

    Lucilia Alves Linhares

    2009-07-01

    Full Text Available In environmental studies, knowledge of the chemical forms of copper and zinc and the relationships with the levels available, are important for predicting the elements behavior in the soil-plant system. To assess the distribution of copper and zinc in soils of Minas Gerais State and their relations with their availability, an experiment was carried out on samples from six natural soils at two depths. The soil samples were incubated with the elements of interest and subjected to sequential extraction for separation of the elements in six fractions defined operationally. The results showed that the technique provided valuable information regarding the interaction of copper and zinc in soil and their speciation in various fractions of soils. There was a larger distribution of zinc in the exchangeable fraction and residual, while copper was preferably associated to more stable chemical forms, that is, related to reducible and residual forms. The nearly null extractions of copper and zinc from the soluble fraction and the exchangeable Argilúvico Chernosol (soil 2 and Tb eutrophic Haplic Cambisol (soil 3 systems correspond to the soil-metal system with the largest retention and lower availability of the elements in these soils. The predominance of copper and zinc associated mainly with the soluble and exchangeable fractions in Cambisol (soil 4 and latosol orthic Quartzarenic Neosol (soil 6 showed increased mobility and availability of the metals in more acidic and sandy soil when compared with the other soils.

  13. Intercomparison of Lab-Based Soil Water Extraction Methods for Stable Water Isotope Analysis

    Science.gov (United States)

    Pratt, D.; Orlowski, N.; McDonnell, J.

    2016-12-01

    The effect of pore water extraction technique on resultant isotopic signature is poorly understood. Here we present results of an intercomparison of five common lab-based soil water extraction techniques: high pressure mechanical squeezing, centrifugation, direct vapor equilibration, microwave extraction, and cryogenic extraction. We applied five extraction methods to two physicochemically different standard soil types (silty sand and clayey loam) that were oven-dried and rewetted with water of known isotopic composition at three different gravimetric water contents (8, 20, and 30%). We tested the null hypothisis that all extraction techniques would provide the same isotopic result independent from soil type and water content. Our results showed that the extraction technique had a significant effect on the soil water isotopic composition. Each method exhibited deviations from spiked reference water, with soil type and water content showing a secondary effect. Cryogenic extraction showed the largest deviations from the reference water, whereas mechanical squeezing and centrifugation provided the closest match to the reference water for both soil types. We also compared results for each extraction technique that produced liquid water on both an OA-ICOS and IRMS; differences between them were negligible.

  14. Using DTPA-extractable soil fraction to assess the bioconcentration factor of plants in phytoremediation of urban soils

    Science.gov (United States)

    Rodríguez-Bocanegra, Javier; Roca, Núria; Tume, Pedro; Bech, Jaume

    2017-04-01

    Urban soils may be highly contaminated with potentially toxic metals, as a result of intensive anthropogenic activities. Developing cities are increasing the number of lands where is practiced the urban agriculture. In this way, it is necessary to assess the part of heavy metals that is transferred to plants in order to a) know the potential health risk that represent soils and b) know the relation soil-plant to assess the ability of these plants to remove heavy metals from soil. Nowadays, to assess the bioconcentration factor (BF) of plants in phytoremediation, the pseudototal o total concentration has been used by many authors. Two different urban soils with similar pH and carbonates content but with different pollution degree were phytoremediated with different plant species. Urban soil from one Barcelona district (Spain), the most contaminated soil, showed an extractability of Cu, Pb and Zn of 9.6, 6.7 and 5.8% of the total fraction respectively. The soil from Talcahuano city (Chile), with contents of heavy metals slightly above the background upper limit, present values of 15.5, 13.5 and 12% of the total fraction of studied heavy metals. Furthermore, a peri-urban analysed soil from Azul (Argentina) also showed an elevated extractability with values of 24, 13.5 and 14% of the Cu, Pb and Zn contents respectively. These soils presented more extractability than other disturbed soils, like for example, soils from mine areas. The urban soils present more developed soil with an interaction between solution and solid phase in polluted systems. The most important soil surface functional groups include the basal plane of phyllosilicates and metal hydroxyls at edge sites of clay minerals, iron oxyhydroxides, manganese oxyhydroxides and organic matter. The interaction between solution and solid phase in polluted urban systems tends to form labile associations and pollutants are more readily mobilized because their bonds with soil particles are weaker. Clay and organic

  15. Metal extraction from the artificially contaminated soil using supercritical CO2 with mixed ligands.

    Science.gov (United States)

    Park, Kwangheon; Lee, Jeongken; Sung, Jinhyun

    2013-04-01

    Supercritical fluids have good penetrating power with a high capacity to dissolve certain solutes in the fluid itself, making it applicable for soil cleaning. Supercritical CO2 along with mixed ligands has been used for cleaning artificially contaminated soil. The extraction of metal from the soil was successful, and the molar ratio of ligands to the extracted metal was as low as 3. Complicated structures with a large surface area of the real soil seemed to cause the lower efficiency. Reduced efficiency was also observed over time after the sample preparation, indicating the possibility of chemisorption of the metal ion onto the soil. The use of supercritical CO2 with dissolved mixed ligands was sufficient to extract metal from the soil. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. CREATION OF MATHEMATICAL MODEL OF EXTRACTION BY CHEESE WHEY FROM A LUPINE IN THE FORM OF A PLATE

    Directory of Open Access Journals (Sweden)

    Y. I. Shishatskii

    2015-01-01

    Full Text Available Prerequisites for creation of model are stated. At a problem definition consideration of a particle of a lupine as unlimited plate is proved. The main assumptions are formulated, regional conditions are written out. Partial solutions of the differential equation, and also the common decision for the current value of a concentration pressure С'(x,у. Distribution of concentration is symmetric concerning ordinate axis. Final expression for a field of concentration at extraction of a flat plate in a dimensionless look is written out. It is shown that distribution of concentration is rather precisely described by the first member of a row. Th e conclusion is drawn that for any timepoint under the set boundary conditions the field of concentration has an appearance of a symmetric curve with a maximum on a plate axis (Х=0. For each subsequent timepoint there will be the curve which is monotonously decreasing to a plate surface. It is proved that it is possible to define nature of change of concentration in a body at a preset value the case when strives for infinity at the set physical parameters, thickness of a plate and the organization of high intensity of branch of extractive substances from a surface Is considered. For this case the equations of rather dimensionless concentration and Fourier's numb er are received. Also the equation for definition of final time of extraction is written out. It is shown that the received solutions of the eq uations of model are found in a good consent with experimental data.

  17. Limitations and recommendations for successful DNA extraction from forensic soil samples: a review.

    Science.gov (United States)

    Young, Jennifer M; Rawlence, Nicolas J; Weyrich, Laura S; Cooper, Alan

    2014-05-01

    Soil is commonly used in forensic casework to provide discriminatory power to link a suspect to a crime scene. Standard analyses examine the intrinsic properties of soils, including mineralogy, geophysics, texture and colour; however, soils can also support a vast amount of organisms, which can be examined using DNA fingerprinting techniques. Many previous genetic analyses have relied on patterns of fragment length variation produced by amplification of unidentified taxa in the soil extract. In contrast, the development of advanced DNA sequencing technologies now provides the ability to generate a detailed picture of soil microbial communities and the taxa present, allowing for improved discrimination between samples. However, DNA must be efficiently extracted from the complex soil matrix to achieve accurate and reproducible DNA sequencing results, and extraction efficacy is highly dependent on the soil type and method used. As a result, a consideration of soil properties is important when estimating the likelihood of successful DNA extraction. This would include a basic understanding of soil components, their interactions with DNA molecules and the factors that affect such interactions. This review highlights some important considerations required prior to DNA extraction and discusses the use of common chemical reagents in soil DNA extraction protocols to achieve maximum efficacy. Together, the information presented here is designed to facilitate informed decisions about the most appropriate sampling and extraction methodology, relevant both to the soil type and the details of a specific forensic case, to ensure sufficient DNA yield and enable successful analysis. Copyright © 2014 Forensic Science Society. Published by Elsevier Ireland Ltd. All rights reserved.

  18. Non-aqueous phase liquid spreading during soil vapor extraction

    Science.gov (United States)

    Kneafsey, Timothy J.; Hunt, James R.

    2004-02-01

    Many non-aqueous phase liquids (NAPLs) are expected to spread at the air-water interface, particularly under non-equilibrium conditions. In the vadose zone, this spreading should increase the surface area for mass transfer and the efficiency of volatile NAPL recovery by soil vapor extraction (SVE). Observations of spreading on water wet surfaces led to a conceptual model of oil spreading vertically above a NAPL pool in the vadose zone. Analysis of this model predicts that spreading can enhance the SVE contaminant recovery compared to conditions where the liquid does not spread. Experiments were conducted with spreading volatile oils hexane and heptane in wet porous media and capillary tubes, where spreading was observed at the scale of centimeters. Within porous medium columns up to a meter in height containing stagnant gas, spreading was less than ten centimeters and did not contribute significantly to hexane volatilization. Water film thinning and oil film pinning may have prevented significant oil film spreading, and thus did not enhance SVE at the scale of a meter. The experiments performed indicate that volatile oil spreading at the field scale is unlikely to contribute significantly to the efficiency of SVE.

  19. Comparison of Soxhlet and Shake Extraction of Polycyclic Aromatic Hydrocarbons from Coal Tar Polluted Soils Sampled in the Field

    DEFF Research Database (Denmark)

    Lindhardt, Bo; Holst, Helle; Christensen, Thomas Højlund

    1994-01-01

    This study compares three extraction methods for PAHs in coal tar polluted soil: 3-times repeated shaking of the soil with dichloromethane-methanol (1:1), Soxhlet extraction with dichloromethane, and Soxhlet extraction with dichloromethane followed by Soxhlet extraction with methanol....... The extraction efficiencies were determined for ten selected PAHs in triplicate samples of six soils sampled at former gasworks sites. The samples covered a wide range of PAH concentrations, from 0.6 to 397 mg/kg soil. Soxhlet extraction with dichloromethane followed by Soxhlet extraction with methanol...

  20. Regularities of extracting humic acids from soils using sodium pyrophosphate solutions

    Science.gov (United States)

    Bakina, L. G.; Drichko, V. F.; Orlova, N. E.

    2017-02-01

    Regularities of extracting humic acids from different soil types (soddy-podzolic soil, gray forest soil, and all chernozem subtypes) with sodium pyrophosphate solutions at different pH values (from 5 to 13) have been studied. It is found that, regardless of soil type, the process occurs in two stages through the dissociation of carboxylic groups and phenolic hydroxyls, each of which can be described by a logistic function. Parameters of the logistic equations approximating the extraction of humic acids from soils at different pH values are independent of the content and composition of humus in soils. Changes in the optical density of humic acids extracted from soils using sodium pyrophosphate solutions with different pH values are described in the first approximation by the Gaussian function. The optically densest humic acids are extracted using sodium pyrophosphate solutions at pH 10. Therefore, it is proposed to use an extract with pH 10 for the characterization of organic matter with the maximum possible degree of humification in the given soil.

  1. Selective Extraction Methods for Aluminium, Iron and Organic Carbon from Montane Volcanic Ash Soils

    Institute of Scientific and Technical Information of China (English)

    B. JANSEN; F. H. TONNEIJCK; J. M. VERSTRATEN

    2011-01-01

    Montane volcanic ash soils contain disproportionate amounts of soil organic carbon and thereby play an often underestimated role in the global carbon cycle.Given the central role of A1 and Fe in stabilizing organic matter in volcanic ash soils,we assessed various extraction methods of A1,Fe,and C fractions from montane volcanic ash soils in northern Ecuador,aiming at elucidating the role of A1 and Fe in stabilizing soil organic matter (SOM).We found extractions with cold sodium hydroxide,ammonium oxalate/oxalic acid,sodium pyrophosphate,and sodium tetraborate to be particularly useful.Combination of these methods yielded information about the role of the mineral phase in stabilizing organic matter and the differences in type and degree of complexation of organic matter with Al and Fe in the various horizons and soil profiles.Sodium tetraborate extraction proved the only soft extraction method that yielded simultaneous information about the Al,Fe,and C fractions extracted.It also appeared to differentiate between SOM fractions of different stability.The fractions of copper chloride- and potassium chloride-extractable A1 were useful in assessing the total reactive and toxic Al fractions,respectively.The classical subdivision of organic matter into humic acids,fulvic acids,and humin added little useful information.The use of fulvic acids as a proxy for mobile organic matter as done in several model-based approaches seems invalid in the soils studied.

  2. Calibration of KE C Value in Acidic Red Soils with Fumigation-Extraction Method

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Commonly used KEC value (0.45) of the fumigation-extraction (FE) method was obtained on the basis of temperate neutral soils. To ascertain its applicability to acidic red soils widespread in southern China and other subtropical regions, the KEC value was investigated based on 8 acidic red soils by in situ labelling of native soil microorganisms using 14C-labelled glucose. Realistic KEC value for red soils could be obtained by in situ 14C-labelling as long as an incubation period of 72 h is adopted after addition of 14C glucose to soil. The single KEC values for the eight red soils ranged from 0.27 to 0.35 and averaged 0.31. Lower KEC value obtained in red soils probably resulted from different soil quality, compared with other types of soil,which causes possible changes in microbial community structure and extractability of cellular component.Microbial biomass C contents of the eight red soils measured using a unique and constant KEC value of 0.45 decreased by 22.2%~40% in comparison to those using variable KEC values. The results suggest that microbial biomass C would be significantly underestimated using the present KEC value and a calibration of the KEC value is necessary for red soils.``

  3. Extraction methods for recovery of volatile organic compounds from fortified dry soils

    Energy Technology Data Exchange (ETDEWEB)

    Minnich, M.M.; Zimmerman, J.H. [Lockheed Martin Environmental Services, Las Vegas, NV (United States); Schumacher, B.A. [Environmental Protection Agency, Las Vegas, NV (United States)

    1996-09-01

    Recovery of 8 volatile organic compounds (VOCs) from dry soils, each fortified at 800 ng/g soil, was studied in relation to the extraction method and time of extraction. Extraction procedures studied on 2 desiccator-dried soils were modifications of EPA low- and high-level purge-and-trap extractions (SW-846 Method 5030A): treatment 1, unmodified low-level procedure; treatment 2, 18 h water presoak followed by low-level procedure; treatment 3, 24 h methanol extract at room temperature followed by high-level procedure; and treatment 4, 24 h methanol extract at 65{degrees}C followed by high-level procedure. VOC recoveries from replicate soil samples increased in the treatment order 1 through 4. With Charleston soil (8% clay and 3.8% organic carbon), highly significant differences (p {le} 0.001) in recoveries among treatments were observed for trichloroethene (TCE), tetrachloroethene (PCE), toluene, ethylbenzene, and o-xylene, with 2- to 3-fold increased recoveries between treatments 1 and 3. With Hayesville soil (32% clay and 0.2% organic carbon), significant improvements (p{le}0.05) in recoveries of toluene, ethylbenzene, o-oxylene, 1,1,1-trichloroethane, TCE, and PCE were observed for heated methanol (treatment 4) rather than water extraction (treatment 1), but the increases were less than 2-fold. 19 refs., 1 fig., 5 tabs.

  4. Liquid extraction surface analysis (LESA) of hydrophobic TLC plates coupled to chip-based nanoelectrospray high-resolution mass spectrometry.

    Science.gov (United States)

    Himmelsbach, Markus; Varesio, Emmanuel; Hopfgartner, Gérard

    2014-01-01

    Direct identification and structural characterization of analyte spots on TLC plates have always been of great interest and the development of interfaces that allow TLC to be combined with MS is making steady progress. The recently introduced liquid extraction surface analysis (LESA) approach has the potential to hyphenate TLC with MS. A mixture of lipid standards was separated on HPTLC RP-18 glass plates using chloroform:methanol :acetonitrile 2:1:1 (v:v:v) as mobile phase. After visualization with primuline dye (0.02% in acetone:water 8:2 (v:v)), LESA was performed, followed by a chip-based nanoflow infusion in combination with FTICRMS. The optimized extraction solvent composition was methanol:chloroform:water:formic acid 52:24:24:0.2 (v:v:v:v). A nanoelectrospray voltage of 1.6 kV and a gas pressure of 0.2 psi were applied in all experiments. All phospholipids were extracted successfully and detected unambiguously using the optimized TLC-LESA-FTICRMS procedure. Sampling the tricaprylin spot gave the most intense signals and also tricaprin was detected. Three other triacylglycerols of higher molecular mass have logP values between 15.5 and 21.6, which are the highest among all investigated compounds and are not detected from their corresponding spots, due to the fact that the solubility of very apolar lipids is not high enough in the extraction solvent. It was demonstrated that TLC can be elegantly combined with mass spectrometry based on the LESA approach. In general, apart from the analysis of lipids, TLC-LESA-MS has a high potential for medium-polar compounds separated on reversed-phase TLC plates, but limitations are present when very apolar compounds have to be extracted.

  5. Improving Griffith's protocol for co-extraction of microbial DNA and RNA in adsorptive soils

    DEFF Research Database (Denmark)

    Paulin, Mélanie Marie; Nicolaisen, Mette Haubjerg; Jacobsen, Carsten Suhr

    2013-01-01

    Quantification of microbial gene expression is increasingly being used to study key functions in soil microbial communities, yet major limitations still exist for efficient extraction of nucleic acids, especially RNA for transcript analysis, from this complex matrix. We present an improved......-time PCR on both the RNA (after conversion to cDNA) and the DNA fraction of the extracts. Non-adsorptive soils were characterized by low clay content and/or high phosphate content, whereas adsorptive soils had clay contents above 20% and/or a strong presence of divalent Ca in combination with high p...... extraction protocol that was optimized by: i) including an adsorption-site competitor prior to cell lysis to decrease adsorption of nucleic acids to soil particles, and ii) optimizing the PEG concentration used for nucleic acid precipitation. The extraction efficiency was determined using quantitative real...

  6. Use of extracts from oyster shell and soil for cultivation of Spirulina maxima.

    Science.gov (United States)

    Jung, Joo-Young; Kim, Sunmin; Lee, Hansol; Kim, Kyochan; Kim, Woong; Park, Min S; Kwon, Jong-Hee; Yang, Ji-Won

    2014-12-01

    Calcium ion and trace metals play important roles in various metabolisms of photosynthetic organisms. In this study, simple methods were developed to extract calcium ion and micronutrients from oyster shell and common soil, and the prepared extracts were tested as a replacement of the corresponding chemicals that are essential for growth of microalgae. The oyster shell and soil were treated with 0.1 M sodium hydroxide or with 10 % hydrogen peroxide, respectively. The potential application of these natural sources to cultivation was investigated with Spirulina maxima. When compared to standard Zarrouk medium, the Spirulina maxima cultivated in a modified Zarrouk media with elements from oyster shell and soil extract exhibited increases in biomass, chlorophyll, and phycocyanin by 17, 16, and 64 %, respectively. These results indicate that the extracts of oyster shell and soil provide sufficient amounts of calcium and trace metals for successful cultivation of Spirulina maxima.

  7. Optimization of an effective extraction procedure for the analysis of microcystins in soils and lake sediments

    Energy Technology Data Exchange (ETDEWEB)

    Chen Wei [State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072 (China); Graduate School of Chinese Academy of Sciences, Beijing 100049 (China); Li Lin [State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072 (China); Gan Nanqin [State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072 (China); Song Lirong [State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072 (China)]. E-mail: lrsong@ihb.ac.cn

    2006-09-15

    Microcystin analysis in sediments and soils is considered very difficult due to low recovery for extraction. This is the primary limiting factor for understanding the fate of toxins in the interface between water and sediment in both the aquatic ecosystem as well as in soils. In the present study, a wide range of extraction solvents were evaluated over a wide range of pH, extraction approaches and equilibration time to optimize an effective extraction procedure for the analysis of microcystins in soils and lake sediments. The number of extractions required and acids in extraction solutions were also studied. In this procedure, EDTA-sodium pyrophosphate solution was selected as an extraction solvent based on the adsorption mechanism study. The optimized procedure proved to be highly efficient and achieved over 90% recovery. Finally, the developed procedure was applied to field soil and sediment sample collected from Chinese lakes during bloom seasons and microcystins were determined in six of ten samples. - Efficiency of extraction of microcystins from soil and sediment was greatly increased.

  8. COMPARISON OF DIFFERENT EXTRACTION METHODS REPRESENTING AVAILABLE AND TOTAL CONCENTRATIONS OF Cd, Cu, Fe, Mn and Zn IN SOIL

    Directory of Open Access Journals (Sweden)

    Vladimir Ivezić

    2013-06-01

    Full Text Available Various extraction methods are used to predict plant uptake of trace metals. Most commonly it is total concentration that is used for risk assessment and evaluation of trace metal availability. However, recent studies showed that total concentration is a poor indicator of availability while concentrations in soil solution show good correlation with plant uptake. Present study was conducted on magricultural soils with low levels of trace metals where 45 soil samples were collected from different soil types. The main objective was to compare four different extraction methods and examine how total and reactive (EDTA trace metal concentrations correlate ,with soil solution concentration (in this study determined by water extraction. The samples were analyzed by four extraction methods: strong acid extraction (ultra-pure HNO3 extraction and aqua regia, weak acid extraction by EDTA and the most available fraction, fraction in soil solution, were represented by water extraction (weakest extractant. Five elements were investigated (Cd, Cu, Fe, Mn and Zn. Water extraction significantly correlated with EDTA extraction for Cu, Fe and Mn, while total extraction (HNO3 extraction and aqua regia correlated significantly with water extraction only for Cu. No correlation between water extraction and total extraction confirmed poor role of total concentration as an indicator of availability. EDTA extraction can be used to represent reactive pool of trace metals in soil but it should be also taken with caution when using it to describe available fraction.

  9. Influence of soil and hydrocarbon properties on the solvent extraction of high-concentration weathered petroleum from contaminated soils.

    Science.gov (United States)

    Sui, Hong; Hua, Zhengtao; Li, Xingang; Li, Hong; Wu, Guozhong

    2014-05-01

    Petroleum ether was used to extract petroleum hydrocarbons from soils collected from six oil fields with different history of exploratory and contamination. It was capable of fast removing 76-94 % of the total petroleum hydrocarbons including 25 alkanes (C11-C35) and 16 US EPA priority polycyclic aromatic hydrocarbons from soils at room temperature. The partial least squares analysis indicated that the solvent extraction efficiencies were positively correlated with soil organic matter, cation exchange capacity, moisture, pH, and sand content of soils, while negative effects were observed in the properties reflecting the molecular size (e.g., molecular weight and number of carbon atoms) and hydrophobicity (e.g., water solubility, octanol-water partition coefficient, soil organic carbon partition coefficient) of hydrocarbons. The high concentration of weathered crude oil at the order of 10(5) mg kg(-1) in this study was demonstrated adverse for solvent extraction by providing an obvious nonaqueous phase liquid phase for hydrocarbon sinking and increasing the sequestration of soluble hydrocarbons in the insoluble oil fractions during weathering. A full picture of the mass distribution and transport mechanism of petroleum contaminants in soils will ultimately require a variety of studies to gain insights into the dynamic interactions between environmental indicator hydrocarbons and their host oil matrix.

  10. Extractability and bioavailability of Pb and As in historically contaminated orchard soil: effects of compost amendments.

    Science.gov (United States)

    Fleming, Margaret; Tai, Yiping; Zhuang, Ping; McBride, Murray B

    2013-06-01

    The availability of Pb and As in an historically contaminated orchard soil, after amendment with compost and aging in the field, was determined by single-step chemical extraction with 1.0 M ammonium acetate at pH 4.8, sequential extraction using the modified BCR test, and a redworm bioassay in the laboratory. The efficiency of soil Pb extraction by ammonium acetate was greater at higher total soil Pb but was reduced by compost amendment. Conversely, the extraction efficiency of total soil As increased with compost amendment, but was not sensitive to total soil As. The redworm bioassay indicated Pb (but not As) bioavailability to be reduced by soil amendment with compost, a result consistent with the ammonium acetate extraction test but not reflected in modified BCR test. Electron microprobe studies of the orchard soil revealed Pb and As to be spatially associated in discrete particles along with phosphorus and iron. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. The variability of standard artificial soils: Behaviour, extractability and bioavailability of organic pollutants

    Energy Technology Data Exchange (ETDEWEB)

    Hofman, Jakub, E-mail: hofman@recetox.muni.cz [Research Centre for Toxic Compounds in the Environment (RECETOX), Faculty of Science, Masaryk University, Kamenice 753/5, Brno CZ-62500 (Czech Republic); Hovorková, Ivana [Research Centre for Toxic Compounds in the Environment (RECETOX), Faculty of Science, Masaryk University, Kamenice 753/5, Brno CZ-62500 (Czech Republic); Semple, Kirk T. [Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ (United Kingdom)

    2014-01-15

    Highlights: • Artificial soils from different laboratories revealed different fates, behaviour and bioavailability of lindane and phenanthrene. • Lindane behaviour was related to organic carbon. • Phenanthrene behaviour was significantly affected by degrading microorganisms from peat. • Sterilization of artificial soils might reduce unwanted variability. -- Abstract: Artificial soil is an important standard medium and reference material for soil ecotoxicity bioassays. Recent studies have documented the significant variability of their basic properties among different laboratories. Our study investigated (i) the variability of ten artificial soils from different laboratories by means of the fate, extractability and bioavailability of phenanthrene and lindane, and (ii) the relationships of these results to soil properties and ageing. Soils were spiked with {sup 14}C-phenanthrene and {sup 14}C-lindane, and the total residues, fractions extractable by hydroxypropyl-β-cyclodextrin, and the fractions of phenanthrene mineralizable by bacteria were determined after 1, 14, 28 and 56 days. Significant temporal changes in total residues and extractable and mineralizable fractions were observed for phenanthrene, resulting in large differences between soils after 56 days. Phenanthrene mineralization by indigenous peat microorganisms was suggested as the main driver of that, outweighing the effects of organic matter. Lindane total residues and extractability displayed much smaller changes over time and smaller differences between soils related to organic matter. Roughly estimated, the variability between the artificial soils was comparable to natural soils. The implications of such variability for the results of toxicity tests and risk assessment decisions should be identified. We also suggested that the sterilization of artificial soils might reduce unwanted variability.

  12. QUANTITATIVE ELISA OF POLYCHLORINATED BIPHENYLS IN AN OILY SOIL MATRIX USING SUPERCRITICAL FLUID EXTRACTION

    Science.gov (United States)

    Soil samples from the GenCorp Lawrence Brownfields site were analyzed with a commercial semi-quantitative enzyme-linked immunosorbent assay (ELISA) using a methanol shake extraction. Many of the soil samples were extremely oily, with total petroleum hydrocarbon levels up to 240...

  13. A novel technique using the Hendrickx centrifuge for extracting winter sporangia of Synchytrium endobioticum from soil

    NARCIS (Netherlands)

    Wander, J.G.N.; Berg, van den W.; Boogert, van den P.H.J.F.; Lamers, J.G.; Leeuwen, van G.C.M.; Hendrickx, G.; Bonants, P.J.M.

    2007-01-01

    A zonal centrifugation method, known as the Hendrickx centrifuge technique, was tested for routine detection of winter sporangia of Synchytrium endobioticum in soil. In four experiments the ability of the Hendrickx centrifuge to extract the sporangia from soil was compared with a method used by the

  14. Root water extraction and limiting soil hydraulic conditions estimated by numerical simulation

    NARCIS (Netherlands)

    Jong van Lier, de Q.; Metselaar, K.; Dam, van J.C.

    2006-01-01

    Root density, soil hydraulic functions, and hydraulic head gradients play an important role in the determination of transpiration-rate-limiting soil water contents. We developed an implicit numerical root water extraction model to solve the Richards equation for the modeling of radial root water

  15. Emerging Technology Summary. ACID EXTRACTION TREATMENT SYSTEM FOR TREATMENT OF METAL CONTAMINATED SOILS

    Science.gov (United States)

    The Acid Extraction Treatment System (AETS) is intended to reduce the concentrations and/or teachability of heavy metals in contaminated soils so the soil can be returned to the site from which it originated. The objective of the project was to determine the effectiveness and com...

  16. Effect of ageing on benzo[a]pyrene extractability in contrasting soils

    Energy Technology Data Exchange (ETDEWEB)

    Duan, Luchun [CERAR-Centre for Environmental Risk Assessment and Remediation and Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), Building X, University of South Australia, Mawson Lakes, SA 5095 (Australia); Naidu, Ravi, E-mail: Ravi.Naidu@newcastle.edu.au [CERAR-Centre for Environmental Risk Assessment and Remediation and Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), Building X, University of South Australia, Mawson Lakes, SA 5095 (Australia); Liu, Yanju; Palanisami, Thavamani; Dong, Zhaomin; Mallavarapu, Megharaj [CERAR-Centre for Environmental Risk Assessment and Remediation and Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), Building X, University of South Australia, Mawson Lakes, SA 5095 (Australia); Semple, Kirk T. [Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ (United Kingdom)

    2015-10-15

    Highlights: • In vitro assessment of B[a]P in contaminated soils using 4 different methods. • An exponential kinetic model fits well with the extractability data. • Fitting parameter and {sup 14}C residue correlates with key soil properties. • Fractionation of B[a]P was obtained based on extractability by extractants. - Abstract: Changes in benzo[a]pyrene (B[a]P) extractability over 160 days ageing in four contrasting soils varying in organic matter content and clay mineralogy were investigated using dichloromethane: acetone 1:1 (DCM/Ace), 60 mM hydroxypropyl-β-cyclodextrin (HPCD) solution, 1-butanol (BuOH) and Milli-Q water. The B[a]P extractability by the four methods decreased with ageing and a first-order exponential model could be used to describe the kinetics of release. Correlation of the kinetic rate constant with major soil properties showed a significant effect of clay and sand contents and pore volume fraction (<6 nm) on sequestration of the desorbable fraction (by HPCD) and the water-extractable fraction. Analysis of {sup 14}C-B[a]P in soils after ageing showed a limited loss of B[a]P via degradation. Fractionation of B[a]P pools associated with the soil matrix was analysed according to extractability of B[a]P by the different extraction methods. A summary of the different fractions is proposed for the illustration of the effect of ageing on different B[a]P-bound fractions in soils. This study provides a better understanding of the B[a]P ageing process associated with different fractions and also emphasises the extraction capacity of the different methods employed.

  17. Comparison of DNA extraction protocols for microbial communities from soil treated with biochar

    Directory of Open Access Journals (Sweden)

    D.C.A. Leite

    2014-01-01

    Full Text Available Many studies have evaluated the effects of biochar application on soil structure and plant growth. However, there are very few studies describing the effect of biochar on native soil microbial communities. Microbial analysis of environmental samples requires accurate and reproducible methods for the extraction of DNA from samples. Because of the variety among microbial species and the strong adsorption of the phosphate backbone of the DNA molecule to biochar, extracting and purifying high quality microbial DNA from biochar-amended soil is not a trivial process and can be considerably more difficult than the extraction of DNA from other environmental samples. The aim of this study was to compare the relative efficacies of three commercial DNA extraction kits, the FastDNA® SPIN Kit for Soil (FD kit, the PowerSoil® DNA Isolation Kit (PS kit and the ZR Soil Microbe DNA Kit MiniprepTM (ZR kit, for extracting microbial genomic DNA from sand treated with different types of biochar. The methods were evaluated by comparing the DNA yields and purity and by analysing the bacterial and fungal community profiles generated by PCR-DGGE. Our results showed that the PCR-DGGE profiles for bacterial and fungal communities were highly affected by the purity and yield of the different DNA extracts. Among the tested kits, the PS kit was the most efficient with respect to the amount and purity of recovered DNA and considering the complexity of the generated DGGE microbial fingerprint from the sand-biochar samples.

  18. Comparison of DNA extraction protocols for microbial communities from soil treated with biochar

    Science.gov (United States)

    Leite, D.C.A.; Balieiro, F.C.; Pires, C.A.; Madari, B.E.; Rosado, A.S.; Coutinho, H.L.C.; Peixoto, R.S.

    2014-01-01

    Many studies have evaluated the effects of biochar application on soil structure and plant growth. However, there are very few studies describing the effect of biochar on native soil microbial communities. Microbial analysis of environmental samples requires accurate and reproducible methods for the extraction of DNA from samples. Because of the variety among microbial species and the strong adsorption of the phosphate backbone of the DNA molecule to biochar, extracting and purifying high quality microbial DNA from biochar-amended soil is not a trivial process and can be considerably more difficult than the extraction of DNA from other environmental samples. The aim of this study was to compare the relative efficacies of three commercial DNA extraction kits, the FastDNA® SPIN Kit for Soil (FD kit), the PowerSoil® DNA Isolation Kit (PS kit) and the ZR Soil Microbe DNA Kit Miniprep™ (ZR kit), for extracting microbial genomic DNA from sand treated with different types of biochar. The methods were evaluated by comparing the DNA yields and purity and by analysing the bacterial and fungal community profiles generated by PCR-DGGE. Our results showed that the PCR-DGGE profiles for bacterial and fungal communities were highly affected by the purity and yield of the different DNA extracts. Among the tested kits, the PS kit was the most efficient with respect to the amount and purity of recovered DNA and considering the complexity of the generated DGGE microbial fingerprint from the sand-biochar samples. PMID:24948928

  19. Sequential Extraction of Aluminum and Iron from Acidic Soils by Chemical Selective Dissolution Methods

    Institute of Scientific and Technical Information of China (English)

    HEJIZHENG; A.VIOLANTE; 等

    1998-01-01

    Potassium chloride, Na-pyrophosphate,CuCl2,NH4-oxalate,dithionit-citrate-bicarbonate(DCB) and Na-citrate solutions were employed to etract aluminum(Al) and iron(Fe) sequentially and separately from 15 acidic soils located at the Mangshan Mountains,Hunan Province,China,Many evidences showed that separate pyrophosphate extracted mainly KCl-extractable Al,organo-Al complexes and some inorganic Al compounds,whereas separate CuCl2 extracted KCl-extractable Al and some organo-Al complexes,CuCl2 extracted much less amounts of Al than pyrophosphate did from the soils .Separate oxalate did not extract all KCl-pyrophosphate-CuCl2-oxalate seuentially extractable Al and Fe ,Also,separate DCB did not extract all KCl-pyrophosphate-CuCl2-oxalate-DCB sequentially extractable Al. The forms of Al extacted by oxalate and DCB from the soils were majorly noncrystalline.The interlayered materials of 1.4-nm intergrade minerals of the soils were attributed mainly to hydroxy Al polymers.

  20. Influence of PAH speciation in soils on vegetative uptake of PAHs using successive extraction.

    Science.gov (United States)

    Zhang, Juan; Fan, Shu-Kai

    2016-12-15

    Polycyclic aromatic hydrocarbon (PAH) speciation in soils and the relationship between PAH speciation in soils and the accumulation of PAHs in vegetables have rarely been reported. In this study, the organic solvent extractable PAHs in soils, PAHs that bind to endogenetic soil humus, soil properties, and PAHs in B. chinensis were comprehensively studied. Mobile fulvic acid (FA) and crude humin preferred adsorbing 3-ring and 4-ring PAHs whereas stable humic acid (HA) preferred adsorbing 5-ring PAHs. The PAH speciation in soils was in the order of organic solvent extractable PAHs (59.08%)>humin-bound PAHs (26.20%)>FA-bound PAHs (10.03%)>HA-bound PAHs (4.68%). The relative amounts of FA-bound PAHs versus HA-bound PAHs were linked to soil type. FA-bound PAHs and humin mineral-bound PAHs had a positive correlation with fine particles and were preferentially accumulated in B. chinensis. Other speciation was preferentially retained in soils and adsorbed onto the surface of and within coarse particles. The PAHs in vegetables were ideally forecasted using solvent extractable PAHs, FA-bound PAHs, and soil properties (silt, moisture, and pH). The FA-bound PAHs were more soluble in water and can be easily taken up by plants together with water and nutrients.

  1. Effects of vegetable oil residue after soil extraction on physical-chemical properties of sandy soil and plant growth

    Institute of Scientific and Technical Information of China (English)

    GONG Zongqiang; LI Peijun; B.M.Wilke; Kassem Alef

    2008-01-01

    Vegetable oil has the ability to extract polycyclic aromatic hydrocarbons (PAHs) from contaminated sandy soft for a remediation purpose, with some of the oft remaining in the soil. Although most of the PAHs were removed, the risk of residue oil in the soft was not known. The objective of this study was to evaluate the effects of the vegetable oil residue on higher plant growth and sandy soft properties after soil extraction for a better understanding of the soil remediation. Addition of sunflower oil and column experiment were performed on a PAH contaminated soil and/or a control soft, respectively. Soils were incubated for 90 d, and soil pH was measured during the soil incubation. Higher plant growth bioassays with Avena sativa L. (oat) and Brassica rapa L. (turnip) were performed after the incubation, and then soil organic carbon contents were measured. The results show that both the nutrient amendment and the sunflower oil degradation resulted in the decrease of soil pH. When these two process worked together, their effects were counteracted due to the consumption of the nutrients and oil removal, resulting in different pH profiles. Growth ofA. sativa was adversely affected by the sunflower oil, and the nutrient amendments stimulated the A. sativa growth significantly. B. rapa was more sensitive to the sunflower oil than A. sativa. Only 1% sunflower oft addition plus nutrient amendment stimulated B. rapa growth. All the other treatments on B. rapa inhibited its growth significantly. The degradation of the sunflower oft in the soils was proved by the soft organic carbon content.

  2. Effect of methamidophos on soil fungi community in microcosms by plate count, DGGE and clone library analysis

    Institute of Scientific and Technical Information of China (English)

    LI Xinyu; ZHANG Huiwen; WU Minna; ZHANG Yan; ZHANG Chenggang

    2008-01-01

    Methamidophos was widely used a pesticide in northern China. The potential influences of methamidophos on soil fungal community in black soil were assessed by plate count, 28S rDNA-PCR-DGGE, and clone library analysis. Three methamidophos levels (50, 150, and 250 mg/kg) were tested in soil microcosms. Results from plate count during a 60-d microcosm experiment showed that high concentrations of methamidophos (250 mg/kg) could significantly stimulate fungal populations. DCGE (denaturing gradient gel electrophoresis) fingerprinting patterns showed a significant difference between the responses of culturable and total fungi communities under the stress of methamidophos. Shannon diversity indices calculated from DGGE profiles indicated that culturable fungi in all microcosms with methamidophos treatment increased after 1 week of incubation. However, the diversity indices of total fungi decreased in the first week, as compared to the stimulation of culturable fungi. At the 8th week, however, all the microcosms treated by methamidophos were similar to the control microcosms in community structure as suggested by the Shannon diversity indices for both culturable and total fungi. In contrast, after 1 week the fungal structure of culturable and unculturable both were disturbed to different extent under the stresses of methamidophos by clustering analysis. Clone sequencing analysis indicated the stimulation of pathogenic and unculturable fungal populations by methamidophos treatment, suggetsing potential risks of plant disease outbreak.

  3. Benzo(a)pyrene accumulation in soils of technogenic emission zone by subcritical water extraction method

    Science.gov (United States)

    Sushkova, Svetlana; Minkina, Tatiana; Kizilkaya, Ridvan; Mandzhieva, Saglara; Batukaev, Abdulmalik; Bauer, Tatiana; Gulser, Coskun

    2016-04-01

    The purpose of research is the assessment of main marker of polycyclic aromatic hydrocarbons contamination, benzo[a]pyrene (BaP) content in soils of emission zone of the power complex plant in soils with use of ecologically clean and effective subcritical water extraction method. Studies were conducted on the soils of monitoring plots subjected to Novocherkassk Power Plant emissions from burning coal. In 2000, monitoring plots were established at different distances from the NPS (1.0-20.0 km). Soil samples for the determination of soil properties and the contents of BaP were taken from a depth of 0-20 cm. The soil cover in the region under study consisted of ordinary chernozems, meadow-chernozemic soils, and alluvial meadow soils. This soil revealed the following physical and chemical properties: Corg-3.1-5.0%, pH-7.3-7.6, ECE-31.2-47.6 mmol(+)/100g; CaCO3-0.2-1.0%, the content of physical clay - 51-67% and clay - 3-37%. BaP extraction from soils was carried out by a subcritical water extraction method. Subcritical water extraction of BaP from soil samples was conducted in a specially developed extraction cartridge made of stainless steel and equipped with screw-on caps at both ends. It was also equipped with a manometer that included a valve for pressure release to maintain an internal pressure of 100 atm. The extraction cartridge containing a sample and water was placed into an oven connected to a temperature regulator under temperature 250oC and pressure 60 atm. The BaP concentration in the acetonitrile extract was determined by HPLC. The efficiency of BaP extraction from soil was determined using a matrix spike. The main accumulation of pollutant in 20 cm layer of soils is noted directly in affected zone on the plots situated at 1.2, 1.6, 5.0, 8.0 km from emission source in the direction of prevailing winds. The maximum quantity of a pollutant was founded in the soil of the plot located mostly close to a source of pollution in the direction of prevailing winds

  4. Effect of Alkaline-Stabilised Sewage Sludge on Extractable Organic Carbon and Copper in Soils

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    An incubation experiment was conducted to evaluate the potential for water contamination with sludgederived organic substances and copper following land application of alkaline-stabilised sewage sludge. Two contrasting sludge-amended soils were studied. Both soils were previously treated with urban and rural alkaline biosolids separately at sludge application rates of 0, 30 and 120 t ha-1 fresh product. The air-dried soil/sludge mixtures were wetted with distilled water, maintained at 40 % of water-holding capacity and equilibrated for three weeks at 4 ℃ before extraction. Subsamples were extracted with either distilled water or 0.5 mol L-1 K2SO4 solution. The concentrations of organic C in the aqueous and chemical extracts were determined directly with a total organic carbon (TOC) analyser. The concentrations of Cu in the two extracts were also determined by atomic absorption spectrophotometry. The relationship between the two extractable organic C fractions was examined, together with that between extractable organic C concentration and extractable Cu concentration. Application of alkaline biosolids increased the concentrations of soil mobile organic substances and Cu. The results are discussed in terms of a possible increase in the potential for leaching of sludge-derived organics and Cu in the sludge-amended soils

  5. PNEUMATIC PUMP TEST FOR DESIGN OF SOIL VACUUM EXTRACTION

    Science.gov (United States)

    In-situ pneumatic pumping tests were performed to estimate the pneumatic permeability at a site containing soils contaminated with aviation gasoline. Determination of pneumatic permeability was necessary to evaluate soil-air discharge or pore volume exchange rates. Pressure propa...

  6. Optimization of extraction procedures for ecotoxicity analyses: Use of TNT contaminated soil as a model

    Energy Technology Data Exchange (ETDEWEB)

    Sunahara, G.I.; Renoux, A.Y.; Dodard, S.; Paquet, L.; Hawari, J. [BRI, Montreal, Quebec (Canada); Ampleman, G.; Lavigne, J.; Thiboutot, S. [DREV, Courcelette, Quebec (Canada)

    1995-12-31

    The environmental impact of energetic substances (TNT, RDX, GAP, NC) in soil is being examined using ecotoxicity bioassays. An extraction method was characterized to optimize bioassay assessment of TNT toxicity in different soil types. Using the Microtox{trademark} (Photobacterium phosphoreum) assay and non-extracted samples, TNT was most acutely toxic (IC{sub 50} = 1--9 PPM) followed by RDX and GAP; NC did not show obvious toxicity (probably due to solubility limitations). TNT (in 0.25% DMSO) yielded an IC{sub 50} 0.98 + 0.10 (SD) ppm. The 96h-EC{sub 50} (Selenastrum capricornutum growth inhibition) of TNT (1. 1 ppm) was higher than GAP and RDX; NC was not apparently toxic (probably due to solubility limitations). Soil samples (sand or a silt-sand mix) were spiked with either 2,000 or 20,000 mg TNT/kg soil, and were adjusted to 20% moisture. Samples were later mixed with acetonitrile, sonicated, and then treated with CaCl{sub 2} before filtration, HPLC and ecotoxicity analyses. Results indicated that: the recovery of TNT from soil (97.51% {+-} 2.78) was independent of the type of soil or moisture content; CaCl{sub 2} interfered with TNT toxicity and acetonitrile extracts could not be used directly for algal testing. When TNT extracts were diluted to fixed concentrations, similar TNT-induced ecotoxicities were generally observed and suggested that, apart from the expected effects of TNT concentrations in the soil, the soil texture and the moisture effects were minimal. The extraction procedure permits HPLC analyses as well as ecotoxicity testing and minimizes secondary soil matrix effects. Studies will be conducted to study the toxic effects of other energetic substances present in soil using this approach.

  7. Selenium speciation in phosphate mine soils and evaluation of a sequential extraction procedure using XAFS.

    Science.gov (United States)

    Favorito, Jessica E; Luxton, Todd P; Eick, Matthew J; Grossl, Paul R

    2017-10-01

    Selenium is a trace element found in western US soils, where ingestion of Se-accumulating plants has resulted in livestock fatalities. Therefore, a reliable understanding of Se speciation and bioavailability is critical for effective mitigation. Sequential extraction procedures (SEP) are often employed to examine Se phases and speciation in contaminated soils but may be limited by experimental conditions. We examined the validity of a SEP using X-ray absorption spectroscopy (XAS) for both whole and a sequence of extracted soils. The sequence included removal of soluble, PO4-extractable, carbonate, amorphous Fe-oxide, crystalline Fe-oxide, organic, and residual Se forms. For whole soils, XANES analyses indicated Se(0) and Se(-II) predominated, with lower amounts of Se(IV) present, related to carbonates and Fe-oxides. Oxidized Se species were more elevated and residual/elemental Se was lower than previous SEP results from ICP-AES suggested. For soils from the SEP sequence, XANES results indicated only partial recovery of carbonate, Fe-oxide and organic Se. This suggests Se was incompletely removed during designated extractions, possibly due to lack of mineral solubilization or reagent specificity. Selenium fractions associated with Fe-oxides were reduced in amount or removed after using hydroxylamine HCl for most soils examined. XANES results indicate partial dissolution of solid-phases may occur during extraction processes. This study demonstrates why precautions should be taken to improve the validity of SEPs. Mineralogical and chemical characterizations should be completed prior to SEP implementation to identify extractable phases or mineral components that may influence extraction effectiveness. Sequential extraction procedures can be appropriately tailored for reliable quantification of speciation in contaminated soils. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Application of off-gas treatment technology to soil vapour extraction systems

    Energy Technology Data Exchange (ETDEWEB)

    Karp, G. S.; Harvey, E. M.; McKee, R. C. E. [O`Connor Associates Environmental Inc., Oakville, ON (Canada); Lucas, W. P. [Commenco Systems Inc., Concord, ON (Canada)

    1995-12-31

    Various off-gas treatment technologies, including carbon adsorption, thermal incineration, UV oxidation, bio-reactors, combustion and catalytic oxidation were investigated as means to remediate sub-surface soils contaminated with petroleum hydrocarbons or volatile organic compounds. The primary objective was to determine the most cost-effective portable off-gas treatment technology for a typical soil vapour extraction system. Advantages, disadvantages and relative costs of each technology were summarized. Catalytic oxidation was found to be the most cost-effective method for off-gas treatment for the specified soil vapour extraction systems.

  9. A comparison between heavy metals released from soil and its efficient speciation extracted by sequential extraction procedure

    Institute of Scientific and Technical Information of China (English)

    ZHANG Hui

    2008-01-01

    A simulating experiment was carried out on the interaction between natural precipitation and soil. The results demonstrated that the contents of heavy metals (V, Co, Cr, and Ni) released from soil into the solution under Earth's surface conditions are higher than the contents of those metals bonded to exchangeable species, which were extracted by sequential extraction procedure recommended by Tessier and others in 1979. It is demonstrated that the metals bonded to other 3 species (carbonate, Fe-Mn oxide, and organic matter) except those bonded to the exchangeable species in efficient speciation can be released under the Earth's surface conditions, when pH=4 in the reaction system, and the higher correlation coefficient indicated that the concentrations of heavy metals released from soil into the solution vary approximately with reaction time in terms of index regulations.

  10. Analysis of continuous solvent extraction of nickel from spent electroless nickel plating baths by a mixer-settler.

    Science.gov (United States)

    Huang, Ying; Tanaka, Mikiya

    2009-05-30

    It is urgent to develop an effective technique to treat the large amount of spent electroless nickel plating bath and recycle the high concentration nickel. In our previous study, high recycling efficiency of nickel from the model spent bath was obtained by continuous solvent extraction with 2-hydroxy-5-nonylacetophenone oxime (LIX84I) as the extractant and 2-ethylhexylphosphonic acid mono-2-ethylhexyl ester (PC88A) as the accelerator using a mixer-settler extractor. It was observed that the extraction efficiency was affected by the operation parameters such as the flow rates of the aqueous and organic phases and the total stage number. In the present study, the effects of the operation parameters on the extraction efficiency were quantitatively studied on the basis of the pseudo-first-order interfacial extraction rate equation together with the hydrodynamic properties in the mixer. The organic phase holdup, measured under varying conditions of the flow rates of both phases, was analyzed by the Takahashi-Takeuchi holdup model in order to estimate the specific interfacial area. The overall extraction rate coefficients defined by the product of the interfacial extraction rate constant and the specific interfacial area were evaluated using the experimental data and ranged from 3.5 x 10(-3) to 6.7 x 10(-3)s(-1), which was close to the value of 3.4 x 10(-3)s(-1) obtained by batch extraction. Finally, an engineering simulation method was established for assessing the extraction efficiency of nickel during a multistage operation.

  11. Disturbance of water-extractable phosphorus determination by colloidal particles in a heavy clay soil from the Netherlands

    NARCIS (Netherlands)

    Koopmans, G.F.; Chardon, W.J.; Salm, van der C.

    2005-01-01

    Received for publication January 25, 2005. Water extraction methods are widely used to extract phosphorus (P) from soils for both agronomic and environmental purposes. Both the presence of soil colloids in soil water filtrates, and the contribution of colloidal P to the molybdate-reactive phosphorus

  12. Recovery of Caprolactam from Waste Water in Caprolactam Production Using Pulsed—sieve—plate Extraction column

    Institute of Scientific and Technical Information of China (English)

    LIUJiangqing; XIEFangyou; 等

    2002-01-01

    Recovery of caprolactam from waste water of caprolactam production factory was investigated using benzence as solvent in a small-scale pulsed-sieve-plate column.First,liquid-liquid equilibrium (LLE) deta were measured,including water-caprolactam-benzene system at low caprolactam concentrations,and waste water-benzene system.Then,the operating regions and mass transfer of the pulsed-sieve-plate column were measured.Finally,the overall apparent heights of a transfer unit based on continuous phase are correlated in terms of the column operation variables.

  13. Thermal alteration of water extractable organic matter in climosequence soils from the Sierra Nevada, California

    Science.gov (United States)

    Santos, Fernanda; Russell, David; Berhe, Asmeret Asefaw

    2016-11-01

    In the next decades, the influence of wildfires in controlling the cycling and composition of soil organic matter (SOM) globally and in the western U.S. is expected to grow. While the impact of fires on bulk SOM has been extensively studied, the extent at which heating of soil affects the soluble component of SOM remains unclear. Here we investigated the thermal transformations of water-extractable organic matter (WEOM) by examining the changes in the distribution of carbon (C) functional groups in WEOM from soils heated at low and intermediate temperatures. WEOM (exported from soils to rivers in the Sierra Nevada and beyond.

  14. Remediation of soils contaminated with particulate depleted uranium by multi stage chemical extraction.

    Science.gov (United States)

    Crean, Daniel E; Livens, Francis R; Sajih, Mustafa; Stennett, Martin C; Grolimund, Daniel; Borca, Camelia N; Hyatt, Neil C

    2013-12-15

    Contamination of soils with depleted uranium (DU) from munitions firing occurs in conflict zones and at test firing sites. This study reports the development of a chemical extraction methodology for remediation of soils contaminated with particulate DU. Uranium phases in soils from two sites at a UK firing range, MOD Eskmeals, were characterised by electron microscopy and sequential extraction. Uranium rich particles with characteristic spherical morphologies were observed in soils, consistent with other instances of DU munitions contamination. Batch extraction efficiencies for aqueous ammonium bicarbonate (42-50% total DU extracted), citric acid (30-42% total DU) and sulphuric acid (13-19% total DU) were evaluated. Characterisation of residues from bicarbonate-treated soils by synchrotron microfocus X-ray diffraction and X-ray absorption spectroscopy revealed partially leached U(IV)-oxide particles and some secondary uranyl-carbonate phases. Based on these data, a multi-stage extraction scheme was developed utilising leaching in ammonium bicarbonate followed by citric acid to dissolve secondary carbonate species. Site specific U extraction was improved to 68-87% total U by the application of this methodology, potentially providing a route to efficient DU decontamination using low cost, environmentally compatible reagents.

  15. Advantages and limitations of chemical extraction tests to predict mercury soil-plant transfer in soil risk evaluations.

    Science.gov (United States)

    Monteiro, R J R; Rodrigues, S M; Cruz, N; Henriques, B; Duarte, A C; Römkens, P F A M; Pereira, E

    2016-07-01

    In this study, we compared the size of the mobile Hg pool in soil to those obtained by extractions using 2 M HNO3, 5 M HNO3, and 2 M HCl. This was done to evaluate their suitability to be used as proxies in view of Hg uptake by ryegrass. Total levels of Hg in soil ranged from 0.66 to 70 mg kg(-1) (median 17 mg kg(-1)), and concentrations of Hg extracted increased in the order: mobile Hg tests explained between 66 and 86 % of the variability of Hg contents in ryegrass shoots. Results indicated that all methods tested here can be used to estimate the plant total Hg pool at contaminated areas and can be used in first tier soil risk evaluations. This study also indicates that a relevant part of Hg in plants is from deposition of soil particles and that splashing of soil can be more significant for plant contamination than actual uptake processes. Graphical Abstract Illustration of potential mercury soil-plant transfer routes.

  16. Effects of aqueous soil-biochar extracts on representative aquatic organisms: a first evaluation

    Science.gov (United States)

    Bastos, A. C.; Abrantes, N.; Prodana, M.; Verheijen, F.; Keizer, J. J.; Soares, A. M. V. M.; Loureiro, S.

