WorldWideScience

Sample records for platelet serotonin 5-ht

  1. The antidepressant 5-HT2A receptor antagonists pizotifen and cyproheptadine inhibit serotonin-enhanced platelet function.

    Directory of Open Access Journals (Sweden)

    Olivia A Lin

    Full Text Available There is considerable interest in defining new agents or targets for antithrombotic purposes. The 5-HT2A receptor is a G-protein coupled receptor (GPCR expressed on many cell types, and a known therapeutic target for many disease states. This serotonin receptor is also known to regulate platelet function. Thus, in our FDA-approved drug repurposing efforts, we investigated the antiplatelet activity of cyproheptadine and pizotifen, two antidepressant 5-HT2A Receptor antagonists. Our results revealed that cyproheptadine and pizotifen reversed serotonin-enhanced ADP-induced platelet aggregation in vitro and ex vivo. And the inhibitory effects of these two agents were found to be similar to that of EMD 281014, a 5-HT2A Receptor antagonist under development. In separate experiments, our studies revealed that these 5-HT2A receptor antagonists have the capacity to reduce serotonin-enhanced ADP-induced elevation in intracellular calcium levels and tyrosine phosphorylation. Using flow cytometry, we also observed that cyproheptadine, pizotifen, and EMD 281014 inhibited serotonin-enhanced ADP-induced phosphatidylserine (PS exposure, P-selectin expression, and glycoprotein IIb-IIIa activation. Furthermore, using a carotid artery thrombosis model, these agents prolonged the time for thrombotic occlusion in mice in vivo. Finally, the tail-bleeding time was investigated to assess the effect of cyproheptadine and pizotifen on hemostasis. Our findings indicated prolonged bleeding time in both cyproheptadine- and pizotifen-treated mice. Notably, the increases in occlusion and bleeding times associated with these two agents were comparable to that of EMD 281014, and to clopidogrel, a commonly used antiplatelet drug, again, in a fashion comparable to clopidogrel and EMD 281014. Collectively, our data indicate that the antidepressant 5-HT2A antagonists, cyproheptadine and pizotifen do exert antiplatelet and thromboprotective effects, but similar to clopidogrel and

  2. Serotonin (5-HT) regulates neurite outgrowth through 5-HT1A and 5-HT7 receptors in cultured hippocampal neurons.

    Science.gov (United States)

    Rojas, Paulina S; Neira, David; Muñoz, Mauricio; Lavandero, Sergio; Fiedler, Jenny L

    2014-08-01

    Serotonin (5-HT) production and expression of 5-HT receptors (5-HTRs) occur early during prenatal development. Recent evidence suggests that, in addition to its classical role as a neurotransmitter, 5-HT regulates neuronal connectivity during mammalian development by modulating cell migration and neuronal cytoarchitecture. Given the variety of 5-HTRs, researchers have had difficulty clarifying the specific role of each receptor subtype in brain development. Signalling mediated by the G-protein-coupled 5-HT1A R and 5-HT7 R, however, has been associated with neuronal plasticity. Thus, we hypothesized that 5-HT promotes neurite outgrowth through 5-HT1A R and 5-HT7 R. The involvement of 5-HT1A R and 5-HT7 R in the morphology of rat hippocampal neurons was evaluated by treating primary cultures at 2 days in vitro with 5-HT and specific antagonists for 5-HT1A R and 5-HT7 R (WAY-100635 and SB269970, respectively). The stimulation of hippocampal neurons with 100 nM 5-HT for 24 hr produced no effect on either the number or the length of primary neurites. Nonetheless, after 5HT7 R was blocked, the addition of 5-HT increased the number of primary neurites, suggesting that 5HT7 R could inhibit neuritogenesis. In contrast, 5-HT induced secondary neurite outgrowth, an effect inhibited by 1 μM WAY-100635 or SB269970. These results suggest that both serotonergic receptors participate in secondary neurite outgrowth. We conclude that 5-HT1A R and 5-HT7 R regulate neuronal morphology in primary hippocampal cultures by promoting secondary neurite outgrowth.

  3. Serotonin (5-HT) 5-HT2A Receptor (5-HT2AR):5-HT2CR Imbalance in Medial Prefrontal Cortex Associates with Motor Impulsivity.

    Science.gov (United States)

    Anastasio, Noelle C; Stutz, Sonja J; Fink, Latham H L; Swinford-Jackson, Sarah E; Sears, Robert M; DiLeone, Ralph J; Rice, Kenner C; Moeller, F Gerard; Cunningham, Kathryn A

    2015-07-15

    A feature of multiple neuropsychiatric disorders is motor impulsivity. Recent studies have implicated serotonin (5-HT) systems in medial prefrontal cortex (mPFC) in mediating individual differences in motor impulsivity, notably the 5-HT2AR receptor (5-HT2AR) and 5-HT2CR. We investigated the hypothesis that differences in the ratio of 5-HT2AR:5-HT2CR protein expression in mPFC would predict the individual level of motor impulsivity and that the engineered loss of the 5-HT2CR would result in high motor impulsivity concomitant with elevated 5-HT2AR expression and pharmacological sensitivity to the selective 5-HT2AR antagonist M100907. High and low impulsive rats were identified in a 1-choice serial reaction time task. Native protein levels of the 5-HT2AR and the 5-HT2CR predicted the intensity of motor impulsivity and the 5-HT2AR:5-HT2CR ratio in mPFC positively correlated with levels of premature responses in individual outbred rats. The possibility that the 5-HT2AR and 5-HT2CR act in concert to control motor impulsivity is supported by the observation that high phenotypic motor impulsivity associated with a diminished mPFC synaptosomal 5-HT2AR:5-HT2CR protein:protein interaction. Knockdown of mPFC 5-HT2CR resulted in increased motor impulsivity and triggered a functional disruption of the local 5-HT2AR:5-HT2CR balance as evidenced by a compensatory upregulation of 5-HT2AR protein expression and a leftward shift in the potency of M100907 to suppress impulsive behavior. We infer that there is an interactive relationship between the mPFC 5-HT2AR and 5-HT2CR, and that a 5-HT2AR:5-HT2CR imbalance may be a functionally relevant mechanism underlying motor impulsivity.

  4. Interplay between serotonin 5-HT1A and 5-HT7 receptors in depressive disorders.

    Science.gov (United States)

    Naumenko, Vladimir S; Popova, Nina K; Lacivita, Enza; Leopoldo, Marcello; Ponimaskin, Evgeni G

    2014-07-01

    Serotonin (5-hydroxytryptamine or 5-HT) is an important neurotransmitter regulating a wide range of physiological and pathological functions via activation of heterogeneously expressed 5-HT receptors. Besides the important role of 5-HT receptors in the pathogenesis of depressive disorders and in their clinical medications, underlying mechanisms are far from being completely understood. This review focuses on possible cross talk between two serotonin receptors, 5-HT1A and the 5-HT7 . Although these receptors are highly co-expressed in brain regions implicated in depression, and most agonists developed for the 5-HT1A or 5-HT7 receptors have cross-reactivity, their functional interaction has not been yet established. It has been recently shown that 5-HT1A and 5-HT7 receptors form homo- and heterodimers both in vitro and in vivo. From the functional point of view, heterodimerization has been shown to play an important role in regulation of receptor-mediated signaling and internalization, suggesting the implication of heterodimerization in the development and maintenance of depression. Interaction between these receptors is also of clinical interest, because both receptors represent an important pharmacological target for the treatment of depression and anxiety.

  5. 5-HT receptor probe (/sup 3/H)8-OH-DPAT labels the 5-HT transporter in human platelets

    Energy Technology Data Exchange (ETDEWEB)

    Ieni, J.R.; Meyerson, L.R.

    1988-01-01

    The present study characterizes a serotonin (5-HT) binding site on human platelet membranes, using (/sup 3/H)8-OH-DPAT as the radioligand. (/sup 3/H)8-OH-DPAT binds specifically and saturably to a site on human platelet membranes with an average K/sub D/ of 43 nM and B/sub max/ of 1078 fmol/mg protein. Determinations of IC/sub 50/ values for various serotonergic characterizing agents in platelets for displacement of (/sup 3/H)8-OH-DPAT were performed. The pharmacological inhibitory profile of the platelet 8-OH-DPAT site is not consistent with profiles reported for brain. 8-OH-DPAT does not inhibit (/sup 3/H) imipramine binding, however, it does inhibit (/sup 3/H)5-HT uptake in human platelets near 5-HT's K/sub m/ value (IC/sub 50/ = 2-4 ..mu..M). These results suggest that the human platelet site labelled by (/sub 3/H)8-OH-DPAT is pharmocologically different from the neuronal site and probably is a component of the 5-HT transporter. 32 references, 1 figure, 4 tables.

  6. The serotonin 5-HT3 receptor: a novel neurodevelopmental target.

    NARCIS (Netherlands)

    Engel, M.; Smidt, M.P.; van Hooft, J.A.

    2013-01-01

    Serotonin (5-hydroxytryptamine, 5-HT), next to being an important neurotransmitter, recently gained attention as a key-regulator of pre- and postnatal development in the mammalian central nervous system (CNS). Several receptors for 5-HT are expressed in the developing brain including a ligand-gated

  7. The serotonin 5-HT3 receptor: a novel neurodevelopmental target

    Directory of Open Access Journals (Sweden)

    Mareen eEngel

    2013-05-01

    Full Text Available Serotonin (5-HT, next to being an important neurotransmitter, recently gained attention as a key regulator of pre- and postnatal development in the mammalian central nervous system (CNS. Several receptors for 5-HT are expressed in the developing brain including a ligand-gated ion channel, the 5-HT3 receptor. Over the past years, evidence has been accumulating that 5-HT3 receptors are involved in the regulation of neurodevelopment by serotonin.Here, we review the spatial and temporal expression patterns of 5-HT3 receptors in the pre- and early postnatal rodent brain and its functional implications. First, 5-HT3 receptors are expressed on GABAergic interneurons in neocortex and limbic structures derived from the caudal ganglionic eminence. Mature inhibitory GABAergic interneurons fine-tune neuronal excitability and thus are crucial for the physiological function of the brain. Second, 5-HT3 receptors are expressed on specific glutamatergic neurons, Cajal-Retzius cells in the cortex and granule cells in the cerebellum, where they regulate morphology, positioning and connectivity of the local microcircuitry. Taken together, the 5-HT3 receptor emerges as a potential key-regulator of network formation and function in the CNS, which could have a major impact on our understanding of neurodevelopmental disorders in which 5-HT plays a role.

  8. SEROTONIN (5-HT) AND THE RATS EYE - SOME PILOT-STUDIES

    NARCIS (Netherlands)

    BOERRIGTER, RMM; SIERTSEMA, JV; KEMA, IP

    1992-01-01

    Serotonin (5-hydroxytryptamine, 5-HT) is a biogenic amine which has a multitude of more or less clearly established effects on peripheral vessels. It influences blood viscosity, platelet aggregation, and vasoconstruction and -dilatation, it enhances capillary permeability, it is the precursor of mel

  9. The serotonin 5-HT7 receptors: two decades of research.

    Science.gov (United States)

    Gellynck, Evelien; Heyninck, Karen; Andressen, Kjetil W; Haegeman, Guy; Levy, Finn Olav; Vanhoenacker, Peter; Van Craenenbroeck, Kathleen

    2013-10-01

    Like most neurotransmitters, serotonin possesses a simple structure. However, the pharmacological consequences are more complex and diverse. Serotonin is involved in numerous functions in the human body including the control of appetite, sleep, memory and learning, temperature regulation, mood, behavior, cardiovascular function, muscle contraction, endocrine regulation, and depression. Low levels of serotonin may be associated with several disorders, namely increase in aggressive and angry behaviors, clinical depression, Parkinson's disease, obsessive-compulsive disorder, eating disorders, migraine, irritable bowel syndrome, tinnitus, and bipolar disease. These effects are mediated via different serotonin (5-HT) receptors. In this review, we will focus on the last discovered member of this serotonin receptor family, the 5-HT7 receptor. This receptor belongs to the G protein-coupled receptor superfamily and was cloned two decades ago. Later, different splice variants were described but no major functional differences have been described so far. All 5-HT7 receptor variants are coupled to Gαs proteins and stimulate cAMP formation. Recently, several interacting proteins have been reported, which can influence receptor signaling and trafficking.

  10. Brief Report: Platelet-Poor Plasma Serotonin in Autism

    Science.gov (United States)

    Anderson, George M.; Hertzig, Margaret E.; McBride, P. A.

    2012-01-01

    Possible explanations for the well-replicated platelet hyperserotonemia of autism include an alteration in the platelet's handling of serotonin (5-hydroxyserotonin, 5-HT) or an increased exposure of the platelet to 5-HT. Measurement of platelet-poor plasma (PPP) levels of 5-HT appears to provide the best available index of in vivo exposure of the…

  11. Targeting Dopamine D3 and Serotonin 5-HT1A and 5-HT2A Receptors for Developing Effective Antipsychotics

    DEFF Research Database (Denmark)

    Brindisi, Margherita; Butini, Stefania; Franceschini, Silvia;

    2014-01-01

    Combination of dopamine D3 antagonism, serotonin 5-HT1A partial agonism, and antagonism at 5-HT2A leads to a novel approach to potent atypical antipsychotics. Exploitation of the original structure-activity relationships resulted in the identification of safe and effective antipsychotics devoid...

  12. Conservation of 5-HT1A receptor-mediated autoinhibition of serotonin (5-HT neurons in mice with altered 5-HT homeostasis

    Directory of Open Access Journals (Sweden)

    Naozumi eAraragi

    2013-08-01

    Full Text Available Firing activity of serotonin (5-HT neurons in the dorsal raphe nucleus (DRN is controlled by inhibitory somatodendritic 5-HT1A autoreceptors. This autoinhibitory mechanism is implicated in the etiology of disorders of emotion regulation, such as anxiety disorders and depression, as well as in the mechanism of antidepressant action. Here, we investigated how persistent alterations in brain 5-HT availability affect autoinhibition in two genetically modified mouse models lacking critical mediators of serotonergic transmission: 5-HT transporter knockout (Sert -/- and tryptophan hydroxylase-2 knockout (Tph2 -/- mice. The degree of autoinhibition was assessed by loose-seal cell-attached recording in DRN slices. First, application of the 5-HT1A-selective agonist R(+-8-hydroxy-2-(di-n-propylaminotetralin showed mild sensitization and marked desensitization of 5-HT1A receptors in Tph2 -/- mice and Sert -/- mice, respectively. While 5-HT neurons from Tph2 -/- mice did not display autoinhibition in response to L-tryptophan, autoinhibition of these neurons was unaltered in Sert -/- mice despite marked desensitization of their 5-HT1A autoreceptors. When the Tph2-dependent 5-HT synthesis step was bypassed by application of 5-hydroxy-L-tryptophan (5-HTP, neurons from both Tph2 -/- and Sert -/- mice decreased their firing rates at significantly lower concentrations of 5-HTP compared to wildtype controls. Our findings demonstrate that, as opposed to the prevalent view, sensitivity of somatodendritic 5-HT1A receptors does not predict the magnitude of 5-HT neuron autoinhibition. Changes in 5-HT1A receptor sensitivity may rather be seen as an adaptive mechanism to keep autoinhibition functioning in response to extremely altered levels of extracellular 5-HT resulting from targeted inactivation of mediators of serotonergic signaling.

  13. Agonist properties of N,N-dimethyltryptamine at serotonin 5-HT2A and 5-HT2C receptors.

    Science.gov (United States)

    Smith, R L; Canton, H; Barrett, R J; Sanders-Bush, E

    1998-11-01

    Extensive behavioral and biochemical evidence suggests an agonist role at the 5-HT2A receptor, and perhaps the 5-HT2C receptor, in the mechanism of action of hallucinogenic drugs. However the published in vitro pharmacological properties of N,N-dimethyltryptamine (DMT), an hallucinogenic tryptamine analog, are not consistent with this hypothesis. We, therefore, undertook an extensive investigation into the properties of DMT at 5-HT2A and 5-HT2C receptors. In fibroblasts transfected with the 5-HT2A receptor or the 5-HT2C receptor, DMT activated the major intracellular signaling pathway (phosphoinositide hydrolysis) to an extent comparable to that produced by serotonin. Because drug efficacy changes with receptor density and cellular microenvironment, we also examined the properties of DMT in native preparations using a behavioral and biochemical approach. Rats were trained to discriminate an antagonist ketanserin from an agonist 1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane (DOI) in a two-lever choice paradigm. Pharmacological studies showed that responding on the DOI and ketanserin lever reflected agonist and antagonist activity at 5-HT2A receptors, and hence, was a suitable model for evaluating the in vivo functional properties of DMT. Like other 5-HT2A receptor agonists, DMT substituted fully for DOI. Intact choroid plexus was used to evaluate the agonist properties at endogenous 5-HT2C receptors; DMT was a partial agonist at 5-HT2C receptors in this native preparation. Thus, we conclude that DMT behaves as an agonist at both 5-HT2A and 5-HT2A receptors. One difference was evident in that the 5-HT2C, but not the 5-HT2A, receptor showed a profound desensitization to DMT over time. This difference is interesting in light of the recent report that the hallucinogenic activity of DMT does not tolerate in humans and suggests the 5-HT2C receptor plays a less prominent role in the action of DMT.

  14. Serotonin 5-HT2A receptor binding in platelets from healthy subjects as studied by [3H]-lysergic acid diethylamide ([3H]-LSD): intra- and interindividual variability.

    Science.gov (United States)

    Spigset, O; Mjörndal, T

    1997-04-01

    In studies on platelet 5-HT2A receptor binding in patients with neuropsychiatric disorders, there has been a marked variability and a considerable overlap of values between patients and controls. The causes of the large variability in 5-HT2A receptor parameters is still unsettled. In the present study, we have quantified the intra- and interindividual variability of platelet 5-HT2A receptor binding in 112 healthy subjects and explored factors that may influence 5-HT2A receptor binding, using [3H]-lysergic acid diethylamide as radioligand. Age, gender, blood pressure, and metabolic capacity of the liver enzymes CYP2D6 and CYP2C19 did not influence Bmax and Kd values. Body weight and body mass index (BMI) showed a negative correlation with Kd (p = .04 and .03, respectively), but not with Bmax. Bmax was significantly lower in the light half of the year than in the dark half of the year (p = .001), and Kd was significantly lower in the fall than in the summer and winter (p < .001). In females, there was a significant increase in Bmax from week 1 to week 2 of the menstrual cycle (p = .03). Females taking contraceptive pills had significantly higher Kd than drug-free females in weeks 1 and 4 of the menstrual cycle (p = .04). This study shows that a number of factors should be taken into account when using platelet 5-HT2A receptor binding in studies of neuropsychiatric disorders.

  15. Changes of Serotonin (5-HT), 5-HT2A Receptor, and 5-HT Transporter in the Sprague-Dawley Rats of Depression,Myocardial Infarction and Myocardial Infarction Co-exist with Depression

    Institute of Scientific and Technical Information of China (English)

    Mei-Yan Liu; Yah-Ping Ren; Wan-Lin Wei; Guo-Xiang Tian; Guo Li

    2015-01-01

    Background:To evaluate whether serotonin (5-HT),5-HT2A receptor (5-HT2AR),and 5-HT transporter (serotonin transporter [SERT]) are associated with different disease states of depression,myocardial infarction (MI) and MI co-exist with depression in Sprague-Dawley rats.Methods:After established the animal model of four groups include control,depression,MI and MI with depression,we measured 5-HT,5-HT2AR and SERT from serum and platelet lysate.Results:The serum concentration of 5-HT in depression rats decreased significantly compared with the control group (303.25 ± 9.99 vs.352.98 ± 13.73;P =0.000),while that in MI group increased (381.78 ± 14.17 vs.352.98 ± 13.73;P =0.000).However,the depression + MI group had no change compared with control group (360.62 ± 11.40 vs.352.98 ± 13.73;P =0.036).The changes of the platelet concentration of 5-HT in the depression,MI,and depression + MI group were different from that of serum.The levels of 5-HT in above three groups were lower than that in the control group (380.40 ± 17.90,387.75 ± 22.28,246.40 ± 18.99 vs.500.29 ± 20.91;P =0.000).The platelet lysate concentration of 5-HT2AR increased in depression group,MI group,and depression + MI group compared with the control group (370.75 ± 14.75,393.47 ± 15.73,446.66 ± 18.86 vs.273.66 ± 16.90;P =0.000).The serum and platelet concentration of SERT in the depression group,MI group and depression + MI group were all increased compared with the control group (527.51 ± 28.32,602.02 ± 23.32,734.76 ± 29.59 vs.490.56 ± 16.90;P =0.047,P =0.000,P =0.000 in each and 906.38 ± 51.84,897.33 ± 60.34,1030.17 ± 58.73 vs.708.62 ± 51.15;P =0.000 in each).Conclusions:The concentration of 5-HT2AR in platelet lysate and SERT in serum and platelet may be involved in the pathway of MI with depression.Further studies should examine whether elevated 5-HT2AR and SERT may contribute to the biomarker in MI patients with depression.

  16. The role of the serotonin receptor subtypes 5-HT1A and 5-HT7 and its interaction in emotional learning and memory

    OpenAIRE

    Stiedl, Oliver; Pappa, Elpiniki; Konradsson-Geuken, Åsa; Ögren, Sven Ove

    2015-01-01

    Serotonin [5-hydroxytryptamine (5-HT)] is a multifunctional neurotransmitter innervating cortical and limbic areas involved in cognition and emotional regulation. Dysregulation of serotonergic transmission is associated with emotional and cognitive deficits in psychiatric patients and animal models. Drugs targeting the 5-HT system are widely used to treat mood disorders and anxiety-like behaviors. Among the fourteen 5-HT receptor (5-HTR) subtypes, the 5-HT1AR and 5-HT7R are associated with th...

  17. The role of the serotonin receptor subtypes 5-HT1A and 5-HT7 and its interaction in emotional learning and memory

    OpenAIRE

    Oliver eStiedl; Elpiniki ePappa; Åsa eKonradsson-Geuken; Sven Ove eÖgren

    2015-01-01

    Serotonin (5-hydroxytryptamine, 5-HT) is a multifunctional neurotransmitter innervating cortical and limbic areas involved in cognition and emotional regulation. Dysregulation of serotonergic transmission is associated with emotional and cognitive deficits in psychiatric patients and animal models. Drugs targeting the 5-HT system are widely used to treat mood disorders and anxiety-like behaviors. Among the fourteen 5-HT receptor (5-HTR) subtypes, the 5-HT1AR and 5-HT7R are associated with the...

  18. Neuroticism and serotonin 5-HT1A receptors in healthy subjects

    DEFF Research Database (Denmark)

    Hirvonen, Jussi; Tuominen, Lauri; Någren, Kjell

    2015-01-01

    Neuroticism is a personality trait associated with vulnerability for mood and anxiety disorders. Serotonergic mechanisms likely contribute to neuroticism. Serotonin 5-HT1A receptors are altered in mood and anxiety disorders, but whether 5-HT1A receptors are associated with neuroticism in healthy...... and radiometabolite determination. Personality traits were assessed using the Karolinska Scales of Personality. We found a strong negative association between serotonin 5-HT1A receptor BPP and neuroticism. That is, individuals with high neuroticism tended to have lower 5-HT1A receptor binding than individuals...... with low neuroticism. This finding was confirmed with an independent voxel-based whole-brain analysis. Other personality traits did not correlate with 5-HT1A receptor BPP. Previous observations have reported lower serotonin 5-HT1A receptor density in major depression. This neurobiological finding may...

  19. LP-211 is a brain penetrant selective agonist for the serotonin 5-HT7 receptor

    OpenAIRE

    Hedlund, Peter B.; Leopoldo, Marcello; Caccia, Silvio; Sarkisyan, Gor; Fracasso, Claudia; Martelli, Giuliana; Lacivita, Enza; Berardi, Francesco; Perrone, Roberto

    2010-01-01

    We have determined the pharmacological profile of the new serotonin 5-HT7 receptor agonist N-(4-cyanophenylmethyl)-4-(2-diphenyl)-1-piperazinehexanamide (LP-211). Radioligand binding assays were performed on a panel of 5-HT receptor subtypes. The compound was also evaluated in vivo by examining its effect on body temperature regulation in mice lacking the 5-HT7 receptor (5-HT7−/−) and their 5-HT7+/+ sibling controls. Disposition studies were performed in mice of both genotypes. It was found t...

  20. Serotonin increases ERK1/2 phosphorylation in astrocytes by stimulation of 5-HT2B and 5-HT2C receptors.

    Science.gov (United States)

    Li, Baoman; Zhang, Shiquen; Li, Min; Hertz, Leif; Peng, Liang

    2010-11-01

    We have previously shown that fluoxetine causes ERK(1/2) phosphorylation in cultured mouse astrocytes mediated exclusively by stimulation of 5-HT(2B) receptors (Li et al., 2008b). This raises the question whether this is also the case for serotonin (5-HT) itself. In the present study serotonin was found to induce ERK(1/2) phosphorylation by stimulation of 5-HT(2B) receptors with high affinity (EC(50): 20-30 pM), and by stimulation of 5-HT(2C) receptor with low affinity (EC(50): 1 microM or higher). ERK(1/2) phosphorylation induced by stimulation of either 5-HT(2B) or 5-HT(2C) receptors was mediated by epidermal growth factor (EGF) receptor transactivation (Peng et al., this issue), shown by the inhibitory effect of AG1478, an inhibitor of the EGF receptor tyrosine kinase, and GM6001, an inhibitor of Zn-dependent metalloproteinases, and thus of 5-HT(2B) receptor-mediated EGF receptor agonist release. It is discussed that the high potency of the 5-HT(2B)-mediated effect is consistent with literature data for binding affinity of serotonin to cloned human 5-HT(2B) receptors and with observations of low extracellular concentrations of serotonin in brain, which would allow a demonstrated moderate and modality-dependent increase in specific brain areas to activate 5-HT(2B) receptors. In contrast the relevance of the observed 5-HT(2C) receptors on astrocytes is questioned.

  1. Regulation of extrasynaptic 5-HT by serotonin reuptake transporter function in 5-HT-absorbing neurons underscores adaptation behavior in Caenorhabditis elegans.

    Science.gov (United States)

    Jafari, Gholamali; Xie, Yusu; Kullyev, Andrey; Liang, Bin; Sze, Ji Ying

    2011-06-15

    Serotonin [5-hydroxytryptamine (5-HT)]-absorbing neurons use serotonin reuptake transporter (SERT) to uptake 5-HT from extracellular space but do not synthesize it. While 5-HT-absorbing neurons have been identified in diverse organisms from Caenorhabditis elegans to humans, their function has not been elucidated. Here, we show that SERT in 5-HT-absorbing neurons controls behavioral response to food deprivation in C. elegans. The AIM and RIH interneurons uptake 5-HT released from chemosensory neurons and secretory neurons. Genetic analyses suggest that 5-HT secreted by both synaptic vesicles and dense core vesicles diffuse readily to the extrasynaptic space adjacent to the AIM and RIH neurons. Loss of mod-5/SERT function blocks the 5-HT absorption. mod-5/SERT mutants have been shown to exhibit exaggerated locomotor response to food deprivation. We found that transgenic expression of MOD-5/SERT in the 5-HT-absorbing neurons fully corrected the exaggerated behavior. Experiments of cell-specific inhibition of synaptic transmission suggest that the synaptic release of 5-HT from the 5-HT-absorbing neurons is not required for this behavioral modulation. Our data point to the role of 5-HT-absorbing neurons as temporal-spatial regulators of extrasynaptic 5-HT. Regulation of extrasynaptic 5-HT levels by 5-HT-absorbing neurons may represent a fundamental mechanism of 5-HT homeostasis, integrating the activity of 5-HT-producing neurons with distant targets in the neural circuits, and could be relevant to some actions of selective serotonin reuptake inhibitors in humans.

  2. Dm5-HT2B: Pharmacological Characterization of the Fifth Serotonin Receptor Subtype of Drosophila melanogaster

    Directory of Open Access Journals (Sweden)

    Wolfgang Blenau

    2017-05-01

    Full Text Available Serotonin (5-hydroxytryptamine, 5-HT is an important regulator of physiological and behavioral processes in both protostomes (e.g., insects and deuterostomes (e.g., mammals. In insects, serotonin has been found to modulate the heart rate and to control secretory processes, development, circadian rhythms, aggressive behavior, as well as to contribute to learning and memory. Serotonin exerts its activity by binding to and activating specific membrane receptors. The clear majority of these receptors belong to the superfamily of G-protein-coupled receptors. In Drosophila melanogaster, a total of five genes have been identified coding for 5-HT receptors. From this family of proteins, four have been pharmacologically examined in greater detail, so far. While Dm5-HT1A, Dm5-HT1B, and Dm5-HT7 couple to cAMP signaling cascades, the Dm5-HT2A receptor leads to Ca2+ signaling in an inositol-1,4,5-trisphosphate-dependent manner. Based on sequence similarity to homologous genes in other insects, a fifth D. melanogaster gene was uncovered coding for a Dm5-HT2B receptor. Knowledge about this receptor’s pharmacological properties is very limited. This is quite surprising because Dm5-HT2B has been attributed to distinct physiological functions based on genetic interference with its gene expression. Mutations were described reducing the response of the larval heart to 5-HT, and specific knockdown of Dm5-HT2B mRNA in hemocytes resulted in a higher susceptibility of the flies to bacterial infection. To gain deeper understanding of Dm5-HT2B’s pharmacology, we evaluated the receptor’s response to a series of established 5-HT receptor agonists and antagonists in a functional cell-based assay. Metoclopramide and mianserin were identified as two potent antagonists that may allow pharmacological interference with Dm5-HT2B signaling in vitro and in vivo.

  3. Neuroticism and serotonin 5-HT1A receptors in healthy subjects.

    Science.gov (United States)

    Hirvonen, Jussi; Tuominen, Lauri; Någren, Kjell; Hietala, Jarmo

    2015-10-30

    Neuroticism is a personality trait associated with vulnerability for mood and anxiety disorders. Serotonergic mechanisms likely contribute to neuroticism. Serotonin 5-HT1A receptors are altered in mood and anxiety disorders, but whether 5-HT1A receptors are associated with neuroticism in healthy subjects is unclear. We measured brain serotonin 5-HT1A receptor in 34 healthy subjects in vivo using positron emission tomography (PET) and [carbonyl-(11)C]WAY-100635. Binding potential (BPP) was determined using the golden standard of kinetic compartmental modeling using arterial blood samples and radiometabolite determination. Personality traits were assessed using the Karolinska Scales of Personality. We found a strong negative association between serotonin 5-HT1A receptor BPP and neuroticism. That is, individuals with high neuroticism tended to have lower 5-HT1A receptor binding than individuals with low neuroticism. This finding was confirmed with an independent voxel-based whole-brain analysis. Other personality traits did not correlate with 5-HT1A receptor BPP. Previous observations have reported lower serotonin 5-HT1A receptor density in major depression. This neurobiological finding may be a trait-like phenomenon and partly explained by higher neuroticism in patients with affective disorders. The link between personality traits and 5-HT1A receptors should be studied in patients with major depression.

