WorldWideScience

Sample records for platform semiconductor material

  1. Semiconductor surface protection material

    Science.gov (United States)

    Packard, R. D. (Inventor)

    1973-01-01

    A method and a product for protecting semiconductor surfaces is disclosed. The protective coating material is prepared by heating a suitable protective resin with an organic solvent which is solid at room temperature and converting the resulting solution into sheets by a conventional casting operation. Pieces of such sheets of suitable shape and thickness are placed on the semiconductor areas to be coated and heat and vacuum are then applied to melt the sheet and to drive off the solvent and cure the resin. A uniform adherent coating, free of bubbles and other defects, is thus obtained exactly where it is desired.

  2. Handbook of luminescent semiconductor materials

    CERN Document Server

    Bergman, Leah

    2011-01-01

    Photoluminescence spectroscopy is an important approach for examining the optical interactions in semiconductors and optical devices with the goal of gaining insight into material properties. With contributions from researchers at the forefront of this field, Handbook of Luminescent Semiconductor Materials explores the use of this technique to study semiconductor materials in a variety of applications, including solid-state lighting, solar energy conversion, optical devices, and biological imaging. After introducing basic semiconductor theory and photoluminescence principles, the book focuses

  3. High throughput combinatorial screening of semiconductor materials

    Science.gov (United States)

    Mao, Samuel S.

    2011-11-01

    This article provides an overview of an advanced combinatorial material discovery platform developed recently for screening semiconductor materials with properties that may have applications ranging from radiation detectors to solar cells. Semiconductor thin-film libraries, each consisting of 256 materials of different composition arranged into a 16×16 matrix, were fabricated using laser-assisted evaporation process along with a combinatorial mechanism to achieve variations. The composition and microstructure of individual materials on each thin-film library were characterized with an integrated scanning micro-beam x-ray fluorescence and diffraction system, while the band gaps were determined by scanning optical reflection and transmission of the libraries. An ultrafast ultraviolet photon-induced charge probe was devised to measure the mobility and lifetime of individual thin-film materials on semiconductor libraries. Selected results on the discovery of semiconductors with desired band gaps and transport properties are illustrated.

  4. Sensing Performance Study of SiC, a Wide Bandgap Semiconductor Material Platform for Surface Plasmon Resonance Sensor

    Directory of Open Access Journals (Sweden)

    Wei Du

    2015-01-01

    Full Text Available The sensing properties of a surface plasmon resonance (SPR based waveguide sensor on a wide bandgap semiconductor, silicon carbide (SiC, were studied. Compared to other waveguide sensors, the large bandgap energy of SiC material allows the sensor to operate in the visible and near infrared wavelength range, while the SPR effect by a thin gold film is expected to improve the sensitivity. The confinement factor of the sensor at various wavelengths of the incident light and refractive index of the analyte were investigated using an effective index method. Since the change of analyte type and concentration is reflected by the change of refractive index, the sensing performance can be evaluated by the shift of resonant wavelength from the confinement factor spectrum at different refractive index. The results show that the shift of resonant wavelength demonstrates linear characteristics. A sensitivity of 1928 nm/RIU (refractive index unit shift could be obtained from the refractive index of 1.338~1.348 which attracts research interests because most biological analytes are in this range.

  5. Templated Chemically Deposited Semiconductor Optical Fiber Materials

    Science.gov (United States)

    Sparks, Justin R.; Sazio, Pier J. A.; Gopalan, Venkatraman; Badding, John V.

    2013-07-01

    Chemical deposition is a powerful technology for fabrication of planar microelectronics. Optical fibers are the dominant platform for telecommunications, and devices such as fiber lasers are forming the basis for new industries. High-pressure chemical vapor deposition (HPCVD) allows for conformal layers and void-free wires of precisely doped crystalline unary and compound semiconductors inside the micro-to-nanoscale-diameter pores of microstructured optical fibers (MOFs). Drawing the fibers to serve as templates into which these semiconductor structures can be fabricated allows for geometric design flexibility that is difficult to achieve with planar fabrication. Seamless coupling of semiconductor optoelectronic and photonic devices with existing fiber infrastructure thus becomes possible, facilitating all-fiber technological approaches. The deposition techniques also allow for a wider range of semiconductor materials compositions to be exploited than is possible by means of preform drawing. Gigahertz bandwidth junction-based fiber devices can be fabricated from doped crystalline semiconductors, for example. Deposition of amorphous hydrogenated silicon, which cannot be drawn, allows for the exploitation of strong nonlinear optical function in fibers. Finally, crystalline compound semiconductor fiber cores hold promise for high-power infrared light-guiding fiber devices and subwavelength-resolution, large-area infrared imaging.

  6. Semiconductor packaging materials interaction and reliability

    CERN Document Server

    Chen, Andrea

    2012-01-01

    In semiconductor manufacturing, understanding how various materials behave and interact is critical to making a reliable and robust semiconductor package. Semiconductor Packaging: Materials Interaction and Reliability provides a fundamental understanding of the underlying physical properties of the materials used in a semiconductor package. The book focuses on an important step in semiconductor manufacturing--package assembly and testing. It covers the basics of material properties and explains how to determine which behaviors are important to package performance. The authors also discuss how

  7. The processing of semiconductor materials

    Science.gov (United States)

    1979-01-01

    Five experiments involving the processing of semiconductor materials were performed during the Skylab mission. After discussions on semiconductors and their unique electronic properties, and techniques of crystal growth, these five experiments are presented. Four melt growth experiments were attempted: (1) steady state growth and segregation under zero gravity (InSb); (2) seeded, containerless solidification of InSb; (3) influence of gravity-free solidification on microsegregation; and (4) directional solidification of InSb-GaSb alloys. One vapor growth experiment, crystal growth by vapor transport, was attempted.

  8. Fundamentals of semiconductors physics and materials properties

    CERN Document Server

    Yu, Peter Y

    2005-01-01

    Provides detailed explanations of the electronic, vibrational, transport, and optical properties of semiconductors. This textbook emphasizes understanding the physical properties of Si and similar tetrahedrally coordinated semiconductors and features an extensive collection of tables of material parameters, figures, and problems.

  9. Trace analysis of semiconductor materials

    CERN Document Server

    Cali, J Paul; Gordon, L

    1964-01-01

    Trace Analysis of Semiconductor Materials is a guidebook concerned with procedures of ultra-trace analysis. This book discusses six distinct techniques of trace analysis. These techniques are the most common and can be applied to various problems compared to other methods. Each of the four chapters basically includes an introduction to the principles and general statements. The theoretical basis for the technique involved is then briefly discussed. Practical applications of the techniques and the different instrumentations are explained. Then, the applications to trace analysis as pertaining

  10. Semiconductor Nanowires: A Platform for Exploring Limits and Concepts for Nano-Enabled Solar Cells

    OpenAIRE

    Kempa, Thomas Jan; Day, Robert Watson; Kim, Sun-Kyung; Park, Hong-Gyu; Lieber, Charles M.

    2013-01-01

    Over the past decade extensive studies of single semiconductor nanowire and nanowire array photovoltaic devices have explored the potential of these materials as platforms for a new generation of efficient and cost-effective solar cells. This feature review discusses strategies for implementation of semiconductor nanowires in solar energy applications, including advances in complex nanowire synthesis and characterization, fundamental insights from characterization of devices, utilization and ...

  11. Space Research Results Purify Semiconductor Materials

    Science.gov (United States)

    2010-01-01

    While President Obama's news that NASA would encourage private companies to develop vehicles to take NASA into space may have come as a surprise to some, NASA has always encouraged private companies to invest in space. More than two decades ago, NASA established Commercial Space Centers across the United States to encourage industry to use space as a place to conduct research and to apply NASA technology to Earth applications. Although the centers are no longer funded by NASA, the advances enabled by that previous funding are still impacting us all today. For example, the Space Vacuum Epitaxy Center (SVEC) at the University of Houston, one of the 17 Commercial Space Centers, had a mission to create advanced thin film semiconductor materials and devices through the use of vacuum growth technologies both on Earth and in space. Making thin film materials in a vacuum (low-pressure environment) is advantageous over making them in normal atmospheric pressures, because contamination floating in the air is lessened in a vacuum. To grow semiconductor crystals, researchers at SVEC utilized epitaxy the process of depositing a thin layer of material on top of another thin layer of material. On Earth, this process took place in a vacuum chamber in a clean room lab. For space, the researchers developed something called the Wake Shield Facility (WSF), a 12-foot-diameter disk-shaped platform designed to grow thin film materials using the low-pressure environment in the wake of the space shuttle. Behind an orbiting space shuttle, the vacuum levels are thousands of times better than in the best vacuum chambers on Earth. Throughout the 1990s, the WSF flew on three space shuttle missions as a series of proof-of-concept missions. These experiments are a lasting testament to the success of the shuttle program and resulted in the development of the first thin film materials made in the vacuum of space, helping to pave the way for better thin film development on Earth.

  12. Semiconductor nanowires: A platform for nanoscience and nanotechnology.

    Science.gov (United States)

    Lieber, Charles M

    2011-12-01

    Advances in nanoscience and nanotechnology critically depend on the development of nanostructures whose properties are controlled during synthesis. We focus on this critical concept using semiconductor nanowires, which provide the capability through design and rational synthesis to realize unprecedented structural and functional complexity in building blocks as a platform material. First, a brief review of the synthesis of complex modulated nanowires in which rational design and synthesis can be used to precisely control composition, structure, and, most recently, structural topology is discussed. Second, the unique functional characteristics emerging from our exquisite control of nanowire materials are illustrated using several selected examples from nanoelectronics and nano-enabled energy. Finally, the remarkable power of nanowire building blocks is further highlighted through their capability to create unprecedented, active electronic interfaces with biological systems. Recent work pushing the limits of both multiplexed extracellular recording at the single-cell level and the first examples of intracellular recording is described, as well as the prospects for truly blurring the distinction between nonliving nanoelectronic and living biological systems.

  13. Semiconductor device PN junction fabrication using optical processing of amorphous semiconductor material

    Science.gov (United States)

    Sopori, Bhushan; Rangappan, Anikara

    2014-11-25

    Systems and methods for semiconductor device PN junction fabrication are provided. In one embodiment, a method for fabricating an electrical device having a P-N junction comprises: depositing a layer of amorphous semiconductor material onto a crystalline semiconductor base, wherein the crystalline semiconductor base comprises a crystalline phase of a same semiconductor as the amorphous layer; and growing the layer of amorphous semiconductor material into a layer of crystalline semiconductor material that is epitaxially matched to the lattice structure of the crystalline semiconductor base by applying an optical energy that penetrates at least the amorphous semiconductor material.

  14. Controlling the stoichiometry and doping of semiconductor materials

    Science.gov (United States)

    Albin, David; Burst, James; Metzger, Wyatt; Duenow, Joel; Farrell, Stuart; Colegrove, Eric

    2016-08-16

    Methods for treating a semiconductor material are provided. According to an aspect of the invention, the method includes annealing the semiconductor material in the presence of a compound that includes a first element and a second element. The first element provides an overpressure to achieve a desired stoichiometry of the semiconductor material, and the second element provides a dopant to the semiconductor material.

  15. Nitride Semiconductors Handbook on Materials and Devices

    CERN Document Server

    Ruterana, Pierre; Neugebauer, Jörg

    2003-01-01

    Semiconductor components based on silicon have been used in a wide range of applications for some time now. These elemental semiconductors are now well researched and technologically well developed. In the meantime the focus has switched to a new group of materials: ceramic semiconductors based on nitrides are currently the subject of research due to their optical and electronic characteristics. They open up new industrial possibilities in the field of photosensors, as light sources or as electronic components. This collection of review articles provides a systematic and in-depth overview of t

  16. Semiconductor materials for solar photovoltaic cells

    CERN Document Server

    Wong-Ng, Winnie; Bhattacharya, Raghu

    2016-01-01

    This book reviews the current status of semiconductor materials for conversion of sunlight to electricity, and highlights advances in both basic science and manufacturing.  Photovoltaic (PV) solar electric technology will be a significant contributor to world energy supplies when reliable, efficient PV power products are manufactured in large volumes at low cost.  Expert chapters cover the full range of semiconductor materials for solar-to-electricity conversion, from crystalline silicon and amorphous silicon to cadmium telluride, copper indium gallium sulfide selenides, dye sensitized solar cells, organic solar cells, and environmentally friendly copper zinc tin sulfide selenides. The latest methods for synthesis and characterization of solar cell materials are described, together with techniques for measuring solar cell efficiency. Semiconductor Materials for Solar Photovoltaic Cells presents the current state of the art as well as key details about future strategies to increase the efficiency and reduce ...

  17. Measurements of radioactive contaminants in semiconductor materials

    Science.gov (United States)

    Gordon, Michael S.; Rodbell, Kenneth P.; Murray, Conal E.; McNally, Brendan D.

    2016-12-01

    The emission of alpha particles from materials used to manufacture semiconductors can contribute substantially to the single-event upset rate. The alpha particles originate from contamination in the materials, or from radioactive isotopes, themselves. In this review paper, we discuss the sources of the radioactivity and the measurement methods to detect the emitted particles.

  18. New materials for radiation hard semiconductor detectors

    CERN Document Server

    Sellin, P J; CERN. Geneva

    2006-01-01

    We present a review of the current status of research into new semiconductor materials for use as particle tracking detectors in very high radiation environments. This work is carried out within the framework of the CERN RD50 collaboration, which is investigating detector technologies suitable for operation at the proposed Super-LHC facility (SLHC). Tracking detectors operating at the SLHC in this environment will have to be capable of withstanding radiation levels arising from a luminosity of 1035 cm-2s-1 which will present severe challenges to current tracking detector technologies. The "new materials" activity within RD50 is investigating the performance of various semiconductor materials that potentially offer radiation hard alternatives to silicon devices. The main contenders in this study are silicon carbide, gallium nitride and amorphous silicon. In this paper we review the current status of these materials, in terms of material quality, commercial availability, charge transport properties, and radiati...

  19. III-V semiconductor materials and devices

    CERN Document Server

    Malik, R J

    1989-01-01

    The main emphasis of this volume is on III-V semiconductor epitaxial and bulk crystal growth techniques. Chapters are also included on material characterization and ion implantation. In order to put these growth techniques into perspective a thorough review of the physics and technology of III-V devices is presented. This is the first book of its kind to discuss the theory of the various crystal growth techniques in relation to their advantages and limitations for use in III-V semiconductor devices.

  20. Fundamentals of semiconductors physics and materials properties

    CERN Document Server

    Yu, Peter Y

    1996-01-01

    Fundamentals of Semiconductors attempts to fill the gap between a general solid-state physics textbook and research articles by providing detailed explanations of the electronic, vibrational, transport, and optical properties of semiconductors The approach is physical and intuitive rather than formal and pedantic Theories are presented to explain experimental results This textbook has been written with both students and researchers in mind Its emphasis is on understanding the physical properties of Si and similar tetrahedrally coordinated semiconductors The explanations are based on physical insights Each chapter is enriched by an extensive collection of tables of material parameters, figures and problems Many of these problems 'lead the student by the hand' to arrive at the results

  1. Fundamentals of semiconductors physics and materials properties

    CERN Document Server

    Yu, Peter Y

    2010-01-01

    This fourth edition of the well-established Fundamentals of Semiconductors serves to fill the gap between a general solid-state physics textbook and research articles by providing detailed explanations of the electronic, vibrational, transport, and optical properties of semiconductors. The approach is physical and intuitive rather than formal and pedantic. Theories are presented to explain experimental results. This textbook has been written with both students and researchers in mind. Its emphasis is on understanding the physical properties of Si and similar tetrahedrally coordinated semiconductors. The explanations are based on physical insights. Each chapter is enriched by an extensive collection of tables of material parameters, figures, and problems. Many of these problems "lead the student by the hand" to arrive at the results. The major changes made in the fourth edition include: an extensive appendix about the important and by now well-established deep center known as the DX center, additional problems...

  2. Solar Superabsorption of Semiconductor Materials

    CERN Document Server

    Yu, Yiling; Cao, Linyou

    2013-01-01

    We theoretically demonstrate the fundamental limit in volume for given materials (e.g. Si, a-Si, CdTe) to fully absorb the solar radiation above bandgap, which we refer as solar superabsorption limit. We also point out the general principles for experimentally designing light trapping structures to approach the superabsorption. This study builds upon an intuitive model, coupled leaky mode theory (CLMT), for the analysis of light absorption in nanostructures. The CLMT provides a useful variable transformation. Unlike the existing methods that rely on information of physical features (e.g. morphology, dimensionality) to analyze light absorption, the CLMT can evaluate light absorption in given materials with only two variables, the radiative loss and the resonant wavelength, of leaky modes, regardless the physical features of the materials. This transformation allows for surveying the entire variable space to find out the solar superabsorption and provides physical insights to guide the design of solar superabso...

  3. Epitaxial superconductor-semiconductor two-dimensional systems: platforms for quantum circuits (Conference Presentation)

    Science.gov (United States)

    Shabani, Javad

    2016-10-01

    Theory suggests that the interface between a one-dimensional semiconductor (Sm) with strong spin-orbit coupling and a superconductor (S) hosts Majorana modes with nontrivial topological properties. A key challenge in fabrication of such hybrid devices is forming highly transparent contacts between the active electrons in the semiconductor and the superconducting metal. Recently, it has been shown that a near perfect interface and a highly transparent contact can be achieved using epitaxial growth of aluminum on InAs nanowires. In this work, we present the first two-dimensional epitaxial superconductor-semiconductor material system that can serve as a platform for topological superconductivity. We show that our material system, Al-InAs, satisfies all the requirements necessary to reach into the topological superconducting regime by individual characterization of the semiconductor two dimensional electron system, superconductivity of Al and performance of S-Sm-S junctions. This exciting development might lead to a number of useful applications ranging from spintronics to quantum computing.

  4. Fundamental properties of semiconductor materials, and material performance in detectors

    Science.gov (United States)

    Casper, K. J.

    1973-01-01

    Procedures for determining fundamental properties of semiconductor materials, their performance as radiation detectors, and their service life as such detectors are given. Relationships were established between the minority carrier lifetime in the bulk of the material and the charge collection efficiency of the detector.

  5. New materials for radiation hard semiconductor dectectors

    Science.gov (United States)

    Sellin, P. J.; Vaitkus, J.

    2006-02-01

    We present a review of the current status of research into new semiconductor materials for use as particle tracking detectors in very high radiation environments. This work is carried out within the framework of the CERN RD50 collaboration, which is investigating detector technologies suitable for operation at the proposed super-LHC facility (SLHC). Tracking detectors operating at the SLHC in this environment will have to be capable of withstanding radiation levels arising from a luminosity of 10 35 cm -2 s -1 which will present severe challenges to current tracking detector technologies. The "new materials" activity within RD50 is investigating the performance of various semiconductor materials that potentially offer radiation hard alternatives to silicon devices. The main contenders in this study are silicon carbide, gallium nitride and amorphous silicon. In this paper we review the current status of these materials, in terms of material quality, commercial availability, charge transport properties, and radiation hardness studies. Whilst these materials currently show considerable promise for use as radiation hard tracking detectors, their ultimate success will depend on the continued improvement of the availability of high quality material.

  6. Liquid Crystalline Semiconductors Materials, properties and applications

    CERN Document Server

    Kelly, Stephen; O'Neill, Mary

    2013-01-01

    This is an exciting stage in the development of organic electronics. It is no longer an area of purely academic interest as increasingly real applications are being developed, some of which are beginning to come on-stream. Areas that have already been commercially developed or which are under intensive development include organic light emitting diodes (for flat panel displays and solid state lighting), organic photovoltaic cells, organic thin film transistors (for smart tags and flat panel displays) and sensors. Within the family of organic electronic materials, liquid crystals are relative newcomers. The first electronically conducting liquid crystals were reported in 1988 but already a substantial literature has developed. The advantage of liquid crystalline semiconductors is that they have the easy processability of amorphous and polymeric semiconductors but they usually have higher charge carrier mobilities. Their mobilities do not reach the levels seen in crystalline organics but they circumvent all of t...

  7. Advances in Rare Earth Application to Semiconductor Materials and Devices

    Institute of Scientific and Technical Information of China (English)

    屠海令

    2004-01-01

    The development of rare earths (RE) applications to semiconductor materials and devices is reviewed. The recent advances in RE doped silicon light emitting diodes (LED) and display materials are described. The various technologies of incorporating RE into semiconductor materials and devices are presented. The RE high dielectric materials, RE silicides and the phase transition of RE materials are also discussed. Finally, the paper describes the prospects of the RE application to semiconductor industry.

  8. Material platforms for integrated quantum photonics

    CERN Document Server

    Bogdanov, Simeon; Boltasseva, Alexandra; Shalaev, Vladimir M

    2016-01-01

    On-chip integration of quantum optical systems could be a major factor enabling photonic quantum technologies. Unlike the case of electronics, where the essential device is a transistor and the dominant material is silicon, the toolbox of elementary devices required for both classical and quantum photonic integrated circuits is vast. Therefore, many material platforms are being examined to host the future quantum photonic computers and network nodes. We discuss the pros and cons of several platforms for realizing various elementary devices, compare the current degrees of integration achieved in each platform and review several composite platform approaches.

  9. Method for depositing high-quality microcrystalline semiconductor materials

    Science.gov (United States)

    Guha, Subhendu; Yang, Chi C.; Yan, Baojie

    2011-03-08

    A process for the plasma deposition of a layer of a microcrystalline semiconductor material is carried out by energizing a process gas which includes a precursor of the semiconductor material and a diluent with electromagnetic energy so as to create a plasma therefrom. The plasma deposits a layer of the microcrystalline semiconductor material onto the substrate. The concentration of the diluent in the process gas is varied as a function of the thickness of the layer of microcrystalline semiconductor material which has been deposited. Also disclosed is the use of the process for the preparation of an N-I-P type photovoltaic device.

  10. Electrochemical Characterization of Semiconductor Materials and Structures

    Science.gov (United States)

    1997-01-01

    For a period covering October 1, 1995 through August 12, 1996, the research group at CSU has conducted theoretical and experimental research on "Electrochemical Characterization of Semiconductor Materials and Structures. " The objective of this investigation was to demonstrate the applicability of electrochemical techniques for characterization of complex device structures based on InP and GaAs, Ge, InGaAs, InSb, InAs and InSb, including: (1) accurate EC-V net majority carrier concentration depth profiling, and (2) surface and bulk structural and electrical type defect densities. Our motivation for this R&D effort was as follows: "Advanced space solar cells and ThermoPhotoVoltaic (TPV) cells are fabricated using a large variety of III-V materials based on InP and GaAs for solar cells and low bandgap materials such as Ge, InGaAs, InAs and InSb for TPV applications. At the present time for complex device structures using these materials, however, there is no simple way to assess the quality of these structures prior to device fabrication. Therefore, process optimization is a very time consuming and a costly endeavor". Completion of this R&D effort would have had unquestionable benefits for space solar cell and TPV cells, since electrochemical characterization of the above cell structures, if properly designed can provide many useful structural and electrical material information virtually at any depth inside various layers and at the interfaces. This, could have been applied for step-by-step process optimization, which could have been used for fabrication of new generation high efficiency, low cost space PV and TPV cells.

  11. Chalcogenoarene Semiconductors: New Ideas From Old Materials

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Lei; Fakhouri, Sami M.; Liu, Feng; Timmons, Justin C.; Ran, Niva A.; Briseno, Alejandro L.

    2010-01-01

    There are certain aspects of the electronic and packing behavior of planar aromatic molecules containing exocyclic chalcogen atoms (i.e., sulfur, selenium, tellurium) which need considerable re-enlightenment. This class of semiconductors was once regarded as next-generation π-donors for applications in charge-transfer complexes. With the advent of new device technologies such as light-emitting diodes, solar cells, and organic transistors, the interest in charge-transfer complexes eventually tapered off. However, significant progress in the use of this class of materials in modern organic devices has been reported over the last five years. In this article, we review the exocyclic arenes with chalcogen atoms in peri-positions, summarize synthetic routes to these compounds and take a close look at their basic properties. Particular emphasis is placed upon their packing arrangements and the effect of exocyclic chalcogen atoms on the crystal packing motifs. Selected example applications from this class of materials in different fields will be highlighted. As a final note, we provide a prediction for their use in mainstream applications such as energy and fundamental charge transport/generation.

  12. Composition/bandgap selective dry photochemical etching of semiconductor materials

    Energy Technology Data Exchange (ETDEWEB)

    Ashby, C.I.H.; Dishman, J.L.

    1985-10-11

    Disclosed is a method of selectively photochemically dry etching a first semiconductor material of a given composition and direct bandgap Eg/sub 1/ in the presence of a second semiconductor material of a different composition and direct bandgap Eg/sub 2/, wherein Eg/sub 2/ > Eg/sub 1/, said second semiconductor material substantially not being etched during said method. The method comprises subjecting both materials to the same photon flux and to the same gaseous etchant under conditions where said etchant would be ineffective for chemical etching of either material were the photons not present, said photons being of an energy greater than Eg/sub 1/ but less than Eg/sub 2/, whereby said first semiconductor material is photochemically etched and said second material is substantially not etched.

  13. Composition/bandgap selective dry photochemical etching of semiconductor materials

    Energy Technology Data Exchange (ETDEWEB)

    Ashby, Carol I. H. (Edgewood, NM); Dishman, James L. (Albuquerque, NM)

    1987-01-01

    A method of selectively photochemically dry etching a first semiconductor material of a given composition and direct bandgap Eg.sub.1 in the presence of a second semiconductor material of a different composition and direct bandgap Eg.sub.2, wherein Eg.sub.2 >Eg.sub.1, said second semiconductor material substantially not being etched during said method, comprises subjecting both materials to the same photon flux and to the same gaseous etchant under conditions where said etchant would be ineffective for chemical etching of either material were the photons not present, said photons being of an energy greater than Eg.sub.1 but less than Eg.sub.2, whereby said first semiconductor material is photochemically etched and said second material is substantially not etched.

  14. Composition/bandgap selective dry photochemical etching of semiconductor materials

    Energy Technology Data Exchange (ETDEWEB)

    Ashby, C.I.H.; Dishman, J.L.

    1987-03-10

    A method is described of selectively photochemically dry etching a first semiconductor material of a given composition and direct bandgap E/sub g1/ in the presence of a second semiconductor material of a different composition and direct bandgap E/sub g2/, wherein E/sub g2/>E/sub g1/. The second semiconductor material is not substantially etched during the method, comprising subjecting both materials to the same photon flux and to the same gaseous etchant under conditions where the etchant would be ineffective for chemical etching of either material where the photons are not present, the photons being of an energy greater than E/sub g1/ but less than E/sub g2/, whereby the first semiconductor material is photochemically etched and the second material is substantially not etched.

  15. Optical correlators with fast updating speed using photorefractive semiconductor materials

    Science.gov (United States)

    Gheen, Gregory; Cheng, Li-Jen

    1988-01-01

    The performance of an updatable optical correlator which uses a photorefractive semiconductor to generate real-time matched filters is discussed. The application of compound semiconductors makes possible high-speed operation and low optical input intensities. The Bragg diffraction is considered, along with the speed and power characteristics of these materials. Experimental results on photorefractive GaAs are presented.

  16. Semiconductor Metal-Organic Frameworks: Future Low-Bandgap Materials.

    Science.gov (United States)

    Usman, Muhammad; Mendiratta, Shruti; Lu, Kuang-Lieh

    2017-02-01

    Metal-organic frameworks (MOFs) with low density, high porosity, and easy tunability of functionality and structural properties, represent potential candidates for use as semiconductor materials. The rapid development of the semiconductor industry and the continuous miniaturization of feature sizes of integrated circuits toward the nanometer (nm) scale require novel semiconductor materials instead of traditional materials like silicon, germanium, and gallium arsenide etc. MOFs with advantageous properties of both the inorganic and the organic components promise to serve as the next generation of semiconductor materials for the microelectronics industry with the potential to be extremely stable, cheap, and mechanically flexible. Here, a perspective of recent research is provided, regarding the semiconducting properties of MOFs, bandgap studies, and their potential in microelectronic devices. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Engineering the cell-semiconductor interface: a materials modification approach using II-VI and III-V semiconductor materials.

    Science.gov (United States)

    Bain, Lauren E; Ivanisevic, Albena

    2015-02-18

    Developing functional biomedical devices based on semiconductor materials requires an understanding of interactions taking place at the material-biosystem interface. Cell behavior is dependent on the local physicochemical environment. While standard routes of material preparation involve chemical functionalization of the active surface, this review emphasizes both biocompatibility of unmodified surfaces as well as use of topographic features in manipulating cell-material interactions. Initially, the review discusses experiments involving unmodified II-VI and III-V semiconductors - a starting point for assessing cytotoxicity and biocompatibility - followed by specific surface modification, including the generation of submicron roughness or the potential effect of quantum dot structures. Finally, the discussion turns to more recent work in coupling topography and specific chemistry, enhancing the tunability of the cell-semiconductor interface. With this broadened materials approach, researchers' ability to tune the interactions between semiconductors and biological environments continues to improve, reaching new heights in device function.

  18. Semiconductor Material and Device Characterization, 3rd Edition

    Science.gov (United States)

    Schroder, Dieter K.

    2005-12-01

    Semiconductor Material and Device Characterizationis the only book on the market devoted to the characterization techniques used by the modern semiconductor industry to measure diverse semiconductor materials and devices. It covers the full range of electrical and optical characterization methods while thoroughly treating the more specialized chemical and physical techniques. In the third edition, Professor Schroder has rewritten parts of each chapter and added two new chapters (Charge Based Measurements and Failure Analysis and Reliability), redrawn and updated most figures, and included new problems and approximately 100 new references. * New end of chapter problems * Outdated figures have been redone and replaced with current data * Up-to-date bibliography with over 1400 references * Professor Schroder is recognized as the authority in the field of semiconductor characterization

  19. Synthesis and characterization of a new organic semiconductor material

    Energy Technology Data Exchange (ETDEWEB)

    Tiffour, Imane [Laboratoire de Génie Physique, Département de Physique, Université de Tiaret, Tiaret 14000 (Algeria); Faculté des Sciences et Technologies, Université Mustapha Stambouli, Mascara 29000 (Algeria); Dehbi, Abdelkader [Laboratoire de Génie Physique, Département de Physique, Université de Tiaret, Tiaret 14000 (Algeria); Mourad, Abdel-Hamid I., E-mail: ahmourad@uaeu.ac.ae [Mechanical Engineering Department, Faculty of Engineering, United Arab Emirates University, Al-Ain, P.O. Box 15551 (United Arab Emirates); Belfedal, Abdelkader [Faculté des Sciences et Technologies, Université Mustapha Stambouli, Mascara 29000 (Algeria); LPCMME, Département de Physique, Université d' Oran Es-sénia, 3100 Oran (Algeria)

    2016-08-01

    The objective of this study is to create an ideal mixture of Acetaminophen/Curcumin leading to a new and improved semiconductor material, by a study of the electrical, thermal and optical properties. This new material will be compared with existing semiconductor technology to discuss its viability within the industry. The electrical properties were investigated using complex impedance spectroscopy and optical properties were studied by means of UV-Vis spectrophotometry. The electric conductivity σ, the dielectric constant ε{sub r}, the activation energy E{sub a}, the optical transmittance T and the gap energy E{sub g} have been investigated in order to characterize our organic material. The electrical conductivity of the material is approximately 10{sup −5} S/m at room temperature, increasing the temperature causes σ to increase exponentially to approximately 10{sup −4} S/m. The activation energy obtained for the material is equal to 0.49 ± 0.02 ev. The optical absorption spectra show that the investigating material has absorbance in the visible range with a maximum wavelength (λ{sub max}) 424 nm. From analysis, the absorption spectra it was found the optical band gap equal to 2.6 ± 0.02 eV and 2.46 ± 0.02 eV for the direct and indirect transition, respectively. In general, the study shows that the developed material has characteristics of organic semiconductor material that has a promising future in the field of organic electronics and their potential applications, e.g., photovoltaic cells. - Highlights: • Development of a new organic acetaminophen/Curcumin semiconductor material. • The developed material has characteristics of an organic semiconductor. • It has electrical conductivity comparable to available organic semiconductors. • It has high optical transmittance and low permittivity/dielectric constant.

  20. Compound Semiconductor Materials, Devices and Circuits

    Science.gov (United States)

    1988-06-01

    Semiconductors", L.A. Coldren, J.G. Mendoza - Alvarez and R.H. Yan, Aopl. Phys. Lett., 51, 792-794 (1987). JSEP PUBLICATIONS AND PRESENTATIONS 1. "Room...self-consistent Monte Carlo transport formulation and its applicat... to small graded heterostructure devices; (e) optical modulation based on the...L.F. Eastman 1 0 TASK 3 FUNDAMENTAL PHENOMENON IN ULTRASHORT DEVICES E.D. Wolf, L.F. Eastman and P.J. Tasker 1 9 TASK 4 ENSEMBLE MONTE CARLO

  1. Conduit for high temperature transfer of molten semiconductor crystalline material

    Science.gov (United States)

    Fiegl, George (Inventor); Torbet, Walter (Inventor)

    1983-01-01

    A conduit for high temperature transfer of molten semiconductor crystalline material consists of a composite structure incorporating a quartz transfer tube as the innermost member, with an outer thermally insulating layer designed to serve the dual purposes of minimizing heat losses from the quartz tube and maintaining mechanical strength and rigidity of the conduit at the elevated temperatures encountered. The composite structure ensures that the molten semiconductor material only comes in contact with a material (quartz) with which it is compatible, while the outer layer structure reinforces the quartz tube, which becomes somewhat soft at molten semiconductor temperatures. To further aid in preventing cooling of the molten semiconductor, a distributed, electric resistance heater is in contact with the surface of the quartz tube over most of its length. The quartz tube has short end portions which extend through the surface of the semiconductor melt and which are lef bare of the thermal insulation. The heater is designed to provide an increased heat input per unit area in the region adjacent these end portions.

  2. Interaction of cochlear nucleus explants with semiconductor materials.

    Science.gov (United States)

    Mlynski, Robert; Volkenstein, Stefan; Hansen, Stefan; Brors, Dominik; Ebmeyer, Joerg; Dazert, Stefan

    2007-07-01

    Implantable hearing devices such as cochlear implants and auditory brainstem implants deliver auditory information through electrical stimulation of auditory neurons. The combination of microelectronic electrodes with auditory nerve cells may lead to further improvement of the hearing quality with these devices. Whereas several kinds of neurons are known to grow on semiconductor substrates, interactions of cochlear nucleus (CN) neurons with such materials have yet to be described. To investigate survival and growth behavior of CN neurons on different semiconductor materials. CN explants from postnatal day 10 Sprague-Dawley rats were cultured for 96 hours in Neurobasal medium on polished and unpolished silicon wafers (p-type Si [100] and p-type Si3N4[100]) as well as plastic surface. These surfaces had been coated with poly-L-lysine and laminin. Neuronal outgrowth was examined using image analysis software after immunohistologic staining for neurofilament. Neurite length and directional changes were quantified. Additionally, neurite morphology and adhesion to the semiconductor material was evaluated by scanning electron microscopy. Although proper adhesion of CN explants was seen, no neurite growth could be detected on unpolished silicon wafers (Si and Si3N4). Compared with the other test conditions, polished, laminin-coated Si3N4 wafers showed best biocompatibility regarding neurite length and number per explant. CN explants developed a mean of eight neurons with an average length of 236 mum in 96 hours of culture on these wafers. The results of this study demonstrate the general possibility of CN neuron growth in culture on semiconductors in vitro. The differences in neuron length and number per explant indicate that the growth of CN neurons is influenced by the semiconductor substrate as well as extracellular matrix proteins, with laminin-coated p-type Si3N4[100] being a preferable material for future hybrid experiments on auditory-neuron semiconductor chips.

  3. Photoconductive terahertz generation from textured semiconductor materials.

    Science.gov (United States)

    Collier, Christopher M; Stirling, Trevor J; Hristovski, Ilija R; Krupa, Jeffrey D A; Holzman, Jonathan F

    2016-01-01

    Photoconductive (PC) terahertz (THz) emitters are often limited by ohmic loss and Joule heating-as these effects can lead to thermal runaway and premature device breakdown. To address this, the proposed work introduces PC THz emitters based on textured InP materials. The enhanced surface recombination and decreased charge-carrier lifetimes of the textured InP materials reduce residual photocurrents, following the picosecond THz waveform generation, and this diminishes Joule heating in the emitters. A non-textured InP material is used as a baseline for studies of fine- and coarse-textured InP materials. Ultrafast pump-probe and THz setups are used to measure the charge-carrier lifetimes and THz response/photocurrent consumption of the respective materials and emitters. It is found that similar temporal and spectral characteristics can be achieved with the THz emitters, but the level of photocurrent consumption (yielding Joule heating) is greatly reduced in the textured materials.

  4. Growth of crystalline semiconductor materials on crystal surfaces

    CERN Document Server

    Aleksandrov, L

    2013-01-01

    Written for physicists, chemists, and engineers specialising in crystal and film growth, semiconductor electronics, and various applications of thin films, this book reviews promising scientific and engineering trends in thin films and thin-films materials science. The first part discusses the physical characteristics of the processes occurring during the deposition and growth of films, the principal methods of obtaining semiconductor films and of reparing substrate surfaces on which crystalline films are grown, and the main applications of films. The second part contains data on epitaxial i

  5. Wafer Fusion for Integration of Semiconductor Materials and Devices

    Energy Technology Data Exchange (ETDEWEB)

    Choquette, K.D.; Geib, K.M.; Hou, H.Q.; Allerman, A.A.; Kravitz, S.; Follstaedt, D.M.; Hindi, J.J.

    1999-05-01

    We have developed a wafer fusion technology to achieve integration of semiconductor materials and heterostructures with widely disparate lattice parameters, electronic properties, and/or optical properties for novel devices not now possible on any one substrate. Using our simple fusion process which uses low temperature (400-600 C) anneals in inert N{sub 2} gas, we have extended the scope of this technology to examine hybrid integration of dissimilar device technologies. As a specific example, we demonstrate wafer bonding vertical cavity surface emitting lasers (VCSELs) to transparent AlGaAs and GaP substrates to fabricate bottom-emitting short wavelength VCSELs. As a baseline fabrication technology applicable to many semiconductor systems, wafer fusion will revolutionize the way we think about possible semiconductor devices, and enable novel device configurations not possible by epitaxial growth.

  6. New semiconductor materials for magnetoelectronics at room temperature

    Indian Academy of Sciences (India)

    S K Kamilla; S Basu

    2002-11-01

    Most of the semiconductor materials are diamagnetic by nature and therefore cannot take active part in the operation of the magneto electronic devices. In order to enable them to be useful for such devices a recent effort has been made to develop diluted magnetic semiconductors (DMS) in which small quantity of magnetic ion is introduced into normal semiconductors. The first known such DMS are II–VI and III–V semiconductors diluted with magnetic ions like Mn, Fe, Co, Ni, etc. Most of these DMS exhibit very high electron and hole mobility and thus useful for high speed electronic devices. The recent DMS materials reported are (CdMn)Te, (GaMn)As, (GaMn)Sb, ZnMn(or Co)O, TiMn(or Co)O etc. They have been produced as thin films by MBE and other methods. This paper will discuss the details of the growth and properties of the DMS materials and some of their applications.

  7. Ferroelectric Rashba semiconductors as a novel class of multifunctional materials

    OpenAIRE

    Picozzi, Silvia

    2014-01-01

    The discovery of novel properties, effects or microscopic mechanisms in modern materials science is often driven by the quest for combining, into a single compound, several functionalities: not only the juxtaposition of the latter functionalities, but especially their coupling, can open new horizons in basic condensed matter physics, in materials science and technology. Semiconductor spintronics makes no exception. In this context, we have discovered by means of density-functional simulations...

  8. Anisotropy-based crystalline oxide-on-semiconductor material

    Science.gov (United States)

    McKee, Rodney Allen; Walker, Frederick Joseph

    2000-01-01

    A semiconductor structure and device for use in a semiconductor application utilizes a substrate of semiconductor-based material, such as silicon, and a thin film of a crystalline oxide whose unit cells are capable of exhibiting anisotropic behavior overlying the substrate surface. Within the structure, the unit cells of the crystalline oxide are exposed to an in-plane stain which influences the geometric shape of the unit cells and thereby arranges a directional-dependent quality of the unit cells in a predisposed orientation relative to the substrate. This predisposition of the directional-dependent quality of the unit cells enables the device to take beneficial advantage of characteristics of the structure during operation. For example, in the instance in which the crystalline oxide of the structure is a perovskite, a spinel or an oxide of similarly-related cubic structure, the structure can, within an appropriate semiconductor device, exhibit ferroelectric, piezoelectric, pyroelectric, electro-optic, ferromagnetic, antiferromagnetic, magneto-optic or large dielectric properties that synergistically couple to the underlying semiconductor substrate.

  9. Scanning probe characterization of novel semiconductor materials and devices

    Science.gov (United States)

    Zhou, Xiaotian

    As semiconductor devices shrink in size, it becomes more important to characterize and understand electronic properties of the materials and devices at the nanoscale. Scanning probe techniques offers numerous advantages over traditional tools used for semiconductor materials and devices characterization including high spatial resolution, ease of use and multi-functionality for electrical characterization, such as current, potential and capacitance, etc. In the first chapter, the basic principle of atomic force microscopy (AFM), and its application to characterization of semiconductor materials and devices are discussed. In the second part of the thesis, scanning capacitance microscopy (SCM), spectroscopy (SCS) and scanning Kelvin probe microscopy (SKPM) are used to investigate the structure and electronic properties of nitride based materials and devices, specifically doping in p-type GaN and electronic structure and morphology of InxGa1-xN/GaN quantum wells. In this work, AFM is used to characterize the local electronic structure in nitride thin film and heterostructures devices. In next part the thesis, AFM is used as an active part of the device, in conductive atomic force microscopy (C-AFM) and scanning gate microscopy (SGM), to study the transport properties and gating effect of InAs semiconductor nanowire based field effect transistor. This is made possible because the nanowire, as a potential one-dimension building block for high performance electronics and optoelectronics, has a diameter comparable to the size of AFM tips. In the last part of the thesis (appendix), SKPM is used to characterize semiconductor-like organic thin films, where measurements of the potential profile along the channel of an organic thin film transistor (OTFT) at different gate bias are presented to illustrate the unique transport property of such devices.

  10. Synthesis of Perylene Imide Diones as Platforms for the Development of Pyrazine Based Organic Semiconductors.

    Science.gov (United States)

    de Echegaray, Paula; Mancheño, María J; Arrechea-Marcos, Iratxe; Juárez, Rafael; López-Espejo, Guzmán; López Navarrete, J Teodomiro; Ramos, María Mar; Seoane, Carlos; Ortiz, Rocío Ponce; Segura, José L

    2016-11-18

    There is a great interest in peryleneimide (PI)-containing compounds given their unique combination of good electron accepting ability, high abosorption in the visible region, and outstanding chemical, thermal, and photochemical stabilities. Thus, herein we report the synthesis of perylene imide derivatives endowed with a 1,2-diketone functionality (PIDs) as efficient intermediates to easily access peryleneimide (PI)-containing organic semiconductors with enhanced absorption cross-section for the design of tunable semiconductor organic materials. Three processable organic molecular semiconductors containing thiophene and terthiophene moieties, PITa, PITb, and PITT, have been prepared from the novel PIDs. The tendency of these semiconductors for molecular aggregation have been investigated by NMR spectroscopy and supported by quantum chemical calculations. 2D NMR experiments and theoretical calculations point to an antiparallel π-stacking interaction as the most stable conformation in the aggregates. Investigation of the optical and electrochemical properties of the materials is also reported and analyzed in combination with DFT calculations. Although the derivatives presented here show modest electron mobilities of ∼10(-4) cm(2)V(-1)s(-1), these preliminary studies of their performance in organic field effect transistors (OFETs) indicate the potential of these new building blocks as n-type semiconductors.

  11. Quantum materials. Lateral semiconductor nanostructures, hybrid systems and nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Heitmann, Detlef (ed.) [Hamburg Univ. (Germany). Inst. fuer Angewandte Physik

    2010-07-01

    Semiconductor nanostructures are ideal systems to tailor the physical properties via quantum effects, utilizing special growth techniques, self-assembling, wet chemical processes or lithographic tools in combination with tuneable external electric and magnetic fields. Such systems are called ''Quantum Materials''.The electronic, photonic, and phononic properties of these systems are governed by size quantization and discrete energy levels. The charging is controlled by the Coulomb blockade. The spin can be manipulated by the geometrical structure, external gates and by integrating hybrid ferromagnetic emitters.This book reviews sophisticated preparation methods for quantum materials based on III-V and II-VI semiconductors and a wide variety of experimental techniques for the investigation of these interesting systems. It highlights selected experiments and theoretical concepts and gives such a state-of-the-art overview about the wide field of physics and chemistry that can be studied in these systems. (orig.)

  12. Materials and Reliability Handbook for Semiconductor Optical and Electron Devices

    CERN Document Server

    Pearton, Stephen

    2013-01-01

    Materials and Reliability Handbook for Semiconductor Optical and Electron Devices provides comprehensive coverage of reliability procedures and approaches for electron and photonic devices. These include lasers and high speed electronics used in cell phones, satellites, data transmission systems and displays. Lifetime predictions for compound semiconductor devices are notoriously inaccurate due to the absence of standard protocols. Manufacturers have relied on extrapolation back to room temperature of accelerated testing at elevated temperature. This technique fails for scaled, high current density devices. Device failure is driven by electric field or current mechanisms or low activation energy processes that are masked by other mechanisms at high temperature. The Handbook addresses reliability engineering for III-V devices, including materials and electrical characterization, reliability testing, and electronic characterization. These are used to develop new simulation technologies for device operation and ...

  13. n-Channel semiconductor materials design for organic complementary circuits.

    Science.gov (United States)

    Usta, Hakan; Facchetti, Antonio; Marks, Tobin J

    2011-07-19

    Organic semiconductors have unique properties compared to traditional inorganic materials such as amorphous or crystalline silicon. Some important advantages include their adaptability to low-temperature processing on flexible substrates, low cost, amenability to high-speed fabrication, and tunable electronic properties. These features are essential for a variety of next-generation electronic products, including low-power flexible displays, inexpensive radio frequency identification (RFID) tags, and printable sensors, among many other applications. Accordingly, the preparation of new materials based on π-conjugated organic molecules or polymers has been a central scientific and technological research focus over the past decade. Currently, p-channel (hole-transporting) materials are the leading class of organic semiconductors. In contrast, high-performance n-channel (electron-transporting) semiconductors are relatively rare, but they are of great significance for the development of plastic electronic devices such as organic field-effect transistors (OFETs). In this Account, we highlight the advances our team has made toward realizing moderately and highly electron-deficient n-channel oligomers and polymers based on oligothiophene, arylenediimide, and (bis)indenofluorene skeletons. We have synthesized and characterized a "library" of structurally related semiconductors, and we have investigated detailed structure-property relationships through optical, electrochemical, thermal, microstructural (both single-crystal and thin-film), and electrical measurements. Our results reveal highly informative correlations between structural parameters at various length scales and charge transport properties. We first discuss oligothiophenes functionalized with perfluoroalkyl and perfluoroarene substituents, which represent the initial examples of high-performance n-channel semiconductors developed in this project. The OFET characteristics of these compounds are presented with an

  14. Chalcopyrite semimagnetic semiconductors: From nanocomposite to homogeneous material

    Directory of Open Access Journals (Sweden)

    Kilanski L.

    2014-01-01

    Full Text Available Currently, complex ferromagnetic semiconductor systems are of significant interest due to their potential applicability in spintronics. A key feature in order to use semiconductor materials in spintronics is the presence of room temperature ferromagnetism. This feature was recently observed and is intensively studied in several Mn-alloyed II-IV-V2 group diluted magnetic semiconductor systems. The paper reviews the origin of room temperature ferromagnetism in II-IV-V2 compounds. In view of our recent reports the room temperature ferromagnetism in Mn-alloyed chalcopyrite semiconductors with more than 5 molar % of Mn is due to the presence of MnAs clusters. The solubility of magnetic impurities in bulk II-IV-V2 materials is of the order of a few percent, depending on the alloy composition. High values of the conducting hole - Mn ion exchange constant Jpd have significant value equal to 0.75 eV for Zn0.997Mn0.003GeAs2. The sample quality has significant effect on the magnetotransport of the alloy. The magnetoresistance of the alloy change main physical mechanism from spin-disorder scattering and weak localization for homogeneous samples to cluster-related geometrical effect observed for nanocomposite samples. The magnetoresistance of the II-IV-V2 alloys can be then tuned up to a few hundreds of percent via changes of the chemical composition of the alloy as well as a degree of disorder present in a material. [Projekat Ministarstva nauke Republike Srbije, br. III45003

  15. Silicon-on-insulator-based complementary metal oxide semiconductor integrated optoelectronic platform for biomedical applications

    Science.gov (United States)

    Mujeeb-U-Rahman, Muhammad; Scherer, Axel

    2016-12-01

    Microscale optical devices enabled by wireless power harvesting and telemetry facilitate manipulation and testing of localized biological environments (e.g., neural recording and stimulation, targeted delivery to cancer cells). Design of integrated microsystems utilizing optical power harvesting and telemetry will enable complex in vivo applications like actuating a single nerve, without the difficult requirement of extreme optical focusing or use of nanoparticles. Silicon-on-insulator (SOI)-based platforms provide a very powerful architecture for such miniaturized platforms as these can be used to fabricate both optoelectronic and microelectronic devices on the same substrate. Near-infrared biomedical optics can be effectively utilized for optical power harvesting to generate optimal results compared with other methods (e.g., RF and acoustic) at submillimeter size scales intended for such designs. We present design and integration techniques of optical power harvesting structures with complementary metal oxide semiconductor platforms using SOI technologies along with monolithically integrated electronics. Such platforms can become the basis of optoelectronic biomedical systems including implants and lab-on-chip systems.

  16. New Organic Semiconductor Materials Applied in Organic Photovoltaic and Optical Devices

    National Research Council Canada - National Science Library

    Andre F. S. Guedes; Vilmar P. Guedes; Simone Tartari; Mônica L. Souza; Idaulo J. Cunha

    2015-01-01

    The development of flexible organic photovoltaic solar cells, using an optically transparent substrate material and organic semiconductor materials, has been widely utilized by the electronic industry...

  17. Neutron detection using boron gallium nitride semiconductor material

    Energy Technology Data Exchange (ETDEWEB)

    Atsumi, Katsuhiro [Department of Electrical and Electronic Engineering, Graduate School of Engineering, Shizuoka University, 3-5-1 Johoku, Naka-ku, Hamamatsu 432-8561 (Japan); Inoue, Yoku; Nakano, Takayuki, E-mail: ttnakan@ipc.shizuoka.ac.jp [Department of Electrical and Materials Science, Graduate School of Engineering, Shizuoka University, 3-5-1 Johoku, Naka-ku, Hamamatsu 432-8561 (Japan); Mimura, Hidenori; Aoki, Toru [Research Institute of Electronics, Shizuoka University, 3-5-1 Johoku, Naka-ku, Hamamatsu 432-8011 (Japan)

    2014-03-01

    In this study, we developed a new neutron-detection device using a boron gallium nitride (BGaN) semiconductor in which the B atom acts as a neutron converter. BGaN and gallium nitride (GaN) samples were grown by metal organic vapor phase epitaxy, and their radiation detection properties were evaluated. GaN exhibited good sensitivity to α-rays but poor sensitivity to γ-rays. Moreover, we confirmed that electrons were generated in the depletion layer under neutron irradiation. This resulted in a neutron-detection signal after α-rays were generated by the capture of neutrons by the B atoms. These results prove that BGaN is useful as a neutron-detecting semiconductor material.

  18. Neutron detection using boron gallium nitride semiconductor material

    Directory of Open Access Journals (Sweden)

    Katsuhiro Atsumi

    2014-03-01

    Full Text Available In this study, we developed a new neutron-detection device using a boron gallium nitride (BGaN semiconductor in which the B atom acts as a neutron converter. BGaN and gallium nitride (GaN samples were grown by metal organic vapor phase epitaxy, and their radiation detection properties were evaluated. GaN exhibited good sensitivity to α-rays but poor sensitivity to γ-rays. Moreover, we confirmed that electrons were generated in the depletion layer under neutron irradiation. This resulted in a neutron-detection signal after α-rays were generated by the capture of neutrons by the B atoms. These results prove that BGaN is useful as a neutron-detecting semiconductor material.

  19. Methods for forming group III-arsenide-nitride semiconductor materials

    Science.gov (United States)

    Major, Jo S. (Inventor); Welch, David F. (Inventor); Scifres, Donald R. (Inventor)

    2002-01-01

    Methods are disclosed for forming Group III-arsenide-nitride semiconductor materials. Group III elements are combined with group V elements, including at least nitrogen and arsenic, in concentrations chosen to lattice match commercially available crystalline substrates. Epitaxial growth of these III-V crystals results in direct bandgap materials, which can be used in applications such as light emitting diodes and lasers. Varying the concentrations of the elements in the III-V crystals varies the bandgaps, such that materials emitting light spanning the visible spectra, as well as mid-IR and near-UV emitters, can be created. Conversely, such material can be used to create devices that acquire light and convert the light to electricity, for applications such as full color photodetectors and solar energy collectors. The growth of the III-V crystals can be accomplished by growing thin layers of elements or compounds in sequences that result in the overall lattice match and bandgap desired.

  20. Methods for the additive manufacturing of semiconductor and crystal materials

    Science.gov (United States)

    Stowe, Ashley C.; Speight, Douglas

    2016-11-22

    A method for the additive manufacturing of inorganic crystalline materials, including: physically combining a plurality of starting materials that are used to form an inorganic crystalline compound to be used as one or more of a semiconductor, scintillator, laser crystal, and optical filter; heating or melting successive regions of the combined starting materials using a directed heat source having a predetermined energy characteristic, thereby facilitating the reaction of the combined starting materials; and allowing each region of the combined starting materials to cool in a controlled manner, such that the desired inorganic crystalline compound results. The method also includes, prior to heating or melting the successive regions of the combined starting materials using the directed heat source, heating the combined starting materials to facilitate initial reaction of the combined starting materials. The method further includes translating the combined starting materials and/or the directed heat source between successive locations. The method still further includes controlling the mechanical, electrical, photonic, and/or optical properties of the inorganic crystalline compound.

  1. Methods for the additive manufacturing of semiconductor and crystal materials

    Energy Technology Data Exchange (ETDEWEB)

    Stowe, Ashley C.; Speight, Douglas

    2016-11-22

    A method for the additive manufacturing of inorganic crystalline materials, including: physically combining a plurality of starting materials that are used to form an inorganic crystalline compound to be used as one or more of a semiconductor, scintillator, laser crystal, and optical filter; heating or melting successive regions of the combined starting materials using a directed heat source having a predetermined energy characteristic, thereby facilitating the reaction of the combined starting materials; and allowing each region of the combined starting materials to cool in a controlled manner, such that the desired inorganic crystalline compound results. The method also includes, prior to heating or melting the successive regions of the combined starting materials using the directed heat source, heating the combined starting materials to facilitate initial reaction of the combined starting materials. The method further includes translating the combined starting materials and/or the directed heat source between successive locations. The method still further includes controlling the mechanical, electrical, photonic, and/or optical properties of the inorganic crystalline compound.

  2. High-performance green semiconductor devices: materials, designs, and fabrication

    Science.gov (United States)

    Jung, Yei Hwan; Zhang, Huilong; Gong, Shaoqin; Ma, Zhenqiang

    2017-06-01

    From large industrial computers to non-portable home appliances and finally to light-weight portable gadgets, the rapid evolution of electronics has facilitated our daily pursuits and increased our life comforts. However, these rapid advances have led to a significant decrease in the lifetime of consumer electronics. The serious environmental threat that comes from electronic waste not only involves materials like plastics and heavy metals, but also includes toxic materials like mercury, cadmium, arsenic, and lead, which can leak into the ground and contaminate the water we drink, the food we eat, and the animals that live around us. Furthermore, most electronics are comprised of non-renewable, non-biodegradable, and potentially toxic materials. Difficulties in recycling the increasing amount of electronic waste could eventually lead to permanent environmental pollution. As such, discarded electronics that can naturally degrade over time would reduce recycling challenges and minimize their threat to the environment. This review provides a snapshot of the current developments and challenges of green electronics at the semiconductor device level. It looks at the developments that have been made in an effort to help reduce the accumulation of electronic waste by utilizing unconventional, biodegradable materials as components. While many semiconductors are classified as non-biodegradable, a few biodegradable semiconducting materials exist and are used as electrical components. This review begins with a discussion of biodegradable materials for electronics, followed by designs and processes for the manufacturing of green electronics using different techniques and designs. In the later sections of the review, various examples of biodegradable electrical components, such as sensors, circuits, and batteries, that together can form a functional electronic device, are discussed and new applications using green electronics are reviewed.

  3. Material Engineering for Monolithic Semiconductor Mode-Locked Lasers

    DEFF Research Database (Denmark)

    Kulkova, Irina

    This thesis is devoted to the materials engineering for semiconductor monolithic passively mode-locked lasers (MLLs) as a compact energy-efficient source of ultrashort optical pulses. Up to the present day, the achievement of low-noise sub-picosecond pulse generation has remained a challenge....... This work has considered the role of the combined ultrafast gain and absorption dynamics in MLLs as a main factor limiting laser performance. An independent optimization of MLL amplifier and saturable absorber active materials was performed. Two promising approaches were considered: quantum dot (QD...... application in MLLs. Improved QW laser performance was demonstrated using the asymmetric barrier layer approach. The analysis of the gain characteristics showed that the high population inversion beneficial for noise reduction cannot be achieved for 10 GHz QW MLLs and would have required lowering the modal...

  4. Materials science: Screen printing of 2D semiconductors

    Science.gov (United States)

    Kim, Young Duck; Hone, James

    2017-04-01

    Atomically thin semiconductors have been made by transferring the oxide 'skin' of a liquid metal to substrates. This opens the way to the low-cost mass production of 2D semiconductors at the sizes needed for electronics applications.

  5. Nanostructured Semiconductor Materials for Dye-Sensitized Solar Cells

    Directory of Open Access Journals (Sweden)

    Carmen Cavallo

    2017-01-01

    Full Text Available Since O’Regan and Grätzel’s first report in 1991, dye-sensitized solar cells (DSSCs appeared immediately as a promising low-cost photovoltaic technology. In fact, though being far less efficient than conventional silicon-based photovoltaics (being the maximum, lab scale prototype reported efficiency around 13%, the simple design of the device and the absence of the strict and expensive manufacturing processes needed for conventional photovoltaics make them attractive in small-power applications especially in low-light conditions, where they outperform their silicon counterparts. Nanomaterials are at the very heart of DSSC, as the success of its design is due to the use of nanostructures at both the anode and the cathode. In this review, we present the state of the art for both n-type and p-type semiconductors used in the photoelectrodes of DSSCs, showing the evolution of the materials during the 25 years of history of this kind of devices. In the case of p-type semiconductors, also some other energy conversion applications are touched upon.

  6. Binary copper oxide semiconductors: From materials towards devices

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, B.K.; Polity, A.; Reppin, D.; Becker, M.; Hering, P.; Klar, P.J.; Sander, T.; Reindl, C.; Benz, J.; Eickhoff, M.; Heiliger, C.; Heinemann, M. [1. Physics Institute, Justus-Liebig University of Giessen (Germany); Blaesing, J.; Krost, A. [Institute of Experimental Physics (IEP), Otto-von-Guericke University Magdeburg (Germany); Shokovets, S. [Institute of Physics, Ilmenau University of Technology (Germany); Mueller, C.; Ronning, C. [Institute of Solid State Physics, Friedrich Schiller University Jena (Germany)

    2012-08-15

    Copper-oxide compound semiconductors provide a unique possibility to tune the optical and electronic properties from insulating to metallic conduction, from bandgap energies of 2.1 eV to the infrared at 1.40 eV, i.e., right into the middle of the efficiency maximum for solar-cell applications. Three distinctly different phases, Cu{sub 2}O, Cu{sub 4}O{sub 3}, and CuO, of this binary semiconductor can be prepared by thin-film deposition techniques, which differ in the oxidation state of copper. Their material properties as far as they are known by experiment or predicted by theory are reviewed. They are supplemented by new experimental results from thin-film growth and characterization, both will be critically discussed and summarized. With respect to devices the focus is on solar-cell performances based on Cu{sub 2}O. It is demonstrated by photoelectron spectroscopy (XPS) that the heterojunction system p-Cu{sub 2}O/n-AlGaN is much more promising for the application as efficient solar cells than that of p-Cu{sub 2}O/n-ZnO heterojunction devices that have been favored up to now. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  7. Functional integrity of flexible n-channel metal-oxide-semiconductor field-effect transistors on a reversibly bistable platform

    Science.gov (United States)

    Alfaraj, Nasir; Hussain, Aftab M.; Torres Sevilla, Galo A.; Ghoneim, Mohamed T.; Rojas, Jhonathan P.; Aljedaani, Abdulrahman B.; Hussain, Muhammad M.

    2015-10-01

    Flexibility can bring a new dimension to state-of-the-art electronics, such as rollable displays and integrated circuit systems being transformed into more powerful resources. Flexible electronics are typically hosted on polymeric substrates. Such substrates can be bent and rolled up, but cannot be independently fixed at the rigid perpendicular position necessary to realize rollable display-integrated gadgets and electronics. A reversibly bistable material can assume two stable states in a reversible way: flexibly rolled state and independently unbent state. Such materials are used in cycling and biking safety wristbands and a variety of ankle bracelets for orthopedic healthcare. They are often wrapped around an object with high impulsive force loading. Here, we study the effects of cumulative impulsive force loading on thinned (25 μm) flexible silicon-based n-channel metal-oxide-semiconductor field-effect transistor devices housed on a reversibly bistable flexible platform. We found that the transistors have maintained their high performance level up to an accumulated 180 kN of impact force loading. The gate dielectric layers have maintained their reliability, which is evidenced by the low leakage current densities. Also, we observed low variation in the effective electron mobility values, which manifests that the device channels have maintained their carrier transport properties.