    2012-04-01

    Increasing considerations of biochar application to soils has raised concerns over implications to overall environmental quality, associated to some of its components. The heterogeneity of biochar composition is well documented in relation to co-existing chemical species, as a function of feedstock and pyrolysis conditions. Robust ecotoxicology studies with focus on bioavailable biochar components in soil remain scarce and have only started to emerge. This pilot study provides an insight into the potential ecotoxicological effects of aqueous extracts of biochar-amended soil on a range of aquatic organisms (Vibrio fischeri, Pseudokirchneriella subcapitata and Daphnia magna), using a battery of standard aquatic bioassays. The use of such bioassays in environmental risk assessment of soil-biochar elutriates is here suggested as a crucial tool, to bridge the gap between biochar's 'inert' fraction in soil and that bioavailable to edaphic organisms. Aqueous extracts were obtained from LUFA 2.2 standard soil (control) and following amendment with pine biochar at common field application rates (80 ton ha-1). Acute exposure to soil-biochar extracts allowed estimating toxicity parameters and developing dose-response curves for all tested species, through well-established methodological guidelines. The bioluminescent bacteria V. fischeri showed negligible EC50 (effect concentration corresponding to 50% luminescence decline) values in the MICROTOX® basic test (independent of exposure time), suggesting low susceptibility to soil-biochar extracts. Mild toxicity was also observed in the microalgae P. subcapitata growth inhibition test, where significant deleterious effects on growth rate occurred only at the highest (100%) extract concentration (pecotoxicological approach, has shown relevance. Preliminary results suggest potential trophic unbalances in aquatic systems, as a result of exposure to leachates from biochar-amended soils.

  17. Cadmium and zinc in soil solution extracts following the application of phosphate fertilizers.

    Science.gov (United States)

    Lambert, Raphaël; Grant, Cynthia; Sauvé, Sébastien

    2007-06-01

    This study investigated the solubility of cadmium and zinc in soils after the application of phosphate fertilizers containing those two metals. The solubility of cadmium and zinc was assessed by measuring their concentration in soil water extracts. Three monoammonium phosphate fertilizers containing various amounts of metals were applied on cultivated fields for 3 years at three different rates. In order to investigate the effects of long-term applications of fertilizers on the solubility of Cd and Zn, a similar design was used to apply contaminated fertilizers to soils in a laboratory experiment using a single fertilizer addition equivalent to 15 years of application. Phosphate fertilizers increased the concentration of Cd in soil extracts compared to control in 87% and 80% of the treatments in field and laboratory experiments respectively. Both increasing the rate of application and using fertilizer containing more Cd lead to higher Cd concentrations in extracts for the field and the laboratory experiments. The addition of the equivalent of 15 years of fertilizer application in the laboratory results in higher Cd concentration in extracts compared to the field experiment. For Zn, the fertilizer treatments enhanced the metal solution concentration in 83% of field treatments, but no significant correlations could be found between Zn inputs and its concentration in solution. In the laboratory, fertilizer additions increase the Zn concentrations in 53% of the treatments and decrease it in most of the other treatments. The decrease in Zn concentrations in the laboratory trial is attributed to the higher phosphate concentrations in the soil solution; which is presumed to have contributed to the precipitation of Zn-phosphates. For both trials, the metal concentrations in soil extracts cannot be related to the Zn concentration in the fertilizer or the rate of application. The high Zn to Cd ratio is presumably responsible for the Cd increase in the soil extracts due to

  18. Impact of historical mining assessed in soils by kinetic extraction and lead isotopic ratios

    Energy Technology Data Exchange (ETDEWEB)

    Camizuli, E., E-mail: estelle.camizuli@u-bourgogne.fr [UMR 6298, ArTeHiS, Université de Bourgogne — CNRS — Culture, 6 bd Gabriel, Bat. Gabriel, 21000 Dijon (France); Monna, F. [UMR 6298, ArTeHiS, Université de Bourgogne — CNRS — Culture, 6 bd Gabriel, Bat. Gabriel, 21000 Dijon (France); Bermond, A.; Manouchehri, N.; Besançon, S. [Institut des sciences et industries du vivant et de l' environnement (AgroParisTech), Laboratoire de Chimie Analytique, 16, rue Claude Bernard, 75231 Paris Cedex 05 (France); Losno, R. [UMR 7583, LISA, Universités Paris 7-Paris 12 — CNRS, 61 av. du Gal de Gaulle, 94010 Créteil Cedex (France); Oort, F. van [UR 251, Pessac, Institut National de la Recherche Agronomique, Centre de Versailles-Grignon, RD 10, 78026 Versailles Cedex (France); Labanowski, J. [UMR 7285, IC2MP, Université de Poitiers — CNRS, 4, rue Michel Brunet, 86022 Poitiers (France); Perreira, A. [UMR 6298, ArTeHiS, Université de Bourgogne — CNRS — Culture, 6 bd Gabriel, Bat. Gabriel, 21000 Dijon (France); Chateau, C. [UFR SVTE, Université de Bourgogne, 6 bd Gabriel, Bat. Gabriel, 21000 Dijon (France); Alibert, P. [UMR 6282, Biogeosciences, Université de Bourgogne — CNRS, 6 bd Gabriel, Bat. Gabriel, 21000 Dijon (France)

    2014-02-01

    The aim of this study is to estimate the long-term behaviour of trace metals, in two soils differently impacted by past mining. Topsoils from two 1 km{sup 2} zones in the forested Morvan massif (France) were sampled to assess the spatial distribution of Cd, Cu, Pb and Zn. The first zone had been contaminated by historical mining. As expected, it exhibits higher trace-metal levels and greater spatial heterogeneity than the second non-contaminated zone, supposed to represent the local background. One soil profile from each zone was investigated in detail to estimate metal behaviour, and hence, bioavailability. Kinetic extractions were performed using EDTA on three samples: the A horizon from both soil profiles and the B horizon from the contaminated soil. For all three samples, kinetic extractions can be modelled by two first-order reactions. Similar kinetic behaviour was observed for all metals, but more metal was extracted from the contaminated A horizon than from the B horizon. More surprising is the general predominance of the residual fraction over the “labile” and “less labile” pools. Past anthropogenic inputs may have percolated over time through the soil profiles because of acidic pH conditions. Stable organo-metallic complexes may also have been formed over time, reducing metal availability. These processes are not mutually exclusive. After kinetic extraction, the lead isotopic compositions of the samples exhibited different signatures, related to contamination history and intrinsic soil parameters. However, no variation in lead signature was observed during the extraction experiment, demonstrating that the “labile” and “less labile” lead pools do not differ in terms of origin. Even if trace metals resulting from past mining and metallurgy persist in soils long after these activities have ceased, kinetic extractions suggest that metals, at least for these particular forest soils, do not represent a threat for biota. - Highlights: • Trace

  19. Atrazine degradation by fungal co-culture enzyme extracts under different soil conditions.

    Science.gov (United States)

    Chan-Cupul, Wilberth; Heredia-Abarca, Gabriela; Rodríguez-Vázquez, Refugio

    2016-01-01

    This investigation was undertaken to determine the atrazine degradation by fungal enzyme extracts (FEEs) in a clay-loam soil microcosm contaminated at field application rate (5 μg g(-1)) and to study the influence of different soil microcosm conditions, including the effect of soil sterilization, water holding capacity, soil pH and type of FEEs used in atrazine degradation through a 2(4) factorial experimental design. The Trametes maxima-Paecilomyces carneus co-culture extract contained more laccase activity and hydrogen peroxide (H2O2) content (laccase = 18956.0 U mg protein(-1), H2O2 = 6.2 mg L(-1)) than the T. maxima monoculture extract (laccase = 12866.7 U mg protein(-1), H2O2 = 4.0 mg L(-1)). Both extracts were able to degrade atrazine at 100%; however, the T. maxima monoculture extract (0.32 h) achieved a lower half-degradation time than its co-culture with P. carneus (1.2 h). The FEE type (p = 0.03) and soil pH (p = 0.01) significantly affected atrazine degradation. The best degradation rate was achieved by the T. maxima monoculture extract in an acid soil (pH = 4.86). This study demonstrated that both the monoculture extracts of the native strain T. maxima and its co-culture with P. carneus can efficiently and quickly degrade atrazine in clay-loam soils.

  20. Role of Various Extractants in Removing Group-IIB Elements of Soils Incubated with EDTA

    Directory of Open Access Journals (Sweden)

    Tanmoy Karak

    2004-01-01

    Full Text Available This paper presents the results of an experimental investigation undertaken to evaluate different extractant solutions viz. HCl, Mg(NO32, and DTPA with the range of concentration from 0.001 to 0.1N after incubation with group-IIB metals (Zn, Cd, and Hg and EDTA to understand the capability to remove Zn, Cd, and Hg from soils. Two noncontaminated soils, one acidic (GHL and the other alkaline (KAP, in reaction were taken from an agricultural field of West Bengal, India for this investigation. Experiments were conducted on these two soils spiked with ZnII, CdII, and HgII in concentrations of 612, 321, and 215 mg/kg for soil GHL and 778, 298, and 157 mg/kg for soil KAP, respectively, which simulate typical electroplating waste contamination. The removal of Zn, Cd, and Hg in soil GHL within the range of HCl concentrations was 8.2–16.5, 12.2–19.1, and 4.3–6.9 whereas these were 6.5–7.6, 8.5–14.1, and 3.2–5.2 in soil KAP. The removal of Zn, Cd, and Hg in soil GHL within the range of Mg(NO32 concentrations were 12.2–28.5, 19.1–24.6, and 18.2–19.1 whereas these were 9.1–12.1, 8.3–12.1, and 10.6–48.1 in soil KAP. For DTPA extractant, the percent removal of metal was found to be significantly higher than the other two extractants, which corroborates that DTPA is a better extractant for soil cleaning.

  1. Extraction of ribosomal RNA and genomic DNA from soil for studying the diversity of the indigenous bacterial community

    NARCIS (Netherlands)

    Duarte, G.F.; Rosado, A.S.; Keijzer-Wolters, A.C.; Elsas, van J.D.

    1998-01-01

    A method for the indirect (cell extraction followed by nucleic acid extraction) isolation of bacterial ribosomal RNA (rRNA) and genomic DNA from soil was developed. The protocol allowed for the rapid parallel extraction of genomic DNA as well as small and large ribosomal subunit RNA from four soils

  2. Evaluation of the Single Dilute (0.43 M) Nitric Acid Extraction to Determine Geochemically Reactive Elements in Soil

    NARCIS (Netherlands)

    Groenenberg, Jan E.; Römkens, Paul F.A.M.; Zomeren, van André; Rodrigues, S.M.; Comans, Rob N.J.

    2017-01-01

    Recently a dilute nitric acid extraction (0.43 M) was adopted by ISO (ISO-17586:2016) as standard for extraction of geochemically reactive elements in soil and soil like materials. Here we evaluate the performance of this extraction for a wide range of elements by mechanistic geochemical modeling

  3. Extraction of ribosomal RNA and genomic DNA from soil for studying the diversity of the indigenous bacterial community

    NARCIS (Netherlands)

    Duarte, G.F.; Rosado, A.S.; Keijzer-Wolters, A.C.; Elsas, van J.D.

    1998-01-01

    A method for the indirect (cell extraction followed by nucleic acid extraction) isolation of bacterial ribosomal RNA (rRNA) and genomic DNA from soil was developed. The protocol allowed for the rapid parallel extraction of genomic DNA as well as small and large ribosomal subunit RNA from four soils

  4. Remediation of soils contaminated with particulate depleted uranium by multi stage chemical extraction

    Energy Technology Data Exchange (ETDEWEB)

    Crean, Daniel E. [Immobilisation Science Laboratory, Department of Materials Science and Engineering, The University of Sheffield (United Kingdom); Centre for Radiochemistry Research, School of Chemistry, The University of Manchester (United Kingdom); Livens, Francis R.; Sajih, Mustafa [Centre for Radiochemistry Research, School of Chemistry, The University of Manchester (United Kingdom); Stennett, Martin C. [Immobilisation Science Laboratory, Department of Materials Science and Engineering, The University of Sheffield (United Kingdom); Grolimund, Daniel; Borca, Camelia N. [Swiss Light Source, Paul Scherrer Institute, Villigen (Switzerland); Hyatt, Neil C., E-mail: n.c.hyatt@sheffield.ac.uk [Immobilisation Science Laboratory, Department of Materials Science and Engineering, The University of Sheffield (United Kingdom)

    2013-12-15

    Highlights: • Batch leaching was examined to remediate soils contaminated with munitions depleted uranium. • Site specific maximum extraction was 42–50% total U in single batch with NH{sub 4}HCO{sub 3}. • Analysis of residues revealed partial leaching and secondary carbonate phases. • Sequential batch leaching alternating between NH{sub 4}HCO{sub 3} and citric acid was designed. • Site specific extraction was increased to 68–87% total U in three batch steps. -- Abstract: Contamination of soils with depleted uranium (DU) from munitions firing occurs in conflict zones and at test firing sites. This study reports the development of a chemical extraction methodology for remediation of soils contaminated with particulate DU. Uranium phases in soils from two sites at a UK firing range, MOD Eskmeals, were characterised by electron microscopy and sequential extraction. Uranium rich particles with characteristic spherical morphologies were observed in soils, consistent with other instances of DU munitions contamination. Batch extraction efficiencies for aqueous ammonium bicarbonate (42–50% total DU extracted), citric acid (30–42% total DU) and sulphuric acid (13–19% total DU) were evaluated. Characterisation of residues from bicarbonate-treated soils by synchrotron microfocus X-ray diffraction and X-ray absorption spectroscopy revealed partially leached U(IV)-oxide particles and some secondary uranyl-carbonate phases. Based on these data, a multi-stage extraction scheme was developed utilising leaching in ammonium bicarbonate followed by citric acid to dissolve secondary carbonate species. Site specific U extraction was improved to 68–87% total U by the application of this methodology, potentially providing a route to efficient DU decontamination using low cost, environmentally compatible reagents.

  5. Factors influencing the extraction of pharmaceuticals from sewage sludge and soil: an experimental design approach.

    Science.gov (United States)

    Ferhi, Sabrina; Bourdat-Deschamps, Marjolaine; Daudin, Jean-Jacques; Houot, Sabine; Nélieu, Sylvie

    2016-09-01

    Pharmaceuticals can enter the environment when organic waste products are recycled on agricultural soils. The extraction of pharmaceuticals is a challenging step in their analysis. The very different extraction conditions proposed in the literature make the choice of the right method for multi-residue analysis difficult. This study aimed at evaluating, with experimental design methodology, the influence of the nature, pH and composition of the extraction medium on the extraction recovery of 14 pharmaceuticals, including 8 antibiotics, from soil and sewage sludge. Preliminary experimental designs showed that acetonitrile and citrate-phosphate buffer were the best extractants. Then, a response surface design demonstrated that many cross-product and squared terms had significant effects, explaining the shapes of the response surfaces. It also allowed optimising the pharmaceutical recoveries in soil and sludge. The optimal conditions were interpreted considering the ionisation states of the compounds, their solubility in the extraction medium and their interactions with the solid matrix. To perform the analysis, a compromise was made for each matrix. After a QuEChERS purification, the samples were analysed by online SPE-UHPLC-MS-MS. Both methods were simple and economical. They were validated with the accuracy profile methodology for soil and sludge and characterised for another type of soil, digested sludge and composted sludge. Trueness globally ranged between 80 and 120 % recovery, and inter- and intra-day precisions were globally below 20 % relative standard deviation. Various pharmaceuticals were present in environmental samples, with concentration levels ranging from a few micrograms per kilogramme up to thousands of micrograms per kilogramme. Graphical abstract Influence of the extraction medium on the extraction recovery of 14 pharmaceuticals. Influence of the ionisation state, the solubility and the interactions of pharmaceuticals with solid matrix. Analysis

  6. Availability of heavy metals in contaminated soil evidenced by chemical extractants

    Directory of Open Access Journals (Sweden)

    Maria Ligia de Souza Silva

    2012-06-01

    Full Text Available Heavy metals have been accumulating in Brazilian soils, due to natural processes, such as atmospheric deposition, or human industrial activities. For certain heavy metals, when in high concentrations in the soil, there is no specific extractant to determine the availability of these elements in the soil. The objective of the present study was to evaluate the availability of Cd, Cu, Fe, Mn, Pb and Zn for rice and soybeans, using different chemical extractants. In this study we used seven soil samples with different levels of contamination, in completely randomized experimental design with four replications. We determined the available concentrations of Cd, Cu, Fe, Mn, Pb and Zn extracted by Mehlich-1, HCl 0.1 mol L-1, DTPA, and organic acid extractants and the contents in rice and soybeans, which extracts were analyzed by ICP-OES. It was observed that Mehlich-1, HCl 0.1 mol L-1 and DTPA extractants were effective to assess the availability of Cd, Cu, Pb and Zn for rice and soybeans. However, the same was not observed for the organic acid extractant.

  7. 2-Phase groundwater and soil vapor extraction site test at McClellan AFB

    Energy Technology Data Exchange (ETDEWEB)

    Koerner, C.; Kingsley, G.B.; Lawrence J. [Radian Corp., Sacramento, CA (United States)] [and others

    1995-09-01

    The innovative 2-phase extraction technique is a method recently patented by Xerox Corporation for simultaneously extracting contaminated groundwater and soil vapor from the subsurface. The 2-phase technique is primarily applicable to those sites with semipermeable soils containing volatile organic compound (VOC) contamination in both soils and groundwater. This technique has several distinct advantages over either conventional soil vapor extraction or groundwater extraction, because it can: cut the dollar per-contaminant-pound cleanup costs by an order of magnitude; simplify the extraction and treatment of both contaminated water and vapor; and shorten remediation times. The U.S. EPA and the Air Force elected to conduct an EPA Site test of the 2-phase Extraction technology at McClellan results indicate: The groundwater flow rate is twice that of the pump-and-treat system. The mass of contaminants from a single well removed increased from 130 lbs/year to more than 5,000 lbs/year, over 30 times more than the pump-and treat rate, with potential for even higher removal rates: 5,000 to 8,000 pounds of contaminants per year. Up to 95% of the contamination was extracted in the vapor phase, where it could be treated more easily and efficiently.

  8. Linking selective chemical extraction of iron oxyhydroxides to arsenic bioaccessibility in soil.

    Science.gov (United States)

    Palumbo-Roe, Barbara; Wragg, Joanna; Cave, Mark

    2015-12-01

    The relationship between As bioaccessibility using the physiologically based extraction test (PBET) and As extracted by hydroxylamine hydrochloride (HH), targeting the dissolution of amorphous Fe oxyhydroxides, is established in soils from the British Geological Survey Geochemical Baseline Survey of SW England, UK, to represent low As background and high As mineralised/mined soils. The HH-extracted As was of the same order of magnitude as the As extracted in the bioaccessibility test and proved to be a better estimate of bioaccessible As than total As (bioaccessible As - total As: r = 0.955; bioaccessible As - HH-extracted As: r = 0.974; p-values = 0.000). These results provide a means of estimating soil As bioaccessibility on the basis of the HH extraction. Further selective extraction data, using hydrochloride acid that seeks to dissolve both amorphous and crystalline Fe oxyhydroxides, indicates a decrease in the As bioaccessible fraction with the increase of the soil Fe oxyhydroxide crystallinity.

  9. Assessment of bioavailable organic phosphorus in tropical forest soils by organic acid extraction and phosphatase hydrolysis.

    Science.gov (United States)

    Darch, Tegan; Blackwell, Martin S A; Chadwick, David; Haygarth, Philip M; Hawkins, Jane M B; Turner, Benjamin L

    2016-12-15

    Soil organic phosphorus contributes to the nutrition of tropical trees, but is not accounted for in standard soil phosphorus tests. Plants and microbes can release organic anions to solubilize organic phosphorus from soil surfaces, and synthesize phosphatases to release inorganic phosphate from the solubilized compounds. We developed a procedure to estimate bioavailable organic phosphorus in tropical forest soils by simulating the secretion processes of organic acids and phosphatases. Five lowland tropical forest soils with contrasting properties (pH 4.4-6.1, total P 86-429 mg P kg(- 1)) were extracted with 2 mM citric acid (i.e., 10 μmol g(- 1), approximating rhizosphere concentrations) adjusted to soil pH in a 4:1 solution to soil ratio for 1 h. Three phosphatase enzymes were then added to the soil extract to determine the forms of hydrolysable organic phosphorus. Total phosphorus extracted by the procedure ranged between 3.22 and 8.06 mg P kg(- 1) (mean 5.55 ± 0.42 mg P kg(- 1)), of which on average three quarters was unreactive phosphorus (i.e., organic phosphorus plus inorganic polyphosphate). Of the enzyme-hydrolysable unreactive phosphorus, 28% was simple phosphomonoesters hydrolyzed by phosphomonoesterase from bovine intestinal mucosa, a further 18% was phosphodiesters hydrolyzed by a combination of nuclease from Penicillium citrinum and phosphomonoesterase, and the remaining 51% was hydrolyzed by a broad-spectrum phytase from wheat. We conclude that soil organic phosphorus can be solubilized and hydrolyzed by a combination of organic acids and phosphatase enzymes in lowland tropical forest soils, indicating that this pathway could make a significant contribution to biological phosphorus acquisition in tropical forests. Furthermore, we have developed a method that can be used to assess the bioavailability of this soil organic phosphorus.

  10. Extraction and Characterization of Humic Acids and Humin Fractions from a Black Soil of China

    Institute of Scientific and Technical Information of China (English)

    XING Bao-Shan; LIU Ju-Dong; LIU Xiao-Bing; HAN Xiao-Zeng

    2005-01-01

    Twenty-three progressive extractions were performed to study individual humic acids (Has) and humin fractions from a typical black soil (Mollisol) in Heilongjiang Province, China using elemental analysis and spectroscopic techniques. After 23 HA extractions the residue was separated into high and low organic carbon humin fractions. HA yield was the highest for the first extraction and then gradually decreased with further extractions. Organic carbon (OC) of the humin fractions accounted for 58% of total OC even after 23 successive HA extractions. In addition, the atomic C/H ratio decreased during the course of extraction while C/O increased; the E4/E6 ratio from the UV analysis decreased with further extraction while E2/Ea increased; the band assigned to aliphatic carbon (2 930 cm-1) in the diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) spectra gradually increased with progressive extraction; the calculated ratio of the sum of aromatic carbon peak heights to that of aliphatic carbon peak heights from DRIFTS spectra declined with extractions; and nuclear magnetic resonance (NMR) data suggested that HA aliphatic carbons increased with extractions while aromatic carbons decreased. Thus, hydrophobicity and aliphaticity of Has increased with extractions while polarity and aromaticity decreased. These data showed substantial chemical, structural, and molecular differences among the 23 Has and two humin fractions. Therefore, these results may help explain why soil and sediment humin fractions have high sorption capacity for organic contaminants.

  11. Assessment of soil stabilization by chemical extraction and bioaccumulation using earthworm, Eisenia fetida

    Science.gov (United States)

    Lee, Byung-Tae; Abd Aziz, Azilah; Han, Heop Jo; Kim, Kyoung-Woong

    2014-05-01

    Soil stabilization does not remove heavy metals from contaminated soil, but lowers their exposures to ecosystem. Thus, it should be evaluated by measuring the fractions of heavy metals which are mobile and/or bioavailable in soils. The study compared several chemical extractions which intended to quantify the mobile or bioaccessible fractions with uptake and bioaccumulation by earthworm, Eisenia fetida. Soil samples were taken from the abandoned mine area contaminated with As, Cd, Cu, Pb and/or Zn. To stabilize heavy metals, the soils were amended with limestone and steel slag at 5% and 2% (w/w), respectively. All chemical extractions and earthworm tests were applied to both the contaminated and the stabilized soils with triplicates. The chemical extractions consisted of six single extractions which were 0.01M CaCl2 (unbufferred), EDTA or DTPA (chelating), TCLP (acidic), Mehlich 3 (mixture), and aqua regia (peudo-total). Sequential extractions were also applied to fractionate heavy metals in soils. In earthworm tests, worms were exposed to the soils for uptake of heavy metals. After 28 days of exposure to soils, worms were transferred to clean soils for elimination. During the tests, three worms were randomly collected at proper sampling events. Worms were rinsed with DI water and placed on moist filter paper for 48 h for depuration. Filter paper was renewed at 24 h to prevent coprophagy. The worms were killed with liquid nitrogen, dried in the oven, and digested with aqua regia for ICP-MS analysis. In addition to the bioaccumulation, several toxicity endpoints were observed such as burrowing time, mortality, cocoon production, and body weight changes. Toxicokinetics was applied to determine the uptake and elimination heavy metals by the earthworms. Bioaccumulation factor (BAF) was estimated using total metal concentrations and body burdens. Pearson correlation and simple linear regression were applied to evaluate the relationship between metal fractions by single

  12. Multiple damage identification and imaging in an aluminum plate using effective Lamb wave response automatic extraction technology

    Science.gov (United States)

    Ouyang, Qinghua; Zhou, Li; Liu, Xiaotong

    2016-04-01

    In order to identify multiple damage in the structure, a method of multiple damage identification and imaging based on the effective Lamb wave response automatic extraction algorithm is proposed. In this method, the detected key area in the structure is divided into a number of subregions, and then, the effective response signals including the structural damage information are automatically extracted from the entire Lamb wave responses which are received by the piezoelectric sensors. Further, the damage index values of every subregion based on the correlation coefficient are calculated using the effective response signals. Finally, the damage identification and imaging are performed using the reconstruction algorithm for probabilistic inspection of damage (RAPID) technique. The experimental research was conducted using an aluminum plate. The experimental results show that the method proposed in this research can quickly and effectively identify the single damage or multiple damage and image the damages clearly in detected area.

  13. Determination of tobramycin in soil by HPLC with ultrasonic-assisted extraction and solid-phase extraction.

    Science.gov (United States)

    He, Shun; Chen, Qiyou; Sun, Yan; Zhu, Yuncong; Luo, Laixin; Li, Jianqiang; Cao, Yongsong

    2011-04-15

    Pharmaceuticals residues in the environment have become a growing scientific interest worldwide. In the light of the possible harmful effects of tobramycin, a rapid and sensitive analytical method for determination of tobramycin in soil was developed. The extraction and purification methods, derivatization conditions, and chromatographic conditions in the determination of tobramycin in soil have been fully investigated. Extraction was carried out by a combination of vortex mixer and ultrasonic oscillation using acetone/water as the extraction agent. The extract was concentrated to 1 mL and passed through the C(18) SPE cartridge rinsed with water (3 mL), methanol (3 mL). The derivatization procedure was followed by the reaction of tobramycin with 4-Chloro-3,5-dinitrobenzotrifluoride at 60°C for 10 min in pH 9.0 H(3)BO(3)-Na(2)B(4)O(7) medium. The labeled tobramycin was determined by high performance liquid chromatography at 245 nm. Separation was accomplished within 15 min in gradient elution mode with trifluoroacetic acid in mobile phase as ion-pair reagent. The correlation coefficient for the method was 0.9999 in concentrations ranging from 0.10 to 100.0 μg/g. The limit of detection was 0.02 μg/g for tobramycin in soil at a signal-to-noise ratio of 3. The calculated recoveries of the proposed method were from 78.0 to 91.0% and RSDs were 3.38-9.79% in the application to the quantitative determination of tobramycin in all types of soil. The method will help to establish adequate monitoring of tobramycin residue in soil and make the contribution to environmental behavior evaluation.

  14. Release of microorganisms from soil with respect to transmission electron microscopy viewing and plate counts

    Science.gov (United States)

    Balkwill, D. L.; Rucinsky, T. E.; Casida, L. E., Jr.

    1977-01-01

    A study was conducted to obtain information concerning the fate of soil microorganisms during the procedures normally used in separating them from the soil in connection with various types of investigations. A silty clay loam (pH 6.0, moisture content 25%, organic content 3.5%) was used in the study. The results of the study indicate that many of the microbial cells naturally residing in soil remain attached to or, for some other reason, are not separated from the soil debris despite the use of various combinations of blending, sonication, and chemical dispersing agents. The method B used by Balkwill et al. (1975) provides a reasonable electron microscopy evaluation of the soil microflora.

  15. Chelant extraction of heavy metals from contaminated soils using new selective EDTA derivatives.

    Science.gov (United States)

    Zhang, Tao; Liu, Jun-Min; Huang, Xiong-Fei; Xia, Bing; Su, Cheng-Yong; Luo, Guo-Fan; Xu, Yao-Wei; Wu, Ying-Xin; Mao, Zong-Wan; Qiu, Rong-Liang

    2013-11-15

    Soil washing is one of the few permanent treatment alternatives for removing metal contaminants. Ethylenediaminetetraacetic acid (EDTA) and its salts can substantially increase heavy metal removal from contaminated soils and have been extensively studied for soil washing. However, EDTA has a poor utilization ratio due to its low selectivity resulting from the competition between soil major cations and trace metal ions for chelation. The present study evaluated the potential for soil washing using EDTA and three of its derivatives: CDTA (trans-1,2-cyclohexanediaminetetraacetic acid), BDTA (benzyldiaminetetraacetic acid), and PDTA (phenyldiaminetetraacetic acid), which contain a cylcohexane ring, a benzyl group, and a phenyl group, respectively. Titration results showed that PDTA had the highest stability constants for Cu(2+) and Ni(2+) and the highest overall selectivity for trace metals over major cations. Equilibrium batch experiments were conducted to evaluate the efficacy of the EDTA derivatives at extracting Cu(2+), Zn(2+), Ni(2+), Pb(2+), Ca(2+), and Fe(3+) from a contaminated soil. At pH 7.0, PDTA extracted 1.5 times more Cu(2+) than did EDTA, but only 75% as much Ca(2+). Although CDTA was a strong chelator of heavy metal ions, its overall selectivity was lower and comparable to that of EDTA. BDTA was the least effective extractant because its stability constants with heavy metals were low. PDTA is potentially a practical washing agent for soils contaminated with trace metals.

  16. Reflux extraction and analysis of polyethylene wax in soil

    Institute of Scientific and Technical Information of China (English)

    XIONG Xiao-li; CHEN Cheng; LUO Xue-gang

    2014-01-01

    An efficient reflux extraction of polyethylene wax (PEW) in soil is presented, followed by molecular structure characterization methods to explore its degradation mechanism. To more realistically simulate the actual degradation of PE film powders in soil, low density PE (M=5 000) powders, being used as simulated PEW residue sample, were uniformly mixed with soil and then recovered by reflux extraction with decahydronaphthalen (decalin) at 90°C for 60 min. The average recovery of PEW from fortified soils was 96.5%with the developed reflux extraction procedure. The recovered PEW residue samples were characterized by infrared spectroscopy (IR), element analysis (EA), X-ray fluorescence (XFR), and high-temperature gel permeation chromatography (GPC). The results from spectra analysis show that there were no significant changes in molecular structures and molecular mass distribution of PEW samples after the reflux extraction, which demonstrate the reliability of this method. These results also indicate that the reflux extraction procedure and analytical methods of characterization could serve as a novel measurement technique to evaluate the degradation of low-density PE powders in soil over time.

  17. Mercury speciation in highly contaminated soils from chlor-alkali plants using chemical extractions.

    Science.gov (United States)

    Neculita, Carmen-Mihaela; Zagury, Gérald J; Deschênes, Louise

    2005-01-01

    A four-step novel sequential extraction procedure (SEP) was developed to assess Hg fractionation and mobility in three highly contaminated soils from chlor-alkali plants (CAPs). The SEP was validated using a certified reference material (CRM) and pure Hg compounds. Total, volatile, and methyl Hg concentrations were also determined using single extractions. Mercury was separated into four fractions defined as water-soluble (F1), exchangeable (F2) (0.5 M NH4Ac-EDTA and 1 M CaCl2 were tested), organic (F3) (successive extractions with 0.2 M NaOH and CH3COOH 4% [v/v]), and residual (F4) (HNO3 + H2SO4 + HClO4). The soil characterization revealed extremely contaminated (295 +/- 18 to 11 500 +/- 500 mg Hg kg(-1)) coarse-grained sandy soils having an alkaline pH (7.9-9.1), high chloride concentrations (5-35 mg kg(-1)), and very low organic carbon content (0.00-18.2 g kg(-1)). Methyl Hg concentrations were low (0.2-19.3 microg kg(-1)) in all soils. Sequential extractions indicated that the majority of the Hg was associated with the residual fraction (F4). In Soils 1 and 3, however, high percentages (88-98%) of the total Hg were present as volatile Hg. Therefore, in these two soils, a high proportion of volatile Hg was present in the residual fraction. The nonresidual fraction (F1 + F2 + F3) was most abundant in Soil 1 (14-42%), suggesting a higher availability of Hg in this soil. The developed and validated SEP was reproducible and efficient for highly contaminated samples. Recovery ranged between 93 and 98% for the CRM and 70 and 130% for the CAP-contaminated soils.

  18. Selective pressurized liquid extraction for the analysis of polychlorinated biphenyls, polychlorinated dibenzo-p-dioxins and dibenzofurans in soil.

    Science.gov (United States)

    Klees, Marcel; Bogatzki, Corinna; Hiester, Ernst

    2016-10-14

    During this study a high throughout selective pressurized liquid extraction (SPLE) method was developed and validated for the simultaneous extraction of polychlorinated dibenzo-p-dioxins, dibenzofurans (PCDD/PCDFs) and polychlorinated biphenyls (PCBs) from soil. To that end, extraction rates of PCBs from soil utilizing different extraction solvents and different extraction temperatures were investigated whereas extraction rates were comparable for toluene, n-hexane and dichloromethane (extraction conditions for all utilized solvents: 33mL PLE extraction cell, extraction temperature: 110°C, static extraction time: 5min, flush volume: 60%, purge 90s). Ratios of native PCBs and PCDD/PCDFs congener concentrations after Soxhlet and selective pressurized liquid extraction (SPLE) showed that SPLE is an alternative sample preparation step for the simultaneous determination of PCDD/PCDFs and PCBs in soil. Additional clean-up steps for the separation of PCBs and PCDD/PCDFs utilizing alumina were performed in order to avoid interferences between the component classes.

  19. Assessment of bias associated with incomplete extraction of microbial DNA from soil.

    Science.gov (United States)

    Feinstein, Larry M; Sul, Woo Jun; Blackwood, Christopher B

    2009-08-01

    DNA extraction bias is a frequently cited but poorly understood limitation of molecular characterizations of environmental microbial communities. To assess the bias of a commonly used soil DNA extraction kit, we varied the cell lysis protocol and conducted multiple extractions on subsamples of clay, sand, and organic soils. DNA, as well as bacterial and fungal ribosomal gene copies as measured by quantitative PCR, continued to be isolated in successive extractions. When terminal restriction fragment length polymorphism was used, a significant shift in community composition due to extraction bias was detected for bacteria but not for fungi. Pyrosequencing indicated that the relative abundances of sequences from rarely cultivated groups such as Acidobacteria, Gemmatimonades, and Verrucomicrobia were higher in the first extraction than in the sixth but that the reverse was true for Proteobacteria and Actinobacteria. This suggests that the well-known phylum-level bacterial cultivation bias may be partially exaggerated by DNA extraction bias. We conclude that bias can be adequately reduced in many situations by pooling three successive extractions, and additional measures should be considered when divergent soil types are compared or when comprehensive community analysis is necessary.

  20. Occurrence of non extractable pesticide residues in physical and chemical fractions of two soils

    Science.gov (United States)

    Andreou, Kostas; Semple, Kirk; Jones, Kevin

    2010-05-01

    Soils are considered to be a significant sink for organic contaminants, including pesticides, in the environment. Understanding the distribution and localisation of aged pesticide residues in soil is of great importance for assessing the mobility and availability of these chemicals in the environment. This study aimed to characterise the distribution of radiolabeled herbicide isoproturon and the radiolabeled insecticides diazinon and cypermethrin in two organically managed soils. The soils were spiked and aged under laboratory conditions for 17 months. The labile fraction of the pesticides residues was recovered in CaCl2 (0.01M) and then subjected to physical size fractionation using sedimentation and centrifugation steps, with >20μm, 20-2μm and 2-0.1μm soil factions collected. Further, the distribution of the pesticide residues in the organic matter of the fractionated soil was investigated using a sequential alkaline extraction (0.1N NaOH) into humic and fulvic acid and humin. Soil fractions of 20-2μm and 2-0.1μm had the largest burden of the 14C-residues. Different soil constituents have different capacities to form non-extractable residues. Soil solid fractions of 20-2 µm and pesticide residues than the coarser fraction (>20 µm). Fulvic acid showed to play a vital role in the formation and stabilisation of non-extractable 14C-pesticide residues in most cases.Assessment of the likelihood of the pesticide residues to become available to soil biota requires an understanding of the structure of the SOM matrix and the definition of the kinetics of the pesticide residues in different SOM pools as a function of the time.

  1. Extracting DNA of nematodes communities from Argentine Pampas agricultural soils

    Directory of Open Access Journals (Sweden)

    Eduardo A. Mondino

    2015-06-01

    Full Text Available We examined four strategies (Tris/EDTA, sodium dodecyl sulfate, Chelex 100 resin and cetyltrimethylammonium bromide -CTAB- for extracting nucleic acid (DNA from communities of nematodes. Nematodes were isolated from an agricultural area under different management of long-term crop rotation experiment from Argentina during three seasons. After DNA extraction, Polymerase Chain Reaction-amplifications were performed and considered as indicators of successful DNA extraction. The CTAB combined with proteinase K and phenol-chloroform-isoamyl alcohol was the unique successful method because positive amplifications were obtained by using both eukaryotic and nematode specific primers. This work could contribute to biodiversity studies of nematodes on agroecosystems.

  2. Extracting DNA of nematodes communities from Argentine Pampas agricultural soils.

    Science.gov (United States)

    Mondino, Eduardo A; Covacevich, Fernanda; Studdert, Guillermo A; Pimentel, João P; Berbara, Ricardo L L

    2015-01-01

    We examined four strategies (Tris/EDTA, sodium dodecyl sulfate, Chelex 100 resin and cetyltrimethylammonium bromide -CTAB-) for extracting nucleic acid (DNA) from communities of nematodes. Nematodes were isolated from an agricultural area under different management of long-term crop rotation experiment from Argentina during three seasons. After DNA extraction, Polymerase Chain Reaction-amplifications were performed and considered as indicators of successful DNA extraction. The CTAB combined with proteinase K and phenol-chloroform-isoamyl alcohol was the unique successful method because positive amplifications were obtained by using both eukaryotic and nematode specific primers. This work could contribute to biodiversity studies of nematodes on agroecosystems.

  3. Sequential extraction method for speciation of arsenate and arsenite in mineral soils.

    Science.gov (United States)

    Huang, Jen-How; Kretzschmar, Ruben

    2010-07-01

    A novel sequential extraction method for the speciation of As(III) and As(V) in oxic and anoxic mineral soils was developed and tested. The procedure consists of seven extraction steps targeting various As pools ranging from weakly adsorbed to well-crystalline species. Each step was specifically designed to preserve the As(III) and As(V) redox states, e.g., by complexation of As(III) with diethyldithiocarbamate or pyrrolidinedithiocarbamate, using mild reductive (NH(2)OH.HCl) or oxidative (hot HNO(3)) extractions, and complexing (Fe(3+) with Cl(-), acetate, and oxalate) or precipitating (S(2-) with Hg(2+)) matrix elements, which may cause As redox transformations. Using high-performance liquid chromatography-inductively coupled plasma-mass spectrometry (HPLC-ICP-MS) for the quantification of dissolved As(III) and As(V) in the extracts, the detection limit for each step was in the range of 1.0-75 ng As/g, depending on the extraction matrix. Thus, the procedure is also well-suited for As speciation in soils or sediments with low As concentrations, where analyses by X-ray absorption spectroscopy (XAS) may be difficult. The entire extraction sequence can be performed under normal atmosphere, which greatly simplifies sample handling. The proposed method was tested using model minerals spiked with As(III) or As(V), two strongly As-polluted soil previously characterized for As speciation by XAS, and three less-polluted soils.

  4. Extraction of arsenic from a soil in the blackfoot disease endemic area with ionic liquids

    Energy Technology Data Exchange (ETDEWEB)

    Liao, Chang-Yu [Department of Environmental Engineering, National Cheng Kung University, Tainan 70101, Taiwan (China); Peng, Ching-Yu [Department of Civil and Environmental Engineering, University of Washington, Seattle, WA 98105 (United States); Wang, Hong-Chung [Division of Chest Medicine, Department of Medicine, Veterans General Hospital-Kaohsiung, Kaohsiung 81362, Taiwan (China); Kang, Hsu-Ya [Department of Environmental Engineering, National Cheng Kung University, Tainan 70101, Taiwan (China); Paul Wang, H., E-mail: wanghp@mail.ncku.edu.tw [Department of Environmental Engineering, National Cheng Kung University, Tainan 70101, Taiwan (China)

    2011-10-01

    Speciation of arsenic extracted with room temperature ionic liquids (RTILs) ([bmim][BF{sub 4}] (1-butyl-3-methylimidazolium tetrafluoroborate) and [bmim][PF{sub 6}] (1-butyl-3-methylimidazolium hexafluorophosphate)) from an As-humic acid (As-HA) complex contaminated soil (As-HA/soil) in a blackfoot disease endemic area has been studied by X-ray absorption (near edge structure (XANES) and extended X-ray absorption fine structure (EXAFS)) spectroscopy. About 45% of arsenic in the As-HA/soil can be extracted with [bmim][BF{sub 4}] while the relatively less hydrophilic [bmim][PF{sub 6}] extracts 25% of arsenic. The extracted arsenic in the [bmim][BF{sub 4}] and [bmim][PF{sub 6}] from the As-HA/soil possesses mainly As(III) species, suggesting that at least two reaction paths may be involved in the extraction process: (1) splitting of As-HA and (2) reduction of As(V) to As(III). The refined EXAFS spectra also indicate that the As(III) extracted in the RTILs possesses the AsO{sub 2}{sup -} structure, which has the As-O bond distances of 1.77-1.79 A and coordination numbers of 4.0-4.2.

  5. Chelators effect on soil Cu extractability and uptake by Elsholtzia splendens

    Institute of Scientific and Technical Information of China (English)

    姜理英; 杨肖娥

    2004-01-01

    Phytoremediation is emerging as a potential cost-effective solution for remediation of contaminated soils, and bioavailability of metal in the soil for plant uptake is an important factor for successful phytoremediation.This study aimedat investigating the ability of EDTA and citric acid for enhancing soil bioavailability of Cu and phytoremediation by E1sholtzia splendens in two types of soils contaminated with heavy metals [i.e. mined soil from copper mining area (MS), and paddy soil (PS) polluted by copper refining].The results showed that addition of 2.5 mmol/kg EDTA significantly increased the H2O extractable Cu concentration from 1.20 to 15.78mg/kg in MS and from 0.26 to 15.72mg/kg in PS,and that shoot Cu concentration increased 4-fold and 8-fold as compared to the control.There was no significant difference between the treatment with 5.0mmol/kg EDTA and that with 2.5mmol/kg EDTA, probably because that 2.5mmol/kg EDTA was enough for elevating Cu bioavailability to the maximum level.As compared with the control, citric acid had no marked effect on both soil extractable Cu and shoot Cu concentration or accumulation. The results indicated that EDTA addition can increase the potential and efficiency of Cu phytoextraction by E.splendens in polluted soils.

  6. Chelators effect on soil Cu extractability and uptake by Elsholtzia splendens

    Institute of Scientific and Technical Information of China (English)

    姜理英; 杨肖娥

    2004-01-01

    Phytoremediation is emerging as a potential cost-effective solution for remediation of contaminated soils, and bioavailability of metal in the soil for plant uptake is an important factor for successful phytoremediation. This study aimed at investigating the ability of EDTA and citric acid for enhancing soil bioavailability of Cu and phytoremediation by Elsholtzia splendens in two types of soils contaminated with heavy metals [i.e. mined soil from copper mining area (MS), and paddy soil (PS) polluted by copper refining]. The results showed that addition of 2.5 mmol/kg EDTA significantly increased the H2O extractable Cu concentration from 1.20 to 15.78 mg/kg in MS and from 0.26 to 15.72 mg/kg in PS, and that shoot Cu concentration increased 4-fold and 8-fold as compared to the control. There was no significant difference between the treatment with 5.0 mmol/kg EDTA and that with 2.5 mmol/kg EDTA, probably because that 2.5 mmol/kg EDTA was enough for elevating Cu bioavailability to the maximum level. As compared with the control, citric acid had no marked effect on both soil extractable Cu and shoot Cu concentration or accumulation. The results indicated that EDTA addition can increase the potential and efficiency of Cu phytoextraction by E. splendens in polluted soils.

  7. Corn (Zea mays growth in petroleum contaminated soil, remediated with orange (Citrus sinensis peel extract

    Directory of Open Access Journals (Sweden)

    Tomás Darío Marín Veláquez

    2016-09-01

    Full Text Available Soil pollution has a strong impact when oil activity takes place within a savanna ecosystem. Any oil spill affects agricultural soils. Biostimulation with orange peel extract (Citrus sinensis is an alternative for remediation of soil contaminated with crude oil and in this research the corn plant (Zea mays was used as a biomarker of contamination level of a savanna soil after their treatment. Three samples of savannah soil contaminated with oil light crude were treated with dissolutions 1, 3 and 5% of extract of orange peel in water at a dose of 150 mL per kg of soil treated. The content of oils and fats was measured every 7 days, up to 42 days. Corn seeds were planted in soil samples, their growth was measured every 5 days for a period of 35 consecutive days, comparing their growth with seeds planted in a soil sample without contamination. According to an analysis of rank contrast, the plant growth was statistically the same in all samples up to 20 days; from there, evident differences regarding the pattern were shown.

  8. Evaluation of degree of readsorption of radionuclides during sequential extraction in soil: comparison between batch and dynamic extraction systems

    DEFF Research Database (Denmark)

    Petersen, Roongrat; Hansen, Elo Harald; Hou, Xiaolin

    Sequential extraction techniques have been widely used to fractionate metals in solid samples (soils, sediments, solid wastes, etc.) due to their leachability. The results are useful for obtaining information about bioavailability, potential mobility and transport of element in natural environments...... developed in our laboratory for heavy metal fractionation has shown the reduction of readsorption problem in comparison with the batch techniques. Moreover, the system shows many advantages over the batch system such as speed of extraction, simple procedure, fully automatic, less risk of contamination....... However, the techniques have an important problem with redistribution as a result of readsorption of dissolved analytes onto the remaining solids phases during extraction. Many authors have demonstrated the readsorption problem and inaccuracy from it. In our previous work, a dynamic extraction system...

  9. Recent Spirit Rover Results: Morphological and Textural Analysis of Sulfate-Rich Soils to the West of Home Plate

    Science.gov (United States)

    Siebach, K.; Arvidson, R. E.; Morris, R. V.; Gellert, R.; Wang, A.

    2009-12-01

    The Mars Exploration Rover Spirit is sitting on the upper eastern wall of an ~8 m wide, shallow circular depression located to the west of Home Plate. The rover has a 12 degree roll to the west, with the left wheels within the crater and the right wheels on a plateau to the east of the crater. The region is called “Troy”, and an extensive campaign of observations has been conducted of the disturbed soil (“Ulysses”) and two surfaces on the plateau (“Cyclops Eye” and “Polyphemus Eye”). The campaign included extensive measurements in Ulysses by the Panoramic Camera and Alpha Particle X-Ray and Mössbauer Spectrometers. In addition, the Rock Abrasion Tool (RAT) was used to excavate into the “Eye” Targets with subsequent measurements using the science payload. The data show that the Ulysses soils are dominated by sulfate-rich materials, mixed with varying amounts of basaltic sand and silt. The compositional and mineralogical observations were accompanied by images taken by the Microscopic Imager (MI), a fixed-focus camera with 31micrometer/pixel image scale. Particle size distributions derived from MI images show that the Ulysses soils are composed primarily of fine to medium sized sand grains, with some agglomerates and a component of silt grains below the resolution of the instrument (~0.1 mm). A comparison of the 2D perimeter and cross-sectional areas of the particles indicates that the soil is dominated by angular fragmented particles. The angularity indicates that this soil is local in origin. Surface soils on the plateau to the east of Ulysses are composed of well-sorted, round, fine basaltic sand, likely sorted by aeolian transport. The deepest soil uncovered by the RAT at Cyclops Eye (~10 cm to east of Ulysses) shows a mix of angular sulfate-dominated grains, and round basaltic particles. On the other hand, materials on the surface and those exposed in Polyphemus Eye (~30 cm to east of Cyclops Eye) indicate the presence of basaltic materials

  10. Organic acid enhanced electrodialytic extraction of lead from contaminated soil fines in suspension

    DEFF Research Database (Denmark)

    Jensen, Pernille Erland; Ahring, Birgitte Kiær; Ottosen, Lisbeth M.

    2007-01-01

    The implementation of soil washing technology for the treatment of heavy metal contaminated soils is limited by the toxicity and unwieldiness of the remaining heavy metal contaminated sludge. In this work, the feasibility of combining electrodialytic remediation with heterotrophic leaching...... for decontamination of the sludge was investigated. The ability of 11 organic acids to extract Pb from the fine fraction of contaminated soil (grains ... was tested. Five of the acids showed the ability to extract Ph from the soil fines in excess of the effect caused solely by pH changes. Addition of the acids, however, severely impeded EDR, hence promotion of EDR by combination with heterotrophic leaching was rejected. In contrast, enhancement of EDR...

  11. Sequential extraction protocol for organic matter from soils and sediments using high resolution mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Tfaily, Malak M.; Chu, Rosalie K.; Toyoda, Jason; Toli?, Nikola; Robinson, Errol W.; Pa?a-Toli?, Ljiljana; Hess, Nancy J.

    2017-03-31

    A vast number of organic compounds are present in soil organic matter (SOM) and play an important role in the terrestrial carbon cycle, facilitate interactions between organisms, and represent a sink for atmospheric CO2. The diversity of different SOM compounds and their molecular characteristics is a function of the organic source material and biogeochemical history. By understanding how SOM composition changes with sources and the processes by which it is biogeochemically altered in different terrestrial ecosystems, it may be possible to predict nutrient and carbon cycling, response to system perturbations, and impact of climate change will have on SOM composition. In this study, a sequential chemical extraction procedure was developed to reveal the diversity of organic matter (OM) in different ecosystems and was compared to the previously published protocol using parallel solvent extraction (PSE). We compared six extraction methods using three sample types, peat soil, spruce forest soil and river sediment, so as to select the best method for extracting a representative fraction of organic matter from soils and sediments from a wide range of ecosystems. We estimated the extraction yield of dissolved organic carbon (DOC) by total organic carbon analysis, and measured the composition of extracted OM using high resolution mass spectrometry. This study showed that OM composition depends primarily on soil and sediment characteristics. Two sequential extraction protocols, progressing from polar to non-polar solvents, were found to provide the highest number and diversity of organic compounds extracted from the soil and sediments. Water (H2O) is the first solvent used for both protocols followed by either co-extraction with methanol-chloroform (MeOH-CHCl3) mixture, or acetonitrile (ACN) and CHCl3 sequentially. The sequential extraction protocol developed in this study offers improved sensitivity, and requires less sample compared to the PSE workflow where a new sample

  12. Metal extraction by Alyssum serpyllifolium ssp. lusitanicum on mine-spoil soils from Spain.

    Science.gov (United States)

    Kidd, P S; Monterroso, C

    2005-01-05

    The efficiency of Alyssum serpyllifolium ssp. lusitanicum (Brassicaceae) for use in phytoextraction of polymetallic contaminated soils was evaluated. A. serpyllifolium was grown on two mine-spoil soils (MS1 and MS2): MS1 is contaminated with Cr (283 mg kg(-1)) and MS2 is moderately contaminated with Cr (263 mg kg(-1)), Cu (264 mg kg(-1)), Pb (1433 mg kg(-1)) and Zn (377 mg kg(-1)). Soils were limed to about pH 6.0 (MS1/Ca and MS2/Ca) or limed and amended with NPK fertilisers (MS1/NPK and MS2/NPK). Biomass was reduced on MS2/Ca due to Cu phytotoxicity. Fertilisation increased biomass by 10-fold on MS1/NPK, but root growth was reduced by 7-fold compared with MS1/Ca. Plants accumulated Mn, Ni and Zn in shoots, and both metal content and transportation were generally greater in MS2 than in MS1. Zinc bioaccumulation factors (BF, shoot([metal])/soil([metal])) were significantly greater in MS2 than in MS1. However, metal yields were greatest in plants grown on MS1/NPK. Concentrations of EDTA-, NH(4)Cl- and Mehlich 3 (M3)-extractable Mn and Zn were greater after plant growth. Concentrations of M3-extractable Cr, Ni, Pb and Zn were increased at the rhizosphere. Sequential extractions showed changes in the metal distribution among different soil fractions after growth. This could reflect the buffering capacity of these soils or the plants' ability to mobilise metals from less plant-available soil pools. Results suggest that A. serpyllifolium could be suitable for phytoextraction uses in polymetallic-contaminated soils, provided Cu concentrations were not phytotoxic. However, further optimisation of growth and metal extraction are required.

  13. Comparison of Methanol and Tetraglyme as Extraction Solvents for Determination of Volatile Organics in Soil

    Science.gov (United States)

    1987-11-01

    determining volatile organics in soil can be classified into thefollowing groups: 1. Static or dynamic headspace analysis 2. Solvent extraction-direct...methods based on the dynamic headspace method whereby the volatiles are stripped from a soil/water slurry using a conventional purge-and-trap instrument...651. Brazell, R.S. and MP. Maskarinec (1981) Dynamic headspace analysis of solid waste materials. Journal of High Resolution Chromatography and

  14. Toluene removal from sandy soils via in situ technologies with an emphasis on factors influencing soil vapor extraction.

    Science.gov (United States)

    Amin, Mohammad Mehdi; Hatamipour, Mohammad Sadegh; Momenbeik, Fariborz; Nourmoradi, Heshmatollah; Farhadkhani, Marzieh; Mohammadi-Moghadam, Fazel

    2014-01-01

    The integration of bioventing (BV) and soil vapor extraction (SVE) appears to be an effective combination method for soil decontamination. This paper serves two main purposes: it evaluates the effects of soil water content (SWC) and air flow rate on SVE and it investigates the transition regime between BV and SVE for toluene removal from sandy soils. 96 hours after air injection, more than 97% removal efficiency was achieved in all five experiments (carried out for SVE) including 5, 10, and 15% for SWC and 250 and 500 mL/min for air flow rate on SVE. The highest removal efficiency (>99.5%) of toluene was obtained by the combination of BV and SVE (AIBV: Air Injection Bioventing) after 96 h of air injection at a constant flow rate of 250 mL/min. It was found that AIBV has the highest efficiency for toluene removal from sandy soils and can remediate the vadose zone effectively to meet the soil guideline values for protection of groundwater.