  4. The role of the serotonin receptor subtypes 5-HT1A and 5-HT7 and its interaction in emotional learning and memory

    Directory of Open Access Journals (Sweden)

    Oliver eStiedl

    2015-08-01

    Full Text Available Serotonin (5-hydroxytryptamine, 5-HT is a multifunctional neurotransmitter innervating cortical and limbic areas involved in cognition and emotional regulation. Dysregulation of serotonergic transmission is associated with emotional and cognitive deficits in psychiatric patients and animal models. Drugs targeting the 5-HT system are widely used to treat mood disorders and anxiety-like behaviors. Among the fourteen 5-HT receptor (5-HTR subtypes, the 5-HT1AR and 5-HT7R are associated with the development of anxiety, depression and cognitive function linked to mechanisms of emotional learning and memory. In rodents fear conditioning and passive avoidance (PA are associative learning paradigms to study emotional memory. This review assesses the role of 5-HT1AR and 5-HT7R as well as their interplay at the molecular, neurochemical and behavioral level. Activation of postsynaptic 5-HT1ARs impairs emotional memory through attenuation of neuronal activity, whereas presynaptic 5-HT1AR activation reduces 5-HT release and exerts pro-cognitive effects on PA retention. Antagonism of the 5-HT1AR facilitates memory retention possibly via 5-HT7R activation and evidence is provided that 5HT7R can facilitate emotional memory upon reduced 5-HT1AR transmission. These findings highlight the differential role of these 5-HTRs in cognitive/emotional domains of behavior. Moreover, the results indicate that tonic and phasic 5-HT release can exert different and potentially opposing effects on emotional memory, depending on the states of 5-HT1ARs and 5-HT7Rs and their interaction. Consequently, individual differences due to genetic and/or epigenetic mechanisms play an essential role for the responsiveness to drug treatment, e.g., by SSRIs which increase intrasynaptic 5-HT levels thereby activating multiple pre- and postsynaptic 5-HTR subtypes.

  5. Molecular and pharmacological characterization of serotonin 5-HT2α and 5-HT7 receptors in the salivary glands of the blowfly Calliphora vicina.

    Directory of Open Access Journals (Sweden)

    Claudia Röser

    Full Text Available Secretion in blowfly (Calliphora vicina salivary glands is stimulated by the biogenic amine serotonin (5-hydroxytryptamine, 5-HT, which activates both inositol 1,4,5-trisphosphate (InsP(3/Ca(2+ and cyclic adenosine 3',5'-monophosphate (cAMP signalling pathways in the secretory cells. In order to characterize the signal-inducing 5-HT receptors, we cloned two cDNAs (Cv5-ht2α, Cv5-ht7 that share high similarity with mammalian 5-HT(2 and 5-HT(7 receptor genes, respectively. RT-PCR demonstrated that both receptors are expressed in the salivary glands and brain. Stimulation of Cv5-ht2α-transfected mammalian cells with 5-HT elevates cytosolic [Ca(2+] in a dose-dependent manner (EC(50 = 24 nM. In Cv5-ht7-transfected cells, 5-HT produces a dose-dependent increase in [cAMP](i (EC(50 = 4 nM. We studied the pharmacological profile for both receptors. Substances that appear to act as specific ligands of either Cv5-HT(2α or Cv5-HT(7 in the heterologous expression system were also tested in intact blowfly salivary gland preparations. We observed that 5-methoxytryptamine (100 nM activates only the Cv5-HT(2α receptor, 5-carboxamidotryptamine (300 nM activates only the Cv5-HT(7 receptor, and clozapine (1 µM antagonizes the effects of 5-HT via Cv5-HT(7 in blowfly salivary glands, providing means for the selective activation of each of the two 5-HT receptor subtypes. This study represents the first comprehensive molecular and pharmacological characterization of two 5-HT receptors in the blowfly and permits the analysis of the physiological role of these receptors, even when co-expressed in cells, and of the modes of interaction between the Ca(2+- and cAMP-signalling cascades.

  6. The role of the serotonin receptor subtypes 5-HT1A and 5-HT7 and its interaction in emotional learning and memory.

    Science.gov (United States)

    Stiedl, Oliver; Pappa, Elpiniki; Konradsson-Geuken, Åsa; Ögren, Sven Ove

    2015-01-01

    Serotonin [5-hydroxytryptamine (5-HT)] is a multifunctional neurotransmitter innervating cortical and limbic areas involved in cognition and emotional regulation. Dysregulation of serotonergic transmission is associated with emotional and cognitive deficits in psychiatric patients and animal models. Drugs targeting the 5-HT system are widely used to treat mood disorders and anxiety-like behaviors. Among the fourteen 5-HT receptor (5-HTR) subtypes, the 5-HT1AR and 5-HT7R are associated with the development of anxiety, depression and cognitive function linked to mechanisms of emotional learning and memory. In rodents fear conditioning and passive avoidance (PA) are associative learning paradigms to study emotional memory. This review assesses the role of 5-HT1AR and 5-HT7R as well as their interplay at the molecular, neurochemical and behavioral level. Activation of postsynaptic 5-HT1ARs impairs emotional memory through attenuation of neuronal activity, whereas presynaptic 5-HT1AR activation reduces 5-HT release and exerts pro-cognitive effects on PA retention. Antagonism of the 5-HT1AR facilitates memory retention possibly via 5-HT7R activation and evidence is provided that 5HT7R can facilitate emotional memory upon reduced 5-HT1AR transmission. These findings highlight the differential role of these 5-HTRs in cognitive/emotional domains of behavior. Moreover, the results indicate that tonic and phasic 5-HT release can exert different and potentially opposing effects on emotional memory, depending on the states of 5-HT1ARs and 5-HT7Rs and their interaction. Consequently, individual differences due to genetic and/or epigenetic mechanisms play an essential role for the responsiveness to drug treatment, e.g., by SSRIs which increase intrasynaptic 5-HT levels thereby activating multiple pre- and postsynaptic 5-HTR subtypes.

  7. 5-HT1A and 5-HT7 receptor crosstalk in the regulation of emotional memory: implications for effects of selective serotonin reuptake inhibitors.

    Science.gov (United States)

    Eriksson, Therese M; Holst, Sarah; Stan, Tiberiu L; Hager, Torben; Sjögren, Benita; Ogren, Sven Öve; Svenningsson, Per; Stiedl, Oliver

    2012-11-01

    This study utilized pharmacological manipulations to analyze the role of direct and indirect activation of 5-HT(7) receptors (5-HT(7)Rs) in passive avoidance learning by assessing emotional memory in male C57BL/6J mice. Additionally, 5-HT(7)R binding affinity and 5-HT(7)R-mediated protein phosphorylation of downstream signaling targets were determined. Elevation of 5-HT by the selective serotonin reuptake inhibitor (SSRI) fluoxetine had no effect by itself, but facilitated emotional memory performance when combined with the 5-HT(1A)R antagonist NAD-299. This facilitation was blocked by the selective 5-HT(7)R antagonist SB269970, revealing excitatory effects of the SSRI via 5-HT(7)Rs. The enhanced memory retention by NAD-299 was blocked by SB269970, indicating that reduced activation of 5-HT(1A)Rs results in enhanced 5-HT stimulation of 5-HT(7)Rs. The putative 5-HT(7)R agonists LP-44 when administered systemically and AS19 when administered both systemically and into the dorsal hippocampus failed to facilitate memory. This finding is consistent with the low efficacy of LP-44 and AS19 to stimulate protein phosphorylation of 5-HT(7)R-activated signaling cascades. In contrast, increasing doses of the dual 5-HT(1A)R/5-HT(7)R agonist 8-OH-DPAT impaired memory, while co-administration with NAD-299 facilitated of emotional memory in a dose-dependent manner. This facilitation was blocked by SB269970 indicating 5-HT(7)R activation by 8-OH-DPAT. Dorsohippocampal infusion of 8-OH-DPAT impaired passive avoidance retention through hippocampal 5-HT(1A)R activation, while 5-HT(7)Rs appear to facilitate memory processes in a broader cortico-limbic network and not the hippocampus alone.

  8. Agonist-directed signaling of serotonin 5-HT2C receptors: differences between serotonin and lysergic acid diethylamide (LSD).

    Science.gov (United States)

    Backstrom, J R; Chang, M S; Chu, H; Niswender, C M; Sanders-Bush, E

    1999-08-01

    For more than 40 years the hallucinogen lysergic acid diethylamide (LSD) has been known to modify serotonin neurotransmission. With the advent of molecular and cellular techniques, we are beginning to understand the complexity of LSD's actions at the serotonin 5-HT2 family of receptors. Here, we discuss evidence that signaling of LSD at 5-HT2C receptors differs from the endogenous agonist serotonin. In addition, RNA editing of the 5-HT2C receptor dramatically alters the ability of LSD to stimulate phosphatidylinositol signaling. These findings provide a unique opportunity to understand the mechanism(s) of partial agonism.

  9. Platelet serotonin content and uptake in spontaneously hypertensive rats

    Energy Technology Data Exchange (ETDEWEB)

    Guicheney, P.; Legros, M.; Marcel, D.; Kamal, L.; Meyer, P.

    1985-02-18

    Platelet serotonin (5-HT) content and uptake were studied in male SHR and WKY at various ages. Blood was withdrawn from the carotid artery under anesthesia and 5-HT levels determined from platelet rich plasma (PRP) using a HPLC technique coupled with an electrochemical detection method. Platelet 5-HT uptake was studied by incubating PRP at 37/sup 0/C for 10 sec with increasing concentrations of /sup 3/H-5HT. Lineweaver-Burk plots of /sup 3/H-5HT uptake were linear suggesting simple Michaelis-Menten uptake kinetics. The SHR had more platelets than age-matched controls and consequently a higher blood circulating pool of 5-HT. Nevertheless, the 5-HT platelet levels were similar to those of their age-matched rats. The 5 week-old SHR and WKY had greater numbers of platelets and higher 5-HT platelet levels than the older rats of both strains. The affinity constants (Km) and the maximal velocities (Vmax) of platelet 5-HT uptake did not differ significantly between the 12 week- and the 6 month-old SHR and WKY. These data suggest that the SHR do not show the same impairment in platelet 5-HT metabolism as observed in essential hypertension in man.

  10. Serotonin decreases aggression via 5-HT1A receptors in the fighting fish Betta splendens.

    Science.gov (United States)

    Clotfelter, Ethan D; O'Hare, Erin P; McNitt, Meredith M; Carpenter, Russ E; Summers, Cliff H

    2007-01-01

    The role of the monoamine neurotransmitter serotonin (5-HT) in the modulation of conspecific aggression in the fighting fish (Betta splendens) was investigated using pharmacological manipulations. We used a fish's response to its mirror image as our index of aggressive behavior. We also investigated the effects of some manipulations on monoamine levels in the B. splendens brain. Acute treatment with 5-HT and with the 5-HT1A receptor agonist 8-OH-DPAT both decreased aggressive behavior; however, treatment with the 5-HT1A receptor antagonist WAY-100635 did not increase aggression. Chronic treatment with the selective serotonin reuptake inhibitor fluoxetine caused no significant changes in aggressive behavior and a significant decline in 5-HT and 5-hydroxyindoleacetic acid (5-HIAA) concentrations. Treatment with the serotonin synthesis inhibitor p-chlorophenylalanine resulted in no change in aggression, yet serotonergic activity decreased significantly. Finally, a diet supplemented with L-tryptophan (Trp), the precursor to 5-HT, showed no consistent effects on aggressive behavior or brain monoamine concentrations. These results suggest a complex role for serotonin in the expression of aggression in teleost fishes, and that B. splendens may be a useful model organism in pharmacological and toxicological studies.

  11. [CROSS-TALK BETWEEN 5-HT1A AND 5-HT7 RECEPTORS: ROLE IN THE AUTOREGULATION OF THE BRAIN SEROTONIN SYSTEM AND IN MECHANISM OF ANTIDEPRESSANTS ACTION].

    Science.gov (United States)

    Popova, N K; Ponimaskin, E G; Naumenko, V S

    2015-11-01

    Recent studies considerably extended our knowledge of the mechanisms and physiological role of the interaction between different receptors in the brain. Current review summarizes data on the formation of receptor complexes and the role of such complexes in the autoregulation of the brain serotonin system, behavioral abnormalities and mechanism of antidepressants action. Particular attention is paid to 5-HT1A and 5-HT7 receptor heterodimers. The results described in the present review indicate that: i) dimerization and formation of mobile receptor complexes is a common feature for the members of G-protein coupled receptor superfamily; ii) 5-HT7 receptor appears to be a modulator for 5-HT1A receptor - the key autoregulator of the brain serotonin system; iii) 5-HT1A/5-HT7 receptor complexes formation is one of the mechanisms for inactivation and desensitization of the 5-HTIA receptors in the brain; iv) differences in the 5-HT7 receptor and 5-HTIA/5-HT7 heterodimers density define different sensitivity of pre- and postsynaptic 5-HTlA receptors to chronic treatment with selective serotonin reuptake inhibitors.

  12. 5-HT receptors mediate lineage-dependent effects of serotonin on adult neurogenesis in Procambarus clarkii

    Directory of Open Access Journals (Sweden)

    Benton Jeanne L

    2011-01-01

    Full Text Available Abstract Background Serotonin (5-HT is a potent regulator of adult neurogenesis in the crustacean brain, as in the vertebrate brain. However, there are relatively few data regarding the mechanisms of serotonin's action and which precursor cells are targeted. Therefore, we exploited the spatial separation of the neuronal precursor lineage that generates adult-born neurons in the crayfish (Procambarus clarkii brain to determine which generation(s is influenced by serotonin, and to identify and localize serotonin receptor subtypes underlying these effects. Results RT-PCR shows that mRNAs of serotonin receptors homologous to mammalian subtypes 1A and 2B are expressed in P. clarkii brain (referred to here as 5-HT1α and 5-HT2β. In situ hybridization with antisense riboprobes reveals strong expression of these mRNAs in several brain regions, including cell clusters 9 and 10 where adult-born neurons reside. Antibodies generated against the crustacean forms of these receptors do not bind to the primary neuronal precursors (stem cells in the neurogenic niche or their daughters as they migrate, but do label these second-generation precursors as they approach the proliferation zones of cell clusters 9 and 10. Like serotonin, administration of the P. clarkii 5-HT1α-specific agonist quipazine maleate salt (QMS increases the number of bromodeoxyuridine (BrdU-labeled cells in cluster 10; the P. clarkii 5-HT2β-specific antagonist methiothepin mesylate salt (MMS suppresses neurogenesis in this region. However, serotonin, QMS and MMS do not alter the rate of BrdU incorporation into niche precursors or their migratory daughters. Conclusion Our results demonstrate that the influences of serotonin on adult neurogenesis in the crayfish brain are confined to the late second-generation precursors and their descendants. Further, the distribution of 5-HT1α and 5-HT2β mRNAs and proteins indicate that these serotonergic effects are exerted directly on specific

  13. Signalling properties and pharmacology of a 5-HT7 -type serotonin receptor from Tribolium castaneum.

    Science.gov (United States)

    Vleugels, R; Lenaerts, C; Vanden Broeck, J; Verlinden, H

    2014-04-01

    In the last decade, genome sequence data and gene structure information on invertebrate receptors has been greatly expanded by large sequencing projects and cloning studies. This information is of great value for the identification of receptors; however, functional and pharmacological data are necessary for an accurate receptor classification and for practical applications. In insects, an important group of neurotransmitter and neurohormone receptors, for which ample sequence information is available but pharmacological information is missing, are the biogenic amine G protein-coupled receptors (GPCRs). In the present study, we investigated the sequence information, pharmacology and signalling properties of a 5-HT7 -type serotonin receptor from the red flour beetle, Tribolium castaneum (Trica5-HT7 ). The receptor encoding cDNA shows considerable sequence similarity with cognate 5-HT7 receptors and phylogenetic analysis also clusters the receptor within this 5-HT receptor group. Real-time reverse transcription PCR demonstrated high expression levels in the brain, indicating the possible importance of this receptor in neural processes. Trica5-HT7 was dose-dependently activated by 5-HT, which induced elevated intracellular cyclic AMP levels but had no effect on calcium signalling. The synthetic agonists, α-methyl 5-HT, 5-methoxytryptamine, 5-carboxamidotryptamine and 8-hydroxy-2-(dipropylamino)tetralin hydrobromide, showed a response, although with a much lower potency and efficacy than 5-HT. Ketanserin and methiothepin were the most potent antagonists. Both showed characteristics of competitive inhibition on Trica5-HT7 . The signalling pathway and pharmacological profile offer important information that will facilitate functional and comparative studies of 5-HT receptors in insects and other invertebrates. The pharmacology of invertebrate 5-HT receptors differs considerably from that of vertebrates. The present study may therefore contribute to establishing a more

  14. 5-HT1B receptor modulation of the serotonin transporter in vivo: Studies using KO mice

    OpenAIRE

    Montañez, Sylvia; Munn, Jaclyn L.; Owens, W. Anthony; Horton, Rebecca E.; Daws, Lynette C.

    2013-01-01

    The serotonin transporter (SERT) controls the strength and duration of serotonergic neurotransmission by the high-affinity uptake of ser otonin (5-HT) from extracellular fluid. SERT is a key target for many psychotherapeutic and abused drugs, therefore understanding how SERT activity and expression are regulated is of fundamental importance. A growing literature suggests that SERT activity is under regulatory control of the 5-HT1B autoreceptor. The present studies made use of mice with a cons...

  15. The Effect of Serotonin-Targeting Antidepressants on Neurogenesis and Neuronal Maturation of the Hippocampus Mediated via 5-HT1A and 5-HT4 Receptors

    Directory of Open Access Journals (Sweden)

    Eri Segi-Nishida

    2017-05-01

    Full Text Available Antidepressant drugs such as selective serotonin reuptake inhibitors (SSRIs specifically increase serotonin (5-HT levels in the synaptic cleft and are widely used to treat mood and anxiety disorders. There are 14 established subtypes of 5-HT receptors in rodents, each of which has regionally different expression patterns. Many preclinical studies have suggested that the hippocampus, which contains abundant 5-HT1A and 5-HT4 receptor subtypes in the dentate gyrus (DG, is critically involved in the mechanisms of action of antidepressants. This review article will analyze studies demonstrating regulation of hippocampal functions and hippocampus-dependent behaviors by SSRIs and similar serotonergic agents. Multiple studies indicate that 5-HT1A and 5-HT4 receptor signaling in the DG contributes to SSRI-mediated promotion of neurogenesis and increased neurotrophic factors expression. Chronic SSRI treatment causes functions and phenotypes of mature granule cells (GCs to revert to immature-like phenotypes defined as a “dematured” state in the DG, and to increase monoamine reactivity at the dentate-to-CA3 synapses, via 5-HT4 receptor signaling. Behavioral studies demonstrate that the 5-HT1A receptors on mature GCs are critical for expression of antidepressant effects in the forced swim test and in novelty suppressed feeding; such studies also note that 5-HT4 receptors mediate neurogenesis-dependent antidepressant activity in, for example, novelty-suppressed feeding. Despite their limitations, the collective results of these studies describe a potential new mechanism of action, in which 5-HT1A and 5-HT4 receptor signaling, either independently or cooperatively, modulates the function of the hippocampal DG at multiple levels, any of which could play a critical role in the antidepressant actions of 5-HT-enhancing drugs.

  16. Serotonin and the 5-HT7 receptor: the link between hepatocytes, IGF-1 and small intestinal neuroendocrine tumors.

    Science.gov (United States)

    Svejda, Bernhard; Kidd, Mark; Timberlake, Andrew; Harry, Kathy; Kazberouk, Alexander; Schimmack, Simon; Lawrence, Ben; Pfragner, Roswitha; Modlin, Irvin M

    2013-07-01

    Platelet-derived serotonin (5-HT) is involved in liver regeneration. The liver is also the metastatic site for malignant enterochromaffin (EC) cell "carcinoid" (neuroendocrine) neoplasms, the principal cellular source of 5-HT. We hypothesized that 5-HT produced by metastatic EC cells played a role in the hepatic tumor-microenvironment principally via 5-HT₇ receptor-mediated activation of hepatocyte IGF-1 synthesis and secretion. Using isolated rat hepatocytes, we evaluated 5-HT₇ receptor expression (using PCR, sequencing and western blot). ELISA, cell transfection and western blots delineated 5-HT-mediated signaling pathways (pCREB, AKT and ERK). IGF-1 synthesis/secretion was evaluated using QPCR and ELISA. IGF-1 was tested on small intestinal neuroendocrine neoplasm proliferation, while IGF-1 production and 5-HT₇ expression were examined in an in vivo SCID metastasis model. Our results demonstrated evidence for a functional 5-HT₇ receptor. 5-HT activated cAMP/PKA activity, pCREB (130-205%, P < 0.05) and pERK/pAKT (1.2-1.75, P < 0.05). Signaling was reversed by the 5-HT₇ receptor antagonist SB269970. IGF-1 significantly stimulated proliferation of two small intestinal neuroendocrine neoplasm cell lines (EC₅₀: 7-70 pg/mL) and could be reversed by the small molecule inhibitor BMS-754807. IGF-1 and 5-HT were elevated (40-300×) in peri-tumoral hepatic tissue in nude mice, while 5-HT₇ was increased fourfold compared to sham-operated animals. We conclude that hepatocytes express a cAMP-coupled 5-HT₇ receptor, which, at elevated 5-HT concentrations that occur in liver metastases, signals via CREB/AKT and is linked to IGF-1 synthesis and secretion. Because IGF-1 regulates NEN proliferation, identification of a role for 5-HT₇ in the hepatic metastatic tumor microenvironment suggests the potential for novel therapeutic strategies for amine-producing mid-gut tumors.

  17. 5-HT7 receptor modulates GABAergic transmission in the rat dorsal raphe nucleus and controls cortical release of serotonin

    OpenAIRE

    Magdalena eKusek; Joanna eSowa; Katarzyna eKamińska; Krystyna eGołembiowska; Krzysztof eTokarski; Grzegorz eHess

    2015-01-01

    The 5-HT7 receptor is one of the several serotonin (5-HT) receptor subtypes that are expressed in the dorsal raphe nucleus (DRN). Some earlier findings suggested that 5-HT7 receptors in the DRN were localized on GABAergic interneurons modulating the activity of 5-HT projection neurons. The aim of the present study was to find out how the 5-HT7 receptor modulates the GABAergic synaptic input to putative 5-HT DRN neurons, and whether blockade of the 5-HT7 receptor would affect the release of 5-...

  18. Serotonin receptor 5-HT5A in rat hippocampus decrease by leptin treatment.

    Science.gov (United States)

    García-Alcocer, Guadalupe; Rodríguez, Angelina; Moreno-Layseca, Paulina; Berumen, Laura C; Escobar, Jesica; Miledi, Ricardo

    2010-12-17

    5-Hydroxytryptamine (5-HT) is involved in a variety of different physiological processes and behaviors through the activation of equally diverse receptors subtypes. In this work we studied the changes on the expression of 5-HT(5A) receptors in rat hippocampus induced by leptin, an adipocyte-derived hormone that has been reported to participate in the modulation of food intake and in adult hippocampal neurogenesis. To study the effect of leptin on the 5-HT(5A) receptor gene expression a qRT-PCR was used and the distribution of those receptors in the hippocampus was visualized by immunohistochemistry. Rats were separated in four groups: control (untreated rats), leptin-treated, serotonin-treated and leptin+serotonin treated. The results showed that even though the 5-HT(5A) gene expression did not change in the hippocampus of any of the treated groups, in the rats treated with leptin and serotonin, the specific immunostaining for the 5-HT(5A) serotonin receptor decreased significantly in the dentate gyrus.

  19. Caveolin-1 interacts with 5-HT2A serotonin receptors and profoundly modulates the signaling of selected Galphaq-coupled protein receptors.

    Science.gov (United States)

    Bhatnagar, Anushree; Sheffler, Douglas J; Kroeze, Wesley K; Compton-Toth, BethAnn; Roth, Bryan L

    2004-08-13

    5-Hydroxytryptamine 2A (5-HT(2A)) serotonin receptors are important for a variety of functions including vascular smooth muscle contraction, platelet aggregation, and the modulation of perception, cognition, and emotion. In a search for 5-HT(2A) receptor-interacting proteins, we discovered that caveolin-1 (Cav-1), a scaffolding protein enriched in caveolae, complexes with 5-HT(2A) receptors in a number of cell types including C6 glioma cells, transfected HEK-293 cells, and rat brain synaptic membrane preparations. To address the functional significance of this interaction, we performed RNA interference-mediated knockdown of Cav-1 in C6 glioma cells, a cell type that endogenously expresses both 5-HT(2A) receptors and Cav-1. We discovered that the in vitro knockdown of Cav-1 in C6 glioma cells nearly abolished 5-HT(2A) receptor-mediated signal transduction as measured by calcium flux assays. RNA interference-mediated knockdown of Cav-1 also greatly attenuated endogenous Galpha(q)-coupled P2Y purinergic receptor-mediated signaling without altering the signaling of PAR-1 thrombin receptors. Cav-1 appeared to modulate 5-HT(2A) signaling by facilitating the interaction of 5-HT(2A) receptors with Galpha(q). These studies provide compelling evidence for a prominent role of Cav-1 in regulating the functional activity of not only 5-HT(2A) serotonin receptors but also selected Galpha(q)-coupled receptors.

  20. Compositions and methods related to serotonin 5-HT1A receptors

    Science.gov (United States)

    Mukherjee, Jogeshwar; Saigal, Neil

    2010-06-08

    Contemplated substituted arylpiperazinyl compounds, and most preferably 18F-Mefway, exhibit desirable in vitro and in vivo binding characteristics to the 5-HT1A receptor. Among other advantageous parameters, contemplated compounds retain high binding affinity, display optimal lipophilicity, and are radiolabeled efficiently with 18F-fluorine in a single step. Still further, contemplated compounds exhibit high target to non-target ratios in receptor-rich regions both in vitro and in vivo, and selected compounds can be effectively and sensitively displaced by serotonin, thus providing a quantitative tool for measuring 5-HT1A receptors and serotonin concentration changes in the living brain.

  1. Effects of age of serotonin 5-HT2 receptors in cocaine abusers and normal subjects

    Energy Technology Data Exchange (ETDEWEB)

    Wang, G.J.; Volkow, N.D.; Logan, J. [Brookhaven National Laboratory, Upton, NY (United States)] [and others

    1995-05-01

    We measured the effect of age on serotonin 5-HT2 receptor availability and compared it with the effects on dopamine D2 receptors on 19 chronic cocaine abusers (35.2{plus_minus}9.8 years, range 18-54 years old) and 19 age matched normal controls using positron emission tomography (PET) and F-18 N-methylspiperone (NMS). 5-HT2 Receptor availability was measure din frontal (FR), occipital (OC), cingulate (CI) and orbitofrontal (OF) cortices using the ratio of the distribution volume in the region of interest to that in the cerebelium (CB) which is a function of Bmax/Kd. D2 receptor availability in the basal ganglia was measured using the {open_quotes}ratio index{close_quotes} (slope of striatum/CB versus time over 180 min of the scan) which is a function of Bmax. 5-HT2 Receptor availability differed among regions and were as follows: CI>OF>OC>FC.5-HT2 Receptor availability decreased significantly with age. This effect was more accentuated for 5-HT2 receptor availability in FR than in OC(df=1, p<0.025). Striatal dopamine D2 receptors were also found to decrease significantly with age (r=0.63, p<0.007). In a given subject, D2 receptor availability was significantly correlated with 5-HT2 receptor availability in FR (r=0.51, p<0.035) but not in OC. The values for 5-HT2 receptor availability were not different in normal subjects and cocaine abusers. These results document a decline in 5-HT2 and D2 receptors with age and document an association between frontal 5-HT2 and striatal D2 receptor availability. These results did not show any changes in 5-HT2 receptor availability in cocaine abusers as compared to control subjects.

  2. Structure-based discovery of selective serotonin 5-HT(1B) receptor ligands.

    Science.gov (United States)

    Rodríguez, David; Brea, José; Loza, María Isabel; Carlsson, Jens

    2014-08-05

    The development of safe and effective drugs relies on the discovery of selective ligands. Serotonin (5-hydroxytryptamine [5-HT]) G protein-coupled receptors are therapeutic targets for CNS disorders but are also associated with adverse drug effects. The determination of crystal structures for the 5-HT1B and 5-HT2B receptors provided an opportunity to identify subtype selective ligands using structure-based methods. From docking screens of 1.3 million compounds, 22 molecules were predicted to be selective for the 5-HT1B receptor over the 5-HT2B subtype, a requirement for safe serotonergic drugs. Nine compounds were experimentally verified as 5-HT1B-selective ligands, with up to 300-fold higher affinities for this subtype. Three of the ligands were agonists of the G protein pathway. Analysis of state-of-the-art homology models of the two 5-HT receptors revealed that the crystal structures were critical for predicting selective ligands. Our results demonstrate that structure-based screening can guide the discovery of ligands with specific selectivity profiles.