  8. Functional integrity of flexible n-channel metal–oxide–semiconductor field-effect transistors on a reversibly bistable platform

    KAUST Repository

    Alfaraj, Nasir

    2015-10-26

    Flexibility can bring a new dimension to state-of-the-art electronics, such as rollable displays and integrated circuit systems being transformed into more powerful resources. Flexible electronics are typically hosted on polymeric substrates. Such substrates can be bent and rolled up, but cannot be independently fixed at the rigid perpendicular position necessary to realize rollable display-integrated gadgets and electronics. A reversibly bistable material can assume two stable states in a reversible way: flexibly rolled state and independently unbent state. Such materials are used in cycling and biking safety wristbands and a variety of ankle bracelets for orthopedic healthcare. They are often wrapped around an object with high impulsive force loading. Here, we study the effects of cumulative impulsive force loading on thinned (25 μm) flexible silicon-based n-channel metal–oxide–semiconductor field-effect transistor devices housed on a reversibly bistable flexible platform. We found that the transistors have maintained their high performance level up to an accumulated 180 kN of impact force loading. The gate dielectric layers have maintained their reliability, which is evidenced by the low leakage current densities. Also, we observed low variation in the effective electron mobility values, which manifests that the device channels have maintained their carrier transport properties.

  9. Methods of use of semiconductor nanocrystal probes for treating a material

    Science.gov (United States)

    Weiss, Shimon; Bruchez, Marcel; Alivisatos, Paul

    2007-04-27

    A semiconductor nanocrystal compound and probe are described. The compound is capable of linking to one or more affinity molecules. The compound comprises (1) one or more semiconductor nanocrystals capable of, in response to exposure to a first energy, providing a second energy, and (2) one or more linking agents, having a first portion linked to one or more semiconductor nanocrystals and a second portion capable of linking to one or more affinity molecules. One or more semiconductor nanocrystal compounds are linked to one or more affinity molecules to form a semiconductor nanocrystal probe capable of bonding with one or more detectable substances in a material being analyzed, and capable of, in response to exposure to a first energy, providing a second energy. Also described are processes for respectively: making the semiconductor nanocrystal compound; making the semiconductor nanocrystal probe; and treating materials with the probe.

  10. Hydrogen-bond Specific Materials Modification in Group IV Semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Tolk, Norman H. [Vanderbilt Univ., Nashville, TN (United States); Feldman, L. C. [Vanderbilt Univ., Nashville, TN (United States); Luepke, G. [College of William and Mary, Williamsburg, VA (United States)

    2015-09-14

    Executive summary Semiconductor dielectric crystals consist of two fundamental components: lattice atoms and electrons. The former component provides a crystalline structure that can be disrupted by various defects or the presence of an interface, or by transient oscillations known as phonons. The latter component produces an energetic structure that is responsible for the optical and electronic properties of the material, and can be perturbed by lattice defects or by photo-excitation. Over the period of this project, August 15, 1999 to March 31, 2015, a persistent theme has been the elucidation of the fundamental role of defects arising from the presence of radiation damage, impurities (in particular, hydrogen), localized strain or some combination of all three. As our research effort developed and evolved, we have experienced a few title changes, which reflected this evolution. Throughout the project, ultrafast lasers usually in a pump-probe configuration provided the ideal means to perturb and study semiconductor crystals by both forms of excitation, vibrational (phonon) and electronic (photon). Moreover, we have found in the course of this research that there are many interesting and relevant scientific questions that may be explored when phonon and photon excitations are controlled separately. Our early goals were to explore the dynamics of bond-selective vibrational excitation of hydrogen from point defects and impurities in crystalline and amorphous solids, initiating an investigation into the behavior of hydrogen isotopes utilizing a variety of ultrafast characterization techniques, principally transient bleaching spectroscopy to experimentally obtain vibrational lifetimes. The initiative could be divided into three related areas: (a) investigation of the change in electronic structure of solids due to the presence of hydrogen defect centers, (b) dynamical studies of hydrogen in materials and (c) characterization and stability of metastable hydrogen

  11. MATERIAL ELEMENT MODEL FOR EXTRINSIC SEMICONDUCTORS WITH DEFECTS OF DISLOCATION

    Directory of Open Access Journals (Sweden)

    Maria Paola Mazzeo

    2011-07-01

    Full Text Available In a previous paper we outlined a geometric model for the thermodynamic description of extrinsic semiconductors with defects of dislocation.Applying a geometrization technique, within the rationalextended irreversible thermodynamics with internal variables, the dynamical system for simple material elements of these media, the expressions of the entropy function and the entropy 1-form were obtained. In this contribution we deepen the study of this geometric model. We give a detailed description of the defective media under consideration and of the dislocation core tensor, we introduce the transformation induced by the process and, applying the closure conditions for the entropy 1-form, we derive the necessary conditions for the existence of the entropy function. These and other results are new in the paper.The derivation of the relevant entropy 1-form is the starting point to introduce an extended thermodynamical phase space.

  12. Bipolar magnetic semiconductors: a new class of spintronics materials.

    Science.gov (United States)

    Li, Xingxing; Wu, Xiaojun; Li, Zhenyu; Yang, Jinlong; Hou, J G

    2012-09-21

    Electrical control of spin polarization is very desirable in spintronics, since electric fields can be easily applied locally, in contrast to magnetic fields. Here, we propose a new concept of bipolar magnetic semiconductors (BMS) in which completely spin-polarized currents with reversible spin polarization can be created and controlled simply by applying a gate voltage. This is a result of the unique electronic structure of BMS, where the valence and conduction bands possess opposite spin polarization when approaching the Fermi level. BMS is thus expected to have potential for various applications. Our band structure and spin-polarized electronic transport calculations on semi-hydrogenated single-walled carbon nanotubes confirm the existence of BMS materials and demonstrate the electrical control of spin-polarization in them.

  13. Dopant type and/or concentration selective dry photochemical etching of semiconductor materials

    Energy Technology Data Exchange (ETDEWEB)

    Ashby, C.I.H.; Dishman, J.L.

    1987-03-10

    A method is described of selectively photochemically dry etching a first semiconductor material of a given composition in the presence of a second semiconductor material which is of a composition different from the first material. The second material is not substantially etched during the method which comprises: subjecting both materials to the same photon flux of an energy greater than their respective direct bandgaps and to the same gaseous chemical etchant under conditions where the etchant would be ineffective for chemical etching of either material where the photons not present, the conditions also being such that the resultant electronic structure of the first semiconductor material under the photon flux is sufficient for the first material to undergo substantial photochemical etching under the conditions. The conditions also are such that the resultant electronic structure of the second semiconductor material under the photon flux is not sufficient for the second material to undergo substantial photochemical etching under the conditions.

  14. Semiconductor Nanowires from Materials Science and Device Physics Perspectives

    Science.gov (United States)

    Samuelson, Lars

    2005-03-01

    Realization of extremely down-scaled devices gives tough challenges related to technology and materials science. One reason for the concern is that top-down fabricated nano-devices tend to have their properties dominated by process-induced damage, rendering ultra-small devices not so useful. Alternatively, bottom-up fabrication methods may allow dimensions on the scale even below 10 nm, still with superb device properties. I will in this talk describe our research on catalytically induced growth of semiconductor nanowires. Our method uses catalytic gold nanoparticles, allowing tight control of diameter as well as position of where the nanowire grows, with our work completely focused on epitaxially nucleated nanowires in which the nanowire structure can be seen as a coherent, monolithic extension of the crystalline substrate material. One of the most important achievements in this field of research is the realization of atomically abrupt heterostructures within nanowires, in which the material composition can be altered within only one or a few monolayers, thus allowing 1D heterostructure devices to be realized. This has allowed a variety of quantum devices to be realized, such as single-electron transistors, resonant tunneling devices as well as memory storage devices. A related recent field of progress has been the realization of ideally nucleated III-V nanowires on Si substrates, cases where we have also reported functioning III-V heterostructure device structures on Si. All of these device related challenges evolve from an improved understanding of the materials science involved in nucleation of nanowires, in altering of composition of the growing nanowire, in control of the growth direction etc. I will give examples of these materials science issues and will especially dwell on the opportunities to form new kinds of materials, e.g. as 3D complex nanowire structures, resembling nanotrees or nanoforests.

  15. III-V aresenide-nitride semiconductor materials and devices

    Science.gov (United States)

    Major, Jo S. (Inventor); Welch, David F. (Inventor); Scifres, Donald R. (Inventor)

    1997-01-01

    III-V arsenide-nitride semiconductor crystals, methods for producing such crystals and devices employing such crystals. Group III elements are combined with group V elements, including at least nitrogen and arsenic, in concentrations chosen to lattice match commercially available crystalline substrates. Epitaxial growth of these III-V crystals results in direct bandgap materials, which can be used in applications such as light emitting diodes and lasers. Varying the concentrations of the elements in the III-V crystals varies the bandgaps, such that materials emitting light spanning the visible spectra, as well as mid-IR and near-UV emitters, can be created. Conversely, such material can be used to create devices that acquire light and convert the light to electricity, for applications such as full color photodetectors and solar energy collectors. The growth of the III-V crystals can be accomplished by growing thin layers of elements or compounds in sequences that result in the overall lattice match and bandgap desired.

  16. Plasmonic Modulator Using CMOS Compatible Material Platform

    DEFF Research Database (Denmark)

    Babicheva, Viktoriia; Kinsey, Nathaniel; Naik, Gururaj V.;

    2014-01-01

    In this work, a design of ultra-compact plasmonic modulator is proposed and numerically analyzed. The device l ayout utilizes alternative plas monic materials such as tr ansparent conducting oxides and titanium nitride which potentially can be applied for CMOS compatible process. The modulation...

  17. Hydrogen-bond Specific Materials Modification in Group IV Semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Tolk, Norman H. [Vanderbilt Univ., Nashville, TN (United States); Feldman, L. C. [Vanderbilt Univ., Nashville, TN (United States); Luepke, G. [College of William and Mary, Williamsburg, VA (United States)

    2015-09-14

    Executive summary Semiconductor dielectric crystals consist of two fundamental components: lattice atoms and electrons. The former component provides a crystalline structure that can be disrupted by various defects or the presence of an interface, or by transient oscillations known as phonons. The latter component produces an energetic structure that is responsible for the optical and electronic properties of the material, and can be perturbed by lattice defects or by photo-excitation. Over the period of this project, August 15, 1999 to March 31, 2015, a persistent theme has been the elucidation of the fundamental role of defects arising from the presence of radiation damage, impurities (in particular, hydrogen), localized strain or some combination of all three. As our research effort developed and evolved, we have experienced a few title changes, which reflected this evolution. Throughout the project, ultrafast lasers usually in a pump-probe configuration provided the ideal means to perturb and study semiconductor crystals by both forms of excitation, vibrational (phonon) and electronic (photon). Moreover, we have found in the course of this research that there are many interesting and relevant scientific questions that may be explored when phonon and photon excitations are controlled separately. Our early goals were to explore the dynamics of bond-selective vibrational excitation of hydrogen from point defects and impurities in crystalline and amorphous solids, initiating an investigation into the behavior of hydrogen isotopes utilizing a variety of ultrafast characterization techniques, principally transient bleaching spectroscopy to experimentally obtain vibrational lifetimes. The initiative could be divided into three related areas: (a) investigation of the change in electronic structure of solids due to the presence of hydrogen defect centers, (b) dynamical studies of hydrogen in materials and (c) characterization and stability of metastable hydrogen

  18. Development of integrated platform for computational material design

    Energy Technology Data Exchange (ETDEWEB)

    Kiyoshi, Matsubara; Kumi, Itai; Nobutaka, Nishikawa; Akifumi, Kato [Center for Computational Science and Engineering, Fuji Research Institute Corporation (Japan); Hideaki, Koike [Advance Soft Corporation (Japan)

    2003-07-01

    The goal of our project is to design and develop a problem-solving environment (PSE) that will help computational scientists and engineers develop large complicated application software and simulate complex phenomena by using networking and parallel computing. The integrated platform, which is designed for PSE in the Japanese national project of Frontier Simulation Software for Industrial Science, is defined by supporting the entire range of problem solving activity from program formulation and data setup to numerical simulation, data management, and visualization. A special feature of our integrated platform is based on a new architecture called TASK FLOW. It integrates the computational resources such as hardware and software on the network and supports complex and large-scale simulation. This concept is applied to computational material design and the project 'comprehensive research for modeling, analysis, control, and design of large-scale complex system considering properties of human being'. Moreover this system will provide the best solution for developing large and complicated software and simulating complex and large-scaled phenomena in computational science and engineering. A prototype has already been developed and the validation and verification of an integrated platform will be scheduled by using the prototype in 2003. In the validation and verification, fluid-structure coupling analysis system for designing an industrial machine will be developed on the integrated platform. As other examples of validation and verification, integrated platform for quantum chemistry and bio-mechanical system are planned.

  19. Diaceno[a,e]pentalenes: An Excellent Molecular Platform for High-Performance Organic Semiconductors.

    Science.gov (United States)

    Liu, Chunming; Xu, Shengjie; Zhu, Weigang; Zhu, Xiaozhang; Hu, Wenping; Li, Zhibo; Wang, Zhaohui

    2015-11-16

    Three diaceno[a,e]pentalene analogues with pendant sterically bulky di-tert-butylphenyl groups have been designed and synthesized. With the extension of the conjugated molecular framework, the molecular arrangement is apparently tuned by the balance between the π-extended surface and pendant alkyl or aryl substituents. Theoretical calculations of the morphologies were in good agreement with the experimental results. Ambient-stable field-effect transistors based on dianthraceno[a,e]pentalene (DAP) have been fabricated, which exhibited excellent hole mobilities (up to 6.55 cm(2) V(-1) s(-1)). Thus, this study has shown that diaceno[a,e]pentalenes are stable even with an extraordinarily large π-surface area, and may thus serve as excellent molecular platforms for further exploring high-performance semiconducting materials.

  20. Possible lattice formation of new materials within a piezoelectric semiconductor plasma

    Indian Academy of Sciences (India)

    M Salimullah; S Ghosh; M R Amin

    2000-05-01

    The possible lattice formation of grains of chosen material in a magnetized current carrying -type piezoelectric semiconductor plasma has been examined. In addition to the repulsive Coulomb potential, there appears a non-Coulombic oscillatory potential among the highly charged grains due to the strong resonant collective interaction of the grains and the electron-acoustic mode of the host semiconductor giving rise to the possibility of the lattice formation of grains of new materials.

  1. Dopant type and/or concentration selective dry photochemical etching of semiconductor materials

    Energy Technology Data Exchange (ETDEWEB)

    Ashby, C.R.H.; Dishman, J.L.

    1985-10-11

    Disclosed is a method of selectively photochemically dry etching a first semiconductor material of a given composition in the presence of a second semiconductor material which is of a composition different from said first material, said second material substantially not being etched during said method. The method comprises subjecting both materials to the same photon flux of an energy greater than their respective direct bandgaps and to the same gaseous chemical etchant under conditions where said etchant would be ineffective for chemical etching of either material were the photons not present, said conditions also being such that the resultant electronic structure of the first semiconductor material under said photon flux is sufficient for the first material to undergo substantial photochemical etching under said conditions and being such that the resultant electronic structure of the second semiconductor material under said photon flux is not sufficient for the second material to undergo substantial photochemical etching under said conditions. In a preferred mode, the materials are subjected to a bias voltage which suppresses etching in n- or p-type material but not in p- or n-type material, respectively; or suppresses etching in the more heavily doped of two n-type or two p-type materials.

  2. Dopant type and/or concentration selective dry photochemical etching of semiconductor materials

    Energy Technology Data Exchange (ETDEWEB)

    Ashby, Carol I. H. (Edgewood, NM); Dishman, James L. (Albuquerque, NM)

    1987-01-01

    A method of selectively photochemically dry etching a first semiconductor material of a given composition in the presence of a second semiconductor material which is of a composition different from said first material, said second material substantially not being etched during said method, comprises subjecting both materials to the same photon flux of an energy greater than their respective direct bandgaps and to the same gaseous chemical etchant under conditions where said etchant would be ineffective for chemical etching of either material were the photons not present, said conditions also being such that the resultant electronic structure of the first semiconductor material under said photon flux is sufficient for the first material to undergo substantial photochemical etching under said conditions and being such that the resultant electronic structure of the second semiconductor material under said photon flux is not sufficient for the second material to undergo substantial photochemical etching under said conditions. In a preferred mode, the materials are subjected to a bias voltage which suppresses etching in n- or p- type material but not in p- or n-type material, respectively; or suppresses etching in the more heavily doped of two n-type or two p-type materials.

  3. Mobile materials handling platform interface architecture for mass production environments

    CSIR Research Space (South Africa)

    Walker, A

    2008-01-01

    Full Text Available stream_source_info Walker_2008.pdf.txt stream_content_type text/plain stream_size 19709 Content-Encoding UTF-8 stream_name Walker_2008.pdf.txt Content-Type text/plain; charset=UTF-8 Mobile Materials Handling Platform... to the operational structure of mass customisation, passive methods alone cannot facilitate customer influenced production dynamics. This is due to the fact that every product is different from the last. Active methods such as flexible materials handling systems...

  4. Novel semiconductor materials for the development of chemical sensors and biosensors: A review

    Energy Technology Data Exchange (ETDEWEB)

    Chaniotakis, Nikos [Laboratory of Analytical Chemistry, Department of Chemistry, University of Crete, Voutes 71003 Iraklion, Crete (Greece)], E-mail: nchan@chemistry.uoc.gr; Sofikiti, Nikoletta [Laboratory of Analytical Chemistry, Department of Chemistry, University of Crete, Voutes 71003 Iraklion, Crete (Greece)

    2008-05-12

    The aim of this manuscript is to provide a condensed overview of the contribution of certain relatively new semiconductor substrates in the development of chemical and biochemical field effect transistors. The silicon era is initially reviewed providing the background onto which the deployment of the new semiconductor materials for the development of bio-chem-FETs is based on. Subsequently emphasis is given to the selective interaction of novel semiconductor surfaces, including doped conductive diamond, gallium nitride, and indium nitride, with the analyte, and how this interaction can be properly transduced using semiconductor technology. The main advantages and drawbacks of these materials, as well as their future prospects for their applications in the sensor area are also described.

  5. Materials chemistry. Composition-matched molecular "solders" for semiconductors.

    Science.gov (United States)

    Dolzhnikov, Dmitriy S; Zhang, Hao; Jang, Jaeyoung; Son, Jae Sung; Panthani, Matthew G; Shibata, Tomohiro; Chattopadhyay, Soma; Talapin, Dmitri V

    2015-01-23

    We propose a general strategy to synthesize largely unexplored soluble chalcogenidometallates of cadmium, lead, and bismuth. These compounds can be used as "solders" for semiconductors widely used in photovoltaics and thermoelectrics. The addition of solder helped to bond crystal surfaces and link nano- or mesoscale particles together. For example, CdSe nanocrystals with Na2Cd2Se3 solder was used as a soluble precursor for CdSe films with electron mobilities exceeding 300 square centimeters per volt-second. CdTe, PbTe, and Bi2Te3 powders were molded into various shapes in the presence of a small additive of composition-matched chalcogenidometallate or chalcogel, thus opening new design spaces for semiconductor technologies.

  6. Methods of measurement for semiconductor materials, process control, and devices

    Science.gov (United States)

    Bullis, W. M. (Editor)

    1972-01-01

    Significant accomplishments include development of a procedure to correct for the substantial differences of transistor delay time as measured with different instruments or with the same instrument at different frequencies; association of infrared response spectra of poor quality germanium gamma ray detectors with spectra of detectors fabricated from portions of a good crystal that had been degraded in known ways; and confirmation of the excellent quality and cosmetic appearance of ultrasonic bonds made with aluminum ribbon wire. Work is continuing on measurement of resistivity of semiconductor crystals; study of gold-doped silicon, development of the infrared response technique; evaluation of wire bonds and die attachment; and measurement of thermal properties of semiconductor devices, delay time and related carrier transport properties in junction devices, and noise properties of microwave diodes.

  7. Maxwell-Bloch Equations Modeling of Ultrashort Optical Pulse Propagation in Semiconductor Materials

    Science.gov (United States)

    Goorjian, Peter M.; Agrawal, Govind, P.

    1997-01-01

    An algorithm has been developed that solves the semiconductor Maxwell-Bloch equations, without making the standard slowly-varying envelope (SVEA) and rotating-wave (RWA) approximations. It is applied to study the propagation of ultrashort pulses in semiconductor materials. The results include many-body effects due to the Coulomb interaction among the charge carriers as well as the nonlinear effects resulting from spectral hole-burning.

  8. Neutron detection using boron gallium nitride semiconductor material

    OpenAIRE

    Katsuhiro Atsumi; Yoku Inoue; Hidenori Mimura; Toru Aoki; Takayuki Nakano

    2014-01-01

    In this study, we developed a new neutron-detection device using a boron gallium nitride (BGaN) semiconductor in which the B atom acts as a neutron converter. BGaN and gallium nitride (GaN) samples were grown by metal organic vapor phase epitaxy, and their radiation detection properties were evaluated. GaN exhibited good sensitivity to α-rays but poor sensitivity to γ-rays. Moreover, we confirmed that electrons were generated in the depletion layer under neutron irradiation. This resulted in ...

  9. Movable high Q nanoresonators realized by semiconductor nanowires on a Si photonic crystal platform

    CERN Document Server

    Birowosuto, M D; Zhang, G; Tateno, K; Kuramochi, E; Taniyama, H; Takiguchi, M; Notomi, M

    2014-01-01

    Subwavelength semiconductor nanowires have recently attracted interest for photonic applications because they possess various unique optical properties and offer great potential for miniaturizing devices. However, realizing tight light confinement or efficient coupling with photonic circuits is not straightforward and remains a challenge. Here we show that a high Q nanocavity can be created by placing a single III/V semiconductor nanowire with a diameter of under 100 nm in a grooved waveguide in a Si photonic crystal, by means of nanoprobe manipulation. We observe very fast spontaneous emission (91 ps) from nanowires accelerated by the strong Purcell enhancement in nanocavities, which proves that very strong light confinement can be achieved. Furthermore, this system enables us to move the nanocavity anywhere along the waveguide. This configuration provides a significant degree of flexibility in integrated photonics and permits the addition and displacement of various functionalities of III/V nanocavity devic...

  10. Semiconductor Nanoparticles as Platform for Bio-Applications and Energy Related Systems

    OpenAIRE

    2015-01-01

    Esta tesis esta dedicada a la sintesis, caracterizacion y aplicaciones de diferentes nanomateriales que presentan la propiedad de ser semiconductores. Esta dividida en tres bloques, en los cuales, en el primer de ellos se habla sobre quantum dots (QDs), que son nanoparticulas fluorescentes cuya longitud de onda de emision varia con el tamaño. Dichos materiales se estan usando ultimamente como sustitutos de los colorantes organicos ya que presentan ventajas, la principal es que no pierden s...

  11. Emission energy control of semiconductor quantum dots using phase change material

    Science.gov (United States)

    Kanazawa, Shohei; Sato, Yu; Yamamura, Ariyoshi; Saiki, Toshiharu

    2015-03-01

    Semiconductor quantum dots have paid much attention as it is a promising candidate for quantum, optical devices, such as quantum computer and quantum dot laser. We propose a local emission energy control method of semiconductor quantum dots using applying strain by volume expansion of phase change material. Phase change material can change its phase crystalline to amorphous, and the volume expand by its phase change. This method can control energy shift direction and amount by amorphous religion and depth. Using this method, we matched emission energy of two InAs/InP quantum dots. This achievement can connect to observing superradiance phenomenon and quantum dot coupling effect.

  12. What can be expected from high-Z semiconductor detectors. [Assessment of promising semiconductor materials; 25 references

    Energy Technology Data Exchange (ETDEWEB)

    Armantrout, G.A.; Swierkowski, S.P.; Sherohman, J.W.; Lee, J.H.

    1976-11-17

    It has been hoped that high-Z semiconductors would offer efficient ..gamma..-ray detection at or near ambient temperatures with energy resolution significantly better than NaI (Tl) scintillators. For use at X-ray energies, this goal has been achieved with both HgI/sub 2/, CdTe, and GaAs detectors. However, at higher energies (approximately 660 keV) all current detectors have one or more significant deficiencies in terms of attainable volume, charge collection efficiency, and polarization effects. Starting with first principles, all potential compounds which can be formed by the binary combination of elements from the periodic chart were considered as possible detector materials. A rank-ordered listing of the most promising materials for further development is given as well as an assessment of the prospects for future success. 25 references.

  13. Performance of an MPI-only semiconductor device simulator on a quad socket/quad core InfiniBand platform.

    Energy Technology Data Exchange (ETDEWEB)

    Shadid, John Nicolas; Lin, Paul Tinphone

    2009-01-01

    This preliminary study considers the scaling and performance of a finite element (FE) semiconductor device simulator on a capacity cluster with 272 compute nodes based on a homogeneous multicore node architecture utilizing 16 cores. The inter-node communication backbone for this Tri-Lab Linux Capacity Cluster (TLCC) machine is comprised of an InfiniBand interconnect. The nonuniform memory access (NUMA) nodes consist of 2.2 GHz quad socket/quad core AMD Opteron processors. The performance results for this study are obtained with a FE semiconductor device simulation code (Charon) that is based on a fully-coupled Newton-Krylov solver with domain decomposition and multilevel preconditioners. Scaling and multicore performance results are presented for large-scale problems of 100+ million unknowns on up to 4096 cores. A parallel scaling comparison is also presented with the Cray XT3/4 Red Storm capability platform. The results indicate that an MPI-only programming model for utilizing the multicore nodes is reasonably efficient on all 16 cores per compute node. However, the results also indicated that the multilevel preconditioner, which is critical for large-scale capability type simulations, scales better on the Red Storm machine than the TLCC machine.

  14. The feasibility study of non-invasive fetal trisomy 18 and 21 detection with semiconductor sequencing platform.

    Directory of Open Access Journals (Sweden)

    Young Joo Jeon

    Full Text Available OBJECTIVE: Recent non-invasive prenatal testing (NIPT technologies are based on next-generation sequencing (NGS. NGS allows rapid and effective clinical diagnoses to be determined with two common sequencing systems: Illumina and Ion Torrent platforms. The majority of NIPT technology is associated with Illumina platform. We investigated whether fetal trisomy 18 and 21 were sensitively and specifically detectable by semiconductor sequencer: Ion Proton. METHODS: From March 2012 to October 2013, we enrolled 155 pregnant women with fetuses who were diagnosed as high risk of fetal defects at Xiamen Maternal & Child Health Care Hospital (Xiamen, Fujian, China. Adapter-ligated DNA libraries were analyzed by the Ion Proton™ System (Life Technologies, Grand Island, NY, USA with an average 0.3× sequencing coverage per nucleotide. Average total raw reads per sample was 6.5 million and mean rate of uniquely mapped reads was 59.0%. The results of this study were derived from BWA mapping. Z-score was used for fetal trisomy 18 and 21 detection. RESULTS: Interactive dot diagrams showed the minimal z-score values to discriminate negative versus positive cases of fetal trisomy 18 and 21. For fetal trisomy 18, the minimal z-score value of 2.459 showed 100% positive predictive and negative predictive values. The minimal z-score of 2.566 was used to classify negative versus positive cases of fetal trisomy 21. CONCLUSION: These results provide the evidence that fetal trisomy 18 and 21 detection can be performed with semiconductor sequencer. Our data also suggest that a prospective study should be performed with a larger cohort of clinically diverse obstetrics patients.

  15. Wide-gap layered oxychalcogenide semiconductors: materials, electronic structures and optoelectronic properties.

    OpenAIRE

    Ueda, Kazushige; Hiramatsu, Hidenori; Hirano, Masahiro; Kamiya, Toshio; Hosono, Hideo

    2006-01-01

    Applying the concept of materials design for transparent conductive oxides to layered oxychalcogenides, several p-type and n-type layered oxychalcogenides were proposed as wide-gap semiconductors and examined their basic optical and electrical properties. The layered oxychalcogenides are composed of ionic oxide layers and covalent chalcogenide layers, which bring wide-gap and conductive properties to these materials, respectively. The electronic structures of the materials were...

  16. Center for Semiconductor Materials and Device Modeling: expanding collaborative research opportunities between government, academia, and industry

    Science.gov (United States)

    Perconti, Philip; Bedair, Sarah S.; Bajaj, Jagmohan; Schuster, Jonathan; Reed, Meredith

    2016-09-01

    To increase Soldier readiness and enhance situational understanding in ever-changing and complex environments, there is a need for rapid development and deployment of Army technologies utilizing sensors, photonics, and electronics. Fundamental aspects of these technologies include the research and development of semiconductor materials and devices which are ubiquitous in numerous applications. Since many Army technologies are considered niche, there is a lack of significant industry investment in the fundamental research and understanding of semiconductor technologies relevant to the Army. To address this issue, the US Army Research Laboratory is establishing a Center for Semiconductor Materials and Device Modeling and seeks to leverage expertise and resources across academia, government and industry. Several key research areas—highlighted and addressed in this paper—have been identified by ARL and external partners and will be pursued in a collaborative fashion by this Center. This paper will also address the mechanisms by which the Center is being established and will operate.

  17. A Study on Photothermal Waves in a Semiconductor Material Photogenerated by a Focused Laser Beam

    Science.gov (United States)

    Abbas, Ibrahim A.; Aly, K. A.

    2016-11-01

    In this work, the theory of coupled plasma, thermal and elastic waves were used to investigate the wave propagation on semiconductor material during photo-thermo-elastic process. A thin slim strip (TSS) medium, elastic semiconductor with isotropic and homogeneous thermal and elastic properties have been considered. The plasma, thermal and elastic waves in a TSS photo generated by a focused and intensity modulated laser beam were analyzed. Laplace transform techniques and eigenvalue approach were used to obtain the analytical solutions for carrier density, displacement, temperature, and stress. Numerical computations have been carried out on silicon-like semiconductor material. The results are presented graphically to show the effect of the coupling between the plasma, thermal, and elastic waves.

  18. The Materials Commons: A Collaboration Platform and Information Repository for the Global Materials Community

    Science.gov (United States)

    Puchala, Brian; Tarcea, Glenn; Marquis, Emmanuelle. A.; Hedstrom, Margaret; Jagadish, H. V.; Allison, John E.

    2016-08-01

    Accelerating the pace of materials discovery and development requires new approaches and means of collaborating and sharing information. To address this need, we are developing the Materials Commons, a collaboration platform and information repository for use by the structural materials community. The Materials Commons has been designed to be a continuous, seamless part of the scientific workflow process. Researchers upload the results of experiments and computations as they are performed, automatically where possible, along with the provenance information describing the experimental and computational processes. The Materials Commons website provides an easy-to-use interface for uploading and downloading data and data provenance, as well as for searching and sharing data. This paper provides an overview of the Materials Commons. Concepts are also outlined for integrating the Materials Commons with the broader Materials Information Infrastructure that is evolving to support the Materials Genome Initiative.

  19. Method of making macrocrystalline or single crystal semiconductor material

    Science.gov (United States)

    Shlichta, P. J. (Inventor); Holliday, R. J. (Inventor)

    1986-01-01

    A macrocrystalline or single crystal semiconductive material is formed from a primary substrate including a single crystal or several very large crystals of a relatively low melting material. This primary substrate is deposited on a base such as steel or ceramic, and it may be formed from such metals as zinc, cadmium, germanium, aluminum, tin, lead, copper, brass, magnesium silicide, or magnesium stannide. These materials generally have a melting point below about 1000 C and form on the base crystals the size of fingernails or greater. The primary substrate has an epitaxial relationship with a subsequently applied layer of material, and because of this epitaxial relationship, the material deposited on the primary substrate will have essentially the same crystal size as the crystals in the primary substrate. If required, successive layers are formed, each of a material which has an epitaxial relationship with the previously deposited layer, until a layer is formed which has an epitaxial relationship with the semiconductive material. This layer is referred to as the epitaxial substrate, and its crystals serve as sites for the growth of large crystals of semiconductive material. The primary substrate is passivated to remove or otherwise convert it into a stable or nonreactive state prior to deposition of the seconductive material.

  20. Instrumentation for characterizing materials and composed semiconductors for ionizing radiation detectors

    Energy Technology Data Exchange (ETDEWEB)

    Paschoal, Arquimedes J.A.; Leite, Adolfo M.B.; Nazzre, Fabio V.B.; Santos, Luiz A.P. [Centro Regional de Ciencias Nucleares (CRCN/CNEN-PE), Recife, PE (Brazil). Lab. de Instrumentacao Nuclear]. E-mail: lasantos@cnen.gov.br

    2007-07-01

    The purpose of this work is the development of instrumentation for characterizing some type of ionizing radiation detectors. Those detectors are being manufactured by the Nuclear Instrumentation Laboratory at CRCN/Recife and can be used both on photon beam and with particles. Such detectors consist of semiconductor material in the form of films generated by oxide growing or by means of semiconductor material deposition in a substrate. Those materials can be made of metals, semi-metals, composites or semiconductor polymers. Prior to expose those detectors to ionizing radiation, it must be physically and electrically characterized. In this intention it was developed an electromechanical system. An electrical circuit was built to measure the signal from the detector and another circuit to control the movement of four probes (4-points technique) by using a stepper motor and the micro stepping technique avoiding damage to the detector. This system can be of interest to researchers that work with a sort of semiconductor materials in the form of thin film and in nanotechnological processes aiming the design of radiation ionizing detectors. (author)

  1. Superatoms and Metal-Semiconductor Motifs for Cluster Materials

    Energy Technology Data Exchange (ETDEWEB)

    Castleman, A. W.

    2013-10-11

    A molecular understanding of catalysis and catalytically active materials is of fundamental importance in designing new substances for applications in energy and fuels. We have performed reactivity studies and ultrafast ionization and coulomb explosion studies on a variety of catalytically-relevant materials, including transition metal oxides of Fe, Co, Ni, Cu, Ti, V, Nb, and Ta. We demonstrate that differences in charge state, geometry, and elemental composition of clusters of such materials determine chemical reactivity and ionization behavior, crucial steps in improving performance of catalysts.

  2. Hydrogenated bilayer wurtzite SiC nanofilms: a two-dimensional bipolar magnetic semiconductor material.

    Science.gov (United States)

    Yuan, Long; Li, Zhenyu; Yang, Jinlong

    2013-01-14

    Recently, a new kind of spintronics material, bipolar magnetic semiconductors (BMS), has been proposed. The spin polarization of BMS can be conveniently controlled by a gate voltage, which makes it very attractive in device engineering. Now, the main challenge is finding more BMS materials. In this article, we propose that hydrogenated wurtzite SiC nanofilm is a two-dimensional BMS material. Its BMS character is very robust under the effect of strain, substrate or even a strong electric field. The proposed two-dimensional BMS material paves the way to use this promising new material in an integrated circuit.

  3. Rhombohedral cubic semiconductor materials on trigonal substrate with single crystal properties and devices based on such materials

    Science.gov (United States)

    Park, Yeonjoon (Inventor); Choi, Sang Hyouk (Inventor); King, Glen C. (Inventor); Elliott, James R. (Inventor)

    2012-01-01

    Growth conditions are developed, based on a temperature-dependent alignment model, to enable formation of cubic group IV, group II-V and group II-VI crystals in the [111] orientation on the basal (0001) plane of trigonal crystal substrates, controlled such that the volume percentage of primary twin crystal is reduced from about 40% to about 0.3%, compared to the majority single crystal. The control of stacking faults in this and other embodiments can yield single crystalline semiconductors based on these materials that are substantially without defects, or improved thermoelectric materials with twinned crystals for phonon scattering while maintaining electrical integrity. These methods can selectively yield a cubic-on-trigonal epitaxial semiconductor material in which the cubic layer is substantially either directly aligned, or 60 degrees-rotated from, the underlying trigonal material.

  4. Density functional theory and beyond-opportunities for quantum methods in materials modeling semiconductor technology.

    Science.gov (United States)

    Shankar, Sadasivan; Simka, Harsono; Haverty, Michael

    2008-02-13

    In the semiconductor industry, the use of new materials has been increasing with the advent of nanotechnology. As critical dimensions decrease, and the number of materials increases, the interactions between heterogeneous materials themselves and processing increase in complexity. Traditionally, applications of ab initio techniques are confined to electronic structure and band gap calculations of bulk materials, which are then used in coarse-grained models such as mesoscopic and continuum models. Density functional theory is the most widely used ab initio technique that was successfully extended to several applications. This paper illustrates applications of density functional theory to semiconductor processes and proposes further opportunities for use of such techniques in process development.

  5. The 1.7 kilogram microchip: energy and material use in the production of semiconductor devices.

    Science.gov (United States)

    Williams, Eric D; Ayres, Robert U; Heller, Miriam

    2002-12-15

    The scale of environmental impacts associated with the manufacture of microchips is characterized through analysis of material and energy inputs into processes in the production chain. The total weight of secondary fossil fuel and chemical inputs to produce and use a single 2-gram 32MB DRAM chip are estimated at 1600 g and 72 g, respectively. Use of water and elemental gases (mainly N2) in the fabrication stage are 32,000 and 700 g per chip, respectively. The production chain yielding silicon wafers from quartz uses 160 times the energy required for typical silicon, indicating that purification to semiconductor grade materials is energy intensive. Due to its extremely low-entropy, organized structure, the materials intensity of a microchip is orders of magnitude higher than that of "traditional" goods. Future analysis of semiconductor and other low entropy high-tech goods needs to include the use of secondary materials, especially for purification.

  6. Advances in graphene-based semiconductor photocatalysts for solar energy conversion: fundamentals and materials engineering

    Science.gov (United States)

    Xie, Xiuqiang; Kretschmer, Katja; Wang, Guoxiu

    2015-08-01

    Graphene-based semiconductor photocatalysis has been regarded as a promising technology for solar energy storage and conversion. In this review, we summarized recent developments of graphene-based photocatalysts, including preparation of graphene-based photocatalysts, typical key advances in the understanding of graphene functions for photocatalytic activity enhancement and methodologies to regulate the electron transfer efficiency in graphene-based composite photocatalysts, by which we hope to offer enriched information to harvest the utmost fascinating properties of graphene as a platform to construct efficient graphene-based composite photocatalysts for solar-to-energy conversion.

  7. Recent Developments in p-Type Oxide Semiconductor Materials and Devices

    KAUST Repository

    Wang, Zhenwei

    2016-02-16

    The development of transparent p-type oxide semiconductors with good performance may be a true enabler for a variety of applications where transparency, power efficiency, and greater circuit complexity are needed. Such applications include transparent electronics, displays, sensors, photovoltaics, memristors, and electrochromics. Hence, here, recent developments in materials and devices based on p-type oxide semiconductors are reviewed, including ternary Cu-bearing oxides, binary copper oxides, tin monoxide, spinel oxides, and nickel oxides. The crystal and electronic structures of these materials are discussed, along with approaches to enhance valence-band dispersion to reduce effective mass and increase mobility. Strategies to reduce interfacial defects, off-state current, and material instability are suggested. Furthermore, it is shown that promising progress has been made in the performance of various types of devices based on p-type oxides. Several innovative approaches exist to fabricate transparent complementary metal oxide semiconductor (CMOS) devices, including novel device fabrication schemes and utilization of surface chemistry effects, resulting in good inverter gains. However, despite recent developments, p-type oxides still lag in performance behind their n-type counterparts, which have entered volume production in the display market. Recent successes along with the hurdles that stand in the way of commercial success of p-type oxide semiconductors are presented.

  8. Recent Developments in p-Type Oxide Semiconductor Materials and Devices.

    Science.gov (United States)

    Wang, Zhenwei; Nayak, Pradipta K; Caraveo-Frescas, Jesus A; Alshareef, Husam N

    2016-05-01

    The development of transparent p-type oxide semiconductors with good performance may be a true enabler for a variety of applications where transparency, power efficiency, and greater circuit complexity are needed. Such applications include transparent electronics, displays, sensors, photovoltaics, memristors, and electrochromics. Hence, here, recent developments in materials and devices based on p-type oxide semiconductors are reviewed, including ternary Cu-bearing oxides, binary copper oxides, tin monoxide, spinel oxides, and nickel oxides. The crystal and electronic structures of these materials are discussed, along with approaches to enhance valence-band dispersion to reduce effective mass and increase mobility. Strategies to reduce interfacial defects, off-state current, and material instability are suggested. Furthermore, it is shown that promising progress has been made in the performance of various types of devices based on p-type oxides. Several innovative approaches exist to fabricate transparent complementary metal oxide semiconductor (CMOS) devices, including novel device fabrication schemes and utilization of surface chemistry effects, resulting in good inverter gains. However, despite recent developments, p-type oxides still lag in performance behind their n-type counterparts, which have entered volume production in the display market. Recent successes along with the hurdles that stand in the way of commercial success of p-type oxide semiconductors are presented.

  9. Portable semiconductor disk laser for in vivo tissue monitoring: a platform for the development of clinical applications

    Science.gov (United States)

    Aviles-Espinosa, Rodrigo; Filippidis, George; Hamilton, Craig; Malcolm, Graeme; Weingarten, Kurt J.; Südmeyer, Thomas; Barbarin, Yohan; Keller, Ursula; Artigas, David; Loza-Alvarez, Pablo

    2011-07-01

    Long term in vivo observations at large penetration depths and minimum sample disturbance are some of the key factors that have enabled the study of different cellular and tissue mechanisms. The continuous optimization of these aspects is the main driving force for the development of advanced microscopy techniques such as those based on nonlinear effects. Its wide implementation for general biomedical applications is however, limited as the currently used nonlinear microscopes are based on bulky, maintenance-intensive and expensive excitation sources such as Ti:sapphire ultrafast lasers. We present the suitability of a portable (140x240x70 mm) ultrafast semiconductor disk laser (SDL) source, to be used in nonlinear microscopy. The SDL is modelocked by a quantum-dot semiconductor saturable absorber mirror (SESAM). This enables the source to deliver an average output power of 287 mW with 1.5 ps pulses at 500 MHz, corresponding to a peak power of 0.4 kW. The laser center wavelength (965 nm) virtually matches the two-photon absorption cross-section of the widely used Green Fluorescent Protein (GFP). This property greatly relaxes the required peak powers, thus maximizing sample viability. This is demonstrated by presenting two-photon excited fluorescence images of GFP labeled neurons and second-harmonic generation images of pharyngeal muscles in living C. elegans nematodes. Our results also demonstrate that this compact laser is well suited for efficiently exciting different biological dyes. Importantly this non expensive, turn-key, compact laser system could be used as a platform to develop portable nonlinear bio-imaging devices, facilitating its widespread adoption in biomedical applications.

  10. Integrated plasmonic circuitry on a vertical-cavity surface-emitting semiconductor laser platform

    Science.gov (United States)

    McPolin, Cillian P. T.; Bouillard, Jean-Sebastien; Vilain, Sebastien; Krasavin, Alexey V.; Dickson, Wayne; O'Connor, Daniel; Wurtz, Gregory A.; Justice, John; Corbett, Brian; Zayats, Anatoly V.

    2016-08-01

    Integrated plasmonic sources and detectors are imperative in the practical development of plasmonic circuitry for bio- and chemical sensing, nanoscale optical information processing, as well as transducers for high-density optical data storage. Here we show that vertical-cavity surface-emitting lasers (VCSELs) can be employed as an on-chip, electrically pumped source or detector of plasmonic signals, when operated in forward or reverse bias, respectively. To this end, we experimentally demonstrate surface plasmon polariton excitation, waveguiding, frequency conversion and detection on a VCSEL-based plasmonic platform. The coupling efficiency of the VCSEL emission to waveguided surface plasmon polariton modes has been optimized using asymmetric plasmonic nanostructures. The plasmonic VCSEL platform validated here is a viable solution for practical realizations of plasmonic functionalities for various applications, such as those requiring sub-wavelength field confinement, refractive index sensitivity or optical near-field transduction with electrically driven sources, thus enabling the realization of on-chip optical communication and lab-on-a-chip devices.

  11. Miniaturized quantum semiconductor surface plasmon resonance platform for detection of biological molecules.

    Science.gov (United States)

    Lepage, Dominic; Dubowski, Jan J

    2013-06-07

    The concept of a portable, inexpensive and semi-automated biosensing platform, or lab-on-a-chip, is a vision shared by many researchers and venture industries. Under this scope, we have investigated the application of optical emission from quantum well (QW) microstructures for monitoring surface phenomena on gold layers remaining in proximity (resonance (SPR) effect allows for detection of small perturbation in the density surface adsorbates. The SPR technology is already commonly used for biochemical characterization in pharmaceutical industries, but the reduction of the distance between the SP exciting source and the biosensing platform to a few hundreds of nanometers is an innovative approach enabling us to achieve an ultimate miniaturization of the device. We evaluate the signal quality of this nanophotonic QW-SPR device using hyperspectral-imaging technology, and we compare its performance with that of a standard prism-based commercial system. Two standard biochemical agents are employed for this characterization study: bovine serum albumin and inactivated influenza A virus. With an innovative conical method of SPR data collection, we demonstrate that individually collected SPR scan, each in less than 2.2 s, yield a resolution of the detection at 1.5 × 10-6 RIU.

  12. Miniaturized Quantum Semiconductor Surface Plasmon Resonance Platform for Detection of Biological Molecules

    Directory of Open Access Journals (Sweden)

    Jan J. Dubowski

    2013-06-01

    Full Text Available The concept of a portable, inexpensive and semi-automated biosensing platform, or lab-on-a-chip, is a vision shared by many researchers and venture industries. Under this scope, we have investigated the application of optical emission from quantum well (QW microstructures for monitoring surface phenomena on gold layers remaining in proximity (<300 nm with QW microstructures. The uncollimated QW radiation excites surface plasmons (SP and through the surface plasmon resonance (SPR effect allows for detection of small perturbation in the density surface adsorbates. The SPR technology is already commonly used for biochemical characterization in pharmaceutical industries, but the reduction of the distance between the SP exciting source and the biosensing platform to a few hundreds of nanometers is an innovative approach enabling us to achieve an ultimate miniaturization of the device. We evaluate the signal quality of this nanophotonic QW-SPR device using hyperspectral-imaging technology, and we compare its performance with that of a standard prism-based commercial system. Two standard biochemical agents are employed for this characterization study: bovine serum albumin and inactivated influenza A virus. With an innovative conical method of SPR data collection, we demonstrate that individually collected SPR scan, each in less than 2.2 s, yield a resolution of the detection at 1.5 × 10−6 RIU.

  13. Materials processing threshold report. 1: Semiconductor crystals for infrared detectors

    Science.gov (United States)

    Sager, E. V.; Thompson, T. R.; Nagler, R. G.

    1980-01-01

    An extensive search was performed of the open literature pertaining to infrared detectors to determine what constitutes a good detector and in what way performance is limited by specific material properties. Interviews were conducted with a number of experts in the field to assess their perceptions of the state of the art and of the utility of zero-gravity processing. Based on this information base and on a review of NASA programs in crystal growth and infrared sensors, NASA program goals were reassessed and suggestions are presented as to possible joint and divergent efforts between NASA and DOD.

  14. Nanomembrane-based materials for Group IV semiconductor quantum electronics.

    Science.gov (United States)

    Paskiewicz, D M; Savage, D E; Holt, M V; Evans, P G; Lagally, M G

    2014-02-27

    Strained-silicon/relaxed-silicon-germanium alloy (strained-Si/SiGe) heterostructures are the foundation of Group IV-element quantum electronics and quantum computation, but current materials quality limits the reliability and thus the achievable performance of devices. In comparison to conventional approaches, single-crystal SiGe nanomembranes are a promising alternative as substrates for the epitaxial growth of these heterostructures. Because the nanomembrane is truly a single crystal, in contrast to the conventional SiGe substrate made by compositionally grading SiGe grown on bulk Si, significant improvements in quantum electronic-device reliability may be expected with nanomembrane substrates. We compare lateral strain inhomogeneities and the local mosaic structure (crystalline tilt) in strained-Si/SiGe heterostructures that we grow on SiGe nanomembranes and on compositionally graded SiGe substrates, with micro-Raman mapping and nanodiffraction, respectively. Significant structural improvements are found using SiGe nanomembranes.

  15. Theory of light propagation in nano-structured materials and semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Schaarschmidt, M.

    2006-05-03

    This work presents a theory for the propagation of intense electromagnetic radiation in nano-structures materials and semiconductors. One main area is the modelling and simulation of the microscopic material dynamics of low dimensional semiconductors, both structured and bulk, and of a laser induced plasma. The ultrafast microscopic dynamics of these electronic many particle systems under the influence of light fields and scattering mechanisms like electron-electron interaction or interaction with lattice vibrations is described in the density matrix formalism. This description in second quantization yields the temporal nonlocal and nonlinear response of the material to electromagnetic fields. Laser induced plasma in quantum wells will be shown to be a possible new semiconductor source for terahertz-emission (wavelength mm to micrometer). The second focus of interest of this work lies in the simulation of the propagation of electromagnetic waves in different systems like photonic crystals, optical fibers and wave guides. The propagation in bulk semiconductors and waveguides is considered in both slowly varying envelope approximation (SVEA) and with the nonlinear Schroedinger equation. For complex systems like photonic band gap structures with high symmetry a matrix-transfer formalism is applied. For arbitrary structured systems (which may include local breaches of symmetry) a very flexible finite-differences algorithm is employed. The combination of microscopic material dynamics and light propagation enables the calculation of reflection and transmission properties of nano-structured materials not only in linear excitation but also for high intensities where nonlinear light-matter coupling dominates and novel effects arise. One used model system are Bragg-resonant multiple quantum wells. On this one dimensional resonant absorbing photonic crystal new nonlinear effects are studied. Some effect to mention are the possible application as an ultrafast optical switch

  16. Conjugated polymers/semiconductor nanocrystals hybrid materials--preparation, electrical transport properties and applications.

    Science.gov (United States)

    Reiss, Peter; Couderc, Elsa; De Girolamo, Julia; Pron, Adam

    2011-02-01

    This critical review discusses specific preparation and characterization methods applied to hybrid materials consisting of π-conjugated polymers (or oligomers) and semiconductor nanocrystals. These materials are of great importance in the quickly growing field of hybrid organic/inorganic electronics since they can serve as active components of photovoltaic cells, light emitting diodes, photodetectors and other devices. The electronic energy levels of the organic and inorganic components of the hybrid can be tuned individually and thin hybrid films can be processed using low cost solution based techniques. However, the interface between the hybrid components and the morphology of the hybrid directly influences the generation, separation and transport of charge carriers and those parameters are not easy to control. Therefore a large variety of different approaches for assembling the building blocks--conjugated polymers and semiconductor nanocrystals--has been developed. They range from their simple blending through various grafting procedures to methods exploiting specific non-covalent interactions between both components, induced by their tailor-made functionalization. In the first part of this review, we discuss the preparation of the building blocks (nanocrystals and polymers) and the strategies for their assembly into hybrid materials' thin films. In the second part, we focus on the charge carriers' generation and their transport within the hybrids. Finally, we summarize the performances of solar cells using conjugated polymer/semiconductor nanocrystals hybrids and give perspectives for future developments.

  17. Application of genotyping-by-sequencing on semiconductor sequencing platforms: a comparison of genetic and reference-based marker ordering in barley.

    Directory of Open Access Journals (Sweden)

    Martin Mascher

    Full Text Available The rapid development of next-generation sequencing platforms has enabled the use of sequencing for routine genotyping across a range of genetics studies and breeding applications. Genotyping-by-sequencing (GBS, a low-cost, reduced representation sequencing method, is becoming a common approach for whole-genome marker profiling in many species. With quickly developing sequencing technologies, adapting current GBS methodologies to new platforms will leverage these advancements for future studies. To test new semiconductor sequencing platforms for GBS, we genotyped a barley recombinant inbred line (RIL population. Based on a previous GBS approach, we designed bar code and adapter sets for the Ion Torrent platforms. Four sets of 24-plex libraries were constructed consisting of 94 RILs and the two parents and sequenced on two Ion platforms. In parallel, a 96-plex library of the same RILs was sequenced on the Illumina HiSeq 2000. We applied two different computational pipelines to analyze sequencing data; the reference-independent TASSEL pipeline and a reference-based pipeline using SAMtools. Sequence contigs positioned on the integrated physical and genetic map were used for read mapping and variant calling. We found high agreement in genotype calls between the different platforms and high concordance between genetic and reference-based marker order. There was, however, paucity in the number of SNP that were jointly discovered by the different pipelines indicating a strong effect of alignment and filtering parameters on SNP discovery. We show the utility of the current barley genome assembly as a framework for developing very low-cost genetic maps, facilitating high resolution genetic mapping and negating the need for developing de novo genetic maps for future studies in barley. Through demonstration of GBS on semiconductor sequencing platforms, we conclude that the GBS approach is amenable to a range of platforms and can easily be modified as new

  18. Application of genotyping-by-sequencing on semiconductor sequencing platforms: a comparison of genetic and reference-based marker ordering in barley.

    Science.gov (United States)

    Mascher, Martin; Wu, Shuangye; Amand, Paul St; Stein, Nils; Poland, Jesse

    2013-01-01

    The rapid development of next-generation sequencing platforms has enabled the use of sequencing for routine genotyping across a range of genetics studies and breeding applications. Genotyping-by-sequencing (GBS), a low-cost, reduced representation sequencing method, is becoming a common approach for whole-genome marker profiling in many species. With quickly developing sequencing technologies, adapting current GBS methodologies to new platforms will leverage these advancements for future studies. To test new semiconductor sequencing platforms for GBS, we genotyped a barley recombinant inbred line (RIL) population. Based on a previous GBS approach, we designed bar code and adapter sets for the Ion Torrent platforms. Four sets of 24-plex libraries were constructed consisting of 94 RILs and the two parents and sequenced on two Ion platforms. In parallel, a 96-plex library of the same RILs was sequenced on the Illumina HiSeq 2000. We applied two different computational pipelines to analyze sequencing data; the reference-independent TASSEL pipeline and a reference-based pipeline using SAMtools. Sequence contigs positioned on the integrated physical and genetic map were used for read mapping and variant calling. We found high agreement in genotype calls between the different platforms and high concordance between genetic and reference-based marker order. There was, however, paucity in the number of SNP that were jointly discovered by the different pipelines indicating a strong effect of alignment and filtering parameters on SNP discovery. We show the utility of the current barley genome assembly as a framework for developing very low-cost genetic maps, facilitating high resolution genetic mapping and negating the need for developing de novo genetic maps for future studies in barley. Through demonstration of GBS on semiconductor sequencing platforms, we conclude that the GBS approach is amenable to a range of platforms and can easily be modified as new sequencing

  19. EDITORIAL: Semiconductor nanotechnology: novel materials and devices for electronics, photonics and renewable energy applications Semiconductor nanotechnology: novel materials and devices for electronics, photonics and renewable energy applications

    Science.gov (United States)

    Goodnick, Stephen; Korkin, Anatoli; Krstic, Predrag; Mascher, Peter; Preston, John; Zaslavsky, Alex

    2010-04-01

    Electronic and photonic information technology and renewable energy alternatives, such as solar energy, fuel cells and batteries, have now reached an advanced stage in their development. Cost-effective improvements to current technological approaches have made great progress, but certain challenges remain. As feature sizes of the latest generations of electronic devices are approaching atomic dimensions, circuit speeds are now being limited by interconnect bottlenecks. This has prompted innovations such as the introduction of new materials into microelectronics manufacturing at an unprecedented rate and alternative technologies to silicon CMOS architectures. Despite the environmental impact of conventional fossil fuel consumption, the low cost of these energy sources has been a long-standing economic barrier to the development of alternative and more efficient renewable energy sources, fuel cells and batteries. In the face of mounting environmental concerns, interest in such alternative energy sources has grown. It is now widely accepted that nanotechnology offers potential solutions for securing future progress in information and energy technologies. The Canadian Semiconductor Technology Conference (CSTC) forum was established 25 years ago in Ottawa as an important symbol of the intrinsic strength of the Canadian semiconductor research and development community, and the Canadian semiconductor industry as a whole. In 2007, the 13th CSTC was held in Montreal, moving for the first time outside the national capital region. The first three meetings in the series of 'Nano and Giga Challenges in Electronics and Photonics'— NGCM2002 in Moscow, NGCM2004 in Krakow, and NGC2007 in Phoenix— were focused on interdisciplinary research from the fundamentals of materials science to the development of new system architectures. In 2009 NGC2009 and the 14th Canadian Semiconductor Technology Conference (CSTC2009) were held as a joint event, hosted by McMaster University (10

  20. Composite THz materials using aligned metallic and semiconductor microwires, experiments and interpretation

    CERN Document Server

    Mazhorova, Anna; Dupuis, Alexandre; Tsuneyuki, Ozaki; Paccianti, Marco; Morandotti, Roberto; Minamide, Hiroaki; Tang, Ming; Wang, Yuye; Ito, Hiromasa; Skorobogatiy, Maksim

    2010-01-01

    We report fabrication method and THz characterization of composite films containing either aligned metallic (tin alloy) microwires or chalcogenide As2Se3 microwires. The microwire arrays are made by stack-and-draw fiber fabrication technique using multi-step co-drawing of low-melting-temperature metals or semiconductor glasses together with polymers. Fibers are then stacked together and pressed into composite films. Transmission through metamaterial films is studied in the whole THz range (0.1-20 THz) using a combination of FTIR and TDS. Metal containing metamaterials are found to have strong polarizing properties, while semiconductor containing materials are polarization independent and could have a designable high refractive index. Using the transfer matrix theory, we show how to retrieve the complex polarization dependent refractive index of the composite films. We then detail the selfconsistent algorithm for retrieving the optical properties of the metal alloy used in the fabrication of the metamaterial l...

  1. Electronic structure and optical properties of a new type of semiconductor material:graphene monoxide

    Institute of Scientific and Technical Information of China (English)

    Yang Gui; Zhang Yufeng; Yan Xunwang

    2013-01-01

    The electronic and optical properties of graphene monoxide,a new type of semiconductor material,are theoretically studied by first-principles density functional theory.The calculated band structure shows that graphene monoxide is a semiconductor with a direct band gap of 0.95 eV.The density of states of graphene monoxide and the partial density of states for C and O are given to understand the electronic structure.In addition,we calculate the optical properties of graphene monoxide,including the complex dielectric function,absorption coefficient,complex refractive index,loss-function,reflectivity and conductivity.These results provide a physical basis for potential application in optoelectronic devices.

  2. Growth and applications of GeSn-related group-IV semiconductor materials

    Science.gov (United States)

    Zaima, Shigeaki; Nakatsuka, Osamu; Taoka, Noriyuki; Kurosawa, Masashi; Takeuchi, Wakana; Sakashita, Mitsuo

    2015-08-01

    We review the technology of Ge1-xSnx-related group-IV semiconductor materials for developing Si-based nanoelectronics. Ge1-xSnx-related materials provide novel engineering of the crystal growth, strain structure, and energy band alignment for realising various applications not only in electronics, but also in optoelectronics. We introduce our recent achievements in the crystal growth of Ge1-xSnx-related material thin films and the studies of the electronic properties of thin films, metals/Ge1-xSnx, and insulators/Ge1-xSnx interfaces. We also review recent studies related to the crystal growth, energy band engineering, and device applications of Ge1-xSnx-related materials, as well as the reported performances of electronic devices using Ge1-xSnx related materials.

  3. Hybrid bandgap engineering for super-hetero-epitaxial semiconductor materials, and products thereof

    Science.gov (United States)

    Park, Yeonjoon (Inventor); Choi, Sang H. (Inventor); King, Glen C. (Inventor); Elliott, James R. (Inventor)

    2012-01-01

    "Super-hetero-epitaxial" combinations comprise epitaxial growth of one material on a different material with different crystal structure. Compatible crystal structures may be identified using a "Tri-Unity" system. New bandgap engineering diagrams are provided for each class of combination, based on determination of hybrid lattice constants for the constituent materials in accordance with lattice-matching equations. Using known bandgap figures for previously tested materials, new materials with lattice constants that match desired substrates and have the desired bandgap properties may be formulated by reference to the diagrams and lattice matching equations. In one embodiment, this analysis makes it possible to formulate new super-hetero-epitaxial semiconductor systems, such as systems based on group IV alloys on c-plane LaF.sub.3; group IV alloys on c-plane langasite; Group III-V alloys on c-plane langasite; and group II-VI alloys on c-plane sapphire.

  4. Growth and applications of GeSn-related group-IV semiconductor materials.

    Science.gov (United States)

    Zaima, Shigeaki; Nakatsuka, Osamu; Taoka, Noriyuki; Kurosawa, Masashi; Takeuchi, Wakana; Sakashita, Mitsuo

    2015-08-01

    We review the technology of Ge1-x Sn x -related group-IV semiconductor materials for developing Si-based nanoelectronics. Ge1-x Sn x -related materials provide novel engineering of the crystal growth, strain structure, and energy band alignment for realising various applications not only in electronics, but also in optoelectronics. We introduce our recent achievements in the crystal growth of Ge1-x Sn x -related material thin films and the studies of the electronic properties of thin films, metals/Ge1-x Sn x , and insulators/Ge1-x Sn x interfaces. We also review recent studies related to the crystal growth, energy band engineering, and device applications of Ge1-x Sn x -related materials, as well as the reported performances of electronic devices using Ge1-x Sn x related materials.