  15. Toluene Removal from Sandy Soils via In Situ Technologies with an Emphasis on Factors Influencing Soil Vapor Extraction

    Directory of Open Access Journals (Sweden)

    Mohammad Mehdi Amin

    2014-01-01

    Full Text Available The integration of bioventing (BV and soil vapor extraction (SVE appears to be an effective combination method for soil decontamination. This paper serves two main purposes: it evaluates the effects of soil water content (SWC and air flow rate on SVE and it investigates the transition regime between BV and SVE for toluene removal from sandy soils. 96 hours after air injection, more than 97% removal efficiency was achieved in all five experiments (carried out for SVE including 5, 10, and 15% for SWC and 250 and 500 mL/min for air flow rate on SVE. The highest removal efficiency (>99.5% of toluene was obtained by the combination of BV and SVE (AIBV: Air Injection Bioventing after 96 h of air injection at a constant flow rate of 250 mL/min. It was found that AIBV has the highest efficiency for toluene removal from sandy soils and can remediate the vadose zone effectively to meet the soil guideline values for protection of groundwater.

  16. Toluene Removal from Sandy Soils via In Situ Technologies with an Emphasis on Factors Influencing Soil Vapor Extraction

    Science.gov (United States)

    Amin, Mohammad Mehdi; Hatamipour, Mohammad Sadegh; Nourmoradi, Heshmatollah; Farhadkhani, Marzieh; Mohammadi-Moghadam, Fazel

    2014-01-01

    The integration of bioventing (BV) and soil vapor extraction (SVE) appears to be an effective combination method for soil decontamination. This paper serves two main purposes: it evaluates the effects of soil water content (SWC) and air flow rate on SVE and it investigates the transition regime between BV and SVE for toluene removal from sandy soils. 96 hours after air injection, more than 97% removal efficiency was achieved in all five experiments (carried out for SVE) including 5, 10, and 15% for SWC and 250 and 500 mL/min for air flow rate on SVE. The highest removal efficiency (>99.5%) of toluene was obtained by the combination of BV and SVE (AIBV: Air Injection Bioventing) after 96 h of air injection at a constant flow rate of 250 mL/min. It was found that AIBV has the highest efficiency for toluene removal from sandy soils and can remediate the vadose zone effectively to meet the soil guideline values for protection of groundwater. PMID:24587723

  17. EXTRACTION, RECOVERY, AND BIOSTABILITY OF EDTA FOR REMEDIATION OF HEAVY METAL-CONTAMINATED SOIL. (R825549C052)

    Science.gov (United States)

    Chelation removal of heavy metals from contaminated soil is seen as a viable remediation technique. A useful chelating agent should be strong, reusable, and biostable during metal extraction and recovery operations. This work tested the extraction, recovery, and biostability o...

  18. EXTRACTION, RECOVERY, AND BIOSTABILITY OF EDTA FOR REMEDIATION OF HEAVY METAL-CONTAMINATED SOIL. (R825549C052)

    Science.gov (United States)

    Chelation removal of heavy metals from contaminated soil is seen as a viable remediation technique. A useful chelating agent should be strong, reusable, and biostable during metal extraction and recovery operations. This work tested the extraction, recovery, and biostability o...

  19. The validation of forensic DNA extraction systems to utilize soil contaminated biological evidence.

    Science.gov (United States)

    Kasu, Mohaimin; Shires, Karen

    2015-07-01

    The production of full DNA profiles from biological evidence found in soil has a high failure rate due largely to the inhibitory substance humic acid (HA). Abundant in various natural soils, HA co-extracts with DNA during extraction and inhibits DNA profiling by binding to the molecular components of the genotyping assay. To successfully utilize traces of soil contaminated evidence, such as that found at many murder and rape crime scenes in South Africa, a reliable HA removal extraction system would often be selected based on previous validation studies. However, for many standard forensic DNA extraction systems, peer-reviewed publications detailing the efficacy on soil evidence is either lacking or is incomplete. Consequently, these sample types are often not collected or fail to yield suitable DNA material due to the use of unsuitable methodology. The aim of this study was to validate the common forensic DNA collection and extraction systems used in South Africa, namely DNA IQ, FTA elute and Nucleosave for processing blood and saliva contaminated with HA. A forensic appropriate volume of biological evidence was spiked with HA (0, 0.5, 1.5 and 2.5 mg/ml) and processed through each extraction protocol for the evaluation of HA removal using QPCR and STR-genotyping. The DNA IQ magnetic bead system effectively removed HA from highly contaminated blood and saliva, and generated consistently acceptable STR profiles from both artificially spiked samples and crude soil samples. This system is highly recommended for use on soil-contaminated evidence over the cellulose card-based systems currently being preferentially used for DNA sample collection. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  20. Potential application of synchronous fluorescence spectroscopy to determine benzo[a]pyrene in soil extracts

    Energy Technology Data Exchange (ETDEWEB)

    Hua Guoxiong [School of Biology, Institute for Research on the Environment and Sustainability, Devonshire Building, University of Newcastle upon Tyne, NE1 7RU (United Kingdom); Killham, Ken [Department of Plant and Soil Science, Cruickshank Building, University of Aberdeen, AB24 3UU (United Kingdom); Singleton, Ian [School of Biology, Institute for Research on the Environment and Sustainability, Devonshire Building, University of Newcastle upon Tyne, NE1 7RU (United Kingdom)]. E-mail: ian.singleton@ncl.ac.uk

    2006-01-15

    Benzo[a]pyrene (BaP) is a significant environmental pollutant and rapid, accurate methods to quantify this compound in soil for both research and environmental investigation purposes are required. In this work, solvent extracts from five contrasting soils spiked with four different polycyclic aromatic hydrocarbons (PAHs) were rapidly analysed by using a synchronous fluorescence spectroscopy (SFS) method. The SFS method was validated using HPLC with ultraviolet detection. A good correlation for the quantification of BaP in soil extracts by the two methods was observed. The detection limit of the SFS method was 1.6 x 10{sup -9} g/ml in CTAB micellar medium (7.8 mmol/l). The work demonstrates that SFS has potential as a sensitive, accurate, rapid, simple and economic methodology and an efficient alternative to HPLC for fast confirmation and quantification of BaP in complex soil extracts. - Synchronous fluorescence spectroscopy has potential as a method for confirmation of benzo[a]pyrene in soil extracts.

  1. Use of Organic Solvents to Extract Organochlorine Pesticides (OCPs) from Aged Contaminated Soils

    Institute of Scientific and Technical Information of China (English)

    YE Mao; JIN Xin; JIANG Xin; YANG Xing-Lun; SUN Ming-Ming; BIAN Yong-Rong; WANG Fang; GU Cheng-Gang; WEI Hai-Jiang; SONG Yang; WANG Lei

    2013-01-01

    Problems associated with organochlorine pesticide (OCP)-contaminated sites in China have received wide attention.To solve such problems,innovative ex-situ methods of site remediation are urgently needed.We investigated the feasibility of the extraction method with different organic solvents,ethanol,1-propanol,and three fractions of petroleum ether,using a soil collected from Wujiang (WJ),China,a region with long-term contamination of dichlorodiphenyltrichloroethanes (DDTs).We evaluated different influential factors,including organic solvent concentration,washing time,mixing speed,solution-to-soil ratio,and washing temperature,on the removal of DDTs from the WJ soil.A set of relatively better parameters were selected for extraction with 100 mL L-1 petroleum ether (60-90 ℃):washing time of 180 min,mixing speed of 100 r min-1,solution-to-soil ratio of 10:1,and washing temperature of 50 ℃.These selected parameters were also applied on three other seriously OCP-polluted soils.Results demonstrated their broad-spectrum effectiveness and excellent OCP extraction performance on the contaminated soils with different characteristics.

  2. Composite Sampling Approaches for Bacillus anthracis Surrogate Extracted from Soil.

    Directory of Open Access Journals (Sweden)

    Brian France

    Full Text Available Any release of anthrax spores in the U.S. would require action to decontaminate the site and restore its use and operations as rapidly as possible. The remediation activity would require environmental sampling, both initially to determine the extent of contamination (hazard mapping and post-decon to determine that the site is free of contamination (clearance sampling. Whether the spore contamination is within a building or outdoors, collecting and analyzing what could be thousands of samples can become the factor that limits the pace of restoring operations. To address this sampling and analysis bottleneck and decrease the time needed to recover from an anthrax contamination event, this study investigates the use of composite sampling. Pooling or compositing of samples is an established technique to reduce the number of analyses required, and its use for anthrax spore sampling has recently been investigated. However, use of composite sampling in an anthrax spore remediation event will require well-documented and accepted methods. In particular, previous composite sampling studies have focused on sampling from hard surfaces; data on soil sampling are required to extend the procedure to outdoor use. Further, we must consider whether combining liquid samples, thus increasing the volume, lowers the sensitivity of detection and produces false negatives. In this study, methods to composite bacterial spore samples from soil are demonstrated. B. subtilis spore suspensions were used as a surrogate for anthrax spores. Two soils (Arizona Test Dust and sterilized potting soil were contaminated and spore recovery with composites was shown to match individual sample performance. Results show that dilution can be overcome by concentrating bacterial spores using standard filtration methods. This study shows that composite sampling can be a viable method of pooling samples to reduce the number of analysis that must be performed during anthrax spore remediation.

  3. Composite Sampling Approaches for Bacillus anthracis Surrogate Extracted from Soil

    Science.gov (United States)

    France, Brian; Bell, William; Chang, Emily; Scholten, Trudy

    2015-01-01

    Any release of anthrax spores in the U.S. would require action to decontaminate the site and restore its use and operations as rapidly as possible. The remediation activity would require environmental sampling, both initially to determine the extent of contamination (hazard mapping) and post-decon to determine that the site is free of contamination (clearance sampling). Whether the spore contamination is within a building or outdoors, collecting and analyzing what could be thousands of samples can become the factor that limits the pace of restoring operations. To address this sampling and analysis bottleneck and decrease the time needed to recover from an anthrax contamination event, this study investigates the use of composite sampling. Pooling or compositing of samples is an established technique to reduce the number of analyses required, and its use for anthrax spore sampling has recently been investigated. However, use of composite sampling in an anthrax spore remediation event will require well-documented and accepted methods. In particular, previous composite sampling studies have focused on sampling from hard surfaces; data on soil sampling are required to extend the procedure to outdoor use. Further, we must consider whether combining liquid samples, thus increasing the volume, lowers the sensitivity of detection and produces false negatives. In this study, methods to composite bacterial spore samples from soil are demonstrated. B. subtilis spore suspensions were used as a surrogate for anthrax spores. Two soils (Arizona Test Dust and sterilized potting soil) were contaminated and spore recovery with composites was shown to match individual sample performance. Results show that dilution can be overcome by concentrating bacterial spores using standard filtration methods. This study shows that composite sampling can be a viable method of pooling samples to reduce the number of analysis that must be performed during anthrax spore remediation. PMID:26714315

  4. Composite Sampling Approaches for Bacillus anthracis Surrogate Extracted from Soil.

    Science.gov (United States)

    France, Brian; Bell, William; Chang, Emily; Scholten, Trudy

    2015-01-01

    Any release of anthrax spores in the U.S. would require action to decontaminate the site and restore its use and operations as rapidly as possible. The remediation activity would require environmental sampling, both initially to determine the extent of contamination (hazard mapping) and post-decon to determine that the site is free of contamination (clearance sampling). Whether the spore contamination is within a building or outdoors, collecting and analyzing what could be thousands of samples can become the factor that limits the pace of restoring operations. To address this sampling and analysis bottleneck and decrease the time needed to recover from an anthrax contamination event, this study investigates the use of composite sampling. Pooling or compositing of samples is an established technique to reduce the number of analyses required, and its use for anthrax spore sampling has recently been investigated. However, use of composite sampling in an anthrax spore remediation event will require well-documented and accepted methods. In particular, previous composite sampling studies have focused on sampling from hard surfaces; data on soil sampling are required to extend the procedure to outdoor use. Further, we must consider whether combining liquid samples, thus increasing the volume, lowers the sensitivity of detection and produces false negatives. In this study, methods to composite bacterial spore samples from soil are demonstrated. B. subtilis spore suspensions were used as a surrogate for anthrax spores. Two soils (Arizona Test Dust and sterilized potting soil) were contaminated and spore recovery with composites was shown to match individual sample performance. Results show that dilution can be overcome by concentrating bacterial spores using standard filtration methods. This study shows that composite sampling can be a viable method of pooling samples to reduce the number of analysis that must be performed during anthrax spore remediation.

  5. Divergence of compost extract and bio-organic manure effects on lucerne plant and soil

    Directory of Open Access Journals (Sweden)

    Haiyan Ren

    2017-09-01

    Full Text Available Aim Application of organic materials into agricultural systems enhances plant growth and yields, and improves soil fertility and structure. This study aimed to examine the effects of “compost extract (CE”, a soil conditioner, and bio-organic manure (BOM on the growth of lucerne (Medicago sativa, and compare the efficiency between BOM (including numbers of microorganisms and CE (including no added microorganisms. Method A greenhouse experiment was conducted with four soil amendment treatments (control, BOM, CE and CEBOM, and was arranged in a completely randomized design with 10 replicates for each treatment. Plant biomass, nutritive value and rhizobia efficacy as well as soil characteristics were monitored. Result CE rather than BOM application showed a positive effect on plant growth and soil properties when compared with the control. Lucerne nodulation responded equally to CE addition and rhizobium inoculation. CE alone and in combination with BOM significantly increased plant growth and soil microbial activities and improved soil structure. The synergistic effects of CE and BOM indicate that applying CE and BOM together could increase their efficiency, leading to higher economic returns and improved soil health. However, CE alone is more effective for legume growth since nodulation was suppressed by nitrogen input from BOM. CE had a higher efficiency than BOM for enriching soil indigenous microorganisms instead of adding microorganisms and favouring plant nodulation.

  6. Extraction of an urease-active organo-complex from soil.

    Science.gov (United States)

    Burns, R. G.; El-Sayed, M. H.; Mclaren, A. D.

    1972-01-01

    Description of an extraction from a Dublin clay loam soil of a colloidal organic matter complex that is urease active and, by X-ray analysis, free of clays. Urease activity in the clay-free precipitates, as in the soil, was not destroyed by the activity of an added proteolytic enzyme, pronase. This is attributed to the circumstance that native soil urease resides in organic colloidal particles with pores large enough for water, urea, ammonia, and carbon dioxide to pass freely, but nevertheless small enough to exclude pronase.

  7. Image Analysis of Soil Micromorphology: Feature Extraction, Segmentation, and Quality Inference

    Directory of Open Access Journals (Sweden)

    Petros Maragos

    2004-06-01

    Full Text Available We present an automated system that we have developed for estimation of the bioecological quality of soils using various image analysis methodologies. Its goal is to analyze soilsection images, extract features related to their micromorphology, and relate the visual features to various degrees of soil fertility inferred from biochemical characteristics of the soil. The image methodologies used range from low-level image processing tasks, such as nonlinear enhancement, multiscale analysis, geometric feature detection, and size distributions, to object-oriented analysis, such as segmentation, region texture, and shape analysis.

  8. An Improved Method for Soil DNA Extraction to Study the Microbial Assortment within Rhizospheric Region.

    Science.gov (United States)

    Fatima, Faria; Pathak, Neelam; Rastogi Verma, Smita

    2014-01-01

    The need for identification of soil microbial community mainly depends on direct extraction of DNA from soil, a multifaceted environment that is a major pool for microbial genetic diversity. The soil DNA extraction procedures usually suffer from two major problems, namely, inappropriate rupturing of cells and contamination with humic substances. In the present study, five protocols for single type of rhizospheric soil were investigated and their comparison indicated that the inclusion of 120 mM phosphate buffered saline (PBS) for washing and mannitol in the lysis buffer allowed the processing of soil sample in minimal time with no specific equipment requirement. Furthermore, DNA purity and yield were also improved, which allowed the exploitation of genetic potential of soil microbes within soil sample thereby facilitating the amplification of metagenomic DNA. The effectiveness of methods was analyzed using random amplification of polymorphic DNA. The banding patterns revealed that both the abundance and the composition of indigenous microbial community depend on the DNA recovery method.

  9. An improved protocol for DNA extraction from alkaline soil and sediment samples for constructing metagenomic libraries.

    Science.gov (United States)

    Verma, Digvijay; Satyanarayana, T

    2011-09-01

    An improved single-step protocol has been developed for extracting pure community humic substance-free DNA from alkaline soils and sediments. The method is based on direct cell lysis in the presence of powdered activated charcoal and polyvinylpolypyrrolidone followed by precipitation with polyethyleneglycol and isopropanol. The strategy allows simultaneous isolation and purification of DNA while minimizing the loss of DNA with respect to other available protocols for metagenomic DNA extraction. Moreover, the purity levels are significant, which are difficult to attain with any of the methods reported in the literature for DNA extraction from soils. The DNA thus extracted was free from humic substances and, therefore, could be processed for restriction digestion, PCR amplification as well as for the construction of metagenomic libraries.

  10. A rapid fractionation method for heavy metals in soil by continuous-flow sequential extraction assisted by focused microwaves.

    Science.gov (United States)

    Nakazato, Tetsuya; Akasaka, Mikio; Tao, Hiroaki

    2006-11-01

    A microwave-assisted continuous-flow sequential extraction system was developed for rapid fractionation analysis of heavy metals in soil. Insertion of pressure-adjusted air between the extractants provided stable flows of the extractants without mutual mixing and back-pressure influence of a column packed with soil, thereby facilitating reliable continuous-flow extractions. In addition, use of pure water as a pumping solvent removed metal contamination because of direct contact between corrosive extractants and the pump containing metallic materials. Focused microwave irradiation to the soil accelerated the selective extractions of the acid-soluble and reducible fractions of heavy metals in soil in the first and second steps of the sequential extraction conditions, as defined by the Commission of the European Bureau of Reference (BCR). The microwave-assisted continuous-flow extraction provided high correlations in amounts of six heavy metals except Zn in the first step and Cu in the second step extracted from a reference sludge soil, BCR CRM 483, with a conventional batchwise extraction proposed by BCR; continuous-flow extraction assisted by conductive heating provided lower correlations for all the six metals. The proposed method drastically reduced the time required for the sequence extraction to ca. 65 min without losing accuracy and precision of the fractionation analysis of heavy metals in soil, whereas the BCR batchwise method requires ca. 33 h.

  11. An approach using centrifugation for the extraction of the soil solution and its usefulness in studies of radionuclide speciation in soils - Approach using centrifugation for extraction of soil solution and its study for uranium speciation

    Energy Technology Data Exchange (ETDEWEB)

    Medeiros, Adriana S. [CAPES Foundation, Ministry of Education of Brazil, 70040-020, Brasilia, Brazil, Proc.BEX 1958/13-5 (Brazil); Lozano, J.C.; Prieto, C. [Universidad de Salamanca, 37008, Salamanca (Spain); Blanco Rodriguez, P.; Vera Tome, F. [Universidad de Extremadura, 06006, Badajoz (Spain)

    2014-07-01

    The centrifugation technique is tested as a methodology for extraction of soil solution, for further characterization, in order to elucidate its contribution to the speciation of radionuclides, particularly uranium, in radioactively contaminated soils, as well as the determination of its availability for vegetation. Centrifugation of a previously saturated soil core provides the soil solution with a specific origin inside the soil sample. In such way that the different soil solution origin, associate to the effective pressure applied to the soil core, will reflect different distribution coefficients which affect the radionuclide availability definition. Speciation of radionuclides in the soil solution can be also conditioned by this water origin. The development of this methodology relating to technical challenges faces materials suitable for the centrifugation process, both in terms of mechanical properties and chemical inertness. This paper reports the preparation of ceramic pellets of perlite produced with the intention of replacing glass pellets, used inserts in support to soils coupled with centrifuges. The characterization of porosity and the test of its chemical inertness and mechanical strength to the centrifugation process have been performed. Porosity characterization is required to control the saturation gradient, which conditions the flow of water from the soil. Its mechanical adequacy was tested by subjecting the pellets to the centrifugation process and assessing its integrity end. Chemical inertia was measured by placing the tablets in aqueous solutions of known composition and then evaluating the presence or absence of elements in this solution, after on time of contact between them. (authors)

  12. Efficiency of solvent extraction methods for the determination of methyl mercury in forest soils.

    Science.gov (United States)

    Qian, J; Skyllberg, U; Tu, Q; Bleam, W F; Frech, W

    2000-07-01

    Methyl mercury was determined by gas chromatography, microwave induced plasma, atomic emission spectrometry (GC-MIP-AES) using two different methods. One was based on extraction of mercury species into toluene, pre-concentration by evaporation and butylation of methyl mercury with a Grignard reagent followed by determination. With the other, methyl mercury was extracted into dichloromethane and back extracted into water followed by in situ ethylation, collection of ethylated mercury species on Tenax and determination. The accuracy of the entire procedure based on butylation was validated for the individual steps involved in the method. Methyl mercury added to various types of soil samples showed an overall average recovery of 87.5%. Reduced recovery was only caused by losses of methyl mercury during extraction into toluene and during pre-concentration by evaporation. The extraction of methyl mercury added to the soil was therefore quantitative. Since it is not possible to directly determine the extraction efficiency of incipient methyl mercury, the extraction efficiency of total mercury with an acidified solution containing CuSO4 and KBr was compared with high-pressure microwave acid digestion. The solvent extraction efficiency was 93%. For the IAEA 356 sediment certified reference material, mercury was less efficiently extracted and determined methyl mercury concentrations were below the certified value. Incomplete extraction could be explained by the presence of a large part of inorganic sulfides, as determined by x-ray absorption near-edge structure spectroscopy (XANES). Analyses of sediment reference material CRM 580 gave results in agreement with the certified value. The butylation method gave a detection limit for methyl mercury of 0.1 ng g(-1), calculated as three times the standard deviation for repeated analysis of soil samples. Lower values were obtained with the ethylation method. The precision, expressed as RSD for concentrations 20 times above the

  13. Abiotic reductive extraction of arsenic from contaminated soils enhanced by complexation: Arsenic extraction by reducing agents and combination of reducing and chelating agents

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Eun Jung [Department of Bioactive Material Sciences, Chonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju, Jeollabukdo 561-675 (Korea, Republic of); Lee, Jae-Cheol [Department of Environmental Engineering, Chonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju, Jeollabukdo 561-675 (Korea, Republic of); Baek, Kitae, E-mail: kbaek@jbnu.ac.kr [Department of Bioactive Material Sciences, Chonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju, Jeollabukdo 561-675 (Korea, Republic of); Department of Environmental Engineering, Chonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju, Jeollabukdo 561-675 (Korea, Republic of)

    2015-02-11

    Highlights: • Abiotic reductive extraction of As from contaminated soils was studied. • Oxalate/ascorbate were effective in extracting As bound to amorphous iron oxides. • Reducing agents were not effective in extracting As bound to crystalline oxides. • Reductive As extraction was greatly enhanced by complexation. • Combination of dithionite and EDTA could extract about 90% of the total As. - Abstract: Abiotic reductive extraction of arsenic from contaminated soils was studied with various reducing agents and combinations of reducing and chelating agents in order to remediate arsenic-contaminated soils. Oxalate and ascorbic acid were effective to extract arsenic from soil in which arsenic was associated with amorphous iron oxides, but they were not effective to extract arsenic from soils in which arsenic was bound to crystalline oxides or those in which arsenic was mainly present as a scorodite phase. An X-ray photoelectron spectroscopy study showed that iron oxides present in soils were transformed to Fe(II,III) or Fe(II) oxide forms such as magnetite (Fe{sub 3}O{sub 4}, Fe{sup II}Fe{sub 2}{sup III}O{sub 4}) by reduction with dithionite. Thus, arsenic extraction by dithionite was not effective due to the re-adsorption of arsenic to the newly formed iron oxide phase. Combination of chelating agents with reducing agents greatly improved arsenic extraction from soil samples. About 90% of the total arsenic could be extracted from all soil samples by using a combination of dithionite and EDTA. Chelating agents form strong complexation with iron, which can prevent precipitation of a new iron oxide phase and also enhance iron oxide dissolution via a non-reductive dissolution pathway.

  14. Hard cap espresso extraction-stir bar preconcentration of polychlorinated biphenyls in soil and sediments.

    Science.gov (United States)

    Gallart-Mateu, Daniel; Pastor, Agustín; de la Guardia, Miguel; Armenta, Sergio; Esteve-Turrillas, Francesc A

    2017-02-01

    A Nespresso(©) hard cap espresso machine has been employed for the quantitative extraction of polychlorinated biphenyls (PCBs) from sediments and soils. Sample extraction was performed from five grams of sample in less than 40 s, with 200 mL ethanol 40% (v/v) in water and PCBs were concentrated using stir bar sorptive extraction (SBSE) and determined by thermal desorption-gas chromatography-tandem mass spectrometry (TD-GC-MS-MS). Eleven PCB congeners (28, 52, 77, 80, 81, 101, 118, 138, 153,169, and 180) were determined in soils and sediments with limits of quantification in the 0.03-0.08 ng g(-1) range. Extraction efficiency was established by the analysis of soil samples spiked with the studied PCBs at concentrations from 0.1 to 10.0 ng g(-1), obtaining quantitative recoveries from 81 to 120% and an adequate precision with relative standard deviations lower than 20%. Certified reference materials and natural samples were analyzed by the proposed hard cap espresso extraction and results were compared with those provided by a reference procedure based on pressurized solvent extraction, obtaining statistically comparable results. Therefore, the use of a hard cap espresso machine in tandem with SBSE and TD-GC-MS-MS allowed a simple, sensitive and quantitative determination of PCBs.

  15. Kinetics of electrodialytic extraction of Pb and soil cations from a slurry of contaminated soil fines

    DEFF Research Database (Denmark)

    Jensen, Pernille Erland; Ottosen, Lisbeth M.; Ferreira, Célia;

    2006-01-01

    The objective of this work was to investigate the kinetics of Pb removal from soil-fines during electrodialytic remediation in suspension, and study the simultaneous dissolution of common soil cations (Al, Ca, Fe, Mg, Mn, Na and K). This was done to evaluate the possibilities within control......-removal was obtained. During the first phase dissolution of carbonates was the prevailing process, resulting in a corresponding loss of soil-mass. During this phase, the investigated ions accounted for the major current transfer, while, as remediation proceeded hydrogen-ions increasingly dominated the transfer. During...

  16. Biogeography of free-living soil nematodes from the perspective of plate tectonics.

    Science.gov (United States)

    Ferris, V R; Goseco, C G; Ferris, J M

    1976-08-01

    In this first biogeographical synthesis based on the morphology and known distribution of a group of free-living soil nematodes, data indicate a pre-Jurassic origin followed by West Gondwanaland radiation for some genera and Laurasian radiation for others.

  17. Influence of the selective EDTA derivative phenyldiaminetetraacetic acid on the speciation and extraction of heavy metals from a contaminated soil.

    Science.gov (United States)

    Zhang, Tao; Wei, Hang; Yang, Xiu-Hong; Xia, Bing; Liu, Jun-Min; Su, Cheng-Yong; Qiu, Rong-Liang

    2014-08-01

    The development of more selective chelators for the washing of heavy metal contaminated soil is desirable in order to avoid excessive dissolution of soil minerals. Speciation and mobility of Cu, Zn, Pb, and Ni in a contaminated soil washed with phenyldiaminetetraacetic acid (PDTA), a derivative of EDTA, were investigated by batch leaching test using a range of soil washing conditions followed by sequential extraction. With appropriate washing conditions, PDTA significantly enhanced extraction of Cu from the contaminated soil. The primary mechanisms of Cu extraction by PDTA were complexation-promoted dissolution of soil Cu and increased dissolution of soil organic matter (SOM). PDTA showed high selectivity for Cu(II) over soil component cations (Ca(II), Mg(II), Fe(III), Mn(II), Al(III)), especially at lower liquid-to-soil ratios under PDTA deficiency, thus avoiding unwanted dissolution of soil minerals during the soil washing process which can degrade soil structure and interfere with future land use. PDTA-enhanced soil washing increased the exchangeable fractions of Cu, Zn, and Pb and decreased their residual fractions, compared to their levels in unwashed soil.

  18. Empirical modeling of heavy metal extraction by EDDS from single-metal and multi-metal contaminated soils.

    Science.gov (United States)

    Yip, Theo C M; Tsang, Daniel C W; Ng, Kelvin T W; Lo, Irene M C

    2009-01-01

    The effectiveness of using biodegradable EDDS (S,S-ethylenediaminedisuccinic acid) for metal extraction has drawn increasing attention in recent years. In this study, an empirical model, which utilized the initial metal distribution in soils and a set of parameter values independently determined from sequential extraction, was developed for estimating the time-dependent heavy metal extraction by EDDS from single-metal and multi-metal contaminated soils. The model simulation provided a satisfactory description of the experimental results of the 7-d extraction kinetics of Cu, Zn, and Pb in both artificially contaminated and field-contaminated soils. Thus, independent and prior assessment of extraction efficiency would be available to facilitate the engineering applications of EDDS. Furthermore, a simple empirical equation using the initial metal distribution was also proposed to estimate the extraction efficiency at equilibrium. It was found that, for the same type of soils, higher extraction efficiency was achieved in multi-metal contaminated soils than in single-metal contaminated soils. The differences were 4-9%, 9-16%, and 21-31% for Cu, Zn, and Pb, respectively, probably due to the larger proportion of exchangeable and carbonate fractions of sorbed Zn and Pb in multi-metal contaminated soils. EDDS-promoted mineral dissolution, on the other hand, was more significant in multi-metal contaminated soils as a result of the higher EDDS concentration applied to the soils of higher total metal content.

  19. Quantity and nature of water-extractable organic matter from sandy loam soils with potato cropping managements

    Science.gov (United States)

    Water-extractable organic matter (WEOM) is part of the soil labile organic matter components. In this work, we evaluated the level and nature of soil WEOM from a long-term (6-year) potato crop rotation field experiment. The contents of water-extractable organic C (WEOC) were higher in continuous pot...

  20. Determination of phosphate in soil extracts in the field: A green chemistry enzymatic method.

    Science.gov (United States)

    Campbell, Ellen R; Warsko, Kayla; Davidson, Anna-Marie; Bill Campbell, Wilbur H

    2015-01-01

    Measurement of ortho-phosphate in soil extracts usually involves sending dried samples of soil to a laboratory for analysis and waiting several weeks for the results. Phosphate determination methods often involve use of strong acids, heavy metals, and organic dyes. To overcome limitations of this approach, we have developed a phosphate determination method which can be carried out in the field to obtain results on the spot. This new method uses: •Small volumes.•An enzymatic reaction.•Green chemistry. First, the soil sample is extracted with deionized water and filtered. Next, an aliquot of the soil extract (0.5 mL) is transferred to a disposable cuvette, containing 0.5 mL of reaction mixture [200 mM HEPES, pH 7.6, 20 mM MgCl2, with 80 nmol 2-amino-6-mercapto-7-methylpurine ribonucleoside (MESG) and 1 unit of recombinant purine nucleoside phosphorylase (PNP; EC 2.4.2.1)], mixed, and incubated for 10 min at field temperature. Absorbance of the completed reaction is measured at 360 nm in open-source, portable photometer linked by bluetooth to a smartphone. The phosphate and phosphorus content of the soil is determined by comparison of its absorbance at 360 nm to a previously prepared standard phosphate curve, which is stored in the smartphone app.

  1. Determination of phosphate in soil extracts in the field: A green chemistry enzymatic method

    Science.gov (United States)

    Campbell, Ellen R.; Warsko, Kayla; Davidson, Anna-Marie; (Bill) Campbell, Wilbur H.

    2015-01-01

    Measurement of ortho-phosphate in soil extracts usually involves sending dried samples of soil to a laboratory for analysis and waiting several weeks for the results. Phosphate determination methods often involve use of strong acids, heavy metals, and organic dyes. To overcome limitations of this approach, we have developed a phosphate determination method which can be carried out in the field to obtain results on the spot. This new method uses: • Small volumes. • An enzymatic reaction. • Green chemistry. First, the soil sample is extracted with deionized water and filtered. Next, an aliquot of the soil extract (0.5 mL) is transferred to a disposable cuvette, containing 0.5 mL of reaction mixture [200 mM HEPES, pH 7.6, 20 mM MgCl2, with 80 nmol 2-amino-6-mercapto-7-methylpurine ribonucleoside (MESG) and 1 unit of recombinant purine nucleoside phosphorylase (PNP; EC 2.4.2.1)], mixed, and incubated for 10 min at field temperature. Absorbance of the completed reaction is measured at 360 nm in open-source, portable photometer linked by bluetooth to a smartphone. The phosphate and phosphorus content of the soil is determined by comparison of its absorbance at 360 nm to a previously prepared standard phosphate curve, which is stored in the smartphone app. PMID:26150991

  2. Vacuum extraction based response equipment for recovery of fresh fuel spills from soil.

    Science.gov (United States)

    Halmemies, Sakari; Gröndahl, Siri; Arffman, Mika; Nenonen, Keijo; Tuhkanen, Tuula

    2003-02-28

    Accidental overturns of fuel tankers can have, depending on soil types, severe consequences. This applies, particularly in areas of shallow soils where the groundwater is located 2-4m below the ground surface. By rapid, vacuum extraction based recovery emergency services, which would normally be the first to arrive on the scene, could minimize consequences of fresh fuel spills and even prevent groundwater contamination, the primary purpose of emergency response. Powerful vacuum extraction-based response (PER), equipment has been developed to recover freshly spilt volatile fuels from the soil, primary by emergency services, but also by other trained responders. The main components of mobile PER-equipment are perforated extraction pipes, a recovery vacuum tank, a vacuum pump and an incinerator. The PER-equipment has been tested in summer and sub-zero winter conditions, and in both cases 50-80% of fresh gasoline spilled into sandy soil was recovered during the first 2h of operation. Gasoline was recovered in both liquid and vapor form, and hydrocarbon vapors were destroyed by controlled incineration at a safe distance from the spill. Recovery of less volatile diesel oil is not so effective from the sandy soil, but about 30% of it could be pumped from a fresh pool directly after a seepage time of 15 min.

  3. Decontamination of Metal Ions in Soil by Supercritical CO{sub 2} Extraction with Catecholamine Ligand

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jihye; Kim, Hakwon; Park, Kwangheon [Kyunghee University, Yongin (Korea, Republic of)

    2015-10-15

    The role of fuel cladding and reactor vessels is to help prevent the leakage of radioactive materials, including the fission products. However, if these shielding materials are damaged by a severe disaster such as the Fukushima Accident, radioactive materials could leak outside of a power plant site. Indeed, after the Fukushima Accident, radioactive materials have been detected in air and water samples. The air and water pollution lead to soil pollution, which is particularly difficult to decontaminate, as soil pollution has several types that vary according to the characteristics of a pollutant or its area. The existing decontamination methods generate a secondary waste owing to use of chemical toxicity solvents. It is also disadvantageous due to the additional cost of handling them. Therefore, new effective decontamination methods that reduce the use of toxicity solvents are necessary. For example, using supercritical CO{sub 2} has been studied as a new decontamination method. This study examines the method of decontaminating metallic ions inside of the soil using supercritical CO{sub 2} and a catecholamine compound. This study examined the effects of extracting metallic ions inside the soil using supercritical CO{sub 2} and catecholamine as the ligand. Based on these results, it is evident that when only the extraction agent was used, there was no extraction effect and that only when the ligand, co-ligand, and additive were used together was there an extraction effect. Following this, the optimal extraction-agent ratio was confirmed using varying amounts of extraction agents. The most effective extraction ratio of ligand to co-ligand was 1:2 in E-9 when 0.3 ml of H{sub 2}O were added.

  4. Bias in bacterial diversity as a result of Nycodenz extraction from bulk soil

    DEFF Research Database (Denmark)

    Holmsgaard, Peter Nikolai; Norman, Anders; Hede, Simon Christian

    2011-01-01

    FLX system. Sequences were processed and analyzed using the Ribosomal Database Project's (RDP) Pyrosequencing Pipeline tools. In this study, we show that extraction of bacteria from soil using NDC can result in significant biases in the form of either over- or underrepresentation of specific bacterial...... to cover 95% of the bacterial biodiversity, the equivalent of one full standard GS FLX run....

  5. Effect of harsh or mild extraction of soil on pesticide leaching to groundwater

    NARCIS (Netherlands)

    Boesten, Jos J.T.I.

    2016-01-01

    Assessment of leaching to groundwater is an important aspect of pesticide risk assessment. The first leaching tier usually consists of simulations with leaching scenarios based on pesticide- soil properties derived from laboratory studies. Because the extractability of pesticide residues in such

  6. Effect of DNA extraction method on the apparent microbial diversity of soil

    NARCIS (Netherlands)

    Inceoglu, Oezguel; Hoogwout, Eelco F.; Hill, Patrick; van Elsas, Jan Dirk

    Four extraction methods, including a novel one, were compared for their efficiencies in producing DNA from three contrasting agricultural soils. Molecular analyses (PCR-denaturing gradient gel electrophoresis [DGGE] and clone libraries) focusing on different microbial groups were used as assessment

  7. Enhanced method for microbial community DNA extraction and purification from agricultural yellow loess soil.

    Science.gov (United States)

    Kathiravan, Mathur Nadarajan; Gim, Geun Ho; Ryu, Jaewon; Kim, Pyung Il; Lee, Chul Won; Kim, Si Wouk

    2015-11-01

    In this study, novel DNA extraction and purification methods were developed to obtain high-quantity and reliable quality DNA from the microbial community of agricultural yellow loess soil samples. The efficiencies of five different soil DNAextraction protocols were evaluated on the basis of DNA yield, quality and DNA shearing. Our suggested extraction method, which used CTAB, EDTA and cell membrane lytic enzymes in the extraction followed by DNA precipitation using isopropanol, yielded a maximum DNA content of 42.28 ± 5.59 µg/g soil. In addition, among the five different purification protocols, the acid-treated polyvinyl polypyrrolidone (PVPP) spin column purification method yielded high-quality DNA and recovered 91% of DNA from the crude DNA. Spectrophotometry revealed that the ultraviolet A 260/A 230 and A 260/A 280 absorbance ratios of the purified DNA were 1.82 ± 0.03 and 1.94 ± 0.05, respectively. PCR-based 16S rRNA amplification showed clear bands at ~1.5 kb with acid-treated PVPP-purified DNA templates. In conclusion, our suggested extraction and purification protocols can be used to recover high concentration, high purity, and high-molecular-weight DNA from clay and silica-rich agricultural soil samples.

  8. ANALYSIS OF FERRIC AND FERROUS IONS IN SOIL EXTRACTS BY ION CHROMATOGRAPHY

    Science.gov (United States)

    A method using ion chromatography (IC) for the analysis of ferrous (Fe 2+) and ferric (Fe 3+) ions in soil extracts has been developed. This method uses an ion exchange column with detection at 520 nm after post-column derivatization. Selectivity is achieved by using an anionic...

  9. Determination of Polychlorinated Biphenyls in Soil and Sediment by Selective Pressurized Liquid Extraction with Immunochemical Detection

    Science.gov (United States)

    A selective liquid pressurized extraction (SPLE) method was developed as a streamlined sample preparation/cleanup procedure for determining Aroclors and coplanar polychlorinated biphenyls (PCBs) in soil and sediment matrices. The SPLE method was coupled with an enzyme-linked imm...

  10. Effect of DNA extraction method on the apparent microbial diversity of soil

    NARCIS (Netherlands)

    Inceoglu, Oezguel; Hoogwout, Eelco F.; Hill, Patrick; van Elsas, Jan Dirk

    2010-01-01

    Four extraction methods, including a novel one, were compared for their efficiencies in producing DNA from three contrasting agricultural soils. Molecular analyses (PCR-denaturing gradient gel electrophoresis [DGGE] and clone libraries) focusing on different microbial groups were used as assessment

  11. Nucleic Acid Extraction from Synthetic Mars Analog Soils for in situ Life Detection

    Science.gov (United States)

    Mojarro, Angel; Ruvkun, Gary; Zuber, Maria T.; Carr, Christopher E.

    2017-08-01

    Biological informational polymers such as nucleic acids have the potential to provide unambiguous evidence of life beyond Earth. To this end, we are developing an automated in situ life-detection instrument that integrates nucleic acid extraction and nanopore sequencing: the Search for Extra-Terrestrial Genomes (SETG) instrument. Our goal is to isolate and determine the sequence of nucleic acids from extant or preserved life on Mars, if, for example, there is common ancestry to life on Mars and Earth. As is true of metagenomic analysis of terrestrial environmental samples, the SETG instrument must isolate nucleic acids from crude samples and then determine the DNA sequence of the unknown nucleic acids. Our initial DNA extraction experiments resulted in low to undetectable amounts of DNA due to soil chemistry-dependent soil-DNA interactions, namely adsorption to mineral surfaces, binding to divalent/trivalent cations, destruction by iron redox cycling, and acidic conditions. Subsequently, we developed soil-specific extraction protocols that increase DNA yields through a combination of desalting, utilization of competitive binders, and promotion of anaerobic conditions. Our results suggest that a combination of desalting and utilizing competitive binders may establish a "universal" nucleic acid extraction protocol suitable for analyzing samples from diverse soils on Mars.

  12. ANALYSIS OF FERRIC AND FERROUS IONS IN SOIL EXTRACTS BY ION CHROMATOGRAPHY

    Science.gov (United States)

    A method using ion chromatography (IC) for the analysis of ferrous (Fe 2+) and ferric (Fe 3+) ions in soil extracts has been developed. This method uses an ion exchange column with detection at 520 nm after post-column derivatization. Selectivity is achieved by using an anionic...

  13. Assessing the phytoavailability of dieldrin residues in charcoal-amended soil using tenax extraction.

    Science.gov (United States)

    Hilber, Isabel; Bucheli, Thomas D; Wyss, Gabriela S; Schulin, Rainer

    2009-05-27

    Consecutive and single Tenax extractions were applied to characterize the effectiveness of activated charcoal (AC) amendments to reduce the phytoavailability of dieldrin in a natively contaminated horticultural soil. Dieldrin desorption from untreated and 800 mg(AC) kg(-1) soil was well described by a model with three dieldrin fractions of different kinetics: a rapidly (F(rap)), slowly (F(slow)), and very slowly (F(v.slow)) desorbing fraction. The AC amendment resulted in a transfer of dieldrin from the F(slow) to the F(v.slow) fraction. The F(v.slow) increased by nearly 10% compared to the control soil. Dieldrin extractability by Tenax from AC amended soils was not influenced by the cultivation of cucumber plants indicating the stability of this remediation technique. Dieldrin extractability by Tenax at the beginning of plant growth correlated only weakly with the dieldrin content of the cucumbers at harvest. Therefore, the potential of Tenax extractions to predict the uptake of dieldrin by cucumbers appears to be limited.

  14. TESVE model for design of soil vapor extraction systems with thermal enhancement

    Energy Technology Data Exchange (ETDEWEB)

    Ghuman, A. [Lowney Associates, Mountain View, CA (United States); Wong, K. [Air Force, McClellan AFB, CA (United States); Singh, S. [URS Consultants, Inc., Sacramento, CA (United States)

    1994-12-31

    Soil vapor extraction (SVE) is a popular and effective technology for removal of volatile organic compounds (VOCs), from the subsurface soils. The performance of SVE systems is based on three key parameters: the rate of mass removal, the time required to achieve cleanup goals, and the cost of cleanup. These performance parameters depend on physical and chemical factors such as the rate and pattern of air flow through the affected soils, contaminant type, and the degree of partitioning between the vapor-, liquid-, dissolved- and adsorbed- phase. The effectiveness of SVE can be enhanced by raising the soil temperature. This is done using various methods including electrical heating, and hot air volatilization. TESVE (Thermally-Enhanced Soil Vapor Extraction), a multi-component, non-isothermal, three dimensional software model, is a powerful tool in evaluating the feasibility of SVE, optimizing design, predicting performance, and, ultimately reducing cleanup costs. The TESVE model was run for a SVE site at McClellan Air Force Base, California. Four SVE design scenarios were modeled for removal of trichloroethylene (TCE) from the subsurface soil.

  15. A method for analyzing the δ18O of resin-extractable soil inorganic phosphate.

    Science.gov (United States)

    Weiner, Tal; Mazeh, Shunit; Tamburini, Federica; Frossard, Emmanuel; Bernasconi, Stefano M; Chiti, Tommaso; Angert, Alon

    2011-03-15

    Improved tools for tracing phosphate transformations in soils are much needed, and can lead to a better understanding of the terrestrial phosphorus cycle. The oxygen stable isotopes in soil phosphate are still not exploited in this regard. Here we present a method for measuring the oxygen stable isotopes in a fraction of the soil phosphate which is rapidly available to plants, the resin-extractable P. This method is based on extracting available phosphate from the soil with anion-exchange membranes, soil organic matter removal by a resin, purification by precipitation as cerium phosphate, and finally precipitation as silver phosphate. The purified silver phosphate samples are then measured by a high-temperature elemental analyzer (HT-EA) coupled in continuous flow mode to an isotope ratio mass spectrometer. Testing the method with Mediterranean and semi-arid soils showed no artifacts, as well as good reproducibility in the same order as that of the HT-EA analytical uncertainty (0.3‰). Copyright © 2011 John Wiley & Sons, Ltd.

  16. Overestimation of organic phosphorus in wetland soils by alkaline extraction and molybdate colorimetry.

    Science.gov (United States)

    Turner, Benjamin L; Newman, Susan; Reddy, K Ramesh

    2006-05-15

    Accurate information on the chemical nature of soil phosphorus is essential for understanding its bioavailability and fate in wetland ecosystems. Solution phosphorus-31 nuclear magnetic resonance (31P NMR) spectroscopy was used to assess the conventional colorimetric procedure for phosphorus speciation in alkaline extracts of organic soils from the Florida Everglades. Molybdate colorimetry markedly overestimated organic phosphorus by between 30 and 54% compared to NMR spectroscopy. This was due in large part to the association of inorganic phosphate with organic matter, although the error was exacerbated in some samples by the presence of pyrophosphate, an inorganic polyphosphate that is not detected by colorimetry. The results have important implications for our understanding of phosphorus biogeochemistry in wetlands and suggest that alkaline extraction and solution 31p NMR spectroscopy is the only accurate method for quantifying organic phosphorus in wetland soils.

  17. Determination of phosphate in soil extracts in the field: A green chemistry enzymatic method

    Directory of Open Access Journals (Sweden)

    Ellen R. Campbell

    2015-01-01

    First, the soil sample is extracted with deionized water and filtered. Next, an aliquot of the soil extract (0.5 mL is transferred to a disposable cuvette, containing 0.5 mL of reaction mixture [200 mM HEPES, pH 7.6, 20 mM MgCl2, with 80 nmol 2-amino-6-mercapto-7-methylpurine ribonucleoside (MESG and 1 unit of recombinant purine nucleoside phosphorylase (PNP; EC 2.4.2.1], mixed, and incubated for 10 min at field temperature. Absorbance of the completed reaction is measured at 360 nm in open-source, portable photometer linked by bluetooth to a smartphone. The phosphate and phosphorus content of the soil is determined by comparison of its absorbance at 360 nm to a previously prepared standard phosphate curve, which is stored in the smartphone app.

  18. Hydroxypropyl-beta-cyclodextrin as non-exhaustive extractant for organochlorine pesticides and polychlorinated biphenyls in muck soil

    Energy Technology Data Exchange (ETDEWEB)

    Wong, Fiona [Centre for Atmospheric Research Experiments, Science and Technology Branch, Environment Canada, 6248 Eighth Line, Egbert, Ontario, L0L 1N0 (Canada); Department of Chemistry, University of Toronto Scarborough, 1265 Military Trail, Toronto, Ontario, M1C 1A4 (Canada); Bidleman, Terry F., E-mail: terry.bidleman@ec.gc.c [Centre for Atmospheric Research Experiments, Science and Technology Branch, Environment Canada, 6248 Eighth Line, Egbert, Ontario, L0L 1N0 (Canada)

    2010-05-15

    Hydroxypropyl-beta-cyclodextrin (HPCD) was used as a non-exhaustive extractant for organochlorine pesticides (OCs) and polychlorinated biphenyls (PCBs) in muck soil. An optimized extraction method was developed which involved using a HPCD to soil mass ratio of 5.8 with a single extraction period of 20 h. An aging experiment was performed by spiking a muck soil with {sup 13}C-labeled OCs and non-labeled PCBs. The soil was extracted with the optimized HPCD method and Soxhlet apparatus with dichloromethane over 550 d periodically. The HPCD extractability of the spiked OCs was greater than of the native OCs. A decreased in HPCD extractability was observed for the spiked OCs after 550 d of aging and their extractability approached those of the natives. The partition coefficient between HPCD and soil (log K{sub CD-Soil}) was negatively correlated with the octanol-water partition coefficient (log K{sub OW}) with r{sup 2} = 0.67 and p < 0.05. - The effect of aging on the extractability of organochlorine chemicals in muck soil was investigated using hydroxypropyl-beta-cyclodextrin as a mild extractant.

  19. TNT and RDX degradation and extraction from contaminated soil using subcritical water.

    Science.gov (United States)

    Islam, Mohammad Nazrul; Shin, Moon-Su; Jo, Young-Tae; Park, Jeong-Hun

    2015-01-01

    The use of explosives either for industrial or military operations have resulted in the environmental pollution, poses ecological and health hazard. In this work, a subcritical water extraction (SCWE) process at laboratory scale was used at varying water temperature (100-175 °C) and flow rate (0.5-1.5 mL min(-1)), to treat 2,4,6-trinitrotoluene (TNT) and hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) contaminated soil, to reveal information with respect to the explosives removal (based on the analyses of soil residue after extraction), and degradation performance (based on the analyses of water extracts) of this process. Continuous flow subcritical water has been considered on removal of explosives to avoid the repartitioning of non-degraded compounds to the soil upon cooling which usually occurs in the batch system. In the SCWE experiments, near complete degradation of both TNT and RDX was observed at 175 °C based on analysis of water extracts and soil. Test results also indicated that TNT removal of >99% and a complete RDX removal were achieved by this process, when the operating conditions were 1 mL min(-1), and treatment time of 20 min, after the temperature reached 175 °C. HPLC-UV and ion chromatography analysis confirmed that the explosives underwent for degradation. The low concentration of explosives found in the process wastewater indicates that water recycling may be viable, to treat additional soil. Our results have shown in the remediation of explosives contaminated soil, the effectiveness of the continuous flow SCWE process. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. The status of phosphorus in Thai soils and P evaluation using EDTA-NaF extraction method

    Directory of Open Access Journals (Sweden)

    Toru Matoh

    2003-07-01

    Full Text Available Although the available P extracted by Bray II method in tropical soil is low, most of tropical plants can grow well. The objective of this study was to study P status and to evaluate the available P extracted by EDTA-NaF method. Top soil and sub soil of 10 dominant soil series in Thailand were analyzed for some chemical properties and characterization of the forms of phosphorus using EDTA-NaF extraction and successive phosphorus extraction by the modified Sekiya method. The soil total P concentration was 38-1137 mg P2O5 kg-1. The available Bray II-P was very low to high (1-76 mg P2O5 kg-1, and it approximated 0.17-12% of the total P. Iron and aluminum phosphates were the main fraction of inorganic P in acid soil, whereas Ca phosphates were in calcareous soils. Organic P content accounted for 33-67% and most of them were bound with Fe and Al in acid soils and Ca in calcareous soils. P extracted by EDTA-NaF reagent was obviously larger than that of Bray II reagent. The EDTA-NaF extracted P [high molecular weight organic P (HMWP+ inorganic P (EDTA ext Pi] was 7-46% and 1-6% of total P in acid soils and calcareous soils respectively. The EDTA ext Pi tended to be larger than HMWP except in Tk soil. The total amount of extracted P correlated well with Al-Pi and Fe-Pi which were the main fraction of inorganic P. It also correlated with HMWP, but HMWP did not correlate with organic P determine by ignition method and Ca-Po, Fe-Po and Al-Po. The EDTA-NaF method may be suitable for P evaluation in the soils which have high amounts of Fe-Pi, Al -Pi and organic P widely distributed in Thailand.

  1. Proposal of new convenient extractant for assessing phytoavailability of heavy metals in contaminated sandy soil.

    Science.gov (United States)

    Korzeniowska, Jolanta; Stanislawska-Glubiak, Ewa

    2017-06-01

    The aim of the study was to compare the usefulness of 1 M HCl with aqua regia, EDTA, and CaCl2 for the extraction of phytoavailable forms of Cu, Ni, and Zn on coarse-textured soils contaminated with these metals. Two microplot experiments were used for the studies. Reed canary grass (Phalaris arundinacea), maize (Zea mays), willow (Salix viminalis), spartina (Spartina pectinata), and miscanthus (Miscanthus × giganteus) were used as test plants. They were grown on soil artificially spiked with Cu, Ni, and Zn. The experimental design included a control and three increasing doses of metals. Microplots (1 m(2) × 1 m deep) were filled with sandy soil (clay-6%, pH 5.5, Corg-0.8%). Metals in the form of sulfates were dissolved in water and applied to the plot using a hand liquid sprayer. During the harvest, samples were collected from aboveground parts, roots, and the soil and then tested for their Cu, Zn, and Ni contents. The metal content of the soil was determined using four tested extractants. It was found that Cu and Ni were accumulated in roots in bigger amounts than Zn. The usefulness of the extractants was evaluated based on the correlation between the content of metals in the soil and the plant (n = 32). This study demonstrated that 1 M HCl, aqua regia, and EDTA were more efficient or equally useful for the assessment of the phytoavailability of Cu, Ni, and Zn as CaCl2. Due to the ease of performing determinations and their low cost, 1 M HCl can be recommended to assess the excess of Cu, Ni, and Zn in the coarse-textured soils.