  3. Distribution of serotonin 5-HT2A and 5-HT7 receptors in the Onuf's nucleus of the rat spinal cord

    Institute of Scientific and Technical Information of China (English)

    Fanqing Zeng; Chen Xu; Ge Xu

    2008-01-01

    BACKGROUND: Motoneurons from the Onuf's nucleus of the spinal cord, which innervate the striated muscle of the pelvic floor, play an important role in erection, ejaculation, and urine control. Serotonin (5-hydroxytryptamine, 5-HT) regulates motoneuron activity from the Onuf's nucleus of the spinal cord.However, few studies exist that describe 5-HT receptor distribution in the Onuf's nucleus. In addition, the nature of the effects of 5-HT receptor on the innervating striated muscle of the pelvic floor is controversial.OBJECTIVE: To investigate the distribution of serotonin 5-HT2A and 5-HT7 receptors in motoneurons of Onuf's nucleus in the spinal cord of male rats, and to analyze the relationship of 5-HT2A and 5-H7 receptors to central modulation of urogenital function.DESIGN, TIME AND SETTING: The neural morphology experiment was performed at the Ultramicrostructure Laboratory of Reproductive Medicine, Basic Medical College, Chongqing Medical University, China from April to December 2007.MATERIALS: Ten adult, Sprague Dawley rats (eight males and two females) were randomly divided into a gender control group (n = 4,50% male and 50% female) and a retrograde tracing group (n = 6, 100% male).Recombinant pseudorabies virus (PRV-152) was provided by Professor LW Enquist from Princeton University, USA. Rabbit anti-5-HT2A and 5-HT7 receptor antibodies were purchased from Diasorin, France.METHODS: In the gender control group, the spinal L5-6segments were harvested, sliced, and then incubated antibodies specific against 5-HT2A or 5-HT7 receptors for immunohistochemical staining. In the retrograde tracing group, PRV-152 was separately injected into the right ischiocavernosus (ischiocavernosus subgroup,n = 3) and the fight external urethral sphincter (external urethral sphincter subgroup, n = 3). Four days after injection, L5-6 segments were harvested, sliced, and incubated with antibodies specific against 5-HT2A or 5-HT7 receptors for double-labeling immunofluoresccnce

  4. Serotonin syndrome after challenge with the 5-HT agonist meta-chlorophenylpiperazine

    NARCIS (Netherlands)

    Klaassen, T; Pian, KLH; Westenberg, HGM; den Boer, JA; van Praag, HM

    1998-01-01

    meta-Chlorophenylpiperazine (mCPP) is a non-selective 5-HT-receptor agonist/antagonist that is used extensively in psychiatry to assess central serotonergic function. We report on three patients who developed symptoms of the serotonin syndrome when they participated in an mCPP (0.5 mg/kg body weight

  5. Serotonin 5HT1A receptor availability and pathological crying after stroke

    DEFF Research Database (Denmark)

    Møller, Mette; Andersen, G; Gjedde, A

    2007-01-01

    OBJECTIVES: Post-stroke depression and pathological crying (PC) implicate an imbalance of serotonergic neurotransmission. We claim that PC follows serotonin depletion that raises the binding potential (p(B)) of the 5-HT(1A) receptor antagonist [carbonyl-(11)C]WAY-100635, which is reversible...

  6. Targeting the Serotonin 5-HT7 Receptor in the Search for Treatments for CNS Disorders: Rationale and Progress to Date

    OpenAIRE

    Nikiforuk, Agnieszka

    2015-01-01

    The 5-HT7 (5-hydroxytryptamine 7, serotonin 7) receptor is one of the most recently identified members of the serotonin receptor family. Pharmacological tools, including selective antagonists and, more recently, agonists, along with 5-HT7 receptor (5-HT7R) knock-out mice have revealed the involvement of this receptor in central nervous system processes. Its well-established role in controlling body temperature and regulating sleep and circadian rhythms has implicated this receptor in mood dis...

  7. Design and Discovery of Functionally Selective Serotonin 2C (5-HT2C) Receptor Agonists.

    Science.gov (United States)

    Cheng, Jianjun; McCorvy, John D; Giguere, Patrick M; Zhu, Hu; Kenakin, Terry; Roth, Bryan L; Kozikowski, Alan P

    2016-11-10

    On the basis of the structural similarity of our previous 5-HT2C agonists with the melatonin receptor agonist tasimelteon and the putative biological cross-talk between serotonergic and melatonergic systems, a series of new (2,3-dihydro)benzofuran-based compounds were designed and synthesized. The compounds were evaluated for their selectivity toward 5-HT2A, 5-HT2B, and 5-HT2C receptors in the calcium flux assay with the ultimate goal to generate selective 5-HT2C agonists. Selected compounds were studied for their functional selectivity by comparing their transduction efficiency at the G protein signaling pathway versus β-arrestin recruitment. The most functionally selective compound (+)-7e produced weak β-arrestin recruitment and also demonstrated less receptor desensitization compared to serotonin in both calcium flux and phosphoinositide (PI) hydrolysis assays. We report for the first time that selective 5-HT2C agonists possessing weak β-arrestin recruitment can produce distinct receptor desensitization properties.

  8. Molecular imaging of the serotonin 5-HT7 receptors: from autoradiography to positron emission tomography.

    Science.gov (United States)

    Zimmer, Luc; Billard, Thierry

    2014-01-01

    Serotonin and its various receptors are involved in numerous brain functions and neuropsychiatric disorders. Of the 14 known serotoninergic receptors, the 5-HT7 receptor is the most recently identified and characterized. It is closely involved in the pathogenesis of depression, anxiety, epilepsy and pain and is therefore an important target for drug therapy. It is a crucial target in neuroscience, and there is a clear need for radioligands for in vitro and in vivo visualization and quantification, first in animal models and ultimately in humans. This review focuses on the main radioligands suggested for in vitro and in vivo imaging of the 5-HT7 receptor.

  9. The role of serotonin 5-HT7 receptor in regulating sleep and wakefulness.

    Science.gov (United States)

    Monti, Jaime M; Jantos, Héctor

    2014-01-01

    Different approaches have been followed to characterize the role of 5-hydroxytryptamine (serotonin) receptor 7 (5-HT7) in the regulation of sleep-wake behavior: (1) 5-HT7 receptor knockout mice spend less time in rapid eye movement sleep than their wild-type counterparts, mainly during the light period. In contrast, there is no difference between the genotypes in time spent in wakefulness or slow-wave sleep. (2) Systemic administration of the selective 5-HT7 receptor agonist LP-211 significantly increased wakefulness (time spent awake) and reduced rapid eye movement sleep in the rat. Direct infusion of LP-211 into the dorsal raphe nucleus, locus coeruleus nucleus, basal forebrain (horizontal limb of the diagonal band of Broca), or laterodorsal tegmental nucleus also produced a decrease in rapid eye movement sleep. Additionally, microinjection of the 5-HT7 receptor agonist into the basal forebrain augmented the time animals remained awake. Local injection of the 5-HT7 receptor agonist LP-44 into the dorsal raphe nucleus also suppressed rapid eye movement sleep in the rat. (3) A similar reduction of rapid eye movement sleep has been described following intraperitoneal injection of the selective 5-HT7 receptor antagonists SB-269970 and SB-656104 in the rat and oral administration of the 5-HT7 receptor antagonist NJ-18038683 to rat and man. Local microinjection of SB-269970 into the dorsal raphe nucleus and basal forebrain also induced a decrease in rapid eye movement sleep in the rat. This tends to suggest that the on-off (activation/blockade), two-state ligand-receptor interaction model is not tenable for the 5-HT7 receptor.

  10. An Orally Active Phenylaminotetralin-Chemotype Serotonin 5-HT7 and 5-HT1A Receptor Partial Agonist that Corrects Motor Stereotypy in Mouse Models.

    Science.gov (United States)

    Canal, Clinton E; Felsing, Daniel E; Liu, Yue; Zhu, Wanying; Wood, JodiAnne T; Perry, Charles K; Vemula, Rajender; Booth, Raymond G

    2015-07-15

    Stereotypy (e.g., repetitive hand waving) is a key phenotype of autism spectrum disorder, Fragile X and Rett syndromes, and other neuropsychiatric disorders, and its severity correlates with cognitive and attention deficits. There are no effective treatments, however, for stereotypy. Perturbation of serotonin (5-HT) neurotransmission contributes to stereotypy, suggesting that distinct 5-HT receptors may be pharmacotherapeutic targets to treat stereotypy and related neuropsychiatric symptoms. For example, preclinical studies indicate that 5-HT7 receptor activation corrects deficits in mouse models of Fragile X and Rett syndromes, and clinical trials for autism are underway with buspirone, a 5-HT1A partial agonist with relevant affinity at 5-HT7 receptors. Herein, we report the synthesis, in vitro molecular pharmacology, behavioral pharmacology, and pharmacokinetic parameters in mice after subcutaneous and oral administration of (+)-5-(2'-fluorophenyl)-N,N-dimethyl-1,2,3,4-tetrahydronaphthalen-2-amine ((+)-5-FPT), a new, dual partial agonist targeting both 5-HT7 (Ki = 5.8 nM, EC50 = 34 nM) and 5-HT1A (Ki = 22 nM, EC50 = 40 nM) receptors. Three unique, heterogeneous mouse models were used to assess the efficacy of (+)-5-FPT to reduce stereotypy: idiopathic jumping in C58/J mice, repetitive body rotations in C57BL/6J mice treated with the NMDA antagonist, MK-801, and repetitive head twitching in C57BL/6J mice treated with the 5-HT2 agonist, DOI. Systemic (+)-5-FPT potently and efficaciously reduced or eliminated stereotypy in each of the mouse models without altering locomotor behavior on its own, and additional tests showed that (+)-5-FPT, at the highest behaviorally active dose tested, enhanced social interaction and did not cause behaviors indicative of serotonin syndrome. These data suggest that (+)-5-FPT is a promising medication for treating stereotypy in psychiatric disorders.

  11. Control of sensory neuron excitability by serotonin involves 5HT2C receptors and Ca(2+)-activated chloride channels.

    Science.gov (United States)

    Salzer, Isabella; Gantumur, Enkhbileg; Yousuf, Arsalan; Boehm, Stefan

    2016-11-01

    Serotonin (5HT) is a constituent of the so-called "inflammatory soup" that sensitizes nociceptors during inflammation. Nevertheless, receptors and signaling mechanisms that mediate an excitation of dorsal root ganglion (DRG) neurons by 5HT remained controversial. Therefore, capsaicin-sensitive nociceptive neurons dissociated from rat DRGs were used to investigate effects of 5HT on membrane excitability and currents through ligand- as well as voltage-gated ion channels. In 58% of the neurons tested, 5HT increased action potential firing, an effect that was abolished by the 5HT2 receptor antagonist ritanserin, but not by the 5HT3 antagonist tropisetron. Unlike other algogenic mediators, such as PGE2 and bradykinin, 5HT did not affect currents through TTX-resistant Na(+) channels or Kv7 K(+) channels. In all neurons investigated, 5HT potentiated capsaicin-evoked currents through TRPV1 channels, an effect that was attenuated by antagonists at 5HT2A (4 F 4 PP), 5HT2B (SB 204741), as well as 5HT2C (RS 102221) receptors. 5HT triggered slowly arising inward Cl(-) currents in 53% of the neurons. This effect was antagonized by the 5HT2C receptor blocker only, and the current was prevented by an inhibitor of Ca(2+)-activated chloride channels (CaCC). The 5HT-induced increase in action potential firing was also abolished by this CaCC blocker and by the TRPV1 inhibitor capsazepine. Amongst the subtype selective 5HT2 antagonists, only RS 102221 (5HT2C-selectively) counteracted the rise in action potential firing elicited by 5HT. These results show that 5HT excites DRG neurons mainly via 5HT2C receptors which concomitantly mediate a sensitization of TRPV1 channels and an opening of CaCCs.

  12. Molecular dynamics simulation of the structure and dynamics of 5-HT3 serotonin receptor

    Science.gov (United States)

    Antonov, M. Yu.; Popinako, A. V.; Prokopiev, G. A.

    2016-10-01

    In this work, we investigated structure, dynamics and ion transportation in transmembrane domain of the 5-HT3 serotonin receptor. High-resolution (0.35 nm) structure of the 5-HT3 receptor in complex with stabilizing nanobodies was determined by protein crystallography in 2014 (Protein data bank (PDB) code 4PIR). Transmembrane domain of the structure was prepared in complex with explicit membrane environment (1-palmitoyl-2-oleoyl-sn-glycero-3-phosphatidylcholine (POPC)) and solvent (TIP3P water model). Molecular dynamics protocols for simulation and stabilization of the transmembrane domain of the 5-HT3 receptor model were developed and 60 ns simulation of the structure was conducted in order to explore structural parameters of the system. We estimated the mean force profile for Na+ ions using umbrella sampling method.

  13. The Structure of the Mouse Serotonin 5-HT3 Receptor in Lipid Vesicles.

    Science.gov (United States)

    Kudryashev, Mikhail; Castaño-Díez, Daniel; Deluz, Cédric; Hassaine, Gherici; Grasso, Luigino; Graf-Meyer, Alexandra; Vogel, Horst; Stahlberg, Henning

    2016-01-01

    The function of membrane proteins is best understood if their structure in the lipid membrane is known. Here, we determined the structure of the mouse serotonin 5-HT3 receptor inserted in lipid bilayers to a resolution of 12 Å without stabilizing antibodies by cryo electron tomography and subtomogram averaging. The reconstruction reveals protein secondary structure elements in the transmembrane region, the extracellular pore, and the transmembrane channel pathway, showing an overall similarity to the available X-ray model of the truncated 5-HT3 receptor determined in the presence of a stabilizing nanobody. Structural analysis of the 5-HT3 receptor embedded in a lipid bilayer allowed the position of the membrane to be determined. Interactions between the densely packed receptors in lipids were visualized, revealing that the interactions were maintained by the short horizontal helices. In combination with methodological improvements, our approach enables the structural analysis of membrane proteins in response to voltage and ligand gating.

  14. [Antagonists of the type 3 serotonin receptor (5 -HT3) in IBS].

    Science.gov (United States)

    Komoto, Shunsuke; Miura, Soichiro

    2006-08-01

    Irritable bowel syndrome (IBS) is a common chronic gastrointestinal (GI) disorder, but its pathophysiology remains unknown. 5-hydroxytryptamine (5-HT, serotonin) is an important neurotransmitter involved in the brain-gut connection. Alosetron, a 5-HT3 receptor antagonist, has been demonstrated in randomized, placebo-controlled trials (RCT) to be effective in diarrhea-predominant IBS(IBS-D). Constipation is the most common adverse event. Alosetron improved abdominal pain and discomfort and stool consistency in both female and male patients, but it did not improve other symptoms (sense of urgency, stool frequency and bloating) in male patients. Although less is known about the gender differences in therapeutic benefit, a new 5-HT3 antagonist, cilansetron, has demonstrated effectiveness in male and female IBS-D patients and is currently under clinical trials.

  15. 5-HT1A and 5-HT1B receptor agonists and aggression : A pharmacological challenge of the serotonin deficiency hypothesis

    NARCIS (Netherlands)

    de Boer, Sietse F.; Koolhaas, Jaap M.

    2005-01-01

    More than any other brain neurotransmitter system, the indolamine serotonin (5-HT) has been linked to aggression in a wide and diverse range of species, including humans. The nature of this linkage, however, is not simple and it has proven difficult to unravel the precise role of this amine in the p

  16. 5-HT7 receptor modulates GABAergic transmission in the rat dorsal raphe nucleus and controls cortical release of serotonin

    Directory of Open Access Journals (Sweden)

    Magdalena eKusek

    2015-08-01

    Full Text Available The 5-HT7 receptor is one of the several serotonin (5-HT receptor subtypes that are expressed in the dorsal raphe nucleus (DRN. Some earlier findings suggested that 5-HT7 receptors in the DRN were localized on GABAergic interneurons modulating the activity of 5-HT projection neurons. The aim of the present study was to find out how the 5-HT7 receptor modulates the GABAergic synaptic input to putative 5-HT DRN neurons, and whether blockade of the 5-HT7 receptor would affect the release of 5-HT in the target structure. Male Wistar rats with microdialysis probes implanted in the prefrontal cortex (PFC received injections of the 5-HT7 receptor antagonist (2R-1-[(3-hydroxyphenylsulfonyl]-2-[2-(4-methyl-1 piperidinylethyl]pyrrolidine hydrochloride (SB 269970, which induced an increase in the levels of 5-HT and its metabolite, 5-hydroxyindoleacetic acid (5-HIAA in the PFC. In another set of experiments whole-cell recordings from presumed projection neurons were carried out using DRN slices. SB 269970 application resulted in depolarization and in an increase in the firing frequency of the cells. In order to activate 5-HT7 receptors, 5-carboxamidotryptamine (5-CT was applied in the presence of N-[2-[4-(2-methoxyphenyl-1piperazinyl]ethyl]-N-2- pyridinylcyclohexanecarboxamide (WAY100635. Hyperpolarization of cells and a decrease in the firing frequency were observed after activation of the 5-HT7 receptor. Blockade of 5-HT7 receptors caused

  17. Ethanol and Mesolimbic Serotonin/Dopamine Interactions via 5HT-1B Receptors

    Science.gov (United States)

    2007-03-01

    Addiction, 101 (Suppl. 1): 23-30, 2006. 16. Kranzler HR, Hernandez -Avila CA, Gelenter J,: Polymorphism of the 5-HT1B receptor gene (HTR1B): strong within...Serotonin1B receptor stimulation enhances cocaine reinforcement, J. Neurosci., 18: 10078-10089, 1998. 25. Rojas -Corrales MO, Berrocoso E, Mico JA,: Role of...it has been reported that the effective receptor antagonist concentration of SB 216641 is similar to that of WAY 100635 ( Rojas -Corrales et al

  18. Discovery of a new class of potential multifunctional atypical antipsychotic agents targeting dopamine D3 and serotonin 5-HT1A and 5-HT2A receptors: design, synthesis, and effects on behavior

    DEFF Research Database (Denmark)

    Butini, Stefania; Gemma, Sandra; Campiani, Giuseppe;

    2009-01-01

    Dopamine D(3) antagonism combined with serotonin 5-HT(1A) and 5-HT(2A) receptor occupancy may represent a novel paradigm for developing innovative antipsychotics. The unique pharmacological features of 5i are a high affinity for dopamine D(3), serotonin 5-HT(1A) and 5-HT(2A) receptors, together...... with a low affinity for dopamine D(2) receptors (to minimize extrapyramidal side effects), serotonin 5-HT(2C) receptors (to reduce the risk of obesity under chronic treatment), and for hERG channels (to reduce incidence of torsade des pointes). Pharmacological and biochemical data, including specific c...

  19. Activation of 5-HT7 receptors increases neuronal platelet-derived growth factor β receptor expression.

    Science.gov (United States)

    Vasefi, Maryam S; Kruk, Jeff S; Liu, Hui; Heikkila, John J; Beazely, Michael A

    2012-03-09

    Several antipsychotics have a high affinity for 5-HT7 receptors yet despite intense interest in the 5-HT7 receptor as a potential drug target to treat psychosis, the function and signaling properties of 5-HT7 receptors in neurons remain largely uncharacterized. In primary mouse hippocampal and cortical neurons, as well as in the SH-SY5Y cell line, incubation with 5-HT, 5-carboxamidotryptamine (5-CT), or 5-HT7 receptor-selective agonists increases the expression of platelet-derived growth factor (PDGF)β receptors. The increased PDGFβ receptor expression is cyclic AMP-dependent protein kinase (PKA)-dependent, suggesting that 5-HT7 receptors couple to Gα(s) in primary neurons. Interestingly, up-regulated PDGFβ receptors display an increased basal phosphorylation state at the phospholipase Cγ-activating tyrosine 1021. This novel linkage between the 5-HT7 receptor and the PDGF system may be an important GPCR-neurotrophic factor signaling pathway in neurons.

  20. Serotonin (5-HT3 receptor antagonists for the reduction of symptoms of low anterior resection syndrome

    Directory of Open Access Journals (Sweden)

    Itagaki R

    2014-03-01

    Full Text Available Ryohei Itagaki, Keiji Koda, Masato Yamazaki, Kiyohiko Shuto, Chihiro Kosugi, Atsushi Hirano, Hidehito Arimitsu, Risa Shiragami, Yukino Yoshimura, Masato Suzuki Department of Surgery, Teikyo University Chiba Medical Center, Anesaki, Ichihara, Chiba, Japan Purpose: Serotonin (5-hydroxytryptamine [5-HT]3 receptor antagonists are effective for the treatment of diarrhea-predominant irritable bowel syndrome (IBS-D, in which exaggerated intestinal/colonic hypermotility is often observed. Recent studies have suggested that the motility disorder, especially spastic hypermotility, seen in the neorectum following sphincter-preserving operations for rectal cancer may be the basis of the postoperative defecatory malfunction seen in these patients. We investigated the efficacy of 5-HT3 receptor antagonists in patients suffering from severe low anterior resection syndrome. Patients and methods: A total of 25 male patients with complaints of uncontrollable urgency or fecal incontinence following sphincter-preserving operations were enrolled in this study. Defecatory status, assessed on the basis of incontinence score (0–20, urgency grade (0–3, and number of toilet visits per day, was evaluated using a questionnaire before and 1 month after the administration of the 5-HT3 antagonist ramosetron. Results: All the parameters assessed improved significantly after taking ramosetron for 1 month. The effect was more prominent in cases whose anastomotic line was lower, ie, inside the anal canal. Defecatory function was better in patients who commenced ramosetron therapy within 6 months postoperatively, as compared to those who were not prescribed ramosetron for more than 7 months postoperatively. Conclusion: These results suggest that 5-HT3 antagonists are effective for the treatment of low anterior resection syndrome, as in diarrhea-predominant irritable bowel syndrome. The improvement in symptoms is not merely time dependent, but it is related to treatment with 5

  1. Pharmacological and genetic interventions in serotonin (5-HT)(2C) receptors to alter drug abuse and dependence processes

    NARCIS (Netherlands)

    Filip, Malgorzata; Spampinato, Umberto; McCreary, Andrew C.; Przegalinski, Edmund

    2012-01-01

    The present review provides an overview on serotonin (5-hydroxytryptamine; 5-HT)(2C) receptors and their relationship to drug dependence. We have focused our discussion on the impact of 5-HT2C receptors on the effects of different classes of addictive drugs, illustrated by reference to data using ph

  2. Effect of the 5-HT4 receptor and serotonin transporter on visceral hypersensitivity in rats

    Directory of Open Access Journals (Sweden)

    Chi Yan

    2012-10-01

    Full Text Available Visceral hypersensitivity plays an important role in motor and sensory abnormalities associated with irritable bowel syndrome, but the underlying mechanisms are not fully understood. The present study was designed to evaluate the expression of the 5-HT4 receptor and the serotonin transporter (SERT as well as their roles in chronic visceral hypersensitivity using a rat model. Neonatal male Sprague-Dawley rats received intracolonic injections of 0.5% acetic acid (0.3-0.5 mL at different times between postnatal days 8 and 21 to establish an animal model of visceral hypersensitivity. On day 43, the threshold intensity for a visually identifiable contraction of the abdominal wall and body arching were recorded during rectal distention. Histological evaluation and the myeloperoxidase activity assay were performed to determine the severity of inflammation. The 5-HT4 receptor and SERT expression of the ascending colon were monitored using immunohistochemistry and Western blot analyses; the plasma 5-HT levels were measured using an ELISA method. As expected, transient colonic irritation at the neonatal stage led to visceral hypersensitivity, but no mucosal inflammation was later detected during adulthood. Using this model, we found reduced SERT expression (0.298 ± 0.038 vs 0.634 ± 0.200, P < 0.05 and increased 5-HT4 receptor expression (0.308 ± 0.017 vs 0.298 ± 0.021, P < 0.05. Treatment with fluoxetine (10 mg·kg-1·day-1, days 36-42, tegaserod (1 mg·kg-1·day-1, day 43, or the combination of both, reduced visceral hypersensitivity and plasma 5-HT levels. Fluoxetine treatment increased 5-HT4 receptor expression (0.322 ± 0.020 vs 0.308 ± 0.017, P < 0.01 but not SERT expression (0.219 ± 0.039 vs 0.298 ± 0.038, P = 0.654. These results indicate that both the 5-HT4 receptor and SERT play a role in the pathogenesis of visceral hypersensitivity, and its mechanism may be involved in the local 5-HT level.

  3. Effect of the 5-HT4 receptor and serotonin transporter on visceral hypersensitivity in rats

    Directory of Open Access Journals (Sweden)

    Chi Yan

    2012-10-01

    Full Text Available Visceral hypersensitivity plays an important role in motor and sensory abnormalities associated with irritable bowel syndrome, but the underlying mechanisms are not fully understood. The present study was designed to evaluate the expression of the 5-HT4 receptor and the serotonin transporter (SERT as well as their roles in chronic visceral hypersensitivity using a rat model. Neonatal male Sprague-Dawley rats received intracolonic injections of 0.5% acetic acid (0.3-0.5 mL at different times between postnatal days 8 and 21 to establish an animal model of visceral hypersensitivity. On day 43, the threshold intensity for a visually identifiable contraction of the abdominal wall and body arching were recorded during rectal distention. Histological evaluation and the myeloperoxidase activity assay were performed to determine the severity of inflammation. The 5-HT4 receptor and SERT expression of the ascending colon were monitored using immunohistochemistry and Western blot analyses; the plasma 5-HT levels were measured using an ELISA method. As expected, transient colonic irritation at the neonatal stage led to visceral hypersensitivity, but no mucosal inflammation was later detected during adulthood. Using this model, we found reduced SERT expression (0.298 ± 0.038 vs 0.634 ± 0.200, P < 0.05 and increased 5-HT4 receptor expression (0.308 ± 0.017 vs 0.298 ± 0.021, P < 0.05. Treatment with fluoxetine (10 mg·kg-1·day-1, days 36-42, tegaserod (1 mg·kg-1·day-1, day 43, or the combination of both, reduced visceral hypersensitivity and plasma 5-HT levels. Fluoxetine treatment increased 5-HT4 receptor expression (0.322 ± 0.020 vs 0.308 ± 0.017, P < 0.01 but not SERT expression (0.219 ± 0.039 vs 0.298 ± 0.038, P = 0.654. These results indicate that both the 5-HT4 receptor and SERT play a role in the pathogenesis of visceral hypersensitivity, and its mechanism may be involved in the local 5-HT level.

  4. Expression of hippocampal serotonin receptors 5-HT2C and 5-HT5A in a rat model of diet-induced obesity supplemented with tryptophan.

    Science.gov (United States)

    Lopez-Esparza, Sarahi; Berumen, Laura C; Padilla, Karla; Miledi, Ricardo; García-Alcocer, Guadalupe

    2015-05-01

    Food intake regulation is a complex mechanism that involves endogenous substances and central nervous system structures like hypothalamus or even hippocampus. The neurotransmitter serotonin is distinguished as food intake mediator; within its multiples receptors, the 5-HT2C type is characterized by its inhibitory appetite action but there is no information about 5-HT5A receptors involvement in obesity disease. It is also unknown if there are any changes in the receptors expression in rats hippocampus with induced obesity during development through a high energy diet (HED) supplemented with tryptophan (W). To appreciate the receptors expression pattern in the hippocampus, obesity was induced to young Sprague Dawley rats through a HED and supplemented with W. Immunocytochemical and western blot techniques were used to study the receptor distribution and quantify the protein expression. The rats with HED diet developed obesity until week 13 of treatment. The 5-HT2C receptor expression decreased in CA1, CA2, CA3 and DG of HED group; and also in CA2, CA3 and DG for HEDW group. The 5-HT5A receptor expression only decreased in DG for HED group. Variations of the two serotonin receptors subtypes support their potential role in obesity.

  5. Internalization and recycling of 5-HT2A receptors activated by serotonin and protein kinase C-mediated mechanisms

    Science.gov (United States)

    Bhattacharyya, Samarjit; Puri, Sapna; Miledi, Ricardo; Panicker, Mitradas M.

    2002-01-01

    Serotonin (5-HT), a major neurotransmitter, has a large number of G protein-coupled receptors in mammals. On activation by exposure to their ligand, 5-HT2 receptor subtypes increase IP3 levels and undergo desensitization and internalization. To visualize the receptor in cells during these processes, we have constructed a 5-HT2A-enhanced GFP (SR2-GFP) fusion receptor. We show that this fusion receptor undergoes internalization on exposure to its natural ligand, 5-HT. Because 5-HT2A receptors activate the phospholipase C pathway, we studied the effect of protein kinase C (PKC) on the internalization process and found that activation of PKC by its specific activator phorbol 12-myristate 13-acetate, in the absence of 5-HT, leads to internalization of the receptor. Moreover, inhibition of PKC by its inhibitor sphingosine in the presence of 5-HT prevents the internalization process, suggesting that activation of PKC is sufficient and necessary for the internalization of 5-HT2A receptors. We also show that SR2-GFP recycles back to the plasma membrane after 5-HT-dependent internalization, suggesting a mechanism for resensitization. In addition, receptors that have been internalized on addition of phorbol 12-myristate 13-acetate in the absence of 5-HT also recycle to the surface, with a time course similar to that seen after activation of the receptors by 5-HT. Our study suggests that 5-HT2A receptors internalize and return to the surface after both serotonin- and PKC-mediated processes. This study reveals a role for PKC in receptor internalization and also shows that 5-HT2A receptors are recycled. PMID:12388782

  6. Serotonin mediation of early memory formation via 5-HT2B receptor-induced glycogenolysis in the day-old chick

    OpenAIRE

    Marie Elizabeth Gibbs; Leif eHertz

    2014-01-01

    Investigation of the effects of serotonin on memory formation in the chick revealed an action on at least two 5-HT receptors. Serotonin injected intracerebrally produced a biphasic effect on memory consolidation with enhancement at low doses and inhibition at higher doses. The non-selective 5-HT receptor antagonist methiothepin and the selective 5-HT2B/C receptor antagonist SB221284 both inhibited memory, suggesting actions of serotonin on at least two different receptor subtypes. The 5-HT2B/...

  7. Serotonin uptake in blood platelets of psychiatric patients

    Energy Technology Data Exchange (ETDEWEB)

    Meltzer, H.Y.; Arora, R.C.; Baber, R.; Tricou, B.J.

    1981-12-01

    Platelet serotonin (5-HT) uptake was determined in 72 newly admitted, unmedicated psychiatric patients. Decreased maximum velocity (Vmax) of 5-HT uptake was present in unipolar and bipolar depressed patients as well as schizoaffective depressed patients. The apparent Michaelis constant (km) of 5-HT uptake was normal in these groups, as was Vmax and Km in manic-depressive and chronic schizophrenic patients. Treatment of depressed patients with notriptyline hydrochloride or imipramine hydrochloride increased Km significantly. There was a trend for the increase in Km in the nortriptyline-treated patients to correlate with clinical improvement. Decreased 5-HT uptake in platelets provides additional evidence for the role of 5-HT in the pathophysiologic process of some forms of depression.

  8. 5-HT7 receptor modulates GABAergic transmission in the rat dorsal raphe nucleus and controls cortical release of serotonin.