  5. Methods for forming group III-V arsenide-nitride semiconductor materials

    Science.gov (United States)

    Major, Jo S. (Inventor); Welch, David F. (Inventor); Scifres, Donald R. (Inventor)

    2000-01-01

    Methods are disclosed for forming Group III--arsenide-nitride semiconductor materials. Group III elements are combined with group V elements, including at least nitrogen and arsenic, in concentrations chosen to lattice match commercially available crystalline substrates. Epitaxial growth of these III-V crystals results in direct bandgap materials, which can be used in applications such as light emitting diodes and lasers. Varying the concentrations of the elements in the III-V crystals varies the bandgaps, such that materials emitting light spanning the visible spectra, as well as mid-IR and near-UV emitters, can be created. Conversely, such material can be used to create devices that acquire light and convert the light to electricity, for applications such as full color photodetectors and solar energy collectors. The growth of the III-V crystals can be accomplished by growing thin layers of elements or compounds in sequences that result in the overall lattice match and bandgap desired.

  6. Structural semiconductor-to-semimetal phase transition in two-dimensional materials induced by electrostatic gating.

    Science.gov (United States)

    Li, Yao; Duerloo, Karel-Alexander N; Wauson, Kerry; Reed, Evan J

    2016-01-01

    Dynamic control of conductivity and optical properties via atomic structure changes is of technological importance in information storage. Energy consumption considerations provide a driving force towards employing thin materials in devices. Monolayer transition metal dichalcogenides are nearly atomically thin materials that can exist in multiple crystal structures, each with distinct electrical properties. By developing new density functional-based methods, we discover that electrostatic gating device configurations have the potential to drive structural semiconductor-to-semimetal phase transitions in some monolayer transition metal dichalcogenides. Here we show that the semiconductor-to-semimetal phase transition in monolayer MoTe2 can be driven by a gate voltage of several volts with appropriate choice of dielectric. We find that the transition gate voltage can be reduced arbitrarily by alloying, for example, for Mo(x)W(1-x)Te2 monolayers. Our findings identify a new physical mechanism, not existing in bulk materials, to dynamically control structural phase transitions in two-dimensional materials, enabling potential applications in phase-change electronic devices.

  7. Modification of semiconductor materials using laser-produced ion streams additionally accelerated in the electric fields

    Science.gov (United States)

    Rosinski, M.; Badziak, B.; Parys, P.; Wołowski, J.; Pisarek, M.

    2009-03-01

    The laser-produced ion stream may be attractive for direct ultra-low-energy ion implantation in thin layer of semiconductor for modification of electrical and optical properties of semiconductor devices. Application of electrostatic fields for acceleration and formation of laser-generated ion stream enables to control the ion stream parameters in broad energy and current density ranges. It also permits to remove the useless laser-produced ions from the ion stream designed for implantation. For acceleration of ions produced with the use of a low fluence repetitive laser system (Nd:glass: 2 Hz, pulse duration: 3.5 ns, pulse energy:˜0.5 J, power density: 10 10 W/cm 2) in IPPLM the special electrostatic system has been prepared. The laser-produced ions passing through the diaphragm (a ring-shaped slit in the HV box) have been accelerated in the system of electrodes. The accelerating voltage up to 40 kV, the distance of the diaphragm from the target, the diaphragm diameter and the gap width were changed for choosing the desired parameters (namely the energy band of the implanted ions) of the ion stream. The characteristics of laser-produced Ge ion streams were determined with the use of precise ion diagnostic methods, namely: electrostatic ion energy analyser and various ion collectors. The laser-produced and post-accelerated Ge ions have been used for implantation into semiconductor materials for nanocrystal fabrication. The characteristics of implanted samples were measured using AES.

  8. Cyclodextrin-Containing Polymers: Versatile Platforms of Drug Delivery Materials

    Directory of Open Access Journals (Sweden)

    Jeremy D. Heidel

    2012-01-01

    Full Text Available Nanoparticles are being widely explored as potential therapeutics for numerous applications in medicine and have been shown to significantly improve the circulation, biodistribution, efficacy, and safety profiles of multiple classes of drugs. One leading class of nanoparticles involves the use of linear, cyclodextrin-containing polymers (CDPs. As is discussed in this paper, CDPs can incorporate therapeutic payloads into nanoparticles via covalent attachment of prodrug/drug molecules to the polymer (the basis of the Cyclosert platform or by noncovalent inclusion of cationic CDPs to anionic, nucleic acid payloads (the basis of the RONDEL platform. For each of these two approaches, we review the relevant molecular architecture and its rationale, discuss the physicochemical and biological properties of these nanoparticles, and detail the progress of leading drug candidates for each that have achieved clinical evaluation. Finally, we look ahead to potential future directions of investigation and product candidates based upon this technology.

  9. Semiconductor Nanocrystals Hybridized with Functional Ligands: New Composite Materials with Tunable Properties

    Directory of Open Access Journals (Sweden)

    Nathan I. Hammer

    2010-01-01

    Full Text Available Semiconductor nanocrystals hybridized with functional ligands represent an important new class of composite nanomaterials. The development of these new nanoscale building blocks has intensified over the past few years and offer significant advantages in a wide array of applications. Functional ligands allow for incorporation of nanocrystals into areas where their unique photophysics can be exploited. Energy and charge transfer between the ligands and the nanocrystal also result in enhanced physical properties that can be tuned by the choice of ligand architecture. Here, progress in the development and applications involving this new class of composite materials will be discussed.

  10. Dual-Material Surrounding-Gate Metal-Oxide-Semiconductor Field Effect Transistors with Asymmetric Halo

    Institute of Scientific and Technical Information of China (English)

    LI Zun-Chao

    2009-01-01

    Asymmetrical halo and dual-material gate structure are used in the sub-100 nm surrounding-gate metal-oxide-semiconductor field effect transistor (MOSFET) to improve the performance. Using three-region parabolic po-tential distribution and universal boundary condition, analytical surface potential and threshold voltage models of the novel MOSFET are developed based on the solution of Poisson's equation. The performance of the MOS-FET is examined by the analytical models and the 3D numerical device simulator Davinci. It is shown that the novel MOSFET can suppress short channel effect and improve carrier transport efficiency. The derived analytical models agree well with Davinci.

  11. Venus Atmospheric Maneuverable Platform (VAMP) — Stowage/Deployment Concepts and Materials Investigation

    Science.gov (United States)

    Bolisay, L. B.; Barnes, N. C.; Sokol, D. H.; Lee, G. J.; Polidan, R. S.

    2014-06-01

    This presentation discusses the continued development of the Northrop Grumman/L'GARDE team's long-lived, maneuverable platform to explore the Venus upper atmosphere. It focuses on vehicle stowage and deployment concepts, and materials investigation.

  12. Rashba semiconductor as spin Hall material: Experimental demonstration of spin pumping in wurtzite $n$-GaN:Si

    OpenAIRE

    2016-01-01

    Pure spin currents in semiconductors are essential for implementation in the next generation of spintronic elements. Heterostructures of III- nitride semiconductors are currently employed as central building-blocks for lighting and high-power devices. Moreover, the long relaxation times and the spin-orbit coupling (SOC) in these materials indicate them as privileged hosts for spin currents and related phenomena. Spin pumping is an efficient mechanism for the inception of spin current and its ...

  13. Spectrophotometric method for optical band gap and electronic transitions determination of semiconductor materials

    Science.gov (United States)

    Sangiorgi, Nicola; Aversa, Lucrezia; Tatti, Roberta; Verucchi, Roberto; Sanson, Alessandra

    2017-02-01

    The optical band gap energy and the electronic processes involved are important parameters of a semiconductor material and it is therefore important to determine their correct values. Among the possible methods, the spectrophotometric is one of the most common. Several methods can be applied to determine the optical band gap energy and still now a defined consensus on the most suitable one has not been established. A highly diffused and accurate optical method is based on Tauc relationship, however to apply this equation is necessary to know the nature of the electronic transitions involved commonly related to the coefficient n. For this purpose, a spectrophotometric technique was used and we developed a graphical method for electronic transitions and band gap energy determination for samples in powder form. In particular, the n coefficient of Tauc equation was determined thorough mathematical elaboration of experimental results on TiO2 (anatase), ZnO, and SnO2. The results were used to calculate the band gap energy values and then compared with the information obtained by Ultraviolet Photoelectron Spectroscopy (UPS). This approach provides a quick and accurate method for band gap determination through n coefficient calculation. Moreover, this simple but reliable method can be used to evaluate the nature of electronic transition that occurs in a semiconductor material in powder form.

  14. Metal-Organic Frameworks as Platforms for Functional Materials.

    Science.gov (United States)

    Cui, Yuanjing; Li, Bin; He, Huajun; Zhou, Wei; Chen, Banglin; Qian, Guodong

    2016-03-15

    Discoveries of novel functional materials have played very important roles to the development of science and technologies and thus to benefit our daily life. Among the diverse materials, metal-organic framework (MOF) materials are rapidly emerging as a unique type of porous and organic/inorganic hybrid materials which can be simply self-assembled from their corresponding inorganic metal ions/clusters with organic linkers, and can be straightforwardly characterized by various analytical methods. In terms of porosity, they are superior to other well-known porous materials such as zeolites and carbon materials; exhibiting extremely high porosity with surface area up to 7000 m(2)/g, tunable pore sizes, and metrics through the interplay of both organic and inorganic components with the pore sizes ranging from 3 to 100 Å, and lowest framework density down to 0.13 g/cm(3). Such unique features have enabled metal-organic frameworks to exhibit great potentials for a broad range of applications in gas storage, gas separations, enantioselective separations, heterogeneous catalysis, chemical sensing and drug delivery. On the other hand, metal-organic frameworks can be also considered as organic/inorganic self-assembled hybrid materials, we can take advantages of the physical and chemical properties of both organic and inorganic components to develop their functional optical, photonic, and magnetic materials. Furthermore, the pores within MOFs can also be utilized to encapsulate a large number of different species of diverse functions, so a variety of functional MOF/composite materials can be readily synthesized. In this Account, we describe our recent research progress on pore and function engineering to develop functional MOF materials. We have been able to tune and optimize pore spaces, immobilize specific functional groups, and introduce chiral pore environments to target MOF materials for methane storage, light hydrocarbon separations, enantioselective recognitions

  15. Synthesis and characterization of LiZnP and LiZnAs semiconductor material

    Science.gov (United States)

    Montag, Benjamin W.; Reichenberger, Michael A.; Arpin, Kevin R.; Sunder, Madhana; Nelson, Kyle A.; Ugorowski, Philip B.; McGregor, Douglas S.

    2015-02-01

    Research for a reliable solid-state semiconductor neutron detector continues because such a device has not been developed, and would have greater efficiency, than present-day gas-filled 3He and 10BF3 neutron detectors. Further, a semiconductor neutron detector would be more compact and rugged than most gas-filled or scintillator neutron detectors. The 6Li(n,t)4He reaction yields a total Q value of 4.78 MeV, a larger yield than the 10B(n,α)7Li, and is easily identified above background radiation interactions. Hence, devices composed of either natural Li (naturally 7.5% 6Li) or enriched 6Li (approximately 95% 6Li) may provide a semiconductor material for compact high-efficiency neutron detectors. A sub-branch of the III-V semiconductors, the filled tetrahedral compounds, known as Nowotny-Juza compounds (AIBIICV), are desirable for their cubic crystal structure and semiconducting electrical properties. These compounds were originally studied for photonic applications. In the present work, Equimolar portions of Li, Zn, and P or As were sealed under vacuum (10-6 Torr) in quartz ampoules with a boron nitride lining, and loaded into a compounding furnace. The ampoule was heated to 200 °C to form the Li-Zn alloy, subsequently heated to 560 °C to form the ternary compound, LiZnP or LiZnAs, and finally annealed to promote crystallization. The chemical composition of the synthesized starting material was confirmed at Galbraith Laboratories, Inc. by Inductively Coupled Plasma Optical Emission Spectroscopy (ICP-OES), which showed the compounds can be reacted in equal ratios, 1-1-1, to form ternary compounds. Recent additions to the procedure have produced higher yields, and greater synthesis reliability. Synthesized powders were also characterized by x-ray diffraction, where lattice constants of 5.751±.001 Å and 5.939±.002 Å for LiZnP and LiZnAs, respectively, were determined.

  16. Quantum modeling of semiconductor gain materials and vertical-external-cavity surface-emitting laser systems

    Energy Technology Data Exchange (ETDEWEB)

    Bueckers, Christina; Kuehn, Eckhard; Schlichenmaier, Christoph; Koch, Stephan W. [Department of Physics and Material Sciences Center, Philipps-University Marburg (Germany); Imhof, Sebastian; Thraenhardt, Angela [Faculty of Natural Sciences, Chemnitz University of Technology, Chemnitz (Germany); Hader, Joerg; Moloney, Jerome V. [Nonlinear Control Strategies, Inc., Tucson, AZ (United States); College of Optical Sciences, University of Arizona, Tucson, AZ (United States); Rubel, Oleg [Thunder Bay Regional Research Institute, Thunder Bay, ON (Canada); Department of Physics, Lakehead University, Thunder Bay, ON (Canada); Zhang, Wei [Centre for Biophotonics, SIPBS, University of Strathclyde, Glasgow, Scotland (United Kingdom); Ackemann, Thorsten [SUPA and Department of Physics, University of Strathclyde, Glasgow, Scotland (United Kingdom)

    2010-04-15

    This article gives an overview of the microscopic theory used to quantitatively model a wide range of semiconductor laser gain materials. As a snapshot of the current state of research, applications to a variety of actual quantum-well systems are presented. Detailed theory-experiment comparisons are shown and it is analyzed how the theory can be used to extract poorly known material parameters. The intrinsic laser loss processes due to radiative and nonradiative Auger recombination are evaluated microscopically. The results are used for realistic simulations of vertical-external-cavity surface-emitting laser systems. To account for nonequilibrium effects, a simplified model is presented using pre-computed microscopic scattering and dephasing rates. Prominent deviations from quasi-equilibrium carrier distributions are obtained under strong in-well pumping conditions. (Abstract Copyright [2010], Wiley Periodicals, Inc.)

  17. Magnetism in alkali-metal-doped wurtzite semiconductor materials controlled by strain engineering

    Science.gov (United States)

    Guo, J. H.; Li, T. H.; Liu, L. Z.; Hu, F. R.

    2016-09-01

    The study of the magnetism and optical properties of semiconductor materials by defect engineering has attracted much attention because of their potential uses in spintronic and optoelectronic devices. In this paper, first-principle calculations discloses that cationic vacancy formation energy of the doped wurtzite materials can be sharply decreased due to alkali metal dopants and shows that their magnetic properties strongly depend on defect and doping concentration. This effect can be ascribed to the volume change induced by foreign elements doped into the host system and atomic population's difference. The symmetric deformation induced by biaxial strain can further regulate this behavior. Our results suggest that the formation of cationic vacancy can be tailored by strain engineering and dopants incorporation.

  18. Energy Transfer with Semiconductor Quantum Dot Bioconjugates: A Versatile Platform for Biosensing, Energy Harvesting, and Other Developing Applications.

    Science.gov (United States)

    Hildebrandt, Niko; Spillmann, Christopher M; Algar, W Russ; Pons, Thomas; Stewart, Michael H; Oh, Eunkeu; Susumu, Kimihiro; Díaz, Sebastian A; Delehanty, James B; Medintz, Igor L

    2017-01-25

    Luminescent semiconductor quantum dots (QDs) are one of the more popular nanomaterials currently utilized within biological applications. However, what is not widely appreciated is their growing role as versatile energy transfer (ET) donors and acceptors within a similar biological context. The progress made on integrating QDs and ET in biological configurations and applications is reviewed in detail here. The goal is to provide the reader with (1) an appreciation for what QDs are capable of in this context, (2) how this field has grown over a relatively short time span, and, in particular, (3) how QDs are steadily revolutionizing the development of new biosensors along with a myriad of other photonically active nanomaterial-based bioconjugates. An initial discussion of QD materials along with key concepts surrounding their preparation and bioconjugation is provided given the defining role these aspects play in the QDs ability to succeed in subsequent ET applications. The discussion is then divided around the specific roles that QDs provide as either Förster resonance energy transfer (FRET) or charge/electron transfer donor and/or acceptor. For each QD-ET mechanism, a working explanation of the appropriate background theory and formalism is articulated before examining their biosensing and related ET utility. Other configurations such as incorporation of QDs into multistep ET processes or use of initial chemical and bioluminescent excitation are treated similarly. ET processes that are still not fully understood such as QD interactions with gold and other metal nanoparticles along with carbon allotropes are also covered. Given their maturity, some specific applications ranging from in vitro sensing assays to cellular imaging are separated and discussed in more detail. Finally a perspective on how this field will continue to evolve is provided.

  19. Modification of semiconductor materials using laser-produced ion streams additionally accelerated in the electric fields

    Energy Technology Data Exchange (ETDEWEB)

    Rosinski, M. [Institute of Plasma Physics and Laser Microfusion, P.O. Box 49, Hery Street 23, 00-908 Warsaw (Poland)], E-mail: rosinski@ifpilm.waw.pl; Badziak, B.; Parys, P.; Wolowski, J. [Institute of Plasma Physics and Laser Microfusion, P.O. Box 49, Hery Street 23, 00-908 Warsaw (Poland); Pisarek, M. [Warsaw University of Technology, Material Science and Engineering Faculty, Warsaw (Poland)

    2009-03-01

    The laser-produced ion stream may be attractive for direct ultra-low-energy ion implantation in thin layer of semiconductor for modification of electrical and optical properties of semiconductor devices. Application of electrostatic fields for acceleration and formation of laser-generated ion stream enables to control the ion stream parameters in broad energy and current density ranges. It also permits to remove the useless laser-produced ions from the ion stream designed for implantation. For acceleration of ions produced with the use of a low fluence repetitive laser system (Nd:glass: 2 Hz, pulse duration: 3.5 ns, pulse energy:{approx}0.5 J, power density: 10{sup 10} W/cm{sup 2}) in IPPLM the special electrostatic system has been prepared. The laser-produced ions passing through the diaphragm (a ring-shaped slit in the HV box) have been accelerated in the system of electrodes. The accelerating voltage up to 40 kV, the distance of the diaphragm from the target, the diaphragm diameter and the gap width were changed for choosing the desired parameters (namely the energy band of the implanted ions) of the ion stream. The characteristics of laser-produced Ge ion streams were determined with the use of precise ion diagnostic methods, namely: electrostatic ion energy analyser and various ion collectors. The laser-produced and post-accelerated Ge ions have been used for implantation into semiconductor materials for nanocrystal fabrication. The characteristics of implanted samples were measured using AES.

  20. Composite THz materials using aligned metallic and semiconductor microwires, experiments and interpretation.

    Science.gov (United States)

    Mazhorova, Anna; Gu, Jian Feng; Dupuis, Alexandre; Peccianti, Marco; Tsuneyuki, Ozaki; Morandotti, Roberto; Minamide, Hiroaki; Tang, Ming; Wang, Yuye; Ito, Hiromasa; Skorobogatiy, Maksim

    2010-11-22

    We report fabrication method and THz characterization of composite films containing either aligned metallic (tin alloy) microwires or chalcogenide As2Se3 microwires. The microwire arrays are made by stack-and-draw fiber fabrication technique using multi-step co-drawing of low-melting-temperature metals or semiconductor glasses together with polymers. Fibers are then stacked together and pressed into composite films. Transmission through metamaterial films is studied in the whole THz range (0.1-20 THz) using a combination of FTIR and TDS. Metal containing metamaterials are found to have strong polarizing properties, while semiconductor containing materials are polarization independent and could have a designable high refractive index. Using the transfer matrix theory, we show how to retrieve the complex polarization dependent refractive index of the composite films. Finally, we study challenges in the fabrication of metamaterials with sub-micrometer metallic wires by repeated stack-and-draw process by comparing samples made using 2, 3 and 4 consecutive drawings. When using metallic alloys we observe phase separation effects and nano-grids formation on small metallic wires.

  1. Abatement kinetics of 30 sulfonylurea herbicide residues in water by photocatalytic treatment with semiconductor materials.

    Science.gov (United States)

    Fenoll, José; Sabater, Paula; Navarro, Ginés; Vela, Nuria; Pérez-Lucas, Gabriel; Navarro, Simón

    2013-11-30

    Sulfonylurea herbicides (SUHs) are a family of environmentally compatible herbicides but their high water solubility, moderate to high mobility through the soil profile, and slow degradation rate make them potential contaminants of groundwater as demonstrated in this paper. The photodegradation of a mixture of 30 SUHs in aqueous suspensions of semiconductor materials (ZnO and TiO2 in tandem with Na2S2O8 as electron acceptor) under artificial light (300-460 nm) irradiation was investigated. As expected, the influence of both semiconductors on the degradation of SUHs was very significant in all cases. Photocatalytic experiments show that the addition of photocatalyst, especially for the ZnO/Na2S2O8 system, greatly improves the removal of SUHs compared with photolytic tests, significantly increasing the reaction rates. The first-order equation (monophasic model) satisfactorily explained the disappearance process although it overlooked small residues remaining late in the process. These residues are important from an environmental point of view and the Hoerl function (biphasic model), was a better predicter of the results obtained. In our conditions, the average time required for 90% degradation was about 3 and 30 min for ZnO/Na2S2O8 and TiO2/Na2S2O8 systems, respectively.

  2. Fe-Cr-Al containing oxide semiconductors as potential solar water-splitting materials.

    Science.gov (United States)

    Sliozberg, Kirill; Stein, Helge S; Khare, Chinmay; Parkinson, Bruce A; Ludwig, Alfred; Schuhmann, Wolfgang

    2015-03-01

    A high-throughput thin film materials library for Fe-Cr-Al-O was obtained by reactive magnetron cosputtering and analyzed with automated EDX and XRD to elucidate compositional and structural properties. An automated optical scanning droplet cell was then used to perform photoelectrochemical measurements of 289 compositions on the library, including electrochemical stability, potentiodynamic photocurrents and photocurrent spectroscopy. The photocurrent onset and open circuit potentials of two semiconductor compositions (n-type semiconducting: Fe51Cr47Al2Ox, p-type semiconducting Fe36.5Cr55.5Al8Ox) are favorable for water splitting. Cathodic photocurrents are observed at 1.0 V vs RHE for the p-type material exhibiting an open circuit potential of 0.85 V vs RHE. The n-type material shows an onset of photocurrents at 0.75 V and an open circuit potential of 0.6 V. The p-type material showed a bandgap of 1.55 eV, while the n-type material showed a bandgap of 1.97 eV.

  3. Material degradation of liquid organic semiconductors analyzed by nuclear magnetic resonance spectroscopy

    Directory of Open Access Journals (Sweden)

    Tatsuya Fukushima

    2015-08-01

    Full Text Available Liquid organic light-emitting diodes (liquid OLEDs are unique devices consisting only of liquid organic semiconductors in the active layer, and the device performances have been investigated recently. However, the device degradation, especially, the origin has been unknown. In this study, we show that material degradation occurs in liquid OLEDs, whose active layer is composed of carbazole with an ethylene glycol chain. Nuclear magnetic resonance (NMR experiments clearly exhibit that the dimerization reaction of carbazole moiety occurs in the liquid OLEDs during driving the devices. In contrast, cleavages of the ethylene glycol chain are not detected within experimental error. The dimerization reaction is considered to be related to the device degradation.

  4. Detection of fast neutrons from shielded nuclear materials using a semiconductor alpha detector.

    Science.gov (United States)

    Pöllänen, R; Siiskonen, T

    2014-08-01

    The response of a semiconductor alpha detector to fast (>1 MeV) neutrons was investigated by using measurements and simulations. A polyethylene converter was placed in front of the detector to register recoil protons generated by elastic collisions between neutrons and hydrogen nuclei of the converter. The developed prototype equipment was tested with shielded radiation sources. The low background of the detector and insensitivity to high-energy gamma rays above 1 MeV are advantages when the detection of neutron-emitting nuclear materials is of importance. In the case of a (252)Cf neutron spectrum, the intrinsic efficiency of fast neutron detection was determined to be 2.5×10(-4), whereas three-fold greater efficiency was obtained for a (241)AmBe neutron spectrum.

  5. Fast and high light yield scintillation in the Ga2O3 semiconductor material

    Science.gov (United States)

    Yanagida, Takayuki; Okada, Go; Kato, Takumi; Nakauchi, Daisuke; Yanagida, Satoko

    2016-04-01

    We report the distinct scintillation properties of the well-known Ga2O3 semiconductor material. Under UV excitation, the photoluminescence (PL) emission peak appeared near a wavelength of 380 nm with a quantum yield of 6%, and fast decays of 8 and 793 ns were observed. In contrast, the X-ray-induced scintillation spectrum showed an intense emission band near a wavelength of 380 nm, whose decay curve was reproduced using two exponential decay components with time constants of 8 and 977 ns. The pulse height spectrum of 137Cs γ-rays measured using Ga2O3 showed a clear photoabsorption peak with a light yield of 15000 ± 1500 photons/MeV.

  6. Universal solders for direct and powerful bonding on semiconductors, diamond, and optical materials

    Science.gov (United States)

    Mavoori, Hareesh; Ramirez, Ainissa G.; Jin, Sungho

    2001-05-01

    The surfaces of electronic and optical materials such as nitrides, carbides, oxides, sulfides, fluorides, selenides, diamond, silicon, and GaAs are known to be very difficult to bond with low melting point solders (<300 °C). We have achieved a direct and powerful bonding on these surfaces by using low temperature solders doped with rare-earth elements. The rare earth is stored in micron-scale, finely-dispersed intermetallic islands (Sn3Lu or Au4Lu), and when released, causes chemical reactions at the interface producing strong bonds. These solders directly bond to semiconductor surfaces and provide ohmic contacts. They can be useful for providing direct electrical contacts and interconnects in a variety of electronic assemblies, dimensionally stable and reliable bonding in optical fiber, laser, or thermal management assemblies.

  7. Diamond Structure BeO, Designable Super-Hard Materials and Semiconductor Be-Diamond

    Institute of Scientific and Technical Information of China (English)

    XU Ji-An; SI Yan; SUN Zong-Qi; XIE Hong-Sen

    2009-01-01

    It is possible for Beryllium oxide (BeO) to have a cubic diamond structure although it normally has a hexagonal structure under ambient conditions. As the solution of cubic BN and diamond, the solid solution of cubic BeO-diamond or BeO-cBN-diamond can potentially be a kind of super-hard materials with designable hardness; and this solution has also been confirmed based on our preliminary first principles calculations. In addition, the nonstoichiometry of BeO could create a mobile carrier in the cubic BeO-C or BeO-BN-C system and it might lead to a new type of semiconductor Be-diamond.

  8. A Novel Semiconductor CIGS Photovoltaic Material and Thin-Film ED Technology

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    In order to achieve low-cost high-efficiency thin-film solar cells, a novel Semiconductor Photovoltaic (PV) active material CuIn1-xGaxSe2 (CIGS) and thin-film Electro-Deposition (ED) technology is explored. Firstly,the PV materials and technologies is investigated, then the detailed experimental processes of CIGS/Mo/glass structure by using the novel ED technology and the results are reported. These results shows that high quality CIGS polycrystalline thin-films can be obtained by the ED method, in which the polycrystalline CIGS is definitely identified by the (112), (204, 220) characteristic peaks of the tetragonal structure, the continuous CIGS thin-film layers with particle average size of about 2μm of length and around 1.6μm of thickness. The thickness and solargrade quality of CIGS thin-films can be produced with good repeatability. Discussion and analysis on the ED technique, CIGS energy band and sodium (Na) impurity properties, were also performed. The alloy CIGS exhibits not only increasing band-gap with increasing x, but also a change in material properties that is relevant to the device operation. The beneficial impurity Na originating from the low-cost soda-lime glass substrate becomes one prerequisite for high quality CIGS films. These novel material and technology are very useful for low-cost high-efficiency thin-film solar cells and other devices.

  9. Comprehensive Characterization of Extended Defects in Semiconductor Materials by a Scanning Electron Microscope.

    Science.gov (United States)

    Hieckmann, Ellen; Nacke, Markus; Allardt, Matthias; Bodrov, Yury; Chekhonin, Paul; Skrotzki, Werner; Weber, Jörg

    2016-01-01

    Extended defects such as dislocations and grain boundaries have a strong influence on the performance of microelectronic devices and on other applications of semiconductor materials. However, it is still under debate how the defect structure determines the band structure, and therefore, the recombination behavior of electron-hole pairs responsible for the optical and electrical properties of the extended defects. The present paper is a survey of procedures for the spatially resolved investigation of structural and of physical properties of extended defects in semiconductor materials with a scanning electron microscope (SEM). Representative examples are given for crystalline silicon. The luminescence behavior of extended defects can be investigated by cathodoluminescence (CL) measurements. They are particularly valuable because spectrally and spatially resolved information can be obtained simultaneously. For silicon, with an indirect electronic band structure, CL measurements should be carried out at low temperatures down to 5 K due to the low fraction of radiative recombination processes in comparison to non-radiative transitions at room temperature. For the study of the electrical properties of extended defects, the electron beam induced current (EBIC) technique can be applied. The EBIC image reflects the local distribution of defects due to the increased charge-carrier recombination in their vicinity. The procedure for EBIC investigations is described for measurements at room temperature and at low temperatures. Internal strain fields arising from extended defects can be determined quantitatively by cross-correlation electron backscatter diffraction (ccEBSD). This method is challenging because of the necessary preparation of the sample surface and because of the quality of the diffraction patterns which are recorded during the mapping of the sample. The spatial resolution of the three experimental techniques is compared.

  10. Biocatalytic etching of semiconductor cadmium sulfide nanoparticles as a new platform for the optical detection of analytes.

    Science.gov (United States)

    Grinyte, R; Saa, L; Garai-Ibabe, G; Pavlov, V

    2015-12-14

    We report for the first time the enzymatic etching of cadmium sulfide nanoparticles (CdS NPs). The fluorescence of semiconductor CdS NPs is modulated irreversibly by an enzymatic reaction catalyzed by horseradish peroxidase (HRP). We observed blue-shifts of the corresponding fluorescence peaks for CdS NPs and a decrease in the intensity of the fluorescence signal.

  11. Optical characterization platform for transparent insulation materials in solar energy

    Science.gov (United States)

    Platzer, Werner J.

    1994-09-01

    The precise optical characterization of transparent insulation materials used in windows, flat- plate collectors or for transparent insulation of buildings, is an important step to design solar collector and daylighting systems with these materials and to estimate energy benefits, peak loads, efficiencies, and different potential risks such as overheating, thermal damage or glare. Physically the aim is clear: Angle-dependent transmittance and reflectance properties for the solar and visible wavelength ranges yield the necessary information for the engineer to enable him to design a good system. However, it is far from trivial to obtain these data with sufficient precision for the rather different materials. The class of TIMs poses mainly the following problems, originating in their special character. TIMs often: (a) have a rather coarse structure, (b) show considerable scattering, (c) are relatively thick, (d) are spectrally selective, (e) and are not always rotationally symmetric. Therefore the optical measurement process has to: (a) integrate over a relatively large sample area (b) be able to detect intensity scattered in the sample (c) take into account the complex structure of the sample (d) and weight the different spectral bands correctly. We have set-up a set of radiation sources and integrating detector spheres which are able to measure directional-hemispherical and hemispherical-hemispherical reflectance and transmittance (hence also absorptance) for the visible and the solar wavelength range. This was possible by applying a PTFE-based coating to the spheres, having a unique spectrally flat response over the whole range, and using non-selective broadband detectors. Careful design tried to optimize integrating sphere geometry. Moreover, spectral measurements between 285-1100 nm are possible with an optical multichannel analyzer utilizing glass fiber optics. The whole experimental set-up will be presented and discussed together with representative results.

  12. Risk Analysis of Return Support Material on Gas Compressor Platform Project

    Science.gov (United States)

    Silvianita; Aulia, B. U.; Khakim, M. L. N.; Rosyid, Daniel M.

    2017-07-01

    On a fixed platforms project are not only carried out by a contractor, but two or more contractors. Cooperation in the construction of fixed platforms is often not according to plan, it is caused by several factors. It takes a good synergy between the contractor to avoid miss communication may cause problems on the project. For the example is about support material (sea fastening, skid shoe and shipping support) used in the process of sending a jacket structure to operation place often does not return to the contractor. It needs a systematic method to overcome the problem of support material. This paper analyses the causes and effects of GAS Compressor Platform that support material is not return, using Fault Tree Analysis (FTA) and Event Tree Analysis (ETA). From fault tree analysis, the probability of top event is 0.7783. From event tree analysis diagram, the contractors lose Rp.350.000.000, - to Rp.10.000.000.000, -.

  13. Plasmon resonances in semiconductor materials for detecting photocatalysis at the single-particle level.

    Science.gov (United States)

    Yan, Jiahao; Lin, Zhaoyong; Ma, Churong; Zheng, Zhaoqiang; Liu, Pu; Yang, Guowei

    2016-08-11

    Hot carriers, generated via the non-radiative decay of localized surface plasmon, can be utilized in photovoltaic and photocatalytic devices. In recent years, most studies have focused on conventional plasmon materials like Au and Ag. However, they suffer from several drawbacks like low energy of the generated hot carriers and a high charge-carrier recombination rate. To resolve these problems, here, we propose the plasmon resonances in heavily self-doped titanium oxide (TiO1.67) to realize effective hot carrier generation. Since the plasmon resonant energy of TiO1.67 nanoparticles (2.56 eV) is larger than the bandgap (2.15 eV), plasmon resonances through interband transition can realize both the generation and separation of hot carriers and bring a new strategy for visible-light photodegradation. The photodegradation rate for methyl orange was about 0.034 min(-1). More importantly, the combination of plasmonic and catalytic properties makes it feasible to investigate the degradation process of different materials and different structures at the single particle level in situ. By detecting the scattering shift, we demonstrated that the TiO1.67 dimer (Δλ/ΔλRIU = 0.16) possesses a higher photodegradation rate than an individual nanoparticle (Δλ/ΔλRIU = 0.09). We hope this finding may be a beginning, paving the way toward the development of semiconductor plasmonic materials for new applications beyond noble metals.

  14. Inkjet-Printed Organic Field-Effect Transistor by Using Composite Semiconductor Material of Carbon Nanoparticles and Poly(3-Hexylthiophene

    Directory of Open Access Journals (Sweden)

    Chih-Ting Lin

    2011-01-01

    Full Text Available Poly(3-hexylthiophene, P3HT, has been widely used in organic electronics as a semiconductor material. It suffers from the low carrier mobility characteristics. This limits P3HT to be employed in applications. Therefore, the blending semiconductor material, carbon nanoparticle (CNP, and P3HT, are developed and examined by inkjet-printing organic field-effect transistor technology in this work. The effective carrier mobility of fabricated OFETs can be enhanced by 8 folds with adding CNP and using O2 plasma treatment. At the same time, the transconductance of fabricated OFETs is also raised by 5 folds. Based on the observations of SEM, XRD, and FTIR, these improvements are contributed to the local field induced by the formation of CNP/P3HT complexes. This observation presents an insight of the development in organic semiconductor materials. Moreover, this work also offers a low-cost and effective semiconductor material for inkjet-printing technology in the development of organic electronics.

  15. Miniaturized platform with on-chip strain sensors for compression testing of arrayed materials.

    Science.gov (United States)

    MacQueen, Luke; Chebotarev, Oleg; Simmons, Craig A; Sun, Yu

    2012-10-21

    We report a microfabricated mechanical testing platform with on-chip strain sensors for in situ mechanical characterization of arrayed materials. The device is based on deformable elastomeric membranes that are actuated by pressure that is delivered through an underlying channel network. The bulging membranes compress material samples that are confined between the membranes and a rigid top-plate. Carbon nanotube-based strain sensors that exhibit strain-dependent electrical resistivity were integrated within the membranes to provide continuous read-out of membrane deflection amplitude. We used this platform to study the cyclic compression of several different silicone samples and thereby measured their elastic moduli. The results obtained using our miniaturized platform were in excellent agreement with those obtained using a commercially available mechanical testing platform and clearly demonstrated the utility of our platform for the mechanical testing of small samples in parallel. The miniaturized platform can significantly increase mechanical testing efficiency, particularly when testing of iterative sample formulations is required.

  16. DEVELOPMENT OF A MATERIALS RISK INFORMATION PLATFORM FOR A SAFE SOCIETY

    Institute of Scientific and Technical Information of China (English)

    K.Yagi

    2004-01-01

    A Materials Risk Information Platform is being developed under the cooperation of companies and academic societies with NIMS as project core. To combine safety and economy, which are sometimes contrary to each other, it is important to find an optimal solution using a new concept: risk based engineering. A 5-year project, the Materials Risk Information Platform, was started in 2001 in NIMS on the boilers of thermal power plants and the objectives of this project, research areas and its present state were outlined.

  17. New Design Concept for a Lifting Platform Made of Composite Material

    Science.gov (United States)

    Solazzi, L.; Scalmana, R.

    2013-08-01

    Elevating work platforms are hoists equipment that are increasingly used in many applications, like in the construction industry and in the maintenance field. The maintenance of the hub of the wind turbines, for example, can be done through the use of a working platform; these structures have to reach great heights and obviously they have to satisfy the constraints induced by the highway standards, like the maximum axle load and the maximum overall dimensions. To satisfy these requests the material of the structures changed from the classic structural steel (S235 JR, S275 JR or S355JR) to high strength steel (S700 to S1100 or more), characterized by a significantly higher specific resistance. The idea of this paper is to use a composite material for the construction of the arms of an elevating platform in order to reduce the global weight of the machine. The analyses on the new kind of platform show the technical possibility to change the material of the arms with composite materials and this produces a significant reduction of the weight of the machine components, about 50 %. Being a feasibility study, still remain open some problems such as the mechanical behavior of the used composite materials (fatigue, environment effects, etc.).

  18. An ultra-tunable platform for molecular engineering of high-performance crystalline porous materials

    Science.gov (United States)

    Zhai, Quan-Guo; Bu, Xianhui; Mao, Chengyu; Zhao, Xiang; Daemen, Luke; Cheng, Yongqiang; Ramirez-Cuesta, Anibal J.; Feng, Pingyun

    2016-12-01

    Metal-organic frameworks are a class of crystalline porous materials with potential applications in catalysis, gas separation and storage, and so on. Of great importance is the development of innovative synthetic strategies to optimize porosity, composition and functionality to target specific applications. Here we show a platform for the development of metal-organic materials and control of their gas sorption properties. This platform can accommodate a large variety of organic ligands and homo- or hetero-metallic clusters, which allows for extraordinary tunability in gas sorption properties. Even without any strong binding sites, most members of this platform exhibit high gas uptake capacity. The high capacity is accomplished with an isosteric heat of adsorption as low as 20 kJ mol-1 for carbon dioxide, which could bring a distinct economic advantage because of the significantly reduced energy consumption for activation and regeneration of adsorbents.

  19. New Organic Semiconductor Materials Applied in Organic Photovoltaic and Optical Devices

    Directory of Open Access Journals (Sweden)

    Andre F. S. Guedes

    2015-04-01

    Full Text Available The development of flexible organic photovoltaic solar cells, using an optically transparent substrate material and organic semiconductor materials, has been widely utilized by the electronic industry when producing new technological products. The flexible organic photovoltaic solar cells are the base Poly (3,4-ethylenedioxythiophene, PEDOT, Poly(3-hexyl thiophene, P3HT, Phenyl-C61-butyric acid methyl ester, PCBM and Polyaniline, PANI, were deposited in Indium Tin Oxide, ITO, and characterized by Electrical Measurements and Scanning Electron Microscopy (SEM. In addition, the thin film obtained by the deposition of PANI, prepared in perchloric acid solution, was identified through PANI-X1. The result obtained by electrical Measurements has demonstrated that the PET/ITO/PEDOT/P3HT:PCBM Blend/PANI-X1 layer presents the characteristic curve of standard solar cell after spin-coating and electrodeposition. The Thin film obtained by electrodeposition of PANI-X1 on P3HT/PCBM Blend was prepared in perchloric acid solution. These flexible organic photovoltaic solar cells presented power conversion efficiency of 12%. The inclusion of the PANI-X1 layer reduced the effects of degradation these organic photovoltaic panels induced for solar irradiation. In Scanning Electron Microscopy (SEM these studies reveal that the surface of PANI-X1 layers is strongly conditioned by the surface morphology of the dielectric.

  20. The Preemptive Stocker Dispatching Rule of Automatic Material Handling System in 300 mm Semiconductor Manufacturing Factories

    Science.gov (United States)

    Wang, C. N.; Lin, H. S.; Hsu, H. P.; Wang, Yen-Hui; Chang, Y. P.

    2016-04-01

    The integrated circuit (IC) manufacturing industry is one of the biggest output industries in this century. The 300mm wafer fabs is the major fab size of this industry. The automatic material handling system (AMHS) has become one of the most concerned issues among semiconductor manufacturers. The major lot delivery of 300mm fabs is used overhead hoist transport (OHT). The traffic jams are happened frequently due to the wide variety of products and big amount of OHTs moving in the fabs. The purpose of this study is to enhance the delivery performance of automatic material handling and reduce the delay and waiting time of product transportation for both hot lots and normal lots. Therefore, this study proposes an effective OHT dispatching rule: preemptive stocker dispatching (PSD). Simulation experiments are conducted and one of the best differentiated preemptive rule, differentiated preemptive dispatching (DPD), is used for comparison. Compared with DPD, The results indicated that PSD rule can reduce average variable delivery time of normal lots by 13.15%, decreasing average variable delivery time of hot lots by 17.67%. Thus, the PSD rule can effectively reduce the delivery time and enhance productivity in 300 mm wafer fabs.

  1. X-ray photoemission electron microscopy for the study of semiconductor materials

    Energy Technology Data Exchange (ETDEWEB)

    Anders, S.; Stammler, T.; Padmore, H.A. [Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720 (United States); Terminello, L.J.; Jankowski, A.F. [Lawrence Livermore National Laboratory, 7000 East Ave., Livermore, California 94550 (United States); Stoehr, J. [IBM Almaden Research Center, 650 Harry Road, San Jose, California 95120 (United States); Diaz, J. [Departamento de Fisic, Facultad de Ciencias, Universidad de Oviedo, Avda. Calvo Sotelo s/n, Oviedo, 33007 (Spain); Cossy-Favre, A. [EMPA, Duebendorf, Ueberlandstrasse 129, 8600 Duebendorf (Switzerland); Singh, S. [Center for X-ray Lithography, University of Wisconsin-Madison, Stoughton, Wisconsin 53589 (United States)

    1998-11-01

    Photoemission Electron Microscopy using X-rays (X-PEEM) is a novel combination of two established materials analysis techniques{emdash}PEEM using UV light, and Near Edge X-ray Absorption Fine Structure (NEXAFS) spectroscopy. This combination allows the study of elemental composition and bonding structure of the sample by NEXAFS spectroscopy with a high spatial resolution given by the microscope. A simple, two lens, 10 kV operation voltage PEEM has been used at the Stanford Synchrotron Radiation Laboratory and at the Advanced Light Source (ALS) in Berkeley to study various problems including materials of interest for the semiconductor industry. In the present paper we give a short overview over the method and the instrument which was used, and describe in detail a number of applications. These applications include the study of the different phases of titanium disilicide, various phases of boron nitride, and the analysis of small particles. A brief outlook is given on possible new fields of application of the PEEM technique, and the development of new PEEM instruments. {copyright} {ital 1998 American Institute of Physics.}

  2. X-ray photoemission electron microscopy for the study of semiconductor materials

    Energy Technology Data Exchange (ETDEWEB)

    Anders, S.; Stammler, T.; Padmore, H. [Lawrence Berkeley National Lab., CA (United States). Advanced Light Source Div.; Terminello, L.J.; Jankowski, A.F. [Lawrence Livermore National Lab., CA (United States); Stohr, J. [IBM Almaden Research Center, San Jose, CA (United States); Diaz, J. [Univ. de Oviedo (Spain). Dept. de Fisica; Cossy-Gantner, A. [EMPA, Duebendorf (Germany)

    1998-03-01

    Photoemission Electron Microscopy (PEEM) using X-rays is a novel combination of two established materials analysis techniques--PEEM using UV light, and Near Edge X-ray Absorption Fine Structure (NEXAFS) spectroscopy. This combination allows the study of elemental composition and bonding structure of the sample by NEXAFS spectroscopy with a high spatial resolution given by the microscope. A simple, two lens, 10 kV operation voltage PEEM has been used at the Stanford Synchrotron Radiation Laboratory and at the Advanced Light Source (ALS) in Berkeley to study various problems including materials of interest for the semiconductor industry. In the present paper the authors give a short overview over the method and the instrument which was used, and describe in detail a number of applications. These applications include the study of the different phases of titanium disilicide, various phases of boron nitride, and the analysis of small particles. A brief outlook is given on possible new fields of application of the PEEM technique, and the development of new PEEM instruments.

  3. Group IV all-semiconductor spintronics. Materials aspects and optical spin selection rules

    Energy Technology Data Exchange (ETDEWEB)

    Sircar, Narayan

    2012-04-03

    In the scope of the present thesis various aspects for the realization of spintronic applications based on group IV semiconductors are discussed. This work comprises a refined material characterization of the magnetic semiconductor GeMn. We furthermore present efforts to utilize this material as spin injector for a Si-based optical spintronic device. Applying transmission electron microscopy and atom probe tomography, we are able to resolve a vertical anisotropy in the self-assembly, leading to the stacking of well-defined clusters in the growth direction. Three-dimensional atom distribution maps confirm that clusters are built from a nonstoichiometric GeMn alloy and exhibit a high-Mn-concentration core with a decreasing Mn concentration toward a shell. An amorphous nature of the cluster cores as well as the crystallinity of the shells, coherent with the surrounding Ge lattice, are revealed in scanning transmission electron microscopy. We localize a strain field surrounding each GeMn cluster by scanning transmission electron microscopy. The importance of strain to the stacking phenomenon of the clusters becomes clear in studies of Ge/GeMn superlattice structures, where a vertical spatial correlation of clusters over 30 nm-thick Ge spacer layers is observed. We present evidence that electrical transport properties of the p-type GeMn thin films fabricated on high-resistivity Ge substrates are severely influenced by parallel conduction through the substrate. It is shown that substrate conduction persists also for wellconducting degenerate p-type reference thin films, giving rise to an effective two-layer conduction scheme. GeMn thin films fabricated on these substrates exhibit only a negligible magnetoresistance effect. Before integrating GeMn in an optical spintronic device, some key aspects important for an understanding of the optical injection and detection of carrier spins in Si and Si-based heterostructures are clarified in the second part of this thesis. In

  4. Development of Ultra-Light Composite Material to Build the Platform of a Shaking Table

    Directory of Open Access Journals (Sweden)

    Botero-Jaramillo Eduardo

    2013-10-01

    Full Text Available Based on the developments of the last decades in the area of ultra-light materials, their application in the construction of the platform of the new one direction hydrau- lic shaking table was proposed, with capacity of one ton and frequency range from 0.4 Hz to 4.0 Hz for the Geotechnical Laboratory of the Institute of Engineering, UNAM. The aim was to replace the heavy conventional steel platforms, used in shaking tables, by a composite material based on wood and Kevlar, hence reducing its weight and optimizing the hydraulic equipment capacity available in the labora- tory. Accordingly, an experimental investigation was conducted to characterize the stress-strain behavior of composite materials under monotonically increasing load. This research involved the determination of the adequate proportions of the different constituent materials and manufacturing techniques that best suit the needs and available resources.

  5. Improve sonocatalytic performance using modified semiconductor catalyst SnO2 and ZrO2 by magnetite materials

    Science.gov (United States)

    Paramarta, V.; Kristianto, Y.; Taufik, A.; Saleh, R.

    2017-04-01

    Modifying semiconductor catalysts using magnetic materials could enhance the efficiency of wastewater removal and the separation efficiency demonstrated in our previous studies. The catalytic performance of wide band gap ZrO2 and SnO2 semiconductors has not been studied with regard to the ultrasonic radiation catalytic process. Therefore, the ultrasound-assisted sonocatalytic performance of ZrO2 and SnO2 semiconductors combined with Fe3O4 (magnetite) nanoparticles has been studied using methylene blue as a model organic pollutant. The nanocomposites were synthesized using sol-gel methods. The structural properties of the samples were characterized using X-ray diffraction (XRD). Sample morphology was obtained by transmission electron microscopy (TEM). The magnetic properties of the samples were characterized using a vibrating sample magnetometer (VSM). The cubic spinel structure of Fe3O4 is successfully identified, as are the tetragonal structures from SnO2 and ZrO2. The samples exhibit ferromagnetic behavior at room temperature. Both ZrO2 and SnO2 combined with Fe3O4 show better sonocatalytic efficiency than without Fe3O4 and even better efficiency than the pioneering wide band gap semiconductor TiO2. The combination of magnetite nanoparticles with SnO2 exhibit the highest degradation efficiency. The incorporation of magnetic material into catalysts has been proved to enhance the reusability of catalysts with efficient separation process.

  6. G-quest: a single platform for delivering questionnaires, educational material, and checklists on mobile devices.

    Science.gov (United States)

    Lanzola, Giordano; Ginardi, Germana; Russo, Paola; Quaglini, Silvana

    2014-01-01

    We illustrate G-quest, a platform originally meant to deliver questionnaires on mobile devices that supports the accomplishment of studies involving outpatients. However the constructs made available by the platform proved to be useful also for distributing learning material and checklists, after a paradigm shift in their application was adopted. Thus, in addition to questionnaires, we designed a guide for educating patients affected by a rare disease and conducted a small survey to assess this new application context. Presently we are exploiting G-quest for the provision of medical checklists in critical care.

  7. Applications of ions produced by low intensity repetitive laser pulses for implantation into semiconductor materials

    Science.gov (United States)

    Wołowski, J.; Badziak, J.; Czarnecka, A.; Parys, P.; Pisarek, M.; Rosinski, M.; Turan, R.; Yerci, S.

    This work reports experiment concerning specific applications of implantation of laser-produced ions for production of semiconductor nanocrystals. The investigation was carried out in the IPPLM within the EC STREP `SEMINANO' project. A repetitive pulse laser system of parameters: energy up to 0.8 J in a 3.5 ns-pulse, wavelength of 1.06 μ m, repetition rate of up to 10 Hz, has been employed in these investigations. The characterisation of laser-produced ions was performed with the use of `time-of-flight' ion diagnostics simultaneously with other diagnostic methods in dependence on laser pulse parameters, illumination geometry and target material. The properties of laser-implanted and modified SiO2 layers on sample surface were characterised with the use of different methods (XPS + ASD, Raman spectroscopy, PL spectroscopy) at the Middle East Technological University in Ankara and at the Warsaw University of Technology. The production of the Ge nanocrystallites has been demonstrated for annealed samples prepared in different experimental conditions.

  8. Analysis of Interface Charge Densities for High-k Dielectric Materials based Metal Oxide Semiconductor Devices

    Science.gov (United States)

    Maity, N. P.; Thakur, R. R.; Maity, Reshmi; Thapa, R. K.; Baishya, S.

    2016-10-01

    In this paper, the interface charge densities (Dit) are studied and analyzed for ultra thin dielectric metal oxide semiconductor (MOS) devices using different high-k dielectric materials such as Al2O3, ZrO2 and HfO2. The Dit have been calculated by a new approach using conductance method and it indicates that by reducing the thickness of the oxide, the Dit increases and similar increase is also found by replacing SiO2 with high-k. For the same oxide thickness, SiO2 has the lowest Dit and found to be the order of 1011cm-2eV-1. Linear increase in Dit has been observed as the dielectric constant of the oxide increases. The Dit is found to be in good agreement with published fabrication results at p-type doping level of 1×1017cm-3. Numerical calculations and solutions are performed by MATLAB and device simulation is done by ATLAS.

  9. Alpha-particle emissivity screening of materials used for semiconductor manufacturing

    Science.gov (United States)

    Gordon, Michael; Rodbell, Kenneth

    2015-03-01

    Single-Event Upsets (SEU's) in semiconductor memory and logic devices continue to be a reliability issue in modern CMOS devices. SEU's result from deposited charge in the Si devices caused by the passage of ionizing radiation. With technology scaling, the device area decreases, but the critical charge required to flip bits decreases as well. The interplay between both determines how the SEU rate scales with shrinking device geometries and dimensions. In order to minimize the alpha-particle component of SEU, the radiation in the device environment has to be at the Ultra-Low Alpha (ULA) activity levels, e.g. less than 2 α/khr-cm2. Most detectors have background levels that are significantly larger than that level which makes making these measurements difficult and time consuming. A new class of alpha particle detector, utilizing pulse shape discrimination, is now available which allows one to make measurements quickly with ultra-low detector background. This talk will discuss what is involved in making alpha particle measurements of materials in the ULA activity levels, in terms of calibration, radon adsorption mitigation, the time required for obtaining reasonable statistics and comparisons to other detectors.

  10. Composite THz materials using aligned metallic and semiconductor microwires, experiments and interpretation

    National Research Council Canada - National Science Library

    Mazhorova, Anna; Gu, Jian Feng; Dupuis, Alexandre; Peccianti, Marco; Tsuneyuki, Ozaki; Morandotti, Roberto; Minamide, Hiroaki; Tang, Ming; Wang, Yuye; Ito, Hiromasa; Skorobogatiy, Maksim

    2010-01-01

    ...) microwires or chalcogenide As2Se3 microwires. The microwire arrays are made by stack-and-draw fiber fabrication technique using multi-step co-drawing of low-melting-temperature metals or semiconductor glasses together with polymers...

  11. Space processing of crystalline materials: A study of known methods of electrical characterization of semiconductors: Bibliography

    Science.gov (United States)

    Castle, J. G.

    1976-01-01

    A selective bibliography is given on electrical characterization techniques for semiconductors. Emphasis is placed on noncontacting techniques for the standard electrical parameters for monitoring crystal growth in space, preferably in real time with high resolution.

  12. Plasmonic effects in metal-semiconductor nanostructures

    CERN Document Server

    Toropov, Alexey A

    2015-01-01

    Metal-semiconductor nanostructures represent an important new class of materials employed in designing advanced optoelectronic and nanophotonic devices, such as plasmonic nanolasers, plasmon-enhanced light-emitting diodes and solar cells, plasmonic emitters of single photons, and quantum devices operating in infrared and terahertz domains. The combination of surface plasmon resonances in conducting structures, providing strong concentration of an electromagnetic optical field nearby, with sharp optical resonances in semiconductors, which are highly sensitive to external electromagnetic fields, creates a platform to control light on the nanoscale. The design of the composite metal-semiconductor system imposes the consideration of both the plasmonic resonances in metal and the optical transitions in semiconductors - a key issue being their resonant interaction providing a coupling regime. In this book the reader will find descriptions of electrodynamics of conducting structures, quantum physics of semiconducto...

  13. Nanocrystalline ZnON; High mobility and low band gap semiconductor material for high performance switch transistor and image sensor application

    Science.gov (United States)

    Lee, Eunha; Benayad, Anass; Shin, Taeho; Lee, HyungIk; Ko, Dong-Su; Kim, Tae Sang; Son, Kyoung Seok; Ryu, Myungkwan; Jeon, Sanghun; Park, Gyeong-Su

    2014-01-01

    Interest in oxide semiconductors stems from benefits, primarily their ease of process, relatively high mobility (0.3–10 cm2/vs), and wide-bandgap. However, for practical future electronic devices, the channel mobility should be further increased over 50 cm2/vs and wide-bandgap is not suitable for photo/image sensor applications. The incorporation of nitrogen into ZnO semiconductor can be tailored to increase channel mobility, enhance the optical absorption for whole visible light and form uniform micro-structure, satisfying the desirable attributes essential for high performance transistor and visible light photo-sensors on large area platform. Here, we present electronic, optical and microstructural properties of ZnON, a composite of Zn3N2 and ZnO. Well-optimized ZnON material presents high mobility exceeding 100 cm2V−1s−1, the band-gap of 1.3 eV and nanocrystalline structure with multiphase. We found that mobility, microstructure, electronic structure, band-gap and trap properties of ZnON are varied with nitrogen concentration in ZnO. Accordingly, the performance of ZnON-based device can be adjustable to meet the requisite of both switch device and image-sensor potentials. These results demonstrate how device and material attributes of ZnON can be optimized for new device strategies in display technology and we expect the ZnON will be applicable to a wide range of imaging/display devices. PMID:24824778

  14. Artificial Molecular Machine Immobilized Surfaces: A New Platform To Construct Functional Materials.

    Science.gov (United States)

    Zhang, Qi; Qu, Da-Hui

    2016-06-17

    Artificial molecular machines have received significant attention from chemists because of their unique ability to mimic the behaviors of biological systems. Artificial molecular machines can be easily modified with functional groups to construct new types of functional molecular switches. However, practical applications of artificial molecular machines are still challenging, because the working platform of artificial molecular machines is mostly in solution. Artificial molecular machine immobilized surfaces (AMMISs) are considered a promising platform to construct functional materials. Herein, we provide a minireview of some recent advances of functional AMMISs. The functions of AMMISs are highlighted and strategies for their construction are also discussed. Furthermore, a brief perspective of the development of artificial molecular machines towards functional materials is given.

  15. Method of ions acceleration for laser-induced implantation of semiconductor materials

    Science.gov (United States)

    Czarnecka, A.; Badziak, J.; Parys, P.; Rosinski, M.; Wołowski, J.

    The application of electrostatic fields for the formation of laser-generated ions makes it possible to control the ion stream parameters in broad energy and current density ranges. It also permits to remove the useless ions from the ion stream designed for laser-induced implantation and deposition of layers of semiconductor materials. For acceleration of ions a special electrostatic system has been completed and tested at the Institute of Plasma Physics and Laser Microfusion (IPPLM). A repetitive Nd: glass laser with energy of ˜0.5 J in a 3.5 ns pulse, wavelength of 1.06 μm, repetition rate of up to 10 Hz and intensity on the target of up to 1011 W cm-2, has been recently employed to produce ions emitted from irradiated solid targets. The movable target holder was located inside the cylindrical box connected with a high-voltage source (up to 50 kV). The ions passing through the diaphragm in this box were accelerated in the system of electrodes in the electrostatic field formed in the gap between the box and a grid mounted at the end of the grounded cylindrical electrode. The parameters of the ion streams were measured with the use of several ion collectors and an electrostatic ion energy analyzer (IEA). The Ge ion stream attained energy of up to 30 keV and ion fluency 1011 ions/cm2 for one laser shot. The maximum ion charge state measured with the use of IEA was 3+.

  16. Semiconductor systems utilizing materials that form rectifying junctions in both N and P-type doping regions, whether metallurgically or field induced, and methods of use

    Science.gov (United States)

    Welch, James D.

    2000-01-01

    Disclosed are semiconductor systems, such as integrated circuits utilizing Schotky barrier and/or diffused junction technology, which semiconductor systems incorporate material(s) that form rectifying junctions in both metallurgically and/or field induced N and P-type doping regions, and methods of their use. Disclosed are Schottky barrier based inverting and non-inverting gate voltage channel induced semiconductor single devices with operating characteristics similar to multiple device CMOS systems and which can be operated as modulators, N and P-channel MOSFETS and CMOS formed therefrom, and (MOS) gate voltage controlled rectification direction and gate voltage controlled switching devices, and use of such material(s) to block parasitic current flow pathways. Simple demonstrative five mask fabrication procedures for inverting and non-inverting gate voltage channel induced semiconductor single devices with operating characteristics similar to multiple device CMOS systems are also presented.

  17. Full-band structure modeling of the radiative and non-radiative properties of semiconductor materials and devices (Presentation Recording)

    Science.gov (United States)

    Bellotti, Enrico; Wen, Hanqing; Pinkie, Benjamin; Matsubara, Masahiko; Bertazzi, Francesco

    2015-08-01

    Understanding the radiative and non-radiative properties of semiconductor materials is a prerequisite for optimizing the performance of existing light emitters and detectors and for developing new device architectures based on novel materials. Due to the ever increasing complexity of novel semiconductor systems and their relative technological immaturity, it is essential to have design tools and simulation strategies that include the details of the microscopic physics and their dependence on the macroscopic (continuum) variables in the macroscopic device models. Towards this end, we have developed a robust full-band structure based approach that can be used to study the intrinsic material radiative and non-radiative properties and evaluate the same characteristics of low-dimensional device structures. A parallel effort is being carried out to model the effect of substrate driven stress/strain and material quality (dislocations and defects) on microscopic quantities such as non-radiative recombination rate. Using this modeling approach, we have extensively studied the radiative and non-radiative properties of both elemental (Si and Ge) and compound semiconductors (HgCdTe, InGaAs, InAsSb and InGaN). In this work we outline the details of the modelling approach, specifically the challenges and advantages related to the use of the full-band description of the material electronic structure. We will present a detailed comparison of the radiative and Auger recombination rates as a function of temperature and doping for HgCdTe and InAsSb that are two important materials for infrared detectors and emitters. Furthermore we will discuss the role of non-radiatiave Auger recombination processes in explaining the performance of light emitter diodes. Finally we will present the extension of the model to low dimensional structures employed in a number of light emitter and detector structures.