  2. Cadmium phytoavailability in soils and evaluation of extractant effectiveness using an isotope technique

    Directory of Open Access Journals (Sweden)

    Fernando Guerra

    2014-10-01

    Full Text Available Large areas of land are nowadays contaminated by heavy metals and, it is therefore, important to monitor their levels in soils. Vegetables act as transfer mechanisms of such contaminants from soils to higher levels in the food chain. In this study, we aimed to evaluate the effectiveness of chemical extractants by the L-value method for Cd phytoavailability using the 109Cd radionuclide. In a greenhouse experiment, rocket plants (Eruca sativa L. were cultivated in pots with samples from Typic Hapludox and Typic Quartzipsamment soils. Cadmium concentrations ranging from 0 to 16 mg kg-1 were added to a 200 mL solution containing 148 kBq 109Cd. The available Cd in the soil was extracted by DTPA, Mehlich-1, Mehlich-3, and a mixture of organic acids (acetic, citric, lactic, and oxalic acids. Cd concentrations were determined by atomic absorption spectrophotometry, and 109Cd radionuclide activity was measured by low-level β-counting. The dry matter yield was not influenced by Cd rates, but the Cd content and accumulation in shoots had a positive linear correlation. Generally, Cd was extracted in higher quantities by Mehlich-1 followed by DTPA, Mehlich-3, and organic acids. A linear correlation was found between the chemical extractants and Cd accumulation in shoots for both soils. According to the L Ratio, the extractants based on strong acids and chelating agents presented low efficiency regarding Cd phytoavailability. The organic acids, which presented values close to the L-value, may provide a promising method for evaluating environmental contaminants.

  3. Contribution of microorganisms to non-extractable residue formation during biodegradation of ibuprofen in soil

    Energy Technology Data Exchange (ETDEWEB)

    Nowak, Karolina M., E-mail: karolina.nowak@ufz.de [UFZ, Helmholtz Centre for Environmental Research, Department of Environmental Biotechnology, Permoserstraße 15, 04318 Leipzig (Germany); Department of Environmental Biology and Chemodynamics, Institute for Environmental Research (Biology V), RWTH Aachen University, Worringerweg 1, 52074 Aachen (Germany); Girardi, Cristobal; Miltner, Anja [UFZ, Helmholtz Centre for Environmental Research, Department of Environmental Biotechnology, Permoserstraße 15, 04318 Leipzig (Germany); Gehre, Matthias [UFZ, Helmholtz Centre for Environmental Research, Department of Isotope Biogeochemistry, Permoserstraße 15, 04318 Leipzig (Germany); Schäffer, Andreas [Department of Environmental Biology and Chemodynamics, Institute for Environmental Research (Biology V), RWTH Aachen University, Worringerweg 1, 52074 Aachen (Germany); Kästner, Matthias [UFZ, Helmholtz Centre for Environmental Research, Department of Environmental Biotechnology, Permoserstraße 15, 04318 Leipzig (Germany)

    2013-02-15

    Non-extractable residues (NER) formed during biodegradation of organic contaminants in soil are considered to be mainly composed of parent compounds or their primary metabolites with hazardous potential. However, in the case of biodegradable organic compounds, the soil NER may also contain microbial biomass components, for example fatty acids (FA) and amino acids (AA). After cell death, these biomolecules are subsequently incorporated into non-living soil organic matter (SOM) and are stabilised ultimately forming hardly extractable residues of biogenic origin. We investigated biodegradation of {sup 13}C{sub 6}-ibuprofen, in particular the metabolic incorporation of the {sup 13}C-label into FA and AA and their fate in soil over 90 days. {sup 13}C-FA and {sup 13}C-AA amounts in the living microbial biomass fraction initially increased, then decreased over time and were continuously incorporated into the non-living SOM pool. The {sup 13}C-FA in the non-living SOM remained stable from day 59 whereas the contents of {sup 13}C-AA slightly increased until the end. After 90 days, nearly all NER were biogenic as they were made up almost completely by natural biomass compounds. The presented data demonstrated that the potential environmental risks related to the ibuprofen-derived NER are overestimated. - Highlights: ► Biogenic residue formation during microbial degradation of ibuprofen was studied. ► Nearly all non-extractable residues derived from ibuprofen were biogenic. ► Fatty acids and amino acids formed biogenic non-extractable residues and were stabilised in soil. ► Environmental risks of ibuprofen-derived non-extractable residues are overestimated.

  4. EVALUATION OF GEOCHEMICAL QUALITY CONTROL IN DETERMINATION OF Mn IN SOILS USING A SEQUENTIAL CHEMICAL EXTRACTION

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Sequential chemical extraction procedure has been widely used to partition particulate trace metals into various fractions and to describe the distribution and the statue of trace metals in geo-environment. One sequential chemical extraction procedure was employed here to partition various fractions of Mn in soils. The experiment was designed with quality controlling concept in order to show sampling and analytical error. Experimental results obtained on duplicate analysis of all soil samples demonstrated that the precision was less than 10% (at 95% confidence level). The accuracy was estimated by comparing the accepted total concentration of Mn in standard reference materials (SRMs) with the measured sum of the individual fractions. The recovery of Mn from SRM1 and SRM2 was 94.1% and 98.4% , respectively. The detection limit, accuracy and precision of the sequential chemical extraction procedure were discussed in detailed. All the results suggest that the trueness of the analytical method is satisfactory.

  5. Arsenic bioaccessibility in contaminated soils: Coupling in vitro assays with sequential and HNO3 extraction.

    Science.gov (United States)

    Li, Shi-Wei; Li, Jie; Li, Hong-Bo; Naidu, Ravi; Ma, L Q

    2015-09-15

    Arsenic bioaccessibility varies with in vitro methods and soils. Four assays including unified BARGE method (UBM), Solubility Bioaccessibility Research Consortium method (SBRC), in vitro gastrointestinal method (IVG), and physiologically based extraction test (PBET), were used to determine As bioaccessibility in 11 contaminated soils (22-4,172 mg kg(-1)). The objective was to understand how bioaccessible As by different methods was related to different As pools based on sequential extraction and 0.43 M HNO3 extraction. Arsenic bioaccessibility was 7.6-25, 2.3-49, 7.3-44, and 1.3-38% in gastric phase (GP), and 5.7-53, 0.46-33, 2.3-42, and 0.86-43% in intestinal phase (IP) for UBM, SBRC, IVG, and PBET, respectively, with HNO3-extractable As being 0.90-60%. Based on sequential extraction, As was primarily associated with amorphous (AF3; 17-79%) and crystallized Fe/Al oxides (CF4; 6.4-73%) while non-specifically sorbed (NS1), specifically sorbed (SS2), and residual fractions (RS5) were 0-10%, 3.4-20% and 3.2-25%. Significant correlation was found between As bioaccessibility by PBET and NS1+SS2 (R(2) = 0.55-0.69), and UBM-GP and NS1 + SS2 + AF3 (R(2) = 0.58), indicating PBET mostly targeted As in NS1+SS2 whereas UBM in NS1 + SS2 + AF3. HNO3-extractable As was correlated to bioaccessible As by four methods (R(2) = 0.42-0.72) with SBRC-GP having the best correlation. The fact that different methods targeted different As fractions in soils suggested the importance of validation by animal test. Our data suggested that HNO3 may have potential to determine bioaccessible As in soils. Published by Elsevier B.V.

  6. Changes to Extractable Soil Amino Compounds Under Elevated CO2 and Ozone in an Aspen Plantation

    Science.gov (United States)

    Top, S. M.; Filley, T. R.; Zhang, X.

    2011-12-01

    Forests growing under elevated concentrations of atmospheric CO2 and ozone exhibit changes to root and foliar chemistry and quality that are related to changes in physiology, N limitation, and leaf damage. Additionally, there are documented changes to the activity of some understory invertebrate populations, and a variety of responses to soil organic matter ranging from accrual in the upper few centimeters to loss of soil C and N over the upper 20 cm. Under such conditions, however, the cycling of specific amino compounds is poorly understood. Knowledge of the role that new plant N plays in supporting soil microbial populations and soil C and N dynamics is important to fully understand relationships between N limitation under elevated CO2-induced productivity increases and available organic N pools in soil. We investigated the composition and concentration of hydrolysable amino compounds (amino acids and amino sugars) in litter, roots, soil, and earthworm fecal matter from the free-air CO2 enrichment (FACE) sites at Rhinelander, WI. Under elevated CO2 amino acids, when normalized to total N, exhibited change in both amount (decrease) and composition among roots (amino acids showed only minor changes with depth in the ambient and ozone treatments. Ozonated rings exhibited a lower release of amino compounds (with respect to total N) compared to ambient and elevated CO2, which may suggest poorer quality input. For soil organic matter extractable amino acids (normalized to total soil N) exhibited changes similar to roots among the treatment. These results indicate that CO2 and ozone significantly influence amino compound dynamics in both soil and input which should impact the overall ability to decompose and preserve soils in such environments.

  7. Mild and Moderate Extraction Methods to Assess Potentially Available Soil Organic Nitrogen

    Directory of Open Access Journals (Sweden)

    Bruno Boscov Braos

    Full Text Available ABSTRACT The use of chemical methods to assess the soil organic nitrogen (N potentially available to plants is not a common practice in Brazil. However, associated with others, this tool might improve efficiency in the use of waste and nitrogen fertilizers. In our study, chemical methods were tested to assess potentially available soil N in samples of 17 representative soils of the western plateau of the state of São Paulo (10 Oxisols and 7 Ultisols. Available soil N was extracted from the collected soil samples using moderate (ISNT-Illinois Soil Nitrogen Test and mild (hot water and heated solutions of 2 mol L-1 KCl and 0.01 mol L-1 CaCl2 extraction methods. The levels of potentially available N obtained from these chemical methods were correlated with dry matter (DM and N uptake (Nup by corn plants grown in pots in a greenhouse experiment carried out with the same 17 soil samples. The ISNT method showed the highest available N extraction capacity, whereas hot water showed the lowest capacity, followed closely by the hot 0.01 mol L-1 CaCl2 solution. Despite the differences among the quantities of available N extracted, the methods correlated with each other and with DM and Nup, but the values from the ISNT method showed the lowest correlation with plant variables (rDM = 0.67** and rNup = 0.81**. Procedures of extraction with water or 0.01 mol L-1 CaCl2 heated for 16 h, and 2 mol L-1 KCl heated for 4 h, resulted in similar correlation values (r with plant DM and Nup. Thus, water (rDM = 0.77** and rNup = 0.90** and 0.01 mol L-1 CaCl2 (rDM = 0.82** and rNup = 0.93** heated for 16 h can be recommended as the best options for N extraction.considering the possibility for predicting N availability, lower generation of waste, and lower cost of analysis.

  8. Extraction of rare earth elements from a contaminated cropland soil using nitric acid, citric acid, and EDTA.

    Science.gov (United States)

    Tang, Hailong; Shuai, Weitao; Wang, Xiaojing; Liu, Yangsheng

    2017-08-01

    Rare earth elements (REEs) contamination to the surrounding soil has increased the concerns of health risk to the local residents. Soil washing was first attempted in our study to remediate REEs-contaminated cropland soil using nitric acid, citric acid, and ethylene diamine tetraacetic acid (EDTA) for soil decontamination and possible recovery of REEs. The extraction time, washing agent concentration, and pH value of the washing solution were optimized. The sequential extraction analysis proposed by Tessier was adopted to study the speciation changes of the REEs before and after soil washing. The extract containing citric acid was dried to obtain solid for the X-ray fluorescence (XRF) analysis. The results revealed that the optimal extraction time was 72 h, and the REEs extraction efficiency increased as the agent concentration increased from 0.01 to 0.1 mol/L. EDTA was efficient to extract REEs over a wide range of pH values, while citric acid was around pH 6.0. Under optimized conditions, the average extraction efficiencies of the major REEs in the contaminated soil were 70.96%, 64.38%, and 62.12% by EDTA, nitric acid, and citric acid, respectively. The sequential extraction analyses revealed that most soil-bounded REEs were mobilized or extracted except for those in the residual fraction. Under a comprehensive consideration of the extraction efficiency and the environmental impact, citric acid was recommended as the most suitable agent for extraction of the REEs from the contaminated cropland soils. The XRF analysis revealed that Mn, Al, Si, Pb, Fe, and REEs were the major elements in the extract indicating a possibile recovery of the REEs.

  9. Recent Advances in the Development and Application of Power Plate Transducers in Dense Gas Extraction and Aerosol Agglomeration Processes

    Science.gov (United States)

    Riera, E.; Cardoni, A.; Gallego-Juárez, J. A.; Acosta, V. M.; Blanco, A.; Rodríguez, G.; Blasco, M.; Herranz, L. E.

    Power ultrasound (PU) is an emerging, innovative, energy saving and environmental friendly technology that is generating a great interest in sectors such as food and pharmaceutical industries, green chemistry, environmental pollution, and other processes, where sustainable and energy efficient methods are required to improve and/or produce specific effects. Two typical effects of PU are the enhancement of mass transfer in gases and liquids, and the induction of particle agglomeration in aerosols. These effects are activated by a variety of mechanisms associated to the nonlinear propagation of high amplitude ultrasonic waves such as diffusion, agitation, entrainment, turbulence, etc. During the last years a great effort has been jointly made by the Spanish National Research Council (CSIC) and the company Pusonics towards introducing novel processes into the market based on airborne ultrasonic plate transducers. This technology was specifically developed for the treatment of gas and multiphasic media characterized by low specific acoustic impedance and high acoustic absorption. Different strategies have been developed to mitigate the effects of the nonlinear dynamic behavior of such ultrasonic piezoelectric transducers in order to enhance and stabilize their response at operational power conditions. This work deals with the latter advances in the mitigation of nonlinear problems found in power transducers; besides it describes two applications assisted by ultrasound developed at semi-industrial and laboratory scales and consisting in extraction via dense gases and particle agglomeration. Dense Gas Extraction (DGE) assisted by PU is a new process with a potential to enhance the extraction kinetics with supercritical CO2. Acoustic agglomeration of fine aerosol particles has a great potential for the treatment of air pollution problems generated by particulate materials. Experimental and numerical results in both processes will be shown and discussed.

  10. Solid Phase Extraction Disk Procedure to Determine 239Pu in Soils

    Directory of Open Access Journals (Sweden)

    ZHANG Ji-qiao;ZHAO Ya-ping;DING You-qian;ZHANG Sheng-dong;YANG Jin-ling

    2016-11-01

    Full Text Available 239Pu in many soil samples should be analyzed to survey radioactive pollution level in nuclear facilities and its affinity environment efficiently. In order to input the opt conditions for column experiment, the experiments of the static adsorption coefficient of 239Pu to solid phase extraction disk with different contact time, concentration of HNO3 and different temperature were carried out. The chemical procedure for the rapid separation and determination of 239Pu in soils had been formulated, which using solid phase extraction disk (EmporeTM Anion Exchange-SR as extraction material and liquid scintillation spectrometry counting as measurement. In the procedure, soil sample usage was 10 g, and were leached by 8 mol/L HNO3, the chemical recovery of the procedure was about 78.9%, and the minimum detectable concentration was 3.7 Bq/kg. It took less than 3 hours once and the presence of 137Cs, 90Sr-90Y and natural uranium, 241Am, 99Tc did not interfere with the procedure, owning high DF of them. The procedure can be used extensively in determination of 239Pu in soils.

  11. Combining Solvent Extraction and Bioremediation for Removing Weathered Petroleum from Contaminated Soil

    Institute of Scientific and Technical Information of China (English)

    WU Guo-Zhong; F.COULON; YANG Yue-Wei; LI Hong; SUI Hong

    2013-01-01

    This study aimed to evaluate the efficacy,practicality and sustainability of a combined approach based on solvent extraction and biodegradation to remediate the soils contaminated with high levels of weathered petroleum hydrocarbons.The soils used in this study were obtained from the Shengli Oilfield in China,which had a long history of contamination with high concentrations of petroleum hydrocarbons.The contaminated soils were washed using a composite organic solvent consisting of hexane and pentane (4:1,v/v) and then bioremediated in microcosms which were bioaugmentated with Bacillus subtilis FQ06 strains and/or rhamnolipid.The optimal solvent extraction conditions were determined as extraction for 20 min at 25 ℃ with solvent-soil ratio of 6:1 (v/w).On this basis,total petroleum hydrocarbon was decreased from 140000 to 14000 mg kg-1,which was further reduced to < 4000 mg kg-1 by subsequent bioremediation for 132 d.Sustainability assessment of this integrated technology showed its good performance for both short-and long-term effectiveness.Overall the results encouraged its application for remediating contaminated sites especially with high concentration weathered hydrocarbons.

  12. RAPID AND EFFICIENT METHOD FOR ENVIRONMENTAL DNA EXTRACTION AND PURIFICATION FROM SOIL

    Directory of Open Access Journals (Sweden)

    J. Hamedi

    2016-06-01

    Full Text Available Large proportion of microbial population in the world is unculturable. Extraction of total DNA from soil is usually a crucial step considering to the difficulties of study the uncultivable microorganisms. Humic acid is considered as the main inhibitory agent in the environmental DNA studies. Here, we introduced a rapid and efficient method for DNA extraction and purification from soil. Yield of DNA extraction by the presented method was 130 ng/µl. Three conventional methods of DNA extraction including liquid nitrogen incursion, bead beating and sonication were performed as control methods. Yield of DNA extraction by these methods were 110, 90 and 50 ng/µl, respectively. A rapid and efficient one step DNA purification method was introduced instead of hazardous conventional phenol-chloroform methods. Humic acid removal percentage by the introduced method was 95.8 % that is comparable with 97 % gained by the conventional gel extraction method and yield of DNA after purification was 84 % and 73 %, respectively. This study could be useful in molecular ecology and metagenomics study as a fast and reliable method.

  13. Sequential extraction of heavy metals in soils from a copper mine

    Science.gov (United States)

    Arenas, Daniel; Lago, Manoel; Vega, Flora; Andrade, Luisa

    2013-04-01

    Metal mining produces a large amount of waste materials where mine soils can be formed. They use to have important limitations for plant development like extreme pH and low organic matter among others. On metal mines they usually have problems of pollution by heavy metals (Asensio et al., 2013) generally concerning more than one metal. At Touro (Galicia, Spain) copper was mining from 1973 to 1988. Nowadays, there are soils formed on the tailings formed with waste and thick materials coming from copper extraction and on the settling pond since it is emerged and dry. They are partly exposed to weathering and the iron, copper, sulphides and H+ can be released causing acid mine drainage and heavy metal solubilization. Since heavy metals can adsorb onto the soil, runoff into rivers or lakes or leach in the groundwater (Mulligan et al., 2001) it is very important to study the soils mechanisms involved in both retention and solubility of heavy metals. The sequential extraction procedures allow to better understand them since the chosen extractions attempt to minimize solubilization of other soil fractions even none of them is completely specific (Mulligan et al., 2001). At Touro mine, five soils were sampled and analysed for those properties known as heavy metal retention determiners. The distribution of Cr, Cu, Mn, Ni, Pb and Zn among geochemical soil phases was analysed following the modified sequential extraction technique of Shuman (1979, 1985). The concentration in the extractions was analysed by ICP-OES. The results show that most of the heavy metal content is associated to the residual fraction in all soils Cr (85-92%), Cu (53-81%), Mn (80-98%), Ni (86-96%), Pb (47-81%) and Zn (85-95%). The high crystalline Fe-oxides content also plays an important role, specially for Cu (18-22% of the total Cu). The amount of heavy metals associated to soil organic matter is very low (Pb and Cu: heavy metal contents are strongly retained in low accessible soil fractions. Still

  14. Determination of Decabrominated Diphenyl Ether in Soils by Soxhlet Extraction and High Performance Liquid Chromatography

    Directory of Open Access Journals (Sweden)

    Xing-Jian Yang

    2013-01-01

    Full Text Available This study described the development of a method based on soxhlet extraction combining high performance liquid chromatography (soxhlet-HPLC for the accurate detection of BDE-209 in soils. The solvent effect of working standard solutions in HPLC was discussed. Results showed that 1 : 1 of methanol and acetone was the optimal condition which could totally dissolve the BDE-209 in environmental samples and avoid the decrease of the peak area and the peak deformation difference of BDE-209 in HPLC. The preliminary experiment was conducted on the configured grassland (1 μg/g to validate the method feasibility. The method produced reliable reproducibility, simulated soils (n=4 RSD 1.0%, and was further verified by the analysis e-waste contaminated soils, RSD range 5.9–11.4%. The contamination level of BDE-209 in burning site was consistent with the previous study of Longtang town but lower than Guiyu town, and higher concentration of BDE-209 in paddy field mainly resulted from the long-standing disassembling area nearby. This accurate and fast method was successfully developed to extract and analyze BDE-209 in soil samples, showing its potential use for replacing GC to determinate BDE-209 in soil samples.

  15. Evaluating bioavailability of organic pollutants in soils by sequential ultrasonic extraction procedure.

    Science.gov (United States)

    Wu, Xiang; Zhu, Lizhong

    2016-08-01

    Under current retrospective risk assessment framework, the total concentrations of organic pollutants in soils have been employed as the standard for over 30 years. The total concentrations reflect the overall accumulation in soils but tend to be overly conservative for assessing the ecological risks, where the bioavailability plays an important role. In this study, the bioavailability of organic pollutants in soils was evaluated using a stepwise and tiered classification method, namely the sequential ultrasonic extraction procedure (SEUP). The water-soluble and acid-soluble fractions extracted by the SEUP were the bioavailable fractions. The reliability and environmental relevance of the speciation method were examined with representative organic pollutants using the root uptake methods and the semipermeable membrane devices (SPMDs). The plant uptake amounts corrected with weight were highly correlated with the bioavailable fractions (R(2) > 0.75). The amounts of the bioavailable fractions were negatively correlated with the logKow values (R(2) ranging from 0.71 to 0.77) of the organic pollutants and the contents of soil organic matter (R(2) ranging from 0.68 to 0.96). As a refinement of the current risk assessment framework, the SUEP that has proved to be a reliable and convenient is thus highly recommended for evaluating the bioavailability of organic pollutants in soils.

  16. Assessing Soil Available Potassium by Cation Exchange Membrane and COnventional Chemical Extractions

    Institute of Scientific and Technical Information of China (English)

    LIUZHAOHUI; J.SCHOENAU; 等

    1999-01-01

    Four testing methods using cation exchange membrane (CEM),ammonium acetate,ASI(0.25mol L-1 NaHCO3+0.01mol L-1 EDTA +0.01 molL-1 NH4F) and 1.0molL-1 boiling nitric acid,respectively,were used to evaluate soil available K.The soil K tested by CEM was significantly correlated with that by the other (conventional)methods(r2=0.43**-0.95***).The soil K tested by CEM saturated with NH4HCO3(15min extraction)was most closely correlated with that by the other methods(r2=0.60**-0.95***),Potassium availability,as predicted by soil test,was comparable to actual K uptake by canola and wheat grown on the soils in growth chamber.Regression analyses showed that plant K uptake was more closely correlated wiht K extracted by CEM(r2=0.56**-0.81***)than that by the conventional methods(r2=0.46***-0.81***),most colsely correlated with that by NH4HCO3-saturated CEM for 15 min (r2=0.81***).and worst correlated with that by HNO3(r2=0.45**-0.72***)

  17. Development of soft extraction method for structural characterization of boreal forest soil proteins with MALDI-TOF/MS

    Science.gov (United States)

    Kanerva, Sanna; Ketola, Raimo A.; Kitunen, Veikko; Smolander, Aino; Kotiaho, Tapio

    2010-05-01

    Nitrogen (N) is usually the nutrient restricting productivity in boreal forests. Forest soils contain a great amount of nitrogen, but only a small part of it is in mineral form. Most part of soil N is bound in the structures of different organic compounds such as proteins, peptides, amino acids and more stabilized, refractory compounds. Due to the fact that soil organic N has a very important role in soil nutrient cycling and in plant nutrition, there is a need for more detailed knowledge of its chemistry in soil. Conventional methods to extract and analyze soil organic N are usually very destructive for structures of higher molecular weight organic compounds, such as proteins. The aim of this study was to characterize proteins extracted from boreal forest soil by "soft" extraction methods in order to maintain their molecular structure. The organic layer (F) from birch forest floor containing 78% of organic matter was sieved, freeze dried, pulverized, and extracted with a citrate or phosphate buffer (pH 6 or 8). Sequential extraction with the citrate or phosphate buffer and an SDS buffer (pH 6.8), slightly modified from the method of Chen et al. (2009, Proteomics 9: 4970-4973), was also done. Proteins were purified from the soil extract by extraction with buffered phenol and precipitated with methanol + 0.1M ammonium acetate at -20°C. Characterization of proteins was performed with matrix assisted laser desorption ionization - time-of-flight mass spectrometry (MALDI-TOF/MS) and the concentration of total proteins was measured using Bradford's method. Bovine serum albumin (BSA) was used as a positive control in the extractions and as a standard protein in Bradford's method. Our results showed that sequential extraction increased the amount of extracted proteins compared to the extractions without the SDS-buffer; however, it must be noted that the use of SDS-buffer very probably increased denaturization of proteins. Purification of proteins from crude soil extracts

  18. Using deuterated PAH amendments to validate chemical extraction methods to predict PAH bioavailability in soils

    Energy Technology Data Exchange (ETDEWEB)

    Gomez-Eyles, Jose L., E-mail: j.l.gomezeyles@reading.ac.uk [University of Reading, School of Human and Environmental Sciences, Soil Research Centre, Reading, RG6 6DW Berkshire (United Kingdom); Collins, Chris D.; Hodson, Mark E. [University of Reading, School of Human and Environmental Sciences, Soil Research Centre, Reading, RG6 6DW Berkshire (United Kingdom)

    2011-04-15

    Validating chemical methods to predict bioavailable fractions of polycyclic aromatic hydrocarbons (PAHs) by comparison with accumulation bioassays is problematic. Concentrations accumulated in soil organisms not only depend on the bioavailable fraction but also on contaminant properties. A historically contaminated soil was freshly spiked with deuterated PAHs (dPAHs). dPAHs have a similar fate to their respective undeuterated analogues, so chemical methods that give good indications of bioavailability should extract the fresh more readily available dPAHs and historic more recalcitrant PAHs in similar proportions to those in which they are accumulated in the tissues of test organisms. Cyclodextrin and butanol extractions predicted the bioavailable fraction for earthworms (Eisenia fetida) and plants (Lolium multiflorum) better than the exhaustive extraction. The PAHs accumulated by earthworms had a larger dPAH:PAH ratio than that predicted by chemical methods. The isotope ratio method described here provides an effective way of evaluating other chemical methods to predict bioavailability. - Research highlights: > Isotope ratios can be used to evaluate chemical methods to predict bioavailability. > Chemical methods predicted bioavailability better than exhaustive extractions. > Bioavailability to earthworms was still far from that predicted by chemical methods. - A novel method using isotope ratios to assess the ability of chemical methods to predict PAH bioavailability to soil biota.

  19. Comparison of commercial DNA extraction kits for isolation and purification of bacterial and eukaryotic DNA from PAH-contaminated soils

    Energy Technology Data Exchange (ETDEWEB)

    Mahmoudi, Nagissa; Slater, Greg F.; Fulthorpe, Roberta R.

    2011-07-01

    Polycyclic aromatic hydrocarbons (PAHs) are in the environment and are carcinogenic, teratogenic and mutagenic. Their hydrophobic structure gives them low water solubility and makes them readily absorbed onto soils and sediments, where they persists until they are degraded. Microbial degradation of PAHs has been well documented and is thought to be an important process in remediating contaminated sediments and soils. Obtaining high quality purified DNA is an essential requirement for the successful DNA amplifications that underlie all subsequent procedures. Several commercial DNA extraction kits exist that provide consistent solutions for the central problems - cell lysis and humic acid removal. This study compared four commercial DNA extraction kits to extract pure, high quality bacterial and eukaryotic DNA from PAH contaminated soils and concluded that they can be used on a wide variety of soils, including heavily contaminated soils. The PowerSoil kit was the most effective and reliable.

  20. Application of a Stir Bar Sorptive Extraction sample preparation method with HPLC for soil fungal biomass determination in soils from a detrital manipulation study.

    Science.gov (United States)

    Beni, Áron; Lajtha, Kate; Kozma, János; Fekete, István

    2017-05-01

    Ergosterol is a sterol found ubiquitously in cell membranes of filamentous fungi. Although concentrations in different fungal species span the range of 2.6 to 42μg/mL of dry mass, many studies have shown a strong correlation between soil ergosterol content and fungal biomass. The analysis of ergosterol in soil therefore could be an effective tool for monitoring changes in fungal biomass under different environmental conditions. Stir Bar Sorptive Extraction (SBSE) is a new sample preparation method to extract and concentrate organic analytes from liquid samples. SBSE was here demonstrated to be a simple, fast, and cost effective method for the quantitative analysis of ergosterol from field-collected soils. Using this method we observed that soil ergosterol as a measure of fungal biomass proved to be a sensitive indicator of soil microbial dynamics that were altered by changes in plant detrital inputs to soils in a long-term field experiment.

  1. Determination of soil micronutrients (Fe, Cu, Mn, B) extracted by Mehlich 3 using MP-AES

    Science.gov (United States)

    Krebstein, Kadri; Tõnutare, Tõnu; Rodima, Ako; Kõlli, Raimo; Künnapas, Allan; Rebane, Jaanus; Penu, Priit; Vennik, Kersti; Soobik, Liina

    2015-04-01

    The total concentration of micronutrients in soils is not a good predictor of its bioavailability and solubility. Therefore, during the decades several methods for the determination of plant availability and extractable fraction of micro- and macronutrients in soil were developed. Among several methods Mehlich 3 is the most appropriate due to its suitability for extracting soil micro- and macronutrients simultaneously. The AAS (atomic absorption spectroscopic) and ICP (inductively coupled plasma) methods are widely used for the analysis of microelements today. In 2011 the third method was added to this list with the appearance of the microwave plasma atomic emission spectrometer (MP-AES). This multielemental analytical equipment has a high potential in the soil analysis. Up to now there have been made some experiments for the use of MP-AES in soil and geological material analysis. But there is no information about the analysis of soil micronutrients extracted according to Mehlich 3 method and determined with the MP-AES. Due to the differences in atomization conditions the different emission and absorption lines are used in different instrumental methods. Therefore it is very important to choose the most suitable emission lines and the best atomization conditions. From the analytical viewpoint it is important to get coincidental results with other instrumental methods and from the agronomical point of view it is important to know the difference between AAS and ICP methods. For the experiment 51 soil samples were used. The samples were collected from A horizons of agricultural lands. The pH range was from 4.7 to 7.5 and organic matter content from 1.4 to 7.8%. The content of Mehlich 3 extractable micronutrients was determined using ICP and MP instrumental methods. The micronutrient contents ranged as follows: Fe - from 170 to 470 mg kg-1, Mn - from 5 to 190 mg kg-1, Cu - from 0.3 to 4.5 mg kg-1, B - from 0.2 to 2.1 mg kg-1. The optimal instrumental settings for iron

  2. Scalable Method for Extracting Soiling Rates from PV Production Data: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Deceglie, Michael G.; Muller, Matthew; Kurtz, Sarah; Defreitas, Zoe

    2016-06-21

    We present a method for analyzing time series production data from photovoltaic systems to extract the rate at which energy yield is affected by the accumulation of dust, dirt, and other forms of soiling. We describe an approach that is based on prevailing methods which consider the change in energy production during dry periods. The method described here builds upon these methods by considering a statistical sample of soiling intervals from each site under consideration. The method enables straightforward application to a large number of sites with minimal parameterization of data-filtering requirements. Furthermore, it enables statistical confidence intervals and comparisons between sites.

  3. A Scalable Method for Extracting Soiling Rates from PV Production Data

    Energy Technology Data Exchange (ETDEWEB)

    Deceglie, Michael G.; Muller, Matthew; Defreitas, Zoe; Kurtz, Sarah

    2016-11-21

    We present a method for analyzing time series production data from photovoltaic systems to extract the rate at which energy yield is affected by the accumulation of dust, dirt, and other forms of soiling. We describe an approach that is based on prevailing methods which consider the change in energy production during dry periods. The method described here builds upon these methods by considering a statistical sample of soiling intervals from each site under consideration. The method enables straightforward application to a large number of sites with minimal parameterization of data-filtering requirements. Furthermore, it enables statistical confidence intervals and comparisons between sites.

  4. An altered Pseudomonas diversity is recovered from soil by using nutrient-poor Pseudomonas-selective soil extract media

    DEFF Research Database (Denmark)

    Aagot, N.; Nybroe, O.; Nielsen, P.

    2001-01-01

    . Several of these analyses showed that the amount of Casamino Acids significantly influenced the diversity of the recovered Pseudomonas isolates. Furthermore, the data suggested that specific Pseudomonas subpopulations were represented on the nutrient-poor media. The NAA 1:100 medium, containing ca. 15 mg......We designed five Pseudomonas-selective soil extract NAA media containing the selective properties of trimethoprim and sodium lauroyl sarcosine and 0 to 100% of the amount of Casamino Acids used in the classical Pseudomonas-selective Gould's S1 medium. All of the isolates were confirmed...

  5. Extraction Pattern of Arsenic Species with Mineral Composition in Contaminated Soils in Korea

    Science.gov (United States)

    Park, M.; Shin, M.; Yoon, H.; Kim, Y.; Kim, K.; Ko, I.

    2006-12-01

    Specific determination of various arsenic species is gaining increasing attention because the toxicity of arsenic differs with chemical forms such as organic (MMA, DMA) or inorganic (arsenite, arsenate). Knowledge of extraction method for arsenic speciation in contaminated soils then notified and tested by many researchers. However, the analytical technique for separation of different arsenic species has been always challenging in different environmental samples. A achieving correct analytical results and resolving the lowest detection limit is also desirable. Extraction method for arsenic speciation have been studied by many researchers with the use of a variety of extractants such as H3PO4, HCl, Na2CO3, EDTA 'in soils and sediments including plenty of clay. We, in this study, reported a benign extraction method and presented the pattern of arsenic in contaminated soils of different mineral compositions. Soil samples were collected from tailings of 2 places (Kyungbuk, Jeonnam); both were from abandoned metal mines in Korea. Samples were air dried at room temperature and separated by mechanical sieving to three fractions (2mm_200 μm, 200_64μm, arsenic analysis used by KBSI method and modified Garcia-Manyes method for arsenic speciation. We extracted arsenic species from the soils by using a mixture of 1M phosphoric acid and 0.1% ascorbic acid. 0.2g of sample was placed in microwave digestion vessels along with 10ml extraction solution and treated for 15min at 60w microwave power. After the microwave stage, the contents were transferred to 30ml sample bottles and diluted to 16ml with deionized water, then centrifuged for 15min at 2500rpm. Total arsenic concentration of sample was analyzed by using ICP-AES (ICP-OES, Ultima2C, Jobin Yvon) and the arsenic species were analyzed by hyphenated system, SPE-HG-ICP-AES. To identify the mineral phases in bulk soil samples, we used XRD (Phillips X'Pert MPD) under 40kV/30mA condition. XRD data was collected between 5 and 70

  6. Asexual Reproduction of Phytophthora capsici as Affected by Extracts from Agricultural and Nonagricultural Soils.

    Science.gov (United States)

    Sanogo, S

    2007-07-01

    ABSTRACT Formation of sporangia and zoospores in species of Phytophthora is known to be influenced by soil microbial and chemical composition. In Phytophthora capsici, the study of the relationship of soil chemical composition to production of sporangia and zoospores has been limited. P. capsici is a soilborne pathogen of a wide array of vegetable crops, including chile pepper (Capsicum annuum) in New Mexico. Production of sporangia and zoospores by P. capsici was evaluated in extracts of soils from three different environments in New Mexico: (i) agricultural environments with a long history of chile pepper cropping and occurrence of P. capsici (CP), (ii) agricultural environments with no history of chile pepper cropping and no occurrence of P. capsici (Non-CP), and (iii) nonagricultural environments consisting of forests and rangelands (Non-Ag). There was a significant difference in production of P. capsici asexual propagules, expressed as natural log (number of sporangia x number of zoospores), among the three environments (P = 0.0298). Production of propagules was 9 to 13% greater in Non-Ag than in CP or Non-CP environments. Stepwise multiple discriminant analysis and canonical discriminant analysis identified the edaphic variables Na, pH, P, organic matter content, and asexual propagule production as contributing the most to the separation of the three environments. Two significant (P < 0.0001) canonical discriminant functions were derived with the first function, accounting for approximately 75% of the explained variance. Based on the two discriminant functions, approximately 93, 86, and 89% of observations in CP, Non-CP, and Non-Ag environments, respectively, were classified correctly. Soils from agricultural and nonagricultural environments differentially influence production of sporangia and zoospores in P. capsici, and soil samples could be effectively classified into agricultural and nonagricultural environments based on soil chemical properties and the

  7. The effect on increased harvest residue extraction on forest soil carbon stocks

    Science.gov (United States)

    Ortiz, Carina; Lundblad, Mattias; Lundström, Anders; Stendahl, Johan

    2015-04-01

    The demand and potential for increasing the use of bioenergy from harvest residues in Sweden are large. Commercial forest residues such as tops, branches and stumps, can be left at the harvest site to gradually decompose and contribute to the soil organic carbon (SOC) turnover, or it can be collected for energy purposes as means to mitigate climate changes. The climate mitigation potential of using logging residues (tree tops and branches) for bioenergy has been debated mostly due to that harvest residue and stump extraction negatively affect SOC accumulation. The Swedish forest management system Hugin and the decomposition model Q were used to estimate the carbon stock changes in the Swedish forests at a national level. Several extraction scenarios were branches and tops and stumps are removed from the forest were simulated. In all scenarios the short term effects on SOC were greater than the long term effects. The main reason for this is because the extraction potential decreases with time. The decrease in SOC accumulation was largest for stump extraction, with 0.15 Mg C ha -1 y loss on average over a 100-year simulation period which was equivalent to an energy supply of 25 TWh. Despite the negative effects of soil carbon changes by extracting harvest residues, the study presented here, show that the extraction and use of harvest residues in the energy system results in a positive effect on reducing carbon emissions to the atmosphere when substituting coal with the extracted biomass. The uncertainties of decomposition of woody organic matter in the context of extraction of harvest residues will also be highlighted. First by showing that the choice of decomposition model is important in assessing the SOC changes since the models differ in process approach. Therefore, a comparison of the decomposition functions of the Q model and Yasso07 will be presented. Secondly by presenting how the stump extraction is associated with soil disturbance. A sensitivity analysis of

  8. A sequential extraction and hydrolysis approach to understand the chemical nature of soil water repellency

    Science.gov (United States)

    Mao, Jiefei; Dekker, Stefan C.; Nierop, Klaas G. J.

    2014-05-01

    Soil water repellency (SWR) biomarkers (SWR-biomarkers) are defined as hydrophobic organic compounds in soils causing SWR and originating from vegetation or microbes (Doerr et al., 2000). Free lipids and ester-bound biopolymers (cutins and suberins) are usually seen in the aliphatic part of soil organic matter (SOM) (Nierop, 1998). The method of sequential extraction can divide hydrophobic compounds into individual fractions with different characteristics. We aim to find out the SWR-biomarkers in soils within different fractions, investigate the effects of fractions on SWR and link them to their original sources. To extract free and ester-bound lipids from sandy soils, DCM (dichloromethane)/MeOH (methanol) and IPA(isopropanol)/NH3 were used in sequential steps. As a result, three fractions were obtained during these sequential experiments: a DCM/MeOH soluble fraction (D), a DCM-MeOH soluble (AS) fraction of IPA/NH3 extracts and its insoluble (AI) fraction. To date, research was limited to (organic) extractable fractions only. To investigate the DCM-MeOH insoluble part of IPA/NH3 extracts they were depolymerised by trans-methylation using BF3-MeOH. All fractions were analysed by gas chromatography-mass spectrometry. After DCM/MeOH extraction, water repellency of 80% of the soils studied increased while SWR of the other soils remained at the same level. Straight-chain fatty acids, alcohols and alkanes were the main compound groups in the D fractions. The distribution of fatty acids (C20-C32) and alcohols (C20-C32), both of which with an even-over-odd predominance suggest their source were higher plants, and so did the odd-over-even predominated alkanes. After extraction by IPA/NH3 , most soils became non-repellent. Both fatty acids (C16-C32) and alcohols (C16-C30) with an even-over-odd predominance were also found in the AS fractions, whereas no alkanes were detected. There were four main component groups identified in the AI fractions: fatty acids, alcohols,

  9. Assessing the Utility of Soil DNA Extraction Kits for Increasing DNA Yields and Eliminating PCR Inhibitors from Buried Skeletal Remains.

    Science.gov (United States)

    Hebda, Lisa M; Foran, David R

    2015-09-01

    DNA identification of human remains is often necessary when decedents are skeletonized; however, poor DNA recovery and polymerase chain reaction (PCR) inhibition are frequently encountered, a situation exacerbated by burial. In this research, the utility of integrating soil DNA isolation kits into buried skeletal DNA analysis was evaluated and compared to a standard human DNA extraction kit and organic extraction. The soil kits successfully extracted skeletal DNA at quantities similar to standard methods, although the two kits tested, which differ mechanistically, were not equivalent. Further, the PCR inhibitors calcium and humic acid were effectively removed using the soil kits, whereas collagen was less so. Finally, concordant control region sequences were obtained from human skeletal remains using all four methods. Based on these comparisons, soil DNA isolation kits, which quickened the extraction process, proved to be a viable extraction technique for skeletal remains that resulted in positive identification of a decedent. © 2015 American Academy of Forensic Sciences.

  10. [Allelopathy autotoxicity effects of aquatic extracts from rhizospheric soil on rooting and growth of stem cuttings in Pogostemon cablin].

    Science.gov (United States)

    Tang, Kun; Li, Ming; Dong, Shan; Li, Yun-qi; Huang, Jie-wen; Li, Long-ming

    2014-06-01

    To study the allelopathy effects of aquatic extracts from rhizospheric soil on the rooting and growth of stem cutting in Pogostemon cablin, and to reveal its mechanism initially. The changes of rhizogenesis characteristics and physic-biochemical during cutting seedlings were observed when using different concentration of aquatic extracts from rhizospheric soil. Aquatic extracts from rhizospheric soil had significant inhibitory effects on rooting rate, root number, root length, root activity, growth rate of cutting with increasing concentrations of tissue extracts; The chlorophyll content of cutting seedlings were decreased, but content of MDA were increased, and activities of POD, PPO and IAAO in cutting seedlings were affected. Aquatic extracts from rhizospheric soil of Pogostemon cablin have varying degrees of inhibitory effects on the normal rooting and growth of stem cuttings.

  11. Recyclable bio-reagent for rapid and selective extraction of contaminants from soil

    Energy Technology Data Exchange (ETDEWEB)

    Lomasney, H.L. [ISOTRON Corp., New Orleans, LA (United States)

    1997-10-01

    This Phase I Small Business Innovation Research program is confirming the effectiveness of a bio-reagent to cost-effectively and selectively extract a wide range of heavy metals and radionuclide contaminants from soil. This bioreagent solution, developed by ISOTRON{reg_sign} Corporation (New Orleans, LA), is flushed through the soil and recycled after flowing through an electrokinetic separation module, also developed by ISOTRON{reg_sign}. The process is ex situ, and the soil remains in its transport container through the decontamination process. The transport container can be a fiberglass box, or a bulk bag or {open_quotes}super sack.{close_quotes} Rocks, vegetation, roots, etc. need not be removed. High clay content soils are accommodated. The process provides rapid injection of reagent solution, and when needed, sand is introduced to speed up the heap leach step. The concentrated waste form is eventually solidified. The bio-reagent is essentially a natural product, therefore any solubizer residual in soil is not expected to cause regulatory concern. The Phase I work will confirm the effectiveness of this bio-reagent on a wide range of contaminants, and the engineering parameters that are needed to carry out a full-scale demonstration of the process. ISOTRON{reg_sign} scientists will work with contaminated soil from Los Alamos National Laboratory. LANL is in the process of decontaminating and decommissioning more than 300 sites within its complex, many of which contain heavy metals or radionuclides; some are mixed wastes containing TCE, PCB, and metals.

  12. IMPACT OF VERMICOMPOST EXTRACT APPLICATION INTO SOIL AND ON PLANT LEAVES ON MAIZE PHYTOMASS FORMATION

    Directory of Open Access Journals (Sweden)

    Peter Kováčik

    2015-09-01

    Full Text Available Nowadays in scientific literature many opposing data are presented of the impacts of vermicompost extract on the quantity and quality of crop production. Therefore, the principal objective of two independent experiments was to study the effects of vermi-extracts, which were applied before maize sowing into soil and during the growing season on the maize leaves, on its phytomass formation. The first, field experiment consisted of 9 variants. Variant 1 was the control one without the extract application. We studied the effect of the rising doses (90, 130, 170, 210 dm3·ha-1 of vermi-extract applied into soil before the maize sowing in the variants E1, E2, E3, E4. In the variants E1+E, E2+E, E3+E, E4+E along with the rising doses of vermi-extract was also applied the uniform dose of vermi-extract (40 dm3·ha-1 at the growth stage BBCH 15. The second, pot experiment was pursued in the vegetation cage and comprised 3 variants: variant 1 was the control, in the variants 2 and 3 the foliar application of vermi-extract was used. The vermi-extract was applied once (growth stage BBCH 12 in the variant 2 and in the variant 3 it was used twice (at growth stages BBCH 12 and BBCH 16. The achieved results show that the vermi-extract applied in the presowing period increased the yield of maize grains if the application doses were 130–170 dm3·ha-1. The positive or negative impact of the foliar application by vermi-extract on the yield of maize grains depended on the period of application and the grown cultivar. In order to increase the starch content in grains it was more suitable to carry out the presowing vermi-extract application than during the growing season. The presowing application and the foliar application of vermi-extract tended to decrease the nitrogen content in grain. The foliar application of vermi-extract had the positive impact on the plant height and stalk thickness of the maize plants only in short term. The information obtained from the

  13. Analytical solutions for a soil vapor extraction model that incorporates gas phase dispersion and molecular diffusion

    Science.gov (United States)

    Huang, Junqi; Goltz, Mark N.

    2017-06-01

    To greatly simplify their solution, the equations describing radial advective/dispersive transport to an extraction well in a porous medium typically neglect molecular diffusion. While this simplification is appropriate to simulate transport in the saturated zone, it can result in significant errors when modeling gas phase transport in the vadose zone, as might be applied when simulating a soil vapor extraction (SVE) system to remediate vadose zone contamination. A new analytical solution for the equations describing radial gas phase transport of a sorbing contaminant to an extraction well is presented. The equations model advection, dispersion (including both mechanical dispersion and molecular diffusion), and rate-limited mass transfer of dissolved, separate phase, and sorbed contaminants into the gas phase. The model equations are analytically solved by using the Laplace transform with respect to time. The solutions are represented by confluent hypergeometric functions in the Laplace domain. The Laplace domain solutions are then evaluated using a numerical Laplace inversion algorithm. The solutions can be used to simulate the spatial distribution and the temporal evolution of contaminant concentrations during operation of a soil vapor extraction well. Results of model simulations show that the effect of gas phase molecular diffusion upon concentrations at the extraction well is relatively small, although the effect upon the distribution of concentrations in space is significant. This study provides a tool that can be useful in designing SVE remediation strategies, as well as verifying numerical models used to simulate SVE system performance.

  14. Optimization of sodium extraction from soil by using a central composite design (CCD and determination of soil sodium content by ion selective electrodes

    Directory of Open Access Journals (Sweden)

    Sevinç Karadağ

    2016-04-01

    Full Text Available Rapid determination of sodium (Na ions in soil samples using ion selective electrodes (ISE was investigated in this study. The compatibility of ISEs with soil extraction solution is a challenging subject as various effects such as pH, ionic strength and other interferences have to be considered as well as efficiency of the extraction solution. Because almost every type of sodium salt is soluble in water, and the pH of water is suitable for ISE studies, it was chosen as the soil extractant. Firstly, the extraction parameters were optimized by using a central composite design (CCD, secondly thirty agricultural soil samples were extracted with water and the extracts were measured by Na-ISE in a previously developed flow system. The results were compared with ion chromatography (IC as the reference method, and the regression analysis between IC and ISE results yielded a high correlation (R² = 0.9408. It was concluded that, ion selective electrodes can be used with water as an extraction solution for rapid determination of sodium in soil samples.

  15. Soil parameters are key factors to predict metal bioavailability to snails based on chemical extractant data

    Energy Technology Data Exchange (ETDEWEB)

    Pauget, B.; Gimbert, F., E-mail: frederic.gimbert@univ-fcomte.fr; Scheifler, R.; Coeurdassier, M.; Vaufleury, A. de

    2012-08-01

    to snails. Black-Right-Pointing-Pointer Bioavailability of cadmium, lead and zinc to snails was determined by assessing accumulation kinetics. Black-Right-Pointing-Pointer EDTA extracts and total soil concentration allows the assessment of bioavailability to snails for Cd and Pb, respectively. Black-Right-Pointing-Pointer No chemical method allows the assessment of Zn bioavailability to snails. Black-Right-Pointing-Pointer Total soil concentration coupled with soil characteristics allow Cd, Pb and Zn bioavailability to snails to be predicted.

  16. Arsenic speciation and bioaccessibility in arsenic-contaminated soils: sequential extraction and mineralogical investigation.

    Science.gov (United States)

    Kim, Eun Jung; Yoo, Jong-Chan; Baek, Kitae

    2014-03-01

    In this study, a combination of sequential extraction and mineralogical investigation by X-ray diffraction and X-ray photoelectron spectroscopy was employed in order to evaluate arsenic solid-state speciation and bioaccessibility in soils highly contaminated with arsenic from mining and smelting. Combination of these techniques indicated that iron oxides and the weathering products of sulfide minerals played an important role in regulating the arsenic retention in the soils. Higher bioaccessibility of arsenic was observed in the following order; i) arsenic bound to amorphous iron oxides (smelter-2), ii) arsenic associated with crystalline iron oxides and arsenic sulfide phase (smelter-1), and iii) arsenic associated with the weathering products of arsenic sulfide minerals, such as scorodite, orpiment, jarosite, and pyrite (mine). Even though the bioaccessibility of arsenic was very low in the mine soil, its environmental impact could be significant due to its high arsenic concentration and mobility. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Application of supercritical and subcritical fluids for the extraction of hazardous materials from soil

    Directory of Open Access Journals (Sweden)

    Skorupan Dara

    2002-01-01

    Full Text Available Subcritical and supercritical extractions are novel, non destructive techniques which can be applied for the removal of hazardous compounds from contaminated soil without any changes of the soil composition and structure. The aim of the presented review paper is to give information on up-to day results of this method commonly applied by several institutions worldwide. Interest in the application of SC CO2 has been more expressed in the last two decades, which may be related to its favorable characteristics (non-toxic, non-flammable, increase diffusion into small pores, low viscosity under SC conditions, low price and others. However, interest in wet oxidation (WO and especially in SCWO (the application of water under supercritical conditions with air has also increased in the last few years. Interest in H2O as a SC fluid, as well as in extraction with water under subcritical conditions may also be related to specific characteristics and the enhanced rate of extraction. Moreover, the solubility of some specific compounds present in soil can be easily changed by adjusting the pressure and temperature of extraction. The high price of the units designed to operate safely at a pressure and temperature much higher than the a critical one of the applied fluids is the main reason why, at present, there is no more broader application of such techniques for the removal hazardous materials from contaminated soil. In the present paper, among many literature citations and their overall review, some specific details related to the development of specific analytical methods under SC conditions are also considered.

  18. United States Air Force Environmental Restoration Program. Guidance on Soil Vapor Extraction Optimization

    Science.gov (United States)

    2001-06-01

    DoD Department of Defense DNAPL Dense non-aqueous phase liquid DPE dual-phase extraction DQO Data quality objective ECD electron capture device...EPA Environmental Protection Agency ER electrical resistance FID flame ionization detector Hg Mercury MCL maximum contaminant level MCLG Maximum...Well Ground Surface Soil (Advection) V a d o s e Z o n e (Diffusion) Massive Clay Sand Sand Vadose Zone Groundwater Zone LNAPL DNAPL Groundwater Table

  19. Spatial heterogeneity of DTPA-extractable zinc in cultivated soils induced by city pollution and land use

    Institute of Scientific and Technical Information of China (English)

    JIANG; Yong; LIANG; Wenju; WEN; Dazhong; ZHANG; Yuge; CHEN

    2005-01-01

    The spatial heterogeneity of DTPA-extractable zinc in the cultivated soils of Shenyang suburbs in Liaoning Province of China was investigated, and its map was drawn by the methods of geostatistics combined with geographic information system. The data of soil DTPA-extractable zinc fitted normal distribution after logarithm transformation, and its semivariogram fitted a spherical model. The semivariogram indicated that the spatial dependence of soil DTPA-extractable zinc content was moderate, with the spatial dependence range of 1.69 km and the fractal dimension of 1.96. Stochastic factors contributed to 49.9% of the spatial variability, while structural factors contributed to 50.1% of it. The spatial heterogeneity of soil DTPA-extractable zinc shown by a kriged interpolation map was deeply influenced by stochastic factors such as city pollution, land use pattern and crop distributions. For example, the average content of Zn in vegetable garden soils was 2.5-4 times as much as in their originated soils, and was lower in paddy soils than in their originated soils. The areas with a higher content of soil DTPA-extractable zinc appeared in the near suburbs and the riverside along Hunhe River and the wastewater drainage of Xihe River, and the extremely high values in the near suburb of the city's residential area were a striking feature, indicating the key role of city pollution in the spatial heterogeneity of soil DTPA-extractable zinc. When recorded in the form of a soil pollution map,the results of such a survey make it possible to identify the unusually polluted areas, and to provide more information for precise agriculture and environmental control.

