Sample records for platform slip ring

  1. Long-duration life tests of slip ring capsule assemblies for inertial guidance platforms (United States)

    Cole, S. R.; Glossbrenner, E. W.


    Eight slip ring capsules, each having 80 or 100 circuits, were operated for time periods ranging from 14,300 hours to 24,700 hours. The test mode simulated the motion of gimbal axes of the Saturn inertial guidance the platform in an organic free nitrogen environment. Computer-compiled noise data (approximately 45,000 recordings) were graphed as a function of test time and position within the capsules and as extreme probability distributions. Greater than ninety-nine percent of the noise measurements for the capsules with sufficient lubrication were less than 10 milliohms. Capsules with glass dielectrics did not perform significantly differently than those with filled epoxy dielectrics. The initial wear mode of prow formation was followed by rider wear. After 10 to the 8th power wipes, ring wear depth did not exceed the surface finish and the radial rider wear depth was less than 13 microns.

  2. Deterministic phase slips in mesoscopic superconducting rings (United States)

    Petković, I.; Lollo, A.; Glazman, L. I.; Harris, J. G. E.


    The properties of one-dimensional superconductors are strongly influenced by topological fluctuations of the order parameter, known as phase slips, which cause the decay of persistent current in superconducting rings and the appearance of resistance in superconducting wires. Despite extensive work, quantitative studies of phase slips have been limited by uncertainty regarding the order parameter's free-energy landscape. Here we show detailed agreement between measurements of the persistent current in isolated flux-biased rings and Ginzburg-Landau theory over a wide range of temperature, magnetic field and ring size; this agreement provides a quantitative picture of the free-energy landscape. We also demonstrate that phase slips occur deterministically as the barrier separating two competing order parameter configurations vanishes. These results will enable studies of quantum and thermal phase slips in a well-characterized system and will provide access to outstanding questions regarding the nature of one-dimensional superconductivity.

  3. Small sized slip-ring capsule endurance testing (United States)

    Mondier, Jean-Bernard


    Slip-ring capsules are mechanical units used to carry electrical signals or power currents through a rotating joint. They are used either in solar array drive mechanisms (SADM) or in scientific instruments like radiometers. Analyses of the latest missions show that the slip-rings requirements are more and more demanding. For example, the number of in-orbit mechanical cycles keeps increasing. As a result, a signal slip-ring technology, which had been successfully tested for a given need, now has to improve its performances. It was therefore interesting to try to reach the slip-rings technical limits by testing them beyond the required performance of already known space missions. Slip-rings units are currently used in mechanisms such as SADM for the CNES Proteus and Myriade satellite family. They can be also found in the payload instruments of the Megha-Tropiques satellite project, namely Madras and Scarab. A selected hardware was tested at the mechanism endurance laboratory of the CNES, in Toulouse. The typical in-orbit rotation speed was increased in order to limit the test duration to 2 years. The main interest of this work was to provide a continuous slip-ring performance status and a large set of engineering data. The main test results are presented and discussed. The following lines also report a part of the hardware detailed inspection and the lessons learned.

  4. Asynchronous slip-ring motor synchronized with permanent magnets

    Directory of Open Access Journals (Sweden)

    Glinka Tadeusz


    Full Text Available The electric LSPMSM motor presented in the paper differs from standard induction motor by rotor design. The insulated start-up winding is located in slots along the rotor circumference. The winding ends are connected to the slip-rings. The rotor core contains permanent magnets. The electromechanical characteristics for synchronous operation were calculated, as were the start-up characteristics for operation with a short-circuited rotor winding. Two model motors were used for the calculations, the V-shaped Permanent Magnet (VPM – Fig. 3, and the Linear Permanent Magnet (IPM – Fig. 4, both rated at 14.5 kW. The advantages of the investigated motor are demonstrated in the conclusions.

  5. The phase slip factor of the electrostatic cryogenic storage ring CSR (United States)

    Grieser, Manfred; von Hahn, Robert; Vogel, Stephen; Wolf, Andreas


    To determine the momentum spread of an ion beam from the measured revolution frequency distribution, the knowledge of the phase slip factor of the storage ring is necessary. The slip factor was measured for various working points of the cryogenic storage ring CSR at MPI for Nuclear Physics, Heidelberg and was compared with simulations. The predicted functional relationship of the slip factor and the horizontal tune depends on the different islands of stability, which has been experimentally verified. This behavior of the slip factor is in clear contrast to that of magnetic storage rings.

  6. Investigation of Air-Liquid Interface Rings in Buffer Preparation Vessels: the Role of Slip Agents. (United States)

    Shi, Ting; Ding, Wei; Kessler, Donald W; De Mas, Nuria; Weaver, Douglas G; Pathirana, Charles; Martin, Russell D; Mackin, Nancy A; Casati, Michael; Miller, Scott A; Pla, Itzcoatl A


    Air-liquid interface rings were observed on the side walls of stainless steel buffer vessels after certain downstream buffer preparations. Those rings were resistant to regular cleaning-in-place procedures but could be removed by manual means. To investigate the root cause of this issue, multiple analytical techniques, including liquid chromatography with tandem mass spectrometry detection (LC-MS/MS), high-resolution accurate mass liquid chromatography with mass spectrometry, nuclear magnetic resonance, Fourier transform infrared spectroscopy, and scanning electron microscopy with energy-dispersive X-ray spectroscopy have been employed to characterize the chemical composition of air-liquid interface rings. The main component of air-liquid interface rings was determined to be slip agents, and the origin of the slip agents can be traced back to their presence on raw material packaging liners. Slip agents are commonly used in plastic industry as additives to reduce the coefficient of friction during the manufacturing process of thin films. To mitigate this air-liquid interface ring issue, an alternate liner with low slip agent was identified and implemented with minimal additional cost. We have also proactively tested the packaging liners of other raw materials currently used in our downstream buffer preparation to ensure slip agent levels are appropriate. Air-liquid interface rings were observed on the side walls of stainless steel buffer vessels after certain downstream buffer preparations. To investigate the root cause of this issue, multiple analytical techniques have been employed to characterize the chemical composition of air-liquid interface rings. The main components of air-liquid interface rings were determined to be slip agents, which are common additives used in the manufacturing process of thin films. The origin of the slip agents can be traced back to their presence on certain raw material packaging liners. To mitigate this air-liquid interface ring

  7. Wearable Ring-Based Sensing Platform for Detecting Chemical Threats. (United States)

    Sempionatto, Juliane R; Mishra, Rupesh K; Martín, Aida; Tang, Guangda; Nakagawa, Tatsuo; Lu, Xiaolong; Campbell, Alan S; Lyu, Kay Mengjia; Wang, Joseph


    This work describes a wireless wearable ring-based multiplexed chemical sensor platform for rapid electrochemical monitoring of explosive and nerve-agent threats in vapor and liquid phases. The ring-based sensor system consists of two parts: a set of printed electrochemical sensors and a miniaturized electronic interface, based on a battery-powered stamp-size potentiostat, for signal processing and wireless transmission of data. A wide range of electrochemical capabilities have thus been fully integrated into a 3D printed compact ring structure, toward performing fast square-wave voltammetry and chronoamperometric analyses, along with interchangeable screen-printed sensing electrodes for the rapid detection of different chemical threats. High analytical performance is demonstrated despite the remarkable miniaturization and integration of the ring system. The attractive capabilities of the wearable sensor ring system have been demonstrated for sensitive and rapid voltammetric and amperometric monitoring of nitroaromatic and peroxide explosives, respectively, along with amperometric biosensing of organophosphate (OP) nerve agents. Such ability of the miniaturized wearable sensor ring platform to simultaneously detect multiple chemical threats in both liquid and vapor phases and alert the wearer of such hazards offers considerable promise for meeting the demands of diverse defense and security scenarios.

  8. Active fault slip and potential large magnitude earthquakes within the stable Kazakh Platform (Central Kazakhstan) (United States)

    Hollingsworth, J.; Walker, R. T.; Abdrakhmatov, K.; Campbell, G.; Mukambayev, A.; Rhodes, E.; Rood, D. H.


    The Tien Shan mountains of Central Asia are characterized at the present day by abundant range-bounding E-W thrust faults, and several major NW-SE striking right-lateral faults, which cut across the stable Kazakh Platform terminating at (or within) the Tien Shan. The various E-W thrust faults are associated with significant seismicity over the last few hundred years. In sharp contrast, the NW-SE right-lateral faults are not associated with any major historical earthquakes, and thus it remains unclear if these Paleozoic structures have been reactivated during the Late Cenozoic. The Dzhalair-Naiman fault (DNF) is one such fault, and is comprised of several fault segments striking NW-SE across the Central Kazakh Platform over a distance of 600+ km. Unlike similar NW-SE right-lateral faults in the region (e.g. Talas-Fergana and Dzhungarian faults), the DNF is confined to the Kazakh Platform and does not penetrate into the Tien Shan. Regional GPS velocities indicate slow (Platform suggest that Platform-interior faults, such as the DNF, may have the potential to generate infrequent very large magnitude earthquakes. We investigate the Chokpar segment of the DNF (60+ km long), which lies 60 km north of Bishkek. We use Quaternary dating techniques (IRSL and 10Be exposure dating) to date several abandoned and incised alluvial fans which are now right-laterally displaced across the fault. Stream channels are offset by 30+ m (measured from a stereo Pleiades DEM and GPS survey data), while the terraces through which they cut were abandoned in the Mid-to-Late Holocene, suggesting a relatively high slip rate over the Late Quaternary (higher than expected from regional GPS velocities). However, given the potential for the DNF to slip in very large infrequent earthquakes (with 10+ m coseismic displacements), our slip-rate calculations may also be subject to additional errors related to the low sampling of earthquakes preserved in the young geomorphology. Nevertheless, our results

  9. Sensing platform based on micro-ring resonator and on-chip reference sensors in SOI

    NARCIS (Netherlands)

    Chakkalakkal Abdulla, S.M.C.; Boer, B.M. de; Pozo Torres, J.M.; Berg, J.H. van den; Abutan, A.E.; Hagen, R.A.J.; Lo Cascio, D.M.R.; Harmsma, P.J.


    This article presents work on a Silicon-On-Insulator (SOI) compact sensing platform based on Micro Ring Resonators (MRRs). In order to enable correction for variations in environmental conditions (temperature, mechanical stress etc), a study has been performed on the performance of uncoated sensing

  10. Reducing user error in dipstick urinalysis with a low-cost slipping manifold and mobile phone platform (Conference Presentation) (United States)

    Smith, Gennifer T.; Dwork, Nicholas; Khan, Saara A.; Millet, Matthew; Magar, Kiran; Javanmard, Mehdi; Bowden, Audrey K.


    Urinalysis dipsticks were designed to revolutionize urine-based medical diagnosis. They are cheap, extremely portable, and have multiple assays patterned on a single platform. They were also meant to be incredibly easy to use. Unfortunately, there are many aspects in both the preparation and the analysis of the dipsticks that are plagued by user error. This high error is one reason that dipsticks have failed to flourish in both the at-home market and in low-resource settings. Sources of error include: inaccurate volume deposition, varying lighting conditions, inconsistent timing measurements, and misinterpreted color comparisons. We introduce a novel manifold and companion software for dipstick urinalysis that eliminates the aforementioned error sources. A micro-volume slipping manifold ensures precise sample delivery, an opaque acrylic box guarantees consistent lighting conditions, a simple sticker-based timing mechanism maintains accurate timing, and custom software that processes video data captured by a mobile phone ensures proper color comparisons. We show that the results obtained with the proposed device are as accurate and consistent as a properly executed dip-and-wipe method, the industry gold-standard, suggesting the potential for this strategy to enable confident urinalysis testing. Furthermore, the proposed all-acrylic slipping manifold is reusable and low in cost, making it a potential solution for at-home users and low-resource settings.

  11. Printable nanoscale metal ring arrays via vertically aligned carbon nanotube platforms. (United States)

    Lee, Sang Ho; Yoon, Seungha; Jeong, Huisu; Han, Mingu; Choi, Sung Mook; Kim, Jong Guk; Park, Ji-Woong; Jung, Gun Young; Cho, Beong Ki; Kim, Won Bae


    This paper reports a novel and efficient strategy for fabricating sub-100 nm metal ring arrays using a simple printing process. Vertically aligned carbon nanotubes that are supported by hexagonally ordered channels of alumina matrices are used as a stamp to print nanoscale ring patterns, which is a very unique stamping platform that has never been reported. Using this strategy, uniform nanoring patterns of various metals can be directly printed onto a wide range of substrate surfaces under ambient conditions. Significantly, the size and interval of the printed nanorings can be systematically tuned by controlling the ring-shaped tip dimensions of the pristine stamps. An advanced example of these printable nanoscale metal ring arrays is explicitly embodied in this work by investigation of the plasmon resonances of metal nanorings with different sizes and intervals.

  12. Finite Element Analysis of the Combined Cone Slip-ring Sealing%锥形滑环组合密封有限元分析

    Institute of Scientific and Technical Information of China (English)

    文华斌; 胡勇; 唐克伦; 胡光忠; 郭毅


    采用ANSYS软件对锥形滑环组合密封进行有限元分析.分析了高压及超高压密封状态下动、静密封面的密封效果以及各密封部件的使用性能,解决了有限元分析过程中大应变问题和接触问题带来的收敛性差的技术难题和密封内压动态加载的技术难题.数值模拟结果表明,锥形滑环组合密封能够实现高压及超高压密封,且各密封部件工作状态良好.数值模拟工作为锥形滑环组合密封产品的开发提供了辅助.%The finite element analysis of the combined cone slip-ring sealing was done by ANSYS software. The sealing effect and the using performance of dynamic sealing surface and static sealing surface under high pressure and super high pressure were analyzed. The sealing technology problem of the dynamic pressure loading and the poor convergence technology problem caused by large strain and contact were solved. The simulation results show that the combined cone slip-ring sealing can satisfy the seal requirements of high pressure or super high pressure,and the working conditions of sealing parts are kept well. The numerical simulation offers helps for developing the combined cone slip-ring sealing.

  13. Space and time harmonics related problems and their mitigation for position and speed sensorless slip-ring induction motor drives applications

    Indian Academy of Sciences (India)

    Subhasis Nandi


    There have been renewed interests in slip-ring induction machines due to their increasing use in both grid connected and stand-alone wind power generation schemes. Despite the squirrel cage induction generators’ advantages of being brushless, low-cost, needing less maintenance and having inherent overload protection, the biggest advantage of variable-speed wound rotor induction machines is in its doubled energy capture. Also in high power induction motor drives such as static Kramer drives or static Scherbius drives use of wound rotor induction motors is a must. Thus it becomes necessary to measure the speed of the machine for closed loop control for such high performance drives. Recently, a sensorless position and speed estimation scheme was proposed for wound rotor wind power generator. In this paper, the limitation of the scheme caused by space and time harmonics have been investigated. Simulation results have been presented to explain the mechanism of the space and time harmonics caused distortion of current. Experimental results showing the deterioration of speed detection scheme at light load for a slip-ring induction motor have been presented. Finally, improvements have been applied experimentally to obtain better speed estimation.

  14. Robust dipstick urinalysis using a low-cost, micro-volume slipping manifold and mobile phone platform. (United States)

    Smith, Gennifer T; Dwork, Nicholas; Khan, Saara A; Millet, Matthew; Magar, Kiran; Javanmard, Mehdi; Ellerbee Bowden, Audrey K


    We introduce a novel manifold and companion software for dipstick urinalysis that eliminate many of the aspects that are traditionally plagued by user error: precise sample delivery, accurate readout timing, and controlled lighting conditions. The proposed all-acrylic slipping manifold is reusable, reliable, and low in cost. A simple timing mechanism ensures results are read out at the appropriate time. Results are obtained by capturing videos using a mobile phone and by analyzing them using custom-designed software. We show that the results obtained with the proposed device are as accurate and consistent as a properly executed dip-and-wipe method, the industry gold-standard, suggesting the potential for this strategy to enable confident urinalysis testing in home environments.

  15. A universal label-free biosensing platform based on opto-fluidic ring resonators (United States)

    Zhu, Hongying; White, Ian M.; Suter, Jonathan D.; Gohring, John; Fan, Xudong


    Rapid and accurate detection of biomolecules is important for medical diagnosis, pharmaceuticals, homeland security, food quality control, and environmental protection. A simple, low cost and highly sensitive label-free optical biosensor based on opto-fluidic ring resonator (OFRR) has been developed that naturally integrates microfluidics with ring resonators. The OFRR employs a piece of fused silica capillary with a diameter around 100 micrometers. The circular cross section of the capillary forms the ring resonator and light repeatedly travels along the resonator circumference in the form of whispering gallery modes (WGMs) through total internal reflection. When the capillary wall is as thin as a couple of micrometers (detect the target molecules with high specificity, the OFRR inner surface is functionalized with receptors, such as antibodies, peptide-displayed bacteriophage or oligonucleotide DNA probes. The WGM spectral position shifts when biomolecules bind to the OFRR inner surface and change the local refractive index, which provides quantitative and kinetic information about the biomolecule interaction near the OFRR inner surface. The OFRR has been successfully demonstrated for detection of various types of biomoelcuels. Here, we will first introduce the basic operation principle of the OFRR as a sensor and then application examples of the OFRR in the detection of proteins, disease biomarkers, virus, DNA molecules, and cells with high sensitivities will be presented.

  16. The Chicxulub multi-ring impact crater, Yucatan carbonate platform, Gulf of Mexico


    Jaime Urrutia-Fucugauchi; Antonio Camargo-Zanoguera; Ligia Pérez-Cruz; Guillermo Pérez-Cruz


    The Chicxulub impact crater is part of a select group of unique geological sites, being a natural laboratory to investigate crater formation processes and global effects of large-scale impacts. Chicxulub is one of only three multi-ring craters documented in the terrestrial record and impact has been related to the global environmental/climatic effects and mass extinction that mark the Cretaceous/Paleogene (K/Pg) boundary. The crater is buried under ~1.0 km of carbonate sediments in the Yucata...

  17. Are non-slip socks really 'non-slip'? An analysis of slip resistance

    Directory of Open Access Journals (Sweden)

    Haines Terrence


    Full Text Available Abstract Background Non-slip socks have been suggested as a means of preventing accidental falls due to slips. This study compared the relative slip resistance of commercially available non-slip socks with other foot conditions, namely bare feet, compression stockings and conventional socks, in order to determine any traction benefit. Methods Phase one involved slip resistance testing of two commercially available non-slip socks and one compression-stocking sample through an independent blinded materials testing laboratory using a Wet Pendulum Test. Phase two of the study involved in-situ testing among healthy adult subjects (n = 3. Subjects stood unsupported on a variable angle, inclined platform topped with hospital grade vinyl, in a range of foot conditions (bare feet, non-slip socks, conventional socks and compression stockings. Inclination was increased incrementally for each condition until slippage of any magnitude was detected. The platform angle was monitored using a spatial orientation tracking sensor and slippage point was recorded on video. Results Phase one results generated through Wet Pendulum Test suggested that non-slip socks did not offer better traction than compression stockings. However, in phase two, slippage in compression stockings was detected at the lowest angles across all participants. Amongst the foot conditions tested, barefoot conditions produced the highest slip angles for all participants indicating that this foot condition provided the highest slip resistance. Conclusion It is evident that bare feet provide better slip resistance than non-slip socks and therefore might represent a safer foot condition. This study did not explore whether traction provided by bare feet was comparable to 'optimal' footwear such as shoes. However, previous studies have associated barefoot mobilisation with increased falls. Therefore, it is suggested that all patients continue to be encouraged to mobilise in appropriate, well

  18. Ring-Shaped Microlanes and Chemical Barriers as a Platform for Probing Single-Cell Migration (United States)

    Schreiber, Christoph; Segerer, Felix J.; Wagner, Ernst; Roidl, Andreas; Rädler, Joachim O.


    Quantification and discrimination of pharmaceutical and disease-related effects on cell migration requires detailed characterization of single-cell motility. In this context, micropatterned substrates that constrain cells within defined geometries facilitate quantitative readout of locomotion. Here, we study quasi-one-dimensional cell migration in ring-shaped microlanes. We observe bimodal behavior in form of alternating states of directional migration (run state) and reorientation (rest state). Both states show exponential lifetime distributions with characteristic persistence times, which, together with the cell velocity in the run state, provide a set of parameters that succinctly describe cell motion. By introducing PEGylated barriers of different widths into the lane, we extend this description by quantifying the effects of abrupt changes in substrate chemistry on migrating cells. The transit probability decreases exponentially as a function of barrier width, thus specifying a characteristic penetration depth of the leading lamellipodia. Applying this fingerprint-like characterization of cell motion, we compare different cell lines, and demonstrate that the cancer drug candidate salinomycin affects transit probability and resting time, but not run time or run velocity. Hence, the presented assay allows to assess multiple migration-related parameters, permits detailed characterization of cell motility, and has potential applications in cell biology and advanced drug screening. PMID:27242099

  19. The influence of a weight-bearing platform on the mechanical behavior of two Ilizarov ring fixators: tensioned wires vs. half-pins

    Directory of Open Access Journals (Sweden)

    Gessmann Jan


    Full Text Available Abstract Background A weight-bearing platform applied at the distal end of an Ilizarov external frame allows patients with hindfoot transfixations, foot deformities or plantar skin lesions to bear weight. This leads to an indirect loading of the fracture or osteotomy site. However, the effect on the fracture/osteotomy site's motion or compressive loads is unknown. The aim of this study was to analyze the mechanical effects of a weight-bearing platform on the traditional all-wire, four-ring frame in comparison to a two-ring frame consisting of half-pins. Methods Two frame configurations, with either anatomically positioned wires or half-pins, were analyzed with and without a weight-bearing platform applied underneath the distal ring. Composite tibiae with a mid-diaphyseal osteotomy of 3.5 mm were used in all the experiments. An axial load was applied with the use of a universal test machine (UTS®. Interfragmentary movements, the relative movements of bone fragments and movements between rings were recorded using displacement transducers. Compressive loads at the osteotomy site were recorded with loading cells. Results Indirect loading with a weight-bearing platform altered the force transmission through the osteotomy. Indirect loading of the tibiae decreased the extent of the axial micro-motion by 50% under the applied weight load when compared to direct weight loading (p Conclusions A weight-bearing platform has substantial influence on the biomechanical performance of an Ilizarov external fixator. Half-pins induce greater stiffness to the Ilizarov external fixator and allow the usage of only one ring per bone segment, but shear stresses at the osteotomy under axial loading should be considered. The results allow an estimation of the size and direction of interfragmentary movements based on the extent of weight bearing.

  20. GPS dynamic cycle slip detection and correction with baseline constraint

    Institute of Scientific and Technical Information of China (English)

    Liu Zhenkun; Huang Ahunji


    When the cycle slips take place in the attitude determination of a moving platform, the precision of the attitude will be impaired badly. A method of cycle slip detection and correction is proposed, which is suitable to the dynamic measurement using GPS carrier phase: the cycle slips detection is first achieved by triple difference observables, then the cycle slips correction is performed with baseline length constraint. The simulation results show that the proposed method is effective to the dynamic cycle slips problem.

  1. Structure and evolution of the Sura-Kama strike-slip zone in the Cenozoic (the Volga-Ural anteclise of the East European Platform) (United States)

    Kolodyazhnyi, S. Yu.


    The Sura-Kama zone (SKZ) complicates the central area of the Volga-Ural anteclise and extends sublaterally from the Sura River basin towards the Kama River at a distance of 700-750 km. Based on the analysis of geological-geophysical data and structural studies, a model for the tectonic structure and the evolution of the SKZ is developed. This is a deep tectonic fault that shows the features of long-term polystage development. During the latest Cimmerian-Alpine period of tectonic reactivation, the SKZ represented a zone of strike-slip and consecutive manifestation of early transpressional right-lateral strike-slip dislocations that changed to left-lateral strike-slip displacements under transtension settings as a result of kinematic inversion. Features of the heterogeneous structure of the SKZ are revealed. The segments formed by the system of strike-slip duplexes are alternated along the strike by the principle of rotation-fold and "domino" structures. The particular models of evolution of these segments are proposed by the examples of the widely known Karlin, Tetyushin, and Lower Kama dislocations. It is assumed that kinematic inversion and compression-decompression phenomena on the flanks of the SKZ, as well as the tectonic environments in the area of its dynamic influence were highly important for the development of the processes of migration and redistribution of hydrocarbon components.

  2. Momentum compaction and phase slip factor

    Energy Technology Data Exchange (ETDEWEB)

    Ng, K.Y.; /Fermilab


    Section 2.3.11 of the Handbook of Accelerator Physics and Engineering on Landau damping is updated. The slip factor and its higher orders are given in terms of the various orders of the momentum compaction. With the aid of a simplified FODO lattice, formulas are given for the alteration of the lower orders of the momentum compaction by various higher multipole magnets. The transition to isochronicity is next demonstrated. Formulas are given for the extraction of the first three orders of the slip factor from the measurement of the synchrotron tune while changing the rf frequency. Finally bunch-length compression experiments in semi-isochronous rings are reported.

  3. Self-assembling semicrystalline polymer into highly ordered, microscopic concentric rings by evaporation. (United States)

    Byun, Myunghwan; Hong, Suck Won; Zhu, Lei; Lin, Zhiqun


    A drop of semicrystalline polymer, poly(ethylene oxide) (PEO), solution was placed in a restricted geometry consisting of a sphere on a flat substrate (i.e., sphere-on-flat geometry). Upon solvent evaporation from the sphere-on-flat geometry, microscopic concentric rings of PEO with appropriate high molecular weight were produced via controlled, repetitive pinning ("stick") and depinning ("slip") cycles of the contact line. The evaporation-induced concentric rings of PEO exhibited a fibrillar-like surface morphology. Subsequent isothermal crystallization of rings at 40 and 58 degrees C led to the formation of multilayer of flat-on lamellae (i.e., spiral morphology). In between adjacent spirals, depletion zones were developed during crystallization, as revealed by AFM measurements. The present highly ordered, concentric PEO rings may serve as a platform to study cell adhesion and motility, neuron guidance, cell mechanotransduction, and other biological processes.

  4. Are non-slip socks really 'non-slip'? An analysis of slip resistance


    Haines Terrence; Chari Satyan; Varghese Paul; Economidis Alyssia


    Abstract Background Non-slip socks have been suggested as a means of preventing accidental falls due to slips. This study compared the relative slip resistance of commercially available non-slip socks with other foot conditions, namely bare feet, compression stockings and conventional socks, in order to determine any traction benefit. Methods Phase one involved slip resistance testing of two commercially available non-slip socks and one compression-stocking sample through an independent blind...

  5. Hydrodynamics of slip wedge and optimization of surface slip property

    Institute of Scientific and Technical Information of China (English)


    The hydrodynamic load support generated by a slip wedge of a slider bearing was studied. The surface slip property was optimized so that a maximum hydrodynamic load support could be obtained. A multi-linearity method was given for the slip control equation of two-dimensional (2-D) wall slip. We investigated 2-D wall slip and the hydrodynamics of a finite length bearing with any values of the surface limiting shear stress. It was found that the hydrodynamic effect of the slip wedge is greater than the traditional geometrical convergent-wedge. Even though the geo- metrical gap is a parallel or divergent sliding gap, the slip wedge still gives rise to a very big hydrodynamic pressure. The optimized slip wedge can give rise to a hy- drodynamic load support as high as 2.5 times of what the geometrical conver- gent-wedge can produce. Wall slip usually gives a small surface friction.

  6. Hydrodynamics of slip wedge and optimization of surface slip property

    Institute of Scientific and Technical Information of China (English)

    MA GuoJun; WU ChengWei; ZHOU Ping


    The hydrodynamic load support generated by a slip wedge of a slider bearing was studied. The surface slip property was optimized so that a maximum hydrodynamic load support could be obtained. A multi-linearity method was given for the slip control equation of two-dimensional (2-D) wall slip. We investigated 2-D wall slip and the hydrodynamics of a finite length bearing with any values of the surface limiting shear stress. It was found that the hydrodynamic effect of the slip wedge is greater than the traditional geometrical convergent-wedge. Even though the geometrical gap is a parallel or divergent sliding gap, the slip wedge still gives rise to a very big hydrodynamic pressure. The optimized slip wedge can give rise to a hydrodynamic load support as high as 2.5 times of what the geometrical convergent-wedge can produce. Wall slip usually gives a small surface friction.

  7. Vortex rings impinging on permeable boundaries (United States)

    Mujal-Colilles, Anna; Dalziel, Stuart B.; Bateman, Allen


    Experiments with vortex rings impinging permeable and solid boundaries are presented in order to investigate the influence of permeability. Utilizing Particle Image Velocimetry, we compared the behaviour of a vortex ring impinging four different reticulated foams (with permeability k ˜ 26 - 85 × 10-8 m2) and a solid boundary. Results show how permeability affects the stretching phenomena of the vortex ring and the formation and evolution of the secondary vortex ring with opposite sign. Moreover, permeability also affects the macroscopic no-slip boundary condition found on the solid boundary, turning it into an apparent slip boundary condition for the most permeable boundary. The apparent slip-boundary condition and the flux exchange between the ambient fluid and the foam are jointly responsible for both the modified formation of the secondary vortex and changes on the vortex ring diameter increase.

  8. Tensorial hydrodynamic slip

    CERN Document Server

    Bazant, Martin Z


    We describe a tensorial generalization of the Navier slip boundary condition and illustrate its use in solving for flows around anisotropic textured surfaces. Tensorial slip can be derived from molecular or microstructural theories or simply postulated as an constitutive relation, subject to certain general constraints on the interfacial mobility. The power of the tensor formalism is to capture complicated effects of surface anisotropy, while preserving a simple fluid domain. This is demonstrated by exact solutions for laminar shear flow and pressure-driven flow between parallel plates of arbitrary and different textures. From such solutions, the effects of rotating a texture follow from simple matrix algebra. Our results may be useful to extracting local slip tensors from global measurements, such as the permeability of a textured channel or the force required to move a patterned surface, in experiments or simulations.

  9. Polydimethylsiloxane SlipChip for mammalian cell culture applications. (United States)

    Chang, Chia-Wen; Peng, Chien-Chung; Liao, Wei-Hao; Tung, Yi-Chung


    This paper reports a polydimethylsiloxane (PDMS) SlipChip for in vitro cell culture applications, multiple-treatment assays, cell co-cultures, and cytokine detection assays. The PDMS SlipChip is composed of two PDMS layers with microfluidic channels on each surface that are separated by a thin silicone fluid (Si-fluid) layer. The integration of Si-fluid enables the two PDMS layers to be slid to different positions; therefore, the channel patterns can be re-arranged for various applications. The SlipChip design significantly reduces the complexity of sample handling, transportation, and treatment processes. To apply the developed SlipChip for cell culture applications, human lung adenocarcinoma epithelial cells (A549) and lung fibroblasts (MRC-5) were cultured to examine the biocompatibility of the developed PDMS SlipChip. Moreover, embryonic pluripotent stem cells (ES-D3) were also cultured in the device to evaluate the retention of their stemness in the device. The experimental results show that cell morphology, viability and proliferation are not affected when the cells are cultured in the SlipChip, indicating that the device is highly compatible with mammalian cell culture. In addition, the stemness of the ES-D3 cells was highly retained after they were cultured in the device, suggesting the feasibility of using the SlipChip for stem cell research. Various cell experiments, such as simultaneous triple staining of cells and co-culture of MRC-5 with A549 cells, were also performed to demonstrate the functionalities of the PDMS SlipChip. Furthermore, we used a cytokine detection assay to evaluate the effect of endotoxin (lipopolysaccharides, LPS) treatment on the cytokine secretion of A549 cells using the SlipChip. The developed PDMS SlipChip provides a straightforward and effective platform for various on-chip in vitro cell cultures and consequent analysis, which is promising for a number of cell biology studies and biomedical applications.

  10. Vascular ring (United States)

    ... subclavian and left ligamentum ateriosus; Congenital heart defect - vascular ring; Birth defect heart - vascular ring ... Vascular ring is rare. It accounts for less than 1% of all congenital heart problems. The condition ...

  11. Slip flow in graphene nanochannels (United States)

    Kannam, Sridhar Kumar; Todd, B. D.; Hansen, J. S.; Daivis, Peter J.


    We investigate the hydrodynamic boundary condition for simple nanofluidic systems such as argon and methane flowing in graphene nanochannels using equilibrium molecular dynamics simulations (EMD) in conjunction with our recently proposed method [J. S. Hansen, B. D. Todd, and P. J. Daivis, Phys. Rev. E 84, 016313 (2011), 10.1103/PhysRevE.84.016313]. We first calculate the fluid-graphene interfacial friction coefficient, from which we can predict the slip length and the average velocity of the first fluid layer close to the wall (referred to as the slip velocity). Using direct nonequilibrium molecular dynamics simulations (NEMD) we then calculate the slip length and slip velocity from the streaming velocity profiles in Poiseuille and Couette flows. The slip lengths and slip velocities from the NEMD simulations are found to be in excellent agreement with our EMD predictions. Our EMD method therefore enables one to directly calculate this intrinsic friction coefficient between fluid and solid and the slip length for a given fluid and solid, which is otherwise tedious to calculate using direct NEMD simulations at low pressure gradients or shear rates. The advantages of the EMD method over the NEMD method to calculate the slip lengths/flow rates for nanofluidic systems are discussed, and we finally examine the dynamic behaviour of slip due to an externally applied field and shear rate.

  12. Ring blowers. Ring blower

    Energy Technology Data Exchange (ETDEWEB)

    Nakahara, Y.; Okamura, T.; Takahashi, M. (Fuji Electric Co. Ltd., Tokyo (Japan))


    Features, structures and several products of ring blowers were outlined. The ring blower is featured by its medium characteristics because it is higher in air pressure than a turboblower and larger in airflow than a vane blower, and it is applicable flexibly to not only air blasting but various industrial fields such as suction transfer. As several products corresponding to various fields, the followings were outlined: the low noise type with optimum shapes of inlet, outlet and casing cover for reducing noises by 10 dB or more, the heat resistant, water-tight and explosion-proof types suitable for severe environmental conditions, the multi-voltage type for every country served at different voltages, the high air pressure type with two pressure rise stages, and the large airflow type with a wide impeller. In addition, as special use products, the glass fiber reinforced unsatulated polyester ring blower for respiration apparatus, and the variable speed blushless DC motor-driven one for medical beds were outlined. 2 refs., 9 figs., 1 tab.

  13. Handling a slip | Smokefree 60+ (United States)

    Plan how you will recover from a slip—before it happens. You can recover from a slip If you do go back to smoking, you are not a failure. Don't toss aside your attempt as worthless. Use it to try and succeed. Think of your quit attempt as a learning experience, and if you do slip, try again.

  14. Saturn's Rings (United States)

    Cuzzi, J. N.


    The rings are changing before our eyes; structure varies on all timescales and unexpected things have been discovered. Many questions have been answered, but some answers remain elusive (see Cuzzi et al 2010 for a review). Here we highlight the major ring science progress over the mission to date, and describe new observations planned for Cassini's final three years. Ring Composition and particle sizes: The rings are nearly all water ice with no other ices - so why are they reddish? The C Ring and Cassini Division are "dirtier" than the more massive B and A Rings, as shown by near-IR and, recently, microwave observations. Particle sizes, from stellar and radio occultations, vary from place to place. Ring structure, micro and macro: numerous spiral density waves and ubiquitous "self-gravity wakes" reveal processes which fostered planet formation in the solar system and elsewhere. However, big puzzles remain regarding the main ring divisions, the C Ring plateau structures, and the B Ring irregular structure. Moonlets, inside and out, seen and unseen: Two gaps contain sizeable moonlets, but more gaps seem to contain none; even smaller embedded "propeller" objects wander, systematically or randomly, through the A ring. Rubble pile ringmoons just outside the rings may escaped from the rings, and the recently discovered "Peggy" may be trying this as we watch. Impact bombardment of the rings: Comet fragments set the rings to rippling on century-timescales, and boulders crash through hourly; meanwhile, the constant hail of infalling Kuiper belt material has a lower mass flux than previously thought. Origin and Age of the Rings: The ring mass and bombardment play key roles. The ring mass is well known everywhere but in the B Ring (where most of it is). New models suggest how tidal breakup of evolving moons may have formed massive ancient rings, of which the current ring is just a shadow. During its last three years, the Cassini tour profile will allow entirely new

  15. Vortex rings

    Energy Technology Data Exchange (ETDEWEB)

    Akhmetov, D.G. [Lavrentiev Institute of Hydrodynamics, Novosibirsk (Russian Federation)


    This book presents a comprehensive coverage of the wide field of vortex rings. The book presents the results of systematic experimental investigations, theoretical foundation, as well as the practical applications of vortex rings, such as the extinction of fires at gushing gas and oil wells. All the basic properties of vortex rings as well as their hydrodynamic structures are presented. Special attention is paid to the formation and motion of turbulent vortex rings. (orig.)

  16. Ring theory

    CERN Document Server

    Rowen, Louis H


    This is an abridged edition of the author's previous two-volume work, Ring Theory, which concentrates on essential material for a general ring theory course while ommitting much of the material intended for ring theory specialists. It has been praised by reviewers:**""As a textbook for graduate students, Ring Theory joins the best....The experts will find several attractive and pleasant features in Ring Theory. The most noteworthy is the inclusion, usually in supplements and appendices, of many useful constructions which are hard to locate outside of the original sources....The audience of non

  17. Slip-stacking Dynamics for High-Power Proton Beams at Fermilab

    Energy Technology Data Exchange (ETDEWEB)

    Eldred, Jeffrey Scott [Indiana Univ., Bloomington, IN (United States)


    Slip-stacking is a particle accelerator configuration used to store two particle beams with different momenta in the same ring. The two beams are longitudinally focused by two radiofrequency (RF) cavities with a small frequency difference between them. Each beam is synchronized to one RF cavity and perturbed by the other RF cavity. Fermilab uses slip-stacking in the Recycler so as to double the power of the 120 GeV proton beam in the Main Injector. This dissertation investigates the dynamics of slip-stacking beams analytically, numerically and experimentally. In the analytic analysis, I find the general trajectory of stable slip-stacking particles and identify the slip-stacking parametric resonances. In the numerical analysis, I characterize the stable phase-space area and model the particle losses. In particular, I evaluate the impact of upgrading the Fermilab Booster cycle-rate from 15 Hz to 20 Hz as part of the Proton Improvement Plan II (PIP-II). The experimental analysis is used to verify my approach to simulating slip-stacking loss. I design a study for measuring losses from the longitudinal single-particle dynamics of slip-stacking as a function of RF cavity voltage and RF frequency separation. I further propose the installation of a harmonic RF cavity and study the dynamics of this novel slip-stacking configuration. I show the harmonic RF cavity cancels out parametric resonances in slip-stacking, reduces emittance growth during slip-stacking, and dramatically enhances the stable phase-space area. The harmonic cavity is expected to reduce slip-stacking losses to far exceed PIP-II requirements. These results raise the possibility of extending slip-stacking beyond the PIP-II era.

  18. Slips of the Typewriter Key. (United States)

    Berg, Thomas


    Presents an analysis of 500 submorphemic slips of the typewriter key that escaped the notice of authors and other proofreaders and thereby made their way into the published records of scientific research. (Author/VWL)

  19. Construction technique of large-diameter silo center ring radiation derrick platform hydraulic slipform%大直径筒仓中心井架环式平台滑模施工技术

    Institute of Scientific and Technical Information of China (English)



    In this paper, Xishan coal and electricity group Zhenchengdi mine coal storage silo projects for instance, describes the construction technique of large-diameter silo center ring radiation derrick platform hydraulic slipform. For large-diameter silo engineering characteristics of the existing sliding construction process has been improved to not only meet the operating requirements silo slipform construction, but also to solve the warehouse roof structure construction problems.%以西山煤电集团镇城底矿储煤筒仓工程为例,介绍了大直径筒仓中心井架环式辐射操作平台液压滑模施工技术。针对大直径筒仓工程特点,对现有滑模施工工艺进行了改进,使其既满足筒仓滑模施工操作要求,又解决了仓顶结构施工难题。

  20. Planetary Rings

    CERN Document Server

    Tiscareno, Matthew S


    Planetary rings are the only nearby astrophysical disks, and the only disks that have been investigated by spacecraft. Although there are significant differences between rings and other disks, chiefly the large planet/ring mass ratio that greatly enhances the flatness of rings (aspect ratios as small as 1e-7), understanding of disks in general can be enhanced by understanding the dynamical processes observed at close-range and in real-time in planetary rings. We review the known ring systems of the four giant planets, as well as the prospects for ring systems yet to be discovered. We then review planetary rings by type. The main rings of Saturn comprise our system's only dense broad disk and host many phenomena of general application to disks including spiral waves, gap formation, self-gravity wakes, viscous overstability and normal modes, impact clouds, and orbital evolution of embedded moons. Dense narrow rings are the primary natural laboratory for understanding shepherding and self-stability. Narrow dusty...

  1. Planetary Rings (United States)

    Cuzzi, Jeffrey N.


    Just over two decades ago, Jim Pollack made a critical contribution to our understanding of planetary ring particle properties, and resolved a major apparent paradox between radar reflection and radio emission observations. At the time, particle properties were about all there were to study about planetary rings, and the fundamental questions were, why is Saturn the only planet with rings, how big are the particles, and what are they made of? Since then, we have received an avalanche of observations of planetary ring systems, both from spacecraft and from Earth. Meanwhile, we have seen steady progress in our understanding of the myriad ways in which gravity, fluid and statistical mechanics, and electromagnetism can combine to shape the distribution of the submicron-to-several-meter size particles which comprise ring systems into the complex webs of structure that we now know them to display. Insights gained from studies of these giant dynamical analogs have carried over into improved understanding of the formation of the planets themselves from particle disks, a subject very close to Jim's heart. The now-complete reconnaissance of the gas giant planets by spacecraft has revealed that ring systems are invariably found in association with families of regular satellites, and there is ark emerging perspective that they are not only physically but causally linked. There is also mounting evidence that many features or aspects of all planetary ring systems, if not the ring systems themselves, are considerably younger than the solar system

  2. Slipping rib syndrome in childhood. (United States)

    Mooney, D P; Shorter, N A


    Slipping rib syndrome is an unusual cause of lower chest and upper abdominal pain in children not mentioned in major pediatric surgical texts. The syndrome occurs when the medial fibrous attachments of the eighth, ninth, or tenth ribs are inadequate or ruptured, allowing their cartilage tip to slip superiorly and impinge on the intervening intercostal nerve. This may cause a variety of somatic and visceral complaints. Although the diagnosis may be made based on history and physical examination, lack of recognition of this disorder frequently leads to extensive diagnostic evaluations before definitive therapy. The authors report on four children who have this disorder.

  3. Slip flow in graphene nanochannels

    DEFF Research Database (Denmark)

    . Kannam, Sridhar; Billy, Todd; Hansen, Jesper Schmidt


    We investigate the hydrodynamic boundary condition for simple nanofluidic systems such as argon and methane flowing in graphene nanochannels using equilibrium molecular dynamics simulations (EMD) in conjunction with our recently proposed method [J. S. Hansen, B. D. Todd, and P. J. Daivis, Phys. Rev....... E 84, 016313 (2011)10.1103/PhysRevE.84.016313]. We first calculate the fluid-graphene interfacial friction coefficient, from which we can predict the slip length and the average velocity of the first fluid layer close to the wall (referred to as the slip velocity). Using direct nonequilibrium...

  4. Whillans Ice Plain Stick Slip (United States)

    Lipovsky, B.; Dunham, E. M.


    Concern about future sea level rise motivates the study of fast flowing ice. The Whillans Ice Plain (WIP) region of the West Antarctic Ice Sheet is notable for decelerating from previously fast motion during the instrumental record. Since most ice flux in Antarctica occurs through ice streams, understanding the conditions that cause ice stream stagnation is of basic importance in understanding the continent's contribution to future sea level rise. Although recent progress has been made in understanding the relationship between basal conditions and ice stream motion, direct observation of the temporal variation in subglacial conditions during ice stream stagnation has remained elusive. The Whillans Ice Plain flows to the sea mostly by way of stick-slip motion. We present numerical simulations of this stick-slip motion that capture the inertial dynamics, seismic waves, and the evolution of sliding with rate- and state-dependent basal friction. Large scale stick-slip behavior is tidally modulated and encompasses the entire WIP. Sliding initiates within one of several locked regions and then propagates outward with low average rupture velocity (~ 200 m/s). Sliding accelerates over a period of 200 s attain values as large as 65 m/d. From Newton's second law, this acceleration is ~ T / (rho H) for average shear stress drop T, ice thickness H, and ice density rho. This implies a 3 Pa stress drop that must be reconciled with the final stress drop of 300 Pa inferred from the total slip and fault dimensions. A possible explanation of this apparent discrepancy is that deceleration of the ice is associated with a substantial decrease in traction within rate-strengthening regions of the bed. During these large-scale sliding events, m-scale patches at the bed produce rapid (20 Hz) stick-slip motion. Each small event occurs over ~ 1/100 s, produces ~ 40 microns of slip, and gives rise to a spectacular form of seismic tremor. Variation between successive tremor episodes allows us

  5. Platform switching and bone platform switching. (United States)

    Carinci, Francesco; Brunelli, Giorgio; Danza, Matteo


    Bone platform switching involves an inward bone ring in the coronal part of the implant that is in continuity with the alveolar bone crest. Bone platform switching is obtained by using a dental fixture with a reverse conical neck. A retrospective study was performed to evaluate the effectiveness of conventional vs reverse conical neck implants. In the period between May 2004 and November 2007, 86 patients (55 females and 31 males; median age, 53 years) were operated and 234 implants were inserted: 40 and 194 were conventional vs reverse conical neck implants, respectively. Kaplan-Meier algorithm and Cox regression were used to detect those variables associated with the clinical outcome. No differences in survival and success rates were detected between conventional vs reverse conical neck implants alone or in combination with any of the studied variables. Although bone platform switching leads to several advantages, no statistical difference in alveolar crest resorption is detected in comparison with reverse conical neck implants. We suppose that the proximity of the implant abutment junction to the alveolar crestal bone gives no protection against the microflora contained in the micrograph. Additional studies on larger series and a combination of platform switching and bone platform switching could lead to improved clinical outcomes.


    Directory of Open Access Journals (Sweden)

    Rajesh G


    Full Text Available Supra mitral ring is a rare cause for congenital mitral valve obstr uction. The reported incidence of supramitral ring is 0.2-0.4% in general population and 8% in patients with congenital mitral valve disease. The condition is characterized by an abnormal ridge of connective tissue often circumferential in shape ,on the atrial side of the mitral valve encroaching on the orifice of the mitral valve. It may adhere to the leaflets of the valve and restrict their movements. Although a supramitral ring may be rarely nonobstructive, it often results in mitral valve inflow obstruction.

  7. Hydrodynamic slip in silicon nanochannels (United States)

    Ramos-Alvarado, Bladimir; Kumar, Satish; Peterson, G. P.


    Equilibrium and nonequilibrium molecular dynamics simulations were performed to better understand the hydrodynamic behavior of water flowing through silicon nanochannels. The water-silicon interaction potential was calibrated by means of size-independent molecular dynamics simulations of silicon wettability. The wettability of silicon was found to be dependent on the strength of the water-silicon interaction and the structure of the underlying surface. As a result, the anisotropy was found to be an important factor in the wettability of these types of crystalline solids. Using this premise as a fundamental starting point, the hydrodynamic slip in nanoconfined water was characterized using both equilibrium and nonequilibrium calculations of the slip length under low shear rate operating conditions. As was the case for the wettability analysis, the hydrodynamic slip was found to be dependent on the wetted solid surface atomic structure. Additionally, the interfacial water liquid structure was the most significant parameter to describe the hydrodynamic boundary condition. The calibration of the water-silicon interaction potential performed by matching the experimental contact angle of silicon led to the verification of the no-slip condition, experimentally reported for silicon nanochannels at low shear rates.

  8. The Rolling with Slipping Experiment in the Virtual Physics Laboratory--Context-Based Teaching Material (United States)

    Maidana, Nora L.; da Fonseca, Monaliza; Barros, Suelen F.; Vanin, Vito R.


    The Virtual Laboratory was created as a complementary educational activity, with the aim of working abstract concepts from an experimental point of view. In this work, the motion of a ring rolling and slipping in front of a grid printed panel was recorded. The frames separated from this video received a time code, and the resulting set of images…

  9. Slip rate and tremor genesis in Cascadia (United States)

    Wech, Aaron G.; Bartlow, Noel M.


    At many plate boundaries, conditions in the transition zone between seismogenic and stable slip produce slow earthquakes. In the Cascadia subduction zone, these events are consistently observed as slow, aseismic slip on the plate interface accompanied by persistent tectonic tremor. However, not all slow slip at other plate boundaries coincides spatially and temporally with tremor, leaving the physics of tremor genesis poorly understood. Here we analyze seismic, geodetic, and strainmeter data in Cascadia to observe for the first time a large, tremor-generating slow earthquake change from tremor-genic to silent and back again. The tremor falls silent at reduced slip speeds when the migrating slip front pauses as it loads the stronger adjacent fault segment to failure. The finding suggests that rheology and slip-speed-regulated stressing rate control tremor genesis, and the same section of fault can slip both with and without detectable tremor, limiting tremor's use as a proxy for slip.

  10. Determinantal rings

    CERN Document Server

    Bruns, Winfried


    Determinantal rings and varieties have been a central topic of commutative algebra and algebraic geometry. Their study has attracted many prominent researchers and has motivated the creation of theories which may now be considered part of general commutative ring theory. The book gives a first coherent treatment of the structure of determinantal rings. The main approach is via the theory of algebras with straightening law. This approach suggest (and is simplified by) the simultaneous treatment of the Schubert subvarieties of Grassmannian. Other methods have not been neglected, however. Principal radical systems are discussed in detail, and one section is devoted to each of invariant and representation theory. While the book is primarily a research monograph, it serves also as a reference source and the reader requires only the basics of commutative algebra together with some supplementary material found in the appendix. The text may be useful for seminars following a course in commutative ring theory since a ...

  11. Cave Rings (United States)


    hypothesis, that cave rings are formed in the same manner as coffee rings[3], that is, due to the enhanced deposition at the edges of sessile drops ...ring’ is the deposit formed when a sessile drop of a solution containing dissolved particles, such as coffee or salt, dries. This was investigated by...who expanded on Deegan et al.[3] to find an exact form for the evaporation flux over a sessile drop . It turns out that solving 179 for the flux is

  12. Vascular rings. (United States)

    Backer, Carl L; Mongé, Michael C; Popescu, Andrada R; Eltayeb, Osama M; Rastatter, Jeffrey C; Rigsby, Cynthia K


    The term vascular ring refers to congenital vascular anomalies of the aortic arch system that compress the esophagus and trachea, causing symptoms related to those two structures. The most common vascular rings are double aortic arch and right aortic arch with left ligamentum. Pulmonary artery sling is rare and these patients need to be carefully evaluated for frequently associated tracheal stenosis. Another cause of tracheal compression occurring only in infants is the innominate artery compression syndrome. In the current era, the diagnosis of a vascular ring is best established by CT imaging that can accurately delineate the anatomy of the vascular ring and associated tracheal pathology. For patients with a right aortic arch there recently has been an increased recognition of a structure called a Kommerell diverticulum which may require resection and transfer of the left subclavian artery to the left carotid artery. A very rare vascular ring is the circumflex aorta that is now treated with the aortic uncrossing operation. Patients with vascular rings should all have an echocardiogram because of the incidence of associated congenital heart disease. We also recommend bronchoscopy to assess for additional tracheal pathology and provide an assessment of the degree of tracheomalacia and bronchomalacia. The outcomes of surgical intervention are excellent and most patients have complete resolution of symptoms over a period of time. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Slipping properties of ceramic tiles / Quantification of slip resistance (United States)

    Terjek, Anita


    Regarding the research and application of ceramic tiles there is a great importance of defining precisely the interaction and friction between surfaces. Measuring slip resistance of floor coverings is a complex problem; slipperiness is always interpreted relatively. In the lack of a consistent and clear EU standard, it is practical to use more method in combination. It is necessary to examine the structure of materials in order to get adequate correlation. That is why measuring techniques of surface roughness, an important contributor to slip resistance and cleaning, is fundamental in the research. By comparing the obtained test results, relationship between individual methods of analysis and values may be determined and based on these information recommendations shall be prepared concerning the selection and application of tiles.

  14. Platform Constellations

    DEFF Research Database (Denmark)

    Staykova, Kalina Stefanova; Damsgaard, Jan


    This research paper presents an initial attempt to introduce and explain the emergence of new phenomenon, which we refer to as platform constellations. Functioning as highly modular systems, the platform constellations are collections of highly connected platforms which co-exist in parallel...... and as such allow us to study platforms not only as separate entities, but also to investigate the relationship between several platforms offered and governed by one and the same platform provider. By investigating two case studies of indigenous platform constellations formed around the hugely popular instant...... messaging apps KakaoTalk and LINE, we are able to gain valuable insights about the nature of these new constructions and to capture and synthesize their main characteristics in a framework. Our results show that platform constellations possess unique innovative capabilities, which can improve users...

  15. Phase-slip-induced dissipation in an atomic Bose-Hubbard system. (United States)

    McKay, D; White, M; Pasienski, M; DeMarco, B


    Phase-slips control dissipation in many bosonic systems, determining the critical velocity of superfluid helium and the generation of resistance in thin superconducting wires. Technological interest has been largely motivated by applications involving nanoscale superconducting circuit elements, such as standards based on quantum phase-slip junctions. Although phase slips caused by thermal fluctuations at high temperatures are well understood, controversy remains over the role of phase slips in small-scale superconductors--in solids, problems such as uncontrolled noise sources and disorder complicate their study and application. Here we show that phase slips can lead to dissipation in a clean and well-characterized Bose-Hubbard system, by experimentally studying the transport of ultracold atoms trapped in an optical lattice. In contrast to previous work, we explore a low-velocity regime described by the three-dimensional Bose-Hubbard model that is unaffected by instabilities, and we measure the effect of temperature on the dissipation strength. The damping rate of atomic motion (the analogue of electrical resistance in a solid) in the confining parabolic potential is well fitted by a model that includes finite damping at zero temperature. The low-temperature behaviour is consistent with the theory of quantum tunnelling of phase slips, whereas at higher temperatures a crossover consistent with a transition to thermal activation of phase slips is evident. Motion-induced features reminiscent of vortices and vortex rings associated with phase slips are also observed in time-of-flight imaging. These results clarify the role of phase slips in superfluid systems. They may also be of relevance in understanding the source of metallic phases observed in thin films, or serve as a test bed for theories of bosonic dissipation based upon variants of the Bose-Hubbard model.

  16. Topological rings

    CERN Document Server

    Warner, S


    This text brings the reader to the frontiers of current research in topological rings. The exercises illustrate many results and theorems while a comprehensive bibliography is also included. The book is aimed at those readers acquainted with some very basic point-set topology and algebra, as normally presented in semester courses at the beginning graduate level or even at the advanced undergraduate level. Familiarity with Hausdorff, metric, compact and locally compact spaces and basic properties of continuous functions, also with groups, rings, fields, vector spaces and modules, and with Zorn''s Lemma, is also expected.

  17. Enhanced Dynamical Stability with Harmonic Slip-stacking

    CERN Document Server

    Eldred, Jeffrey


    We develop a configuration of radio-frequency (rf) cavities to dramatically improve the performance of slip-stacking. Slip-stacking is an accumulation technique used at Fermilab to nearly double proton intensity by maintaining two beams of different momenta in the same storage ring. The two particle beams are longitudinally focused in the Recycler by two 53 MHz 100 kV rf cavities with a small frequency difference between them. We propose an additional 106 MHz 20 kV rf cavity with a frequency at the double the average of the upper and lower main rf frequencies. We show the harmonic rf cavity cancels out the resonances generated between the two main rf cavities and we derive the relationship between the harmonic rf voltage and the main rf voltage. We find the area factors that can be used to calculate the available phase space area for any set of beam parameters without individual simulation. We establish Booster beam quality requirements to achieve 99\\% slip-stacking efficiency. We measure the longitudinal dis...

  18. Comments on the paper "Terminal retrograde turn of rolling rings"

    CERN Document Server

    Borisov, Alexey V; Karavaev, Yury L


    Mir Abbas Jalali et al. [Phys. Rev. E 92, 032913(2015)] explained the retrograde turn of rings by aerodynamic phenomena due to the presence of a central hole in the ring as opposed to a disk. The results of our experiments suggest that the drag torque is not the main reason for the retrograde turn of the rings, and the results of theoretical research have shown that such a motion is possible for both the ring and the disk in the case of rolling without slipping.