  18. Synthesis and characterization of polymer matrix composite material with combination of ZnO filler and nata de coco fiber as a candidate of semiconductor material

    Science.gov (United States)

    Saputra, Asep Handaya; Anindita, Hana Nabila

    2015-12-01

    Synthesis of semiconductor composite using acrylic matrix filled with ZnO and nata de coco fiber has been conducted in this research. The purpose of this research is to obtain semiconductor composite material that has a good mechanical strength and thermal resistance. In situ polymerization method is used in this research and the composites are ready to be characterized after 12 hours. The main parameter that is characterized is the electric conductivity of the composite. Additional parameters are also characterized such as composite's elastic modulus and glass transition temperature. The composites that has been made in this research can be classified as semiconductor material because the conductivity is in the range of 10-8-103 S/cm. In general the addition of ZnO and nata de coco filler can increase the conductivity of the composite. The highest semiconductor characteristic in acrylic/ZnO composite is obtained from 30% volume filler that reach 3.4 x 10-7 S/cm. Similar with acrylic/ZnO composite, in acrylic/nata de coco fiber composite the highest semiconductor characteristic is also obtained from 30% volume filler that reach 1.15 x 10-7 S/cm. Combination of 20% volume of ZnO, 10% volume of nata de coco, and 70% volume of acrylic resulting in composite with electric conductivity of 1.92 x 10-7 S/cm. In addition, combination of ZnO and nata de coco fiber as filler in composite can also improve the characteristic of composite where composite with 20% volume of ZnO filler and 10% volume of nata de coco fiber resulting in composite with elastic modulus of 1.79 GPa and glass transition temperature of 175.73°C which is higher than those in acrylic/ZnO composite.

  19. 2014 Defects in Semiconductors Gordon Research Conference & Gordon Research Seminar. Research Area 1: Materials Science, 1.3 Physical Properties of Materials

    Science.gov (United States)

    2014-08-01

    graphene -like layered materials, novel photovoltaic materials, organic semiconductors and the likes in bulk, film, or nanostructured forms. We anticipate to...Pat Lenahan (Penn State University) "Interface Defects in SiO2 /SiC by Spin Resonance" 9:20 pm - 9:30 pm Discussion 9:30 pm Poster Session I... Graphene and Like Materials 7:30 pm - 7:50 pm Discussion Leader: Humberto Terrones (Rensselaer) "Introduction" 7:50 pm - 8:25 pm Mildred

  20. Applications of Secondary Electron Composition Contrast Imaging Method in Microstructure Studies on Heterojunction Semiconductor Devices and Multilayer Materials

    Institute of Scientific and Technical Information of China (English)

    1999-01-01

    The principle, imaging condition and experimental method for obtaining high resolution composition contrast in secondary electron image were described. A new technique of specimen preparation for secondary electron composition contrast observation was introduced and discussed. By using multilayer P+-Si1-xGex/p-Si heterojunction internal photoemission infrared detector as an example, the applications of secondary electron composition contrast imaging in microstructure studies on heterojunction semiconducting materials and devices were stated. The characteristics of the image were compared with the ordinary transmission electron diffraction contrast image. The prospects of applications of the imaging method in heterojunction semiconductor devices and multilayer materials are also discussed.

  1. Development of Power Electronics Based Test Platform for Characterization and Testing of Magnetocaloric Materials

    Directory of Open Access Journals (Sweden)

    Deepak Elamalayil Soman

    2015-01-01

    Full Text Available Magnetocaloric effects of various materials are getting more and more interesting for the future, as they can significantly contribute towards improving the efficiency of many energy intensive applications such as refrigeration, heating, and air conditioning. Accurate characterization of magnetocaloric effects, exhibited by various materials, is an important process for further studies and development of the suitable magnetocaloric heating and cooling solutions. The conventional test facilities have plenty of limitations, as they focus only on the thermodynamic side and use magnetic machines with moving bed of magnetocaloric material or magnet. In this work an entirely new approach for characterization of the magnetocaloric materials is presented, with the main focus on a flexible and efficient power electronic based excitation and a completely static test platform. It can generate a periodically varying magnetic field using superposition of an ac and a dc magnetic field. The scale down prototype uses a customized single phase H-bridge inverter with essential protections and an electromagnet load as actuator. The preliminary simulation and experimental results show good agreement and support the usage of the power electronic test platform for characterizing magnetocaloric materials.

  2. Visible Light Enabled Photocatalytic Splitting of Water over Spatially Isolated Semiconductors Supported Mesoporous Materials

    Science.gov (United States)

    Peng, Rui

    Hydrogen generation from photocatalytic splitting of water is an ideal scenario that possesses promise for the sustainable development of human society and the establishment of the ultimate "green," infinitely renewable energy system. This work contains a series of novel photocatalytic systems in which the photoactive chromophores and/or the co-catalysts were incorporated into highly periodically cubic-phased MCM-48 mesoporous materials to achieve significantly higher photocatalytic efficiencies compared with conventional semiconductor photocatalysts. Cubic-phased MCM-48 mesoporous materials were chosen as supports to accommodate the photoactive species throughout the entire work. Several unique and iconic properties of these materials, such as large surface area, highly uniform mesoscale pores arrayed in a long-range periodicity, and an interconnected network of three-dimensional sets of pores that were recognized as positive parameters facilitated the photogenerated charge transfer and promoted the photocatalytic performance of the encapsulated photoactive species. It was validated that in the CdS/TiO2-incorporated MCM-48 photocatalytic system, the solar hydrogen conversion efficiency was prevalently governed by the photogenerated electron injection efficiency from the CdS conduction band to that of TiO2. The use of MCM-48 mesoporous host materials enabled the high and even dispersion of both CdS and TiO 2 so that the intimate and sufficient contact between CdS and TiO 2 was realized. In addition, with the presence of both TiO2 and MCM-48 mesoporous support, the photostability of CdS species was dramatically enhanced compared with that of bare CdS or CdS-incorporated MCM-48 photocatalysts. In advance, by loading the RuO2 co-catalyst into the CdS/TiO 2-incorporated MCM-48 photocatalytic system, the photocatalytic splitting of pure water to generate both hydrogen and oxygen under visible light illumination was achieved. In the various Pd-assisted, TiO2-incorporated

  3. Assembling non-ferromagnetic materials to ferromagnetic architectures using metal-semiconductor interfaces

    Science.gov (United States)

    Ma, Ji; Liu, Chunting; Chen, Kezheng

    2016-01-01

    In this work, a facile and versatile solution route was used to fabricate room-temperature ferromagnetic fish bone-like, pteridophyte-like, poplar flower-like, cotton-like Cu@Cu2O architectures and golfball-like Cu@ZnO architecture. The ferromagnetic origins in these architectures were found to be around metal-semiconductor interfaces and defects, and the root cause for their ferromagnetism lay in charge transfer processes from metal Cu to semiconductors Cu2O and ZnO. Owing to different metallization at their interfaces, these architectures exhibited different ferromagnetic behaviors, including coercivity, saturation magnetization as well as magnetic interactions. PMID:27680286

  4. Space processing of crystalline materials: A study of known methods of electrical characterization of semiconductors

    Science.gov (United States)

    Castle, J. G.

    1976-01-01

    A literature survey is presented covering nondestructive methods of electrical characterization of semiconductors. A synopsis of each technique deals with the applicability of the techniques to various device parameters and to potential in-flight use before, during, and after growth experiments on space flights. It is concluded that the very recent surge in the commercial production of large scale integrated circuitry and other semiconductor arrays requiring uniformity on the scale of a few microns, involves nondestructive test procedures which could well be useful to NASA for in-flight use in space processing.

  5. Metal-Semiconductor Nanoparticle Hybrids Formed by Self-Organization: A Platform to Address Exciton-Plasmon Coupling.

    Science.gov (United States)

    Strelow, Christian; Theuerholz, T Sverre; Schmidtke, Christian; Richter, Marten; Merkl, Jan-Philip; Kloust, Hauke; Ye, Ziliang; Weller, Horst; Heinz, Tony F; Knorr, Andreas; Lange, Holger

    2016-08-10

    Hybrid nanosystems composed of excitonic and plasmonic constituents can have different properties than the sum of of the two constituents, due to the exciton-plasmon interaction. Here, we report on a flexible model system based on colloidal nanoparticles that can form hybrid combinations by self-organization. The system allows us to tune the interparticle distance and to combine nanoparticles of different sizes and thus enables a systematic investigation of the exciton-plasmon coupling by a combination of optical spectroscopy and quantum-optical theory. We experimentally observe a strong influence of the energy difference between exciton and plasmon, as well as an interplay of nanoparticle size and distance on the coupling. We develop a full quantum theory for the luminescence dynamics and discuss the experimental results in terms of the Purcell effect. As the theory describes excitation as well as coherent and incoherent emission, we also consider possible quantum optical effects. We find a good agreement of the observed and the calculated luminescence dynamics induced by the Purcell effect. This also suggests that the self-organized hybrid system can be used as platform to address quantum optical effects.

  6. Progress Made in the Studies of Novel Materials for Organic Semiconductors

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    @@ Co-funded by NSFC, Ministry of Science & Technology of China (MOST) and the Chinese Academy of Sciences (CAS), researchers at the Key Laboratory of Organic Solids, ICCAS, made progress in designing and synthesis of n- and p-type organic semiconductors.

  7. Implications of the Differential Toxicological Effects of III-V Ionic and Particulate Materials for Hazard Assessment of Semiconductor Slurries.

    Science.gov (United States)

    Jiang, Wen; Lin, Sijie; Chang, Chong Hyun; Ji, Zhaoxia; Sun, Bingbing; Wang, Xiang; Li, Ruibin; Pon, Nanetta; Xia, Tian; Nel, André E

    2015-12-22

    Because of tunable band gaps, high carrier mobility, and low-energy consumption rates, III-V materials are attractive for use in semiconductor wafers. However, these wafers require chemical mechanical planarization (CMP) for polishing, which leads to the generation of large quantities of hazardous waste including particulate and ionic III-V debris. Although the toxic effects of micron-sized III-V materials have been studied in vivo, no comprehensive assessment has been undertaken to elucidate the hazardous effects of submicron particulates and released III-V ionic components. Since III-V materials may contribute disproportionately to the hazard of CMP slurries, we obtained GaP, InP, GaAs, and InAs as micron- (0.2-3 μm) and nanoscale (materials that could appear in slurries. This finding is of importance for considering how to deal with the hazard potential of CMP slurries.

  8. Oxide semiconductors

    CERN Document Server

    Svensson, Bengt G; Jagadish, Chennupati

    2013-01-01

    Semiconductors and Semimetals has distinguished itself through the careful selection of well-known authors, editors, and contributors. Originally widely known as the ""Willardson and Beer"" Series, it has succeeded in publishing numerous landmark volumes and chapters. The series publishes timely, highly relevant volumes intended for long-term impact and reflecting the truly interdisciplinary nature of the field. The volumes in Semiconductors and Semimetals have been and will continue to be of great interest to physicists, chemists, materials scientists, and device engineers in academia, scient

  9. Semiconductor electrochemistry

    CERN Document Server

    Memming, Rüdiger

    2015-01-01

    Providing both an introduction and an up-to-date survey of the entire field, this text captivates the reader with its clear style and inspiring, yet solid presentation. The significantly expanded second edition of this milestone work is supplemented by a completely new chapter on the hot topic of nanoparticles and includes the latest insights into the deposition of dye layers on semiconductor electrodes. In his monograph, the acknowledged expert Professor Memming primarily addresses physical and electrochemists, but materials scientists, physicists, and engineers dealing with semiconductor technology and its applications will also benefit greatly from the contents.

  10. Semiconductor statistics

    CERN Document Server

    Blakemore, J S

    1962-01-01

    Semiconductor Statistics presents statistics aimed at complementing existing books on the relationships between carrier densities and transport effects. The book is divided into two parts. Part I provides introductory material on the electron theory of solids, and then discusses carrier statistics for semiconductors in thermal equilibrium. Of course a solid cannot be in true thermodynamic equilibrium if any electrical current is passed; but when currents are reasonably small the distribution function is but little perturbed, and the carrier distribution for such a """"quasi-equilibrium"""" co

  11. Hybrid organic semiconductor lasers for bio-molecular sensing.

    Science.gov (United States)

    Haughey, Anne-Marie; Foucher, Caroline; Guilhabert, Benoit; Kanibolotsky, Alexander L; Skabara, Peter J; Burley, Glenn; Dawson, Martin D; Laurand, Nicolas

    2014-01-01

    Bio-functionalised luminescent organic semiconductors are attractive for biophotonics because they can act as efficient laser materials while simultaneously interacting with molecules. In this paper, we present and discuss a laser biosensor platform that utilises a gain layer made of such an organic semiconductor material. The simple structure of the sensor and its operation principle are described. Nanolayer detection is shown experimentally and analysed theoretically in order to assess the potential and the limits of the biosensor. The advantage conferred by the organic semiconductor is explained, and comparisons to laser sensors using alternative dye-doped materials are made. Specific biomolecular sensing is demonstrated, and routes to functionalisation with nucleic acid probes, and future developments opened up by this achievement, are highlighted. Finally, attractive formats for sensing applications are mentioned, as well as colloidal quantum dots, which in the future could be used in conjunction with organic semiconductors.

  12. Semiconductor Detectors; Detectores de Semiconductores

    Energy Technology Data Exchange (ETDEWEB)

    Cortina, E.

    2007-07-01

    Particle detectors based on semiconductor materials are among the few devices used for particle detection that are available to the public at large. In fact we are surrounded by them in our daily lives: they are used in photoelectric cells for opening doors, in digital photographic and video camera, and in bar code readers at supermarket cash registers. (Author)

  13. Ionic liquid-based materials: a platform to design engineered CO2 separation membranes.

    Science.gov (United States)

    Tomé, Liliana C; Marrucho, Isabel M

    2016-05-21

    During the past decade, significant advances in ionic liquid-based materials for the development of CO2 separation membranes have been accomplished. This review presents a perspective on different strategies that use ionic liquid-based materials as a unique tuneable platform to design task-specific advanced materials for CO2 separation membranes. Based on compilation and analysis of the data hitherto reported, we provide a judicious assessment of the CO2 separation efficiency of different membranes, and highlight breakthroughs and key challenges in this field. In particular, configurations such as supported ionic liquid membranes, polymer/ionic liquid composite membranes, gelled ionic liquid membranes and poly(ionic liquid)-based membranes are detailed, discussed and evaluated in terms of their efficiency, which is attributed to their chemical and structural features. Finally, an integrated perspective on technology, economy and sustainability is provided.

  14. Polysaccharide Fabrication Platforms and Biocompatibility Assessment as Candidate Wound Dressing Materials

    Directory of Open Access Journals (Sweden)

    Donald C. Aduba

    2017-01-01

    Full Text Available Wound dressings are critical for wound care because they provide a physical barrier between the injury site and outside environment, preventing further damage or infection. Wound dressings also manage and even encourage the wound healing process for proper recovery. Polysaccharide biopolymers are slowly becoming popular as modern wound dressings materials because they are naturally derived, highly abundant, inexpensive, absorbent, non-toxic and non-immunogenic. Polysaccharide biopolymers have also been processed into biomimetic platforms that offer a bioactive component in wound dressings that aid the healing process. This review primarily focuses on the fabrication and biocompatibility assessment of polysaccharide materials. Specifically, fabrication platforms such as electrospun fibers and hydrogels, their fabrication considerations and popular polysaccharides such as chitosan, alginate, and hyaluronic acid among emerging options such as arabinoxylan are discussed. A survey of biocompatibility and bioactive molecule release studies, leveraging polysaccharide’s naturally derived properties, is highlighted in the text, while challenges and future directions for wound dressing development using emerging fabrication techniques such as 3D bioprinting are outlined in the conclusion. This paper aims to encourage further investigation and open up new, disruptive avenues for polysaccharides in wound dressing material development.

  15. Impurities, Defects and Diffusion in Semiconductors: Bulk and Layered Structures. Materials Research Society Symposium Proceedings. Volume 163

    Science.gov (United States)

    1990-11-21

    Processing and Science, D.B. Poker, C. Ortiz, 1989, ISBN: 1-55899-025-9 Volume 153-Interfaces Between Polymers , Metals, and Ceramics, B.M. DeKoven, A.J...Interfaces in Composite Materials, C.G. Pantano, E.J.H. Chen, 1989, ISBN 1-55899-058-5 Volume 171- Polymer Based Molecular Composites, D.W. Schaefer, J.E...electrical characteristics of a semiconductor such as its free carrier concentration, mobility and minority cartier lifetime are determined by the

  16. Toward High Performance Integrated Semiconductor Micro and Nano Lasers Enabled by Transparent Conducting Materials: from Thick Structure to Thin Film

    Science.gov (United States)

    Ou, Fang

    Integrated semiconductor lasers working at the wavelength around 1.3 microm and 1.55 microm are of great interest for the research of photonic integrated circuit (PIC) since they are the crucial components for optical communications and many other applications. To satisfy the requirement of the next generation optical communication and computing systems, integrated semiconductor lasers are expected to have high device performance like very low lasing threshold, high output powers, high speed and possibility of being integrated with electronics. This dissertation focuses on the design and realization of InP based high performance electrically pumped integrated semiconductor lasers. In the dissertation, we first design the tall structure based electrically pumped integrated micro-lasers. Those lasers are capable of giving >10 mW output power with a moderate low threshold current density (0.5--5 kA/cm 2). Besides, a new enhanced radiation loss based coupler design is demonstrated to realize single directional output for curvilinear cavities. Second, the thin film structure based integrated semiconductor laser designs are proposed. Both structures use the side conduction geometry to enable the electrical injection into the thin film laser cavity. The performance enhancement of the thin film structure based lasers is analyzed compared to the tall structure. Third, we investigate the TCO materials. CdO deposited by PLD and In 2O3 deposited by IAD are studied from aspects of their physical, optical and electrical properties. Those materials can give a wide range of tunability in their conductivity (1--5000 S/cm) and optical transparency (loss 200--5000 cm-1), which is of great interest in realizing novel nanophotonic devices. In addition, the electrical contact properties of those materials to InP are also studied. Experiment result shows that both CdO and In2O3 can achieve good ohmic contact to n-InP with contact resistance as low as 10-6O·cm 2. At last, we investigate

  17. Local control of emission energy of semiconductor quantum dots using volume expansion of a phase-change material

    Science.gov (United States)

    Takahashi, Motoki; Syafawati Humam, Nurrul; Tsumori, Nobuhiro; Saiki, Toshiharu; Regreny, Philippe; Gendry, Michel

    2013-03-01

    A method is proposed to precisely control the emission energy of semiconductor quantum dots (QDs) by the application of local strain due to volume expansion of a phase-change material (GeSbTe) upon amorphization. The feasibility of the method is experimentally demonstrated using photoluminescence (PL) spectroscopy of single InAs/InP QDs on which a GeSbTe thin film is deposited. A significant red-shift of the PL peak energy upon amorphization and subsequent recovery by recrystallization with laser annealing were observed.

  18. Synthesis of Semiconductor Nanocrystals, Focusing on Nontoxic and Earth-Abundant Materials.

    Science.gov (United States)

    Reiss, Peter; Carrière, Marie; Lincheneau, Christophe; Vaure, Louis; Tamang, Sudarsan

    2016-09-28

    We review the synthesis of semiconductor nanocrystals/colloidal quantum dots in organic solvents with special emphasis on earth-abundant and toxic heavy metal free compounds. Following the Introduction, section 2 defines the terms related to the toxicity of nanocrystals and gives a comprehensive overview on toxicity studies concerning all types of quantum dots. Section 3 aims at providing the reader with the basic concepts of nanocrystal synthesis. It starts with the concepts currently used to describe the nucleation and growth of monodisperse particles and next takes a closer look at the chemistry of the inorganic core and its interactions with surface ligands. Section 4 reviews in more detail the synthesis of different families of semiconductor nanocrystals, namely elemental group IV compounds (carbon nanodots, Si, Ge), III-V compounds (e.g., InP, InAs), and binary and multinary metal chalcogenides. Finally, the authors' view on the perspectives in this field is given.

  19. Composite THz materials using aligned metallic and semiconductor microwires, experiments and interpretation

    OpenAIRE

    Mazhorova, Anna; Gu, Jian Feng; Dupuis, Alexandre; Tsuneyuki, Ozaki; Paccianti, Marco; Morandotti, Roberto; MINAMIDE, Hiroaki; Tang, Ming; Wang, Yuye; Ito, Hiromasa; Skorobogatiy, Maksim

    2010-01-01

    We report fabrication method and THz characterization of composite films containing either aligned metallic (tin alloy) microwires or chalcogenide As2Se3 microwires. The microwire arrays are made by stack-and-draw fiber fabrication technique using multi-step co-drawing of low-melting-temperature metals or semiconductor glasses together with polymers. Fibers are then stacked together and pressed into composite films. Transmission through metamaterial films is studied in the whole THz range (0....

  20. Covalent organic frameworks: a materials platform for structural and functional designs

    Science.gov (United States)

    Huang, Ning; Wang, Ping; Jiang, Donglin

    2016-10-01

    Covalent organic frameworks (COFs) are a class of crystalline porous polymer that allows the atomically precise integration of organic units into extended structures with periodic skeletons and ordered nanopores. One important feature of COFs is that they are designable; that is, the geometry and dimensions of the building blocks can be controlled to direct the topological evolution of structural periodicity. The diversity of building blocks and covalent linkage topology schemes make COFs an emerging materials platform for structural control and functional design. Indeed, COF architectures offer confined molecular spaces for the interplay of photons, excitons, electrons, holes, ions and guest molecules, thereby exhibiting unique properties and functions. In this Review, we summarize the major progress in the field of COFs and recent achievements in developing new design principles and synthetic strategies. We highlight cutting-edge functional designs and identify fundamental issues that need to be addressed in conjunction with future research directions from chemistry, physics and materials perspectives.

  1. Semiconductor bridge (SCB) detonator

    Science.gov (United States)

    Bickes, Jr., Robert W.; Grubelich, Mark C.

    1999-01-01

    The present invention is a low-energy detonator for high-density secondary-explosive materials initiated by a semiconductor bridge igniter that comprises a pair of electrically conductive lands connected by a semiconductor bridge. The semiconductor bridge is in operational or direct contact with the explosive material, whereby current flowing through the semiconductor bridge causes initiation of the explosive material. Header wires connected to the electrically-conductive lands and electrical feed-throughs of the header posts of explosive devices, are substantially coaxial to the direction of current flow through the SCB, i.e., substantially coaxial to the SCB length.

  2. Printable semiconductor structures and related methods of making and assembling

    Energy Technology Data Exchange (ETDEWEB)

    Nuzzo, Ralph G.; Rogers, John A.; Menard, Etienne; Lee, Keon Jae; Khang; , Dahl-Young; Sun, Yugang; Meitl, Matthew; Zhu, Zhengtao; Ko, Heung Cho; Mack, Shawn

    2013-03-12

    The present invention provides a high yield pathway for the fabrication, transfer and assembly of high quality printable semiconductor elements having selected physical dimensions, shapes, compositions and spatial orientations. The compositions and methods of the present invention provide high precision registered transfer and integration of arrays of microsized and/or nanosized semiconductor structures onto substrates, including large area substrates and/or flexible substrates. In addition, the present invention provides methods of making printable semiconductor elements from low cost bulk materials, such as bulk silicon wafers, and smart-materials processing strategies that enable a versatile and commercially attractive printing-based fabrication platform for making a broad range of functional semiconductor devices.

  3. Printable semiconductor structures and related methods of making and assembling

    Energy Technology Data Exchange (ETDEWEB)

    Nuzzo, Ralph G [Champaign, IL; Rogers, John A [Champaign, IL; Menard, Etienne [Durham, NC; Lee, Keon Jae [Tokyo, JP; Khang, Dahl-Young [Urbana, IL; Sun, Yugang [Westmont, IL; Meitl, Matthew [Raleigh, NC; Zhu, Zhengtao [Rapid City, SD; Ko, Heung Cho [Urbana, IL; Mack, Shawn [Goleta, CA

    2011-10-18

    The present invention provides a high yield pathway for the fabrication, transfer and assembly of high quality printable semiconductor elements having selected physical dimensions, shapes, compositions and spatial orientations. The compositions and methods of the present invention provide high precision registered transfer and integration of arrays of microsized and/or nanosized semiconductor structures onto substrates, including large area substrates and/or flexible substrates. In addition, the present invention provides methods of making printable semiconductor elements from low cost bulk materials, such as bulk silicon wafers, and smart-materials processing strategies that enable a versatile and commercially attractive printing-based fabrication platform for making a broad range of functional semiconductor devices.

  4. Printable semiconductor structures and related methods of making and assembling

    Energy Technology Data Exchange (ETDEWEB)

    Nuzzo, Ralph G. (Champaign, IL); Rogers, John A. (Champaign, IL); Menard, Etienne (Urbana, IL); Lee, Keon Jae (Tokyo, JP); Khang, Dahl-Young (Urbana, IL); Sun, Yugang (Westmont, IL); Meitl, Matthew (Champaign, IL); Zhu, Zhengtao (Rapid City, SD); Ko, Heung Cho (Urbana, IL); Mack, Shawn (Goleta, CA)

    2010-09-21

    The present invention provides a high yield pathway for the fabrication, transfer and assembly of high quality printable semiconductor elements having selected physical dimensions, shapes, compositions and spatial orientations. The compositions and methods of the present invention provide high precision registered transfer and integration of arrays of microsized and/or nanosized semiconductor structures onto substrates, including large area substrates and/or flexible substrates. In addition, the present invention provides methods of making printable semiconductor elements from low cost bulk materials, such as bulk silicon wafers, and smart-materials processing strategies that enable a versatile and commercially attractive printing-based fabrication platform for making a broad range of functional semiconductor devices.

  5. Printable semiconductor structures and related methods of making and assembling

    Science.gov (United States)

    Nuzzo, Ralph G.; Rogers, John A.; Menard, Etienne; Lee, Keon Jae; Khang; , Dahl-Young; Sun, Yugang; Meitl, Matthew; Zhu, Zhengtao; Ko, Heung Cho; Mack, Shawn

    2013-03-12

    The present invention provides a high yield pathway for the fabrication, transfer and assembly of high quality printable semiconductor elements having selected physical dimensions, shapes, compositions and spatial orientations. The compositions and methods of the present invention provide high precision registered transfer and integration of arrays of microsized and/or nanosized semiconductor structures onto substrates, including large area substrates and/or flexible substrates. In addition, the present invention provides methods of making printable semiconductor elements from low cost bulk materials, such as bulk silicon wafers, and smart-materials processing strategies that enable a versatile and commercially attractive printing-based fabrication platform for making a broad range of functional semiconductor devices.

  6. Integrated Materials Design of Organic Semiconductors for Field-Effect Transistors

    KAUST Repository

    Mei, Jianguo

    2013-05-08

    The past couple of years have witnessed a remarkable burst in the development of organic field-effect transistors (OFETs), with a number of organic semiconductors surpassing the benchmark mobility of 10 cm2/(V s). In this perspective, we highlight some of the major milestones along the way to provide a historical view of OFET development, introduce the integrated molecular design concepts and process engineering approaches that lead to the current success, and identify the challenges ahead to make OFETs applicable in real applications. © 2013 American Chemical Society.

  7. Practical Issues for Atom Probe Tomography Analysis of III-Nitride Semiconductor Materials

    OpenAIRE

    2015-01-01

    This is the author accepted manuscript. The final version is available from Cambridge University Press via http://dx.doi.org/10.1017/S1431927615000422 Various practical issues affecting atom probe tomography (APT) analysis of III-nitride semiconductors have been studied as part of an investigation using a c-plane InAlN/GaN heterostructure. Specimen preparation was undertaken using a focused ion beam microscope with a mono-isotopic Ga source. This enabled the unambiguous observation of impl...

  8. Liquid-crystalline ordering as a concept in materials science: from semiconductors to stimuli-responsive devices.

    Science.gov (United States)

    Fleischmann, Eva-Kristina; Zentel, Rudolf

    2013-08-19

    While the unique optical properties of liquid crystals (LCs) are already well exploited for flat-panel displays, their intrinsic ability to self-organize into ordered mesophases, which are intermediate states between crystal and liquid, gives rise to a broad variety of additional applications. The high degree of molecular order, the possibility for large scale orientation, and the structural motif of the aromatic subunits recommend liquid-crystalline materials as organic semiconductors, which are solvent-processable and can easily be deposited on a substrate. The anisotropy of liquid crystals can further cause a stimuli-responsive macroscopic shape change of cross-linked polymer networks, which act as reversibly contracting artificial muscles. After illustrating the concept of liquid-crystalline order in this Review, emphasis will be placed on synthetic strategies for novel classes of LC materials, and the design and fabrication of active devices.

  9. Integration of 2D materials on a silicon photonics platform for optoelectronics applications

    Science.gov (United States)

    Youngblood, Nathan; Li, Mo

    2016-12-01

    Owing to enormous growth in both data storage and the demand for high-performance computing, there has been a major effort to integrate telecom networks on-chip. Silicon photonics is an ideal candidate, thanks to the maturity and economics of current CMOS processes in addition to the desirable optical properties of silicon in the near IR. The basics of optical communication require the ability to generate, modulate, and detect light, which is not currently possible with silicon alone. Growing germanium or III/V materials on silicon is technically challenging due to the mismatch between lattice constants and thermal properties. One proposed solution is to use two-dimensional materials, which have covalent bonds in-plane, but are held together by van der Waals forces out of plane. These materials have many unique electrical and optical properties and can be transferred to an arbitrary substrate without lattice matching requirements. This article reviews recent progress toward the integration of 2D materials on a silicon photonics platform for optoelectronic applications.

  10. Multifunctional, Tunable Metal-Organic Framework Materials Platform for Bioimaging Applications.

    Science.gov (United States)

    Sava Gallis, Dorina F; Rohwer, Lauren E S; Rodriguez, Mark A; Barnhart-Dailey, Meghan C; Butler, Kimberly S; Luk, Ting S; Timlin, Jerilyn A; Chapman, Karena W

    2017-07-12

    Herein, we describe a novel multifunctional metal-organic framework (MOF) materials platform that displays both porosity and tunable emission properties as a function of the metal identity (Eu, Nd, and tuned compositions of Nd/Yb). Their emission collectively spans the deep red to near-infrared (NIR) spectral region (∼614-1350 nm), which is highly relevant for in vivo bioimaging. These new materials meet important prerequisites as relevant to biological processes: they are minimally toxic to living cells and retain structural integrity in water and phosphate-buffered saline. To assess their viability as optical bioimaging agents, we successfully synthesized the nanoscale Eu analog as a proof-of-concept system in this series. In vitro studies show that it is cell-permeable in individual RAW 264.7 mouse macrophage and HeLa human cervical cancer tissue culture cells. The efficient discrimination between the Eu emission and cell autofluorescence was achieved with hyperspectral confocal fluorescence microscopy, used here for the first time to characterize MOF materials. Importantly, this is the first report that documents the long-term conservation of the intrinsic emission in live cells of a fluorophore-based MOF to date (up to 48 h). This finding, in conjunction with the materials' very low toxicity, validates the biocompatibility in these systems and qualifies them as promising for use in long-term tracking and biodistribution studies.

  11. Semiconductor Optics

    CERN Document Server

    Klingshirn, Claus F

    2012-01-01

    This updated and enlarged new edition of Semiconductor Optics provides an introduction to and an overview of semiconductor optics from the IR through the visible to the UV, including linear and nonlinear optical properties, dynamics, magneto and electrooptics, high-excitation effects and laser processes, some applications, experimental techniques and group theory. The mathematics is kept as elementary as possible, sufficient for an intuitive understanding of the experimental results and techniques treated. The subjects covered extend from physics to materials science and optoelectronics. Significantly updated chapters add coverage of current topics such as electron hole plasma, Bose condensation of excitons and meta materials. Over 120 problems, chapter introductions and a detailed index make it the key textbook for graduate students in physics. The mathematics is kept as elementary as possible, sufficient for an intuitive understanding of the experimental results and techniques treated. The subjects covered ...

  12. Semiconductor Physical Electronics

    CERN Document Server

    Li, Sheng

    2006-01-01

    Semiconductor Physical Electronics, Second Edition, provides comprehensive coverage of fundamental semiconductor physics that is essential to an understanding of the physical and operational principles of a wide variety of semiconductor electronic and optoelectronic devices. This text presents a unified and balanced treatment of the physics, characterization, and applications of semiconductor materials and devices for physicists and material scientists who need further exposure to semiconductor and photonic devices, and for device engineers who need additional background on the underlying physical principles. This updated and revised second edition reflects advances in semicondutor technologies over the past decade, including many new semiconductor devices that have emerged and entered into the marketplace. It is suitable for graduate students in electrical engineering, materials science, physics, and chemical engineering, and as a general reference for processing and device engineers working in the semicondi...

  13. Creating a Discovery Platform for Confined-Space Chemistry and Materials: Metal-Organic Frameworks.

    Energy Technology Data Exchange (ETDEWEB)

    Allendorf, Mark D.; Greathouse, Jeffery A.; Simmons, Blake

    2008-09-01

    Metal organic frameworks (MOF) are a recently discovered class of nanoporous, defect-free crystalline materials that enable rational design and exploration of porous materials at the molecular level. MOFs have tunable monolithic pore sizes and cavity environments due to their crystalline nature, yielding properties exceeding those of most other porous materials. These include: the lowest known density (91% free space); highest surface area; tunable photoluminescence; selective molecular adsorption; and methane sorption rivaling gas cylinders. These properties are achieved by coupling inorganic metal complexes such as ZnO4 with tunable organic ligands that serve as struts, allowing facile manipulation of pore size and surface area through reactant selection. MOFs thus provide a discovery platform for generating both new understanding of chemistry in confined spaces and novel sensors and devices based on their unique properties. At the outset of this project in FY06, virtually nothing was known about how to couple MOFs to substrates and the science of MOF properties and how to tune them was in its infancy. An integrated approach was needed to establish the required knowledge base for nanoscale design and develop methodologies integrate MOFs with other materials. This report summarizes the key accomplishments of this project, which include creation of a new class of radiation detection materials based on MOFs, luminescent MOFs for chemical detection, use of MOFs as templates to create nanoparticles of hydrogen storage materials, MOF coatings for stress-based chemical detection using microcantilevers, and "flexible" force fields that account for structural changes in MOFs that occur upon molecular adsorption/desorption. Eight journal articles, twenty presentations at scientific conferences, and two patent applications resulted from the work. The project created a basis for continuing development of MOFs for many Sandia applications and succeeded in securing $2.75 M in

  14. Semiconductor devices incorporating multilayer interference regions

    Science.gov (United States)

    Biefeld, Robert M.; Drummond, Timothy J.; Gourley, Paul L.; Zipperian, Thomas E.

    1990-01-01

    A semiconductor high reflector comprising a number of thin alternating layers of semiconductor materials is electrically tunable and may be used as a temperature insensitive semiconductor laser in a Fabry-Perot configuration.

  15. Comparing coronary stent material performance on a common geometric platform through simulated bench testing.

    Science.gov (United States)

    Grogan, J A; Leen, S B; McHugh, P E

    2012-08-01

    Absorbable metallic stents (AMSs) are a newly emerging cardiovascular technology which has the potential to eliminate long-term patient health risks associated with conventional permanent stents. AMSs developed to date have consisted of magnesium alloys or iron, materials with inferior mechanical properties to those used in permanent stents, such as stainless steel and cobalt-chromium alloys. However, for AMSs to be feasible for widespread clinical use it is important that their performance is comparable to modern permanent stents. To date, the performances of magnesium, iron, and permanent stent materials have not been compared on a common stent platform for a range of stent performance metrics, such as flexibility, radial strength, and recoil. In this study, this comparison is made through simulated bench testing, based on finite-element modelling. The significance of this study is that it allows potential limitations in current AMS performance to be identified, which will aid in focusing future AMS design. This study also allows the identification of limitations in current AMS materials, thereby informing the on-going development of candidate biodegradable alloys. The results indicate that the AMSs studied here can match the recoil characteristics and radial strength of modern permanent stents; however, to achieve this, larger strut dimensions are required. It is also predicted that the AMSs studied are inferior to permanent stents in terms of maximum absolute curvature and longitudinal stiffness.

  16. Material gain engineering in GeSn/Ge quantum wells integrated with an Si platform

    Science.gov (United States)

    Mączko, H. S.; Kudrawiec, R.; Gladysiewicz, M.

    2016-09-01

    It is shown that compressively strained Ge1‑xSnx/Ge quantum wells (QWs) grown on a Ge substrate with 0.1 ≤ x ≤ 0.2 and width of 8 nm ≤ d ≤ 14 nm are a very promising gain medium for lasers integrated with an Si platform. Such QWs are type-I QWs with a direct bandgap and positive transverse electric mode of material gain, i.e. the modal gain. The electronic band structure near the center of Brillouin zone has been calculated for various Ge1‑xSnx/Ge QWs with use of the 8-band kp Hamiltonian. To calculate the material gain for these QWs, occupation of the L valley in Ge barriers has been taken into account. It is clearly shown that this occupation has a lot of influence on the material gain in the QWs with low Sn concentrations (Sn  15%). However, for QWs with Sn > 20% the critical thickness of a GeSn layer deposited on a Ge substrate starts to play an important role. Reduction in the QW width shifts up the ground electron subband in the QW and increases occupation of the L valley in the barriers instead of the Γ valley in the QW region.

  17. Use of a laser for the spectral analysis of semiconductor materials

    Science.gov (United States)

    Karyakin, A. V.; Akhmanova, M. V.; Kaygorodov, V. A.

    1978-01-01

    Conventional applications of lasers for emission spectroscopy involving direct recording of light pulses of an evaporated substance emitted from the sample under the action of the laser light (direct method) were examined. Use of the laser light for conversion of the substance to a vapor and feeding the vapors into the conventional source of emission such as arc, sparks, etc. (the so called 2 stage excitation) were studied for use in the spectral analysis, of semiconductors. The direct method has a high reproducibility (5-7%); the 2 stage excitation method, characterized by the same intensity as obtained with the conventional constant, current arc, has better reproducibility than the direct method (15-20%). Both methods can be used for the analysis of samples without prior preparation. Advantages of these methods are the elimination of impurities picked up during trituration of the samples into powders and shortening of the analytical procedures.

  18. Characterisation of Semiconductor Materials/Device Structures using SIMS (Review Paper

    Directory of Open Access Journals (Sweden)

    Anuradha Dhaul

    2009-07-01

    Full Text Available Secondary ion mass spectrometry (SIMS is an analytical technique that can be used to characterise the surface and near-surface region of solids. The instrument operation and data analysis have been discussed to obtain meaningful results. The paper discusses the technique of sequential sputtering to elucidate the thickness of individual layers in a multilayer structure. The application of the technique for failure analysis, standard generation and interface studies have been discussed in detail taking examples of multilayer structures of compound semiconductors being developed at SSPL.Defence Science Journal, 2009, 59(4, pp.342-350, DOI:http://dx.doi.org/10.14429/dsj.59.1532

  19. Surface Tension Directed Fluidic Self-Assembly of Semiconductor Chips across Length Scales and Material Boundaries

    Directory of Open Access Journals (Sweden)

    Shantonu Biswas

    2016-03-01

    Full Text Available This publication provides an overview and discusses some challenges of surface tension directed fluidic self-assembly of semiconductor chips which are transported in a liquid medium. The discussion is limited to surface tension directed self-assembly where the capture, alignment, and electrical connection process is driven by the surface free energy of molten solder bumps where the authors have made a contribution. The general context is to develop a massively parallel and scalable assembly process to overcome some of the limitations of current robotic pick and place and serial wire bonding concepts. The following parts will be discussed: (2 Single-step assembly of LED arrays containing a repetition of a single component type; (3 Multi-step assembly of more than one component type adding a sequence and geometrical shape confinement to the basic concept to build more complex structures; demonstrators contain (3.1 self-packaging surface mount devices, and (3.2 multi-chip assemblies with unique angular orientation. Subsequently, measures are discussed (4 to enable the assembly of microscopic chips (10 μm–1 mm; a different transport method is introduced; demonstrators include the assembly of photovoltaic modules containing microscopic silicon tiles. Finally, (5 the extension to enable large area assembly is presented; a first reel-to-reel assembly machine is realized; the machine is applied to the field of solid state lighting and the emerging field of stretchable electronics which requires the assembly and electrical connection of semiconductor devices over exceedingly large area substrates.

  20. Slow Light Semiconductor Laser

    Science.gov (United States)

    2015-02-02

    we demonstrate a semiconductor laser with a spectral linewidth of 18 kHz in the telecom band around 1:55um. The views, opinions and/or findings...we demonstrate a semiconductor laser with a spectral linewidth of 18 kHz in the telecom band around 1:55um. Further, the large intracavity field...hybrid Si/III- V platforms Abstract The semiconductor laser is the principal light source powering the world-wide optical fiber network . Ever

  1. Method of doping a semiconductor

    Science.gov (United States)

    Yang, Chiang Y.; Rapp, Robert A.

    1983-01-01

    A method for doping semiconductor material. An interface is established between a solid electrolyte and a semiconductor to be doped. The electrolyte is chosen to be an ionic conductor of the selected impurity and the semiconductor material and electrolyte are jointly chosen so that any compound formed from the impurity and the semiconductor will have a free energy no lower than the electrolyte. A potential is then established across the interface so as to allow the impurity ions to diffuse into the semiconductor. In one embodiment the semiconductor and electrolyte may be heated so as to increase the diffusion coefficient.

  2. Ionic and electronic behaviors of earth-abundant semiconductor materials and their applications toward solar energy harvesting

    Science.gov (United States)

    Mayer, Matthew T.

    Semiconductor devices offer promise for efficient conversion of sunlight into other useful forms of energy, in either photovoltaic or photoelectrochemical cell configurations to produce electrical power or chemical energy, respectively. This dissertation examines ionic and electronic phenomena in some candidate semiconductors and seeks to understand their implications toward solar energy conversion applications. First, copper sulfide (Cu2S) was examined as a candidate photovoltaic material. It was discovered that its unique property of cation diffusion allows the room-temperature synthesis of vertically-aligned nanowire arrays, a morphology which facilitates study of the diffusion processes. This diffusivity was found to induce hysteresis in the electronic behavior, leading to the phenomena of resistive switching and negative differential resistance. The Cu2S were then demonstrated as morphological templates for solid-state conversion into different types of heterostructures, including segmented and rod-in-tube morphologies. Near-complete conversion to ZnS, enabled by the out-diffusion of Cu back into the substrate, was also achieved. While the ion diffusion property likely hinders the reliability of Cu 2S in photovoltaic applications, it was shown to enable useful electronic and ionic behaviors. Secondly, iron oxide (Fe2O3, hematite) was examined as a photoanode for photoelectrochemical water splitting. Its energetic limitations toward the water electrolysis reactions were addressed using two approaches aimed at achieving greater photovoltages and thereby improved water splitting efficiencies. In the first, a built-in n-p junction produced an internal field to drive charge separation and generate photovoltage. In the second, Fe 2O3 was deposited onto a smaller band gap material, silicon, to form a device capable of producing enhanced total photovoltage by a dual-absorber Z-scheme mechanism. Both approaches resulted in a cathodic shift of the photocurrent onset

  3. Kelvin Force Microscopy and corona charging for semiconductor material and device characterization

    Science.gov (United States)

    Marinskiy, Dmitriy; Edelman, Piotr; Lagowski, Jacek; Loy, Thye Chong; Almeida, Carlos; Savtchouk, Alexandre

    2016-11-01

    Novel developments in this review relate to μcorona-Kelvin, realized by miniaturization of corona charging spot and adaptation of Kelvin Force Microscopy, KFM. Resolution improvement has opened possibilities of non-contact characterization of miniature scribe line test sites on processed semiconductor wafers. Surface diffusion of corona ions can be quantified with μcorona-KFM leading to the development of the kinetic C-V method. The quantified decrease of charge due to diffusion creates a "charge-bias sweep". Application examples illustrate the determination of dielectric capacitance; flatband voltage; and effective gate metal work function indicators. Applications to SiC demonstrate doping density determination with kinetic CV. Non-Visible Defect, NVD, inspection benefits from micro-resolution characterization in two ways: 1) defects revealed by whole wafer mapping can now be examined in high resolution; illustrated using an example of Na contamination; and 2) detailed characterization can be performed within small defective areas providing a means for better understanding of a specific NVD.

  4. Thin film solid-state reactions forming carbides as contact materials for carbon-containing semiconductors

    Science.gov (United States)

    Leroy, W. P.; Detavernier, C.; Van Meirhaeghe, R. L.; Lavoie, C.

    2007-03-01

    Metal carbides are good candidates to contact carbon-based semiconductors (SiC, diamond, and carbon nanotubes). Here, we report on an in situ study of carbide formation during the solid-state reaction between thin films. The solid-state reaction was examined between 11 transition metals (W, Mo, Fe, Cr, V, Nb, Mn, Ti, Ta, Zr, and Hf) and an amorphous carbon layer. Capping layers (C or TiN) of different thicknesses were applied to prevent oxidation. Carbide formation is evidenced for nine metals and the phases formed have been identified (for a temperature ranging from 100to1100°C). W first forms W2C and then WC; Mo forms Mo2C; Fe forms Fe3C; Cr first forms metastable phases Cr2C and Cr3C2-x, and finally forms Cr3C2; V forms VCx; Nb transforms into Nb2C followed by NbC; Ti forms TiC; Ta first forms Ta2C and then TaC; and Hf transforms into HfC. The activation energy for the formation of the various carbide phases has been obtained by in situ x-ray diffraction.

  5. ASTM E 1559 method for measuring material outgassing/deposition kinetics has applications to aerospace, electronics, and semiconductor industries

    Science.gov (United States)

    Garrett, J. W.; Glassford, A. P. M.; Steakley, J. M.

    1994-01-01

    The American Society for Testing and Materials has published a new standard test method for characterizing time and temperature-dependence of material outgassing kinetics and the deposition kinetics of outgassed species on surfaces at various temperatures. This new ASTM standard, E 1559(1), uses the quartz crystal microbalance (QCM) collection measurement approach. The test method was originally developed under a program sponsored by the United States Air Force Materials Laboratory (AFML) to create a standard test method for obtaining outgassing and deposition kinetics data for spacecraft materials. Standardization by ASTM recognizes that the method has applications beyond aerospace. In particular, the method will provide data of use to the electronics, semiconductor, and high vacuum industries. In ASTM E 1559 the material sample is held in vacuum in a temperature-controlled effusion cell, while its outgassing flux impinges on several QCM's which view the orifice of the effusion cell. Sample isothermal total mass loss (TML) is measured as a function of time from the mass collected on one of the QCM's which is cooled by liquid nitrogen, and the view factor from this QCM to the cell. The amount of outgassed volatile condensable material (VCM) on surfaces at higher temperatures is measured as a function of time during the isothermal outgassing test by controlling the temperatures of the remaining QCM's to selected values. The VCM on surfaces at temperatures in between those of the collector QCM's is determined at the end of the isothermal test by heating the QCM's at a controlled rate and measuring the mass loss from the end of the QCM's as a function of time and temperature. This reevaporation of the deposit collected on the QCM's is referred to as QCM thermogravimetric analysis. Isothermal outgassing and deposition rates can be determined by differentiating the isothermal TML and VCM data, respectively, while the evaporation rates of the species can be obtained as a

  6. Surface degradation mechanism during the fluorine-based plasma etching of a low-k material for nanoscale semiconductors.

    Science.gov (United States)

    Kim, Jong Kyu; Kang, Seung Hyun; Cho, Sung Il; Lee, Sung Ho; Kim, Kyong Nam; Yeom, G Y

    2014-12-01

    The degradation of a low-k material surface during the exposure to plasma etching is one of the most serious problems to be solved for the realization of high speed semiconductor devices. In this study, the factors causing the degradation of a low-k material surface during the etching using fluorine-based plasma etching have been investigated by using XPS. As the plasma factors, active radicals, bombardment energy, and charge of the ions were considered and, as the low-k material, methyl silsesquioxane (MSQ) has been used. The XPS results showed that the ion bombardment during the plasma etching of MSQ affects the breaking of MSQ bone structure by changing the Si-O bonds and Si-C bonds to Si-F mostly, while fluorine-based radicals in the plasma mostly affect the change of Si-CH3 bonds to Si-CH(x)F(y). By removing the charge of the ions during the bombardment, the MSQ properties were further improved. When F intensity which is related to the damage of the MSQ surface is estimated, the bombardment energy, reactive radical density, and charge of the ions were responsible for -18%, -53%, -19% of the F intensity in the MSQ. Therefore, by using the neutral beam etching instead of a conventional ICP etching, the degradation on the MSQ surface estimated by the F intensity remaining on the MSQ surface could be decreased to 10%.

  7. Designing small molecule polyaromatic p- and n-type semiconductor materials for organic electronics

    KAUST Repository

    Collis, Gavin E.

    2015-12-22

    By combining computational aided design with synthetic chemistry, we are able to identify core 2D polyaromatic small molecule templates with the necessary optoelectronic properties for p- and n-type materials. By judicious selection of the functional groups, we can tune the physical properties of the material making them amenable to solution and vacuum deposition. In addition to solubility, we observe that the functional group can influence the thin film molecular packing. By developing structure-property relationships (SPRs) for these families of compounds we observe that some compounds are better suited for use in organic solar cells, while others, varying only slightly in structure, are favoured in organic field effect transistor devices. We also find that the processing conditions can have a dramatic impact on molecular packing (i.e. 1D vs 2D polymorphism) and charge mobility; this has implications for material and device long term stability. We have developed small molecule p- and n-type materials for organic solar cells with efficiencies exceeding 2%. Subtle variations in the functional groups of these materials produces p- and ntype materials with mobilities higher than 0.3 cm2/Vs. We are also interested in using our SPR approach to develop materials for sensor and bioelectronic applications.

  8. Designing small molecule polyaromatic p- and n-type semiconductor materials for organic electronics

    Science.gov (United States)

    Collis, Gavin E.

    2015-12-01

    By combining computational aided design with synthetic chemistry, we are able to identify core 2D polyaromatic small molecule templates with the necessary optoelectronic properties for p- and n-type materials. By judicious selection of the functional groups, we can tune the physical properties of the material making them amenable to solution and vacuum deposition. In addition to solubility, we observe that the functional group can influence the thin film molecular packing. By developing structure-property relationships (SPRs) for these families of compounds we observe that some compounds are better suited for use in organic solar cells, while others, varying only slightly in structure, are favoured in organic field effect transistor devices. We also find that the processing conditions can have a dramatic impact on molecular packing (i.e. 1D vs 2D polymorphism) and charge mobility; this has implications for material and device long term stability. We have developed small molecule p- and n-type materials for organic solar cells with efficiencies exceeding 2%. Subtle variations in the functional groups of these materials produces p- and ntype materials with mobilities higher than 0.3 cm2/Vs. We are also interested in using our SPR approach to develop materials for sensor and bioelectronic applications.

  9. Semiconductor nanowire optical antenna solar absorbers.

    Science.gov (United States)

    Cao, Linyou; Fan, Pengyu; Vasudev, Alok P; White, Justin S; Yu, Zongfu; Cai, Wenshan; Schuller, Jon A; Fan, Shanhui; Brongersma, Mark L

    2010-02-10

    Photovoltaic (PV) cells can serve as a virtually unlimited clean source of energy by converting sunlight into electrical power. Their importance is reflected in the tireless efforts that have been devoted to improving the electrical and structural properties of PV materials. More recently, photon management (PM) has emerged as a powerful additional means to boost energy conversion efficiencies. Here, we demonstrate an entirely new PM strategy that capitalizes on strong broad band optical antenna effects in one-dimensional semiconductor nanostructures to dramatically enhance absorption of sunlight. We show that the absorption of sunlight in Si nanowires (Si NWs) can be significantly enhanced over the bulk. The NW's optical properties also naturally give rise to an improved angular response. We propose that by patterning the silicon layer in a thin film PV cell into an array of NWs, one can boost the absorption for solar radiation by 25% while utilizing less than half of the semiconductor material (250% increase in the light absorption per unit volume of material). These results significantly advance our understanding of the way sunlight is absorbed by one-dimensional semiconductor nanostructures and provide a clear, intuitive guidance for the design of efficient NW solar cells. The presented approach is universal to any semiconductor and a wide range of nanostructures; as such, it provides a new PV platform technology.

  10. Integration of Magneto-Optical Materials for Novel Optical Devices & Magnetophotonic Crystals Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This work proposes to capitalize on our Phase I success in monolithically integrating magneto-optic and magnetic materials with semiconductor platforms in order to...

  11. Mid-infrared materials and devices on a Si platform for optical sensing.

    Science.gov (United States)

    Singh, Vivek; Lin, Pao Tai; Patel, Neil; Lin, Hongtao; Li, Lan; Zou, Yi; Deng, Fei; Ni, Chaoying; Hu, Juejun; Giammarco, James; Soliani, Anna Paola; Zdyrko, Bogdan; Luzinov, Igor; Novak, Spencer; Novak, Jackie; Wachtel, Peter; Danto, Sylvain; Musgraves, J David; Richardson, Kathleen; Kimerling, Lionel C; Agarwal, Anuradha M

    2014-02-01

    In this article, we review our recent work on mid-infrared (mid-IR) photonic materials and devices fabricated on silicon for on-chip sensing applications. Pedestal waveguides based on silicon are demonstrated as broadband mid-IR sensors. Our low-loss mid-IR directional couplers demonstrated in SiN x waveguides are useful in differential sensing applications. Photonic crystal cavities and microdisk resonators based on chalcogenide glasses for high sensitivity are also demonstrated as effective mid-IR sensors. Polymer-based functionalization layers, to enhance the sensitivity and selectivity of our sensor devices, are also presented. We discuss the design of mid-IR chalcogenide waveguides integrated with polycrystalline PbTe detectors on a monolithic silicon platform for optical sensing, wherein the use of a low-index spacer layer enables the evanescent coupling of mid-IR light from the waveguides to the detector. Finally, we show the successful fabrication processing of our first prototype mid-IR waveguide-integrated detectors.

  12. Structural stability at high pressure, electronic, and magnetic properties of BaFZnAs: A new candidate of host material of diluted magnetic semiconductors

    Science.gov (United States)

    Bi-Juan, Chen; Zheng, Deng; Xian-Cheng, Wang; Shao-Min, Feng; Zhen, Yuan; Si-Jia, Zhang; Qing-Qing, Liu; Chang-Qing, Jin

    2016-07-01

    The layered semiconductor BaFZnAs with the tetragonal ZrCuSiAs-type structure has been successfully synthesized. Both the in-situ high-pressure synchrotron x-ray diffraction and the high-pressure Raman scattering measurements demonstrate that the structure of BaFZnAs is stable under pressure up to 17.5 GPa at room temperature. The resistivity and the magnetic susceptibility data show that BaFZnAs is a non-magnetic semiconductor. BaFZnAs is recommended as a candidate of the host material of diluted magnetic semiconductor. Project supported by the National Natural Science Foundation of China and Project of Ministry of Science and Technology of China.

  13. Skylab experiments. Volume 3: Materials science. [Skylab experiments on metallurgy, crystal growth, semiconductors, and combustion physics in weightless environment for high school level education

    Science.gov (United States)

    1973-01-01

    The materials science and technology investigation conducted on the Skylab vehicle are discussed. The thirteen experiments that support these investigations have been planned to evaluate the effect of a weightless environment on melting and resolidification of a variety of metals and semiconductor crystals, and on combustion of solid flammable materials. A glossary of terms which define the space activities and a bibliography of related data are presented.

  14. Avoiding bias effects in NMR experiments for heteronuclear dipole-dipole coupling determinations: principles and application to organic semiconductor materials.

    Science.gov (United States)

    Kurz, Ricardo; Cobo, Marcio Fernando; de Azevedo, Eduardo Ribeiro; Sommer, Michael; Wicklein, André; Thelakkat, Mukundan; Hempel, Günter; Saalwächter, Kay

    2013-09-16

    Carbon-proton dipole-dipole couplings between bonded atoms represent a popular probe of molecular dynamics in soft materials or biomolecules. Their site-resolved determination, for example, by using the popular DIPSHIFT experiment, can be challenged by spectral overlap with nonbonded carbon atoms. The problem can be solved by using very short cross-polarization (CP) contact times, however, the measured modulation curves then deviate strongly from the theoretically predicted shape, which is caused by the dependence of the CP efficiency on the orientation of the CH vector, leading to an anisotropic magnetization distribution even for isotropic samples. Herein, we present a detailed demonstration and explanation of this problem, as well as providing a solution. We combine DIPSHIFT experiments with the rotor-directed exchange of orientations (RODEO) method, and modifications of it, to redistribute the magnetization and obtain undistorted modulation curves. Our strategy is general in that it can also be applied to other types of experiments for heteronuclear dipole-dipole coupling determinations that rely on dipolar polarization transfer. It is demonstrated with perylene-bisimide-based organic semiconductor materials, as an example, in which measurements of dynamic order parameters reveal correlations of the molecular dynamics with the phase structure and functional properties.

  15. (TMTSF)2X materials and structural implications for low-dimensional polymeric and disordered molecular semiconductors

    DEFF Research Database (Denmark)

    Bechgaard, Klaus; Nielsen, Martin Meedom; Krebs, Frederik C

    2000-01-01

    The structural characteristics and the relation to the electronic properties of three types of molecular materials are discussed. In TMTSF2X salts a triclinic unit cell it suggested to be important in avoiding a 2k(F) Peierls distortion. In polythiophenes appropriate ordering of microcrystallites...

  16. Chemistry and Defects in Semiconductor Heterostructures. Materials Research Society Symposium Proceedings. Volume 148

    Science.gov (United States)

    1990-05-01

    energ7y for an overomowtbh (141. This work was sapported by’he𔃿.lpartmest ofPCro-t-CC-’F D53) r. Jules Soatbort, contract monitor, for which muon...found, indicating a single crystalline material. The patterns, however, are verN sensitive to small non-uniform lattice strains which can be detected to

  17. Photovoltaic semiconductor materials based on alloys of tin sulfide, and methods of production

    Energy Technology Data Exchange (ETDEWEB)

    Lany, Stephan

    2016-06-07

    Photovoltaic thin-film materials comprising crystalline tin sulfide alloys of the general formula Sn.sub.1-x(R).sub.xS, where R is selected from magnesium, calcium and strontium, as well as methods of producing the same, are disclosed.

  18. Method of passivating semiconductor surfaces

    Science.gov (United States)

    Wanlass, Mark W.

    1990-01-01

    A method of passivating Group III-V or II-VI semiconductor compound surfaces. The method includes selecting a passivating material having a lattice constant substantially mismatched to the lattice constant of the semiconductor compound. The passivating material is then grown as an ultrathin layer of passivating material on the surface of the Group III-V or II-VI semiconductor compound. The passivating material is grown to a thickness sufficient to maintain a coherent interface between the ultrathin passivating material and the semiconductor compound. In addition, a device formed from such method is also disclosed.

  19. Theoretical investigation of the excitonic semiconductor response for varying material thickness: Transition from quantum well to bulk

    DEFF Research Database (Denmark)

    Bischoff, Svend; Knorr, A; Koch, S.W.

    1997-01-01

    For semiconductor slabs with thicknesses varying from the two-dimensional to the three-dimensional limit the linear optical response is calculated numerically by solving the semiconductor Maxwell-Bloch equations. For short-pulse excitation the spatiotemporal dynamics of the electronic mode...

  20. 2D Crystal Semiconductors New Materials for GHz-THz Devices

    Science.gov (United States)

    2015-10-02

    chemical catalysis (MoS2, graphite), lithium–ion batteries (lithium cobaltate and layered carbon), lubricants (MoS2), neutron moderation in nuclear ... reactors (graphite), and thermally and mechani- cally refractory crucibles used in much of electronic material and device processing (BN and graphite). The...SF298 Form Please attach your SF298 form. A blank SF298 can be found here. Please do not password protect or secure the PDF The maximum file size for

  1. Integration of functional oxides with semiconductors

    CERN Document Server

    Demkov, Alexander A

    2014-01-01

    This unique book describes the basic physical principles of the oxide/semiconductor epitaxy and offers a view of the current state of the field. It shows how this technology enables large-scale integration of oxide electronic and photonic devices, and describes possible hybrid semiconductor/oxide systems. The book incorporates both theoretical and experimental advances to explore the heteroepitaxy of tuned functional oxides and semiconductors to identify material, device and characterization challenges, and to present the incredible potential in the realization of multifunctional devices and monolithic integration of materials and devices. This book also: ·         Discusses why semiconductor substrates are an excellent integration platform for making hybrid logic/sensor devices ·         Provides a brief introduction to the methods accessible to non-experts, before going into details of interest to the experts ·         Includes a detailed glossary that explains the specialized ter...

  2. Composition and bandgap-graded semiconductor alloy nanowires.

    Science.gov (United States)

    Zhuang, Xiujuan; Ning, C Z; Pan, Anlian

    2012-01-03

    Semiconductor alloy nanowires with spatially graded compositions (and bandgaps) provide a new material platform for many new multifunctional optoelectronic devices, such as broadly tunable lasers, multispectral photodetectors, broad-band light emitting diodes (LEDs) and high-efficiency solar cells. In this review, we will summarize the recent progress on composition graded semiconductor alloy nanowires with bandgaps graded in a wide range. Depending on different growth methods and material systems, two typical nanowire composition grading approaches will be presented in detail, including composition graded alloy nanowires along a single substrate and those along single nanowires. Furthermore, selected examples of applications of these composition graded semiconductor nanowires will be presented and discussed, including tunable nanolasers, multi-terminal on-nanowire photodetectors, full-spectrum solar cells, and white-light LEDs. Finally, we will make some concluding remarks with future perspectives including opportunities and challenges in this research area.