  20. Design of a titering assay for lentiviral vectors utilizing direct extraction of DNA from transduced cells in microtiter plates

    Directory of Open Access Journals (Sweden)

    Michele E Murphy

    2016-01-01

    Full Text Available Using lentiviral vector products in clinical applications requires an accurate method for measuring transduction titer. For vectors lacking a marker gene, quantitative polymerase chain reaction is used to evaluate the number of vector DNA copies in transduced target cells, from which a transduction titer is calculated. Immune Design previously described an integration-deficient lentiviral vector pseudotyped with a modified Sindbis virus envelope for use in cancer immunotherapy (VP02, of the ZVex platform. Standard protocols for titering integration-competent lentiviral vectors employ commercial spin columns to purify vector DNA from transduced cells, but such columns are not optimized for isolation of extrachromosomal (nonintegrated DNA. Here, we describe a 96-well transduction titer assay in which DNA extraction is performed in situ in the transduction plate, yielding quantitative recovery of extrachromosomal DNA. Vector titers measured by this method were higher than when commercial spin columns were used for DNA isolation. Evaluation of the method's specificity, linear range, and precision demonstrate that it is suitable for use as a lot release assay to support clinical trials with VP02. Finally, the method is compatible with titering both integrating and nonintegrating lentiviral vectors, suggesting that it may be used to evaluate the transduction titer for any lentiviral vector.

  1. Large Scale Screening of Southern African Plant Extracts for the Green Synthesis of Gold Nanoparticles Using Microtitre-Plate Method.

    Science.gov (United States)

    Elbagory, Abdulrahman M; Cupido, Christopher N; Meyer, Mervin; Hussein, Ahmed A

    2016-11-08

    The preparation of gold nanoparticles (AuNPs) involves a variety of chemical and physical methods. These methods use toxic and environmentally harmful chemicals. Consequently, the synthesis of AuNPs using green chemistry has been under investigation to develop eco-friendly nanoparticles. One approach to achieve this is the use of plant-derived phytochemicals that are capable of reducing gold ions to produce AuNPs. The aim of this study was to implement a facile microtitre-plate method to screen a large number of aqueous plant extracts to determine the optimum concentration (OC) for the bio-synthesis of the AuNPs. Several AuNPs of different sizes and shapes were successfully synthesized and characterized from 17 South African plants. The characterization was done using Ultra Violet-Visible Spectroscopy, Dynamic Light Scattering, High Resolution Transmission Electron Microscopy and Energy-Dispersive X-ray Spectroscopy. We also studied the effects of temperature on the synthesis of the AuNPs and showed that changes in temperatures affect the size and dispersity of the generated AuNPs. We also evaluated the stability of the synthesized AuNPs and showed that some of them are stable in biological buffer solutions.

  2. Large Scale Screening of Southern African Plant Extracts for the Green Synthesis of Gold Nanoparticles Using Microtitre-Plate Method

    Directory of Open Access Journals (Sweden)

    Abdulrahman M. Elbagory

    2016-11-01

    Full Text Available The preparation of gold nanoparticles (AuNPs involves a variety of chemical and physical methods. These methods use toxic and environmentally harmful chemicals. Consequently, the synthesis of AuNPs using green chemistry has been under investigation to develop eco-friendly nanoparticles. One approach to achieve this is the use of plant-derived phytochemicals that are capable of reducing gold ions to produce AuNPs. The aim of this study was to implement a facile microtitre-plate method to screen a large number of aqueous plant extracts to determine the optimum concentration (OC for the bio-synthesis of the AuNPs. Several AuNPs of different sizes and shapes were successfully synthesized and characterized from 17 South African plants. The characterization was done using Ultra Violet-Visible Spectroscopy, Dynamic Light Scattering, High Resolution Transmission Electron Microscopy and Energy-Dispersive X-ray Spectroscopy. We also studied the effects of temperature on the synthesis of the AuNPs and showed that changes in temperatures affect the size and dispersity of the generated AuNPs. We also evaluated the stability of the synthesized AuNPs and showed that some of them are stable in biological buffer solutions.

  3. Dissolved reactive phosphorus in runoff assessed by soil extraction with an acetate buffer

    Directory of Open Access Journals (Sweden)

    R. UUSITALO

    2008-12-01

    Full Text Available Agronomic soil test phosphorus (STP data is, in addition to fertility studies, increasingly utilised in environmental risk assessment. We compared relationships between soil P extracted by acid ammonium acetate (AAAc-P and water-soluble P (Pw in laboratory, and AAAc-P and dissolved molybdatereactive P (DRP in field runoff. The laboratory study suggested a close relationship (R2 = 0.87, n = 64 between AAAc-P and soluble P concentration in 1:100 (w/v soil-to-water extracts, described by a linear equation:Pw (mg l–1 =0.021 × AAAc-P (mg l–1 soil– 0.015 (mg l–1. In Lake Rehtijärvi cathcment, dominated by clayey soils, the AAAc-P content of field Ap horizon in a similar manner influenced the flow-weighted DRP concentration in surface runoff and drainflow:a 1 mg l–1 increase in soil AAAc-P corresponded to 0.015 and 0.018 mg l–1 increase in surface runoff and drainflow DRP, respectively. When the AAAc-P vs.Pw relationship obtained in the laboratory test was used to predict the average DRP concentration in edge-of-field runoff, the precision of the DRP estimates inferred from STP data was in 95% of the cases ± 0.10 mg l–1. In the L. Rehtijärvi catchment, 50% of the diffuse DRP loading risk was assigned to an area that corresponded to less than 20% of the fields and the situation may be similar in the national scale.;

  4. Organophosphorus Pesticide Extraction and Cleanup from Soils and Measurement Using GC-NPD

    Institute of Scientific and Technical Information of China (English)

    WANG Li-Gang; JIANG Xin; MAO Ying-Ming; ZHAO Zhen-Hua; BIAN Yong-Rong

    2005-01-01

    The objectives of this study were to optimize instrumental parameters and conditions for analysis of selected organophosphorus pesticides (OPPs) by gas chromatography (GC) with nitrogen-phosphorus detection (NPD) (GC-NPD); to select an appropriate solvent system; to conduct a comparison of sonication and shaking extractions; and to select an appropriate procedure for extracting organophosphorus pesticides from soils. Procedure Ⅰ consisted of n-hexane or petroleum ether together with acetone used as solvents, while Procedure Ⅱ contained several solvents including acetone,methanol, dichloromethane, and n-hexane or petroleum ether. Experimental results indicated that a mixture of petroleum ether/acetone (2:1, v/v) could be used in place of n-hexane/acetone (2:1, v/v) as it was a less expensive solvent system.In addition, shaking under a water bath at 20 ℃ was more effective than sonication. Also, Procedure Ⅰ was more effective,safer, and more timesaving than Procedure Ⅱ. Procedure I was applied to three soil types of different organic matter content, with recoveries of the OPPs from the yellow-brown soils, which had a higher organic matter content, being lower than those from the yellow and red soils.

  5. Lindane contaminated soil bio stimulation with vegetable organic nitrogenated extracts: effects on soil biochemistry

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Martinez, A. M.; Tejada, M.; Diaz, A. I.; Rodriguez-Morgado, B.; Bautista, J.; Parrado, J.

    2009-07-01

    1,2,3,4,5,6-Hexachlorocyclohexane (HCH) was one of the most extensively used organo chloride insecticides. Technical mixture of HCH consists of eight steric isomers but only the y-isomer, known as lindane, is insecticides and it is commercial. Despite the fact that most countries have prohibited the production and use of the toxic lindane (Voldner, et al, 1995), many contaminated soils remain because of the long persistence of lindane (MacRae et al, 1948) and, as a result, it cause environmental disease. (Author)

  6. Faster extraction of heavy metals from soils using vacuum and ultrasonic energy.

    Science.gov (United States)

    Pontes, Fernanda V M; Carneiro, Manuel C; de da Souza, Evelyn M F; da Silva, Lílian I D; Monteiro, Maria Inês C; Neto, Arnaldo A

    2013-01-01

    A fast vacuum- and ultrasound-assisted acid extraction of Co, Cu, Fe, Mn, Pb, and Zn from soils using a homemade system has been investigated. Preliminarily, a full factorial design with two levels and three variables (extracting agent, extraction temperature, and sonication time) was applied to optimize the extraction conditions (without vacuum) for some heavy metals (Cu, Mn, Pb, and Zn). The best results were obtained with a 3:1 HCI extraction solution, temperature of 80 degrees C, and time of 2 h. As this sonication time was too long, a vacuum pump was used to produce air bubbles in order to increase the contact between the sample and the extracting agent and to prevent the sample sedimentation. This improvement drastically reduced the sonication time to 2 min. Under these conditions, Co, Cu, Mn, and Zn were totally extracted (recoveries of 86-99%), while recoveries of 73-76 and 74% were obtained for Fe and Pb, respectively. The LOD values using flame atomic absorption spectrometry for determination of Co, Cu, Fe, Mn, Pb, and Zn were 3.2, 7.5, 37.5, 7.5, 22.5, and 3.8 micro glg, respectively. The RSDs were lower than 11% (n = 3).

  7. Cations extraction of sandy-clay soils from cavado valley, portugal, using sodium salts solutions

    Directory of Open Access Journals (Sweden)

    Silva João Eudes da

    2002-01-01

    Full Text Available Cases of contamination by metals in the water wells of the Cavado Valley in north-west Portugal can be attributed to the heavy leaching of clay soils due to an excess of nitrogen resulting from the intensive use of fertilisers in agricultural areas. This work focuses on the natural weathering characteristics of soils, particularly the clay material, through the study of samples collected near the River Cavado. Samples taken from various sites, after physico-chemical characterisation, were subjected to clay dissolution tests, using sodium salts of different ionic forces, to detect the relationship between certain physico-chemical parameters of water, such as pH, nitrate, chloride and sulphate content, in the dissolution of clay and the subsequent extraction of such cations as Al, Fe and K. In acidic sandy clay soils, the mineralogical composition of which was characterised by a predominance of quartz, micas, kaolinite and K-feldspars, decreases of the clay material/water pH ratio increases dissolution of the micaceous and K-feldspars phases. The presence of nitrates in the aqueous solution apparently advanced the extraction of all three cations Al, Fe and K. The specific surface area of the clay material showed a significant correlation with the main kinetic parameters of cation extraction.

  8. Remediation of heavy-metal-contaminated soil using chelant extraction: Feasibility studies

    Energy Technology Data Exchange (ETDEWEB)

    Peters, R.W.; Miller, G.; Taylor, J.D.; Schneider, J.F.; Zellmer, S.; Edgar, D.E.; Johnson, D.O.

    1993-08-01

    Results are presented of a laboratory investigation conducted to determine the efficacy of using chelating agents to extract heavy metals (Pb, Cd, Cr, Ba, Cu, and Zn) from soil, the primary focus being on the extraction of lead from the soil. Results from the batch-shaker studies and emphasizes the columnar extraction studies are described. The chelating agents studied included ethylenediaminetetraacetic acid (EDTA) and citric acid, in addition to water. Concentrations of the chelants ranged from 0.01 to 0.05 M; the suspension pH was varied between 3 and 8. Results showed that the removal of lead using citric acid and water was somewhat pH-dependent. For the batch-shaker studies, the results indicated that EDTA was more effective at removing Cd, Cu, Pb, and Zn than was citric acid (both present at 0.01 M). EDTA and citric acid were equally effective in mobilizing Cr and Ba from the soil. Heavy metals removal was slightly more effective in the more acidic region (pH {le} 5).

  9. Selenium speciation methods and application to soil saturation extracts from San Joaquin Valley, California

    Science.gov (United States)

    Fio, John L.; Fujii, Roger

    1990-01-01

    Methods to determine soluble concentrations of selenite, selenate, and organic Se were evaluated on saturation extracts of soil samples collected from three sites on the Panoche Creek alluvial fan in the western San Joaquin Valley, California. The methods were used in combination with hydride-generation atomic-absorption spectrometry for detection of Se, and included a selective chemical-digestion method and three chromatographic methods using XAD-8 resin, Sep-Pak C18 cartridge, and a combination of XAD-8 resin and activated charcoal. The chromatography methods isolate dissolved organic matter that can inhibit Se detection by hydride-generation atomic-absorption spectrometry. Isolation of hydrophobic organic matter with XAD-8 did not affect concentrations of selenite and selenate, and the isolated organic matter represents a minimal estimation of organic Se. Ninety-eight percent of the Se in the extracts was selenate and about 100% of the isolated organic Se was associated with the humic acid fraction of dissolved organic matter. The depth distribution of Se species in the soil saturation extracts support a hypothesis that the distribution of soluble Se and salinity in these soils is the result of evaporation from a shallow water table and leaching by irrigation water low in Se and salinity.

  10. Mercury and trace element fractionation in Almaden soils by application of different sequential extraction procedures

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez, D.M.; Quejido, A.J.; Fernandez, M.; Hernandez, C.; Schmid, T.; Millan, R.; Gonzalez, M.; Aldea, M.; Martin, R.; Morante, R. [CIEMAT, Madrid (Spain)

    2005-04-01

    A comparative evaluation of the mercury distribution in a soil sample from Almaden (Spain) has been performed by applying three different sequential extraction procedures, namely, modified BCR (three steps in sequence), Di Giulio-Ryan (four steps in sequence), and a specific SEP developed at CIEMAT (six steps in sequence). There were important differences in the mercury extraction results obtained by the three procedures according to the reagents applied and the sequence of their application. These findings highlight the difficulty of setting a universal SEP to obtain information on metal fractions of different mobility for any soil sample, as well as the requirement for knowledge about the mineralogical and chemical characteristics of the samples. The specific six-step CIEMAT sequential extraction procedure was applied to a soil profile (Ap, Ah, Bt1, and Bt2 horizons). The distribution of mercury and major, minor, and trace elements in the different fractions were determined. The results indicate that mercury is mainly released with 6 M HCl. The strong association of mercury with crystalline iron oxyhydroxides, present in all the horizons of the profile, and/or the solubility of some mercury compounds in such acid can explain this fact. Minor mercury is found in the fraction assigned to oxidizable matter and in the final insoluble residue (cinnabar). (orig.)

  11. Role of reducing agent in extraction of arsenic and heavy metals from soils by use of EDTA.

    Science.gov (United States)

    Kim, Eun Jung; Jeon, Eun-Ki; Baek, Kitae

    2016-06-01

    Although many metal-contaminated sites contain both anionic arsenic and cationic heavy metals, the current remediation technologies are not effective for the simultaneous removal of both anionic and cationic elements from the contaminated sites due to their different characteristics. In this study, the role of reducing agent in simultaneous extraction of As, Cu, Pb, and Zn from contaminated soils was investigated using EDTA. The addition of reducing agents, which includes sodium oxalate (Na2C2O4), ascorbic acid (C6H8O6) and sodium dithionite (Na2S2O4), greatly enhanced the EDTA extraction of both As and heavy metals from the contaminated soils due to the increased mobility of the metals under the reduced conditions. The extent of the enhancement of the EDTA extraction was greatly affected by the reducing conditions. Strong reducing conditions (0.1 M of dithionite) were required for the extraction of metals strongly bound to the soil, while weak reducing conditions (0.01 M of dithionite or 0.1 M of oxalate/ascorbic acid) were sufficient for extraction of metals that were relatively weakly bound to the soil. An almost 90% extraction efficiency of total metals (As, Cu, Zn, and Pb) was obtained from the contaminated soils using the combination of dithionite and EDTA. Our results clearly showed that the combination of dithionite and EDTA can effectively extract As and heavy metals simultaneously from soils under a wide range of pH conditions.

  12. Gas composition and soil CO2 flux at Changbaishan intra-plate volcano, NE China

    Science.gov (United States)

    wen, H.; Yang, T. F.; Guo, Z.; Fu, C.; Zhang, M.

    2011-12-01

    Changbaishan, located on the border of China and North Korea, is one of the most active volcanoes in China. This volcano violently erupted 1000 years ago and produced massive magma and widespread volcanic ash, resulting in one of the largest explosive eruptions during the last 2000 years. Recent gas emissions and seismic events in the Tianchi area suggested potential increasing volcanic activities. If that is so, then 1 million residents living on the crater flank shall be endangered by enormous volcanic hazards, including the threat of 2 billion tons of water in the crater lake . In order to better understand current status of Changbaishan, we investigated gas geochemistry in samples from the Tianchi crater lake and surrounding areas. Bubbling gas from hot springs were collected and analyzed. The results show that CO2 is the major component gas for most samples. The maximum value of helium isotopic ratio 5.8 RA (where RA = 3He/4He in air) implies more than 60% of helium is contributed by mantle component, while carbon isotope values fall in the range of -5.8 to -2.0% (vs. PDB), indicating magmatic source signatures as well. Nitrogen dominated samples, 18Dawgo, have helium isotopic ratio 0.7 RA and carbon isotope value -11.4% implying the gas source might be associated with regional crustal components in 18Dawgo. The first-time systematic soil CO2 flux measurements indicate the flux is 22.8 g m-2 day-1 at the western flank of Changbaishan, which is at the same level as the background value in the Tatun Volcano Group (24.6 g m-2 day-1), implying that it may not be as active as TVG.

  13. Relationship between heavy metals and minerals extracted from soil clay by standard and novel acid extraction procedures.

    Science.gov (United States)

    Melo, Vander Freitas; Batista, Araína Hulmann; Gilkes, Robert J; Rate, Andrew W

    2016-12-01

    Strong acid digestions are commonly used to determine heavy metal (HM) contents in soils. In order to understand more fully the acid digestion processes, a logical step is to determine the extent of dissolution of mineral phases. The aims of this study were to compare the efficiency of extraction of HM by different acid digestions and to monitor the associated dissolution of the clay fraction. The context of the study was to develop a milder chemical extraction method (microwave-assisted 1 mol L(-1) HNO3 closed system (NACS)), which recovers more reactive HM and with little dissolution of minerals. The different acid digestion methods dissolved different amounts of minerals from the clay fraction. Both aqua regia (AR) and EPA 3051 dissolved all of the Fe and Al oxides, and the dissolution of kaolin was limited to thinner particles (c dimension), smaller particles in a and b dimensions and grains with lower crystallinity. The lower recovery of HM for AR compared with EPA 3051 was related to the large amount of short-range order phases formed during the AR extraction as these phases have the capacity to re-adsorb HM. The new method (NACS) has the potential to replace other methods of determining bioavailable forms of HM, such as AR and EPA 3051. The contents of Pb, As, Co, Zn, and Cu determined by EPA 3051 and EPA 3052 were quite close.

  14. Mobility of arsenic, cadmium and zinc in a multi-element contaminated soil profile assessed by in-situ soil pore water sampling, column leaching and sequential extraction

    Energy Technology Data Exchange (ETDEWEB)

    Beesley, Luke, E-mail: l.beesley@2007.ljmu.ac.u [Faculty of Science, Liverpool John Moores University, Liverpool L3 3AF (United Kingdom); Moreno-Jimenez, Eduardo [Departamento de Quimica Agricola, Universidad Autonoma de Madrid, 28049 Madrid (Spain); Clemente, Rafael [Dep. of Soil and Water Conservation and Organic Waste Management, CEBAS-CSIC, Campus Universitario de Espinardo, PO Box 164, 30100 Espinardo, Murcia (Spain); Lepp, Nicholas; Dickinson, Nicholas [Faculty of Science, Liverpool John Moores University, Liverpool L3 3AF (United Kingdom)

    2010-01-15

    Three methods for predicting element mobility in soils have been applied to an iron-rich soil, contaminated with arsenic, cadmium and zinc. Soils were collected from 0 to 30 cm, 30 to 70 cm and 70 to 100 cm depths in the field and soil pore water was collected at different depths from an adjacent 100 cm deep trench. Sequential extraction and a column leaching test in the laboratory were compared to element concentrations in pore water sampled directly from the field. Arsenic showed low extractability, low leachability and occurred at low concentrations in pore water samples. Cadmium and zinc were more labile and present in higher concentrations in pore water, increasing with soil depth. Pore water sampling gave the best indication of short term element mobility when field conditions were taken into account, but further extraction and leaching procedures produced a fuller picture of element dynamics, revealing highly labile Cd deep in the soil profile. - Mobility of arsenic, cadmium and zinc in a polluted soil can be realistically interpreted by in-situ soil pore water sampling.

  15. Comparison of single and sequential extraction procedures for the study of rare earth elements remobilisation in different types of soils

    Energy Technology Data Exchange (ETDEWEB)

    Rao, Chebrolu Rama Mohan [Geological Survey of India, Hyderabad 500068 (India); Sahuquillo, Angels [Universitat de Barcelona, Department de Quimica Analitica, Marti i Franques, 1-11, E-08028 Barcelona (Spain); Lopez-Sanchez, Jose Fermin, E-mail: fermin.lopez@ub.edu [Universitat de Barcelona, Department de Quimica Analitica, Marti i Franques, 1-11, E-08028 Barcelona (Spain)

    2010-03-10

    With the continual increase in the utilisation of rare earth elements (REE) for industrial and agricultural purposes, research into the environmental and biogeochemical behaviour of REE had attracted much interest in recent times. This study principally describes the distribution of REE in four different types of soils like lateritic soil (S-1), in situ natural soil (S-2), soil contaminated by mining activity (S-3) and accidentally polluted soil (S-4) utilizing the optimised BCR sequential extraction procedure and partial extractions with various types of single extractants such as unbuffered salt solutions 0.1 M NaNO{sub 3}, 0.01 M CaCl{sub 2}, 1 M NH{sub 4}NO{sub 3}; complexing agents 0.005 M DTPA and 0.05 M EDTA; acid solutions 0.43 M CH{sub 3}COOH and 1 M HCl. Comparison of the sum of the four BCR fractions, which included an aqua regia attack on the residue, with the pseudo-total aqua regia digest values to assess the accuracy of the BCR partioning approach has been undertaken. Partial extraction results with several single extractants have also been reported for all the REE elements including yttrium which have been analysed by the optimised BCR procedure. Results obtained after 24 h extraction with each of the single extractant have also been discussed. The extraction with 1 M HCl during 24 h yielded similar quantities of REE as those released under the combined steps of 1, 2 and 3 of the BCR sequential extraction for all the four different type of soil samples indicating that this reagent can be used successfully to estimate the total extractable contents of REE in various types of soil samples.

  16. Classification and modelling of non-extractable residue (NER) formation from xenobiotics in soil - a synthesis

    Science.gov (United States)

    Kaestner, Matthias; Nowak, Karolina; Miltner, Anja; Trapp, Stefan; Schaeffer, Andreas

    2014-05-01

    This presentation provides a comprehensive overview about the formation of non-extractable residues (NER) from organic pesticides and contaminants in soil and tries classifying the different types. Anthropogenic organic chemicals are deliberately (e.g. pesticides) or unintentionally (e.g. polyaromatic hydrocarbons [PAH], chlorinated solvents, pharmaceuticals) released in major amounts to nearly all compartments of the environment. Soils and sediments as complex matrices provide a wide variety of binding sites and are the major sinks for these compounds. Many of the xenobiotics entering soil undergo turnover processes and can be volatilised, leached to the groundwater, degraded by microorganisms or taken up and enriched by living organisms. Xenobiotic NER may be derived from parent compounds and primary metabolites that are sequestered (sorbed or entrapped) within the soil organic matter (type I NER) or can be covalently bound (type II NER). Especially type I NER may pose a considerably environmental risk of potential release. However, NER resulting from productive biodegradation, which means the conversion of carbon (or nitrogen) from the compounds into microbial biomass molecules during microbial degradation (type III, bioNER), do not pose any risk. Experimental and analytical approaches to clearly distinguish between the types are provided and a model to prospectively estimate their fate in soil is proposed.

  17. Spatial variability of soil total and DTPA-extractable cadmium caused by long-term application of phosphate fertilizers, crop rotation, and soil characteristics.

    Science.gov (United States)

    Jafarnejadi, A R; Sayyad, Gh; Homaee, M; Davamei, A H

    2013-05-01

    Increasing cadmium (Cd) accumulation in agricultural soils is undesirable due to its hazardous influences on human health. Thus, having more information on spatial variability of Cd and factors effective to increase its content on the cultivated soils is very important. Phosphate fertilizers are main contamination source of cadmium (Cd) in cultivated soils. Also, crop rotation is a critical management practice which can alter soil Cd content. This study was conducted to evaluate the effects of long-term consumption of the phosphate fertilizers, crop rotations, and soil characteristics on spatial variability of two soil Cd species (i.e., total and diethylene triamine pentaacetic acid (DTPA) extractable) in agricultural soils. The study was conducted in wheat farms of Khuzestan Province, Iran. Long-term (27-year period (1980 to 2006)) data including the rate and the type of phosphate fertilizers application, the respective area, and the rotation type of different regions were used. Afterwards, soil Cd content (total or DTPA extractable) and its spatial variability in study area (400,000 ha) were determined by sampling from soils of 255 fields. The results showed that the consumption rate of di-ammonium phosphate fertilizer have been varied enormously in the period study. The application rate of phosphorus fertilizers was very high in some subregions with have extensive agricultural activities (more than 95 kg/ha). The average and maximum contents of total Cd in the study region were obtained as 1.47 and 2.19 mg/kg and DTPA-extractable Cd as 0.084 and 0.35 mg/kg, respectively. The spatial variability of Cd indicated that total and DTPA-extractable Cd contents were over 0.8 and 0.1 mg/kg in 95 and 25 % of samples, respectively. The spherical model enjoys the best fitting and lowest error rate to appraise the Cd content. Comparing the phosphate fertilizer consumption rate with spatial variability of the soil cadmium (both total and DTPA extractable) revealed the high

  18. Sequential extraction and availability of copper in Cu fungicide-amended vineyard soils from Southern Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Correa Nogueirol, Roberta [University of Sao Paulo (ESALQ/USP), C.P. 9, Piracicaba 13418-900, SP (Brazil); Ferracciu Alleoni, Luis Reynaldo, E-mail: alleoni@esalq.usp.br [Department of Soil Science, ESALQ/USP. C.P. 9, Piracicaba 13418-900, SP (Brazil); Ribeiro Nachtigall, Gilmar; Wellington de Melo, George [National Research Center of Grapes and Wine - Embrapa Uva e Vinho, C.P. 130, Bento Goncalves 95700-000, RS (Brazil)

    2010-09-15

    The continuous use of cupric fungicides in vineyards, mainly copper sulfate (as a component of the bordeaux mixture), has increased Cu concentration in soils to levels near or even above the maximum established by the Commission of Soil Chemistry and Fertility of the States of Santa Catarina and Rio Grande do Sul, Brazil. Besides the total content, the fractions of the element along the soil profile must be known, because the total content of Cu in the soil is not sufficient to express its environmental impact. The objective of this study was to evaluate the variation of Cu contentes along the soil profile and its speciation and partitioning in 29 soil samples from vineyards in the state of Rio Grande do Sul, Brazil. Samples were collected in areas cropped with vineyards older than 15 years that had been frequently treated with the bordeaux mixture. These samples were from Nitosols, Acrisols, Cambisols and Leptosols and were analysed by sequential extractions and several chemical extractors. Soils had diverse chemical and physical attributes: clay content in the plowed layer (0-0.2 m) ranged from 120 to 610 g kg{sup -1}, pH ranged from 5.3 to 7.3 and organic carbon contents varied from 2.9 to 51 g dm{sup -3}. Among the 29 samples, 16 had the total Cu above the maximum limit allowed by the European Community regulations (140 mg kg{sup -1}). The average amount of Cu bonded to the oxide fraction accounted for 49.5% of the total Cu.

  19. Multiple DNA extractions coupled with stable-isotope probing of anthracene-degrading bacteria in contaminated soil.

    Science.gov (United States)

    Jones, Maiysha D; Singleton, David R; Sun, Wei; Aitken, Michael D

    2011-05-01

    In many of the DNA-based stable-isotope probing (SIP) studies published to date in which soil communities were investigated, a single DNA extraction was performed on the soil sample, usually using a commercial DNA extraction kit, prior to recovering the (13)C-labeled (heavy) DNA by density-gradient ultracentrifugation. Recent evidence suggests, however, that a single extraction of a soil sample may not lead to representative recovery of DNA from all of the organisms in the sample. To determine whether multiple DNA extractions would affect the DNA yield, the eubacterial 16S rRNA gene copy number, or the identification of anthracene-degrading bacteria, we performed seven successive DNA extractions on the same aliquot of contaminated soil either untreated or enriched with [U-(13)C]anthracene. Multiple extractions were necessary to maximize the DNA yield and 16S rRNA gene copy number from both untreated and anthracene-enriched soil samples. Sequences within the order Sphingomonadales, but unrelated to any previously described genus, dominated the 16S rRNA gene clone libraries derived from (13)C-enriched DNA and were designated "anthracene group 1." Sequences clustering with Variovorax spp., which were also highly represented, and sequences related to the genus Pigmentiphaga were newly associated with anthracene degradation. The bacterial groups collectively identified across all seven extracts were all recovered in the first extract, although quantitative PCR analysis of SIP-identified groups revealed quantitative differences in extraction patterns. These results suggest that performing multiple DNA extractions on soil samples improves the extractable DNA yield and the number of quantifiable eubacterial 16S rRNA gene copies but have little qualitative effect on the identification of the bacterial groups associated with the degradation of a given carbon source by SIP.

  20. Evaluation of extraction methods for hexavalent chromium determination in dusts, ashes, and soils

    Science.gov (United States)

    Wolf, Ruth E.; Wilson, Stephen A.

    2010-01-01

    One of the difficulties in performing speciation analyses on solid samples is finding a suitable extraction method. Traditional methods for extraction of hexavalent chromium, Cr(VI), in soils, such as SW846 Method 3060A, can be tedious and are not always compatible with some determination methods. For example, the phosphate and high levels of carbonate and magnesium present in the U.S. Environmental Protection Agency (USEPA) Method 3060A digestion for Cr(VI) were found to be incompatible with the High Performance Liquid Chromatography-Inductively Coupled Plasma-Mass Spectrometry (HPLC-ICP-MS) detection method used by our laboratory. Modification of Method 3060A by eliminating the use of the phosphate buffer provided improved performance with the detection method, however dilutions are still necessary to achieve good chromatographic separation and detection of Cr(VI). An ultrasonic extraction method using a 1 mM Na2CO3 - 9 mM NaHCO3 buffer solution, adapted from Occupational Safety and Health Administration (OSHA) Method ID215, has been used with good results for the determination of Cr(VI) in air filters. The average recovery obtained for BCR-545 - Welding Dust Loaded on Filter (IRMM, Belgium) using this method was 99 percent (1.2 percent relative standard deviation) with no conversion of Cr(VI) to Cr(III) during the extraction process. This ultrasonic method has the potential for use with other sample matrices, such as ashes and soils. Preliminary investigations using NIST 2701 (Hexavalent Chromium in Contaminated Soil) loaded onto quartz filters showed promising results with approximately 90 percent recovery of the certified Cr(VI) value. Additional testing has been done using NIST 2701 and NIST 2700 using different presentation methods. Extraction efficiency of bulk presentation, where small portions of the sample are added to the bottom of the extraction vessel, will be compared with supported presentation, where small portions of the sample are loaded onto a

  1. On-matrix derivatization extraction of chemical weapons convention relevant alcohols from soil.

    Science.gov (United States)

    Chinthakindi, Sridhar; Purohit, Ajay; Singh, Varoon; Dubey, D K; Pardasani, Deepak

    2013-10-11

    Present study deals with the on-matrix derivatization-extraction of aminoalcohols and thiodiglycols, which are important precursors and/or degradation products of VX analogues and vesicants class of chemical warfare agents (CWAs). The method involved hexamethyldisilazane (HMDS) mediated in situ silylation of analytes on the soil. Subsequent extraction and gas chromatography-mass spectrometry analysis of derivatized analytes offered better recoveries in comparison to the procedure recommended by the Organization for the Prohibition of Chemical Weapons (OPCW). Various experimental conditions such as extraction solvent, reagent and catalyst amount, reaction time and temperature were optimized. Best recoveries of analytes ranging from 45% to 103% were obtained with DCM solvent containing 5%, v/v HMDS and 0.01%, w/v iodine as catalyst. The limits of detection (LOD) and limit of quantification (LOQ) with selected analytes ranged from 8 to 277 and 21 to 665ngmL(-1), respectively, in selected ion monitoring mode.

  2. Selenium speciation in seleniferous agricultural soils under different cropping systems using sequential extraction and X-ray absorption spectroscopy.

    Science.gov (United States)

    Qin, Hai-Bo; Zhu, Jian-Ming; Lin, Zhi-Qing; Xu, Wen-Po; Tan, De-Can; Zheng, Li-Rong; Takahashi, Yoshio

    2017-06-01

    Selenium (Se) speciation in soil is critically important for understanding the solubility, mobility, bioavailability, and toxicity of Se in the environment. In this study, Se fractionation and chemical speciation in agricultural soils from seleniferous areas were investigated using the elaborate sequential extraction and X-ray absorption near-edge structure (XANES) spectroscopy. The speciation results quantified by XANES technique generally agreed with those obtained by sequential extraction, and the combination of both approaches can reliably characterize Se speciation in soils. Results showed that dominant organic Se (56-81% of the total Se) and lesser Se(IV) (19-44%) were observed in seleniferous agricultural soils. A significant decrease in the proportion of organic Se to the total Se was found in different types of soil, i.e., paddy soil (81%) > uncultivated soil (69-73%) > upland soil (56-63%), while that of Se(IV) presented an inverse tendency. This suggests that Se speciation in agricultural soils can be significantly influenced by different cropping systems. Organic Se in seleniferous agricultural soils was probably derived from plant litter, which provides a significant insight for phytoremediation in Se-laden ecosystems and biofortification in Se-deficient areas. Furthermore, elevated organic Se in soils could result in higher Se accumulation in crops and further potential chronic Se toxicity to local residents in seleniferous areas. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Membrane Dialysis Extraction (MDE): a novel approach for extracting toxicologically relevant hydrophobic organic compounds from soils and sediments for assessment in biotests

    Energy Technology Data Exchange (ETDEWEB)

    Seiler, T.B.; Leist, E.; Braunbeck, T.; Hollert, H. [Dept. of Zoology, Aquatic Ecology and Toxicology, Univ. of Heidelberg (Germany); Rastall, A.C.; Erdinger, L. [Inst. of Hygiene and Medical Microbiology, Univ. of Heidelberg (Germany)

    2006-02-15

    Goal, scope and background. Organic solvents are routinely used to extract toxicants from polluted soils and sediments prior to chemical analysis or bioassay. Conventional extraction methods often require the use of heated organic solvents, in some cases under high pressure. These conditions can result in loss of volatile compounds from the sample and the degradation of thermally labile target analytes. Moreover, extracts of soils and sediments also frequently contain substantial quantities of organic macromolecules which can act as sorbing phases for target analytes and in doing so interfere with both chemical analysis and bioassays. Membrane dialysis extraction (MDE) is described as a simple, passive extraction method for selectively extracting toxicologically relevant hydrophobic organic compounds (HOCs) from polluted soils and sediments and analyzed for its applicability in ecotoxicological investigations. Methods. Toxicologically relevant hydrophobic organic compounds were extracted from wet and dry sediments by sealing replicate samples in individual lengths of pre-cleaned low-density polyethylene (LD-PE) tubing and then dialysing in n-hexane. Results. The membrane dialysis extraction was found to be at least as efficient as Soxhlet methodology to extract toxicologically relevant HOCs from sediment samples. In most cases, MDE-derived extracts showed a higher toxicological potential than the Soxhlet extracts. Lack of any significant effects in any MDE controls indicated these differences were not caused by contamination of the LD-PE membrane used. The elevated toxicological potential of MDE extracts is most likely the result of enhanced bioavailability of toxic compounds in consequence of lower amounts of organic macromolecules (i.e. sorbing phases) in the MDE extracts. This effect is probably the result of a size-selective restriction by the LD-PE membrane. Conclusion. Membrane dialysis extraction was found to be a simple, efficient and cost-effective method

  4. The ultrasound assisted extraction of matrix elements and heavy metal fractions associated with Fe, Al and Mn oxyhydroxides from soil

    Directory of Open Access Journals (Sweden)

    Stanišić Svetlana M.

    2012-01-01

    Full Text Available The single agent extractions of major and trace metals from soil sample were conducted by means of rotary mixer and ultrasonic bath with sonication time of 10, 20, 30, 40 and 50 min. The sequential extraction according to the BCR scheme was undertaken. The obtained soil extracts were analyzed by ICP-OES and according to the results the rotary mixer assisted extraction was more efficient in the case of alkaline-earth elements. However, by the use of ultrasound several times higher amounts of matrix elements (Fe, Al and Mn and heavy metals predominantly associated with Fe, Al and Mn oxyhydroxides were extracted. The increase of the sonication time failed to improve extraction yields. The changes of the conductivity, pH, oxidoreduction potential, particle size diameter and zeta potential of colloid particles, with the sonication time increase were measured. The extraction mechanism and expressed selectivity of ultrasound is discussed and explanation is suggested.

  5. Rapid quantification of polycyclic aromatic hydrocarbons in hydroxypropyl-{beta}-cyclodextrin (HPCD) soil extracts by synchronous fluorescence spectroscopy (SFS)

    Energy Technology Data Exchange (ETDEWEB)

    Hua Guoxiong [School of Biology and Psychology, Institute for Research on Environment and Sustainability, Newcastle University, Newcastle upon Tyne NE1 7RU (United Kingdom)]. E-mail: gh15@st-andrews.ac.uk; Broderick, John [School of Biology and Psychology, Institute for Research on Environment and Sustainability, Newcastle University, Newcastle upon Tyne NE1 7RU (United Kingdom); Semple, Kirk T. [Department of Environmental Science, Faculty of Science and Technology, University of Lancaster, Lancaster LA1 4YQ (United Kingdom); Killham, Ken [School of Biological Sciences, University of Aberdeen, Aberdeen AB24 3UU (United Kingdom); Singleton, Ian [School of Biology and Psychology, Institute for Research on Environment and Sustainability, Newcastle University, Newcastle upon Tyne NE1 7RU (United Kingdom)

    2007-07-15

    Synchronous fluorescence spectroscopy (SFS) was directly applied to rapidly quantify selected polycyclic aromatic hydrocarbons (PAHs: benzo[a]pyrene and pyrene) in aqueous hydroxypropyl-{beta}-cyclodextrin (HPCD) soil extract solutions from a variety of aged contaminated soils containing four different PAHs. The method was optimized and validated. The results show that SFS can be used to analyse benzo[a]pyrene and pyrene in HPCD based soil extracts with high sensitivity and selectivity. The linear calibration ranges were 4.0 x 10{sup -6}-1.0 x 10{sup -3} mM for benzo[a]pyrene and 6.0 x 10{sup -6}-1.2 x 10{sup -3} mM for pyrene in 10 mM HPCD aqueous solution alone. The detection limits according to the error propagation theory for benzo[a]pyrene and pyrene were 3.9 x 10{sup -6} and 5.4 x 10{sup -6} mM, respectively. A good agreement between SFS and HPLC was reached for both determinations of PAHs in HPCD alone and in soil HPCD extracts. Hence, SFS is a potential means to simplify the present non-exhaustive hydroxypropyl-{beta}-cyclodextrin (HPCD)-based extraction technique for the evaluation of PAH bioavailability in soil. - SFS can be used to rapidly quantify selected PAHs in soil extracts and to simplify the non-exhaustive HPCD-based extraction technique for the evaluation of PAH bioavailability.

  6. Extraction of high molecular weight genomic DNA from soils and sediments.

    Science.gov (United States)

    Lee, Sangwon; Hallam, Steven J

    2009-11-10

    The soil microbiome is a vast and relatively unexplored reservoir of genomic diversity and metabolic innovation that is intimately associated with nutrient and energy flow within terrestrial ecosystems. Cultivation-independent environmental genomic, also known as metagenomic, approaches promise unprecedented access to this genetic information with respect to pathway reconstruction and functional screening for high value therapeutic and biomass conversion processes. However, the soil microbiome still remains a challenge largely due to the difficulty in obtaining high molecular weight of sufficient quality for large insert library production. Here we introduce a protocol for extracting high molecular weight, microbial community genomic DNA from soils and sediments. The quality of isolated genomic DNA is ideal for constructing large insert environmental genomic libraries for downstream sequencing and screening applications. The procedure starts with cell lysis. Cell walls and membranes of microbes are lysed by both mechanical (grinding) and chemical forces (beta-mercaptoethanol). Genomic DNA is then isolated using extraction buffer, chloroform-isoamyl alcohol and isopropyl alcohol. The buffers employed for the lysis and extraction steps include guanidine isothiocyanate and hexadecyltrimethylammonium bromide (CTAB) to preserve the integrity of the high molecular weight genomic DNA. Depending on your downstream application, the isolated genomic DNA can be further purified using cesium chloride (CsCl) gradient ultracentrifugation, which reduces impurities including humic acids. The first procedure, extraction, takes approximately 8 hours, excluding DNA quantification step. The CsCl gradient ultracentrifugation, is a two days process. During the entire procedure, genomic DNA should be treated gently to prevent shearing, avoid severe vortexing, and repetitive harsh pipetting.

  7. Selective pressurized liquid extraction of replacement and legacy brominated flame retardants from soil.

    Science.gov (United States)

    McGrath, Thomas J; Morrison, Paul D; Ball, Andrew S; Clarke, Bradley O

    2016-08-05

    Polybrominated diphenyl ethers (PBDEs) are a class of flame retardant registered as UN POPs due to their persistence in the environment, bioaccumulation potential and toxicity. Replacement novel brominated flame retardants (NBFRs) have exhibited similar health hazards and environmental distribution, becoming recognized as significant contaminants. This work describes the development and validation of a sensitive and reliable method for the simultaneous quantitation of PBDEs and NBFRs in environmental soil samples using selective pressurized liquid extraction (S-PLE) and gas chromatography coupled to triple quadrupole mass spectrometry (GC-(EI)-MS/MS). Under optimal conditions, extraction of eight PBDEs (-28, -47, -99, -100, -153, -154, -183 and -209) and five NBFRs; pentabromotoluene (PBT), pentabromoethylbenzene (PBEB), hexabromobenzene (HBB), 2-ethylhexyl-2,3,4,5-tetrabromobenzoate (EH-TBB) and bis(2,4,6-tribromophenoxy)ethane (BTBPE) was performed at 100°C and 1500psi using a 1:1 mixture of hexane and dichloromethane. The method utilized 33mL capacity PLE cells containing, from bottom to top, a single cellulose filter, 3g activated Florisil, 6g acid silica (10% w/w), 3g Na2SO4, another cellulose filter, 2g activated copper powder and 3g soil sample dispersed in 2g Na2SO4 and 1g of Hydromatrix. The method was evaluated by repeated extraction and analysis of all analytes from 3g soil at three spike concentrations. Good recoveries were observed for most analytes at each of the spiking levels with RSD values generally below 20%. MDLs ranged from 0.01 to 4.8ng/g dw for PBDEs and 0.01-0.55ng/g dw for NBFRs. The described one-step combined extraction and cleanup method reduces sample processing times compared with traditional procedures, while delivering comparable analytical performance. The method was successfully applied to environmental soil samples (n=5), detecting PBDEs in each sample and providing the first account of NBFR contamination in Australian soils.

  8. Extraction and optical fluorescence method for the measurement of trace beryllium in soils.

    Science.gov (United States)

    Agrawal, Anoop; Cronin, John P; Agrawal, Akshay; Tonazzi, Juan C L; Adams, Lori; Ashley, Kevin; Brisson, Michael J; Duran, Brandy; Whitney, Gary; Burrell, Anthony K; McCleskey, T Mark; Robbins, James; White, Kenneth T

    2008-03-15

    Beryllium metal and beryllium oxide are important industrial materials used in a variety of applications in the electronics, nuclear energy, and aerospace industries. These materials are highly toxic, they must be disposed of with care, and exposed workers need to be protected. Recently, a new analytical method was developed that uses dilute ammonium bifluoride for extraction of beryllium and a high quantum yield optical fluorescence reagent to determine trace amounts of beryllium in airborne and surface samples. The sample preparation and analysis procedure was published by both ASTM International and the National Institute for Occupational Safety and Health (NIOSH). The main advantages of this method are its sensitivity, simplicity, use of lower toxicity materials, and low capital costs. Use of the technique for analyzing soils has been initiated to help meet a need at several of the U.S. Department of Energy legacy sites. So far this work has mainly concentrated on developing a dissolution protocol for effectively extracting beryllium from a variety of soils and sediments so that these can be analyzed by optical fluorescence. Certified reference materials (CRM) of crushed rock and soils were analyzed for beryllium content using fluorescence, and results agree quantitatively with reference values.

  9. Distribution and sequential extraction of some heavy metals in urban soils of Guiyang City, China

    Institute of Scientific and Technical Information of China (English)

    WU Yongfeng; LIU Congqiang; TU Chenglong

    2008-01-01

    Sixty-two soil samples collected from different functional zones of Guiyang were analyzed for total concentrations and sequential extraction of Cr, Cu, Pb, Zn and Cd by ICP spectrometry. The average total concentrations of Cr, Cu, Pb, Zn and Cd in the soils of Guiyang were 92.9, 51.6, 44.1, 139.3 and 0.28 mg/kg, respectively. The soils have been polluted by Cr, Cu, Pb, Zn and Cd to some extent in comparison with the background values of Guiyang. Significant differences were recognized in the concentrations of Cr, Cu, Pb, Zn and Cd in different functional zones. As for the sequential extraction, Cr, Cu and Zn were present mainly in the residual fraction, and Pb was present mainly in the oxidizable fraction. The reducible fraction of Cd accounts for 47.5%, and the residual fraction is lowest. The mobility and bioavailability of heavy metals follow the order of Cd>Pb>Cu>Cr>Zn.

  10. Study of axial mixing, holdup and slip velocity of dispersed phase in a pulsed sieve plate extraction column using radiotracer technique

    Energy Technology Data Exchange (ETDEWEB)

    Ghiyas Ud Din [Department of Nuclear Engineering, Pakistan Institute of Engineering and Applied Sciences -PIEAS, P.O Nilore, Islamabad (Pakistan); Isotope Application Division, Pakistan Institute of Nuclear Science and Technology - PINSTECH, P.O Nilore, Islamabad (Pakistan)], E-mail: fac192@pieas.edu.pk; Imran Rafiq Chughtai; Mansoor Hameed Inayat [Department of Chemical and Materials Engineering, Pakistan Institute of Engineering and Applied Sciences - PIEAS, P.O Nilore, Islamabad (Pakistan); Iqbal Hussain Khan [Isotope Application Division, Pakistan Institute of Nuclear Science and Technology - PINSTECH, P.O Nilore, Islamabad (Pakistan)

    2009-07-15

    Axial mixing, holdup and slip velocity of dispersed phase which are parameters of fundamental importance in the design and operation of liquid-liquid extraction pulsed sieve plate columns have been investigated. Experiments for residence time distribution (RTD) analysis have been carried out for a range of pulsation frequency and amplitude in a liquid-liquid extraction pulsed sieve plate column with water as dispersed and kerosene as continuous phase using radiotracer technique. The column was operated in emulsion region and {sup 99m}Tc in the form of sodium pertechnetate eluted from a {sup 99}Mo/{sup 99m}Tc generator was used to trace the dispersed phase. Axial dispersed plug flow model with open-open boundary condition and two points measurement method was used to simulate the hydrodynamics of dispersed phase. It has been observed that the axial mixing and holdup of dispersed phase increases with increase in pulsation frequency and amplitude until a maximum value is achieved while slip velocity decreases with increase in pulsation frequency and amplitude until it approaches a minimum value. Short lived and low energy radiotracer {sup 99m}Tc in the form of sodium pertechnetate was found to be a good water tracer to study the hydrodynamics of a liquid-liquid extraction pulsed sieve plate column operating with two immiscible liquids, water and kerosene. Axial dispersed plug flow model with open-open boundary condition was found to be a suitable model to describe the hydrodynamics of dispersed phase in the pulsed sieve plate extraction column.

  11. Migration, speciation and distribution of heavy metals in an oil-polluted soil affected by crude oil extraction processes.

    Science.gov (United States)

    Fu, Xiaowen; Cui, Zhaojie; Zang, Guolong

    2014-07-01

    Heavy metals are among the major pollutants in the worldwide soil environment. In oilfields, the crude oil extraction process results in the simultaneous contamination of the soil with petroleum and heavy metals. In this work, we investigated the influence of oil extraction on the migration, speciation, and temporal distribution of heavy metals (Cu, Zn, Pb, Cd, Cr, Mn, Ni, V, and Mn) in soils of an oil region of Shengli Oilfield, China. The results showed that oil-polluted soils were contaminated with Cu, Zn, Cd and Ni, with mean concentrations of 27.63, 67.12, 0.185 and 33.80 mg kg(-1), respectively (greater than the background values of local surface soils). Compared with the control profile, the vertical distributions of Cu, Zn, Pb, Cd, Ni, and V were affected in oil-polluted soils, particularly those of Cd and Ni. The concentrations of Zn, Cd, Ni, V, and Mn in oil-polluted soils increased with the duration of oil well development, which indicated the levels of these metals in the oil field were enhanced by human activities. Fractionation analysis revealed that the mobility potential of heavy metals in oil polluted soil decreased in the sequence Cd > Mn > Zn > Ni > Pb > Cu > Cr > V. The most important proportion of Cd is ion exchangeable and acid soluble, which indicates that Cd is the most labile, available, and harmful heavy metal among the elements that damage the soil environment in oil-polluted soil.

  12. Extraction of heavy metals from e-waste contaminated soils using EDDS

    Institute of Scientific and Technical Information of China (English)

    Renxiu Yang; Chunling Luo; Gan Zhang; Xiangdong Li; Zhenguo Shen

    2012-01-01

    Environmental contamination due to uncontrolled e-waste recycling activities is drawing increasing attention in the world.Extraction of these metals with biodegradable chelant [S,S]-ethylenediaminedisuccinic acid (EDDS) and the factors influencing extraction efficacy were investigated in the present study.Results showed that the addition of EDDS at low pH (5.5) produced higher metal extraction than that at high pH (8.0) solution.Metal speciation analysis indicated that Cu was completely complexed with EDDS at different pH conditions with various amounts of EDDS applied.For Pb and Zn,at low EDDS dose of 0.304 mol/kg soil,they were present as Pband Zn-EDDS.However,at high EDDS dose of 1.26 mol/kg soil,most of Pb was bound with dissolved organic matter.Ca and A1 were found to be strong competitors for trace metals to EDDS at low application dose and low pH condition.

  13. EVALUATION OF GEOCHEMICAL QUALITY CONTROL IN DETERMINATION OF Mn IN SOILS USING A SEQUENTIAL CHEMICAL EXTRACTION

    Institute of Scientific and Technical Information of China (English)

    DONGDe-ming; FANGChun-sheng; 等

    2002-01-01

    Sequential chemical extraction procedure has been widely used to partition particulate trace metals into vari-ous fractions and to describe the distribution and the statue of trace metals in geo-environment.One sequential chemical extraction procedure was employed here to partition various fractions of Mn in soils.The experiment was designed with quality controlling concept in order to show sampling and analytical error.Experimental results obtained on duplicate analy-sis of all soil samples demonstrated that the precision was less than 10%(at 95% confidence level).The accuracy was estimated by comparing the accepted total concentration of Mn in standard reference materials (SRMs) with the measured sum of the individual fractions.The recovery of Mn from SRM1 and SRM2 was 94.1% and 98.4%,respectively.The detection limit,accuracy and precision of the sequential chemical extraction procedure were discussed in detailed.All the results suggest that the trueness of the analytical method is satisfactory.

  14. Extraction of heavy metals from e-waste contaminated soils using EDDS.

    Science.gov (United States)

    Yang, Renxiu; Luo, Chunling; Zhang, Gan; Li, Xiangdong; Shen, Zhenguo

    2012-01-01

    Environmental contamination due to uncontrolled e-waste recycling activities is drawing increasing attention in the world. Extraction of these metals with biodegradable chelant [S,S]-ethylenediaminedisuccinic acid (EDDS) and the factors influencing extraction efficacy were investigated in the present study. Results showed that the addition of EDDS at low pH (5.5) produced higher metal extraction than that at high pH (8.0) solution. Metal speciation analysis indicated that Cu was completely complexed with EDDS at different pH conditions with various amounts of EDDS applied. For Pb and Zn, at low EDDS dose of 0.304 mol/kg soil, they were present as Pb- and Zn-EDDS. However, at high EDDS dose of 1.26 mol/kg soil, most of Pb was bound with dissolved organic matter. Ca and Al were found to be strong competitors for trace metals to EDDS at low application dose and low pH condition.

  15. Removal of heavy metals and arsenic from contaminated soils using bioremediation and chelant extraction techniques.

    Science.gov (United States)

    Vaxevanidou, Katerina; Papassiopi, Nymphodora; Paspaliaris, Ioannis

    2008-02-01

    A combined chemical and biological treatment scheme was evaluated in this study aiming at obtaining the simultaneous removal of metalloid arsenic and cationic heavy metals from contaminated soils. The treatment involved the use of the iron reducing microorganism Desulfuromonas palmitatis, whose activity was combined with the chelating strength of EDTA. Taking into consideration that soil iron oxides are the main scavengers of As, treatment with iron reducing microorganisms aimed at inducing the reductive dissolution of soil oxides and thus obtaining the release of the retained As. The main objective of using EDTA was the removal of metal contaminants, such as Pb and Zn, through the formation of soluble metal chelates. Experimental results however indicated that EDTA was also indispensable for the biological reduction of Fe(III) oxides. The bacterial activity was found to have a pronounced positive effect on the removal of arsenic, which increased from the value of 35% obtained during the pure chemical treatment up to 90% in the presence of D. palmitatis. In the case of Pb, the major part, i.e. approximately 85%, was removed from soil with purely chemical mechanisms, whereas the biological activity slightly improved the extraction, increasing the final removal up to 90%. Co-treatment had negative effect only for Zn, whose removal was reduced from 80% under abiotic condition to approximately 50% in the presence of bacteria.

  16. Soil vapor extraction and bioventing: Applications, limitations, and future research directions

    Science.gov (United States)

    Rathfelder, K.; Lang, J. R.; Abriola, L. M.

    1995-07-01

    Soil vapor extraction (SVE) has evolved over the past decade as an attractive in situ remediation method for unsaturated soils contaminated with volatile organic compounds (VOCs). SVE involves the generation of air flow through the pores of the contaminated soil to induce transfer of VOCs to the air stream. Air flow is established by pumping from vadose zone wells through which contaminant vapors are collected and transported above ground where they are treated, if required, and discharged to the atmosphere. The popularity of SVE technologies stems from their proven effectiveness for removing large quantities of VOCs from the soil, their cost competitiveness, and their relatively simple non-intrusive implementation. Widespread field application of SVE has occurred following the success of early laboratory and field scale feasibility studies [Texas Research Institute, 1980, 1984; Thornton and Wootan, 1982; Marley and Hoag, 1984; Crow et al., 1985, 1987]. As many as 18% of Superfund sites employ SVE remediation technologies [Travis and Macinnis, 1992] and numerous articles and reports have documented the application of SVE [e.g. Hutzler et al., 1989; Downey and Elliott, 1990; U.S. EPA, 1991; Sanderson et al, 1993; Gerbasi and Menoli, 1994; McCann et al., 1994;].