  19. Ring interferometry

    CERN Document Server

    Malykin, Grigorii B; Zhurov, Alexei


    This monograph is devoted to the creation of a comprehensive formalism for quantitative description of polarized modes' linear interaction in modern single-mode optic fibers. The theory of random connections between polarized modes, developed in the monograph, allows calculations of the zero shift deviations for a fiber ring interferometer. The monograph addresses also the

  20. Influence of Tire Dynamics on Slip Ratio Estimation of Independent Driving Wheel System Influence of Tire Dynamics on Slip Ratio Estimation of Independent Driving Wheel System

    Institute of Scientific and Technical Information of China (English)

    LI Jianqiu; SONG Ziyou; WEI Yintao; OUYANG Minggao


    The independent driving wheel system, which is composed of in-wheel permanent magnet synchronous motor(I-PMSM) and tire, is more convenient to estimate the slip ratio because the rotary speed of the rotor can be accurately measured. However, the ring speed of the tire ring doesn’t equal to the rotor speed considering the tire deformation. For this reason, a deformable tire and a detailed I-PMSM are modeled by using Matlab/Simulink. Moreover, the tire/road contact interface(a slippery road) is accurately described by the non-linear relaxation length-based model and the Magic Formula pragmatic model. Based on the relatively accurate model, the error of slip ratio estimated by the rotor rotary speed is analyzed in both time and frequency domains when a quarter car is started by the I-PMSM with a definite target torque input curve. In addition, the natural frequencies(NFs) of the driving wheel system with variable parameters are illustrated to present the relationship between the slip ratio estimation error and the NF. According to this relationship, a low-pass filter, whose cut-off frequency corresponds to the NF, is proposed to eliminate the error in the estimated slip ratio. The analysis, concerning the effect of the driving wheel parameters and road conditions on slip ratio estimation, shows that the peak estimation error can be reduced up to 75% when the LPF is adopted. The robustness and effectiveness of the LPF are therefore validated. This paper builds up the deformable tire model and the detailed I-PMSM models, and analyzes the effect of the driving wheel parameters and road conditions on slip ratio estimation.

  1. On SAP-rings


    Zhixiang, Wu


    The rings whose simple right modules are absolutely pure are called right $SAP$-rings. We give a new characterization of right $SAP$ rings, right $V$ rings, and von Neumann regular rings. We also obtain a new decomposition theory of right selfinjective von Neumann regular rings. The relationships between $SAP$-rings, $V$-rings, and von Neumann regular rings are explored. Some recent results obtained by Faith are generalized and the results of Wu-Xia are strengthened.

  2. Phase slips in superconducting weak links

    Energy Technology Data Exchange (ETDEWEB)

    Kimmel, Gregory; Glatz, Andreas; Aranson, Igor S.


    Superconducting vortices and phase slips are primary mechanisms of dissipation in superconducting, superfluid, and cold-atom systems. While the dynamics of vortices is fairly well described, phase slips occurring in quasi-one- dimensional superconducting wires still elude understanding. The main reason is that phase slips are strongly nonlinear time-dependent phenomena that cannot be cast in terms of small perturbations of the superconducting state. Here we study phase slips occurring in superconducting weak links. Thanks to partial suppression of superconductivity in weak links, we employ a weakly nonlinear approximation for dynamic phase slips. This approximation is not valid for homogeneous superconducting wires and slabs. Using the numerical solution of the time-dependent Ginzburg-Landau equation and bifurcation analysis of stationary solutions, we show that the onset of phase slips occurs via an infinite period bifurcation, which is manifested in a specific voltage-current dependence. Our analytical results are in good agreement with simulations.

  3. Learning to predict slip for ground robots (United States)

    Angelova, Anelia; Matthies, Larry; Helmick, Daniel; Sibley, Gabe; Perona, Pietro


    In this paper we predict the amount of slip an exploration rover would experience using stereo imagery by learning from previous examples of traversing similar terrain. To do that, the information of terrain appearance and geometry regarding some location is correlated to the slip measured by the rover while this location is being traversed. This relationship is learned from previous experience, so slip can be predicted later at a distance from visual information only.

  4. Slip resistance testing - Zones of uncertainty

    Energy Technology Data Exchange (ETDEWEB)

    Bowman, R.


    This paper considers recent and current potential developments in the international standardisation of slip resistance. It identifies some limitations of the wet barefoot ramp test, such that changes should be made if it is to be more widely used. It also identifies some limitations of the new European SlipSTD Publicly Available Specification, such as insufficient allowance for the deterioration of slip resistance as tiles inevitably wear. (Author) 22 refs.

  5. Large Slip Length over a Nanopatterned Surface

    Institute of Scientific and Technical Information of China (English)

    LI Ding; DI Qin-Feng; LI Jing-Yuan; QIAN Yue-Hong; FANG Hai-Ping


    A thermodynamic method is employed to analyse the slip length of hydrophobic nanopatterned surface.The maximal slip lengths with respect to the hydrophobicity of the nanopatterned surface are computed.It is found that the slip length reaches more than 50μm if the nanopatterned surfaces have a contact angle larger than 160°.Such results are expected to find extensive applications in micro-channels and helpful to understand recent experimental observations of the slippage of nanopatterned surfaces.

  6. Payment Platform

    DEFF Research Database (Denmark)

    Hjelholt, Morten; Damsgaard, Jan


    Payment transactions through the use of physical coins, bank notes or credit cards have for centuries been the standard formats of exchanging money. Recently online and mobile digital payment platforms has entered the stage as contenders to this position and possibly could penetrate societies...... thoroughly and substitute current payment standards in the decades to come. This paper portrays how digital payment platforms evolve in socio-technical niches and how various technological platforms aim for institutional attention in their attempt to challenge earlier platforms and standards. The paper...... applies a co-evolutionary multilevel perspective to model the interplay and processes between technology and society wherein digital payment platforms potentially will substitute other payment platforms just like the credit card negated the check. On this basis this paper formulate a multilevel conceptual...

  7. Cycle slipping in phase synchronization systems (United States)

    Yang, Ying; Huang, Lin


    Cycle slipping is a characteristically nonlinear phenomenon in phase synchronization systems, which is highly dependent of the initial state of the system. Slipping a cycle means that the phase error is increased to such an extent that the generator to be synchronized slips one complete cycle with respect to the input phase. In this Letter, a linear matrix inequality (LMI) based approach is proposed and the estimation of the number of cycles which slips a solution of the system is obtained by solving a quasi-convex optimization problem of LMI. Applications to phase locked loops demonstrate the validity of the proposed approach.

  8. Observation of slip flow in thermophoresis. (United States)

    Weinert, Franz M; Braun, Dieter


    Two differing theories aim to describe fluidic thermophoresis, the movement of particles along a temperature gradient. While thermodynamic approaches rely on local equilibrium, hydrodynamic descriptions assume a quasi-slip-flow boundary condition at the particle's surface. Evidence for slip flow is presented for the case of thermal gradients exceeding (aS_(T)(-1) with particle radius a and Soret coefficient S_(T). Thermophoretic slip flow at spheres near a surface attracts or repels tracer particles perpendicular to the thermal gradient. Moreover, particles mutually attract and form colloidal crystals. Fluid dynamic slip explains the latter quantitatively.

  9. Slip resistance of non-slip socks--an accelerometer-based approach. (United States)

    Hübscher, Markus; Thiel, Christian; Schmidt, Jens; Bach, Matthias; Banzer, Winfried; Vogt, Lutz


    The present study investigated the relative slip resistance of commercially available non-slip socks during gait. Twenty-four healthy subjects (29.3±10.4 years) participated in the study. Each subject completed 4 different test conditions (barefoot, non-slip socks, conventional socks, backless slippers) in a randomized, balanced order. The slip resistance was estimated by measuring the heel deceleration time using a heel-mounted accelerometer. Repeated measures ANOVA and post hoc paired-sample t-test with Bonferroni correction were used for statistical analysis. Compared to barefoot walking absolute deceleration times [ms] were significantly increased when wearing conventional socks or slippers. No significant differences were observed between the barefoot and non-slip socks conditions. The present study shows that non-slip socks improved slip-resistance during gait when compared to conventional socks and slippers. Future investigations should verify the present findings in hospital populations prone to slip-related falls.

  10. Experimental Investigation of Bearing Slip in a Wind Turbine Gearbox During a Transient Grid Loss Event

    Energy Technology Data Exchange (ETDEWEB)

    Helsen, Jan; Guo, Yi; Keller, Jonathan; Guillaume, Patrick


    This work investigates the behaviour of the high speed stage of a wind turbine gearbox during a transient grid loss event. Dynamometer testing on a full scale wind turbine nacelle is used. A combination of external and internal gearbox measurements is analysed. Particular focus is on the characterization of the high speed shaft tapered roller bearing slip behaviour. This slipping behaviour is linked to dynamic events by many researchers and described as potential bearing failure initiator. However only limited full scale dynamic testing is documented. Strain gauge bridges in grooves along the circumference of the outer ring are used to characterize the bearing behaviour in detail. It is shown that during the transient event the high speed shaft experiences a combined torsional and bending deformation. These unfavourable loading conditions induce roller slip in the bearings during the torque reversals indicating the potential of the applied load case to go beyond the preload of the tapered roller bearing.

  11. A Brief Analysis on Slips of Tongue

    Institute of Scientific and Technical Information of China (English)



    The phenomenon of slips of tongue is very common in our daily life.And it is closely related to some psychological reasons.This paper aims to introduce the research about this phenomenon, to present the types of slips of tongue and some analysis on it.

  12. Slip versus Friction : Modifying the Navier condition (United States)

    Kotsalis, Evangelos; Walther, Jens; Koumoutsakos, Petros


    The modeling of fluid-solid interfaces remains one of the key challenges in fluid mechanics. The prevailing model, attributed to Navier, defines the fluid ``slip'' velocity as proportional to the wall shear and a parameter defined as the slip length. Several works have in turn proposed models for this slip length but no universal model for the slip velocity has been accepted. We present results from large scale molecular dynamics simulations of canonical flow problems, indicating, that the inadequacy of this classic model, stems from not properly accounting for the pressure field. We propose and validate a new model, based on the fundamental observation that the finite ``slip'' velocity is a result of an imbalance between fluid and solid intermolecular forces. An excess force on the fluid elements will lead to their acceleration which in turn may result in a slip velocity at the interface. We formulate the slip velocity in terms of fluid-solid friction Ff and propose a generalized boundary condition: Ff= Fs+ Fp= λuus+ λpp where p denotes the pressure, and λuand λp the viscous and static friction coefficients, for which universal constants are presented. We demonstrate that the present model can overcome difficulties encountered by the classical slip model in canonical flow configurations.

  13. Influence of tire dynamics on slip ratio estimation of independent driving wheel system (United States)

    Li, Jianqiu; Song, Ziyou; Wei, Yintao; Ouyang, Minggao


    The independent driving wheel system, which is composed of in-wheel permanent magnet synchronous motor(I-PMSM) and tire, is more convenient to estimate the slip ratio because the rotary speed of the rotor can be accurately measured. However, the ring speed of the tire ring doesn't equal to the rotor speed considering the tire deformation. For this reason, a deformable tire and a detailed I-PMSM are modeled by using Matlab/Simulink. Moreover, the tire/road contact interface(a slippery road) is accurately described by the non-linear relaxation length-based model and the Magic Formula pragmatic model. Based on the relatively accurate model, the error of slip ratio estimated by the rotor rotary speed is analyzed in both time and frequency domains when a quarter car is started by the I-PMSM with a definite target torque input curve. In addition, the natural frequencies(NFs) of the driving wheel system with variable parameters are illustrated to present the relationship between the slip ratio estimation error and the NF. According to this relationship, a low-pass filter, whose cut-off frequency corresponds to the NF, is proposed to eliminate the error in the estimated slip ratio. The analysis, concerning the effect of the driving wheel parameters and road conditions on slip ratio estimation, shows that the peak estimation error can be reduced up to 75% when the LPF is adopted. The robustness and effectiveness of the LPF are therefore validated. This paper builds up the deformable tire model and the detailed I-PMSM models, and analyzes the effect of the driving wheel parameters and road conditions on slip ratio estimation.

  14. Origami rings

    CERN Document Server

    Buhler, Joe; de Launey, Warwick; Graham, Ron


    Motivated by a question in origami, we consider sets of points in the complex plane constructed in the following way. Let $L_\\alpha(p)$ be the line in the complex plane through $p$ with angle $\\alpha$ (with respect to the real axis). Given a fixed collection $U$ of angles, let $\\RU$ be the points that can be obtained by starting with $0$ and $1$, and then recursively adding intersection points of the form $L_\\alpha(p) \\cap L_\\beta(q)$, where $p, q$ have been constructed already, and $\\alpha, \\beta$ are distinct angles in $U$. Our main result is that if $U$ is a group with at least three elements, then $\\RU$ is a subring of the complex plane, i.e., it is closed under complex addition and multiplication. This enables us to answer a specific question about origami folds: if $n \\ge 3$ and the allowable angles are the $n$ equally spaced angles $k\\pi/n$, $0 \\le k < n$, then $\\RU$ is the ring $\\Z[\\zeta_n]$ if $n$ is prime, and the ring $\\Z[1/n,\\zeta_{n}]$ if $n$ is not prime, where $\\zeta_n := \\exp(2\\pi i/n)$ is ...

  15. Microstructure and Slip Character in Titanium Alloys

    Directory of Open Access Journals (Sweden)

    D. Banerjee


    Full Text Available Influence of microstructures in titanium alloys on the basic parameters of deformation behaviour such as slip character, slip length and slip intensity have been explored. Commercial titanium alloys contain the hexagonal close packed (alpha and body centred cubic (bita phases. Slip in these individual phases is shown to be dependent on the nature of alloying elements through their effect on phase stability as related to decomposition into ordered or w structures. When alpha and bita coexist, their relative crystallographic orientations, size, shape and volume fraction, control the nature of slip. For a given composition, structure may be manipulated through appropriate thermomechanical treatment to obtain the desired deformation behaviour and therefore fracture mode.

  16. Slow slip generated by dehydration reaction coupled with slip-induced dilatancy and thermal pressurization (United States)

    Yamashita, Teruo; Schubnel, Alexandre


    Sustained slow slip, which is a distinctive feature of slow slip events (SSEs), is investigated theoretically, assuming a fault embedded within a fluid-saturated 1D thermo-poro-elastic medium. The object of study is specifically SSEs occurring at the down-dip edge of seismogenic zone in hot subduction zones, where mineral dehydrations (antigorite, lawsonite, chlorite, and glaucophane) are expected to occur near locations where deep slow slip events are observed. In the modeling, we introduce dehydration reactions, coupled with slip-induced dilatancy and thermal pressurization, and slip evolution is assumed to interact with fluid pressure change through Coulomb's frictional stress. Our calculations show that sustained slow slip events occur when the dehydration reaction is coupled with slip-induced dilatancy. Specifically, slow slip is favored by a low initial stress drop, an initial temperature of the medium close to that of the dehydration reaction equilibrium temperature, a low permeability, and overall negative volume change associated with the reaction (i.e., void space created by the reaction larger than the space occupied by the fluid released). Importantly, if we do not assume slip-induced dilatancy, slip is accelerated with time soon after the slip onset even if the dehydration reaction is assumed. This suggests that slow slip is sustained for a long time at hot subduction zones because dehydration reaction is coupled with slip-induced dilatancy. Such slip-induced dilatancy may occur at the down-dip edge of seismogenic zone at hot subduction zones because of repetitive occurrence of dehydration reaction there.

  17. [Lens platform]. (United States)

    Łukaszewska-Smyk, Agnieszka; Kałuzny, Józef


    The lens platform defines lens structure and lens material. Evolution of lens comprises change in their shape, angulation of haptens and transition of three-piece lens into one-piece lens. The lens fall into two categories: rigid (PMMA) and soft (siliconic, acrylic, colameric). The main lens maaterials are polymers (hydrophilic and hydrophobic). The lens platform has an effect on biocompatibility, bioadhesion, stability of lens in capsule, degree of PCO evolution and sensitiveness to laser damages.

  18. Platform contents


    Renault, Régis


    A monopoly platform hosts advertisers who compete on a market for horizontally differentiated products. These products may be either mass market products that appeal broadly to the entire consumer population or niche products that are tailored to the tastes of some particular group. Consumers search sequentially through ads incurring a surfing cost of moving to the next ad. They may click on an ad at some cost, which provides all relevant information and the opportunity to buy. The platform c...

  19. Electrophoresis of particles with Navier velocity slip. (United States)

    Park, Hung Mok


    In the present investigation, it is found that the electrophoretic mobility of hydrophobic particles is affected not only by the zeta potential but also by the velocity slip at the particle surface. From a physicochemical viewpoint, zeta potential represents the surface charge properties and the slip coefficient indicates the hydrophobicity of the particle surface. Thus, it is necessary to separate the contribution of zeta potential from that of slip coefficient to the particle mobility, since zeta potential can be changed by varying the bulk ionic concentration while the slip coefficient can be modified by adjusting surfactant concentration. In the present investigation, a method is devised that allows a simultaneous estimation of zeta potential and slip coefficient of micro and nanoparticles using measurements of electrophoretic mobility at various bulk ionic concentrations. Employing a nonlinear curve-fitting technique and an analytic solution of electrophoresis for a particle with velocity slip, the present technique predicts both zeta potential and slip coefficient simultaneously with reasonable accuracy using the measured values of electrophoretic mobility at various bulk ionic concentrations.

  20. Dynamical Stability of Slip-stacking Particles

    CERN Document Server

    Eldred, Jeffrey


    We study the stability of particles in slip-stacking configuration, used to nearly double proton beam intensity at Fermilab. We introduce universal area factors to calculate the available phase space area for any set of beam parameters without individual simulation. We find perturbative solutions for stable particle trajectories. We establish Booster beam quality requirements to achieve 97\\% slip-stacking efficiency. We show that slip-stacking dynamics directly correspond to the driven pendulum and to the system of two standing-wave traps moving with respect to each other.

  1. Tsunami Hazards From Strike-Slip Earthquakes (United States)

    Legg, M. R.; Borrero, J. C.; Synolakis, C. E.


    Strike-slip faulting is often considered unfavorable for tsunami generation during large earthquakes. Although large strike-slip earthquakes triggering landslides and then generating substantial tsunamis are now recognized hazards, many continue to ignore the threat from submarine tectonic displacement during strike-slip earthquakes. Historical data record the occurrence of tsunamis from strike-slip earthquakes, for example, 1906 San Francisco, California, 1994 Mindoro, Philippines, and 1999 Izmit, Turkey. Recognizing that strike-slip fault zones are often curved and comprise numerous en echelon step-overs, we model tsunami generation from realistic strike-slip faulting scenarios. We find that tectonic seafloor uplift, at a restraining bend or"pop-up" structure, provides an efficient mechanism to generate destructive local tsunamis; likewise for subsidence at divergent pull-apart basin structures. Large earthquakes on complex strike-slip fault systems may involve both types of structures. The California Continental Borderland is a high-relief submarine part of the active Pacific-North America transform plate boundary. Natural harbors and bays created by long term vertical motion associated with strike-slip structural irregularities are now sites of burgeoning population and major coastal infrastructure. Significant local tsunamis generated by large strike-slip earthquakes pose a serious, and previously unrecognized threat. We model several restraining bend pop-up structures offshore southern California to quantify the local tsunami hazard. Maximum runup derived in our scenarios ranges from one to several meters, similar to runup observed from the 1994 Mindoro, Philippines, (M=7.1) earthquake. The runup pattern is highly variable, with local extremes along the coast. We only model the static displacement field for the strike-slip earthquake source; dynamic effects of moving large island or submerged banks laterally during strike-slip events remains to be examined

  2. Dynamical stability of slip-stacking particles

    Energy Technology Data Exchange (ETDEWEB)

    Eldred, Jeffrey; Zwaska, Robert


    We study the stability of particles in slip-stacking configuration, used to nearly double proton beam intensity at Fermilab. We introduce universal area factors to calculate the available phase space area for any set of beam parameters without individual simulation. We find perturbative solutions for stable particle trajectories. We establish Booster beam quality requirements to achieve 97% slip-stacking efficiency. We show that slip-stacking dynamics directly correspond to the driven pendulum and to the system of two standing-wave traps moving with respect to each other.

  3. Slow slip event at Kilauea Volcano (United States)

    Poland, Michael P.; Miklius, Asta; Wilson, J. David; Okubo, Paul G.; Montgomery-Brown, Emily; Segall, Paul; Brooks, Benjamin; Foster, James; Wolfe, Cecily; Syracuse, Ellen; Thurbe, Clifford


    Early in the morning of 1 February 2010 (UTC; early afternoon 31 January 2010 local time), continuous Global Positioning System (GPS) and tilt instruments detected a slow slip event (SSE) on the south flank of Kilauea volcano, Hawaii. The SSE lasted at least 36 hours and resulted in a maximum of about 3 centimeters of seaward displacement. About 10 hours after the start of the slip, a flurry of small earthquakes began (Figure 1) in an area of the south flank recognized as having been seismically active during past SSEs [Wolfe et al., 2007], suggesting that the February earthquakes were triggered by stress associated with slip [Segall et al., 2006].

  4. Dynamical Stability of Slip-stacking Particles

    Energy Technology Data Exchange (ETDEWEB)

    Eldred, Jeffrey [Fermilab; Zwaska, Robert [Fermilab


    We study the stability of particles in slip-stacking configuration, used to nearly double proton beam intensity at Fermilab. We introduce universal area factors to calculate the available phase space area for any set of beam parameters without individual simulation. We find perturbative solutions for stable particle trajectories. We establish Booster beam quality requirements to achieve 97% slip-stacking efficiency. We show that slip-stacking dynamics directly correspond to the driven pendulum and to the system of two standing-wave traps moving with respect to each other.

  5. Falls study: Proprioception, postural stability, and slips. (United States)

    Sohn, Jeehoon; Kim, Sukwon


    The present study evaluated effects of exercise training on the proprioception sensitivity, postural stability, and the likelihood of slip-induced falls. Eighteen older adults (6 in balance, 6 in weight, and 6 in control groups) participated in this study. Three groups met three times per week over the course of eight weeks. Ankle and knee proprioception sensitivities and postural stability were measured. Slip-induced events were introduced for all participants before and after training. The results indicated that, overall, strength and postural stability were improved only in the training group, although proprioception sensitivity was improved in all groups. Training for older adults resulted in decreased likelihood of slip-induced falls. The study suggested that proprioception can be improved by simply being active, however, the results suggested that training would aid older adults in reducing the likelihood of slip-induced falls.

  6. Action slips during whole-body vibration. (United States)

    Ishimatsu, Kazuma; Meland, Anders; Hansen, Tor Are S; Kåsin, Jan Ivar; Wagstaff, Anthony S


    Helicopter aircrew members engage in highly demanding cognitive tasks in an environment subject to whole-body vibration (WBV). Sometimes their actions may not be according to plan (e.g. action slips and lapses). This study used a Sustained Attention to Response Task (SART) to examine whether action slips were more frequent during exposure to WBV. Nineteen participants performed the SART in two blocks. In the WBV block participants were exposed to 17 Hz vertical WBV, which is typical of larger helicopter working environments. In the No-WBV block there was no WBV. There were more responses to the rare no-go digit 3 (i.e. action slips) in the WBV block, and participants responded faster in the WBV block. These results suggest that WBV influences response inhibition, and can induce impulsive responding. WBV may increase the likelihood of action slips, mainly due to failure of response inhibition.

  7. Prime rings with PI rings of constants

    CERN Document Server

    Kharchenko, V K; Rodríguez-Romo, S


    It is shown that if the ring of constants of a restricted differential Lie algebra with a quasi-Frobenius inner part satisfies a polynomial identity (PI) then the original prime ring has a generalized polynomial identitiy (GPI). If additionally the ring of constants is semiprime then the original ring is PI. The case of a non-quasi-Frobenius inner part is also considered.

  8. ITS Platform

    DEFF Research Database (Denmark)

    Tøfting, Svend; Lahrmann, Harry; Agerholm, Niels


    Aalborg University and two local companies have over the past four years developed and tested an ITS Platform, which can be used for communication with cars and for providing a number of services to the drivers. The purpose has been to perform a technological test of the possible use of a hidden ...... not have to be very intelligent. This is gradually taken over by applications on smart phones. The ITS Platform with 425 test drivers is now completely developed and can be used for technological testing of e.g. payment systems.......Aalborg University and two local companies have over the past four years developed and tested an ITS Platform, which can be used for communication with cars and for providing a number of services to the drivers. The purpose has been to perform a technological test of the possible use of a hidden...

  9. The slipping rib syndrome in children. (United States)

    Saltzman, D A; Schmitz, M L; Smith, S D; Wagner, C W; Jackson, R J; Harp, S


    The slipping rib syndrome is an infrequent cause of thoracic and upper abdominal pain and is thought to arise from the inadequacy or rupture of the interchondral fibrous attachments of the anterior ribs. This disruption allows the costal cartilage tips to sublux, impinging on the intercostal nerves. Children with this entity are seldom described in the literature. We present a retrospective review of 12 children and young adults with slipping rib syndrome and a systematic approach for evaluation and treatment.

  10. 以一敌百Slip-on

    Institute of Scientific and Technical Information of China (English)



    在运动鞋爆红的当下,一种不系带的Slip-on Sneakers成为了时尚人士的必备单品。Slip-on Sneakers就是把脚放进去即可的休闲鞋,由于穿脱方便,有了一个可爱的别名——"一脚蹬"。

  11. ITS Platform

    DEFF Research Database (Denmark)

    Tøfting, Svend; Lahrmann, Harry; Agerholm, Niels


    Aalborg University and two local companies have over the past four years developed and tested an ITS Platform, which can be used for communication with cars and for providing a number of services to the drivers. The purpose has been to perform a technological test of the possible use of a hidden ...... not have to be very intelligent. This is gradually taken over by applications on smart phones. The ITS Platform with 425 test drivers is now completely developed and can be used for technological testing of e.g. payment systems....

  12. Phase Slips in Topological Superconductor Wire Devices (United States)

    Goldberg, Samuel; Bergman, Doron; Pekker, David; Refael, Gil


    We make a detailed study of phase slips in topological superconducting wires and devices based on topological wires. We begin by investigating a device composed of a topological superconducting wire connected to a non-topological wire (T-S). In the T-segment only slips of the phase by multiples of 4π are allowed, while in the S-segment slips by 2π are also allowed. We show that near the interface, 2π phase slips are also allowed and we comment on the consequences of such phase slips for the Aharonov-Casher effect. We also consider an implementation of a q-bit consisting of a T-S-T device, where the quantum information is stored in the parity of the two topological segments via the four Majorana modes. We show that the central S-segment of this type of device can support 2π phase-slips which result in the decoherence of the q-bit.

  13. Radical theory of rings

    CERN Document Server

    Gardner, JW


    Radical Theory of Rings distills the most noteworthy present-day theoretical topics, gives a unified account of the classical structure theorems for rings, and deepens understanding of key aspects of ring theory via ring and radical constructions. Assimilating radical theory's evolution in the decades since the last major work on rings and radicals was published, the authors deal with some distinctive features of the radical theory of nonassociative rings, associative rings with involution, and near-rings. Written in clear algebraic terms by globally acknowledged authorities, the presentation

  14. Slip Development and Instability on a Heterogeneously Loaded Fault with Power-Law Slip-Weakening (United States)

    Rice, J. R.; Uenishi, K.


    We consider slip initiation and rupture instability on planar faults that follow a non-linear slip-weakening relation and are subjected to a locally peaked loading stress, the level of which changes quasi-statically in time. For the case in which strength weakens linearly with slip, Uenishi and Rice [2002] ( have shown there exists a universal length of the slipping region at instability, independent of any length scales entering into the description of the shape of the loading stress distribution. Here we study slip development and its (in)stability for a power-law slip-weakening relation, giving fault strength as τ = τ p - Aδn where τ p is the peak strength at which slip initiates, δ is the slip, and A is a constant. Such a form with n ≈ 0.2-0.4 has been inferred, for slips from 1 to 500 mm, as an interpretation of seismological observations on the scaling of radiated energy with slip [Abercrombie and Rice, EOS, 2001; SCEC, 2002]. It is also consistent with laboratory experiments involving large rotary shear [Chambon et al., GRL, 2002]. We first employed an energy approach to give a Rayleigh-Ritz approximation for the dependence of slipping length and maximum slip on the level and shape of the loading stress distribution. That was done for a loading stress distribution τ p + Rt - κ x2 / 2 where x is distance along the fault, κ is a constant, and Rt is the stress change from that for which the peak in the loading stress distribution equals the strength τ p. Results show there is no longer a universal nucleation length, independent of κ , when n != 1, and that qualitative features of the slip development are significantly controlled by n. We also obtained full numerical solutions for the slip development. Remarkably, predictions of the simple energy approach are in reasonable quantitative agreement with them and give all qualitative features correctly. Principal results are as follows: If n > 2/3, the

  15. Platform computing

    CERN Multimedia


    "Platform Computing releases first grid-enabled workload management solution for IBM eServer Intel and UNIX high performance computing clusters. This Out-of-the-box solution maximizes the performance and capability of applications on IBM HPC clusters" (1/2 page) .

  16. Nonlinear dynamical triggering of slow slip

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Paul A [Los Alamos National Laboratory; Knuth, Matthew W [WISCONSIN; Kaproth, Bryan M [PENN STATE; Carpenter, Brett [PENN STATE; Guyer, Robert A [Los Alamos National Laboratory; Le Bas, Pierre - Yves [Los Alamos National Laboratory; Daub, Eric G [Los Alamos National Laboratory; Marone, Chris [PENN STATE


    Among the most fascinating, recent discoveries in seismology have been the phenomena of triggered slip, including triggered earthquakes and triggered-tremor, as well as triggered slow, silent-slip during which no seismic energy is radiated. Because fault nucleation depths cannot be probed directly, the physical regimes in which these phenomena occur are poorly understood. Thus determining physical properties that control diverse types of triggered fault sliding and what frictional constitutive laws govern triggered faulting variability is challenging. We are characterizing the physical controls of triggered faulting with the goal of developing constitutive relations by conducting laboratory and numerical modeling experiments in sheared granular media at varying load conditions. In order to simulate granular fault zone gouge in the laboratory, glass beads are sheared in a double-direct configuration under constant normal stress, while subject to transient perturbation by acoustic waves. We find that triggered, slow, silent-slip occurs at very small confining loads ({approx}1-3 MPa) that are smaller than those where dynamic earthquake triggering takes place (4-7 MPa), and that triggered slow-slip is associated with bursts of LFE-like acoustic emission. Experimental evidence suggests that the nonlinear dynamical response of the gouge material induced by dynamic waves may be responsible for the triggered slip behavior: the slip-duration, stress-drop and along-strike slip displacement are proportional to the triggering wave amplitude. Further, we observe a shear-modulus decrease corresponding to dynamic-wave triggering relative to the shear modulus of stick-slips. Modulus decrease in response to dynamical wave amplitudes of roughly a microstrain and above is a hallmark of elastic nonlinear behavior. We believe that the dynamical waves increase the material non-affine elastic deformation during shearing, simultaneously leading to instability and slow-slip. The inferred

  17. Fault Wear During Earthquake-Like Slip-Events in Laboratory Experiments (United States)

    Reches, Z.; Chang, J. C.; Boneh, Y.; Lockner, D. A.


    We present fault-wear observations from experiments conducted on a rotary shear apparatus with samples made of solid rock of ring structure 7 cm in diameter and 1 cm wide.. The experimental procedure is designed to simulate the slip along a fault patch that is activated by an instantaneous shear loading associated with a propagating earthquake front. For this objective, the apparatus accumulates a finite amount of energy in a 225 kg flywheel that is engaged to the sample through a fast-acting clutch. Slip along the sample is initiated when the flywheel torque exceeds the critical strength of the sample, and the slip seized when the flywheel kinetic energy is consumed. During the experiment, we continuously monitored the fault slip-velocity, its surface closure, the normal and shear stresses across the fault, and its temperature. We present results of 34 experiments, 19 of them with Sierra White granite samples and 15 with Kasota dolomite samples. The samples were loaded under normal stress up to 7 MPa. In a typical experiment, the velocity rose quickly (measured closure across the fault blocks, and presented here by the unit W= [(micron of surface wear) / (meter of slip distance)] (see Boneh et al., this meeting). The maximum calculated wear-rate in these experiments approaches 20,000 microm/m. We recognized three distinct modes of wear-rate variations with respect to the measured friction: (1) An initial, short stage of high dilation-rate with slight (~10%) increase of the associated friction; this stage was followed by long period of low wear-rate accompanied with a moderate to large friction drop (30-50%); (2) Under relatively high peak velocities of 0.5-1.0 m/s, the samples displayed initial high wear-rate (fault-surface closure) that quickly decays to steady-state stage of low wear-rate; and (3) Under low slip-velocity conditions (velocity <0.1 m/s), the experimental fault did not display a discernable wear-rate pattern. The present experiments reveal large

  18. Mechanical properties of very thin cover slip glass disk

    Indian Academy of Sciences (India)

    A Seal; A K Dalui; M Banerjee; A K Mukhopadhyay; K K Phani


    The biaxial flexural strength, Young’s modulus, Vicker’s microhardness and fracture toughness data for very thin, commercial, soda-lime-silica cover slip glass (diameter, D-18 mm, thickness, T-0 3 mm; T/D ≈ 0.02) are reported here. The ball on ring biaxial flexure tests were conducted at room temperature as a function of the support ring diameter (≈10–20 mm) and cross head speed (0.1–10 mm min–1). In addition, the Weibull modulus data were also determined. The Young’s modulus data was measured using a linear variable differential transformer (LVDT) from biaxial flexure tests and was checked out to be comparable to the data obtained independently from the ultrasonic time of flight measurement using a 15 MHz transducer. The microhardness data was obtained for the applied load range of 0.1–20 N. The fracture toughness (IC) data was obtained by the indentation technique at an applied load of 20 N.

  19. Progressive slip after removal of screw fixation in slipped capital femoral epiphysis: two case reports

    Directory of Open Access Journals (Sweden)

    Engelsma Yde


    Full Text Available Abstract Introduction In slipped capital femoral epiphysis the femoral neck displaces relative to the head due to weakening of the epiphysis. Early recognition and adequate surgical fixation is essential for a good functional outcome. The fixation should be secured until the closure of the epiphysis to prevent further slippage. A slipped capital femoral epiphysis should not be confused with a femoral neck fracture. Case presentation Case 1 concerns a 15-year-old boy with an adequate initial screw fixation of his slipped capital femoral epiphysis. Unfortunately, it was thought that the epiphysis had healed and the screw was removed after 11 weeks. This caused new instability with a progressive slip of the femoral epiphysis and subsequently re-fixation and a subtrochanteric correction osteotomy was obligatory. Case 2 concerns a 13-year-old girl with persistent hip pain after screw fixation for slipped capital femoral epiphysis. The screw was removed as lysis was seen around the screw on the hip X-ray. This operation created a new unstable situation and the slip progressed resulting in poor hip function. A correction osteotomy with re-screw fixation was performed with a good functional result. Conclusion A slipped epiphysis of the hip is not considered ‘healed’ after a few months. Given the risk of progression of the slip the fixation material cannot be removed before closure of the growth plate.

  20. Stirling engine piston ring (United States)

    Howarth, Roy B.


    A piston ring design for a Stirling engine wherein the contact pressure between the piston and the cylinder is maintained at a uniform level, independent of engine conditions through a balancing of the pressure exerted upon the ring's surface and thereby allowing the contact pressure on the ring to be predetermined through the use of a preloaded expander ring.

  1. Birth Control Ring (United States)

    ... Loss Surgery? A Week of Healthy Breakfasts Shyness Birth Control Ring KidsHealth > For Teens > Birth Control Ring A A A What's in this article? ... español Anillo vaginal anticonceptivo What Is It? The birth control ring is a soft, flexible, doughnut-shaped ring ...

  2. Actin Rings of Power. (United States)

    Schwayer, Cornelia; Sikora, Mateusz; Slováková, Jana; Kardos, Roland; Heisenberg, Carl-Philipp


    Circular or ring-like actin structures play important roles in various developmental and physiological processes. Commonly, these rings are composed of actin filaments and myosin motors (actomyosin) that, upon activation, trigger ring constriction. Actomyosin ring constriction, in turn, has been implicated in key cellular processes ranging from cytokinesis to wound closure. Non-constricting actin ring-like structures also form at cell-cell contacts, where they exert a stabilizing function. Here, we review recent studies on the formation and function of actin ring-like structures in various morphogenetic processes, shedding light on how those different rings have been adapted to fulfill their specific roles.

  3. Alternative loop rings

    CERN Document Server

    Goodaire, EG; Polcino Milies, C


    For the past ten years, alternative loop rings have intrigued mathematicians from a wide cross-section of modern algebra. As a consequence, the theory of alternative loop rings has grown tremendously. One of the main developments is the complete characterization of loops which have an alternative but not associative, loop ring. Furthermore, there is a very close relationship between the algebraic structures of loop rings and of group rings over 2-groups. Another major topic of research is the study of the unit loop of the integral loop ring. Here the interaction between loop rings and group ri

  4. Evidence for slip partitioning and bimodal slip behavior on a single fault: Surface slip characteristics of the 2013 Mw7.7 Balochistan, Pakistan earthquake (United States)

    Barnhart, W. D.; Briggs, R. W.; Reitman, N. G.; Gold, R. D.; Hayes, G. P.


    Deformation is commonly accommodated by strain partitioning on multiple, independent strike-slip and dip-slip faults in continental settings of oblique plate convergence. As a corollary, individual faults tend to exhibit one sense of slip - normal, reverse, or strike-slip - until whole-scale changes in boundary conditions reactivate preexisting faults in a new deformation regime. In this study, we show that a single continental fault may instead partition oblique strain by alternatively slipping in a strike-slip or a dip-slip sense during independent fault slip events. We use 0.5 m resolution optical imagery and sub-pixel correlation analysis of the 200 + km 2013 Mw7.7 Balochistan, Pakistan earthquake to document co-seismic surface slip characteristics and Quaternary tectonic geomorphology along the causative Hoshab fault. We find that the 2013 earthquake, which involved a ∼6:1 strike-slip to dip-slip ratio, ruptured a structurally segmented fault. Quaternary geomorphic indicators of gross fault-zone morphology reveal both reverse-slip and strike-slip deformation in the rupture area of the 2013 earthquake that varies systematically along fault strike despite nearly pure strike-slip motion in 2013. Observations of along-strike variations in range front relief and geomorphic offsets suggest that the Hoshab fault accommodates a substantial reverse component of fault slip in the Quaternary, especially along the southern section of the 2013 rupture. We surmise that Quaternary bimodal slip along the Hoshab fault is promoted by a combination of the arcuate geometry of the Hoshab fault, the frictional weakness of the Makran accretionary prism, and time variable loading conditions from adjacent earthquakes and plate interactions.

  5. Slip in viscous contact-line movement (United States)

    van Lengerich, Henrik; Steen, Paul; Breuer, Kenneth


    The typical continuum fluid dynamics formulation cannot be used to model the spreading of a liquid on a solid because a stress singularity prevents contact-line motion. It is well known that this situation can be remedied by introducing a slip. We perform Stokes-flow simulations with slip and compare these with experiments. In the experiment, liquid (squalane) is forced through two parallel sapphire plates (roughness 0.6nm), and the meniscus shape and its speed are measured. The slip-length for this liquid/solid pair has been measured previously in an independent experiment absent of contact lines (T. Schmatko et. al. PRL 94, 244501). The same geometry is used in a boundary integral method simulation, accurate to within a few molecular diameters in the vicinity of the contact-line. The slip-length in the simulations can be varied such that the meniscus shape matches the experiment. Preliminary results suggest this slip-length is an order of magnitude lower than that reported by Schmatko. Now at the University of Minnesota TC

  6. Gait abnormalities following slipped capital femoral epiphysis. (United States)

    Song, Kit M; Halliday, Suzanne; Reilly, Chris; Keezel, William


    The authors evaluated 30 subjects with treated unilateral slipped capital femoral epiphysis and a range of severity from mild to severe to characterize gait and strength abnormalities using instrumented three-dimensional gait analysis and isokinetic muscle testing. For slip angles less than 30 degrees, kinematic, kinetic, and strength variables were not significantly different from age- and weight-matched controls. For moderate to severe slips, as slip angle increased, passive hip flexion, hip abduction, and internal rotation in the flexed and extended positions decreased significantly. Persistent pelvic obliquity, medial lateral trunk sway, and trunk obliquity in stance increased, as did extension, adduction, and external rotation during gait. Gait velocity and step length decreased with increased amount of time spent in double limb stance. Hip abductor moment, hip extension moment, knee flexion moment, and ankle dorsiflexion moment were all decreased on the involved side. Hip and knee strength also decreased with increasing slip severity. All of these changes were present on the affected and to a lesser degree the unaffected side. Body center of mass translation or pelvic obliquity in mid-stance greater than one standard deviation above normal correlated well with the impression of compensated or uncompensated Trendelenburg gait.

  7. [An experimental study on freudian slips]. (United States)

    Köhler, Thomas; Simon, Patrick


    We attempted to replicate findings of a frequently cited study by Motley. This author had used a tachistoskope to present his participants pairs of words which had a meaning after exchanging the initial letters of each word ("spoonerisms"). In accordance with the psychoanalytic theory of Freudian slips, Motley was able to show that under the impression of a sexually stimulating situation more sexual words were read; under the threat of electric shock spoonerisms appeared more often in words with reference to electricity. In our study we tried to induce spoonerisms by presentation of short written texts of erotic, aggressive and neutral content. It could be shown that after reading the erotic and the aggressive text, slips were produced more often than following the text of neutral content. In addition, significantly more slips of erotic kind occurred after reading the erotic text, whereas more aggressive slips were observed immediately after lecture of the text with aggressive content. We were therefore able to replicate Motley's findings and thus also corroborated assumptions made by Freud on the origin of slips of the tongue.

  8. Slip patterns and preferred dislocation boundary planes

    DEFF Research Database (Denmark)

    Winther, G.


    The planes of deformation induced extended planar dislocation boundaries are analysed in two different co-ordinate systems, namely the macroscopic system defined by the deformation axes and the crystallographic system given by the crystallographic lattice. The analysis covers single and polycryst......The planes of deformation induced extended planar dislocation boundaries are analysed in two different co-ordinate systems, namely the macroscopic system defined by the deformation axes and the crystallographic system given by the crystallographic lattice. The analysis covers single...... and polycrystals of fcc metals in three deformation modes (rolling, tension and torsion). In the macroscopic system, boundaries lie close to the macroscopically most stressed planes. In the crystallographic system, the boundary plane depends on the grain/crystal orientation. The boundary planes in both co......-ordinate systems are rationalised based on the slip. The more the slip is concentrated on a slip plane, the closer the boundaries lie to this. The macroscopic preference arises from the macroscopic directionality of the slip. The established relations are applied to (a) prediction of boundary planes from slip...

  9. Constraining the roughness degree of slip heterogeneity

    KAUST Repository

    Causse, Mathieu


    This article investigates different approaches for assessing the degree of roughness of the slip distribution of future earthquakes. First, we analyze a database of slip images extracted from a suite of 152 finite-source rupture models from 80 events (Mw = 4.1–8.9). This results in an empirical model defining the distribution of the slip spectrum corner wave numbers (kc) as a function of moment magnitude. To reduce the “epistemic” uncertainty, we select a single slip model per event and screen out poorly resolved models. The number of remaining models (30) is thus rather small. In addition, the robustness of the empirical model rests on a reliable estimation of kc by kinematic inversion methods. We address this issue by performing tests on synthetic data with a frequency domain inversion method. These tests reveal that due to smoothing constraints used to stabilize the inversion process, kc tends to be underestimated. We then develop an alternative approach: (1) we establish a proportionality relationship between kc and the peak ground acceleration (PGA), using a k−2 kinematic source model, and (2) we analyze the PGA distribution, which is believed to be better constrained than slip images. These two methods reveal that kc follows a lognormal distribution, with similar standard deviations for both methods.

  10. Breddin's Graph For Fault and Slip Data (United States)

    Célérier, B.

    A simple plot of rake versus strike of fault and slip or earthquake focal mechanism data provides insight into the stress regime that caused slippage on these faults provided one of the principal stress direction is near vertical. By overlaying an abacus on this plot, one can evaluate both the orientation of the horizontal principal stress directions and the stress tensor aspect ratio, (s1-s2)/(s1-s3), where s1, s2, s3 are the principal stress magnitudes ranked in decreasing order. The underlying geometrical properties are that the slip data that are near strike-slip, and that are mainly found on steeply dipping planes, constrain the horizontal principal stress directions whereas the slip data that are near dip-slip and that occur on shallow dipping planes striking away from the principal stress directions constrain the stress tensor aspect ratio. This abacus is an extension of the Breddin's abacus used to analyze two dimensional deformation in structural geology and it is used in a similar fashion. Its application to synthetic and natural monophase data show both its usefulness and limitation. It is not intended to replace stress inversion techniques because of limiting assumptions, but it is expected to provide insight into the complexity of natural data set from a simple viewpoint.

  11. Platform Constellations

    DEFF Research Database (Denmark)

    Staykova, Kalina Stefanova; Damsgaard, Jan


    messaging apps KakaoTalk and LINE, we are able to gain valuable insights about the nature of these new constructions and to capture and synthesize their main characteristics in a framework. Our results show that platform constellations possess unique innovative capabilities, which can improve users......’ acquisition and users’ engagement rates as well as unlock new sources of value creation and diversify revenue streams....

  12. Quantifying slip balance in the earthquake cycle: Coseismic slip model constrained by interseismic coupling

    KAUST Repository

    Wang, Lifeng


    The long-term slip on faults has to follow, on average, the plate motion, while slip deficit is accumulated over shorter time scales (e.g., between the large earthquakes). Accumulated slip deficits eventually have to be released by earthquakes and aseismic processes. In this study, we propose a new inversion approach for coseismic slip, taking interseismic slip deficit as prior information. We assume a linear correlation between coseismic slip and interseismic slip deficit, and invert for the coefficients that link the coseismic displacements to the required strain accumulation time and seismic release level of the earthquake. We apply our approach to the 2011 M9 Tohoku-Oki earthquake and the 2004 M6 Parkfield earthquake. Under the assumption that the largest slip almost fully releases the local strain (as indicated by borehole measurements, Lin et al., 2013), our results suggest that the strain accumulated along the Tohoku-Oki earthquake segment has been almost fully released during the 2011 M9 rupture. The remaining slip deficit can be attributed to the postseismic processes. Similar conclusions can be drawn for the 2004 M6 Parkfield earthquake. We also estimate the required time of strain accumulation for the 2004 M6 Parkfield earthquake to be ~25 years (confidence interval of [17, 43] years), consistent with the observed average recurrence time of ~22 years for M6 earthquakes in Parkfield. For the Tohoku-Oki earthquake, we estimate the recurrence time of~500-700 years. This new inversion approach for evaluating slip balance can be generally applied to any earthquake for which dense geodetic measurements are available.

  13. Slip rate and slip magnitudes of past earthquakes along the Bogd left-lateral strike-slip fault (Mongolia) (United States)

    Prentice, Carol S.; Rizza, M.; Ritz, J.F.; Baucher, R.; Vassallo, R.; Mahan, S.


    We carried out morphotectonic studies along the left-lateral strike-slip Bogd Fault, the principal structure involved in the Gobi-Altay earthquake of 1957 December 4 (published magnitudes range from 7.8 to 8.3). The Bogd Fault is 260 km long and can be subdivided into five main geometric segments, based on variation in strike direction. West to East these segments are, respectively: the West Ih Bogd (WIB), The North Ih Bogd (NIB), the West Ih Bogd (WIB), the West Baga Bogd (WBB) and the East Baga Bogd (EBB) segments. Morphological analysis of offset streams, ridges and alluvial fans—particularly well preserved in the arid environment of the Gobi region—allows evaluation of late Quaternary slip rates along the different faults segments. In this paper, we measure slip rates over the past 200 ka at four sites distributed across the three western segments of the Bogd Fault. Our results show that the left-lateral slip rate is∼1 mm yr–1 along the WIB and EIB segments and∼0.5 mm yr–1 along the NIB segment. These variations are consistent with the restraining bend geometry of the Bogd Fault. Our study also provides additional estimates of the horizontal offset associated with the 1957 earthquake along the western part of the Bogd rupture, complementing previously published studies. We show that the mean horizontal offset associated with the 1957 earthquake decreases progressively from 5.2 m in the west to 2.0 m in the east, reflecting the progressive change of kinematic style from pure left-lateral strike-slip faulting to left-lateral-reverse faulting. Along the three western segments, we measure cumulative displacements that are multiples of the 1957 coseismic offset, which may be consistent with a characteristic slip. Moreover, using these data, we re-estimate the moment magnitude of the Gobi-Altay earthquake at Mw 7.78–7.95. Combining our slip rate estimates and the slip distribution per event we also determined a mean recurrence interval of∼2500

  14. Quake clamps down on slow slip (United States)

    Wallace, Laura M.; Bartlow, Noel; Hamling, Ian; Fry, Bill


    Using continuous GPS (cGPS) data from the Hikurangi subduction zone in New Zealand, we show for the first time that stress changes induced by a local earthquake can arrest an ongoing slow slip event (SSE). The cGPS data show that the slip rate in the northern portion of the 2013/2014 Kapiti SSE decreased abruptly following a nearby intraslab earthquake. We suggest that deceleration of the Kapiti SSE in early 2014 occurred due to a tenfold increase in the normal stress relative to shear stress in the SSE source, induced by the nearby Mw 6.3 earthquake, consistent with expectations of rate and state friction. Our observation of an abrupt halting/slowing of the SSE in response to stress changes imposed by a local earthquake has implications for the strength of fault zones hosting SSEs and supports the premise that static stress changes are an important ingredient in triggering (or delaying) fault slip.

  15. On the tree-like structure of rings in dense solutions. (United States)

    Michieletto, D


    One of the most challenging problems in polymer physics is providing a theoretical description for the behaviour of rings in dense solutions and melts. Although it is nowadays well established that the overall size of a ring in these conditions scales like that of a collapsed globule, there is compelling evidence that rings may exhibit ramified and tree-like conformations. In this work I show how to characterise these local tree-like structures by measuring the local writhing of the rings' segments and by identifying the patterns of intra-chain contacts. These quantities reveal two major topological structures: loops and terminal branches which strongly suggest that the strictly double-folded "lattice animal" picture for rings in the melt may be replaced by a more relaxed tree-like structure accommodating loops. In particular, I show that one can identify hierarchically looped structures whose degree increases linearly with the size of a ring, and that terminal branches are found to store about 30% of the whole ring mass, irrespectively of its length. Finally, I draw an analogy between rings in the melt and slip-linked chains, where contact points are enforced by mobile slip-links and for which a field-theoretic treatment can be employed to get some insight into their typical conformations. These findings are ultimately discussed in the light of recent works on the static structure of rings and on the existence of inter-ring threadings.

  16. Vaporization of fault water during seismic slip (United States)

    Chen, Jianye; Niemeijer, André R.; Fokker, Peter A.


    Laboratory and numerical studies, as well as field observations, indicate that phase transitions of pore water might be an important process in large earthquakes. We present a model of the thermo-hydro-chemo-mechanical processes, including a two-phase mixture model to incorporate the phase transitions of pore water, occurring during fast slip (i.e., a natural earthquake) in order to investigate the effects of vaporization on the coseismic slip. Using parameters from typical natural faults, our modeling shows that vaporization can indeed occur at the shallow depths of an earthquake, irrespective of the wide variability of the parameters involved (sliding velocity, friction coefficient, gouge permeability and porosity, and shear-induced dilatancy). Due to the fast kinetics, water vaporization can cause a rapid slip weakening even when the hydrological conditions of the fault zone are not favorable for thermal pressurization, e.g., when permeability is high. At the same time, the latent heat associated with the phase transition causes the temperature rise in the slip zone to be buffered. Our parametric analyses reveal that the amount of frictional work is the principal factor controlling the onset and activity of vaporization and that it can easily be achieved in earthquakes. Our study shows that coseismic pore fluid vaporization might have played important roles at shallow depths of large earthquakes by enhancing slip weakening and buffering the temperature rise. The combined effects may provide an alternative explanation for the fact that low-temperature anomalies were measured in the slip zones at shallow depths of large earthquakes.

  17. Slipping magnetic reconnection in coronal loops. (United States)

    Aulanier, Guillaume; Golub, Leon; Deluca, Edward E; Cirtain, Jonathan W; Kano, Ryouhei; Lundquist, Loraine L; Narukage, Noriyuki; Sakao, Taro; Weber, Mark A


    Magnetic reconnection of solar coronal loops is the main process that causes solar flares and possibly coronal heating. In the standard model, magnetic field lines break and reconnect instantaneously at places where the field mapping is discontinuous. However, another mode may operate where the magnetic field mapping is continuous but shows steep gradients: The field lines may slip across each other. Soft x-ray observations of fast bidirectional motions of coronal loops, observed by the Hinode spacecraft, support the existence of this slipping magnetic reconnection regime in the Sun's corona. This basic process should be considered when interpreting reconnection, both on the Sun and in laboratory-based plasma experiments.

  18. Fault zone roughness controls slip stability (United States)

    Harbord, Christopher; Nielsen, Stefan; De Paola, Nicola


    Fault roughness is an important control factor in the mechanical behaviour of fault zones, in particular the frictional slip stability and subsequent earthquake nucleation. Despite this, there is little experimental quantification as to the effects of varying roughness upon rate- and state-dependant friction (RSF). Utilising a triaxial deformation apparatus and a novel adaptation of the direct shear methodology to simulate initially bare faults in Westerly Granite, we performed a series of velocity step frictional sliding experiments. Initial root mean square roughnesses (Sq) was varied in the range 6x10-7 - 2.4x10-5 m. We also investigated the effects upon slip stability of normal stress variation in the range σn = 30 - 200 MPa, and slip velocity between 0.1 - 10 μm s-1. A transition from stable sliding to unstable slip (manifested by stick-slip and slow slip events) was observed, depending on the parameter combination, thus covering the full spectrum of fault slip behaviours. At low normal stress (σn = 30MPa) smooth faults (Sqstress drops on slow slip events upon velocity increase), with strongly velocity weakening friction. When normal stress is increased to intermediate values (σn = 100 - 150 MPa), smooth faults (Sqstress (σn = 200 MPa) a transition from unstable to stable sliding is observed for smooth faults, which is not expected using RSF stability criteria. At all conditions sliding is stable for rough faults (Sq> 1x10-6 m). We find that instability can develop when the ratio of fault to critical stiffness kf kc > 10, or, alternatively, even when a - b > 0 at σn = 150MPa, suggesting that bare surfaces may not strictly obey the R+S stability condition. Additionally we present white light interferometry and SEM analysis of experimentally deformed samples which provide information about the distribution and physical nature of frictional contact. Significantly we suggest that bare fault surfaces may require a different stability criterion (based on

  19. On JB-Rings

    Institute of Scientific and Technical Information of China (English)

    Huanyin CHEN


    A ring R is a QB-ring provided that aR + bR = R with a, b ∈ R implies that there exists a y ∈ R such that a+by ∈ R-1q. It is said that a ring R is a JB-ring provided that R/J(R) is a QB-ring, where J(R) is the Jacobson radical of R. In this paper, various necessary and sufficient conditions, under which a ring is a JB-ring, are established. It is proved that JB-rings can be characterized by pseudo-similarity. Furthermore, the author proves that R is a J B-ring iff so is R/J(R)2.

  20. Numerical Analysis of the Slip Velocity and Temperature-Jump in Microchannel Using Langmuir Slip Boundary Condition

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sang Woo; Kim, Hyun Goo; Lee, Do Hyung [Hanyang University, Seoul (Korea, Republic of)


    The slip velocity and the temperature jumps for low-speed flow in microchannels are investigated using Langmuir slip boundary condition. This slip boundary condition is suggested to simulate micro flow. The current study analyzes Langmuir slip boundary condition theoretically and it analyzed numerically micro-Couette flow, micro-Poiseuille flow and grooved microchannel flow. First, to prove validity for Langmuir slip condition, an analytical solution for micro-Couette flow is derived from Navier-Stokes equations with Langmuir slip conditions and is compared with DSMC and an analytical solution with Maxwell slip boundary condition. Second, the numerical analysis is performed for micro-Poiseuille flow and grooved microchannel flow. The slip velocity and temperature distribution are compared with results of DSMC or Maxwell slip condition and those are shown in good agreement.

  1. Imbricated slip rate processes during slow slip transients imaged by low-frequency earthquakes (United States)

    Lengliné, O.; Frank, W. B.; Marsan, D.; Ampuero, J.-P.


    Low Frequency Earthquakes (LFEs) often occur in conjunction with transient strain episodes, or Slow Slip Events (SSEs), in subduction zones. Their focal mechanism and location consistent with shear failure on the plate interface argue for a model where LFEs are discrete dynamic ruptures in an otherwise slowly slipping interface. SSEs are mostly observed by surface geodetic instruments with limited resolution and it is likely that only the largest ones are detected. The time synchronization of LFEs and SSEs suggests that we could use the recorded LFEs to constrain the evolution of SSEs, and notably of the geodetically-undetected small ones. However, inferring slow slip rate from the temporal evolution of LFE activity is complicated by the strong temporal clustering of LFEs. Here we apply dedicated statistical tools to retrieve the temporal evolution of SSE slip rates from the time history of LFE occurrences in two subduction zones, Mexico and Cascadia, and in the deep portion of the San Andreas fault at Parkfield. We find temporal characteristics of LFEs that are similar across these three different regions. The longer term episodic slip transients present in these datasets show a slip rate decay with time after the passage of the SSE front possibly as t - 1 / 4. They are composed of multiple short term transients with steeper slip rate decay as t-α with α between 1.4 and 2. We also find that the maximum slip rate of SSEs has a continuous distribution. Our results indicate that creeping faults host intermittent deformation at various scales resulting from the imbricated occurrence of numerous slow slip events of various amplitudes.

  2. Surgical repair of central slip avulsion injuries with Mitek bone anchor--retrospective analysis of a case series.

    LENUS (Irish Health Repository)

    Chan, Jeffrey C Y


    The purpose of this study is to describe our technique of central slip repair using the Mitek bone anchor and to evaluate the treatment outcome. Eight digits in eight patients were reconstructed using the bone anchor: three little fingers, two middle fingers, two index fingers and one ring finger. There were two immediate and six delayed repairs (range from one day to eight months). Four patients had pre-operative intensive splinting and physiotherapy to restore passive extension of the proximal interphalangeal joint prior to central slip reconstruction. All patients have made good progress since surgery. No patient requires a second procedure and none of the bone anchors have dislodged or loosened. We conclude that the Mitek bone anchor is a reliable technique to achieve soft tissue to bone fixation in central slip avulsion injuries. We recommend that this technique be considered as a treatment option for patients requiring surgical repair.