  3. An efficient strategy for designing ambipolar organic semiconductor material: Introducing dehydrogenated phosphorus atoms into pentacene core

    Science.gov (United States)

    Tang, Xiao-Dan

    2017-09-01

    The charge transport properties of phosphapentacene (P-PEN) derivatives were systematically explored by theoretical calculation. The dehydrogenated P-PENs have reasonable frontier molecular orbital energy levels to facilitate both electron and hole injection. The reduced reorganization energies of dehydrogenated P-PENs could be intimately connected to the bonding nature of phosphorus atoms. From the idea of homology modeling, the crystal structure of TIPSE-4P-2p is constructed and fully optimized. Fascinatingly, TIPSE-4P-2p shows the intrinsic property of ambipolar transport in both hopping and band models. Thus, introducing dehydrogenated phosphorus atoms into pentacene core could be an efficient strategy for designing ambipolar material.

  4. Electron spin resonance investigaton of semiconductor materials for application in thin-film silicon solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, Lihong

    2012-07-01

    In the present work, hydrogenated silicon and its alloys silicon carbide and silicon oxide have been investigated using electron spin resonance (ESR). The microstructure of these materials ranges from highly crystalline to amorphous. The correlation between the paramagnetic defects, microstructure, optical and electrical properties has been discussed. Correspondingly, these properties were characterized by the spin density (N{sub S}), g-value and the lineshape of ESR spectra, Infrared (I{sup IR}{sub C}) and/or Raman crystallinity (I{sup RS}{sub C}) as well as optical absorption and electrical dark conductivity ({sigma}{sub D}). 1. As the light absorber, Si layers essentially should have low defect density and good stability against light exposure. The spin density (N{sub S}) measured by ESR is often used as a measure for the paramagnetic defect density (N{sub D}) in the material. However, ESR sample preparation procedures can potentially cause discrepancy between N{sub S} and N{sub D}. Using Mo-foil, Al-foil and ZnO:Al-covered glass as sacrificial substrates, {mu}c-Si:H and a-Si:H films were deposited by plasma-enhanced chemical vapor deposition (PECVD), and ESR powder samples have been prepared with corresponding procedures. Possible preparation-related metastability and instability effects have been investigated in terms of substrate dependence, HCl-etching and atmosphere exposure. A sequence of 'preparation - annealing - air-exposure - annealing' has been designed to investigate the metastability and instability effects. N{sub S} after post-preparation air exposure is higher than in the annealed states, especially for the highly crystalline {mu}c-Si:H material the discrepancy reached one order of magnitude. Low temperature ESR measurements at 40 K indicated that atmospheric exposure leads to a redistribution of the defect states which in turn influence the evaluated N{sub S}. In annealed conditions the samples tend to have lower N{sub S} presumably due

  5. Comparison of defects in crystalline oxide semiconductor materials by electron spin resonance

    Energy Technology Data Exchange (ETDEWEB)

    Matsuda, Tokiyoshi, E-mail: toki@rins.ryukoku.ac.jp; Kimura, Mutsumi [Department of Electronics and Informatics, Faculty of Science and Technology, Ryukoku University, 1-438, 1-5 Yokotani, Seta Oe-Cho, Otsu, Shiga 520-2194, Japan and Joint Research Center for Science and Technology, Ryukoku University, 1-5 Yokotani, Seta Oe-Cho, Otsu, Shiga 520-2194 (Japan)

    2015-03-15

    Defects in crystalline InGaZnO{sub 4} (IGZO) induced by plasma were investigated using electron spin resonance (ESR). Thermal stabilities and g factors of two ESR signals (A and B observed at g = 1.939 and 2.003, respectively) in IGZO were different from those of the ESR signals observed in component materials such as Ga{sub 2}O{sub 3} (signal observed at g = 1.969), In{sub 2}O{sub 3} (no signal), and ZnO (signal observed at g = 1.957). Signal A in IGZO increased upon annealing at 300 °C for 1 h, but decreased when annealing was continued for more than 2 h. On the other hand, signal B decreased upon annealing at 300 °C for 1 h. The ESR signal in ZnO decayed in accordance with a second-order decay model with a rate constant of 2.1 × 10{sup −4} s{sup −1}; however, this phenomenon was not observed in other materials. This difference might have been due to randomly formed IGZO lattices such as asymmetrical (Ga, Zn)O and In-O layers. Defects in signals A and B in IGZO were formed in trap states (at the deep level) and tail states, respectively.

  6. Electron spin resonance investigaton of semiconductor materials for application in thin-film silicon solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, Lihong

    2012-07-01

    In the present work, hydrogenated silicon and its alloys silicon carbide and silicon oxide have been investigated using electron spin resonance (ESR). The microstructure of these materials ranges from highly crystalline to amorphous. The correlation between the paramagnetic defects, microstructure, optical and electrical properties has been discussed. Correspondingly, these properties were characterized by the spin density (N{sub S}), g-value and the lineshape of ESR spectra, Infrared (I{sup IR}{sub C}) and/or Raman crystallinity (I{sup RS}{sub C}) as well as optical absorption and electrical dark conductivity ({sigma}{sub D}). 1. As the light absorber, Si layers essentially should have low defect density and good stability against light exposure. The spin density (N{sub S}) measured by ESR is often used as a measure for the paramagnetic defect density (N{sub D}) in the material. However, ESR sample preparation procedures can potentially cause discrepancy between N{sub S} and N{sub D}. Using Mo-foil, Al-foil and ZnO:Al-covered glass as sacrificial substrates, {mu}c-Si:H and a-Si:H films were deposited by plasma-enhanced chemical vapor deposition (PECVD), and ESR powder samples have been prepared with corresponding procedures. Possible preparation-related metastability and instability effects have been investigated in terms of substrate dependence, HCl-etching and atmosphere exposure. A sequence of 'preparation - annealing - air-exposure - annealing' has been designed to investigate the metastability and instability effects. N{sub S} after post-preparation air exposure is higher than in the annealed states, especially for the highly crystalline {mu}c-Si:H material the discrepancy reached one order of magnitude. Low temperature ESR measurements at 40 K indicated that atmospheric exposure leads to a redistribution of the defect states which in turn influence the evaluated N{sub S}. In annealed conditions the samples tend to have lower N{sub S} presumably due

  7. Colloidal Nanocrystalline Semiconductor Materials as Photocatalysts for Environmental Protection of Architectural Stone

    Directory of Open Access Journals (Sweden)

    Francesca Petronella

    2017-01-01

    Full Text Available Rod-shaped TiO2 nanocrystals (TiO2 NRs, capped by oleic acid molecules (OLEA, were synthesized with controlled size, shape and surface chemistry by using colloidal routes. They were investigated for application as coating materials for preserving architectural stone of monumental and archaeological interest, in consideration of their self-cleaning and protection properties. For this purpose, two different deposition techniques, namely casting and dipping, were tested for the application of a nanocrystal dispersion on a defined stone type, as a relevant example of porous calcarenites, namely the Pietra Leccese, a building stone widely used in monuments and buildings of cultural and historic interest of the Apulia region (Italy. The physical properties of the stone surface were investigated before and after the treatment with the prepared nanostructured materials. In particular, colour, wettability, water transfer properties and stability of the coating were monitored as a function of time and of the application method. The self-cleaning properties of the TiO2 NRs coated surfaces were tested under simulated and real solar irradiation. The obtained results were discussed in the light of the specific surface chemistry and morphology of TiO2 NRs, demonstrating the effectiveness of TiO2 NRs as an active component in formulations for stone protection.

  8. Fabrication of smart chemical sensors based on transition-doped-semiconductor nanostructure materials with µ-chips.

    Science.gov (United States)

    Rahman, Mohammed M; Khan, Sher Bahadar; Asiri, Abdullah M

    2014-01-01

    Transition metal doped semiconductor nanostructure materials (Sb2O3 doped ZnO microflowers, MFs) are deposited onto tiny µ-chip (surface area, ∼0.02217 cm(2)) to fabricate a smart chemical sensor for toxic ethanol in phosphate buffer solution (0.1 M PBS). The fabricated chemi-sensor is also exhibited higher sensitivity, large-dynamic concentration ranges, long-term stability, and improved electrochemical performances towards ethanol. The calibration plot is linear (r(2) = 0.9989) over the large ethanol concentration ranges (0.17 mM to 0.85 M). The sensitivity and detection limit is ∼5.845 µAcm(-2)mM(-1) and ∼0.11±0.02 mM (signal-to-noise ratio, at a SNR of 3) respectively. Here, doped MFs are prepared by a wet-chemical process using reducing agents in alkaline medium, which characterized by UV/vis., FT-IR, Raman, X-ray photoelectron spectroscopy (XPS), powder X-ray diffraction (XRD), and field-emission scanning electron microscopy (FE-SEM) etc. The fabricated ethanol chemical sensor using Sb2O3-ZnO MFs is simple, reliable, low-sample volume (<70.0 µL), easy of integration, high sensitivity, and excellent stability for the fabrication of efficient I-V sensors on μ-chips.

  9. Materials Design via Optimized Intramolecular Noncovalent Interactions for High-Performance Organic Semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Xiaojie; Liao, Qiaogan; Manley, Eric F.; Wu, Zishan; Wang, Yulun; Wang, Weida; Yang, Tingbin; Shin, Young-Eun; Cheng, Xing; Liang, Yongye; Chen, Lin X.; Baeg, Kang-Jun; Marks, Tobin J.; Guo, Xugang

    2016-03-15

    We report the design, synthesis, and implemention in semiconducting polymers of a novel head-to-head linkage containing the TRTOR (3-alkyl-3'-alkoxy-2,2'-bithiophene) donor subunit having a single strategically optimized, planarizing noncovalent S···O interaction. Diverse complementary thermal, optical, electrochemical, X-ray scattering, electrical, photovoltaic, and electron microscopic characterization techniques are applied to establish structure-property correlations in a TRTOR-based polymer series. In comparison to monomers having double S···O interactions, replacing one alkoxy substituent with a less electron-donating alkyl one yields TRTOR-based polymers with significantly depressed (0.2-0.3 eV) HOMOs. Furthermore, the weaker single S···O interaction and greater TRTOR steric encumberance enhances materials processability without sacrificing backbone planarity. From another perspective, TRTOR has comparable electronic properties to ring-fused 5Hdithieno[ 3,2-b:2',3'-d]pyran (DTP) subunits, but a centrosymmetric geometry which promotes a more compact and ordered structure than bulkier, axisymmetric DTP. Compared to monosubstituted TTOR (3-alkoxy-2,2'-bithiophene), alkylation at the TRTOR bithiophene 3-position enhances conjugation and polymer crystallinity with contracted π-π stacking. Grazing incidence wide-angle X-ray scattering (GIWAXS) data reveal that the greater steric hindrance and the weaker single S···O interaction are not detrimental to close packing and high crystallinity. As a proof of materials design, copolymerizing TRTOR with phthalimides yields copolymers with promising thin-film transistor mobility as high as 0.42 cm2/(V·s) and 6.3% power conversion efficiency in polymer solar cells, the highest of any phthalimide copolymers reported to date. The depressed TRTOR HOMOs imbue these polymers with substantially increased Ion/Ioff ratios and Voc’s versus analogous subunits with multiple electron donating

  10. Experiment requirements and implementation plan (Erip) for semiconductor materials growth in low-G environment

    Science.gov (United States)

    Crouch, R. K.; Fripp, A. L.; Debnam, W. J.; Clark, I. O.

    1983-01-01

    The MEA-2 A facility was used to test the effect of the low gravity environment on suppressing convective mixing in the growth of Pb(1-x)Sn(x)Te crystals. The need to eliminate convection, the furnace characteristics and operation that will be required for successful experimental implementation, and to the level that is presently known, the measured physical properties of the Pb(1-x)Sn(x)Te system were discussed. In addition, a brief background of the present and potential utilization of Pb(1-x)Sn(x)Te is given. Additional experiments are anticipated in future MEA-A, improved MEA and other dedicated materials processing in space flight apparatus.

  11. 25th anniversary article: materials for high-performance biodegradable semiconductor devices.

    Science.gov (United States)

    Hwang, Suk-Won; Park, Gayoung; Cheng, Huanyu; Song, Jun-Kyul; Kang, Seung-Kyun; Yin, Lan; Kim, Jae-Hwan; Omenetto, Fiorenzo G; Huang, Yonggang; Lee, Kyung-Mi; Rogers, John A

    2014-04-01

    We review recent progress in a class of silicon-based electronics that is capable of complete, controlled dissolution when immersed in water or bio-fluids. This type of technology, referred to in a broader sense as transient electronics, has potential applications in resorbable biomedical devices, eco-friendly electronics, environmental sensors, secure hardware systems and others. New results reported here include studies of the kinetics of hydrolysis of nanomembranes of single crystalline silicon in bio-fluids and aqueous solutions at various pH levels and temperatures. Evaluations of toxicity using live animal models and test coupons of transient electronic materials provide some evidence of their biocompatibility, thereby suggesting potential for use in bioresorbable electronic implants.

  12. Microstructure and magnetic behavior of Mn doped GeTe chalcogenide semiconductors based phase change materials

    Science.gov (United States)

    Adam, Adam Abdalla Elbashir; Cheng, Xiaomin; Abuelhassan, Hassan H.; Miao, Xiang Shui

    2017-06-01

    Phase-change materials (PCMs) are the most promising candidates to be used as an active media in the universal data storage and spintronic devices, due to their large differences in physical properties of the amorphous-crystalline phase transition behavior. In the present study, the microstructure, magnetic and electrical behaviors of Ge0.94Mn0.06Te thin film were investigated. The crystallographic structure of Ge0.94Mn0.06Te thin film was studied sing X-ray diffractometer (XRD) and High Resolution Transmission Electron Microscope (HR-TEM). The XRD pattern showed that the crystallization structure of the film was rhombohedral phase for GeTe with a preference (202) orientation. The HR-TEM image of the crystalline Ge0.94Mn0.06Te thin film demonstrated that, there were two large crystallites and small amorphous areas. The magnetization as a function of the magnetic field analyses of both amorphous and crystalline states showed the ferromagnetic hysteretic behaviors. Then, the hole carriers concentration of the film was measured and it found to be greater than 1021 cm-3 at room temperature. Moreover, the anomalous of Hall Effect (AHE) was clearly observed for the measuring temperatures 5, 10 and 50 K. The results demonstrated that the magnitude of AHE decreased when the temperature was increasing.

  13. Semiconductor diode laser material and devices with emission in visible region of the spectrum

    Science.gov (United States)

    Ladany, I.; Kressel, H.

    1975-01-01

    Two alloy systems, (AlGa)As and (InGa)P, were studied for their properties relevant to obtaining laser diode operation in the visible region of the spectrum. (AlGa)As was prepared by liquid-phase epitaxy (LPE) and (InGa)P was prepared both by vapor-phase epitaxy and by liquid-phase epitaxy. Various schemes for LPE growth were applied to (InGa)P, one of which was found to be capable of producing device material. All the InGaP device work was done using vapor-phase epitaxy. The most successful devices were fabricated in (AlGa)As using heterojunction structures. At room temperature, the large optical cavity design yielded devices lasing in the red (7000 A). Because of the relatively high threshold due to the basic band structure limitation in this alloy, practical laser diode operation is presently limited to about 7300 A. At liquid-nitrogen temperature, practical continuous-wave operation was obtained at a wavelength of 6500 to 6600 A, with power emission in excess of 50 mW. The lowest pulsed lasing wavelength is 6280 A. At 223 K, lasing was obtained at 6770 A, but with high threshold currents. The work dealing with CW operation at room temperature was successful with practical operation having been achieved to about 7800 A.

  14. Compound Semiconductor Radiation Detectors

    CERN Document Server

    Owens, Alan

    2012-01-01

    Although elemental semiconductors such as silicon and germanium are standard for energy dispersive spectroscopy in the laboratory, their use for an increasing range of applications is becoming marginalized by their physical limitations, namely the need for ancillary cooling, their modest stopping powers, and radiation intolerance. Compound semiconductors, on the other hand, encompass such a wide range of physical and electronic properties that they have become viable competitors in a number of applications. Compound Semiconductor Radiation Detectors is a consolidated source of information on all aspects of the use of compound semiconductors for radiation detection and measurement. Serious Competitors to Germanium and Silicon Radiation Detectors Wide-gap compound semiconductors offer the ability to operate in a range of hostile thermal and radiation environments while still maintaining sub-keV spectral resolution at X-ray wavelengths. Narrow-gap materials offer the potential of exceeding the spectral resolutio...

  15. A study of the photocatalytic effects of aqueous suspensions of platinized semiconductor materials on the reaction rates of candidate redox reactions

    Science.gov (United States)

    Miles, A. M.

    1982-01-01

    The effectiveness of powdered semiconductor materials in photocatalyzing candidate redox reactions was investigated. The rate of the photocatalyzed oxidation of cyanide at platinized TiO2 was studied. The extent of the cyanide reaction was followed directly using an electroanalytical method (i.e. differential pulse polarography). Experiments were performed in natural or artificial light. A comparison was made of kinetic data obtained for photocatalysis at platinized powders with rate data for nonplatinized powders.

  16. Semiconductor statistics

    CERN Document Server

    Blakemore, J S

    1987-01-01

    In-depth exploration of the implications of carrier populations and Fermi energies examines distribution of electrons in energy bands and impurity levels of semiconductors. Also: kinetics of semiconductors containing excess carriers, particularly in terms of trapping, excitation, and recombination.

  17. Density functional theory based tight binding study on theoretical prediction of low-density nanoporous phases ZnO semiconductor materials

    Science.gov (United States)

    Tuoc, Vu Ngoc; Doan Huan, Tran; Viet Minh, Nguyen; Thi Thao, Nguyen

    2016-06-01

    Polymorphs or phases - different inorganic solids structures of the same composition usually have widely differing properties and applications, thereby synthesizing or predicting new classes of polymorphs for a certain compound is of great significance and has been gaining considerable interest. Herein, we perform a density functional theory based tight binding (DFTB) study on theoretical prediction of several new phases series of II-VI semiconductor material ZnO nanoporous phases from their bottom-up building blocks. Among these, three phases are reported for the first time, which could greatly expand the family of II- VI compound nanoporous phases. We also show that all these generally can be categorized similarly to the aluminosilicate zeolites inorganic open-framework materials. The hollow cage structure of the corresponding building block ZnkOk (k= 9, 12, 16) is well preserved in all of them, which leads to their low-density nanoporous and high flexibility. Additionally the electronic wide-energy gap of the individual ZnkOk is also retained. Our study reveals that they are all semiconductor materials with a large band gap. Further, this study is likely to be the common for II-VI semiconductor compounds and will be helpful for extending their range of properties and applications.

  18. Materials Data Infrastructure: A Case Study of the Citrination Platform to Examine Data Import, Storage, and Access

    Science.gov (United States)

    O'Mara, Jordan; Meredig, Bryce; Michel, Kyle

    2016-08-01

    Considerations are presented around the design of a materials data infrastructure including import of structured and unstructured data, storage of that data for archival and retrieval, and access to that data through programmatic and graphical interfaces. In particular, the choices around technologies used in such an infrastructure, the benefits and drawbacks of those technologies, and their impact on the experience of users of that system are presented. The Citrination platform is used as an example of a materials data infrastructure and the choices made around architecture are discussed.

  19. Semiconductor structure and recess formation etch technique

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Bin; Sun, Min; Palacios, Tomas Apostol

    2017-02-14

    A semiconductor structure has a first layer that includes a first semiconductor material and a second layer that includes a second semiconductor material. The first semiconductor material is selectively etchable over the second semiconductor material using a first etching process. The first layer is disposed over the second layer. A recess is disposed at least in the first layer. Also described is a method of forming a semiconductor structure that includes a recess. The method includes etching a region in a first layer using a first etching process. The first layer includes a first semiconductor material. The first etching process stops at a second layer beneath the first layer. The second layer includes a second semiconductor material.

  20. Set-up for an optically induced dielectrophoresis platform and its application to micro- and nanoscale material manipulation

    Directory of Open Access Journals (Sweden)

    Yen-Heng Lin

    2014-11-01

    Full Text Available In this study, we set-up an optically induced dielectrophoresis platform, which can be used to manipulate micro- and nanoscale particles. A commercially available liquid-crystal-display–based projector was used as a light source to produce a variety of optical patterns and project them onto a photoconductive material. The optical patterns illuminating the photoconductive material can be used as configurable virtual electrodes, which will induce dielectrophoretic forces on particles. Thus, the particles can be manipulated by dynamic optical patterns. Manipulation of silver nanowires was demonstrated using this platform by forming a specific pattern of nanowires through illumination of the photoconductive chip with an optical pattern. In addition, polystyrene beads with diameters of 10 and 20 μm were also successfully manipulated using this system. By combining the optically induced dielectrophoretic force and the hydrodynamic force, particles of two different sizes can be continuously separated into two different microchannels. Furthermore, the microparticles were collected and concentrated by virtual electrode traps. We believe that this flexible platform can be applied to investigations of a variety of fields.

  1. Defects in semiconductors

    CERN Document Server

    Romano, Lucia; Jagadish, Chennupati

    2015-01-01

    This volume, number 91 in the Semiconductor and Semimetals series, focuses on defects in semiconductors. Defects in semiconductors help to explain several phenomena, from diffusion to getter, and to draw theories on materials' behavior in response to electrical or mechanical fields. The volume includes chapters focusing specifically on electron and proton irradiation of silicon, point defects in zinc oxide and gallium nitride, ion implantation defects and shallow junctions in silicon and germanium, and much more. It will help support students and scientists in their experimental and theoret

  2. Semiconductors bonds and bands

    CERN Document Server

    Ferry, David K

    2013-01-01

    As we settle into this second decade of the twenty-first century, it is evident that the advances in micro-electronics have truly revolutionized our day-to-day lifestyle. The technology is built upon semiconductors, materials in which the band gap has been engineered for special values suitable to the particular application. This book, written specifically for a one semester course for graduate students, provides a thorough understanding of the key solid state physics of semiconductors. It describes how quantum mechanics gives semiconductors unique properties that enabled the micro-electronics revolution, and sustain the ever-growing importance of this revolution.

  3. Application of genotyping-by-sequencing on semiconductor sequencing platforms: A comparison of genetic and reference-based marker ordering in barley

    Science.gov (United States)

    The rapid development of next generation sequencing platforms has enabled the use of sequencing for routine genotyping across a range of genetics studies and breeding applications. Genotyping-by-sequencing (GBS), a low-cost, reduced representation sequencing method, is becoming a common approach fo...

  4. Pattern recognition of monocyte chemoattractant protein-1 (MCP-1) in whole blood samples using new platforms based on nanostructured materials

    Science.gov (United States)

    Stefan-van Staden, Raluca-Ioana; Gugoasa, Livia Alexandra; Biris, Alexandru Radu

    2015-09-01

    Four stochastic microsensors based on nanostructured materials (graphene, maltodextrin (MD), and diamond) integrated in miniaturized platforms were proposed. Monocyte chemoattractant protein-1 (MCP-1) is a pro-inflammatory cytokine whose main function is to regulate cell trafficking. It is correlated with the incidence of cardiovascular diseases and obesity, and was used as the model analyte in this study. The screening of whole blood samples for MCP-1 can be done for concentrations ranging from 10-12 to 10-8 g mL-1. The method was used for both qualitative and quantitative assessments of MCP-1 in whole blood samples. The lowest quantification limits for the assay of MCP-1 (1 pg mL-1) were reached when the microsensors based on protoporphyrin IX/Graphene-Au-3 and on MD/Graphene were employed in the platform design.

  5. Time-resolved THz studies of carrier dynamics in semiconductors, superconductors, and strongly-correlated electron materials

    Energy Technology Data Exchange (ETDEWEB)

    Kaindl, Robert A.; Averitt, Richard D.

    2006-11-14

    Perhaps the most important aspect of contemporary condensed matter physics involves understanding strong Coulomb interactions between the large number of electrons in a solid. Electronic correlations lead to the emergence of new system properties, such as metal-insulator transitions, superconductivity, magneto-resistance, Bose-Einstein condensation, the formation of excitonic gases, or the integer and fractional Quantum Hall effects. The discovery of high-Tc superconductivity in particular was a watershed event, leading to dramatic experimental and theoretical advances in the field of correlated-electron systems. Such materials often exhibit competition between the charge, lattice, spin, and orbital degrees of freedom, whose cause-effect relationships are difficult to ascertain. Experimental insight into the properties of solids is traditionally obtained by time-averaged probes, which measure e.g., linear optical spectra, electrical conduction properties, or the occupied band structure in thermal equilibrium. Many novel physical properties arise from excitations out of the ground state into energetically higher states by thermal, optical, or electrical means. This leads to fundamental interactions between the system's constituents, such as electron-phonon and electron-electron interactions, which occur on ultrafast timescales. While these interactions underlie the physical properties of solids, they are often only indirectly inferred from time-averaged measurements. Time-resolved spectroscopy, consequently, is playing an ever increasing role to provide insight into light-matter interaction, microscopic processes, or cause-effect relationships that determine the physics of complex materials. In the past, experiments using visible and near-infrared femtosecond pulses have been extensively employed, e.g. to follow relaxation and dephasing processes in metals and semiconductors. However, many basic excitations in strongly-correlated electron systems and nanoscale

  6. Electronic structure of semiconductor-metal-semiconductor heterostructures

    Science.gov (United States)

    Masri, Pierre

    For the first time, we present in this article a microscopic self-consistent theory of the electronic structure of semiconductor-metal-semiconductor (SMS) heterostructures. This is done within the framework of a tight-binding approximation. We use a one-band model and a simplified two-band model to describe metal and semiconductor bulk bands, respectively. Results are given for a material-symmetrical and interface-assymetrical SMS structure: this involves the same semiconductors, but different interface polarities (anion- and cation-like interfaces). These results include metal-like states (built-in metal band) and metal-induced semiconductor-like states. The relevance of the charge neutrality condition to this feature and to the determination of the position of the SMS Fermi level is discussed. We also emphasize the confining role of interfaces, with respect to semiconductor-like states, within the semiconductor gap.

  7. Radiation effects in semiconductors

    CERN Document Server

    2011-01-01

    There is a need to understand and combat potential radiation damage problems in semiconductor devices and circuits. Written by international experts, this book explains the effects of radiation on semiconductor devices, radiation detectors, and electronic devices and components. These contributors explore emerging applications, detector technologies, circuit design techniques, new materials, and innovative system approaches. The text focuses on how the technology is being used rather than the mathematical foundations behind it. It covers CMOS radiation-tolerant circuit implementations, CMOS pr

  8. Variable temperature semiconductor film deposition

    Science.gov (United States)

    Li, Xiaonan; Sheldon, Peter

    1998-01-01

    A method of depositing a semiconductor material on a substrate. The method sequentially comprises (a) providing the semiconductor material in a depositable state such as a vapor for deposition on the substrate; (b) depositing the semiconductor material on the substrate while heating the substrate to a first temperature sufficient to cause the semiconductor material to form a first film layer having a first grain size; (c) continually depositing the semiconductor material on the substrate while cooling the substrate to a second temperature sufficient to cause the semiconductor material to form a second film layer deposited on the first film layer and having a second grain size smaller than the first grain size; and (d) raising the substrate temperature, while either continuing or not continuing to deposit semiconductor material to form a third film layer, to thereby anneal the film layers into a single layer having favorable efficiency characteristics in photovoltaic applications. A preferred semiconductor material is cadmium telluride deposited on a glass/tin oxide substrate already having thereon a film layer of cadmium sulfide.

  9. Comparison of ultra-high-resolution parallel-hole collimator materials based on the CdTe pixelated semiconductor SPECT system

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Young-Jin; Ryu, Hyun-Ju; Lee, Seung-Wan; Park, Su-Jin; Kim, Hee-Joung, E-mail: hjk1@yonsei.ac.kr

    2013-06-11

    Recently, many studies have sought to improve the sensitivity and spatial resolution of pixelated semiconductor detectors. Spatial resolution can be improved by using a pinhole or pixelated parallel-hole collimator with equal hole and pixel sizes. We compared a pinhole to a pixelated parallel-hole collimator and found that the pixelated parallel-hole collimator had higher sensitivity. Additionally, collimator materials with high absorption efficiency are often used because of their high spatial resolution. The purpose of this study was to compare the quality of images generated using a pixelated semiconductor single photon emission computed tomography (SPECT) system simulated with pixelated parallel-hole collimators of lead, tungsten, gold, and depleted uranium. We performed a simulation study of the PID 350 (Ajat Oy Ltd., Finland) CdTe pixelated semiconductor detector, which consists of small pixels (0.35×0.35 mm{sup 2}), using a Geant4 Application for Tomographic Emission (GATE) simulation. Sensitivities and spatial resolutions were measured for the four collimator materials. To evaluate overall image performance, a hot-rod phantom was designed using GATE simulation. The results showed that with lead, sensitivity was 4.25%, 6.53%, and 10.28% higher than with tungsten, gold, and depleted uranium, respectively. Spatial resolution using depleted uranium was 3.19%, 4.19%, and 8.01% better than that of gold, tungsten, and lead, respectively. Sensitivity and spatial resolution showed little difference among the four types of collimator materials tested. It was difficult to visually distinguish between the reconstructed images of the hot-rod phantom for different collimator materials. The results are promising for notable cost reductions in collimator manufacturing while avoiding impractical and rare materials.

  10. Multiple Strategy Bio-Detection Sensor Platforms Made From Carbon and Polymer Materials

    Science.gov (United States)

    2006-08-10

    bridges to allow multiple bio -detection strategies. It would have the advantages of being autonomous, with quick response and high selectivity, as well...as low cost. The multiple-strategy bio -detection platform will include systems that were developed by the Missouri State University and systems that...release electro-active polymer to perform sense and release experiments. In conjunction to a broad-band biological/chemical detection system, a bio

  11. Transparent conducting oxide electro-optic modulators on silicon platforms: A comprehensive study based on the drift-diffusion semiconductor model

    Science.gov (United States)

    Sinatkas, Georgios; Pitilakis, Alexandros; Zografopoulos, Dimitrios C.; Beccherelli, Romeo; Kriezis, Emmanouil E.

    2017-01-01

    Electro-optic waveguide modulators exploiting the carrier-induced epsilon-near-zero effect in transparent conducting oxides are comprehensively studied and evaluated using a rigorous multi-physics modeling framework. The examined amplitude modulators integrate indium tin oxide with two representative examples of the silicon-on-insulator technology, the silicon-rib and silicon-slot platform, with the latter design exhibiting superior performance, featuring μm modulation lengths, switching speeds exceeding 100 GHz, and a sub-pJ per bit of energy consumption. The effect of free carriers is rigorously introduced by combining the drift-diffusion model for the description of the carrier dynamics with near-infrared carrier-dependent permittivity models, leading to a seamless and physically consistent integration of solid-state physics and Maxwell wave theory on a unified finite-element platform.

  12. Functionalization of Organic Semiconductors and Other Carbon-based Materials by Self-Assembled Monolayers (SAMs) and Charge Transport in Organic Field-effect Transistors (OFETs)

    Science.gov (United States)

    Lee, Bumsu

    In the first part of the thesis, studies of the charge carrier transport in organic semiconductors performed using organic field-effect transistors (OFETs) with polymeric gate dielectric (parylene) are presented. By combining OFET and ultraviolet photoelectron spectroscopy (UPS) studies, the effect of bias-stress instability at the semiconductor/insulator interface have been investigated and understood. The effect is understood in terms of the transfer of holes from an accumulation channel of the semiconductor to localized states of the insulator that depends on energetic overlap between HOMO band tails of the semiconductor and the insulator. Second, surface functionalization of various materials such as organic single crystals, conjugated semiconductor polymers, graphene and carbon nanotubes (CNTs) with Self-Assembled Monolayers (SAMs) is described. In most cases, an enhanced surface conductivity is observed as a result of SAM treatment. Especially, fluorinated alkyl-silane (FTS) SAM induces the highest density of p-type charge carriers (in excess of an order of 1013cm-2), which leads to a strong surface hole-doping of these materials. In this thesis, (1) the mechanism of SAM nucleation, growth process and doping effect at the surface of organic single crystals and graphene is revealed. SAM nucleation occurs predominantly at molecular step edges or defect sites present at the surface and a consecutive lateral growth proceeds by cross-linking between SAM molecules. The strong hole-doping is explained by an interfacial charge transfer that during SAM formation. In addition, conductive atomic force microscopy (C-AFM) confirms that conducting paths along the step edges are formed by FTS nucleation at the early stage of FTS growth on rubrene. (2) it is reported that conductivity of solution-deposited thin film of conjugated polymers increases by up to six orders of magnitude, reaching (1.1 ± 0.1) × 103 Scm-1 for poly (2,5-bis(3-tetradecylthiophen-2-yl)thieno[3,2-b

  13. [Lens platform].

    Science.gov (United States)

    Łukaszewska-Smyk, Agnieszka; Kałuzny, Józef

    2010-01-01

    The lens platform defines lens structure and lens material. Evolution of lens comprises change in their shape, angulation of haptens and transition of three-piece lens into one-piece lens. The lens fall into two categories: rigid (PMMA) and soft (siliconic, acrylic, colameric). The main lens maaterials are polymers (hydrophilic and hydrophobic). The lens platform has an effect on biocompatibility, bioadhesion, stability of lens in capsule, degree of PCO evolution and sensitiveness to laser damages.

  14. Quantum size effects in layered VX{sub 2} (X = S, Se) materials: Manifestation of metal to semimetal or semiconductor transition

    Energy Technology Data Exchange (ETDEWEB)

    Wasey, A. H. M. Abdul; Chakrabarty, Soubhik; Das, G. P., E-mail: msgpd@iacs.res.in [Department of Materials Science, Indian Association for the Cultivation of Science, Jadavpur, Kolkata-700032 (India)

    2015-02-14

    Most of the two dimensional (2D) transition metal dichalcogenides (TMDC) are nonmagnetic in pristine form. However, 2D pristine VX{sub 2} (X = S, Se, Te) materials are found to be ferromagnetic. Using spin polarized density functional theory (DFT) calculations, we have studied the electronic, magnetic, and surface properties of this class of materials in both trigonal prismatic H- and octahedral T-phase. Our calculations reveal that they exhibit materially different properties in those two polymorphs. Most importantly, detailed investigation of electronic structure explored the quantum size effect in H-phase of these materials thereby leading to metal to semimetal (H-VS{sub 2}) or semiconductor (H-VSe{sub 2}) transition when downsizing from bilayer to corresponding monolayer.

  15. Automatic Preparation of ETD Material from the Internet Archive for the DSpace Repository Platform

    Directory of Open Access Journals (Sweden)

    Tim Ribaric

    2009-11-01

    Full Text Available A big challenge associated with getting an institutional repository off the ground is getting content into it. This article will look at how to use digitization services at the Internet Archive alongside software utilities that the author developed to automate the harvesting of scanned dissertations and associated Dublin Core XML files to create an ETD Portal using the DSpace platform. The end result is a metadata-rich, full-text collection of theses that can be constructed for little out of pocket cost.

  16. Photoelectronic properties of semiconductors

    CERN Document Server

    Bube, Richard H

    1992-01-01

    The interaction between light and electrons in semiconductors forms the basis for many interesting and practically significant properties. This book examines the fundamental physics underlying this rich complexity of photoelectronic properties of semiconductors, and will familiarise the reader with the relatively simple models that are useful in describing these fundamentals. The basic physics is also illustrated with typical recent examples of experimental data and observations. Following introductory material on the basic concepts, the book moves on to consider a wide range of phenomena, including photoconductivity, recombination effects, photoelectronic methods of defect analysis, photoeffects at grain boundaries, amorphous semiconductors, photovoltaic effects and photoeffects in quantum wells and superlattices. The author is Professor of Materials Science and Electrical Engineering at Stanford University, and has taught this material for many years. He is an experienced author, his earlier books having fo...

  17. «Green» Synthesis of Noble Metal Nanoparticles and CdS Semiconductor Nanocrystals Using Biological Material

    Directory of Open Access Journals (Sweden)

    Blume, Ya.B.

    2015-01-01

    Full Text Available The basic principles of synthesis of metal nanoparticles and semiconductor nanocrystals and its application prospects are considered. The relevance of the exploiting living systems and their components for the development of «green » synthesis technology for nano-objects with the unique properties and a wide range of applications is analyzed. The biotechnological synthesis of nanoparticles of silver, gold and bimetallic silver-gold nanoparticles using plant extracts of Magnolia denudata, M. stellata, Camellia sinensis var. sinensis, C. sinensis var. assamica, Orthosiphon stamineus and Hypericum perforatum is described. The results of cadmium sulfide fluorescent semiconductor nanocrystal synthesis using bacteria Escherichia coli, basidiomycete Pleurotus ostreatus and plant Linaria maroccana are reported. Morphological and optical characteristics of the synthesized nanoparticles are presented.

  18. New Material Transistor with Record-High Field-Effect Mobility among Wide-Band-Gap Semiconductors.

    Science.gov (United States)

    Shih, Cheng Wei; Chin, Albert

    2016-08-03

    At an ultrathin 5 nm, we report a new high-mobility tin oxide (SnO2) metal-oxide-semiconductor field-effect transistor (MOSFET) exhibiting extremely high field-effect mobility values of 279 and 255 cm(2)/V-s at 145 and 205 °C, respectively. These values are the highest reported mobility values among all wide-band-gap semiconductors of GaN, SiC, and metal-oxide MOSFETs, and they also exceed those of silicon devices at the aforementioned elevated temperatures. For the first time among existing semiconductor transistors, a new device physical phenomenon of a higher mobility value was measured at 45-205 °C than at 25 °C, which is due to the lower optical phonon scattering by the large SnO2 phonon energy. Moreover, the high on-current/off-current of 4 × 10(6) and the positive threshold voltage of 0.14 V at 25 °C are significantly better than those of a graphene transistor. This wide-band-gap SnO2 MOSFET exhibits high mobility in a 25-205 °C temperature range, a wide operating voltage of 1.5-20 V, and the ability to form on an amorphous substrate, rendering it an ideal candidate for multifunctional low-power integrated circuit (IC), display, and brain-mimicking three-dimensional IC applications.

  19. A platform for communicating construction material information between e-commerce systems

    Institute of Scientific and Technical Information of China (English)

    Stephen C W Kong; LI Heng; SHEN Qi-ping

    2004-01-01

    E-commerce systems for construction material procurement are becoming increasingly important in Hong Kong. These E-commerce systems are non-interoperable and create problems for the buyers who use these systems to purchase construction materials. This paper presents the mobile agent-based approach and Web serv-ices-based approach for enabling interoperation of these systems in the E-Union environment.

  20. Smart material platforms for miniaturized devices: implications in disease models and diagnostics.

    Science.gov (United States)

    Verma, Ritika; Adhikary, Rishi Rajat; Banerjee, Rinti

    2016-05-24

    Smart materials are responsive to multiple stimuli like light, temperature, pH and redox reactions with specific changes in state. Various functionalities in miniaturised devices can be achieved through the application of "smart materials" that respond to changes in their surroundings. The change in state of the materials in the presence of a stimulus may be used for on demand alteration of flow patterns in devices, acting as microvalves, as scaffolds for cellular aggregation or as modalities for signal amplification. In this review, we discuss the concepts of smart trigger responsive materials and their applications in miniaturized devices both for organ-on-a-chip disease models and for point-of-care diagnostics. The emphasis is on leveraging the smartness of these materials for example, to allow on demand sample actuation, ion dependent spheroid models for cancer or light dependent contractility of muscle films for organ-on-a-chip applications. The review throws light on the current status, scope for technological enhancements, challenges for translation and future prospects of increased incorporation of smart materials as integral parts of miniaturized devices.

  1. Electrodes for Semiconductor Gas Sensors.

    Science.gov (United States)

    Lee, Sung Pil

    2017-03-25

    The electrodes of semiconductor gas sensors are important in characterizing sensors based on their sensitivity, selectivity, reversibility, response time, and long-term stability. The types and materials of electrodes used for semiconductor gas sensors are analyzed. In addition, the effect of interfacial zones and surface states of electrode-semiconductor interfaces on their characteristics is studied. This study describes that the gas interaction mechanism of the electrode-semiconductor interfaces should take into account the interfacial zone, surface states, image force, and tunneling effect.

  2. Semiconductor photocatalysis principles and applications

    CERN Document Server

    Kisch, Horst

    2014-01-01

    Focusing on the basic principles of semiconductor photocatalysis, this book also gives a brief introduction to photochemistry, photoelectrochemistry, and homogeneous photocatalysis. In addition, the author - one of the leading authorities in the field - presents important environmental and practical aspects. A valuable, one-stop source for all chemists, material scientists, and physicists working in this area, as well as novice researchers entering semiconductor photocatalysis.

  3. Characterization of Structural Defects in Wide Band-Gap Compound Materials for Semiconductor and Opto-Electronic Applications

    Science.gov (United States)

    Goue, Ouloide Yannick

    Single crystals of binary and ternary compounds are touted to replace silicon for specialized applications in the semiconductor industry. However, the relative high density of structural defects in those crystals has hampered the performance of devices built on them. In order to enhance the performance of those devices, structurally perfect single crystals must be grown. The aim of this thesis is to investigate the interplay between crystal growth process and crystal quality as well as structural defect types and transport property. To this end, the thesis is divided into two parts. The first part provides a general review of the theory of crystal growth (chapter I), an introduction to the materials being investigated (chapter II and III) and the characterization techniques being used (chapter IV). • In chapter I, a brief description of the theory of crystal growth is provided with an eye towards the driving force behind crystal nucleation and growth along with the kinetic factors affecting crystal growth. The case of crystal growth of silicon carbide (SiC) by physical vapor transport (PVT) and chemical vapor deposition (CVD) is discussed. The Bridgman, travelling heater method (THM) and physical transport growth of cadmium zinc telluride (CZT) is also treated. In chapters II and III, we introduce the compound materials being investigated in this study. While a description of their crystal structure and properties is provided, the issues associated with their growth are discussed. In chapter IV, a description of the characterization techniques used in these studies is presented. These techniques are synchrotron X-ray topography (SXRT), transmission electron microscopy, transmission infrared microscopy (TIM), micro-Raman spectroscopy (muRS) and light microscopy. Extensive treatment of SXRT technique is also provided. In the second part, the experimental results obtained in the course of these studies are presented and discussed. These results are divided into

  4. Anisotropic electron-transfer mobilities in diethynyl-indenofluorene-dione crystals as high-performance n-type organic semiconductor materials: remarkable enhancement by varying substituents.

    Science.gov (United States)

    Zhang, Xiao-Yu; Huang, Jin-Dou; Yu, Juan-Juan; Li, Peng; Zhang, Wei-Ping; Frauenheim, Thoma

    2015-10-14

    In this study, the electron-transfer properties of alkynylated indenofluorene-diones with various substituents (SiMe3, SiPr3, and SiPh3) that function as n-type organic semiconductors were comparatively investigated at the first-principles DFT level based on the Marcus-Hush theory. The reorganization energies are calculated by the adiabatic potential-energy surface method, and the coupling terms are evaluated through a direct adiabatic model. The maximum value of the electron-transfer mobility of SiPr3 is 0.485 cm(2) V(-1) s(-1), which appears at the orientation angle of the conducting channel on the reference plane a-b near to 172°/352°. The predicted maximum electron mobility value of SiPr3 is nearly 26 times larger than that of SiPh3. This may be attributed to the largest number of intermolecular π-π interactions. In addition, the mobilities in all three crystals show remarkable anisotropic behavior. The calculated results indicate that SiPr3 could be an ideal candidate as a high-performance n-type organic semiconductor material. Our investigations not only give us an opportunity to completely understand the charge transport mechanisms, but also provide guidelines for designing materials for electronic applications.

  5. Semiconductors for organic transistors

    Directory of Open Access Journals (Sweden)

    Antonio Facchetti

    2007-03-01

    Full Text Available Organic molecules/polymers with a π-conjugated (heteroaromatic backbone are capable of transporting charge and interact efficiently with light. Therefore, these systems can act as semiconductors in opto-electronic devices similar to inorganic materials. However, organic chemistry offers tools for tailoring materials' functional properties via modifications of the molecular/monomeric units, opening new possibilities for inexpensive device manufacturing. This article reviews the fundamental aspects behind the structural design/realization of p- (hole transporting and n-channel (electron-transporting semiconductors for organic field-effect transistors (OFETs. An introduction to OFET principles and history, as well as of the state-of-the-art organic semiconductor structure and performance of OFETs is provided.

  6. Hydrogen in semiconductors II

    CERN Document Server

    Nickel, Norbert H; Weber, Eicke R; Nickel, Norbert H

    1999-01-01

    Since its inception in 1966, the series of numbered volumes known as Semiconductors and Semimetals has distinguished itself through the careful selection of well-known authors, editors, and contributors. The "Willardson and Beer" Series, as it is widely known, has succeeded in publishing numerous landmark volumes and chapters. Not only did many of these volumes make an impact at the time of their publication, but they continue to be well-cited years after their original release. Recently, Professor Eicke R. Weber of the University of California at Berkeley joined as a co-editor of the series. Professor Weber, a well-known expert in the field of semiconductor materials, will further contribute to continuing the series' tradition of publishing timely, highly relevant, and long-impacting volumes. Some of the recent volumes, such as Hydrogen in Semiconductors, Imperfections in III/V Materials, Epitaxial Microstructures, High-Speed Heterostructure Devices, Oxygen in Silicon, and others promise that this tradition ...

  7. Metamaterials as a Platform for the Development of Novel Materials for Energy Applications. Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Padilla, Willie [Boston College, Chestnut Hill, MA (United States)

    2016-02-11

    Final report detailing the work performed on DESC0005240 at Boston College. Report details research into metamaterial absorber theory, thermophotovoltaics a dynamic 3 state material capable of switching between transmissive, reflective, and absorptive states. Also high temperature NIR metamaterials are explored.

  8. Component design and testing for a miniaturised autonomous sensor based on a nanowire materials platform

    NARCIS (Netherlands)

    Fagas, Giorgos; Nolan, Michael; Georgiev, Yordan M.; Yu, Ran; Lotty, Olan; Petkov, Nikolay; Holmes, Justin D.; Jia, Guobin; Eisenhawer, Björn; Gawlik, Annett; Falk, Fritz; Khosropour, Naser; Buitrago, Elizabeth; Fernández-Bolaños Badia, Montserrat; Krummenacher, Francois; Ionescu, Adrian M.; Kayal, Maher; Nightingale, Adrian M.; De Mello, John C; Puik, Erik; Bent, Frank van der; Lafeber, Rik; Ramaneti, Rajesh; Tong, Hien Duy; Rijn, Cees van

    2014-01-01

    From Springer description: "We present the design considerations of an autonomous wireless sensor and discuss the fabrication and testing of the various components including the energy harvester, the active sensing devices and the power management and sensor interface circuits. A common materials pl

  9. Wave propagation in structured materials as a platform for effective parameters retrieving

    DEFF Research Database (Denmark)

    Andryieuski, Andrei; Ha, S.; Sukhorukov, A. A.;

    /transmission spectra at a fixed incident angle. However, for a complete description of MM properties, material EPs should be introduced. Up to now, a large variety of retrieval methods has been suggested. The simplest and most used definitely is the S-parameters method also referred to as the Nicholson-Ross-Weir (NRW...

  10. Improved thermal isolation of silicon suspended platforms for an all-silicon thermoelectric microgenerator based on large scale integration of Si nanowires as thermoelectric material

    Science.gov (United States)

    Fonseca, L.; Donmez, I.; Salleras, M.; Calaza, C.; Gadea, G.; Santos, J. D.; Morata, A.; Tarancon, A.

    2015-12-01

    Special suspended micro-platforms have been designed as a part of silicon compatible planar thermoelectric microgenerators. Bottom-up grown silicon nanowires are going to bridge in the future such platforms to the surrounding silicon bulk rim. They will act as thermoelectric material thus configuring an all-silicon thermoelectric device. In the new platform design other additional bridging elements (usually auxiliary support silicon beams) are substituted by low conductance thin film dielectric membranes in order to maximize the temperature difference developed between both areas. These membranes follow a sieve-like design that allows fabricating them with a short additional wet anisotropic etch step.

  11. Semiconductor spintronics

    CERN Document Server

    Xia, Jianbai; Chang, Kai

    2012-01-01

    Semiconductor Spintronics, as an emerging research discipline and an important advanced field in physics, has developed quickly and obtained fruitful results in recent decades. This volume is the first monograph summarizing the physical foundation and the experimental results obtained in this field. With the culmination of the authors' extensive working experiences, this book presents the developing history of semiconductor spintronics, its basic concepts and theories, experimental results, and the prospected future development. This unique book intends to provide a systematic and modern foundation for semiconductor spintronics aimed at researchers, professors, post-doctorates, and graduate students, and to help them master the overall knowledge of spintronics.

  12. Sol-gel derived precursors to Group 14 semiconductor nanocrystals - Convenient materials for enabling nanocrystal-based applications

    Energy Technology Data Exchange (ETDEWEB)

    Veinot, Jonathan G C; Henderson, Eric J; Hessel, Colin M, E-mail: jveinot@ualberta.ca [Department of Chemistry, University of Alberta, Edmonton, Alberta (Canada)

    2009-11-15

    Semiconductor nanocrystals are intriguing because of their electronic, optical, and chemical characteristics. Silicon nanocrystals (Si-NCs) of sub-5 nm dimension are of particular interest due to their intense photoluminescent response and the promise of linking silicon photonics and electronics. Other related nanomaterials of technological importance include SiC and Ge. The following contribution describes key experimental findings pertaining to synthetic methodology, investigation of nanodomain formation and growth, as determined by X-ray powder diffraction (XRD) and photoluminescence (PL) spectroscopy for a series of sol-gel derived prepolymers suitable for preparing Group 14 based nanocrystal containing composites.

  13. Sol-gel derived precursors to Group 14 semiconductor nanocrystals - Convenient materials for enabling nanocrystal-based applications

    Science.gov (United States)

    Veinot, Jonathan G. C.; Henderson, Eric J.; Hessel, Colin M.

    2009-11-01

    Semiconductor nanocrystals are intriguing because of their electronic, optical, and chemical characteristics. Silicon nanocrystals (Si-NCs) of sub-5 nm dimension are of particular interest due to their intense photoluminescent response and the promise of linking silicon photonics and electronics. Other related nanomaterials of technological importance include SiC and Ge. The following contribution describes key experimental findings pertaining to synthetic methodology, investigation of nanodomain formation and growth, as determined by X-ray powder diffraction (XRD) and photoluminescence (PL) spectroscopy for a series of sol-gel derived prepolymers suitable for preparing Group 14 based nanocrystal containing composites.

  14. Photothermally triggered actuation of hybrid materials as a new platform for in vitro cell manipulation

    Science.gov (United States)

    Sutton, Amy; Shirman, Tanya; Timonen, Jaakko V. I.; England, Grant T.; Kim, Philseok; Kolle, Mathias; Ferrante, Thomas; Zarzar, Lauren D.; Strong, Elizabeth; Aizenberg, Joanna

    2017-03-01

    Mechanical forces in the cell's natural environment have a crucial impact on growth, differentiation and behaviour. Few areas of biology can be understood without taking into account how both individual cells and cell networks sense and transduce physical stresses. However, the field is currently held back by the limitations of the available methods to apply physiologically relevant stress profiles on cells, particularly with sub-cellular resolution, in controlled in vitro experiments. Here we report a new type of active cell culture material that allows highly localized, directional and reversible deformation of the cell growth substrate, with control at scales ranging from the entire surface to the subcellular, and response times on the order of seconds. These capabilities are not matched by any other method, and this versatile material has the potential to bridge the performance gap between the existing single cell micro-manipulation and 2D cell sheet mechanical stimulation techniques.

  15. Metal-organic Frameworks as A Tunable Platform for Designing Functional Molecular Materials

    Science.gov (United States)

    Wang, Cheng; Liu, Demin

    2013-01-01

    Metal-organic frameworks (MOFs), also known as coordination polymers, represent an interesting class of crystalline molecular materials that are synthesized by combining metal-connecting points and bridging ligands. The modular nature of and mild conditions for MOF synthesis have permitted the rational structural design of numerous MOFs and the incorporation of various functionalities via constituent building blocks. The resulting designer MOFs have shown promise for applications in a number of areas, including gas storage/separation, nonlinear optics/ferroelectricity, catalysis, energy conversion/storage, chemical sensing, biomedical imaging, and drug delivery. The structure-property relationships of MOFs can also be readily established by taking advantage of the knowledge of their detailed atomic structures, which enables fine-tuning of their functionalities for desired applications. Through the combination of molecular synthesis and crystal engineering MOFs thus present an unprecedented opportunity for the rational and precise design of functional materials. PMID:23944646

  16. Surface and material analytics based on Dresden-EBIS platform technology

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, M., E-mail: mike.schmidt@dreebit.com; König, J., E-mail: mike.schmidt@dreebit.com [DREEBIT GmbH, Grossroehrsdorf (Germany); Bischoff, L. [Helmholtz-Zentrum Dresden-Rossendorf, Dresden (Germany); Pilz, W. [Dresden University of Technology, Dresden (Germany); Zschornack, G. [Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany and Dresden University of Technology, Dresden (Germany)

    2015-01-09

    Nowadays widely used mass spectrometry systems utilize energetic ions hitting a sample and sputter material from the surface of a specimen. The generated secondary ions are separated and detected with high mass resolution to determine the target materials constitution. Based on this principle, we present an alternative approach implementing a compact Electron Beam Ion Source (EBIS) in combination with a Liquid Metal Ion Source (LMIS). An LMIS can deliver heavy elements which generate high sputter yields on a target surface. More than 90% of this sputtered material consists of mono- and polyatomic neutrals. These particles are able to penetrate the magnetic field of an EBIS and they will be ionized within the electron beam. A broad spectrum of singly up to highly charged ions can be extracted depending on the operation conditions. Polyatomic ions will decay during the charge-up process. A standard bending magnet or a Wien filter is used to separate the different ion species due to their mass-to-charge ratio. Using different charge states of ions as it is common with EBIS it is also possible to resolve interfering charge-to-mass ratios of only singly charged ions. Different setups for the realization of feeding the electron beam with sputtered atoms of solids will be presented and discussed. As an example the analysis of a copper surface is used to show high-resolution spectra with low background noise. Individual copper isotopes and clusters with different isotope compositions can be resolved at equal atomic numbers. These results are a first step for the development of a new compact low-cost and high-resolution mass spectrometry system. In a more general context, the described technique demonstrates an efficient method for feeding an EBIS with atoms of nearly all solid elements from various solid target materials. The new straightforward design of the presented setup should be of high interest for a broad range of applications in materials research as well as for

  17. Surface and material analytics based on Dresden-EBIS platform technology

    Science.gov (United States)

    Schmidt, M.; König, J.; Bischoff, L.; Pilz, W.; Zschornack, G.

    2015-01-01

    Nowadays widely used mass spectrometry systems utilize energetic ions hitting a sample and sputter material from the surface of a specimen. The generated secondary ions are separated and detected with high mass resolution to determine the target materials constitution. Based on this principle, we present an alternative approach implementing a compact Electron Beam Ion Source (EBIS) in combination with a Liquid Metal Ion Source (LMIS). An LMIS can deliver heavy elements which generate high sputter yields on a target surface. More than 90% of this sputtered material consists of mono- and polyatomic neutrals. These particles are able to penetrate the magnetic field of an EBIS and they will be ionized within the electron beam. A broad spectrum of singly up to highly charged ions can be extracted depending on the operation conditions. Polyatomic ions will decay during the charge-up process. A standard bending magnet or a Wien filter is used to separate the different ion species due to their mass-to-charge ratio. Using different charge states of ions as it is common with EBIS it is also possible to resolve interfering charge-to-mass ratios of only singly charged ions. Different setups for the realization of feeding the electron beam with sputtered atoms of solids will be presented and discussed. As an example the analysis of a copper surface is used to show high-resolution spectra with low background noise. Individual copper isotopes and clusters with different isotope compositions can be resolved at equal atomic numbers. These results are a first step for the development of a new compact low-cost and high-resolution mass spectrometry system. In a more general context, the described technique demonstrates an efficient method for feeding an EBIS with atoms of nearly all solid elements from various solid target materials. The new straightforward design of the presented setup should be of high interest for a broad range of applications in materials research as well as for

  18. Hybrid Integrated Platforms for Silicon Photonics

    Directory of Open Access Journals (Sweden)

    John E. Bowers

    2010-03-01

    Full Text Available A review of recent progress in hybrid integrated platforms for silicon photonics is presented. Integration of III-V semiconductors onto silicon-on-insulator substrates based on two different bonding techniques is compared, one comprising only inorganic materials, the other technique using an organic bonding agent. Issues such as bonding process and mechanism, bonding strength, uniformity, wafer surface requirement, and stress distribution are studied in detail. The application in silicon photonics to realize high-performance active and passive photonic devices on low-cost silicon wafers is discussed. Hybrid integration is believed to be a promising technology in a variety of applications of silicon photonics.

  19. Nanoparticulate dye-semiconductor hybrid materials formed by electrochemical self-assembly as electrodes in photoelectrochemical cells

    Energy Technology Data Exchange (ETDEWEB)

    Nonomura, Kazuteru; Loewenstein, Thomas; Schlettwein, Derck [Inst. fuer Angewandte Physik, Justus-Liebig-Univ. Giessen (Germany); Michaelis, Esther; Woehrle, Dieter [Inst. fuer Organische und Makromolekulare Chemie, Univ. Bremen (Germany); Kunze, Peter; Schiek, Manuela; Al-Shamery, Katharina; Yoshida, Tsukasa [Physikalische Chemie, Univ. Oldenburg (Germany); Reemts, Jens; Kittel, Achim; Parisi, Juergen [Abt. Energie- und Halbleiterforschung, Univ. Oldenburg (Germany); Iwaya, Mirian Yoshie [Environmental and Renewable Energy Systems, Gifu Univ. (Japan); Wark, Michael [Inst. fuer Physikalische Chemie und Elektrochemie, Univ. Hannover (Germany); Rathousky, Jiri [J. Heyrovsky Inst. of Physical Chemistry, Academy of Sciences of the Czech Republic, Prague (Czech Republic)

    2009-07-15

    Dye-sensitized zinc oxide thin films were prepared, characterized and optimized for applications as photoelectrochemically active electrodes. Conditions were established under which crystalline thin films of ZnO with a porous texture were formed by electrochemically induced crystallization controlled by structure-directing agents (SDA). Dye molecules were adsorbed either directly as SDA during this preparation step or, preferably, following desorption of a SDA. The external quantum efficiency (IPCE) could thereby be increased significantly. Particular emphasis was laid on dye molecules that absorb in the red part of the visible spectrum. Model experiments under ultrahigh vacuum (UHV) conditions with dye molecules adsorbed on defined crystal planes of single crystals aimed at a deeper understanding of the coupling of the chromophore electronic {pi}-system within molecular aggregates and to the semiconductor surface. Detailed photoelectrochemical kinetic measurements were used to characterize and optimize the electrochemically prepared dye-sensitized ZnO films. Parallel electrical characterization in vacuum served to distinguish between contributions of charge transport within the ZnO semiconductor matrix and the ions of the electrolyte in the pore system of the electrode. (orig.)

  20. Semiconductor heterojunctions

    CERN Document Server

    Sharma, B L

    1974-01-01

    Semiconductor Heterojunctions investigates various aspects of semiconductor heterojunctions. Topics covered include the theory of heterojunctions and their energy band profiles, electrical and optoelectronic properties, and methods of preparation. A number of heterojunction devices are also considered, from photovoltaic converters to photodiodes, transistors, and injection lasers.Comprised of eight chapters, this volume begins with an overview of the theory of heterojunctions and a discussion on abrupt isotype and anisotype heterojunctions, along with graded heterojunctions. The reader is then

  1. Surface and Interface Engineering of Organometallic and Two Dimensional Semiconductor

    Science.gov (United States)

    Park, Jun Hong

    For over half a century, inorganic Si and III-V materials have led the modern semiconductor industry, expanding to logic transistor and optoelectronic applications. However, these inorganic materials have faced two different fundamental limitations, flexibility for wearable applications and scaling limitation as logic transistors. As a result, the organic and two dimensional have been studied intentionally for various fields. In the present dissertation, three different studies will be presented with followed order; (1) the chemical response of organic semiconductor in NO2 exposure. (2) The surface and stability of WSe2 in ambient air. (3) Deposition of dielectric on two dimensional materials using organometallic seeding layer. The organic molecules rely on the van der Waals interaction during growth of thin films, contrast to covalent bond inorganic semiconductors. Therefore, the morphology and electronic property at surface of organic semiconductor in micro scale is more sensitive to change in gaseous conditions. In addition, metal phthalocyanine, which is one of organic semiconductor materials, change their electronic property as reaction with gaseous analytes, suggesting as potential chemical sensing platforms. In the present part, the growth behavior of metal phthalocyanine and surface response to gaseous condition will be elucidated using scanning tunneling microscopy (STM). In second part, the surface of layered transition metal dichalcogenides and their chemical response to exposure ambient air will be investigated, using STM. Layered transition metal dichalcogenides (TMDs) have attracted widespread attention in the scientific community for electronic device applications because improved electrostatic gate control and suppression of short channel leakage resulted from their atomic thin body. To fabricate the transistor based on TMDs, TMDs should be exposed to ambient conditions, while the effect of air exposure has not been understood fully. In this part

  2. Emerging heterogeneous integrated photonic platforms on silicon

    Directory of Open Access Journals (Sweden)

    Fathpour Sasan

    2015-05-01

    Full Text Available Silicon photonics has been established as a mature and promising technology for optoelectronic integrated circuits, mostly based on the silicon-on-insulator (SOI waveguide platform. However, not all optical functionalities can be satisfactorily achieved merely based on silicon, in general, and on the SOI platform, in particular. Long-known shortcomings of silicon-based integrated photonics are optical absorption (in the telecommunication wavelengths and feasibility of electrically-injected lasers (at least at room temperature. More recently, high two-photon and free-carrier absorptions required at high optical intensities for third-order optical nonlinear effects, inherent lack of second-order optical nonlinearity, low extinction ratio of modulators based on the free-carrier plasma effect, and the loss of the buried oxide layer of the SOI waveguides at mid-infrared wavelengths have been recognized as other shortcomings. Accordingly, several novel waveguide platforms have been developing to address these shortcomings of the SOI platform. Most of these emerging platforms are based on heterogeneous integration of other material systems on silicon substrates, and in some cases silicon is integrated on other substrates. Germanium and its binary alloys with silicon, III–V compound semiconductors, silicon nitride, tantalum pentoxide and other high-index dielectric or glass materials, as well as lithium niobate are some of the materials heterogeneously integrated on silicon substrates. The materials are typically integrated by a variety of epitaxial growth, bonding, ion implantation and slicing, etch back, spin-on-glass or other techniques. These wide range of efforts are reviewed here holistically to stress that there is no pure silicon or even group IV photonics per se. Rather, the future of the field of integrated photonics appears to be one of heterogenization, where a variety of different materials and waveguide platforms will be used for

  3. Methods of producing free-standing semiconductors using sacrificial buffer layers and recyclable substrates

    Science.gov (United States)

    Ptak, Aaron Joseph; Lin, Yong; Norman, Andrew; Alberi, Kirstin

    2015-05-26

    A method of producing semiconductor materials and devices that incorporate the semiconductor materials are provided. In particular, a method is provided of producing a semiconductor material, such as a III-V semiconductor, on a spinel substrate using a sacrificial buffer layer, and devices such as photovoltaic cells that incorporate the semiconductor materials. The sacrificial buffer material and semiconductor materials may be deposited using lattice-matching epitaxy or coincident site lattice-matching epitaxy, resulting in a close degree of lattice matching between the substrate material and deposited material for a wide variety of material compositions. The sacrificial buffer layer may be dissolved using an epitaxial liftoff technique in order to separate the semiconductor device from the spinel substrate, and the spinel substrate may be reused in the subsequent fabrication of other semiconductor devices. The low-defect density semiconductor materials produced using this method result in the enhanced performance of the semiconductor devices that incorporate the semiconductor materials.