  17. Kinetic extractions to assess mobilization of Zn, Pb, Cu, and Cd in a metal-contaminated soil: EDTA vs. citrate

    Energy Technology Data Exchange (ETDEWEB)

    Labanowski, Jerome [INRA, UR 251 Unite PESSAC, RD 10, F-78026 Versailles Cedex (France); Monna, Fabrice [ARTeHIS, UMR 5594 CNRS, Univ. de Bourgogne Centre des Sciences de la Terre, Bat. Gabriel, F-21000 Dijon (France); Bermond, Alain [AgroParis Tech., Laboratoire de Chimie Analytique, 16 rue C. Bernard, 75231 Paris Cedex 05 (France); Cambier, Philippe; Fernandez, Christelle; Lamy, Isabelle [INRA, UR 251 Unite PESSAC, RD 10, F-78026 Versailles Cedex (France); Oort, Folkert van [INRA, UR 251 Unite PESSAC, RD 10, F-78026 Versailles Cedex (France)], E-mail: vanoort@versailles.inra.fr

    2008-04-15

    Kinetic EDTA and citrate extractions were used to mimic metal mobilization in a soil contaminated by metallurgical fallout. Modeling of metal removal rates vs. time distinguished two metal pools: readily labile (Q{sub M1}) and less labile (Q{sub M2}). In citrate extractions, total extractability (Q{sub M1} + Q{sub M2}) of Zn and Cd was proportionally higher than for Pb and Cu. Proportions of Pb and Cu extracted with EDTA were three times higher than when using citrate. We observed similar Q{sub M1}/Q{sub M2} ratios for Zn and Cu regardless of the extractant, suggesting comparable binding energies to soil constituents. However, for Pb and Cd, more heterogeneous binding energies were hypothesized to explain different kinetic extraction behaviors. Proportions of citrate-labile metals were found consistent with their short-term, in-situ mobility assessed in the studied soil, i.e., metal amount released in the soil solution or extracted by cultivated plants. Kinetic EDTA extractions were hypothesized to be more predictive for long-term metal migration with depth. - Kinetically defined metal fractions mimic mobility aspects of heavy metals.

  18. Curtailment of soil vapor extraction systems at McClellan Air Force Base

    Energy Technology Data Exchange (ETDEWEB)

    Chapman, T.E. [BDM Federal, McClellan AFB, CA (United States); Mook, P.H. Jr.; Wong, K.B. [SM-ALC/EMR, McClellan AFB, CA (United States)

    1997-12-31

    McClellan Air Force Base (AFB), located near Sacramento, California, is one of the Strategic Environmental Research and Development Program`s National Environmental Technology Test Sites. McClellan AFB has implemented soil vapor extraction (SVE) as an Engineering Evaluation/Cost Analysis (EE/CA) non-time-critical remedial action for volatile organic compounds in soil. Operation and maintenance costs for SVE systems are increasingly becoming a major component of the environmental clean-up budget. In an effort to reduce costs, while assuring the protection of public health and the environment, a risk-based strategy has been developed for the curtailment and eventual shut-down of SVE systems at McClellan AFB. This paper presents an overview of the SVE EE/CA process and a detailed description of the development and implementation of the curtailment strategy. Included in the discussion are details of the public and regulatory involvement in the process.

  19. Aluminium and iron estimated by Mehlich-3 extractant in mine soils in Galicia, northwest Spain

    Energy Technology Data Exchange (ETDEWEB)

    Marcos, M.L.F.; Alvarez, E.; Monterroso, C. [University of Santiago, Lugo (Spain). Dept. of Edaphology

    1998-07-01

    The efficiency of Mehlich-3 reagent as an extractant for aluminium (Al) and iron (Fe) was studied in Galician coal mine soils, in the process of reclamation. Mehlich-3 Al and oxalate Al values (r+0.77) although the regression line tended to be curvilinear. Mehlich-3 and Fe values were compared to those from other Al and Fe tests and with phosphorus (P) sorption. The soils are very heterogeneous, consisting mainly of carbonaceous and non-carbonacoues clays and shales, which are often rich in pyrite. Some of them have been amended with topsoil or fly ash. A close relationship was observed between Mehlich-3 Al was better correlated than oxalate Al to pyrophosphate Al (r=0.66 vs. r=0.59) and also to pH-NaF (r=0.89 vs. r=0.74). The Mehlich-3 Al was almost as good as oxalate Al in estimating non-crystalline A.

  20. Mathematical simulation of soil vapor extraction systems: Model development and numerical examples

    Science.gov (United States)

    Rathfelder, Klaus; Yeh, William W.-G.; Mackay, Douglas

    1991-12-01

    This paper describes the development of a numerical model for prediction of soil vapor extraction processes. The major emphasis is placed on field-scale predictions with the objective to advance development of planning tools for design and operation of venting systems. The numerical model solves two-dimensional flow and transport equations for general n-component contaminant mixtures. Flow is limited to the gas phase and local equilibrium partitioning is assumed in tracking contaminants in the immiscible fluid, water, gas, and solid phase. Model predictions compared favorably with analytical solutions and multicomponent column venting experiments. Sensitivity analysis indicates equilibrium phase partitioning is a good assumption in modeling organic liquid volatilization occurring in field venting operations. Mass transfer rates in volatilization from the water phase and contaminant desorption are potentially rate limiting. Simulations of hypothetical field-scale problems show efficiency of venting operations is most sensitive to vapor pressure and the magnitude and distribution of soil permeability.

  1. Detection of trinitrotoluene (TNT) extracted from soil using a surface plasmon resonance (SPR)-based sensor platform

    Science.gov (United States)

    Strong, Anita A.; Stimpson, Donald I.; Bartholomew, Dwight U.; Jenkins, Thomas F.; Elkind, Jerome L.

    1999-08-01

    An antibody-based competition assay has been developed using a surface plasmon resonance (SPR) sensor platform for the detection of trinitrotoluene (TNT) in soil extract solutions. The objective of this work is to develop a sensor-based assay technology to use in the field for real- time detection of land mines. This immunoassay combines very simple bio-film attachment procedures and a low-cost SPR sensor design to detect TNT in soil extracts. The active bio-surface is a coating of bovine serum albumin that has been decorated with trinitrobenzene groups. A blind study on extracts from a large soil matrix was recently performed and result from this study will be presented. Potential interferant studied included 2,4-dinitrophenol, 2,4- dinitrotoluene, ammonium nitrate, and 2,4- dichlorophenoxyacetic acid. Cross-reactivity with dinitrotoluene will be discussed. Also, plans to reach sensitivity levels of 1ppb TNT in soil will be described.

  2. Studies on Oxidation States of Cobalt Extracted from Soils with EDTA·HOAc·NH4OAc

    Institute of Scientific and Technical Information of China (English)

    CAIZU-CONG; LIUZHENG

    1991-01-01

    A method determining di-and tri-valent cobalt extracted from soils with EDTA·HOAc·NH4OAc solution (pH4.65) was developed based on the difference of the stability constants of Co(II) EDTA and Co(III) EDTA.Analytical results indicated that soil cobalt existed in both two oxidation states,i.e.,di-and tri-valent cobalt.Extractable di-valent cobalt in 60 soil samples collected from various soils in China ranged from 0.02 ppm to 3.54ppm,with the mean of 0.62ppm,and extractable tri-valent cobalt from 0.04 ppm to 27.65ppm,with the mean of 2.93ppm.

  3. Highly integrated flow assembly for automated dynamic extraction and determination of readily bioaccessible chromium(VI) in soils exploiting carbon nanoparticle-based solid-phase extraction

    Energy Technology Data Exchange (ETDEWEB)

    Rosende, Maria; Miro, Manuel; Cerda, Victor [University of the Balearic Islands, Department of Chemistry, Palma de Mallorca (Spain); Segundo, Marcela A.; Lima, Jose L.F.C. [University of Porto, REQUIMTE, Department of Chemistry, Faculty of Pharmacy, Porto (Portugal)

    2011-06-15

    An automated dynamic leaching test integrated in a portable flow-based setup is herein proposed for reliable determination of readily bioaccessible Cr(VI) under worst-case scenarios in soils containing varying levels of contamination. The manifold is devised to accommodate bi-directional flow extraction followed by processing of extracts via either in-line clean-up/preconcentration using multi-walled carbon nanotubes or automatic dilution at will, along with Cr(VI) derivatization and flow-through spectrophotometric detection. The magnitude of readily mobilizable Cr(VI) pools was ascertained by resorting to water extraction as promulgated by current standard leaching tests. The role of carbon nanomaterials for the uptake of Cr(VI) in soil leachates and the configuration of the packed column integrated in the flow manifold were investigated in detail. The analytical performance of the proposed system for in vitro bioaccessibility tests was evaluated in chromium-enriched soils at environmentally relevant levels and in a standard reference soil material (SRM 2701) with a certified value of total hexavalent chromium. The automated method was proven to afford unbiased assessment of water-soluble Cr(VI) in soils as a result of the minimization of the chromium species transformation. By combination of the kinetic leaching profile and a first-order leaching model, the water-soluble Cr(VI) fraction in soils was determined in merely 6 h against >24 h taken in batchwise steady-state standard methods. (orig.)

  4. Removal of humic acid from peat soils by using AlCl3 prior to DNA extraction

    Science.gov (United States)

    Mustafa, Irfan; Hadiatullah, Sustiyah

    2017-05-01

    The amplification of environmental DNA is one of the main steps in microbial diversity profiling of environmental samples. To represent the microbial community in the soil, DNA extraction is initially needed. The major inhibitor in the soil is a humic acid which greatly inhibits the ability of enzymes to amplify DNA. The protocol provided with the commercial kit was not able to resolve the problem. We, therefore, introduced a modification for soil sample treatment with AlCl3 as a flocculating agent that is capable of removing the humic substance contained in peat soil. This technique was superior to the original instruction for extracting DNA with the FastDNA® Spin Kit for Soil (MP Bio, USA).

  5. Hydrolysis of fluorotelomer compounds leading to fluorotelomer alcohol production during solvent extractions of soils.

    Science.gov (United States)

    Dasu, Kavitha; Royer, Laurel A; Liu, Jinxia; Lee, Linda S

    2010-11-01

    The experimental approaches used in assessing the biodegradability of fluorotelomer-based surfactants and polymers have been under increasing scrutiny. These substances consist of an aliphatic or aromatic backbone linked to perfluoroethyl moieties by ester, ether or urethane linkages. These linkages when broken yield fluorotelomer alcohols (FTOHs), which are known to biotransform to a suite of polyfluorinated metabolites including perfluorinated carboxylic acids. Quantifying FTOH levels with minimal experimental artifacts is imperative in properly assessing the biotransformation potential and half-lives of fluorotelomer-based materials. We examined the potential for solvent-enhanced ester hydrolysis of fluorotelomer compounds with different hydrocarbon backbones including a monoester stearate (FTS), a citrate tri-ester (TBC), an acrylate (FTA), and a 2,4-toluenediamine urethane (FTU) in acetonitrile, methyl-t-butyl ether (MTBE), and ethyl acetate with live, autoclaved, 60Co-γ-irradiated, and heat-treated (400°C) soils. Substantial hydrolysis only occurred with FTS in live and γ-irradiated soils for which microbial enzymes are expected to be active, but not in autoclaved soils where enzymes are deactivated. Acetonitrile and methanol (solvents with higher dielectric constants) enhanced hydrolysis by an order of magnitude compared to less polar solvents such as MTBE and ethyl acetate. For example, in a 24-h extraction with acetonitrile of FTS-amended soil, >5wt.% FTOH was produced compared to ethyl acetate or MTBE. FTA hydrolysis was <0.7 wt.% after a 15-h extraction period and was not solvent dependent. No statistically significant solvent-enhanced hydrolysis was observed for TBC, FTA or FTU.

  6. Selective dissolution followed by EDDS washing of an e-waste contaminated soil: Extraction efficiency, fate of residual metals, and impact on soil environment.

    Science.gov (United States)

    Beiyuan, Jingzi; Tsang, Daniel C W; Valix, Marjorie; Zhang, Weihua; Yang, Xin; Ok, Yong Sik; Li, Xiang-Dong

    2017-01-01

    To enhance extraction of strongly bound metals from oxide minerals and organic matter, this study examined the sequential use of reductants, oxidants, alkaline solvents and organic acids followed by a biodegradable chelating agent (EDDS, [S,S]-ethylene-diamine-disuccinic-acid) in a two-stage soil washing. The soil was contaminated by Cu, Zn, and Pb at an e-waste recycling site in Qingyuan city, China. In addition to extraction efficiency, this study also examined the fate of residual metals (e.g., leachability, bioaccessibility, and distribution) and the soil quality parameters (i.e., cytotoxicity, enzyme activities, and available nutrients). The reductants (dithionite-citrate-bicarbonate and hydroxylamine hydrochloride) effectively extracted metals by mineral dissolution, but elevated the leachability and bioaccessibility of metals due to the transformation from Fe/Mn oxides to labile fractions. Subsequent EDDS washing was found necessary to mitigate the residual risks. In comparison, prior washing by oxidants (persulphate, hypochlorite, and hydrogen peroxide) was marginally useful because of limited amount of soil organic matter. Prior washing by alkaline solvents (sodium hydroxide and sodium bicarbonate) was also ineffective due to metal precipitation. In contrast, prior washing by low-molecular-weight organic acids (citrate and oxalate) improved the extraction efficiency. Compared to hydroxylamine hydrochloride, citrate and oxalate induced lower cytotoxicity (Microtox) and allowed higher enzyme activities (dehydrogenase, acid phosphatase, and urease) and soil nutrients (available nitrogen and phosphorus), which would facilitate reuse of the treated soil. Therefore, while sequential washing proved to enhance extraction efficacy, the selection of chemical agents besides EDDS should also include the consideration of effects on metal leachability/bioaccessibility and soil quality. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Estimates of Soil Bacterial Ribosome Content and Diversity Are Significantly Affected by the Nucleic Acid Extraction Method Employed.

    Science.gov (United States)

    Wüst, Pia K; Nacke, Heiko; Kaiser, Kristin; Marhan, Sven; Sikorski, Johannes; Kandeler, Ellen; Daniel, Rolf; Overmann, Jörg

    2016-05-01

    Modern sequencing technologies allow high-resolution analyses of total and potentially active soil microbial communities based on their DNA and RNA, respectively. In the present study, quantitative PCR and 454 pyrosequencing were used to evaluate the effects of different extraction methods on the abundance and diversity of 16S rRNA genes and transcripts recovered from three different types of soils (leptosol, stagnosol, and gleysol). The quality and yield of nucleic acids varied considerably with respect to both the applied extraction method and the analyzed type of soil. The bacterial ribosome content (calculated as the ratio of 16S rRNA transcripts to 16S rRNA genes) can serve as an indicator of the potential activity of bacterial cells and differed by 2 orders of magnitude between nucleic acid extracts obtained by the various extraction methods. Depending on the extraction method, the relative abundances of dominant soil taxa, in particular Actino bacteria and Proteobacteria, varied by a factor of up to 10. Through this systematic approach, the present study allows guidelines to be deduced for the selection of the appropriate extraction protocol according to the specific soil properties, the nucleic acid of interest, and the target organisms. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  8. Estimates of Soil Bacterial Ribosome Content and Diversity Are Significantly Affected by the Nucleic Acid Extraction Method Employed

    Science.gov (United States)

    Wüst, Pia K.; Nacke, Heiko; Kaiser, Kristin; Marhan, Sven; Sikorski, Johannes; Kandeler, Ellen; Daniel, Rolf

    2016-01-01

    Modern sequencing technologies allow high-resolution analyses of total and potentially active soil microbial communities based on their DNA and RNA, respectively. In the present study, quantitative PCR and 454 pyrosequencing were used to evaluate the effects of different extraction methods on the abundance and diversity of 16S rRNA genes and transcripts recovered from three different types of soils (leptosol, stagnosol, and gleysol). The quality and yield of nucleic acids varied considerably with respect to both the applied extraction method and the analyzed type of soil. The bacterial ribosome content (calculated as the ratio of 16S rRNA transcripts to 16S rRNA genes) can serve as an indicator of the potential activity of bacterial cells and differed by 2 orders of magnitude between nucleic acid extracts obtained by the various extraction methods. Depending on the extraction method, the relative abundances of dominant soil taxa, in particular Actinobacteria and Proteobacteria, varied by a factor of up to 10. Through this systematic approach, the present study allows guidelines to be deduced for the selection of the appropriate extraction protocol according to the specific soil properties, the nucleic acid of interest, and the target organisms. PMID:26896137

  9. Influence of EDDS on metal speciation in soil extracts: measurement and mechanistic multicomponent modeling.

    Science.gov (United States)

    Koopmans, Gerwin F; Schenkeveld, Walter D C; Song, Jing; Luo, Yongming; Japenga, Jan; Temminghoff, Erwin J M

    2008-02-15

    The use of the [S,S]-isomer of EDDS to enhance phytoextraction has been proposed for the remediation of heavy metal contaminated soils. Speciation of metals in soil solution in the presence of EDDS and dissolved organic matter (DOM) received, however, almost no attention, whereas metal speciation plays an important role in relation to uptake of metals by plants. We investigated the influence of EDDS on speciation of dissolved metals in batch extraction experiments using fourfield-contaminated soils with pH varying between 4.7 and 7.2. Free metal concentrations were determined with the Donnan membrane technique, and compared with results obtained with the chemical speciation program ECOSAT and the NICA-Donnan model using a multicomponent approach. Addition of EDDS increased total metal concentrations in our soil extracts by a factor between 1.1 and 32 (Al), 2.1-48 (Cu), 1.1-109 (Fe), 1.1-5.5 (Ni), and 1.3-17 (Zn). In general, Al, Cu, Fe, and Zn had the largest total concentrations in the EDDS-treated extracts, but the contribution of these metals to the sum of total metal concentrations varied significantly between our soils. Free metal concentrations varied between 7.0 and 8.9 (pCd2+), 3.9-9.9 (pCu2+), 6.3-10.2 (pNi2+), and 5.2-7.0 (pZn2+). Addition of EDDS decreased free metal concentrations by a factor between 1.4 and 1.9 (Cd), 3.4-216 (Cu), 1.3-186 (Ni), and 1.3-3.3 (Zn). Model predictions of free metal concentrations were very good, and predicted values were mostly within 1 order of magnitude difference from the measured concentrations. A multicomponent approach had to be used in our model calculations, because competition between Fe and other metals for binding with EDDS was important. This was done by including the solubility of metal oxides in our model calculations. Multicomponent models can be used in chelant-assisted phytoextraction experiments to predict the speciation of dissolved metals and to increase the understanding of metal uptake by plants.

  10. Complexometric titration with potenciometric indicator to determination of calcium and magnesium in soil extracts¹

    Directory of Open Access Journals (Sweden)

    Claudia Mara Pereira

    2011-08-01

    Full Text Available This study proposes a method of direct and simultaneous determination of the amount of Ca2+ and Mg2+ present in soil extracts using a Calcium Ion-Selective Electrode and by Complexometric Titration (ISE-CT. The results were compared to those obtained by conventional analytical techniques of Complexometric Titration (CT and Flame Atomic Absorption Spectrometry (FAAS. There were no significant differences in the determination of Ca2+ and Mg2+ in comparison with CT and FAAS, at a 95 % confidence level. Additionally, results of this method were more precise and accurate than of the Interlaboratorial Control (IC.

  11. Determination of selected polychlorinated biphenyls in soil by miniaturised ultrasonic solvent extraction and gas chromatography-mass-selective detection.

    Science.gov (United States)

    Aydin, Mehmet Emin; Tor, Ali; Ozcan, Senar

    2006-09-08

    Miniaturised ultrasonic solvent extraction procedure was developed for the determination of selected polychlorinated biphenyls (PCBs) in soil samples by gas chromatography-mass-selective detection by using 2(3) factorial experimental design. Recoveries of PCBs from fortified soil samples are over 90% for three different fortification levels between 40 and 120 microg kg(-1), and relative standard deviations of the recoveries are below 7%. The limits of detection (LODs) ranged from 0.003 to 0.006 microg kg(-1). The performance of the proposed method was compared to traditional shake flask extraction method on the spiked real soil sample and extraction methods showed comparable efficiencies. Proposed miniaturised ultrasonic solvent extraction offers several advantages, i.e., reducing sample requirement for measurement of target compound, less solvent consumption and reducing the costs associated with solvent purchase and waste disposal.

  12. Relationship between oriental migratory locust plague and soil moisture extracted from MODIS data

    Science.gov (United States)

    Liu, Zhenbo; Shi, Xuezheng; Warner, Eric; Ge, Yunjian; Yu, Dongsheng; Ni, Shaoxiang; Wang, Hongjie

    2008-02-01

    Locust plagues have been the source of some of the most severe natural disasters in human history. Soil moisture content is among the most important of the numerous factors influencing plague onset and severity. This paper describes a study initiated in three pilot locust plague monitoring regions, i.e., Huangzao, Yangguanzhuang, and Tengnan in Huanghua county, Hebei province, China, to examine the impact of soil moisture status on oriental migratory locust [ Locusta migratoria manilensis (L.) Meyen] plague breakout as related to the life cycle, oviposition in autumn, survival in winter, and incubation in summer. Thirty-nine temperature vegetation dryness index (TVDI) data sets, which represent soil moisture content, were extracted from MODIS remote sensing images for two representative time periods: a severe locust plague breakout year (2001-2002) and a slight plague year (2003-2004). TVDI values demonstrated distinctive soil moisture status differences between the 2 years concerned. Soil moisture conditions in the severe plague year were shown to be lower than those in slight plague year. In all three pilot regions, average TVDI value in the severe plague year was 0.07 higher than that in slight plague year, and monthly TVDI values in locust oviposition period (September and October) and incubation period (March, April and May) were higher than their corresponding monthly figures in slight plague year. No remarkable TVDI differences were found in other months during the locust life cycle between the 2 years. TVDI values for September and October (2001), March, April and May (2002) were 0.11, 0.08, 0.16, 0.11 and 0.16 higher than their corresponding monthly figures in 2003-2004 period, respectively.

  13. Toxicity, analgesic and sedative potential of crude extract of soil-borne phytopathogenic fungi Aspergillus flavus

    Directory of Open Access Journals (Sweden)

    Bashir Ahmad

    2016-11-01

    Full Text Available Background: Aspergillus flavus is one of the most abundant mold present around the world. The present study was conducted to investigate the acute toxicity, analgesic and sedative effect of the crude extract obtained from soil borne fungi A. flavus. Methods: The fungi was isolated from soil samples and identified morphologically and microscopically. The growth condition i.e. media, temperature, pH, and incubation period were optimized. In these optimized growth condition, A. flavus was grown in batch culture in shaking incubator. Crude contents were extracted by using ethyl acetate solvent. Crude secondary metabolites were screened for acute toxicity, analgesic and sedative effect. Results: Upon completion of the experiment, blood was collected from the tail vein of albino mice, and different haematological tests were conducted. White blood cells counts displayed a slight increase (10.6× 109/L above their normal range (0.8–6.8 × 109/L, which may be due to the increment in the number of lymphocytes or granulocytes. However, the percentage of lymphocytes was much lower (17.7%, while the percentage of the granulocytes was higher (61.4% than its normal range (8.6–38.9%. A reduction in the mean number of writhing in the different test groups was caused by the application of the crude ethyl acetate extract through the i.p. route at different doses (50, 100, and 150 mg/kg body weight. The results of our investigation showed the EtOAc extract of A. flavus can cause a significant sedative effect in open field. Conclusion: It was concluded from the present study that the A. flavus has the potential to produce bioactive metabolites which have analgesic and sedative effect.

  14. THE IMPORTANCE OF ORGANIC MATTER DISTRIBUTION AND EXTRACT SOIL:SOLUTION RATIO ON THE DESORPTION OF HEAVY METALS FROM SOILS

    Science.gov (United States)

    The lability (mobility and bioavailability) of metals varies significantly with soil properties for similar total soil metal concentrations. We studied desorption of Cu, Ni and Zn, from 15 diverse, unamended soils. These studies included evaluation of the effects of soil:solution...

  15. The effects of Love Canal soil extracts on maternal health and fetal development in rats.

    Science.gov (United States)

    Silkworth, J B; Tumasonis, C; Briggs, R G; Narang, A S; Narang, R S; Rej, R; Stein, V; McMartin, D N; Kaminsky, L S

    1986-10-01

    The effects of a solvent extract of the surface soil of the Love Canal chemical dump site, Niagara Falls, New York, and of a natural extract, or leachate, which is drained from the canal for treatment, on the maternal health and fetal development were determined in rats. The solvent extract, which was contaminated with 2,3,7,8-tetrachlorodibenzo-p-dioxin (2, 3,7,8-TCDD) at 170 ppb and numerous other chlorinated organic compounds with the primary identified components being the isomers of benzenehexachloride (BHC), was dissolved in corn oil and administered by gavage to pregnant rats at 0,25,75, or 150 mg crude extract/kg/day on Days 6-15 of gestation. A 67% mortality was observed at the highest dose. The rats were sacrificed on Day 20. Dose-related increases in relative liver weight accompanied by hepatocyte hypertrophy were observed at all dose levels. Fetal birthweight was decreased at 75 and 150 mg extract/kg/day. No major treatment-related soft tissue or skeletal malformations, except for delayed ossification, were observed. Based on literature values for BHC, all of the observed toxicity could be accounted for by the BHC contaminants of the extract. The crude organic phase of the leachate was administered to pregnant rats at 0,10,100, or 250 mg/kg/day as described above. Maternal weight gain decreased at 100 and 250 mg/kg/day, accompanied by 5 and 14% maternal mortality, and 1 and 3 dead fetuses, respectively. Early resorptions and the percentage of dead implants increased whereas fetal birthweights were decreased at 250 mg/kg/day. No major treatment-related soft tissue or skeletal malformations, except for delayed ossification, were observed. The primary components of the complex leachate by mass were tetrachloroethanes; however, 2,3,7,8-TCDD, which was present at 3 ppm, probably accounted for all the observed toxicity.

  16. Effects of Love Canal soil extracts on maternal health and fetal development in rats

    Energy Technology Data Exchange (ETDEWEB)

    Silkworth, J.B.; Tumasonis, C.; Briggs, R.G.; Narang, A.S.; Narang, R.S.; Rej, R.; Stein, V.; McMartin, D.N.; Kaminsky, L.S.

    1986-10-01

    The effects of a solvent extract of the surface soil of the Love Canal chemical dump site, Niagara Falls, New York, and of a natural extract, or leachate, which is drained from the canal for treatment, on the maternal health and fetal development were determined in rats. The solvent extract, which was contaminated with 2,3,7,8-tetrachlorodibenzo-p-dioxin (2, 3,7,8-TCDD) at 170 ppb and numerous other chlorinated organic compounds with the primary identified components being the isomers of benzenehexachloride (BHC), was dissolved in corn oil and administered by gavage to pregnant rats at 0,25,75, or 150 mg crude extract/kg/day on Days 6-15 of gestation. A 67% mortality was observed at the highest dose. The rats were sacrificed on Day 20. Dose-related increases in relative liver weight accompanied by hepatocyte hypertrophy were observed at all dose levels. Fetal birthweight was decreased at 75 and 150 mg extract/kg/day. No major treatment-related soft tissue or skeletal malformations, except for delayed ossification, were observed. Based on literature values for BHC, all of the observed toxicity could be accounted for by the BHC contaminants of the extract. The crude organic phase of the leachate was administered to pregnant rats at 0,10,100, or 250 mg/kg/day as described above. Maternal weight gain decreased at 100 and 250 mg/kg/day, accompanied by 5 and 14% maternal mortality, and 1 and 3 dead fetuses, respectively. Early resorptions and the percentage of dead implants increased whereas fetal birthweights were decreased at 250 mg/kg/day. No major treatment-related soft tissue or skeletal malformations, except for delayed ossification, were observed. The primary components of the complex leachate by mass were tetrachloroethanes; however, 2,3,7,8-TCDD, which was present at 3 ppm, probably accounted for all the observed toxicity.

  17. The respective effects of soil heavy metal fractions by sequential extraction procedure and soil properties on the accumulation of heavy metals in rice grains and brassicas.

    Science.gov (United States)

    Xiao, Ling; Guan, Dongsheng; Peart, M R; Chen, Yujuan; Li, Qiqi

    2017-01-01

    This study was carried out to examine heavy metal accumulation in rice grains and brassicas and to identify the different controls, such as soil properties and soil heavy metal fractions obtained by the Community Bureau of Reference (BCR) sequential extraction, in their accumulation. In Guangdong Province, South China, rice grain and brassica samples, along with their rhizospheric soil, were collected from fields on the basis of distance downstream from electroplating factories, whose wastewater was used for irrigation. The results showed that long-term irrigation using the electroplating effluent has not only enriched the rhizospheric soil with Cd, Cr, Cu, and Zn but has also increased their mobility and bioavailability. The average concentrations of Cd and Cr in rice grains and brassicas from closest to the electroplating factories were significantly higher than those from the control areas. Results from hybrid redundancy analysis (hRDA) and redundancy analysis (RDA) showed that the BCR fractions of soil heavy metals could explain 29.0 and 46.5 % of total eigenvalue for heavy metal concentrations in rice grains and brassicas, respectively, while soil properties could only explain 11.1 and 33.4 %, respectively. This indicated that heavy metal fractions exerted more control upon their concentrations in rice grains and brassicas than soil properties. In terms of metal interaction, an increase of residual Zn in paddy soil or a decrease of acid soluble Cd in the brassica soil could enhance the accumulation of Cd, Cu, Cr, and Pb in both rice grains and brassicas, respectively, while the reducible or oxidizable Cd in soil could enhance the plants' accumulation of Cr and Pb. The RDA showed an inhibition effect of sand content and CFO on the accumulation of heavy metals in rice grains and brassicas. Moreover, multiple stepwise linear regression could offer prediction for Cd, Cu, Cr, and Zn concentrations in the two crops by soil heavy metal fractions and soil properties.

  18. Control of the extraction procedures on the response of DOC concentration and composition to soil temperature increase

    Science.gov (United States)

    Lambert, Thibault; Pierson-Wickmann, Anne-Catherine; Gruau, Gérard; Jaffrézic, Anne; Jeanneau, Laurent; Racape, Armelle

    2014-05-01

    Dissolved organic carbon (DOC) leached from soils is a crucial component of the terrestrial C cycling and a major source for DOC export at the landscape scale by stream and river waters. In the context of global warming, it is necessary to understand how changes in soil temperature will impact the DOC dynamic in soils, but this remains a matter of debate. We conducted a series of experiments in order to study both biological and physical processes involved in soil DOC production and mobilisation at different temperatures. Two experiments of DOC extraction were conducted at different temperatures: (i) soil solution percolation through a soil column and (ii) soil solution agitation in jars, which are both commonly used in the literature. The organo-mineral horizon of a wetland soil was incubated during 14 days at temperature ranging from 4 to 30 ° C. Along with DOC concentrations, changes in DOC composition were assessed by monitoring the natural stable carbon isotopic composition of (δ13C) and the specific ultra violet absorbance (SUVA) of DOC. The results showed strong differences between the two extraction procedures in term of DOC response to temperature rise, both in concentration and composition. DOC released by percolation through soil column displayed a strong concentration increase with increasing temperature. Whatever the temperature, a low SUVA and relatively high δ13C values indicated a release of molecules with lower aromaticity and lower molecular weight the two first days than after. On the contrary, DOC extracted by agitation in jars showed minor changes in both concentrations and composition along the incubation. The difference observed between soil leaching and batch incubation can mainly be explained by the extraction procedures. Indeed, the percolation procedure favors transfer from the micro-porosity to the macro-porosity pool between two successive leaching, whereas agitation procedure releases DOC produced and accumulated in the whole soil

  19. Effects of some organic materials on bicarbonate extractable phosphate content of soils having different pH

    Directory of Open Access Journals (Sweden)

    Nutullah Özdemir

    2016-10-01

    Full Text Available This study was carried out to determine the effects of rice husk compost (RC, town waste compost (TW and tobacco waste (TB on bicarbonate extractable phosphate content (P in soils having different pH levels under greenhouse conditions. Soil samples used in this study were taken from surfaces (0-20 cm of agricultural fields around Samsun, Northern Anatolia. The experiment was conducted according to split plot design with four doses of organic matterials (0, 2.5, 5.0 and 7.5, %. After a month of mixing organic matterials into soils, lettuce were grown in the medias. According to the results, RC, TW and TB applications into acidic (Tepecik, neutral (Kampüs and alkaline (Çetinkaya soils increased extractable P content. It was observed that effectiveness of organic matterials changed depend on soil reaction, type and dose of organic matterials. All organic wastes were more effective on increment of bicarbonate extractable phosphate content in neutral soil pH when compared the other soil pH levels.

  20. Selection of better extractants to indicate Pb bioavailability in lead-contaminated agricultural soils of Zhejiang Province

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The accumulation of Pb in the food chain is one of the great concerns as it can cause chronic health problems and the available Pb is easily absorbed by crops. To shed light on Pb bioavailability in lead-contaminated agricultural soils of Zhejiang Province, a series of plant growth experiments were performed in a greenhouse to select more suitable extractants from five commonly used extractants (0.1 M HCl, 1 M NH4OAc, 0.1 M CaCl2, DTPA-TEA and Mehlich 3). The results showed that 1 M NH4OAc can extract Pb best, indicating the Pb bioavailability, then, DTPA-TEA and 0.1 M HCl in the tested soils. In case 1 M NH4OAc was used as an extractant, the critical Pb concentrations in soils were 50.19 mg/kg, 21.16 mg/kg and 114.00 mg/kg (1 M NH4OAc extracted Pb) in silty loam, yellowish-red soil and purplish soil, respectively. When the values exceed the above ones, the contents of Pb in Chinese cabbage leaves will exceed the Chinese Tolerance Limit of Lead in Foods (GB14935-94), as a result, potential ecological risk and hazard to human health via the food chain will appear.

  1. Multiresidue Analysis of Pesticides in Soil by Liquid-Solid Extraction Procedure

    Directory of Open Access Journals (Sweden)

    Rada Đurović

    2012-01-01

    Full Text Available A multiresidue method for simultaneous determination of four pesticides (diazinon,acetochlor, aldrine and carbofuran belonging to different pesticide groups, extractedfrom soil samples, is described. The method presented is based on liquid-solid extraction(LSE and determination of pesticides, i.e. the pesticides were extracted by methanol-acetone mixture, purified on florisil column and eluted by ethyl acetate-acetone mixture.Optimization of the main parameters affecting the LSE procedure, such as the choiceof purification sorbent, as well as the elution solvent and its volume, were investigated indetails and optimized. Also, validation of the proposed method was done.Gas chromatography-mass spectrometry (GC-MS was used for detection and quantificationof the pesticides studied. Relative standard deviation (RSD and recovery values formultiple analysis of soil samples fortified with 30 μg/kg of each pesticide were below 8%and higher than 89%, respectively. Limits of detection (LOD for all the compounds studiedwere less than 4 μg/kg.

  2. Evidence for very tight sequestration of BTEX compounds in manufactured gas plant soils based on selective supercritical fluid extraction and soil/water partitioning.

    Science.gov (United States)

    Hawthorne, Steven B; Miller, David J

    2003-08-15

    Benzene, toluene, ethylbenzene, o-, m-, and p-xylenes (BTEX), and polycyclic aromatic hydrocarbons (PAHs) were extracted from eight manufactured gas plant (MGP) soils from sites that had been abandoned for several decades. Supercritical fluid extraction (SFE) with pure carbon dioxide demonstrated the presence of BTEX compounds that were highly sequestered in both coal gas and oil gas MGP soils and soots. Benzene was generally the slowest compound to extract from all samples and was even more difficult to extract than most two- to five-ring PAHs found on the same samples. Since the solubility of benzene in carbon dioxide is 2-5 orders of magnitude higher than the solubilities of PAHs, these results demonstrate that benzene was more tightly sequestered than toluene, ethylbenzene, xylenes, or the multi-ring PAHs. Additional evidence for very tight binding was based on the fact that BTEX concentrations determined using either SFE or with methylene chloride sonication were much higher than those obtained by the U.S. EPA purge-and-trap method, especially for benzene (whose concentration was underestimated by as much as 1000-fold by the EPA method). However, soil/water desorption showed little benzene mobility, and Kd values for benzene were 1-2 orders of magnitude higher than those calculated based on literature sorption K(OC) values. These results indicate that environmentally relevant concentrations of benzene may be better represented by mild extraction methods than by methods capable of extracting tightly bound benzene.

  3. Decontamination of PCBs-containing soil using subcritical water extraction process.

    Science.gov (United States)

    Islam, Mohammad Nazrul; Park, Jeong-Hun; Shin, Moon-Su; Park, Ha-Seung

    2014-08-01

    Polychlorinated biphenyls (PCBs) are one of the excision compounds listed at the Stockholm convention in 2001. Although their use has been heavily restricted, PCBs can be found in some specific site-contaminated soils. Either removal or destruction is required prior to disposal. The subcritical water extraction (SCWE) of organic hazardous compounds from contaminated soils is a promising technique for hazardous waste contaminated-site cleanup. In this study, the removal of PCBs by the SCWE process was investigated. The effects of temperature and treatment time on removal efficiency have been determined. In the SCWE experiments, a removal percentage of 99.7% was obtained after 1h of treatment at 250°C. The mass removal efficiency of low-chlorinated species was higher than high-chlorinated congeners at lower temperatures, but it was oppositely observed at higher temperatures because the lower chlorinated congeners are formed by dechlorination of higher chlorinated congeners. Gas chromatography/mass spectrometry analysis confirmed that the PCBs underwent partial degradation. Several degradation products including mono- and di-chlorinated biphenyls, oxygen-containing aromatic compounds, and small-size hydrocarbons were identified in the effluent water, which were not initially present in the contaminated soil.

  4. Fractionation and sequential extraction of heavy metals in the soil of scrapyard of discarded vehicles.

    Science.gov (United States)

    Jaradat, Qasem M; Massadeh, Adnan M; Zaitoun, Mohammed A; Maitah, Baheyah M

    2006-01-01

    Chemical and physical size fractionation of heavy metals were carried out on 20 soil samples from the scrap yard area. Tessier method was used in sequential extraction. Cadmium showed the highest levels among the other elements studied in the exchangeable fraction (about 33%), while other elements showed low levels in this fraction (> or =1%). Lead and manganese were mostly found in the Fe-Mn oxide fraction, zinc and iron were mostly in residual fraction, while copper was mostly found in the organic fraction of the soil. Soil samples were size-fractionated into four sizes: 1000-500, 500-125, 125-53, and less than 53 microm. The highest levels of Fe, Cu, Pb, Mn, and Cd were found in the medium fraction (500-125 mum), while zinc showed its highest levels in the fine fraction (125-53 microm). The order of heavy metal load in the size fractions was found to be medium > fine > coarse > silt for Fe, Mn, Cu, Pb, and Cd, where it was found as fine > medium > coarse > silt for zinc.

  5. Assessing the uptake of arsenic and antimony from contaminated soil by radish (Raphanus sativus) using DGT and selective extractions.

    Science.gov (United States)

    Ngo, Lien K; Pinch, Benjamin M; Bennett, William W; Teasdale, Peter R; Jolley, Dianne F

    2016-09-01

    The enrichment of soil arsenic (As) and antimony (Sb) is putting increasing pressure on the environment and human health. The biogeochemical behaviour of Sb and its uptake mechanisms by plants are poorly understood and generally assumed to be similar to that of As. In this study, the lability of As and Sb under agricultural conditions in historically contaminated soils was assessed. Soils were prepared by mixing historically As and Sb-contaminated soil with an uncontaminated soil at different ratios. The lability of As and Sb in the soils was assessed using various approaches: the diffusive gradients in thin films technique (DGT) (as CDGT), soil solution analysis, and sequential extraction procedure (SEP). Lability was compared to the bioaccumulation of As and Sb by various compartments of radish (Raphanus sativus) grown in these soils in a pot experiment. Irrespective of the method, all of the labile fractions showed that both As and Sb were firmly bound to the solid phases, and that Sb was less mobile than As, although total soil Sb concentrations were higher than total soil As. The bioassay demonstrated low bioaccumulation of As and Sb into R. sativus due to their low lability of As and Sb in soils and that there are likely to be differences in their mechanisms of uptake. As accumulated in R. sativus roots was much higher (2.5-21 times) than that of Sb, while the Sb translocated from roots to shoots was approximately 2.5 times higher than that of As. As and Sb in R. sativus tissues were strongly correlated with their labile concentrations measured by DGT, soil solution, and SEP. These techniques are useful measures for predicting bioavailable As and Sb in the historically contaminated soil to R. sativus. This is the first study to demonstrate the suitability of DGT to measure labile Sb in soils.

  6. Extraction of oxidized and reduced forms of uranium from contaminated soils: effects of carbonate concentration and pH.

    Science.gov (United States)

    Zhou, Ping; Gu, Baohua

    2005-06-15

    Uranium may present in soil as precipitated, sorbed, complexed, and reduced forms, which impact its mobility and fate in the subsurface soil environment. In this study, a uranium-contaminated soil was extracted with carbonate/ bicarbonate at varying concentrations (0-1 M), pHs, and redox conditions in an attempt to evaluate their effects on the extraction efficiency and selectivity for various forms of uranium in the soil. Results indicate that at least three differentforms of uranium existed in the contaminated soil: uranium(VI) phosphate minerals, reduced U(IV) phases, and U(VI) complexed with soil organic matter. A small fraction of U(VI) could be sorbed onto soil minerals. The mechanism involved in the leaching of U(VI) by carbonates appears to involve three processes which may act concurrently or independently: the dissolution of uranium(VI) phosphate and other mineral phases, the oxidation-complexation of U(IV) under oxic conditions, and the desorption of U(VI)-organic matter complexes at elevated pH conditions. This study suggests that, depending on site-specific geochemical conditions, the presence of small quantities of carbonate/bicarbonate could result in a rapid and greatly increased leaching and the mobilization of U(VI) from the contaminated soil. Even the reduced U(IV) phases (only sparingly soluble in water) are subjected to rapid oxidation and therefore potential leaching into the environment.

  7. Comparing diagnostic accuracy of Kato-Katz, Koga agar plate, ether-concentration, and FLOTAC for Schistosoma mansoni and soil-transmitted helminths.

    Directory of Open Access Journals (Sweden)

    Dominik Glinz

    Full Text Available BACKGROUND: Infections with schistosomes and soil-transmitted helminths exert a considerable yet underappreciated economic and public health burden on afflicted populations. Accurate diagnosis is crucial for patient management, drug efficacy evaluations, and monitoring of large-scale community-based control programs. METHODS/PRINCIPAL FINDINGS: The diagnostic accuracy of four copromicroscopic techniques (i.e., Kato-Katz, Koga agar plate, ether-concentration, and FLOTAC for the detection of Schistosoma mansoni and soil-transmitted helminth eggs was compared using stool samples from 112 school children in Côte d'Ivoire. Combined results of all four methods served as a diagnostic 'gold' standard and revealed prevalences of S. mansoni, hookworm, Trichuris trichiura, Strongyloides stercoralis and Ascaris lumbricoides of 83.0%, 55.4%, 40.2%, 33.9% and 28.6%, respectively. A single FLOTAC from stool samples preserved in sodium acetate-acetic acid-formalin for 30 or 83 days showed a higher sensitivity for S. mansoni diagnosis (91.4% than the ether-concentration method on stool samples preserved for 40 days (85.0% or triplicate Kato-Katz using fresh stool samples (77.4%. Moreover, a single FLOTAC detected hookworm, A. lumbricoides and T. trichiura infections with a higher sensitivity than any of the other methods used, but resulted in lower egg counts. The Koga agar plate method was the most accurate diagnostic assay for S. stercoralis. CONCLUSION/SIGNIFICANCE: We have shown that the FLOTAC method holds promise for the diagnosis of S. mansoni. Moreover, our study confirms that FLOTAC is a sensitive technique for detection of common soil-transmitted helminths. For the diagnosis of S. stercoralis, the Koga agar plate method remains the method of choice.

  8. Contribution of microorganisms to non-extractable residue formation from biodegradable organic contaminants in soil

    Science.gov (United States)

    Nowak, K. M.; Girardi, C.; Miltner, A.; Schäffer, A.; Kästner, M.

    2012-04-01

    Biodegradation of organic contaminants in soil is actually understood as their transformation into various primary metabolites, microbial biomass, mineralisation products and non-extractable residues (NER). NER are generally considered to be composed of parent compounds or primary metabolites with hazardous potential. Up to date, however, their chemical composition remains still unclear. Studies on NER formation are limited to quantitative analyses in soils or to simple humic acids-contaminant systems. However, in the case of biodegradable organic compounds, NER may also contain microbial biomass components, e.g. fatty acids (FA) and amino acids (AA). After cell death, these biomolecules are incorporated into soil organic matter (SOM) and stabilised, ultimately forming biogenic residues which are not any more extractable. We investigated the incorporation of the 13C-label into FA and AA and their fate during biodegradation experiments in soil with isotope-labelled 2,4-dichlorophenoxyacetic acid (13C6-2,4-D) and ibuprofen (13C6-ibu) as model organic contaminants. Our study proved for the first time that nearly all NER formed from 13C6-2,4-D and 13C6-ibu in soil derived from harmless microbial biomass components stabilised in SOM. 13C-FA and 13C-AA contents in the living microbial biomass fraction decreased over time and these components were continuously incorporated into the non-living SOM pool in biotic experiments with 13C6-2,4-D and 13C6-ibu. The 13C-AA in the non-living SOM were surprisingly stable from day 32 (13C6-2,4-D) and 58 (13C6-ibu) until the end of incubation. We also studied the transformation of 13C6-2,4-D and 13C6-ibu into NER in the abiotic soil experiments. In these experiments, the total NER contents were much lower than in the corresponding biotic experiments. The absence of labelled biomolecules in the NER fraction in abiotic soils demonstrated that they consist of the potentially hazardous parent compounds and / or their metabolites. Biogenic

  9. Field Validation of the NUFT Code for Subsurface Remediation by Soil Vapor Extraction

    Energy Technology Data Exchange (ETDEWEB)

    Nitao, J.J.

    2000-09-23

    Soil vapor extraction (SVE) is a widely-used method for remediation of contaminants in the unsaturated, or vadose, zone. SVE removes volatile contaminants by extracting gases from the subsurface. The pressure gradients necessary to drive gas flow are limited by at most one atmosphere of vacuum. Therefore, a common adjunct to SVE is the injection of fresh air into the subsurface at a distance from the extraction wells in order to increase overall gas pressure gradients, and, hence, flow rates. SVE has also been used for saturated zone remediation by first pumping the water table down to expose free phase contaminants. The selection of a vadose zone remediation method depends on a variety of site parameters. The type of contaminant is a major factor. Obviously, the selection of SVE as a method makes sense only for volatile contaminants since, otherwise, gas phase transport would be impossible. Bioventing is often a cost-effective candidate for contaminants that biodegrade easily in an aerobic environment, such as petroleum hydrocarbons. Bioventing shares some similarity to SVE, except that the flow rates are usually much lower. Whereas, the main goal of bioventing is to provide oxygen to the micro-organisms that break-down the contaminant; the main goal of SVE is physical removal. Biodegradation may be, for some contaminants, an important side benefit of SVE. However, bioventing and other forms of bioremediation are not considered to be effective for chlorinated vadose zone contaminants, such as trichloroethylene (TCE), which does not biodegrade readily in an aerobic environment. Soil excavation is a viable remediation method for the shallow spills where there are no existing important man-made structures. Otherwise, SVE is often the most appropriate and widely used remediation method for VOC's in the vadose zone.

  10. Evaluation of flow injection analysis method with spectrophotometric detection for the determination of atrazine in soil extracts.

    Science.gov (United States)

    Martins, Elisandra C; Melo, Vander De F; Abate, Gilberto

    2016-09-01

    A method for determining atrazine in soil extracts was evaluated by flow injection analysis with spectrophotometric detection. The method is based on the reaction of atrazine with pyridine in an acid medium followed by the reaction with NaOH and sulfanilic acid. Several analytical conditions were previously studied and optimized. Under the best conditions of analysis, the limits of detection and quantification were 0.15 and 0.45 mg L(-1), respectively, for a linear response between 0.50 and 2.50 mg L(-1), and a sampling throughput of 21 determinations per hour. Using the standard addition method, the maximum relative standard deviation of 17% and recovery values between 80 and 100% were observed for three extracts from soil samples with different composition. The proposed method is simple, low-cost and easy to use, and can be employed for studies involving atrazine in soil samples or for screening of atrazine in soils.

  11. Uncertainties in detecting decadal change in extractable soil elements in Northern Forests

    Science.gov (United States)

    Bartlett, O.; Bailey, S. W.; Ducey, M. J.

    2016-12-01

    Northern Forest ecosystems have been or are being impacted by land use change, forest harvesting, acid deposition, atmospheric CO2 enrichment, and climate change. Each of these has the potential to modify soil forming processes, and the resulting chemical stocks. Horizontal and vertical variations in concentrations complicate determination of temporal change. This study evaluates sample design, sample size, and differences among observers as sources of uncertainty when quantifying soil temporal change over regional scales. Forty permanent, northern hardwood, monitoring plots were established on the White Mountain National Forest in central New Hampshire and western Maine. Soil pits were characterized and sampled by genetic horizon at plot center in 2001 and resampled again in 2014 two-meters on contour from the original sampling location. Each soil horizon was characterized by depth, color, texture, structure, consistency, boundaries, coarse fragments, and roots from the forest floor to the upper C horizon, the relatively unaltered glacial till parent material. Laboratory analyses included pH in 0.01 M CaCl2 solution and extractable Ca, Mg, Na, K, Al, Mn, and P in 1 M NH4OAc solution buffered at pH 4.8. Significant elemental differences were identified by genetic horizon from paired t-tests (p ≤ 0.05) indicate temporal change across the study region. Power analysis, 0.9 power (α = 0.05), revealed sampling size was appropriate within this region to detect concentration change by genetic horizon using a stratified sample design based on topographic metrics. There were no significant differences between observers' descriptions of physical properties. As physical properties would not be expected to change over a decade, this suggests spatial variation in physical properties between the pairs of sampling pits did not detract from our ability to detect temporal change. These results suggest that resampling efforts within a site, repeated across a region, to quantify

  12. Determination of silver in soils, sediments, and rocks by organic-chelate extraction and atomic absorption spectrophotometry

    Science.gov (United States)

    Chao, T.T.; Ball, J.W.; Nakagawa, H.M.

    1971-01-01

    A useful method for the determination of silver in soil, sediment, and rock samples in geochemical exploration has been developed. The sample is digested with concentrated nitric acid, and the silver extracted with triisooctyl thiophosphate (TOTP) in methyl isobutyl ketone (MIBK) after dilution of the acid digest to approximately 6 M. The extraction of silver into the organic extractant is quantitative and not affected by the nitric acid concentration from 4 M to 8 M, or by different volumes of TOTP-MIBK. The extracted silver is stable and remains in the organic phase up to several days. The silver concentration is determined by atomic absorption spectrophotometry. ?? 1971.

  13. CTEPP STANDARD OPERATING PROCEDURE FOR EXTRACTING AND PREPARING DUST AND SOIL SAMPLES FOR ANALYSIS OF NEUTRAL PERSISTENT ORGANIC POLLUTANTS (SOP-5.14)

    Science.gov (United States)

    This SOP summarizes the method for extracting and preparing a dust or soil sample for analysis of neutral persistent organic pollutants. It covers the extraction and concentration of samples that are to be analyzed by gas chromatography/mass spectrometry.

  14. CTEPP STANDARD OPERATING PROCEDURE FOR EXTRACTING AND PREPARING DUST AND SOIL SAMPLES FOR ANALYSIS OF NEUTRAL PERSISTENT ORGANIC POLLUTANTS (SOP-5.14)

    Science.gov (United States)

    This SOP summarizes the method for extracting and preparing a dust or soil sample for analysis of neutral persistent organic pollutants. It covers the extraction and concentration of samples that are to be analyzed by gas chromatography/mass spectrometry.

  15. Evaluation of the ISO standard 11063 DNA extraction procedure for assessing soil microbial abundance and community structure.

    Directory of Open Access Journals (Sweden)

    Pierre Plassart

    Full Text Available Soil DNA extraction has become a critical step in describing microbial biodiversity. Historically, ascertaining overarching microbial ecological theories has been hindered as independent studies have used numerous custom and commercial DNA extraction procedures. For that reason, a standardized soil DNA extraction method (ISO-11063 was previously published. However, although this ISO method is suited for molecular tools such as quantitative PCR and community fingerprinting techniques, it has only been optimized for examining soil bacteria. Therefore, the aim of this study was to assess an appropriate soil DNA extraction procedure for examining bacterial, archaeal and fungal diversity in soils of contrasting land-use and physico-chemical properties. Three different procedures were tested: the ISO-11063 standard; a custom procedure (GnS-GII; and a modified ISO procedure (ISOm which includes a different mechanical lysis step (a FastPrep ®-24 lysis step instead of the recommended bead-beating. The efficacy of each method was first assessed by estimating microbial biomass through total DNA quantification. Then, the abundances and community structure of bacteria, archaea and fungi were determined using real-time PCR and terminal restriction fragment length polymorphism approaches. Results showed that DNA yield was improved with the GnS-GII and ISOm procedures, and fungal community patterns were found to be strongly dependent on the extraction method. The main methodological factor responsible for differences between extraction procedure efficiencies was found to be the soil homogenization step. For integrative studies which aim to examine bacteria, archaea and fungi simultaneously, the ISOm procedure results in higher DNA recovery and better represents microbial communities.