  3. The Distribution of Fault Slip Rates and Oblique Slip Patterns in the Greater Los Angeles, CA Region (United States)

    Harper, H.; Marshall, S. T.


    The Los Angeles basin is host to a complex network of active strike-slip, reverse, and oblique slip faults. Because of the large metropolitan region occupying the basin, even moderately large earthquakes (M6+) pose a significant natural hazard. Since geologic estimates have not fully characterized the distribution of active fault slip rates in the region, we use a mechanical model driven by geodetically-measured shortening rates to calculate the full three-dimensional fault slip rate distributions in the region. The modeled nonplanar fault geometries are relatively well-constrained, and use data from the SCEC community fault model. Area-weighted average fault slip rates predicted by the model match previously measured geologic slip rates in most cases; however, some geologic measurements were made in locations where the slip rate is non-characteristic of the fault (e.g. near a fault tip) and the geologic slip rate estimate disagrees with the model-predicted average slip rate. The largest discrepancy between the model predictions and geologic estimates occurs on the Sierra Madre fault, which has a model-predicted slip rate approximately 2 mm/yr greater than the geologic estimates. An advantage of the model is that it can predict the full three-dimensional mechanically compatible slip distribution along all modeled faults. The fault surface slip distribution maps show complex oblique slip patterns that arise due to the nonplanar geometries and mechanical interactions between intersecting and neighboring faults. For example, the Hollywood fault exhibits a net slip of 0.7 mm/yr at depth which increases to 1.6 mm/yr where it is intersected by the Santa Monica fault in the near-surface. Model results suggest that nearly all faults in the region have an oblique component of slip at depth, so slip rate estimates of only dip or strike-slip may underestimate the total net slip rates and seismic hazards in the region.

  4. On semi ring bornologies (United States)

    Imran, A. N.; Rakhimov, I. S.; Husain, Sh. K. Said


    Our main focus in this work is to introduce new structure bornological semi rings. This generalizes the theory of algebraic semi rings from the algebraic setting to the framework of bornological sets. We give basic properties for this new structure. As well as, We study the fundamental construction of bornological semi ring as product, inductive limits and projective limits and their extensions on bornological semi ring. Additionally, we introduce the category of bornological semi rings and study product and pullback (fiber product) in the category of bornological semi rings.

  5. Hydrodynamic slip length as a surface property (United States)

    Ramos-Alvarado, Bladimir; Kumar, Satish; Peterson, G. P.


    Equilibrium and nonequilibrium molecular dynamics simulations were conducted in order to evaluate the hypothesis that the hydrodynamic slip length is a surface property. The system under investigation was water confined between two graphite layers to form nanochannels of different sizes (3-8 nm). The water-carbon interaction potential was calibrated by matching wettability experiments of graphitic-carbon surfaces free of airborne hydrocarbon contamination. Three equilibrium theories were used to calculate the hydrodynamic slip length. It was found that one of the recently reported equilibrium theories for the calculation of the slip length featured confinement effects, while the others resulted in calculations significantly hindered by the large margin of error observed between independent simulations. The hydrodynamic slip length was found to be channel-size independent using equilibrium calculations, i.e., suggesting a consistency with the definition of a surface property, for 5-nm channels and larger. The analysis of the individual trajectories of liquid particles revealed that the reason for observing confinement effects in 3-nm nanochannels is the high mobility of the bulk particles. Nonequilibrium calculations were not consistently affected by size but by noisiness in the smallest systems.

  6. Hydrodynamic slip length as a surface property. (United States)

    Ramos-Alvarado, Bladimir; Kumar, Satish; Peterson, G P


    Equilibrium and nonequilibrium molecular dynamics simulations were conducted in order to evaluate the hypothesis that the hydrodynamic slip length is a surface property. The system under investigation was water confined between two graphite layers to form nanochannels of different sizes (3-8 nm). The water-carbon interaction potential was calibrated by matching wettability experiments of graphitic-carbon surfaces free of airborne hydrocarbon contamination. Three equilibrium theories were used to calculate the hydrodynamic slip length. It was found that one of the recently reported equilibrium theories for the calculation of the slip length featured confinement effects, while the others resulted in calculations significantly hindered by the large margin of error observed between independent simulations. The hydrodynamic slip length was found to be channel-size independent using equilibrium calculations, i.e., suggesting a consistency with the definition of a surface property, for 5-nm channels and larger. The analysis of the individual trajectories of liquid particles revealed that the reason for observing confinement effects in 3-nm nanochannels is the high mobility of the bulk particles. Nonequilibrium calculations were not consistently affected by size but by noisiness in the smallest systems.

  7. Self-consistent dynamics of wall slip

    NARCIS (Netherlands)

    Dubbeldam, J.L.A.; Molenaar, J.


    A simple molecular model is studied to explain wall slip in a polymer melt. We consider a tube model for tethered chains in which the most important relaxation mechanisms: convective constraint release and chain stretching (retraction), are incorporated. Furthermore, we take the interactions between

  8. Next generation GNSS single receiver cycle slip reliability

    NARCIS (Netherlands)

    Teunissen, P.J.G.; De Bakker, P.F.


    In this contribution we study the multi-frequency, carrier-phase slip detection capabilities of a single receiver. Our analysis is based on an analytical expression that we present for themulti-frequencyminimal detectable carrier phase cycle slip.

  9. Effects of mental fatigue on biomechanics of slips. (United States)

    Lew, Fui Ling; Qu, Xingda


    The objective of this study was to investigate the effects of mental fatigue on biomechanics of slips. A total of 44 healthy young participants were evenly categorised into two groups: no fatigue and mental fatigue. Mental fatigue was induced by performing an AX-continuous performance test. The participants in both groups were instructed to walk on a linear walkway, and slips were induced unexpectedly during walking. We found that mental fatigue has adverse effects in all the three phases of slips. In particular, it leads to increased likelihood of slip initiation, poorer slip detection and a more insufficient reactive recovery response to slips. Based on the findings from the present study, we can conclude that mental fatigue is a risk factor for slips and falls. In order to prevent slip-induced falls, interventions, such as providing frequent rest breaks, could be applied in the workplace to avoid prolonged exposures to cognitively demanding activities.

  10. Group IV platforms for the mid-infrared (United States)

    Mashanovich, G. Z.; Nedeljkovic, M.; Chen, X.; Ben Masaud, T. M.; Muneeb, M.; Strain, M.; Sorel, M.; Krauss, T. F.; Roelkens, G. C.; Peacock, A. C.; Chong, H. M. H.; Reed, G. T.


    We have investigated several material platforms for the mid-infrared including silicon on insulator (SOI), polycrystalline silicon, and suspended silicon structures. We review photonic devices based on these platforms including splitters, ring/racetrack resonators, Mach-Zehnder interferometers, and spectrometers.

  11. Groups, rings, modules

    CERN Document Server

    Auslander, Maurice


    This classic monograph is geared toward advanced undergraduates and graduate students. The treatment presupposes some familiarity with sets, groups, rings, and vector spaces. The four-part approach begins with examinations of sets and maps, monoids and groups, categories, and rings. The second part explores unique factorization domains, general module theory, semisimple rings and modules, and Artinian rings. Part three's topics include localization and tensor products, principal ideal domains, and applications of fundamental theorem. The fourth and final part covers algebraic field extensions

  12. Flexural-slip during visco-elastic buckle folding (United States)

    Damasceno, Davi R.; Eckert, Andreas; Liu, Xiaolong


    Flexural-slip is considered as an important mechanism during folding and a general conceptual and qualitative understanding has been provided by various field studies. However, quantitative evidence of the importance of the flexural-slip mechanism during fold evolution is sparse due to the lack of suitable strain markers. In this study, 2D finite element analysis is used to overcome these disadvantages and to simulate flexural-slip during visco-elastic buckle folding. Variations of single and multilayer layer fold configurations are investigated, showing that flexural-slip is most likely to occur in effective single layer buckle folds, where slip occurs between contacts of competent layers. Based on effective single layer buckle folds, the influence of the number of slip surfaces, the degree of mechanical coupling (based on the friction coefficient), and layer thickness, on the resulting slip distribution are investigated. The results are in agreement with the conceptual flexural-slip model and show that slip is initiated sequentially during the deformation history and is maximum along the central slip surface of the fold limb. The cumulative amount of slip increases as the number of slip surfaces is increased. For a lower degree of mechanical coupling increased slip results in different fold shapes, such as box folds, during buckling. In comparison with laboratory experiments, geometrical relationships and field observations, the numerical modeling results show similar slip magnitudes. It is concluded that flexural-slip should represent a significant contribution during buckle folding, affecting the resulting fold shape for increased amounts of slip.

  13. Characterization of slip lines in single edge notched tension specimens


    Van Gerven, Filip; De Waele, Wim; Belato Rosado, Diego; Hertelé, Stijn


    The application of slip line analysis in weld failure assessment has not gained much attention to date. The presented research aims to predict slip line patterns taking into account the complex heterogeneous structure of the weld. A preliminary study based on Single Edge Notched Tension (SENT) test results sampling pure base material, i.e. not containing any welds is conducted to assess the impact of side grooves on slip line behaviour and to validate slip line theory and finite element analy...

  14. Birth Control Ring (United States)

    ... Right Sport for You Healthy School Lunch Planner Birth Control Ring KidsHealth > For Teens > Birth Control Ring Print A A A What's in ... español Anillo vaginal anticonceptivo What Is It? The birth control ring is a soft, flexible, doughnut-shaped ...

  15. On Weakly Semicommutative Rings*

    Institute of Scientific and Technical Information of China (English)



    A ring R is said to be weakly scmicommutative if for any a, b ∈ R,ab = 0 implies aRb C_ Nil(R), where Nil(R) is the set of all nilpotcnt elements in R.In this note, we clarify the relationship between weakly semicommutative rings and NI-rings by proving that the notion of a weakly semicommutative ring is a proper generalization of NI-rings. We say that a ring R is weakly 2-primal if the set of nilpotent elements in R coincides with its Levitzki radical, and prove that if R is a weakly 2-primal ring which satisfies oα-condition for an endomorphism α of R (that is, ab = 0 (←→) aα(b) = 0 where a, b ∈ R) then the skew polynomial ring R[π; αα]is a weakly 2-primal ring, and that if R is a ring and I is an ideal of R such that I and R/I are both weakly semicommutative then R is weakly semicommutative.Those extend the main results of Liang et al. 2007 (Taiwanese J. Math., 11(5)(2007),1359-1368) considerably. Moreover, several new results about weakly semicommutative rings and NI-rings are included.

  16. Evidence for Truncated Exponential Probability Distribution of Earthquake Slip

    KAUST Repository

    Thingbaijam, Kiran K. S.


    Earthquake ruptures comprise spatially varying slip on the fault surface, where slip represents the displacement discontinuity between the two sides of the rupture plane. In this study, we analyze the probability distribution of coseismic slip, which provides important information to better understand earthquake source physics. Although the probability distribution of slip is crucial for generating realistic rupture scenarios for simulation-based seismic and tsunami-hazard analysis, the statistical properties of earthquake slip have received limited attention so far. Here, we use the online database of earthquake source models (SRCMOD) to show that the probability distribution of slip follows the truncated exponential law. This law agrees with rupture-specific physical constraints limiting the maximum possible slip on the fault, similar to physical constraints on maximum earthquake magnitudes.We show the parameters of the best-fitting truncated exponential distribution scale with average coseismic slip. This scaling property reflects the control of the underlying stress distribution and fault strength on the rupture dimensions, which determines the average slip. Thus, the scale-dependent behavior of slip heterogeneity is captured by the probability distribution of slip. We conclude that the truncated exponential law accurately quantifies coseismic slip distribution and therefore allows for more realistic modeling of rupture scenarios. © 2016, Seismological Society of America. All rights reserverd.

  17. Optimization of Partial Slip Surface at Lubricated-MEMS

    NARCIS (Netherlands)

    Tauviqirrahman, M.; Ismail, R.; Schipper, D.J.; Jamari, J.; Suprijanto, Dr.


    This work reports the hydrodynamic performance (load support, friction force, friction coefficient, and volume flow) generated by a partial slip surface at lubricated-MEMS. The partial slip surface is optimized so that a maximum hydrodynamic load support could be obtained. The partial slip is applie

  18. Physics of quantum rings

    CERN Document Server

    Fomin, Vladimir M


    This book deals with a new class of materials, quantum rings. Innovative recent advances in experimental and theoretical physics of quantum rings are based on the most advanced state-of-the-art fabrication and characterization techniques as well as theoretical methods. The experimental efforts allow to obtain a new class of semiconductor quantum rings formed by capping self-organized quantum dots grown by molecular beam epitaxy. Novel optical and magnetic properties of quantum rings are associated with non-trivial topologies at the nanoscale. An adequate characterization of quantum rings is po

  19. Envelopes of Commutative Rings

    Institute of Scientific and Technical Information of China (English)

    Rafael PARRA; Manuel SAOR(I)N


    Given a significative class F of commutative rings,we study the precise conditions under which a commutative ring R has an F-envelope.A full answer is obtained when.F is the class of fields,semisimple commutative rings or integral domains.When F is the class of Noetherian rings,we give a full answer when the Krull dimension of R is zero and when the envelope is required to be epimorphic.The general problem is reduced to identifying the class of non-Noetherian rings having a monomorphic Noetherian envelope,which we conjecture is the empty class.


    Institute of Scientific and Technical Information of China (English)


    Proxy signatures have been used to enable the transfer of digital signing power within some context and ring signatures can be used to provide the anonymity of a signer. By combining the functionalities of proxy signatures and ring signatures, this paper introduces a new concept, named ring proxy signature, which is a proxy signature generated by an anonymous member from a set of potential signers. The paper also constructs the first concrete ring proxy signature scheme based on the provably secure Schnorr's signatures and two ID-based ring proxy signature schemes. The security analysis is provided as well.

  1. Saturn's largest ring. (United States)

    Verbiscer, Anne J; Skrutskie, Michael F; Hamilton, Douglas P


    Most planetary rings in the Solar System lie within a few radii of their host body, because at these distances gravitational accelerations inhibit satellite formation. The best known exceptions are Jupiter's gossamer rings and Saturn's E ring, broad sheets of dust that extend outward until they fade from view at five to ten planetary radii. Source satellites continuously supply the dust, which is subsequently lost in collisions or by radial transport. Here we report that Saturn has an enormous ring associated with its outer moon Phoebe, extending from at least 128R(S) to 207R(S) (Saturn's radius R(S) is 60,330 km). The ring's vertical thickness of 40R(S) matches the range of vertical motion of Phoebe along its orbit. Dynamical considerations argue that these ring particles span the Saturnian system from the main rings to the edges of interplanetary space. The ring's normal optical depth of approximately 2 x 10(-8) is comparable to that of Jupiter's faintest gossamer ring, although its particle number density is several hundred times smaller. Repeated impacts on Phoebe, from both interplanetary and circumplanetary particle populations, probably keep the ring populated with material. Ring particles smaller than centimetres in size slowly migrate inward and many of them ultimately strike the dark leading face of Iapetus.

  2. The contraceptive vaginal ring. (United States)

    Edwardson, Jill; Jamshidi, Roxanne


    The contraceptive vaginal ring offers effective contraception that is self-administered, requires less frequent dosing than many other forms of contraception, and provides low doses of hormones. NuvaRing (Organon, Oss, The Netherlands), the only contraceptive vaginal ring approved for use in the United States, contains etonogestrel and ethinyl estradiol. It is inserted into the vagina for 3 weeks, followed by a 1-week ring-free period, and works by inhibiting ovulation. Most women note a beneficial effect on bleeding profiles and are satisfied with NuvaRing. Commonly reported adverse events include vaginitis, leukorrhea, headaches, and device-related events such as discomfort. Serious adverse events are rare. In Chile and Peru, progesterone-only vaginal contraceptive rings are available for nursing women. Studies are ongoing examining new formulations of vaginal contraceptive rings.

  3. New Dust Belts of Uranus: One Ring, Two Ring, Red Ring, Blue Ring

    Energy Technology Data Exchange (ETDEWEB)

    de Pater, I; Hammel, H B; Gibbard, S G; Showalter, M R


    We compare near-infrared observations of the recently discovered outer rings of Uranus with HST results. We find that the inner ring, R/2003 U 2, is red, whereas the outer ring, R/2003 U 1, is very blue. Blue is an unusual color for rings; Saturn's enigmatic E ring is the only other known example. By analogy to the E ring, R/2003 U 1 is probably produced via impacts into the embedded moon Mab, which apparently orbits at a location where non-gravitational perturbations favor the survival and spreading of sub-micron sized dust. R/2003 U 2 more closely resembles Saturn's G ring.

  4. Certain near-rings are rings, II

    Directory of Open Access Journals (Sweden)

    Howard E. Bell


    Full Text Available We investigate distributively-generated near-rings R which satisfy one of the following conditions: (i for each x,y∈R, there exist positive integers m, n for which xy=ymxn; (ii for each x,y∈R, there exists a positive integer n such that xy=(yxn. Under appropriate additional hypotheses, we prove that R must be a commutative ring.

  5. Phase Slips in Oscillatory Hair Bundles (United States)

    Roongthumskul, Yuttana; Shlomovitz, Roie; Bruinsma, Robijn; Bozovic, Dolores


    Hair cells of the inner ear contain an active amplifier that allows them to detect extremely weak signals. As one of the manifestations of an active process, spontaneous oscillations arise in fluid immersed hair bundles of in vitro preparations of selected auditory and vestibular organs. We measure the phase-locking dynamics of oscillatory bundles exposed to low-amplitude sinusoidal signals, a transition that can be described by a saddle-node bifurcation on an invariant circle. The transition is characterized by the occurrence of phase slips, at a rate that is dependent on the amplitude and detuning of the applied drive. The resultant staircase structure in the phase of the oscillation can be described by the stochastic Adler equation, which reproduces the statistics of phase slip production. PMID:25167040

  6. Surface slip during large Owens Valley earthquakes

    KAUST Repository

    Haddon, E. K.


    The 1872 Owens Valley earthquake is the third largest known historical earthquake in California. Relatively sparse field data and a complex rupture trace, however, inhibited attempts to fully resolve the slip distribution and reconcile the total moment release. We present a new, comprehensive record of surface slip based on lidar and field investigation, documenting 162 new measurements of laterally and vertically displaced landforms for 1872 and prehistoric Owens Valley earthquakes. Our lidar analysis uses a newly developed analytical tool to measure fault slip based on cross-correlation of sublinear topographic features and to produce a uniquely shaped probability density function (PDF) for each measurement. Stacking PDFs along strike to form cumulative offset probability distribution plots (COPDs) highlights common values corresponding to single and multiple-event displacements. Lateral offsets for 1872 vary systematically from approximate to 1.0 to 6.0 m and average 3.31.1 m (2 sigma). Vertical offsets are predominantly east-down between approximate to 0.1 and 2.4 m, with a mean of 0.80.5 m. The average lateral-to-vertical ratio compiled at specific sites is approximate to 6:1. Summing displacements across subparallel, overlapping rupture traces implies a maximum of 7-11 m and net average of 4.41.5 m, corresponding to a geologic M-w approximate to 7.5 for the 1872 event. We attribute progressively higher-offset lateral COPD peaks at 7.12.0 m, 12.8 +/- 1.5 m, and 16.6 +/- 1.4 m to three earlier large surface ruptures. Evaluating cumulative displacements in context with previously dated landforms in Owens Valley suggests relatively modest rates of fault slip, averaging between approximate to 0.6 and 1.6 mm/yr (1 sigma) over the late Quaternary.

  7. On Exchange QB∞-Rings

    Institute of Scientific and Technical Information of China (English)

    Huanyin Chen


    In this paper, we introduce a new class of rings, the QB∞-rings. We investigate necessary and sufficient conditions under which an exchange ring is a QB∞-ring. The modules over an exchange QB∞-ring are studied. Also, we prove that every regular square matrix over an exchange QB∞-ring admits a diagonal reduction by pseudo-invertible matrices.

  8. Neutrosophic LA-Semigroup Rings

    Directory of Open Access Journals (Sweden)

    Mumtaz Ali


    Full Text Available Neutrosophic LA-semigroup is a midway structure between a neutrosophic groupoid and a commutative neutrosophic semigroup. Rings are the old concept in algebraic structures. We combine the neutrosophic LA-semigroup and ring together to form the notion of neutrosophic LA-semigroup ring. Neutrosophic LAsemigroup ring is defined analogously to neutrosophic group ring and neutrosophic semigroup ring.

  9. Effects of vibration training in reducing risk of slip-related falls among young adults with obesity. (United States)

    Yang, Feng; Munoz, Jose; Han, Long-Zhu; Yang, Fei


    This study examined the effects of controlled whole-body vibration training on reducing risk of slip-related falls in people with obesity. Twenty-three young adults with obesity were randomly assigned into either the vibration or placebo group. The vibration and placebo groups respectively received 6-week vibration and placebo training on a side-alternating vibration platform. Before and after the training, the isometric knee extensors strength capacity was measured for the two groups. Both groups were also exposed to a standardized slip induced by a treadmill during gait prior to and following the training. Dynamic stability and fall incidences responding to the slip were also assessed. The results indicated that vibration training significantly increased the muscle strength and improved dynamic stability control at recovery touchdown after the slip occurrence. The improved dynamic stability could be resulted from the enhanced trunk segment movement control, which may be attributable to the strength increment caused by the vibration training. The decline of the fall rates from the pre-training slip to the post-training one was greater among the vibration group than the placebo group (45% vs. 25%). Vibration-based training could be a promising alternative or additional modality to active exercise-based fall prevention programs for people with obesity. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. On the mechanism of cross slip in Ni3Al (United States)

    Milligan, Walter W.; Antolovich, Stephen D.


    The mechanical properties of L1(2) intermetallic alloys have been previously described by models based on the assumption that cube cross slip is the rate-limiting step. In this study, it was demonstrated that the cube cross-slip event must be reversible under a change in loading direction. This observation allows the cross-slip models to remain consistent with cyclic deformation data. Additionally, this observation was used as a critical test of the available cross-slip models. It was demonstrated that the rate-limiting step cannot be a total cross-slip event, in which both a/2 110-line superpartial dislocations cross slip to the cube plane. Conversely, the limited cross-slip event proposed by Paidar et al. (1984), was demonstrated to be consistent with the reversibility constraint. This lends additional experimental support to this model.

  11. Behaviors of small heterogeneity controlled by surrounding aseismic slip (United States)

    Aochi, Hideo; Ide, Satoshi


    Numerical simulations of slow slip events on a fault interface characterized by multi-scale heterogeneity (fractal patch model; Ide and Aochi, JGR, 2005; Ide, Proc. Jpn Acad. Ser. B, 2014) are carried out, supposing that characteristic distance in the slip-dependent frictional law is scale-dependent. We also consider slip-dependent stress accumulation on patches prior to the weakening process. Slip on small patches is enhanced significantly when background is releasing stress in the case of two patches model. Slip behaviors becomes complex when fractal patch model is considered. It is then difficult to detect the accentuation of slips on small patches. On the other hand, they are quiet (detectable statistically) when background slip is characterized by strengthening process.

  12. The rolling with slipping experiment in the virtual physics laboratory—context-based teaching material (United States)

    Maidana, Nora L.; da Fonseca, Monaliza; Barros, Suelen F.; Vanin, Vito R.


    The Virtual Laboratory was created as a complementary educational activity, with the aim of working abstract concepts from an experimental point of view. In this work, the motion of a ring rolling and slipping in front of a grid printed panel was recorded. The frames separated from this video received a time code, and the resulting set of images can be visually inspected to determine the object angular and center-of-mass positions at known moments. From the positions versus time table, it is possible to analyse the dynamical evolution of the system and the ensuing physical interpretation of the ring rotation and translation. It is also shown here how this hands-on activity has been assigned to university students, that access the material from the website

  13. Phase slips and vortex dynamics in Josephson oscillations between Bose-Einstein condensates (United States)

    Abad, M.; Guilleumas, M.; Mayol, R.; Piazza, F.; Jezek, D. M.; Smerzi, A.


    We study the relation between Josephson dynamics and topological excitations in a dilute Bose-Einstein condensate confined in a double-well trap. We show that the phase slips responsible for the self-trapping regime are created by vortex rings entering and annihilating inside the weak-link region or created at the center of the barrier and expanding outside the system. Large amplitude oscillations just before the onset of self-trapping are also strictly connected with the dynamics of vortex rings at the edges of the inter-well barrier. Our results extend and analyze the dynamics of the vortex-induced phase slippages suggested a few decades ago in relation to the “ac” Josephson effect of superconducting and superfluid helium systems.

  14. Effective slip for flow in a rotating channel bounded by stick-slip walls (United States)

    Ng, Chiu-On


    This paper aims to look into how system rotation may modify the role played by boundary slip in controlling flow through a rotating channel bounded by stick-slip walls. A semianalytical model is developed for pressure-driven flow in a slit channel that rotates about an axis perpendicular to its walls, which are superhydrophobic surfaces patterned with periodic alternating no-shear and no-slip stripes. The cases where the flow is driven by a pressure gradient parallel or normal to the stripes are considered. The effects of the no-shear area fraction on the velocities and effective slip lengths for the primary and secondary flows are investigated as functions of the rotation rate and the channel height. It is mathematically proved that the secondary flow rate is exactly the same in the two cases, irrespective of whether the primary flow is parallel or normal to the wall stripes. For any rotation speed, there is an optimal value of the no-shear area fraction at which the primary flow rate is maximum. This is a consequence of two competing effects: the no-shear part of the wall may serve to reduce the wall resistance, thereby enhancing the flow especially at low rotation, but it also weakens the formation of the near-wall Ekman layer, which is responsible for pumping the flow especially at high rotation. Wall slip in a rotating environment is to affect flow in the Ekman layer, but not flow in the geostrophic core.

  15. Suppression of strike-slip fault systems (United States)

    Curren, I. S.


    In orogens elongated parallel to a great circle about the Euler pole for the two bounding plates, theory requires simple-shear deformation in the form of distributed deformation or velocity discontinuities across strike-slip faults. This type of deformation, however, does not develop at all plate boundaries requiring toroidal motion. Using the global plate boundary model, PB2002 [Bird, 2003], as the basis for identifying areas where expected simple-shear deformation is absent or underdeveloped, it was also possible to identify two potential causes for this behavior: (1) the presence of extensive fracturing at right angles to the shear plane and (2) regional cover of flood basalts or andesites with columnar joints. To test this hypothesis, a new plane-stress finite-strain model was developed to study the effects of such pre-existing structures on the development of simple shear in a clay cake. A homogenous kaolinite-water mixture was poured into a deforming parallelogram box and partially dried to allow for brittle and plastic deformation at and below the surface of the clay, respectively. This was floated on a dense fluid foundation, effectively removing basal friction, and driven by a motor in a sinistral direction from the sides of the box. Control experiments produced classic Riedel model fault assemblages and discrete, through-going primary deformation zones (PDZs); experiments with pre-existing structures developed the same, though subdued and distributed, fault assemblages but did not develop through-going PDZs. Although formation of strike-slip faults was underdeveloped at the surface in clay with pre-existing structures, offset within the clay cake (measured, with respect to a fixed point, by markers on the clay surface) as a fraction of total offset of the box was consistently larger than that of the control experiments. This suggests that while the extent of surface faulting was lessened in clay with pre-existing structures, slip was still occurring at

  16. Gulf ring algae (United States)

    Although they rank among the tiniest of the microspcopic phytoplankton, coccolithophore algae aid oceanographers studying the Gulf Stream rings and the ring boundaries. The algal group could help to identify more precisely the boundary of the warm rings of water that spin off from the Gulf Stream and become independent pools of warm water in the colder waters along the northeastern U.S. coast.Coccolithophore populations in the Gulf Stream rings intrigue oceanographers for two reasons: The phytoplankton are subjected to an environment that changes every few days, and population explosions within one coccolithophore species seem to be associated with changes in the characteristics of ocean water, said Pat Blackwelder, an associate professor at the Nova Oceanographic Center in Dania, Fla. She is one of many studying the physics, chemistry, and biology of warm core rings. A special oceanography session on these rings was held at the recent AGU Fall Meeting/ASLO Winter Meeting.

  17. Token Ring Project

    Directory of Open Access Journals (Sweden)

    Adela Ionescu


    Full Text Available Ring topology is a simple configuration used to connect processes that communicate among themselves. A number of network standards such as token ring, token bus, and FDDI are based on the ring connectivity. This article will develop an implementation of a ring of processes that communicate among themselves via pipe links. The processes are nodes in the ring. Each process reads from its standard input and writes in its standard output. N-1 process redirects the its standard output to a standard input of the process through a pipe. When the ring-structure is designed, the project can be extended to simulate networks or to implement algorithms for mutual exclusion

  18. Dusty plasma (Yukawa) rings

    CERN Document Server

    Sheridan, T E


    One-dimensional and quasi-one-dimensional strongly-coupled dusty plasma rings have been created experimentally. Longitudinal (acoustic) and transverse (optical) dispersion relations for the 1-ring were measured and found to be in very good agreement with the theory for an unbounded straight chain of particles interacting through a Yukawa (i.e., screened Coulomb or Debye-H\\"uckel) potential. These rings provide a new system in which to study one-dimensional and quasi-one-dimensional physics.

  19. Token ring technology report

    CERN Document Server


    Please note this is a Short Discount publication. This report provides an overview of the IBM Token-Ring technology and products built by IBM and compatible vendors. It consists of two sections: 1. A summary of the design trade-offs for the IBM Token-Ring. 2. A summary of the products of the major token-ring compatible vendors broken down by adapters and components, wiring systems, testing, and new chip technology.

  20. On -Coherent Endomorphism Rings

    Indian Academy of Sciences (India)

    Li-Xin Mao


    A ring is called right -coherent if every principal right ideal is finitely presented. Let $M_R$ be a right -module. We study the -coherence of the endomorphism ring of $M_R$. It is shown that is a right -coherent ring if and only if every endomorphism of $M_R$ has a pseudokernel in add $M_R; S$ is a left -coherent ring if and only if every endomorphism of $M_R$ has a pseudocokernel in add $M_R$. Some applications are given.

  1. Physics of quantum rings

    Energy Technology Data Exchange (ETDEWEB)

    Fomin, Vladimir M. (ed.) [Leibniz Institute for Solid State and Materials Research, Dresden (Germany)


    Presents the new class of materials of quantum rings. Provides an elemental basis for low-cost high-performance devices promising for electronics, optoelectronics, spintronics and quantum information processing. Explains the physical properties of quantum rings to cover a gap in scientific literature. Presents the application of most advanced nanoengineering and nanocharacterization techniques. This book deals with a new class of materials, quantum rings. Innovative recent advances in experimental and theoretical physics of quantum rings are based on the most advanced state-of-the-art fabrication and characterization techniques as well as theoretical methods. The experimental efforts allow to obtain a new class of semiconductor quantum rings formed by capping self-organized quantum dots grown by molecular beam epitaxy. Novel optical and magnetic properties of quantum rings are associated with non-trivial topologies at the nanoscale. An adequate characterization of quantum rings is possible on the basis of modern characterization methods of nanostructures, such as Scanning Tunneling Microscopy. A high level of complexity is demonstrated to be needed for a dedicated theoretical model to adequately represent the specific features of quantum rings. The findings presented in this book contribute to develop low-cost high-performance electronic, spintronic, optoelectronic and information processing devices based on quantum rings.

  2. Fault Scaling Relationships Depend on the Average Geological Slip Rate (United States)

    Anderson, J. G.; Biasi, G. P.; Wesnousky, S. G.


    This study addresses whether knowing the geological slip rates on a fault in addition to the rupture length improves estimates of magnitude (Mw) of continental earthquakes that rupture the surface, based on a database of 80 events that includes 57 strike-slip, 12 reverse, and 11 normal faulting events. Three functional forms are tested to relate rupture length L to magnitude Mw: linear, bilinear, and a shape with constant static stress drop. The slip rate dependence is tested as a perturbation to the estimates of magnitude from rupture length. When the data are subdivided by fault mechanism, magnitude predictions from rupture length are improved for strike-slip faults when slip rate is included, but not for reverse or normal faults. This conclusion is robust, independent of the functional form used to relate L to Mw. Our preferred model is the constant stress drop model, because teleseismic observations of earthquakes favor that result. Because a dependence on slip rate is only significant for strike-slip events, a combined relationship for all rupture mechanisms is not appropriate. The observed effect of slip rate for strike-slip faults implies that the static stress drop, on average, tends to decrease as the fault slip rate increases.

  3. Progressive slippage after pinning for slipped capital femoral epiphysis. (United States)

    Sanders, James O; Smith, William J; Stanley, Earl A; Bueche, Matthew J; Karol, Lori A; Chambers, Henry G


    The authors retrospectively reviewed seven cases of progressive slipped capital femoral epiphysis after screw fixation. All seven patients initially presented with chronic symptoms, and five had an acute exacerbation of symptoms with the appearance of an acute-on-chronic slip. Of the other two, one had obvious motion at the proximal femoral physis and the other had increased symptoms but did not have an obvious acute slip radiographically. All underwent percutaneous screw fixation. In four patients a single screw was placed, and in three patients two screws were placed. No patient became symptom-free after surgery. Slip progression was noted on average 5 months after treatment. Radiographs in all patients revealed an increase in slip severity and loss of screw purchase in the femoral neck while fixation in the proximal femoral epiphysis remained secure. One patient had hypothyroidism and another Cushing disease, both diagnosed after the slipped epiphysis. Slips occurring in children with underlying endocrinopathies, and unstable slips in children with a history of antecedent knee or hip pain (commonly called an acute-on-chronic slip) may be susceptible to screw fixation failure. In such patients, close radiographic follow-up, particularly in the presence of continued symptoms, is required to document slip progression and fixation failure as soon as possible.

  4. Coseismic slip distribution of the 1923 Kanto earthquake, Japan (United States)

    Pollitz, F.F.; Nyst, M.; Nishimura, T.; Thatcher, W.


    The slip distribution associated with the 1923 M = 7.9 Kanto, Japan, earthquake is reexamined in light of new data and modeling. We utilize a combination of first-order triangulation, second-order triangulation, and leveling data in order to constrain the coseismic deformation. The second-order triangulation data, which have not been utilized in previous studies of 1923 coseismic deformation, are associated with only slightly smaller errors than the first-order triangulation data and expand the available triangulation data set by about a factor of 10. Interpretation of these data in terms of uniform-slip models in a companion study by Nyst et al. shows that a model involving uniform coseismic slip on two distinct rupture planes explains the data very well and matches or exceeds the fit obtained by previous studies, even one which involved distributed slip. Using the geometry of the Nyst et al. two-plane slip model, we perform inversions of the same geodetic data set for distributed slip. Our preferred model of distributed slip on the Philippine Sea plate interface has a moment magnitude of 7.86. We find slip maxima of ???8-9 m beneath Odawara and ???7-8 m beneath the Miura peninsula, with a roughly 2:1 ratio of strike-slip to dip-slip motion, in agreement with a previous study. However, the Miura slip maximum is imaged as a more broadly extended feature in our study, with the high-slip region continuing from the Miura peninsula to the southern Boso peninsula region. The second-order triangulation data provide good evidence for ???3 m right-lateral strike slip on a 35-km-long splay structure occupying the volume between the upper surface of the descending Philippine Sea plate and the southern Boso peninsula. Copyright 2005 by the American Geophysical Union.

  5. Complicated Recurrence of Slip Events on a Uniform Circular Asperity (United States)

    Kato, N.


    Numerical simulation of repeated occurrence of slip events on a fault patch (asperity) is conducted to understand the mechanism of irregularity of the events. Seismic and geodetic observations indicate that episodic seismic/aseismic slip events repeatedly occur at almost the same area. For instance, magnitude of about 4.8 earthquakes had repeatedly occurred at intervals of 4.7 to 6.7 years off Kamaishi, northern Honshu, Japan. Quasi-periodic recurrence of episodic aseismic slip events (slow earthquakes) was found at the Nankai subduction zone, southwestern Japan, the Cascadia subduction zone, North America, etc. The recurrence intervals and magnitudes of slip events in each sequence are not constant, but some variability exists. Some researchers suggested that the variation in aseismic slip rate around a patch of slip events causes variation of loading rate. This results in variation of recurrence intervals. In the present study, we focus on irregularity of recurrence of slip events that originates from dynamics of fault slip. A two-dimensional planar fault in an infinite elastic medium is considered. The fault is uniformly shear loaded at a constant rate, and frictional stress acting on the fault is assumed to obey a rate- and state-dependent friction (RSF) law. A circular patch of radius r with velocity-weakening frictional property is embedded on a fault with velocity-strengthening frictional property elsewhere. A numerical simulation is conducted by varying the characteristic slip distance L of the RSF law. The critical radius rc for occurrence of unstable slip can be defined, and rc is proportional to L. When r >> rc, seismic slip events (earthquakes) repeatedly occur at a constant time interval. When r is a little larger than rc, recurrence of slip events becomes complex. We observe a period-2 cycle of slip events, where large and small events alternately occur. The cycle becomes more complex as r approaches rc and finally aperiodic (chaotic) slip pattern

  6. Ring Around a Galaxy (United States)


    Space Telescope Science Institute astronomers are giving the public chances to decide where to aim NASA's Hubble Space Telescope. Guided by 8,000 Internet voters, Hubble has already been used to take a close-up, multi-color picture of the most popular object from a list of candidates, the extraordinary 'polar-ring' galaxy NGC 4650A. Located about 130 million light-years away, NGC 4650A is one of only 100 known polar-ring galaxies. Their unusual disk-ring structure is not yet understood fully. One possibility is that polar rings are the remnants of colossal collisions between two galaxies sometime in the distant past, probably at least 1 billion years ago. What is left of one galaxy has become the rotating inner disk of old red stars in the center. Meanwhile, another smaller galaxy which ventured too close was probably severely damaged or destroyed. The bright bluish clumps, which are especially prominent in the outer parts of the ring, are regions containing luminous young stars, examples of stellar rebirth from the remnants of an ancient galactic disaster. The polar ring appears to be highly distorted. No regular spiral pattern stands out in the main part of the ring, and the presence of young stars below the main ring on one side and above on the other shows that the ring is warped and does not lie in one plane. Determining the typical ages of the stars in the polar ring is an initial goal of our Polar Ring Science Team that can provide a clue to the evolution of this unusual galaxy. The HST exposures were acquired by the Hubble Heritage Team, consisting of Keith Noll, Howard Bond, Carol Christian, Jayanne English, Lisa Frattare, Forrest Hamilton, Anne Kinney and Zolt Levay, and guest collaborators Jay Gallagher (University of Wisconsin-Madison), Lynn Matthews (National Radio Astronomy Observatory-Charlottesville), and Linda Sparke (University of Wisconsin-Madison).

  7. DEM simulation of growth normal fault slip (United States)

    Chu, Sheng-Shin; Lin, Ming-Lang; Nien, Wie-Tung; Chan, Pei-Chen


    Slip of the fault can cause deformation of shallower soil layers and lead to the destruction of infrastructures. Shanchiao fault on the west side of the Taipei basin is categorized. The activities of Shanchiao fault will cause the quaternary sediments underneath the Taipei basin to become deformed. This will cause damage to structures, traffic construction, and utility lines within the area. It is determined from data of geological drilling and dating, Shanchiao fault has growth fault. In experiment, a sand box model was built with non-cohesive sand soil to simulate the existence of growth fault in Shanchiao Fault and forecast the effect on scope of shear band development and ground differential deformation. The results of the experiment showed that when a normal fault containing growth fault, at the offset of base rock the shear band will develop upward along with the weak side of shear band of the original topped soil layer, and this shear band will develop to surface much faster than that of single top layer. The offset ratio (basement slip / lower top soil thickness) required is only about 1/3 of that of single cover soil layer. In this research, it is tried to conduct numerical simulation of sand box experiment with a Discrete Element Method program, PFC2D, to simulate the upper covering sand layer shear band development pace and scope of normal growth fault slip. Results of simulation indicated, it is very close to the outcome of sand box experiment. It can be extended to application in water pipeline project design around fault zone in the future. Keywords: Taipei Basin, Shanchiao fault, growth fault, PFC2D

  8. Boundary Slip and Surface Interaction: A Lattice Boltzmann Simulation

    Institute of Scientific and Technical Information of China (English)

    CHEN Yan-Yan; YI Hou-Hui; LI Hua-Bing


    The factors affecting slip length in Couette geometry flows are analysed by means of a two-phase mesoscopic lattice Boltzmann model including non-ideal fluid-fluid and fluid-wall interactions.The main factors influencing the boundary slip are the strength of interactions between fluid-fluid and fluid-wall particles.Other factors,such as fluid viscosity,bulk pressure may also change the slip length.We find that boundary slip only occurs under a certain density(bulk pressure).If the density is large enough,the slip length will tend to zero.In our simulations,a low density layer near the wall does not need to be postulated a priori but emerges naturally from the underlying non-ideal mesoscopic dynamics.It is the low density layer that induces the boundary slip.The results may be helpful to understand recent experimental observations on the slippage of micro flows.

  9. Closed central slip injuries--a missed diagnosis?

    LENUS (Irish Health Repository)

    Nugent, N


    The extensor apparatus of the finger is a complex structure and injury can lead to significant digital dysfunction. Closed central slip injuries may be missed or diagnosis delayed because of lack of an open wound and often no radiographic abnormality, and can result in boutonniere deformities if untreated. This study aimed to quantify the number of patients attending with closed central slip injuries and to ascertain if the initial diagnosis was correct. The number of patients presenting to us over a 6 month period was recorded. The original diagnosis, time to diagnosis of central slip injury and the presence\\/absence of a boutonniere deformity were recorded. Ten patients were included in the study. Seven (70%) injuries were due to sport. Eight (80%) had a delayed diagnosis of central slip injury. Six (60%) had previously presented to general practitioners or emergency departments. Seven (70%) had boutonniere deformities. Closed central slip injuries can be missed. Simple clinical tests can diagnose central slip disruption.

  10. Neptune's ring system. (United States)

    Porco, C. C.; Nicholson, P. D.; Cuzzi, J. N.; Lissauer, J. J.; Esposito, L. W.

    The authors review the current state of knowledge regarding the structure, particle properties, kinematics, dynamics, origin, and evolution of the Neptune rings derived from Earth-based and Voyager data. Neptune has a diverse system of five continuous rings - 2 broad (Galle and Lassell) and 3 narrow (Adams, Le Verrier, and Arago) - plus a narrow discontinuous ring sharing the orbit of one of its ring-region satellites, Galatea. The outermost Adams ring contains the only arcs observed so far in Voyager images. The five arcs vary in angular extent from ≡1° to ≡10°, and exhibit internal azimuthal structure with typical spatial scales of ≡0.5°. All five lie within ≡40° of longitude. Dust is present throughout the Neptune system and measureable quantities of it were detected over Neptune's north pole. The Adams ring (including the arcs) and the Le Verrier ring contain a significant fraction of dust. The Neptune ring particles are probably red, and may consist of ice "dirtied" with silicates and/or some carbon-bearing material. A kinematic model for the arcs derived from Voyager data, the arcs' physical characteristics, and their orbital geometry and phasing are all roughly in accord with single-satellite arc shepherding by Galatea, though the presence of small kilometer-sized bodies embedded either within the arcs or placed at their Lagrange points may explain some inconsistencies with this model.

  11. Algorithms for finite rings

    NARCIS (Netherlands)

    Ciocanea Teodorescu I.,


    In this thesis we are interested in describing algorithms that answer questions arising in ring and module theory. Our focus is on deterministic polynomial-time algorithms and rings and modules that are finite. The first main result of this thesis is a solution to the module isomorphism problem in

  12. Revocable Ring Signature

    Institute of Scientific and Technical Information of China (English)

    Dennis Y. W. Liu; Joseph K. Liu; Yi Mu; Willy Susilo; Duncan S. Wong


    Group signature allows the anonymity of a real signer in a group to be revoked by a trusted party called group manager. It also gives the group manager the absolute power of controlling the formation of the group. Ring signature, on the other hand, does not allow anyone to revoke the signer anonymity, while allowing the real signer to forma group (also known as a ring) arbitrarily without being controlled by any other party. In this paper, we propose a new variant for ring signature, called Revocable Ring Signature. The signature allows a real signer to form a ring arbitrarily while allowing a set of authorities to revoke the anonymity of the real signer. This new variant inherits the desirable properties from both group signature and ring signature in such a way that the real signer will be responsible for what it has signed as the anonymity is revocable by authorities while the real signer still has the freedom on ring formation. We provide a formal security model for revocable ring signature and propose an efficient construction which is proven secure under our security model.

  13. Illustration of Saturn's Rings (United States)


    This illustration shows a close-up of Saturn's rings. These rings are thought to have formed from material that was unable to form into a Moon because of tidal forces from Saturn, or from a Moon that was broken up by Saturn's tidal forces.

  14. The Fermilab recycler ring

    Energy Technology Data Exchange (ETDEWEB)

    Martin Hu


    The Fermilab Recycler is a permanent magnet storage ring for the accumulation of antiprotons from the Antiproton Source, and the recovery and cooling of the antiprotons remaining at the end of a Tevatron store. It is an integral part of the Fermilab III luminosity upgrade. The following paper describes the design features, operational and commissioning status of the Recycler Ring.

  15. EBT ring physics

    Energy Technology Data Exchange (ETDEWEB)

    Uckan, N.A. (ed.)


    This workshop attempted to evaluate the status of the current experimental and theoretical understanding of hot electron ring properties. The dominant physical processes that influence ring formation, scaling, and their optimal behavior are also studied. Separate abstracts were prepared for each of the 27 included papers. (MOW)

  16. Smoke Ring Physics (United States)

    Huggins, Elisha


    The behavior of smoke rings, tornados, and quantized vortex rings in superfluid helium has many features in common. These features can be described by the same mathematics we use when introducing Ampere's law in an introductory physics course. We discuss these common features. (Contains 7 figures.)

  17. Algorithms for finite rings

    NARCIS (Netherlands)

    Ciocanea Teodorescu I.,


    In this thesis we are interested in describing algorithms that answer questions arising in ring and module theory. Our focus is on deterministic polynomial-time algorithms and rings and modules that are finite. The first main result of this thesis is a solution to the module isomorphism problem in

  18. Planetary rings - Theory (United States)

    Borderies, Nicole


    Theoretical models of planetary-ring dynamics are examined in a brief analytical review. The mathematical description of streamlines and streamline interactions is outlined; the redistribution of angular momentum due to collisions between particles is explained; and problems in the modeling of broad, narrow, and arc rings are discussed.

  19. Steroidal contraceptive vaginal rings. (United States)

    Sarkar, N N


    The development of steroid-releasing vaginal rings over the past three decades is reviewed to illustrate the role of this device as an effective hormonal contraceptive for women. Vaginal rings are made of polysiloxane rubber or ethylene-vinyl-acetate copolymer with an outer diameter of 54-60 mm and a cross-sectional diameter of 4-9.5 mm and contain progestogen only or a combination of progestogen and oestrogen. The soft flexible combined ring is inserted in the vagina for three weeks and removed for seven days to allow withdrawal bleeding. Progesterone/progestogen-only rings are kept in for varying periods and replaced without a ring-free period. Rings are in various stages of research and development but a few, such as NuvaRing, have reached the market in some countries. Women find this method easy to use, effective, well tolerated and acceptable with no serious side-effects. Though the contraceptive efficacy of these vaginal rings is high, acceptability is yet to be established.

  20. Jupiter's Rings: Sharpest View (United States)


    The New Horizons spacecraft took the best images of Jupiter's charcoal-black rings as it approached and then looked back at Jupiter. The top image was taken on approach, showing three well-defined lanes of gravel- to boulder-sized material composing the bulk of the rings, as well as lesser amounts of material between the rings. New Horizons snapped the lower image after it had passed Jupiter on February 28, 2007, and looked back in a direction toward the sun. The image is sharply focused, though it appears fuzzy due to the cloud of dust-sized particles enveloping the rings. The dust is brightly illuminated in the same way the dust on a dirty windshield lights up when you drive toward a 'low' sun. The narrow rings are confined in their orbits by small 'shepherding' moons.

  1. Product Platform Performance

    DEFF Research Database (Denmark)

    Munk, Lone

    engaging in platform-based product development. Similarly platform assessment criteria lack empirical verification regarding relevance and sufficiency. The thesis focuses on • the process of identifying and estimating internal effects, • verification of performance of product platforms, (i...... to support this understanding. Finally a categorisation of different approaches to platform-based product development is introduced, based on the companies from the industrial study.......The aim of this research is to improve understanding of platform-based product development by studying platform performance in relation to internal effects in companies. Platform-based product development makes it possible to deliver product variety and at the same time reduce the needed resources...

  2. A new slip stacking RF system for a twofold power upgrade of Fermilab's Accelerator Complex

    Energy Technology Data Exchange (ETDEWEB)

    Madrak, Robyn


    Fermilab@?s Accelerator Complex has been recently upgraded, in order to increase the 120GeV proton beam power on target from about 400kW to over 700kW for NO@nA and other future intensity frontier experiments. One of the key ingredients of the upgrade is the offloading of some Main Injector synchrotron operations - beam injection and RF manipulation called ''slip stacking'' - to the 8GeV Recycler Ring, which had until recently been used only for low-intensity antiproton storage and cooling. This required construction of two new 53MHz RF systems for the slip-stacking manipulations. The cavities operate simultaneously at V_p_e_a_k@?150kV, but at slightly different frequencies (@Df=1260Hz). Their installation was completed in September 2013. This paper describes the novel solutions used in the design of the new cavities, their tuning system, and the associated high power RF system. First results showing effective operation of the RF system, beam capture and successful slip-stacking in the Recycler Ring are presented.

  3. A new slip stacking RF system for a twofold power upgrade of Fermilab's Accelerator Complex

    Energy Technology Data Exchange (ETDEWEB)

    Madrak, Robyn [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States)


    Fermilab's Accelerator Complex has been recently upgraded, in order to increase the 120 GeV proton beam power on target from about 400 kW to over 700 kW for NOvA and other future intensity frontier experiments. One of the key ingredients of the upgrade is the offloading of some Main Injector synchrotron operations - beam injection and RF manipulation called ''slip stacking'' - to the 8GeV Recycler Ring, which had until recently been used only for low-intensity antiproton storage and cooling. This required construction of two new 53 MHz RF systems for the slip-stacking manipulations. The cavities operate simultaneously at Vpeak ≲150 kV, but at slightly different frequencies (Δf=1260 Hz). Their installation was completed in September 2013. This article describes the novel solutions used in the design of the new cavities, their tuning system, and the associated high power RF system. First results showing effective operation of the RF system, beam capture and successful slip-stacking in the Recycler Ring are presented.

  4. Prediction of fluid velocity slip at solid surfaces

    DEFF Research Database (Denmark)

    Hansen, Jesper Schmidt; Todd, Billy; Daivis, Peter


    methods, it allows us to directly compute the intrinsic wall-fluid friction coefficient rather than an empirical friction coefficient that includes all sources of friction for planar shear flow. The slip length predicted by our method is in excellent agreement with the slip length obtained from direct......The observed flow enhancement in highly confining geometries is believed to be caused by fluid velocity slip at the solid wall surface. Here we present a simple and highly accurate method to predict this slip using equilibrium molecular dynamics. Unlike previous equilibrium molecular dynamics...

  5. Inverting measurements of surface slip on the Superstition Hills fault (United States)

    Boatwright, J.; Budding, K.E.; Sharp, R.V.


    We derive and test a set of inversions of surface-slip measurements based on the empirical relation u(t)=uf/(1 + T/t)c proposed by Sharp and Saxton (1989) to estimate the final slip uf, the power-law exponent c, and the power-law duration T. At short times, Sharp's relation behaves like the simple power law, u(t)~u1tc, where u1 is the initial slip, that is, the slip at 1 day after the earthquake. At long times, the slip approaches the final slip asymptotically. The inversions are designed in part to exploit the accuracy of measurements of differential slip; that is, measurements of surface slip which are made relative to a set of nails or stakes emplaced after the earthquake. We apply the inversions to slip measurements made at 53 sites along the Superstition Hills fault for the 11 months following the M=6.2 and 6.6 earthqakes of 24 November 1987. -from Authors

  6. On Slip Transmission Criteria in Experiments and Crystal Plasticity Models

    CERN Document Server

    Bayerschen, E; Reddy, B D; Böhlke, T


    A comprehensive overview is given on the slip transmission criteria for grain boundaries in the experimental literature, with a focus on slip system and grain boundary orientation. The use of these geometric criteria in continuum crystal plasticity models is briefly discussed. Perspectives on additional experimentally motivated criteria used in computational simulations are given. The theoretical framework of Gurtin (2008, J. Mech. Phys. Solids 56, p. 640) is reviewed for the single slip case with the aim of showing explicitly the connections to the experimentally developed criteria for slip transmission that are not discussed in the work itself.

  7. Slip and flow of hard-sphere colloidal glasses. (United States)

    Ballesta, P; Besseling, R; Isa, L; Petekidis, G; Poon, W C K


    We study the flow of concentrated hard-sphere colloidal suspensions along smooth, nonstick walls using cone-plate rheometry and simultaneous confocal microscopy. In the glass regime, the global flow shows a transition from Herschel-Bulkley behavior at large shear rate to a characteristic Bingham slip response at small rates, absent for ergodic colloidal fluids. Imaging reveals both the "solid" microstructure during full slip and the local nature of the "slip to shear" transition. Both the local and global flow are described by a phenomenological model, and the associated Bingham slip parameters exhibit characteristic scaling with size and concentration of the hard spheres.

  8. Stochastic Wheel-Slip Compensation Based Robot Localization and Mapping

    Directory of Open Access Journals (Sweden)



    Full Text Available Wheel slip compensation is vital for building accurate and reliable dead reckoning based robot localization and mapping algorithms. This investigation presents stochastic slip compensation scheme for robot localization and mapping. Main idea of the slip compensation technique is to use wheel-slip data obtained from experiments to model the variations in slip velocity as Gaussian distributions. This leads to a family of models that are switched depending on the input command. To obtain the wheel-slip measurements, experiments are conducted on a wheeled mobile robot and the measurements thus obtained are used to build the Gaussian models. Then the localization and mapping algorithm is tested on an experimental terrain and a new metric called the map spread factor is used to evaluate the ability of the slip compensation technique. Our results clearly indicate that the proposed methodology improves the accuracy by 72.55% for rotation and 66.67% for translation motion as against an uncompensated mapping system. The proposed compensation technique eliminates the need for extro receptive sensors for slip compensation, complex feature extraction and association algorithms. As a result, we obtain a simple slip compensation scheme for localization and mapping.

  9. Slipped vertebral epiphysis (report of 2 cases

    Directory of Open Access Journals (Sweden)

    Majid Reza Farrokhi


    Full Text Available

    • Avulsion or fracture of posterior ring apophysis of lumbar vertebra is an uncommon cause of radicular low back pain in pediatric age group, adolescents and athletes. This lesion is one of differential diagnosis of disc herniation. We reported two teenage boys with sever low back pain and sciatica during soccer play that ultimately treated with diagnosis of lipped vertebral apophysis.
    • KEY WORDS: Ring Apophysis, vertebral fracture, sciatica, low back pain, disc herniation.

  10. Nonlinear contact between pipeline's outer wall and slip-on buckle arrestor's inner wall during buckling process (United States)

    Ma, Weilin; Liu, Jiande; Dong, Sheng; Zhang, Xin; Ma, Xiaozhou


    In order to theoretically study the buckle propagation of subsea pipelines with slip-on buckle arrestors, a two-dimensional ring model was set up to represent the pipeline and a nonlinear spring model was adopted to simulate the contact between pipeline's inner walls and between pipeline's outer wall and slip-on buckle arrestor's inner wall during buckle propagation. In addition, some reverse springs are added to prevent the wall of left and right sides separating from the inner wall of slip-on buckle arrestors. Considering large deformation kinematics relations and the elastic-plastic constitutive relation of material, balance equations were established with the principle of virtual work. The variation of external pressure with respect to the cross-sectional area of pipelines was analyzed, and the lower bound of the crossover pressure of slip-on buckle arrestors was calculated based on Maxwell's energy balance method. By comparing the theoretical results with experiment and finite element numerical simulation, the theoretical method is proved to be correct and reliable.

  11. The Enceladus Ring (United States)


    [figure removed for brevity, see original site] The Enceladus Ring (labeled) This excellent view of the faint E ring -- a ring feature now known to be created by Enceladus -- also shows two of Saturn's small moons that orbit within the ring, among a field of stars in the background. The E ring extends from three to eight Saturn radii -- about 180,000 kilometers (118,000 miles) to 482,000 kilometers (300,000 miles). Its full extent is not visible in this view. Calypso (22 kilometers, or 14 miles across) and Helene (32 kilometers, or 20 miles across) orbit within the E ring's expanse. Helene skirts the outer parts of the E ring, but here it is projected in front of a region deeper within the ring. Calypso and Helene are trojan satellites, or moons that orbit 60 degrees in front or behind a larger moon. Calypso is a Tethys trojan and Helene is a trojan of Dione. An interesting feature of note in this image is the double-banded appearance of the E-ring, which is created because the ring is somewhat fainter in the ringplane than it is 500-1,000 kilometers (300-600 miles) above and below the ringplane. This appearance implies that the particles in this part of the ring have nonzero inclinations (a similar affect is seen in Jupiter's gossamer ring). An object with a nonzero inclination does not orbit exactly at Saturn's ringplane. Instead, its orbit takes it above and below the ringplane. Scientists are not entirely sure why the particles should have such inclinations, but they are fairly certain that the reason involves Enceladus. One possible explanation is that all the E ring particles come from the plume of icy material that is shooting due south out of the moon's pole. This means all of the particles are created with a certain velocity out of the ringplane, and then they orbit above and below that plane. Another possible explanation is that Enceladus produces particles with a range of speeds, but the moon gravitationally scatters any particles that lie very close to

  12. Vane array with one or more non-integral platforms (United States)

    Lohaus, Andrew S.; Campbell, Christian Xavier; Miller, Jr, Samuel R.; Marra, John J.