    Science.gov (United States)

    Kusek, Magdalena; Sowa, Joanna; Kamińska, Katarzyna; Gołembiowska, Krystyna; Tokarski, Krzysztof; Hess, Grzegorz

    2015-01-01

    The 5-HT7 receptor is one of the several serotonin (5-HT) receptor subtypes that are expressed in the dorsal raphe nucleus (DRN). Some earlier findings suggested that 5-HT7 receptors in the DRN were localized on GABAergic interneurons modulating the activity of 5-HT projection neurons. The aim of the present study was to find out how the 5-HT7 receptor modulates the GABAergic synaptic input to putative 5-HT DRN neurons, and whether blockade of the 5-HT7 receptor would affect the release of 5-HT in the target structure. Male Wistar rats with microdialysis probes implanted in the prefrontal cortex (PFC) received injections of the 5-HT7 receptor antagonist (2R)-1-[(3-hydroxyphenyl)sulfonyl]-2-[2-(4-methyl-1-piperidinyl)ethyl]pyrrolidine hydrochloride (SB 269970), which induced an increase in the levels of 5-HT and its metabolite, 5-hydroxyindoleacetic acid (5-HIAA) in the PFC. In another set of experiments whole-cell recordings from presumed projection neurons were carried out using DRN slices. SB 269970 application resulted in depolarization and in an increase in the firing frequency of the cells. In order to activate 5-HT7 receptors, 5-carboxamidotryptamine (5-CT) was applied in the presence of N-[2-[4-(2-methoxyphenyl)-1piperazinyl]ethyl]-N-2-pyridinylcyclohexanecarboxamide (WAY100635). Hyperpolarization of cells and a decrease in the firing frequency were observed after activation of the 5-HT7 receptor. Blockade of 5-HT7 receptors caused a decrease in the mean frequency of spontaneous inhibitory postsynaptic currents (sIPSCs), while its activation induced an increase. The mechanism of these effects appears to involve tonically-active 5-HT7 receptors modulating firing and/or GABA release from inhibitory interneurons which regulate the activity of DRN serotonergic projection neurons.

  9. The Effect of Paroxetine on Depressive Symptom with Somatic Disease and Change of Platelet 5-HT Concentration

    Institute of Scientific and Technical Information of China (English)

    郑凯; 史庭慧; 刘晓晴

    2003-01-01

    To study the effect of paroxetine on depressive symptom accompanying somatic disease and the value of platelet 5-HT concentration in the diagnosis of depression, 30 patients with depressive symptom were treated with paroxetine. All patients were evaluated on Zung and HAMD scale and assayed of platelet 5-HT concentration before and after treatment. It was found that patients had a lower level of platelet 5-HT concentration than healthy people (P<0. 01). After six weeks of treatment, depressive and somatic symptoms were both improved (P<0. 01) and platelet 5-HT concentration was even lower (P>0. 05). It was suggested that paroxetine was a good antidepressant and platelet 5-HT concentration was useful in the screening of depression.

  10. Effect of fluvoxamine on platelet 5-HT2A receptors as studied by [3H]lysergic acid diethylamide ([3H]LSD) binding in healthy volunteers.

    Science.gov (United States)

    Spigset, O; Mjörndal, T

    1997-09-01

    Alterations in platelet 5-HT2A receptor characteristics have been reported in major depression as well as in other psychiatric diseases, and some effort has been made to utilize platelet 5-HT2A receptor status as a biological correlate to antidepressant drug response. In order to investigate whether treatment with a selective serotonin reuptake inhibitor affects platelet 5-HT2A receptors, we have studied platelet [3H]lysergic acid diethylamide ([3H]LSD) binding in healthy subjects treated with fluvoxamine in increasing dosage once weekly for 4 weeks. After 1 week of fluvoxamine treatment (25 mg/day), both Bmax and Kd were significantly lower than before the start of the treatment (19.9 versus 25.5 fmol/mg protein, P = 0.005 for Bmax; 0.45 versus 0.93 nM, P = 0.006 for Kd). Bmax returned to baseline during week 2, whereas Kd was lower than the baseline value throughout the treatment period. After discontinuation of fluvoxamine treatment, there was a significant increase in Kd (0.50 nM before discontinuation vs. 1.14 nM after discontinuation; P = 0.001), but not in Bmax. The study demonstrates that fluvoxamine affects platelet 5-HT2A receptor status irrespective of underlying psychiatric disease, and that this effect is evident already after 1 week at a subtherapeutic fluvoxamine dose.

  11. Serotonin syndrome after challenge with the 5-HT agonist meta-chlorophenylpiperazine.

    Science.gov (United States)

    Klaassen, T; Ho Pian, K L; Westenberg, H G; den Boer, J A; van Praag, H M

    1998-07-13

    meta-Chlorophenylpiperazine (mCPP) is a non-selective 5-HT-receptor agonist/antagonist that is used extensively in psychiatry to assess central serotonergic function. We report on three patients who developed symptoms of the serotonin syndrome when they participated in an mCPP (0.5 mg/kg body weight p.o.) challenge test as part of a research protocol. They had relatively high plasma mCPP concentrations. The syndrome did not occur in normal volunteers who had comparable plasma concentrations of mCPP. Investigators should be aware of the possible occurrence of the serotonin syndrome after a single oral dose of mCPP.

  12. Targeting the Serotonin 5-HT7 Receptor in the Search for Treatments for CNS Disorders: Rationale and Progress to Date.

    Science.gov (United States)

    Nikiforuk, Agnieszka

    2015-04-01

    The 5-HT7 (5-hydroxytryptamine 7, serotonin 7) receptor is one of the most recently identified members of the serotonin receptor family. Pharmacological tools, including selective antagonists and, more recently, agonists, along with 5-HT7 receptor (5-HT7R) knock-out mice have revealed the involvement of this receptor in central nervous system processes. Its well-established role in controlling body temperature and regulating sleep and circadian rhythms has implicated this receptor in mood disorders. Thus, the 5-HT7R has gained much attention as a possible target for the treatment of depression. Although preclinical data support the antidepressant-like actions of 5-HT7R antagonists, their clinical efficacy has not been yet established. Other evidence has implicated the 5-HT7R in learning and memory. Preclinical findings suggest that blockade of this receptor may be beneficial against schizophrenia-like cognitive deficits. Other possible indications include nociception, epilepsy, migraine, autism spectrum disorders, and Rett Syndrome. However, the question is whether the beneficial effects may be achieved by activation or blockade of 5-HT7Rs. Hence, this review briefly summarises the recent findings on the role of 5-HT7Rs and their ligands in CNS disorders.

  13. Kinetics of the membrane current mediated by serotonin 5-HT3 receptors in cultured mouse neuroblastoma cells.

    NARCIS (Netherlands)

    Neijt, H.C.; Plomp, J.J.; Vijverberg, H.P.M.

    1989-01-01

    1. Ionic currents mediated by serotonin 5-HT3 receptors were studied in the mouse neuroblastoma cell line N1E-115, using suction pipettes for intracellular perfusion and voltage clamp recording. The dependence of the kinetics of the membrane current on serotonin concentration was investigated. 2. At

  14. Serotonin Transporter Genotype Affects Serotonin 5-HT1A Binding in Primates

    OpenAIRE

    Christian, Bradley T; Wooten, Dustin W; Hillmer, Ansel T.; Tudorascu, Dana L.; Converse, Alexander K.; Moore, Colleen F.; Ahlers, Elizabeth O.; Barnhart, Todd E.; Kalin, Ned H.; Barr, Christina S.; Schneider, Mary L.

    2013-01-01

    Disruption of the serotonin system has been implicated in anxiety and depression and a related genetic variation has been identified that may predispose individuals for these illnesses. The relationship of a functional variation of the serotonin transporter promoter gene (5-HTTLPR) on serotonin transporter binding using in vivo imaging techniques have yielded inconsistent findings when comparing variants for short (s) and long (l) alleles. However, a significant 5-HTTLPR effect on receptor bi...

  15. The human 5-HT7 serotonin receptor splice variants: constitutive activity and inverse agonist effects

    OpenAIRE

    Krobert, Kurt A; Levy, Finn Olav

    2002-01-01

    Using membranes from stably or transiently transfected HEK293 cells cultured in 5-HT-free medium and expressing the recombinant human 5-HT7 receptor splice variants (h5-HT7(a), h5-HT7(b) and h5-HT7(d)), we compared their abilities to constitutively activate adenylyl cyclase (AC).All h5-HT7 splice variants elevated basal and forskolin-stimulated AC. The basal AC activity was reduced by the 5-HT7 antagonist methiothepin and this effect was blocked by mesulergine (neutral 5-HT7 antagonist) indic...

  16. New 1-arylindoles based serotonin 5-HT7 antagonists. Synthesis and binding evaluation studies.

    Science.gov (United States)

    Sagnes, Charlène; Fournet, Guy; Satala, Grzegorz; Bojarski, Andrzej J; Joseph, Benoît

    2014-03-21

    Based on 5-HT1A and 5-HT7 ligand MR25003 scaffold, a new series of 1-aryl indole analogues were prepared and evaluated against 5-HT7 receptors. Modulations of aryl moieties provided a large number of new indolic derivatives. Most of compounds tested have displayed 5-HT7 affinity in the nanomolar range. Among them, 1-(naphthyl)indole derivative 3p (Ki (5-HT7) = 4.5 nM) showed also a good selectivity over 5-HT1A, 5-HT2A and 5-HT6 receptors. This compound was pharmacology characterized as an antagonist.

  17. Roles of the serotonin 5-HT4 receptor in dendrite formation of the rat hippocampal neurons in vitro.

    Science.gov (United States)

    Kozono, Naoki; Ohtani, Akiko; Shiga, Takashi

    2017-01-15

    Serotonin (5-HT) is involved in various aspects of hippocampal development, although the specific roles of 5-HT receptors are poorly understood. We investigated the roles of 5-HT receptors in the dendrite formation of hippocampal neurons. We focused on the 5-HT4 receptor, which is coupled with Gs protein, and compared the effects with those of the Gi-coupled 5-HT1A receptor. Neurons from rat hippocampi at embryonic day 18 were dissociated and treated for 4 days with the 5-HT4 receptor agonist BIMU8 or the 5-HT1A receptor agonist 8-OH DPAT. The formation of primary dendrites and dendrite branching were promoted by BIMU8, whereas the dendrite branching was inhibited by 8-OH DPAT. BIMU8-induced promotion of dendrite formation was neutralized by concomitant treatment with the 5-HT4 receptor antagonist, confirming the specific actions of the 5-HT4 receptor. We then examined the signaling mechanisms underlying the actions of the 5-HT4 receptor by using a protein kinase A (PKA) inhibitor. The BIMU8-induced promotion of dendrite formation was reversed partially by the PKA inhibitor, suggesting involvement of PKA signaling downstream of the 5-HT4 receptor. Finally, we examined the contribution of brain-derived neurotrophic factor (BDNF) to the promotion of dendrite formation by BIMU8. Quantitative RT-PCR analysis showed that BIMU8 increased the BDNF mRNA expression and that treatment of cultured neurons with the TrkB antagonist reversed the BIMU8-induced increase in dendrite formation. In summary, the present study suggests a novel role for the 5-HT4 receptor in facilitation of dendrite formation in which intracellular signaling of PKA and the BDNF-TrkB system may be involved.

  18. Novel aza-analogous ergoline derived scaffolds as potent serotonin 5-HT6 and dopamine D2 receptor ligands

    DEFF Research Database (Denmark)

    Krogsgaard-Larsen, Niels; Jensen, Anders A.; Schrøder, T.J.

    2014-01-01

    By introducing distal substituents on a tetracyclic scaffold resembling the ergoline structure, two series of analogues were achieved exhibiting subnanomolar receptor binding affinities for the dopamine D2 and serotonin 5-HT6 receptor subtype, respectively. While the 5-HT6 ligands were antagonists......, the D2 ligands displayed intrinsic activities ranging from full agonism to partial agonism with low intrinsic activity. These structures could potentially be interesting for treatment of neurological diseases such as schizophrenia, Parkinson’s disease, and cognitive deficits....

  19. Decreased Incentive Motivation Following Knockout or Acute Blockade of the Serotonin Transporter: Role of the 5-HT2C Receptor.

    Science.gov (United States)

    Browne, Caleb J; Fletcher, Paul J

    2016-09-01

    Acute pharmacological elevation of serotonin (5-hydroxytryptamine; 5-HT) activity decreases operant responding for primary reinforcers, suggesting that 5-HT reduces incentive motivation. The mechanism by which 5-HT alters incentive motivation is unknown, but parallel evidence that 5-HT2C receptor agonists also reduce responding for primary reinforcers implicates this receptor as a potential candidate. These experiments examined whether chronic and acute disruptions of serotonin transporter (SERT) activity altered incentive motivation, and whether the 5-HT2C receptor mediated the effects of elevated 5-HT on behavior. To assess incentive motivation, we measured responding for three different reinforcers: a primary reinforcer (saccharin), a conditioned reinforcer (CRf), and an unconditioned sensory reinforcer (USRf). In the chronic condition, responding was compared between SERT knockout (SERT-KO) mice and their wild-type littermates. In the acute condition, responding was examined in wild-type mice following treatment with 10 or 20 mg/kg citalopram, or its vehicle. The ability of the selective 5-HT2C antagonist SB 242084 to prevent the effects of SERT-KO and citalopram on responding was subsequently examined. Both SERT-KO and citalopram reduced responding for saccharin, a CRf, and a USRf. Treatment with SB 242084 enhanced responding for a CRf and a USRf in SERT-KO mice and blocked the effects of citalopram on CRf and USRf responding. However, SB 242084 was unable to prevent the effects of SERT-KO or citalopram on responding for saccharin. These results support a powerful inhibitory function for 5-HT in the control of incentive motivation, and indicate that the 5-HT2C receptor mediates these effects of 5-HT in a reinforcer-dependent manner.

  20. The extracellular entrance provides selectivity to serotonin 5-HT7 receptor antagonists with antidepressant-like behavior in vivo.

    Science.gov (United States)

    Medina, Rocío A; Vázquez-Villa, Henar; Gómez-Tamayo, José C; Benhamú, Bellinda; Martín-Fontecha, Mar; de la Fuente, Tania; Caltabiano, Gianluigi; Hedlund, Peter B; Pardo, Leonardo; López-Rodríguez, María L

    2014-08-14

    The finding that ergotamine binds serotonin receptors in a less conserved extended binding pocket close to the extracellular entrance, in addition to the orthosteric site, allowed us to obtain 5-HT7R antagonist 6 endowed with high affinity (Ki=0.7 nM) and significant 5-HT1AR selectivity (ratio>1428). Compound 6 exhibits in vivo antidepressant-like effect (1 mg/kg, ip) mediated by the 5-HT7R, which reveals its interest as a putative research tool or pharmaceutical in depression disorders.

  1. Serotonin concentrations in platelets, plasma, mitral valve leaflet, and left ventricular myocardial tissue in dogs with myxomatous mitral valve disease

    DEFF Research Database (Denmark)

    Cremer, Signe Emilie; Singletary, G.E.; Olsen, Lisbeth Høier

    2014-01-01

    HYPOTHESIS/OBJECTIVES: Altered serotonin (5-hydroxytryptamine, 5HT) signaling is postulated in development and progression of canine myxomatous mitral valve disease (MMVD). Little is known regarding platelet, plasma, valvular, or myocardial 5HT concentration ([5HT]) in affected dogs. We quantified...

  2. Positive association of the serotonin 5-HT7 receptor gene with schizophrenia in a Japanese population.

    Science.gov (United States)

    Ikeda, Masashi; Iwata, Nakao; Kitajima, Tsuyoshi; Suzuki, Tatsuyo; Yamanouchi, Yoshio; Kinoshita, Yoko; Ozaki, Norio

    2006-04-01

    Several lines of evidence suggest that abnormalities in the serotonin system may be related to the pathophysiology of schizophrenia. The 5-HT7 receptor is considered to be a possible schizophrenia-susceptibility factor, based on findings from binding, animal, postmortem, and genomewide linkage studies. In this study, we conducted linkage disequilibrium (LD) mapping of the human 5-HT7 receptor gene (HTR7) and selected four 'haplotype-tagging (ht) SNPs'. Using these four htSNPs, we then conducted an LD case-control association analysis in 383 Japanese schizophrenia patients and 351 controls. Two htSNPs (SNP2 and SNP5) and haplotypes were found to be associated with schizophrenia. A promoter SNP (SNP2) was further assessed in a dual-luciferase reporter assay, but it was not found to have any functional relevance. Although we failed to find an actual susceptibility variant that could modify the function of HTR7, our results support the supposition that HTR7 is a susceptibility gene for schizophrenia in this ethnic group.

  3. (+)Lysergic acid diethylamide, but not its nonhallucinogenic congeners, is a potent serotonin 5HT1C receptor agonist

    Energy Technology Data Exchange (ETDEWEB)

    Burris, K.D.; Breeding, M.; Sanders-Bush, E. (Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN (United States))

    1991-09-01

    Activation of central serotonin 5HT2 receptors is believed to be the primary mechanism whereby lysergic acid diethylamide (LSD) and other hallucinogens induce psychoactive effects. This hypothesis is based on extensive radioligand binding and electrophysiological and behavioral studies in laboratory animals. However, the pharmacological profiles of 5HT2 and 5HT1C receptors are similar, making it difficult to distinguish between effects due to activation of one or the other receptor. For this reason, it was of interest to investigate the interaction of LSD with 5HT1C receptors. Agonist-stimulated phosphoinositide hydrolysis in rat choroid plexus was used as a direct measure of 5HT1C receptor activation. (+)LSD potently stimulated phosphoinositide hydrolysis in intact choroid plexus and in cultures of choroid plexus epithelial cells, with EC50 values of 9 and 26 nM, respectively. The effect of (+)LSD in both systems was blocked by 5HT receptor antagonists with an order of activity consistent with interaction at 5HT1C receptors. Neither (+)-2-bromo-LSD nor lisuride, two nonhallucinogenic congeners of LSD, were able to stimulate 5HT1C receptors in cultured cells or intact choroid plexus. In contrast, lisuride, like (+)LSD, is a partial agonist at 5HT2 receptors in cerebral cortex slices and in NIH 3T3 cells transfected with 5HT2 receptor cDNA. The present finding that (+)LSD, but not its nonhallucinogenic congeners, is a 5HT1C receptor agonist suggests a possible role for these receptors in mediating the psychoactive effects of LSD.

  4. Serotonin 5-HT7 receptor increases the density of dendritic spines and facilitates synaptogenesis in forebrain neurons.

    Science.gov (United States)

    Speranza, Luisa; Labus, Josephine; Volpicelli, Floriana; Guseva, Daria; Lacivita, Enza; Leopoldo, Marcello; Bellenchi, Gian Carlo; di Porzio, Umberto; Bijata, Monika; Perrone-Capano, Carla; Ponimaskin, Evgeni

    2017-06-01

    Precise control of dendritic spine density and synapse formation is critical for normal and pathological brain functions. Therefore, signaling pathways influencing dendrite outgrowth and remodeling remain a subject of extensive investigations. Here, we report that prolonged activation of the serotonin 5-HT7 receptor (5-HT7R) with selective agonist LP-211 promotes formation of dendritic spines and facilitates synaptogenesis in postnatal cortical and striatal neurons. Critical role of 5-HT7R in neuronal morphogenesis was confirmed by analysis of neurons isolated from 5-HT7R-deficient mice and by pharmacological inactivation of the receptor. Acute activation of 5-HT7R results in pronounced neurite elongation in postnatal striatal and cortical neurons, thus extending previous data on the morphogenic role of 5-HT7R in embryonic and hippocampal neurons. We also observed decreased number of spines in neurons with either genetically (i.e. 5-HT7R-knock-out) or pharmacologically (i.e. antagonist treatment) blocked 5-HT7R, suggesting that constitutive 5-HT7R activity is critically involved in the spinogenesis. Moreover, cyclin-dependent kinase 5 and small GTPase Cdc42 were identified as important downstream effectors mediating morphogenic effects of 5-HT7R in neurons. Altogether, our data suggest that the 5-HT7R-mediated structural reorganization during the postnatal development might have a crucial role for the development and plasticity of forebrain areas such as cortex and striatum, and thereby can be implicated in regulation of the higher cognitive functions. Read the Editorial Highlight for this article on page 644. © 2017 International Society for Neurochemistry.

  5. Lorcaserin: a selective serotonin receptor (5-HT2C agonist for the treatment of obesity

    Directory of Open Access Journals (Sweden)

    Bhaven C. Kataria

    2012-02-01

    Full Text Available Lorcaserin is a selective serotonin receptor (5-HT2C agonist that recently received the U.S. Food and Drug Administration (FDA approval for chronic weight management. The efficacy of this drug in reducing body weight and improving metabolic parameters of obese patients has been demonstrated in three phase-3 clinical trials. The available evidence indicates that this drug does not show heart valve abnormalities, and the treatment improves the risk factors for type 2 diabetes and cardiovascular diseases. However, the drug's manufacturer will be required to conduct postmarketing studies, including a long-term cardiovascular outcomes trial to assess the effect of Lorcaserin on the risk for major adverse cardiac events such as heart attack and stroke. [Int J Basic Clin Pharmacol 2012; 1(1.000: 45-47

  6. Distribution of serotonin 5-HT1A-binding sites in the brainstem and the hypothalamus, and their roles in 5-HT-induced sleep and ingestive behaviors in rock pigeons (Columba livia).

    Science.gov (United States)

    Dos Santos, Tiago Souza; Krüger, Jéssica; Melleu, Fernando Falkenburger; Herold, Christina; Zilles, Karl; Poli, Anicleto; Güntürkün, Onur; Marino-Neto, José

    2015-12-15

    Serotonin 1A receptors (5-HT1ARs), which are widely distributed in the mammalian brain, participate in cognitive and emotional functions. In birds, 5-HT1ARs are expressed in prosencephalic areas involved in visual and cognitive functions. Diverse evidence supports 5-HT1AR-mediated 5-HT-induced ingestive and sleep behaviors in birds. Here, we describe the distribution of 5-HT1ARs in the hypothalamus and brainstem of birds, analyze their potential roles in sleep and ingestive behaviors, and attempt to determine the involvement of auto-/hetero-5-HT1ARs in these behaviors. In 6 pigeons, the anatomical distribution of [(3)H]8-OH-DPAT binding in the rostral brainstem and hypothalamus was examined. Ingestive/sleep behaviors were recorded (1h) in 16 pigeons pretreated with MM77 (a heterosynaptic 5-HT1AR antagonist; 23 or 69 nmol) for 20 min, followed by intracerebroventricular ICV injection of 5-HT (N:8; 150 nmol), 8-OH-DPAT (DPAT, a 5-HT1A,7R agonist, 30 nmol N:8) or vehicle. 5-HT- and DPAT-induced sleep and ingestive behaviors, brainstem 5-HT neuronal density and brain 5-HT content were examined in 12 pigeons, pretreated by ICV with the 5-HT neurotoxin 5,7-dihydroxytryptamine (5,7-DHT) or vehicle (N:6/group). The distribution of brainstem and diencephalic c-Fos immunoreactivity after ICV injection of 5-HT, DPAT or vehicle (N:5/group) into birds provided with or denied access to water is also described. 5-HT1ARs are concentrated in the brainstem 5-HTergic areas and throughout the periventricular hypothalamus, preoptic nuclei and circumventricular organs. 5-HT and DPAT produced a complex c-Fos expression pattern in the 5-HT1AR-enriched preoptic hypothalamus and the circumventricular organs, which are related to drinking and sleep regulation, but modestly affected c-Fos expression in 5-HTergic neurons. The 5-HT-induced ingestivebehaviors and the 5-HT- and DPAT-induced sleep behaviors were reduced by MM77 pretreatment. 5,7-DHT increased sleep per se, decreased tryptophan

  7. Role of Central Serotonin in Anticipation of Rewarding and Punishing Outcomes: Effects of Selective Amygdala or Orbitofrontal 5-HT Depletion.

    Science.gov (United States)

    Rygula, Rafal; Clarke, Hannah F; Cardinal, Rudolf N; Cockcroft, Gemma J; Xia, Jing; Dalley, Jeff W; Robbins, Trevor W; Roberts, Angela C

    2015-09-01

    Understanding the role of serotonin (or 5-hydroxytryptamine, 5-HT) in aversive processing has been hampered by the contradictory findings, across studies, of increased sensitivity to punishment in terms of subsequent response choice but decreased sensitivity to punishment-induced response suppression following gross depletion of central 5-HT. To address this apparent discrepancy, the present study determined whether both effects could be found in the same animals by performing localized 5-HT depletions in the amygdala or orbitofrontal cortex (OFC) of a New World monkey, the common marmoset. 5-HT depletion in the amygdala impaired response choice on a probabilistic visual discrimination task by increasing the effectiveness of misleading, or false, punishment and reward, and decreased response suppression in a variable interval test of punishment sensitivity that employed the same reward and punisher. 5-HT depletion in the OFC also disrupted probabilistic discrimination learning and decreased response suppression. Computational modeling of behavior on the discrimination task showed that the lesions reduced reinforcement sensitivity. A novel, unitary account of the findings in terms of the causal role of 5-HT in the anticipation of both negative and positive motivational outcomes is proposed and discussed in relation to current theories of 5-HT function and our understanding of mood and anxiety disorders.

  8. Serotonin 5-HT2A Receptor Function as a Contributing Factor to Both Neuropsychiatric and Cardiovascular Diseases

    Directory of Open Access Journals (Sweden)

    Charles D. Nichols

    2009-01-01

    Full Text Available There are high levels of comorbidity between neuropsychiatric and cardiovascular disorders. A key molecule central to both cognitive and cardiovascular function is the molecule serotonin. In the brain, serotonin modulates neuronal activity and is actively involved in mediating many cognitive functions and behaviors. In the periphery, serotonin is involved in vasoconstriction, inflammation, and cell growth, among other processes. It is hypothesized that one component of the serotonin system, the 5-HT2A receptor, is a common and contributing factor underlying aspects of the comorbidity between neuropsychiatric and cardiovascular disorders. Within the brain this receptor participates in processes such as cognition and working memory, been implicated in effective disorders such as schizophrenia, and mediate the primary effects of hallucinogenic drugs. In the periphery, 5-HT2A receptors have been linked to vasoconstriction and hypertension, and to inflammatory processes that can lead to atherosclerosis.

  9. Selective agonists for serotonin 7 (5-HT7) receptor and their applications in preclinical models: an overview.

    Science.gov (United States)

    Di Pilato, Pantaleo; Niso, Mauro; Adriani, Walter; Romano, Emilia; Travaglini, Domenica; Berardi, Francesco; Colabufo, Nicola A; Perrone, Roberto; Laviola, Giovanni; Lacivita, Enza; Leopoldo, Marcello

    2014-01-01

    The serotonin 7 (5-HT7) receptor was the last serotonin receptor subtype to be discovered in 1993. This receptor system has been implicated in several central nervous system (CNS) functions, including circadian rhythm, rapid eye movement sleep, thermoregulation, nociception, memory and neuropsychiatric symptoms and pathologies, such as anxiety, depression and schizophrenia. In 1999, medicinal chemistry efforts led to the identification of SB-269970, which became the gold standard selective 5-HT7 receptor antagonist, and later of various selective agonists such as AS-19, LP-44, LP-12, LP-211 and E-55888. In this review, we summarize the preclinical pharmacological studies performed using these agonists, highlighting their strengths and weaknesses. The data indicate that 5-HT7 receptor agonists can have neuroprotective effects against N-methyl-d-aspartate-induced toxicity, modulate neuronal plasticity in rats, enhance morphine-induced antinociception and alleviate hyperalgesia consecutive to nerve lesion in neuropathic animals.

  10. Serotonin 5-HT2C receptor-mediated inhibition of the M-current in hypothalamic POMC neurons

    OpenAIRE

    Roepke, T. A.; Smith, A W; Rønnekleiv, O. K.; Kelly, M. J.

    2012-01-01

    Hypothalamic proopiomelanocortin (POMC) neurons are controlled by many central signals, including serotonin. Serotonin increases POMC activity and reduces feeding behavior via serotonion [5-hydroxytryptamine (5-HT)] receptors by modulating K+ currents. A potential K+ current is the M-current, a noninactivating, subthreshold outward K+ current. Previously, we found that M-current activity was highly reduced in fasted vs. fed states in neuropeptide Y neurons. Because POMC neurons also respond t...

  11. No hypothermic response to serotonin in 5-HT7 receptor knockout mice

    OpenAIRE

    Hedlund, P. B.; Danielson, P. E.; Thomas, E. A.; Slanina, K.; Carson, M.J.; Sutcliffe, J G

    2003-01-01

    With data from recently available selective antagonists for the 5-HT7 receptor, it has been hypothesized that 5-hydroxytryptamine (5-HT)-induced hypothermia is mediated by the 5-HT7 receptor, an effect previously attributed to other receptor subtypes. It has been established that the biologically active lipid oleamide allosterically interacts with the 5-HT7 receptor to regulate its transmission. The most well characterized effects of oleamide administration are induction of sleep and hypother...