  16. Evaluation of the ISO Standard 11063 DNA Extraction Procedure for Assessing Soil Microbial Abundance and Community Structure

    Science.gov (United States)

    Griffiths, Robert; Dequiedt, Samuel; Lelievre, Mélanie; Regnier, Tiffanie; Nowak, Virginie; Bailey, Mark; Lemanceau, Philippe; Bispo, Antonio; Chabbi, Abad; Maron, Pierre-Alain; Mougel, Christophe; Ranjard, Lionel

    2012-01-01

    Soil DNA extraction has become a critical step in describing microbial biodiversity. Historically, ascertaining overarching microbial ecological theories has been hindered as independent studies have used numerous custom and commercial DNA extraction procedures. For that reason, a standardized soil DNA extraction method (ISO-11063) was previously published. However, although this ISO method is suited for molecular tools such as quantitative PCR and community fingerprinting techniques, it has only been optimized for examining soil bacteria. Therefore, the aim of this study was to assess an appropriate soil DNA extraction procedure for examining bacterial, archaeal and fungal diversity in soils of contrasting land-use and physico-chemical properties. Three different procedures were tested: the ISO-11063 standard; a custom procedure (GnS-GII); and a modified ISO procedure (ISOm) which includes a different mechanical lysis step (a FastPrep ®-24 lysis step instead of the recommended bead-beating). The efficacy of each method was first assessed by estimating microbial biomass through total DNA quantification. Then, the abundances and community structure of bacteria, archaea and fungi were determined using real-time PCR and terminal restriction fragment length polymorphism approaches. Results showed that DNA yield was improved with the GnS-GII and ISOm procedures, and fungal community patterns were found to be strongly dependent on the extraction method. The main methodological factor responsible for differences between extraction procedure efficiencies was found to be the soil homogenization step. For integrative studies which aim to examine bacteria, archaea and fungi simultaneously, the ISOm procedure results in higher DNA recovery and better represents microbial communities. PMID:22984486

  17. Evaluation of the ISO standard 11063 DNA extraction procedure for assessing soil microbial abundance and community structure.

    Science.gov (United States)

    Plassart, Pierre; Terrat, Sébastien; Thomson, Bruce; Griffiths, Robert; Dequiedt, Samuel; Lelievre, Mélanie; Regnier, Tiffanie; Nowak, Virginie; Bailey, Mark; Lemanceau, Philippe; Bispo, Antonio; Chabbi, Abad; Maron, Pierre-Alain; Mougel, Christophe; Ranjard, Lionel

    2012-01-01

    Soil DNA extraction has become a critical step in describing microbial biodiversity. Historically, ascertaining overarching microbial ecological theories has been hindered as independent studies have used numerous custom and commercial DNA extraction procedures. For that reason, a standardized soil DNA extraction method (ISO-11063) was previously published. However, although this ISO method is suited for molecular tools such as quantitative PCR and community fingerprinting techniques, it has only been optimized for examining soil bacteria. Therefore, the aim of this study was to assess an appropriate soil DNA extraction procedure for examining bacterial, archaeal and fungal diversity in soils of contrasting land-use and physico-chemical properties. Three different procedures were tested: the ISO-11063 standard; a custom procedure (GnS-GII); and a modified ISO procedure (ISOm) which includes a different mechanical lysis step (a FastPrep ®-24 lysis step instead of the recommended bead-beating). The efficacy of each method was first assessed by estimating microbial biomass through total DNA quantification. Then, the abundances and community structure of bacteria, archaea and fungi were determined using real-time PCR and terminal restriction fragment length polymorphism approaches. Results showed that DNA yield was improved with the GnS-GII and ISOm procedures, and fungal community patterns were found to be strongly dependent on the extraction method. The main methodological factor responsible for differences between extraction procedure efficiencies was found to be the soil homogenization step. For integrative studies which aim to examine bacteria, archaea and fungi simultaneously, the ISOm procedure results in higher DNA recovery and better represents microbial communities.

  18. Some extractable iron contents as influenced by some organic manures application in the soils of Lake Geriyo, Adamawa state, Nigeria

    Directory of Open Access Journals (Sweden)

    Saddiq Abdullahi Muhammad

    2016-04-01

    Full Text Available Organic manures are safer sources of plant nutrients and a good source of micronutrients therefore; pot experiments were carried out to estimate some extractable iron contents as influenced by organic manure application in the soils of Lake Geriyo, Adamawa state, Nigeria. Two types of organic manures; poultry droppings, cow dung and control were used for the experiment. Three levels of organic manures; 5, 10 and 15 tons per hectare (ton ha-1 and three sampling time (30, 60 and 90 DAS were laid down in a completely randomized (CRD design replicated three times. Results obtained revealed that rate, type of organic manures and time of submergence significantly (P ≤ 0.05 changed Fe content in the soil. Mean extractable iron concentrations of 42.01, 56.13 and 24.63 mgkg-1 were recorded for ammonium oxalate extractable iron, Citrate Bicarbonate Dithionite extractable iron and sodium pyrophosphate extractable iron in the first experiment while 45.81, 59.29 and 28.89 mgkg-1 were recorded for the second experiment respectively. However, CBD which extracts both amorphous and crystalline Fe recorded the highest Fe contents throughout the treatments with poultry droppings applied pots recording superior values than that of cowdung manure. similarly, higher values of oxa-Fe and Pyro-Fe were recorded in both manures compared to the control. In conclusion poultry droppings may result in iron accumulation and toxicity hence should be used with caution in the soil of Lake Geriyo and similar soils to avoid serious soil reduction leading to iron toxicity and soil phosphorus antagonism.

  19. Assessment of a sequential phase extraction procedure for uranium-series isotope analysis of soils and sediments.

    Science.gov (United States)

    Suresh, P O; Dosseto, A; Handley, H K; Hesse, P P

    2014-01-01

    The study of uranium-series (U-series) isotopes in soil and sediment materials has been proposed to quantify rates and timescales of soil production and sediment transport. Previous works have studied bulk soil or sediment material, which is a complex assemblage of primary and secondary minerals and organic compounds. However, the approach relies on the fractionation between U-series isotopes in primary minerals since they were liberated from the parent rock via weathering. In addition, secondary minerals and organic compounds have their own isotopic compositions such that the composition of the bulk material may not reflect that of primary minerals. Hence, there is a need for a sample preparation procedure that allows the isolation of primary minerals in soil or fluvial sediment samples. In this study, a sequential extraction procedure to separate primary minerals from soils and sediments was assessed. The procedure was applied to standard rock sample powders (TML-3 and BCR-2) to test whether it introduced any artefactual radioactive disequilibrium. A new step was introduced to remove the clay-sized fraction (extraction process to test how each step modifies the uranium-series activity ratios and mineralogy. Although no secondary minerals were detected in the unleached soil aliquots, the sequential leaching process removed up to 17% of U and Th and modified their activity ratios by up to 3%. The modification of the activity ratios poses a demand for careful means to avoid redistribution of isotopes back to the residual phase during phase extraction.

  20. An original data treatment for infrared spectra of organic matter, application to extracted soil organic matter

    Science.gov (United States)

    Gomes Rossin, Bruna; Redon, Roland; Raynaud, Michel; Nascimento, Nadia Regina; Mounier, Stéphane

    2017-04-01

    Infrared spectra of extracted organic matter are easy and rapid to do, but generally hard to interpreted over the presence or not of certain organic functions. Indeed, the organic matter is a complex mixture of molecules often having absorption overlapping and it is also difficult to have a well calibrated or normalised spectra due to the difficulty to have a well known solid content or homogeneity for a sample (Monakhova et al. 2015, Tadini et al. 2015, Bardy et al. 2008). In this work, the IRTF (InfraRed Fourier Transform) spectra were treated by an original algorithm developed to obtain the principal components of the IRTF spectra and their contributions for each sample. This bilinear decomposition used a PCA initialisation and the principal components were estimated from vectors calculated by PCA and linearly combined to provide non-negative signals minimizing a criterion based on cross-correlation. Hence, using this decomposition, it is possible to define IRTF signal of organic matter fractions like humic acid or fulvic acid depending on their origin like surface of depth of soil profiles. The method was used on a set of sample from Upper Negro River Basin (Amazon, Brazil) (Bueno,2009), where three soils sequences from surface to two meter depth containing 10 slices each. The sequences were sampled on a podzol well drain, a hydromorphic podzol and a cryptopodzol. From the IRTF data five representative component spectra were defined for all the extracted organic matter , and using other chemical composition information, a mechanism of organic matter fate is proposed to explain the observed results. Bardy, M., E. Fritsch, S. Derenne, T. Allard, N. R. do Nascimento, and G. T. Bueno. 2008. "Micromorphology and Spectroscopic Characteristics of Organic Matter in Waterlogged Podzols of the Upper Amazon Basin." Geoderma 145 (3-4): 222-30. Bueno, G.T. Appauvrissement et podzolisation des latérites du baissin du Rio Negro et gênese dês Podzols dans le haut bassin

  1. Influence of Dimensions of UHMW-PE Protuberances on Sliding Resistance and Normal Adhesion of Bangkok Clay Soil to Biomimetic Plates

    Institute of Scientific and Technical Information of China (English)

    P. Soni; V. M. Salokhe

    2006-01-01

    A number of investigations into application of polymers for macro-morphological modification of tool surface have been carried out. These researches, with extensive stress on convex or domed protuberations as one of the widely used construction units, have tried to harness benefits from using polymers in agriculture. Ultra high molecular weight polyethylene (UHMW-PE)has proved an emerging polymer in its application to reduce soil adhesion. This research was conducted to study the effect of shape (flat, semi-spherical, semi-oblate, semi short-prolate and semi long-prolate) and dimensions (base diameter and dome height) on sliding resistance and normal adhesion of biomimetic plates. To incorporate both shape and size, a dimensionless ratio of height to diameter (HDR) was introduced to characterize the effect of construction unit's physique. Experiments were conducted in Bangkok clay soil with dry (19.8% d.b.), sticky (36.9% d.b.) and flooded (60.1% d.b.) soil conditions respectively. Soil at sticky limit exhibited the highest sliding resistance (77.8 N) and normal adhesion (3 kPa to 7 kPa), whereas these values were 61.7 N and <0.2 kPa in dry, and 53.7 N and 0.5 kPa to 1.5 kPa in flooded soil conditions. Protuberances with HDR ≤ 0.5 lowered sliding resistance by 10% - 30% and the same reduced normal adhesion by 10% - 60%. The amount of reduction in both sliding resistance and normal adhesion was higher in flooded soil. Lighter normal loads obviously produced lesser resistance and adhesion.

  2. Determination of flumequine and oxolinic acid in sediments and soils by microwave-assisted extraction and liquid chromatography-fluorescence

    Energy Technology Data Exchange (ETDEWEB)

    Prat, M.D. [Departament de Quimica Analitica, Universitat de Barcelona, Avda. Diagonal 647, E-08028 Barcelona (Spain)]. E-mail: mdprat@ub.edu; Ramil, D. [Departament de Quimica Analitica, Universitat de Barcelona, Avda. Diagonal 647, E-08028 Barcelona (Spain); Compano, R. [Departament de Quimica Analitica, Universitat de Barcelona, Avda. Diagonal 647, E-08028 Barcelona (Spain); Hernandez-Arteseros, J.A. [Departament de Quimica Analitica, Universitat de Barcelona, Avda. Diagonal 647, E-08028 Barcelona (Spain); Granados, M. [Departament de Quimica Analitica, Universitat de Barcelona, Avda. Diagonal 647, E-08028 Barcelona (Spain)

    2006-05-17

    A method is reported for the determination of the quinolones oxolinic acid and flumequine in aquatic sediments and agricultural soils. The analytes are extracted by liquid-liquid partitioning between a sample homogenated in an aqueous buffer solution and dichloromethane. Microwave-assisted extraction (MAE) was tested to improve the speed and efficiency of the extraction process. The parameters affecting the efficiency of MAE, such as irradiation time and temperature, were studied. The clean-up consists of back-extraction in 1 M sodium hydroxide. The determination is carried out by reversed phase liquid chromatography on an octyl silica-based column and fluorimetric detection. The optimised method was applied to the analysis of two sediments and one agricultural soil spiked with the analytes. The absolute recovery rates for the whole process range from 79% to 94% (RSD 3-7%), and detection limits are in the low {mu}g kg{sup -1} level.

  3. A new extraction method to assess the environmental availability of ciprofloxacin in agricultural soils amended with exogenous organic matter.

    Science.gov (United States)

    Goulas, Anaïs; Haudin, Claire-Sophie; Bergheaud, Valérie; Dumény, Valérie; Ferhi, Sabrina; Nélieu, Sylvie; Bourdat-Deschamps, Marjolaine; Benoit, Pierre

    2016-12-01

    Fluoroquinolone antibiotics such as ciprofloxacin can be found in soils receiving exogenous organic matter (EOM). Their long-term behavior in EOM-amended soils and their level of biodegradability are not well understood partly due to a lack of methods to estimate their environmental availability. We performed different aqueous extractions to quantify the available fraction of (14)C-ciprofloxacin in soils amended with a compost of sewage sludge and green wastes or a farmyard manure contaminated at relevant environmental concentrations. After minimizing (14)C-ciprofloxacin losses by adsorption on laboratory vessel tubes, three out of eleven different aqueous solutions were selected, i.e., Borax, Na2EDTA and 2-hydroxypropyl-β-cyclodextrin. During 28 d of incubation, the non-extractable fractions were very high in all samples, i.e., 57-67% of the initial (14)C-activity, and the availability of the antibiotic was very low, explaining its low biodegradation. A maximum of 6.3% of the initial (14)C-activity was extracted from soil/compost mixtures with the Na2EDTA solution, and 7.2% from soil/manure mixtures with the Borax solution. The available fraction level was stable over the incubation in soil/compost mixtures but slightly varied in soil/manure mixtures following the organic matter decomposition. The choice of different soft extractants highlighted different sorption mechanisms controlling the environmental availability of ciprofloxacin, where the pH and the quality of the applied EOM appeared to be determinant. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Extracting Metallic Nanoparticles from Soils for Quantitative Analysis: Method Development Using Engineered Silver Nanoparticles and SP-ICP-MS.

    Science.gov (United States)

    Schwertfeger, D M; Velicogna, Jessica R; Jesmer, Alexander H; Saatcioglu, Selin; McShane, Heather; Scroggins, Richard P; Princz, Juliska I

    2017-02-21

    The lack of an efficient and standardized method to disperse soil particles and quantitatively subsample the nanoparticulate fraction for characterization analyses is hindering progress in assessing the fate and toxicity of metallic engineered nanomaterials in the soil environment. This study investigates various soil extraction and extract preparation techniques for their ability to remove nanoparticulate Ag from a field soil amended with biosolids contaminated with engineered silver nanoparticles (AgNPs), while presenting a suitable suspension for quantitative single-particle inductively coupled plasma mass spectroscopy (SP-ICP-MS) analysis. Extraction parameters investigated included reagent type (water, NaNO3, KNO3, tetrasodium pyrophosphate (TSPP), tetramethylammonium hydroxide (TMAH)), soil-to-reagent ratio, homogenization techniques as well as procedures commonly used to separate nanoparticles from larger colloids prior to analysis (filtration, centrifugation, and sedimentation). We assessed the efficacy of the extraction procedure by testing for the occurrence of potential procedural artifacts (dissolution, agglomeration) using a dissolved/particulate Ag mass ratio and by monitoring the amount of Ag mass in discrete particles. The optimal method employed 2.5 mM TSPP used in a 1:100 (m/v) soil-to-reagent ratio, with ultrasonication to enhance particle dispersion and sedimentation to settle out the micrometer-sized particles. A spiked-sample recovery analysis shows that 96% ± 2% of the total Ag mass added as engineered AgNP is recovered, which includes the recovery of 84.1% of the particles added, while particle recovery in a spiked method blank is ∼100%, indicating that both the extraction and settling procedure have a minimal effect on driving transformation processes. A soil dilution experiment showed that the method extracted a consistent proportion of nanoparticulate Ag (9.2% ± 1.4% of the total Ag) in samples containing 100%, 50%, 25%, and 10

  5. Pressurized liquid extraction followed by gas chromatography with atomic emission detection for the determination of fenbutatin oxide in soil samples.

    Science.gov (United States)

    Canosa, P; Montes, R; Lamas, J P; García-López, M; Orriols, I; Rodríguez, I

    2009-08-15

    A novel method for the determination of the miticide bis[tris(2-methyl-2-phenylpropyl)tin] oxide, also known as fenbutatin oxide (FBTO), in agricultural soils is presented. Pressurized liquid extraction (PLE) followed by analyte derivatization and extraction into isooctane was the used sample preparation approach. Selective determination was achieved by gas chromatography with atomic emission detection (GC-AED). Influence of different parameters on the performance of the extraction process is thoroughly discussed; moreover, some relevant aspects related to derivatization, determination and quantification steps are also presented. As regards PLE, the type of solvent and the temperature were the most relevant variables. Under optimized conditions, acetone, without any acidic modifier, was employed as extractant at 80 degrees C. Cells were pressurized at 1500 psi, and 2 static cycles of 1 min each were applied. Acetone extracts (ca. 25 mL) were concentrated to 1 mL, derivatized with sodium tetraethyl borate (NaBEt(4)) and the FBTO derivative, resulting from cleavage of the Sn-O-Sn bond followed by ethylation of the hydroxyl fragments, extracted into isooctane and determined by GC-AED. Under final working conditions, the proposed method provided recoveries from 76 to 99% for spiked soil samples, a limit of quantification of 2 ng g(-1) and an acceptable precision. Analysis of samples from vineyards sprayed with FBTO, confirmed the persistence of the miticide in soil for more than 1 year after being applied.

  6. Fractionation of metals by sequential extraction procedures (BCR and Tessier) in soil exposed to fire of wide temperature range

    Science.gov (United States)

    Fajkovic, Hana; Rončević, Sanda; Nemet, Ivan; Prohić, Esad; Leontić-Vazdar, Dana

    2017-04-01

    Forest fire presents serious problem, especially in Mediterranean Region. Effects of fire are numerous, from climate change and deforestation to loss of soil organic matter and changes in soil properties. One of the effects, not well documented, is possible redistribution and/or remobilisation of pollutants previously deposited in the soil, due to the new physical and chemical soil properties and changes in equilibrium conditions. For understanding and predicting possible redistribution and/or remobilisation of potential pollutants from soil, affected by fire different in temperature, several laboratory investigations were carried out. To evaluate the influence of organic matter on soil under fire, three soil samples were analysed and compared: (a) the one with added coniferous organic matter; (b) deciduous organic matter (b) and (c) soil without additional organic matter. Type of organic matter is closely related to pH of soil, as pH is influencing the mobility of some pollutants, e.g. metals. For that reason pH was also measured through all experimental steps. Each of mentioned soil samples (a, b and c) were heated at 1+3 different temperatures (25°C, 200°C, 500°C and 850°C). After heating, whereby fire effect on soil was simulated, samples were analysed by BCR protocol with the addition of a first step of sequential extraction procedure by Tessier and analysis of residual by aqua regia. Element fractionation of heavy metals by this procedure was used to determine the amounts of selected elements (Al, Cd, Cr, Co, Cu, Fe, Mn, Ni, Pb and Zn). Selected metal concentrations were determined using inductively coupled plasma atomic emission spectrometer. Further on, loss of organic matter was calculated after each heating procedure as well as the mineral composition. The mineral composition was determined using an X-ray diffraction. From obtained results, it can be concluded that temperature has an influence on concentration of elements in specific step of

  7. Estimation of Zn mobility and biological availability in sod-podzolic soil and leached chernozem based on results of soil extraction by various salt solutions and Zn accumulation in barley plants

    Science.gov (United States)

    Pivovarova, Y. A.

    2012-04-01

    Extraction of soils by chemical reagents is widely used as a basis for forecasting the stock of the metal in the soil available to the plants. There are some doubts about how heavy metals uptake from specific soil to certain plant species can be adequately modeled on the results of chemical extraction. Problems of regulation of heavy metals in natural objects and risk assessment of soil contamination must be solved as issues of unification and standardization of existing assessment methods and new methods developing for their use in studies of the mobility of metals in soils and their availability to plants. Zn is a priority pollutant of the soil. The availability of Zn compounds to plants in two soils of different genesis was compared on the basis of their extraction by neutral salt solutions Ca(NO3)2, MgCl2, and CH3COONH4 and a pot experiment. It was shown that not only the concentration of contaminant in the extractant, but also the proportion of extractable Zn in its total content in the soil increased with increasing contamination of soil. The difference between the estimates of exchangeable Zn obtained by these methods was ~2.5 times for soddy-podzolic soil and 3-6 times for leached chernozem. The relationship between the accumulation of Zn in 14-day-old barley seedlings and the content of its exchangeable form in the soil was near linear, but the parameters of regression equations for two soils differed significantly. Chemical extraction allowed the differentiation of the mobile Zn fraction, but its accumulation by plants from different soils could not be predicted from the extractability of the element by neutral salt solutions without consideration for other soil properties.

  8. Effect of biochar on the extractability of heavy metals (Cd, Cu, Pb, and Zn) and enzyme activity in soil.

    Science.gov (United States)

    Yang, Xing; Liu, Jingjing; McGrouther, Kim; Huang, Huagang; Lu, Kouping; Guo, Xi; He, Lizhi; Lin, Xiaoming; Che, Lei; Ye, Zhengqian; Wang, Hailong

    2016-01-01

    Biochar is a carbon-rich solid material derived from the pyrolysis of agricultural and forest residual biomass. Previous studies have shown that biochar is suitable as an adsorbent for soil contaminants such as heavy metals and consequently reduces their bioavailability. However, the long-term effect of different biochars on metal extractability or soil health has not been assessed. Therefore, a 1-year incubation experiment was carried out to investigate the effect of biochar produced from bamboo and rice straw (at temperatures ≥500 °C) on the heavy metal (cadmium (Cd), copper (Cu), lead (Pb), and zinc (Zn)) extractability and enzyme activity (urease, catalase, and acid phosphatase) in a contaminated sandy loam paddy soil. Three rates (0, 1, and 5%) and two mesh sizes (straw biochar significantly (P straw biochar significantly (P straw biochar resulted in the greatest reductions of extractable Cu and Zn, 97.3 and 62.2%, respectively. Both bamboo and rice straw biochar were more effective at decreasing extractable Cu and Pb than removing extractable Cd and Zn from the soil. Urease activity increased by 143 and 107% after the addition of 5% coarse and fine rice straw biochars, respectively. Both bamboo and rice straw biochars significantly (P impact on acid phosphatase activity. In conclusion, the rice straw biochar had greater potential as an amendment for reducing the bioavailability of heavy metals in soil than that of the bamboo biochar. The impact of biochar treatment on heavy metal extractability and enzyme activity varied with the biochar type, application rate, and particle size.

  9. Relationships between stability, maturity, water-extractable organic matter of municipal sewage sludge composts and soil functionality.

    Science.gov (United States)

    Sciubba, Luigi; Cavani, Luciano; Grigatti, Marco; Ciavatta, Claudio; Marzadori, Claudio

    2015-09-01

    Compost capability of restoring or enhancing soil quality depends on several parameters, such as soil characteristics, compost carbon, nitrogen and other nutrient content, heavy metal occurrence, stability and maturity. This study investigated the possibility of relating compost stability and maturity to water-extractable organic matter (WEOM) properties and amendment effect on soil quality. Three composts from municipal sewage sludge and rice husk (AN, from anaerobic wastewater treatment plants; AE, from aerobic ones; MIX, from both anaerobic and aerobic ones) have been analysed and compared to a traditional green waste compost (GM, from green manure, solid waste and urban sewage sludge). To this aim, WEOMs were characterized through chemical analysis; furthermore, compost stability was evaluated through oxygen uptake rate calculation and maturity was estimated through germination index determination, whereas compost impact on soil fertility was studied, in a lab-scale experiment, through indicators as inorganic nitrogen release, soil microbial biomass carbon, basal respiration rate and fluorescein di-acetate hydrolysis. The obtained results indicated that WEOM characterization could be useful to investigate compost stability (which is related to protein and phenol concentrations) and maturity (related to nitrate/ammonium ratio and degree of aromaticity) and then compost impact on soil functionality. Indeed, compost stability resulted inversely related to soil microbial biomass, basal respiration rate and fluorescein di-acetate hydrolysis when the products were applied to the soil.

  10. Similarity index between irrigation water and soil saturation extract in the experimental field of Yachay University, Ecuador

    Science.gov (United States)

    Carrera-Villacrés, D. V.; Sánchez-Gómez, V. P.; Portilla-Bravo, O. A.; Bolaños-Guerrón, D. R.

    2017-08-01

    Soil monitoring is a job that demands a lot of time and money. therefore, measuring the same parameters in the water becomes simple because it can be done in situ. The objective of this work was to find a similarity index for the validation of mathematical correlation models based on physicochemical parameters to verify if there is a balance between irrigation water and soil saturation extract in the experimental field Yachay that is known as the city of knowledge that is located in Imbabura province, Ecuador, for which, the sampling of water was carried out in two representative periods (dry and rainy). Sampling of 10 soil profiles was also performed, covering the total area; these samples were obtained results of Electrical Conductivity (EC), pH and total dissolved salts (TDS). With correlation models between soils and water, it is possible to predict concentrations of elements in the irrigation water. It was concluded that there is a balance between soil and water, so that the salts present in the soil are highly soluble, in addition, there is a high probability that the elements in the irrigation water are in the soil. In sample water, the same concentrations were found in the soil, at their saturation point, and very close to the field capacity.

  11. From agricultural use of sewage sludge to nutrient extraction: A soil science outlook.

    Science.gov (United States)

    Kirchmann, Holger; Börjesson, Gunnar; Kätterer, Thomas; Cohen, Yariv

    2017-03-01

    The composition of municipal wastewater and sewage sludge reflects the use and proliferation of elements and contaminants within society. In Sweden, official statistics show that concentrations of toxic metals in municipal sewage sludge have steadily decreased, by up to 90 %, since the 1970s, due to environmental programmes and statutory limits on metals in sludge and soil. Results from long-term field experiments show that reduced metal pollution during repeated sewage sludge application has reversed negative trends in soil biology. Despite this Swedish success story, organic waste recycling from Swedish towns and cities to arable land is still limited to only about 20 % of the total amount produced. Resistance among industries and consumers to products grown on land treated with sewage sludge may not always be scientifically grounded; however, there are rational obstacles to application of sewage sludge to land based on its inherent properties rather than its content of pollutants. We argue that application of urban organic wastes to soil is an efficient form of recycling for small municipalities, but that organic waste treatment from large cities requires other solutions. The large volumes of sewage sludge collected in towns and cities are not equitably distributed back to arable land because of the following: (i) The high water and low nutrient content in sewage sludge make long-distance transportation too expensive; and (ii) the low plant availability of nutrients in sewage sludge results in small yield increases even after many years of repeated sludge addition. Therefore, nutrient extraction from urban wastes instead of direct organic waste recycling is a possible way forward. The trend for increased combustion of urban wastes will make ash a key waste type in future. Combustion not only concentrates the nutrients in the ash but also leads to metal enrichment; hence, direct application of the ash to land is most often not possible. However, inorganic

  12. Chitinase genes revealed and compared in bacterial isolates, DNA extracts and a metagenomic library from a phytopathogen suppressive soil

    Energy Technology Data Exchange (ETDEWEB)

    Hjort, K.; Bergstrom, M.; Adesina, M.F.; Jansson, J.K.; Smalla, K.; Sjoling, S.

    2009-09-01

    Soil that is suppressive to disease caused by fungal pathogens is an interesting source to target for novel chitinases that might be contributing towards disease suppression. In this study we screened for chitinase genes, in a phytopathogen-suppressive soil in three ways: (1) from a metagenomic library constructed from microbial cells extracted from soil, (2) from directly extracted DNA and (3) from bacterial isolates with antifungal and chitinase activities. Terminal-restriction fragment length polymorphism (T-RFLP) of chitinase genes revealed differences in amplified chitinase genes from the metagenomic library and the directly extracted DNA, but approximately 40% of the identified chitinase terminal-restriction fragments (TRFs) were found in both sources. All of the chitinase TRFs from the isolates were matched to TRFs in the directly extracted DNA and the metagenomic library. The most abundant chitinase TRF in the soil DNA and the metagenomic library corresponded to the TRF{sup 103} of the isolate, Streptomyces mutomycini and/or Streptomyces clavifer. There were good matches between T-RFLP profiles of chitinase gene fragments obtained from different sources of DNA. However, there were also differences in both the chitinase and the 16S rRNA gene T-RFLP patterns depending on the source of DNA, emphasizing the lack of complete coverage of the gene diversity by any of the approaches used.

  13. Vapor Extraction/Bioventing Sequential Treatment of Soil Contaminated with Volatile and SemiVolatile Hydrocarbon Mixtures

    NARCIS (Netherlands)

    Malina, G.; Grotenhuis, J.T.C.; Rulkens, W.H.

    2002-01-01

    A cost-effective removal strategy was studied in bench-scale columns that involved vapor extraction and bioventing sequential treatment of toluene- and decane-contaminated soil. The effect of operating mode on treatment performance was examined at a continuous air flow and consecutively at two diffe

  14. On-site assessment of extractable soil nutrients after long-term biosolids applications to perennial forage

    Science.gov (United States)

    The objective of this study was to evaluate soil nutrient loading and depth distributions of extractable nitrogen (N), phosphorus (P), and potassium (K) after long-term, continuous annual surface-applications of anaerobically-digested Class B biosolids at a municipal recycling facility in central Te...

  15. Pyrolysis-gas chromatography/mass spectrometry of soil organic matter extracted from a Brazilian mangrove and Spanish salt marshes

    NARCIS (Netherlands)

    Perobelli Ferreira, F.; Buurman, P.; Macias, F.; Otero, X.L.; Boluda, R.

    2009-01-01

    The soil organic matter (SOM) extracted under different vegetation types from a Brazilian mangrove (Pai Matos Island, São Paulo State) and from three Spanish salt marshes (Betanzos Ría and Corrubedo Natural Parks, Galícia, and the Albufera Natural Park, Valencia) was investigated by pyrolysis-gas ch

  16. A new approach to the application of solid phase extraction disks with LC-MS/MS for the analysis of drugs on a 96-well plate format.

    Science.gov (United States)

    Cudjoe, Erasmus; Pawliszyn, Janusz

    2009-11-01

    A new 96-well disk solid phase extraction sample preparation technique which does not involve vacuum pumps integrated with liquid chromatographic tandem mass spectrometric (LC-MS/MS) was developed for high throughput determination of benzodiazepines (nordiazepam, diazepam, lorazepam and oxazepam). In addition, the method completely allows the re-use of the SPE disk membranes for subsequent analyses after re-conditioning. The method utilizes a robotic autosampler for parallel extractions in a 96-well plate format. Results have been presented for independent extractions from three matrices; phosphate buffer solution, urine, and plasma. Factors affecting data reproducibility, extraction kinetics, sample throughput, and reliability of the system were investigated and optimized. A total time required per sample was 0.94 min using 96-well format. Method reproducibility was < or =9% relative standard deviation for all three matrices. Limits of detection and quantitation recorded were respectively in the range 0.02-0.15 and 0.2-2.0 ng/mL with linearity ranging from 0.2 to 500 ng/mL for all matrices.

  17. Microbiological activity and N transformations in a soil subjected to aggregate extraction amended with pig slurry

    Directory of Open Access Journals (Sweden)

    Madelaine Quiroz

    2015-09-01

    Full Text Available Pig slurry as a fertilizer source has been extensively used in agriculture; however, in order to reduce the risks of contaminating the water supplies given its high level of N sources, it is important to understand the N transformations occurring in the soil where it is applied. In this study, incubations were performed at 25 °C for a period of 63 to 73 d to evaluate the effect of different doses of pig slurry on the global microbiological activity and the N dynamics in time, with an emphasis on N mineralization and nitrification in a soil subject to aggregate extraction. The slurry was applied in doses equivalent to: 0, 162, 244, and 325 m³ ha-1, constituting four treatments: T0, T50, T75, and T100, respectively. The microbiological activity and the contents of NH4+-N and NO3-- N were measured. Increasing doses of slurry produced an increase in the evolution of the accumulated CO2, with 63.5, 115.0, 112.7, and 125.7 mg 100 g-1 soil for T0, T50, T75, and T100 respectively. A similar situation was observed in the initial contents of NH4+-N, which were 22.4, 30.3, 44.3, and 60.7 mg kg-1 in each treatment, respectively. On the other hand, the increase in NO3-- N contents were only noticed by the end of the incubation period and corresponded to 28.6, 69.0, 95.3, and 109.8 mg kg-1. In addition, the net N mineralization was predominant in all treatments with slurry during the measurement period, being 9.1, 45.4, 58.1, and 52.7 mg kg-1 for T0, T50, T75 and T100, respectively, at the end of the trial. The mineralization rate of the organic C decreased when increasing the dose of slurry and the mineralization rate of the organic N resulted to be low, which would indicate a high contribution of material resistant to degradation by the slurry, which could have a long term effect in the soil.

  18. INTERACTION’S EFFECT OF ORGANIC MATERIAL AND AGGREGATION ON EXTRACTION EFFICIENCY OF TPHS FROM PETROLEUM CONTAMINATED SOILS WITH MAE

    Directory of Open Access Journals (Sweden)

    H. Ganjidoust and Gh. Naghizadeh

    2005-10-01

    Full Text Available Microwave-Assisted Extraction (MAE is a type of low-temperature thermal desorption process that its numerous advantages have caused a wide spread use of it. Microwave heating is a potentially attractive technique as it provides volumetric heating process to improve heating efficiencies as compared with conventional techniques. The ability to rapidly heat the sample solvent mixture is inherent to MAE and the main advantage of this technique. Presently MAE has been shown to be one of the best technologies for removing environmental pollutants specially PAHs, phenols and PCBs from soils and sediments. Five different mixtures and types of aggregation (Sand, Top soil, Kaolinite besides three concentrations of crude oil as a contaminant (1000, 5000 and 10000 mg/L were considered. The results indicated that regardless of aggregation, the presence of humus component in soil reduces the efficiency. Minimum and maximum efficiencies were for sandy soil (containing organic components and kaolinite (without any organic content, respectively. According to the results of this research when some amount of humus and organic materials are available in the matrix, it causes the extraction efficiency to perform as a function of just humus materials but not aggregation. Increasing the concentration of crude oil reduced the efficiency with a sharp steep for higher concentration (5000-10000 mg/L and less steeper for lower concentration (1000-5000 mg/L. The concentration of the contaminant, works just as an independent function with extraction time and aggregation factors. The extraction period of 10 min. can be suggested as an optimum extraction time in FMAE for PAHs contaminated soils.

  19. Selective pressurized liquid extraction of estrogenic compounds in soil and analysis by gas chromatography-mass spectrometry.

    Science.gov (United States)

    Zhang, Zulin; Rhind, Stewart M; Kerr, Christine; Osprey, Mark; Kyle, Carol E

    2011-01-24

    A selective pressurized liquid extraction (SPLE) method, followed by gas chromatography-mass spectrometry (GC-MS), for the simultaneous extraction and clean-up of estrone (E1), 17β-estradiol (E2), 17α-ethynylestradiol (EE2), estriol (E3) and bisphenol A (BPA) from soil samples is described. The on-line clean-up of soil by SPLE was achieved using different organic matter retainers, including silica, alumina and Florisil, the most effective being silica. Thus, different amounts of silica, in conjunction with different extraction solvents (acetone, ethyl acetate, isohexane and dichloromethane), either alone or in combination, were used to extract the target chemicals from spiked soil samples. It was shown that 3g silica resulted in satisfactory rates of recovery of target compounds and acetone:dichloromethane (1:3, v/v) was efficient in extracting and eluting estrogenic compounds for SPLE. Variables affecting the SPLE efficiency, including temperature and pressure were studied; the optimum parameters were 60°C and 1500 psi, respectively. The limits of detection (LODs) of the proposed method were 0.02-0.37 ng g(-1) for the different estrogenic chemicals studied. The outputs using the proposed method were linear over the range from 0.1 to 120 ng g(-1) for E1, E2, EE2, 0.2-120 ng g(-1) for E3, and 0.5-120 ng g(-1) for BPA. The optimized method was further verified by performing spiking experiments in natural soil matrices; good rates of recovery and reproducibility were achieved for all selected compounds and the method was successfully applied to soil samples from Northeast Scotland, for the determination of the target compounds.

  20. Short term spatio-temporal variability of soil water-extractable calcium and magnesium after a low severity grassland fire in Lithuania.

    Science.gov (United States)

    Pereira, Paulo; Martin, David

    2014-05-01

    Fire has important impacts on soil nutrient spatio-temporal distribution (Outeiro et al., 2008). This impact depends on fire severity, topography of the burned area, type of soil and vegetation affected, and the meteorological conditions post-fire. Fire produces a complex mosaic of impacts in soil that can be extremely variable at small plot scale in the space and time. In order to assess and map such a heterogeneous distribution, the test of interpolation methods is fundamental to identify the best estimator and to have a better understanding of soil nutrients spatial distribution. The objective of this work is to identify the short-term spatial variability of water-extractable calcium and magnesium after a low severity grassland fire. The studied area is located near Vilnius (Lithuania) at 54° 42' N, 25° 08 E, 158 masl. Four days after the fire, it was designed in a burned area a plot with 400 m2 (20 x 20 m with 5 m space between sampling points). Twenty five samples from top soil (0-5 cm) were collected immediately after the fire (IAF), 2, 5, 7 and 9 months after the fire (a total of 125 in all sampling dates). The original data of water-extractable calcium and magnesium did not respected the Gaussian distribution, thus a neperian logarithm (ln) was applied in order to normalize data. Significant differences of water-extractable calcium and magnesium among sampling dates were carried out with the Anova One-way test using the ln data. In order to assess the spatial variability of water-extractable calcium and magnesium, we tested several interpolation methods as Ordinary Kriging (OK), Inverse Distance to a Weight (IDW) with the power of 1, 2, 3 and 4, Radial Basis Functions (RBF) - Inverse Multiquadratic (IMT), Multilog (MTG), Multiquadratic (MTQ) Natural Cubic Spline (NCS) and Thin Plate Spline (TPS) - and Local Polynomial (LP) with the power of 1 and 2. Interpolation tests were carried out with Ln data. The best interpolation method was assessed using the

  1. Distribution, fate and formation of non-extractable residues of a nonylphenol isomer in soil with special emphasis on soil derived organo-clay complexes.

    Science.gov (United States)

    Riefer, Patrick; Klausmeyer, Timm; Schäffer, Andreas; Schwarzbauer, Jan; Schmidt, Burkhard

    2011-01-01

    Anthropogenic contaminants like nonylphenols (NP) are added to soil, for instance if sewage-sludge is used as fertilizer in agriculture. A commercial mixture of NP consists of more than 20 isomers. For our study, we used one of the predominate isomers of NP mixtures, 4-(3,5-dimethylhept-3-yl)phenol, as a representative compound. The aim was to investigate the fate and distribution of the isomer within soil and soil derived organo-clay complexes. Therefore, (14)C- and (13)C-labeled NP was added to soil samples and incubated up to 180 days. Mineralization was measured and soil samples were fractionated into sand, silt and clay; the clay fraction was further separated in humic acids, fulvic acids and humin. The organo-clay complexes pre-incubated for 90 or 180 days were re-incubated with fresh soil for 180 days, to study the potential of re-mobilization of incorporated residues. The predominate incorporation sites of the nonylphenol isomer in soil were the organo-clay complexes. After 180 days of incubation, 22 % of the applied (14)C was mineralized. The bioavailable, water extractable portion was low (9 % of applied (14)C) and remained constant during the entire incubation period, which could be explained by an incorporation/release equilibrium. Separation of organo-clay complexes, after extraction with solvents to release weakly incorporated, bioaccessible portions, showed that non-extractable residues (NER) were preferentially located in the humic acid fraction, which was regarded as an effect of the chemical composition of this fraction. Generally, 27 % of applied (14)C was incorporated into organo-clay complexes as NER, whereas 9 % of applied (14)C was bioaccessible after 180 days of incubation. The re-mobilization experiments showed on the one hand, a decrease of the bioavailability of the nonylphenol residues due to stronger incorporation, when the pre-incubation period was increased from 90 to 180 days. On the other hand, a shift of these residues from the

  2. Thallium speciation and extractability in a thallium- and arsenic-rich soil developed from mineralized carbonate rock.

    Science.gov (United States)

    Voegelin, Andreas; Pfenninger, Numa; Petrikis, Julia; Majzlan, Juraj; Plötze, Michael; Senn, Anna-Caterina; Mangold, Stefan; Steininger, Ralph; Göttlicher, Jörg

    2015-05-05

    We investigated the speciation and extractability of Tl in soil developed from mineralized carbonate rock. Total Tl concentrations in topsoil (0-20 cm) of 100-1000 mg/kg are observed in the most affected area, subsoil concentrations of up to 6000 mg/kg Tl in soil horizons containing weathered ore fragments. Using synchrotron-based microfocused X-ray fluorescence spectrometry (μ-XRF) and X-ray absorption spectroscopy (μ-XAS) at the Tl L3-edge, partly Tl(I)-substituted jarosite and avicennite (Tl2O3) were identified as Tl-bearing secondary minerals formed by the weathering of a Tl-As-Fe-sulfide mineralization hosted in the carbonate rock from which the soil developed. Further evidence was found for the sequestration of Tl(III) into Mn-oxides and the uptake of Tl(I) by illite. Quantification of the fractions of Tl(III), Tl(I)-jarosite and Tl(I)-illite in bulk samples based on XAS indicated that Tl(I) uptake by illite was the dominant retention mechanism in topsoil materials. Oxidative Tl(III)uptake into Mn-oxides was less relevant, probably because the Tl loadings of the soil exceeded the capacity of this uptake mechanism. The concentrations of Tl in 10 mM CaCl2-extracts increased with increasing soil Tl contents and decreasing soil pH, but did not exhibit drastic variations as a function of Tl speciation. With respect to Tl in contaminated soils, this study provides first direct spectroscopic evidence for Tl(I) uptake by illite and indicates the need for further studies on the sorption of Tl to clay minerals and Mn-oxides and its impact on Tl solubility in soils.

  3. Soils

    Science.gov (United States)

    Emily Moghaddas; Ken Hubbert

    2014-01-01

    When managing for resilient forests, each soil’s inherent capacity to resist and recover from changes in soil function should be evaluated relative to the anticipated extent and duration of soil disturbance. Application of several key principles will help ensure healthy, resilient soils: (1) minimize physical disturbance using guidelines tailored to specific soil types...

  4. Combined effects of DOM extracted from site soil/compost and biosurfactant on the sorption and desorption of PAHs in a soil-water system.

    Science.gov (United States)

    Yu, Hui; Huang, Guo-he; An, Chun-jiang; Wei, Jia

    2011-06-15

    The combined effects of DOM and biosurfactant on the sorption/desorption behavior of phenanthrene (PHE) and pyrene (PYR) in soil water systems were systematically investigated. Two origins of DOMs (extracted from soil and extracted from food waste compost) and an anionic biosurfactant (rhamnolipid) were introduced. The presence of DOM in the aqueous phase could decrease the sorption of PAHs, thus influence their mobility. Desorption enhancement for both PHE and PYR in the system with compost DOM was greater than that in the soil DOM system. This is due to the differences in specific molecular structures and functional groups of two DOMs. With the co-existence of biosurfactant and DOM, partitioning is the predominant process and the desorption extent was much higher than the system with DOM or biosurfactant individually. For PHE, the desorption enhancement of combined DOM and biosurfactant was larger than the sum of DOM or biosurfactant; however desorption enhancement for PYR in the combined system was less than the additive enhancement in two individual system under low PAH concentration. This could be explained as the competition sorption among PAHs, DOM and biosurfactant. The results of this study will help to clarify the transport of petroleum pollutants in the remediation of HOCs-contaminated soils.

  5. Soil-extractable phosphorus and phosphorus saturation threshold in beef cattle pastures as affected by grazing management and forage type.

    Science.gov (United States)

    Sigua, Gilbert C; Chase, Chad C; Albano, Joseph

    2014-02-01

    Grazing can accelerate and alter the timing of nutrient transfer, and could increase the amount of extractable phosphorus (P) cycle from soils to plants. The effects of grazing management and/or forage type that control P cycling and distribution in pasture's resources have not been sufficiently evaluated. Our ability to estimate the levels and changes of soil-extractable P and other crop nutrients in subtropical beef cattle pastures has the potential to improve our understanding of P dynamics and nutrient cycling at the landscape level. To date, very little attention has been paid to evaluating transfers of extractable P in pasture with varying grazing management and different forage type. Whether or not P losses from grazed pastures are significantly greater than background losses and how these losses are affected by soil, forage management, or stocking density are not well understood. The objective of this study was to evaluate the effect of grazing management (rotational versus "zero" grazing) and forage types (FT; bahiagrass, Paspalum notatum, Flugge versus rhizoma peanuts, Arachis glabrata, Benth) on the levels of extractable soil P and degree of P saturation in beef cattle pastures. This study (2004-2007) was conducted at the Subtropical Agricultural Research Station, US Department of Agriculture-Agricultural Research Service located 7 miles north of Brooksville, FL. Soil (Candler fine sand) at this location was described as well-drained hyperthermic uncoated Typic Quartzipsamments. A split plot arrangement in a completely randomized block design was used and each treatment was replicated four times. The main plot was represented by grazing management (grazing vs. no grazing) while forage types (bahiagrass vs. perennial peanut) as the sub-plot treatment. Eight steel exclosures (10 × 10 m) were used in the study. Four exclosures were placed and established in four pastures with bahiagrass and four exclosures were established in four pastures with rhizoma

  6. A simple method for normalization of DNA extraction to improve the quantitative detection of soil-borne plant pathogenic oomycetes by real-time PCR.

    Science.gov (United States)

    Li, M; Ishiguro, Y; Kageyama, K; Zhu, Z

    2015-08-01

    Most of the current research into the quantification of soil-borne pathogenic oomycetes lacks determination of DNA extraction efficiency, probably leading to an incorrect estimation of DNA quantity. In this study, we developed a convenient method by using a 100 bp artificially synthesized DNA sequence derived from the mitochondrion NADH dehydrogenase subunit 2 gene of Thunnus thynnus as a control to determine the DNA extraction efficiency. The control DNA was added to soils and then co-extracted along with soil genomic DNA. DNA extraction efficiency was determined by the control DNA. Two different DNA extraction methods were compared and evaluated using different types of soils, and the commercial kit was proved to give more consistent results. We used the control DNA combined with real-time PCR to quantify the oomycete DNAs from 12 naturally infested soils. Detectable target DNA concentrations were three to five times higher after normalization. Our tests also showed that the extraction efficiencies varied on a sample-to-sample basis and were DNA control for the normalization of DNA extraction by real-time PCR. By combining two different efficient soil DNA extraction methods, the developed quantification method dramatically improved the results. This study also proves that the developed normalization method is necessary and useful for the accurate quantification of soil-borne plant pathogenic oomycetes. © 2015 The Society for Applied Microbiology.

  7. Gold-plating of Mylar lift films to capitalize on surface enhanced Raman spectroscopy for chemical extraction of drug residues.

    Science.gov (United States)

    Fox, James D; Waverka, Kristin N; Verbeck, Guido F

    2012-03-10

    The method of residue extraction through electrostatic lifting provides a distinctive mode of performing ultra-trace analysis. These lifts provide a medium for analyte extraction via nanomanipulation-coupled to nanospray ionization-mass spectrometry (NSI-MS). This method of extraction can be coupled to Raman spectroscopy for supplemental verification of analytes using surface enhanced Raman scattering (SERS). The gold surface used for SERS provides an enhanced effect on peak signal intensity allowing ultra-trace amounts to be detected more effectively. The aim of this research is to utilize gold-coated films with electrostatic lifting in order to collect latent materials and analyze chemicals of interest contained in them via SERS.

  8. Releasing Pattern of Applied Phosphorus and Distribution Change of Phosphorus Fractions in the Acid Upland Soils with Successive Resin Extraction

    Directory of Open Access Journals (Sweden)

    Arief Hartono

    2008-05-01

    Full Text Available The releasing pattern of applied P in the acid upland soils and the soil properties influencing the pattern were studied. Surface horizons of six acid upland soils from Sumatra, Java and Kalimantan were used in this study. The releasing pattern of applied P (300 mg P kg-1 of these soils were studied by successive resin extraction. P fractionation was conducted to evaluate which fractions released P to the soil solution after successive resin extraction. The cumulative of resin-Pinorganic (Pi release of soils was fitted to the first order kinetic. Regression analyses using factor scores obtained from the previous principal components analyses was applied to determine soil properties influencing P releasing pattern. The results suggested that the maximum P release was significantly (P < 0.05 increased by acidity plus 1.4 nm mineral-related factor (PC2 i.e. exchangeable Al and 1.4 nm minerals (smectite and vermiculite and decreased by oxide related factor (PC1 i.e. aluminum (Al plus 1/2 iron (Fe (by ammonium oxalate, crystalline Al and Fe oxides, cation exchange capacity, and clay content. P fractionation analysis after successive resin extraction showed that both labile and less labile in the form of NaHCO3-Pi and NaOH-Pi fractions, respectively, can be transformed into resin-Pi when in the most labile resin-Pi is depleted. Most of P released in high oxides soils were from NaOH-Pi fraction while in low oxides soils were from NaHCO3-Pi. P release from the former fraction resulted in the maximum P release lower than that of the latter one. When NaHCO3-Pi was high, NaOH-Pi was relatively more stable than NaHCO3-Pi despite resin-Pi removal. NaHCO3-Pi and NaOH-Pi are very important P fractions in replenishing resin-Pi in these acid upland soils.

  9. Remediation approach for organic compounds and arsenic co-contaminated soil using pressurized hot water extraction process.

    Science.gov (United States)

    Islam, Mohammad Nazrul; Jo, Young-Tae; Jeong, Yeon-Jae; Park, Jeong-Hun

    2017-09-15

    Successful remediation of soil with co-existing organics contaminants and arsenic (As) is a challenge as the chemical and remediation technologies are different for each group of pollutants. In this study, the treatment effectiveness of pressurized hot water (PHW) extraction process was investigated for remediation of soil co-contaminated with phenol, crude oil, polycyclic aromatic hydrocarbons (PAHs) and As. An elimination percentage of about 99% was achieved for phenol, and in the range of 63-100% was observed for the PAHs at 260 °C for 90 min operation. The performance of PHW extraction in the removal of total petroleum hydrocarbons was found to be 86%. Of the 87 mg/kg of As in untreated soil, 67% of which was eliminated after treatment. The removal of organic contaminants was mainly via desorption, dissolution and degradation in subcritical water, while As was eliminated probably by oxidation and dissolution of arsenic-bearing minerals. According to the experimental results, PHW extraction process can be suggested as an alternative cleaning technology, instead of using any organic solvents for remediation of such co-contaminated soil.

  10. Test to Extract Soil Properties Using the Seismic HammerTM Active Seismic Source

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Rebekah F. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Abbott, Robert E. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-08-01

    Geologic material properties are necessary parameters for ground motion modeling and are difficult and expensive to obtain via traditional methods. Alternative methods to estimate soil properties require a measurement of the ground's response to a force. A possible method of obtaining these measurements is active-source seismic surveys, but measurements of the ground response at the source must also be available. The potential of seismic sources to obtain soil properties is limited, however, by the repeatability of the source. Explosives, and hammer surveys are not repeatable because of variable ground coupling or swing strength. On the other hand, the Seismic Hammer TM (SH) is consistent in the amount of energy it inputs into the ground. In addition, it leaves large physical depressions as a result of ground compaction. The volume of ground compaction varies by location. Here, we hypothesize that physical depressions left in the earth by the SH correlate to energy recorded by nearby geophones, and therefore are a measurement of soil physical properties. Using measurements of the volume of shot holes, we compare the spatial distribution of the volume of ground compacted between the different shot locations. We then examine energy recorded by the nearest 50 geophones and compare the change in amplitude across hits at the same location. Finally, we use the percent difference between the energy recorded by the first and later hits at a location to test for a correlation to the volume of the shot depressions. We find that: * Ground compaction at the shot-depression does cluster geographically, but does not correlate to known surface features. * Energy recorded by nearby geophones reflects ground refusal after several hits. * There is no correlation to shot volume and changes in energy at particular shot locations. Deeper material properties (i.e. below the depth of surface compaction) may be contributing to the changes in energy propagation. * Without further

  11. Tuning a 96-Well Microtiter Plate Fluorescence-Based Assay to Identify AGE Inhibitors in Crude Plant Extracts

    Directory of Open Access Journals (Sweden)

    Luc Séro

    2013-11-01

    Full Text Available Advanced glycation end-products (AGEs are involved in the pathogenesis of numerous diseases. Among them, cellular accumulation of AGEs contributes to vascular complications in diabetes. Besides using drugs to lower blood sugar, a balanced diet and the intake of herbal products potentially limiting AGE formation could be considered beneficial for patients’ health. The current paper presents a simple and cheap high-throughput screening (HTS assay based on AGE fluorescence and suitable for plant extract screening. We have already implemented an HTS assay based on vesperlysines-like fluorescing AGEs quickly (24 h formed from BSA and ribose under physiological conditions. However, interference was noted when fluorescent compounds and/or complex mixtures were tested. To overcome these problems and apply this HTS assay to plant extracts, we developed a technique for systematic quantification of both vesperlysines (λexc 370 nm; λem 440 nm and pentosidine-like (λexc 335 nm; λem 385 nm AGEs. In a batch of medicinal and food plant extracts, hits were selected as soon as fluorescence decreased under a fixed threshold for at least one wavelength. Hits revealed during this study appeared to contain well-known and powerful anti-AGE substances, thus demonstrating the suitability of this assay for screening crude extracts (0.1 mg/mL. Finally, quercetin was found to be a more powerful reference compound than aminoguanidine in such assay.