    A vane array adapted to be coupled to a vane carrier within a gas turbine engine is provided comprising: a plurality of elongated airfoils comprising at least a first airfoil and a second airfoil located adjacent to one another; a U-ring; first connector structure for coupling a radially inner end section of each of the first and second airfoils to the U-ring; second connector structure for coupling a radially outer end section of each of the first and second airfoils to the vane carrier; a platform extending between the first and second airfoils; and platform connector structure for coupling the platform to one of the U-ring and the vane carrier.

  13. Fluid pressures at the shoe-floor-contaminant interface during slips: effects of tread and implications on slip severity. (United States)

    Beschorner, Kurt E; Albert, Devon L; Chambers, April J; Redfern, Mark S


    Previous research on slip and fall accidents has suggested that pressurized fluid between the shoe and floor is responsible for initiating slips yet this effect has not been verified experimentally. This study aimed to (1) measure hydrodynamic pressures during slipping for treaded and untreaded conditions; (2) determine the effects of fluid pressure on slip severity; and (3) quantify how fluid pressures vary with instantaneous resultant slipping speed, position on the shoe surface, and throughout the progression of the slip. Eighteen subjects walked on known dry and unexpected slippery floors, while wearing treaded and untreaded shoes. Fluid pressure sensors, embedded in the floor, recorded hydrodynamic pressures during slipping. The maximum fluid pressures (mean+/-standard deviation) were significantly higher for the untreaded conditions (124+/-75 kPa) than the treaded conditions (1.1+/-0.29 kPa). Maximum fluid pressures were positively correlated with peak slipping speed (r=0.87), suggesting that higher fluid pressures, which are associated with untreaded conditions, resulted in more severe slips. Instantaneous resultant slipping speed and position of sensor relative to the shoe sole and walking direction explained 41% of the fluid pressure variability. Fluid pressures were primarily observed for untreaded conditions. This study confirms that fluid pressures are relevant to slipping events, consistent with fluid dynamics theory (i.e. the Reynolds equation), and can be modified with shoe tread design. The results suggest that the occurrence and severity of unexpected slips can be reduced by designing shoes/floors that reduce underfoot fluid pressures. © 2013 Published by Elsevier Ltd.

  14. Earth: A Ringed Planet? (United States)

    Hancock, L. O.; Povenmire, H.


    Among the most beautiful findings of the Space Age have been the discoveries of planetary rings. Not only Saturn but also Jupiter, Uranus and Neptune have rings; Saturn’s ring system has structures newly discovered; even Saturn's moon Rhea itself has a ring. All these are apparently supplied by material from the planetary moons (Rhea's ring by Rhea itself). The question naturally arises, why should the Earth not have a ring, and on the other hand, if it does, why has it not been observed? No rings have yet been observed in the inner solar system, but after all, rings in the inner solar system might simply tend to be fainter and more transient than those of the outer solar system: the inner solar system is more affected by the solar wind, and the Sun’s perturbing gravitational influence is greater. J.A. O’Keefe first suggested (1980) that Earth might have a ring system of its own. An Earth ring could account for some climate events. O’Keefe remarked that formation or thickening of a ring system in Earth’s equatorial plane could drive glaciation by deepening the chill of the winter hemisphere. (It is very well established that volcanic dust is an effective agent for the extinction of sunlight; this factor can be overwhelmingly apparent in eclipse observations.) O’Keefe died in 2000 and the speculation was not pursued, but the idea of an Earth ring has a prima facie reasonableness that calls for its renewed consideration. The program of this note is to hypothesize that, as O’Keefe proposed: (a) an Earth ring system exists; (b) it affects Earth's weather and climate; (c) the tektite strewn fields comprise filaments of the ring fallen to Earth's surface on various occasions of disturbance by comets or asteroids. On this basis, and drawing on the world's weather records, together with the Twentieth Century Reanalysis by NCEP/CIRES covering the period 1870-2010 and the geology of the tektite strewn fields, we herein propose the hypothesized Earth ring

  15. Local loop near-rings


    Franetič, Damir


    We study loop near-rings, a generalization of near-rings, where the additive structure is not necessarily associative. We introduce local loop near-rings and prove a useful detection principle for localness.

  16. Frictional Behavior and Slip Localization in Simulated Faults of Halite at Sub-seismic to Seismic Slip Rates (United States)

    Kim, J.; Ree, J.; Han, R.; Shimamoto, T.


    Halite exhibits deformation behavior ranging from brittle to plastic at room temperature and at low pressures, and has been used to simulate deformation processes of the brittle-ductile transition zone. However, previous experiments on halite were performed at very low slip rates (10-9-10-3 m/s), requiring friction data at seismic slip rates for a more complete assessment of the applicability of the experimental results to natural earthquakes. We conducted friction experiments on halite at slip rate of 0.02-1.3 m/s and normal stresses of 0.8- 10.0 MPa using a high-velocity rotary shear apparatus. A thin layer (0.6-1.0 mm thick) of halite gouge was inserted between precut rock cylinders jacketed with Teflon sleeve. We found that mechanical behavior and deformation processes of halite gouge are remarkably different depending on slip rate and that frictional melting and dislocation creep can occur simultaneously at seismic slip rates. At sub-seismic slip rates of 0.02 to 0.05 m/sec, peak friction (μp = 0.76-0.85) was followed by steady-state friction (μss = 0.35-0.37). Gouge layer consists of a thin slip localization zone at the halite gouge-rock contact and a thick low slip-rate zone. The low slip-rate zone shows evidence for cataclastic flow with angular fragments set in a fine matrix. In contrast, the slip localization zone consists of very fine gouge with some remnants of fragments. At seismic slip rates of 0.1 to 1.3 m/sec, μp (0.64-0.99) was followed by μss (0.36-0.03). μss decreases with increasing slip rate. The shear zone consists of a thin slip localization zone at the halite gouge-rock contact and a thick low slip-rate zone. The low slip-rate zone consists of polycrystalline halite ribbons highly elongated obliquely to shear zone boundary and the oblique foliation is dragged into the thin slip localization zone. Each ribbon is also defined as a lattice preferred orientation domain by electron back-scattered diffraction (EBSD) analysis. Individual

  17. Theodolite Ring Lights (United States)

    Clark, David


    Theodolite ring lights have been invented to ease a difficulty encountered in the well-established optical-metrology practice of using highly reflective spherical tooling balls as position references. A theodolite ring light produces a more easily visible reflection and eliminates the need for an autocollimating device. A theodolite ring light is a very bright light source that is well centered on the optical axis of the instrument. It can be fabricated, easily and inexpensively, for use on a theodolite or telescope of any diameter.

  18. Heavy ion storage rings

    Energy Technology Data Exchange (ETDEWEB)

    Schuch, R.


    A brief overview of synchrotron storage rings for heavy ions, which are presently under construction in different accelerator laboratories is given. Ions ranging from protons up to uranium ions at MeV/nucleon energies will be injected into these rings using multiturn injection from the accelerators available or being built in these laboratories. After injection, it is planned to cool the phase space distribution of the ions by merging them with cold electron beams or laser beams, or by using stochastic cooling. Some atomic physics experiments planned for these rings are presented.

  19. Surface fault slip associated with the 2004 Parkfield, California, earthquake (United States)

    Rymer, M.J.; Tinsley, J. C.; Treiman, J.A.; Arrowsmith, J.R.; Ciahan, K.B.; Rosinski, A.M.; Bryant, W.A.; Snyder, H.A.; Fuis, G.S.; Toke, N.A.; Bawden, G.W.


    Surface fracturing occurred along the San Andreas fault, the subparallel Southwest Fracture Zone, and six secondary faults in association with the 28 September 2004 (M 6.0) Parkfield earthquake. Fractures formed discontinuous breaks along a 32-km-long stretch of the San Andreas fault. Sense of slip was right lateral; only locally was there a minor (1-11 mm) vertical component of slip. Right-lateral slip in the first few weeks after the event, early in its afterslip period, ranged from 1 to 44 mm. Our observations in the weeks following the earthquake indicated that the highest slip values are in the Middle Mountain area, northwest of the mainshock epicenter (creepmeter measurements indicate a similar distribution of slip). Surface slip along the San Andreas fault developed soon after the mainshock; field checks in the area near Parkfield and about 5 km to the southeast indicated that surface slip developed more than 1 hr but generally less than 1 day after the event. Slip along the Southwest Fracture Zone developed coseismically and extended about 8 km. Sense of slip was right lateral; locally there was a minor to moderate (1-29 mm) vertical component of slip. Right-lateral slip ranged from 1 to 41 mm. Surface slip along secondary faults was right lateral; the right-lateral component of slip ranged from 3 to 5 mm. Surface slip in the 1966 and 2004 events occurred along both the San Andreas fault and the Southwest Fracture Zone. In 1966 the length of ground breakage along the San Andreas fault extended 5 km longer than that mapped in 2004. In contrast, the length of ground breakage along the Southwest Fracture Zone was the same in both events, yet the surface fractures were more continuous in 2004. Surface slip on secondary faults in 2004 indicated previously unmapped structural connections between the San Andreas fault and the Southwest Fracture Zone, further revealing aspects of the structural setting and fault interactions in the Parkfield area.

  20. Product Platform Modeling

    DEFF Research Database (Denmark)

    Pedersen, Rasmus

    on the notion that reuse and encapsulation of platform elements are fundamental characteristics of a product platform. Reuse covers the desire to reuse and share certain assets across a family of products and/or across generations of products. Product design solutions and principles are often regarded...... as important assets in a product platform, yet activities, working patterns, processes and knowledge can also be reused in a platform approach. Encapsulation is seen as a process in which the different elements of a platform are grouped into well defined and self-contained units which are decoupled from each......This PhD thesis has the title Product Platform Modelling. The thesis is about product platforms and visual product platform modelling. Product platforms have gained an increasing attention in industry and academia in the past decade. The reasons are many, yet the increasing globalisation...

  1. Design and High Power Testing of 52.809 MHz RF Cavities for Slip Stacking in the Fermilab Recycler

    CERN Document Server

    Madrak, R


    For NOvA and future experiments requiring high intensity proton beams, Fermilab is in the process of upgrading the existing accelerator complex for increased proton production. One such improvement is to reduce the Main Injector cycle time, by performing slip stacking, previously done in the Main Injector, in the now repurposed Recycler Ring. Recycler slip stacking requires two new RF cavities operating at slightly different frequencies (df = 1260Hz). These are copper, coaxial, quarter wave cavities with R/Q =13 ohms. They operate at a peak gap voltage of 150 kV with 150 kW peak drive power (60% duty factor), and are resonant at 52.809 MHz with a 10 kHz tuning range. Two have been completed and installed. The design, high power test results, and status of the cavities are presented.

  2. Dynamic Dislocation Mechanisms For the Anomalous Slip in a Single-Crystal BCC Metal Oriented for "Single Slip"

    Energy Technology Data Exchange (ETDEWEB)

    Hsiung, L; La Cruz, C


    Dislocation substructures of high-purity Mo single crystals deformed under uniaxial compression at room temperature to an axial strain of 0.6% were investigated in order to elucidate the underlying mechanisms for the {l_brace}0{bar 1}1{r_brace} anomalous slip in bcc metals [1], which is also known as the violation of Schmid law [2]. The test sample was oriented with the stress axis parallel to a nominal ''single-slip'' orientation of [{bar 2} 9 20], in which ({bar 1}01) [111] is the primary slip system that has a maximum Schmid factor (m = 0.5), which requires the lowest stress to operate among the twelve {l_brace}{bar 1}10{r_brace} <111> slip systems. Nevertheless, the recorded stress-strain curve reveals no easy-glide or single-slip stage; work hardening starts immediately after yielding. Moreover, the result of slip trace analysis indicates the occurrence of anomalous slip on both the (011) and (0{bar 1}1) planes, which according to the Schmid law requires relatively higher stresses to operate. TEM examinations of dislocation structures formed on the (101) primary slip plane reveal that in addition to the ({bar 1}01) [111] slip system, the coplanar ({bar 1}01) [1{bar 1}1] slip system which has a much smaller Schmid factor (m = 0.167) is also operative. Similarly, (0{bar 1}1) [111] (m = 0.25) is cooperative with the coplanar (0{bar 1}1) [{bar 1}11] slip system (m = 0.287) on the (0{bar 1}1) slip plane, and (011) [1{bar 1}1] (m = 0.222) is cooperative with the coplanar (011) [11{bar 1}] slip system (m = 0.32) on the (011) plane. The occurrence of {l_brace}0{bar 1}1{r_brace} anomalous slip is accordingly proposed to be originated from the cooperative dislocation motion of the {+-} 1/2 [111] and {+-} 1/2 [1{bar 1}1] dislocations on the ({bar 1}01) slip plane; the mutual interaction and blocking of {+-} 1/2 [111] and {+-} 1/2 [1{bar 1}1] dislocations not only cause an increase of glide resistance to the dislocation motion on the ({bar 1}01) plane

  3. Ringed Seal Distribution Map (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset contains GIS layers that depict the known spatial distributions (i.e., ranges) of the five subspecies of ringed seals (Phoca hispida). It was produced...

  4. The g-2 ring

    CERN Multimedia


    The precise measurement of "g-2", the anomalous magnetic moment of the muon, required a special muon storage ring with electrostatic focussing and very accurate knowledge of the magnetic bending field. For more details see under photo 7405430.

  5. Modified Newton's rings: II

    CERN Document Server

    Chaitanya, T Sai; Krishna, V Sai; Anandh, B Shankar; Umesh, K S


    In an earlier work (Shankar kumar Jha, A Vyas, O S K S Sastri, Rajkumar Jain & K S Umesh, 'Determination of wavelength of laser light using Modified Newton's rings setup', Physics Education, vol. 22, no.3, 195-202(2005)) reported by our group, a version of Newton's rings experiment called Modified Newton's rings was proposed. The present work is an extension of this work. Here, a general formula for wavelength has been derived, applicable for a plane of observation at any distance. A relation between the focal length and the radius curvature is also derived for a plano-convex lens which is essentially used as a concave mirror. Tracker, a video analysis software, freely downloadable from the net, is employed to analyze the fringes captured using a CCD camera. Two beams which give rise to interference fringes in conventional Newton's rings and in the present setup are clearly distinguished.

  6. Theoretical Proposals of Quantum Phase-slip Devices

    NARCIS (Netherlands)

    Hriscu, A.M.


    This thesis describes a series of theoretical proposals of novel circuits that embed ultrathin superconducting nanowires with coherent quantum phase-slips (QPS). The motivation for our proposals is twofold: firstly, to facilitate unambiguous experimental verification of coherent phase-slips. Secondl

  7. Friction and stick-slip in a telescope construction

    NARCIS (Netherlands)

    Hammerschlag, R.H.


    Stick-slip in high resolution telescopes should be avoided. The contact places where stick-slip can occur are described. Some contact places require a high friction coefficient, others a low friction coefficient. Some experiments have been carried out to find lubricants for contact places which comb

  8. Slipping and rolling on an inclined plane

    Energy Technology Data Exchange (ETDEWEB)

    Aghamohammadi, Cina [Department of Electrical Engineering, Sharif University of Technology, PO Box 11365-11155, Tehran (Iran, Islamic Republic of); Aghamohammadi, Amir, E-mail: [Department of Physics, Alzahra University, Tehran 19938-91176 (Iran, Islamic Republic of)


    In the first part of the paper, using a direct calculation two-dimensional motion of a particle sliding on an inclined plane is investigated for general values of friction coefficient ({mu}). A parametric equation for the trajectory of the particle is also obtained. In the second part of the paper, the motion of a sphere on the inclined plane is studied. It is shown that the evolution equation for the contact point of a sliding sphere is similar to that of a point particle sliding on an inclined plane whose friction coefficient is 7/2 {mu}. If {mu} > 2/7 tan {theta}, for any arbitrary initial velocity and angular velocity, the sphere will roll on the inclined plane after some finite time. In other cases, it will slip on the inclined plane. In the case of rolling, the centre of the sphere moves on a parabola. Finally the velocity and angular velocity of the sphere are exactly computed.

  9. Slip Effects in Compressible Turbulent Channel Flow

    CERN Document Server

    Skovorodko, P A


    The direct numerical simulation of compressible fully developed turbulent Couette flow between two parallel plates with equal temperatures moving in opposite directions with some velocity was performed. The algorithm was tested on well known numerical solution for incompressible Poiseuille channel flow and found to provide its well description. The slip effects in studied flow are found to be negligibly small at the values of accommodation coefficients for velocity and temperature of the order of unity. The considerable increase of mean temperature with decreasing the accommodation coefficient for temperature was discovered. The effect may be important in the problems of heat exchange in compressible turbulent boundary layer for some combinations of flowing gas, surface and adsorbing gas.

  10. Slip effects in compressible turbulent channel flow (United States)

    Skovorodko, P. A.


    The direct numerical simulation of compressible fully developed turbulent Couette flow between two parallel plates with temperature Tw moving with velocities ±Uw was performed. The algorithm was tested on well known numerical solution for incompressible Poiseuille channel flow and found to provide its well description. The slip effects in studied flow are found to be negligibly small at the values of accommodation coefficients αu and αT of the order of unity. The considerable increase of mean temperature with decreasing the accommodation coefficient αT for fixed value of αu = 1 was discovered. The effect may be important in the problems of heat exchange in compressible turbulent boundary layer for some combinations of flowing gas, surface and adsorbing gas.

  11. Slipping and Rolling on an Inclined Plane

    CERN Document Server

    Aghamohammadi, Cina; 10.1088/0143-0807/32/4/017


    In the first part of the article using a direct calculation two-dimensional motion of a particle sliding on an inclined plane is investigated for general values of friction coefficient ($\\mu$). A parametric equation for the trajectory of the particle is also obtained. In the second part of the article the motion of a sphere on the inclined plane is studied. It is shown that the evolution equation for the contact point of a sliding sphere is similar to that of a point particle sliding on an inclined plane whose friction coefficient is $2/7}\\ \\mu$. If $\\mu> 2/7 \\tan\\theta$, for any arbitrary initial velocity and angular velocity the sphere will roll on the inclined plane after some finite time. In other cases, it will slip on the inclined plane. In the case of rolling center of the sphere moves on a parabola. Finally the velocity and angular velocity of the sphere are exactly computed.

  12. Slipped capital femoral epiphysis in down syndrome. (United States)

    Dietz, Frederick R; Albanese, Stephen A; Katz, Danielle A; Dobbs, Matthew B; Salamon, Peter B; Schoenecker, Perry L; Sussman, Michael D


    Slipped capital femoral epiphysis (SCFE) and Down syndrome are both uncommon in the population at large, and rarely are both conditions present in a single individual. Institutional records were searched for both Down syndrome and SCFE. At least 2 years of follow-up was required. Eight patients were identified. At presentation four patients could not walk due to pain and four could walk. Six of eight hips presented with grade III SCFE. Four hips were treated with internal fixation in situ and four were manipulatively reduced in the operating room at the time of fixation with percutaneous screws or pins. Three hips healed uneventfully. Five hips developed aseptic necrosis (three partial, two whole head). This small retrospective study suggests an extremely high rate of complications in adolescents with Down syndrome and SCFE.

  13. Slipped upper femoral epiphysis with hemophilia A

    Directory of Open Access Journals (Sweden)

    Iyer Deepa


    Full Text Available A 13-year-old boy who had hemophilia A was reported with pain in the left thigh and hip on walking. He had no history of trauma. Severe hemophilia A is diagnosed with a Factor VIII level of < 1 iu/dl. The presumptive diagnosis was that of a spontaneous bleed into the hip joint. Factor VIII mutational analysis revealed a C to G substitution at nucleotide 6683 which results in a cystine change at codon 2194. However, the symptoms persisted and an X-ray demonstrated the presence of an acute on chronic slip of the upper femoral epiphysis. The patient was transferred to the center treating his hemophilia where the hip was pinned in situ under cover with Factor VIII. This case demonstrates the need to be aware of a possible traumatic diagnosis of hip pain in a hemophiliac child with a longstanding history of spontaneous bleeding into joints.

  14. Quantifying effective slip length over micropatterned hydrophobic surfaces

    CERN Document Server

    Tsai, Peichun; Pirat, Christophe; Wessling, Matthias; Lammertink, Rob G H; Lohse, Detlef


    We employ micro-particle image velocimetry ($\\mu$-PIV) to investigate laminar micro-flows in hydrophobic microstructured channels, in particular the slip length. These microchannels consist of longitudinal micro-grooves, which can trap air and prompt a shear-free boundary condition and thus slippage enhancement. Our measurements reveal an increase of the slip length when the width of the micro-grooves is enlarged. The result of the slip length is smaller than the analytical prediction by Philip et al. [1] for an infinitely large and textured channel comprised of alternating shear-free and no-slip boundary conditions. The smaller slip length (as compared to the prediction) can be attributed to the confinement of the microchannel and the bending of the meniscus (liquid-gas interface). Our experimental studies suggest that the curvature of the meniscus plays an important role in microflows over hydrophobic micro-ridges.

  15. The experimentalanalysis of the slip in the rubber belt CVT (United States)

    Grzegożek, W.; Kot, A.


    This work deals with the analysis of the speed losses in CVT. The bench tests have been conducted on the scooter CVT equipped with the centrifugal regulation system. This solution is typical for this type of vehicles so the conducted experiments refer to real exploitation conditions. The slip has been defined on the base of the difference between speed ratios obtained from the angular speeds and the belt pitch radii. This approach corresponds with the Dittrich model. The non-linear dependence between the slip and the transmitted torque has been obtained for the constant gear ratio. Also non-linear dependence between the slip and the gear ratio has been received for constant torque. The amount of slip value indicates that this is significant part of the total power losses as it has been described by Bertini. However it clashes with the Chen researches, where the slip corresponds with the marginal part of the overall losses.

  16. The Slip Hypothesis: Tactile Perception and its Neuronal Bases. (United States)

    Schwarz, Cornelius


    The slip hypothesis of epicritic tactile perception interprets actively moving sensor and touched objects as a frictional system, known to lead to jerky relative movements called 'slips'. These slips depend on object geometry, forces, material properties, and environmental factors, and, thus, have the power to incorporate coding of the perceptual target, as well as perceptual strategies (sensor movement). Tactile information as transferred by slips will be encoded discontinuously in space and time, because slips sometimes engage only parts of the touching surfaces and appear as discrete and rare events in time. This discontinuity may have forced tactile systems of vibrissae and fingertips to evolve special ways to convert touch signals to a tactile percept.

  17. Proposed Cavity for Reduced Slip-Stacking Loss

    Energy Technology Data Exchange (ETDEWEB)

    Eldred, J. [Indiana U.; Zwaska, R. [Fermilab


    This paper employs a novel dynamical mechanism to improve the performance of slip-stacking. Slip-stacking in an accumulation technique used at Fermilab since 2004 which nearly double the proton intensity. During slip-stacking, the Recycler or the Main Injector stores two particles beams that spatially overlap but have different momenta. The two particle beams are longitudinally focused by two 53 MHz 100 kV RF cavities with a small frequency difference between them. We propose an additional 106 MHz 20 kV RF cavity, with a frequency at the double the average of the upper and lower main RF frequencies. In simulation, we find the proposed RF cavity significantly enhances the stable bucket area and reduces slip-stacking losses under reasonable injection scenarios. We quantify and map the stability of the parameter space for any accelerator implementing slip-stacking with the addition of a harmonic RF cavity.

  18. Effect of slip on circulation inside a droplet

    CERN Document Server

    Thalakkottor, Joseph J


    Internal recirculation in a moving droplet plays an important role in several droplet-based microfluidic devices as it enhances mixing, chemical reaction and heat transfer. The occurrence of fluid slip at the wall, which becomes prominent at high shear rates and lower length scales, results in a significant change in droplet circulation. Using molecular dynamics (MD) simulations, the presence of circulation in droplets is demonstrated and quantified. Circulation is shown to vary inversely with slip length, which is a measure of interface wettability. A simple circulation model is established that captures the effect of slip on droplet circulation. Scaling parameters for circulation and slip length are identified from the circulation model which leads to the collapse of data for droplets with varying aspect ratio (AR) and slip length. The model is validated using continuum and MD simulations and is shown to be accurate for droplets with high AR.

  19. Thermal slip for liquids at rough solid surfaces (United States)

    Zhang, Chengbin; Chen, Yongping; Peterson, G. P.


    Molecular dynamics simulation is used to examine the thermal slip of liquids at rough solid surfaces as characterized by fractal Cantor structures. The temperature profiles, potential energy distributions, thermal slip, and interfacial thermal resistance are investigated and evaluated for a variety of surface topographies. In addition, the effects of liquid-solid interaction, surface stiffness, and boundary condition on thermal slip length are presented. Our results indicate that the presence of roughness expands the low potential energy regions in adjacent liquids, enhances the energy transfer at liquid-solid interface, and decreases the thermal slip. Interestingly, the thermal slip length and thermal resistance for liquids in contact with solid surfaces depends not only on the statistical roughness height, but also on the fractal dimension (i.e., topographical spectrum).

  20. Numerical Investigations of Slip Phenomena in Centrifugal Compressor Impellers (United States)

    Huang, Jeng-Min; Luo, Kai-Wei; Chen, Ching-Fu; Chiang, Chung-Ping; Wu, Teng-Yuan; Chen, Chun-Han


    This study systematically investigates the slip phenomena in the centrifugal air compressor impellers by CFD. Eight impeller blades for different specific speeds, wrap angles and exit blade angles are designed by compressor design software to analyze their flow fields. Except for the above three variables, flow rate and number of blades are the other two. Results show that the deviation angle decreases as the flow rate increases. The specific speed is not an important parameter regarding deviation angle or slip factor for general centrifugal compressor impellers. The slip onset position is closely related to the position of the peak value in the blade loading factor distribution. When no recirculation flow is present at the shroud, the variations of slip factor under various flow rates are mainly determined by difference between maximum blade angle and exit blade angle, Δβmax-2. The solidity should be of little importance to slip factor correlations in centrifugal compressor impellers.

  1. Stick-slip substructure in rapid tape peeling

    KAUST Repository

    Thoroddsen, Sigurdur T.


    The peeling of adhesive tape is known to proceed with a stick-slip mechanism and produces a characteristic ripping sound. The peeling also produces light and when peeled in a vacuum, even X-rays have been observed, whose emissions are correlated with the slip events. Here we present direct imaging of the detachment zone when Scotch tape is peeled off at high speed from a solid surface, revealing a highly regular substructure, during the slip phase. The typical 4-mm-long slip region has a regular substructure of transverse 220 μm wide slip bands, which fracture sideways at speeds over 300 m/s. The fracture tip emits waves into the detached section of the tape at ∼100 m/s, which promotes the sound, so characteristic of this phenomenon.

  2. InP tunable ring resonator filters (United States)

    Tauke-Pedretti, A.; Vawter, G. A.; Skogen, E. J.; Peake, G.; Overberg, M.; Alford, C.; Torres, D.; Cajas, F.


    Optical channelizing filters with narrow linewidth are of interest for optical processing of microwave signals. Fabrication tolerances make it difficult to place exactly the optical resonance frequency within the microwave spectrum as is required for many applications. Therefore, efficient tuning of the filter resonance is essential. In this paper we present a tunable ring resonator filter with an integrated semiconductor optical amplifier (SOA) fabricated on an InP based photonic integrated circuit (PIC) platform. The ring resonance is tuned over 37 GHz with just 0.2 mA of current injection into a passive phase section. The use of current injection is often more efficient than thermal tuning using heaters making them useful for low-power applications. The single active ring resonator has an electrical FWHM of 1.5 GHz and shows greater than 16 dB of extinction between on and off resonance. The effects of SOA internal ring gain and induced passive loss on extinction and linewidth will be shown. Agreement between experimentally demonstrated devices and simulations are shown. The integration of the active and passive regions is done using quantum well intermixing and the resonators utilize buried heterostructure waveguides. The fabrication process of these filters is compatible with the monolithic integration of DBR lasers and high speed modulators enabling single chip highly functional PICs for the channelizing of RF signals.

  3. Vortices and ring dark solitons in nonlinear amplifying waveguides

    CERN Document Server

    Zhang, Jie-Fang; Li, Lu; Mihalache, Dumitru; Malomed, Boris A


    We consider the generation and propagation of (2+1)-dimensional beams in a nonlinear waveguide with the linear gain. Simple self-similar evolution of the beams is achieved at the asymptotic stage, if the input beams represent the fundamental mode. On the contrary, if they carry vorticity or amplitude nodes (or phase slips), vortex tori and ring dark solitons (RDSs) are generated, featuring another type of the self-similar evolution, with an exponentially shrinking vortex core or notch of the RDS. Numerical and analytical considerations reveal that these self-similar structures are robust entities in amplifying waveguides, being \\emph{stable} against azimuthal perturbations.

  4. Preslip and cascade processes initiating laboratory stick slip (United States)

    McLaskey, Gregory C.; Lockner, David A.


    Recent modeling studies have explored whether earthquakes begin with a large aseismic nucleation process or initiate dynamically from the rapid growth of a smaller instability in a "cascade-up" process. To explore such a case in the laboratory, we study the initiation of dynamic rupture (stick slip) of a smooth saw-cut fault in a 76 mm diameter cylindrical granite laboratory sample at 40-120 MPa confining pressure. We use a high dynamic range recording system to directly compare the seismic waves radiated during the stick-slip event to those radiated from tiny (M -6) discrete seismic events, commonly known as acoustic emissions (AEs), that occur in the seconds prior to each large stick slip. The seismic moments, focal mechanisms, locations, and timing of the AEs all contribute to our understanding of their mechanics and provide us with information about the stick-slip nucleation process. In a sequence of 10 stick slips, the first few microseconds of the signals recorded from stick-slip instabilities are nearly indistinguishable from those of premonitory AEs. In this sense, it appears that each stick slip begins as an AE event that rapidly (~20 µs) grows about 2 orders of magnitude in linear dimension and ruptures the entire 150 mm length of the simulated fault. We also measure accelerating fault slip in the final seconds before stick slip. We estimate that this slip is at least 98% aseismic and that it both weakens the fault and produces AEs that will eventually cascade-up to initiate the larger dynamic rupture.

  5. ITS Platform North Denmark

    DEFF Research Database (Denmark)

    Lahrmann, Harry; Agerholm, Niels; Juhl, Jens


    This paper presents the project entitled “ITS Platform North Denmark” which is used as a test platform for Intelligent Transportation System (ITS) solutions. The platform consists of a newly developed GNSS/GPRS On Board Unit (OBU) to be installed in 500 cars, a backend server and a specially...... designed digital road map for ITS applications. The platform is freely accessible, which means that third party applications could be run on the platform. It is estimated that using this platform enables the ITS applications to be developed for 20% of the normal cost, hence third party are invited to test...... their applications in this platform. This paper presents the platform’s potentials and explains a series of test applications which are under development on it. Moreover, a number of new projects planned for the platform are demonstrated....

  6. Descent from the form ring and Buchsbaum rings

    CERN Document Server

    Schenzel, P


    There is a spectral sequence technique in order to estimate the local cohomology of a ring by the local cohomology of a certain form ring. As applications there are information on the descent of homological properties (Cohen-Macaulay, Buchsbaum etc.) from the form ring to the ring itself. In the case of Buchsbaum ring there is a discussion of the descent of the surjectivity of a natural map into the local cohomology.

  7. Mobile platform security

    CERN Document Server

    Asokan, N; Dmitrienko, Alexandra


    Recently, mobile security has garnered considerable interest in both the research community and industry due to the popularity of smartphones. The current smartphone platforms are open systems that allow application development, also for malicious parties. To protect the mobile device, its user, and other mobile ecosystem stakeholders such as network operators, application execution is controlled by a platform security architecture. This book explores how such mobile platform security architectures work. We present a generic model for mobile platform security architectures: the model illustrat

  8. Constitutive relations between dynamic physical parameters near a tip of the propagating slip zone during stick-slip shear failure (United States)

    Ohnaka, Mitiyasu; Kuwahara, Yasuto; Yamamoto, Kiyohiko


    Constitutive relations between physical parameters in the cohesive zone during stick-slip shear failure are experimentally investigated. Stick-slip was generated along a 40 cm long precut fault in Tsukuba granite samples using a servocontrolled biaxial loading apparatus. Dynamic behavior during local breakdown processes near a tip of the slipping zone is revealed; the slip velocity and acceleration are given as a function of the slip displacement and the cohesive (or breakdown) shear stress as a function of the slip velocity. A cycle of the breakdown and restrengthening process of stick-slip is composed of five phases characterized in terms of the cohesive strength and the slip velocity. The cohesive strength can degrade regardless of the slip velocity during slip instabilities. The maximum slip acceleration ümax and the maximum slip velocity u˙max are obtained experimentally as: ümax= {2}/{u cu˙max2}andu˙max= {Δτ b}/{G}v where u c is the critical displacement, Δτb the breakdown stress drop, G the rigidity and v the rupture velocity. These relations are consistent with Ida's theoretical estimation based on the cohesive zone model. The above formula gives good estimates for the maximum slip acceleration of actual earthquakes. The cutoff frequency ƒ maxof the power spectral density of the slip acceleration increases with increasing normal stress; in particular, ƒ maxis found to be directly proportional to the normal stress σn within the normal stress range less than 17 MPa as: ƒ max(kHz) = 4.0σ n(MPa) σn<17(MPa) ƒ maxincrease with an increase in u˙max or ümax. All these results lead to the conclusion that ümax, u˙max and ƒ max increase with increasing normal stress. This is consistent with a previous observation that τb increases with increasing normal stress. The above empirical linear relation between ƒ max and σn can be explained by a linear dependence of Δτb on σn. The size-scale dependence of physical parameters is discussed, and such

  9. Holomorphic Dynamics and Herman Rings

    DEFF Research Database (Denmark)

    Henriksen, Christian


    Existence theorem for Herman Rings of holomorphic mappings in a certain holomorphic family is given, using quasiconformal mappings. Proofs of topological properties of these Herman rings are given.......Existence theorem for Herman Rings of holomorphic mappings in a certain holomorphic family is given, using quasiconformal mappings. Proofs of topological properties of these Herman rings are given....

  10. Loading and texture bias on the competitive slip activity for basal and prismatic slip systems in HCP alloys (United States)

    Saxena, A. K.; Tewari, A.; Pant, P.


    Asymmetry in hexagonal crystal structure makes the occurrence of slip strongly dependent on the texture of sample. In titanium, which has a c/a ratio less than ideal, slip occurs preferentially on prismatic slip system. However other slip systems may get activated depending on the resolved shear stresses. In this paper we present results from plane strain compression experiments where the same area of the sample was imaged before and after deformation to document changes in microstructure. We then compare these results with a simple calculation of plastic strain based on activation of various slip systems depending on their respective critical resolved shear stresses. We show that incorporation of a strain rate dependent hardening parameter provides a reasonable match with the experimentally observed deformation behaviour of various grain orientations.

  11. Observations of premonitory acoustic emission and slip nucleation during a stick slip experiment in smooth faulted Westerly granite (United States)

    Thompson, B.D.; Young, R.P.; Lockner, D.A.


    To investigate laboratory earthquakes, stick-slip events were induced on a saw-cut Westerly granite sample by triaxial loading at 150 MPa confining pressure. Acoustic emissions (AE) were monitored using an innovative continuous waveform recorder. The first motion of each stick slip was recorded as a large-amplitude AE signal. These events source locate onto the saw-cut fault plane, implying that they represent the nucleation sites of the dynamic failure stick-slip events. The precise location of nucleation varied between events and was probably controlled by heterogeneity of stress or surface conditions on the fault. The initial nucleation diameter of each dynamic instability was inferred to be less than 3 mm. A small number of AE were recorded prior to each macro slip event. For the second and third slip events, premonitory AE source mechanisms mimic the large scale fault plane geometry. Copyright 2005 by the American Geophysical Union.

  12. Thermodynamic black di-rings

    CERN Document Server

    Iguchi, Hideo


    Previously the five dimensional $S^1$-rotating black rings have been superposed in concentric way by some solitonic methods and regular systems of two $S^1$-rotating black rings were constructed by the authors and then Evslin and Krishnan (we called these solutions black di-rings). In this place we show some characteristics of the solutions of five dimensional black di-rings, especially in thermodynamic equilibrium. After the summary of the di-ring expressions and their physical quantities, first we comment on the equivalence of the two different solution-sets of the black di-rings. Then the existence of thermodynamic black di-rings are shown, in which both iso-thermality and iso-rotation between the inner black ring and the outer black ring are realized. We also give detailed analysis of peculiar properties of the thermodynamic black di-ring including discussion about a certain kind of thermodynamic stability (instability) of the system.

  13. Ringed accretion disks: equilibrium configurations

    CERN Document Server

    Pugliese, D


    We investigate a model of ringed accretion disk, made up by several rings rotating around a supermassive Kerr black hole attractor. Each toroid of the ringed disk is governed by the General Relativity hydrodynamic Boyer condition of equilibrium configurations of rotating perfect fluids. Properties of the tori can be then determined by an appropriately defined effective potential reflecting the background Kerr geometry and the centrifugal effects. The ringed disks could be created in various regimes during the evolution of matter configurations around supermassive black holes. Therefore, both corotating and counterrotating rings have to be considered as being a constituent of the ringed disk. We provide constraints on the model parameters for the existence and stability of various ringed configurations and discuss occurrence of accretion onto the Kerr black hole and possible launching of jets from the ringed disk. We demonstrate that various ringed disks can be characterized by a maximum number of rings. We pr...

  14. Saturn's Other Ring Current (United States)

    Crary, F. J.


    Saturn's main rings orbit the planet within an atmosphere and ionosphere of water, oxygen and hydrogen, produced by meteoritic impacts on and ultraviolet photodesorbtion of the ring particles [Johnson et al., 2006; Luhmann et al., 2006; Tseng et al., 2010]. The neutral atmosphere itself has only been tentatively detected through ultraviolet fluorescents of OH [Hall et al., 1996] while the ionosphere was observed in situ by the Cassini spacecraft shortly after orbital insertion [Coates et al.,2005; Tokar et al. 2005, Waite et al. 2005]. Although the plasma flow velocity of this ionosphere is not well-constrained, but the close association with the rings suggests that its speed would be couppled to the keplarian velocity of the rings themselves. As a result, the motion of the plasma through Saturn's magnetic field would produce an induced voltage, oriented away from the planet outside synchronous orbit and towards the planet inside synchronous orbit. Such a potential could result in currents flowing across the ring plane and closeing along magnetic field lines and through Saturn's ionosphere at latitudes between 36o and 48o. Cassini observations of whistler-mode plasma wave emissions [Xin et al.,2006] centered on synchronous orbit (1.76 Rs, mapping to 41o latitude) have been interpreted as a product of field-aligned electron beams associated with such a current. This presentation will investigate the magnitude of these currents and the resulting Joule heating of the ionosphere. An important constraint is that no auroral ultraviolet emissions have been observed at the relevant latitudes. In contrast, Joule heating could affect infrared emissions from H3+. Variations in H3+ emission associated with Saturn's rings have been reported by O'Donoghue et al., 2013, and interpreted as a result of ring "rain", i.e. precipitating water group species from the rings which alter ionosphereic chemistry and H3+ densities. As noted by O'Donoghue et al., this interpretation may be

  15. Continuous Platform Development

    DEFF Research Database (Denmark)

    Nielsen, Ole Fiil

    low risks and investments but also with relatively fuzzy results. When looking for new platform projects, it is important to make sure that the company and market is ready for the introduction of platforms, and to make sure that people from marketing and sales, product development, and downstream......, but continuous product family evolution challenges this strategy. The concept of continuous platform development is based on the fact that platform development should not be a one-time experience but rather an ongoing process of developing new platforms and updating existing ones, so that product family...

  16. Slip-behavior transitions of a heterogeneous linear fault (United States)

    Yabe, S.; Ide, S.


    Shear-slip behavior on the fault has diversity, such as ordinary earthquakes, afterslips, and shallow and deep slow earthquakes. Although the cause of this diversity is a hot topic in seismology, one possibility is the friction varying with tectonic environments (e.g., Blanpied et al., 1991). It is often explained that negative, neutral, and positive a-b of rate and state friction law corresponds to seismogenic zone, slow earthquake, and creeps in subduction zones, respectively. However, the frictional heterogeneity is expected to exist on the fault because of the fractal irregular fault surface in a wide scale range (Candela et al., 2012), which fluctuate rupture propagations. To understand the slip behavior of such heterogeneous fault, we have conducted the simplest numerical simulations with an infinite linear fault embedded in the 2D elastic medium, on which frictional parameters have cyclic bimodal distributions. As a result, we have observed several types of slip behavior changing with the density of velocity weakening zone (VWZ) on the fault. At low densities with VWZ smaller than the nucleation size (Rubin and Ampuero, 2005), the fault slips stably. At medium densities, where the spatial average of a-b is positive, seismic slip occurs in VWZ followed by an afterslip in velocity-strengthening zone (VSZ). At high densities where the spatial average of a-b is negative, the entire fault including VSZ slips seismically. When the spatial average of a-b is close to zero, the transitional behavior is observed, in which seismic slip in VWZ and fast aseismic slip in VSZ are strongly interacted, and relatively slower deformation dominates. We also provide some examples with more complex distributions of frictional parameter to explore the possibility that the frictional heterogeneity may explain not only the diverse seismic phenomena, but also the scaling of slip weakening distance of ordinary earthquakes.

  17. Cross-Platform Technologies

    Directory of Open Access Journals (Sweden)

    Maria Cristina ENACHE


    Full Text Available Cross-platform - a concept becoming increasingly used in recent years especially in the development of mobile apps, but this consistently over time and in the development of conventional desktop applications. The notion of cross-platform software (multi-platform or platform-independent refers to a software application that can run on more than one operating system or computing architecture. Thus, a cross-platform application can operate independent of software or hardware platform on which it is execute. As a generic definition presents a wide range of meanings for purposes of this paper we individualize this definition as follows: we will reduce the horizon of meaning and we use functionally following definition: a cross-platform application is a software application that can run on more than one operating system (desktop or mobile identical or in a similar way.

  18. Oligomeric ferrocene rings (United States)

    Inkpen, Michael S.; Scheerer, Stefan; Linseis, Michael; White, Andrew J. P.; Winter, Rainer F.; Albrecht, Tim; Long, Nicholas J.


    Cyclic oligomers comprising strongly interacting redox-active monomer units represent an unknown, yet highly desirable class of nanoscale materials. Here we describe the synthesis and properties of the first family of molecules belonging to this compound category—differently sized rings comprising only 1,1‧-disubstituted ferrocene units (cyclo[n], n = 5-7, 9). Due to the close proximity and connectivity of centres (covalent Cp-Cp linkages; Cp = cyclopentadienyl) solution voltammograms exhibit well-resolved, separated 1e- waves. Theoretical interrogations into correlations based on ring size and charge state are facilitated using values of the equilibrium potentials of these transitions, as well as their relative spacing. As the interaction free energies between the redox centres scale linearly with overall ring charge and in conjunction with fast intramolecular electron transfer (˜107 s-1), these molecules can be considered as uniformly charged nanorings (diameter ˜1-2 nm).

  19. Rings dominate western Gulf (United States)

    Vidal L., Francisco V.; Vidal L., Victor M. V.; Molero, José María Pérez

    Surface and deep circulation of the central and western Gulf of Mexico is controlled by interactions of rings of water pinched from the gulf's Loop Current. The discovery was made by Mexican oceanographers who are preparing a full-color, 8-volume oceanographic atlas of the gulf.Anticyclonic warm-core rings pinch off the Loop Current at a rate of about one to two per year, the scientists of the Grupo de Estudios Oceanográficos of the Instituto de Investigaciones Eléctricas (GEO-IIE) found. The rings migrate west until they collide with the continental shelf break of the western gulf, almost always between 22° and 23°N latitude. On their westward travel they transfer angular momentum and vorticity to the surrounding water, generating cyclonic circulations and vortex pairs that completely dominate the entire surface and deep circulation of the central and western gulf.

  20. Autocatalytic chemical smoke rings

    CERN Document Server

    Rogers, M C; Rogers, Michael C.; Morris, Stephen W.


    Buoyant plumes, evolving free of boundary constraints, may develop well-defined mushroom shaped heads. In normal plumes, overturning flow in the head entrains less buoyant fluid from the surroundings as the head rises, robbing the plume of its driving force. We consider here a new type of plume in which the source of buoyancy is an autocatalytic chemical reaction. The reaction occurs at a sharp front which separates reactants from less dense products. In this type of plume, entrainment assists the reaction, producing new buoyancy which fuels an accelerating plume head. When the head has grown to a critical size, it detaches from the upwelling conduit, forming an accelerating, buoyant vortex ring. This vortex is analogous to a rising smoke ring. A second-generation head then develops at the point of detachment.Multiple generations of chemical vortex rings can detach from a single triggering event.

  1. Decay ring design

    CERN Document Server

    Chancé, A; Bouquerel, E; Hancock, S; Jensen, E

    The study of the neutrino oscillation between its different flavours needs pureand very intense fluxes of high energy, well collimated neutrinos with a welldetermined energy spectrum. A dedicated machine seems to be necessarynowadays to reach the required flux. A new concept based on the β-decayof radioactive ions which were accelerated in an accelerator chain was thenproposed. After ion production, stripping, bunching and acceleration, the unstableions are then stored in a racetrack-shaped superconducting decay ring.Finally, the ions are accumulated in the decay ring until being lost. The incomingbeam is merged to the stored beam by using a specific RF system, whichwill be presented here.We propose here to study some aspects of the decay ring, such as its opticalproperties, its RF system or the management of the losses which occur in thering (mainly by decay or by collimation).

  2. Almost ring theory

    CERN Document Server


    This book develops thorough and complete foundations for the method of almost etale extensions, which is at the basis of Faltings' approach to p-adic Hodge theory. The central notion is that of an "almost ring". Almost rings are the commutative unitary monoids in a tensor category obtained as a quotient V-Mod/S of the category V-Mod of modules over a fixed ring V; the subcategory S consists of all modules annihilated by a fixed ideal m of V, satisfying certain natural conditions. The reader is assumed to be familiar with general categorical notions, some basic commutative algebra and some advanced homological algebra (derived categories, simplicial methods). Apart from these general prerequisites, the text is as self-contained as possible. One novel feature of the book - compared with Faltings' earlier treatment - is the systematic exploitation of the cotangent complex, especially for the study of deformations of almost algebras.

  3. On Simple Noetherian Rings

    Institute of Scientific and Technical Information of China (English)

    Somyot Plubtieng


    A module M is called a CS-module (or extending module [5]) if every submodule of M is essential in a direct summand of M. It is shown that (i) a simple ring R is right noetherian if and only if every cyclic singular right R-module is either a CS-module or a noetherian module; (ii) for a prime ring R, if every proper cyclic right R-module is a direct sum of a quasi-injective module and a finitely cogenerated module, then R is either semisimple artinian or a right Ore domain; and (iii) a prime ring R is right noetherian if and only if every cyclic right R-module is a direct sum of a quasi-injective module and a noetherian module.

  4. Tunneling Through Black Rings

    Institute of Scientific and Technical Information of China (English)

    ZHAO Liu


    Hawking radiation of black ring solutions to 5-dimensional Einstein-Maxwell-dilaton theory is analyzed by use of the Parikh-Wilczek tunneling method. To get the correct tunneling amplitude and emission rate, we adopt and develop the Angheben-Nadalini-Vanzo-Zerbini covariant approach to cover the effects of rotation and electronic discharge all at once, and the effect of back reaction is also taken into account. This constitutes a unified approach to the tunneling problem. Provided the first law of thermodynamics for black rings holds, the emission rate is proportional to the exponential of the change of Bekenstein-Hawking entropy. Explicit calculation for black ring temperatures agrees exactly with the results obtained via the classical surface gravity method and the quasi-local formalism.

  5. Deployable Fresnel Rings (United States)

    Kennedy, Timothy F.; Fink, Patrick W.; Chu, Andrew W.; Lin, Gregory Y.


    Deployable Fresnel rings (DFRs) significantly enhance the realizable gain of an antenna. This innovation is intended to be used in combination with another antenna element, as the DFR itself acts as a focusing or microwave lens element for a primary antenna. This method is completely passive, and is also completely wireless in that it requires neither a cable, nor a connector from the antenna port of the primary antenna to the DFR. The technology improves upon the previous NASA technology called a Tri-Sector Deployable Array Antenna in at least three critical aspects. In contrast to the previous technology, this innovation requires no connector, cable, or other physical interface to the primary communication radio or sensor device. The achievable improvement in terms of antenna gain is significantly higher than has been achieved with the previous technology. Also, where previous embodiments of the Tri-Sector antenna have been constructed with combinations of conventional (e.g., printed circuit board) and conductive fabric materials, this innovation is realized using only conductive and non-conductive fabric (i.e., "e-textile") materials, with the possible exception of a spring-like deployment ring. Conceptually, a DFR operates by canceling the out-of-phase radiation at a plane by insertion of a conducting ring or rings of a specific size and distance from the source antenna, defined by Fresnel zones. Design of DFRs follow similar procedures to those outlined for conventional Fresnel zone rings. Gain enhancement using a single ring is verified experimentally and through computational simulation. The experimental test setup involves a microstrip patch antenna that is directly behind a single-ring DFR and is radiating towards a second microstrip patch antenna. The first patch antenna and DFR are shown. At 2.42 GHz, the DFR improves the transmit antenna gain by 8.6 dB, as shown in Figure 2, relative to the wireless link without the DFR. A figure illustrates the

  6. Simulation of the frictional stick-slip instability (United States)

    Mora, Peter; Place, David


    A lattice solid model capable of simulating rock friction, fracture and the associated seismic wave radiation is developed in order to study the origin of the stick-slip instability that is responsible for earthquakes. The model consists of a lattice of interacting particles. In order to study the effect of surface roughness on the frictional behavior of elastic blocks being rubbed past one another, the simplest possible particle interactions were specified corresponding to radially dependent elastic-brittle bonds. The model material can therefore be considered as round elastic grains with negligible friction between their surfaces. Although breaking of the bonds can occur, fracturing energy is not considered. Stick-slip behavior is observed in a numerical experiment involving 2D blocks with rough surfaces being rubbed past one another at a constant rate. Slip is initiated when two interlocking asperities push past one another exciting a slip pulse. The pulse fronts propagate with speeds ranging from the Rayleigh wave speed up to a value between the shear and compressional wave speeds in agreement with field observations and theoretical analyses of mode-II rupture. Slip rates are comparable to seismic rates in the initial part of one slip pulse whose front propagates at the Rayleigh wave speed. However, the slip rate is an order of magnitude higher in the main part of pulses, possibly because of the simplified model description that neglected intrinsic friction and the high rates at which the blocks were driven, or alternatively, uncertainty in slip rates obtained through the inversion of seismograms. Particle trajectories during slip have motions normal to the fault, indicating that the fault surfaces jump apart during the passage of the slip pulse. Normal motion is expected as the asperities on the two surfaces ride over one another. The form of the particle trajectories is similar to those observed in stick-slip experiments involving foam rubber blocks ( Brune

  7. Detection of slip from multiple sites in an artificial finger (United States)

    Muridan, N.; Chappell, P. H.; Cotton, D. P. J.; Cranny, A.; White, N. M.


    A Piezoelectric thick-film sensor is a good candidate for the extraction of information from object slip in hand prosthesis. Five slip sensors were fabricated on different linkages of an artificial hand. The signals from each sensor were compared to the output from the sensor mounted on the fingertip. An analysis of the output signals from all the sensors indicates that the linkage sensors also produce similar output signals to the fingertip sensor. In the next phase of the research, velocity and acceleration of the slipped object will be considered in the analysis.

  8. Pengurangan Hambatan Aliran pada Celah Silinder Koaksial Akibat Slip


    Yanuar; Gunawan; M. Baqi


    Slip effect which occurs at the wall due to the layer of water repellent wall can reduce the pressure drop. The highly water repellent wall coating on the inside coaxial viscometer slip will be occur. The aim of experiment is proving drag reducing of the torque on the cylinder and the coefficient of velocity slip due to the water repellent coating on the wall. Teflon and wax materials are used to coat the surface of the wall. Contact angle of water droplets with a Teflon-coated walls and waxe...

  9. Simulation of engine auxiliary drive V-belt slip motion. Part 1. Development of belt slip model; Engine hoki V belt slip kyodo no simulation. 1. Belt slip model no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    Kurisu, T. [Mazda Motor Corp., Hiroshima (Japan)


    V-belts are widely used for driving auxiliary components of an engine. Inadequet design of such belt system sometimes results in troubles such as belt squeak, side rubber separation and/or bottom rubber crack. However, there has been no design tools which can predict belt slip quantitatively. The author developed a motion simulation program of Auxiliary Drive V-Belt System considering belt slip. The program showed good prediction accuracy for belt slip motion. This paper describes the simulation model. 1 ref., 12 figs.

  10. Saturn's rings - high resolution (United States)


    Voyager 2 obtained this high-resolution picture of Saturn's rings Aug. 22, when the spacecraft was 4 million kilometers (2.5 million miles) away. Evident here are the numerous 'spoke' features, in the B-ring; their very sharp, narrow appearance suggests short formation times. Scientists think electromagnetic forces are responsible in some way for these features, but no detailed theory has been worked out. Pictures such as this and analyses of Voyager 2's spoke movies may reveal more clues about the origins of these complex structures. The Voyager project is managed for NASA by the Jet Propulsion Laboratory, Pasadena, Calif.

  11. Experimental evidence for healing during stick-slip at the bases of ice streams (United States)

    Zoet, Lucas K.; Iverson, Neal R.


    The Whillians Ice Stream has twice daily stick-slip events of ca. 50 cm with a maximum inter-event time of ca. 60,000 s. In order for stick-slip phenomena to occur under rate and state friction, two conditions need to be met: 1) A rate-weakening material at the interface, so that a nucleated slip perturbance can be propagated and 2) a material capable of healing (i.e., becoming stronger) when stationary, so that stress can be recharged during hold periods between ruptures. Although rate weakening has been experimentally demonstrated for some basal tills, experimental data relevant to glacier slip that bear on healing have been absent. Without an understanding of the healing mechanisms active at the beds of ice streams, models of the mechanics of ice stream stick-slip or ice stream shut-down will be inadequately informed. We investigated healing mechanisms with slide-hold-slide experiments, a technique common in rock mechanics, using two different ring shear apparatuses. In one set of experiments till alone was sheared, while in another set ice at its melting temperature was slid over till. These two kinds of experiments allowed for the isolation of mechanisms active at ice-till interface from those within the till. In all experiments sliding velocity was ca. 345 m/yr, and effective stress was ca. 150 kPa. Once steady-state sliding friction, μss, was attained, sliding was stopped and the materials were held in stationary contact for a given duration. When sliding was reinitiated, slip resistance initially rose above the previous μss value to a peak friction, μpeak, before returning to μss. The difference between μss and μpeak, Δμ, was then calculated. For each subsequent hold, the duration of stationary contact was increased logarithmically (100, 1,000, 10,000 and 100,000 s) until the maximum hold duration was attained. From the relationship between hold time and Δμ, a healing rate was calculated. Results from both sets of experiment indicate that

  12. Laboratory study of electromagnetic initiation of slip

    Directory of Open Access Journals (Sweden)

    V. Chikhladze


    Full Text Available Recently Russian seismologists reported the triggering effect of MHD soundings on microseismic activity in the Central Asia test area.The paper focuses on an experimental test of the possibility of triggering the mechanical instability of a system that is close to critical state by a series of electromagnetic pulses.The mechanical system consisted of two pieces of rock;the upper piece can slip on the fixed supporting sample if the latter one is tilted up to the critical angle.In this state,the triggering of mechanical instability by some weak impact such as electrical pulse became more probable.The slope of support in the experiment is an analogue of tectonic stress in natural conditions.The preliminary experiments,carried out in a dry environment,at the humidity of atmosphere 30-50%,show that a strong EM-pulse induces sliding of a sample of rock (granite,basalt,labradoriteplaced on the supporting sample which is inclined at the slope close to,but less than,the critical angle with a probability 0.07.

  13. Vertically bounded double diffusive convection in the fingering regime: comparing no-slip vs free-slip boundary conditions

    CERN Document Server

    Yang, Yantao; Lohse, Detlef


    Vertically bounded fingering double diffusive convection (DDC) is numerically investigated, focusing on the influences of different velocity boundary conditions, i.e. the no-slip condition which is inevitable in the lab-scale experimental research, and the free-slip condition which is an approximation for the interfaces in many natural environments, such as the oceans. For both boundary conditions the flow is dominated by fingers and the global responses follow the same scaling laws, with enhanced prefactors for the free-slip cases. Therefore, the laboratory experiments with the no-slip boundaries serve as a good model for the finger layers in the ocean. Moreover, in the free-slip case although the tangential shear stress is eliminated at the boundaries, the local dissipation rate in the near-wall region may exceed the value found in the no-slip cases, which is caused by the stronger vertical motions of fingers and sheet structures near the free-slip boundaries. This counter intuitive result might be relevant...