  12. Role of N-Arachidonoyl-Serotonin (AA-5-HT in Sleep-Wake Cycle Architecture, Sleep Homeostasis, and Neurotransmitters Regulation

    Directory of Open Access Journals (Sweden)

    Eric Murillo-Rodríguez

    2017-05-01

    Full Text Available The endocannabinoid system comprises several molecular entities such as endogenous ligands [anandamide (AEA and 2-arachidonoylglycerol (2-AG], receptors (CB1 and CB2, enzymes such as [fatty acid amide hydrolase (FAHH and monoacylglycerol lipase (MAGL], as well as the anandamide membrane transporter. Although the role of this complex neurobiological system in the sleep–wake cycle modulation has been studied, the contribution of the blocker of FAAH/transient receptor potential cation channel subfamily V member 1 (TRPV1, N-arachidonoyl-serotonin (AA-5-HT in sleep has not been investigated. Thus, in the present study, varying doses of AA-5-HT (5, 10, or 20 mg/Kg, i.p. injected at the beginning of the lights-on period of rats, caused no statistical changes in sleep patterns. However, similar pharmacological treatment given to animals at the beginning of the dark period decreased wakefulness (W and increased slow wave sleep (SWS as well as rapid eye movement sleep (REMS. Power spectra analysis of states of vigilance showed that injection of AA-5-HT during the lights-off period diminished alpha spectrum across alertness in a dose-dependent fashion. In opposition, delta power spectra was enhanced as well as theta spectrum, during SWS and REMS, respectively. Moreover, the highest dose of AA-5-HT decreased wake-related contents of neurotransmitters such as dopamine (DA, norepinephrine (NE, epinephrine (EP, serotonin (5-HT whereas the levels of adenosine (AD were enhanced. In addition, the sleep-inducing properties of AA-5-HT were confirmed since this compound blocked the increase in W caused by stimulants such as cannabidiol (CBD or modafinil (MOD during the lights-on period. Additionally, administration of AA-5-HT also prevented the enhancement in contents of DA, NE, EP, 5-HT and AD after CBD of MOD injection. Lastly, the role of AA-5-HT in sleep homeostasis was tested in animals that received either CBD or MOD after total sleep deprivation (TSD. The

  13. Role of N-Arachidonoyl-Serotonin (AA-5-HT) in Sleep-Wake Cycle Architecture, Sleep Homeostasis, and Neurotransmitters Regulation

    Science.gov (United States)

    Murillo-Rodríguez, Eric; Di Marzo, Vincenzo; Machado, Sergio; Rocha, Nuno B.; Veras, André B.; Neto, Geraldo A. M.; Budde, Henning; Arias-Carrión, Oscar; Arankowsky-Sandoval, Gloria

    2017-01-01

    The endocannabinoid system comprises several molecular entities such as endogenous ligands [anandamide (AEA) and 2-arachidonoylglycerol (2-AG)], receptors (CB1 and CB2), enzymes such as [fatty acid amide hydrolase (FAHH) and monoacylglycerol lipase (MAGL)], as well as the anandamide membrane transporter. Although the role of this complex neurobiological system in the sleep–wake cycle modulation has been studied, the contribution of the blocker of FAAH/transient receptor potential cation channel subfamily V member 1 (TRPV1), N-arachidonoyl-serotonin (AA-5-HT) in sleep has not been investigated. Thus, in the present study, varying doses of AA-5-HT (5, 10, or 20 mg/Kg, i.p.) injected at the beginning of the lights-on period of rats, caused no statistical changes in sleep patterns. However, similar pharmacological treatment given to animals at the beginning of the dark period decreased wakefulness (W) and increased slow wave sleep (SWS) as well as rapid eye movement sleep (REMS). Power spectra analysis of states of vigilance showed that injection of AA-5-HT during the lights-off period diminished alpha spectrum across alertness in a dose-dependent fashion. In opposition, delta power spectra was enhanced as well as theta spectrum, during SWS and REMS, respectively. Moreover, the highest dose of AA-5-HT decreased wake-related contents of neurotransmitters such as dopamine (DA), norepinephrine (NE), epinephrine (EP), serotonin (5-HT) whereas the levels of adenosine (AD) were enhanced. In addition, the sleep-inducing properties of AA-5-HT were confirmed since this compound blocked the increase in W caused by stimulants such as cannabidiol (CBD) or modafinil (MOD) during the lights-on period. Additionally, administration of AA-5-HT also prevented the enhancement in contents of DA, NE, EP, 5-HT and AD after CBD of MOD injection. Lastly, the role of AA-5-HT in sleep homeostasis was tested in animals that received either CBD or MOD after total sleep deprivation (TSD). The

  14. Possible involvement of serotonin 5-HT2 receptor in the regulation of feeding behavior through the histaminergic system.

    Science.gov (United States)

    Murotani, Tomotaka; Ishizuka, Tomoko; Isogawa, Yuka; Karashima, Michitaka; Yamatodani, Atsushi

    2011-01-01

    The central histaminergic system has been proven to be involved in several physiological functions including feeding behavior. Some atypical antipsychotics like risperidone and aripiprazole are known to affect feeding behavior and to antagonize the serotonin (5-HT) receptor subtypes. To examine the possible neural relationship between the serotonergic and histaminergic systems in the anorectic effect of the antipsychotics, we studied the effect of a single administration of these drugs on food intake and hypothalamic histamine release in mice using in vivo microdialysis. Single injection of risperidone (0.5mg/kg, i.p.) or aripiprazole (1mg/kg, i.p.), which have binding affinities to 5-HT(1A, 2A, 2B) and (2C) receptors decreased food intake in C57BL/6N mice with concomitant increase of hypothalamic histamine release. However, a selective D(2)-antagonist, haloperidol (0.5mg/kg, i.p.), did not have effects on food intake or histamine release. Furthermore, in histamine H(1) receptor-deficient mice, there was no reduction of food intake induced by atypical antipsychotics, although histamine release was increased. Moreover, selective 5-HT(2A)-antagonists, volinanserin (0.5, 1mg/kg, i.p.) and ketanserin (5, 10mg/kg, i.p.), significantly increased histamine release and 5-HT(2B/2C) -antagonist, SB206553 (2.5, 5mg/kg, i.p.), slightly increased it. On the contrary, 5-HT(1A) -selective antagonist, WAY100635 (1, 2mg/kg), did not affect the histaminergic tone. These findings suggest that serotonin tonically inhibits histamine release via 5-HT(2) receptors and that antipsychotics enhance the release of hypothalamic histamine by blockade of 5-HT(2) receptors resulting in anorexia via the H(1) receptor.

  15. Cross-regulation between colocalized nicotinic acetylcholine and 5-HT3 serotonin receptors on presynaptic nerve terminals

    Institute of Scientific and Technical Information of China (English)

    John J DOUGHERTY; Robert A NICHOLS

    2009-01-01

    Aim: Substantial colocalization of functionally independent a4 nicotinic acetylcholine receptors and 5-HT3 serotonin receptors on presynaptic terminals has been observed in brain. The present study was aimed at addressing whether nicotinic acetylcholine receptors and 5-HT3 serotonin receptors interact on the same presynaptic terminal, suggesting a convergence of cholinergic and serotonergic regulation.Methods: Ca2+ responses in individual, isolated nerve endings purified from rat striatum were measured using confocal imaging.Results: Application of 500 nmol/L nicotine following sustained stimulation with the highly selective 5-HT3 receptor agonist m-chlorophenylbiguanide at 100 nmol/L resulted in markedly reduced Ca2* responses (28% of control) in only those striatal nerve endings that originally responded to m-chlorophenylbiguanide. The cross-regulation developed over several minutes. Presynaptic nerve endings that had not responded to m-chlorophenylbiguanide, indicating that 5-HT3 receptors were not present, displayed typical responses to nicotine. Application of m-chlorophenylbiguanide following sustained stimulation with nicotine resulted in partially attenuated Ca2* responses (49% of control). Application of m-chlorophenylbiguanide following sustained stimulation with m-chlorophenylbiguanide also resulted in a strong attenuation of Ca2+ responses (12% of control), whereas nicotine-induced Ca2t responses following sustained stimulation with nicotine were not significantly different from control.Conclusion: These results indicate that the presynaptic Ca2+ increases evoked by either 5-HT, receptor or nicotinic acetylcholine receptor activation regulate subsequent responses to 5-HT3 receptor activation, but that only 5-HT3 receptors cross-regulate subsequent nicotinic acetylcholine receptor-mediated responses. The findings suggest a specific interaction between the two receptor systems in the same striatal nerve terminal, likely involving Ca2+-dependent

  16. S100B interacts with the serotonin 5-HT7 receptor to regulate a depressive-like behavior.

    Science.gov (United States)

    Stroth, Nikolas; Svenningsson, Per

    2015-12-01

    The serotonin 5-HT7 receptor (5-HT7) is an emerging target for psychiatric pharmacotherapy. Recent observations in rodent models and humans suggest that its blockade mediates antidepressant efficacy. In the present study, we identify the Ca(2+)-binding protein S100B as an interacting partner of 5-HT7 and show that S100B negatively regulates inducible cyclic AMP (cAMP) accumulation in transfected HeLa cells and mouse cortical astrocytes. Overexpression of S100B causes brain region-specific dysregulation of the cAMP pathway in vivo, such that concentrations of cAMP in the frontal cortex are higher in S100B transgenic female mice compared to wild-types. Finally, S100B transgenic female mice show depressive-like behavior in the forced swim test (FST) and pharmacological blockade of 5-HT7 with SB269970 normalizes FST behavior. Taken together, our results show that S100B affects behavioral despair in female mice through functional interaction with the 5-HT7 receptor. Furthermore, we identify S100B as a cAMP-regulatory protein in cultured astrocytes and the murine frontal cortex. Future experiments will clarify whether there is a direct link between the 5-HT7-associated and cAMP-regulatory actions of S100B.

  17. Auraptenol attenuates vincristine-induced mechanical hyperalgesia through serotonin 5-HT1A receptors.

    Science.gov (United States)

    Wang, Yunfei; Cao, Shu-e; Tian, Jianmin; Liu, Guozhe; Zhang, Xiaoran; Li, Pingfa

    2013-11-29

    Common chemotherapeutic agents such as vincristine often cause neuropathic pain during cancer treatment in patients. Such neuropathic pain is refractory to common analgesics and represents a challenging clinical issue. Angelicae dahuricae radix is an old traditional Chinese medicine with demonstrated analgesic efficacy in humans. However, the active component(s) that attribute to the analgesic action have not been identified. This work described the anti-hyperalgesic effect of one coumarin component, auraptenol, in a mouse model of chemotherapeutic agent vincristine-induced neuropathic pain. We reported that auraptenol dose-dependently reverted the mechanical hyperalgesia in mice within the dose range of 0.05-0.8 mg/kg. In addition, the anti-hyperalgesic effect of auraptenol was significantly blocked by a selective serotonin 5-HT1A receptor antagonist WAY100635 (1 mg/kg). Within the dose range studied, auraptenol did not significantly alter the general locomotor activity in mice. Taken together, this study for the first time identified an active component from the herbal medicine angelicae dahuricae radix that possesses robust analgesic efficacy in mice. These data support further studies to assess the potential of auraptenol as a novel analgesic for the management of neuropathic pain.

  18. Anorexigen-induced pulmonary hypertension and the serotonin (5-HT hypothesis: lessons for the future in pathogenesis

    Directory of Open Access Journals (Sweden)

    Adnot Serge

    2002-01-01

    Full Text Available Abstract Epidemiological studies have established that fenfluramine, D-fenfluramine, and aminorex, but not other appetite suppressants, increase the risk of primary pulmonary hypertension (PH. One current hypothesis suggests that fenfluramine-like medications may act through interactions with the serotonin (5-hydroxytryptamine [5-HT] transporter (5-HTT located on pulmonary artery smooth muscle cells and responsible for the mitogenic action of 5-HT. Anorexigens may contribute to PH by boosting 5-HT levels in the bloodstream, directly stimulating smooth muscle cell growth, or altering 5-HTT expression. We suggest that individuals with a high basal level of 5-HTT expression related to the presence of the long 5-HTT gene promoter variant may be particularly susceptible to one or more of these potential mechanisms of appetite-suppressant-related PH.

  19. Effect of piboserod, a 5-HT4 serotonin receptor antagonist, on left ventricular function in patients with symptomatic heart failure

    DEFF Research Database (Denmark)

    Olsen, Inge C; Kjekshus, John K; Torp-Pedersen, Christian

    2009-01-01

    AIMS: Myocardial 5-HT(4) serotonin (5-HT) receptors are increased and activated in heart failure (HF). Blockade of 5-HT(4) receptors reduced left ventricular (LV) remodelling in HF rats. We evaluated the effect of piboserod, a potent, selective, 5-HT(4) serotonin receptor antagonist, on LV function...... weeks up titration. The primary endpoint was LVEF measured by cardiac magnetic resonance imaging (MRI). Secondary endpoints were LV volumes, N-terminal pro-brain natriuretic peptide, norepinephrine, quality of life, and 6 min walk test. Piboserod significantly increased LVEF by 1.7% vs. placebo (CI 0.......3, 3.2, P = 0.020), primarily through reduced end-systolic volume from 165 to 158 mL (P = 0.060). There was a trend for greater increase in LVEF (2.7%, CI -1.1, 6.6, P = 0.15) in a small subset of patients not on chronic beta-blocker therapy. There was no significant effect on neurohormones, quality...

  20. Normalization of hypothalamic serotonin (5-HT 1B) receptor and NPY in cancer anorexia after tumor resection: an immunocytochemical study.

    Science.gov (United States)

    Makarenko, Irina G; Meguid, Michael M; Gatto, Louis; Chen, Chung; Ramos, Eduardo J B; Goncalves, Carolina G; Ugrumov, Michael V

    2005-08-05

    Tumor growth leads to anorexia and decreased food intake, the regulation of which is via the integrated hypothalamic peptidergic and monoaminergic system. Serotonin (5-HT), an anorectic monoamine acts primarily via 5-HT 1B-receptors in hypothalamic nuclei while neuropeptide Y (NPY) acts an orexigenic peptide. We previously reported that 5-HT 1B-receptors are up regulated while NPY is down regulated in tumor-bearing (TB)-related anorexia, contributing to food intake reduction. In anorectic TB rats we hypothesize that after tumor resection when food intake has reverted to normal, normalization of 5-HT 1B-receptor and NPY will occur. The aim of this study was to demonstrate normalization of these hypothalamic changes compared to Controls. In anorectic tumor-bearing rats after tumor resection (TB-R) and in sham-operated (Control) rats, distribution of 5-HT 1B-receptors and NPY in hypothalamic nuclei was analyzed using peroxidase antiperoxidase immunocytochemical methods. Image analysis of immunostaining was performed and the data were statistically analyzed. Immunostaining specificity was controlled by omission of primary or secondary antibodies and pre-absorption test. Our results show that after TB-R versus Controls a normalization of food intake, 5-H-1B-receptor and NPY expression in the hypothalamus occurs. These data, discussed in context with our previous studies, support the hypothesis that tumor resection results not only in normalization of food intake but also in reversible changes of anorectic and orexigenic hypothalamic modulators.

  1. The effects of combining serotonin reuptake inhibition and 5-HT7 receptor blockade on circadian rhythm regulation in rodents.

    Science.gov (United States)

    Westrich, Ligia; Sprouse, Jeffrey; Sánchez, Connie

    2013-02-17

    Disruption of circadian rhythms may lead to mood disorders. The present study investigated the potential therapeutic utility of combining a 5-HT7 antagonist with a selective serotonin (5-HT) reuptake inhibitor (SSRI), the standard of care in depression, on circadian rhythm regulation. In tissue explants of the suprachiasmatic nucleus (SCN) from PER2::LUC mice genetically modified to report changes in the expression of a key clock protein, the period length of PER2 bioluminescence was shortened in the presence of AS19, a 5-HT7 partial agonist. This reduction was blocked by SB269970, a selective 5-HT7 antagonist. The SSRI, escitalopram, had no effect alone on period length, but a combination with SB269970, yielded significant increases. Dosed in vivo, escitalopram had little impact on the occurrence of activity onsets in rats given access to running wheels, whether the drug was given acutely or sub-chronically. However, preceding the escitalopram treatment with a single acute dose of SB269970 produced robust phase delays, in keeping with the in vitro explant data. Taken together, these findings suggest that the combination of an SSRI and a 5-HT7 receptor antagonist has a greater impact on circadian rhythms than that observed with either agent alone, and that such a multimodal approach may be of therapeutic value in treating patients with poor clock function.

  2. A nonlinear relationship between cerebral serotonin transporter and 5-HT(2A) receptor binding: an in vivo molecular imaging study in humans

    DEFF Research Database (Denmark)

    Erritzoe, David; Holst, Klaus; Frokjaer, Vibe G.;

    2010-01-01

    Serotonergic neurotransmission is involved in the regulation of physiological functions such as mood, sleep, memory, and appetite. Within the serotonin transmitter system, both the postsynaptically located serotonin 2A (5-HT2A) receptor and the presynaptic serotonin transporter (SERT) are sensitive...

  3. The 5-HT1A serotonin receptor is located on calbindin- and parvalbumin-containing neurons in the rat brain.

    Science.gov (United States)

    Aznar, Susana; Qian, Zhaoxia; Shah, Reshma; Rahbek, Birgitte; Knudsen, Gitte M

    2003-01-03

    The 5-HT(1A) receptor is a well-characterized serotonin receptor playing a role in many central nervous functions and known to be involved in depression and other mental disorders. In situ hybridization, immunocytochemical, and binding studies have shown that the 5-HT(1A) receptor is widely distributed in the rat brain, with a particularly high density in the limbic system. The receptor's localization in the different neuronal subtypes, which may be of importance for understanding its role in neuronal circuitries, is, however, unknown. In this study we show by immunocytochemical double-labeling techniques, that the 5-HT(1A) receptor is present on both pyramidal and principal cells, and calbindin- and parvalbumin-containing neurons, which generally define two different subtypes of interneurons. Moreover, semiquantitative analysis showed that the receptor's distribution in the different neuronal types varies between brain areas. In cortex, hippocampus, hypothalamus, and amygdala the receptor was located on both principal cells and calbindin- and parvalbumin-containing neurons. In septum and thalamus, the receptor was mostly present on calbindin- and parvalbumin-containing cells. Especially in the medial septum and thalamic reticular nucleus, the receptor highly colocalized with parvalbumin-positive neurons. These results suggest a diverse function of the 5-HT(1A) receptor in modulating neuronal circuitry in different brain areas, that may depend on the type of neuron the receptor is predominantly located on.

  4. Effect of the 5-HT{sub 4} receptor and serotonin transporter on visceral hypersensitivity in rats

    Energy Technology Data Exchange (ETDEWEB)

    Chi, Yan; Liu, Xin-Guang; Wang, Hua-Hong; Li, Jun-Xia; Li, Yi-Xuan [Department of Gastroenterology, Peking University First Hospital, Beijing (China)

    2012-07-27

    Visceral hypersensitivity plays an important role in motor and sensory abnormalities associated with irritable bowel syndrome, but the underlying mechanisms are not fully understood. The present study was designed to evaluate the expression of the 5-HT{sub 4} receptor and the serotonin transporter (SERT) as well as their roles in chronic visceral hypersensitivity using a rat model. Neonatal male Sprague-Dawley rats received intracolonic injections of 0.5% acetic acid (0.3-0.5 mL at different times) between postnatal days 8 and 21 to establish an animal model of visceral hypersensitivity. On day 43, the threshold intensity for a visually identifiable contraction of the abdominal wall and body arching were recorded during rectal distention. Histological evaluation and the myeloperoxidase activity assay were performed to determine the severity of inflammation. The 5-HT{sub 4} receptor and SERT expression of the ascending colon were monitored using immunohistochemistry and Western blot analyses; the plasma 5-HT levels were measured using an ELISA method. As expected, transient colonic irritation at the neonatal stage led to visceral hypersensitivity, but no mucosal inflammation was later detected during adulthood. Using this model, we found reduced SERT expression (0.298 ± 0.038 vs 0.634 ± 0.200, P < 0.05) and increased 5-HT{sub 4} receptor expression (0.308 ± 0.017 vs 0.298 ± 0.021, P < 0.05). Treatment with fluoxetine (10 mg·kg{sup −1}·day{sup −1}, days 36-42), tegaserod (1 mg·kg{sup −1}·day{sup −1}, day 43), or the combination of both, reduced visceral hypersensitivity and plasma 5-HT levels. Fluoxetine treatment increased 5-HT{sub 4} receptor expression (0.322 ± 0.020 vs 0.308 ± 0.017, P < 0.01) but not SERT expression (0.219 ± 0.039 vs 0.298 ± 0.038, P = 0.654). These results indicate that both the 5-HT{sub 4} receptor and SERT play a role in the pathogenesis of visceral hypersensitivity, and its mechanism may be involved in the local 5-HT

  5. Platelet serotonin concentration and suicidal behavior in combat related posttraumatic stress disorder.

    Science.gov (United States)

    Kovacic, Zrnka; Henigsberg, Neven; Pivac, Nela; Nedic, Gordana; Borovecki, Andrea

    2008-02-15

    Posttraumatic stress disorder (PTSD) is a serious and global problem, a psychiatric disorder that frequently occurs with different comorbidities, and is associated with a high suicide rate. Pathophysiologically, both PTSD and suicidal behavior are related to disturbances in the central serotonergic system. Serotonin (5-hydroxytryptamine, 5-HT) controls emotional behavior, anxiety, impulsivity and aggression, and nearly all known antidepressants and antianxiety drugs affect 5-HT transmission. Platelet 5-HT can be used as a limited peripheral marker of the central serotonergic synaptosomes, since it is related to particular basic psychopathological characteristics of several psychiatric disorders. Platelet 5-HT concentration has been reported to be similar in PTSD subjects and healthy controls, but suicidal patients across different psychiatric diagnoses have reduced platelet 5-HT concentration. This study examined platelet 5-HT concentration by the spectrofluorimetric method in male subjects: 73 suicidal and 47 non-suicidal veterans with current and chronic combat related PTSD, 45 suicidal and 30 non-suicidal comparative non-PTSD subjects and 147 healthy men. The presence of suicidal behavior (score=0, non-suicidal; scores > or =1, suicidal) was assessed with the Hamilton Depression Rating Scale-17 (HDRS). Platelet 5-HT concentration was significantly lower in suicidal PTSD and non-PTSD patients compared to non-suicidal patients or healthy controls. Since the majority of patients scored very low on item 3 of HDRS, no significant correlation between suicidal scores and platelet 5-HT concentration was found. These results show that reduced platelet 5-HT concentration is related to suicidal behavior in PTSD, and suggest that platelet 5-HT concentration might be used as a peripheral marker to predict suicidal behavior across psychiatric diagnoses.

  6. Novel highly potent serotonin 5-HT7 receptor ligands: structural modifications to improve pharmacokinetic properties.

    Science.gov (United States)

    Lacivita, Enza; Di Pilato, Pantaleo; Stama, Madia Letizia; Colabufo, Nicola Antonio; Berardi, Francesco; Perrone, Roberto; De Filippis, Bianca; Laviola, Giovanni; Adriani, Walter; Niso, Mauro; Leopoldo, Marcello

    2013-11-15

    Here we report the synthesis, pharmacological and pharmacokinetic evaluation of a pilot set of compounds structurally related to the potent and selective 5-HT7 ligand LP-211. Among the studied compounds, N-pyridin-3-ylmethyl-3-[4-[2-(4-methoxyphenyl)phenyl]piperazin-1-yl]ethoxy]propanamide (4b) showed high affinity for 5-HT7 receptors (K(i)=23.8 nM), selectivity over 5-HT1A receptors (>50-fold), in vitro metabolic stability (82%) and weak interaction with P-glycoprotein (BA/AB=3.3). Compound 4b was injected ip in mice to preliminarily evaluate its distribution between blood and brain.

  7. Targeted inhibition of serotonin type 7 (5-HT7) receptor function modulates immune responses and reduces the severity of intestinal inflammation.

    Science.gov (United States)

    Kim, Janice J; Bridle, Byram W; Ghia, Jean-Eric; Wang, Huaqing; Syed, Shahzad N; Manocha, Marcus M; Rengasamy, Palanivel; Shajib, Mohammad Sharif; Wan, Yonghong; Hedlund, Peter B; Khan, Waliul I

    2013-05-01

    Mucosal inflammation in conditions ranging from infective acute enteritis or colitis to inflammatory bowel disease is accompanied by alteration in serotonin (5-hydroxytryptamine [5-HT]) content in the gut. Recently, we have identified an important role of 5-HT in the pathogenesis of experimental colitis. 5-HT type 7 (5-HT7) receptor is one of the most recently identified members of the 5-HT receptor family, and dendritic cells express this receptor. In this study, we investigated the effect of blocking 5-HT7 receptor signaling in experimental colitis with a view to develop an improved therapeutic strategy in intestinal inflammatory disorders. Colitis was induced with dextran sulfate sodium (DSS) or dinitrobenzene sulfonic acid (DNBS) in mice treated with selective 5-HT7 receptor antagonist SB-269970, as well as in mice lacking 5-HT7 receptor (5-HT7(-/-)) and irradiated wild-type mice reconstituted with bone marrow cells harvested from 5-HT7(-/-) mice. Inhibition of 5-HT7 receptor signaling with SB-269970 ameliorated both acute and chronic colitis induced by DSS. Treatment with SB-269970 resulted in lower clinical disease, histological damage, and proinflammatory cytokine levels compared with vehicle-treated mice post-DSS. Colitis severity was significantly lower in 5-HT7(-/-) mice and in mice reconstituted with bone marrow cells from 5-HT7(-/-) mice compared with control mice after DSS colitis. 5-HT7(-/-) mice also had significantly reduced DNBS-induced colitis. These observations provide us with novel information on the critical role of the 5-HT7 receptor in immune response and inflammation in the gut, and highlight the potential benefit of targeting this receptor to alleviate the severity of intestinal inflammatory disorders such as inflammatory bowel disease.

  8. Serotonin hyperinnervation and upregulated 5-HT2A receptor expression and motor-stimulating function in nigrostriatal dopamine-deficient Pitx3 mutant mice.

    Science.gov (United States)

    Li, Li; Qiu, Guozhen; Ding, Shengyuan; Zhou, Fu-Ming

    2013-01-23

    The striatum receives serotonin (5-hydroxytryptamine, 5-HT) innervation and expresses 5-HT2A receptors (5-HT2ARs) and other 5-HT receptors, raising the possibility that the striatal 5-HT system may undergo adaptive changes after chronic severe dopamine (DA) loss and contribute to the function and dysfunction of the striatum. Here we show that in transcription factor Pitx3 gene mutant mice with a selective, severe DA loss in the dorsal striatum mimicking the DA denervation in late Parkinson's disease (PD), both the 5-HT innervation and the 5-HT2AR mRNA expression were increased in the dorsal striatum. Functionally, while having no detectable motor effect in wild type mice, the 5-HT2R agonist 2,5-dimethoxy-4-iodoamphetamine increased both the baseline and l-dopa-induced normal ambulatory and dyskinetic movements in Pitx3 mutant mice, whereas the selective 5-HT2AR blocker volinanserin had the opposite effects. These results demonstrate that Pitx3 mutant mice are a convenient and valid mouse model to study the compensatory 5-HT upregulation following the loss of the nigrostriatal DA projection and that the upregulated 5-HT2AR function in the DA deficient dorsal striatum may enhance both normal and dyskinetic movements. Copyright © 2012 Elsevier B.V. All rights reserved.

  9. Serotonin(4) (5-HT(4)) receptor agonists are putative antidepressants with a rapid onset of action

    DEFF Research Database (Denmark)

    Lucas, Guillaume; Rymar, Vladimir V; Du, Jenny

    2007-01-01

    and neurogenesis in the hippocampus. In contrast, a 3 day treatment with the SSRI citalopram remains devoid of any effect on these parameters. Finally, a 3 day regimen with the 5-HT(4) agonist RS 67333 was sufficient to reduce both the hyperlocomotion induced by olfactory bulbectomy and the diminution of sucrose...

  10. Systematic Screening of the Serotonin Receptor 1A (5-HT1A) Gene in Chronic Tinnitus

    Institute of Scientific and Technical Information of China (English)

    Kleinjung T; Langguth B; Fischer B; Hajak G; Eichhammer P; Sand PG

    2006-01-01

    Objective Chronic tinnitus is a highly prevalent condition and has been hypothesized to result from an innate disturbance in central nervous serotonergic transmission. Given the frequent comorbidity with major depression and anxiety, we argue that candidate genes for these disorders are likely to overlap. The present study addresses the gene encoding for the 5-HT1A receptor as a putative risk factor for tinnitus. Methods In 88 subjects with a diagnosis of chronic subjective tinnitus who underwent a detailed neurootological examination, the entire 5-HT1A gene was amplified using overlapping PCR products. Amplicons were custom sequenced bidirectionally and were screened for variants in multiple alignments against the human genome reference. Results We identified a synonymous C > T exchange at residue 184 (Pro) in 7/88 subjects, but detected no missense variants in the population under study. Specifically, the following residues were fully conserved: 16 (Pro), 22 (Gly), 28 (Ile), 98 (Val), 220(Arg), 267 (Val), 273 (Gly), and 418 (Asn). Discussion The present data count against the causation of chronic tinnitus by a change in the 5-HT1A receptor's amino acid sequence. However, the allele frequency for the 184Pro minor allele (0.04) reached twice the frequency reported in control cohorts from the same ethnicity.Additional investigations are invited to clarify the role of the 5-HT1A polymorphism in larger samples, and to control for comorbid affective disorders.

  11. Visualisation of serotonin-1A (5-HT{sub 1A}) receptors in the central nervous system

    Energy Technology Data Exchange (ETDEWEB)

    Passchier, J.; Waarde, A. van [PET Center, University Hospital Groningen (Netherlands)

    2001-01-01

    The 5-HT{sub 1A} subtype of receptors for the neurotransmitter serotonin is predominantly located in the limbic forebrain and is involved in the modulation of emotion and the function of the hypothalamus. Since 5-HT{sub 1A} receptors are implicated in the pathogenesis of anxiety, depression, hallucinogenic behaviour, motion sickness and eating disorders, they are an important target for drug therapy. Here, we review the radioligands which are available for visualisation and quantification of this important neuroreceptor in the human brain, using positron emission tomography (PET) or single-photon emission tomography (SPET). More than 20 compounds have been labelled with carbon-11 (half-life 20 min), fluorine-18 (half-life 109.8 min) or iodine-123 (half-life 13.2 h): structural analogues of the agonist, 8-OH-DPAT, structural analogues of the antagonist, WAY 100635, and apomorphines. The most successful radioligands thus far are [carbonyl-{sup 11}C] WAY-100635 (WAY), [carbonyl-{sup 11}C]desmethyl-WAY-100635 (DWAY), p-[{sup 18}F]MPPF and [{sup 11}C]robalzotan (NAD-299). The high-affinity ligands WAY and DWAY produce excellent images of 5-HT{sub 1A} receptor distribution in the brain (even the raphe nuclei are visualised), but they cannot be distributed to remote facilities and they probably cannot be used to measure changes in endogenous serotonin. Binding of the moderate-affinity ligands MPPF and NAD-299 may be more sensitive to serotonin competition and MPPF can be distributed to PET centres within a flying distance of a few hours. Future research should be directed towards: (a) improvement of the metabolic stability in primates; (b) development of a fluorinated radioligand which can be produced in large quantities and (c) production of a radioiodinated or technetium-labelled ligand for SPET. (orig.)

  12. Rotavirus Stimulates Release of Serotonin (5-HT) from Human Enterochromaffin Cells and Activates Brain Structures Involved in Nausea and Vomiting

    OpenAIRE

    2011-01-01

    otavirus (RV) is the major cause of severe gastroenteritis in young children. A virus-encoded enterotoxin, NSP4 is proposed to play a major role in causing RV diarrhoea but how RV can induce emesis, a hallmark of the illness, remains unresolved. In this study we have addressed the hypothesis that RV-induced secretion of serotonin (5-hydroxytryptamine, 5-HT) by enterochromaffin (EC) cells plays a key role in the emetic reflex during RV infection resulting in activation of vagal afferent nerves...