  4. Semiconductor assisted metal deposition for nanolithography applications

    Science.gov (United States)

    Rajh, Tijana; Meshkov, Natalia; Nedelijkovic, Jovan M.; Skubal, Laura R.; Tiede, David M.; Thurnauer, Marion

    2001-01-01

    An article of manufacture and method of forming nanoparticle sized material components. A semiconductor oxide substrate includes nanoparticles of semiconductor oxide. A modifier is deposited onto the nanoparticles, and a source of metal ions are deposited in association with the semiconductor and the modifier, the modifier enabling electronic hole scavenging and chelation of the metal ions. The metal ions and modifier are illuminated to cause reduction of the metal ions to metal onto the semiconductor nanoparticles.

  5. Optical processes in semiconductors

    CERN Document Server

    Pankove, Jacques I

    1975-01-01

    Based on a series of lectures at Berkeley, 1968-1969, this is the first book to deal comprehensively with all of the phenomena involving light in semiconductors. The author has combined, for the graduate student and researcher, a great variety of source material, journal research, and many years of experimental research, adding new insights published for the first time in this book.Coverage includes energy states in semiconductors and their perturbation by external parameters, absorption, relationships between optical constants, spectroscopy, radiative transitions, nonradiative recombination

  6. Advances in semiconductor lasers

    CERN Document Server

    Coleman, James J; Jagadish, Chennupati

    2012-01-01

    Semiconductors and Semimetals has distinguished itself through the careful selection of well-known authors, editors, and contributors. Originally widely known as the ""Willardson and Beer"" Series, it has succeeded in publishing numerous landmark volumes and chapters. The series publishes timely, highly relevant volumes intended for long-term impact and reflecting the truly interdisciplinary nature of the field. The volumes in Semiconductors and Semimetals have been and will continue to be of great interest to physicists, chemists, materials scientists, and device engineers in academia, scien

  7. Separation of C2 Hydrocarbons by Porous Materials: Metal Organic Frameworks as Platform

    Energy Technology Data Exchange (ETDEWEB)

    Banerjee, Debasis; Liu, Jun; Thallapally, Praveen K.

    2014-12-22

    The effective separation of small hydrocarbon molecules (C1 – C4) is an important process for petroleum industry, determining the end price of many essential commodities in our daily lives. Current technologies for separation of these molecules rely on energy intensive fractional distillation processes at cryogenic temperature, which is particularly difficult because of their similar volatility. In retrospect, adsorptive separation using solid state adsorbents might be a cost effective alternative. Several types of solid state adsorbents (e.g. zeolite molecular sieves) were tested for separation of small hydrocarbon molecules as a function of pressure, temperature or vacuum. Among different types of plausible adsorbents, metal organic frameworks (MOFs), a class of porous, crystalline, inorganic-organic hybrid materials, is particularly promising. In this brief comment article, we discuss the separation properties of different types of solid state adsorbents, with a particular emphasis on MOF based adsorbents for separation of C2 hydrocarbon molecules.

  8. Electronic structure of ferromagnetic semiconductor material on the monoclinic and rhombohedral ordered double perovskites La{sub 2}FeCoO{sub 6}

    Energy Technology Data Exchange (ETDEWEB)

    Fuh, Huei-Ru; Chang, Ching-Ray [Department of Physics, National Taiwan University, Taipei 106, Taiwan (China); Graduate Institute of Applied Physics, National Taiwan University, Taipei 106, Taiwan (China); Weng, Ke-Chuan [Department of Physics, National Taiwan University, Taipei 106, Taiwan (China); Wang, Yin-Kuo, E-mail: kant@ntnu.edu.tw [Center for General Education and Department of Physics, National Taiwan Normal University, Taipei 106, Taiwan (China)

    2015-05-07

    Double perovskite La{sub 2}FeCoO{sub 6} with monoclinic structure and rhombohedra structure show as ferromagnetic semiconductor based on density functional theory calculation. The ferromagnetic semiconductor state can be well explained by the superexchange interaction. Moreover, the ferromagnetic semiconductor state remains under the generalized gradient approximation (GGA) and GGA plus onsite Coulomb interaction calculation.

  9. Beyond amorphous organic semiconductors

    Science.gov (United States)

    Hanna, Jun-ichi

    2003-07-01

    Recently it has been discovered that some types of liquid crystals, which believed to be governed by ionic conduction, exhibit a very fast electronic conduction. Their charge carrier transport is characterized by high mobility over 10-2 cm2/Vs independent of electric field and temperature. Now, the liquid crystals are being recognized as a new class of organic semiconductors. In this article, a new aspect of liquid crystals as a self-organizing molecular semiconductor are reviewed, focused on their basic charge carrier transport properties and discussed in comparison with those of molecular crystals and amorphous materials. And it is concluded that the liquid crystal is promising as a quality organic semiconductor for the devices that require a high mobility.

  10. Semiconductors for organic transistors

    OpenAIRE

    Antonio Facchetti

    2007-01-01

    Organic molecules/polymers with a π-conjugated (hetero)aromatic backbone are capable of transporting charge and interact efficiently with light. Therefore, these systems can act as semiconductors in opto-electronic devices similar to inorganic materials. However, organic chemistry offers tools for tailoring materials' functional properties via modifications of the molecular/monomeric units, opening new possibilities for inexpensive device manufacturing. This article reviews the fundamental as...

  11. Hybrid chromophore/template nanostructures: A customizable platform material for solar energy storage and conversion

    Energy Technology Data Exchange (ETDEWEB)

    Kolpak, AM; Grossman, JC

    2013-01-21

    Challenges with cost, cyclability, and/or low energy density have largely prevented the development of solar thermal fuels, a potentially attractive alternative energy technology based on molecules that can capture and store solar energy as latent heat in a closed cycle. In this paper, we present a set of novel hybrid photoisomer/template solar thermal fuels that can potentially circumvent these challenges. Using first-principles computations, we demonstrate that these fuels, composed of organic photoisomers bound to inexpensive carbon-based templates, can reversibly store solar energy at densities comparable to Li-ion batteries. Furthermore, we show that variation of the template material in combination with the photoisomer can be used to optimize many of the key performance metrics of the fuel-i.e., the energy density, the storage lifetime, the temperature of the output heat, and the efficiency of the solar-to-heat conversion. Our work suggests that the solar thermal fuels concept can be translated into a practical and highly customizable energy storage and conversion technology. (C) 2013 American Institute of Physics. [http://dx.doi.org/10.1063/1.4773306

  12. Hybrid chromophore/template nanostructures: a customizable platform material for solar energy storage and conversion.

    Science.gov (United States)

    Kolpak, Alexie M; Grossman, Jeffrey C

    2013-01-21

    Challenges with cost, cyclability, and/or low energy density have largely prevented the development of solar thermal fuels, a potentially attractive alternative energy technology based on molecules that can capture and store solar energy as latent heat in a closed cycle. In this paper, we present a set of novel hybrid photoisomer/template solar thermal fuels that can potentially circumvent these challenges. Using first-principles computations, we demonstrate that these fuels, composed of organic photoisomers bound to inexpensive carbon-based templates, can reversibly store solar energy at densities comparable to Li-ion batteries. Furthermore, we show that variation of the template material in combination with the photoisomer can be used to optimize many of the key performance metrics of the fuel-i.e., the energy density, the storage lifetime, the temperature of the output heat, and the efficiency of the solar-to-heat conversion. Our work suggests that the solar thermal fuels concept can be translated into a practical and highly customizable energy storage and conversion technology.

  13. Synthesis and characterization by solid-state impedance spectroscopy of semiconductor Cu2ZnSnS4 material for photovoltaic technologies

    Science.gov (United States)

    Muñoz, M.; Vera-López, E.; Gómez-Cuaspud, J. A.; Pineda-Triana, Y.

    2017-01-01

    Current work is focused on the synthesis and characterization of a Cu2ZnSnS4 material (Abbreviated CZTS), identified as a potential candidate for the manufacture of photovoltaic cells. The material was obtained by means of a hydrothermal route which permits a simple and economical alternative to synthesize advanced materials for photovoltaic applications. The synthesis of a solid started from corresponding metal nitrates of Cu(NO3)2.6H2O, Zn(NO3)2, Sn(NO3)4.6H2O and thiourea as S source, which were dissolved in deionized water until complete a 1.0mol L-1 concentration. The solution was kept in a Teflon lined steel vessel with magnetic stirring (150 rpm) and treated at 300°C for 12 hours to form the crystalline phase. The initial characterization of solid was done using UV spectroscopy to validate the chemical process and identify the corresponding Band-gap around (1.43eV). The structural characterization by X-ray diffraction, confirmed the presence of nanometric solids (140-260nm). The morphological characterization by SEM analysis evidenced a homogeneous material in the form of micrometric aggregates, by a related synthesis method. Finally, the electrical characterization by means of solid state impedance spectroscopy demonstrated a semiconductor behaviour which evidenced the transport phenomena associated with a Warburg resistance.

  14. Microwave assisted synthesis and characterisation of a zinc oxide/tobacco mosaic virus hybrid material. An active hybrid semiconductor in a field-effect transistor device.

    Science.gov (United States)

    Sanctis, Shawn; Hoffmann, Rudolf C; Eiben, Sabine; Schneider, Jörg J

    2015-01-01

    Tobacco mosaic virus (TMV) has been employed as a robust functional template for the fabrication of a TMV/zinc oxide field effect transistor (FET). A microwave based approach, under mild conditions was employed to synthesize stable zinc oxide (ZnO) nanoparticles, employing a molecular precursor. Insightful studies of the decomposition of the precursor were done using NMR spectroscopy and material characterization of the hybrid material derived from the decomposition was achieved using dynamic light scattering (DLS), transmission electron microscopy (TEM), grazing incidence X-ray diffractometry (GI-XRD) and atomic force microscopy (AFM). TEM and DLS data confirm the formation of crystalline ZnO nanoparticles tethered on top of the virus template. GI-XRD investigations exhibit an orientated nature of the deposited ZnO film along the c-axis. FET devices fabricated using the zinc oxide mineralized virus template material demonstrates an operational transistor performance which was achieved without any high-temperature post-processing steps. Moreover, a further improvement in FET performance was observed by adjusting an optimal layer thickness of the deposited ZnO on top of the TMV. Such a bio-inorganic nanocomposite semiconductor material accessible using a mild and straightforward microwave processing technique could open up new future avenues within the field of bio-electronics.

  15. Microwave assisted synthesis and characterisation of a zinc oxide/tobacco mosaic virus hybrid material. An active hybrid semiconductor in a field-effect transistor device

    Directory of Open Access Journals (Sweden)

    Shawn Sanctis

    2015-03-01

    Full Text Available Tobacco mosaic virus (TMV has been employed as a robust functional template for the fabrication of a TMV/zinc oxide field effect transistor (FET. A microwave based approach, under mild conditions was employed to synthesize stable zinc oxide (ZnO nanoparticles, employing a molecular precursor. Insightful studies of the decomposition of the precursor were done using NMR spectroscopy and material characterization of the hybrid material derived from the decomposition was achieved using dynamic light scattering (DLS, transmission electron microscopy (TEM, grazing incidence X-ray diffractometry (GI-XRD and atomic force microscopy (AFM. TEM and DLS data confirm the formation of crystalline ZnO nanoparticles tethered on top of the virus template. GI-XRD investigations exhibit an orientated nature of the deposited ZnO film along the c-axis. FET devices fabricated using the zinc oxide mineralized virus template material demonstrates an operational transistor performance which was achieved without any high-temperature post-processing steps. Moreover, a further improvement in FET performance was observed by adjusting an optimal layer thickness of the deposited ZnO on top of the TMV. Such a bio-inorganic nanocomposite semiconductor material accessible using a mild and straightforward microwave processing technique could open up new future avenues within the field of bio-electronics.

  16. CsSnI3: Semiconductor or metal? High electrical conductivity and strong near-infrared photoluminescence from a single material. High hole mobility and phase-transitions.

    Science.gov (United States)

    Chung, In; Song, Jung-Hwan; Im, Jino; Androulakis, John; Malliakas, Christos D; Li, Hao; Freeman, Arthur J; Kenney, John T; Kanatzidis, Mercouri G

    2012-05-23

    intrinsically. Thus, although stoichiometric CsSnI(3) is a semiconductor, the material is prone to intrinsic defects associated with Sn vacancies. This creates highly mobile holes which cause the materials to appear metallic.

  17. Microbial toxicity of ionic species leached from the II-VI semiconductor materials, cadmium telluride (CdTe) and cadmium selenide (CdSe).

    Science.gov (United States)

    Ramos-Ruiz, Adriana; Zeng, Chao; Sierra-Alvarez, Reyes; Teixeira, Luiz H; Field, Jim A

    2016-11-01

    This work investigated the microbial toxicity of soluble species that can potentially be leached from the II-VI semiconductor materials, cadmium telluride and cadmium selenide. The soluble ions tested included: cadmium, selenite, selenate, tellurite, and tellurate. Their toxicity towards the acetoclastic and hydrogen-consuming trophic groups in a methanogenic consortium as well as towards a bioluminescent marine bacterium, Aliivibrio fischeri (Microtox(®) test), was assessed. The acetoclastic methanogenic activity was the most affected as evidenced by the low 50% inhibiting concentrations (IC50) values obtained of 8.6 mg L(-1) for both cadmium and tellurite, 10.2 mg L(-1) for tellurate, and 24.1 mg L(-1) for selenite. Both tellurium oxyanions caused a strong inhibition of acetoclastic methanogenesis at low concentrations, each additional increment in concentration provided progressively less inhibition increase. In the case of the hydrogenotrophic methanogenesis, cadmium followed by selenite caused the greatest inhibition with IC50 values of 2.9 and 18.0 mg L(-1), respectively. Tellurite caused a moderate effect as evidenced by a 36.8% inhibition of the methanogenic activity at the highest concentration tested, and a very mild effect of tellurate was observed. Microtox(®) analyses showed a noteworthy inhibition of cadmium, selenite, and tellurite with 50% loss in bioluminescence after 30 min of exposure of 5.5, 171.1, and 458.6 mg L(-1), respectively. These results suggest that the leaching of cadmium, tellurium and selenium ions from semiconductor materials can potentially cause microbial toxicity.

  18. Semiconductor Lasers and Their Application in Optical Fiber Communication.

    Science.gov (United States)

    Agrawal, Govind P.

    1985-01-01

    Working principles and operating characteristics of the extremely compact and highly efficient semiconductor lasers are explained. Topics include: the p-n junction; Fabry-Perot cavity; heterostructure semiconductor lasers; materials; emission characteristics; and single-frequency semiconductor lasers. Applications for semiconductor lasers include…

  19. Photonic crystal waveguides based on wide-gap semiconductor alloys

    Science.gov (United States)

    Martin, Aude; Combrié, Sylvain; De Rossi, Alfredo

    2017-03-01

    This review is devoted to integrated photonic platforms based on large band-gap semiconductors, alternatives to silicon photonics. The large electronic band gap of the material employed is chosen to address the specific needs of nonlinear optics, and, in particular, lower nonlinear losses and the capability of handling larger optical power densities. Moreover, these new platforms offer broader transmission spectra, extending to the visible spectral region, which is also required for other applications, particularly sensing and bio-related photonics. The focus is on nanoscale patterned waveguiding structures, which, owing to the tight confinement of light, have demonstrated a large nonlinear response. The third-order nonlinear response and the related parametric interactions will be considered here, encompassing four-wave mixing, phase-sensitive amplification, wavelength conversion, and also nonlinear pulse propagation and soliton dynamics. The comparison between different materials and waveguide design highlights specific features of photonic crystal waveguides.

  20. Performance analysis of series-shunt and TEE types of microwave switches of different semiconductor materials for Satellite communications

    Directory of Open Access Journals (Sweden)

    Cirilo Gabino León Vega

    2014-01-01

    Full Text Available Se presenta un análisis de desempeño de conmutadores de microondas compuestos, de una entrada y una salida (SPST, diseñados con diodos p-i-n tipo masa con diferentes tipos de materiales semiconductores para las bandas de frecuencia Ku y Ka. Las dos configuraciones de conmutadores compuestos más comunes son aquellos con diodos p-i-n ubicados en diseños serie-paralelo y serie-paralelo-serie (TEE y aquí son analizados utilizando materiales semiconductores de Si, GaAs, GaN-WZ, GaN-ZB, GaSb, InP y SiC. Se presenta la metodología utilizada en los cálculos de resistencia serie y capacitancia de unión en los diodos p-i-n con el propósito de calcular los parámetros de desempeño propios de cada dispositivo conmutador. Estos parámetros son pérdida de inserción y aislamiento. Los conmutadores de tipo serie-paralelo, exceptuando el conmutador basado en diodo p-i-n de SiC-6 H, exhiben pérdidas de inserción menores a 0.2 dB y aislamiento hasta 41dB a la frecuencia de operación de 12 GHz. El conmutador diodo p-i-n tipo TEE con base en GaN-ZB tiene la mejor respuesta de pérdida de inserción menor a 0.23 dB y aislamiento hasta 52 dB, a las frecuencias de operación de 12 GHz y 30 GHz. El conmutador compuesto con base en diodo p-i-n de GaSb alcanza el mejor desempeño a la frecuencia de 12 GHz. Los conmutadores de microondas con configuración TEE tienen respuestas satisfactorias para la frecuencia de 30 GHz.

  1. Characterization of the Structural and Optical Properties of III-V Semiconductor Materials for Solar Cell Applications

    Science.gov (United States)

    Xie, Hongen

    The work contained in this dissertation is focused on the structural and optical properties of III-V semiconductor structures for solar cell applications. By using transmission electron microscopy, many of their structural properties have been investigated, including morphology, defects, and strain relaxation. The optical properties of the semiconductor structures have been studied by photoluminescence and cathodoluminescence. Part of this work is focused on InAs quantum dots (QDs) embedded in AlGaAs matrices. This QD system is important for the realization of intermediate-band solar cells, which has three light absorption paths for high efficiency photovoltaics. The suppression of plastic strain relaxation in the QDs shows a significant improvement of the optoelectronic properties. A partial capping followed by a thermal annealing step is used to achieve spool-shaped QDs with a uniform height following the thickness of the capping layer. This step keeps the height of the QDs below a critical value that is required for plastic relaxation. The spool-shaped QDs exhibit two photoluminescence peaks that are attributed to ground and excited state transitions. The luminescence peak width is associated with the QD diameter distribution. An InAs cover layer formed during annealing is found responsible for the loss of the confinement of the excited states in smaller QDs. The second part of this work is focused on the investigation of the In xGa1-xN thin films having different bandgaps for double-junction solar cells. InxGa1-xN films with x ≤ 0.15 were grown by metal organic chemical vapor deposition. The defects in films with different indium contents have been studied. Their effect on the optical properties of the film have been investigated by cathodoluminescence. InxGa 1-xN films with indium contents higher than 20% were grown by molecular beam epitaxy. The strain relaxation in the films has been measured from electron diffraction patterns taken in cross-sectional TEM

  2. Organic semiconductors in a spin

    CERN Document Server

    Samuel, I

    2002-01-01

    A little palladium can go a long way in polymer-based light-emitting diodes. Inorganic semiconductors such as silicon and gallium arsenide are essential for countless applications in everyday life, ranging from PCs to CD players. However, while they offer unrivalled computational speed, inorganic semiconductors are also rigid and brittle, which means that they are less suited to applications such as displays and flexible electronics. A completely different class of materials - organic semiconductors - are being developed for these applications. Organic semiconductors have many attractive features: they are easy to make, they can emit visible light, and there is tremendous scope for tailoring their properties to specific applications by changing their chemical structure. Research groups and companies around the world have developed a wide range of organic-semiconductor devices, including transistors, light-emitting diodes (LEDs), solar cells and lasers. (U.K.)

  3. CuSbS2: a promising semiconductor photo-absorber material for quantum dot sensitized solar cells.

    Science.gov (United States)

    Liu, Zhifeng; Huang, Jiajun; Han, Jianhuan; Hong, Tiantian; Zhang, Jing; Liu, Zhihua

    2016-06-22

    A facile, low-cost, simple solution-based process for preparing novel promising chalcostibite CuSbS2 sensitized ZnO nanorod arrays, and the application of these as photoanodes of semiconductor quantum dot sensitized inorganic-organic solar cells (QDSSCs) is reported for the first time. ZnO/CuSbS2 nanofilms were designed and prepared through a simple successive ionic layer adsorption and reaction (SILAR) method and heat treatment process by employing ZnO nanorods as reactive templates. Novel efficient QDSSCs based on the ZnO/CuSbS2 nanofilms plus a solid electrolyte of poly(3-hexylthiophene) (P3HT) were formed, and a power conversion efficiency of 1.61% was achieved. The excellent photoelectric performance is attributed to the improved light absorption efficiency, widened light absorption region, ideal band gap value, and high speed electron injection and transportation. The results demonstrate that a novel ternary sensitizer (I-V-VI2) can be synthesized via a low-cost method as described here and has great promising potential as a sensitizer in solar cells.

  4. Novel material for nonvolatile ovonic unified memory(OUM)-Ag11In12Te26Sb51 phase change semiconductor

    Institute of Scientific and Technical Information of China (English)

    Liu Bo; Song Zhi-Tang; Zhang Ting; Feng Song-Lin; Gan Fu-Xi

    2004-01-01

    In this paper, Ag11In12Te26Sb51 phase change semiconductor films have been prepared by dc sputtering. The crystallization behaviour of amorphous Ag11In12Te26Sb51 thin films was investigated by using differential scanning calorimetry and x-ray diffraction. It was found that the crystallization temperature is about 483K and the melting temperature is 754.8K and the activation energy for crystallization, Ea, is 2.07eV. The crystalline Ag11In12Te26Sb51 films were obtained using initializer. The initialization conditions have a great effect on the sheet resistance of Ag11In12Te26Sb51films. We found that the effect of the initialization condition on the sheet resistance can be ascribed to the crystallinity of Ag11In12Te26Sb51 films. The sheet resistance of the amorphous (Ramo) film is found to be larger than 1× 106Ω and that of the crystalline (Rcry) film lies in the range from about 103 to 104Ω. So we have the ratio Ramo/Rcry=10 2 ~ 103,which is sufficiently large for application in memory devices.

  5. Determination of bulk diffusion lengths for angle-lapped semiconductor material via the scanning electron microscope: A theoretical analysis

    Science.gov (United States)

    Vonroos, O.

    1978-01-01

    A standard procedure for the determination of the minority carrier diffusion length by means of a scanning electron microscope (SEM) consists in scanning across an angle-lapped surface of a P-N junction and measuring the resultant short circuit current I sub sc as a function of beam position. A detailed analysis of the I sub sc originating from this configuration is presented. It is found that, for a point source excitation, the I sub sc depends very simply on x, the variable distance between the surface and the junction edge. The expression for the I sub sc of a planar junction device is well known. If d, the constant distance between the plane of the surface of the semiconductor and the junction edge in the expression for the I of a planar junction is merely replaced by x, the variable distance of the corresponding angle-lapped junction, an expression results which is correct to within a small fraction of a percent as long as the angle between the surfaces, 2 theta sub 1, is smaller than 10 deg.

  6. Ultrathin Epitaxial Ferromagneticγ-Fe2O3Layer as High Efficiency Spin Filtering Materials for Spintronics Device Based on Semiconductors

    KAUST Repository

    Li, Peng

    2016-06-01

    In spintronics, identifying an effective technique for generating spin-polarized current has fundamental importance. The spin-filtering effect across a ferromagnetic insulating layer originates from unequal tunneling barrier heights for spin-up and spin-down electrons, which has shown great promise for use in different ferromagnetic materials. However, the low spin-filtering efficiency in some materials can be ascribed partially to the difficulty in fabricating high-quality thin film with high Curie temperature and/or partially to the improper model used to extract the spin-filtering efficiency. In this work, a new technique is successfully developed to fabricate high quality, ferrimagnetic insulating γ-Fe2O3 films as spin filter. To extract the spin-filtering effect of γ-Fe2O3 films more accurately, a new model is proposed based on Fowler–Nordheim tunneling and Zeeman effect to obtain the spin polarization of the tunneling currents. Spin polarization of the tunneled current can be as high as −94.3% at 2 K in γ-Fe2O3 layer with 6.5 nm thick, and the spin polarization decays monotonically with temperature. Although the spin-filter effect is not very high at room temperature, this work demonstrates that spinel ferrites are very promising materials for spin injection into semiconductors at low temperature, which is important for development of novel spintronics devices. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

  7. Self-assembled molecular platforms for bacteria/material biointerface studies: importance to control functional group accessibility.

    Science.gov (United States)

    Böhmler, Judith; Ponche, Arnaud; Anselme, Karine; Ploux, Lydie

    2013-11-13

    Highly controlled mixed molecular layers are crucial to study the role of material surface chemistry in biointerfaces, such as bacteria and subsequent biofilms interacting with biomaterials. Silanes with non-nucleophilic functional groups are promising to form self-assembled monolayers (SAMs) due to their low sensitivity to side-reactions. Nevertheless, the real control of surface chemistry, layer structure, and organization has not been determined. Here, we report a comprehensive synthesis and analysis of undecyltrichlorosilane- and 11-bromoundecyltrichlorosilane-based mixed SAMs on silicon substrates. The impact of the experimental conditions on the control of surface chemistry, layer structure, and organization was investigated by combining survey and high-resolution X-ray photoelectron spectroscopy analysis, wettability measurements, and ellipsometry. The most appropriate conditions were first determined for elaborating highly reproducible, but easily made, pure 11-bromoundecyltrichlorosilane SAMs. We have demonstrated that the control is maintained on more complex surfaces, i.e., surfaces revealing various chemical densities, which were obtained with different ratios of undecyltrichlorosilane and 11-bromoundecyltrichlorosilane. The control is also maintained after bromine to amine group conversion via SN2 bromine-to-azide reactions. The appropriateness of such highly controlled amino- and methyl-group revealing platforms (NH2-X%/CH3) for biointerface studies was shown by the higher reproducibility of bacterial adhesion on NH2-100%/CH3 SAMs compared to bacterial adhesion on molecular layers of overall similar surface chemistry but less control at the molecular scale.

  8. Silicon carbide, an emerging high temperature semiconductor

    Science.gov (United States)

    Matus, Lawrence G.; Powell, J. Anthony

    1991-01-01

    In recent years, the aerospace propulsion and space power communities have expressed a growing need for electronic devices that are capable of sustained high temperature operation. Applications for high temperature electronic devices include development instrumentation within engines, engine control, and condition monitoring systems, and power conditioning and control systems for space platforms and satellites. Other earth-based applications include deep-well drilling instrumentation, nuclear reactor instrumentation and control, and automotive sensors. To meet the needs of these applications, the High Temperature Electronics Program at the Lewis Research Center is developing silicon carbide (SiC) as a high temperature semiconductor material. Research is focussed on developing the crystal growth, characterization, and device fabrication technologies necessary to produce a family of silicon carbide electronic devices and integrated sensors. The progress made in developing silicon carbide is presented, and the challenges that lie ahead are discussed.

  9. A platform for analysis of nanoscale liquids with an integrated sensor array based on 2-d material

    CERN Document Server

    Engel, M; Neumann, R F; Giro, R; Feger, C; Avouris, P; Steiner, M

    2016-01-01

    Analysis of nanoscale liquids, including wetting and flow phenomena, is a scientific challenge with far reaching implications for industrial technologies. We report the conception, development, and application of an integrated platform for the experimental characterization of liquids at the nanometer scale. The platform combines the sensing functionalities of an integrated, two-dimensional electronic device array with in situ application of highly sensitive optical micro-spectroscopy and atomic force microscopy. We demonstrate the performance capabilities of the platform with an embodiment based on an array of integrated, optically transparent graphene sensors. The application of electronic and optical sensing in the platform allows for differentiating between liquids electronically, for determining a liquid's molecular fingerprint, and for monitoring surface wetting dynamics in real time. In order to explore the platform's sensitivity limits, we record topographies and optical spectra of individual, spatiall...

  10. Semiconductor Nanocrystals for Biological Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Fu, Aihua; Gu, Weiwei; Larabell, Carolyn; Alivisatos, A. Paul

    2005-06-28

    Conventional organic fluorophores suffer from poor photo stability, narrow absorption spectra and broad emission feature. Semiconductor nanocrystals, on the other hand, are highly photo-stable with broad absorption spectra and narrow size-tunable emission spectra. Recent advances in the synthesis of these materials have resulted in bright, sensitive, extremely photo-stable and biocompatible semiconductor fluorophores. Commercial availability facilitates their application in a variety of unprecedented biological experiments, including multiplexed cellular imaging, long-term in vitro and in vivo labeling, deep tissue structure mapping and single particle investigation of dynamic cellular processes. Semiconductor nanocrystals are one of the first examples of nanotechnology enabling a new class of biomedical applications.

  11. Three dimensional strained semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Voss, Lars; Conway, Adam; Nikolic, Rebecca J.; Leao, Cedric Rocha; Shao, Qinghui

    2016-11-08

    In one embodiment, an apparatus includes a three dimensional structure comprising a semiconductor material, and at least one thin film in contact with at least one exterior surface of the three dimensional structure for inducing a strain in the structure, the thin film being characterized as providing at least one of: an induced strain of at least 0.05%, and an induced strain in at least 5% of a volume of the three dimensional structure. In another embodiment, a method includes forming a three dimensional structure comprising a semiconductor material, and depositing at least one thin film on at least one surface of the three dimensional structure for inducing a strain in the structure, the thin film being characterized as providing at least one of: an induced strain of at least 0.05%, and an induced strain in at least 5% of a volume of the structure.

  12. High-throughput screening of thin-film semiconductor material libraries II: characterization of Fe-W-O libraries.

    Science.gov (United States)

    Meyer, Robert; Sliozberg, Kirill; Khare, Chinmay; Schuhmann, Wolfgang; Ludwig, Alfred

    2015-04-13

    Metal oxides are promising materials for solar water splitting. To identify suitable materials within the ternary system FeWO, thin-film material libraries with combined thickness and compositional gradients were synthesized by combinatorial reactive magnetron sputtering. These libraries (>1000 different samples) were investigated by means of structural and functional high-throughput characterization techniques to establish correlations between composition, crystallinity, morphology, thickness, and photocurrent density in the compositional range between (Fe6 W94 )Ox and (Fe61 W39 )Ox . In addition to the well-known phase WO3 , the binary phase W5 O14 and the ternary phase Fe2 O6 W show enhanced photoelectrochemical activity. The highest photocurrent density of 65 μA cm(-2) was achieved for the composition (Fe15 W85 )Ox , which contains the W5 O14 phase and has a thickness of 1060 nm.

  13. Cavity perturbation techniques for measurement of the microwave conductivity and dielectric constant of a bulk semiconductor material.

    Science.gov (United States)

    Eldumiati, I. I.; Haddad, G. I.

    1972-01-01

    Cavity perturbation techniques offer a very sensitive and highly versatile means for studying the complex microwave conductivity of a bulk material. A knowledge of the cavity coupling factor in the absence of perturbation, together with the change in the reflected power and the cavity resonance frequency shift, are adequate for the determination of the material properties. This eliminates the need to determine the Q-factor change with perturbation which may lead to appreciable error, especially in the presence of mismatch loss. The measurement accuracy can also be improved by a proper choice of the cavity coupling factor prior to the perturbation.

  14. Semiconductor sensors

    Energy Technology Data Exchange (ETDEWEB)

    Hartmann, Frank, E-mail: frank.hartmann@cern.c [Institut fuer Experimentelle Kernphysik, KIT, Wolfgang-Gaede-Str. 1, Karlsruhe 76131 (Germany)

    2011-02-01

    Semiconductor sensors have been around since the 1950s and today, every high energy physics experiment has one in its repertoire. In Lepton as well as Hadron colliders, silicon vertex and tracking detectors led to the most amazing physics and will continue doing so in the future. This contribution tries to depict the history of these devices exemplarily without being able to honor all important developments and installations. The current understanding of radiation damage mechanisms and recent R and D topics demonstrating the future challenges and possible technical solutions for the SLHC detectors are presented. Consequently semiconductor sensor candidates for an LHC upgrade and a future linear collider are also briefly introduced. The work presented here is a collage of the work of many individual silicon experts spread over several collaborations across the world.

  15. Optically and electrically controlled circularly polarized emission from cholesteric liquid crystal materials doped with semiconductor quantum dots.

    Science.gov (United States)

    Bobrovsky, Alexey; Mochalov, Konstantin; Oleinikov, Vladimir; Sukhanova, Alyona; Prudnikau, Anatol; Artemyev, Mikhail; Shibaev, Valery; Nabiev, Igor

    2012-12-04

    Novel types of electro- and photoactive quantum dot-doped cholesteric materials have been engineered. UV-irradiation or electric field application allows one to control the degree of circular polarization and intensity of fluorescence emission by prepared quantum dot-doped liquid crystal films. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Device Physics of Narrow Gap Semiconductors

    CERN Document Server

    Chu, Junhao

    2010-01-01

    Narrow gap semiconductors obey the general rules of semiconductor science, but often exhibit extreme features of these rules because of the same properties that produce their narrow gaps. Consequently these materials provide sensitive tests of theory, and the opportunity for the design of innovative devices. Narrow gap semiconductors are the most important materials for the preparation of advanced modern infrared systems. Device Physics of Narrow Gap Semiconductors offers descriptions of the materials science and device physics of these unique materials. Topics covered include impurities and defects, recombination mechanisms, surface and interface properties, and the properties of low dimensional systems for infrared applications. This book will help readers to understand not only the semiconductor physics and materials science, but also how they relate to advanced opto-electronic devices. The last chapter applies the understanding of device physics to photoconductive detectors, photovoltaic infrared detector...

  17. Back-side readout semiconductor photomultiplier

    Science.gov (United States)

    Choong, Woon-Seng; Holland, Stephen E

    2014-05-20

    This disclosure provides systems, methods, and apparatus related to semiconductor photomultipliers. In one aspect, a device includes a p-type semiconductor substrate, the p-type semiconductor substrate having a first side and a second side, the first side of the p-type semiconductor substrate defining a recess, and the second side of the p-type semiconductor substrate being doped with n-type ions. A conductive material is disposed in the recess. A p-type epitaxial layer is disposed on the second side of the p-type semiconductor substrate. The p-type epitaxial layer includes a first region proximate the p-type semiconductor substrate, the first region being implanted with p-type ions at a higher doping level than the p-type epitaxial layer, and a second region disposed on the first region, the second region being doped with p-type ions at a higher doping level than the first region.

  18. Bonds and bands in semiconductors

    CERN Document Server

    Phillips, Jim

    2009-01-01

    This classic work on the basic chemistry and solid state physics of semiconducting materials is now updated and improved with new chapters on crystalline and amorphous semiconductors. Written by two of the world's pioneering materials scientists in the development of semiconductors, this work offers in a single-volume an authoritative treatment for the learning and understanding of what makes perhaps the world's most important engineered materials actually work. Readers will find: --' The essential principles of chemical bonding, electron energy bands and their relationship to conductive and s

  19. SEMICONDUCTOR TECHNOLOGY Effects of the reciprocating parameters of the carrier on material removal rate and non-uniformity in CMP

    Science.gov (United States)

    Cailing, Wang; Renke, Kang; Zhuji, Jin; Dongming, Guo

    2010-12-01

    Based on the Preston equation, the mathematical model of the material removal rate (MRR), aiming at a line-orbit chemical mechanical polisher, is established. The MRR and the material removal non-uniformity (MRNU) are numerically calculated by MATLAB, and the effects of the reciprocating parameters on the MRR and the MRNU are discussed. It is shown that the smaller the inclination angle and the larger the amplitude, the higher the MRR and the lower the MRNU. The reciprocating speed of the carrier plays a minor role to improve the MRR and decrease the MRNU. The results provide a guide for the design of a polisher and the determination of a process in line-orbit chemical mechanical polishing.

  20. What is the best tool for transanal endoscopic microsurgery (TEM)? A case-matched study in 74 patients comparing a standard platform and a disposable material.

    Science.gov (United States)

    Mege, Diane; Bridoux, Valérie; Maggiori, Léon; Tuech, Jean-Jacques; Panis, Yves

    2017-07-01

    Transanal endoscopic microsurgery (TEM) is the gold standard for local excision of rectal lesions, but no study exists concerning the best material. The objective was to compare TEM using a disposable material vs a standard platform through a case-matched study. Patients who underwent TEM for rectal neoplasms were identified from prospective databases in two tertiary referral centers and matched according to four criteria (sex, tumor location, size, distance from the anal verge): TEM using a disposable material (GelPoint Applied®; group A) and TEM using a standard TEO® platform (Karl Storz, Tuttlingen, Germany; group B). A total of 74 patients were included and divided into group A (n = 33) and group B (n = 41). Full-thickness resection was less frequent in group A (85%) than B (100%; p = 0.01). Adenocarcinoma was less frequent in group A than B: 27 vs 42% (p = 0.03). No difference was noted regarding median operative time (53 vs 53 min; p = 0.6) and a peritoneal perforation rate (6 vs 20%; p = 0.17). Median length of stay was shorter in group A than B (4 vs 5 days; p study suggested that TEM can be performed using either a TEO® platform or a disposable material, with similar surgical results. The TEO® platform seems to be superior to obtain full-thickness and R0 resection.

  1. Semiconductor microcavity polaritons

    Energy Technology Data Exchange (ETDEWEB)

    Vinogradov, Evgenii A [Institute of Spectroscopy, Russian Academy of Sciences, Troitsk, Moscow region (Russian Federation)

    2002-12-31

    The optical properties of wide-gap semiconductor films on metal substrates were investigated experimentally by infrared spectroscopy, Raman scattering, and femtosecond spectroscopy techniques as well as theoretically in the framework of linear crystal optics. The optical spectra of such planar structures (microresonators) were shown to bear information on electromagnetic excitations of both the surface and the volume of the structure. The optical spectra are determined by the interaction of all dipole-active excitations of the component materials with the electromagnetic modes of the microresonator, which in turn are determined by the permittivities of each component material, microcavity (microresonator) thickness, and the experimental conditions. (reviews of topical problems)

  2. Modeling of anisotropic two-dimensional materials monolayer HfS{sub 2} and phosphorene metal-oxide semiconductor field effect transistors

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Jiwon [SEMATECH, 257 Fuller Rd #2200, Albany, New York 12203 (United States)

    2015-06-07

    Ballistic transport characteristics of metal-oxide semiconductor field effect transistors (MOSFETs) based on anisotropic two-dimensional materials monolayer HfS{sub 2} and phosphorene are explored through quantum transport simulations. We focus on the effects of the channel crystal orientation and the channel length scaling on device performances. Especially, the role of degenerate conduction band (CB) valleys in monolayer HfS{sub 2} is comprehensively analyzed. Benchmarking monolayer HfS{sub 2} with phosphorene MOSFETs, we predict that the effect of channel orientation on device performances is much weaker in monolayer HfS{sub 2} than in phosphorene due to the degenerate CB valleys of monolayer HfS{sub 2}. Our simulations also reveal that at 10 nm channel length scale, phosphorene MOSFETs outperform monolayer HfS{sub 2} MOSFETs in terms of the on-state current. However, it is observed that monolayer HfS{sub 2} MOSFETs may offer comparable, but a little bit degraded, device performances as compared with phosphorene MOSFETs at 5 nm channel length.

  3. Survey of semiconductor physics

    CERN Document Server

    Böer, Karl W

    1992-01-01

    Any book that covers a large variety of subjects and is written by one author lacks by necessity the depth provided by an expert in his or her own field of specialization. This book is no exception. It has been written with the encouragement of my students and colleagues, who felt that an extensive card file I had accumulated over the years of teaching solid state and semiconductor physics would be helpful to more than just a few of us. This file, updated from time to time, contained lecture notes and other entries that were useful in my research and permitted me to give to my students a broader spectrum of information than is available in typical textbooks. When assembling this material into a book, I divided the top­ ics into material dealing with the homogeneous semiconductor, the subject of the previously published Volume 1, and the inhomoge­ neous semiconductor, the subject of this Volume 2. In order to keep the book to a manageable size, sections of tutorial character which can be used as text for a g...

  4. Molecular semiconductors photoelectrical properties and solar cells

    CERN Document Server

    Rees, Ch

    1985-01-01

    During the past thirty years considerable efforts have been made to design the synthesis and the study of molecular semiconductors. Molecular semiconductors - and more generally molecular materials - involve interactions between individual subunits which can be separately synthesized. Organic and metallo-organic derivatives are the basis of most of the molecular materials. A survey of the literature on molecular semiconductors leaves one rather confused. It does seem to be very difficult to correlate the molecular structure of these semiconductors with their experimental electrical properties. For inorganic materials a simple definition delimits a fairly homogeneous family. If an inorganic material has a conductivity intermediate between that of an 12 1 1 3 1 1 insulator « 10- n- cm- ) and that of a metal (> 10 n- cm- ), then it is a semiconductor and will exhibit the characteristic properties of this family, such as junction formation, photoconductivity, and the photovoltaic effect. For molecular compounds,...

  5. Bulk Crystal Growth, and High-Resolution X-ray Diffraction Results of LiZnAs Semiconductor Material

    Science.gov (United States)

    Montag, Benjamin W.; Reichenberger, Michael A.; Sunder, Madhana; Ugorowski, Philip B.; Nelson, Kyle A.; Henson, Luke C.; McGregor, Douglas S.

    2017-08-01

    LiZnAs is being explored as a candidate for solid-state neutron detectors. The compact form, solid-state device would have greater efficiency than present day gas-filled 3He and 10BF3 detectors. Devices fabricated from LiZnAs having either natural Li (nominally 7.5% 6Li) or enriched 6Li (usually 95% 6Li) as constituent atoms may provide a material for compact high efficiency neutron detectors. The 6Li( n, t)4He reaction yields a total Q-value of 4.78 MeV, an energy larger than that of the 10B reaction, which can easily be identified above background radiations. LiZnAs material was synthesized by preparing equimolar portions of Li, Zn, and As sealed under vacuum (10-6 Torr) in quartz ampoules lined with boron nitride and subsequently reacted in a compounding furnace (Montag et al. in J Cryst Growth 412:103, 2015). The raw synthesized LiZnAs was purified by a static vacuum sublimation in quartz (Montag et al. in J Cryst Growth 438:99, 2016). Bulk crystalline LiZnAs ingots were grown from the purified material with a high-temperature Bridgman-style growth process described here. One of the largest LiZnAs ingots harvested was 9.6 mm in diameter and 4.2 mm in length. Samples were harvested from the ingot and were characterized for crystallinity using a Bruker AXS Inc. D8 AXS Inc. D2 CRYSO, energy dispersive x-ray diffractometer, and a Bruker AXS Inc. D8 DISCOVER, high-resolution x-ray diffractometer equipped with molybdenum radiation, Gobel mirror, four bounce germanium monochromator and a scintillation detector. The primary beam divergence was determined to be 0.004°, using a single crystal Si standard. The x-ray based characterization revealed that the samples nucleated in the (110) direction and a high-resolution open detector rocking curve recorded on the (220) LiZnAs yielded a full width at half maximum (FWHM) of 0.235°. Sectional pole figures using off-axis reflections of the (211) LiZnAs confirmed in-plane ordering, and also indicated the presence of multiple

  6. Polymer semiconductor crystals

    Directory of Open Access Journals (Sweden)

    Jung Ah Lim

    2010-05-01

    Full Text Available One of the long-standing challenges in the field of polymer semiconductors is to figure out how long interpenetrating and entangled polymer chains self-assemble into single crystals from the solution phase or melt. The ability to produce these crystalline solids has fascinated scientists from a broad range of backgrounds including physicists, chemists, and engineers. Scientists are still on the hunt for determining the mechanism of crystallization in these information-rich materials. Understanding the theory and concept of crystallization of polymer semiconductors will undoubtedly transform this area from an art to an area that will host a bandwagon of scientists and engineers. In this article we describe the basic concept of crystallization and highlight some of the advances in polymer crystallization from crystals to nanocrystalline fibers.

  7. Stretchable semiconductor elements and stretchable electrical circuits

    Science.gov (United States)

    Rogers, John A.; Khang, Dahl-Young; Menard, Etienne

    2009-07-07

    The invention provides methods and devices for fabricating printable semiconductor elements and assembling printable semiconductor elements onto substrate surfaces. Methods, devices and device components of the present invention are capable of generating a wide range of flexible electronic and optoelectronic devices and arrays of devices on substrates comprising polymeric materials. The present invention also provides stretchable semiconductor structures and stretchable electronic devices capable of good performance in stretched configurations.

  8. Semiconductor laser

    Energy Technology Data Exchange (ETDEWEB)

    Ito, K.; Shyuue, M.

    1982-09-25

    A distributed feedback semiconductor laser is proposed which generates several beams with equal wavelengths in different directions. For this purpose, 1 millimeter grooves are cut into the surface of an n-type conductance GaAs plate in three different directions; these grooves form a diffraction grating. The center of this plate has no grooves and is bombarded by an He/Ne laser beam. The diffraction gratings provide resonance properties and generate laser beams with wavelengths of 8850, 9000 and 9200 angstroms.

  9. Doping of organic semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Luessem, B.; Riede, M.; Leo, K. [Institut fuer Angewandte Photophysik, TU Dresden (Germany)

    2013-01-15

    The understanding and applications of organic semiconductors have shown remarkable progress in recent years. This material class has been developed from being a lab curiosity to the basis of first successful products as small organic LED (OLED) displays; other areas of application such as OLED lighting and organic photovoltaics are on the verge of broad commercialization. Organic semiconductors are superior to inorganic ones for low-cost and large-area optoelectronics due to their flexibility, easy deposition, and broad variety, making tailor-made materials possible. However, electrical doping of organic semiconductors, i.e. the controlled adjustment of Fermi level that has been extremely important to the success of inorganic semiconductors, is still in its infancy. This review will discuss recent work on both fundamental principles and applications of doping, focused primarily to doping of evaporated organic layers with molecular dopants. Recently, both p- and n-type molecular dopants have been developed that lead to efficient and stable doping of organic thin films. Due to doping, the conductivity of the doped layers increases several orders of magnitude and allows for quasi-Ohmic contacts between organic layers and metal electrodes. Besides reducing voltage losses, doping thus also gives design freedom in terms of transport layer thickness and electrode choice. The use of doping in applications like OLEDs and organic solar cells is highlighted in this review. Overall, controlled molecular doping can be considered as key enabling technology for many different organic device types that can lead to significant improvements in efficiencies and lifetimes. (Copyright copyright 2013 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  10. Wafer-fused semiconductor radiation detector

    Science.gov (United States)

    Lee, Edwin Y.; James, Ralph B.

    2002-01-01

    Wafer-fused semiconductor radiation detector useful for gamma-ray and x-ray spectrometers and imaging systems. The detector is fabricated using wafer fusion to insert an electrically conductive grid, typically comprising a metal, between two solid semiconductor pieces, one having a cathode (negative electrode) and the other having an anode (positive electrode). The wafer fused semiconductor radiation detector functions like the commonly used Frisch grid radiation detector, in which an electrically conductive grid is inserted in high vacuum between the cathode and the anode. The wafer-fused semiconductor radiation detector can be fabricated using the same or two different semiconductor materials of different sizes and of the same or different thicknesses; and it may utilize a wide range of metals, or other electrically conducting materials, to form the grid, to optimize the detector performance, without being constrained by structural dissimilarity of the individual parts. The wafer-fused detector is basically formed, for example, by etching spaced grooves across one end of one of two pieces of semiconductor materials, partially filling the grooves with a selected electrical conductor which forms a grid electrode, and then fusing the grooved end of the one semiconductor piece to an end of the other semiconductor piece with a cathode and an anode being formed on opposite ends of the semiconductor pieces.

  11. Power semiconductors

    CERN Document Server

    Kubát, M

    1984-01-01

    The book contains a summary of our knowledge of power semiconductor structures. It presents first a short historic introduction (Chap. I) as well as a brief selection of facts from solid state physics, in particular those related to power semiconductors (Chap. 2). The book deals with diode structures in Chap. 3. In addition to fundamental facts in pn-junction theory, the book covers mainly the important processes of power structures. It describes the emitter efficiency and function of microleaks (shunts). the p +p and n + n junctions, and in particular the recent theory of the pin, pvn and p1tn junctions, whose role appears to be decisive for the forward mode not only of diode structures but also of more complex ones. For power diode structures the reverse mode is the decisive factor in pn-junction breakdown theory. The presentation given here uses engineering features (the multiplication factor M and the experimentally detected laws for the volume and surface of crystals), which condenses the presentation an...

  12. Magnetic semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Bihler, Christoph

    2009-04-15

    In this thesis we investigated in detail the properties of Ga{sub 1-x}Mn{sub x}As, Ga{sub 1-x}Mn{sub x}P, and Ga{sub 1-x}Mn{sub x}N dilute magnetic semiconductor thin films with a focus on the magnetic anisotropy and the changes of their properties upon hydrogenation. We applied two complementary spectroscopic techniques to address the position of H in magnetic semiconductors: (i) Electron paramagnetic resonance, which provides direct information on the symmetry of the crystal field of the Mn{sup 2+} atoms and (ii) x-ray absorption fine structure analysis which allows to probe the local crystallographic neighborhood of the absorbing Mn atom via analysing the fine structure at the Mn K absorption edge. Finally, we discussed the obstacles that have to be overcome to achieve Curie temperatures above the current maximum in Ga{sub 1-x}Mn{sub x}As of 185 K. Here, we outlined in detail the generic problem of the formation of precipitates at the example of Ge:MN. (orig.)

  13. Semiconductor Laser Measurements Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The Semiconductor Laser Measurements Laboratory is equipped to investigate and characterize the lasing properties of semiconductor diode lasers. Lasing features such...

  14. Assembly of mesoscale helices with near-unity enantiomeric excess and light-matter interactions for chiral semiconductors

    Science.gov (United States)

    Feng, Wenchun; Kim, Ji-Young; Wang, Xinzhi; Calcaterra, Heather A.; Qu, Zhibei; Meshi, Louisa; Kotov, Nicholas A.

    2017-01-01

    Semiconductors with chiral geometries at the nanoscale and mesoscale provide a rich materials platform for polarization optics, photocatalysis, and biomimetics. Unlike metallic and organic optical materials, the relationship between the geometry of chiral semiconductors and their chiroptical properties remains, however, vague. Homochiral ensembles of semiconductor helices with defined geometries open the road to understanding complex relationships between geometrical parameters and chiroptical properties of semiconductor materials. We show that semiconductor helices can be prepared with an absolute yield of ca 0.1% and an enantiomeric excess (e.e.) of 98% or above from cysteine-stabilized cadmium telluride nanoparticles (CdTe NPs) dispersed in methanol. This high e.e. for a spontaneously occurring chemical process is attributed to chiral self-sorting based on the thermodynamic preference of NPs to assemble with those of the same handedness. The dispersions of homochiral self-assembled helices display broadband visible and near-infrared (Vis-NIR) polarization rotation with anisotropy (g) factors approaching 0.01. Calculated circular dichroism (CD) spectra accurately reproduced experimental CD spectra and gave experimentally validated spectral predictions for different geometrical parameters enabling de novo design of chiroptical semiconductor materials. Unlike metallic, ceramic, and polymeric helices that serve predominantly as scatterers, chiroptical properties of semiconductor helices have nearly equal contribution of light absorption and scattering, which is essential for device-oriented, field-driven light modulation. Deconstruction of a helix into a series of nanorods provides a simple model for the light-matter interaction and chiroptical activity of helices. This study creates a framework for further development of polarization-based optics toward biomedical applications, telecommunications, and hyperspectral imaging. PMID:28275728

  15. Porous and Nanoporous Semiconductors and Emerging Applications

    Directory of Open Access Journals (Sweden)

    Helmut Föll

    2006-01-01

    Full Text Available Pores in single-crystalline semiconductors can be produced in a wide range of geometries and morphologies, including the “nanometer” regime. Porous semiconductors may have properties completely different from the bulk, and metamaterials with, for example, optical properties not encountered in natural materials are emerging. Possible applications of porous semiconductors include various novel sensors, but also more “exotic” uses as, for example, high explosives or electrodes for micro-fuel cells. The paper briefly reviews pore formation (including more applied aspects of large area etching, properties of porous semiconductors, and emerging applications.

  16. Emission and Absorption Entropy Generation in Semiconductors

    DEFF Research Database (Denmark)

    Reck, Kasper; Varpula, Aapo; Prunnila, Mika

    2013-01-01

    While emission and absorption entropy generation is well known in black bodies, it has not previously been studied in semiconductors, even though semiconductors are widely used for solar light absorption in modern solar cells [1]. We present an analysis of the entropy generation in semiconductor...... materials due to emission and absorption of electromagnetic radiation. It is shown that the emission and absorption entropy generation reduces the fundamental limit on the efficiency of any semiconductor solar cell even further than the Landsberg limit. The results are derived from purely thermodynamical...

  17. Coincident site lattice-matched growth of semiconductors on substrates using compliant buffer layers

    Science.gov (United States)

    Norman, Andrew

    2016-08-23

    A method of producing semiconductor materials and devices that incorporate the semiconductor materials are provided. In particular, a method is provided of producing a semiconductor material, such as a III-V semiconductor, on a silicon substrate using a compliant buffer layer, and devices such as photovoltaic cells that incorporate the semiconductor materials. The compliant buffer material and semiconductor materials may be deposited using coincident site lattice-matching epitaxy, resulting in a close degree of lattice matching between the substrate material and deposited material for a wide variety of material compositions. The coincident site lattice matching epitaxial process, as well as the use of a ductile buffer material, reduce the internal stresses and associated crystal defects within the deposited semiconductor materials fabricated using the disclosed method. As a result, the semiconductor devices provided herein possess enhanced performance characteristics due to a relatively low density of crystal defects.

  18. High pressure semiconductor physics I

    CERN Document Server

    Willardson, R K; Paul, William; Suski, Tadeusz

    1998-01-01

    Since its inception in 1966, the series of numbered volumes known as Semiconductors and Semimetals has distinguished itself through the careful selection of well-known authors, editors, and contributors. The "Willardson and Beer" Series, as it is widely known, has succeeded in publishing numerous landmark volumes and chapters. Not only did many of these volumes make an impact at the time of their publication, but they continue to be well-cited years after their original release. Recently, Professor Eicke R. Weber of the University of California at Berkeley joined as a co-editor of the series. Professor Weber, a well-known expert in the field of semiconductor materials, will further contribute to continuing the series' tradition of publishing timely, highly relevant, and long-impacting volumes. Some of the recent volumes, such as Hydrogen in Semiconductors, Imperfections in III/V Materials, Epitaxial Microstructures, High-Speed Heterostructure Devices, Oxygen in Silicon, and others promise indeed that this tra...

  19. Controlled Growth of Ultrathin Film of Organic Semiconductors by Balancing the Competitive Processes in Dip-Coating for Organic Transistors.

    Science.gov (United States)

    Wu, Kunjie; Li, Hongwei; Li, Liqiang; Zhang, Suna; Chen, Xiaosong; Xu, Zeyang; Zhang, Xi; Hu, Wenping; Chi, Lifeng; Gao, Xike; Meng, Yancheng

    2016-06-28

    Ultrathin film with thickness below 15 nm of organic semiconductors provides excellent platform for some fundamental research and practical applications in the field of organic electronics. However, it is quite challenging to develop a general principle for the growth of uniform and continuous ultrathin film over large area. Dip-coating is a useful technique to prepare diverse structures of organic semiconductors, but the assembly of organic semiconductors in dip-coating is quite complicated, and there are no reports about the core rules for the growth of ultrathin film via dip-coating until now. In this work, we develop a general strategy for the growth of ultrathin film of organic semiconductor via dip-coating, which provides a relatively facile model to analyze the growth behavior. The balance between the three direct factors (nucleation rate, assembly rate, and recession rate) is the key to determine the growth of ultrathin film. Under the direction of this rule, ultrathin films of four organic semiconductors are obtained. The field-effect transistors constructed on the ultrathin film show good field-effect property. This work provides a general principle and systematic guideline to prepare ultrathin film of organic semiconductors via dip-coating, which would be highly meaningful for organic electronics as well as for the assembly of other materials via solution processes.

  20. Band structure of semiconductors

    CERN Document Server

    Tsidilkovski, I M

    2013-01-01

    Band Structure of Semiconductors provides a review of the theoretical and experimental methods of investigating band structure and an analysis of the results of the developments in this field. The book presents the problems, methods, and applications in the study of band structure. Topics on the computational methods of band structure; band structures of important semiconducting materials; behavior of an electron in a perturbed periodic field; effective masses and g-factors for the most commonly encountered band structures; and the treatment of cyclotron resonance, Shubnikov-de Haas oscillatio

  1. Physics of Organic Semiconductors

    CERN Document Server

    Brütting, Wolfgang

    2005-01-01

    Filling the gap in the literature currently available, this book presents an overview of our knowledge of the physics behind organic semiconductor devices. Contributions from 18 international research groups cover various aspects of this field, ranging from the growth of organic layers and crystals, their electronic properties at interfaces, their photophysics and electrical transport properties to the application of these materials in such different devices as organic field-effect transistors, photovoltaic cells and organic light-emitting diodes. From the contents:. * Excitation Dynamics in O

  2. X-ray absorption spectroscopy of semiconductors

    CERN Document Server

    Ridgway, Mark

    2015-01-01

    X-ray Absorption Spectroscopy (XAS) is a powerful technique with which to probe the properties of matter, equally applicable to the solid, liquid and gas phases. Semiconductors are arguably our most technologically-relevant group of materials given they form the basis of the electronic and photonic devices that now so widely permeate almost every aspect of our society. The most effective utilisation of these materials today and tomorrow necessitates a detailed knowledge of their structural and vibrational properties. Through a series of comprehensive reviews, this book demonstrates the versatility of XAS for semiconductor materials analysis and presents important research activities in this ever growing field. A short introduction of the technique, aimed primarily at XAS newcomers, is followed by twenty independent chapters dedicated to distinct groups of materials. Topics span dopants in crystalline semiconductors and disorder in amorphous semiconductors to alloys and nanometric material as well as in-sit...

  3. Heteroepitaxy of semiconductors theory, growth, and characterization

    CERN Document Server

    Ayers, John E

    2007-01-01

    Heteroepitaxy has evolved rapidly in recent years. With each new wave of material/substrate combinations, our understanding of how to control crystal growth becomes more refined. Most books on the subject focus on a specific material or material family, narrowly explaining the processes and techniques appropriate for each. Surveying the principles common to all types of semiconductor materials, Heteroepitaxy of Semiconductors: Theory, Growth, and Characterization is the first comprehensive, fundamental introduction to the field. This book reflects our current understanding of nucleation, growth modes, relaxation of strained layers, and dislocation dynamics without emphasizing any particular material. Following an overview of the properties of semiconductors, the author introduces the important heteroepitaxial growth methods and provides a survey of semiconductor crystal surfaces, their structures, and nucleation. With this foundation, the book provides in-depth descriptions of mismatched heteroepitaxy and la...

  4. Semiconductors for solar cell applications

    Energy Technology Data Exchange (ETDEWEB)

    Moeller, H.J. (Case Western Reserve Univ., Cleveland, OH (United States). Dept. of Materials Science and Engineering)

    1991-01-01

    This review covers the historical background of the solar cell development, the physical principles of photovoltaic energy conversion, technology of solar cell devices and the structural and physical properties of lattice defects in semiconductors. Single crystal and polycrystalline silicon, single crystal and epitaxial gallium arsenide, polycrystalline thin films and amorphous thin films are discussed in detail. Semiconductors have emerged as the most promising group of materials which can convert sunlight directly into electrical energy. They utilize the fundamental physical process that a photon that penetrates into the semiconductor and is absorbed can generate electron-hole pairs. Because of their opposite charges they can be separated by an internal electrical field and collected at two contacts thus giving rise to a voltage and photocurrent if the two contacts are connected externally. In semiconductors internal electric fields occur in connection with space charges at junctions and a variety of technological concepts are used to produce a built-in voltage. The most widely used device principle is the operation of a solar cell as a diode or p-n junction. Alternative concepts are heterojunction devices where the materials on either side of the junction are different semiconductors. (author).