  14. The design and characterization of a testing platform for quantitative evaluation of tread performance on multiple biological substrates. (United States)

    Sliker, Levin J; Rentschler, Mark E


    In this study, an experimental platform is developed to quantitatively measure the performance of robotic wheel treads in a dynamic environment. The platform imposes a dynamic driving condition for a single robot wheel, where the wheel is rotated on a translating substrate, thereby inducing slip. The normal force of the wheel can be adjusted mechanically, while the rotational velocity of the wheel and the translational velocity of the substrate can be controlled using an open-loop control system. Wheel slip and translational speed can be varied autonomously while wheel traction force is measured using a load cell. The testing platform is characterized by testing one micropatterned polydimethylsiloxane (PDMS) tread on three substrates (dry synthetic tissue, hydrated synthetic tissue, and excised porcine small bowel tissue), at three normal forces (0.10, 0.20, and 0.30 N), 13 slip ratios (-0.30 to 0.30 in increments of 0.05), and three translational speeds (2, 3, and 6 mm/s). Additionally, two wheels (micropatterned and smooth PDMS) are tested on beef liver at the same three normal forces and translational speeds for a tread comparison. An analysis of variance revealed that the platform can detect statistically significant differences between means when observing normal forces, translational speeds, slip ratios, treads, and substrates. The variance due to within (platform error, P = 1) and between trials (human error, P = 0.152) is minimal when compared to the normal force (P = 0.036), translational speed ( P = 0.059), slip ratio (P = 0), tread (P = 0.004), and substrate variances ( P = 0). In conclusion, this precision testing platform can be used to determine wheel tread performance differences on the three substrates and for each of the studied parameters. Future use of the platform could lead to an optimized micropattern-based mobility system, under given operating conditions, for implementation on a robotic capsule endoscope.

  15. Slip distribution, strain accumulation and aseismic slip on the Chaman Fault system (United States)

    Amelug, F.


    The Chaman fault system is a transcurrent fault system developed due to the oblique convergence of the India and Eurasia plates in the western boundary of the India plate. To evaluate the contemporary rates of strain accumulation along and across the Chaman Fault system, we use 2003-2011 Envisat SAR imagery and InSAR time-series methods to obtain a ground velocity field in radar line-of-sight (LOS) direction. We correct the InSAR data for different sources of systematic biases including the phase unwrapping errors, local oscillator drift, topographic residuals and stratified tropospheric delay and evaluate the uncertainty due to the residual delay using time-series of MODIS observations of precipitable water vapor. The InSAR velocity field and modeling demonstrates the distribution of deformation across the Chaman fault system. In the central Chaman fault system, the InSAR velocity shows clear strain localization on the Chaman and Ghazaband faults and modeling suggests a total slip rate of ~24 mm/yr distributed on the two faults with rates of 8 and 16 mm/yr, respectively corresponding to the 80% of the total ~3 cm/yr plate motion between India and Eurasia at these latitudes and consistent with the kinematic models which have predicted a slip rate of ~17-24 mm/yr for the Chaman Fault. In the northern Chaman fault system (north of 30.5N), ~6 mm/yr of the relative plate motion is accommodated across Chaman fault. North of 30.5 N where the topographic expression of the Ghazaband fault vanishes, its slip does not transfer to the Chaman fault but rather distributes among different faults in the Kirthar range and Sulaiman lobe. Observed surface creep on the southern Chaman fault between Nushki and north of City of Chaman, indicates that the fault is partially locked, consistent with the recorded MBalochistan and the populated areas such as the city of Quetta.

  16. The Slip History and Source Statistics of Major Slow Slip Events along the Cascadia Subduction Zone from 1998 to 2008 (United States)

    Gao, H.; Schmidt, D. A.


    We estimate the time dependent slip distribution of 16 prominent slow slip events along the northern half of the Cascadia subduction zone from 1998 to 2008. We process continuous GPS data from the PBO, PANGA and WCDA networks from the past decade using GAMIT/GLOBK processing package. Transient surface displacements are interpreted as slip on the plate interface using the Extended Network Inversion Filter. Of these 16 events, 10 events are centered north of Puget Sound, 4 events are resolved around the Columbia River and 1 event is located near Cape Blanco. The February 2003 event is complex, extending from Portland to southern Vancouver Island. Other smaller events beneath Northern Vancouver Island, Oregon and Northern California are not well resolved because of the limited station coverage. We identify two characteristic segments based on the along-strike extent of individual transient slip events in northern Washington. One segment is centered around Port Angeles. Another segment is between the Columbia River and the southern end of Puget Sound. The propagation direction of slow slip events is variable from one event to the next. The maximum cumulative slip for these 16 events is ~ 27 cm, which is centered beneath Port Angeles. This indicates that the strain release by transient slip is not uniform along-strike. In northwestern Washington where cumulative slip is a maximum, the subduction zone bends along-strike and dip of the plate is lower compared to the north and south. We hypothesize that the geometry of the slab plays an important role for focusing transient strain release at this location along the subduction zone. We explore the relationship of source parameters of slow slip using our catalogue of 16 events. The estimated moment magnitude ranges between 6.1 and 6.7. The average stress drop of 0.06-0.1 MPa is nearly two orders of magnitude smaller than that found for normal earthquakes (1-10 MPa). Standard earthquakes follow a scaling relationship where

  17. Weibull Effective Area for Hertzian Ring Crack Initiation Stress

    Energy Technology Data Exchange (ETDEWEB)

    Jadaan, Osama M. [University of Wisconsin, Platteville; Wereszczak, Andrew A [ORNL; Johanns, Kurt E [ORNL


    Spherical or Hertzian indentation is used to characterize and guide the development of engineered ceramics under consideration for diverse applications involving contact, wear, rolling fatigue, and impact. Ring crack initiation can be one important damage mechanism of Hertzian indentation. It is caused by sufficiently-high, surface-located, radial tensile stresses in an annular ring located adjacent to and outside of the Hertzian contact circle. While the maximum radial tensile stress is known to be dependent on the elastic properties of the sphere and target, the diameter of the sphere, the applied compressive force, and the coefficient of friction, the Weibull effective area too will be affected by those parameters. However, the estimations of a maximum radial tensile stress and Weibull effective area are difficult to obtain because the coefficient of friction during Hertzian indentation is complex, likely intractable, and not known a priori. Circumventing this, the Weibull effective area expressions are derived here for the two extremes that bracket all coefficients of friction; namely, (1) the classical, frictionless, Hertzian case where only complete slip occurs, and (2) the case where no slip occurs or where the coefficient of friction is infinite.

  18. Ring chromosome 13

    DEFF Research Database (Denmark)

    Brandt, C A; Hertz, Jens Michael; Petersen, M B;


    A stillborn male child with anencephaly and multiple malformations was found to have the karyotype 46,XY,r(13) (p11q21.1). The breakpoint at 13q21.1, determined by high resolution banding, is the most proximal breakpoint ever reported in patients with ring chromosome 13. In situ hybridisation...

  19. Planetary ring systems

    CERN Document Server

    Miner, Ellis D; Cuzzi, Jeffrey N


    This is the most comprehensive and up-to-date book on the topic of planetary rings systems yet written. The book is written in a style that is easily accessible to the interested non expert. Each chapter includes notes, references, figures and tables.

  20. On topologies over rings

    Directory of Open Access Journals (Sweden)

    Syed M. Fakhruddin


    Full Text Available In this note, we show that if a topology F¯ over a ring A satisfies a certain finiteness condition, then the Gabriel topology G¯ generated by F¯ can be explicitly constructed and it also satisfies the same finiteness condition.


    Institute of Scientific and Technical Information of China (English)

    CHAIYan-ju; OUJi-kun; RENChao


    A new method is proposed for detecting and repairing cycle slips in GPS navigation based on the dual frequency observations. It can be implemented through the following three steps: (1) The integer ambiguities of the current epoch are substituted by that of the previous epoch, so the ambiguity parameters are removed from the observation equations. (2) The abnormal observations are detected using the quasi accurate detection (QUAD) method and the satellite pairs of these abnormal observations are determined. Then the coefficient matrix of these satellite pairs is recovered. (3) The cycle slips of these satellite pairs are calculated using the LAMBDA method and integer ambiguities of the current epoch can be determined by adding the cycle slips into the integer ambiguities of the previous epoch. The key of this method is that the abnormal observations must accurately he detected, i.e. , the satellites having cycle slips must correctly be judged. Finally, compared with other methods the feasibility of the method is verified.

  2. Wheel slip dump valve for railway braking system (United States)

    Zhang, Xuan; Zhang, LiHao; Li, QingXuan; Shi, YanTao


    As we all know, pneumatic braking system plays an important role in the safety of the whole vehicle. In the anti slip braking system, the pressure of braking cylinder can be adjusted by the quick power response of wheel slip dump valve, so that the lock situation won’t occur during vehicle service. During the braking of railway vehicles, the braking force provided by braking disc reduces vehicle’s speed. But the locking slip will happen due to the oversize of braking force or the reduction of sticking coefficient between wheel and rail. It will cause not only the decline of braking performance but also the increase of braking distance. In the meanwhile, it will scratch the wheel and influence the stable running of vehicles. Now, the speed of passenger vehicle has been increased. In order to shorten the braking distance as far as possible, sticking stickiness must be fully applied. So the occurrence probability of wheel slip is increased.

  3. Accurate speed and slip measurement of induction motors

    Energy Technology Data Exchange (ETDEWEB)

    Ho, S.Y.S.; Langman, R. [Tasmania Univ., Hobart, TAS (Australia)


    Two alternative hardware circuits, for the accurate measurement of low slip in cage induction motors, are discussed. Both circuits compare the periods of the fundamental of the supply frequency and pulses from a shaft-connected toothed-wheel. The better of the two achieves accuracy to 0.5 percent of slip over the range 0.1 to 0.005, or better than 0.001 percent of speed over the range. This method is considered useful for slip measurement of motors supplied by either constant frequency mains of variable speed controllers with PMW waveforms. It is demonstrated that accurate slip measurement supports the conclusions of work previously done on the detection of broken rotor bars. (author). 1 tab., 6 figs., 13 refs.

  4. Some sources for a slip in a translation by Freud. (United States)

    Grossman, W I


    Among Freud's papers, we find instances in which Freud describes the "psychopathology of everyday life" as he found it in himself and in others. "A Religious Experience" (Freud, 1928) contains examples of both kinds. In addition, this paper contains a slip of which Freud appears to have been unaware. Freud's paper interprets a religious conversion described in a letter written to him in English. In the translation of this letter into German, Freud inserted material that was not present in the original. He mentions another slip he made in speaking about the letter. These slips and some associated details in the paper indicate persisting unconscious conflict. The content of these slips and details points to an association with Freud's childhood anxiety dream reported in The Interpretation of Dreams (Freud, 1900). Freud's associations and discussion of that dream lead to the Philippson Bible of his childhood, which provides additional connections to the paper of 1928.

  5. Analytical approximations for stick-slip vibration amplitudes

    DEFF Research Database (Denmark)

    Thomsen, Jon Juel; Fidlin, A.


    The classical "mass-on-moving-belt" model for describing friction-induced vibrations is considered, with a friction law describing friction forces that first decreases and then increases smoothly with relative interface speed. Approximate analytical expressions are derived for the conditions......, the amplitudes, and the base frequencies of friction-induced stick¿slip and pure-slip oscillations. For stick¿slip oscillations, this is accomplished by using perturbation analysis for the finite time interval of the stick phase, which is linked to the subsequent slip phase through conditions of continuity...... and periodicity. The results are illustrated and tested by time-series, phase plots and amplitude response diagrams, which compare very favorably with results obtained by numerical simulation of the equation of motion, as long as the difference in static and kinetic friction is not too large....

  6. Fusion Rings for Quantum Groups

    DEFF Research Database (Denmark)


    We study the fusion rings of tilting modules for a quantum group at a root of unity modulo the tensor ideal of negligible tilting modules. We identify them in type A with the combinatorial rings from [12] and give a similar description of the sp2n-fusion ring in terms of noncommutative symmetric...... functions. Moreover we give a presentation of all fusion rings in classical types as quotients of polynomial rings. Finally we also compute the fu- sion rings for type G2....

  7. Fusion Rings for Quantum Groups

    DEFF Research Database (Denmark)

    Andersen, Henning Haahr; Stroppel, Catharina


    We study the fusion rings of tilting modules for a quantum group at a root of unity modulo the tensor ideal of negligible tilting modules. We identify them in type A with the combinatorial rings from [12] and give a similar description of the sp2n-fusion ring in terms of noncommutative symmetric...... functions. Moreover we give a presentation of all fusion rings in classical types as quotients of polynomial rings. Finally we also compute the fu- sion rings for type G2....

  8. Rings from Close Encounters (United States)

    Kohler, Susanna


    Weve recently discovered narrow sets of rings around two minor planets orbiting in our solar system. How did these rings form? A new study shows that they could be a result of close encounters between the minor planets and giants like Jupiter or Neptune.Unexpected Ring SystemsPositions of the centaurs in our solar system (green). Giant planets (red), Jupiter trojans (grey), scattered disk objects (tan) and Kuiper belt objects (blue) are also shown. [WilyD]Centaurs are minor planets in our solar system that orbit between Jupiter and Neptune. These bodies of which there are roughly 44,000 with diameters larger than 1 km have dynamically unstable orbits that cross paths with those of one or more giant planets.Recent occultation observations of two centaurs, 10199 Chariklo and 2060 Chiron, revealed that these bodies both host narrow ring systems. Besides our four giant planets, Chariklo and Chiron are the only other bodies in the solar system known to have rings. But how did these rings form?Scientists have proposed several models, implicating collisions, disruption of a primordial satellite, or dusty outgassing. But a team of scientists led by Ryuki Hyodo (Paris Institute of Earth Physics, Kobe University) has recently proposed an alternative scenario: what if the rings were formed from partial disruption of the centaur itself, after it crossed just a little too close to a giant planet?Tidal Forces from a GiantHyodo and collaborators first used past studies of centaur orbits to estimate that roughly 10% of centaurs experience close encounters (passing within a distance of ~2x the planetary radius) with a giant planet during their million-year lifetime. The team then performed a series of simulations of close encounters between a giant planet and a differentiated centaur a body in which the rocky material has sunk to form a dense silicate core, surrounded by an icy mantle.Some snapshots of simulation outcomes (click for a closer look!) for different initial states of

  9. Slip Updip of Tremor during the 2012 Cascadia ETS Event (United States)

    Hall, K.; Houston, H.


    The interplay between tremor and slow slip during ETS has implications for the slip budget of the Cascadia subduction zone. In particular, it can constrain the downdip edge of the locked zone, which informs the hazard assessments for major cities including Seattle, Tacoma, and Vancouver. As shown by Houston (AGU abstract, 2012), slip inferred from GPS extended updip of the seismically-detected tremor in the 2010 M6.8 ETS event. Following the methods used on the 2010 ETS event, we used the PANGA GPS to measure the displacement vectors for 71 stations to analyze a large ETS event in 2012 that extended from Vancouver Island to Southern Washington. We implemented Principal Component Analysis to automatically select the direction and magnitude of the maximum displacement vector. We then inverted these GPS displacements for slip, using the Okada formulation of buried rectangular faults in a halfspace with a grid of 8 by 8 km subfaults based on the McCrory slab model. We performed inversions with either 0th or 2nd order Tikhonov regularization and found that over the 6 weeks of propagation, the 2012 ETS event released moment corresponding to M6.7, in three high-slip regions. We compared two different inversions, one where slip was allowed on a broad regional grid and a tremor-restricted inversion (TRI) where slip was restricted to grid locations where tremor had been detected in the 2012 ETS. We found that the TRI forced the slip to the updip edge of the grid where it reached above 10 cm, which is physically implausible given that this exceeds the slip that can accumulate in an inter-ETS time period. Additionally, the regional grid inversion indicates that 1 to 2 cm of slip occurred 10's of km updip of the western edge of tremor. This further supports the inference from the 2010 event that in northern Washington, the slow slip during an ETS event extends many kilometers updip of the western edge of tremor.

  10. Wheel rolling constraints and slip in mobile robots

    Energy Technology Data Exchange (ETDEWEB)

    Shekhar, S. [Oak Ridge National Lab., TN (United States). Robotics and Process Systems Div.


    It is widely accepted that dead-reckoning based on the rolling with no-slip condition on the wheels is not a reliable method to ascertain the position and orientation of a mobile robot for any reasonable distance. The authors establish that wheel slip is inevitable under the dynamic model of motion using classical results on the accessibility and controllability in nonlinear control theory and an analytical model of rolling of two linearly elastic bodies.

  11. Slipping Rib Syndrome as Persistent Abdominal and Chest Pain. (United States)

    Bolaños-Vergaray, Juan Javier; de la Gala García, Francisco; Obaya Rebollar, Juan Carlos; Bové Alvarez, Maria


    Slipping rib syndrome is an overlooked cause of persistent abdominal or chest pain. The etiology of this syndrome is not well understood, but the characteristic pain is from hypermobility of the false ribs. Although it is a diagnosis of exclusion, misdiagnosis may lead to an excessive workup. A simple clinical examination via the hooking maneuver is the most significant feature of its diagnosis. We describe the case of a 41-year-old woman with slipping rib syndrome.

  12. The Crawford Slip Method: An Organizational Development Technique (United States)


    This thesis is dedicated to the memory of Professor John Demidovich , whose interest and research inspired this study. - Debra Trent ii i ,I...According to Demidovich and Crawford (undated), the Crawford Slip Method is a system aimed at handling a large amount of inputs from a large number of...Ross Clayton, in an article by Crawford and Demidovich (1983a), states that few management techniques have the potential of the Crawford Slip Method as

  13. A non-slip boundary condition for lattice Boltzmann simulations

    CERN Document Server

    Inamuro, T; Ogino, F; Inamuro, Takaji; Yoshino, Masato; Ogino, Fumimaru


    A non-slip boundary condition at a wall for the lattice Boltzmann method is presented. In the present method unknown distribution functions at the wall are assumed to be an equilibrium distribution function with a counter slip velocity which is determined so that fluid velocity at the wall is equal to the wall velocity. Poiseuille flow and Couette flow are calculated with the nine-velocity model to demonstrate the accuracy of the present boundary condition.

  14. Foreshocks during the nucleation of stick-slip instability (United States)

    McLaskey, Gregory C.; Kilgore, Brian D.


    report on laboratory experiments which investigate interactions between aseismic slip, stress changes, and seismicity on a critically stressed fault during the nucleation of stick-slip instability. We monitor quasi-static and dynamic changes in local shear stress and fault slip with arrays of gages deployed along a simulated strike-slip fault (2 m long and 0.4 m deep) in a saw cut sample of Sierra White granite. With 14 piezoelectric sensors, we simultaneously monitor seismic signals produced during the nucleation phase and subsequent dynamic rupture. We observe localized aseismic fault slip in an approximately meter-sized zone in the center of the fault, while the ends of the fault remain locked. Clusters of high-frequency foreshocks (Mw ~ -6.5 to -5.0) can occur in this slowly slipping zone 5-50 ms prior to the initiation of dynamic rupture; their occurrence appears to be dependent on the rate at which local shear stress is applied to the fault. The meter-sized nucleation zone is generally consistent with theoretical estimates, but source radii of the foreshocks (2 to 70 mm) are 1 to 2 orders of magnitude smaller than the theoretical minimum length scale over which earthquake nucleation can occur. We propose that frictional stability and the transition between seismic and aseismic slip are modulated by local stressing rate and that fault sections, which would typically slip aseismically, may radiate seismic waves if they are rapidly stressed. Fault behavior of this type may provide physical insight into the mechanics of foreshocks, tremor, repeating earthquake sequences, and a minimum earthquake source dimension.

  15. Slip Magnetohydrodynamic Viscous Flow over a Permeable Shrinking Sheet

    Institute of Scientific and Technical Information of China (English)

    FANG Tie-Gang; ZHANG Ji; YAO Shan-shan


    @@ The magnetohydrodynamic(MHD)flow under slip conditions over a shrinMng sheet js solved analytically.The solution is given in a closed form equation and is an exact solution of the full governing Navier-Stokes equations.Interesting solution behavior is observed with muiriple solution branches for certain parameter domain.The effects of the mass transfer,slip,andmagnetic parameters are discussed.

  16. Wheel rolling constraints and slip in mobile robots

    Energy Technology Data Exchange (ETDEWEB)

    Shekhar, S.


    It is widely accepted that dead reckoning based on the rolling with no slip condition on wheels is not a reliable method to ascertain the position and orientation of a mobile robot for any reasonable distance. We establish that wheel slip is inevitable under the dynamic model of motion using classical results on the accessibility and controllability in nonlinear control theory and an analytical model of rolling of two linearly elastic bodies.

  17. Wheel rolling constraints and slip in mobile robots

    Energy Technology Data Exchange (ETDEWEB)

    Shekhar, S.


    It is widely accepted that dead reckoning based on the rolling with no slip condition on wheels is not a reliable method to ascertain the position and orientation of a mobile robot for any reasonable distance. The author establishes that wheel slip is inevitable under the dynamic model of motion using classical results on the accessibility and controllability in nonlinear control theory and an analytical model of rolling of two linearly elastic bodies.

  18. Platform development supportedby gaming

    DEFF Research Database (Denmark)

    Mikkola, Juliana Hsuan; Hansen, Poul H. Kyvsgård


    The challenge of implementing industrial platforms in practice can be described as a configuration problem caused by high number of variables, which often have contradictory influences on the total performance of the firm. Consequently, the specific platform decisions become extremely complex......, possibly increasing the strategic risks for the firm. This paper reports preliminary findings on platform management process at LEGO, a Danish toy company.  Specifically, we report the process of applying games combined with simulations and workshops in the platform development. We also propose a framework......, based on the portfolio management thinking, to measure the degree of modularity embedded in a given platform and to what extent it is aligned with other platforms....

  19. DFH-3 Satellite Platform

    Institute of Scientific and Technical Information of China (English)



    The DFH-3 satellite platform is designed and developed by China Academy of Space Technology (CAST). It is a medium capability communications satellite platform. The platform adopts threeaxis attitude stabilization control system, having solar array output power of 1.7kW by the end of its design lifetime of 8 years. Its mass is 2100kg with payload capacity of 220kg.

  20. Product Platform Replacements

    DEFF Research Database (Denmark)

    Sköld, Martin; Karlsson, Christer


    Purpose – It is argued in this article that too little is known about product platforms and how to deal with them from a manager's point of view. Specifically, little information exists regarding when old established platforms are replaced by new generations in R&D and production environments...... originality and value is achieved by focusing on product platform replacements believed to represent a growing management challenge....

  1. Molecular Dynamics Simulations of Slip on Curved Surfaces

    Directory of Open Access Journals (Sweden)

    Ross D.A.


    Full Text Available We present Molecular Dynamics (MD simulations of liquid water confined within nanoscale geometries, including slit-like and cylindrical graphitic pores. These equilibrium results are used for calculating friction coefficients, which in turn can be used to calculate slip lengths. The slip length is a material property independent of the fluid flow rate. It is therefore a better quantity for study than the fluid velocity at the wall, also known as the slip velocity. Once the slip length has been found as a function of surface curvature, it can be used to parameterise Lattice Boltzmann (LB simulations. These larger scale simulations are able to tell us about how fluid transport is affected by slip in complex geometries; not just limited to single pores. Applications include flow and transport in nano-porous engine valve deposits and gas shales. The friction coefficient is found to be a function of curvature and is higher for fluid on convex surfaces and lower for concave surfaces. Both concave and convex surfaces approach the same value of the friction coefficient, which is constant above some critical radius of curvature, here found to be 7.4 ± 2.9 nm. The constant value of the friction coefficient is 10,000 ± 600 kg m−2 s−1, which is equivalent to a slip length of approximately 67 ± 4 nm.

  2. The Creative Platform

    DEFF Research Database (Denmark)

    Byrge, Christian; Hansen, Søren

    This book is about introducing more creativity into general educational courses and cross-disciplinary activities. It is directed toward teachers at all levels in the educational system, but the Creative Platform is a general model, and thus the creative process will fundamentally be the same...... whether you consider thirdgrade teaching, human-resource development, or radical new thinking in product development in a company. The Creative Platform was developed at Aalborg University through a series of research-and-development activities in collaboration with educational institutions and private...... you can use in your work with the Creative Platform. This book is intended as an introduction on how to use the Creative Platform....

  3. Omnidirectional holonomic platforms

    Energy Technology Data Exchange (ETDEWEB)

    Pin, F.G.; Killough, S.M.


    This paper presents the concepts for a new family of wheeled platforms which feature full omnidirectionality with simultaneous and independently controlled rotational and translational motion capabilities. The authors first present the orthogonal-wheels concept and the two major wheel assemblies on which these platforms are based. They then describe how a combination of these assemblies with appropriate control can be used to generate an omnidirectional capability for mobile robot platforms. The design and control of two prototype platforms are then presented and their respective characteristics with respect to rotational and translational motion control are discussed.

  4. Creation of Magnetized Jet Using a Ring of Laser Beams

    CERN Document Server

    Fu, Wen; Tzeferacos, Petros; Lamb, Donald Q


    We propose a new way of generating magnetized supersonic jets using a ring laser to irradiate a flat surface target. Using 2D FLASH code simulations which include the Biermann Battery term, we demonstrate that strong toroidal fields can be generated and sustained downstream in the collimated jet outflow far from the target surface. The field strength can be controlled by varying the ring laser separation, thereby providing a versatile laboratory platform for studying the effects of magnetic field in a variety of astrophysical settings.

  5. Numerical Treatments of Slipping/No-Slip Zones in Cold Rolling of Thin Sheets with Heavy Roll Deformation

    Directory of Open Access Journals (Sweden)

    Yukio Shigaki


    Full Text Available In the thin sheet cold rolling manufacturing process, a major issue is roll elastic deformation and its impact on roll load, torque and contact stresses. As in many systems implying mechanical contact under high loading, a central part is under “sticking friction” (no slip while both extremities do slip to accommodate the material acceleration of the rolled metal sheet. This is a crucial point for modeling of such rolling processes and the numerical treatment of contact and friction (“regularized” or not, of the transition between these zones, does have an impact on the results. Two ways to deal with it are compared (regularization of the stick/slip transition, direct imposition of a no-slip condition and recommendations are given.

  6. Ring autosomes: some unexpected findings. (United States)

    Caba, L; Rusu, C; Plăiaşu; Gug, G; Grămescu, M; Bujoran, C; Ochiană, D; Voloşciuc, M; Popescu, R; Braha, E; Pânzaru, M; Butnariu, L; Sireteanu, A; Covic, M; Gorduza, Ev


    Ring chromosomes are rare entities, usually associated with phenotypic abnormalities in correlation with the loss of genetic material. There are various breakpoints and sometimes there is a dynamic mosaicism that is reflected in clinical features. Most of the ring chromosomes are de novo occurrences. Our study reflects the experience of three Romanian cytogenetic laboratories in the field of ring chromosomes. We present six cases with ring chromosomes involving chromosomes 5, 13, 18, and 21. All ring chromosomes were identified after birth in children with plurimalformative syndromes. The ring chromosome was present in mosaic form in three cases, and this feature reflects the ring's instability. In case of ring chromosome 5, we report a possible association with oculo-auriculo-vertebral spectrum.

  7. Temperature profiles from XBT casts from NOAA Ship ALBATROSS IV and other platforms as part of the Marine Resources Monitoring, Assessment and Prediction (MARMAP) and WARM CORE RINGS projects from 1981-09-23 to 1982-11-29 (NODC Accession 8200241) (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature profiles were collected from XBT casts from NOAA Ship ALBATROSS IV and other platforms from 23 September 1981 to 29 November 1982. Data were collected by...

  8. A Multicoefficient Slip-Corrected Reynolds Equation for Micro-Thin Film Gas Lubrication

    Directory of Open Access Journals (Sweden)

    Ng Eddie Yin-Kwee


    Full Text Available This work investigates and analyzes the performance of conventional slip models among various regimes of Knudsen number and developes a new multicoefficient slip-velocity model, by using Taguchi quality control techniques and numerical analysis. A modified Reynolds equation is also derived based on the new slip-flow model. The multicoefficient slip model and its slip-corrected Reynolds equation are suitable to a wide Knudsen range from slip to transition regime. In comparison with other conventional slip models, it is found that the current results have a better agreement with the solution obtained from the linearized Boltzmann equation and direct simulation of Monte Carlo method (DSMC.

  9. On Skew Triangular Matrix Rings

    Institute of Scientific and Technical Information of China (English)

    Wang Wei-liang; Wang Yao; Ren Yan-li


    Letαbe a nonzero endomorphism of a ring R, n be a positive integer and Tn(R,α) be the skew triangular matrix ring. We show that some properties related to nilpotent elements of R are inherited by Tn(R,α). Meanwhile, we determine the strongly prime radical, generalized prime radical and Behrens radical of the ring R[x;α]/(xn), where R[x;α] is the skew polynomial ring.

  10. e-læring

    DEFF Research Database (Denmark)

    Helms, Niels Henrik

    e-læring kan defineres på ganske mange måder. Ordet e-læring består jo tydeligt nok af to elementer. E + læring ligesom e-handel eller e-banking, og umiddelbart vil de fleste nok sige, at det så handler om læring vha. internettet. I bidraget advokeres for en læringsmæssig frem for normativ tilgang....

  11. The Black Ring is Unstable

    CERN Document Server

    Santos, Jorge E


    We study non-axisymmetric linearised gravitational perturbations of the Emparan-Reall black ring using numerical methods. We find an unstable mode whose onset lies within the "fat" branch of the black ring and continues into the "thin" branch. Together with previous results using Penrose inequalities that fat black rings are unstable, this provides numerical evidence that the entire black ring family is unstable.

  12. Advanced offshore oil platforms

    Energy Technology Data Exchange (ETDEWEB)

    Ellers, F.S.


    Four innovative offshore platforms that are designed to withstand 100-foot waves in waters 600-feet deep are described. These platforms are: (1) Stratfjord B Concrete Gravity-Base Platform; (2) Magnus Steel-Template-Jacket Platform; (3) Hutton Tension-Leg Platform; and (4) Block 280 Guyed Tower. The Statfjord B platform, designed in Norway, rests on four massive concrete columns with storage tanks at the base. It depends solely on its own mass for stability. The Magnus platform, designed by the British, is the heaviest offshore platform yet fabricated, weighing 41,000 tons. Two of the platform's four legs will incorporate flotation chambers so that the structure can be floated to its site in the North Sea. The Hutton structure, also designed in England, will consist of a buoyant hull tethered to the sea floor by slender steel tubes at its four corners. The first platform of its type, the Hutton structure is also destined for the North Sea. The US designed Block 280 guyed tower is designed for service in the Gulf of Mexico in water 1000 feet deep. It will be pinned to the sea floor by a spokelike array of 20 steel cables, each one more than 3000 feet long. The tower and its guys will weigh 43,000 tons, slightly more than the Magnus steel-template jacket and more than four time as much as the Eiffel Tower. At a cost of approximately $2.6 billion, the Magnus is the most expensive offshore platform to date. The Statfjord B was put into production in 1982. The Magnus is scheduled for oil production in 1983. The Hutton and the Block 280 will both be producing in 1984. (JMT)

  13. A Database of Invariant Rings


    Kemper, Gregor; Körding, Elmar; Malle, Gunter; Matzat, B. Heinrich; Vogel, Denis; Wiese, Gabor


    We announce the creation of a database of invariant rings. This database contains a large number of invariant rings of finite groups, mostly in the modular case. It gives information on generators and structural properties of the invariant rings. The main purpose is to provide a tool for researchers in invariant theory.

  14. Integrated silicon optofluidic ring resonator

    NARCIS (Netherlands)

    Testa, G.; Huang, Y.; Sarro, P.M.; Zeni, L.; Bernini, R.


    The feasibility of an integrated silicon optofluidic ring resonator is demonstrated. Liquid core antiresonant reflecting optical waveguides are used to realize a rectangular ring resonator with a multimode interference liquid core coupler between the ring and the bus waveguide. In this configuration

  15. Non-Commutative Ring Theory

    CERN Document Server

    López-Permouth, Sergio


    The papers of this volume share as a common goal the structure and classi- fication of noncommutative rings and their modules, and deal with topics of current research including: localization, serial rings, perfect endomorphism rings, quantum groups, Morita contexts, generalizations of injectivitiy, and Cartan matrices.

  16. Ring closure in actin polymers (United States)

    Sinha, Supurna; Chattopadhyay, Sebanti


    We present an analysis for the ring closure probability of semiflexible polymers within the pure bend Worm Like Chain (WLC) model. The ring closure probability predicted from our analysis can be tested against fluorescent actin cyclization experiments. We also discuss the effect of ring closure on bend angle fluctuations in actin polymers.


    Energy Technology Data Exchange (ETDEWEB)

    Pugliese, D.; Stuchlík, Z., E-mail:, E-mail: [Institute of Physics and Research Centre of Theoretical Physics and Astrophysics, Faculty of Philosophy and Science, Silesian University in Opava, Bezručovo náměstí 13, CZ-74601 Opava (Czech Republic)


    We investigate a model of a ringed accretion disk, made up by several rings rotating around a supermassive Kerr black hole attractor. Each toroid of the ringed disk is governed by the general relativity hydrodynamic Boyer condition of equilibrium configurations of rotating perfect fluids. Properties of the tori can then be determined by an appropriately defined effective potential reflecting the background Kerr geometry and the centrifugal effects. The ringed disks could be created in various regimes during the evolution of matter configurations around supermassive black holes. Therefore, both corotating and counterrotating rings have to be considered as being a constituent of the ringed disk. We provide constraints on the model parameters for the existence and stability of various ringed configurations and discuss occurrence of accretion onto the Kerr black hole and possible launching of jets from the ringed disk. We demonstrate that various ringed disks can be characterized by a maximum number of rings. We present also a perturbation analysis based on evolution of the oscillating components of the ringed disk. The dynamics of the unstable phases of the ringed disk evolution seems to be promising in relation to high-energy phenomena demonstrated in active galactic nuclei.

  18. EURESCOM Services Platform

    NARCIS (Netherlands)

    Nieuwenhuis, Lambertus Johannes Maria; van Halteren, Aart


    This paper presents the results of the EURESCOM Project 715. In February 1999, a large team of researchers from six European public network operators completed a two year period of cooperative experiments on a TINA-based environment, called the EURESCOM Services Platform (ESP). This platform

  19. Locating the origin of stick slip instabilities in sheared granular layers (United States)

    Korkolis, Evangelos; Niemeijer, André


    Acoustic emission (AE) monitoring is a non-invasive technique widely used to evaluate the state of materials and structures. We have developed a system that can locate the source of AE events associated with unstable sliding (stick-slip) of sheared granular layers during laboratory friction experiments. Our aim is to map the spatial distribution of energy release due to permanent microstructural changes, using AE source locations as proxies. This will allow us to determine the distribution of applied work in a granular medium, which will be useful in developing constitutive laws that describe the frictional behavior of such materials. The AE monitoring system is installed on a rotary shear apparatus. This type of apparatus is used to investigate the micromechanical processes responsible for the macroscopic frictional behavior of granular materials at large shear displacements. Two arrays of 8 piezoelectric sensors each are installed into the ring-shaped steel pistons that confine our samples. The sensors are connected to a high-speed, multichannel oscilloscope that can record full waveforms. The apparatus is also equipped with a system that continuously records normal and lateral (shear) loads and displacements, as well as pore fluid pressure. Thus, we can calculate the frictional and volumetric response of our granular aggregates, as well as the location of AE sources. Here, we report on the results of room temperature experiments on granular aggregates consisting of glass beads or segregated mixtures of glass beads and calcite, at up to 5 MPa normal stress and sliding velocities between 1 and 100 μm/s. Under these conditions, glass beads exhibit unstable sliding behavior accompanied by significant AE activity, whereas calcite exhibits stable sliding and produces no AEs. We recorded a range of unstable sliding behaviors, from fast, regular stick slip at high normal stress (> 4 MPa) and sliding velocities below 20 μm/s, to irregular stick slip at low normal

  20. Saturn's ``Gossamer'' Ring: The F Ring's Inner Sheet (United States)

    Showalter, M. R.; Burns, J. A.; Hamilton, D. P.


    Recent Galileo and Earth-based images have revealed for the first time that Jupiter's ``gossamer'' ring is actually composed of two rings, one bounded at the outer edge by Amalthea and the other bounded by Thebe. Dynamical models suggest that these rings are composed of dust grains ejected off the surfaces of the two moons, which then evolve inward under Poynting-Robertson drag. A very faint sheet of material filling the region between Saturn's A and F Rings reported by Burns et al. (BAAS 15, 1013--1014, 1983) may be a dynamically analogous system, in which dust escapes from the F Ring and evolves inward to the A Ring. Unlike Jupiter's gossamer rings, however, the inner sheet of Saturn's F Ring has been well observed from a large range of phase angles and visual wavelengths by Voyager. Voyager images reveal that this faint ring shows a tenfold increase in brightness between phase angles of 125(deg) and 165(deg) , indicating that it is composed of fine dust microns in size. Preliminary estimates of the normal optical depth fall in the range 1--2*E(-4) , depending on the dust size distribution assumed. Initial spectrophotometry reveals that the ring is neutral in color. The ring is uniform in brightness over the entire region between the two rings, with no evidence for internal structure associated with Prometheus and Atlas, suggesting that neither of these embedded moons acts as either a source or a sink. We will refine the aforementioned measurements and develop photometric models to better constrain the properties of the dust in this ring. This will enable us to relate the dust population to that in the F Ring proper, and to better explore the dynamical processes at work.

  1. Slipping of the foot on the floor when pulling a pallet truck. (United States)

    Li, Kai Way; Chang, Chien-Chi; Chang, Wen-Ruey


    Workers pulling pallet trucks are likely to slip when pulling and stepping on a low-friction floor. This study investigated the slipping of male participants when pulling a pallet truck, walking backward, and stepping on either a dry, wet, or glycerol-contaminated vinyl surface. The weight of the load on the truck was either low (0 kg), medium (295 kg), or high (568 kg). A motion-tracking system was used to collect the three-dimensional coordinates of the markers on the shoes. It was found that subjects might slip either upon landing of the leading foot on the toe (slip I) or before taking off of the lagging foot on the heel (slip II). The results indicated that the slip distances for both types of slip were significantly affected by the load and surface conditions and their interactions. Micro-slips (slips between 0.1 and 3 cm) and midi-slips (slips between 3 and 10 cm) were more common in slip I than in slip II. On glycerol-contaminated surfaces, the probabilities of a slide, or a slip more than 10 cm, for both slips I and II were over 40%. The implications of the results were discussed.

  2. Hot, Fast Faults: Evidence for High-Temperature Slip on Exhumed Faults, and Insights into Seismic Slip Processes (United States)

    Evans, J. P.; Ault, A. K.; Janecke, S. U.; Prante, M. R.


    Microstructural and geochemical techniques combined with prior observations of naturally occurring faults provide insights into slip rates and slip dimensions of seismicity. We review four indicators for high coseismic paleotemperatures in brittle to semi-brittle faults from a wide range of tectonic settings with mm to km of slip. Thin, high-gloss, Fe-rich slip surfaces indicate high-temperature slip occurred on mm- to m-scales. Elliptical and circular zones of concentric iridescence indicate localized sites of elevated temperature that may be caused by heating at asperity contacts. The surface iridescence is associated with changes in Fe oxidation states detected by X-Ray photoelectron spectroscopy. Minimum temperature increases of 300 °C above ambient are supported by geochemical arguments and up to 800 °C are supported by analogs to high-speed friction experiments in steels and ceramics firing in reduced conditions. The presence of clay-rich foliated fault-related rocks, and the presence of nm- to mm-thick clay coatings indicate that syn-kinematic endothermic reactions occur at a range of scales. We suggest these features reflect temperature increases of ≥100-200 °C for activation energy required to drive the clay alteration is sourced from seismic energy and Schleicher-van der Pluijm-type slip surfaces to record instantaneous slip. Dense, low porosity planar porcelainite zones mm- to cm-thick along fault surfaces are the result of sintering of quartz-clay-feldspar mixtures and indicate T≥1000 °C localized along the surfaces, the result of post-slip cooling. Highly indurated, ultrafine fault-related rocks often consists of comminuted grains, vein fragments, and neocrystallized grains that represent retrograde cooling or alteration after peak heating. These observations and those of other recent workers indicate that many naturally occurring exhumed faults record elevated temperatures. In many cases, careful observations can delineate fault slip

  3. The KACST Heavy-Ion Electrostatic Storage Ring (United States)

    Almuqhim, A. A.; Alshammari, S. M.; El Ghazaly, M. O. A.; Papash, A. I.; Welsch, C. P.


    A novel Electrostatic Storage Ring (ESR) for beams at energies up to 30keV/q is now being constructed at the National Centre for Mathematics and Physics (NCMP), King Abdul-Aziz City for Science and Technology (KACST). The ring is designed to be the core of a highly flexible experimental platform that will combine a large package of complementary beam techniques for atomic and molecular physics and related fields. The lattice design had to cover the different experimental techniques that the ring will be equipped with, such as e.g. Electron-Ion, Laser-Ion, Ion-Ion or Ion-Neutral beams, in both crossed and merged-beam configurations. The development of such an ESR is realized in a staged approach, in which a simple and early-run adaptation of the ring is built first, and then this basic version is upgraded to a higher symmetry of the ultimate version of the ring. Here, we report a general overview of this technical development with a focus on the layout of the first built stage of the ring.

  4. Discrete Element Model for Suppression of Coffee-Ring Effect (United States)

    Xu, Ting; Lam, Miu Ling; Chen, Ting-Hsuan


    When a sessile droplet evaporates, coffee-ring effect drives the suspended particulate matters to the droplet edge, eventually forming a ring-shaped deposition. Because it causes a non-uniform distribution of solid contents, which is undesired in many applications, attempts have been made to eliminate the coffee-ring effect. Recent reports indicated that the coffee-ring effect can be suppressed by a mixture of spherical and non-spherical particles with enhanced particle-particle interaction at air-water interface. However, a model to comprehend the inter-particulate activities has been lacking. Here, we report a discrete element model (particle system) to investigate the phenomenon. The modeled dynamics included particle traveling following the capillary flow with Brownian motion, and its resultant 3D hexagonal close packing of particles along the contact line. For particles being adsorbed by air-water interface, we modeled cluster growth, cluster deformation, and cluster combination. We found that the suppression of coffee-ring effect does not require a circulatory flow driven by an inward Marangoni flow at air-water interface. Instead, the number of new cluster formation, which can be enhanced by increasing the ratio of non-spherical particles and the overall number of microspheres, is more dominant in the suppression process. Together, this model provides a useful platform elucidating insights for suppressing coffee-ring effect for practical applications in the future.

  5. Computational studies of carbodiimide rings. (United States)

    Damrauer, Robert; Lin, Hai; Damrauer, Niels H


    Computational studies of alicyclic carbodiimides (RN═C═NR) (rings five through twelve) at the MP2/6-31G(d,p)//MP2/6-31G(d,p) level of theory were conducted to locate the transition states between carbodiimides isomers. Transition states for rings six through twelve were found. The RNCNR dihedral angle is ∼0° for even-numbered rings, but deviates from 0° for rings seven, nine, eleven, and twelve. The even- and odd-numbered ring transition states have different symmetry point groups. Cs transition states (even rings) have an imaginary frequency mode that transforms as the asymmetric irreducible representation of the group. C2 transition states (odd rings) have a corresponding mode that transforms as the totally symmetric representation. Intrinsic reaction coordinate analyses followed by energy minimization along the antisymmetric pathways led to enantiomeric pairs. The symmetric pathways give diastereomeric isomers. The five-membered ring carbodiimide is a stable structure, possibly isolable. A twelve-membered ring transition state was found only without applying symmetry constraints (C1). Molecular mechanics and molecular dynamics studies of the seven-, eight-, and nine-membered rings gave additional structures, which were then minimized using ab initio methods. No structures beyond those found from the IRC analyses described were found. The potential for optical resolution of the seven-membered ring is discussed.

  6. Magnetic fields in ring galaxies

    CERN Document Server

    Moss, D; Silchenko, O; Sokoloff, D; Horellou, C; Beck, R


    Many galaxies contain magnetic fields supported by galactic dynamo action. However, nothing definitive is known about magnetic fields in ring galaxies. Here we investigate large-scale magnetic fields in a previously unexplored context, namely ring galaxies, and concentrate our efforts on the structures that appear most promising for galactic dynamo action, i.e. outer star-forming rings in visually unbarred galaxies. We use tested methods for modelling $\\alpha-\\Omega$ galactic dynamos, taking into account the available observational information concerning ionized interstellar matter in ring galaxies. Our main result is that dynamo drivers in ring galaxies are strong enough to excite large-scale magnetic fields in the ring galaxies studied. The variety of dynamo driven magnetic configurations in ring galaxies obtained in our modelling is much richer than that found in classical spiral galaxies. In particular, various long-lived transients are possible. An especially interesting case is that of NGC 4513 where th...

  7. A season in Saturn's rings: Cycling, recycling and ring history (United States)

    Esposito, L. W.; Meinke, B. K.; Albers, N.; Sremcevic, M.


    Cassini experiments have watched Saturn's ring system evolve before our eyes. Images and occultations show changes and transient events. The rings are a dynamic and complex geophysical system, incompletely modeled as a single-phase fluid. Key Cassini observations: High resolution images show straw, propellers, embedded moonlets, and F ring objects. Multiple UVIS, RSS and VIMS occutlations indicate multimodal ringlet and edge structure, including free and forced modes along with stochastic perturbations that are most likely caused by nearby mass concentrations. Vertical excursions are evident at ring edges and in other perturbed regions. The rings are occasionally hit by meteorites that leave a signature that may last centuries; meteoritic dust pollutes the rings. Temperature, reflectance and transmission spectra are influenced by the dynamical state of the ring particles. Saturn's Equinox 2009: Oblique lighting exposed vertical structure and embedded objects. The rings were the coldest ever. Images inspired new occultation and spectral analysis that show abundant structure in the perturbed regions. The rings are more variable and complex than we had expected prior to this seasonal viewing geometry. Sub-kilometer structure in power spectral analysis: Wavelet analysis shows features in the strongest density waves and at the shepherded outer edge of the B ring. Edges are variable as shown by multiple occultations and occultations of double stars. F ring kittens: 25 features seen in the first 102 occultations show a weak correlation with Prometheus location. We interpret these features as temporary aggregations. Simulation results indicate that accretion must be enhanced to match the kittens' size distribution. Images show that Prometheus triggers the formation of transient objects. Propellers and ghosts: Occulations and images provide evidence for small moonlets in the A, B and C rings. These indicate accretion occurs inside the classical Roche limit. Implications

  8. Nonoperative treatment of slipped capital femoral epiphysis: a scientific study

    Directory of Open Access Journals (Sweden)

    Pinheiro Pedro


    Full Text Available Abstract Background Treatment of the Slipped Capital Femoral Epiphysis remains a cause of concern due to the fact that the true knowledge of the etiopathogeny is unknown, as well as one of its major complications: chondrolysis. The conservative treatment remains controversial; it has been overlooked in the studies and subjected to intense criticism. The purpose of this study is to investigate the results of treatment on the hip of patients displaying slipped capital femoral epiphysis, using the plaster cast immobilization method and its link to chondrolysis. Methods The research was performed based on the study of the following variables: symptomatology, and the degree of slipping. A hip spica cast and bilateral short/long leg casts in abduction, internal rotation with anti-rotational bars were used for immobilizing the patient's hip for twelve weeks. Statistical analysis was accomplished by Wilcoxon's marked position test and by the Fisher accuracy test at a 5% level. Results A satisfactory result was obtained in the acute group, 70.5%; 94%; in the chronic group (chronic + acute on chronic. Regarding the degree of the slipping, a satisfactory result was obtained in 90.5% of hips tested with a mild slip; in 76% with moderate slip and 73% in the severe slip. The statistical result revealed that a significant improvement was found for flexion (p = 0.0001, abduction (p = 0.0001, internal rotation (p = 0.0001 and external rotation (p = 0.02. Chondrolysis was present in 11.3% of the hips tested. One case of pseudoarthrosis with aseptic capital necrosis was presented. There was no significant variation between age and chondrolysis (p = 1.00.Significant variation between gender/non-white patients versus chondrolysis (p = 0.031 and (p = 0.037, respectively was verified. No causal association between plaster cast and chondrolysis was observed (p = 0.60. In regard to the symptomatology group and the slip degree versus chondrolysis, the p value was not

  9. Scaling analysis for the investigation of slip mechanisms in nanofluids

    Directory of Open Access Journals (Sweden)

    Savithiri S


    Full Text Available Abstract The primary objective of this study is to investigate the effect of slip mechanisms in nanofluids through scaling analysis. The role of nanoparticle slip mechanisms in both water- and ethylene glycol-based nanofluids is analyzed by considering shape, size, concentration, and temperature of the nanoparticles. From the scaling analysis, it is found that all of the slip mechanisms are dominant in particles of cylindrical shape as compared to that of spherical and sheet particles. The magnitudes of slip mechanisms are found to be higher for particles of size between 10 and 80 nm. The Brownian force is found to dominate in smaller particles below 10 nm and also at smaller volume fraction. However, the drag force is found to dominate in smaller particles below 10 nm and at higher volume fraction. The effect of thermophoresis and Magnus forces is found to increase with the particle size and concentration. In terms of time scales, the Brownian and gravity forces act considerably over a longer duration than the other forces. For copper-water-based nanofluid, the effective contribution of slip mechanisms leads to a heat transfer augmentation which is approximately 36% over that of the base fluid. The drag and gravity forces tend to reduce the Nusselt number of the nanofluid while the other forces tend to enhance it.

  10. Measurement of Quantum Phase-Slips in Josephson Junction Chains (United States)

    Guichard, Wiebke


    Quantum phase-slip dynamics in Josephson junction chains could provide the basis for the realization of a new type of topologically protected qubit or for the implementation of a new current standard. I will present measurements of the effect of quantum phase-slips on the ground state of a Josephson junction chain. We can tune in situ the strength of the phase-slips. These phase-slips are the result of fluctuations induced by the finite charging energy of each junction in the chain. Our measurements demonstrate that a Josephson junction chain under phase bias constraint behaves in a collective way. I will also show evidence of coherent phase-slip interference, the so called Aharonov-Casher effect. This phenomenon is the dual of the well known Aharonov-Bohm interference. In collaboration with I.M. Pop, Institut Neel, C.N.R.S. and Universite Joseph Fourier, BP 166, 38042 Grenoble, France; I. Protopopov, L. D. Landau Institute for Theoretical Physics, Kosygin str. 2, Moscow 119334, Russia and Institut fuer Nanotechnologie, Karlsruher Institut fuer Technologie, 76021 Karlsruhe, Germany; and F. Lecocq, Z. Peng, B. Pannetier, O. Buisson, Institut Neel, C.N.R.S. and Universite Joseph Fourier. European STREP MIDAS, ANR QUANTJO.

  11. Scaling analysis for the investigation of slip mechanisms in nanofluids (United States)

    Savithiri, S.; Pattamatta, Arvind; Das, Sarit K.


    The primary objective of this study is to investigate the effect of slip mechanisms in nanofluids through scaling analysis. The role of nanoparticle slip mechanisms in both water- and ethylene glycol-based nanofluids is analyzed by considering shape, size, concentration, and temperature of the nanoparticles. From the scaling analysis, it is found that all of the slip mechanisms are dominant in particles of cylindrical shape as compared to that of spherical and sheet particles. The magnitudes of slip mechanisms are found to be higher for particles of size between 10 and 80 nm. The Brownian force is found to dominate in smaller particles below 10 nm and also at smaller volume fraction. However, the drag force is found to dominate in smaller particles below 10 nm and at higher volume fraction. The effect of thermophoresis and Magnus forces is found to increase with the particle size and concentration. In terms of time scales, the Brownian and gravity forces act considerably over a longer duration than the other forces. For copper-water-based nanofluid, the effective contribution of slip mechanisms leads to a heat transfer augmentation which is approximately 36% over that of the base fluid. The drag and gravity forces tend to reduce the Nusselt number of the nanofluid while the other forces tend to enhance it.

  12. How Orogen-scale Exhumed Strike-slip Faults Initiate (United States)

    Cao, S.; Neubauer, F.


    Orogen-scale strike-slip faults present one the most important geodynamic processes affecting the lithosphere-asthenosphere system. In specific subtypes, faulting is virtually initiated along hot-to-cool boundaries, e.g. at such of hot granite intrusions or metamorphic core complexes to cool country rocks. Such fault zones are often subparallel to mountain ranges and expose a wide variety of mylonitic, cataclastic and non-cohesive fault rocks, which were formed at different structural levels of the crust and are stacked within each other ("telescoping"). Exhumation of rocks is, therefore, a common feature of such strike-slip faults implying major transtensive and/or transpressive processes accompanying pure strike-slip motion. The hot-to-cool thermal structure across the fault zone significantly influences the physical fault rock properties. One major question is how and where a major strike-slip initiates and further development. Here, we propose a model in which major continental exhumed strike-slip faults potentially evolve along rheologically weak zones such as plutons or margins of metamorphic complexes. As an example, we propose a model for the Ailao Shan-Red River (ASRR) fault, SE Asia, which initiated along the edge of a plutonic belt and evolved in response to India-Asia collision with four tectonic phases.

  13. New Views of Jupiter's Rings (United States)

    Burns, J. A.


    Jupiter's rings are the archetype of ethereal planetary rings (very-low optical-depth bands containing micron-sized "dust"). As a result of much improved observations by Galileo (Ockert-Bell* -- most citations are et al. and Icarus in press* or this meeting) and Keck (de Pater*), we now understand the nature of such rings. The ring has three components: a 104 km-thick toroidal halo (1.4-1.7 RJ; normal optical depth t = 10-6), a thin main ring (1.7-1.8 RJ; t = 10-6), and a pair of exterior gossamer rings (1.8-3.5RJ; t = 10-7). The main ring has patchy ( 20-30 percent) brightness. The ring is reddish and its particles satisfy a -2.5 differential power-law size distribution. Because particle lifetimes are brief, the rings must be continually regenerated, by collisions into parent bodies, which may be unseen or may be the known small ring-moons (Thomas*, Simonelli). The gossamer ring seems to be collisional ejecta derived from the ring-moons Amalthea and Thebe, and evolving inward by Poynting-Robertson drag (Burns). The particles drift through many electromagnetic resonances, clustering around synchronous orbit, which produce jumps in the particles' inclinations (Hamilton). The main ring is probably debris from Adrastea and Metis, which orbit in the equatorial plane. The halo particles are driven vertically by electromagnetic forces, which may be resonant (Schaffer & Burns) or not (Horanyi & Cravens). When halo orbits become highly distorted, particles are lost into Jupiter. Similar faint rings may be attendant to all small, close-in satellites (Showalter).

  14. Subsurface architecture of a strike-slip collapse structure: insights from Ilopango caldera, El Salvador (United States)

    Saxby, Jennifer; Gottsmann, Joachim; Cashman, Katherine; Gutierrez, Eduardo


    While most calderas are created by roof collapse along ring-like faults into an emptying magma reservoir during a large and violent explosive eruption, an additional condition for caldera formation may be tectonically induced extensional stresses. Here we provide geophysical insights into the shallow sub-volcanic plumbing system of a collapse caldera in a major strike-slip tectonic setting by inverting Bouguer gravity data from the Ilopango caldera in El Salvador. Despite a long history of catastrophic eruptions with the most recent in 500 A.D., the internal architecture of the caldera has not been investigated, although studies of the most recent eruption have not identified the ring faults commonly associated with caldera collapse. The gravity data show that low-density material aligned along the principal stress orientations of the El Salvador Fault Zone (ESFZ) forms a pronounced gravity low beneath the caldera. Extending to around 6 km depth, the low density structure likely maps a complex stacked shallow plumbing system composed of magmatic and fractured hydrothermal reservoirs. A substantial volume of the plumbing system must be composed of a vapour phase to explain the modeled negative density contrasts. We use these constraints to map the possible multi-phase parameter space contributing to the subsurface architecture of the caldera and propose that the local extension along the complex ESFZ controls accumulation, ascent and eruption of magma at Ilopango. The data further suggest that future eruptions at Ilopango could be facilitated by rapid rise of magma along conjugate fault damage zones through a mechanically weak crust under tension. This may explain the absence of clear ring fault structures at the caldera.

  15. Tree Rings: Timekeepers of the Past. (United States)

    Phipps, R. L.; McGowan, J.

    One of a series of general interest publications on science issues, this booklet describes the uses of tree rings in historical and biological recordkeeping. Separate sections cover the following topics: dating of tree rings, dating with tree rings, tree ring formation, tree ring identification, sample collections, tree ring cross dating, tree…

  16. The Rings Characterized by Minimal Left Ideals

    Institute of Scientific and Technical Information of China (English)

    Jun Chao WEI


    We study these rings with every minimal left ideal being a projective, direct summand and a p-injective module, respectively. Some characterizations of these rings are given, and the relations among them are obtained. With these rings, we characterize semisimple rings. Finally, we introduce MC2 rings, and give some characterizations of MC2 rings.