  13. Serotonin mediation of early memory formation via 5HT2B receptor-induced glycogenolysis in the day-old chick

    Directory of Open Access Journals (Sweden)

    Marie Elizabeth Gibbs

    2014-04-01

    Full Text Available Investigation of the effects of serotonin on memory formation in the chick revealed an action on at least two 5HT receptors. Serotonin injected intracerebrally produced a biphasic effect on memory consolidation with enhancement at low doses and inhibition at higher doses. The non-selective 5HT receptor antagonist methiothepin and the selective 5HT2B/C receptor antagonist SB221284 both inhibited memory, suggesting actions of serotonin on at least 2 different receptor subtypes. The 5HT2B/C and astrocyte-specific 5-HT receptor agonists, fluoxetine and paroxetine, enhanced memory and the effect was attributed to glycogenolysis. Inhibition of glycogenolysis with a low dose of DAB prevented both serotonin and fluoxetine from enhancing memory during short-term memory but not during intermediate memory. The role of serotonin on the 5HT2B/C receptor appears to involve glycogen breakdown in astrocytes during short-term memory, whereas other published evidence attributes the second period of glycogenolysis to noradrenaline.

  14. Serotonin mediation of early memory formation via 5-HT2B receptor-induced glycogenolysis in the day-old chick.

    Science.gov (United States)

    Gibbs, Marie E; Hertz, Leif

    2014-01-01

    Investigation of the effects of serotonin on memory formation in the chick revealed an action on at least two 5-HT receptors. Serotonin injected intracerebrally produced a biphasic effect on memory consolidation with enhancement at low doses and inhibition at higher doses. The non-selective 5-HT receptor antagonist methiothepin and the selective 5-HT2B/C receptor antagonist SB221284 both inhibited memory, suggesting actions of serotonin on at least two different receptor subtypes. The 5-HT2B/C and astrocyte-specific 5-HT receptor agonist, fluoxetine and paroxetine, enhanced memory and the effect was attributed to glycogenolysis. Inhibition of glycogenolysis with a low dose of DAB (1,4-dideoxy-1,4-imino-D-arabinitol) prevented both serotonin and fluoxetine from enhancing memory during short-term memory but not during intermediate memory. The role of serotonin on the 5-HT2B/C receptor appears to involve glycogen breakdown in astrocytes during short-term memory, whereas other published evidence attributes the second period of glycogenolysis to noradrenaline.

  15. Structure-activity relationships of constrained phenylethylamine ligands for the serotonin 5-HT2 receptors.

    Directory of Open Access Journals (Sweden)

    Vignir Isberg

    Full Text Available Serotonergic ligands have proven effective drugs in the treatment of migraine, pain, obesity, and a wide range of psychiatric and neurological disorders. There is a clinical need for more highly 5-HT2 receptor subtype-selective ligands and the most attention has been given to the phenethylamine class. Conformationally constrained phenethylamine analogs have demonstrated that for optimal activity the free lone pair electrons of the 2-oxygen must be oriented syn and the 5-oxygen lone pairs anti relative to the ethylamine moiety. Also the ethyl linker has been constrained providing information about the bioactive conformation of the amine functionality. However, combined 1,2-constriction by cyclization has only been tested with one compound. Here, we present three new 1,2-cyclized phenylethylamines, 9-11, and describe their synthetic routes. Ligand docking in the 5-HT2B crystal structure showed that the 1,2-heterocyclized compounds can be accommodated in the binding site. Conformational analysis showed that 11 can only bind in a higher-energy conformation, which would explain its absent or low affinity. The amine and 2-oxygen interactions with D3.32 and S3.36, respectively, can form but shift the placement of the core scaffold. The constraints in 9-11 resulted in docking poses with the 4-bromine in closer vicinity to 5.46, which is polar only in the human 5-HT2A subtype, for which 9-11 have the lowest affinity. The new ligands, conformational analysis and docking expand the structure-activity relationships of constrained phenethylamines and contributes towards the development of 5-HT2 receptor subtype-selective ligands.

  16. New arylpiperazinylalkyl derivatives of 8-alkoxy-purine-2,6-dione and dihydro[1,3]oxazolo[2,3-f]purinedione targeting the serotonin 5-HT1A /5-HT2A /5-HT7 and dopamine D2 receptors.

    Science.gov (United States)

    Chłoń-Rzepa, Grażyna; Zagórska, Agnieszka; Bucki, Adam; Kołaczkowski, Marcin; Pawłowski, Maciej; Satała, Grzegorz; Bojarski, Andrzej J; Partyka, Anna; Wesołowska, Anna; Pękala, Elżbieta; Słoczyńska, Karolina

    2015-04-01

    To obtain potential antidepressants and/or antipsychotics, a series of new long-chain arylpiperazine derivatives of 8-alkoxy-purine-2,6-dione (10-24) and dihydro[1,3]oxazolo[2,3-f]purinedione (30-34) were synthesized and their serotonin (5-HT1A , 5-HT2A , 5-HT6 , 5-HT7 ) and dopamine (D2 ) receptor affinities were determined. The study allowed the identification of some potent 5-HT1A /5-HT7 /D2 ligands with moderate affinity for 5-HT2A sites. The binding mode of representative compounds from both chemical classes (11 and 31) in the site of 5-HT1A receptor was analyzed in computational studies. In functional in vitro studies, the selected compounds 15 and 16 showed antagonistic properties for the evaluated receptors. 8-Methoxy-7-{4-[4-(2-methoxyphenyl)-piperazin-1-yl]-butyl}-1,3-dimethyl-purine-2,6-dione (15) showed a lack of activity in terms and under the conditions of the forced swim, four plate and amphetamine-induced hyperactivity tests in mice, probably as a result of its high first pass effect in the liver.

  17. Structure-activity relationships of constrained phenylethylamine ligands for the serotonin 5-ht2 receptors

    DEFF Research Database (Denmark)

    Isberg, Vignir; Paine, James; Leth-Petersen, Sebastian;

    2013-01-01

    showed that the 1,2-heterocyclized compounds can be accommodated in the binding site. Conformational analysis showed that 11 can only bind in a higher-energy conformation, which would explain its absent or low affinity. The amine and 2-oxygen interactions with D3.32 and S3.36, respectively, can form...... about the bioactive conformation of the amine functionality. However, combined 1,2-constriction by cyclization has only been tested with one compound. Here, we present three new 1,2-cyclized phenylethylamines, 9-11, and describe their synthetic routes. Ligand docking in the 5-HT2B crystal structure...

  18. INSIGHTS INTO THE REGULATION OF 5-HT2A RECEPTORS BY SCAFFOLDING PROTEINS AND KINASES

    OpenAIRE

    Roth, Bryan L.; Allen, John A.; Yadav, Prem N.

    2008-01-01

    5-HT2A serotonin receptors are essential molecular targets for the actions of LSD-like hallucinogens and atypical antipsychotic drugs. 5-HT2A serotonin receptors also mediate a variety of physiological processes in peripheral and central nervous systems including platelet aggregation, smooth muscle contraction, and the modulation of mood and perception. Scaffolding proteins have emerged as important regulators of 5-HT2A receptors and our recent studies suggest multiple scaffolds exist for 5-H...

  19. Serotonin transporter gene polymorphisms: Relation with platelet serotonin level in patients with primary Sjogren's syndrome.

    Science.gov (United States)

    Markeljevic, J; Sarac, H; Bozina, N; Henigsberg, N; Simic, M; Cicin Sain, L

    2015-05-15

    Significantly lower platelet serotonin level (PSL) in patients with primary Sjogren's syndrome (pSS) than in healthy controls has been reported in our prior studies. In the present report, we demonstrated effect of functional polymorphisms in the serotonin transporter gene (5-HTT) on PSL. We describe a group of 61 pSS patients and 100 healthy individuals subjects, who received PSL measurement in our prior study. All subjects were genotyped for the promoter 5-HTTLPR (L/S), rs25531 (A/G) and intronic 5-HTTVNTRin2 (l/s) polymorphisms. Overall, the presence of 5-HTTVNTRin2 ss genotype was associated with significantly lower PSL in pSS patients, not in healthy controls. Reduced PSL in pSS patients is in line with hypothesis of association between chronic immunoinflammation and 5-HT system dysregulation, identifying additional mechanisms such as altered 5-HT transport as potential genetic factor contributing to PSL depletion.

  20. The Versatile 2-Substituted Imidazoline Nucleus as a Structural Motif of Ligands Directed to the Serotonin 5-HT1A Receptor.

    Science.gov (United States)

    Del Bello, Fabio; Cilia, Antonio; Carrieri, Antonio; Fasano, Domenico Claudio; Ghelardini, Carla; Di Cesare Mannelli, Lorenzo; Micheli, Laura; Santini, Carlo; Diamanti, Eleonora; Giannella, Mario; Giorgioni, Gianfabio; Mammoli, Valerio; Paoletti, Corinne Dalila; Petrelli, Riccardo; Piergentili, Alessandro; Quaglia, Wilma; Pigini, Maria

    2016-10-19

    The involvement of the serotonin 5-HT1A receptor (5-HT1A -R) in the antidepressant effect of allyphenyline and its analogues indicates that ligands bearing the 2-substituted imidazoline nucleus as a structural motif interact with 5-HT1A -R. Therefore, we examined the 5-HT1A -R profile of several imidazoline molecules endowed with a common scaffold consisting of an aromatic moiety linked to the 2-position of an imidazoline nucleus by a biatomic bridge. Our aim was to discover other ligands targeting 5-HT1A -R and to identify the structural features favoring 5-HT1A -R interaction. Structure-activity relationships, supported by modeling studies, suggested that some structural cliché such as a polar function and a methyl group in the bridge, as well as proper steric hindrance in the aromatic area of the above scaffold, favored 5-HT1A -R recognition and activation. We also highlighted the potent antidepressant-like effect (mouse forced swimming test) of (S)-(+)-19 [(S)-(+)-naphtyline] at very low dose (0.01 mg kg(-1) ). This effect was clearly mediated by 5-HT1A , as it was significantly reduced by pretreatment with the 5-HT1A antagonist WAY100635. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Mapping of the serotonin 5-HT{sub 1D{alpha}} autoreceptor gene (HTR1D) on chromosome 1 using a silent polymorphism in the coding region

    Energy Technology Data Exchange (ETDEWEB)

    Ozaki, N.; Lappalainen, J.; Linnoila, M. [National Institute on Alcohol Abuse and Alcoholism, Rockville, MD (United States)] [and others

    1995-04-24

    Serotonin (5-HT){sub ID} receptors are 5-HT release-regulating autoreceptors in the human brain. Abnormalities in brain 5-HT function have been hypothesized in the pathophysiology of various psychiatric disorders, including obsessive-compulsive disorder, autism, mood disorders, eating disorders, impulsive violent behavior, and alcoholism. Thus, mutations occurring in 5-HT autoreceptors may cause or increase the vulnerability to any of these conditions. 5-HT{sub 1D{alpha}} and 5-HT{sub 1D{Beta}} subtypes have been previously localized to chromosomes 1p36.3-p34.3 and 6q13, respectively, using rodent-human hybrids and in situ localization. In this communication, we report the detection of a 5-HT{sub 1D{alpha}} receptor gene polymorphism by single strand conformation polymorphism (SSCP) analysis of the coding sequence. The polymorphism was used for fine scale linkage mapping of 5-HT{sub 1D{alpha}} on chromosome 1. This polymorphism should also be useful for linkage studies in populations and in families. Our analysis also demonstrates that functionally significant coding sequence variants of the 5-HT{sub 1D{alpha}} are probably not abundant either among alcoholics or in the general population. 14 refs., 1 fig., 1 tab.

  2. The Role of Serotonin (5-HT) in Behavioral Control: Findings from Animal Research and Clinical Implications.

    Science.gov (United States)

    Sanchez, C L; Biskup, C S; Herpertz, S; Gaber, T J; Kuhn, C M; Hood, S H; Zepf, F D

    2015-05-19

    The neurotransmitters serotonin and dopamine both have a critical role in the underlying neurobiology of different behaviors. With focus on the interplay between dopamine and serotonin, it has been proposed that dopamine biases behavior towards habitual responding, and with serotonin offsetting this phenomenon and directing the balance toward more flexible, goal-directed responding. The present focus paper stands in close relationship to the publication by Worbe et al. (2015), which deals with the effects of acute tryptophan depletion, a neurodietary physiological method to decrease central nervous serotonin synthesis in humans for a short period of time, on the balance between hypothetical goal-directed and habitual systems. In that research, acute tryptophan depletion challenge administration and a following short-term reduction in central nervous serotonin synthesis were associated with a shift of behavioral performance towards habitual responding, providing further evidence that central nervous serotonin function modulates the balance between goal-directed and stimulus-response habitual systems of behavioral control. In the present focus paper, we discuss the findings by Worbe and colleagues in light of animal experiments as well as clinical implications and discuss potential future avenues for related research.

  3. Comparative effect of lurasidone and blonanserin on cortical glutamate, dopamine, and acetylcholine efflux: role of relative serotonin (5-HT)2A and DA D2 antagonism and 5-HT1A partial agonism.

    Science.gov (United States)

    Huang, Mei; Panos, John J; Kwon, Sunoh; Oyamada, Yoshihiro; Rajagopal, Lakshmi; Meltzer, Herbert Y

    2014-03-01

    Atypical antipsychotic drugs (AAPDs) have been suggested to be more effective in improving cognitive impairment in schizophrenia than typical APDs, a conclusion supported by differences in receptor affinities and neurotransmitter efflux in the cortex and the hippocampus. More potent serotonin (5-HT)2A than dopamine (DA) D2 receptors antagonism, and direct or indirect 5-HT1A agonism, characterize almost all AAPDs. Blonanserin, an AAPD, has slightly greater affinity for D2 than 5-HT2A receptors. Using microdialysis and ultra performance liquid chromatography-mass spectrometry/mass spectrometry, we compared the abilities of the typical APD, haloperidol, three AAPDs, blonanserin, lurasidone, and olanzapine, and a selective 5-HT1A partial agonist, tandospirone, and all, except haloperidol, were found to ameliorate the cognitive deficits produced by the N-methyl-d-aspartate antagonist, phencyclidine, altering the efflux of neurotransmitters and metabolites in the rat cortex and nucleus accumbens. Blonanserin, lurasidone, olanzapine, and tandospirone, but not haloperidol, increased the efflux of cortical DA and its metabolites, homovanillic acid and 3,4-dihydroxyphenylacetic acid. Olanzapine and lurasidone increased the efflux of acetylcholine; lurasidone increased glutamate as well. None of the compounds significantly altered the efflux of 5-HT or its metabolite, 5-hydroxyindole acetic acid, or GABA, serine, and glycine. The ability to increase cortical DA efflux was the only shared effect of the compounds which ameliorates the deficit in cognition in rodents following phencyclidine. © 2013 International Society for Neurochemistry.

  4. Cerebral 5-HT2A receptor and serotonin transporter binding in humans are not affected by the val66met BDNF polymorphism status or blood BDNF levels

    DEFF Research Database (Denmark)

    Klein, Anders Bue; Trajkovska, Viktorija; Erritzoe, David;

    2010-01-01

    Recent studies have proposed an interrelation between the brain-derived neurotrophic factor (BDNF) val66met polymorphism and the serotonin system. In this study, we investigated whether the BDNF val66met polymorphism or blood BDNF levels are associated with cerebral 5-hydroxytryptamine 2A (5-HT(2A......)) receptor or serotonin transporter (SERT) binding in healthy subjects. No statistically significant differences in 5-HT(2A) receptor or SERT binding were found between the val/val and met carriers, nor were blood BDNF values associated with SERT binding or 5-HT(2A) receptor binding. In conclusion, val66met...... BDNF polymorphism status is not associated with changes in the serotonergic system. Moreover, BDNF levels in blood do not correlate with either 5-HT(2A) or SERT binding....

  5. Hydrogen peroxide stimulates the active transport of serotonin into human platelets

    Energy Technology Data Exchange (ETDEWEB)

    Bosin, T.R. (Indiana Univ., Bloomington (United States))

    1991-03-11

    The effect of hydrogen peroxide on the active transport of serotonin (5-HT) by human platelets was investigated. Platelets were exposed to either a single dose of H{sub 2}O{sub 2} or to H{sub 2}O{sub 2} generated by the glucose/glucose oxidase or xanthine/xanthine oxidase enzyme systems. H{sub 2}{sub 2} produced a rapid, dose-dependent and time-dependent increase in 5-HT transport which was maximal after a 2 min incubation and decreased with continued incubation. Catalase completely prevented H{sub 2}O{sub 2}-induced stimulation and fluoxetine totally blocked 5-HT uptake into stimulated platelets. The glucose/glucose oxidase and the xanthine/xanthine oxidase generating systems produced a similar response to that of H{sub 2}O{sub 2}. In the xanthine/xanthine oxidase system, superoxide dismutase failed to alter the stimulation, while catalase effectively prevented the response. The kinetics of 5-HT transport indicated that H{sub 2}O{sub 2} treatment did not alter the K{sub m} of 5-HT transport but significantly increased the maximal rate of 5-HT transport. These data demonstrated that exposure of human platelets to H{sub 2}O{sub 2} resulted in a stimulation of the active transport of 5-HT and suggested that H{sub 2}O{sub 2} may function to regulate this process.

  6. Activation of serotonin 5-HT2C receptor suppresses behavioral sensitization and naloxone-precipitated withdrawal symptoms in morphine-dependent mice

    Science.gov (United States)

    Zhang, Gongliang; Wu, Xian; Zhang, Yong-Mei; Liu, Huan; Jiang, Qin; Pang, Gang; Tao, Xinrong; Dong, Liuyi; Stackman, Robert W.

    2015-01-01

    Opioid abuse and dependence have evolved into an international epidemic as a significant clinical and social problem with devastating consequences. Repeated exposure to the opioid, for example morphine, can induce profound, long-lasting behavioral sensitization and physical dependence, which are thought to reflect neuroplasticity in neural circuitry. Central serotonin (5-HT) neurotransmission participates in the development of dependence on and the expression of withdrawal from morphine. Serotonin 5-HT2C receptor (5-HT2CR) agonists suppress psychostimulant nicotine or cocaine-induced behavioral sensitization and drug-seeking behavior; however, the impact of 5-HT2CR agonists on behaviors relevant to opioid abuse and dependence has not been reported. In the present study, the effects of 5-HT2CR activation on the behavioral sensitization and naloxone-precipitated withdrawal symptoms were examined in mice underwent repeated exposure to morphine. Male mice received morphine (10 mg/kg, s.c.) to develop behavioral sensitization. Lorcaserin, a 5-HT2CR agonist, prevented the induction and expression, but not the development, of morphine-induced behavioral sensitization. Another cohort of mice received increasing doses of morphine over a 7-day period to induce morphine-dependence. Pretreatment of lorcaserin, or the positive control clonidine (an alpha 2-adrenoceptor agonist), ameliorated the naloxone-precipitated withdrawal symptoms. SB 242084, a selective 5-HT2CR antagonist, prevented the lorcaserin-mediated suppression of behavioral sensitization and withdrawal. Chronic morphine treatment was associated with an increase in the expression of 5-HT2CR protein in the ventral tegmental area, locus coeruleus and nucleus accumbens. These findings suggest that 5-HT2CR can modulate behavioral sensitization and withdrawal in morphine-dependent mice, and the activation of 5-HT2CR may represent a new avenue for the treatment of opioid addiction. PMID:26432939

  7. 5-HT1B receptors and serotonin function : microdialysis studies in rats and knockout mice

    NARCIS (Netherlands)

    Groote, Lotte de

    2002-01-01

    The serotonergic system is an important target in the treatment of psychiatric disorders. Selective serotonin reuptake inhibitors (SSRIs) are widely used in the treatment of depression and anxiety disorders, but a clinical problem is the delayed therapeutic effect. This delayed onset of action sugge

  8. DREADD Modulation of Transplanted DA Neurons Reveals a Novel Parkinsonian Dyskinesia Mechanism Mediated by the Serotonin 5-HT6 Receptor.

    Science.gov (United States)

    Aldrin-Kirk, Patrick; Heuer, Andreas; Wang, Gang; Mattsson, Bengt; Lundblad, Martin; Parmar, Malin; Björklund, Tomas

    2016-06-01

    Transplantation of DA neurons is actively pursued as a restorative therapy in Parkinson's disease (PD). Pioneering clinical trials using transplants of fetal DA neuroblasts have given promising results, although a number of patients have developed graft-induced dyskinesias (GIDs), and the mechanism underlying this troublesome side effect is still unknown. Here we have used a new model where the activity of the transplanted DA neurons can be selectively modulated using a bimodal chemogenetic (DREADD) approach, allowing either enhancement or reduction of the therapeutic effect. We show that exclusive activation of a cAMP-linked (Gs-coupled) DREADD or serotonin 5-HT6 receptor, located on the grafted DA neurons, is sufficient to induce GIDs. These findings establish a mechanistic link between the 5-HT6 receptor, intracellular cAMP, and GIDs in transplanted PD patients. This effect is thought to be mediated through counteraction of the D2 autoreceptor feedback inhibition, resulting in a dysplastic DA release from the transplant.

  9. Repeated lysergic acid diethylamide in an animal model of depression: Normalisation of learning behaviour and hippocampal serotonin 5-HT2 signalling.

    Science.gov (United States)

    Buchborn, Tobias; Schröder, Helmut; Höllt, Volker; Grecksch, Gisela

    2014-06-01

    A re-balance of postsynaptic serotonin (5-HT) receptor signalling, with an increase in 5-HT1A and a decrease in 5-HT2A signalling, is a final common pathway multiple antidepressants share. Given that the 5-HT1A/2A agonist lysergic acid diethylamide (LSD), when repeatedly applied, selectively downregulates 5-HT2A, but not 5-HT1A receptors, one might expect LSD to similarly re-balance the postsynaptic 5-HT signalling. Challenging this idea, we use an animal model of depression specifically responding to repeated antidepressant treatment (olfactory bulbectomy), and test the antidepressant-like properties of repeated LSD treatment (0.13 mg/kg/d, 11 d). In line with former findings, we observe that bulbectomised rats show marked deficits in active avoidance learning. These deficits, similarly as we earlier noted with imipramine, are largely reversed by repeated LSD administration. Additionally, bulbectomised rats exhibit distinct anomalies of monoamine receptor signalling in hippocampus and/or frontal cortex; from these, only the hippocampal decrease in 5-HT2 related [(35)S]-GTP-gamma-S binding is normalised by LSD. Importantly, the sham-operated rats do not profit from LSD, and exhibit reduced hippocampal 5-HT2 signalling. As behavioural deficits after bulbectomy respond to agents classified as antidepressants only, we conclude that the effect of LSD in this model can be considered antidepressant-like, and discuss it in terms of a re-balance of hippocampal 5-HT2/5-HT1A signalling.

  10. Downregulation of 5-HT7 Serotonin Receptors by the Atypical Antipsychotics Clozapine and Olanzapine. Role of Motifs in the C-Terminal Domain and Interaction with GASP-1.

    Science.gov (United States)

    Manfra, Ornella; Van Craenenbroeck, Kathleen; Skieterska, Kamila; Frimurer, Thomas; Schwartz, Thue W; Levy, Finn Olav; Andressen, Kjetil Wessel

    2015-07-15

    The human 5-HT7 serotonin receptor, a G-protein-coupled receptor (GPCR), activates adenylyl cyclase constitutively and upon agonist activation. Biased ligands differentially activate 5-HT7 serotonin receptor desensitization, internalization and degradation in addition to G protein activation. We have previously found that the atypical antipsychotics clozapine and olanzapine inhibited G protein activation and, surprisingly, induced both internalization and lysosomal degradation of 5-HT7 receptors. Here, we aimed to determine the mechanism of clozapine- and olanzapine-mediated degradation of 5-HT7 receptors. In the C-terminus of the 5-HT7 receptor, we identified two YXXΦ motifs, LR residues, and a palmitoylated cysteine anchor as potential sites involved in receptor trafficking to lysosomes followed by receptor degradation. Mutating either of these sites inhibited clozapine- and olanzapine-mediated degradation of 5-HT7 receptors and also interfered with G protein activation. In addition, we tested whether receptor degradation was mediated by the GPCR-associated sorting protein-1 (GASP-1). We show that GASP-1 binds the 5-HT7 receptor and regulates the clozapine-mediated degradation. Mutations of the identified motifs and residues, located in or close to Helix-VIII of the 5-HT7 receptor, modified antipsychotic-stimulated binding of proteins (such as GASP-1), possibly by altering the flexibility of Helix-VIII, and also interfered with G protein activation. Taken together, our data demonstrate that binding of clozapine or olanzapine to the 5-HT7 receptor leads to antagonist-mediated lysosomal degradation by exposing key residues in the C-terminal tail that interact with GASP-1.

  11. Morphology and distribution of neurons expressing serotonin 5-HT1A receptors in the rat hypothalamus and the surrounding diencephalic and telencephalic areas.

    Science.gov (United States)

    Marvin, Eric; Scrogin, Karie; Dudás, Bertalan

    2010-07-01

    Disorders of serotonergic neurotransmission are involved in disturbances of numerous hypothalamic functions including circadian rhythm, mood, neuroendocrine functions, sleep and feeding. Among the serotonin receptors currently recognized, 5-HT(1A) receptors have received considerable attention due to their importance in the etiology of mood disorders. While previous studies have shown the presence of 5-HT(1A) receptors in several regions of the rat brain, there is no detailed map of the cellular distribution of 5-HT(1A) receptors in the rat diencephalon. In order to characterize the distribution and morphology of the neurons containing 5-HT(1A) receptors in the diencephalon and the adjacent telencephalic areas, single label immunohistochemistry was utilized. Large, multipolar, 5-HT(1A)-immunoreactive (IR) neurons were mainly detected in the magnocellular preoptic nucleus and in the nucleus of diagonal band of Broca, while the supraoptic nucleus contained mainly fusiform neurons. Medium-sized 5-HT(1A)-IR neurons with triangular or round-shaped somata were widely distributed in the diencephalon, populating the zona incerta, lateral hypothalamic area, anterior hypothalamic nucleus, substantia innominata, dorsomedial and premamillary nuclei, paraventricular nucleus and bed nucleus of stria terminalis. The present study provides schematic mapping of 5-HT(1A)-IR neurons in the rat diencephalon. In addition, the morphology of the detected 5-HT(1A)-IR neural elements is also described. Since rat is a widely used laboratory animal in pharmacological models of altered serotoninergic neurotransmission, detailed mapping of 5-HT(1A)-IR structures is pivotal for the neurochemical characterization of the neurons containing 5-HT(1A) receptors.

  12. The Type 7 Serotonin Receptor, 5-HT7, Is Essential in the Mammary Gland for Regulation of Mammary Epithelial Structure and Function

    Directory of Open Access Journals (Sweden)

    Vaibhav P. Pai

    2015-01-01

    Full Text Available Autocrine-paracrine activity of serotonin (5-hydroxytryptamine, 5-HT is a crucial homeostatic parameter in mammary gland development during lactation and involution. Published studies suggested that the 5-HT7 receptor type was important for mediating several effects of 5-HT in the mammary epithelium. Here, using 5-HT7 receptor-null (HT7KO mice we attempt to understand the role of this receptor in mediating 5-HT actions within the mammary gland. We demonstrate for the first time that HT7KO dams are inefficient at sustaining their pups. Histologically, the HT7KO mammary epithelium shows a significant deviation from the normal secretory epithelium in morphological architecture, reduced secretory vesicles, and numerous multinucleated epithelial cells with atypically displaced nuclei, during lactation. Mammary epithelial cells in HT7KO dams also display an inability to transition from lactation to involution as normally seen by transition from a columnar to a squamous cell configuration, along with alveolar cell apoptosis and cell shedding. Our results show that 5-HT7 is required for multiple actions of 5-HT in the mammary glands including core functions that contribute to changes in cell shape and cell turnover, as well as specialized secretory functions. Understanding these actions may provide new interventions to improve lactation performance and treat diseases such as mastitis and breast cancer.

  13. Synthesis and evaluation of 1-[2-(4-[(11)C]methoxyphenyl)phenyl]piperazine for imaging of the serotonin 5-HT7 receptor in the rat brain.

    Science.gov (United States)

    Shimoda, Yoko; Yui, Joji; Xie, Lin; Fujinaga, Masayuki; Yamasaki, Tomoteru; Ogawa, Masanao; Nengaki, Nobuki; Kumata, Katsushi; Hatori, Akiko; Kawamura, Kazunori; Zhang, Ming-Rong

    2013-09-01

    1-[2-(4-Methoxyphenyl)phenyl]piperazine (4) is a potent serotonin 5-HT7 receptor antagonist (Ki=2.6nM) with a low binding affinity for the 5-HT1A receptor (Ki=476nM). As a potential positron emission tomography (PET) radiotracer for the 5-HT7 receptor, [(11)C]4 was synthesized at high radiochemical yield and specific activity, by O-[(11)C]methylation of 2'-(piperazin-1-yl)-[1,1'-biphenyl]-4-ol (6) with [(11)C]methyl iodide. Autoradiography revealed that [(11)C]4 showed in vitro specific binding with 5-HT7 in the rat brain regions, such as the thalamus which is a region with high 5-HT7 expression. Metabolite analysis indicated that intact [(11)C]4 in the brain exceeded 90% of the radioactive components at 15min after the radiotracer injection, although two radiolabeled metabolites were found in the rat plasma. The PET study of rats showed moderated uptake of [(11)C]4 in the brain (1.2SUV), but no significant regional difference in radioactivity in the brain. Pretreatment with 5-HT7-selective antagonist SB269970 (3) did not decrease the uptake of [(11)C]4 in the rat brain. Further studies are warranted that focus on the development of PET ligand candidates with higher binding affinity for 5-HT7 and higher in vivo stability in brain than 4.

  14. The Type 7 Serotonin Receptor, 5-HT7, Is Essential in the Mammary Gland for Regulation of Mammary Epithelial Structure and Function

    Science.gov (United States)

    Pai, Vaibhav P.; Hernandez, Laura L.; Stull, Malinda A.; Horseman, Nelson D.