  12. Relative extraction ratio (RER) for arsenic and heavy metals in soils and tailings from various metal mines, Korea.

    Science.gov (United States)

    Son, Hye Ok; Jung, Myung Chae

    2011-01-01

    This study focused on the evaluation of leaching behaviours for arsenic and heavy metals (Cd, Cu, Ni, Pb and Zn) in soils and tailings contaminated by mining activities. Ten representative mine soils were taken at four representative metal mines in Korea. To evaluate the leaching characteristics of the samples, eight extraction methods were adapted namely 0.1 M HCl, 0.5 M HCl, 1.0 M HCl, 3.0 M HCl, Korean Standard Leaching Procedure for waste materials (KSLP), Synthetic Precipitation Leaching Procedure (SPLP), Toxicity Characteristic Leaching Procedure (TCLP) and aqua regia extraction (AR) methods. In order to compare element concentrations as extraction methods, relative extraction ratios (RERs, %), defined as element concentration extracted by the individual leaching method divided by that extracted by aqua regia based on USEPA method 3050B, were calculated. Although the RER values can vary upon sample types and elements, they increase with increasing ionic strength of each extracting solution. Thus, the RER for arsenic and heavy metals in the samples increased in the order of KSLP extraction method, the RER values for Cd and Zn were relatively higher than those for As, Cu, Ni and Pb. This may be due to differences in geochemical behaviour of each element, namely high solubility of Cd and Zn and low solubility of As, Cu, Ni and Pb in surface environment. Thus, the extraction results can give important information on the degree and extent of arsenic and heavy metal dispersion in the surface environment.

  13. Coalbed Methane Extraction and Soil Suitability Concerns in the Powder River Basin, Montana and Wyoming

    Science.gov (United States)

    ,

    2006-01-01

    The Powder River Basin is located in northeastern Wyoming and southeastern Montana. It is an area of approximately 55,000 square kilometers. Extraction of methane gas from the coal seams that underlie the Powder River Basin began in Wyoming in the late 1980s and in Montana in the late 1990s. About 100-200 barrels of co-produced water per day are being extracted from each active well in the Powder River Basin, which comes to over 1.5 million barrels of water per day for all the active coalbed methane wells in the Basin. Lab testing indicates that Powder River Basin co-produced water is potable but is high in sodium and other salts, especially in the western and northern parts of the Powder River Basin. Common water management strategies include discharge of co-produced water into drainages, stock ponds, evaporation ponds, or infiltration ponds; treatment to remove sodium; or application of the water directly on the land surface via irrigation equipment or atomizers. Problems may arise because much of the Powder River Basin contains soils with high amounts of swelling clays. As part of the USGS Rocky Mountain Geographic Science Center's hyperspectral research program, researchers are investigating whether hyperspectral remote sensing data can be beneficial in locating areas of swelling clays. Using detailed hyperspectral data collected over parts of the Powder River Basin and applying our knowledge of how the clays of interest reflect energy, we will attempt to identify and map areas of swelling clays. If successful, such information will be useful to resource and land managers.

  14. The influence of maize residues on the mobility and binding of benazolin: Investigating physically extracted soil fractions

    Energy Technology Data Exchange (ETDEWEB)

    Schnitzler, Frauke [Agrosphere, ICG IV, Institute of Chemistry and Dynamics of the Geosphere, Forschungszentrum Juelich GmbH, D-52425 Juelich (Germany)]. E-mail: f.schnitzler@fz-juelich.de; Lavorenti, Arquimedes [Escola Superior de Agricultura ' Luiz de Queiroz' , Departamento de Ciencias Exatas, Universidade de Sao Paulo, Av. Padua Dias, 11, Caixa Postal 9, CEP 13418-900 Piracicaba (SP) (Brazil); Berns, Anne E. [Agrosphere, ICG IV, Institute of Chemistry and Dynamics of the Geosphere, Forschungszentrum Juelich GmbH, D-52425 Juelich (Germany); Drewes, Norbert [Agrosphere, ICG IV, Institute of Chemistry and Dynamics of the Geosphere, Forschungszentrum Juelich GmbH, D-52425 Juelich (Germany); Vereecken, Harry [Agrosphere, ICG IV, Institute of Chemistry and Dynamics of the Geosphere, Forschungszentrum Juelich GmbH, D-52425 Juelich (Germany); Burauel, Peter [Agrosphere, ICG IV, Institute of Chemistry and Dynamics of the Geosphere, Forschungszentrum Juelich GmbH, D-52425 Juelich (Germany)

    2007-05-15

    The amount of non-extractable residues and the distribution of benazolin and its metabolites were evaluated three months after herbicide application ({sup 14}C-labelled) in physically extracted soil fractions of topsoil layers of undisturbed soil columns with and without incorporated maize straw ({sup 14}C-labelled). In addition, a variety of wet-chemical and spectroscopic methods were used to characterise the structure of organic carbon within the different soil fractions. The addition of crop residues increased the amount of dissolved organic carbon, enhanced the aromaticity of the organic carbon structure and enforced the aggregation of organomineral complexes. After incorporation of crop residues, an increase in the formation of metabolic compounds of benazolin and of non-extractable residues was detected. These results indicate that the addition of crop residues leads to a decrease in mobility and bioaccessibility of benazolin and its metabolites. - Addition of crop residues increases the amount of non-extractable residues and decreases the mobility of benazolin and its metabolites.

  15. Geochemical Properties of Rocks and Soils in Gusev Crater, Mars: APXS Results from Cumberland Ridge to Home Plate

    Science.gov (United States)

    Ming, D. W.; Gellert, R.; Morris, R. V.; Yen, A. S.; Arvidson, E.; Brueckner, J.; Clark, B. C.; Cohen, B. A.; Fleischer, I.; Klingelhoefer, G.; McCoy, T. J.; Mittlefehldt, D. W.; Schmidt, M. E.; Schroeder, C.; Squyres, S. W.; Zipfel, J.

    2008-01-01

    The Mars Exploration Rover Spirit landed in Gusev crater on Jan. 4, 2004. Spirit has traversed the Gusev crater plains, ascended to the top of Husband Hill, and entered into the Inner Basin of the Columbia Hills. The Athena science payload onboard Spirit has recorded numerous measurements on the chemistry and mineralogy of materials encountered during nearly 2 Mars years of operation within the crater. Rocks and soils have been grouped into classes based upon their unique differences in mineralogy and chemistry [1-3]. Some of the most significant chemical discoveries include the composition of Adirondack class flood basalts [4-6]; high sulfur in Clovis and Peace Class rocks [7,2]; high P and Ti in Wishstone Class rocks [7,2]; composition of alkalic basalts [2,6]; very high S in Paso Robles class soils [7,2], and the possible occurrence of a smectite-like chemical composition in Independence class rocks [8]. Water has played a significant role in the alteration of rocks and soils in the Columbia Hills. The occurrence of goethite and ferric sulfate alone suggests that liquid water was involved in their formation [3]. The pervasively altered materials in Husband Hill outcrops and rocks may have formed by the aqueous alteration of basaltic rocks, volcaniclastic materials, and/or impact ejecta by solutions that were rich in acid-volatile elements [2]. The objective of this paper is to provide an update on the health of the Alpha Particle X-ray Spectrometer (APXS) and to expand the geochemical dataset from sol 470 to sol 1368. Specific objectives are to (1) update the rock and soil classifications, (2) characterize elemental relationships among the major rock and soil classes, and (3) evaluate the involvement of water in the formation or alteration of the materials in these classes.

  16. Analysis of Mars Analogue Soil Samples Using Solid-Phase Microextraction, Organic Solvent Extraction and Gas Chromatography/Mass Spectrometry

    Science.gov (United States)

    Orzechowska, G. E.; Kidd, R. D.; Foing, B. H.; Kanik, I.; Stoker, C.; Ehrenfreund, P.

    2011-01-01

    Polycyclic aromatic hydrocarbons (PAHs) are robust and abundant molecules in extraterrestrial environments. They are found ubiquitously in the interstellar medium and have been identified in extracts of meteorites collected on Earth. PAHs are important target molecules for planetary exploration missions that investigate the organic inventory of planets, moons and small bodies. This study is part of an interdisciplinary preparation phase to search for organic molecules and life on Mars. We have investigated PAH compounds in desert soils to determine their composition, distribution and stability. Soil samples (Mars analogue soils) were collected at desert areas of Utah in the vicinity of the Mars Desert Research Station (MDRS), in the Arequipa region in Peru and from the Jutland region of Denmark. The aim of this study was to optimize the solid-phase microextraction (SPME) method for fast screening and determination of PAHs in soil samples. This method minimizes sample handling and preserves the chemical integrity of the sample. Complementary liquid extraction was used to obtain information on five- and six-ring PAH compounds. The measured concentrations of PAHs are, in general, very low, ranging from 1 to 60 ng g(sup -1). The texture of soils is mostly sandy loam with few samples being 100% silt. Collected soils are moderately basic with pH values of 8-9 except for the Salten Skov soil, which is slightly acidic. Although the diverse and variable microbial populations of the samples at the sample sites might have affected the levels and variety of PAHs detected, SPME appears to be a rapid, viable field sampling technique with implications for use on planetary missions.

  17. 硫脲法电镀污泥中提金研究%The Research of Gold Extraction From Plating Sludge by Thiourea

    Institute of Scientific and Technical Information of China (English)

    程进; 刘承先

    2012-01-01

    在电镀行业中金是常用的贵金属之一,提高含金污泥金的回收率一直是研究的热门。论文用酸性硫脲从电镀污泥处理后的树脂中回收金,并探讨了该方法的最佳工艺条件。结果显示,在40℃恒温搅拌条件下用FeCl3.6H2O(加入量2 g/L溶液)、硫脲(浓度1.0 g/L)的混合溶液(pH=1.5)浸取12 h,浸金率最高,可达85%。%Gold is one of the widely used precious metals in plating industry,this project is aimed to improve the recovery of the sludge containing gold.This paper is focused on gold extraction by leaching plating sludge with acidic thiourea solution.And it is indicated that:under the leaching conditions of pH=1.5,leaching temperature 40 ℃,leaching time 12 h,and 2 g FeCl3.6H2O and 10 g thiourea added per liter solution,the highest leaching rate of gold can be obtained up to 85 %.

  18. Axial dispersion, holdup and slip velocity of dispersed phase in a pulsed sieve plate extraction column by radiotracer residence time distribution analysis

    Energy Technology Data Exchange (ETDEWEB)

    Din, Ghiyas Ud [Department of Nuclear Engineering, Pakistan Institute of Engineering and Applied Sciences (PIEAS), P.O. Nilore, Islamabad (Pakistan); Isotope Applications Division, Pakistan Institute of Nuclear Science and Technology (PINSTECH), P.O. Nilore, Islamabad (Pakistan)], E-mail: fac192@pieas.edu.pk; Chughtai, Imran Rafiq; Inayat, Mansoor Hameed [Department of Chemical and Materials Engineering, Pakistan Institute of Engineering and Applied Sciences (PIEAS), P.O. Nilore, Islamabad (Pakistan); Khan, Iqbal Hussain [Isotope Applications Division, Pakistan Institute of Nuclear Science and Technology (PINSTECH), P.O. Nilore, Islamabad (Pakistan)

    2008-12-15

    Axial dispersion, holdup and slip velocity of dispersed phase have been investigated for a range of dispersed and continuous phase superficial velocities in a pulsed sieve plate extraction column using radiotracer residence time distribution (RTD) analysis. Axial dispersion model (ADM) was used to simulate the hydrodynamics of the system. It has been observed that increase in dispersed phase superficial velocity results in a decrease in its axial dispersion and increase in its slip velocity while its holdup increases till a maximum asymptotic value is achieved. An increase in superficial velocity of continuous phase increases the axial dispersion and holdup of dispersed phase until a maximum value is obtained, while slip velocity of dispersed phase is found to decrease in the beginning and then it increases with increase in superficial velocity of continuous phase.

  19. A simple micro-extraction plate assay for automated LC-MS/MS analysis of human serum 25-hydroxyvitamin D levels.

    Science.gov (United States)

    Geib, Timon; Meier, Florian; Schorr, Pascal; Lammert, Frank; Stokes, Caroline S; Volmer, Dietrich A

    2015-01-01

    This short application note describes a simple and automated assay for determination of 25-hydroxyvitamin D (25(OH)D) levels in very small volumes of human serum. It utilizes commercial 96-well micro-extraction plates with commercial 25(OH)D isotope calibration and quality control kits. Separation was achieved using a pentafluorophenyl liquid chromatography column followed by multiple reaction monitoring-based quantification on an electrospray triple quadrupole mass spectrometer. Emphasis was placed on providing a simple assay that can be rapidly established in non-specialized laboratories within days, without the need for laborious and time consuming sample preparation steps, advanced calibration or data acquisition routines. The analytical figures of merit obtained from this assay compared well to established assays. To demonstrate the applicability, the assay was applied to analysis of serum samples from patients with chronic liver diseases and compared to results from a routine clinical immunoassay.

  20. The Effects of EDTA and H2SO4 on Phyto-extraction of Pb from contaminated Soils by Radish

    Directory of Open Access Journals (Sweden)

    T. Mansouri

    2016-10-01

    Full Text Available Introduction: Soil contamination by heavy metals is one of the most important environmental concerns in many parts of the world. The remediation of soil contaminated with heavy metals is necessary to prevent the entry of these metals into the human food chain. Phyto-extraction is an effective, cheap and environmental friendly method which uses plants for cleaning contaminated soils. The plants are used for phytoremediation should have high potential for heavy metals uptake and produce enormous amount of biomass. A major problem facing phyto-extraction method is the immobility of heavy metals in soils. Chemical phyto-extraction is a method in which different acids and chelating substances are used to enhance the mobility of heavy metals in soil and their uptake by plants. The aims of this study were: (a to determine the potential of radish to extract Pb from contaminated soils and (b to assess the effects of different soil amendment (EDTA and H2SO4 to enhance plant uptake of the heavy metal and (c to study the effects of different levels of soil Pb on radish growth and Pb concentrations of above and below ground parts of this plant. Materials and Methods: Soil samples were air dried and passed through a 2 mm sieve and analysed for some physico-chemical properties and then artificially contaminated with seven levels of lead (0, 200, 400, 600, 800 and 1000 mg/kg using Pb(NO32 salt and then planted radish. During the growth period of radish and after the initiation of root growth, the plants were treated with three levels of sulfuric acid (0, 750 and 1500 mg/kg or three levels of EDTA (0, 10 and 20 mg/kg through irrigation water. At the end of growth period, the above and below ground parts of the plants were harvested, washed, dried and digested using a mixture of HNO3, HCl, and H2O2. The concentrations of Pb, N, P and K in plant extracts were measured. Statistical analysis of data was performed using MSTATC software and comparison of means was

  1. Nomographs for soil vapor extraction and off-gas treatment by activated carbon adsorption

    Energy Technology Data Exchange (ETDEWEB)

    Egemen, E.; Nirmalakhandan, N. [New Mexico State Univ., Las Cruces, NM (United States). Civil, Agricultural, and Geological Engineering Dept.

    1997-12-31

    Soil vapor extraction (SVE) is a widely accepted in-place treatment technology that uses forced air to remove contaminant vapors from zones of permeable vapor flow, thereby enhancing the volatilization of contaminants from the subsurface. The resulting off-gases are contaminated with volatiles and semi-volatiles and have to treated by catalytic or thermal destruction systems, activated carbon adsorbers, or bioreactors. Of these, activated carbon adsorption is the most commonly used technology. From the theoretical foundation of SVE and carbon adsorption, two nomographs were developed for remedial investigation, feasibility studies, planning, operation, and preliminary design purposes. An advantage of such nomographs is that they graphically indicate the sensitivity of the remediation process to different design parameters and critical ranges within a given parameter. In effect, nomographs can help to foster an intuitive understanding of the SVE and adsorption processes itself, which is of considerable value to a process engineer. In addition, such a nomograph provides a utilitarian resource to those who do not have direct access to a comparable computer model. The purpose of this paper is to present the design equations and their use in the development of nomographs for the design of SVE systems and treatment of contaminated air streams by activated carbon canisters.

  2. Study on Supercritical Fluid Extraction of Pu(Ⅳ)in Simulative Contaminated Soils

    Institute of Scientific and Technical Information of China (English)

    SONG; Zhi-jun; DING; You-qian; ZHOU; Li-qiang

    2015-01-01

    Supercritical fluid has advantages of rapid mass transfer and high solubility,which can extract different substance through changing the extracting temperature and pressure.So in comparison to conventional solvent extraction process,supercritical fluid extraction do not need to pretreatment of the matrix,minimizes the amount of secondary waste,and the extraction

  3. Quantitative Analysis of Total Petroleum Hydrocarbons in Soils: Comparison between Reflectance Spectroscopy and Solvent Extraction by 3 Certified Laboratories

    Directory of Open Access Journals (Sweden)

    Guy Schwartz

    2012-01-01

    Full Text Available The commonly used analytic method for assessing total petroleum hydrocarbons (TPH in soil, EPA method 418.1, is usually based on extraction with 1,1,2-trichlorotrifluoroethane (Freon 113 and FTIR spectroscopy of the extracted solvent. This method is widely used for initial site investigation, due to the relative low price per sample. It is known that the extraction efficiency varies depending on the extracting solvent and other sample properties. This study’s main goal was to evaluate reflectance spectroscopy as a tool for TPH assessment, as compared with three commercial certified laboratories using traditional methods. Large variations were found between the results of the three commercial laboratories, both internally (average deviation up to 20%, and between laboratories (average deviation up to 103%. Reflectance spectroscopy method was found be as good as the commercial laboratories in terms of accuracy and could be a viable field-screening tool that is rapid, environmental friendly, and cost effective.

  4. Effect of DNA extraction procedure, repeated extraction and ethidium monoazide (EMA)/propidium monoazide (PMA) treatment on overall DNA yield and impact on microbial fingerprints for bacteria, fungi and archaea in a reference soil.

    Science.gov (United States)

    Wagner, Andreas O; Praeg, Nadine; Reitschuler, Christoph; Illmer, Paul

    2015-09-01

    Different DNA extraction protocols were evaluated on a reference soil. A wide difference was found in the total extractable DNA as derived from different extraction protocols. Concerning the DNA yield phenol-chloroform-isomyl alcohol extraction resulted in high DNA yield but also in a remarkable co-extraction of contaminants making PCR from undiluted DNA extracts impossible. By comparison of two different extraction kits, the Macherey&Nagel SoilExtract II kit resulted in the highest DNA yields when buffer SL1 and the enhancer solution were applied. The enhancer solution not only significantly increased the DNA yield but also the amount of co-extracted contaminates, whereas additional disintegration strategies did not. Although a three times repeated DNA extraction increased the total amount of extracted DNA, microbial fingerprints were merely affected. However, with the 5th extraction this changed. A reduction of total DGGE band numbers was observed for archaea and fungi, whereas for bacteria the diversity increased. The application of ethidium monoazide (EMA) or propidium monoazide (PMA) treatment aiming on the selective removal of soil DNA derived from cells lacking cell wall integrity resulted in a significant reduction of total extracted DNA, however, the hypothesized effect on microbial fingerprints failed to appear indicating the need for further investigations.

  5. Evaluating the efficacy of a centrifugation-flotation method for extracting Ascaris ova from soil

    DEFF Research Database (Denmark)

    Cranston, Imogen; Teoh, Penelope J.; baker, Sarah M.

    2016-01-01

    and flotation technique was applied to 15 soil types, which were seeded with Ascaris suum ova. Soil type, soil moisture content, soil texture and organic matter content were assessed for each soil sample. Results: The average ova recovery rate was 28.2%, with the recovery rate of the method decreasing...... with increasing soil moisture content, particle size and organic matter content. The association between recovery rate and organic matter content was statistically significant. Conclusions: The present study identified a low recovery rate for an adapted centrifugation-flotation method, although this was similar...... to the recovery rate demonstrated by other methods developed for soil. Soil organic matter content was significantly associated with ova recovery rates...

  6. Determination of mobile form contents of Zn, Cd, Pb and Cu in soil extracts by combined stripping voltammetry

    Energy Technology Data Exchange (ETDEWEB)

    Nedeltcheva, T. [Department of Analytical Chemistry, University of Chemical Technology and Metallurgy, 8 Kl. Ohridsi Blvd., 1756 Sofia (Bulgaria)]. E-mail: nedel@uctm.edu; Atanassova, M. [Department of Analytical Chemistry, University of Chemical Technology and Metallurgy, 8 Kl. Ohridsi Blvd., 1756 Sofia (Bulgaria); Dimitrov, J. [N. Pushkarov Institute of Soil Science and Agroecology, 7 Shosse Bankya St., 1080 Sofia (Bulgaria); Stanislavova, L. [N. Pushkarov Institute of Soil Science and Agroecology, 7 Shosse Bankya St., 1080 Sofia (Bulgaria)

    2005-01-10

    The amount of mobile forms of Zn, Pb, Cd and Cu in extracts obtained by treating soil samples with ammonium nitrate were determined by an appropriate combination of anodic and cathodic stripping voltammetry with hanging mercury drop electrode. Every analysis required three mercury drops: on the first one, zinc was determined; on the second, cadmium and lead; on the third, copper was determined. Zinc, lead and cadmium were determined by conventional differential-pulse anodic stripping voltammetry. For copper determination, adsorptive differential-pulse cathodic stripping voltammetry with amalgamation using chloride ions as a complexing agent was applied. The standard deviation of the results was from 1 to 10% depending on the metal content in the sample. Voltammetric results were in good agreement with the AAS analysis. No microwave digestion of soil extracts was necessary.

  7. Sequential diffusion of ammonium and nitrate from soil extracts to a polytetrafluoroethylene trap for 15N determination

    DEFF Research Database (Denmark)

    Sørensen, P.; Jensen, E.S.

    1991-01-01

    A novel diffusion method was used for preparation of NH4+- and NO3--N samples from soil extracts for N-15 determination. Ammonium, and nitrate following reduction to ammonia, are allowed to diffuse to an acid-wetted glass filter enclosed in polytetrafluoroethylene tape. The method was evaluated...... with simulated soil extracts obtained using 50 ml of 2 M potassium chloride solution containing 130-mu-g of NH4+-N (2.3 atom% N-15) and 120-mu-g of NO3--N (natural N-15 abundance). No cross-over in the N-15 abundances of NH4+-N and NO3--N was observed, indicating a quantitative diffusion process (72 h, 25......-degrees-C). Owing to the presence of inorganic nitrogen impurities in the potassium chloride, the N-15 enrichments should be corrected for the blank nitrogen content....

  8. Metal extractability patterns to evaluate (potentially) mobile fractions in periurban calcareous agricultural soils in the Mediterranean area-analytical and mineralogical approaches.

    Science.gov (United States)

    de Santiago-Martín, Ana; Valverde-Asenjo, Inmaculada; Quintana, Jose R; Vázquez, Antonio; Lafuente, Antonio L; González-Huecas, Concepción

    2013-09-01

    A set of periurban calcareous agricultural Mediterranean soils was spiked with a mixture of Cd, Cu, Pb and Zn at two levels within the limit values proposed by current European legislation, incubated for up to 12 months, and subjected to various one-step extraction procedures to estimate mobile (neutral salts) and potentially mobile metal fractions (complexing and acidic extraction methods). The results obtained were used to study metal extractability patterns according to the soil characteristics. The analytical data were coupled with mineralogical investigations and speciation modelling using the Visual Minteq model. The formation of soluble metal-complexes in the complexing extracts (predicted by the Visual Minteq calculations) led to the highest extraction efficiency with complexing extractants. Metal extractability patterns were related to both content and composition of carbonate, organic matter, Fe oxide and clay fractions. Potentially mobile metal fractions were mainly affected by the finest soil fractions (recalcitrant organic matter, active lime and clay minerals). In the case of Pb, scarce correlations between extractable Pb and soil constituents were obtained which was attributed to high Pb retention due to the formation of 4PbCO3·3PbO (corroborated by X-ray diffraction). In summary, the high metal proportion extracted with complexing agents highlighted the high but finite capacity to store potentially mobilizable metals and the possible vulnerability of these soils against environmental impact from metal accumulation.

  9. Investigations into the application of a combination of bioventing and biotrickling filter technologies for soil decontamination processes--a transition regime between bioventing and soil vapour extraction.

    Science.gov (United States)

    Magalhães, S M C; Ferreira Jorge, R M; Castro, P M L

    2009-10-30

    Bioventing has emerged as one of the most cost-effective in situ technologies available to address petroleum light-hydrocarbon spills, one of the most common sources of soil pollution. However, the major drawback associated with this technology is the extended treatment time often required. The present study aimed to illustrate how an intended air-injection bioventing technology can be transformed into a soil vapour extraction effort when the air flow rates are pushed to a stripping mode, thus leading to the treatment of the off-gas resulting from volatilisation. As such, a combination of an air-injection bioventing system and a biotrickling filter was applied for the treatment of contaminated soil, the latter aiming at the treatment of the emissions resulting from the bioventing process. With a moisture content of 10%, soil contaminated with toluene at two different concentrations, namely 2 and 14 mg g soil(-1), were treated successfully using an air-injection bioventing system at a constant air flow rate of ca. 0.13 dm(3) min(-1), which led to the removal of ca. 99% toluene, after a period of ca. 5 days of treatment. A biotrickling filter was simultaneously used to treat the outlet gas emissions, which presented average removal efficiencies of ca. 86%. The proposed combination of biotechnologies proved to be an efficient solution for the decontamination process, when an excessive air flow rate was applied, reducing both the soil contamination and the outlet gas emissions, whilst being able to reduce the treatment time required by bioventing only.

  10. A simplified soil extraction sequence to monitor the main and trace element speciation in soil after compost and mineral fertilizer additions upon the composition of wheat grains

    Science.gov (United States)

    Sager, Manfred; Erhart, Eva

    2016-04-01

    High quality biological waste treatment aims at producing compost in order to maintain a clean environment and to sustain soil organic carbon levels. Fertilization with compost as a source of organic carbon, nutrients, and accessory elements, as well as fertilization with mineral N- and PK fertilizer have been tested in a field experiment on a calcaric Fluvisol in the Danube wetlands, at 4 levels each. Yields of wheat were recorded, and grains and soils were sampled from each treatment, and analyzed for main and trace element composition. The corresponding soils were characterized by mobile phases, obtained by leaching with 0,16M acetic acid to cover exchangeables plus carbonates, and subsequently by 0,1M oxalate buffer pH 3 to dissolve the pedogenic oxides. Total amounts were obtained from digests with perchloric- nitric-hydrofluoric acid. For quasi-total amounts, aqua regia was replaced by pressure decomposition with KClO3 in dilute nitric acid. The proposed extraction sequence permits to analyze and interpret soil for main elements, trace elements, nutrients and anions simultaneously. Factor analyses of soil extracts obtained from dilute acetic acid revealed Ba-Be-Cd-Cu-Li-S (traces), Ca-Mg-Mn (main carbonates), Al-Fe-B, Y, and P-K (nutrients) as chemically feasible principal components. Subsequent soil extracts from oxalate contained Al-B-Co-K-Na-Pb-Si-V-S (maybe acid silicate weathering), Cr-Li-Ni-Sr-Ti (maybe basic silicate weathering), Be-Cu-Fe-P, Co-Mg-Mn-Zn (Mn-oxides) and Ba-Sc as principal components. Factor analyses of total element data distinguished the principal components Ce-La-Li-Sc-Y-P (rare earths), Al-Ca-Fe-K-Mg-Na-P (main elements), Cd-Co-Cr-Cu-Ni-Zn (trace elements), As-Pb (contaminants), Ba-Mn-Sr, and Ti, which looks chemically feasible also. Factor analyses of those soil fractions which presumably form the main fractions of exchangeables, carbonates, pedogenic oxides and silicates, showed no cross connections, except for P. Oxalate

  11. Reproducibility of the BCR sequential extraction procedure in a long-term study of the association of heavy metals with soil components in an upland catchment in Scotland.

    Science.gov (United States)

    Bacon, Jeffrey R; Hewitt, Irene J; Cooper, Patricia

    2005-01-20

    Humic iron podzol soils from three different plots at the Glensaugh Research Station, Aberdeenshire have been sampled on an annual basis since 1990 and analysed using both total digestion and the original BCR sequential extraction procedure. Particular care was required during the oxidation of these organic soils to prevent loss of material. The residue from the sequential extraction was analysed so that the values for total concentration derived from the total digestion and from the sum of the concentrations in the fractions of the extraction procedure could be compared. The comparison was good for all three soils indicating that not only did the sequential extraction give good recovery but that this was reproducible over a period of several years. The proportion of metals extractable at each step remained relatively constant thereby demonstrating the reproducibility of the procedure and the stability of the metals in the soils over the time scale of the sampling used. Whereas the total concentrations of Cr, Cu and Ni were highest in the soil from a roadside plot, this was not the case for Cd, Pb and Zn. In the case of Pb, concentrations in soils (0-25-cm depth) well away from the road were over 100 mg/kg and well above the expected background level. The distribution of metals between each of the extracted fractions varied not only between each metal but also between each of the three soils indicating that both metal and soil influenced the measured distribution. The distribution of Pb in the roadside soil was different from those in the other two soils and over 10% was extracted in the first, acetic acid soluble, fraction.

  12. Role of phosphate and Fe-oxides on the acid-aided extraction efficiency and readsorption of As in field-aged soil.

    Science.gov (United States)

    Im, Jinwoo; Yang, Kyung; Moon, Seheum; Kim, Young-Jin; Nam, Kyoungphile

    2015-12-30

    This study was conducted to investigate arsenic (As) readsorption phenomenon in acid-treated soil using phosphate as a competing ion. Three field-aged soils (i.e., S1, paddy soil; S2, field soil; S3, forest soil) originally contaminated with As ranging from 30 to 59 mg/kg-soil were collected from a former smelter site. When 0.2M hydrochloric acid (HCl) alone was used as an extraction solution, As bound to iron (Fe) oxides was removed but significant amount of the released As was readsorbed onto residual Fe-oxides, yielding low As extraction efficiency of 11-27%. Readsorption of the released As seemed to occur preferentially on amorphous Fe-oxides. In contrast, As extraction efficiency was greatly increased by 0.2M HCl solution supplemented with monopotassium phosphate (KH2PO4), which was greatly influenced by the molar ratio of acid to phosphate. In addition, by the extraction solution with an optimal ratio of 0.2M HCl/0.1M KH2PO4, As extraction efficiency differed with soil types, showing 79.6, 44.1, and 61.0% in S1, S2, and S3, respectively. The reason can be ascribed to the blocking of the available As readsorption sites by phosphate ions, the sites seemed to mainly reside on the residual amorphous Fe-oxides in soil. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. From soil to leaves--aluminum fractionation by single step extraction procedures in polluted and protected areas.

    Science.gov (United States)

    Frankowski, Marcin; Zioła-Frankowska, Anetta; Siepak, Jerzy

    2013-09-30

    The paper presents the fractionation of aluminum in the samples of soil and plants of different species using a selective single-step extraction method. The study was conducted in the area located near a chemical plant, which for many years served as a post-crystallization leachate disposal site storing chemical waste (sector I), and in the area around the site: in Wielkopolski National Park, Rogalin Landscape Park and toward the infiltration ponds at the "Dębina" groundwater well-field for the city of Poznań (Poland) (sector II). The results of aluminum fractionation in samples of soil, leaves and plants showed heavy pollution with aluminum, especially in the water soluble aluminum fraction - Alsw (maximum concentration of aluminum in soil extract was 234.8 ± 4.8 mg kg(-1), in the leaves of Betula pendula it was 107.4 ± 1.8 mg kg(-1) and in the plants of Artemisia vulgaris (root) and Medicago sativa (leaves) it amounted to 464.7 ± 10.7 mg kg(-1)and 146.8 ± 1.2 mg kg(-1) respectively). In addition, the paper presents the problem of organic aluminum fractionation in biological samples and it shows the relationship between aluminum concentration in soil and the analysed woody and herbaceous species.

  14. As, Cd, Cr, Ni and Pb pressurized liquid extraction with acetic acid from marine sediment and soil samples

    Energy Technology Data Exchange (ETDEWEB)

    Moreda-Pineiro, Jorge [Department of Analytical Chemistry, Faculty of Sciences, University of A Coruna. Campus da Zapateira s/n. E-15071. A Coruna (Spain)]. E-mail: jmoreda@udc.es; Alonso-Rodriguez, Elia [Department of Analytical Chemistry, Faculty of Sciences, University of A Coruna. Campus da Zapateira s/n. E-15071. A Coruna (Spain); Lopez-Mahia, Purificacion [Department of Analytical Chemistry, Faculty of Sciences, University of A Coruna. Campus da Zapateira s/n. E-15071. A Coruna (Spain); University Institute of Environment, University of A Coruna, Pazo de Longora, Lians, E-15179. Oleiros (Spain); Muniategui-Lorenzo, Soledad [Department of Analytical Chemistry, Faculty of Sciences, University of A Coruna. Campus da Zapateira s/n. E-15071. A Coruna (Spain); Prada-Rodriguez, Dario [Department of Analytical Chemistry, Faculty of Sciences, University of A Coruna. Campus da Zapateira s/n. E-15071. A Coruna (Spain); University Institute of Environment, University of A Coruna, Pazo de Longora, Lians, E-15179. Oleiros (Spain); Moreda-Pineiro, Antonio [Department of Analytical Chemistry, Nutrition and Bromatology, Faculty of Chemistry, University of Santiago de Compostela, Avenida das Ciencias, s/n. E-15782, Santiago de Compostela (Spain); Bermejo-Barrera, Adela [Department of Analytical Chemistry, Nutrition and Bromatology, Faculty of Chemistry, University of Santiago de Compostela, Avenida das Ciencias, s/n. E-15782, Santiago de Compostela (Spain); Bermejo-Barrera, Pilar [Department of Analytical Chemistry, Nutrition and Bromatology, Faculty of Chemistry, University of Santiago de Compostela, Avenida das Ciencias, s/n. E-15782, Santiago de Compostela (Spain)

    2006-12-15

    Rapid leaching procedures by Pressurized Liquid Extraction (PLE) have been developed for As, Cd, Cr, Ni and Pb leaching from environmental matrices (marine sediment and soil samples). The Pressurized Liquid Extraction is completed after 16 min. The released elements by acetic acid Pressurized Liquid Extraction have been evaluated by inductively coupled plasma-optical emission spectrometry. The optimum multi-element leaching conditions when using 5.0 ml stainless steel extraction cells, were: acetic acid concentration 8.0 M, extraction temperature 100 deg. C, pressure 1500 psi, static time 5 min, flush solvent 60%, two extraction steps and 0.50 g of diatomaceous earth as dispersing agent (diatomaceous earth mass/sample mass ratio of 2). Results have showed that high acetic acid concentrations and high extraction temperatures increase the metal leaching efficiency. Limits of detection (between 0.12 and 0.5 {mu}g g{sup -1}) and repeatability of the over-all procedure (around 6.0%) were assessed. Finally, accuracy was studied by analyzing PACS-2 (marine sediment), GBW-07409 (soil), IRANT-12-1-07 (cambisol soil) and IRANT-12-1-08 (luvisol soil) certified reference materials (CRMs). These certified reference materials offer certified concentrations ranges between 2.9 and 26.2 {mu}g g{sup -1} for As, from 0.068 to 2.85 {mu}g g{sup -1} for Cd, between 26.4 and 90.7 {mu}g g{sup -1} for Cr, from 9.3 to 40.0 {mu}g g{sup -1} for Ni and between 16.3 and 183.0 {mu}g g{sup -1} for Pb. Recoveries after analysis were between 95.7 and 105.1% for As, 96.2% for Cd, 95.2 and 100.6% for Cr, 95.7 and 103% for Ni and 94.2 and 105.5% for Pb.

  15. A correlation between the fate and non-extractable residue formation of 14C-metalaxyl and enzymatic activities in soil.

    Science.gov (United States)

    Botterweck, Jens; Claßen, Daniela; Zegarski, Thordis; Gottfroh, Christian; Kalathoor, Roshni; Schäffer, Andreas; Schwarzbauer, Jan; Schmidt, Burkhard

    2014-01-01

    Extracellular, oxidative soil enzymes like monophenol oxidases and peroxidases play an important role in transformation of xenobiotics and the formation of organic matter in soil. Additionally, these enzymes may be involved in the formation of non-extractable residues (NERs) of xenobiotics during humification processes. To examine this correlation, the fate of the fungicide (14)C metalaxyl in soil samples from Ultuna (Sweden) was studied. Using different soil sterilization techniques, it was possible to differentiate between free, immobilized, and abiotic ("pseudoenzyme"-like) oxidative activities. A correlation between the formation of metalaxyl NER and soil organic matter content, biotic activities, as well as extracellular phenoloxidase and peroxidase activities in the bulk soil and its particle size fractions was determined. Extracellular soil-bound enzymes were involved in NER formation (up to 8% of applied radioactivity after 92 days) of the fungicide independently from the presence of living microbes and different distributions of the NER in the soil humic subfractions.

  16. 土壤RNA提取方法研究进展%Progress of Researches on Extraction Methods of Soil RNA

    Institute of Scientific and Technical Information of China (English)

    刘华; 申天琳; 李学坤; 付合才; 戴九兰

    2011-01-01

    RNA plays an important role in studying environmental microbes because it can indicate the characteristics of the activated microorganism. The extraction of total RNA is the basis of real-time fluorescence quantitative PCR, northern hybridization analysis, cDNA library creation and other molecular biology studies. How to obtain a high yield and quality soil RNA is the critical step for the research of soil microbes. Therefore, several RNA isolation methods which can obtain high quality RNA from soil were summarized in this article, including strong denaturant method, Trizol method, CTAB method, SDS-phenol method, enzyme decomposition method and commercial RNA extraction kits. The various combinations of above methods for RNA isolation from soil were often used. Among the above methods, strong denaturant is good Rnase inhibitor, and CTAB can cause the protein denaturation. However, bead beating is the efficient physical lysis method. Compared with other methods, mechanical homogenization in Trizol is the most efficient for releasing microbial RNA. The different RNA extraction kits have their characteristics for different soils. Furthermore, the influence factors, application aspects, as well as the potentials and the limitations for the extraction of total RNA were also reviewed. Therefore, this work may provide the guidelines for RNA isolation and the choice of method to study soil microbes. Ref 56%总RNA提取是进行实时荧光定量PCR、Northern杂交分析及cDNA文库建立等分子生物学实验研究的基础.提取出高质量高产量的土壤RNA已成为研究土壤微生物的关键步骤.综述了常用的几种土壤RNA提取方法,包括强变性剂法、Trizol法、CTAB法、SDS-Phenol法、酶解法以及试剂盒等方法.提取过程中化学试剂的选择及配比需依据不同的土壤类型,其中Trizol法在提取总RNA时应用广泛,再结合适当的物理破碎及生物学方法,可得到理想的RNA.试剂盒法提取土壤RNA方

  17. Variability in soil micronutrients extracted by DTPA and Mehlich-3 at the plot scale in an acidic environment

    Science.gov (United States)

    Paz-Ferreiro, Jorge; Lado, Marcos; de Abreu, Cleide A.

    2014-05-01

    Land use practices affect soil properties and nutrient supply. Very limited data are available on micronutrient extractability in northwest Spain. The aim of this study was to analyse long-term effects of land use on the concentration, variability and spatial distribution of soil nutrients. To this end, neighboring forest and cultivated stands were compared. The study was carried out in an acid, rich in organic matter soil developed over sediments at the province of Lugo, northwestern of Spain. Adjacent plots with a surface of 100 m2 were marked on regular square grids with 2-m spacing. Fe, Mn, Zn and Cu were extracted both by Mehlich-3 and DTPA solutions and determined by ICP-MS. General soil chemical and physical properties were routinely analyzed. In arable land, microelement concentration ranges were as follows: Fe (100 and 135 mg kg-1), Mn (7.6 and 21.5 mg kg-1), Zn (0.6 and 3.7 mg kg-1), and Cu (0.2 and 0.7 mg kg-1). In forest land, these ranges were: Fe (62 and 309 mg kg-1), Mn (0.2 and 2.1 mg kg-1), Zn (0.2 and 2.9 mg kg-1), and Cu (0.1 and 0.2 mg kg-1). With the exception of Fe-DTPA, microelement concentrations extracted both with DTPA and Mehlich-3 were higher in the cultivated than in the forest stand. Coefficients of variation were higher for the microelement content of the soil under forest. Principal component analysis was performed to evaluate associations between extractable microelements and general physico-chemical properties. At the studied scale, nutrient management was the main factor affecting the agricultural site, whereas soil-plant interactions were probably responsible for the higher variation within the forest site. Patterns of spatial variability of the studied nutrients at the small plot scale also were assessed by geostatistical techniques. Results were discussed in the frame of sustainable land use and organic matter decline with conventional tillage and sustainable land use

  18. Speciation of Heavy Metals by Modified BCR Sequential Extraction in Soils Contaminated by Phosphogypsum in Sfax, Tunisia

    Directory of Open Access Journals (Sweden)

    Ahmed Wali

    2015-01-01

    Full Text Available The accumulation of trace metals in soil is a serious environmental problem that creates a hazard when metals are transferred to water or plants. To understand the mobility and bioavailability of trace metals, the concentrations and distributions of trace metals must be established for different physical and chemical phases of the soil. We determined the concentrations of trace metals (Zn, Pb, Cu, Cr, Co, Ni, Mn, and Fe in soil using the sequential extraction method recommended by Community Bureau of Reference (BCR and analysed chemical properties, such as the pH, cation exchange capacity, total organic carbon, electrical conductivity, and calcium carbonate. Our results revealed higher concentrations of trace metals in topsoil samples (0–20 cm than in subsoil samples (20–40 cm and 40–60 cm for most metals at four sites. Zn in the topsoil was mostly associated with the non-resistant fraction at all sites. Approximately 60% more Pb was bound to the non-residual, exchangeable and reducible fractions at all sites, and soil depths. Cr, Cu, Ni and Fe were mainly in the residual fraction, whereas Mn was largely present in the non-resistant fraction. The global contamination factor of trace metals decreased with soil depth. The mobility and bioavailability were greatest for Zn, followed by Cu and Pb. DOI: http://dx.doi.org/10.5755/j01.erem.70.4.7807

  19. Leaching characteristics of arsenic and heavy metals in urban roadside soils using a simple bioavailability extraction test.

    Science.gov (United States)

    Wang, Xue-song; Qin, Yong; Chen, Yong-kang

    2007-06-01

    Regular ingestion of soils could pose a potential health threat due to long-term toxic element exposure. In order to estimate the human bioavailability quotients for As and heavy metals, 12 urban roadside soil samples were collected and analyzed for As, Pb, Cu, Zn, Ni, Co, and Cr using Simple Bioavailability Extraction Test (SBET). The quantities of As, Pb, Cu, Zn, Ni, Co, and Cr leached from soils within the simulated human stomach for 1 h indicated, on average, 27.3, 71.7, 40.4, 59.3, 17.7, 27.2 and 5.6% bioavailability, respectively. Significant positive correlations were observed between the amounts leached using SBET and the total amounts dissolved with HNO(3)-HCl-HF acid mixtures. Stepwise multiple regression analysis indicated that the amounts leached with SBET for As, Pb, Zn, Ni, and Co were not related to any of the physic-chemical parameters measured (i.e., soil texture, pH, total organic matter). These results may be valuable for providing input data for risk assessment at sites subject to anthropogenic soil contamination.

  20. Reliability and Validity of Kinetic and Kinematic Parameters Determined With Force Plates Embedded Under Soil-Filled Baseball Mound.

    Science.gov (United States)

    Yanai, Toshimasa; Matsuo, Akifumi; Maeda, Akira; Nakamoto, Hiroki; Mizutani, Mirai; Kanehisa, Hiroaki; Fukunaga, Tetsuo

    2017-01-13

    We developed a force measurement system in a soil-filled mound for measuring ground reaction forces (GRFs) acting on baseball pitchers and examined the reliability and validity of kinetic and kinematic parameters determined from the GRFs. Three soil-filled trays of dimensions that satisfied the official baseball rules were fixed onto three force platforms. Eight collegiate pitchers wearing baseball shoes with metal cleats were asked to throw 5 fastballs with maximum effort from the mound toward a catcher. The reliability of each parameter was determined for each subject as the coefficient of variation across the 5 pitches. The validity of the measurements was tested by comparing the outcomes either with the true values or the corresponding values computed from a motion capture system. The coefficients of variation in the repeated measurements of the peak forces ranged from 0.00 to 0.17, and were smaller for the pivot foot than the stride foot. The mean absolute errors in the impulses determined over entire duration of pitching motion were 5.3 N·s, 1.9 N·s, and 8.2 N·s for the X-, Y-, and Z-directions, respectively. These results suggest that the present method is reliable and valid for determining selected kinetic and kinematic parameters for analyzing pitching performance.

  1. Certified reference material for the quality control of EDTA- and DTPA-extractable trace metal contents in calcareous soil (CRM 600)

    Energy Technology Data Exchange (ETDEWEB)

    Quevauviller, P. [European Commission, Standards, Measurements and Testing Programme, Brussels (Belgium); Lachica, M.; Barahona, E. [Estacion Experimental del Zaidin, Granada (Spain); Gomez, A. [Institut Nacional de Recherche Agronomique, Station d`Agronomie, Villenave d`Ornon (France); Rauret, G. [Universidad de Barcelona, Dept. de Quimica Analitica, Barcelona (Spain); Ure, A. [University of Strathclyde, Dept. of Pure and Applied Chemistry, Glasgow (United Kingdom); Muntau, H. [European Commission, Joint Research Centre, Environment Institute, Ispra (Italy)

    1998-03-01

    Single extraction tests are commonly used to study the eco-toxicity and mobility of metals in soils, e.g. to assess the bioavailable metal fraction (and thus to estimate the related phyto-toxic and nutritional deficiency effects) and the environmentally accessible trace metals upon disposal of e.g. sediment on to a soil (e.g. contamination of ground waters). However, the lack of uniformity in the different procedures does not allow the results to be compared worldwide nor the procedures to be validated. This paper describes the interlaboratory testing of EDTA- and DTPA-extraction procedures for soil analysis, followed by the preparation of a calcareous soil reference material (CRM 600), the homogeneity and stability studies and the analytical work performed for the certification of the EDTA- and DTPA- extractable contents of some trace metals (following the standardized extraction procedures). (orig.) With 2 figs., 7 tabs., 14 refs.

  2. Simultaneous application of chemical oxidation and extraction processes is effective at remediating soil Co-contaminated with petroleum and heavy metals.

    Science.gov (United States)

    Yoo, Jong-Chan; Lee, Chadol; Lee, Jeung-Sun; Baek, Kitae

    2017-01-15

    Chemical extraction and oxidation processes to clean up heavy metals and hydrocarbon from soil have a higher remediation efficiency and take less time than other remediation processes. In batch extraction/oxidation process, 3% hydrogen peroxide (H2O2) and 0.1 M ethylenediaminetetraacetic acid (EDTA) could remove approximately 70% of the petroleum and 60% of the Cu and Pb in the soil, respectively. In particular, petroleum was effectively oxidized by H2O2 without addition of any catalysts through dissolution of Fe oxides in natural soils. Furthermore, heavy metals bound to Fe-Mn oxyhydroxides could be extracted by metal-EDTA as well as Fe-EDTA complexation due to the high affinity of EDTA for metals. However, the strong binding of Fe-EDTA inhibited the oxidation of petroleum in the extraction-oxidation sequential process because Fe was removed during the extraction process with EDTA. The oxidation-extraction sequential process did not significantly enhance the extraction of heavy metals from soil, because a small portion of heavy metals remained bound to organic matter. Overall, simultaneous application of oxidation and extraction processes resulted in highly efficient removal of both contaminants; this approach can be used to remove co-contaminants from soil in a short amount of time at a reasonable cost.

  3. (1)H and (13)C NMR spectroscopic studies of hexane-extractable lipids from soils under shelterbelts of different age and composition of plants.

    Science.gov (United States)

    Szajdak, Lech Wojciech; Maryganova, Victoria; Skakovskii, Eugene; Tychinskaya, Ludmila

    2015-01-01

    Comparative study of the composition of lipids extracted with n-hexane from soils under shelterbelts of different age and composition of plants and adjoining cultivated fields in agrolandscape has been carried out with the application of (1)Н and (13)С NMR spectroscopy. The lipid content correlates with the organic carbon content in soils and is the highest in the soil under the 200-years old shelterbelt. The data received indicate that hexane-extractable lipids from the soil under the 200-years old shelterbelt have undergone the most significant biochemical and chemical transformations (oxidation, hydrolysis, polymerization) with the accumulation of resistant compounds and destruction of esters of o-phthalic acid as anthropogenic contaminants compared to the lipids from the soil under the 14-years old shelterbelt and soils of adjoining arable fields.

  4. Extractability of slurry and fertilizer phosphorus in soil after repeated freezing

    Directory of Open Access Journals (Sweden)

    H. SOINNE

    2008-12-01

    Full Text Available The potential effects of freezing on phosphorus (P chemistry in Finnish soils are not well known. We studied the effects of multiple freeze-thaw cycles on soil P chemistry in a laboratory incubation experiment with one organic and one mineral surface soil. The soils were incubated at +5°C or at alternating +5/–20°C temperatures for 24 weeks, either without amendment or amended with pig slurry or with commercial compound fertilizer (NPK 20–3–9. After incubation, the soils were analyzed for water-soluble reactive and unreactive P, and acid ammonium acetate soluble P (PAAA. Freezing and thawing of soils during the incubation had no significant effect on any of the water-soluble P fractions or PAAA. The outcome was most likely a consequence of the good P status of the soils, which masked the gentle effects of freezing. According to these results, the time of soil sampling (fall vs. spring has no effect on P test results on soils with a good P status. Concentrations of soluble P after incubation were roughly twice as high in the slurry treatments than in the fertilizer treatments, demonstrating potentially better long-term availability of slurry P.;

  5. Continuous-flow fractionation of selenium in contaminated sediment and soil samples using rotating coiled column and microcolumn extraction.

    Science.gov (United States)

    Savonina, Elena Yu; Fedotov, Petr S; Wennrich, Rainer

    2012-01-15

    Dynamic fractionation is considered to be an attractive alternative to conventional batch sequential extraction procedures for partitioning of trace metals and metalloids in environmental solid samples. This paper reports the first results on the continuous-flow dynamic fractionation of selenium using two different extraction systems, a microcolumn (MC) packed with the solid sample and a rotating coiled column (RCC) in which the particulate matter is retained under the action of centrifugal forces. The eluents (leachants) were applied in correspondence with a four-step sequential extraction scheme for selenium addressing "soluble", "adsorbed", "organically bound", and "elemental" Se fractions extractable by distilled water, phosphate buffer, tetramethylammonium hydroxide, and sodium sulphite solutions, respectively. Selenium was determined in the effluent by using an inductively coupled plasma atomic emission spectrometer. Contaminated creek sediment and dumped waste (soil) samples from the abandoned mining area were used to evaluate resemblances and discrepancies of two continuous-flow methods for Se fractionation. In general, similar trends were found for Se distribution between extractable and residual fractions. However, for the dumped waste sample which is rich in organic matter, the extraction in RCC provided more effective recovery of environmentally relevant Se forms (the first three leachable fractions). The most evident deviation was observed for "adsorbed" Se (recoveries by RCC and MC are 43 and 7 mg kg(-1), respectively). The data obtained were correlated with peculiarities of samples under investigation and operational principles of RCC and MC.

  6. Selective extraction of heavy metals from two real calcium-rich contaminated soils by a modified NTA.

    Science.gov (United States)

    Picard, François; Chaouki, Jamal

    2016-11-15

    The objective of this work is to evaluate the selectivity and solubility of a buffer chelant. The buffer chelant is ethylenediamine-nitrilotriacetic acid (NTA·3EDA) and its performance is compared to NTA. All experiments were conducted on batches of 25g of soil in an autoclave at 25°C or 75°C with a constant L:S ratio of 2. The experiments were conducted under a CO2 overhead to lower the reaction pH. The buffer chelant allows a 5-fold selectivity increase for heavy metals while increasing or maintaining the same molar extraction yield compared to NTA. These selectivity and extraction results stand out from those obtained with other neutralized NTA. NTA, EDA and the acid gas CO2 are the three necessary ligands in the NTA·3EDA extraction mechanism. A reaction temperature setpoint increase causes a higher Fe dissolution. However, this does not lower the NTA and NTA·3EDA selectivity for heavy metals. Thus, Fe is a non-interfering cation in the NTA and NTA·3EDA extraction mechanisms. This non-interference is less apparent in the NTA extraction mechanism. The present work intends to share another perspective on the design of more selective and soluble chelants for heavy metal extraction.

  7. Feasibility Study of the Use of Thiosulfate as Extractant Agent in the Electrokinetic Remediation of a Soil Contaminated by Mercury from Almadén

    DEFF Research Database (Denmark)

    Subires-Muñoz, José Diego; García-Rubio, Ana; Vereda-Alonso, Carlos

    2010-01-01

    Natural soils are rather complex, making the predictability of the behavior of some remediation techniques very complicated. In this paper, the remediation of a Hg contaminated soil close to Almadén using a thiosulfate solution as extractant agent is studied. In addition, the use of the BCR...

  8. Determination of Wastewater Compounds in Sediment and Soil by Pressurized Solvent Extraction, Solid-Phase Extraction, and Capillary-Column Gas Chromatography/Mass Spectrometry

    Science.gov (United States)

    Burkhardt, Mark R.; Zaugg, Steven D.; Smith, Steven G.; ReVello, Rhiannon C.

    2006-01-01

    A method for the determination of 61 compounds in environmental sediment and soil samples is described. The method was developed in response to increasing concern over the effects of endocrine-disrupting chemicals in wastewater and wastewater-impacted sediment on aquatic organisms. This method also may be used to evaluate the effects of combined sanitary and storm-sewer overflow on the water and sediment quality of urban streams. Method development focused on the determination of compounds that were chosen on the basis of their endocrine-disrupting potential or toxicity. These compounds include the alkylphenol ethoxylate nonionic surfactants and their degradates, food additives, fragrances, antioxidants, flame retardants, plasticizers, industrial solvents, disinfectants, fecal sterols, polycyclic aromatic hydrocarbons, and high-use domestic pesticides. Sediment and soil samples are extracted using a pressurized solvent extraction system. The compounds of interest are extracted from interfering matrix components by high-pressure water/isopropyl alcohol extraction. The compounds were isolated using disposable solid-phase extraction (SPE) cartridges containing chemically modified polystyrene-divinylbenzene resin. The cartridges were dried with nitrogen gas, and then sorbed compounds were eluted with methylene chloride (80 percent)-diethyl ether (20 percent) through Florisil/sodium sulfate SPE cartridge, and then determined by capillary-column gas chromatography/mass spectrometry. Recoveries in reagent-sand samples fortified at 4 to 72 micrograms averaged 76 percent ?13 percent relative standard deviation for all method compounds. Initial method reporting levels for single-component compounds ranged from 50 to 500 micrograms per kilogram. The concentrations of 20 out of 61 compounds initially will be rep