  5. Suitability of integrated protection diodes from diverse semiconductor technologies

    NARCIS (Netherlands)

    Wanum, van Maurice; Lebouille, Tom; Visser, Guido; Vliet, van Frank E.

    2009-01-01

    Abstract In this article diodes from three different semiconductor technologies are compared based on their suitability to protect a receiver. The semiconductor materials involved are silicon, gallium arsenide and gallium nitride. The diodes in the diverse semiconductor technologies themselves are c

  6. Suitability of integrated protection diodes from diverse semiconductor technologies

    NARCIS (Netherlands)

    Wanum, M. van; Lebouille, T.T.N.; Visser, G.C.; Vliet, F.E. van

    2009-01-01

    In this article diodes from three different semiconductor technologies are compared based on their suitability to protect a receiver. The semiconductor materials involved are Silicon, Gallium Arsenide and Gallium Nitride. The diodes in the diverse semiconductor technologies themselves are close in p

  7. Semiconductor laser. Halbleiterlaser

    Energy Technology Data Exchange (ETDEWEB)

    Wuenstel, K.; Gohla, B.; Tegude, F.; Luz, G.; Hildebrand, O.

    1987-08-27

    A highly modulable semiconductor laser and a process for its manufacture are described. The semiconductor laser has a substrate, a stack of semiconductor layers and electrical contacts. To reduce the capacity, the width of the stack of semiconductor layers is reduced at the sides by anisotropic etching. The electrical contacts are situated on the same side of the substrate and are applied in the same stage of the process. The semiconductor laser is suitable for monolithic integration in other components.

  8. Manipulating semiconductor colloidal stability through doping.

    Science.gov (United States)

    Fleharty, Mark E; van Swol, Frank; Petsev, Dimiter N

    2014-10-10

    The interface between a doped semiconductor material and electrolyte solution is of considerable fundamental interest, and is relevant to systems of practical importance. Both adjacent domains contain mobile charges, which respond to potential variations. This is exploited to design electronic and optoelectronic sensors, and other enabling semiconductor colloidal materials. We show that the charge mobility in both phases leads to a new type of interaction between semiconductor colloids suspended in aqueous electrolyte solutions. This interaction is due to the electrostatic response of the semiconductor interior to disturbances in the external field upon the approach of two particles. The electrostatic repulsion between two charged colloids is reduced from the one governed by the charged groups present at the particles surfaces. This type of interaction is unique to semiconductor particles and may have a substantial effect on the suspension dynamics and stability.

  9. 2010 Defects in Semiconductors GRC

    Energy Technology Data Exchange (ETDEWEB)

    Shengbai Zhang

    2011-01-06

    Continuing its tradition of excellence, this Gordon Conference will focus on research at the forefront of the field of defects in semiconductors. The conference will have a strong emphasis on the control of defects during growth and processing, as well as an emphasis on the development of novel defect detection methods and first-principles defect theories. Electronic, magnetic, and optical properties of bulk, thin film, and nanoscale semiconductors will be discussed in detail. In contrast to many conferences, which tend to focus on specific semiconductors, this conference will deal with point and extended defects in a broad range of electronic materials. This approach has proved to be extremely fruitful for advancing fundamental understanding in emerging materials such as wide-band-gap semiconductors, oxides, sp{sup 2} carbon based-materials, and photovoltaic/solar cell materials, and in understanding important defect phenomena such as doping bottleneck in nanostructures and the diffusion of defects and impurities. The program consists of about twenty invited talks and a number of contributed poster sessions. The emphasis should be on work which has yet to be published. The large amount of discussion time provides an ideal forum for dealing with topics that are new and/or controversial.

  10. Semiconductor technology program: Progress briefs

    Science.gov (United States)

    Galloway, K. F.; Scace, R. I.; Walters, E. J.

    1981-01-01

    Measurement technology for semiconductor materials, process control, and devices, is discussed. Silicon and silicon based devices are emphasized. Highlighted activities include semiinsulating GaAs characterization, an automatic scanning spectroscopic ellipsometer, linewidth measurement and coherence, bandgap narrowing effects in silicon, the evaluation of electrical linewidth uniformity, and arsenicomplanted profiles in silicon.

  11. Atomistic Models of Amorphous Semiconductors

    NARCIS (Netherlands)

    Jarolimek, K.

    2011-01-01

    Crystalline silicon is probably the best studied material, widely used by the semiconductor industry. The subject of this thesis is an intriguing form of this element namely amorphous silicon. It can contain a varying amount of hydrogen and is denoted as a-Si:H. It completely lacks the neat long

  12. A variable frequency semiconductor laser

    Energy Technology Data Exchange (ETDEWEB)

    Tosikhiro, F.; Khiromoto, S.

    1984-03-27

    A variable frequency, power stabilized semiconductor laser is patented. This laser includes, in addition to an active layer, a photoconducting channel layer and a layer made from a material manifesting a Pockels effect. A voltage is injected between these two layers to vary the emission frequency. The laser pumping voltage is stabilized.

  13. Design and Simulation of Material-Integrated Distributed Sensor Processing with a Code-Based Agent Platform and Mobile Multi-Agent Systems

    Directory of Open Access Journals (Sweden)

    Stefan Bosse

    2015-02-01

    Full Text Available Multi-agent systems (MAS can be used for decentralized and self-organizing data processing in a distributed system, like a resource-constrained sensor network, enabling distributed information extraction, for example, based on pattern recognition and self-organization, by decomposing complex tasks in simpler cooperative agents. Reliable MAS-based data processing approaches can aid the material-integration of structural-monitoring applications, with agent processing platforms scaled to the microchip level. The agent behavior, based on a dynamic activity-transition graph (ATG model, is implemented with program code storing the control and the data state of an agent, which is novel. The program code can be modified by the agent itself using code morphing techniques and is capable of migrating in the network between nodes. The program code is a self-contained unit (a container and embeds the agent data, the initialization instructions and the ATG behavior implementation. The microchip agent processing platform used for the execution of the agent code is a standalone multi-core stack machine with a zero-operand instruction format, leading to a small-sized agent program code, low system complexity and high system performance. The agent processing is token-queue-based, similar to Petri-nets. The agent platform can be implemented in software, too, offering compatibility at the operational and code level, supporting agent processing in strong heterogeneous networks. In this work, the agent platform embedded in a large-scale distributed sensor network is simulated at the architectural level by using agent-based simulation techniques.

  14. Design and simulation of material-integrated distributed sensor processing with a code-based agent platform and mobile multi-agent systems.

    Science.gov (United States)

    Bosse, Stefan

    2015-02-16

    Multi-agent systems (MAS) can be used for decentralized and self-organizing data processing in a distributed system, like a resource-constrained sensor network, enabling distributed information extraction, for example, based on pattern recognition and self-organization, by decomposing complex tasks in simpler cooperative agents. Reliable MAS-based data processing approaches can aid the material-integration of structural-monitoring applications, with agent processing platforms scaled to the microchip level. The agent behavior, based on a dynamic activity-transition graph (ATG) model, is implemented with program code storing the control and the data state of an agent, which is novel. The program code can be modified by the agent itself using code morphing techniques and is capable of migrating in the network between nodes. The program code is a self-contained unit (a container) and embeds the agent data, the initialization instructions and the ATG behavior implementation. The microchip agent processing platform used for the execution of the agent code is a standalone multi-core stack machine with a zero-operand instruction format, leading to a small-sized agent program code, low system complexity and high system performance. The agent processing is token-queue-based, similar to Petri-nets. The agent platform can be implemented in software, too, offering compatibility at the operational and code level, supporting agent processing in strong heterogeneous networks. In this work, the agent platform embedded in a large-scale distributed sensor network is simulated at the architectural level by using agent-based simulation techniques.

  15. Dirac Cones, Topological Edge States, and Nontrivial Flat Bands in Two-Dimensional Semiconductors with a Honeycomb Nanogeometry

    Directory of Open Access Journals (Sweden)

    E. Kalesaki

    2014-01-01

    Full Text Available We study theoretically two-dimensional single-crystalline sheets of semiconductors that form a honeycomb lattice with a period below 10 nm. These systems could combine the usual semiconductor properties with Dirac bands. Using atomistic tight-binding calculations, we show that both the atomic lattice and the overall geometry influence the band structure, revealing materials with unusual electronic properties. In rocksalt Pb chalcogenides, the expected Dirac-type features are clouded by a complex band structure. However, in the case of zinc-blende Cd-chalcogenide semiconductors, the honeycomb nanogeometry leads to rich band structures, including, in the conduction band, Dirac cones at two distinct energies and nontrivial flat bands and, in the valence band, topological edge states. These edge states are present in several electronic gaps opened in the valence band by the spin-orbit coupling and the quantum confinement in the honeycomb geometry. The lowest Dirac conduction band has S-orbital character and is equivalent to the π-π^{⋆} band of graphene but with renormalized couplings. The conduction bands higher in energy have no counterpart in graphene; they combine a Dirac cone and flat bands because of their P-orbital character. We show that the width of the Dirac bands varies between tens and hundreds of meV. These systems emerge as remarkable platforms for studying complex electronic phases starting from conventional semiconductors. Recent advancements in colloidal chemistry indicate that these materials can be synthesized from semiconductor nanocrystals.

  16. Nonlinear Peltier effect in semiconductors

    Science.gov (United States)

    Zebarjadi, Mona; Esfarjani, Keivan; Shakouri, Ali

    2007-09-01

    Nonlinear Peltier coefficient of a doped InGaAs semiconductor is calculated numerically using the Monte Carlo technique. The Peltier coefficient is also obtained analytically for single parabolic band semiconductors assuming a shifted Fermi-Dirac electronic distribution under an applied bias. Analytical results are in agreement with numerical simulations. Key material parameters affecting the nonlinear behavior are doping concentration, effective mass, and electron-phonon coupling. Current density thresholds at which nonlinear behavior is observable are extracted from numerical data. It is shown that the nonlinear Peltier effect can be used to enhance cooling of thin film microrefrigerator devices especially at low temperatures.

  17. High brightness semiconductor lasers with reduced filamentation

    DEFF Research Database (Denmark)

    McInerney, John; O'Brien, Peter.; Skovgaard, Peter M. W.;

    1999-01-01

    High brightness semiconductor lasers have applications in spectroscopy, fiber lasers, manufacturing and materials processing, medicine and free space communication or energy transfer. The main difficulty associated with high brightness is that, because of COD, high power requires a large aperture...

  18. Platform Constellations

    DEFF Research Database (Denmark)

    Staykova, Kalina Stefanova; Damsgaard, Jan

    2016-01-01

    This research paper presents an initial attempt to introduce and explain the emergence of new phenomenon, which we refer to as platform constellations. Functioning as highly modular systems, the platform constellations are collections of highly connected platforms which co-exist in parallel...... and as such allow us to study platforms not only as separate entities, but also to investigate the relationship between several platforms offered and governed by one and the same platform provider. By investigating two case studies of indigenous platform constellations formed around the hugely popular instant...... messaging apps KakaoTalk and LINE, we are able to gain valuable insights about the nature of these new constructions and to capture and synthesize their main characteristics in a framework. Our results show that platform constellations possess unique innovative capabilities, which can improve users...

  19. Diffusion in semiconductors, other than silicon compilation

    CERN Document Server

    Fisher, David J

    2011-01-01

    Review from Book News Inc.: Summary reports of 337 experiments provide information on the diffusion of matter and heat in 31 materials used in semiconductors. Most of the compounds are based on cadmium, gallium, indium, lead, and zinc. Mercury telluride is included however, as is silicon carbide for some reason. Each article is thoroughly referenced to the authors and publication number, date, and page. The arrangement is alphabetical by semiconductor material. Indexes cover authors, hosts, and diffusants.

  20. Organic Semiconductors and its Applications

    Science.gov (United States)

    Kamalasanan, M. N.

    2011-10-01

    Organic semiconductors in the form of evaporated or spin coated thin films have many optoelectronic applications in the present electronic industry. They are frequently used in many type of displays, photo detectors, photoconductors for photocopiers and photovoltaic cells. But many p-conjugated molecules and polymer based devices do not provide satisfactory device performance and operational stability. Most of these problems are related to the interfaces they make with other organic materials and electrodes and the low conductivity of the organic layers. The study of organic-metal and organic—organic interfaces as well as electrical doping of organic semiconductors are very important areas of research at present. In this talk, I will be discussing some of the recent advances in this field as well as some of our own results in the area of interface modification and electrical doping of organic semiconductors.

  1. An Experimental Platform for Performing Measurements of the RF Magnetic Permeability and Electric Permittivity of Functional Materials at Cryogenic Temperatures

    Science.gov (United States)

    2013-09-01

    shelf electronic equipment. With the appropriate vendor-supplied material measurement firmware, the Agilent E4991A RF impe- dance /material analyzer can...by about ½ to ¾ of the top of the belly with liquid helium, and the boil off of the helium becomes steady, the probe is lowered by hand into the

  2. Knowledge platform for calculating climate impact from construction and building materials. Literature study; Kunnskapsplattform for beregning av klimabelastning fra bygg og byggematerialer. Litteraturstudie

    Energy Technology Data Exchange (ETDEWEB)

    Roenning, Anne; Lyng, Kari-Anne; Vold, Mie

    2011-07-01

    Greenhouse gas emissions from building linked today to a large extent to the energy consumption during the operating period. Through increasingly stringent energy requirements and other changes, the energy consumption for the operation could go down over time. This means in this case that the energy required to produce, transport and set up the building, to a greater extent can be relatively more important in a life-cycle analysis. KRD in that regard ha given Oestfoldforskning the commission to conduct a literature study that will provide an overview and assessment of the literature / research papers describing various building materials climate impact and how this translates into a lifetime (LCA - Life Cycle Assessment), and thus describe the knowledge platform these analyzes are based in. It also means a description of the factors that affect the climate and the environment, including the stages of life that are important. Literature study is conducted by searching scientific databases (Springer Link, Science Direct, Google Scholar, Norwegian EPD database of declarations). The literature search is limited to studies that are based on LCA as a methodology for calculating the climate impacts associated with the construction and building materials. Based on the review of literature is also undertaken an analysis focusing on explaining the methodological platform between the studies are based on, in order to explain why the results differ and / or may not be comparable.(eb)

  3. Semiconductor nanowire lasers

    Science.gov (United States)

    Eaton, Samuel W.; Fu, Anthony; Wong, Andrew B.; Ning, Cun-Zheng; Yang, Peidong

    2016-06-01

    The discovery and continued development of the laser has revolutionized both science and industry. The advent of miniaturized, semiconductor lasers has made this technology an integral part of everyday life. Exciting research continues with a new focus on nanowire lasers because of their great potential in the field of optoelectronics. In this Review, we explore the latest advancements in the development of nanowire lasers and offer our perspective on future improvements and trends. We discuss fundamental material considerations and the latest, most effective materials for nanowire lasers. A discussion of novel cavity designs and amplification methods is followed by some of the latest work on surface plasmon polariton nanowire lasers. Finally, exciting new reports of electrically pumped nanowire lasers with the potential for integrated optoelectronic applications are described.

  4. Fundamentals of semiconductor devices

    CERN Document Server

    Lindmayer, Joseph

    1965-01-01

    Semiconductor properties ; semiconductor junctions or diodes ; transistor fundamentals ; inhomogeneous impurity distributions, drift or graded-base transistors ; high-frequency properties of transistors ; band structure of semiconductors ; high current densities and mechanisms of carrier transport ; transistor transient response and recombination processes ; surfaces, field-effect transistors, and composite junctions ; additional semiconductor characteristics ; additional semiconductor devices and microcircuits ; more metal, insulator, and semiconductor combinations for devices ; four-pole parameters and configuration rotation ; four-poles of combined networks and devices ; equivalent circuits ; the error function and its properties ; Fermi-Dirac statistics ; useful physical constants.

  5. 不同半导体材料构成光子晶体在太赫兹波段能态密度特性%State Density Properties of Photonic Crystal Composited by Different Semiconductor Material in Terahertz Band

    Institute of Scientific and Technical Information of China (English)

    邴丕彬; 闫昕

    2012-01-01

    Based on the plane wave expansion method research Ⅳ, Ⅲ-Ⅴ and Ⅱ- Ⅵ semiconductor material composition family 2d triangle photonic crystal lattice terahertz band state density of characteristics, numerical simulation to get Ⅳ family in filling SiC rate f = 0. 8 form 0. 037 THz band gap width, Ⅱ-Ⅵ ZnO family in filling rate f = 0. 73 form 0. 0417 THz band gap width form, the filler rate case Ⅲ-Ⅴ race semiconductor material form 0.027 THz band gap width, more data Ⅱ-Ⅵ race semiconductor material form more wide band gap, the result is too Hertz photonic crystal devices to provide the theoretical basis for development.%基于平面波展开法研究Ⅳ、Ⅲ-Ⅴ和Ⅱ-Ⅵ族半导体材料构成二维三角晶格光子晶体在太赫兹波段的能态密度特性,数值模拟得到Ⅳ族SiC在填充率f=0.8时形成0.037 THz带隙宽度,Ⅱ-Ⅵ族ZnO在填充率f=0.73时形成0.0417 THz带隙宽度,不同填充率情况下Ⅲ-Ⅴ族半导体材料形成0.027 THz带隙宽度,比较数据Ⅱ-Ⅵ族半导体材料形成较宽的带隙,研究结果为太赫兹光子晶体器件的开发提供了理论依据.

  6. Photocatalytic semiconductors synthesis, characterization, and environmental applications

    CERN Document Server

    Hernández-Ramírez, Aracely

    2014-01-01

    This critical volume examines the different methods used for the synthesis of a great number of photocatalysts, including TiO2, ZnO and other modified semiconductors, as well as characterization techniques used for determining the optical, structural and morphological properties of the semiconducting materials. Additionally, the authors discuss photoelectrochemical methods for determining the light activity of the photocatalytic semiconductors by means of measurement of properties such as band gap energy, flat band potential and kinetics of hole and electron transfer. Photocatalytic Semiconductors: Synthesis, Characterization and Environmental Applications provide an overview of the semiconductor materials from first- to third-generation photocatalysts and their applications in wastewater treatment and water disinfection. The book further presents economic and toxicological aspects in the production and application of photocatalytic materials.

  7. Semiconductor High-Energy Radiation Scintillation Detector

    CERN Document Server

    Kastalsky, A; Spivak, B

    2006-01-01

    We propose a new scintillation-type detector in which high-energy radiation produces electron-hole pairs in a direct-gap semiconductor material that subsequently recombine producing infrared light to be registered by a photo-detector. The key issue is how to make the semiconductor essentially transparent to its own infrared light, so that photons generated deep inside the semiconductor could reach its surface without tangible attenuation. We discuss two ways to accomplish this, one based on doping the semiconductor with shallow impurities of one polarity type, preferably donors, the other by heterostructure bandgap engineering. The proposed semiconductor scintillator combines the best properties of currently existing radiation detectors and can be used for both simple radiation monitoring, like a Geiger counter, and for high-resolution spectrography of the high-energy radiation. The most important advantage of the proposed detector is its fast response time, about 1 ns, essentially limited only by the recombi...

  8. Inorganic semiconductors for flexible electronics.

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Y.; Rogers, J. A.; Center for Nanoscale Materials; Univ. of Illinois

    2007-08-03

    This article reviews several classes of inorganic semiconductor materials that can be used to form high-performance thin-film transistors (TFTs) for large area, flexible electronics. Examples ranging from thin films of various forms of silicon to nanoparticles and nanowires of compound semiconductors are presented, with an emphasis on methods of depositing and integrating thin films of these materials into devices. Performance characteristics, including both electrical and mechanical behavior, for isolated transistors as well as circuits with various levels of complexity are reviewed. Collectively, the results suggest that flexible or printable inorganic materials may be attractive for a range of applications not only in flexible but also in large-area electronics, from existing devices such as flat-panel displays to more challenging (in terms of both cost and performance requirements) systems such as large area radiofrequency communication devices, structural health monitors, and conformal X-ray imagers.

  9. Quantum processes in semiconductors

    CERN Document Server

    Ridley, B K

    2013-01-01

    Aimed at graduate students, this is a guide to quantum processes of importance in the physics and technology of semiconductors. The fifth edition includes new chapters that expand the coverage of semiconductor physics relevant to its accompanying technology.

  10. Investigating the irradiation behavior of nuclear materials: the contribution of the JANNUS platform; Etude du comportement sous irradiation des materiaux nucleaires: apport de la plateforme JANNUS

    Energy Technology Data Exchange (ETDEWEB)

    Trocellier, P.; Miro, S.; Serruys, Y. [Departement des materiaux pour le nucleaire, Direction de l' energie nucleaire, CEA Centre de Saclay, 91191 Gif-sur-Yvette (France)

    2010-07-01

    The JANNUS platform (Joint Accelerators for Nano-sciences and Nuclear Simulation) comprises two experimental facilities, one located at Saclay, the other nearby at Orsay. The Saclay facility brings together 3 electrostatic particle accelerators: a single-ended, 3-MV Pelletron-accelerator (EPIMETHEE), a tandem 2-MV Pelletron (JAPET), and a single-ended 2.5-MV Van de Graaff accelerator (YVETTE), set up around a common experiment chamber. The Orsay facility features a mixed-mode 2-MV accelerator (ARAMIS), and a 190-kV ion implanter (IRMA), both being coupled to a 200-kV transmission electron microscope. This setup allows the evolution of the sample's microstructure to be observed in situ, while it is undergoing irradiation, in single- or dual-beam configuration. A typical irradiation experiment, in triple-beam configuration, matches the conditions required, e.g., by applications in the area of fusion. The multicharged heavy-ion beam delivered by EPIMETHEE serves to simulate the atomic displacements caused, within the material, by neutrons. YVETTE provides helium ({sup 4}He), and JAPET hydrogen ({sup 1}H), as yielded by nuclear reactions (n, {alpha}) and (n, p). This characterization - whether structural, chemical, or mechanical - may be carried out during irradiation (in situ), or immediately subsequent to it (ex situ). Materials science can now avail itself of an altogether comprehensive panoply of physicochemical analysis techniques, e.g. electron microscopy, atom-probe tomography, X-ray diffraction and absorption... 2 examples illustrate the contribution made by the JANNUS platform to our understanding of the irradiation behavior of nuclear materials. The first example concerns hexagonal silicon carbide (6H-SiC), the second one an ODS (Oxide Dispersion Strengthened) ferritic-martensitic alloy. (A.C.)

  11. Strong coupling between Tamm plasmon polariton and two dimensional semiconductor excitons

    CERN Document Server

    Hu, Tao; Wu, Lin; Zhang, Long; Shan, Yuwei; Lu, Jian; Wang, Jun; Luo, Song; Zhang, Zhe; Liao, Liming; Wu, Shiwei; Shen, S C; Chen, Zhanghai

    2016-01-01

    Two dimensional (2D) semiconductor materials of transition-metal dichalcogenides (TMDCs) manifest many peculiar physical phenomena in the light-matter interaction. Due to their ultrathin property, strong interaction with light and the robust excitons at room temperature, they provide a perfect platform for studying the physics of strong coupling in low dimension and at room temperature. Here we report the strong coupling between 2D semiconductor excitons and Tamm plasmon polaritons (TPPs). We observe a Rabi splitting of about 54 meV at room temperature by measuring the angle resolved differential reflectivity spectra and simulate the theoretical results by using the transfer matrix method. Our results will promote the realization of the TPP based ultrathin polariton devices at room temperature.

  12. Quaternary alloy semiconductor nanobelts with bandgap spanning the entire visible spectrum.

    Science.gov (United States)

    Pan, Anlian; Liu, Ruibin; Sun, Minghua; Ning, Cun-Zheng

    2009-07-15

    We used an improved cothermal evaporation route for the first time to achieve quaternary semiconductor nanostructured alloys, using an example of Zn(x)Cd(1-x)S(y)Se(1-y) nanobelts. The PL (bandgap) of these as-grown nanostructured alloys can be continuously tunable across the entire visible spectrum through experimentally controlling their compositions. Such widely controlled alloy nanostructures via composition/light emission provide a new material platform for applications in wavelength-tunable lasers, multicolor detectors, full-spectrum solar cells, LEDs, and color displays.

  13. Electrical contacts for a thin-film semiconductor device

    Science.gov (United States)

    Carlson, David E.; Dickson, Charles R.; D'Aiello, Robert V.

    1989-08-08

    A method of fabricating spaced-apart back contacts on a thin film of semiconductor material by forming strips of buffer material on top of the semiconductor material in locations corresponding to the desired dividing lines between back contacts, forming a film of metal substantially covering the semiconductor material and buffer strips, and scribing portions of the metal film overlying the buffer strips with a laser without contacting the underlying semiconductor material to separate the metal layer into a plurality of back contacts. The buffer material serves to protect the underlying semiconductor material from being damaged during the laser scribing. Back contacts and multi-cell photovoltaic modules incorporating such back contacts also are disclosed.

  14. Squeezed light in semiconductors

    CERN Document Server

    Ward, M B

    2001-01-01

    Experimental evidence is presented for the generation of photon-number squeezed states of light as a result of multi-photon absorption. Photon-number squeezing as a result of non-linear absorption has long been predicted and results have been obtained utilising two very different material systems: (i) an AIGaAs waveguide in which high optical intensities can be maintained over a relatively long interaction length of 2 mm; (ii) the organic polymer p-toluene sulphonate polydiacetylene that is essentially a one-dimensional semiconductor possessing a highly nonlinear optical susceptibility. The resulting nonlinear absorption is shown to leave the transmitted light in a state that is clearly nonclassical, exhibiting photon-number fluctuations below the shot-noise limit. Tuning the laser wavelength across the half-bandgap energy has enabled a comparison between two- and three-photon processes in the semiconductor waveguide. The correlations created between different spectral components of a pulsed beam of light as ...

  15. Handbook of spintronic semiconductors

    CERN Document Server

    Chen, Weimin

    2010-01-01

    Offers a review of the field of spintronic semiconductors. This book covers a range of topics, including growth and basic physical properties of diluted magnetic semiconductors based on II-VI, III-V and IV semiconductors, developments in theory and experimental techniques and potential device applications.

  16. A lysinated thiophene-based semiconductor as a multifunctional neural bioorganic interface.

    Science.gov (United States)

    Bonetti, Simone; Pistone, Assunta; Brucale, Marco; Karges, Saskia; Favaretto, Laura; Zambianchi, Massimo; Posati, Tamara; Sagnella, Anna; Caprini, Marco; Toffanin, Stefano; Zamboni, Roberto; Camaioni, Nadia; Muccini, Michele; Melucci, Manuela; Benfenati, Valentina

    2015-06-03

    Lysinated molecular organic semiconductors are introduced as valuable multifunctional platforms for neural cells growth and interfacing. Cast films of quaterthiophene (T4) semiconductor covalently modified with lysine-end moieties (T4Lys) are fabricated and their stability, morphology, optical/electrical, and biocompatibility properties are characterized. T4Lys films exhibit fluorescence and electronic transport as generally observed for unsubstituted oligothiophenes combined to humidity-activated ionic conduction promoted by the charged lysine-end moieties. The Lys insertion in T4 enables adhesion of primary culture of rat dorsal root ganglion (DRG), which is not achievable by plating cells on T4. Notably, on T4Lys, the number on adhering neurons/area is higher and displays a twofold longer neurite length than neurons plated on glass coated with poly-l-lysine. Finally, by whole-cell patch-clamp, it is shown that the biofunctionality of neurons cultured on T4Lys is preserved. The present study introduces an innovative concept for organic material neural interface that combines optical and iono-electronic functionalities with improved biocompatibility and neuron affinity promoted by Lys linkage and the softness of organic semiconductors. Lysinated organic semiconductors could set the scene for the fabrication of simplified bioorganic devices geometry for cells bidirectional communication or optoelectronic control of neural cells biofunctionality.

  17. Organic semiconductors as candidates for advanced optoelectronic devices:

    OpenAIRE

    Bratina, Gvido; Hudej, Robert

    2001-01-01

    Organic semiconductors are gaining an increasing attention due to their promise of novel optoelectronic devices. The main attraction of these materials stems from their potential integration with flexible materials, which would result in ultrathin flexible multicolor displays. Basic electronic properties of typical representatives of organic semiconductors are reviewed. The operation of a light-emitting device based on organic semiconductors is fundamentally different from its inorganic count...

  18. Bi-Se doped with Cu, p-type semiconductor

    Science.gov (United States)

    Bhattacharya, Raghu Nath; Phok, Sovannary; Parilla, Philip Anthony

    2013-08-20

    A Bi--Se doped with Cu, p-type semiconductor, preferably used as an absorber material in a photovoltaic device. Preferably the semiconductor has at least 20 molar percent Cu. In a preferred embodiment, the semiconductor comprises at least 28 molar percent of Cu. In one embodiment, the semiconductor comprises a molar percentage of Cu and Bi whereby the molar percentage of Cu divided by the molar percentage of Bi is greater than 1.2. In a preferred embodiment, the semiconductor is manufactured as a thin film having a thickness less than 600 nm.

  19. Payment Platform

    DEFF Research Database (Denmark)

    Hjelholt, Morten; Damsgaard, Jan

    2012-01-01

    Payment transactions through the use of physical coins, bank notes or credit cards have for centuries been the standard formats of exchanging money. Recently online and mobile digital payment platforms has entered the stage as contenders to this position and possibly could penetrate societies...... thoroughly and substitute current payment standards in the decades to come. This paper portrays how digital payment platforms evolve in socio-technical niches and how various technological platforms aim for institutional attention in their attempt to challenge earlier platforms and standards. The paper...... applies a co-evolutionary multilevel perspective to model the interplay and processes between technology and society wherein digital payment platforms potentially will substitute other payment platforms just like the credit card negated the check. On this basis this paper formulate a multilevel conceptual...

  20. Unitary lens semiconductor device

    Science.gov (United States)

    Lear, Kevin L.

    1997-01-01

    A unitary lens semiconductor device and method. The unitary lens semiconductor device is provided with at least one semiconductor layer having a composition varying in the growth direction for unitarily forming one or more lenses in the semiconductor layer. Unitary lens semiconductor devices may be formed as light-processing devices such as microlenses, and as light-active devices such as light-emitting diodes, photodetectors, resonant-cavity light-emitting diodes, vertical-cavity surface-emitting lasers, and resonant cavity photodetectors.

  1. A semiconductor based electrode

    Energy Technology Data Exchange (ETDEWEB)

    Khamatani, A.; Kobayasi, K.

    1983-03-30

    The semiconductor electrode is submerged into an electrolyte which is held in the illuminated chamber. The other electrode is placed in a dark chamber connected with the channel to be illuminated, which has a partition in the form of a membrane. An electric current flows in the external circuit of the element with illumination of the first electrode. The illuminated electrode is covered with a thin film of a substance which is stable with the action of the electrolyte. The film is made of Si02, A1203, GaN or A1N. The protective coating makes it possible to use materials less stable than Ti02 in a rutile modification, but which have higher characteristics than the GaP, GaAs, CdS and InP, for making the electrode.

  2. Semiconductor Nanostructures Quantum States and Electronic Transport

    CERN Document Server

    Ihn, Thomas

    2009-01-01

    This textbook describes the physics of semiconductor nanostructures with emphasis on their electronic transport properties. At its heart are five fundamental transport phenomena: quantized conductance, tunnelling transport, the Aharonov-Bohm effect, the quantum Hall effect, and the Coulomb blockade effect. The book starts out with the basics of solid state and semiconductor physics, such as crystal structure, band structure, and effective mass approximation, including spin-orbit interaction effects important for research in semiconductor spintronics. It contains material aspects such as band e

  3. Synthesis and Characterization of Novel Organic Semiconductors

    Institute of Scientific and Technical Information of China (English)

    Prashant; Sonar; Samarendra; P.Singh; Ananth; Dodabalapur; Alan; Sellinger

    2007-01-01

    1 Results Development of new organic semiconductors for use in low-cost,large-area applications is very important for growth of the organic electronic industry.Existing non-polymer based organic semiconductors can be roughly classified into linear,star-shaped,branched or lamellar molecules on the basis of their shape[1]. Generally hole (p-type) and electron (n-type) transporting semiconductors have been prepared from electron donating and accepting π-systems respectively[2]. These materials can be used ...

  4. Controlled growth of semiconductor crystals

    Science.gov (United States)

    Bourret-Courchesne, Edith D.

    1992-01-01

    A method for growth of III-V, II-VI and related semiconductor single crystals that suppresses random nucleation and sticking of the semiconductor melt at the crucible walls. Small pieces of an oxide of boron B.sub.x O.sub.y are dispersed throughout the comminuted solid semiconductor charge in the crucible, with the oxide of boron preferably having water content of at least 600 ppm. The crucible temperature is first raised to a temperature greater than the melt temperature T.sub.m1 of the oxide of boron (T.sub.m1 =723.degree. K. for boron oxide B.sub.2 O.sub.3), and the oxide of boron is allowed to melt and form a reasonably uniform liquid layer between the crucible walls and bottom surfaces and the still-solid semiconductor charge. The temperature is then raised to approximately the melt temperature T.sub.m2 of the semiconductor charge material, and crystal growth proceeds by a liquid encapsulated, vertical gradient freeze process. About half of the crystals grown have a dislocation density of less than 1000/cm.sup.2. If the oxide of boron has water content less than 600 ppm, the crucible material should include boron nitride, a layer of the inner surface of the crucible should be oxidized before the oxide of boron in the crucible charge is melted, and the sum of thicknesses of the solid boron oxide layer and liquid boron oxide layer should be at least 50 .mu.m.

  5. Silver-Assisted Chemical Etching of Semiconductor Materials%银辅助化学刻蚀半导体材料

    Institute of Scientific and Technical Information of China (English)

    耿学文; 贺春林; 徐仕翀; 李俊刚; 朱丽娟; 赵连城

    2012-01-01

    微电子器件的发展趋势是小型化和多功能化,这就对半导体材料的加工技术提出了更高的要求。与传统的加工技术相比,近年发展起来的贵金属粒子辅助化学刻蚀半导体材料制备微结构技术因操作简单、不需要精密设备、反应迅速和可批量生产等优点引起了国内外学者的广泛关注。本文以Si为主,详细介绍了Ag辅助化学刻蚀半导体材料的机理、反应现象及影响因素,总结了各种微结构的制备技术及其应用。此外,对Ge,Si1-xGex和GaAs等其他半导体材料的贵金属粒子辅助化学刻蚀技术也进行了综述。同时分析了贵金属粒子辅助化学刻蚀半导体目前存在的问题,并对未来的研究方向进行了展望。%Semiconductors with various structural morphologies are widely used in areas of electronics, optoelectronics, photovohaics, sensors and thermoelectrics. The fabrication of solid-state micro/nanostructures has been motivated by the miniaturization and multi-functionality of microelectronic devices. Although some traditional methods can be used for texturization treatment of semiconductors, their applications are limited to some extent owing to their intrinsic disadvantages. Recently, the technologies of noble metal-assisted chemical etching (MacEtch) of semiconductors to produce micro/nanostructures have been paid much attention due to their relatively simple processes, fast reacting rate, low cost, and applicability for mass production etc. In this review, firstly, the MacEtch mechanisms, reaction phenomena and effect factors (including the depositing methods, distribution, sizes, shape of Ag particles, and the composition of etchants) of Ag-assisted chemical etching of Si semiconductor are discussed in detail. And then the fabrication technologies of various microstructures such as porous Si, Si nanostructures, silicon nanowire arrays, and quasi-ordered micro/nanostructures are introduced to

  6. Photovoltaic healing of non-uniformities in semiconductor devices

    Energy Technology Data Exchange (ETDEWEB)

    Karpov, Victor G.; Roussillon, Yann; Shvydka, Diana; Compaan, Alvin D.; Giolando, Dean M.

    2006-08-29

    A method of making a photovoltaic device using light energy and a solution to normalize electric potential variations in the device. A semiconductor layer having nonuniformities comprising areas of aberrant electric potential deviating from the electric potential of the top surface of the semiconductor is deposited onto a substrate layer. A solution containing an electrolyte, at least one bonding material, and positive and negative ions is applied over the top surface of the semiconductor. Light energy is applied to generate photovoltage in the semiconductor, causing a redistribution of the ions and the bonding material to the areas of aberrant electric potential. The bonding material selectively bonds to the nonuniformities in a manner such that the electric potential of the nonuniformities is normalized relative to the electric potential of the top surface of the semiconductor layer. A conductive electrode layer is then deposited over the top surface of the semiconductor layer.

  7. Review of wide band-gap semiconductors technology

    Directory of Open Access Journals (Sweden)

    Jin Haiwei

    2016-01-01

    Full Text Available Silicon carbide (SiC and gallium nitride (GaN are typical representative of the wide band-gap semiconductor material, which is also known as third-generation semiconductor materials. Compared with the conventional semiconductor silicon (Si or gallium arsenide (GaAs, wide band-gap semiconductor has the wide band gap, high saturated drift velocity, high critical breakdown field and other advantages; it is a highly desirable semiconductor material applied under the case of high-power, high-temperature, high-frequency, anti-radiation environment. These advantages of wide band-gap devices make them a hot spot of semiconductor technology research in various countries. This article describes the research agenda of United States and European in this area, focusing on the recent developments of the wide band-gap technology in the US and Europe, summed up the facing challenge of the wide band-gap technology.

  8. Incorporation of ZnO and their composite nanostructured material into a cotton fabric platform for wearable device applications.

    Science.gov (United States)

    Veluswamy, Pandiyarasan; Sathiyamoorthy, Suhasini; Khan, Faizan; Ghosh, Aranya; Abhijit, Majumdar; Hayakawa, Yasuhiro; Ikeda, Hiroya

    2017-02-10

    The central idea of this paper is to innovate a new approach for the development of wearable device materials through the coating of cotton fabric with ZnO and Sb-/Ag-/ZnO composites. The study was designed in order to have a clear understanding of the role of ZnO as well as the modified composite thereof under investigation. Cotton fabric with uniform ZnO/ZnO-composite layers on the surface was successfully synthesized via a solvothermal method. The growth behaviors were investigated by comparing ZnO and ZnO-composites. The structural, morphological, chemical states, optical, electrical and thermopower properties of these fabrics were studied. Nanostructured ZnO-composite fabric had enhanced UV shielding with a value of 83.96. It is found that the ZnO-composite fabrics have increased electrical conductivity. The thermopower value of the ZnO-composite fabric could reach 471.9μVK(-1). Such materials are anticipated to be worthwhile as wearable electronic devices and as protective textiles.

  9. Graphene-Based Platform for Infrared Near-Field Nanospectroscopy of Water and Biological Materials in an Aqueous Environment.

    Science.gov (United States)

    Khatib, Omar; Wood, Joshua D; McLeod, Alexander S; Goldflam, Michael D; Wagner, Martin; Damhorst, Gregory L; Koepke, Justin C; Doidge, Gregory P; Rangarajan, Aniruddh; Bashir, Rashid; Pop, Eric; Lyding, Joseph W; Thiemens, Mark H; Keilmann, Fritz; Basov, D N

    2015-08-25

    Scattering scanning near-field optical microscopy (s-SNOM) has emerged as a powerful nanoscale spectroscopic tool capable of characterizing individual biomacromolecules and molecular materials. However, applications of scattering-based near-field techniques in the infrared (IR) to native biosystems still await a solution of how to implement the required aqueous environment. In this work, we demonstrate an IR-compatible liquid cell architecture that enables near-field imaging and nanospectroscopy by taking advantage of the unique properties of graphene. Large-area graphene acts as an impermeable monolayer barrier that allows for nano-IR inspection of underlying molecular materials in liquid. Here, we use s-SNOM to investigate the tobacco mosaic virus (TMV) in water underneath graphene. We resolve individual virus particles and register the amide I and II bands of TMV at ca. 1520 and 1660 cm(-1), respectively, using nanoscale Fourier transform infrared spectroscopy (nano-FTIR). We verify the presence of water in the graphene liquid cell by identifying a spectral feature associated with water absorption at 1610 cm(-1).

  10. Strain sensitivity of band gaps of Sn-containing semiconductors

    DEFF Research Database (Denmark)

    Li, Hong; Castelli, Ivano Eligio; Thygesen, Kristian Sommer

    2015-01-01

    Tuning of band gaps of semiconductors is a way to optimize materials for applications within photovoltaics or as photocatalysts. One way to achieve this is through applying strain to the materials. We investigate the effect of strain on a range of Sn-containing semiconductors using density...

  11. Workshop report and presentations from the Semiconductor Research Corporation-DOE Semiconductor Task Force Workshop

    Science.gov (United States)

    The Semiconductor Research Corporation-DOE Semiconductor Task Force Workshop was held in Oak ridge, Tennessee, on November 2-3, 1987. It was to provide a forum for representatives of the national laboratories, DOE, and the semiconductor industry in which to discuss capabilities of the national laboratories which could contribute to the future competitiveness of the US semiconductor industry, to identify specific large and small projects at the national laboratories which would be of direct benefit to the semiconductor industry, and to find ways of implementing these projects. Numerous small projects were identified which would utilize unique capabilities of the national laboratories in advanced ion implantation, plasma processing (including electron cyclotron resonance plasmas), ion and cluster beam deposition, materials characterization, electronic packaging, and laser processing and deposition. Five large-scale candidate projects were identified in synchrotron x-ray lithography, silicon process integration, advanced materials processing science, process analysis and diagnostics, and ultra clean room engineering. The major obstacle to implementing these projects if the lack of appropriate funds to initiate and stimulate interactions between the national laboratories and the semiconductor industry. SEMATECH and the federal government are potential sources of seed funds for these projects. The Semiconductor Research Corporation is ideally suited to interface the semiconductor industry and the national laboratories for many of these interactions.

  12. Recent progress in the development of semiconductor-based photocatalyst materials for applications in photocatalytic water splitting and degradation of pollutants

    CSIR Research Space (South Africa)

    Opoku, F

    2017-07-01

    Full Text Available . The VB and CB edges of commonly used semicon- ductors[36] with reference to EH /H2 + and EO /H O2 2 potentials are given in Figure 1. If ECB is positioned more negative than the EH /H2 + potential and the EVB is also aligned more positive than the EO.... Sustainable Syst. 2017, 1700006 Table 1. The band gap, CB (ECB) and VB (EVB) edge positions of commonly used semiconductors at pH zero versus normal hydrogen electrode (NHE) (Adapted with permission[36]). (ECB – conduction band edge, EVB – valence band edge...

  13. Electron beam pumped semiconductor laser

    Science.gov (United States)

    Hug, William F. (Inventor); Reid, Ray D. (Inventor)

    2009-01-01

    Electron-beam-pumped semiconductor ultra-violet optical sources (ESUVOSs) are disclosed that use ballistic electron pumped wide bandgap semiconductor materials. The sources may produce incoherent radiation and take the form of electron-beam-pumped light emitting triodes (ELETs). The sources may produce coherent radiation and take the form of electron-beam-pumped laser triodes (ELTs). The ELTs may take the form of electron-beam-pumped vertical cavity surface emitting lasers (EVCSEL) or edge emitting electron-beam-pumped lasers (EEELs). The semiconductor medium may take the form of an aluminum gallium nitride alloy that has a mole fraction of aluminum selected to give a desired emission wavelength, diamond, or diamond-like carbon (DLC). The sources may be produced from discrete components that are assembled after their individual formation or they may be produced using batch MEMS-type or semiconductor-type processing techniques to build them up in a whole or partial monolithic manner, or combination thereof.

  14. Acoustoelectric effect in semiconductor superlattice

    Science.gov (United States)

    Mensah, S. Y.; Allotey, F. K. A.; Adjepong, S. K.

    1993-10-01

    Acoustoelectric effect in semiconductor superlattice has been studied for acoustic wave whose wavelength lambda = 2pi/q is smaller than the mean free path of the electrons l (where ql approaches 1). Unlike the homogeneous bulk material where Weinreich relation is independent of the wave number q in the superlattice we observe a dependence on q i.e. spatial dispersion. In the presence of applied constant field E a threshold value was obtained where the acoustoelectric current changes direction.

  15. Foreword: Focus on Superconductivity in Semiconductors

    Directory of Open Access Journals (Sweden)

    Yoshihiko Takano

    2008-01-01

    Full Text Available Since the discovery of superconductivity in diamond, much attention has been given to the issue of superconductivity in semiconductors. Because diamond has a large band gap of 5.5 eV, it is called a wide-gap semiconductor. Upon heavy boron doping over 3×1020 cm−3, diamond becomes metallic and demonstrates superconductivity at temperatures below 11.4 K. This discovery implies that a semiconductor can become a superconductor upon carrier doping. Recently, superconductivity was also discovered in boron-doped silicon and SiC semiconductors. The number of superconducting semiconductors has increased. In 2008 an Fe-based superconductor was discovered in a research project on carrier doping in a LaCuSeO wide-gap semiconductor. This discovery enhanced research activities in the field of superconductivity, where many scientists place particular importance on superconductivity in semiconductors.This focus issue features a variety of topics on superconductivity in semiconductors selected from the 2nd International Workshop on Superconductivity in Diamond and Related Materials (IWSDRM2008, which was held at the National Institute for Materials Science (NIMS, Tsukuba, Japan in July 2008. The 1st workshop was held in 2005 and was published as a special issue in Science and Technology of Advanced Materials (STAM in 2006 (Takano 2006 Sci. Technol. Adv. Mater. 7 S1.The selection of papers describe many important experimental and theoretical studies on superconductivity in semiconductors. Topics on boron-doped diamond include isotope effects (Ekimov et al and the detailed structure of boron sites, and the relation between superconductivity and disorder induced by boron doping. Regarding other semiconductors, the superconducting properties of silicon and SiC (Kriener et al, Muranaka et al and Yanase et al are discussed, and In2O3 (Makise et al is presented as a new superconducting semiconductor. Iron-based superconductors are presented as a new series of high

  16. Dry etching technology for semiconductors

    CERN Document Server

    Nojiri, Kazuo

    2015-01-01

    This book is a must-have reference to dry etching technology for semiconductors, which will enable engineers to develop new etching processes for further miniaturization and integration of semiconductor integrated circuits.  The author describes the device manufacturing flow, and explains in which part of the flow dry etching is actually used. The content is designed as a practical guide for engineers working at chip makers, equipment suppliers and materials suppliers, and university students studying plasma, focusing on the topics they need most, such as detailed etching processes for each material (Si, SiO2, Metal etc) used in semiconductor devices, etching equipment used in manufacturing fabs, explanation of why a particular plasma source and gas chemistry are used for the etching of each material, and how to develop etching processes.  The latest, key technologies are also described, such as 3D IC Etching, Dual Damascene Etching, Low-k Etching, Hi-k/Metal Gate Etching, FinFET Etching, Double Patterning ...

  17. The Physics of Semiconductors An Introduction Including Nanophysics and Applications

    CERN Document Server

    Grundmann, Marius

    2010-01-01

    The Physics of Semiconductors contains ample material for a comprehensive upper-level undergraduate or beginning graduate course, guiding readers to the point where they can choose a special topic and begin supervised research. The textbook provides a balance between essential aspects of solid-state and semiconductor physics, on the one hand, and the principles of various semiconductor devices and their applications in electronic and photonic devices, on the other. It highlights many practical aspects of semiconductors such as alloys, strain, heterostructures, nanostructures, that are necessary in modern semiconductor research but typically omitted in textbooks. Coverage also includes additional advanced topics, such as Bragg mirrors, resonators, polarized and magnetic semiconductors. The text derives explicit formulas for many results to support better understanding of the topics. The Physics of Semiconductors requires little or no prior knowledge of solid-state physics and evolved from a highly regarded two...

  18. The Physics of Semiconductors An Introduction Including Devices and Nanophysics

    CERN Document Server

    Grundmann, Marius

    2006-01-01

    The Physics of Semiconductors provides material for a comprehensive upper-level-undergrauate and graduate course on the subject, guiding readers to the point where they can choose a special topic and begin supervised research. The textbook provides a balance between essential aspects of solid-state and semiconductor physics, on the one hand, and the principles of various semiconductor devices and their applications in electronic and photonic devices, on the other. It highlights many practical aspects of semiconductors such as alloys, strain, heterostructures, nanostructures, that are necessary in modern semiconductor research but typically omitted in textbooks. For the interested reader some additional advanced topics are included, such as Bragg mirrors, resonators, polarized and magnetic semiconductors are included. Also supplied are explicit formulas for many results, to support better understanding. The Physics of Semiconductors requires little or no prior knowledge of solid-state physics and evolved from ...

  19. Microfabricated suspended island platform for the measurement of in-plane thermal conductivity of thin films and nanostructured materials with consideration of contact resistance.

    Science.gov (United States)

    Alaie, Seyedhamidreza; Goettler, Drew F; Abbas, Khawar; Su, Mehmet F; Reinke, Charles M; El-Kady, Ihab; Leseman, Zayd C

    2013-10-01

    A technique based on suspended islands is described to measure the in-plane thermal conductivity of thin films and nano-structured materials, and is also employed for measurements of several samples with a single measurement platform. Using systematic steps for measurements, the characterization of the thermal resistances of a sample and its contacts are studied. The calibration of the contacts in this method is independent of the geometry, size, materials, and uniformity of contacts. To verify the technique, two different Si samples with different thicknesses and two samples of the same SiN(x) wafer are characterized on a single device. One of the Si samples is also characterized by another technique, which verifies the current results. Characterization of the two SiN(x) samples taken from the same wafer showed less than 1% difference in the measured thermal conductivities, indicating the precision of the method. Additionally, one of the SiN(x) samples is characterized and then demounted, remounted, and characterized for a second time. The comparison showed the change in the thermal resistance of the contact in multiple measurements could be as small as 0.2 K/μW, if a similar sample is used.

  20. Widely tunable infrared semiconductor Mie resonators (Conference Presentation)

    Science.gov (United States)

    Lewi, Tomer; Iyer, Prasad P.; Butakov, Nikita A.; Mikhailovsky, Alexander A.; Schuller, Jon A.

    2016-09-01

    Optical antenna metasurfaces have attracted substantial attention in recent years, as they may enable new classes of planar optical elements. However, actively tuning nanoantenna resonances, whether dielectric or plasmonic, remains an unresolved challenge. In this work, we investigate tuning mid-infrared (MIR) Mie resonances in semiconductor subwavelength particles by directly modulating the permittivity with free charge carriers. Using femtosecond laser ablation, we fabricate spherical silicon and germanium particles of varying sizes and doping concentrations. Single-particle infrared spectra reveal electric and magnetic dipole, quadrupole, and hexapole resonances. We first demonstrate size-dependent Si and Ge Mie resonances spanning the entire mid-infrared (2-16 μm) spectral range. We subsequently show doping-dependent resonance frequency shifts that follow simple Drude models. Taking advantage of the large doping dependence of Si and Ge MIR permittivities, we demonstrate a huge tunability of Mie resonance wavelengths (up to 9 μm) over a broad 2-16 μm MIR range. This tuning range corresponds to changes of permittivity as large as 30 within a single material system, culminating in the emergence of plasmonic modes at high carrier densities and long wavelengths. We also demonstrate dynamic tuning of intrinsic semiconductor antennas using thermo-optic effects. These findings demonstrate the potential for actively tuning infrared Mie resonances, thus providing an excellent platform for tunable metamaterials.

  1. The Creative Platform

    DEFF Research Database (Denmark)

    Byrge, Christian; Hansen, Søren

    whether you consider thirdgrade teaching, human-resource development, or radical new thinking in product development in a company. The Creative Platform was developed at Aalborg University through a series of research-and-development activities in collaboration with educational institutions and private......This book is about introducing more creativity into general educational courses and cross-disciplinary activities. It is directed toward teachers at all levels in the educational system, but the Creative Platform is a general model, and thus the creative process will fundamentally be the same...... companies. It is a project in which the goal is to make a hands-on approach to a knowledge perspective on enhancing creativity. The underlying ambition of the Creative Platform is to make it easier to promote creativity. At www.uka.aau.dk/The+Creative+Platform, you can find extra materials and instructions...

  2. Ⅲ-V族三元化合物半导体材料分子束外延的生长热力学%Thermodynamic analysis of growth of ternary III-V semiconductor materials by molecular-beam epitaxy

    Institute of Scientific and Technical Information of China (English)

    叶志成; 舒永春; 曹雪; 龚亮; 皮彪; 姚江宏; 邢晓东; 许京军

    2011-01-01

    Thermodynamic models for molecular-beam epitaxy (MBE) growth of ternary Ⅲ-V semiconductor materials are proposed. These models are in agreement with our experimental materials InGaP/GaAs and InGaAs/InP, and reported GaAsP/GaAs and InAsP/InP in thermodynamic growth. The lattice strain energy ΔG and thermal decomposition sensitive to growth temperature are demonstrated in the models simultaneously. ΔG is the function of the alloy composition, which is affected by flux ratio and growth temperature directly. The calculation results reveal that flux ratio and growth temperature mainly influence the growth process. Thermodynamic model of quaternary InGaAsP/GaAs semiconductor material is discussed also.%建立Ⅲ-V族三元化合物半导体材料的分子束外延生长热力学模型.该模型与实验材料InGaP/GaAs, InGaAs/InP 及已发表的GaAsP/GaAs, InAsP/InP 的数据吻合得很好.将晶格应变能ΔG及脱附对温度敏感这两个因素同时纳入热力学模型中,束流和生长温度直接影响合金组分,晶格应变能是合金组分的函数.热力学模型计算结果反映了束流和生长温度是生长过程中最主要的影响因素.讨论和分析了四元半导体材料InGaAsP/GaAs的热力学生长模型.

  3. Properties of infrared doped semiconductor Mie resonators (Presentation Recording)

    Science.gov (United States)

    Lewi, Tomer; Iyer, Prasad P.; Butakov, Nikita A.; Schuller, Jon A.

    2015-09-01

    Dielectric optical antenna resonators have recently emerged as a viable alternative to plasmonic resonators for metamaterials and nanophotonic devices, due to their ability to support multipolar Mie resonances with low losses. In this work, we experimentally investigate the mid-infrared Mie resonances in Si and Ge subwavelength spherical particles. In particular, we leverage the electronic and optical properties of these semiconductors in the mid-infrared range to design and tune Mie resonators through free-carrier refraction. Si and Ge semiconductor spheres of varying sizes of 0.5-4 μm were fabricated using femtosecond laser ablation. Using single particle infrared spectroscopy, we first demonstrate size-dependent Si and Ge Mie resonances spanning the entire mid-infrared (2-16 μm) spectral range. Subsequently we show that the Mie resonances can be tuned by varying material properties rather than size or geometry. We experimentally demonstrate doping-dependent resonance frequency shifts that follow simple Drude models of free-carrier refraction. We show that Ge particles exhibit a stronger doping dependence than Si due to the smaller effective mass of the free carriers. Using the unique size and doping dispersion of the electric and magnetic dipole modes, we identify and demonstrate a size regime where these modes are spectrally overlapping. We also demonstrate the emergence of plasmonic resonances for high doping levels and long wavelengths. These findings demonstrate the potential for tuning infrared semiconductor Mie resonances by optically or electrically modulating charge carrier densities, thus providing an excellent platform for tunable electromagnetic metamaterials.

  4. Semiconductor Electrical Measurements Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The Semiconductor Electrical Measurements Laboratory is a research laboratory which complements the Optical Measurements Laboratory. The laboratory provides for Hall...

  5. Method of Promoting Single Crystal Growth During Melt Growth of Semiconductors

    Science.gov (United States)

    Su, Ching-Hua (Inventor)

    2013-01-01

    The method of the invention promotes single crystal growth during fabrication of melt growth semiconductors. A growth ampoule and its tip have a semiconductor source material placed therein. The growth ampoule is placed in a first thermal environment that raises the temperature of the semiconductor source material to its liquidus temperature. The growth ampoule is then transitioned to a second thermal environment that causes the semiconductor source material in the growth ampoule's tip to attain a temperature that is below the semiconductor source material's solidus temperature. The growth ampoule so-transitioned is then mechanically perturbed to induce single crystal growth at the growth ampoule's tip.

  6. Platform contents

    OpenAIRE

    Renault, Régis

    2014-01-01

    A monopoly platform hosts advertisers who compete on a market for horizontally differentiated products. These products may be either mass market products that appeal broadly to the entire consumer population or niche products that are tailored to the tastes of some particular group. Consumers search sequentially through ads incurring a surfing cost of moving to the next ad. They may click on an ad at some cost, which provides all relevant information and the opportunity to buy. The platform c...

  7. Identification of defects in semiconductors

    CERN Document Server

    Stavola, Michael; Weber, Eicke R; Stavola, Michael

    1998-01-01

    Since its inception in 1966, the series of numbered volumes known as Semiconductors and Semimetals has distinguished itself through the careful selection of well-known authors, editors, and contributors.The"Willardson and Beer"Series, as it is widely known, has succeeded in publishing numerous landmark volumes and chapters. Not only did many of these volumes make an impact at the time of their publication, but they continue to be well-cited years after their original release. Recently, Professor Eicke R. Weber of the University of California at Berkeley joined as a co-editor of the series. Professor Weber, a well-known expert in the field of semiconductor materials, will further contribute to continuing the series' tradition of publishing timely, highly relevant, and long-impacting volumes. Some of the recent volumes, such as Hydrogen in Semiconductors, Imperfections in III/V Materials, Epitaxial Microstructures, High-Speed Heterostructure Devices,Oxygen in Silicon, and others promise indeed that this traditi...

  8. Coherent magnetic semiconductor nanodot arrays

    Directory of Open Access Journals (Sweden)

    Xiu Faxian

    2011-01-01

    Full Text Available Abstract In searching appropriate candidates of magnetic semiconductors compatible with mainstream Si technology for future spintronic devices, extensive attention has been focused on Mn-doped Ge magnetic semiconductors. Up to now, lack of reliable methods to obtain high-quality MnGe nanostructures with a desired shape and a good controllability has been a barrier to make these materials practically applicable for spintronic devices. Here, we report, for the first time, an innovative growth approach to produce self-assembled and coherent magnetic MnGe nanodot arrays with an excellent reproducibility. Magnetotransport experiments reveal that the nanodot arrays possess giant magneto-resistance associated with geometrical effects. The discovery of the MnGe nanodot arrays paves the way towards next-generation high-density magnetic memories and spintronic devices with low-power dissipation.

  9. Methods and devices for fabricating and assembling printable semiconductor elements

    Science.gov (United States)

    Nuzzo, Ralph G.; Rogers, John A.; Menard, Etienne; Lee, Keon Jae; Khang, Dahl-Young; Sun, Yugang; Meitl, Matthew; Zhu, Zhengtao

    2009-11-24

    The invention provides methods and devices for fabricating printable semiconductor elements and assembling printable semiconductor elements onto substrate surfaces. Methods, devices and device components of the present invention are capable of generating a wide range of flexible electronic and optoelectronic devices and arrays of devices on substrates comprising polymeric materials. The present invention also provides stretchable semiconductor structures and stretchable electronic devices capable of good performance in stretched configurations.

  10. Methods and devices for fabricating and assembling printable semiconductor elements

    Energy Technology Data Exchange (ETDEWEB)

    Nuzzo, Ralph G.; Rogers, John A.; Menard, Etienne; Lee, Keon Jae; Khang, Dahl-Young; Sun, Yugang; Meitl, Matthew; Zhu, Zhengtao

    2017-09-19

    The invention provides methods and devices for fabricating printable semiconductor elements and assembling printable semiconductor elements onto substrate surfaces. Methods, devices and device components of the present invention are capable of generating a wide range of flexible electronic and optoelectronic devices and arrays of devices on substrates comprising polymeric materials. The present invention also provides stretchable semiconductor structures and stretchable electronic devices capable of good performance in stretched configurations.

  11. Spectral Feature Analysis of Semiconductor Thin Disk Laser

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The semiconductor thin disk laser is a new type of semiconductor laser. This work gives the basic operation function of the semiconductor disk laser, and analyses the heat effect by the experimentally measured photoluminescence spectrum of the laser chip at different pump power and different temperatures. We can see that: with increasing pump power, the thermal effect of the gain material becomes seriously and causes the saturation of carrier lifetime, so the electron-hole pair created in the absorbtion lay...

  12. Methods and devices for fabricating and assembling printable semiconductor elements

    Energy Technology Data Exchange (ETDEWEB)

    Nuzzo, Ralph G; Rogers, John A; Menard, Etienne; Lee, Keon Jae; Khang, Dahl-Young; Sun, Yugang; Meitl, Matthew; Zhu, Zhengtao

    2013-05-14

    The invention provides methods and devices for fabricating printable semiconductor elements and assembling printable semiconductor elements onto substrate surfaces. Methods, devices and device components of the present invention are capable of generating a wide range of flexible electronic and optoelectronic devices and arrays of devices on substrates comprising polymeric materials. The present invention also provides stretchable semiconductor structures and stretchable electronic devices capable of good performance in stretched configurations.

  13. Methods and devices for fabricating and assembling printable semiconductor elements

    Energy Technology Data Exchange (ETDEWEB)

    Nuzzo, Ralph G [Champaign, IL; Rogers, John A [Champaign, IL; Menard, Etienne [Durham, NC; Lee, Keon Jae [Daejeon, KR; Khang, Dahl-Young [Urbana, IL; Sun, Yugang [Champaign, IL; Meitl, Matthew [Raleigh, NC; Zhu, Zhengtao [Urbana, IL

    2011-07-19

    The invention provides methods and devices for fabricating printable semiconductor elements and assembling printable semiconductor elements onto substrate surfaces. Methods, devices and device components of the present invention are capable of generating a wide range of flexible electronic and optoelectronic devices and arrays of devices on substrates comprising polymeric materials. The present invention also provides stretchable semiconductor structures and stretchable electronic devices capable of good performance in stretched configurations.