    2015-01-01

    Autocrine-paracrine activity of serotonin (5-hydroxytryptamine, 5-HT) is a crucial homeostatic parameter in mammary gland development during lactation and involution. Published studies suggested that the 5-HT7 receptor type was important for mediating several effects of 5-HT in the mammary epithelium. Here, using 5-HT7 receptor-null (HT7KO) mice we attempt to understand the role of this receptor in mediating 5-HT actions within the mammary gland. We demonstrate for the first time that HT7KO dams are inefficient at sustaining their pups. Histologically, the HT7KO mammary epithelium shows a significant deviation from the normal secretory epithelium in morphological architecture, reduced secretory vesicles, and numerous multinucleated epithelial cells with atypically displaced nuclei, during lactation. Mammary epithelial cells in HT7KO dams also display an inability to transition from lactation to involution as normally seen by transition from a columnar to a squamous cell configuration, along with alveolar cell apoptosis and cell shedding. Our results show that 5-HT7 is required for multiple actions of 5-HT in the mammary glands including core functions that contribute to changes in cell shape and cell turnover, as well as specialized secretory functions. Understanding these actions may provide new interventions to improve lactation performance and treat diseases such as mastitis and breast cancer. PMID:25664318

  15. We Need 2C but Not 2B: Developing Serotonin 2C (5-HT2C) Receptor Agonists for the Treatment of CNS Disorders.

    Science.gov (United States)

    Cheng, Jianjun; Kozikowski, Alan P

    2015-12-01

    The serotonin 2C (5-HT2C ) receptor has been identified as a potential drug target for the treatment of a variety of central nervous system (CNS) disorders, such as obesity, substance abuse, and schizophrenia. In this Viewpoint article, recent progress in developing selective 5-HT2C agonists for use in treating these disorders is summarized, including the work of our group. Challenges in this field and the possible future directions are described. Homology modeling as a method to predict the binding modes of 5-HT2C ligands to the receptor is also discussed. Compared to known ligands, the improved pharmacological profiles of the 2-phenylcyclopropylmethylamine-based 5-HT2C agonists make them preferred candidates for further studies. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Elevated expression of serotonin 5-HT2A receptors in the rat ventral tegmental area enhances vulnerability to the behavioral effects of cocaine

    Directory of Open Access Journals (Sweden)

    David V. Herin

    2013-02-01

    Full Text Available The dopamine mesocorticoaccumbens pathway which originates in the ventral tegmental area (VTA and projects to the nucleus accumbens and prefrontal cortex is a circuit important in mediating the actions of psychostimulants. The function of this circuit is modulated by the actions of serotonin (5-HT at 5-HT2A receptors (5-HT2AR localized to the VTA. In the present study, we tested the hypothesis that virally-mediated overexpression of 5-HT2AR in the VTA would increase cocaine-evoked locomotor activity in the absence of alterations in basal locomotor activity. A plasmid containing the gene for the 5-HT2AR linked to a synthetic marker peptide (Flag was created and the construct was packaged in an adeno-associated virus vector (rAAV-5-HT2AR-Flag. This viral vector (2 µl; 109-10 transducing units/ml was unilaterally infused into the VTA of male rats, while control animals received an intra-VTA infusion of Ringer’s solution. Virus-pretreated rats exhibited normal spontaneous locomotor activity measured in a modified open-field apparatus at 7, 14, and 21 days following infusion. After an injection of cocaine (15 mg/kg, ip, both horizontal hyperactivity and rearing were significantly enhanced in virus-treated rats (p<0.05. Immunohistochemical analysis confirmed expression of Flag and overexpression of the 5-HT2AR protein. These data indicate that the vulnerability of adult male rats to hyperactivity induced by cocaine is enhanced following increased levels of expression of the 5-HT2AR in the VTA and suggest that the 5-HT2AR receptor in the VTA plays a role in regulation of responsiveness to cocaine.

  17. Expression Changes of Serotonin Receptor Gene Subtype 5HT3a in Peripheral Blood Mononuclear Cells from Schizophrenic Patients Treated with Haloperidol and Olanzapin

    Directory of Open Access Journals (Sweden)

    Gholam Reza Shariati

    2009-09-01

    Full Text Available Serotonin receptors are involved in pathophysiology of schizophrenia and may mediate other neurotransmitter effects. We investigated serotonin receptors gene expression in peripheral blood mononuclear cells (PBMC of naïve schizophrenic patients, before and after treatment. Also serotonin receptor gene expression was compared in two treatment groups including Haloperidol and Olanzapine. The PBMC was separated from whole blood by Ficoll-hypaque. The total cellular RNA was extracted and the cDNA was synthesized. This process was followed by real-time PCR using primer pairs specific for 5HT3a serotonin receptor mRNA and beta-actin as internal control. The results showed the presence of subtype of serotonin receptor in lymphocytes. Serotonin gene expression showed significant changes in Olanzapine treatment group which correlated with Clinical Global Impression (CGI score improvement. In conclusion, the present study has shown that human PBMC express serotonin receptors 5HT3a. Moreover, clinical symptom improvement of Olanzapin may be demonstrated by a change in serotonin receptor gene expression.

  18. Hydrogen peroxide (H/sub 2/O/sub 2/) stimulates the active transport of 5-hydroxytryptamine (5-HT) into platelets

    Energy Technology Data Exchange (ETDEWEB)

    Bosin, T.R.

    1986-03-01

    Platelets function in a variety of physiological and pathological processes which may be altered by oxidant injury. One such process is the active transport 5-HT, which is an important mechanism in the control of circulating 5-HT levels. Exposure of mouse platelets (10/sup 8//ml) to H/sub 2/O/sub 2/ caused a time-dependent and dose-dependent increase in 5-HT (10/sup -7/M) uptake. The uptake 4 and 10 min following H/sub 2/O/sub 2/ (50 ..mu..M) was 228% and 145% of control values, respectively. Fluoxetine (10/sup -6/M) blocked all 5-HT uptake and catalase (1500 U/ml) blocked the H/sub 2/O/sub 2/-stimulated uptake. Enzymatically produced H/sub 2/O/sub 2/ (glucose/glucose oxidase) and xanthine (X)/xanthine oxidase (XO) generated oxygen radicals produced quantitatively and qualitatively similar results. The stimulatory response of platelets to X/XO generated oxidants was unaffected by superoxide dismutase (250 U/ml) but, was inhibited using heat-denatured XO, allopurinol (0.5 mM) and catalase; fluoxetine inhibited all 5-HT uptake. Platelets exposed to X/XO in the presence of chelated (EDTA, 100 ..mu..M) or unchelated FeSO/sub 4/, FeNH/sub 4/(SO/sub 4/)/sub 2/ or CuCl (50 ..mu..M) did not have altered 5-HT uptake. These data indicate that brief exposure of platelets to physiological levels of H/sub 2/O/sub 2/ results in marked, reversible stimulation of active 5-HT uptake which may represent a homeostatic defense mechanism when H/sub 2/O/sub 2/ is elevated in the platelet microenvironment.

  19. Serotonin receptor of type 6 (5-HT6) in human prefrontal cortex and hippocampus post-mortem: an immunohistochemical and immunofluorescence study.

    Science.gov (United States)

    Marazziti, Donatella; Baroni, Stefano; Pirone, Andrea; Giannaccini, Gino; Betti, Laura; Testa, Giovanna; Schmid, Lara; Palego, Lionella; Borsini, Franco; Bordi, Fabio; Piano, Ilaria; Gargini, Claudia; Castagna, Maura; Catena-Dell'osso, Mario; Lucacchini, Antonio

    2013-01-01

    Given the paucity of data on the distribution of serotonin (5-HT) receptors of type 6 (5-HT(6)) in the human brain, the aim of this study was to investigate their distribution in postmortem human prefrontal cortex, striatum and hippocampus by either immunohistochemical or immunofluorescence techniques. The brain samples were obtained from 6 subjects who had died for causes not involving primarily or secondarily the CNS. The 5-HT(6) receptor distribution was explored by the [(125)I]SB-258585 binding to brain membranes followed by immunohistochemical and immunofluorescence evaluations. A specific [(125)I]SB-258585 binding was detected in all the regions under investigation, whilst the content in the hippocampus and cortex being about 10-30 times lower than in the striatum. Immunohistochemistry and double-label immunofluorescence microscopy experiments, carried out in the prefrontal cortex and hippocampus only, since data in the striatum were already published, showed the presence of 5-HT(6) receptors in both pyramidal and glial cells of prefrontal cortex, while positive cells were mainly pyramidal neurons in the hippocampus. The heterogeneous distribution of 5-HT(6) receptors provides a preliminary explanation of how they might regulate different functions in different brain areas, such as, perhaps, brain trophism in the cortex and neuronal firing in the hippocampus. This study, taking into account all the limitations due to the postmortem model used, represents the starting point to explore the 5-HT(6) receptor functionality and its sub-cellular distribution. Copyright © 2012 Elsevier Ltd. All rights reserved.

  20. Localization of serotoni (5-hydroxytryptamine, 5-HT) with partial purification and characterization of a serotonin binding protein in the intestinal tissue of the nematode Ascaris suum

    Energy Technology Data Exchange (ETDEWEB)

    Martin, R.E.

    1989-01-01

    An intracellular 5-HT binding protein (SBP) from intestinal tissue was partially purified and characterized. Binding of ({sup 3}H) 5-HT to the protein appeared to be Fe{sup +2}-sensitive and maximal (20.8pmol/mg protein) at 5 {times} 10{sup {minus}4}M Fe{sup +2} and 10{sup {minus}7}M ({sup 3}H) 5-HT. There were two 5-HT binding sites present at optimum Fe{sup +2} concentrations. The Bmax values of these sites were more sensitive to Fe{sup +2} than Kd values. Sulfhydryl reducing agents, cation chelators, Fe{sup +3}, Ca{sup +2} and antagonists of 5-HT uptake and storage inhibited binding of 5-HT to SBP. Gel exclusion chromatography indicated the presence of a 45Kda SBP that in 5 {times} 10{sup {minus}5}M Fe{sup +2} may form aggregates ranging in size from approximately 80 to >1000Kda. The data indicate these in vitro aggregates may correspond to the electron-opaque patches observed in situ. Ascaris suum may provide a model system to further elucidate the physiological role of analogous serotonin binding proteins that have been identified in mammalian systems.

  1. Changes in serotonin (5-HT) and brain-derived neurotrophic factor (BDFN) expression in frontal cortex and hippocampus of aged rat treated with high tryptophan diet.

    Science.gov (United States)

    Musumeci, Giuseppe; Castrogiovanni, Paola; Castorina, Sergio; Imbesi, Rosa; Szychlinska, Marta Anna; Scuderi, Soraya; Loreto, Carla; Giunta, Salvatore

    2015-10-01

    Age-related cognitive decline is accompanied by an alteration in neurotransmitter synthesis and a dysregulation of neuroplasticity-related molecules such as serotonin (5-HT) and brain-derived neurotrophic factor (BDFN). It has been previously demonstrated that hyperserotonemia induced by l-Tryptophan (TrP) enriched diet protect against memory deficits during physiological aging. Since 5-HT is closely associated to BDNF, we aimed to investigate the effect of high TrP diet on 5-HT levels and BDNF expression in Frontal Cortex (FC) and Hippocampus (Hp) of aged rats. We found that the raising of systemic 5-HT levels by chronic diet (1 month) containing high TrP significantly prevents age-related decline of BDNF protein expression in both brain areas as indicated by ELISA and Western Blot analyses. Interestingly, immunohistochemical analyses confirmed that high TrP diet significantly elevates the number of 5-HT immunoreactive fibers in both brain areas tested and this correlated with BDNF increase in the FC and hippocampal regions CA1, CA2, CA3 and a strikingly down-regulation of neurotrophin levels in the dentate gyrus (DG) of aged rats. Altogether, these finding provide evidence that enhanced TrP intake and the consequent increase in 5-HT neurotransmission may act as a modulator of BDNF system suggesting a possible mechanism for the protective role of serotonergic system on memory impairment occurring along normal aging process.

  2. Chronic escitalopram treatment caused dissociative adaptation in serotonin (5-HT) 2C receptor antagonist-induced effects in REM sleep, wake and theta wave activity.

    Science.gov (United States)

    Kostyalik, Diána; Kátai, Zita; Vas, Szilvia; Pap, Dorottya; Petschner, Péter; Molnár, Eszter; Gyertyán, István; Kalmár, Lajos; Tóthfalusi, László; Bagdy, Gyorgy

    2014-03-01

    Several multi-target drugs used in treating psychiatric disorders, such as antidepressants (e.g. agomelatine, trazodone, nefazodone, amitriptyline, mirtazapine, mianserin, fluoxetine) or most atypical antipsychotics, have 5-hydroxytryptamine 2C (5-HT2C) receptor-blocking property. Adaptive changes in 5-HT2C receptor-mediated functions are suggested to contribute to therapeutic effects of selective serotonin reuptake inhibitor (SSRI) antidepressants after weeks of treatment, at least in part. Beyond the mediation of anxiety and other functions, 5-HT2C receptors are involved in sleep regulation. Anxiety-related adaptive changes caused by antidepressants have been studied extensively, although sleep- and electroencephalography (EEG)-related functional studies are still lacking. The aim of this study was to investigate the effects of chronic SSRI treatment on 5-HT2C receptor antagonist-induced functions in different vigilance stages and on quantitative EEG (Q-EEG) spectra. Rats were treated with a single dose of the selective 5-HT2C receptor antagonist SB-242084 (1 mg/kg, i.p.) or vehicle at the beginning of passive phase following a 20-day-long SSRI (escitalopram; 10 mg/kg/day, osmotic minipump) or VEHICLE pretreatment. Fronto-parietal electroencephalogram, electromyogram and motility were recorded during the first 3 h of passive phase. We found that the chronic escitalopram pretreatment attenuated the SB-242084-caused suppression in rapid eye movement sleep (REMS). On the contrary, the 5-HT2C receptor antagonist-induced elevations in passive wake and theta (5-9 Hz) power density during active wake and REMS were not affected by the SSRI. In conclusion, attenuation in certain, but not all vigilance- and Q-EEG-related functions induced by the 5-HT2C receptor antagonist, suggests dissociation in 5-HT2C receptor adaptation.

  3. DSP-1053, a novel serotonin reuptake inhibitor with 5-HT1A partial agonistic activity, displays fast antidepressant effect with minimal undesirable effects in juvenile rats.

    Science.gov (United States)

    Kato, Taro; Matsumoto, Yuji; Yamamoto, Masanori; Matsumoto, Kenji; Baba, Satoko; Nakamichi, Keiko; Matsuda, Harumi; Nishimuta, Haruka; Yabuuchi, Kazuki

    2015-06-01

    Enhancement of serotonergic neurotransmission has been the main stream of treatment for patients with depression. However, delayed therapeutic onset and undesirable side effects are major drawbacks for conventional serotonin reuptake inhibitors. Here, we show that DSP-1053, a novel serotonin reuptake inhibitor with 5-HT1A partial agonistic activity, displays fast antidepressant efficacy with minimal undesirable effects, especially nausea and emesis in animal models. DSP-1053 bound human serotonin transporter and 5-HT1A receptor with the K i values of 1.02 ± 0.06 and 5.05 ± 1.07 nmol/L, respectively. This compound inhibited the serotonin transporter with an IC50 value of 2.74 ± 0.41 nmol/L and had an intrinsic activity for 5-HT1A receptors of 70.0 ± 6.3%. In rat microdialysis, DSP-1053, given once at 3 and 10 mg kg(-1), dose-dependently increased extracellular 5-HT levels. In the rat forced swimming test, 2-week administration of DSR-1053 (1 mg kg(-1)) significantly reduced rats immobility time after treatment, whereas paroxetine (3 and 10 mg kg(-1)) required 3-week administration to reduce rats immobility time. In olfactory bulbectomy model, 1- and 2-week administration of DSP-1053 reduced both of emotional scores and activity in the open field, whereas paroxetine required 2 weeks to show similar beneficial effects. Although single administration of DSP-1053-induced emesis and vomiting in the rat and Suncus murinus, multiple treatment with this compound, but not with paroxetine, decreased the number of vomiting episodes. These results highlight the important role of 5-HT1A receptors in both the efficacy and tolerability of DSP-1053 as a new therapeutic option for the treatment of depression.

  4. The relationship between the daily dose, the plasma concentration of blonanserin, and its plasma anti-dopamine D2 and anti-serotonin 5-HT2A activity.

    Science.gov (United States)

    Suzuki, Hidenobu; Gen, Keishi

    2010-01-01

    Blonanserin (BNS) possesses anti-serotonin 5-HT(2A) activity in addition to anti-dopamine D(2) activity, which is characteristic of second-generation antipsychotics, little information is available on its pharmacologic profile in vivo. We investigated the BNS daily dose, plasma concentration, plasma anti-D(2) activity, and plasma anti-5-HT(2A) activity in schizophrenia in a total of 14 subjects. Blood samples were taken 14 days after the BNS dose was fixed, and the plasma concentration was measured by means of high-performance liquid chromatographic (HPLC) method. In addition, the plasma anti-D(2) activity and anti-5-HT(2A) activity were measured by means of radioreceptor assays in which [(3)H]-spiperone and [(3)H]-ketanserin were used. The results revealed a statistically significant correlation between the daily dose and the plasma concentration (p = 0.04). Statistically significant correlations were also observed between the plasma concentration and the anti-D(2) activity and between the plasma concentration and the anti-5-HT(2A) activity (p = 0.003 and 0.04). It is therefore believed that both the anti-D(2) activity in plasma and the anti-5-HT(2A) activity in plasma are regulated almost solely by the unchanged principal. Moreover, the mean plasma serotonin/dopamine (S/D) ratio was 0.9 and BNS exhibited both anti-D(2) activity and also anti-5-HT(2A) activity in vivo, as well, so it was clear that the in vitro pharmacological profile was retained in vivo.

  5. Impulsivity, gender, and the platelet serotonin transporter in healthy subjects

    Directory of Open Access Journals (Sweden)

    Donatella Marazziti

    2009-12-01

    Full Text Available Donatella Marazziti, Stefano Baroni, Irene Masala, Francesca Golia, Giorgio Consoli, Gabriele Massimetti, Michela Picchetti, Mario Catena Dell’Osso, Gino Giannaccini, Laura Betti, Antonio Lucacchini, Antonio CiapparelliDipartimento di Psichiatria, Neurobiologia, Farmacologia e Biotecnologie, University of Pisa, Pisa, ItalyAbstract: The present study explored the possible relationships between impulsivity, gender, and a peripheral serotonergic marker, the platelet serotonin (5-HT transporter (SERT, in a group of 32 healthy subjects. The impulsivity was measured by means of the Barratt Impulsivity Scale, version 11 (BIS-11, a widely used self-report questionnaire, and the platelet SERT was evaluated by means of the specific binding of 3H-paroxetine (3H-Par to platelet membranes, according to standardized protocols. The results showed that women had a higher BIS-11 total score than men, and also higher scores of two factors of the same scale: the motor impulsivity and the cognitive complexity. The analysis of the correlations revealed that the density of the SERT proteins, as measured by the maximum binding capacity (Bmax of 3H-Par, was significantly and positively related to the cognitive complexity factor, but only in men. Men showed also a significant and negative correlation with the dissociation constant, Kd, of (3H-Par binding, and the motor impulsivity factor. These findings suggest that women are generally more impulsive than men, but that the 5-HT system is more involved in the impulsivity of men than in that of women.Keywords: impulsivity, gender, serotonin transporter, Barratt Impulsivity Scale, platelets, 3H-paroxetine

  6. 补充支链氨基酸对运动大鼠脑及血小板5-HT2A受体与螺环哌丁苯结合影响的研究%Effect of Supplement of BCAA on [3H] Spiperone Binding to Serotonin2A Receptors of Brain and Platelets in Training Rats

    Institute of Scientific and Technical Information of China (English)

    邱卓君; 季健民; 黄园; 卢汉平; 许豪文

    2003-01-01

    采用放射标记受体测定技术观察补充支链氨基酸(BCAA)或BCAA+CHO对SD大鼠一次性运动以及3周耐力训练后的一次性运动前后血小板以及脑5-HT2A受体与 [3H]Spiperone(螺环哌丁苯)结合的影响, 结果表明:急性耐力运动可导致SD大鼠脑5-HT浓度的增加,并且导致血小板以及脑5-HT2A受体下调,大鼠3周耐力训练期间补充BCAA+CHO有防止由耐力运动引起的5-HT2A受体密度下调的作用,长期耐力训练期间补充BCAA+CHO对延缓中枢疲劳有积极的作用.

  7. G protein- and agonist-bound serotonin 5-HT2A receptor model activated by steered molecular dynamics simulations

    DEFF Research Database (Denmark)

    Ísberg, Vignir; Balle, Thomas; Sander, Tommy

    2011-01-01

    A 5-HT(2A) receptor model was constructed by homology modeling based on the ß(2)-adrenergic receptor and the G protein-bound opsin crystal structures. The 5-HT(2A) receptor model was transferred into an active conformation by an agonist ligand and a G(aq) peptide in four subsequent steered...

  8. Insights into the influence of 5-HT2c aminoacidic variants with the inhibitory action of serotonin inverse agonists and antagonists.

    Science.gov (United States)

    Galeazzi, Roberta; Massaccesi, Luca; Piva, Francesco; Principato, Giovanni; Laudadio, Emilioano

    2014-03-01

    Specific modulation of serotonin 5-HT(2C) G protein-coupled receptors may be therapeutic for obesity and neuropsychiatric disorders. The different efficacy of drugs targeting these receptors are due to the presence of genetic variants in population and this variability is still hard to predict. Therefore, in order to administer the more suitable drug, taking into account patient genotype, it is necessary to know the molecular effects of its gene nucleotide variations. In this work, starting from an accurate 3D model of 5-HT(2C), we focus on the prediction of the possible effect of some single nucleotide polymorphisms (SNPs) producing amino acidic changes in proximity of the 5-HT(2C) ligand binding site. Particularly we chose a set of 5-HT(2C) inverse agonists and antagonists which have high inhibitory activity. After prediction of the structures of the receptor-ligand complexes using molecular docking tools, we performed full atom molecular dynamics simulations in explicit lipid bilayer monitoring the interactions between ligands and trans-membrane helices of the receptor, trying to infer relations with their biological activity. Serotonin, as the natural ligand was chosen as reference compound to advance a hypothesis able to explain the receptor inhibition mechanism. Indeed we observed a different behavior between the antagonists and inverse agonist with respect to serotonin or unbounded receptor, which could be responsible, even if not directly, of receptor's inactivation. Furthermore, we analyzed five aminoacidic variants of 5HT(2C) receptor observing alterations in the interactions between ligands and receptor which give rise to changes of free energy values for every complex considered.

  9. Association of the promoter polymorphism -1438G/A of the 5-HT2A receptor gene with behavioral impulsiveness and serotonin function in women with bulimia nervosa.

    Science.gov (United States)

    Bruce, Kenneth R; Steiger, Howard; Joober, Ridha; Ng Ying Kin, N M K; Israel, Mimi; Young, Simon N

    2005-08-05

    Separate lines of research suggest that the functional alterations in the serotonin (5-HT) 2A receptor are associated with 5-HT tone, behavioral impulsiveness, and bulimia nervosa (BN). We explored the effect of allelic variations within the 5-HT2A receptor gene promoter polymorphism -1438G/A on trait impulsiveness and serotonin function in women with BN. Participants included women with BN having the A allele (i.e., AA homozygotes and AG heterozygotes, BNA+, N = 21); women with BN but without the A allele (i.e., GG homozygotes, BNGG, N = 12), and normal eater control women having the A allele (NEA+, N = 19) or without the A allele (NEGG; N = 9). The women were assessed for psychopathological tendencies and eating disorder symptoms, and provided blood samples for measurement of serial prolactin responses following oral administration of the post-synaptic partial 5-HT agonist meta-chlorophenylpiperazine (m-CPP). The BNGG group had higher scores than the other groups on self-report measures of non-planning and overall impulsiveness and had blunted prolactin response following m-CPP. The bulimic groups did not differ from each other on current eating symptoms or on frequencies of other Axis I mental disorders. Findings indicate that women with BN who are GG homozygotes on the -1438G/A promoter polymorphism are characterized by increased impulsiveness and lower sensitivity to post-synaptic serotonin activation. These findings implicate the GG genotype in the co-aggregation of impulsive behaviors and alterations of post-synaptic 5-HT functioning in women with BN.

  10. Test-retest variability of high resolution positron emission tomography (PET imaging of cortical serotonin (5HT2A receptors in older, healthy adults

    Directory of Open Access Journals (Sweden)

    Graff-Guerrero Ariel

    2009-07-01

    Full Text Available Abstract Background Position emission tomography (PET imaging using [18F]-setoperone to quantify cortical 5-HT2A receptors has the potential to inform pharmacological treatments for geriatric depression and dementia. Prior reports indicate a significant normal aging effect on serotonin 5HT2A receptor (5HT2AR binding potential. The purpose of this study was to assess the test-retest variability of [18F]-setoperone PET with a high resolution scanner (HRRT for measuring 5HT2AR availability in subjects greater than 60 years old. Methods: Six healthy subjects (age range = 65–78 years completed two [18F]-setoperone PET scans on two separate occasions 5–16 weeks apart. Results The average difference in the binding potential (BPND as measured on the two occasions in the frontal and temporal cortical regions ranged between 2 and 12%, with the lowest intraclass correlation coefficient in anterior cingulate regions. Conclusion We conclude that the test-retest variability of [18F]-setoperone PET in elderly subjects is comparable to that of [18F]-setoperone and other 5HT2AR radiotracers in younger subject samples.

  11. Serotonin (5-HT) precursor loading with 5-hydroxy-l-tryptophan (5-HTP) reduces locomotor activation produced by (+)-amphetamine in the rat.

    Science.gov (United States)

    Baumann, Michael H; Williams, Zakia; Zolkowska, Dorota; Rothman, Richard B

    2011-04-01

    Evidence suggests that increases in synaptic serotonin (5-HT) can reduce the stimulant properties of amphetamine-type drugs. Here we tested the hypothesis that administration of the 5-HT precursor 5-hydroxy-l-tryptophan (5-HTP), along with the peripheral decarboxylase inhibitor benserazide, would decrease locomotor effects of (+)-amphetamine. Drug treatments were administered to conscious male rats undergoing in vivo microdialysis in nucleus accumbens. During dialysis sampling, rats were housed in chambers equipped with photobeams to detect forward locomotion (i.e., ambulation) and repetitive movements (i.e., stereotypy). Extracellular concentrations of dopamine (DA) and 5-HT were measured by high-pressure liquid chromatography with electrochemical detection. 5-HTP (10 & 30 mg/kg, i.p.) plus benserazide (30 mg/kg, i.p.) caused dose-related increases in 5-HT but failed to alter other parameters. (+)-Amphetamine (0.3 & 1.0 mg/kg, i.p.) produced dose-related increases in DA, ambulation and stereotypy. Combined administration of 5-HTP and (+)-amphetamine evoked large elevations in extracellular DA and 5-HT, but caused significantly less ambulation than (+)-amphetamine alone (~50% reduction). Our results confirm that 5-HTP can decrease hyperactivity produced by (+)-amphetamine, even in the presence of elevations in dialysate DA. The data suggest that 5-HTP and (+)-amphetamine may be useful to broadly enhance monoamine function in the clinical setting, while reducing undesirable effects of (+)-amphetamine. Published by Elsevier Ireland Ltd.

  12. Interaction between serotonin 5-HT2A receptor gene and dopamine transporter (DAT1) gene polymorphisms influences personality trait of persistence in Austrian Caucasians.

    Science.gov (United States)

    Schosser, Alexandra; Fuchs, Karoline; Scharl, Theresa; Schloegelhofer, Monika; Kindler, Jochen; Mossaheb, Nilufar; Kaufmann, Rainer M; Leisch, Friedrich; Kasper, Siegfried; Sieghart, Werner; Aschauer, Harald N

    2010-03-01

    We examined 89 normal volunteers using Cloninger's Temperament and Character Inventory (TCI). Genotyping the 102T/C polymorphism of the serotonin 5HT2A receptor gene and the ser9gly polymorphism in exon 1 of the dopamine D3 receptor (DRD3) gene was performed using PCR-RFLP, whereas the dopamine transporter (DAT1) gene variable number of tandem repeats (VNTR) polymorphism was investigated using PCR amplification followed by electrophoresis in an 8% acrylamide gel with a set of size markers. We found a nominally significant association between gender and harm avoidance (P=0.017; women showing higher scores). There was no association of either DAT1, DRD3 or 5HT2A alleles or genotypes with any dimension of the TCI applying Kruskal-Wallis rank-sum tests. Comparing homozygote and heterozygote DAT1 genotypes, we found higher novelty seeking scores in homozygotes (P=0.054). We further found a nominally significant interaction between DAT1 and 5HT2A homo-/heterozygous gene variants (P=0.0071; DAT1 and 5HT2A genotypes P value of 0.05), performing multivariate analysis of variance (MANOVA). Examining the temperamental TCI subscales, this interaction was associated with persistence (genotypes: P=0.004; homo-/heterozygous gene variants: P=0.0004). We conclude that an interaction between DAT1 and 5HT2A genes might influence the temperamental personality trait persistence.

  13. Serotonin (5-HT) Precursor Loading with 5-Hydroxy-L-tryptophan (5-HTP) Reduces Locomotor Activation Produced by (+)-Amphetamine in the Rat

    Science.gov (United States)

    Baumann, Michael H.; Williams, Zakia; Zolkowska, Dorota; Rothman, Richard B.

    2010-01-01

    Background Evidence suggests that increases in synaptic serotonin (5-HT) can reduce the stimulant properties of amphetamine-type drugs. Here we tested the hypothesis that administration of the 5-HT precursor 5-hydroxy-L-tryptophan (5-HTP), along with the peripheral decarboxylase inhibitor benserazide, would decrease locomotor effects of (+)-amphetamine. Methods Drug treatments were administered to conscious male rats undergoing in vivo microdialysis in nucleus accumbens. During dialysis sampling, rats were housed in chambers equipped with photobeams to detect forward locomotion (i.e., ambulation) and repetitive movements (i.e., stereotypy). Extracellular concentrations of dopamine (DA) and 5-HT were measured by high-pressure liquid chromatography with electrochemical detection. Results 5-HTP (10 & 30 mg/kg, i.p.) plus benserazide (30 mg/kg, i.p.) caused dose-related increases in 5-HT but failed to alter other parameters. (+)-Amphetamine (0.3 & 1.0 mg/kg, i.p.) produced dose-related increases in DA, ambulation and stereotypy. Combined administration of 5-HTP and (+)-amphetamine evoked large elevations in extracellular DA and 5-HT, but caused significantly less ambulation than (+)-amphetamine alone (~50% reduction). Conclusions Our results confirm that 5-HTP can decrease hyperactivity produced by (+)-amphetamine, even in the presence of elevations in dialysate DA. The data suggest that 5-HTP and (+)-amphetamine may be useful to broadly enhance monoamine function in the clinical setting, while reducing undesirable effects of (+)-amphetamine. PMID:21071157

  14. A new serotonin 5-HT6 receptor antagonist with procognitive activity – Importance of a halogen bond interaction to stabilize the binding

    Science.gov (United States)

    González-Vera, Juan A.; Medina, Rocío A.; Martín-Fontecha, Mar; Gonzalez, Angel; de la Fuente, Tania; Vázquez-Villa, Henar; García-Cárceles, Javier; Botta, Joaquín; McCormick, Peter J.; Benhamú, Bellinda; Pardo, Leonardo; López-Rodríguez, María L.