  17. The Common HOL Platform


    Adams, Mark


    The Common HOL project aims to facilitate porting source code and proofs between members of the HOL family of theorem provers. At the heart of the project is the Common HOL Platform, which defines a standard HOL theory and API that aims to be compatible with all HOL systems. So far, HOL Light and hol90 have been adapted for conformance, and HOL Zero was originally developed to conform. In this paper we provide motivation for a platform, give an overview of the Common HOL Platform's theory and...

  18. Ladder attachment platform (United States)

    Swygert,; Richard, W [Springfield, SC


    A ladder attachment platform is provided that includes a base for attachment to a ladder that has first and second side rails and a plurality of rungs that extend between in a lateral direction. Also included is a user platform for having a user stand thereon that is carried by the base. The user platform may be positioned with respect to the ladder so that it is not located between a first plane that extends through the first side rail and is perpendicular to the lateral direction and a second plane that extends through the second side rail and is perpendicular to the lateral direction.

  19. What causes an icy fault to slip? Investigating strike-slip failure conditions on Ganymede at Dardanus and Tiamat Sulcus. (United States)

    Cameron, M. E.; Smith-Konter, B. R.; Burkhard, L. M.; Collins, G. C.; Seifert, F.; Pappalardo, R. T.


    Ganymede exhibits two geologically distinct terrains known as dark and light (grooved) terrain. The mechanism for a transition from dark to light terrain remains unclear; however, inferences of strike-slip faulting and distributed shear zones suggest that strike-slip tectonism may be important to the structural development of Ganymede's surface and in this transition. Here we investigate the role of tidal stresses on Ganymede in the formation and evolution of strike-slip structures in both dark and grooved terrains. Using numerical code SatStress, we calculate both diurnal and non-synchronous rotation (NSR) tidal stresses at Ganymede's surface. Specifically, we investigate the role of fault friction and orbital eccentricity in the development of ~45 km of right-lateral offset at Dardanus Sulcus and a possible case of Sulcus. We compute Coulomb failure conditions for these target fractures and consider tidal stress scenarios for both present eccentricity (0.0013) and possible past high (~0.05) eccentricity of Ganymede. We find that while diurnal stresses are not large enough to support strike-slip failure at present or past eccentricities, models that include both diurnal and NSR stress readily generate shear and normal stress magnitudes that could give rise to shear failure. Results for a past high eccentricity assuming a low coefficient of friction (μf = 0.2) suggest shear failure is possible down to depths of 1-2 km along both Dardanus and Tiamat. For a high coefficient of friction (μf = 0.6), failure is limited to about 1 km depth at Dardanus and Tiamat, although confined to small episodic slip windows for the latter. Moreover, our models predict a right-lateral sense of slip, in agreement with inferred offset observed at both regions. Based on these results, we infer that past shear failure on Ganymede is possible when NSR is a driving stress mechanism. We complement this study with a detailed morphological mapping of strike-slip morphologies (en echelon

  20. RING E3 ligases

    DEFF Research Database (Denmark)

    Cho, Seok Keun; Ryu, Moon Young; Kim, Jong Hum


    response pathways of plants through various molecular and genetic studies. In particular, it was recently discovered that ubiquitin proteasome system (UPS), a regulatory mechanism for protein turn over, is greatly involved in the stress responsive pathways. In the UPS, many E3 ligases play key roles...... in recognizing and tethering poly-ubiquitins on target proteins for subsequent degradation by the 26S proteasome. Here we discuss the roles of RING ligases that have been defined in related to abiotic stress responses in plants....

  1. Atomistic Determination of Cross-Slip Pathway and Energetics

    DEFF Research Database (Denmark)

    Rasmussen, Torben; Jacobsen, Karsten Wedel; Leffers, Torben


    The mechanism for cross slip of a screw dislocation in Cu is determined by atomistic simulations that only presume the initial and final states of the process. The dissociated dislocation constricts in the primary plane and redissociates into the cross-slip plane while still partly in the primary...... plane. The transition state and activation energy for cross slip as well as the energies of the involved dislocation constrictions are determined. One constriction has a negative energy compared to parallel partials. The energy vs splitting width for recombination of parallel partials into a perfect...... dislocation is determined. The breakdown of linear elasticity theory for small splitting widths is studied. [S0031-9007(97)04444-X]....


    Directory of Open Access Journals (Sweden)

    Mohammad Outokesh


    Full Text Available In the present work, slip velocity has been measured in a 76 mm diameter pulsed disc and doughnut extraction column for four different liquid-liquid systems. The effects of operating variables including pulsation intensity and dispersed and continuous phase flow rates on slip velocity have been investigated. The existence of three different operational regimes, namely mixersettler, transition, and emulsion regimes, was observed when the energy input was changed. Empirical correlations are derived for prediction of the slip velocity in terms of operating variables, physical properties of the liquid systems, and column geometry for different regimes. Good agreement between prediction and experiments was found for all operating conditions that were investigated.

  3. Shock slip-relations for thermal and chemical nonequilibrium flows (United States)

    Jinrong, Tang


    This paper appears to be the first where the multi-temperature shock slip-relations for the thermal and chemical nonequilibrium flows are derived. The derivation is based on analysis of the influences of thermal nonequilibrium and viscous effects on the mass, momentum and emergy flux balance relations at the shock wave. When the relaxation times for all internal energy modes tend to zero, the multi-tmperature shock slip-relations are converted into single-temperature ones for thermal equilibrium flows. The present results can be applied to flow over vehicles of different geometries with or without angles of attack. In addition, the present single-temperature shock slip-relations are compared with those in the literature, and some defects and limitations in the latter are clarified.

  4. Preliminary soil-slip susceptibility maps, southwestern California (United States)

    Morton, Douglas M.; Alvarez, Rachel M.; Campbell, Russell H.; Digital preparation by Bovard, Kelly R.; Brown, D.T.; Corriea, K.M.; Lesser, J.N.


    This group of maps shows relative susceptibility of hill slopes to the initiation sites of rainfall-triggered soil slip-debris flows in southwestern California. As such, the maps offer a partial answer to one part of the three parts necessary to predict the soil-slip/debris-flow process. A complete prediction of the process would include assessments of “where”, “when”, and “how big”. These maps empirically show part of the “where” of prediction (i.e., relative susceptibility to sites of initiation of the soil slips) but do not attempt to show the extent of run out of the resultant debris flows. Some information pertinent to “when” the process might begin is developed. “When” is determined mostly by dynamic factors such as rainfall rate and duration, for which local variations are not amenable to long-term prediction. “When” information is not provided on the maps but is described later in this narrative. The prediction of “how big” is addressed indirectly by restricting the maps to a single type of landslide process—soil slip-debris flows. The susceptibility maps were created through an iterative process from two kinds of information. First, locations of sites of past soil slips were obtained from inventory maps of past events. Aerial photographs, taken during six rainy seasons that produced abundant soil slips, were used as the basis for soil slip-debris flow inventory. Second, digital elevation models (DEM) of the areas that were inventoried were used to analyze the spatial characteristics of soil slip locations. These data were supplemented by observations made on the ground. Certain physical attributes of the locations of the soil-slip debris flows were found to be important and others were not. The most important attribute was the mapped bedrock formation at the site of initiation of the soil slip. However, because the soil slips occur in surficial materials overlying the bedrocks units, the bedrock formation can only serve as

  5. Quantum Nucleation of Phase Slips in 1-d Superfluids (United States)

    Arovas, Daniel


    The rate for quantum nucleation of phase slips past an impurity in a one-dimensional superfluid is computed. Real time evolution of the nonlinear Schrödinger equation shows that there is a critical velocity vc below which solutions are time-independent [1,2]; this is the regime of quantum phase slip nucleation. We start with the Gross-Pitaevskii model in the presence of an impurity potential, and derive the Euclidean action for a space-time vortex-antivortex pair, which describes a phase slip event. The action is computed as a function of the superfluid velocity v and the impurity potential width and depth.l [1] V. Hakim, Phys. Rev. E 55, 2835 (1997).l [1] J. A. Freire, D. P. Arovas, and H. Levine, Phys. Rev. Lett (in press, 1997).l

  6. Offset of latest pleistocene shoreface reveals slip rate on the Hosgri strike-slip fault, offshore central California (United States)

    Johnson, Samuel Y.; Hartwell, Stephen R.; Dartnell, Peter


    The Hosgri fault is the southern part of the regional Hosgri–San Gregorio dextral strike‐slip fault system, which extends primarily in the offshore for about 400 km in central California. Between Morro Bay and San Simeon, high‐resolution multibeam bathymetry reveals that the eastern strand of the Hosgri fault is crossed by an ∼265  m wide slope interpreted as the shoreface of a latest Pleistocene sand spit. This sand spit crossed an embayment and connected a western fault‐bounded bedrock peninsula and an eastern bedrock highland, a paleogeography resembling modern coastal geomorphology along the San Andreas fault. Detailed analysis of the relict shoreface with slope profiles and slope maps indicates a lateral slip rate of 2.6±0.9  mm/yr, considered a minimum rate for the Hosgri given the presence of an active western strand. This slip rate indicates that the Hosgri system takes up the largest share of the strike‐slip fault budget and is the most active strike‐slip fault west of the San Andreas fault in central California. This result further demonstrates the value and potential of high‐resolution bathymetry in characterization of active offshore faults.

  7. Fusion Rings for Quantum Groups

    DEFF Research Database (Denmark)


    We study the fusion rings of tilting modules for a quantum group at a root of unity modulo the tensor ideal of negligible tilting modules. We identify them in type A with the combinatorial rings from Korff, C., Stroppel, C.: The sl(ˆn)k-WZNW fusion ring: a combinato-rial construction and a realis......We study the fusion rings of tilting modules for a quantum group at a root of unity modulo the tensor ideal of negligible tilting modules. We identify them in type A with the combinatorial rings from Korff, C., Stroppel, C.: The sl(ˆn)k-WZNW fusion ring: a combinato-rial construction...... and a realisation as quotient of quantum cohomology. Adv. Math. 225(1), 200–268, (2010) and give a similar description of the sp2n-fusion ring in terms of non-commutative symmetric functions. Moreover we give a presentation of all fusion rings in classical types as quotients of polynomial rings. Finally we also...... compute the fusion rings for type G2....

  8. Viscosity of ring polymer melts

    KAUST Repository

    Pasquino, Rossana


    We have measured the linear rheology of critically purified ring polyisoprenes, polystyrenes, and polyethyleneoxides of different molar masses. The ratio of the zero-shear viscosities of linear polymer melts η0,linear to their ring counterparts η0,ring at isofrictional conditions is discussed as a function of the number of entanglements Z. In the unentangled regime η0,linear/η 0,ring is virtually constant, consistent with the earlier data, atomistic simulations, and the theoretical expectation η0,linear/ η0,ring = 2. In the entanglement regime, the Z-dependence of ring viscosity is much weaker than that of linear polymers, in qualitative agreement with predictions from scaling theory and simulations. The power-law extracted from the available experimental data in the rather limited range 1 < Z < 20, η0,linear/η0,ring ∼ Z 1.2±0.3, is weaker than the scaling prediction (η0,linear/η0,ring ∼ Z 1.6±0.3) and the simulations (η0,linear/ η0,ring ∼ Z2.0±0.3). Nevertheless, the present collection of state-of-the-art experimental data unambiguously demonstrates that rings exhibit a universal trend clearly departing from that of their linear counterparts, and hence it represents a major step toward resolving a 30-year-old problem. © 2013 American Chemical Society.

  9. Platform-based production development

    DEFF Research Database (Denmark)

    Bossen, Jacob; Brunoe, Thomas Ditlev; Nielsen, Kjeld


    Platforms as a means for applying modular thinking in product development is relatively well studied, but platforms in the production system has until now not been given much attention. With the emerging concept of platform-based co-development the importance of production platforms is though...... indisputable. This paper presents state-of-the-art literature on platform research related to production platforms and investigates gaps in the literature. The paper concludes on findings by proposing future research directions....

  10. A series of transient slip events on Kilauea volcano, Hawaii. (United States)

    Desmarais, E. K.; Segall, P.; Miklius, A.; Cervelli, P.


    Deformation on Kilauea volcano, Hawaii is monitored by a network of continuously recording GPS stations, among other methds. Since its installation in 1996, the GPS network has detected four spatially coherent accelerations on Kilauea's south flank that are not caused by either intrusions or earthquakes. These events, each lasting several hours to two days, occurred in September 1998, November 2000, July 2003, and January 2005. Previously, Cervelli et al., (Nature, 2002) interpreted the 2000 event as a silent earthquake due to slip on a sub-horizontal fault beneath Kilauea's south flank. We inverted the cumulative displacements ( less than 2 cm) using a simulated annealing algorithm for each event and found similarly sized, near horizontal, uniform slip source locations for all four events at depths of ~6 km. The estimated slip magnitudes are between 9 and 15 cm, with the upper block moving seaward. The 2005 event is the largest detected to date. Volcano-tectonic (VT) earthquakes on the south flank of Kilauea are typically restricted to the volume between the East Rift Zone and the Hilina and Poliokeawe Palis. Seismicity in this volume increased significantly during the silent events at depths of 5-10 km. However, all of the VT earthquakes were small ( less than M3) and their cumulative moment does not account for the moment released during the silent slip events. We are currently examining seismic waveform data for evidence of other signals, such as non-volcanic tremor, that might be associated with the slip events. To determine the exact onset and duration of the silent earthquakes, we invert for slip as a function of time directly from raw GPS phase and pseudorange observations. The November 2000 silent earthquake was preceded 9 days earlier by nearly 1 m of rainfall, which was speculated in Cervelli et al., (Nature, 2002) to have reduced fault stability through surface loading or pore pressure increase. In contrast, both the 2003 and 2005 events occurred

  11. Volcano instability induced by strike-slip faulting (United States)

    Lagmay, A. M. F.; van Wyk de Vries, B.; Kerle, N.; Pyle, D. M.


    Analogue sand cone experiments were conducted to study instability generated on volcanic cones by basal strike-slip movement. The results of the analogue models demonstrate that edifice instability may be generated when strike-slip faults underlying a volcano move as a result of tectonic adjustment. This instability occurs on flanks of the volcano above the strike-slip shear. On the surface of the volcano this appears as a pair of sigmoids composed of one reverse and one normal fault. In the interior of the cone the faults form a flower structure. Two destabilised regions are created on the cone flanks between the traces of the sigmoidal faults. Bulging, intense fracturing and landsliding characterise these unstable flanks. Additional analogue experiments conducted to model magmatic intrusion show that fractures and faults developed within the volcanic cone due to basal strike-slip motions strongly control the path of the intruding magma. Intrusion is diverted towards the areas where previous development of reverse and normal faults have occurred, thus causing further instability. We compare our model results to two examples of volcanoes on strike-slip faults: Iriga volcano (Philippines), which underwent non-magmatic collapse, and Mount St. Helens (USA), where a cryptodome was emplaced prior to failure. In the analogue and natural examples, the direction of collapse takes place roughly parallel to the orientation of the underlying shear. The model presented proposes one mechanism for strike-parallel breaching of volcanoes, recently recognised as a common failure direction of volcanoes found in regions with transcurrent and transtensional deformation. The recognition of the effect of basal shearing on volcano stability enables prediction of the likely direction of eventual flank failure in volcanoes overlying strike-slip faults.

  12. Phase-field slip-line theory of plasticity (United States)

    Freddi, Francesco; Royer-Carfagni, Gianni


    A variational approach to determine the deformation of an ideally plastic substance is proposed by solving a sequence of energy minimization problems under proper conditions to account for the irreversible character of plasticity. The flow is driven by the local transformation of elastic strain energy into plastic work on slip surfaces, once that a certain energetic barrier for slip activation has been overcome. The distinction of the elastic strain energy into spherical and deviatoric parts is used to incorporate in the model the idea of von Mises plasticity and isochoric plastic strain. This is a "phase field model" because the matching condition at the slip interfaces is substituted by the evolution of an auxiliary phase field that, similar to a damage field, is unitary on the elastic phase and null on the yielded phase. The slip lines diffuse in bands, whose width depends upon a material length-scale parameter. Numerical experiments on representative problems in plane strain give solutions with noteworthy similarities with the results from classical slip-line field theory, but the proposed model is much richer because, accounting for elastic deformations, it can describe the formation of slip bands at the local level, which can nucleate, propagate, widen and diffuse by varying the boundary conditions. In particular, the solution for a long pipe under internal pressure is very different from the one obtainable from the classical macroscopic theory of plasticity. For this case, the location of the plastic bands may be an insight to explain the premature failures that are sometimes encountered during the manufacturing process. This practical example enhances the importance of this new theory based on the mathematical sciences.

  13. Possible Stick-Slip Mechanism for Whillans Ice Stream (United States)

    Bindschadler, Robert; King, Matt; Vornberger, Patricia


    Tidally-induced stick-slip motion in the mouth of Whillans Ice Stream provides a unique natural experiment in ice-stream response behavior and from which we might learn a great deal about subglacial till properties and sub-ice-stream conditions. At the IGS Symposium on Fast Glacier Flow (Yakutat, 2002), we reported our observations of stick- slip motion and demonstrated its synchronicity with tidal forcing. Recently, we have completed additional processing of our GPS data in differential mode. It reveals more details of the stick-slip events and illustrates that within 30 seconds, the temporal interval of our data, the ice stream accelerates to a speed corresponding to a completely lubricated bed. While details of individual events vary, there seems to be strong evidence of an elastic rebound on the time scale of one hour following most events. This suggests the event involves the release of stored elastic strain energy in the ice. The similar displacements of events suggest further that till or subglacial hydrologic properties limit the amount of elastic strain released in any single event. We follow a line of reasoning that dilatant strengthening limits the slip displacement and present model of the stick-slip process. To match the observed delay between the peak ocean tide and stick-slip events, our model includes a propagating pressure wave in the subglacial hydrologic system between the grounding line, where the rising tide first increases the subglacial water pressure and regions upstream where stored elastic strain increases the basal shear stress. This high-tide event is released when the increased water pressure reaches the region of increased shear stress. Dilatant strengthening stops the event by increasing pore volume and lowering the water pressure. Following this event, falling tide increases the normal forces, compresses the till and increases pore pressure again, leading to the second falling-tide event we observe every tidal cycle.

  14. Global strike-slip faults: Bounds from plate tectonics (United States)

    Gordon, R. G.; Argus, D. F.


    According to the tenets of plate tectonics, a transform fault is a strike-slip fault along which neither convergence nor divergence occurs. Analysis of global plate motion data indicates that the only true transform faults are the strike-slip faults that offset segments of mid-ocean ridges. Thus, many of Earth's major strike-slip fault systems are not true transform faults as they accommodate large components of oblique convergence or oblique divergence. This is particularly true for several important ocean-continent systems such as the San Andreas, the strike-slip systems bounding the northern and southern Caribbean plate, the Alpine fault system of New Zealand, the Anatolian fault system, and the Azores-Gibraltar-Alboran sea system. These strike-slip systems are commonly sites of large scale mountain building and basin formation. Here we examine the far-field constraints on the motions of the plates bounding several of these strike-slip systems using both conventional plate motion circuits and results from global positioning system and other space geodetic data. We pay particular attention to the San Andreas fault system in central and northern California, where the San Andreas system is part of the boundary between the Sierran microplate and the Pacific plate. Most of the fault system accommodates obliquely convergent motion, giving rise to the California Coast Range, but in the northern San Francisco Bay Area it is obliquely divergent, producing San Pablo Bay and a gap in the Coast Range that permits the Sierran watershed to drain to the Pacific through the Golden Gate.

  15. Back analysis of fault-slip in burst prone environment (United States)

    Sainoki, Atsushi; Mitri, Hani S.


    In deep underground mines, stress re-distribution induced by mining activities could cause fault-slip. Seismic waves arising from fault-slip occasionally induce rock ejection when hitting the boundary of mine openings, and as a result, severe damage could be inflicted. In general, it is difficult to estimate fault-slip-induced ground motion in the vicinity of mine openings because of the complexity of the dynamic response of faults and the presence of geological structures. In this paper, a case study is conducted for a Canadian underground mine, herein called "Mine-A", which is known for its seismic activities. Using a microseismic database collected from the mine, a back analysis of fault-slip is carried out with mine-wide 3-dimensional numerical modeling. A back analysis is conducted to estimate the physical and mechanical properties of the causative fracture or shear zones. One large seismic event has been selected for the back analysis to detect a fault-slip related seismic event. In the back analysis, the shear zone properties are estimated with respect to moment magnitude of the seismic event and peak particle velocity (PPV) recorded by a strong ground motion sensor. The estimated properties are then validated through comparison with peak ground acceleration recorded by accelerometers. Lastly, ground motion in active mining areas is estimated by conducting dynamic analysis with the estimated values. The present study implies that it would be possible to estimate the magnitude of seismic events that might occur in the near future by applying the estimated properties to the numerical model. Although the case study is conducted for a specific mine, the developed methodology can be equally applied to other mines suffering from fault-slip related seismic events.

  16. Superplastic flow lubricates carbonate faults during earthquake slip (United States)

    De Paola, Nicola; Holdsworth, Robert; Viti, Cecilia; Collettini, Cristiano; Faoro, Igor; Bullock, Rachael


    Tectonic earthquakes are hosted in the shallower portion of crustal fault zones, where fracturing and cataclasis are thought to be the dominant processes during frictional sliding. Aseismic shear in lower crust and lithospheric mantle shear zones is accomplished by crystal plasticity, including superplastic flow acting at low strain rates on ultrafine-grained rocks. Superplasticity has also been observed at high strain rates for a range of nano-phase alloys and ceramics, and could potentially occur in fine-grained geological materials, if deformed at high strain rates and temperatures. We performed a set of displacement-controlled experiments to explore whether superplastic flow can effectively weaken faults, and facilitate earthquake propagation. The experiments were performed on fine-grained synthetic gouges (63 lubrication mechanisms. When T ≥ 800 °C are attained, micro-textures diagnostic of diffusion-dominated grain boundary sliding are widespread within the slip zone, and suggest bulk superplastic flow. Flow stresses predicted by superplasticity constitutive laws at the slip zone temperatures, grain sizes and strain rates attained during the experiments match those we measured in the laboratory (μ = 0.16). We propose therefore that the activation of diffusion creep at high temperatures (T ≥ 800 °C) leads to slip zone-localised superplastic flow and that this causes the dynamic weakening of carbonate faults at seismic slip rates. Note, however, that both cataclasis and dislocation creep operating at lower temperatures, during the earlier stages of slip, are critical, precursory processes needed to produce the nanoscale grain sizes required to activate grainsize sensitive mechanisms during superplastic flow. Finally, the re-strengthening observed during the decelerating phase of deformation can be explained by the falling temperature "switching off" slip zone-localized superplasticity, leading to a return to frictional sliding. These results indicate

  17. USA Hire Testing Platform (United States)

    Office of Personnel Management — The USA Hire Testing Platform delivers tests used in hiring for positions in the Federal Government. To safeguard the integrity of the hiring processes and ensure...


    African Journals Online (AJOL)

    Solar service centres and multifunctional platforms are innovative concepts for providing energy services in ... same time generate income. obeng ..... communities the driving force behind the ... operator(s) had to contact repairers outside their.

  19. The Common HOL Platform

    Directory of Open Access Journals (Sweden)

    Mark Adams


    Full Text Available The Common HOL project aims to facilitate porting source code and proofs between members of the HOL family of theorem provers. At the heart of the project is the Common HOL Platform, which defines a standard HOL theory and API that aims to be compatible with all HOL systems. So far, HOL Light and hol90 have been adapted for conformance, and HOL Zero was originally developed to conform. In this paper we provide motivation for a platform, give an overview of the Common HOL Platform's theory and API components, and show how to adapt legacy systems. We also report on the platform's successful application in the hand-translation of a few thousand lines of source code from HOL Light to HOL Zero.

  20. The Creative Platform

    DEFF Research Database (Denmark)

    Byrge, Christian; Hansen, Søren

    whether you consider thirdgrade teaching, human-resource development, or radical new thinking in product development in a company. The Creative Platform was developed at Aalborg University through a series of research-and-development activities in collaboration with educational institutions and private......This book is about introducing more creativity into general educational courses and cross-disciplinary activities. It is directed toward teachers at all levels in the educational system, but the Creative Platform is a general model, and thus the creative process will fundamentally be the same...... companies. It is a project in which the goal is to make a hands-on approach to a knowledge perspective on enhancing creativity. The underlying ambition of the Creative Platform is to make it easier to promote creativity. At, you can find extra materials and instructions...

  1. A unified slip boundary condition for flow over a surface

    CERN Document Server

    Thalakkottor, Joseph John


    Interface between two phases of matter are ubiquitous in nature and technology. Determining the correct velocity condition at an interface is essential for understanding and designing of flows over a surface. We demonstrate that both the widely used no-slip and the Navier and Maxwell slip boundary conditions do not capture the complete physics associated with complex problems, such as spreading of liquids or corner flows. Hence, we present a unified boundary condition that is applicable to a wide-range of flow problems.

  2. Slip effects on shearing flows in a porous medium

    Institute of Scientific and Technical Information of China (English)

    M.Khan; T.Hayat; Y.Wang


    This paper deals with the magnetohydrodynamic (MHD)flow of an Oldroyd 8-constant fluid in a porous mediam when no-slip condition is no longer valid.Modified Darcy's law is used in the flow modelling.The non-linear differential equation with non-linear boundary conditions is solved numerically using finite difference scheme in combination with an iterative technique.Numerical results are obtained for the Conette,Poiseuille and generalized Couette flows.The effects of slip parameters on the velocity profile are discussed.

  3. Stokes Flow with Slip and Kuwabara Boundary Conditions

    Indian Academy of Sciences (India)

    Sunil Datta; Satya Deo


    The forces experienced by randomly and homogeneously distributed parallel circular cylinder or spheres in uniform viscous flow are investigated with slip boundary condition under Stokes approximation using particle-in-cell model technique and the result compared with the no-slip case. The corresponding problem of streaming flow past spheroidal particles departing but little in shape from a sphere is also investigated. The explicit expression for the stream function is obtained to the first order in the small parameter characterizing the deformation. As a particular case of this we considered an oblate spheroid and evaluate the drag on it.

  4. Buoyant Norbury's vortex rings (United States)

    Blyth, Mark; Rodriguez-Rodriguez, Javier; Salman, Hayder


    Norbury's vortices are a one-parameter family of axisymmetric vortex rings that are exact solutions to the Euler equations. Due to their relative simplicity, they are extensively used to model the behavior of real vortex rings found in experiments and in Nature. In this work, we extend the original formulation of the problem to include buoyancy effects for the case where the fluid that lies within the vortex has a different density to that of the ambient. In this modified formulation, buoyancy effects enter the problem through the baroclinic term of the vorticity equation. This permits an efficient numerical solution of the governing equation of motion in terms of a vortex contour method that tracks the evolution of the boundary of the vortex. Finally, we compare our numerical results with the theoretical analysis of the short-time evolution of a buoyant vortex. Funded by the Spanish Ministry of Economy and Competitiveness through grant DPI2011-28356-C03-02 and by the London Mathematical Society.

  5. The seasonal dependence of cycle slip occurrence of GPS data over China low latitude region

    Institute of Scientific and Technical Information of China (English)

    ZHANG DongHe; FENG Man; XIAO Zuo; HAO YongQiang; SHI LiQin; YANG GuangLin; SUO YuCheng


    The relationship of daily accumulated cycle slip occurrence with the season is analyzed using the GPS data observed in six GPS stations located in China low latitude region in 2001. It is found that the seasonal dependence of cycle slip occurrence is evident. The cycle slip mainly occurs during the periods of two equinox months (March to May and September to October), and some correlative changes of the cycle slip occurrences over all six stations are exhibited in some special days. Considering the diurnal dependence of cycle slip, it can be inferred that the cycle slip occurrence with certain elevation limitation is related with the ionospheric irregularities over this region.

  6. National Community Solar Platform

    Energy Technology Data Exchange (ETDEWEB)

    Rupert, Bart [Clean Energy Collective, Louisville, CO (United States)


    This project was created to provide a National Community Solar Platform (NCSP) portal known as Community Solar Hub, that is available to any entity or individual who wants to develop community solar. This has been done by providing a comprehensive portal to make CEC’s solutions, and other proven community solar solutions, externally available for everyone to access – making the process easy through proven platforms to protect subscribers, developers and utilities. The successful completion of this project provides these tools via a web platform and integration APIs, a wide spectrum of community solar projects included in the platform, multiple groups of customers (utilities, EPCs, and advocates) using the platform to develop community solar, and open access to anyone interested in community solar. CEC’s Incubator project includes web-based informational resources, integrated systems for project information and billing systems, and engagement with customers and users by community solar experts. The combined effort externalizes much of Clean Energy Collective’s industry-leading expertise, allowing third parties to develop community solar without duplicating expensive start-up efforts. The availability of this platform creates community solar projects that are cheaper to build and cheaper to participate in, furthering the goals of DOE’s SunShot Initiative. Final SF 425 Final SF 428 Final DOE F 2050.11 Final Report Narrative

  7. Ring current and radiation belts (United States)

    Williams, D. J.


    Studies performed during 1983-1986 on the ring current, the injection boundary model, and the radiation belts are discussed. The results of these studies yielded the first observations on the composition and charge state of the ring current throughout the ring-current energy range, and strong observational support for an injection-boundary model accounting for the origins of radiation-belt particles, the ring current, and substorm particles observed at R less than about 7 earth radii. In addition, the results have demonstrated that the detection of energetic neutral atoms generated by charge-exchange interactions between the ring current and the hydrogen geocorona can provide global images of the earth's ring current and its spatial and temporal evolution.

  8. Magnetization of two coupled rings

    Energy Technology Data Exchange (ETDEWEB)

    Avishai, Y [Department of Physics and Ilse Katz Center for Nanotechnology, Ben Gurion University, Beer Sheva 84105 (Israel); Luck, J M [Institut de Physique Theorique, IPhT, CEA Saclay, and URA 2306, CNRS, 91191 Gif-sur-Yvette cedex (France)], E-mail:, E-mail:


    We investigate the persistent currents and magnetization of a mesoscopic system consisting of two clean metallic rings sharing a single contact point in a magnetic field. Many novel features with respect to the single-ring geometry are underlined, including the explicit dependence of wavefunctions on the Aharonov-Bohm fluxes, the complex pattern of two-fold and three-fold degeneracies, the key role of length and flux commensurability, and in the case of commensurate ring lengths the occurrence of idle levels which do not carry any current. Spin-orbit interactions, induced by the electric fields of charged wires threading the rings, give rise to a peculiar version of the Aharonov-Casher effect where, unlike for a single ring, spin is not conserved. Remarkably enough, this can only be realized when the Aharonov-Bohm fluxes in both rings are neither integer nor half-integer multiples of the flux quantum.

  9. Burnside Rings of Fusion Systems

    DEFF Research Database (Denmark)

    Reeh, Sune Precht

    , and we produce a basis for the Burnside ring that shares properties with the transitive sets for a finite group. We construct a transfer map from the p-local Burnside ring of the underlying p-group S to the p-local Burnside ring of F. Using such transfer maps, we give a new explicit construction...... of Burnside rings given by multiplication with the characteristic idempotent, and we show that this map is the transfer map previously constructed. Applying these results, we show that for every saturated fusion system the ring generated by all (non-idempotent) characteristic elements in the p-local double...... of the characteristic idempotent of F { the unique idempotent in the p-local double Burnside ring of S satisfying properties of Linckelmann and Webb. We describe this idempotent both in terms of fixed points and as a linear combination of transitive bisets. Additionally, using fixed points we determine the map...

  10. Black di-ring and infinite nonuniqueness

    CERN Document Server

    Iguchi, H; Iguchi, Hideo; Mishima, Takashi


    We show that the $S^1$-rotating black rings can be superposed by the solution generating technique. We analyze the black di-ring solution for the simplest case of multiple rings. There exists an equilibrium black di-ring where the conical singularities are cured by the suitable choice of physical parameters. Also there are infinite numbers of black di-rings with the same mass and angular momentum. These di-rings can have two different continuous limits of single black rings. Therefore we can transform the fat black ring to the thin ring with the same mass and angular momentum by way of the di-ring solutions.

  11. Saturn's Rings and Associated Ring Plasma Cavity: Evidence for Slow Ring Erosion (United States)

    Farrell, W. M.; Kurth, W. S.; Gurnett, D. A.; Persoon, A. M.; MacDowall, R. J.


    We re-examine the radio and plasma wave observations obtained during the Cassini Saturn orbit insertion period, as the spacecraft flew over the northern ring surface into a radial distance of 1.3 Rs (over the C-ring). Voyager era studies suggest the rings are a source of micro-meteoroid generated plasma and dust, with theorized peak impact-created plasma outflows over the densest portion of the rings (central B-ring). In sharp contrast, the Cassini Radio and Plasma Wave System (RPWS) observations identify the presence of a ring-plasma cavity located in the central portion of the B-ring, with little evidence of impact-related plasma. While previous Voyager era studies have predicted unstable ion orbits over the C- ring, leading to field-aligned plasma transport to Saturns ionosphere, the Cassini RPWS observations do not reveal evidence for such instability-created plasma fountains. Given the passive ring loss processes observed by Cassini, we find that the ring lifetimes should extend >10(exp 9) years, and that there is limited evidence for prompt destruction (loss in <100 Myrs).

  12. Fault Slip Embedded in Creep: Insight into Tectonic Tremors and Slow Slip Events from Acoustic and Optical Monitoring of Fractures (United States)

    Elkhoury, J. E.; Lengline, O.; Ampuero, J. P.; Schmittbuhl, J.


    Observations of temporal and spatial correlations between slow slip earthquakes and tectonic tremor activity suggest a physical relation between them. Early descriptions of mechanisms relating these phenomena simply attributed the relation between seismic and aseismic events to fluid mediated processes. More recent hypotheses suggest that tectonic tremors are bursts of seismic energy due to the rupturing of small asperities within slow slipping regions. Here we present laboratory results of a unique experimental setting aimed at understanding the response to transient loads of a system of small asperities embedded in creep as a model of tectonic tremor activity triggered by slow slip and modulated by tides. We performed mode I crack propagation experiments on glass bead blasted and annealed 2D interfaces of transparent material (Polymethylmethacrylate) where fracture fronts were confined to the 2D weakness plane of the heterogeneous interface. We monitored acoustic emissions (AE) with piezo-electric sensors surrounding the crack front line. We also optically monitored the rupture front line with up to 1000 frames per second. The experimental loading conditions produce quasi-static front propagation at slow average speeds. Image processing reveals de-pinning along the front that we characterize as intermittent opening during slow front propagation. AE locations strongly correlate to the spatiotemporal clustering of the de-penning events along the front. Moreover, this correlation is preserved at the time of imposed transient fluctuations in loading during front propagation. Using the analogy between mode I and modes II and III fractures, our results translate into intermittent slip on faults linked to clustering of seismic activity produced by the breakage of asperities embedded in creeping regions with no need of invoking fluid mediated processes. Thus our experiments help reveal the interplay between aseismic and seismic slip on faults. We also observe qualitative

  13. Offset of Latest Pleistocene Shoreface Reveals Slip Rate on the Hosgri Strike-Slip Fault, Offshore Central California (United States)

    Johnson, S. Y.; Hartwell, S. R.; Dartnell, P.


    The Hosgri fault is the southern part of the regional Hosgri-San Gregorio dextral strike-slip fault system, which extends primarily in the offshore region for about 400 km in central California. Between Morro Bay and San Simeon, high-resolution multibeam bathymetry reveals that the eastern strand of the Hosgri fault is crossed by a ~265-m-wide slope interpreted as the shoreface of a relict sand spit that formed during a period of relatively slower sea-level rise (Younger Dryas stadial) in the latest Pleistocene. This sand spit crossed an embayment and connected a western fault-bounded bedrock peninsula and an eastern bedrock highland, a paleogeography similar to modern geomorphology along coastal segments of the San Andreas fault. Detailed analysis of the relict shoreface with slope profiles and slope maps indicates a lateral slip rate of 2.6 ± 0.9 mm/yr. Because the Hosgri fault locally includes an active western strand, and regionally converges with several other faults, this slip rate should be considered a minimum for the Hosgri fault in central California and should not be applied for the entire Hosgri-San Gregorio fault system. This slip rate indicates that the Hosgri system takes up the largest share of the strike-slip fault budget and is the most active strike-slip fault west of the San Andreas fault in central California. This result further demonstrates the value and potential of high-resolution bathymetry in earthquake-hazard characterization of active offshore faults.

  14. Transformation of fault slip modes in laboratory experiments (United States)

    Martynov, Vasilii; Alexey, Ostapchuk; Markov, Vadim


    Slip mode of crust fault can vary because of many reasons. It's well known that fault structure, material of fault gouge, pore fluid et al. in many ways determines slip modes from creep and slow slip events to mega-earthquakes [1-3]. Therefore, the possibility of fault slip transformation due to external action is urgent question. There is popular and developing approach of fluid injection into central part of fault. The phenomenon of earthquakes induced due to pumping of water was investigated on small and large scales [4, 5]. In this work the laboratory experiments were conducted to study the evolution of the experimental fault slip when changing the properties of the interstitial fluid. The scheme of experiments is the classical slider-model set-up, in which the block under the shear force slips along the interface. In our experiments the plexiglas block 8x8x3 cm3 in size was put on the plexiglas base. The contact of the blocks was filled with a thin layer (about 3 mm thick) of a granular material. The normal load varied from 31 to 156 kPa. The shear load was applied through a spring with stiffness 60 kN/m, and the rate of spring deformation was 20 or 5 mcm/s. Two parameters were recorded during experiments: the shear force acting on the upper block (with an accuracy of 1 N) and its displacement relatively the base (with an accuracy of 0.1 μm). The gouge was composed of quartz sand (97.5%) and clay (2.5%). As a moisturizer were used different fluids with viscosity varying from 1 to 103 mPa x s. Different slip modes were simulated during slider-experiments. In our experiments slip mode is the act of instability manifested in an increase of slip velocity and a drop of shear stress acting on a movable block. The amplitude of a shear stress drop and the peak velocity of the upper block were chosen as the characteristics of the slip mode. In the laboratory experiments, slip events of one type can be achieved either as regularly recurring (regular mode) or as random

  15. Self assembly of microparticles in stable ring structures in an optical trap

    CERN Document Server

    Haldar, Arijit; Roy, Basudev; Gupta, S Dutta; Banerjee, Ayan


    Micro-particle self assembly under the influence of optical forces produced by higher order optical beams or by projection of a hologram into the trapping volume is well known. In this paper, we report the spontaneous formation of a ring of identical microspheres (each with diameter 1.1 um in conventional single beam optical tweezers having standing wave geometry with the sample chamber consisting of a cover slip and glass slide, and a usual TEM00 Gaussian beam. The effects of different experimental parameters on the ring formation are studied extensively. The experimental observations are backed by theoretical simulations based on a plane wave decomposition of the forward and backward propagating Gaussian beams. The ring patterns are shown to be caused due to geomterical aberrations produced by focusing the Gaussian beam using a high numerical aperture microscope objective into stratified media. It is found that the thickness of the stratified media and the standing wave geometry itself play a critical role ...

  16. The Platformization of the Web: Making Web Data Platform Ready

    NARCIS (Netherlands)

    A. Helmond


    In this article, I inquire into Facebook’s development as a platform by situating it within the transformation of social network sites into social media platforms. I explore this shift with a historical perspective on, what I refer to as, platformization, or the rise of the platform as the dominant

  17. ring og refleksion

    DEFF Research Database (Denmark)

    Wahlgren, B.; Rattleff, Pernille; Høyrup, S.

    State of the art inden for forskning om læring på arbejdspladsen samt gennemgang af læringsteori og refleksionsbegrebet hos Dewey, Dreyfus, Schön, Argyris, Kolb, Jarvis, Mezirow og Brookfield. Afsluttes med diskussion af syntetiseret model for læring på arbejdspladsen.......State of the art inden for forskning om læring på arbejdspladsen samt gennemgang af læringsteori og refleksionsbegrebet hos Dewey, Dreyfus, Schön, Argyris, Kolb, Jarvis, Mezirow og Brookfield. Afsluttes med diskussion af syntetiseret model for læring på arbejdspladsen....

  18. Why Are Ring Galaxies Interesting?

    CERN Document Server

    Higdon, James L


    Compared with ordinary spirals, the ISM in ring galaxies experiences markedly different physical conditions and evolution. As a result, ring galaxies provide interesting perspectives on the triggering/quenching of large scale star formation and the destructive effects of massive stars on molecular cloud complexes. We use high resolution radio, sub-millimeter, infrared, and optical data to investigate the role of gravitational stability in star formation regulation, factors influencing the ISM's molecular fraction, and evidence of peculiar star formation laws and efficiencies in two highly evolved ring galaxies: Cartwheel and the Lindsay-Shapley ring.

  19. Acoustic monitoring of laboratory faults: locating the origin of unstable slip events (United States)

    Korkolis, Evangelos; Niemeijer, André; Spiers, Christopher


    Over the past several decades, much work has been done on studying the frictional properties of fault gouges at earthquake nucleation velocities. In addition, post-experiment microstructural analyses have been performed in an attempt to link microphysical mechanisms to the observed mechanical data. However, all observations are necessarily post-mortem and it is thus difficult to directly link transients to microstructural characteristics. We are developing an acoustic monitoring system to be used in sliding experiments using a ring shear apparatus. The goal is to locate acoustic emission sources in sheared granular assemblages and link them to processes that act on microstructures responsible for the frictional stability of the simulated fault gouge. The results will be used to develop and constrain microphysical models that explain the relation of these processes to empirical friction laws, such as rate- and state-dependent friction. The acoustic monitoring setup is comprised of an array of 16 piezo-electric sensors installed on the top and bottom sides of an annular sample, at 45 degree intervals. Acoustic emissions associated with slip events can be recorded at sampling rates of up to 50 MHz, in triggered mode. Initial experiments on 0.1 to 0.2 mm and 0.4 to 0.5 mm diameter glass beads, at 1 to 5 MPa normal stress and 1 to 30 um/s load point velocity, have been conducted to estimate the sensitivity of the sensor array. Preliminary results reveal that the intensity of the audible signal is not necessarily proportional to the magnitude of the associated stress drop for constant loading conditions, and that acoustic emissions precede slip events by a small amount of time, in the order of a few milliseconds. Currently, our efforts are focused on developing a suitable source location algorithm with the aim to identify differences in the mode of (unstable) sliding for different types of materials. This will help to identify the micromechanical mechanisms operating

  20. Platform Performance and Challenges - using Platforms in Lego Company

    DEFF Research Database (Denmark)

    Munk, Lone; Mortensen, Niels Henrik


    by the product defining users (product developers) and platform erosion. When the platforms are not used it is due to: unsuitable calculation models, lack of goals, rewards or benefits from management, unattractive tradeoffs and difficulties in understanding the platform. This indicates that platform design...... needs focus on the incentive of using the platform. This problem lacks attention in literature, as well as industry, where assessment criteria do not cover this aspect. Therefore, we recommend including user incentive in platform assessment criteria to these challenges. Concrete solution elements...... ensuring user incentive in platforms is an object for future research...

  1. PTHA Slip Models in the Aftermath of the 2011 Tohoku Earthquake and Tsunami (United States)

    Geist, E. L.; Parsons, T.; Oglesby, D. D.


    Inter-plate thrust slip models used in Probabilistic Tsunami Hazard Analysis (PTHA) are re-evaluated in light of the 2011 Tohoku earthquake and tsunami. Whereas recurrence is typically linked to seismic moment in PTHA, the magnitude and distribution of slip are the primary variables that affect tsunami generation. Because of the self-similar nature of rupture, the slip model is dependent on other scaling relationships, such as magnitude-area and magnitude-mean slip. In the past, various slip models have been used to calculate tsunami generation, ranging from uniform slip to stochastic models. Uniform slip models systematically underestimate the amplitude and leading-wave steepness for the local, broadside tsunami. Stochastic slip models, constrained by the seismic displacement spectrum, produce a range of possible slip distributions for a given seismic moment and slip spectrum and more accurately represent heterogeneous earthquake ruptures. Conventional stochastic slip models based on a k-2 slip spectrum and Gaussian random variables result in a coefficient of variation (c.v.) approximately equal to 0.5. However, slip inversion results of recent tsunamigenic earthquakes indicate that the observed c.v. is significantly greater than 0.5. This is particularly evident for the 2011 Tohoku earthquake, in which the c.v. for slip is approximately 1.0. Recent updates to the stochastic slip model can retain a k-2 slip spectrum, but use non-Gaussian distributed random variables. The updated stochastic slip model is more consistent with the observed fluctuations in slip. We investigate how these models can be applied in a PTHA framework. In addition, dynamic effects such as amplification of slip near the free surface, partitioning of slip between different overlapping fault segments, and dynamic overshoot can strongly modify the slip pattern in ways that may be correlated with geometrical and frictional properties on the fault; such effects potentially may be predictable prior

  2. On Weakly P.P. Rings

    Institute of Scientific and Technical Information of China (English)

    Xiang Yue-ming; Ouyang Lun-qun; Wang Shu-gui


    We introduce, in this paper, the right weakly p.p. rings as the generaliza-tion of right p.p. rings. It is shown that many properties of the right p.p. rings can be extended onto the right weakly p.p. rings. Relative examples are constructed. As applications, we also characterize the regular rings and the semisimple rings in terms of the right weakly p.p. rings.

  3. Lab-on-a-disc platform for screening of genetically modified E. coli cells via cell-free electrochemical detection of p-Coumaric acid

    DEFF Research Database (Denmark)

    Sanger, Kuldeep; Zor, Kinga; Jendresen, Christian Bille


    filtration and electrochemical detection units, the sample filtration was performed by rotating the disc using a programmable closed-loop stepper motor. The electrodes, patterned on plastic substrate, were connected through a printed circuit board to the slip ring using a robust magnetic clamping system...

  4. A new state-of-the-art tool to investigate rock friction under extreme slip velocities and accelerations: SHIVA (United States)

    Niemeijer, André; di Toro, Giulio; Nielsen, Stefan; Scarlato, Piergiorgio; Romeo, Gianni; di Stefano, Giuseppe; Smith, Steven; di Felice, Fabio; Mariano, Sofia


    Despite considerable effort over the past several decades, the mechanics of earthquakes rupture remain largely unknown. In order to complement fault drilling projects and field and seismological observations, recent friction experiments strive to reproduce as closely as possible in-situ (natural) conditions of slip velocity and acceleration on intact and fault rocks. In this contribution, we present a novel state-of-the-art experimental rotary shear apparatus (SHIVA or Slow to HIgh Velocity Apparatus) capable of shearing samples at sliding velocities up to 10 m/s, accelerations of ~ 40 m/s2 and normal stresses up to 50 MPa. In comparison with existing high speed friction machines, this apparatus extends the range of sliding velocities, normal stresses, sample size and, more importantly, accelerations. The apparatus consists of a pair of brushless electric motors (a low velocity motor, 10-6-10-3 m/s, power 5 kW, and a high velocity motor, 10-3 - 10 m/s, power 270 kW), that are connected by a gear system that allows a switch between motors without loss of velocity and force. The motors drive a rotary shaft which clamps ring-shaped samples (diameter 40- 50 mm). On the other side of the rotary shaft, a stationary shaft holds the other half of the sample assembly. The shaft is held stationary by a pair of stainless steel arms, one of which is attached to the side of the concrete-filled base where torque is measured by a tension cell. Axial force (maximum 37 kN) is applied on this side by a piston-cylinder couple with an arm to increase the force. The entire machine measures by 3.5 by 1.2 meters and weighs 3700 kg. We aim to perform experiments on rock samples of a variety of compositions using slip velocities and accelerations that simulate slip velocity functions that occur during earthquakes. In addition, we plan to develop a pore fluid system and a pressure vessel in order to perform experiments that include the physical-chemical processes that occur during slow

  5. Sensitivity of vehicle handling to combined slip tyre characteristics

    NARCIS (Netherlands)

    Jansen, S.T.H.; Oosten, J.J.M. van; Pacejka, H.B.; Pauwelussen, J.P.


    The sensitivity of vehicle handling to combined slip tyre characteristics is investigated using two simulation models with different interaction between lateral and longitudinal tyre forces. The standard method for the braking in a turn test is simulated with both models, and differences in the outc

  6. Friction at seismic slip rates: testing thermal weakening models experimentally (United States)

    Nielsen, S. B.; Spagnuolo, E.; Violay, M.; Di Toro, G.


    Recent experiments systematically explore rock friction under crustal earthquake conditions (fast slip rate 1desing an efficient and accurate wavenumber approximation for a solution of the temperature evolution on the fault. Finally, we propose a compact and paractical model based on a small number of memory variables for the implementation of thermal weakening friction in seismic fault simulations.

  7. Quantifying effective slip length over micropatterned hydrophobic surfaces

    NARCIS (Netherlands)

    Tsai, Peichun; Peters, Alisia M.; Pirat, Christophe; Wessling, Matthias; Lammertink, Rob G.H.; Lohse, Detlef


    We employ microparticle image velocimetry to investigate laminar microflows in hydrophobic microstructured channels, in particular the slip length. These microchannels consist of longitudinal microgrooves, which can trap air and prompt a shear-free boundary condition and thus slippage enhancement. O

  8. Analysing earthquake slip models with the spatial prediction comparison test

    KAUST Repository

    Zhang, L.


    Earthquake rupture models inferred from inversions of geophysical and/or geodetic data exhibit remarkable variability due to uncertainties in modelling assumptions, the use of different inversion algorithms, or variations in data selection and data processing. A robust statistical comparison of different rupture models obtained for a single earthquake is needed to quantify the intra-event variability, both for benchmark exercises and for real earthquakes. The same approach may be useful to characterize (dis-)similarities in events that are typically grouped into a common class of events (e.g. moderate-size crustal strike-slip earthquakes or tsunamigenic large subduction earthquakes). For this purpose, we examine the performance of the spatial prediction comparison test (SPCT), a statistical test developed to compare spatial (random) fields by means of a chosen loss function that describes an error relation between a 2-D field (‘model’) and a reference model. We implement and calibrate the SPCT approach for a suite of synthetic 2-D slip distributions, generated as spatial random fields with various characteristics, and then apply the method to results of a benchmark inversion exercise with known solution. We find the SPCT to be sensitive to different spatial correlations lengths, and different heterogeneity levels of the slip distributions. The SPCT approach proves to be a simple and effective tool for ranking the slip models with respect to a reference model.

  9. Determination of the of rate cross slip of screw dislocations

    DEFF Research Database (Denmark)

    Vegge, Tejs; Rasmussen, Torben; Leffers, Torben;


    The rate for cross slip of screw dislocations during annihilation of screw dipoles in copper is determined by molecular dynamics simulations. The temperature dependence of the rate is seen to obey an Arrhenius behavior in the investigated temperature range: 225-375 K. The activation energy...

  10. Interfacial Slip in Soap Films with Hydrosoluble Polymer (United States)

    Adelizzi, E. A.; Berg, S.; Troian, S. M.


    The thickness of a Newtonian soap film entrained at small capillary number should scale as Ca^2/3 provided the bounding surfaces are rigid. Previous studies show that soap films containing associating, low concentration, high molecular weight (M_w) polymer exhibit strong deviations from this scaling. We report results by laser interferometry of the entrained film thickness for the associating pair SDS/PEO over a large range in polymer molecular weight. Direct comparison to predictions of hydrodynamic models based on viscoelastic behavior shows poor agreement.Modification of the Frankel analysis to account for mobile films through a Navier slip condition yields good agreement. In addition, the slip length Ls increases as M_w^3/5, consistent with a correlation based on a polymer chain size for freely jointed chains with excluded volume effects. Although developed to explain slip at liquid-solid interfaces, the Tolstoi-Larson prediction that Ls scales as the polymer size agrees favorably with our results. Whether the slip behavior is due to Marangoni effects cannot be ruled out.

  11. Investigation of torque control using a variable slip induction generator

    Energy Technology Data Exchange (ETDEWEB)

    Bossanyi, E.A.; Gamble, C.R.


    An investigation of the possibilities of using a variable slip induction generator to control wind turbine transmission torque has been carried out. Such a generator consists of a wound rotor induction generator with its rotor winding connected to an external variable resistance circuit. By controlling the external resistance, the torque-slip characteristic of the generator can be modified, allowing efficient, low-slip operation below rated wind speed and compliant, high-slip operation above rated, where the additional losses are of no consequence but the resulting compliance allows a much reduced duty to be specified for the transmission and gearbox. A number of hardware options have been investigated for the variable resistance rotor circuit, the main options being either a rectifier and DC chopper or an AC regulator. Both of these options use semiconductor switching devices, for which the relative merits of thyristors, MOSFETs, GTOs and transistors have been investigated. A favoured scheme consisting of an AC regulator using GTOs has been provisionally selected. This choice uses some non-standard equipment but is expected to give negligible problems with harmonics. A comprehensive simulation model has been set up and used to investigate the behaviour of the whole system. (author).

  12. Dynamic Action Units Slip in Speech Production Errors (United States)

    Goldstein, Louis; Pouplier, Marianne; Chen, Larissa; Saltzman, Elliot; Byrd, Dani


    In the past, the nature of the compositional units proposed for spoken language has largely diverged from the types of control units pursued in the domains of other skilled motor tasks. A classic source of evidence as to the units structuring speech has been patterns observed in speech errors--"slips of the tongue". The present study reports, for…

  13. Slip and flow dynamics of polydisperse thin polystyrene films. (United States)

    Sabzevari, Seyed Mostafa; McGraw, Joshua D.; Jacobs, Karin; Wood-Adams, Paula M.


    We investigate the slip of binary and ternary mixtures of nearly monodisperse polystyrene samples on Teflon-coated (AF2400) silicon wafers using dewetting experiments. Binary mixtures of long and short chains along with ternary mixtures with a fixed weight-average molecular weight Mw but different number-average molecular weight Mn were prepared. Thin films of ca. 200 nm were spin coated on mica from polymer solutions and transferred to Teflon substrates. Above the glass transition temperature Tg the films break up via nucleation and growth of holes. The hole growth rate and rim morphology are monitored as a function of Mn and annealing protocol of the films before transfer to Teflon substrates. Slip properties, accessed using hydrodynamic models, and flow dynamics are then examined and compared. We found that the rim morphology and slip of polystyrene blends on Teflon depends on the molecular weight distribution. Similarly, flow dynamics is affected by the presence of short chains in mixture. Moreover, we can provoke differences in slip by choosing appropriate annealing and film transfer protocols for PS films that have first been spin cast on mica surfaces.

  14. Analytical solutions for squeeze flow with partial wall slip

    DEFF Research Database (Denmark)

    Laun, HM; Rady, M; Hassager, Ole


    Squeeze flow between parallel plates of a purely viscous material is considered for small gaps both for a Newtonian and power law fluid with partial wall slip. The results for the squeeze force as a function of the squeezing speed reduce to the Stefan and Scott equations in the no slip limit......, respectively. The slip velocity at the plate increases linearly with the radius up to the rim slip velocity upsilon(s). For small Saps H, the resulting apparent Newtonian rim shear rate-measured for a constant rim shear stress, i.e. an imposed force increasing proportional to 1/H-yields a straight line...... if plotted versus 1/H. The slope of the straight line is equal to 6 upsilon(s) whereas the intersect with the ordinate yields the effective Newtonian rim shear rate to be converted into the true rim shear rate by means of the power law exponent. The advantage of the new technique is the separation of bulk...

  15. Nucleation and growth of strike slip faults in granite. (United States)

    Segall, P.; Pollard, D.P.


    Fractures within granodiorite of the central Sierra Nevada, California, were studied to elucidate the mechanics of faulting in crystalline rocks, with emphasis on the nucleation of new fault surfaces and their subsequent propagation and growth. Within the study area the fractures form a single, subparallel array which strikes N50o-70oE and dips steeply to the S. Some of these fractures are identified as joints because displacements across the fracture surfaces exhibit dilation but no slip. The joints are filled with undeformed minerals, including epidote and chlorite. Other fractures are identified as small faults because they display left-lateral strike slip separations of up to 2m. Slickensides, developed on fault surfaces, plunge 0o-20o to the E. The faults occur parallel to, and in the same outcrop with, the joints. The faults are filled with epidote, chlorite, and quartz, which exhibit textural evidence of shear deformation. These observations indicate that the strike slip faults nucleated on earlier formed, mineral filled joints. Secondary, dilational fractures propagated from near the ends of some small faults contemporaneously with the left-lateral slip on the faults. These fractures trend 25o+ or -10o from the fault planes, parallel to the direction of inferred local maximum compressive stress. The faults did not propagate into intact rock in their own planes as shear fractures. -from Authors

  16. On the Modeling of Contact Interfaces with Frictional Slips

    Directory of Open Access Journals (Sweden)

    Ligia Munteanu


    Full Text Available The paper analyses the contact interfaces between the scatterers and the matrix into the sonic composites, in the presence of the frictional slips. The sonic composite is a sonic liner designed in order to provide suppression of unwanted noise for jet engines, with emphases on the nacelle of turbofan engines for commercial aircraft.

  17. Scaling of the critical slip distance in granular layers

    CERN Document Server

    Hatano, Takahiro


    We investigate the nature of friction in granular layers by means of numerical simulation focusing on the critical slip distance, over which the system relaxes to a new stationary state. Analyzing a transient process in which the sliding velocity is instantaneously changed, we find that the critical slip distance is proportional to the sliding velocity. We thus define the relaxation time, which is independent of the sliding velocity. It is found that the relaxation time is proportional to the layer thickness and inversely proportional to the square root of the pressure. An evolution law for the relaxation process is proposed, which does not contain any length constants describing the surface geometry but the relaxation time of the bulk granular matter. As a result, the critical slip distance is scaled with a typical length scale of a system. It is proportional to the layer thickness in an instantaneous velocity change experiment, whereas it is scaled with the total slip distance in a spring-block system on gr...