  14. Methods and devices for fabricating and assembling printable semiconductor elements

    Energy Technology Data Exchange (ETDEWEB)

    Nuzzo, Ralph G [Champaign, IL; Rogers, John A [Champaign, IL; Menard, Etienne [Urbana, IL; Lee, Keon Jae [Savoy, IL; Khang, Dahl-Young [Urbana, IL; Sun, Yugang [Champaign, IL; Meitl, Matthew [Champaign, IL; Zhu, Zhengtao [Urbana, IL

    2009-11-24

    The invention provides methods and devices for fabricating printable semiconductor elements and assembling printable semiconductor elements onto substrate surfaces. Methods, devices and device components of the present invention are capable of generating a wide range of flexible electronic and optoelectronic devices and arrays of devices on substrates comprising polymeric materials. The present invention also provides stretchable semiconductor structures and stretchable electronic devices capable of good performance in stretched configurations.

  15. Methods and devices for fabricating and assembling printable semiconductor elements

    Energy Technology Data Exchange (ETDEWEB)

    Nuzzo, Ralph G; Rogers, John A; Menard, Etienne; Lee, Keon Jae; Khang, Dahl-Young; Sun, Yugang; Meitl, Matthew; Zhu, Zhengtao

    2014-03-04

    The invention provides methods and devices for fabricating printable semiconductor elements and assembling printable semiconductor elements onto substrate surfaces. Methods, devices and device components of the present invention are capable of generating a wide range of flexible electronic and optoelectronic devices and arrays of devices on substrates comprising polymeric materials. The present invention also provides stretchable semiconductor structures and stretchable electronic devices capable of good performance in stretched configurations.

  16. Graded core/shell semiconductor nanorods and nanorod barcodes

    Science.gov (United States)

    Alivisatos, A. Paul; Scher, Erik C.; Manna, Liberato

    2010-12-14

    Graded core/shell semiconductor nanorods and shaped nanorods are disclosed comprising Group II-VI, Group III-V and Group IV semiconductors and methods of making the same. Also disclosed are nanorod barcodes using core/shell nanorods where the core is a semiconductor or metal material, and with or without a shell. Methods of labeling analytes using the nanorod barcodes are also disclosed.

  17. Tuning and synthesis of semiconductor nanostructures by mechanical compression

    Energy Technology Data Exchange (ETDEWEB)

    Fan, Hongyou; Li, Binsong

    2015-11-17

    A mechanical compression method can be used to tune semiconductor nanoparticle lattice structure and synthesize new semiconductor nanostructures including nanorods, nanowires, nanosheets, and other three-dimensional interconnected structures. II-VI or IV-VI compound semiconductor nanoparticle assemblies can be used as starting materials, including CdSe, CdTe, ZnSe, ZnS, PbSe, and PbS.

  18. Subsecond annealing of advanced materials annealing by lasers, flash lamps and swift heavy ions

    CERN Document Server

    Skorupa, Wolfgang

    2014-01-01

    This book examines thermal processing of elemental semiconductors and materials including nanostructures with novel optoelectronic, magnetic, and superconducting properties. Covers compound semiconductors, dielectric composites and organic materials.

  19. Tunable Broadband Acoustic Gain in Piezoelectric Semiconductors at ε-Near-Zero Response

    DEFF Research Database (Denmark)

    Christensen, Johan; Willatzen, Morten

    2015-01-01

    Piezoelectric semiconductors have emerged as materials capable to amplify sound waves when electrons are set to drift at supersonic speeds. Several experiments have demonstrated this behaviour at moderate amplification levels for some intrinsic semiconductors and carrier concentrations. On a theo......Piezoelectric semiconductors have emerged as materials capable to amplify sound waves when electrons are set to drift at supersonic speeds. Several experiments have demonstrated this behaviour at moderate amplification levels for some intrinsic semiconductors and carrier concentrations...

  20. Epitaxial Growth of Cubic Crystalline Semiconductor Alloys on Basal Plane of Trigonal or Hexagonal Crystal

    Science.gov (United States)

    Park, Yeonjoon (Inventor); Choi, Sang H. (Inventor); King, Glen C. (Inventor)

    2011-01-01

    Hetero-epitaxial semiconductor materials comprising cubic crystalline semiconductor alloys grown on the basal plane of trigonal and hexagonal substrates, in which misfit dislocations are reduced by approximate lattice matching of the cubic crystal structure to underlying trigonal or hexagonal substrate structure, enabling the development of alloyed semiconductor layers of greater thickness, resulting in a new class of semiconductor materials and corresponding devices, including improved hetero-bipolar and high-electron mobility transistors, and high-mobility thermoelectric devices.

  1. 16th Russian Youth Conference on Physics of Semiconductors and Nanostructures, Opto- and Nanoelectronics

    Science.gov (United States)

    Suris, Robert A.; Vorobjev, Leonid E.; Firsov, Dmitry A.

    2015-01-01

    The 16th Russian Youth Conference on Physics of Semiconductors and Nanostructures, Opto- and Nanoelectronics was held on November 24 - 28 at St. Petersburg Polytechnic University. The program of the Conference included semiconductor technology, heterostructures with quantum wells and quantum dots, opto- and nanoelectronic devices, and new materials. A large number of participants with about 200 attendees from many regions of Russia provided a perfect platform for the valuable discussions between students and experienced scientists. The Conference included two invited talks given by a corresponding member of RAS P.S. Kopyev ("Nitrides: the 4th Nobel Prize on semiconductor heterostructures") and Dr. A.V. Ivanchik ("XXI century is the era of precision cosmology"). Students, graduate and postgraduate students presented their results on plenary and poster sessions. The total number of accepted papers published in Russian (the official conference language) was 92. Here we publish 18 of them in English. Like previous years, the participants were involved in the competition for the best report. Certificates and cash prizes were awarded to a number of participants for the presentations selected by the Program Committee. Two special E.F. Gross Prizes were given for the best presentations in semiconductor optics. Works with potential applications were recommended for participation in the following competition for support from the Russian Foundation for Assistance to Small Innovative Enterprises in Science and Technology. The Conference was supported by the Russian Foundation for Basic Research, the "Dynasty" foundation and the innovation company "ATC - Semiconductor Devices", St. Petersburg. The official Conference website is http://www.semicond.spbstu.ru/conf2014-eng.html

  2. 氮杂苯并菲类n-型有机半导体材料研究进展%Recent Developments of Azatriphenylene Materials as n-Type Organic Semiconductors

    Institute of Scientific and Technical Information of China (English)

    吴楠; 何志群; 许敏; 肖维康

    2014-01-01

    Discotic liquid crystals are a new class of organic electronic materials, and most of these materials display hole-transporting properties. n-Type discotic materials with electron-transporting properties are rare. Azatriphenylene is one of the most important discotic materials having similar structure to triphenylene derivatives. The introduction of nitrogen atom(s) into the molecular structure of azatriphenylene enhanced its electron affinity properties, making the azatriphenylene derivatives potential n-type organic semiconductors and important materials in terms of their application in optoelectronic devices. This paper reviews recent research progress towards the development of discotic azatriphenylene derivatives, provides discussion on their synthetic methodologies, and accesses their properties as wel as their molecular structures such as di-azatriphenylene, tetra-azatriphenylene, and hexa-azatriphenylene. As potential n-type organic semiconductors, the prospective applications of the azatriphenylene materials in optoelectronic devices are explored.%苯并菲盘状液晶是一类新型的有机电子学材料。该类材料多数以空穴传输功能为主,能传输电子的n-型材料较少。氮杂苯并菲是与苯并菲衍生物非常相似的一种杂环化合物,材料结构中引入了氮原子,吸电子能力得到增强,是潜在的n-型有机半导体材料,具有重要的应用价值。本文系统回顾了氮杂苯并菲类盘状液晶材料的研究进展,分类讨论了材料的分子结构,其中包括二、四、六氮杂苯并菲,以及它们的合成方法和物理化学性能,论述了材料在光电子领域的最新使用进展,并在此基础上,对该类液晶材料作为n-型有机半导体在光电子器件领域的应用前景进行了展望。

  3. Ⅲ-Ⅴ family of semiconductor materials photonic crystal state density characteristics%Ⅲ-Ⅴ族半导体材料组成光子晶体能态密度特性

    Institute of Scientific and Technical Information of China (English)

    陈士芹

    2012-01-01

    Application of the plane wave expansion method research □-□ family of semiconductor materials photonic crystal can state density, get filled with a radius of grid work rate f the variations between the corresponding state density distribution, when f = 0.2 a normalized when frequency biggest photonic band gap. Through the comparison for semiconductor compound material, AlP AIAs,AISb GaP and a 2 d square photonic crystals that has a wide GaP of the photon belt, with filling rate increase photonic crystal increase. The results of photonic crystal devices to provide the theory basis.%应用平面波展开法研究Ⅲ-Ⅴ族半导体材料组成光子晶体能态密度特性,得到填充率f随品格半径a之间的变化对应的能态密度分布,当f=0.2a时归一化频率存在最大光子带隙。通过比较化合物半导体材料为AIP、AJAs、AISb和GaP构成二维方形光子晶体得出GaP有较宽的光子禁带,随着填充率的增加光子晶体带隙增加。研究结果为光子晶体器件的研究提供理论依据。

  4. Comparison between p6P thin films and nanofibers on transistor platforms

    DEFF Research Database (Denmark)

    Tavares, Luciana; Kjelstrup-Hansen, Jakob; Thilsing-Hansen, Kasper

    2010-01-01

    The organic semiconductor para-hexaphenylene (p-6P) can be used as the light-emitting material in organic light-emitting field-effect transistors (OLEFETs), has a low cost, and is easy to process which could allow, for example, the development of mechanically flexible optoelectronics. In this work......, a systematic investigation was made of the electrical properties of p-6P both in the form of an evaporated thin film and also in the form of nanofibers that were transferred from a template substrate (muscovite mica) onto the transistor platform. We have investigated both bottom contact, bottom gate (BC...

  5. Semiconductors data handbook

    CERN Document Server

    Madelung, Otfried

    2004-01-01

    This volume Semiconductors: Data Handbook contains frequently used data from the corresponding larger Landolt-Börnstein handbooks in a low price book for the individual scientist working in the laboratory. The Handbook contain important information about a large number of semiconductors

  6. Applications of Semiconductor Lasers

    Institute of Scientific and Technical Information of China (English)

    LI Te; SUN Yan-fang; NING Yong-qiang; WANG Li-jun

    2005-01-01

    An overview of the applications of semiconductor lasers is presented. Diode lasers are widely used today,and the most prevalent use of the laser is probably in CD and DVD drives for computers and audio/video media systems. Semiconductor lasers are also used in many other fields ranging from optical fiber communications to display,medicine and pumping sources.

  7. Semiconductor Research Experimental Techniques

    CERN Document Server

    Balkan, Naci

    2012-01-01

    The book describes the fundamentals, latest developments and use of key experimental techniques for semiconductor research. It explains the application potential of various analytical methods and discusses the opportunities to apply particular analytical techniques to study novel semiconductor compounds, such as dilute nitride alloys. The emphasis is on the technique rather than on the particular system studied.

  8. Semiconductor radiation detection systems

    CERN Document Server

    2010-01-01

    Covers research in semiconductor detector and integrated circuit design in the context of medical imaging using ionizing radiation. This book explores other applications of semiconductor radiation detection systems in security applications such as luggage scanning, dirty bomb detection and border control.

  9. Rapid prototyping of robotic platforms

    CSIR Research Space (South Africa)

    De Ronde, Willis

    2016-11-01

    Full Text Available Building a robotic platform from raw materials can take anything from a few weeks to a few years to complete, depending on the complexity and size of the platform. This paper aims to introduce a novel approach of using abrasive waterjet machining...

  10. Nano-semiconductors devices and technology

    CERN Document Server

    Iniewski, Krzysztof

    2011-01-01

    With contributions from top international experts from both industry and academia, Nano-Semiconductors: Devices and Technology is a must-read for anyone with a serious interest in future nanofabrication technologies. Taking into account the semiconductor industry's transition from standard CMOS silicon to novel device structures--including carbon nanotubes (CNT), graphene, quantum dots, and III-V materials--this book addresses the state of the art in nano devices for electronics. It provides an all-encompassing, one-stop resource on the materials and device structures involved in the evolution

  11. Wide-Bandgap Semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Chinthavali, M.S.

    2005-11-22

    With the increase in demand for more efficient, higher-power, and higher-temperature operation of power converters, design engineers face the challenge of increasing the efficiency and power density of converters [1, 2]. Development in power semiconductors is vital for achieving the design goals set by the industry. Silicon (Si) power devices have reached their theoretical limits in terms of higher-temperature and higher-power operation by virtue of the physical properties of the material. To overcome these limitations, research has focused on wide-bandgap materials such as silicon carbide (SiC), gallium nitride (GaN), and diamond because of their superior material advantages such as large bandgap, high thermal conductivity, and high critical breakdown field strength. Diamond is the ultimate material for power devices because of its greater than tenfold improvement in electrical properties compared with silicon; however, it is more suited for higher-voltage (grid level) higher-power applications based on the intrinsic properties of the material [3]. GaN and SiC power devices have similar performance improvements over Si power devices. GaN performs only slightly better than SiC. Both SiC and GaN have processing issues that need to be resolved before they can seriously challenge Si power devices; however, SiC is at a more technically advanced stage than GaN. SiC is considered to be the best transition material for future power devices before high-power diamond device technology matures. Since SiC power devices have lower losses than Si devices, SiC-based power converters are more efficient. With the high-temperature operation capability of SiC, thermal management requirements are reduced; therefore, a smaller heat sink would be sufficient. In addition, since SiC power devices can be switched at higher frequencies, smaller passive components are required in power converters. Smaller heat sinks and passive components result in higher-power-density power converters

  12. ITS Platform

    DEFF Research Database (Denmark)

    Tøfting, Svend; Lahrmann, Harry; Agerholm, Niels

    2014-01-01

    Aalborg University and two local companies have over the past four years developed and tested an ITS Platform, which can be used for communication with cars and for providing a number of services to the drivers. The purpose has been to perform a technological test of the possible use of a hidden ...... not have to be very intelligent. This is gradually taken over by applications on smart phones. The ITS Platform with 425 test drivers is now completely developed and can be used for technological testing of e.g. payment systems.......Aalborg University and two local companies have over the past four years developed and tested an ITS Platform, which can be used for communication with cars and for providing a number of services to the drivers. The purpose has been to perform a technological test of the possible use of a hidden...

  13. Oxygen and germanium migration at low temperature influenced by the thermodynamic nature of the materials used in germanium metal-insulator-semiconductor structures

    Energy Technology Data Exchange (ETDEWEB)

    Kato, Kimihiko; Taoka, Noriyuki; Sakashita, Mitsuo; Nakatsuka, Osamu, E-mail: nakatuka@alice.xtal.nagoya-u.ac.jp; Zaima, Shigeaki [Department of Crystalline Materials Science, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603 (Japan)

    2015-09-07

    The influence of the reductive character of the metals used for the gate electrode on O migration in gate stacks and following reductive or oxidative reactions at an interface between a high permittivity (high-k) insulating layer and Ge or Si was investigated. The magnitude of the increase or decrease of Ge or Si oxides in the gate stacks caused by the metal layer deposition can be systematically correlated with the oxygen chemical potential (μ{sub O}) of gate metals for both Ge and Si systems. However, the influence of the gate metals on oxidative/reductive reactions of a semiconductor element is more significant for the Ge gate stacks than the Si system. Detailed investigations of Ge oxide as a function of depth were used to determine that the strong μ{sub O} dependence of the increase or decrease in the Ge oxide is because of the high diffusivity of Ge into the high-k oxide. In particular, migration of Ge into the high-k oxide occurs concurrently with O migration towards the reductive metal layer, and the strong reductive character of the metal significantly influences the decrease in the amount of Ge oxide. These results indicate the importance of the selection of gate metals based on μ{sub O} for controlling high-k/Ge interfacial structures.

  14. Multifunctional uranyl hybrid materials: structural diversities as a function of pH, luminescence with potential nitrobenzene sensing, and photoelectric behavior as p-type semiconductors.

    Science.gov (United States)

    Song, Jian; Gao, Xue; Wang, Zhi-Nan; Li, Cheng-Ren; Xu, Qi; Bai, Feng-Ying; Shi, Zhong-Feng; Xing, Yong-Heng

    2015-09-21

    A series of uranyl-organic frameworks (UOFs), {[(UO2)2(H2TTHA)(H2O)]·4,4'-bipy·2H2O}n (1), {[(UO2)3(TTHA)(H2O)3]}n (2), and {[(UO2)5(TTHA) (HTTHA)(H2O)3]·H3O}n (3), have been obtained by the hydrothermal reaction of uranyl acetate with a flexible hexapodal ligand (1,3,5-triazine-2,4,6-triamine hexaacetic acid, H6TTHA). These compounds exhibited three distinct 3D self-assembly architectures as a function of pH by single-crystal structural analysis, although the used ligand was the same in each reaction. Surprisingly, all of the coordination modes of the H6TTHA ligand in this work are first discovered. Furthermore, the photoluminescent results showed that these compounds displayed high-sensitivity luminescent sensing functions for nitrobenzene. Additionally, the surface photovoltage spectroscopy and electric-field-induced surface photovoltage spectroscopy showed that compounds 1-3 could behave as p-type semiconductors.

  15. Comparison of Wide-Bandgap Semiconductors for Power Electronics Applications

    Energy Technology Data Exchange (ETDEWEB)

    Ozpineci, B.

    2004-01-02

    Recent developmental advances have allowed silicon (Si) semiconductor technology to approach the theoretical limits of the Si material; however, power device requirements for many applications are at a point that the present Si-based power devices cannot handle. The requirements include higher blocking voltages, switching frequencies, efficiency, and reliability. To overcome these limitations, new semiconductor materials for power device applications are needed. For high power requirements, wide-bandgap semiconductors like silicon carbide (SiC), gallium nitride (GaN), and diamond, with their superior electrical properties, are likely candidates to replace Si in the near future. This report compares wide-bandgap semiconductors with respect to their promise and applicability for power applications and predicts the future of power device semiconductor materials.

  16. EDITORIAL: Oxide semiconductors

    Science.gov (United States)

    Kawasaki, M.; Makino, T.

    2005-04-01

    Blue or ultraviolet semiconducting light-emitting diodes have the potential to revolutionize illumination systems in the near-future. Such industrial need has propelled the investigation of several wide-gap semiconducting materials in recent years. Commercial applications include blue lasers for DVD memory and laser printers, while military applications are also expected. Most of the material development has so far been focused on GaN (band gap 3.5 eV at 2 K), and ZnSe (2.9 eV) because these two representative direct transition semiconductors are known to be bright emitting sources. GaN and GaN-based alloys are emerging as the winners in this field because ZnSe is subject to defect formation under high current drive. On the other hand, another II-VI compound, ZnO, has also excited substantial interest in the optoelectronics-oriented research communities because it is the brightest emitter of all, owing to the fact that its excitons have a 60 meV binding energy. This is compared with 26 meV for GaN and 20 meV for ZnSe. The stable excitons could lead to laser action based on their recombination even at temperatures well above room temperature. ZnO has additional major properties that are more advantageous than other wide-gap materials: availability of large area substrates, higher energy radiation stability, environmentally-friendly ingredients, and amenability to wet chemical etching. However, ZnO is not new to the semiconductor field as exemplified by several studies made during the 1960s on structural, vibrational, optical and electrical properties (Mollwo E 1982 Landolt-Boernstein New Series vol 17 (Berlin: Springer) p 35). In terms of devices, the luminescence from light-emitting diode structures was demonstrated in which Cu2O was used as the p-type material (Drapak I T 1968 Semiconductors 2 624). The main obstacle to the development of ZnO has been the lack of reproducible p-type ZnO. The possibility of achieving epitaxial p-type layers with the aid of thermal

  17. ITS Platform

    DEFF Research Database (Denmark)

    Tøfting, Svend; Lahrmann, Harry; Agerholm, Niels

    2014-01-01

    Aalborg University and two local companies have over the past four years developed and tested an ITS Platform, which can be used for communication with cars and for providing a number of services to the drivers. The purpose has been to perform a technological test of the possible use of a hidden ...... not have to be very intelligent. This is gradually taken over by applications on smart phones. The ITS Platform with 425 test drivers is now completely developed and can be used for technological testing of e.g. payment systems....

  18. Single-crystal semiconductor films grown on foreign substrates

    Science.gov (United States)

    Vohl, P.

    1966-01-01

    Intermediate alloy formed between foreign substrates and semiconductor material enable the growth of single crystal semiconductor films on the alloy layer. The melted film must not ball up on the surface of the substrate and neither chemically react nor alloy with the intermediate alloy formed on the substrate.

  19. Quantum theory of the optical and electronic properties of semiconductors

    CERN Document Server

    Haug, Hartmut

    2009-01-01

    This invaluable textbook presents the basic elements needed to understand and research into semiconductor physics. It deals with elementary excitations in bulk and low-dimensional semiconductors, including quantum wells, quantum wires and quantum dots. The basic principles underlying optical nonlinearities are developed, including excitonic and many-body plasma effects. Fundamentals of optical bistability, semiconductor lasers, femtosecond excitation, the optical Stark effect, the semiconductor photon echo, magneto-optic effects, as well as bulk and quantum-confined Franz-Keldysh effects, are covered. The material is presented in sufficient detail for graduate students and researchers with a general background in quantum mechanics.This fifth edition includes an additional chapter on 'Quantum Optical Effects' where the theory of quantum optical effects in semiconductors is detailed. Besides deriving the 'semiconductor luminescence equations' and the expression for the stationary luminescence spectrum, the resu...

  20. High pressure in semiconductor physics II

    CERN Document Server

    Willardson, R K; Suski, Tadeusz; Paul, William

    1998-01-01

    Since its inception in 1966, the series of numbered volumes known as Semiconductors and Semimetals has distinguished itself through the careful selection of well-known authors, editors, and contributors. The "Willardson and Beer" Series, as it is widely known, has succeeded in publishing numerous landmark volumes and chapters. Not only did many of these volumes make an impact at the time of their publication, but they continue to be well-cited years after their original release. Recently, Professor Eicke R. Weber of the University of California at Berkeley joined as a co-editor of the series. Professor Weber, a well-known expert in the field of semiconductor materials, will further contribute to continuing the series' tradition of publishing timely, highly relevant, and long-impacting volumes. Some of the recent volumes, such as Hydrogen in Semiconductors, Imperfections in III/V Materials, Epitaxial Microstructures, High-Speed Heterostructure Devices, Oxygen in Silicon, and others promise indeed that this tra...

  1. Semimetal/Semiconductor Nanocomposites for Thermoelectrics

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Hong [Univ. of California, Santa Barbara, CA (United States). Materials Dept.; Burke, Peter G. [Univ. of California, Santa Barbara, CA (United States). Materials Dept.; Gossard, Arthur C. [Univ. of California, Santa Barbara, CA (United States). Materials Dept.; Zeng, Gehong [Univ. of California, Santa Barbara, CA (United States). Dept. of Electrical and Computer Engineering; Ramu, Ashok T. [Univ. of California, Santa Barbara, CA (United States). Dept. of Electrical and Computer Engineering; Bahk, Je-Hyeong [Univ. of California, Santa Barbara, CA (United States). Dept. of Electrical and Computer Engineering; Bowers, John E. [Univ. of California, Santa Barbara, CA (United States). Dept. of Electrical and Computer Engineering

    2011-04-15

    In this work, we present research on semimetal-semiconductor nanocomposites grown by molecular beam epitaxy (MBE) for thermoelectric applications. We study several different III-V semiconductors embedded with semimetallic rare earth-group V (RE-V) compounds, but focus is given here to ErSb:InxGa1-xSb as a promising p-type thermoelectric material. Nano­structures of RE-V compounds are formed and embedded within the III-V semiconductor matrix. By codoping the nanocomposites with the appropriate dopants, both n-type and p-type materials have been made for thermoelectric applications. The thermoelectric properties have been engineered for enhanced thermoelectric device performance. Segmented thermoelectric power generator modules using 50 μm thick Er-containing nanocomposites have been fabricated and measured. Research on different rare earth elements for thermoelectrics is discussed.

  2. Hybrid system of semiconductor and photosynthetic protein.

    Science.gov (United States)

    Kim, Younghye; Shin, Seon Ae; Lee, Jaehun; Yang, Ki Dong; Nam, Ki Tae

    2014-08-29

    Photosynthetic protein has the potential to be a new attractive material for solar energy absorption and conversion. The development of semiconductor/photosynthetic protein hybrids is an example of recent progress toward efficient, clean and nanostructured photoelectric systems. In the review, two biohybrid systems interacting through different communicating methods are addressed: (1) a photosynthetic protein immobilized semiconductor electrode operating via electron transfer and (2) a hybrid of semiconductor quantum dots and photosynthetic protein operating via energy transfer. The proper selection of materials and functional and structural modification of the components and optimal conjugation between them are the main issues discussed in the review. In conclusion, we propose the direction of future biohybrid systems for solar energy conversion systems, optical biosensors and photoelectric devices.

  3. Platform computing

    CERN Multimedia

    2002-01-01

    "Platform Computing releases first grid-enabled workload management solution for IBM eServer Intel and UNIX high performance computing clusters. This Out-of-the-box solution maximizes the performance and capability of applications on IBM HPC clusters" (1/2 page) .

  4. Heterogeneous photocatalytic reactions on semiconductor materials. III. Effect of pH and Cu/sup 2 +/ ions on the photo-Fenton type reaction

    Energy Technology Data Exchange (ETDEWEB)

    Fujihira, M.; Satoh, Y.; Osa, T.

    1982-03-01

    The effect of pH and Cu/sup 2 +/ ions on the heterogeneous photocatalytic oxidation of toluenes by H/sub 2/O/sub 2/ formed from dissolved O/sub 2/ in the presence of illuminated TiO/sub 2/ powders, i.e. ''the photo-Fenton type reaction,'' was investigated. At low and high pH, a total amount of products increased drastically compared with that of the additive free system (pH 7). In the acidic region (aqueous H/sub 2/SO/sub 4/), side-chain oxidation prevailed over cresol formation and benzaldehyde was formed quite selectively at pH 1. Oxidation of the side chain in preference to hydroxylation of aromatic ring was also observed in the alkaline region (aqueous NaOH). By adding Cu/sup 2 +/ ion to the aqueous H/sub 2/SO/sub 4/ (pH 1 and 2), the yield of benzaldehyde increased further and cresols, benzyl alcohol, and bibenzyl were formed newly in high yields. At high Cu/sup 2 +/ concentrations (pH 2), the cresol formation in preference to the side-chain oxidation was attained. The observation was in good agreement with the Fenton reaction reported in which Cu/sup 2 +/ and Fe/sup 3 +/ ions are added as oxidants for the intermediate products, such as hydroxycyclohexadienyl and benzyl radicals, formed by HO. attack to toluene. Cu/sup 2 +/ ion was more preferable to Fe/sup 3 +/ ion as the oxidant, since ''short circuiting'' by Cu/sup 2 +/ due to the reversible redox reaction at semiconductor particles was much lower than that by Fe/sup 3 +/. By adding a large amount of Cl- ions to the Cu/sup 2 +/-H/sub 2/SO/sub 4/ aqueous system, no oxidation of toluene resulted.

  5. Organo luminescent semiconductor nanocrystal probes for biological applications and process for making and using such probes

    Science.gov (United States)

    Weiss, Shimon; Bruchez, Jr., Marcel; Alivisatos, Paul

    2008-01-01

    A semiconductor nanocrystal compound is described capable of linking to an affinity molecule. The compound comprises (1) a semiconductor nanocrystal capable of emitting electromagnetic radiation and/or absorbing energy, and/or scattering or diffracting electromagnetic radiation--when excited by an electromagnetic radiation source or a particle beam; and (2) an affinity molecule linked to the semiconductor nanocrystal. The semiconductor nanocrystal is linked to an affinity molecule to form a semiconductor nanocrystal probe capable of bonding with a detectable substance. Exposure of the semiconductor nanocrystal to excitation energy will excite the semiconductor nanocrystal causing the emission of electromagnetic radiation. Further described are processes for respectively: making the luminescent semiconductor nanocrystal compound; making the semiconductor nanocrystal probe; and using the probe to determine the presence of a detectable substance in a material.

  6. Coherent dynamics in semiconductors

    DEFF Research Database (Denmark)

    Hvam, Jørn Märcher

    1998-01-01

    Ultrafast nonlinear optical spectroscopy is used to study the coherent dynamics of optically excited electron-hole pairs in semiconductors. Coulomb interaction implies that the optical inter-band transitions are dominated, at least at low temperatures, by excitonic effects. They are further...... and molecular systems are found and studied in the exciton-biexciton system of semiconductors. At densities where strong exciton interactions, or many-body effects, become dominant, the semiconductor Bloch equations present a more rigorous treatment of the phenomena Ultrafast degenerate four-wave mixing is used...

  7. Physics of semiconductor lasers

    CERN Document Server

    Mroziewicz, B; Nakwaski, W

    2013-01-01

    Written for readers who have some background in solid state physics but do not necessarily possess any knowledge of semiconductor lasers, this book provides a comprehensive and concise account of fundamental semiconductor laser physics, technology and properties. The principles of operation of these lasers are therefore discussed in detail with the interrelations between their design and optical, electrical and thermal properties. The relative merits of a large number of laser structures and their parameters are described to acquaint the reader with the various aspects of the semiconductor l

  8. EDITORIAL: The 21st Nordic Semiconductor Meeting

    Science.gov (United States)

    2006-09-01

    This Topical Issue contains works presented at the 21st Nordic Semiconductor Meeting (21NSM) held at Sundvolden, Norway, 18-19 August 2005. The institutions supporting 21NSM were: University of Oslo, SINTEF, the Norwegian Defense Research Establishment and Vestfold University College. The Nordic Semiconductor Meeting has become an international forum that has been held every other year in a relay fashion in Denmark, Finland, Iceland, Norway and Sweden. The focus of the meeting has been on original research and science being carried out on semiconductor materials, devices and systems. Reports on industrial activity have usually been featured at the meetings. The topics have ranged from fundamental research on point defects in a semiconductor to system architecture of semiconductor electronic devices. For the last five meetings the proceedings have been printed in a dedicated volume of Physica Scripta in the Topical Issue series. The papers in this Topical Issue have undergone critical peer review and we wish to thank the reviewers and the authors for their cooperation, which has been instrumental in meeting the expected high standards of the series. The range of topics covered by this volume is broad, reflecting the call for papers; most of the papers have an element of materials science and the largest portion of these deal with other semiconductor materials other than silicon. The 21NSM was supported by the following sponsors: Renewable Energy Corporation (REC), EMF III-V Innovations (EMF), and the Nordic Research Board (NordForsk). Terje G Finstad Department of Physics, University of Oslo, Norway Andrej Y Kuznetsov and Bengt G Svensson Centre for Materials Science and Nanotechnology, University of Oslo, Norway

  9. Semiconductor Quantum Dash Broadband Emitters: Modeling and Experiments

    KAUST Repository

    Khan, Mohammed Zahed Mustafa

    2013-10-01

    Broadband light emitters operation, which covers multiple wavelengths of the electromagnetic spectrum, has been established as an indispensable element to the human kind, continuously advancing the living standard by serving as sources in important multi-disciplinary field applications such as biomedical imaging and sensing, general lighting and internet and mobile phone connectivity. In general, most commercial broadband light sources relies on complex systems for broadband light generation which are bulky, and energy hungry. \\tRecent demonstration of ultra-broadband emission from semiconductor light sources in the form of superluminescent light emitting diodes (SLDs) has paved way in realization of broadband emitters on a completely novel platform, which offered compactness, cost effectiveness, and comparatively energy efficient, and are already serving as a key component in medical imaging systems. The low power-bandwidth product is inherent in SLDs operating in the amplified spontaneous emission regime. A quantum leap in the advancement of broadband emitters, in which high power and large bandwidth (in tens of nm) are in demand. Recently, the birth of a new class of broadband semiconductor laser diode (LDs) producing multiple wavelength light in stimulated emission regime was demonstrated. This very recent manifestation of a high power-bandwidth-product semiconductor broadband LDs relies on interband optical transitions via quantum confined dot/dash nanostructures and exploiting the natural inhomogeneity of the self-assembled growth technology. This concept is highly interesting and extending the broad spectrum of stimulated emission by novel device design forms the central focus of this dissertation. \\tIn this work, a simple rate equation numerical technique for modeling InAs/InP quantum dash laser incorporating the properties of inhomogeneous broadening effect on lasing spectra was developed and discussed, followed by a comprehensive experimental analysis

  10. Photonic-crystal slab for terahertz-wave technology platform

    Science.gov (United States)

    Fujita, Masayuki

    2016-03-01

    Photonic crystals manipulate photons in a manner analogous to solid-state crystals, and are composed of a dielectric material with a periodic refractive index distribution. In particular, two-dimensional photonic-crystal slabs with high index contrasts (semiconductor/air) are promising for practical applications, owing to the strong optical confinement in simple, thin planar structures. This paper presents the recent progress on a silicon photonic-crystal slab as a technology platform in the terahertz-wave region, which is located between the radio and light wave regions (0.1-10 THz). Extremely low-loss (edge effect are demonstrated. Terahertz photonic-crystal slabs hold the potential for developing ultralow-loss, compact terahertz components and integrated devices used in applications including wireless communication, spectroscopic sensing, and imaging.

  11. Semiconductor X-ray detectors

    CERN Document Server

    Lowe, Barrie Glyn

    2014-01-01

    Identifying and measuring the elemental x-rays released when materials are examined with particles (electrons, protons, alpha particles, etc.) or photons (x-rays and gamma rays) is still considered to be the primary analytical technique for routine and non-destructive materials analysis. The Lithium Drifted Silicon (Si(Li)) X-Ray Detector, with its good resolution and peak to background, pioneered this type of analysis on electron microscopes, x-ray fluorescence instruments, and radioactive source- and accelerator-based excitation systems. Although rapid progress in Silicon Drift Detectors (SDDs), Charge Coupled Devices (CCDs), and Compound Semiconductor Detectors, including renewed interest in alternative materials such as CdZnTe and diamond, has made the Si(Li) X-Ray Detector nearly obsolete, the device serves as a useful benchmark and still is used in special instances where its large, sensitive depth is essential. Semiconductor X-Ray Detectors focuses on the history and development of Si(Li) X-Ray Detect...

  12. 基于 Ion Proton 半导体测序平台的无创产前基因检测技术的可行性研究%The feasibility study of Ion Proton semiconductor sequencing platform in the non-invasive prenatal genetic diagnosis

    Institute of Scientific and Technical Information of China (English)

    张展; 齐佳会; 刘丽莎; 张琳琳; 贾莉婷; 李莹; 赵小辰; 杜尚珂; 于海洋; 张志英

    2014-01-01

    Objective To evaluate the feasibility of apply Ion Proton semiconductor sequencing platform in non-invasive prenatal genetic diagnosis .Methods Totally 1 000 pregnant women with a singleton pregnancy of 12-32 weeks gestation were selected from the Third affiliated Hospital of Zhengzhou University from Jan to Dec 2013.Using noninvasive prenatal genetic diagnosis based on Ion Proton semiconductor sequencing platform to study their cffDNA .In parallel, 72 pregnant women received invasive prenatal diagnosis by traditional chromosomal analysis with amniocentesis chorionic villus sampling .Results It′s shown that 18 out of 1 000 (1.8%) pregnant women underwent the noninvasive prenatal genetic testing had a high risk for aneuploid chromosomes , including 7 cases of 21-trisomy, 4 cases of 18-trisomy, 2 cases of 13-trisomy, 4 cases of sex chromosomal abnormality , and 1 case of 15-trisomy.It demonstrated that the rate and accuracy of fetal 21-trisomy, 13-trisomy and 18-trisomy by non-invasive prenatal genetic testing were both 100%without misdiagnosis , the rate of detection for sex chromosomal abnormality was 2/2 with a false positive rate of 1/3.However, the 15-trisomy predicted by the non-invasive prenatal diagnosis in a woman was finally proved to be a false positive .Based on the results by karyotyping (55/55) as well as follow-ups (493/493), the specificity of the non-invasive prenatal diagnosis for detection of 21-trisomy, 18-trisomy and 13-trisomy was 100%.One Ion PITM chip could detect 12 to 15 samples in 1.5 h and the whole process of noninvasive detection could be completed in 1 to 1.5 days.Conclusions The non-invasive prenatal diagnosis by Ion Proton semiconductor sequencing platform could provide fast and accurate detection of fetal aneuploidy .The benchtop high-throughput sequencing platform has laid the foundation for the independent application in clinical settings for fetal aneuploidy detection .%目的:探讨基于Ion Proton半导体测序平台的

  13. Physics of semiconductor devices

    CERN Document Server

    Rudan, Massimo

    2015-01-01

    This book describes the basic physics of semiconductors, including the hierarchy of transport models, and connects the theory with the functioning of actual semiconductor devices.  Details are worked out carefully and derived from the basic physics, while keeping the internal coherence of the concepts and explaining various levels of approximation. Examples are based on silicon due to its industrial importance. Several chapters are included that provide the reader with the quantum-mechanical concepts necessary for understanding the transport properties of crystals. The behavior of crystals incorporating a position-dependent impurity distribution is described, and the different hierarchical transport models for semiconductor devices are derived (from the Boltzmann transport equation to the hydrodynamic and drift-diffusion models). The transport models are then applied to a detailed description of the main semiconductor-device architectures (bipolar, MOS). The final chapters are devoted to the description of s...

  14. Biggest semiconductor installed

    CERN Multimedia

    2008-01-01

    Scientists and technicians at the European Laboratory for Particle Physics, commonly known by its French acronym CERN (Centre Europen pour la Recherche Nuclaire), have completed the installation of the largest semiconductor silicon detector.

  15. Defects in semiconductor nanostructures

    Indian Academy of Sciences (India)

    Vijay A Singh; Manoj K Harbola; Praveen Pathak

    2008-02-01

    Impurities play a pivotal role in semiconductors. One part in a million of phosphorous in silicon alters the conductivity of the latter by several orders of magnitude. Indeed, the information age is possible only because of the unique role of shallow impurities in semiconductors. Although work in semiconductor nanostructures (SN) has been in progress for the past two decades, the role of impurities in them has been only sketchily studied. We outline theoretical approaches to the electronic structure of shallow impurities in SN and discuss their limitations. We find that shallow levels undergo a SHADES (SHAllow-DEep-Shallow) transition as the SN size is decreased. This occurs because of the combined effect of quantum confinement and reduced dielectric constant in SN. Level splitting is pronounced and this can perhaps be probed by ESR and ENDOR techniques. Finally, we suggest that a perusal of literature on (semiconductor) cluster calculations carried out 30 years ago would be useful.

  16. Isotopically controlled semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Haller, E.E.

    2004-11-15

    A review of recent research involving isotopically controlled semiconductors is presented. Studies with isotopically enriched semiconductor structures experienced a dramatic expansion at the end of the Cold War when significant quantities of enriched isotopes of elements forming semiconductors became available for worldwide collaborations. Isotopes of an element differ in nuclear mass, may have different nuclear spins and undergo different nuclear reactions. Among the latter, the capture of thermal neutrons which can lead to neutron transmutation doping, can be considered the most important one for semiconductors. Experimental and theoretical research exploiting the differences in all the properties has been conducted and will be illustrated with selected examples. Manuel Cardona, the longtime editor-in-chief of Solid State Communications has been and continues to be one of the major contributors to this field of solid state physics and it is a great pleasure to dedicate this review to him.

  17. A semiconductor laser

    Energy Technology Data Exchange (ETDEWEB)

    Naoko, O.; Masaru, K.

    1984-04-20

    A semiconductor laser with enhanced characteristics is patented in which bleaching coatings are generated on the outcoupling mirrors by sputtering alternating coating layers made from A1203 and A10, with high and low indices of refraction.

  18. Enhanced photovoltaic performance of semiconductor-sensitized ZnO-CdS coupled with graphene oxide as a novel photoactive material.

    Science.gov (United States)

    Barpuzary, Dipankar; Qureshi, Mohammad

    2013-11-27

    We report, for the first time, a ternary hybrid composite of ZnO, CdS, and graphene oxide (GO) as a one-coat paintable solution in performing the role of a photoanode for the semiconductor-sensitized solar cell, wherein hierarchical ZnO-CdS heteroarrays are embedded onto the GO sheets. The photoconversion properties of the hybrid ternary-system-based photoanodes are evaluated in the photovoltaic devices having Pt and Ag as the counter electrodes with sulfide/polysulfide redox couple as the electrolyte. Power conversion efficiency (PCE) of ~2.82% has been achieved with a short-circuit current density (Jsc) of ~7.3 mA/cm(2), a maximum open-circuit voltage (Voc) of 703 mV, and a fill factor (FF) of 54% for the photovoltaic cell with Pt as a counter electrode. The identical hybrid photoanode against the Ag counter electrode resulted in the following values: PCE ≈ 1.96%, Jsc ≈ 5.7 mA/cm(2), Voc ≈ 565 mV, and 63% FF. The band position proximity of CdS, ZnO, and GO in the proposed ternary system facilitates an efficient electronic interactions thereby promoting the electron transport within CdS-ZnO-GO. The hierarchically grown CdS nanorods over ZnO nanoparticle act as the sensitizer for ZnO, enhancing the visible light harvesting ability. The loading of 1.0 wt% of GO to ZnO-CdS results in enhanced separation of photogenerated electrons and holes within the photoactive layer, thereby improving the photovoltaic performance. The electronic interactions of GO to ZnO-CdS is evident from the drastic quenching of fluorescence, reduced exciton lifetime and Raman scattering measurements. In order to study the effect of GO in the photovoltaic performance, we have compared our result with the photoelectrical parameters of the devices fabricated using the binary ZnO-CdS composite as GO-free photoanodes.

  19. Fiscal 2000 report on results of project for R and D of industrial science and technology in cooperation with universities, and R and D of platform for designing high functional materials (development of energy use rationalization technology); 2000 nendo kokino zairyo sekkei platform no kenkyu kaihatsu seika hokokusho. Energy shiyo gorika gijutsu kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    R and D was conducted concerning sophistication and high speeding in designing materials by simulation technology utilizing a new calculation method, with fiscal 2000 results compiled. A group working on coarse-grained molecular dynamics have tackled three problems such as the development and application of a multi-purpose coarse-grained molecular dynamics engine called COGNAC. A group on dynamic average domain method added various functions to a new multi-purpose dynamic average domain simulator called SUSI, and also achieved a variety of results by simulations using this simulator. A group on dispersed structure simulation has been proceeding with the development and application study of a multi-phase dynamics simulator called MUFFIN. A verification research group carried out verification of predictability, with the accuracy intended by each program, on thermal properties, optical properties, formability, etc., using polyethylene as the verification material. A platform group prepared a new high-speed platform that used less memory. (NEDO)

  20. SILICON CARBIDE FOR SEMICONDUCTORS

    Science.gov (United States)

    This state-of-the-art survey on silicon carbide for semiconductors includes a bibliography of the most important references published as of the end...of 1964. The various methods used for growing silicon carbide single crystals are reviewed, as well as their properties and devices fabricated from...them. The fact that the state of-the-art of silicon carbide semiconductors is not further advanced may be attributed to the difficulties of growing

  1. Platform Constellations

    DEFF Research Database (Denmark)

    Staykova, Kalina Stefanova; Damsgaard, Jan

    2016-01-01

    messaging apps KakaoTalk and LINE, we are able to gain valuable insights about the nature of these new constructions and to capture and synthesize their main characteristics in a framework. Our results show that platform constellations possess unique innovative capabilities, which can improve users......’ acquisition and users’ engagement rates as well as unlock new sources of value creation and diversify revenue streams....

  2. Carrier scattering in metals and semiconductors

    CERN Document Server

    Gantmakher, VF

    1987-01-01

    The transport properties of solids, as well as the many optical phenomena in them are determined by the scattering of current carriers. ``Carrier Scattering in Metals and Semiconductors'' elucidates the state of the art in the research on the scattering mechanisms for current carriers in metals and semiconductors and describes experiments in which these mechanisms are most dramatically manifested.The selection and organization of the material is in a form to prepare the reader to reason independently and to deal just as independently with available theoretical results and experimental

  3. 城市轨道交通物资总库布点优化平台研究%Study on Platform for Material Warehouses Layout Optimization in Transit

    Institute of Scientific and Technical Information of China (English)

    罗小华

    2015-01-01

    根据城市轨道交通物资配送的特点,研究建立了城市轨道交通物资总库布点优化计算平台系统,平台通过对百度地图A P I(应用程序接口)二次开发进行配送路径的规划,结合层次聚类算法能够快速地进行物资总库布局的优化计算,实践证明该平台具有良好的适应性和应用推广价值。%According to the characteristics of urban rail transit materials supply and distribution, the paper studies and sets up the layout optimization and calculation platform system for urban rail transit materials warehouses. The platform makes further secondary development of Baidu map API (Application Programming Interface) for the distribution path planning, and the hierarchical clustering algorithm can quickly compute total material warehouses layout optimization. The practice proves that the platform has good adaptability and application value.

  4. The Construction of Disaster Emergency Materials Information Platform based on E-government%基于电子政务的灾害应急物资信息下台建设

    Institute of Scientific and Technical Information of China (English)

    刘焕成; 郑淼磊

    2011-01-01

    分析我国应急物资信息管理存在的多种问题,讨论基于电子政务的灾害应急物资信息平台的优势,并详细论述该信息平台的建设内容,以期为我国完善应急机制,利用电子政务的建设成果,建立起统一的灾害应急物资信息平台,促进应急物资信息的流通和共享提供参考。%This paper analyzes the present situation of emergency materials information management, discusses the advantages of information platform based on e-government, and expounds the construction of the information platform. It will provide references for our country to improve emergency mechanism, establish unified disaster emergency materials information platform by the use of the construetion achievements of e-government, and promote the information of emergency material circulation and sharing.

  5. Materials Research Society Symposium Proceedings on Diamond, SiC and Nitride Wide Bandgap Semiconductors Held at San Francisco, California on 4-8 April 1994. Volume 339.

    Science.gov (United States)

    1994-04-08

    363 D. Prasad Beesabathina, K. Fekade, K. Wongchotigul, M.G. Spencer, and L. Salamanca -Riba *NUCLEATION AND STEP...demonstrated MESFET and HEMT devices based on the AlxGal-XN material system [2]. Recent Monte Carlo simulations predict high values for peak velocity...resolved dynamic Monte Carlo simulations for diamond growth. The process of diamond growth was modeled 19 as a Markovian sequence of collisions between gas

  6. Semiconductor optical fibres for infrared applications: A review

    Science.gov (United States)

    Peacock, Anna C.; Healy, Noel

    2016-10-01

    Over the last decade a new class of optical fibre has emerged that incorporates semiconductor materials within the core. These fibres are rich in optoelectronic functionality and offer extended transmission bands across the infrared spectral region so that their application potential is vast. Various fabrication methods have been developed to produce fibres with a range of unary and compound semiconductor core materials, which can be either amorphous or crystalline in form. This review discusses the main fabrication procedures and the infrared optical properties of the semiconductor fibres that have been fabricated to date, then takes a look at the future prospects of this exciting new technology.

  7. Introduction to the Physics of Diluted Magnetic Semiconductors

    CERN Document Server

    Gaj, Jan A

    2010-01-01

    The book deals with diluted magnetic semiconductors, a class of materials important to the emerging field of spintronics. In these materials semiconducting properties, both transport and optical, are influenced by the presence of magnetic ions. It concentrates on basic physical mechanisms (e.g. carrier-ion and ion-ion interactions) and resulting phenomena (e.g. magnetic polaron formation and spin relaxation). Introduction to the Physics of Diluted Magnetic Semiconductors is addressed to graduate-level and doctoral students and young researchers entering the field. The authors have been actively involved in the creation of this branch of semiconductor physics.

  8. Analysis of Logistics Costs of the Ukrainian Semiconductor Industry

    OpenAIRE

    Popova Viktoriya D.

    2014-01-01

    The goal of the article is analysis of logistics costs in production of semiconductor materials using example of two Ukrainian enterprises. The article studies influence of logistics management and logistics costs upon formation of the final cost value (price) of a commodity (service). It gives an assessment of logistics costs of Ukrainian semiconductor enterprises and establishes its structure by types of main expenditure items: material, transport, production and storehouse. It establishes ...

  9. A Computer-Automated Temperature Control System for Semiconductor Measurements.

    Science.gov (United States)

    1979-11-01

    D -A079 055 ILLINOIS UNIV AT URBANA-CHAMPAIGN DEPT OF ELECTRICAL -ETC F/ 14NC/UE2UOAE EPRAUECNRL YTMFRSMIOOC T INOV 79 RN SWITZER ,PC CHAN ’ C T SAH...of semiconductor devices and Materials . Temperature is monitored by a type T thermocouple embedded in a heat sink surrounding the sample. Liquid...semiconductor materials are dependent in some manner on temperature. One example is the rate of thermal emission of trapped holes or electrons from

  10. Engineering optical properties of semiconductor metafilm superabsorbers

    Science.gov (United States)

    Kim, Soo Jin; Fan, Pengyu; Kang, Ju-Hyung; Brongersma, Mark L.

    2016-04-01

    Light absorption in ultrathin layer of semiconductor has been considerable interests for many years due to its potential applications in various optical devices. In particular, there have been great efforts to engineer the optical properties of the film for the control of absorption spectrums. Whereas the isotropic thin films have intrinsic optical properties that are fixed by materials' properties, metafilm that are composed by deep subwavelength nano-building blocks provides significant flexibilities in controlling the optical properties of the designed effective layers. Here, we present the ultrathin semiconductor metafilm absorbers by arranging germanium (Ge) nanobeams in deep subwavelength scale. Resonant properties of high index semiconductor nanobeams play a key role in designing effective optical properties of the film. We demonstrate this in theory and experimental measurements to build a designing rule of efficient, controllable metafilm absorbers. The proposed strategy of engineering optical properties could open up wide range of applications from ultrathin photodetection and solar energy harvesting to the diverse flexible optoelectronics.

  11. Band structure engineering in organic semiconductors

    Science.gov (United States)

    Schwarze, Martin; Tress, Wolfgang; Beyer, Beatrice; Gao, Feng; Scholz, Reinhard; Poelking, Carl; Ortstein, Katrin; Günther, Alrun A.; Kasemann, Daniel; Andrienko, Denis; Leo, Karl

    2016-06-01

    A key breakthrough in modern electronics was the introduction of band structure engineering, the design of almost arbitrary electronic potential structures by alloying different semiconductors to continuously tune the band gap and band-edge energies. Implementation of this approach in organic semiconductors has been hindered by strong localization of the electronic states in these materials. We show that the influence of so far largely ignored long-range Coulomb interactions provides a workaround. Photoelectron spectroscopy confirms that the ionization energies of crystalline organic semiconductors can be continuously tuned over a wide range by blending them with their halogenated derivatives. Correspondingly, the photovoltaic gap and open-circuit voltage of organic solar cells can be continuously tuned by the blending ratio of these donors.

  12. Synthesis and surface modification of semiconductor nanocrystals

    OpenAIRE

    Xie, Renguo

    2006-01-01

    The last decade has witnessed an exponential growth of activities in the field of nanoscience and nanotechnology worldwide, driven both by the excitement of understanding new science and by the potential hope for applications and economic impacts. The largest activity in this field up to date has been in the synthesis and characterization of new materials consisting of particles with dimensions in the order of a few nanometers, so-called nanocrystalline materials. [1-8] Semiconductor nanomate...

  13. Extracting hot carriers from photoexcited semiconductor nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Xiaoyang

    2014-12-10

    This research program addresses a fundamental question related to the use of nanomaterials in solar energy -- namely, whether semiconductor nanocrystals (NCs) can help surpass the efficiency limits, the so-called “Shockley-Queisser” limit, in conventional solar cells. In these cells, absorption of photons with energies above the semiconductor bandgap generates “hot” charge carriers that quickly “cool” to the band edges before they can be utilized to do work; this sets the solar cell efficiency at a limit of ~31%. If instead, all of the energy of the hot carriers could be captured, solar-to-electric power conversion efficiencies could be increased, theoretically, to as high as 66%. A potential route to capture this energy is to utilize semiconductor nanocrystals. In these materials, the quasi-continuous conduction and valence bands of the bulk semiconductor become discretized due to confinement of the charge carriers. Consequently, the energy spacing between the electronic levels can be much larger than the highest phonon frequency of the lattice, creating a “phonon bottleneck” wherein hot-carrier relaxation is possible via slower multiphonon emission. For example, hot-electron lifetimes as long as ~1 ns have been observed in NCs grown by molecular beam epitaxy. In colloidal NCs, long lifetimes have been demonstrated through careful design of the nanocrystal interfaces. Due to their ability to slow electronic relaxation, semiconductor NCs can in principle enable extraction of hot carriers before they cool to the band edges, leading to more efficient solar cells.

  14. Continuing progress toward controlled intracellular delivery of semiconductor quantum dots

    Science.gov (United States)

    Breger, Joyce; Delehanty, James B; Medintz, Igor L

    2015-01-01

    The biological applications of luminescent semiconductor quantum dots (QDs) continue to grow at a nearly unabated pace. This growth is driven, in part, by their unique photophysical and physicochemical properties which have allowed them to be used in many different roles in cellular biology including: as superior fluorophores for a wide variety of cellular labeling applications; as active platforms for assembly of nanoscale sensors; and, more recently, as a powerful tool to understand the mechanisms of nanoparticle mediated drug delivery. Given that controlled cellular delivery is at the intersection of all these applications, the latest progress in delivering QDs to cells is examined here. A brief discussion of relevant considerations including the importance of materials preparation and bioconjugation along with the continuing issue of endosomal sequestration is initially provided for context. Methods for the cellular delivery of QDs are then highlighted including those based on passive exposure, facilitated strategies that utilize peptides or polymers and fully active modalities such as electroporation and other mechanically based methods. Following on this, the exciting advent of QD cellular delivery using multiple or combined mechanisms is then previewed. Several recent methods reporting endosomal escape of QD materials in cells are also examined in detail with a focus on the mechanisms by which access to the cytosol is achieved. The ongoing debate over QD cytotoxicity is also discussed along with a perspective on how this field will continue to evolve in the future. PMID:25154379

  15. Method and apparatus for use of III-nitride wide bandgap semiconductors in optical communications

    Energy Technology Data Exchange (ETDEWEB)

    Hui, Rongqing (Lenexa, KS); Jiang,Hong-Xing (Manhattan, KS); Lin, Jing-Yu (Manhattan, KS)

    2008-03-18

    The present disclosure relates to the use of III-nitride wide bandgap semiconductor materials for optical communications. In one embodiment, an optical device includes an optical waveguide device fabricated using a III-nitride semiconductor material. The III-nitride semiconductor material provides for an electrically controllable refractive index. The optical waveguide device provides for high speed optical communications in an infrared wavelength region. In one embodiment, an optical amplifier is provided using optical coatings at the facet ends of a waveguide formed of erbium-doped III-nitride semiconductor materials.

  16. Special Issue featuring invited articles arising from UK Semiconductors 2012

    Science.gov (United States)

    Clarke, Edmund; Wada, Osamu

    2013-07-01

    Semiconductor research has formed the basis of many technological advances over the past 50 years, and the field is still highly active, as new material systems and device concepts are developed to address new applications or operating conditions. In addition to the development of traditional semiconductor devices, the wealth of experience with these materials also allows their use as an ideal environment for testing new physics, leading to new classes of devices exploiting quantum mechanical effects that can also benefit from the advantages of existing semiconductor technology in scalability, compactness and ease of mass production. This special issue features papers arising from the UK Semiconductors 2012 Conference, held at the University of Sheffield. The annual conference covers all aspects of semiconductor research, from crystal growth, through investigations of the physics of semiconductor structures to realization of semiconductor devices and their application in emerging technologies. The 2012 conference featured over 150 presentations, including plenary sessions on interband cascade lasers for the 3-6 µm spectral band, efficient single photon sources based on InAs quantum dots embedded in GaAs photonic nanowires, nitride-based quantum dot visible lasers and single photon sources, and engineering of organic light-emitting diodes. The seven papers collected here highlight current research advances, taken from across the scope of the conference. The papers feature growth of novel nitride-antimonide material systems for mid-infrared sources and detectors, use of semiconductor nanostructures for charge-based memory and visible lasers, optimization of device structures either to reduce losses in solar cells or achieve low noise amplification in transistors, design considerations for surface-emitting lasers incorporating photonic crystals and an assessment of laser power convertors for power transfer. The editors of this special issue and the conference

  17. Switching Plasmons: Gold Nanorod-Copper Chalcogenide Core-Shell Nanoparticle Clusters with Selectable Metal/Semiconductor NIR Plasmon Resonances.

    Science.gov (United States)

    Muhammed, Madathumpady Abubaker Habeeb; Döblinger, Markus; Rodríguez-Fernández, Jessica

    2015-09-16

    Exerting control over the near-infrared (NIR) plasmonic response of nanosized metals and semiconductors can facilitate access to unexplored phenomena and applications. Here we combine electrostatic self-assembly and Cd(2+)/Cu(+) cation exchange to obtain an anisotropic core-shell nanoparticle cluster (NPC) whose optical properties stem from two dissimilar plasmonic materials: a gold nanorod (AuNR) core and a copper selenide (Cu(2-x)Se, x ≥ 0) supraparticle shell. The spectral response of the AuNR@Cu2Se NPCs is governed by the transverse and longitudinal plasmon bands (LPB) of the anisotropic metallic core, since the Cu2Se shell is nonplasmonic. Under aerobic conditions the shell undergoes vacancy doping (x > 0), leading to the plasmon-rich NIR spectrum of the AuNR@Cu(2-x)Se NPCs. For low vacancy doping levels the NIR optical properties of the dually plasmonic NPCs are determined by the LPBs of the semiconductor shell (along its major longitudinal axis) and of the metal core. Conversely, for high vacancy doping levels their NIR optical response is dominated by the two most intense plasmon modes from the shell: the transverse (along the shortest transversal axis) and longitudinal (along the major longitudinal axis) modes. The optical properties of the NPCs can be reversibly switched back to a purely metallic plasmonic character upon reversible conversion of AuNR@Cu(2-x)Se into AuNR@Cu2Se. Such well-defined nanosized colloidal assemblies feature the unique ability of holding an all-metallic, a metallic/semiconductor, or an all-semiconductor plasmonic response in the NIR. Therefore, they can serve as an ideal platform to evaluate the crosstalk between plasmonic metals and plasmonic semiconductors at the nanoscale. Furthermore, their versatility to display plasmon modes in the first, second, or both NIR windows is particularly advantageous for bioapplications, especially considering their strong absorbing and near-field enhancing properties.

  18. Fundamentals of semiconductor lasers

    CERN Document Server

    Numai, Takahiro

    2015-01-01

    This book explains physics under the operating principles of semiconductor lasers in detail based on the experience of the author, dealing with the first manufacturing of phase-shifted DFB-LDs and recent research on transverse modes.   The book also bridges a wide gap between journal papers and textbooks, requiring only an undergraduate-level knowledge of electromagnetism and quantum mechanics, and helps readers to understand journal papers where definitions of some technical terms vary, depending on the paper. Two definitions of the photon density in the rate equations and two definitions of the phase-shift in the phase-shifted DFB-LD are explained, and differences in the calculated results are indicated, depending on the definitions.    Readers can understand the physics of semiconductor lasers and analytical tools for Fabry-Perot LDs, DFB-LDs, and VCSELs and will be stimulated to develop semiconductor lasers themselves.

  19. Basic Semiconductor Physics

    CERN Document Server

    Hamaguchi, Chihiro

    2010-01-01

    This book presents a detailed description of the basic semiconductor physics. The reader is assumed to have a basic command of mathematics and some elementary knowledge of solid state physics. The text covers a wide range of important phenomena in semiconductors, from the simple to the advanced. The reader can understand three different methods of energy band calculations, empirical pseudo-potential, k.p perturbation and tight-binding methods. The effective mass approximation and electron motion in a periodic potential, Boltzmann transport equation and deformation potentials used for full band Monte Carlo simulation are discussed. Experiments and theoretical analysis of cyclotron resonance are discussed in detail because the results are essential to the understanding of semiconductor physics. Optical and transport properties, magneto-transport, two dimensional electron gas transport (HEMT and MOSFET), and quantum transport are reviewed, explaining optical transition, electron phonon interactions, electron mob...

  20. Polymer electronic devices and materials.

    Energy Technology Data Exchange (ETDEWEB)

    Schubert, William Kent; Baca, Paul Martin; Dirk, Shawn M.; Anderson, G. Ronald; Wheeler, David Roger

    2006-01-01

    Polymer electronic devices and materials have vast potential for future microsystems and could have many advantages over conventional inorganic semiconductor based systems, including ease of manufacturing, cost, weight, flexibility, and the ability to integrate a wide variety of functions on a single platform. Starting materials and substrates are relatively inexpensive and amenable to mass manufacturing methods. This project attempted to plant the seeds for a new core competency in polymer electronics at Sandia National Laboratories. As part of this effort a wide variety of polymer components and devices, ranging from simple resistors to infrared sensitive devices, were fabricated and characterized. Ink jet printing capabilities were established. In addition to promising results on prototype devices the project highlighted the directions where future investments must be made to establish a viable polymer electronics competency.