  18. Evidence Based Prevention of Occupational Slips, Trips and Falls

    DEFF Research Database (Denmark)

    Jensen, Olaf Chresten


    It is estimated that about one third of the compensated occupational injuries and half of the most serious occupational injuries in merchant seafaring are related to slips, trips and falls (STF)-events. Among the elderly, STF is the risk factor that causes the largest number of inpatient days...

  19. Micro-vibration-based slip detection in tactile force sensors. (United States)

    Fernandez, Raul; Payo, Ismael; Vazquez, Andres S; Becedas, Jonathan


    Tactile sensing provides critical information, such as force, texture, shape or temperature, in manipulation tasks. In particular, tactile sensors traditionally used in robotics are emphasized in contact force determination for grasping control and object recognition. Nevertheless, slip detection is also crucial to successfully manipulate an object. Several approaches have appeared to detect slipping, the majority being a combination of complex sensors with complex algorithms. In this paper, we deal with simplicity, analyzing how a novel, but simple, algorithm, based on micro-vibration detection, can be used in a simple, but low-cost and durable, force sensor. We also analyze the results of using the same principle to detect slipping in other force sensors based on flexible parts. In particular, we show and compare the slip detection with: (i) a flexible finger, designed by the authors, acting as a force sensor; (ii) the finger torque sensor of a commercial robotic hand; (iii) a commercial six-axis force sensor mounted on the wrist of a robot; and (iv) a fingertip piezoresistive matrix sensor.

  20. Micro-Etched Platforms for Thermal Inactivation of Bacillus Anthracis and Bacillus Thuringiensis Spores (United States)


    furnace. A silicon nitride base provided a uniformly heated surface which ensured a uniform temperature exposure for the entire platform surface ...holding spores was wet chemical etching. This procedure entailed several steps in order to prepare the glass surface to be etched. Cleanliness of the...inspected by light microscopy at multiple intervals for surface cleanliness . 40 Figure 17. 400x magnification of Cover slip after the surface has

  1. The eRHIC Ring-Ring Collider Design

    CERN Document Server

    Wang, Fuhua; Beebe-Wang, Joanne; Deshpande, Abhay A; Farkhondeh, Manouchehr; Franklin, Wilbur; Graves, William; Litvinenko, Vladimir N; MacKay, William W; Milner, Richard; Montag, Christoph; Ozaki, Satoshi; Parker, Brett; Peggs, Steve; Ptitsyn, Vadim; Roser, Thomas; Tepikian, Steven; Trbojevic, Dejan; Tschalär, C; Wang, Dong; Zolfaghari, Abbasali; Zwart, Townsend; van der Laan, Jan


    The eRHIC ring-ring collider is the main design option of the future lepton-ion collider at Brookhaven National Laboratory. We report the revisions of the ring-ring collider design features to the baseline design presented in the eRHIC Zeroth Design Report (ZDR). These revisions have been made during the past year. They include changes of the interaction region which are required from the modifications in the design of the main detector. They also include changes in the lepton storage ring for high current operations as a result of better understandings of beam-beam interaction effects. The updated collider luminosity and beam parameters also take into account a more accurate picture of current and future operational aspects of RHIC.

  2. Flash Heating of Crustal Rocks at Seismic Slip Rates (United States)

    Goldsby, D. L.; Spagnuolo, E.; Smith, S. A.; Beeler, N. M.; Tullis, T. E.; Di Toro, G.; Nielsen, S. B.


    Recent experiments have demonstrated that rocks undergo extreme frictional weakening at near-earthquake slip rates due to the thermal degradation of the strength, or even melting, of microscopic asperity contacts on their sliding surfaces (Goldsby and Tullis, 2012). These previous experiments, conducted at constant normal stress and slip rates of up to ~0.4 m/s, revealed a 1/V dependence of friction on slip rate above a characteristic weakening velocity, Vw, in accord with theories of flash heating (e.g., Rice, 2006). The weakening velocity obtains values of ~0.1 m/s for many crustal silicate rocks (Goldsby and Tullis, 2012). Here we test two further predictions of flash-heating theory - that the degree of weakening saturates at slip rates approaching 1 m/s, and that the weakening behavior due to flash heating is independent of normal stress - by testing samples at slip rates of up to 1 m/s at different normal stresses. Experiments were conducted in a 1-atm, high-velocity friction apparatus at the Istituto Nazionale di Geofisica e Vulcanologia in Rome. A sample consisted of a pair of hollow cylinders of Westerly granite or Frederick diabase subjected to a nominally constant normal stress of from 1 to 30 MPa and subjected to a variety of rate-stepping sequences. Data were acquired at rates of up to 1 MHz. As predicted, the experiments demonstrate that the degree of weakening due to flash heating saturates at slip rates approaching 1 m/s; in a few cases, friction even increases slightly with increasing slip rate near 1 m/s. The experiments also demonstrate that, within the scatter of the data, the value of Vw and the friction coefficient in the weakened state is independent of normal stress, the expected result if average contact sizes and contact stresses are independent of normal stress. The data thus further corroborate existing theories and experimental data for flash heating, allowing for a more reliable determination of the conditions under which flash heating

  3. Transactional Network Platform: Applications

    Energy Technology Data Exchange (ETDEWEB)

    Katipamula, Srinivas; Lutes, Robert G.; Ngo, Hung; Underhill, Ronald M.


    In FY13, Pacific Northwest National Laboratory (PNNL) with funding from the Department of Energy’s (DOE’s) Building Technologies Office (BTO) designed, prototyped and tested a transactional network platform to support energy, operational and financial transactions between any networked entities (equipment, organizations, buildings, grid, etc.). Initially, in FY13, the concept demonstrated transactions between packaged rooftop air conditioners and heat pump units (RTUs) and the electric grid using applications or "agents" that reside on the platform, on the equipment, on a local building controller or in the Cloud. The transactional network project is a multi-lab effort with Oakridge National Laboratory (ORNL) and Lawrence Berkeley National Laboratory (LBNL) also contributing to the effort. PNNL coordinated the project and also was responsible for the development of the transactional network (TN) platform and three different applications associated with RTUs. This document describes two applications or "agents" in details, and also summarizes the platform. The TN platform details are described in another companion document.

  4. The 3-D surface deformation, coseismic fault slip and after-slip of the 2010 Mw6.9 Yushu earthquake, Tibet, China (United States)

    Zhang, Guohong; Shan, Xinjian; Feng, Guangcai


    Using SAR interferometry on C band Envisat descending track and L band ALOS ascending track SAR images, respectively, we firstly obtain two coseismic deformation fields and one postseismic deformation of the 2010 Yushu earthquake, Tibet, China. In the meanwhile, we also obtain the azimuthal coseismic deformation of the Yushu event by Multi Aperture Interferometry (MAI) technique. With the 3 components of one-dimensional coseismic InSAR measurements, we resolve the complete 3-dimensional deformation of the 2010 Yushu event, which shows conformity and complexity to left lateral slip mechanism. The horizontal deformation is basically consistent with a sinistral slip event; whereas the vertical displacement does show certain level of complexity, which we argue is indicative of local fault geometry variation. Based on the InSAR data and elastic dislocation assumption, we invert for coseismic fault slip and early after-slip of the Yushu event. Our inversion results show major coseismic left lateral strike slip with only minor thrust component. The after-slip model fills most of the slip gaps left by the coseismic fault slip and finds a complementary slip distribution to the coseismic fault slip, which is a good indicator that future earthquake potential on the Yushu segment has been significantly reduced.

  5. Direct measurement of wall slip and slip layer thickness of non-Brownian hard-sphere suspensions in rectangular channel flows (United States)

    Jesinghausen, Steffen; Weiffen, Rene; Schmid, Hans-Joachim


    Wall slip is a long-known phenomenon in the field of rheology. Nevertheless, the origin and the evolution are not completely clear yet. Regarding suspensions, the effect becomes even more complicated, because different mechanisms like pure slip or slip due to particle migration have to be taken into account. Furthermore, suspensions themselves show many flow anomalies and the isolation of slip is complicated. In order to develop working physical models, further insight is necessary. In this work, we measured experimentally the wall slip velocities of different highly filled suspensions in a rectangular slit die directly with respect to the particle concentration and the particle size. The slip velocities were obtained using a particle image velocimetry (PIV) system. The suspensions consisting of a castor oil-cinnamon oil blend and PMMA particles were matched in terms of refractive indexes to appear transparent. Hereby, possible optical path lengths larger than 15 mm were achieved. The slip velocities were found to be in a quadratic relation to the wall shear stress. Furthermore, the overall flow rate as well as the particle concentration has a direct influence on the slip. Concerning the shear stress, there seem to be two regions of slip with different physical characteristics. Furthermore, we estimated the slip layer thickness directly from the velocity profiles and propose a new interpretation. The PIV technique is used to investigate the viscosity and implicit the concentration profile in the slit die. It is shown that the particle migration process is quite fast.

  6. Comparisons of Limit Analysis Solutions and Random Search Solutions on Slope Critical Slip SUrface

    Institute of Scientific and Technical Information of China (English)



    The object of this paper is twofold:to present a kinematics limit analysis for assessing the safety of slope or its critical slip surface,and to compare the searched slip surface with that by limit analysis.

  7. A slow slip event along the northern Ecuadorian subduction zone (United States)

    Nocquet, J.; Mothes, P. A.; Vallee, M.; Regnier, M.


    Rapid subduction of the Nazca plate beneath the Ecuador-Colombia margin (~58 mm/yr) has produced one of the largest megathrust earthquake sequence during the last century. The 500-km-long rupture zone of the 1906 (Mw = 8.8) event was partially reactivated by three thrust events; in 1942 (Mw = 7.8), 1958 (Mw = 7.7), and 1979 (Mw = 8.2), whose rupture zones abut one another. New continuously-recording GPS stations installed along the Ecuadorian coast, together with campaign sites observed since 1994 indicate that the current velocities results from the superimposition of a NNE motion the crustal North Andean Block occurring at ~8 mm/yr in Ecuador and the elastic deformation involved by partial locking of the subduction interface. We first estimate the long-term kinematics of the North Andean block in a joint inversion including GPS data, earthquake slip vectors and quaternary slip rates on major faults. The inversion provides a Euler pole located at long. -107.8°E, lat. 36.2°N, 0.091°/Ma and indicates little internal deformation of the North Andean Block (wrms=1.3 mm/yr). Residual velocities with respect to the North Andean Block are then modeled in terms of elastic locking along the subduction interface. Models indicate that the subduction interface is partially locked (50%) up to a depth of 40 km. Finally, we report a transient event that occurred in early 2008 near the Ecuador-Colombia border. The magnitude of the trenchward displacement is 13 mm, with uplift of similar magnitude. While the total duration of the slip event is 5 months, the horizontal time series clearly shows two sub-phases of slip with approximatively similar magnitud of displacement and duration, separated by 6 weeks. Modelling indicates that the slip occurs at 40 km depth, immediately below downdip extension of the locked zone.

  8. Clean Elements in Abelian Rings

    Indian Academy of Sciences (India)

    Angelina Y M Chin


    Let be a ring with identity. An element in is said to be clean if it is the sum of a unit and an idempotent. is said to be clean if all of its elements are clean. If every idempotent in is central, then is said to be abelian. In this paper we obtain some conditions equivalent to being clean in an abelian ring.

  9. DELPHI's Ring Imaging Cherenkov Chamber

    CERN Multimedia


    The hundreds of mirrors around this Ring Imaging Cherenkov Chamber reflect cones of light created by fast moving particles to a detector. The velocity of a particle can be measured by the size of the ring produced on the detector. DELPHI, which ran from 1989 to 2000 on the LEP accelerator, was primarily concerned with particle identification.

  10. Pyrimidine-pyridine ring interconversion

    NARCIS (Netherlands)

    Plas, van der H.C.


    This chapter discusses the pyrimidine-to-pyridine ring transformation and pyridine-to-pyrimidine ring transformation. In nucleophile-induced pyrimidine-to-pyridine rearrangements, two types of reactions can be distinguished depending on the structure of the nucleophile: (1) reactions in which the ni

  11. Supercharacter theories and Schur rings

    CERN Document Server

    Hendrickson, Anders O F


    Diaconis and Isaacs have defined the supercharacter theories of a finite group to be certain approximations to the ordinary character theory of the group. We make explicit the connection between supercharacter theories and Schur rings, and we provide supercharacter theory constructions which correspond to Schur ring constructions of Leung and Man and of Tamaschke.

  12. Contraceptive vaginal rings: a review. (United States)

    Brache, Vivian; Faundes, Anibal


    Development efforts on contraceptive vaginal rings were initiated over 40 years ago based on two principles: the capacity of the vaginal epithelium to absorb steroids and the capacity of elastomers to release these hormones at a nearly constant rate. Numerous models of contraceptive vaginal rings (CVRs) have been studied, but only two have reached the market: NuvaRing, a combined ring that releases etonogestrel (ENG) and ethinylestradiol (EE), and Progering, a progesterone-releasing ring for use in lactating women. The main advantages of CVRs are their effectiveness (similar to or slightly better than the pill), ease of use without the need of remembering a daily routine, user's ability to control initiation and discontinuation, nearly constant release rate allowing for lower doses, greater bioavailability and good cycle control with the combined ring. The main disadvantages are related to the mode of delivery; CVRs may cause vaginal discharge and complaints, ring expulsion is not uncommon, the ring may be felt during coitus and vaginal insertion may be unpleasant for some women. The studies reviewed in this article provide evidence that CVRs are safe, effective and highly acceptable to women. There is no doubt that CVRs offer a new, effective contraceptive option to women, expanding their available choices of hormonal contraception.

  13. Constructions over localizations of rings

    Directory of Open Access Journals (Sweden)

    Alessandro Logar


    Full Text Available In this paper we construct a category of effective noetherian rings in which linear equations can be “solved”. This category is closed with respect to some important constructions like trascendental extensions, quotientations, finite products and localizations with respect to a large class of multiplicatively closed systems. Hence it gives a definition of “constructive” rings.

  14. Identification of platform levels

    DEFF Research Database (Denmark)

    Mortensen, Niels Henrik


    reduction, ability to launch a wider product portfolio without increasing resources and reduction of complexity within the whole company. To support the multiple product development process, platform based product development has in many companies such as Philips, VW, Ford etc. proven to be a very effective...... because the nature of developing platforms and applications are very different. In single product development reuse is often determined by individual designers, in multiple product development reuse is to a large degree a management issue. It is difficult for a company to switch from single to multiple...... development will be examined. Based on the identification of the above characteristics five platform levels are described. The research presented in this paper is a result of MSc, Ph.D projects at the Technical University of Denmark and consultancy projects within the organisation of Institute of Product...

  15. Universal visualization platform (United States)

    Gee, Alexander G.; Li, Hongli; Yu, Min; Smrtic, Mary Beth; Cvek, Urska; Goodell, Howie; Gupta, Vivek; Lawrence, Christine; Zhou, Jainping; Chiang, Chih-Hung; Grinstein, Georges G.


    Although there are a number of visualization systems to choose from when analyzing data, only a few of these allow for the integration of other visualization and analysis techniques. There are even fewer visualization toolkits and frameworks from which one can develop ones own visualization applications. Even within the research community, scientists either use what they can from the available tools or start from scratch to define a program in which they are able to develop new or modified visualization techniques and analysis algorithms. Presented here is a new general-purpose platform for constructing numerous visualization and analysis applications. The focus of this system is the design and experimentation of new techniques, and where the sharing of and integration with other tools becomes second nature. Moreover, this platform supports multiple large data sets, and the recording and visualizing of user sessions. Here we introduce the Universal Visualization Platform (UVP) as a modern data visualization and analysis system.

  16. Geostationary multipurpose platforms (United States)

    Bekey, I.; Bowman, R. M.


    In addition to the advantages generally associated with orbital platforms, such as improved reliability, economies of scale, simple connectivity of elements, reduced tracking demands and the restraint of orbital object population growth, geostationary platforms yield: (1) continuous access by fixed ground antennas for communications services; (2) continuous monitoring of phenomena over chosen regions of the earth's surface; (3) a preferred location for many solar-terrestrial physics experiments. The geostationary platform also offers a low-risk and economical solution to the impending saturation of the orbital arc/frequency spectrum, maximizing the capacity of individual slots and increasing the utility of the entire arc. It also allows the use of many small, simple and inexpensive earth stations through complexity inversion and high power per beam. Block diagram and operational flowcharts are provided.

  17. Platforms for antibiotic discovery. (United States)

    Lewis, Kim


    The spread of resistant bacteria, leading to untreatable infections, is a major public health threat but the pace of antibiotic discovery to combat these pathogens has slowed down. Most antibiotics were originally isolated by screening soil-derived actinomycetes during the golden era of antibiotic discovery in the 1940s to 1960s. However, diminishing returns from this discovery platform led to its collapse, and efforts to create a new platform based on target-focused screening of large libraries of synthetic compounds failed, in part owing to the lack of penetration of such compounds through the bacterial envelope. This article considers strategies to re-establish viable platforms for antibiotic discovery. These include investigating untapped natural product sources such as uncultured bacteria, establishing rules of compound penetration to enable the development of synthetic antibiotics, developing species-specific antibiotics and identifying prodrugs that have the potential to eradicate dormant persisters, which are often responsible for hard-to-treat infections.

  18. Slip and fall risk on ice and snow:identification, evaluation and prevention


    Gao, Chuansi


    Slip and fall accidents and associated injuries on ice and snow are prevalent among outdoor workers and the general public in winter in many regions of the world. To understand and tackle this multi-factorial problem, a multidisciplinary approach was used to identify and evaluate slip and fall risks, and to propose recommendations for prevention of slips and falls on icy and snowy surfaces. Objectives were to present a systems perspective of slip and fall accidents and related risk factors; t...

  19. The Search for Ringed Exoplanets (United States)

    Kohler, Susanna


    Are planetary rings as common in our galaxy as they are in our solar system? A new study demonstrates how we might search for ringed exoplanets and then possibly finds one!Saturns Elsewhere?Artists illustration of the super ring system around exoplanet J1407b. This is the only exoplanet weve found with rings, but its not at all like Saturn. [Ron Miller]Our solar system is filled with moons and planetary rings, so it stands to reason that exoplanetary systems should exhibit the same features. But though weve been in the planet-hunting game for decades, weve only found one exoplanet thats surrounded by a ring system. Whats more, that system J1407b has enormous rings that are vastly different from the modest, Saturn-like rings that we might expect to be more commonplace.Have we not discovered ringed exoplanets just because theyre hard to identify? Or is it because theyre not out there? A team of scientists led by Masataka Aizawa (University of Tokyo) has set out to answer this question by conducting a systematic search for rings around long-period planet candidates.The transit light curve of KIC 10403228, shown with three models: the best-fitting planet-only model (blue) and the two best-fitting planet+ring models (green and red). [Aizawa et al. 2017]The Hunt BeginsWhy long-period planets? Rings are expected to be unstable as the planet gets closer to the central star. Whats more, the planet needs to be far enough away from the stars warmth for the icy rings to exist. The authors therefore select from the collection of candidate transiting planets 89 long-period candidates that might be able to host rings.Aizawa and collaborators then fit single-planet models (with no rings) to the light curves of these planets and search for anomalies curves that arent fit well by these standard models. Particularly suspicious characteristics include a long ingress/egress as the planet moves across the face of the star, and asymmetry of the transit shape.After applying a series of

  20. Formation of polar ring galaxies

    CERN Document Server

    Bournaud, F


    Polar ring galaxies are peculiar systems in which a gas rich, nearly polar ring surrounds an early-type or elliptical host galaxy. Two formation scenarios for these objects have been proposed: they are thought to form either in major galaxy mergers or by tidal accretion of the polar material from a gas rich donor galaxy. Both scenarios are studied through N-body simulations including gas dynamics and star formation. Constraints on physical parameters are drawn out, in order to determine which scenario is the most likely to occur. Polar ring galaxies from each scenario are compared with observations and we discuss whether the accretion scenario and the merging scenario account for observational properties of polar ring galaxies. The conclusion of this study is that the accretion scenario is both the most likely and the most supported by observations. Even if the merging scenario is rather robust, most polar ring galaxies are shown to be the result of tidal gas accretion events.

  1. Ionization cooling ring for muons

    Directory of Open Access Journals (Sweden)

    R. Palmer


    Full Text Available Practical ionization cooling rings could lead to lower cost or improved performance in neutrino factory or muon collider designs. The ring modeled here uses realistic three-dimensional fields. The performance of the ring compares favorably with the linear cooling channel used in the second U.S. Neutrino Factory Study. The normalized 6D emittance of an ideal ring is decreased by a factor of approximately 240, compared with a factor of only 15 for the linear channel. We also examine such real-world effects as windows on the absorbers and rf cavities and leaving empty lattice cells for injection and extraction. For realistic conditions the ring decreases the normalized 6D emittance by a factor of 49.

  2. Studies of methanol maser rings

    CERN Document Server

    Bartkiewicz, A; van Langevelde, H J; De Buizer, J M; Pihlström, Y


    We present the results of studies of a new class of 6.7 GHz methanol maser sources with a ring-like emission structure discovered recently with the EVN. We have used the VLA to search for water masers at 22 GHz and radio continuum at 8.4 GHz towards a sample of high-mass star forming regions showing a ring-like distribution of methanol maser spots. Using the Gemini telescopes we found mid-infrared (MIR) counterparts of five methanol rings with a resolution of 0."15. The centres of methanol maser rings are located within, typically, only 0."2 of the MIR emission peak, implying their physical relation with a central star. These results strongly support a scenario wherein the ring-like structures appear at the very early stage of massive star formation before either water-maser outflows or H II regions are seen.

  3. A Note on Clean Rings

    Institute of Scientific and Technical Information of China (English)

    Zhou Wang; Jianlong Chen


    Let R be a ring and g(x) a polynomial in C[x],where C=C(R) denotes the center of R.Camillo and Sim6n called the ring g(x)-clean if every element of R can be written as the sum of a unit and a root of g(x).In this paper,we prove that for a,b (E) C,the ring R is clean and b - a is invertible in R if and only if R is g1(x)-clean,where gl(x) = (x - a)(x - b).This implies that in some sense the notion of g(x)-clean rings in the Nicholson-Zhou Theorem and in the Camillo-Sim6n Theorem is indeed equivalent to the notion of clean rings.

  4. Windows Azure Platform

    CERN Document Server

    Redkar, Tejaswi


    The Windows Azure Platform has rapidly established itself as one of the most sophisticated cloud computing platforms available. With Microsoft working to continually update their product and keep it at the cutting edge, the future looks bright - if you have the skills to harness it. In particular, new features such as remote desktop access, dynamic content caching and secure content delivery using SSL make the latest version of Azure a more powerful solution than ever before. It's widely agreed that cloud computing has produced a paradigm shift in traditional architectural concepts by providin

  5. Windows Azure Platform

    CERN Document Server

    Redkar, Tejaswi


    The Azure Services Platform is a brand-new cloud-computing technology from Microsoft. It is composed of four core components-Windows Azure, .NET Services, SQL Services, and Live Services-each with a unique role in the functioning of your cloud service. It is the goal of this book to show you how to use these components, both separately and together, to build flawless cloud services. At its heart Windows Azure Platform is a down-to-earth, code-centric book. This book aims to show you precisely how the components are employed and to demonstrate the techniques and best practices you need to know

  6. Wireless sensor platform

    Energy Technology Data Exchange (ETDEWEB)

    Joshi, Pooran C.; Killough, Stephen M.; Kuruganti, Phani Teja


    A wireless sensor platform and methods of manufacture are provided. The platform involves providing a plurality of wireless sensors, where each of the sensors is fabricated on flexible substrates using printing techniques and low temperature curing. Each of the sensors can include planar sensor elements and planar antennas defined using the printing and curing. Further, each of the sensors can include a communications system configured to encode the data from the sensors into a spread spectrum code sequence that is transmitted to a central computer(s) for use in monitoring an area associated with the sensors.

  7. Mobile4D platform

    CSIR Research Space (South Africa)

    Botha, Adèle


    Full Text Available . It is a communication platform that has architecture for creating, deploying and managing services and applications by integrating voice, video and data across a range of IP and telecom communication networks. In 2007, Red Hat made a firm commitment... based on the Mobicents muni ations Platform brand. 2.1.5  Telco specific User‐Generated Services   A variety of communication network operators have started initiatives to address User- Generated Services for the Telecom domain. Some...

  8. Retrofit of Ressalat jacket platform (Persian Gulf) using friction damper device

    Institute of Scientific and Technical Information of China (English)



    A friction damper device (FDD) is used for vibration control of an existing steel jacket platform under seismic excitation.First,the damping is presented for vibration mitigation of structures located in seismically active zones.A new method for quick design of friction or yielding damping devices is presented.The effectiveness of the damping system employing such FDDs in a jacket platform is evaluated numerically.The influence of key parameters of the damping system on the vibration suppression of the offshore structure is studied in detail.To examine the vibration control effectiveness of the FDD for the jacket platform,performance of the controlled structure under the seismic forces is studied using numerical simulations.A parametric study is undertaken to discover the optimized slip load and brace area of the FDD.It is shown that the FDD is effective in mitigating the dynamic responses of the offshore platform structure.

  9. Role of multiscale heterogeneity in fault slip from quasi-static numerical simulations (United States)

    Aochi, Hideo; Ide, Satoshi


    Quasi-static numerical simulations of slip along a fault interface characterized by multiscale heterogeneity (fractal patch model) are carried out under the assumption that the characteristic distance in the slip-dependent frictional law is scale-dependent. We also consider slip-dependent stress accumulation on patches prior to the weakening process. When two patches of different size are superposed, the slip rate of the smaller patch is reduced when the stress is increased on the surrounding large patch. In the case of many patches over a range of scales, the slip rate on the smaller patches becomes significant in terms of both its amplitude and frequency. Peaks in slip rate are controlled by the surrounding larger patches, which may also be responsible for the segmentation of slip sequences. The use of an explicit slip-strengthening-then-weakening frictional behavior highlights that the strengthening process behind small patches weakens their interaction and reduces the peaks in slip rate, while the slip deficit continues to accumulate in the background. Therefore, it may be possible to image the progress of slip deficit at larger scales if the changes in slip activity on small patches are detectable.

  10. Stick-slip to sliding transition of dynamic contact lines under AC electrowetting

    NARCIS (Netherlands)

    Mannetje, 't D.J.C.M.; Mugele, F.; Ende, van den D.


    We show that at low velocities the dynamics of a contact line of a water drop moving over a Teflon-like surface under ac electrowetting must be described as stick–slip motion, rather than one continuous movement. At high velocities we observe a transition to a slipping regime. In the slipping regime

  11. Slow slip events and seismic tremor at circum-Pacific subduction zones (United States)

    Schwartz, Susan Y.; Rokosky, Juliana M.


    It has been known for a long time that slip accompanying earthquakes accounts for only a fraction of plate tectonic displacements. However, only recently has a fuller spectrum of strain release processes, including normal, slow, and silent earthquakes (or slow slip events) and continuous and episodic slip, been observed and generated by numerical simulations of the earthquake cycle. Despite a profusion of observations and modeling studies the physical mechanism of slow slip events remains elusive. The concurrence of seismic tremor with slow slip episodes in Cascadia and southwestern Japan provides insight into the process of slow slip. A perceived similarity between subduction zone and volcanic tremor has led to suggestions that slow slip involves fluid migration on or near the plate interface. Alternatively, evidence is accumulating to support the notion that tremor results from shear failure during slow slip. Global observations of the location, spatial extent, magnitude, duration, slip rate, and periodicity of these aseismic slip transients indicate significant variation that may be exploited to better understand their generation. Most slow slip events occur just downdip of the seismogenic zone, consistent with rate- and state-dependent frictional modeling that requires unstable to stable transitional properties for slow slip generation. At a few convergent margins the occurrence of slow slip events within the seismogenic zone makes it highly likely that transitions in frictional properties exist there and are the loci of slow slip nucleation. Slow slip events perturb the surrounding stress field and may either increase or relieve stress on a fault, bringing it closer to or farther from earthquake failure, respectively. This paper presents a review of slow slip events and related seismic tremor observed at plate boundaries worldwide, with a focus on circum-Pacific subduction zones. Trends in global observations of slow slip events suggest that (1) slow slip is a

  12. Spatial and Temporal Comparisons of Tremor and Slow Slip in Cascadia (United States)

    Hall, K.; Houston, H.; Schmidt, D. A.


    Tremor is often thought to be a proxy for slip during ETS events and has been shown to have a relatively abrupt updip boundary, implying an abrupt updip limit of slip. However, as shown by Houston (AGU abstract, 2012) and Hall and Houston (AGU abstract, 2014), slip inferred from GPS extended updip of the seismically-detected tremor in the 2010 M6.8 and 2012 M6.7 ETS events. If slip extending updip of tremor is a persistent phenomena, tremor cannot be directly used as a proxy for slip. Following the methods used on the 2010 and 2012 ETS event, we found that the August 2009 ETS around Portland, OR also showed slip updip of tremor. Principal Component Analysis was implemented to automatically select the direction and magnitude of the maximum displacement vector. Our Green's functions use the Okada formulation of buried rectangular faults in a halfspace for a grid of 8x8 km subfaults based on the McCrory slab model. We then performed static inversions with 2nd order Tikhonov regularization to find slip on the fault surface. We also compared two different inversions for 2009, one where slip was allowed on a broad regional grid and a tremor-restricted inversion (TRI) where slip was restricted to subfaults in which tremor occurred. We found the 2009 ETS event released the equivalent of a M6.8 in slip. We also found that, as in the previous ETSs, the TRI forced up to 10 cm of slip to the updip edge of the grid, which is exceeds the amount of plate convergence expected in the inter-ETS periods and is therefore physically unsustainable over several ETS events. The excess slip along the updip edge in the TRI models also suggests that the geodetic data prefer slip with a larger footprint than the spatial pattern of tremor, and supports our conclusion that tremor does not represent all of the slip during an ETS event. We see consistent and clear spatial relationship between tremor and slip with some slip occurring updip of tremor. Our static inversions show where slip is

  13. Black Hole Ringing, Quasinormal Modes, and Light Rings

    CERN Document Server

    Khanna, Gaurav


    Modelling of gravitational waves from binary black hole inspiral has played an important role in the recent observations of such signals. The late-stage ringdown phase of the gravitational waveform is often associated with the null particle orbit (\\light ring") of the black hole spacetime. With simple models we show that this link between the light ring and spacetime ringing is based more on the history of applications than on an actual constraining relationship. We also show, in particular, that a better understanding of the disassociation between the two, may be relevant to the astrophysically interesting case of rotating (Kerr) black holes.

  14. Modeling of Slow Slip Events at the Hikurangi Subduction Margin (United States)

    Williams, C. A.; Wallace, L. M.; Beavan, R. J.; Lohman, R. B.; Ellis, S. M.; Marson-Pidgeon, K.; Eberhart-Phillips, D. M.; Reyners, M.; Henrys, S. A.; Bell, R. E.


    Slow slip events (SSEs) occur along nearly the entire Hikurangi subduction margin adjacent to the North Island, New Zealand. Long duration (1-2 years), deep (40- 60 km depth), large events (equivalent to Mw ~7.0) occur at the southern Hikurangi margin, while shallow (10-15 km depth), short (1-2 weeks), smaller events (equivalent to Mw ~6.5) occur at the northern and central Hikurangi margin. A recently-initiated shallow event (Castle Point) lies further to the south than previous shallow events and appears to be rupturing a portion of the plate interface that was previously thought to be locked. Since 2000, three major slow slip events have been identified at the southern Hikurangi margin; the 2003 Kapiti SSE, the 2004/2005 Manawatu SSE, and the 2007/2008 Kapiti SSE (which ended in early 2009). A repeat of the 2004/2005 Manawatu event is presently underway. In some cases, these SSEs may have triggered moderate seismicity within the subducting Pacific plate (e.g., Reyners and Bannister, 2007). To date, all of the inferred slip distributions for the SSEs have been obtained using elastic half-space dislocation models. Numerous recent studies of coseismic displacement fields have shown that variations in elastic properties and surface topography can influence the predicted deformation. In our initial work, we used a finite element model to evaluate the influence of material property variations on the predicted surface deformation field. Elastic properties were assigned based on a seismic velocity model, and slip distributions inferred from an elastic half-space model were applied. When compared to the elastic half- space model, we found that the heterogeneous models generally predict larger amounts of surface deformation, indicating that the half-space models may be overestimating the amount of slip. As the next phase in our study, we are using finite element models that include material property variations and topography to generate Green's functions for use in an

  15. Spacing and strength of active continental strike-slip faults (United States)

    Zuza, Andrew V.; Yin, An; Lin, Jessica; Sun, Ming


    Parallel and evenly-spaced active strike-slip faults occur widely in nature across diverse tectonic settings. Despite their common existence, the fundamental question of what controls fault spacing remains unanswered. Here we present a mechanical model for the generation of parallel strike-slip faults that relates fault spacing to the following parameters: (1) brittle-crust thickness, (2) fault strength, (3) crustal strength, and (4) crustal stress state. Scaled analogue experiments using dry sand, dry crushed walnut shells, and viscous putty were employed to test the key assumptions of our quantitative model. The physical models demonstrate that fault spacing (S) is linearly proportional to brittle-layer thickness (h), both in experiments with only brittle materials and in two-layer trials involving dry sand overlying viscous putty. The S / h slope in the two-layer sand-putty experiments may be controlled by the (1) rheological/geometric properties of the viscous layer, (2) effects of distributed basal loading caused by the viscous shear of the putty layer, and/or (3) frictional interaction at the sand-putty interface (i.e., coupling between the viscous and brittle layers). We tentatively suggest that this third effect exerts the strongest control on fault spacing in the analogue experiments. By applying our quantitative model to crustal-scale strike-slip faults using fault spacing and the seismogenic-zone thickness obtained from high-resolution earthquake-location data, we estimate absolute fault friction of active strike-slip faults in Asia and along the San Andreas fault system in California. We show that the average friction coefficient of strike-slip faults in the India-Asia collisional orogen is lower than that of faults in the San Andreas fault system. Weaker faults explain why deformation penetrates >3500 km into Asia from the Himalaya and why the interior of Asia is prone to large (M > 7.0) devastating earthquakes along major intra-continental strike-slip

  16. Is the bell ringing?

    CERN Multimedia

    Francesco Poppi


    During the Nobel prize-winning UA1 experiment, scientists in the control room used to ring a bell if a particularly interesting event had occurred. Today, the “CMS Exotica hotline” routine produces a daily report that lists the exotic events that were recorded the day before.   Display of an event selected by the Exotica routine. Take just a very small fraction of the available data (max. 5%); define the events that you want to keep and set the parameters accordingly; run the Exotica routine and only look at the very few images that the system has selected for you. This is the recipe that a small team of CMS researchers has developed to identify the signals coming from possible new physics processes. “This approach does not replace the accurate data analysis on the whole set of data. However, it is a very fast and effective way to focus on just a few events that are potentially very interesting”, explains Maurizio Pierini (CERN), who developed the...

  17. Games and Platform Decisions

    DEFF Research Database (Denmark)

    Hansen, Poul H. Kyvsgård; Mikkola, Juliana Hsuan


    is the application of on-line games in order to provide training for decision makers and in order to generate overview over the implications of platform decisions. However, games have to be placed in a context with other methods and we argue that a mixture of games, workshops, and simulations can provide improved...

  18. Creative Platform Learning (CPL)

    DEFF Research Database (Denmark)

    Christensen, Jonna Langeland; Hansen, Søren

    Creative Platform Learning (CPL) er en pædagogisk metode, der skaber foretagsomme og innovative elever, der kan anvende deres kreativitet til at lære nyt. Ifølge den nye skolereform skal Innovation og entreprenørskab tydeliggøres i alle fag. I CPL er det en integreret del af undervisningen...

  19. Games and Platform Decisions

    DEFF Research Database (Denmark)

    Hansen, Poul H. Kyvsgård; Mikkola, Juliana Hsuan


    is the application of on-line games in order to provide training for decision makers and in order to generate overview over the implications of platform decisions. However, games have to be placed in a context with other methods and we argue that a mixture of games, workshops, and simulations can provide improved...

  20. A numerical parametric study of mechanical behavior of dry contact slipping on the disc–pads interface

    Directory of Open Access Journals (Sweden)

    Ali Belhocine


    Full Text Available The aim of this contribution was to present a study based on the determination and the visualization of the structural deformations due to the contact of slipping between the disc and the pads. The results of the calculations of the contact described in this work relate to displacements, Von Mises stress on the disc, and contact pressures on the inner and outer pad at various moments of simulation. We first proceed to view the meshed models and predicting variations of tensile or compressive stress normal to the plane and shear stress in rotating disc and ring bodies. One precedes then the influence of some parameters on the computation results such as rotation of the disc, the smoothness of the mesh, the material of the brake pads and the friction coefficient entering the disc and the pads, the number of revolutions and the material of the disc, the pad groove.

  1. Ion Rings for Magnetic Fusion

    Energy Technology Data Exchange (ETDEWEB)

    Greenly, John, B.


    This Final Technical Report presents the results of the program, Ion Rings for Magnetic Fusion, which was carried out under Department of Energy funding during the period August, 1993 to January, 2005. The central objective of the program was to study the properties of field-reversed configurations formed by ion rings. In order to reach this objective, our experimental program, called the Field-reversed Ion Ring Experiment, FIREX, undertook to develop an efficient, economical technology for the production of field-reversed ion rings. A field-reversed configuration (FRC) in which the azimuthal (field-reversing) current is carried by ions with gyro-radius comparable to the magnetic separatrix radius is called a field-reversed ion ring. A background plasma is required for charge neutralization of the ring, and this plasma will be confined within the ring's closed magnetic flux. Ion rings have long been of interest as the basis of compact magnetic fusion reactors, as the basis for a high-power accelerator for an inertial fusion driver, and for other applications of high power ion beams or plasmas of high energy density. Specifically, the FIREX program was intended to address the longstanding question of the contribution of large-orbit ions to the observed stability of experimental FRCs to the MHD tilt mode. Typical experimental FRCs with s {approx} 2-4, where s is the ratio of separatrix radius to ion gyro-radius, have been stable to tilting, but desired values for a fusion reactor, s > 20, should be unstable. The FIREX ring would consist of a plasma with large s for the background ions, but with s {approx} 1 for the ring ions. By varying the proportions of these two populations, the minimum proportion of large-orbit ions necessary for stability could be determined. The incorporation of large-orbit ions, perhaps by neutral-beam injection, into an FRC has been advanced for the purpose of stabilizing, heating, controlling angular momentum, and aiding the formation

  2. Ideals in Morita Rings and Morita Semigroups

    Institute of Scientific and Technical Information of China (English)

    Yu Qun CHEN; Yun FAN; Zhi Feng HAO


    We characterize the lattice of all ideals of a Morita ring (semigroup) when the corresponding pair of rings (semigroups) in the Morita context are Morita equivalent s-unital (like-unity) rings(semigroups).

  3. Opto-chemical sensors based on integrated ring-shaped organic photodiodes: progress and applications (United States)

    Mayr, Torsten; Abel, Tobias; Ungerböck, Birgit; Sagmeister, Martin; Charwat, Verena; Ertl, Peter; Kraker, Elke; Köstler, Stefan; Tschepp, Andreas; Lamprecht, Bernhard


    The recent advances on a monolithically integrated sensor platform based on ring-shaped organic photo detectors are presented. Various sensing chemistries based on luminescence for the detection of a number of parameters such as oxygen, carbon dioxide, humidity and pH in gaseous and/or liquid phase were investigated and optimized to the requirements of the sensor platform. Aiming on practical application, the need and methods to reference luminescence signals are evaluated including two wavelength rationing and lifetime measurements. Finally, we will discuss potential applications of the platform and present a micro-fluidic chip containing an array of integrated sensor spots and organic photodiodes.

  4. Ring-Ringlet Interactions in Saturn's C Ring (United States)

    Rappaport, N. J.


    The overall obejective of this work is to derive a theoretical model for the formation of gaps harboring isolated ringlets in order to explain the presence of such features in Saturn's C ring and Cassini division.

  5. An Automatic Cycle-Slip Processing Method and Its Precision Analysis

    Institute of Scientific and Technical Information of China (English)

    ZHENG Zuoya; LU Xiushan


    On the basis of analyzing and researching the current algorithms of cycle-slip detection and correction, a new method of cycle-slip detection and correction is put forward in this paper, that is, a reasonable cycle-slip detection condition and algorithm with corresponding program COMPRE (COMpass PRE-processing) to detect and correct cycle-slip automatically, compared with GIPSY and GAMIT software, for example, it is proved that this method is effective and credible to cycle-slip detection and correction in GPS data pre-processing.

  6. Numerical study of the effect of Navier slip on the driven cavity flow

    KAUST Repository

    He, Qiaolin


    We study the driven cavity flow using the Navier slip boundary condition. Our results have shown that the Navier slip boundary condition removes the corner singularity induced by the no-slip boundary condition. In the low Reynolds number case, the behavior of the tangential stress is examined and the results are compared with the analytic results obtained in [14]. For the high Reynolds number, we study the effect of the slip on the critical Reynolds number for Hopf bifurcation. Our results show that the first Hopf bifurcation critical Reynolds number is increasing with slip length. © 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.


    Institute of Scientific and Technical Information of China (English)

    Ding Wenjing; Fan Shichao; Lu Mingwan


    This paper, using Karnopp's model of friction force and phase plane method, studies the stick-slip motion of the flexible drive mechanism. It is explained that a sudden drop of friction force is the essential source of stick-slip motion when the sliding is impending. A new criterion for occurrence of stick-slip motion is established.The stick-slip region and the stable region in a parameter plane are separated by a critical parameter curve. Moreover, for the stick-slip motion of the flexible drive mechanism without viscous damping, a parameter expression is obtained. The results may be used in design of the flexible drive mechanism.

  8. Mobile Platforms and Development Environments

    CERN Document Server

    Helal, Sumi; Li, Wengdong


    Mobile platform development has lately become a technological war zone with extremely dynamic and fluid movement, especially in the smart phone and tablet market space. This Synthesis lecture is a guide to the latest developments of the key mobile platforms that are shaping the mobile platform industry. The book covers the three currently dominant native platforms -- iOS, Android and Windows Phone -- along with the device-agnostic HTML5 mobile web platform. The lecture also covers location-based services (LBS) which can be considered as a platform in its own right. The lecture utilizes a sampl

  9. Soft Congruence Relations over Rings

    Directory of Open Access Journals (Sweden)

    Xiaolong Xin


    Full Text Available Molodtsov introduced the concept of soft sets, which can be seen as a new mathematical tool for dealing with uncertainty. In this paper, we initiate the study of soft congruence relations by using the soft set theory. The notions of soft quotient rings, generalized soft ideals and generalized soft quotient rings, are introduced, and several related properties are investigated. Also, we obtain a one-to-one correspondence between soft congruence relations and idealistic soft rings and a one-to-one correspondence between soft congruence relations and soft ideals. In particular, the first, second, and third soft isomorphism theorems are established, respectively.

  10. Soft congruence relations over rings. (United States)

    Xin, Xiaolong; Li, Wenting


    Molodtsov introduced the concept of soft sets, which can be seen as a new mathematical tool for dealing with uncertainty. In this paper, we initiate the study of soft congruence relations by using the soft set theory. The notions of soft quotient rings, generalized soft ideals and generalized soft quotient rings, are introduced, and several related properties are investigated. Also, we obtain a one-to-one correspondence between soft congruence relations and idealistic soft rings and a one-to-one correspondence between soft congruence relations and soft ideals. In particular, the first, second, and third soft isomorphism theorems are established, respectively.

  11. Water generation and transport below Europa's strike-slip faults (United States)

    Kalousová, Klára; Souček, Ondřej; Tobie, Gabriel; Choblet, Gaël.; Čadek, Ondřej


    Jupiter's moon Europa has a very young surface with the abundance of unique terrains that indicate recent endogenic activity. Morphological models as well as spectral observations suggest that it might possess shallow lenses of liquid water within its outer ice shell. Here we investigate the generation and possible accumulation of liquid water below the tidally activated strike-slip faults using a numerical model of two-phase ice-water mixture in two-dimensional Cartesian geometry. Our results suggest that generation of shallow partially molten regions underneath Europa's active strike-slip faults is possible, but their lifetime is constrained by the formation of Rayleigh-Taylor instabilities due to the negative buoyancy of the melt. Once formed, typically within a few million years, these instabilities efficiently transport the meltwater through the shell. Consequently, the maximum water content in the partially molten regions never exceeds 10% which challenges their possible detection by future exploration mission.

  12. Slip-stick excitation and travelling waves excite silo honking (United States)

    Vriend, Nathalie; Warburton, Kasia; Porte, Elze


    Industrial storage silos filled with PET-particles can create a sound upon discharge. The sound forms a nuisance for the environment when the structure starts to act as a loudspeaker and may ultimately result in structural failure. This work investigates the phenomenon experimentally-the deployment of a microphone, an accelerometer and high-speed imaging on a laboratory set-up reveal the driving mechanism for the structural resonance: stick-slip at the wall. Particle image velocimetry shows an asymmetric, upwards travelling wave (at 50 m/s) which contains the dynamic "slip"-region. The frequency of the mechanical motion of the grains is successfully correlated to the frequency of the emitted sound. Friction models are explored to describe and quantify the frictional interaction between the grains and the wall.


    Directory of Open Access Journals (Sweden)



    Full Text Available The purpose of this study is to synthesize nano-grained Calcium Hydroxyapatite (HAp through slip casting technique. For this, hydroxyapatite powders were synthesized using two methods, wet chemical method and Ammoniacal method. The as-prepared powders and calcined powders were characterized using XRD, FTIR, to study the phases of the powders. The hydroxyapatite powder calcined at 1000°C for 2hr was used to prepare 50 vol% slurry using DN40 (sodium olyacrylate as dispersing agent. After slip casting, the green bodies were sintered at different temperatures, 1100, 1200, 1250 and 1300°C with 2hr soaking time. The sintered dense samples were characterized for physical and mechanical behavior.Dense HaP samples were obtained at 1250C.

  14. Soft matter dynamics: Accelerated fluid squeeze-out during slip (United States)

    Hutt, W.; Persson, B. N. J.


    Using a Leonardo da Vinci experimental setup (constant driving force), we study the dependency of lubricated rubber friction on the time of stationary contact and on the sliding distance. We slide rectangular rubber blocks on smooth polymer surfaces lubricated by glycerol or by a grease. We observe a remarkable effect: during stationary contact the lubricant is only very slowly removed from the rubber-polymer interface, while during slip it is very rapidly removed resulting (for the grease lubricated surface) in complete stop of motion after a short time period, corresponding to a slip distance typically of order only a few times the length of the rubber block in the sliding direction. For an elastically stiff material, poly(methyl methacrylate), we observe the opposite effect: the sliding speed increases with time (acceleration), and the lubricant film thickness appears to increase. We propose an explanation for the observed effect based on transient elastohydrodynamics, which may be relevant also for other soft contacts.

  15. Cytoplasmic streaming in plant cells: the role of wall slip. (United States)

    Wolff, K; Marenduzzo, D; Cates, M E


    We present a computer simulation study, via lattice Boltzmann simulations, of a microscopic model for cytoplasmic streaming in algal cells such as those of Chara corallina. We modelled myosin motors tracking along actin lanes as spheres undergoing directed motion along fixed lines. The sphere dimension takes into account the fact that motors drag vesicles or other organelles, and, unlike previous work, we model the boundary close to which the motors move as walls with a finite slip layer. By using realistic parameter values for actin lane and myosin density, as well as for endoplasmic and vacuole viscosity and the slip layer close to the wall, we find that this simplified view, which does not rely on any coupling between motors, cytoplasm and vacuole other than that provided by viscous Stokes flow, is enough to account for the observed magnitude of streaming velocities in intracellular fluid in living plant cells.

  16. Slipped capital femoral epiphysis caused by neurogenic heterotopic ossification. (United States)

    Chang, Sam Yeol; Yoo, Won Joon; Park, Moon Seok; Chung, Chin Youb; Choi, In Ho; Cho, Tae-Joon


    Slipped capital femoral epiphysis (SCFE) is rare in nonambulatory patients, as mechanical factors play important roles in the development of the disease. We report a case of SCFE, which occurred in a 12-year-old girl with a nonambulatory status after cerebral infarction. SCFE occurred after she received passive range of motion exercise and extracorporeal shock wave treatment for neurogenic heterotopic ossification around the hip joint. The patient was successfully managed by a stepwise approach, with radiological and clinical improvements.

  17. Implications of Fault Curvature for Slip Distributions, Opening, and Damage (United States)

    Ritz, E.; Pollard, D. D.; Griffith, W. A.


    In his seminal 1905 paper on the dynamics of faulting, E.M. Anderson idealized faults as planar structures. Although the theory of fault mechanics has developed from this idealization, abundant evidence from geological and geophysical investigations shows that fault surfaces exhibit geometric irregularities on many scales. Understanding the mechanical behavior of non-planar fault surfaces is a fundamental problem for scientists working on the brittle deformation of Earth’s crust and is of practical importance to disciplines such as rock mechanics, geotechnical engineering, and earthquake science. Geologic observations of exhumed meter-scale strike-slip faults in the Bear Creek drainage, Sierra Nevada, CA, provide insights into the relationship between non-planar fault geometry and frictional slip at depth. These faults have smoothly curving surface expressions which may be approximated as sinusoidal curves. We numerically investigate both the natural fault geometries and model sinusoidal faults. Earlier models for the stress and deformation near a sinusoidal fault assume boundary conditions and fault characteristics that are not observed in nature. The 2D displacement discontinuity boundary element method is combined with a complementarity algorithm to model quasi-static slip on non-planar faults, and the resulting deformation of the nearby rock. This numerical technique can provide an accurate solution for any boundary value problem regarding crack-like features in an otherwise homogeneous and isotropic elastic material. Both field and numerical investigations indicate that non-planar fault geometry perturbs the along-fault slip form the distribution predicted for planar faults. In addition, both field observations and numerical modeling show that sliding along curved faults at depth may lead to localized fault opening, affecting local permeability and fluid migration.

  18. Weakly nonlinear stability of ultra-thin slipping films

    Institute of Scientific and Technical Information of China (English)

    HU Guohui


    A weakly nonlinear theory is presented to study the effects of slippage on the stability of the ultra-thin polymer films.The nonlinear mathematical model is constructed for perturbations of small finite amplitude based on hydrodynamic equations with the long wave approximation. Results reveal that the nonlinearity always accelerates the rupture of the films. The influences of the slip length, film thickness, and initial amplitude of perturbations on the rupture of the films are investigated.

  19. Design of a ring resonator-based optical beam forming network for phased array receive antennas

    NARCIS (Netherlands)

    Klooster, van 't J.W.; Roeloffzen, C.G.H.; Meijerink, A.; Zhuang, L.; Marpaung, D.A.I.; Etten, van W.C.; Heideman, R.G.; Leinse, A.; Schippers, H.; Verpoorte, J.; Wintels, M.


    A novel squint-free ring resonator-based optical beam forming network (OBFN) for phased array antennas (PAA) is proposed. It is intended to provide broadband connectivity to airborne platforms via geostationary satellites. In this paper, we present the design of the OBFN and its control system. Our

  20. Research Development and Perspective on Slow Slip, Tremors, and Slow Earthquakes

    Institute of Scientific and Technical Information of China (English)

    Wang Yanzhao; Shen Zhengkang


    Seismological and geodetic observations indicate that slow slip sometimes occurs in active fault zones beneath the seismogenic depth, and large slow slip can result in transient ground motion.Slow earthquakes, on the other hand, emit tremor-like signals within a narrow frequency band, and usually produce no catastrophic consequences. In general, slow slip and slow earthquakes probably correspond to deformation processes associated with releasing elastic energy in fault zones, and understanding their mechanisms may help improve our understanding of fault zone dynamic processes. This article reviews the research progress on slow slip and slow earthquakes over the last decade. Crustal motion and tremor activities associated with slow slip and slow earthquakes have been investigated extensively, mainly involving locating sources of slow slip and slow earthquakes and numerical modeling of their processes. In the meantime, debates have continued about slow slip and slow earthquakes,such as their origins, relationship, and mechanisms.

  1. Hydrodynamics beyond Navier-Stokes: the slip flow model. (United States)

    Yudistiawan, Wahyu P; Ansumali, Santosh; Karlin, Iliya V


    Recently, analytical solutions for the nonlinear Couette flow demonstrated the relevance of the lattice Boltzmann (LB) models to hydrodynamics beyond the continuum limit [S. Ansumali, Phys. Rev. Lett. 98, 124502 (2007)]. In this paper, we present a systematic study of the simplest LB kinetic equation-the nine-bit model in two dimensions--in order to quantify it as a slip flow approximation. Details of the aforementioned analytical solution are presented, and results are extended to include a general shear- and force-driven unidirectional flow in confined geometry. Exact solutions for the velocity, as well as for pertinent higher-order moments of the distribution functions, are obtained in both Couette and Poiseuille steady-state flows for all values of rarefaction parameter (Knudsen number). Results are compared with the slip flow solution by Cercignani, and a good quantitative agreement is found for both flow situations. Thus, the standard nine-bit LB model is characterized as a valid and self-consistent slip flow model for simulations beyond the Navier-Stokes approximation.

  2. Surface Slip Gradients and Fault Connectivity at Depth (United States)

    Oglesby, D. D.


    Observational and numerical evidence has implied that it is difficult for earthquake rupture to jump stepovers with widths significantly larger than 4 km [e.g., Harris et al., 1991; Harris and Day, 1999; Wesnousky, 2006]. It has also been shown observationally that if surface slip tapers to zero over a small along-strike distance on the primary fault segment at a stepover, an earthquake has a significantly increased likelihood of jumping the stepover and propagating to a secondary fault segment [Elliott et al., 2009]. This latter result has been attributed to a high slip gradient on the primary segment generating a strong dynamic stress concentration on the second segment, which can facilitate rupture renucleation [Oglesby, 2008]. Recent 3D dynamic earthquake simulations, however, provide an alternative interpretation for this effect: an earthquake on a fault that is disconnected at the surface but is connected (i.e., is a throughgoing structure) at depth also will tend to produce a higher surface slip gradient at the edges of the segments than will a system that is fully disconnected, at least for relatively long segments that are connected at relatively shallow depth. This result raises the possibility that many of the rupture "jumps" that we see at fault stepovers on the surface may in fact reflect through-going ruptures on a continuous subsurface fault. These results may have implications for the pervasiveness of fault connectivity at depth, the likelihood of throughgoing rupture at surface stepovers, ground motion estimates, and seismic hazard.

  3. Slip Flow in Elliptic Microducts with Constant Heat Flux

    Directory of Open Access Journals (Sweden)

    Marco Spiga


    Full Text Available This paper outlines a numerical model for determining the dynamic and thermal performances of a rarefied fluid flowing in a microduct with elliptical cross-section. A slip flow is considered, in laminar steady state condition, in fully developed forced convection, with Knudsen number in the range 0.001−0.1, in H1 boundary conditions. The velocity and temperature distributions are determined in the elliptic cross-section, for different values of both aspect ratio γ and Knudsen number, resorting to the Comsol Multiphysics software, to solve the momentum and energy equations. The friction factors (or Poiseuille numbers and the convective heat transfer coefficients (or Nusselt numbers are calculated and presented in graphs and tables. The numerical solution is validated resorting to data available in literature for continuum flow in elliptic cross-sections (Kn = 0 and for slip flow in circular ducts (γ=1. A further benchmark is carried out for the velocity profile for slip flow in ellipticalcross-sections, thanks to a recent analytical solution obtained using elliptic cylinder coordinates and the separation of variables method. The Poiseuille and Nusselt numbers for elliptic cross-sections are discussed. The results may be used to predict pressure drop and heat transfer performance in metallic microducts with elliptic cross-section, produced by microfabrication for microelectromechanical systems (MEMS.

  4. Onset of aseismic creep on major strike-slip faults

    KAUST Repository

    Çakir, Ziyadin


    Time series analysis of spaceborne synthetic aperture radar (SAR) data, GPS measurements, and fi eld observations reveal that the central section of the Izmit (Turkey) fault that slipped with a supershear rupture velocity in the A.D. 1999, Mw7.4, Izmit earthquake began creeping aseismically following the earthquake. Rapid initial postseismic afterslip decayed logarithmically with time and appears to have reached a steady rate comparable to the preearthquake full fault-crossing rate, suggesting that it may continue for decades and possibly until late in the earthquake cycle. If confi rmed by future monitoring, these observations identify postseismic afterslip as a mechanism for initiating creep behavior along strike-slip faults. Long-term afterslip and/or creep has signifi cant implications for earthquake cycle models, recurrence intervals of large earthquakes, and accordingly, seismic hazard estimation along mature strike-slip faults, in particular for Istanbul which is believed to lie adjacent to a seismic gap along the North Anatolian fault in the Sea of Marmara. © 2012 Geological Society of America.

  5. Residual hip growth after pinning of slipped capital femoral epiphysis. (United States)

    Breaud, Jean; Rubio, Amandine; Leroux, Julien; Griffet, Jacques


    Screwing of slipped capital femoral epiphysis must prevent its further slipping by prematurely fusing the physis. Whichever material is used, persistent femoral growth has been described, thereby increasing the risk of bone deformation. The objective of this study is to evaluate the residual growth after screwing of slipped capital femoral epiphysis. This study concerned 26 children, among which 13 children have been included, and 13 children excluded because of an incomplete clinical or radiological follow-up, or treatment by another technique. The pathological hip was treated with one screw (in eight cases) or two screws (in five cases). The controlateral hip was fixed with one screw. The different measures were taken on anteroposterior radiographs done the days after surgery, and on the first radiograph on which the growth plate had fused. Growth plate fusion was obtained after an average of 20 months. Each patient had presented a residual growth of at least one hip, thus 85% of the 26 fixed screws. Among the four hips, which did not grow, three were pathological, and were fixed by one screw (in one case) or two screws (in two cases), in a central or medial position. There was not any statistical relationship between the growth persistence and the other studied criteria. These results, proving the growth persistency, suggest that the follow-up must be extremely careful, as the number of threads crossing the growth plate will decrease, with the risk of loss of mechanical stability and reappearance of the femoral epiphysis slippage.

  6. Water slip flow in superhydrophobic microtubes within laminar flow region

    Institute of Scientific and Technical Information of China (English)

    Zhijia Yu; Xinghua Liu; Guozhu Kuang


    The fabrication of superhydrophobic surfaces and the studies on water flow characteristics therein are of great significance to many industrial areas as wel as to science and technology development. Experiments were car-ried out to investigate slip characteristics of water flowing in circular superhydrophobic microtubes within lam-inar flow region. The superhydrophobic microtubes of stainless steel were fabricated with chemical etching–fluorination treatment. An experimental setup was designed to measure the pressure drop as function of water flow rate. For comparison, superhydrophilic tubes were also tested. Poiseuille number Po was found to be smaller for the superhydrophobic microtubes than that for superhydrophilic ones. The pressure drop reduc-tion ranges from 8%to 31%. It decreases with increasing Reynolds number when Re b 900, owing to the transition from Cassie state to Wenzel state. However, it is almost unchanged with further increasing Re after Re N 900. The slip length in superhydrophobic microtubes also exhibits a Reynolds number dependence similarly to the pressure drop reduction. The relation between slip length and Darcy friction factor is theoretically analyzed with consideration of surface roughness effect, which was testified with the experimental results.

  7. Stick-slip advance of the Kohat Plateau in Pakistan (United States)

    Satyabala, S. P.; Yang, Zhaohui; Bilham, Roger


    Throughout most of the Himalaya, slip of the Indian Plate is restrained by friction on the interface between the plate and the overlying wedge of Himalayan rocks. Every few hundred years, this interface--or décollement--ruptures in one or more Mw >=8 earthquakes. In contrast, in the westernmost Himalaya, the Indian Plate slips aseismically beneath wide plateaux fronting the Kohistan Mountains. The plateaux are underlain by viscous décollements that are unable to sustain large earthquakes. Potwar, the widest of these plateaux is underlain by viscous salt, which currently permits it to slide at rates of about 3mmyr-1 (refs , ), much slower than its 2 Myr average. This deceleration has been attributed to recently increased friction through the loss of salt from its décollement. Here we use interferometric synthetic aperture radar and seismic data to assess movement of the Kohat Plateau--the narrowest and thickest plateau. We find that in 1992 an 80 km2 patch of the décollement ruptured in a rare Mw 6.0 earthquake, suggesting that parts of the décollement are locally grounded. We conclude that this hybrid seismic and aseismic behaviour represents an evolution of the mode of slip of the plateaux from steady creep towards increasingly widespread seismic rupture.

  8. Vibration insensitive optical ring cavity

    Institute of Scientific and Technical Information of China (English)

    Miao Jin; Jiang Yan-Yi; Fang Su; Bi Zhi-Yi; Ma Long-Sheng


    The mounting configuration of an optical ring cavity is optimized for vibration insensitivity by finite element analysis. A minimum response to vertical accelerations is found by simulations made for different supporting positions.

  9. Autumn study on storage rings

    CERN Multimedia


    The first two weeks of October have seen storage ring people from accelerator Laboratories throughout the world at CERN to study the fundamental problems of very high energy protonproton colliding beam machines.

  10. Ring Model for Pneumatic Tires

    Institute of Scientific and Technical Information of China (English)

    危银涛; 范成建; 管迪华


    This paper reviews the state-of-the-art of the ring modeling method for tires, emphasizing the differences among the various tire ring models. A general tire ring model was then developed including all the nonlinear terms in the ring strain and the initial stresses induced by the internal pressure and rotation. The general equations of motion were derived from the Hamilton principle whth the geometric parameters for the model directly obtained from the tire design. The physical parameters were calculated from experimental mode parameters. A numerical example is given for a 195/70 R14-type tire. The analysis shows that the predicted natural frequencies and the tire mode shape agree well with experimental results.

  11. Perturbations of vortex ring pairs

    CERN Document Server

    Gubser, Steven S; Parikh, Sarthak


    We study pairs of co-axial vortex rings starting from the action for a classical bosonic string in a three-form background. We complete earlier work on the phase diagram of classical orbits by explicitly considering the case where the circulations of the two vortex rings are equal and opposite. We then go on to study perturbations, focusing on cases where the relevant four-dimensional transfer matrix splits into two-dimensional blocks. When the circulations of the rings have the same sign, instabilities are mostly limited to wavelengths smaller than a dynamically generated length scale at which single-ring instabilities occur. When the circulations have the opposite sign, larger wavelength instabilities can occur.

  12. Surface slip associated with the 2004 Parkfield, California, earthquake measured on alinement arrays (United States)

    Lienkaemper, J.J.; Baker, B.; McFarland, F.S.


    Although still continuing, surface slip from the 2004 Parkfield earth-quake as measured on alinement arrays appears to be approaching about 30-35 cm between Parkfield and Gold Hill. This includes slip along the main trace and the Southwest Fracture Zone (SWFZ). Slip here was higher in 1966 at about 40 cm. The distribution of 2004 slip appears to have a shape similar to that of the 1966 event, but final slip is expected to be lower in 2004 by about 3-15 cm, even when continuing slip is accounted for. Proportionately, this difference is most notable at the south end at Highway 46, where the 1966 event slip was 13 cm compared to the 2004 slip of 4 cm. Continuous Global Positioning System and creepmeters suggest that significant surface coseismic slip apparently occurred mainly on the SWFZ and perhaps on Middle Mountain (the latter possibly caused by shaking) (Langbein et al., 2005). Creepmeters indicate only minor (<0.2 cm) surface coseismic slip occurred on the main trace between Parkfield and Gold Hill. We infer that 3-6 cm slip accumulated across our arrays in the first 24 hr. At Highway 46, slip appears complete, whereas the remaining sites are expected to take 2-6 years to reach their background creep rates. Following the 1966 event, afterslip at one site persisted as much as 5-10 years. The much longer recurrence intervals between the past two Parkfield earthquakes and the decreasing slip per event may suggest that larger slip deficits are now growing along the Parkfield segment.

  13. Synlig læring

    DEFF Research Database (Denmark)

    Brandsen, Mads


    Introduktionen af John Hatties synlig læring i den danske skoleverden møder stadig meget kritik. Mange lærere og pædagoger oplever synlig læring som en tornado, der vil opsuge og ødelægge deres særlige danske udgave af den kontinentale dannelsestænkning, didaktik og pædagogik. Spørgsmålet er om...

  14. Commuting Π-regular rings

    Directory of Open Access Journals (Sweden)

    Shervin Sahebi


    Full Text Available ‎$R$ is called commuting regular ring (resp‎. ‎semigroupif‎ for each $x,y\\in R$ there exists $a\\in R$‎ such that$xy=yxayx$‎. ‎In this paper‎, ‎we introduce the concept of‎‎commuting $\\pi$-regular rings (resp‎. ‎semigroups and‎‎study various properties of them.

  15. Online stock trading platform

    Directory of Open Access Journals (Sweden)

    Ion LUNGU


    Full Text Available The Internet is the perfect tool that can assure the market’s transparency for any user who wants to trade on the stock market. The investor can have access to the market news, financial calendar or the press releases of the issuers. A good online trading platform also provides real-time intraday quotes, trading history and technical analysis giving the investor a clearer view of the supply and demand in the market. All this information provides the investor a good image of the market and encourages him to trade. This paper wishes to draft the pieces of an online trading platform and to analyze the impact of developing and implementing one in a brokerage firm.

  16. Available: motorised platform

    CERN Document Server

    The COMPASS collaboration


    The COMPASS collaboration would like to offer to a new owner the following useful and fully operational piece of equipment, which is due to be replaced with better adapted equipment.   Please contact Erwin Bielert ( or 160539) for further information.  Motorized platform (FOR FREE):   Fabricated by ACL (Alfredo Cardoso & Cia Ltd) in Portugal. The model number is MeXs 5-­‐30.  Specifications: 5 m wide, 1 m deep, adjustable height (1.5 m if folded). Maximum working floor height: 4 m. conforms to CERN regulations, number LV158. Type LD500, capacity 500 kg and weight 2000 kg.  If no interested party is found before December 2014, the platform will be thrown away.

  17. Common tester platform concept.

    Energy Technology Data Exchange (ETDEWEB)

    Hurst, Michael James


    This report summarizes the results of a case study on the doctrine of a common tester platform, a concept of a standardized platform that can be applicable across the broad spectrum of testing requirements throughout the various stages of a weapons program, as well as across the various weapons programs. The common tester concept strives to define an affordable, next-generation design that will meet testing requirements with the flexibility to grow and expand; supporting the initial development stages of a weapons program through to the final production and surveillance stages. This report discusses a concept investing key leveraging technologies and operational concepts combined with prototype tester-development experiences and practical lessons learned gleaned from past weapons programs.

  18. OGC Collaborative Platform undercover (United States)

    Buehler, G.; Arctur, D. K.; Bermudez, L. E.


    The mission of the Open Geospatial Consortium (OGC) is to serve as a global forum for the collaboration of developers and users of spatial data products and services, and to advance the development of international standards for geospatial interoperability. The OGC coordinates with over 400 institutions in the development of geospatial standards. OGC has a dedicated staff supported by a Collaborative Web Platform to enable sophisticated and successful coordination among its members. Since its origins in the early 1990s, the OGC Collaborative Web Platform has evolved organically to be the collaboration hub for standards development in the exchange of geospatial and related types of information, among a global network of thousands of technical, scientific and management professionals spanning numerous disparate application domains. This presentation describes the structure of this collaboration hub, the relationships enabled (both among and beyond OGC members), and how this network fits in a broader ecosystem of technology development and information standards organizations.

  19. Video analysis platform


    FLORES, Pablo; Arias, Pablo; Lecumberry, Federico; Pardo, Álvaro


    In this article we present the Video Analysis Platform (VAP) which is an open source software framework for video analysis, processing and description. The main goals of VAP are: to provide a multiplatform system which allows the easy implementation of video algorithms, provide structures and algorithms for the segmentation of video data in its different levels of abstraction: shots, frames, objects, regions, etc, permit the generation and comparison of MPEG7-like descriptors, and develop tes...

  20. Cloud Robotics Platforms

    Directory of Open Access Journals (Sweden)

    Busra Koken


    Full Text Available Cloud robotics is a rapidly evolving field that allows robots to offload computation-intensive and storage-intensive jobs into the cloud. Robots are limited in terms of computational capacity, memory and storage. Cloud provides unlimited computation power, memory, storage and especially collaboration opportunity. Cloud-enabled robots are divided into two categories as standalone and networked robots. This article surveys cloud robotic platforms, standalone and networked robotic works such as grasping, simultaneous localization and mapping (SLAM and monitoring.

  1. HPC - Platforms Penta Chart

    Energy Technology Data Exchange (ETDEWEB)

    Trujillo, Angelina Michelle [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)


    Strategy, Planning, Acquiring- very large scale computing platforms come and go and planning for immensely scalable machines often precedes actual procurement by 3 years. Procurement can be another year or more. Integration- After Acquisition, machines must be integrated into the computing environments at LANL. Connection to scalable storage via large scale storage networking, assuring correct and secure operations. Management and Utilization – Ongoing operations, maintenance, and trouble shooting of the hardware and systems software at massive scale is required.

  2. History of Neptune's Ring Arcs (United States)

    Esposito, L. W.; Colwell, J. E.; Canup, R. M.


    The recent dynamical calculations for Neptune's Adams ring arcs by Foryta and Sicardy (1996) and Hanninen and Porco (1997) determine the basic evolutionary parameters for this system. The ring evolution is dominated by stochastic events, particularly chaotic motion that causes a migration between the corotation sites (FS96) and collisions near quadrature (HP97). A basic problem is that the high velocity collisions that produce the dusty arcs at the Galatea corotation resonances rapidly depopulate these sites (Colwell and Esposito 1990). With the new results in hand for the evolution of the ring particles over periods of less than a century, we can now calculate the long-term stochastic evolution of the Adams ring. Using a finite Markov chain as a model for this stochastic process, we follow the suggestion by FS96 that corotation sites provide preferential locations for accretion. A more general conclusion is that the longitudinal concentration of material in a few nearby sites (and that the majority of the Adams ring material is residing there) requires either an exceedingly recent event (EC92) or that the corotation sites be absorbing states of the Markov chain.In the latter case, the competing processes of chaotic diffusion and frustrated accretion can provide the arc and clump features as recurrent transient events near the Roche limit. Similar phenomena would be expected for Saturn's F and G rings.

  3. The ring of the narcissist. (United States)

    Shengold, L


    The author has not attempted a complete exposition of the meaning of rings--which can refer to and symbolise many aspects of relationships with other human beings from 'transitional objects' of early development (Winnicott) to all sorts of bonds of loyalty, friendship, and love in the life of the child and the adult. He stresses the meanings of the ring from the point of view of early narcissistic development--the 'body ego' time of early development in which symbolism (in Freud's sense) develops. The clinical and literary examples therefore illustrate the use of rings as magical narcissistic symbols--part subject and part object--derived developmentally from the body ego and ultimately from the body sphincters. Endowed with these regressive primitive meanings, rings are felt to have magical powers that can either preserve or destroy, and that can control emotions in the self and in others. In the course of ordinary or pathological narcissistic regressions, rings (consciously associated with many positive feelings and achievements) also partake, in so far as they are 'Freudian' symbols, of qualities associated with developmentally early defensive mechanisms and modes of psychic functioning (projection, introjection; idealisation, devaluation). In the cases cited, rings seemed specifically associated with (and to symbolise) sphincteric (largely anal) narcissistic defensiveness--the mind functioning as an emotional sphincteric counterpart primarily deadening and distancing affect but intermittently letting through primitive rage and primal polymorphous perverse sexual impulses.

  4. Collar nut and thrust ring (United States)

    Lowery, Guy B.


    A collar nut comprises a hollow cylinder having fine interior threads at one end for threadably engaging a pump mechanical seal assembly and an inwardly depending flange at the other end. The flange has an enlarged portion with a groove for receiving an O-ring for sealing against the intrusion of pumpage from the exterior. The enlarged portion engages a thrust ring about the pump shaft for crushing a hard O-ring, such as a graphite O-ring. The hard O-ring seals the interior of the mechanical seal assembly and pump housing against the loss of lubricants or leakage of pumpage. The fine threads of the hollow cylinder provide the mechanical advantage for crushing the hard O-ring evenly and easily with a hand tool from the side of the collar nut rather than by tightening a plurality of bolts from the end and streamlines the exterior surface of the mechanical seal. The collar nut avoids the spatial requirements of bolt heads at the end of a seal and associated bolt head turbulence.

  5. Episodic tremor and slip in Northern Sumatra subduction zone (United States)

    Sianipar, Dimas; Subakti, Hendri


    The first reported observation of non-volcanic tremor in Sunda Arc in Sumbawa, Indonesia open a possibility of discovery of episodic tremor and slip (ETS) from out of Pacific Rim. Non-volcanic tremor gives some important information about dynamic of plate boundaries. The characteristics of these tremors are visually as non-impulsive, high frequency, long-duration and low-amplitude signals. Tectonic tremor occurred in a transition part of brittle-ductile of a fault and frequently associated with the shearing mechanism of slow slip. Tectonic tremor is a seismic case that also very interested, because it shows strong sensitivity to stress changes. Deep non-volcanic tremor is usually associated with episodic slow-slip events. Tectonic tremor is found in close association with geodetically observed slow-slip events (SSE) in subduction zones. One research found that there is possibility of SSE occurrence on Banyak Islands, North Sumatra revealed from coral observation. The SSE occurred on the Banyak Islands portion of the megathrust at 30-55 km depth, within the downdip transition zone. We do a systematic search of episodic tremor and its possible relationship with slow-slip phenomena in Northern Sumatra subduction zone. The spectrogram analysis is done to analyze the potential tremor signals. We use three component broadband seismic stations with 20, 25, and 50 sampling per second (BH* and SH* channels). We apply a butterworth 5 Hz highpass filter to separate the signal as local tremor and teleseismic/regional earthquakes. Before computing spectrogram to avoid high-frequency artifacts to remote triggering, we apply a 0.5 Hz filter. We also convert the binary seismic data into sound waves to make sure that these events meet the tectonic tremor criterion. We successfully examine 3 seismic stations with good recording i.e. GSI, SNSI and KCSI. We find there are many evidences of high frequency episodic tremor like signals. This include an analysis of potential triggered

  6. The Slumgullion Natural Laboratory for Observing Slip Phenomena (United States)

    Gomberg, J. S.; Schulz, W. H.; Bodin, P.; Kean, J. W.; Wang, G.; Coe, J. A.; MacQueen, P.; Foster, K.; Creager, K.


    Many natural systems release stresses by failure and sliding across surfaces; examples include landslides, glaciers, crustal- and plate-scale faults. Observational advances continue to reveal diversity in the seismic signals associated with fault slip and how such stress relaxation can occur, even on a single fault system. A particularly rich example are the episodes of slow fault slip near major subduction and transform plate boundaries that manifest as geodetically observed aseismic deformation abetted by a family of seismic signals depleted in high-frequencies relative to those from earthquakes (named ‘episodic tremor and slip’ or ETS). While the driving forces and scales differ, there are striking parallels between some observations and models of ETS and of landslide behaviors; e.g. in both, postulated key controls include rate-dependent friction and strength modulated by pore-pressure changes, dilatancy during rapid shear, and subsequent consolidation. To explore common features and the underlying processes we are studying the Slumgullion landslide, an ideal natural laboratory for observing fault slip and associated seismic and aseismic phenomena. Unlike crustal- or plate-scale studies significant deformation can be measured within a single field season, because the Slumgullion moves at average rates of cm/day. Moreover, pore pressures, displacements, material properties, and environmental variables may be measured directly and continuously at several locations on the landslide (albeit not at the basal sliding surface). We have just completed a field experiment on the Slumgullion to test several hypotheses, particularly that slip along the basal surface and side-bounding faults occurs with comparable richness of aseismic and seismic modes as crustal- and plate-scale boundaries. To do so from August 18-26, 2009 we continuously monitored the displacement-field using a robotic electronic displacement meter and the seismic radiation with 88 vertical

  7. IP Rights and Technological Platforms


    Robert P. Merges


    This paper is about intellectual property rights (IPRs) and platform technologies. After a brief introduction explaining some basics of networks, standards and platforms, I turn to three policy issues. The first is the role of IP in what might be termed platform policies, the decisions by courts and regulators concerning whether and how to promote multi-party access to important digital platforms such as media player hardware, cell phones, PCs, and the like. I argue that for the most part the...

  8. "Platform switching": Serendipity

    Directory of Open Access Journals (Sweden)

    N Kalavathy


    Full Text Available Implant dentistry is the latest developing field in terms of clinical techniques, research, material science and oral rehabilitation. Extensive work is being done to improve the designing of implants in order to achieve better esthetics and function. The main drawback with respect to implant restoration is achieving good osseointegration along with satisfactory stress distribution, which in turn will improve the prognosis of implant prosthesis by reducing the crestal bone loss. Many concepts have been developed with reference to surface coating of implants, surgical techniques for implant placement, immediate and delayed loading, platform switching concept, etc. This article has made an attempt to review the concept of platform switching was in fact revealed accidentally due to the nonavailability of the abutment appropriate to the size of the implant placed. A few aspect of platform switching, an upcoming idea to reduce crestal bone loss have been covered. The various methods used for locating and preparing the data were done through textbooks, Google search and related articles.

  9. "Platform switching": serendipity. (United States)

    Kalavathy, N; Sridevi, J; Gehlot, Roshni; Kumar, Santosh


    Implant dentistry is the latest developing field in terms of clinical techniques, research, material science and oral rehabilitation. Extensive work is being done to improve the designing of implants in order to achieve better esthetics and function. The main drawback with respect to implant restoration is achieving good osseointegration along with satisfactory stress distribution, which in turn will improve the prognosis of implant prosthesis by reducing the crestal bone loss. Many concepts have been developed with reference to surface coating of implants, surgical techniques for implant placement, immediate and delayed loading, platform switching concept, etc. This article has made an attempt to review the concept of platform switching was in fact revealed accidentally due to the nonavailability of the abutment appropriate to the size of the implant placed. A few aspect of platform switching, an upcoming idea to reduce crestal bone loss have been covered. The various methods used for locating and preparing the data were done through textbooks, Google search and related articles.

  10. The Prodiguer Messaging Platform (United States)

    Denvil, S.; Greenslade, M. A.; Carenton, N.; Levavasseur, G.; Raciazek, J.


    CONVERGENCE is a French multi-partner national project designed to gather HPC and informatics expertise to innovate in the context of running French global climate models with differing grids and at differing resolutions. Efficient and reliable execution of these models and the management and dissemination of model output are some of the complexities that CONVERGENCE aims to resolve.At any one moment in time, researchers affiliated with the Institut Pierre Simon Laplace (IPSL) climate modeling group, are running hundreds of global climate simulations. These simulations execute upon a heterogeneous set of French High Performance Computing (HPC) environments. The IPSL's simulation execution runtime libIGCM (library for IPSL Global Climate Modeling group) has recently been enhanced so as to support hitherto impossible realtime use cases such as simulation monitoring, data publication, metrics collection, simulation control, visualizations … etc. At the core of this enhancement is Prodiguer: an AMQP (Advanced Message Queue Protocol) based event driven asynchronous distributed messaging platform. libIGCM now dispatches copious amounts of information, in the form of messages, to the platform for remote processing by Prodiguer software agents at IPSL servers in Paris. Such processing takes several forms: Persisting message content to database(s); Launching rollback jobs upon simulation failure; Notifying downstream applications; Automation of visualization pipelines; We will describe and/or demonstrate the platform's: Technical implementation; Inherent ease of scalability; Inherent adaptiveness in respect to supervising simulations; Web portal receiving simulation notifications in realtime.

  11. Active faulting induced by the slip partitioning in the Lesser Antilles arc (United States)

    Leclerc, Frédérique; Feuillet, Nathalie


    AGUADOMAR marine cruise data acquired 11 years ago allowed us to identified and map two main sets of active faults within the Lesser Antilles arc (Feuillet et al., 2002; 2004). The faults belonging to the first set, such as Morne-Piton in Guadeloupe, bound up to 100km-long and 50km-wide arc-perpendicular graben or half graben that disrupt the fore-arc reef platforms. The faults of the second set form right-stepping en echelon arrays, accommodating left-lateral slip along the inner, volcanic islands. The two fault systems form a sinistral horsetail east of the tip of the left-lateral Puerto Rico fault zone that takes up the trench-parallel component of convergence between the North-American and Caribbean plates west of the Anegada passage. In other words, they together accommodate large-scale slip partitioning along the northeastern arc, consistent with recent GPS measurements (Lopez et al., 2006). These intraplate faults are responsible for a part of the shallow seismicity in the arc and have produce damaging historical earthquakes. Two magnitude 6.3 events occurred in the last 25 years along the inner en echelon faults, the last one on November 21 2004 in Les Saintes in the Guadeloupe archipelago. To better constrain the seismic hazard related to the inner arc faults and image the ruptures and effects on the seafloor of Les Saintes 2004 earthquake, we acquired new marine data between 23 February and 25 March 2009 aboard the French R/V le Suroît during the GWADASEIS cruise. We present here the data (high-resolution 72 channel and very high-resolution chirp 3.5 khz seismic reflection profiles, EM300 multibeam bathymetry, Küllenberg coring and SAR imagery) and the first results. We identified, mapped and characterized in detail several normal to oblique fault systems between Martinique and Saba. They offset the seafloor by several hundred meters and crosscut all active volcanoes, among them Nevis Peak, Soufriere Hills, Soufriere de Guadeloupe and Montagne Pel

  12. Extreme multi-millennial slip rate variations on the Garlock fault, California: geomorphology and geochronology of slip rate constraints (United States)

    Rhodes, Edward; Dolan, James; McGill, Sally; McAuliffe, Lee; Zinke, Robert


    Combining existing paleoseismology with new geomorphic constraints for the same part of the Central Garlock fault in California, USA, allows us to demonstrate pronounced variations in slip rate during the Holocene for this left-lateral strike-slip system. Our results have basic implications for understanding how faults store and release strain energy in large earthquakes, and for Probabilistic Seismic Hazard Assessment (PSHA). A series of well-preserved fluvial terraces within alluvial fans provide offset markers, and newly developed single grain K-feldspar IRSL dating allows us to constrain depositional ages and subsequent erosion of terrace risers with good precision, using multiple samples from several different locations. This new dating approach has wide applicability for paleoseismology and slip rate studies, besides understanding environmental response to climatic events; agreement with independent age control provided by C-14 and Be-10 profiles comes from sites in the USA, Mexico, Tibet and Mongolia. Sediments dominated by a range of grain sizes from silt to boulders can be dated, and the technique is often applicable in locations where quartz OSL does not work well. We examine the interplay and coupling between climate and tectonics at millennial timescales, along with sedimentary and geomorphic responses, and consider how our understanding of fault dynamics can be improved with the benefit of these new approaches.

  13. Platform computing powers enterprise grid

    CERN Multimedia


    Platform Computing, today announced that the Stanford Linear Accelerator Center is using Platform LSF 5, to carry out groundbreaking research into the origins of the universe. Platform LSF 5 will deliver the mammoth computing power that SLAC's Linear Accelerator needs to process the data associated with intense high-energy physics research (1 page).

  14. Analysis and Countermeasures on Turbine Collecting Ring Overheating Incidents%汽轮发电机滑环过热事故原因分析与对策

    Institute of Scientific and Technical Information of China (English)



    目前的大型发电机几乎都借助“碳刷与滑环”二者组成的滑动接触导流环节向转子绕组提供励磁电流,二者之间出现火花则是运行中非常危险的信号,如不能及时发现并妥善处理,火花将迅速变为环火,烧损刷架、刷握和滑环,造成事故。以某厂600 MW发电机为例,介绍滑环的结构并分析滑环过热及导致事故的主要原因,并对日常维护提出了建议。%At present,almost all the large generators provide exciting current for the rotor winding by means of“carbon brush and slip ring sliding”which forms the sliding contact of diversion link. If a spark between them is generated,it will be a very dangerous signal in the operation. And if this situation is not found in time and proper-ly handled,the spark will quickly become a ring of fire,burn brush holder and slip ring,even causes an accident. Taking the 600 MW generator as an example,this paper introduces the structure of the slip ring and analyzes the main cause of the slip ring overheating accident. Suggestions are also proposed for daily maintenance.


    Energy Technology Data Exchange (ETDEWEB)

    Mawet, D. [European Southern Observatory, Alonso de Cordóva 3107 Vitacura, Santiago (Chile); Pueyo, L. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Carlotti, A. [Mechanical and Aerospace Engineering, Princeton University, Olden Street, Princeton, NJ 08544 (United States); Mennesson, B.; Serabyn, E.; Wallace, J. K. [Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109 (United States)


    The vortex coronagraph (VC) is a new generation small inner working angle (IWA) coronagraph currently offered on various 8 m class ground-based telescopes. On these observing platforms, the current level of performance is not limited by the intrinsic properties of actual vortex devices, but by wavefront control residuals and incoherent background (e.g., thermal emission of the sky), or the light diffracted by the imprint of the secondary mirror and support structures on the telescope pupil. In the particular case of unfriendly apertures (mainly large central obscuration) when very high contrast is needed (e.g., direct imaging of older exoplanets with extremely large telescopes or space-based coronagraphs), a simple VC, like most coronagraphs, cannot deliver its nominal performance because of the contamination due to the diffraction from the obscured part of the pupil. Here, we propose a novel yet simple concept that circumvents this problem. We combine a vortex phase mask in the image plane of a high-contrast instrument with a single pupil-based amplitude ring apodizer, tailor-made to exploit the unique convolution properties of the VC at the Lyot-stop plane. We show that such a ring-apodized vortex coronagraph (RAVC) restores the perfect attenuation property of the VC regardless of the size of the central obscuration, and for any (even) topological charge of the vortex. More importantly, the RAVC maintains the IWA and conserves a fairly high throughput, which are signature properties of the VC.

  16. Accretion in Saturn's F Ring (United States)

    Meinke, B. K.; Esposito, L. W.; Stewart, G.


    Saturn's F ring is the solar system's principal natural laboratory for direct observation of accretion and disruption processes. The ring resides in the Roche zone, where tidal disruption competes with self-gravity, which allows us to observe the lifecycle of moonlets. Just as nearby moons create structure at the B ring edge (Esposito et al. 2012) and the Keeler gap (Murray 2007), the F ring "shepherding" moons Prometheus and Pandora stir up ring material and create observably changing structures on timescales of days to decades. In fact, Beurle et al (2010) show that Prometheus makes it possible for "distended, yet gravitationally coherent clumps" to form in the F ring, and Barbara and Esposito (2002) predicted a population of ~1 km bodies in the ring. In addition to the observations over the last three decades, the Cassini Ultraviolet Imaging Spectrograph (UVIS) has detected 27 statistically significant features in 101 occultations by Saturn's F ring since July 2004. Seventeen of those 27 features are associated with clumps of ring material. Two features are opaque in occultation, which makes them candidates for solid objects, which we refer to as Moonlets. The 15 other features partially block stellar signal for 22 m to just over 3.7 km along the radial expanse of the occultation. Upon visual inspection of the occultation profile, these features resemble Icicles, thus we will refer to them as such here. The density enhancements responsible for such signal attenuations are likely due to transient clumping of material, evidence that aggregations of material are ubiquitous in the F ring. Our lengthy observing campaign reveals that Icicles are likely transient clumps, while Moonlets are possible solid objects. Optical depth is an indicator of clumping because more-densely aggregated material blocks more light; therefore, it is natural to imagine moonlets as later evolutionary stage of icicle, when looser clumps of material compact to form a feature that appears

  17. Fault slip and earthquake recurrence along strike-slip faults — Contributions of high-resolution geomorphic data

    KAUST Repository

    Zielke, Olaf


    Understanding earthquake (EQ) recurrence relies on information about the timing and size of past EQ ruptures along a given fault. Knowledge of a fault\\'s rupture history provides valuable information on its potential future behavior, enabling seismic hazard estimates and loss mitigation. Stratigraphic and geomorphic evidence of faulting is used to constrain the recurrence of surface rupturing EQs. Analysis of the latter data sets culminated during the mid-1980s in the formulation of now classical EQ recurrence models, now routinely used to assess seismic hazard. Within the last decade, Light Detection and Ranging (lidar) surveying technology and other high-resolution data sets became increasingly available to tectono-geomorphic studies, promising to contribute to better-informed models of EQ recurrence and slip-accumulation patterns. After reviewing motivation and background, we outline requirements to successfully reconstruct a fault\\'s offset accumulation pattern from geomorphic evidence. We address sources of uncertainty affecting offset measurement and advocate approaches to minimize them. A number of recent studies focus on single-EQ slip distributions and along-fault slip accumulation patterns. We put them in context with paleoseismic studies along the respective faults by comparing coefficients of variation CV for EQ inter-event time and slip-per-event and find that a) single-event offsets vary over a wide range of length-scales and the sources for offset variability differ with length-scale, b) at fault-segment length-scales, single-event offsets are essentially constant, c) along-fault offset accumulation as resolved in the geomorphic record is dominated by essentially same-size, large offset increments, and d) there is generally no one-to-one correlation between the offset accumulation pattern constrained in the geomorphic record and EQ occurrence as identified in the stratigraphic record, revealing the higher resolution and preservation potential of

  18. Modeling stick-slip-separation dynamics in a bimodal standing wave ultrasonic motor (United States)

    Li, Xiang; Yao, Zhiyuan; Lv, Qibao; Liu, Zhen


    Ultrasonic motor (USM) is an electromechanical coupling system with ultrasonic vibration, which is driven by the frictional contact force between the stator (vibrating body) and the rotor/slider (driven body). Stick-slip motion can occur at the contact interface when USM is operating, which may affect the performance of the motor. This paper develops a physically-based model to investigate the complex stick-slip-separation dynamics in a bimodal standing wave ultrasonic motor. The model includes both friction nonlinearity and intermittent separation nonlinearity of the system. Utilizing Hamilton's principle and assumed mode method, the dynamic equations of the stator are deduced. Based on the dynamics of the stator and the slider, sticking force during the stick phase is derived, which is used to examine the stick-to-slip transition. Furthermore, the stick-slip-separation kinematics is analyzed by establishing analytical criteria that predict the transition between stick, slip and separation of the interface. Stick-slip-separation motion is observed in the resulting model, and numerical simulations are performed to study the influence of parameters on the range of possible motions. Results show that stick-slip motion can occur with greater preload and smaller voltage amplitude. Furthermore, a dimensionless parameter is proposed to predict the occurrence of stick-slip versus slip-separation motions, and its role in designing ultrasonic motors is discussed. It is shown that slip-separation motion is favorable for the slider velocity.

  19. Fault Slip Model of 2013 Lushan Earthquake Retrieved Based on GPS Coseismic Displacements

    Institute of Scientific and Technical Information of China (English)

    Mengkui Li; Shuangxi Zhang; Chaoyu Zhang; Yu Zhang


    Lushan Earthquake (~Mw 6.6) occurred in Sichuan Province of China on 20 April 2013, was the largest earthquake in Longmenshan fault belt since 2008 Wenchuan Earthquake. To better understand its rupture pattern, we focused on the influences of fault parameters on fault slips and performed fault slip inversion using Akaike’s Bayesian Information Criterion (ABIC) method. Based on GPS coseismic data, our inverted results showed that the fault slip was mainly confined at depths. The maximum slip amplitude is about 0.7 m, and the scalar seismic moment is about 9.47×1018 N·m. Slip pattern reveals that the earthquake occurred on the thrust fault with large dip-slip and small strike-slip, such a simple fault slip represents no second sub-event occurred. The Coulomb stress changes (DCFF) matched the most aftershocks with negative anomalies. The in-verted results demonstrated that the source parameters have significant impacts on fault slip distri-bution, especially on the slip direction and maximum displacement.

  20. Interfacial slip on a transverse-shear mode acoustic wave device (United States)

    Ellis, Jonathan S.; Hayward, Gordon L.


    This article describes a mathematical relationship between the slip parameter α and the slip length b for a slip boundary condition applied to the transverse-shear model for a quartz-crystal acoustic wave device. The theory presented here reduces empirical determination of slip to a one-parameter fit. It shows that the magnitude and phase of the slip parameter, which describes the relative motion of the surface and liquid in the transverse-shear model, can be linked to the slip length. Furthermore, the magnitude and phase of the slip parameter are shown to depend on one another. An experiment is described to compare the effects of liquid-surface affinity on the resonant properties of a transverse-shear mode wave device by applying different polar and nonpolar liquids to surfaces of different polarity. The theory is validated with slip values determined from the transverse-shear model and compared to slip length values from literature. Agreement with literature values of slip length is within one order of magnitude.

  1. Double acting stirling engine piston ring (United States)

    Howarth, Roy B.


    A piston ring design for a Stirling engine wherein the contact pressure between the piston and the cylinder is maintained at a uniform level, independent of engine conditions through a balancing of the pressure exerted upon the ring's surface and thereby allowing the contact pressure on the ring to be predetermined through the use of a preloaded expander ring.

  2. Estimators of wheel slip for electric vehicles using torque and encoder measurements (United States)

    Boisvert, M.; Micheau, P.


    For the purpose of regenerative braking control in hybrid and electrical vehicles, recent studies have suggested controlling the slip ratio of the electric-powered wheel. A slip tracking controller requires an accurate slip estimation in the overall range of the slip ratio (from 0 to 1), contrary to the conventional slip limiter (ABS) which calls for an accurate slip estimation in the critical slip area, estimated at around 0.15 in several applications. Considering that it is not possible to directly measure the slip ratio of a wheel, the problem is to estimate the latter from available online data. To estimate the slip of a wheel, both wheel speed and vehicle speed must be known. Several studies provide algorithms that allow obtaining a good estimation of vehicle speed. On the other hand, there is no proposed algorithm for the conditioning of the wheel speed measurement. Indeed, the noise included in the wheel speed measurement reduces the accuracy of the slip estimation, a disturbance increasingly significant at low speed and low torque. Herein, two different extended Kalman observers of slip ratio were developed. The first calculates the slip ratio with data provided by an observer of vehicle speed and of propeller wheel speed. The second observer uses an original nonlinear model of the slip ratio as a function of the electric motor. A sinus tracking algorithm is included in the two observers, in order to reject harmonic disturbances of wheel speed measurement. Moreover, mass and road uncertainties can be compensated with a coefficient adapted online by an RLS. The algorithms were implemented and tested with a three-wheel recreational hybrid vehicle. Experimental results show the efficiency of both methods.

  3. Assessing the Updip Spatial Offset of Tremor and Slip during ETS Events in Cascadia (United States)

    Krogstad, R. D.; Schmidt, D. A.


    We investigate the updip spatial overlap of tremor and slip during recent episodic tremor and slip (ETS) events in Cascadia using a combination of forward and inverse models constrained by GPS, strainmeter, and tremor observations. Results from major ETS events in northern Cascadia suggest that, although there is significant spatial overlap, slow slip tends to extend further updip than tremor. ETS activity is thought to be dependent on a range of parameters, such as variable fluid pressures, temperature dependent physical properties, and facies changes. A spatial offset would indicant that tremor and slip are reflective of different physical conditions. While a clear offset of tremor and slip has been observed in multiple other subduction zones, a similar offset in Cascadia has remained difficult to constrain. Here we seek to establish whether the updip spatial offset is real in Cascadia and to quantify its extent. To complement GPS observations in Cascadia, we incorporate high fidelity strainmeter observations into inversions and sensitivity tests of iterative forward models. Tremor distributions are used as a proxy for slip and incorporated into slip models where parameters affecting the distribution and magnitude of slip are allowed to vary. These slip models are used to forward predict surface displacements and strains, which are then compared to the geodetic observations and inferred slip based on geodetic inversions. Results indicate that, while the tremor-derived slip distributions do a good job predicting the broad-scale surface deformation, the best-fit models have slip updip of the peak tremor activity. The fine-scale relationship of tremor and slip appears to vary on an event-by-event basis, where areas of high tremor density do not always correlate with increased surface displacements and vice-versa.

  4. Slow Slip History for the MEXICO Subduction Zone: 2005 Through 2011 (United States)

    Graham, Shannon; DeMets, Charles; Cabral-Cano, Enrique; Kostoglodov, Vladimir; Rousset, Baptiste; Walpersdorf, Andrea; Cotte, Nathalie; Lasserre, Cécile; McCaffrey, Robert; Salazar-Tlaczani, Luis


    To further our understanding of the seismically hazardous Mexico subduction zone, we estimate the first time-dependent slip distributions and Coulomb failure stress changes for the six major slow slip events (SSEs) that occurred below Mexico between late 2005 and mid-2011. Slip dist ributions are the first to be estimated from all continuous GPS data in central and southern Mexico, which better resolves slow slip in space and time than was previously possible in this region. Below Oaxaca, slip during previously un-modeled SSEs in 2008/9 and 2010/11 extended farther to the west than previous SSEs. This constitutes the first evidence that slow slip accounts for deep slip within a previously noted gap between the Oaxaca and Guerrero SSE source regions. The slip that we estimate for the two SSEs that originated below Guerrero between 2005 and 2011 agrees with slip estimated in previous, mostly static-offset SSE modeling studies; however, we show that both SSEs migrated eastward toward the Oaxaca SSE source region. In accord with previous work, we find that slow slip below Guerrero intrudes up-dip into the potentially seismogenic region, presumably accounting for some of the missing slip within the well-described Guerrero seismic gap. In contrast, slow slip below Oaxaca between 2005 and 2011 occurred mostly down-dip from the seismogenic regions defined by the rupture zones of large thrust earthquakes in 1968 and 1978 and released all of the slip deficit that accumulated in the down-dip region during this period.

  5. Modeling shallow slip deficit in large strike-slip earthquakes using simulations of spontaneous earthquake sequences in elasto-plastic media (United States)

    Kaneko, Y.; Fialko, Y.


    Slip inversions of several large strike-slip earthquakes point to coseismic slip deficit at shallow depths (Sierra El Mayor (Mexico) earthquake. Determining the origin of shallow slip deficit is important both for understanding physics of earthquakes and for estimating seismic hazard, as suppression of shallow rupture could greatly influence strong ground motion in the vicinity of active faults. Several mechanisms may be invoked to explain the deficit. A widely accepted interpretation is the presence of velocity-strengthening fault friction at shallow depths where the coseismic slip deficit is compensated by afterslip and interseismic creep. However, geodetic observations indicate that the occurrence of interseismic creep and afterslip at shallow depths is rather uncommon, except for certain locations near major creeping segments of mature faults and/or in areas with thick sedimentary covers with overpressurized pore fluids (e.g., Wei et al., 2009). Fialko et al. (2005) proposed that extensive inelastic failure of the shallow crust in the interseismic period or during earthquakes may result in coseismic slip deficit at shallow depths. In this work, we investigate whether inelastic failure of the shallow crust can lead to shallow coseismic slip deficit using simulations of spontaneous earthquake sequences on vertical planar strike-slip faults. To account for inelastic deformation, we incorporate off-fault plasticity into 2-D models of earthquake sequences on faults governed by laboratory-derived rate and state friction (Kaneko et al., 2010). Our preliminary results suggest that coseismic slip deficit could occur in a wide range of parameters that characterize inelastic material properties. We will report on our current efforts on identifying key parameters of fault friction and bulk rheology that link to the degree of coseismic slip deficit over multiple earthquake cycles.

  6. Extensions and Pullbacks in QB-rings


    Ara, Pere; Pedersen, Gert K.; Perera, Francesc


    We prove a new extension result for $QB-$rings that allows us to examine extensions of rings where the ideal is purely infinite and simple. We then use this result to explore various constructions that provide new examples of $QB-$rings. More concretely, we show that a surjective pullback of two $QB-$rings is usually again a $QB-$ring. Specializing to the case of an extension of a semi-prime ideal $I$ of a unital ring $R$, the pullback setting leads naturally to the study of rings whose multi...

  7. The ribbon of the rings: the stability of the rings (United States)

    Florinski, V.


    The astounding result of the Voyager 1 observations in the outer heliosheath region is the Kolmogorov-like spectrum of magnetic fluctuations, consistent with the ambient spectrum of interstellar turbulence deduced from remote sensing. Such quiet conditions appear to be incompatible with the ionization of the neutral solar wind hydrogen atoms by charge exchange, which would generate abundant turbulent fluctuations due to an instability of the resulting proton ring. Here we revisit the problem of stability of ring and shell distributions embedded in a warm plasma characteristic of the outer heliosheath. We show that ion rings with parallel velocity dispersion between a few km/s and the core thermal speed are stable, while those outside these bounds are subject to magnetic-fluctuation-producing left- and righthanded instabilities. Wave generation by the instability is too efficient to be transported to shorter scales and converted into heat by the turbulent cascade.

  8. The Geohazards Exploitation Platform (United States)

    Laur, Henri; Casu, Francesco; Bally, Philippe; Caumont, Hervé; Pinto, Salvatore


    The Geohazards Exploitation Platform, or Geohazards TEP (GEP), is an ESA originated R&D activity of the EO ground segment to demonstrate the benefit of new technologies for large scale processing of EO data. This encompasses on-demand processing for specific user needs, systematic processing to address common information needs of the geohazards community, and integration of newly developed processors for scientists and other expert users. The platform supports the geohazards community's objectives as defined in the context of the International Forum on Satellite EO and Geohazards organised by ESA and GEO in Santorini in 2012. The GEP is a follow on to the Supersites Exploitation Platform (SSEP) an ESA initiative to support the Geohazards Supersites & Natural Laboratories initiative (GSNL). Today the GEP allows to exploit 70+ Terabyte of ERS and ENVISAT archive and the Copernicus Sentinel-1 data available on line. The platform has already engaged 22 European early adopters in a validation activity initiated in March 2015. Since September, this validation has reached 29 single user projects. Each project is concerned with either integrating an application, running on demand processing or systematically generating a product collection using an application available in the platform. The users primarily include 15 geoscience centres and universities based in Europe: British Geological Survey (UK), University of Leeds (UK), University College London (UK), ETH University of Zurich (CH), INGV (IT), CNR-IREA and CNR-IRPI (IT), University of L'Aquila (IT), NOA (GR), Univ. Blaise Pascal & CNRS (FR), Ecole Normale Supérieure (FR), ISTERRE / University of Grenoble-Alpes (FR). In addition, there are users from Africa and North America with the University of Rabat (MA) and the University of Miami (US). Furthermore two space agencies and four private companies are involved: the German Space Research Centre DLR (DE), the European Space Agency (ESA), Altamira Information (ES

  9. Intrinsic structure in Saturn's rings (United States)

    Albers, N.


    Saturn's rings are the most prominent in our Solar system and one example of granular matter in space. Dominated by tides and inelastic collisions the system is highly flattened being almost 300000km wide while only tens of meters thick. Individual particles are composed of primarily water ice and range from microns to few tens of meters in size. Apparent patterns comprise ringlets, gaps, kinematic wakes, propellers, bending waves, and the winding spiral arms of density waves. These large-scale structures are perturbations foremost created by external as well as embedded moons. Observations made by the Cassini spacecraft currently in orbit around Saturn show these structures in unprecedented detail. But high-resolution measurements reveal the presence of small-scale structures throughout the system. These include self-gravity wakes (50-100m), overstable waves (100-300m), subkm structure at the A and B ring edges, "straw" and "ropy" structures (1-3km), and the C ring "ghosts". Most of these had not been anticipated and are found in perturbed regions, driven by resonances with external moons, where the system undergoes periodic phases of compression and relaxation that correlate with the presence of structure. High velocity dispersion and the presence of large clumps imply structure formation on time scales as short as one orbit (about 10 hours). The presence of these intrinsic structures is seemingly the response to varying local conditions such as internal density, optical depth, underlying particle size distribution, granular temperature, and distance from the central planet. Their abundance provides evidence for an active and dynamic ring system where aggregation and fragmentation are ongoing on orbital timescales. Thus a kinetic description of the rings may be more appropriate than the fluid one. I will present Cassini Ultraviolet Spectrometer (UVIS) High Speed Photometer (HSP) occultations, Voyager 1 and 2 Imaging Science Subsystem (ISS), and high

  10. Ring wormholes via duality rotations

    Directory of Open Access Journals (Sweden)

    Gary W. Gibbons


    Full Text Available We apply duality rotations and complex transformations to the Schwarzschild metric to obtain wormhole geometries with two asymptotically flat regions connected by a throat. In the simplest case these are the well-known wormholes supported by phantom scalar field. Further duality rotations remove the scalar field to yield less well known vacuum metrics of the oblate Zipoy–Voorhees–Weyl class, which describe ring wormholes. The ring encircles the wormhole throat and can have any radius, whereas its tension is always negative and should be less than −c4/4G. If the tension reaches the maximal value, the geometry becomes exactly flat, but the topology remains non-trivial and corresponds to two copies of Minkowski space glued together along the disk encircled by the ring. The geodesics are straight lines, and those which traverse the ring get to the other universe. The ring therefore literally produces a hole in space. Such wormholes could perhaps be created by negative energies concentrated in toroidal volumes, for example by vacuum fluctuations.

  11. Dream of Isochronous Ring Again

    CERN Document Server

    Hama, H


    More than 20 years ago, D.A.G. Deacon proposed an isochronous storage ring for FEL to avoid bunch heating and decreasing instantaneous gain [1]. Some of low momentum compaction (alpha) operations have been carried out, and recently coherent infrared radiation are observed on a 3rd generation light source. Because the 3rd generation rings are optimized to obtain very low emittance beam, the dispersion function in the arc sections are much reduced by introducing large bending radius, so that those are very big machines. Meanwhile N.A. Vinokurov et al. recently proposed a ring type SASE FEL based on a complete isochronous bending transport [2]. At least, experimental and theoretical study of the isochronous ring so far suggests nonlinear effects resulted from higher order dispersion and chromaticity declines the "complete" isochronous system. On the other hand, in a wavelength region of THz, tolerance of the path length along a turn of the ring seems to be within our reach. A concept to preserve of a form factor...

  12. Burnside Rings of Fusion Systems

    DEFF Research Database (Denmark)

    Reeh, Sune Precht

    of the characteristic idempotent of F { the unique idempotent in the p-local double Burnside ring of S satisfying properties of Linckelmann and Webb. We describe this idempotent both in terms of fixed points and as a linear combination of transitive bisets. Additionally, using fixed points we determine the map......In this thesis we study the interactions between saturated fusion systems and group actions of the underlying p-groups. For a saturated fusion system F on a finite p-group S we construct the Burnside ring of F in terms of the finite S-sets whose actions respect the structure of the fusion system......, and we produce a basis for the Burnside ring that shares properties with the transitive sets for a finite group. We construct a transfer map from the p-local Burnside ring of the underlying p-group S to the p-local Burnside ring of F. Using such transfer maps, we give a new explicit construction...

  13. Ring polymers in confined geometries

    CERN Document Server

    Usatenko, Z; Kuterba, P


    The investigation of a dilute solution of phantom ideal ring polymers and ring polymers with excluded volume interactions (EVI) in a good solvent confined in a slit geometry of two parallel repulsive walls and in a solution of colloidal particles of big size were performed. Taking into account the correspondence between the field theoretical $\\phi^4$ $O(n)$-vector model in the limit $n\\to 0$ and the behavior of long-flexible polymer chains in a good solvent the correspondent depletion interaction potentials, depletion forces and the forces which exert phantom ideal ring and ring polymer chains with EVI on the walls were obtained in the framework of the massive field theory approach at fixed space dimensions d=3 up to one-loop order. Additionally, the investigation of a dilute solution of phantom ideal ring polymers in a slit geometry of two inert walls and mixed walls with one repulsive and other one inert wall were performed and correspondent depletion interaction potentials and the depletion forces were cal...

  14. Ring wormholes via duality rotations

    CERN Document Server

    Gibbons, Gary W


    We apply duality rotations and complex transformations to the Schwarzschild metric to obtain wormhole geometries with two asymptotically flat regions connected by a throat. In the simplest case these are the well-known wormholes supported by phantom scalar field. Further duality rotations remove the scalar field to yield less well known vacuum metrics of the oblate Zipoy-Voorhees-Weyl class, which describe ring wormholes. The ring encircles the wormhole throat and can have any radius, whereas its tension is always negative and should be less than $-c^4/4G$. If the tension reaches the maximal value, the geometry becomes exactly flat, but the topology remains non-trivial and corresponds to two copies of Minkowski space glued together along the disk encircled by the ring. The geodesics are straight lines, and those which traverse the ring get to the other universe. The ring therefore literally produces a whole in space. Such wormholes could perhaps be created by negative energies concentrated in toroidal volumes...

  15. A cost-effective and fast recovery mechanism for multi-ring interconnection networks based on RPR (United States)

    Zhan, Yichun; Ji, Meng; Yu, Shaohua


    Resilient Packet Ring (RPR) has been standardized in the IEEE 802.17 working group. In multi-ring networks, similarly with other ring-based technology, intra-ring traffic demand is protected against single node and span failures within 50 ms by the "steering" and "wrapping" protection. Inter-ring traffic demand, however, is susceptible to failures at nodes or links where the traffic demand transits from one ring to another. Normally, the survivability of interconnecting node or link failure has to be provided by other technologies, such as MPLS and Spanning Tree Protocol. Unfortunately, most schemes cannot provide a cost-effective solution with guaranteeing the restoration within the 50 ms timeframe. In this paper we proposed a cost-effective and fast Recovery Mechanism for Multi-ring Interconnection Networks Based on RPR. Differential from Spanning Tree Protocol (STP) and other protection technologies, this mechanism has the ability of sub-50ms protection provisioning and scalability based on the bridging function in RPR. Particular with enhanced bridging support, this mechanism can provide efficient bandwidth spatial reuse on multi-ring RPR networks. The proposed novel mechanism has been implemented on our 10Gbps network processor (NP) based multi-service provisioning platform. All experimental results presented in this paper come from actual testing on the network test bed and show that the all the inter-ring traffic are given the sub-50ms recovery guarantee as intra-ring traffic in normal case.


    Institute of Scientific and Technical Information of China (English)

    Dougherty Steven T.; Liu Hongwei


    In this article, cyclic codes and negacyclic codes over formal power series rings are studied. The structure of cyclic codes over this class of rings is given, and the relationship between these codes and cyclic codes over finite chain rings is obtained. Using an isomorphism between cyclic and negacyclic codes over formal power series rings, the structure of negacyclic codes over the formal power series rings is obtained.

  17. Experimental Modeling of Dynamic Shallow Dip-Slip Faulting (United States)

    Uenishi, K.


    In our earlier study (AGU 2005, SSJ 2005, JPGU 2006), using a finite difference technique, we have conducted some numerical simulations related to the source dynamics of shallow dip-slip earthquakes, and suggested the possibility of the existence of corner waves, i.e., shear waves that carry concentrated kinematic energy and generate extremely strong particle motions on the hanging wall of a nonvertical fault. In the numerical models, a dip-slip fault is located in a two-dimensional, monolithic linear elastic half space, and the fault plane dips either vertically or 45 degrees. We have investigated the seismic wave field radiated by crack-like rupture of this straight fault. If the fault rupture, initiated at depth, arrests just below or reaches the free surface, four Rayleigh-type pulses are generated: two propagating along the free surface into the opposite directions to the far field, the other two moving back along the ruptured fault surface (interface) downwards into depth. These downward interface pulses may largely control the stopping phase of the dynamic rupture, and in the case the fault plane is inclined, on the hanging wall the interface pulse and the outward-moving Rayleigh surface pulse interact with each other and the corner wave is induced. On the footwall, the ground motion is dominated simply by the weaker Rayleigh pulse propagating along the free surface because of much smaller interaction between this Rayleigh and the interface pulse. The generation of the downward interface pulses and corner wave may play a crucial role in understanding the effects of the geometrical asymmetry on the strong motion induced by shallow dip-slip faulting, but it has not been well recognized so far, partly because those waves are not expected for a fault that is located and ruptures only at depth. However, the seismological recordings of the 1999 Chi-Chi, Taiwan, the 2004 Niigata-ken Chuetsu, Japan, earthquakes as well as a more recent one in Iwate-Miyagi Inland

  18. Identification of platform levels

    DEFF Research Database (Denmark)

    Mortensen, Niels Henrik


    reduction, ability to launch a wider product portfolio without increasing resources and reduction of complexity within the whole company. To support the multiple product development process, platform based product development has in many companies such as Philips, VW, Ford etc. proven to be a very effective...... and efficient tool. Transforming product development from single to multiple product development is a significant change in product development often involving major changes of product models, procedures and organization. In the area of product models a set of new models has to be introduced, e.g. models...

  19. Insights into the 3D architecture of an active caldera ring-fault at Tendürek volcano through modeling of geodetic data

    KAUST Repository

    Vasyura-Bathke, Hannes


    The three-dimensional assessment of ring-fault geometries and kinematics at active caldera volcanoes is typically limited by sparse field, geodetic or seismological data, or by only partial ring-fault rupture or slip. Here we use a novel combination of spatially dense InSAR time-series data, numerical models and sand-box experiments to determine the three-dimensional geometry and kinematics of a sub-surface ring-fault at Tendürek volcano in Turkey. The InSAR data reveal that the area within the ring-fault not only subsides, but also shows substantial westward-directed lateral movement. The models and experiments explain this as a consequence of a ‘sliding-trapdoor’ ring-fault architecture that is mostly composed of outward-inclined reverse segments, most markedly so on the volcano\\'s western flanks but includes inward-inclined normal segments on its eastern flanks. Furthermore, the model ring-fault exhibits dextral and sinistral strike-slip components that are roughly bilaterally distributed onto its northern and southern segments, respectively. Our more complex numerical model describes the deformation at Tendürek better than an analytical solution for a single rectangular dislocation in a half-space. Comparison to ring-faults defined at Glen Coe, Fernandina and Bárðarbunga calderas suggests that ‘sliding-trapdoor’ ring-fault geometries may be common in nature and should therefore be considered in geological and geophysical interpretations of ring-faults at different scales worldwide.

  20. Wide dynamic range microwave planar coupled ring resonator for sensing applications (United States)

    Zarifi, Mohammad Hossein; Daneshmand, Mojgan


    A highly sensitive, microwave-coupled ring resonator with a wide dynamic range is studied for use in sensing applications. The resonator's structure has two resonant rings and, consequently, two resonant frequencies, operating at 2.3 and 2.45 GHz. Inductive and capacitive coupling mechanisms are explored and compared to study their sensing performance. Primary finite element analysis and measurement results are used to compare the capacitive and inductive coupled ring resonators, demonstrating sensitivity improvements of up to 75% and dynamic range enhancement up to 100% in the capacitive coupled structure. In this work, we are proposing capacitive coupled planar ring resonators as a wide dynamic range sensing platform for liquid sensing applications. This sensing device is well suited for low-cost, real-time low-power, and CMOS compatible sensing technologies.