    2017-01-01

    Serotonin 5-HT6 receptor has been proposed as a promising therapeutic target for cognition enhancement though the development of new antagonists is still needed to validate these molecules as a drug class for the treatment of Alzheimer’s disease and other pathologies associated with memory deficiency. As part of our efforts to target the 5-HT6 receptor, new benzimidazole-based compounds have been designed and synthesized. Site-directed mutagenesis and homology models show the importance of a halogen bond interaction between a chlorine atom of the new class of 5-HT6 receptor antagonists identified herein and a backbone carbonyl group in transmembrane domain 4. In vitro pharmacological characterization of 5-HT6 receptor antagonist 7 indicates high affinity and selectivity over a panel of receptors including 5-HT2B subtype and hERG channel, which suggests no major cardiac issues. Compound 7 exhibited in vivo procognitive activity (1 mg/kg, ip) in the novel object recognition task as a model of memory deficit. PMID:28117458

  15. Blockade of Serotonin 5-HT2A Receptors Suppresses Behavioral Sensitization and Naloxone-Precipitated Withdrawal Symptoms in Morphine-Treated Mice

    Science.gov (United States)

    Pang, Gang; Wu, Xian; Tao, Xinrong; Mao, Ruoying; Liu, Xueke; Zhang, Yong-Mei; Li, Guangwu; Stackman, Robert W.; Dong, Liuyi; Zhang, Gongliang

    2016-01-01

    The increasing prescription of opioids is fueling an epidemic of addiction and overdose deaths. Morphine is a highly addictive drug characterized by a high relapse rate – even after a long period of abstinence. Serotonin (5-HT) neurotransmission participates in the development of morphine dependence, as well as the expression of morphine withdrawal. In this study, we examined the effect of blockade of 5-HT2A receptors (5-HT2ARs) on morphine-induced behavioral sensitization and withdrawal in male mice. 5-HT2AR antagonist MDL 11,939 (0.5 mg/kg, i.p.) suppressed acute morphine (5.0 mg/kg, s.c.)-induced increase in locomotor activity. Mice received morphine (10 mg/kg, s.c.) twice a day for 3 days and then drug treatment was suspended for 5 days. On day 9, a challenge dose of morphine (10 mg/kg) was administered to induce the expression of behavioral sensitization. MDL 11,939 (0.5 mg/kg, i.p.) pretreatment suppressed the expression of morphine-induced behavioral sensitization. Another cohort of mice received increasing doses of morphine over a 7-day period to induce morphine-dependence. MDL 11,939 (0.5 mg/kg, i.p.) prevented naloxone-precipitated withdrawal in morphine-dependent mice on day 7. Moreover, chronic morphine treatment increased 5-HT2AR protein level and decreased the phosphorylation of extracellular signal-regulated kinases in the prefrontal cortex. Together, these results by the first time demonstrate that 5-HT2ARs modulate opioid dependence and blockade of 5-HT2AR may represent a novel strategy for the treatment of morphine use disorders. Highlights (i) Blockade of 5-HT2A receptors suppresses the expression of morphine-induced behavioral sensitization. (ii) Blockade of 5-HT2A receptors suppresses naloxone-precipitated withdrawal in morphine-treated mice. (iii) Chronic morphine exposure induces an increase in 5-HT2A receptor protein level and a decrease in ERK protein phosphorylation in prefrontal cortex. PMID:28082900

  16. Preclinical evaluation of [{sup 18}F]2FNQ1P as the first fluorinated serotonin 5-HT{sub 6} radioligand for PET imaging

    Energy Technology Data Exchange (ETDEWEB)

    Becker, Guillaume [Universite Claude Bernard Lyon 1, CNRS INSERM, Lyon Neuroscience Research Center, Lyon (France); Hospices Civils de Lyon, Lyon (France); Colomb, Julie [Universite Claude Bernard Lyon 1, CNRS, Institute of Chemistry and Biochemistry, Villeurbanne (France); Sgambato-Faure, Veronique; Tremblay, Leon [Universite Claude Bernard Lyon 1, CNRS, Cognitive Neuroscience Center, Bron (France); Billard, Thierry [Universite Claude Bernard Lyon 1, CNRS, Institute of Chemistry and Biochemistry, Villeurbanne (France); CERMEP-Imaging Platform, Groupement Hospitalier Est, Lyon (France); Zimmer, Luc [Universite Claude Bernard Lyon 1, CNRS INSERM, Lyon Neuroscience Research Center, Lyon (France); Hospices Civils de Lyon, Lyon (France); CERMEP-Imaging Platform, Groupement Hospitalier Est, Lyon (France)

    2014-10-21

    Brain serotonin 6 receptor (5-HT{sub 6}) is one of the most recently identified serotonin receptors. It is a potent therapeutic target for psychiatric and neurological diseases, e.g. schizophrenia and Alzheimer's disease. Since no specific fluorinated radioligand has yet been successfully used to study this receptor by positron emission tomography (PET) neuroimaging, the objective of the present study was to study the first 5-HT{sub 6} {sup 18}F-labelled radiotracer. 2FNQ1P, inspired by the quinolone core of a previous radiotracer candidate, GSK215083, was selected according its 5-HT{sub 6} affinity and selectivity and was radiolabelled by {sup 18}F nucleophilic substitution. The cerebral distribution of [{sup 18}F]2FNQ1P was studied in vivo in rats, cats and macaque monkeys. The chemical and radiochemical purities of [{sup 18}F]2FNQ1P were >98 %. In rats, in vitro competition with the 5-HT{sub 6} antagonist, SB258585, revealed that the radioligand was displaced dose dependently. Rat microPET studies showed low brain uptake of [{sup 18}F]2FNQ1P, reversed by the P-glycoprotein inhibitor, cyclosporin. On the contrary, PET scans in cats showed good brain penetration and specific striatal binding blocked after pretreatment with unlabelled 2FNQ1P. PET scans in macaque monkeys confirmed high specific binding in both cortical and subcortical regions, specifically decreased by pretreatment with the 5-HT{sub 6} receptor antagonist, SB258585. 2FNQ1P was initially selected because of its suitable characteristics for 5-HT{sub 6} receptor probing in vitro in terms of affinity and specificity. Although in vivo imaging in rats cannot be considered as predictive of the clinical characteristics of the radiotracer, [{sup 18}F]2FNQ1P appeared to be a suitable 5-HT{sub 6} PET tracer in feline and primate models. These preclinical results encourage us to pursue the clinical development of this first fluorinated 5-HT{sub 6} PET radiotracer. (orig.)

  17. Comparison of the performance of different DFT methods in the calculations of the molecular structure and vibration spectra of serotonin (5-hydroxytryptamine, 5-HT)

    Science.gov (United States)

    Yang, Yue; Gao, Hongwei

    2012-04-01

    Serotonin (5-hydroxytryptamine, 5-HT) is a monoamine neurotransmitter which plays an important role in treating acute or clinical stress. The comparative performance of different density functional theory (DFT) methods at various basis sets in predicting the molecular structure and vibration spectra of serotonin was reported. The calculation results of different methods including mPW1PW91, HCTH, SVWN, PBEPBE, B3PW91 and B3LYP with various basis sets including LANL2DZ, SDD, LANL2MB, 6-31G, 6-311++G and 6-311+G* were compared with the experimental data. It is remarkable that the SVWN/6-311++G and SVWN/6-311+G* levels afford the best quality to predict the structure of serotonin. The results also indicate that PBEPBE/LANL2DZ level show better performance in the vibration spectra prediction of serotonin than other DFT methods.

  18. Altered brain serotonin 5-HT1A receptor binding after recovery from anorexia nervosa measured by positron emission tomography and [carbonyl11C]WAY-100635.

    Science.gov (United States)

    Bailer, Ursula F; Frank, Guido K; Henry, Shannan E; Price, Julie C; Meltzer, Carolyn C; Weissfeld, Lisa; Mathis, Chester A; Drevets, Wayne C; Wagner, Angela; Hoge, Jessica; Ziolko, Scott K; McConaha, Claire W; Kaye, Walter H

    2005-09-01

    Previous studies have shown that women with anorexia nervosa (AN), when ill and after recovery, have alterations of serotonin (5-HT) neuronal activity and core eating disorder symptoms, such as anxiety. To further characterize the 5-HT system in AN, we investigated 5-HT1A receptor activity using positron emission tomography imaging because this receptor is implicated in anxiety and feeding behavior. To avoid the confounding effects of malnutrition, we studied 13 women who had recovered from restricting-type AN (mean age, 23.3 +/- 5.2 years) and 12 women who had recovered from bulimia-type AN (mean age, 28.6 +/- 7.3 years) (>1 year normal weight, regular menstrual cycles, no bingeing or purging). These subjects were compared with 18 healthy control women (mean age, 25.1 +/- 5.8 years). Intervention The 5-HT1A receptor binding was measured using positron emission tomography imaging and a specific 5-HT1A receptor antagonist, [carbonyl-11C]WAY-100635. Specific 5-HT1A receptor binding was assessed using the binding potential measure. Binding potential values were derived using both the Logan graphical method and compartmental modeling. The binding potential in a region of interest was calculated with the formula: binding potential = distribution volume of the region of interest minus distribution volume of the cerebellum. Women recovered from bulimia-type AN had significantly (P<.05) increased [11C]WAY-100635 binding potential in cingulate, lateral and mesial temporal, lateral and medial orbital frontal, parietal, and prefrontal cortical regions and in the dorsal raphe compared with control women. No differences were found for women recovered from restricting-type AN relative to controls. For women recovered from restricting-type AN, the 5-HT1A postsynaptic receptor binding in mesial temporal and subgenual cingulate regions was positively correlated with harm avoidance. We observed increased 5-HT1A receptor binding in women who had recovered from bulimia-type AN but not

  19. Translation of Novel Serotonin 5-HT7 Agonist Drug Candidates in Rodent Models of Fragile X Syndrome

    Science.gov (United States)

    2016-09-01

    reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215...For measurements of 5HT7-Gαs-cAMP signaling in HEK293 cells stably expressing high density (~5 pmol/mg protein) 5HT7 receptors, the Lance Ultra cAMP...President of DELSIA (Delivering Science Innovation for Autism ) and Vice President, Innovative Technologies at Autism Speaks, Daniel Smith, who

  20. Antinociception by systemically-administered acetaminophen (paracetamol) involves spinal serotonin 5-HT7 and adenosine A1 receptors, as well as peripheral adenosine A1 receptors.

    Science.gov (United States)

    Liu, Jean; Reid, Allison R; Sawynok, Jana

    2013-03-01

    Acetaminophen (paracetamol) is a widely used analgesic, but its sites and mechanisms of action remain incompletely understood. Recent studies have separately implicated spinal adenosine A(1) receptors (A(1)Rs) and serotonin 5-HT(7) receptors (5-HT(7)Rs) in the antinociceptive effects of systemically administered acetaminophen. In the present study, we determined whether these two actions are linked by delivering a selective 5-HT(7)R antagonist to the spinal cord of mice and examining nociception using the formalin 2% model. In normal and A(1)R wild type mice, antinociception by systemic (i.p.) acetaminophen 300mg/kg was reduced by intrathecal (i.t.) delivery of the selective 5-HT(7)R antagonist SB269970 3μg. In mice lacking A(1)Rs, i.t. SB269970 did not reverse antinociception by systemic acetaminophen, indicating a link between spinal 5-HT(7)R and A(1)R mechanisms. We also explored potential roles of peripheral A(1)Rs in antinociception by acetaminophen administered both locally and systemically. In normal mice, intraplantar (i.pl.) acetaminophen 200μg produced antinociception in the formalin test, and this was blocked by co-administration of the selective A(1)R antagonist DPCPX 4.5μg. Acetaminophen administered into the contralateral hindpaw had no effect, indicating a local peripheral action. When acetaminophen was administered systemically, its antinociceptive effect was reversed by i.pl. DPCPX in normal mice; this was also observed in A(1)R wild type mice, but not in those lacking A(1)Rs. In summary, we demonstrate a link between spinal 5-HT(7)Rs and A(1)Rs in the spinal cord relevant to antinociception by systemic acetaminophen. Furthermore, we implicate peripheral A(1)Rs in the antinociceptive effects of locally- and systemically-administered acetaminophen.

  1. Dopamine D2 and serotonin 5-HT1A receptor interaction in the context of the effects of antipsychotics - in vitro studies.

    Science.gov (United States)

    Łukasiewicz, Sylwia; Błasiak, Ewa; Szafran-Pilch, Kinga; Dziedzicka-Wasylewska, Marta

    2016-05-01

    The serotonin 5-HT1A receptor (5-HT1 A R) and dopamine D2 receptor (D2 R) have been implicated as important sites of action in antipsychotics. Several lines of evidence indicate the key role of G protein-coupled receptors (GPCRs) heteromers in pathophysiology of schizophrenia and highlight these complexes as novel drug targets. Because heterodimers can form only on those cells co-expressing constituent receptors, they present a target of high pharmacological specificity in the context of biochemical effects induced by antipsychotic drugs. In studies conducted in the HEK 293 cell line, we demonstrated that 5-HT1 A R and D2 R are able to form constitutive heterodimers, and antipsychotic drugs (clozapine, olanzapine, aripiprazole, and lurasidone) enhanced this process, with clozapine being most effective. Various functional tests (cAMP and IP1 as well as ERK activation) indicated that the drugs had different effects on signal transduction by the heteromer. Interestingly, co-incubation of heterodimer-expressing HEK 293 cells with clozapine and the 5-HT1 A R agonist 8-OH DPAT potentiated post-synaptic effects, especially with respect to ERK activation. Our results indicate that the D2 -5-HT1A complex possesses biochemical, pharmacological, and functional properties distinct from those of mono- and homomers. This result has implications for the development of improved pharmacotherapy for schizophrenia or other disorders (activating the heteromer might be cognitive enhancing, since it is expressed in frontal cortex) through the specific targeting of heterodimers. We reported the constitutive formation of D2 -5-HT1A heteromers, which possess biochemical, pharmacological, and functional properties distinct from those of mono- and homomers, as revealed by antipsychotics action. We also showed that these two receptors are co-expressed in mouse cortical neurons; therefore their potential to heterodimerize may comprise an essential target for the development of novel strategies

  2. Platelet serotonin transporter (5HTt): physiological influences on kinetic characteristics in a large human population.

    Science.gov (United States)

    Banović, Miroslav; Bordukalo-Niksić, Tatjana; Balija, Melita; Cicin-Sain, Lipa; Jernej, Branimir

    2010-01-01

    The present study had two goals: first, to give a detailed description of a reliable method for full kinetic analysis of serotonin transporter (5HTt) on the membrane of human platelets, and second, as a main issue, to report on physiological influences on kinetic characteristics of this transmembrane transport on a large population of healthy individuals. Full kinetic analyses of platelet serotonin uptake were performed on 334 blood donors of both sexes by the use of 14C-radioisotopic method, which was first optimized according to assumptions of enzyme kinetic analyses, with regard to platelet concentration, duration of uptake, concentration of substrate as well as important technical parameters (underpressure of filtration, blanks, incubating temperature, etc). Kinetic parameters of platelet serotonin uptake in the whole population were for V(max): 142 +/- 25.3 pmol 5HT/10(8) platelets/minute and for K(m): 0.404 +/- 0.089 microM 5HT. Besides the report on kinetic values of 5HT transporter protein, we have also described major physiological influences on the mentioned parameters, V(max), K(m) and their derivative, V(max)/K(m) (transporter efficiency): range and frequency distribution of normal values, intraindividual stability over time, lack of age influence, gender dependence and seasonal variations. The report on kinetic values and main physiological influences on platelet serotonin transport kinetics, obtained by the use of thoroughly reassessed methodology, and on by far the largest human population studied until now, offers a reliable frame of reference for pathophysiological studies of this parameter in various clinical fields.

  3. Mosapride, a selective serotonin 5-HT4 receptor agonist, and alogliptin, a selective dipeptidyl peptidase-4 inhibitor, exert synergic effects on plasma active GLP-1 levels and glucose tolerance in mice.

    Science.gov (United States)

    Nonogaki, Katsunori; Kaji, Takao

    2015-12-01

    Pharmacologic stimulation of serotonin 5-HT4 receptors increased plasma active glucagon-like-peptide-1 (GLP-1) levels independent of feeding, and that pharmacologic stimulation of 5-HT4 receptors and pharmacologic inhibition of dipeptidyl peptidase-4 exerted synergic effects on plasma active GLP-1 levels and glucose tolerance in mice.

  4. Morphologic research Of the distribution Of serotonin 5-HT2A and 5-HT7 receptors in spinal Onuf's nucleus Of rats%5-HT2A、5-HT7受体在大鼠脊髓Onuf核分布的形态学研究

    Institute of Scientific and Technical Information of China (English)

    曾凡清; 徐晨; 许舸

    2008-01-01

    目的:探讨5-HTZA、5-HT7,受体在雄性大鼠脊髓Onuf核不同运动神经元内分布及其与泌尿生殖功能中枢调控的关系.方法:成年SD大鼠10只(雄性8只、雌性2只),随机分为性别对照组(n=4,雌雄各2只)和逆行示踪组(雄性大鼠,n=6).性别对照组取脊髓L5~6节段,切片后作5-HTZA或5-HT7受体免疫组化染色;逆行示踪组采用重组伪狂犬病毒株(PRV-152)分别注入右侧尿道外括约肌(Eus组;n=3)或右侧坐骨海绵体肌(Ic组;n=3),4d后取L5-6节段,切片后作5-HT2A或5-HT7受体双标记荧光免疫组化染色.分别在光镜或激光共聚焦显微镜下观察5-HT2A、5-HT7受体在Onuf核的分布情况.结果:5-HT2A受体的免疫产物主要位于Onuf核背外侧核的内侧,5-HT7受体则主要位于背外侧核的外侧;雄性大鼠5-HT2A、5-HT7受体在Onuf核的表达明显强于雌性大鼠.免疫荧光双标记显示5-HT2A受体的免疫标记主要分布于支配IC的运动神经元周围,5-HT7受体主要分布于支配EUS的运动神经元.结论:5-HT2A、5-HT7受体不均匀分布在Onuf核支配不同的盆底横纹肌的运动神经元.5-HT2A受体可能主要参与性反射的调节,5-HT7受体则可能主要参与泌尿反射的调控.

  5. Adaptations in pre- and postsynaptic 5-HT(1A) receptor function and cocaine supersensitivity in serotonin transporter knockout rats

    NARCIS (Netherlands)

    Homberg, Judith R; De Boer, Sietse F; Raasø, Halfdan S; Olivier, Jocelien D A; Verheul, Mark; Ronken, Eric; Cools, Alexander R; Ellenbroek, Bart A; Schoffelmeer, Anton N M; Vanderschuren, Louk J M J; De Vries, Taco J; Cuppen, Edwin

    2008-01-01

    RATIONALE: While individual differences in vulnerability to psychostimulants have been largely attributed to dopaminergic neurotransmission, the role of serotonin is not fully understood. OBJECTIVES: To study the rewarding and motivational properties of cocaine in the serotonin transporter knockout

  6. Adaptations in pre- and postsynaptic 5-HT1A receptor function and cocaine supersensitivity in serotonin transporter knockout rats.

    NARCIS (Netherlands)

    Homberg, J.R.; Boer, SF De; Raaso, H.S.; Olivier, J.D.A.; Verheul, M.; Ronken, E.; Cools, A.R.; Ellenbroek, B.A.; Schoffelmeer, A.N.; Schuren, L.J. van der; Vries, TJ De; Cuppen, E.

    2008-01-01

    RATIONALE: While individual differences in vulnerability to psychostimulants have been largely attributed to dopaminergic neurotransmission, the role of serotonin is not fully understood. OBJECTIVES: To study the rewarding and motivational properties of cocaine in the serotonin transporter knockout

  7. Evaluation of 3-Ethyl-3-(phenylpiperazinylbutyl)oxindoles as PET Ligands for the Serotonin 5-HT7 Receptor

    DEFF Research Database (Denmark)

    Herth, Matthias M; Andersen, Valdemar L; Hansen, Hanne D;

    2015-01-01

    We have investigated several oxindole derivatives in the pursuit of a 5-HT7 receptor PET ligand. Herein the synthesis, chiral separation, and pharmacological profiling of two possible PET candidates toward a wide selection of CNS-targets are detailed. Subsequent (11)C-labeling and in vivo...

  8. Aromatic interactions impact ligand binding and function at serotonin 5-HT2C G protein-coupled receptors: receptor homology modelling, ligand docking, and molecular dynamics results validated by experimental studies

    Science.gov (United States)

    Córdova-Sintjago, Tania; Villa, Nancy; Fang, Lijuan; Booth, Raymond G.

    2014-02-01

    The serotonin (5-hydroxytryptamine, 5-HT) 5-HT2 G protein-coupled receptor (GPCR) family consists of types 2A, 2B, and 2C that share ∼75% transmembrane (TM) sequence identity. Agonists for 5-HT2C receptors are under development for psychoses; whereas, at 5-HT2A receptors, antipsychotic effects are associated with antagonists - in fact, 5-HT2A agonists can cause hallucinations and 5-HT2B agonists cause cardiotoxicity. It is known that 5-HT2A TM6 residues W6.48, F6.51, and F6.52 impact ligand binding and function; however, ligand interactions with these residues at the 5-HT2C receptor have not been reported. To predict and validate molecular determinants for 5-HT2C-specific activation, results from receptor homology modelling, ligand docking, and molecular dynamics simulation studies were compared with experimental results for ligand binding and function at wild type and W6.48A, F6.51A, and F6.52A point-mutated 5-HT2C receptors.

  9. Ligand-dependent conformations and dynamics of the serotonin 5-HT(2A receptor determine its activation and membrane-driven oligomerization properties.

    Directory of Open Access Journals (Sweden)

    Jufang Shan

    Full Text Available From computational simulations of a serotonin 2A receptor (5-HT(2AR model complexed with pharmacologically and structurally diverse ligands we identify different conformational states and dynamics adopted by the receptor bound to the full agonist 5-HT, the partial agonist LSD, and the inverse agonist Ketanserin. The results from the unbiased all-atom molecular dynamics (MD simulations show that the three ligands affect differently the known GPCR activation elements including the toggle switch at W6.48, the changes in the ionic lock between E6.30 and R3.50 of the DRY motif in TM3, and the dynamics of the NPxxY motif in TM7. The computational results uncover a sequence of steps connecting these experimentally-identified elements of GPCR activation. The differences among the properties of the receptor molecule interacting with the ligands correlate with their distinct pharmacological properties. Combining these results with quantitative analysis of membrane deformation obtained with our new method (Mondal et al, Biophysical Journal 2011, we show that distinct conformational rearrangements produced by the three ligands also elicit different responses in the surrounding membrane. The differential reorganization of the receptor environment is reflected in (i-the involvement of cholesterol in the activation of the 5-HT(2AR, and (ii-different extents and patterns of membrane deformations. These findings are discussed in the context of their likely functional consequences and a predicted mechanism of ligand-specific GPCR oligomerization.

  10. 5-HT(2C) serotonin receptor blockade prevents tau protein hyperphosphorylation and corrects the defect in hippocampal synaptic plasticity caused by a combination of environmental stressors in mice.

    Science.gov (United States)

    Busceti, Carla Letizia; Di Pietro, Paola; Riozzi, Barbara; Traficante, Anna; Biagioni, Francesca; Nisticò, Robert; Fornai, Francesco; Battaglia, Giuseppe; Nicoletti, Ferdinando; Bruno, Valeria

    2015-09-01

    Exposure to multimodal sensory stressors is an everyday occurrence and sometimes becomes very intense, such as during rave parties or other recreational events. A growing body of evidence suggests that strong environmental stressors might cause neuronal dysfunction on their own in addition to their synergistic action with illicit drugs. Mice were exposed to a combination of physical and sensory stressors that are reminiscent of those encountered in a rave party. However, this is not a model of rave because it lacks the rewarding properties of rave. A 14-h exposure to environmental stressors caused an impairment of hippocampal long-term potentiation (LTP) and spatial memory, and an enhanced phosphorylation of tau protein in the CA1 and CA3 regions. These effects were transient and critically depended on the activation of 5-HT2C serotonin receptors, which are highly expressed in the CA1 region. Acute systemic injection of the selective 5-HT2C antagonist, RS-102,221 (2 mg/kg, i.p., 2 min prior the onset of stress), prevented tau hyperphosphorylation and also corrected the defects in hippocampal LTP and spatial memory. These findings suggest that passive exposure to a combination of physical and sensory stressors causes a reversible hippocampal dysfunction, which might compromise mechanisms of synaptic plasticity and spatial memory for a few days. Drugs that block 5-HT2C receptors might protect the hippocampus against the detrimental effect of environmental stressors.

  11. Disturbance of serotonin 5HT{sub 2} receptors in remitted patients suffering from hereditary depressive disorder

    Energy Technology Data Exchange (ETDEWEB)

    Larisch, R.; Vosberg, H.; Tosch, M.; Mueller-Gaertner, H.W. [Kliniken fuer Nuklearmedizin der Heinrich-Heine-Univ., Duesseldorf (Germany); Klimke, A.; Gaebel, W. [Kliniken fuer Psychiatrie der Heinrich-Heine-Univ., Duesseldorf (Germany); Mayoral, F.; Rivas, F. [Psychiatrische Klinik des Hospital Civil Carlos Haya, Malaga (Spain); Hamacher, K.; Coenen, H.H. [Inst. fuer Nuklearchemie des Forschungszentrums Juelich GmbH (Germany); Herzog, H.R. [Inst. fuer Medizin des Forschungszentrums Juelich GmbH (Germany)

    2001-08-01

    Aim: The characteristics of 5HT{sub 2} receptor binding were investigated in major depression in vivo using positron emission tomography and the radioligand F-18-altanserin. Methods: Twelve patients from families with high loading of depression living in a geographically restricted region were examined and compared with normal control subjects. At the time of the PET measurement all patients were remitted; in some of them remission was sustained by antidepressive medication. Binding potential was assessed by Logan's graphical analysis method. Results: The binding of F-18-altanserin was about 38% lower in patients than in healthy controls (p<0.001). A multiple regression analysis revealed that this difference was mainly induced by depression rather than by medication. Conclusions: The data suggest that 5HT{sub 2} receptors are altered in depression. We present evidence for a reduction of the receptor density, which might be usable as trait marker of subjects susceptible for depressive illness. (orig.) [German] Ziel: Die vorliegende Studie untersucht die 5HT{sub 2}-Rezeptorbindung bei depressiven Patienten in vivo mit der Positronen-Emissionstomographie und dem Radioliganden F-18-Altanserin. Methoden: Zwoelf Patienten aus Familien mit hoher Inzidenz fuer Depressionen, die in einer geographisch abgeschlossenen Region leben, wurden untersucht und mit gesunden Kontrollpersonen verglichen. Zum Zeitpunkt der PET-Messung waren alle Patienten klinisch remittiert, was bei einigen den Einsatz von Antidepressiva erforderlich machte. Das Bindungspotenzial wurde mit Logans graphischer Methode bestimmt. Ergebnisse: Die Altanserinbindung war bei den Patienten um ca. 38% niedriger als bei den Kontrollpersonen (p<0,001). Eine multiple Regressionsanalyse zeigte, dass dieser Unterschied in erster Linie durch die Erkrankung und nicht durch Praemedikation hervorgerufen wurde. Schlussfolgerung: Die Studie zeigt, dass die 5HT{sub 2}-Rezeptoren an der Depression beteiligt sind. Die

  12. Central Serotonin-2A (5-HT2A Receptor Dysfunction in Depression and Epilepsy: The Missing Link?

    Directory of Open Access Journals (Sweden)

    Bruno Pierre Guiard

    2015-03-01

    Full Text Available 5-Hydroxytryptamine 2A receptors (5-HT2A-Rs are G-protein coupled receptors. In agreement with their location in the brain, they have been implicated not only in various central physiological functions including memory, sleep, nociception, eating and reward behaviors, but also in many neuropsychiatric disorders. Interestingly, a bidirectional link between depression and epilepsy is suspected since patients with depression and especially suicide attempters have an increased seizure risk, while a significant percentage of epileptic patients suffer from depression. Such epidemiological data led us to hypothesize that both pathologies may share common anatomical and neurobiological alteration of the 5-HT2A signaling. After a brief presentation of the pharmacological properties of the 5-HT2A-Rs, this review illustrates how these receptors may directly or indirectly control neuronal excitability in most networks involved in depression and epilepsy through interactions with the monoaminergic, GABAergic and glutamatergic neurotransmissions. It also synthetizes the preclinical and clinical evidence demonstrating the role of these receptors in antidepressant and antiepileptic responses.

  13. Behavioral Effects of Systemic, Infralimbic and Prelimbic Injections of a Serotonin 5-HT2A Antagonist in Carioca High- and Low-Conditioned Freezing Rats

    Directory of Open Access Journals (Sweden)

    Laura A. León

    2017-07-01

    Full Text Available The role of serotonin (5-hydroxytryptamine [5-HT] and 5-HT2A receptors in anxiety has been extensively studied, mostly without considering individual differences in trait anxiety. Our laboratory developed two lines of animals that are bred for high and low freezing responses to contextual cues that are previously associated with footshock (Carioca High-conditioned Freezing [CHF] and Carioca Low-conditioned Freezing [CLF]. The present study investigated whether ketanserin, a preferential 5-HT2A receptor blocker, exerts distinct anxiety-like profiles in these two lines of animals. In the first experiment, the animals received a systemic injection of ketanserin and were exposed to the elevated plus maze (EPM. In the second experiment, these two lines of animals received microinjections of ketanserin in the infralimbic (IL and prelimbic (PL cortices and were exposed to either the EPM or a contextual fear conditioning paradigm. The two rat lines exhibited bidirectional effects on anxiety-like behavior in the EPM and opposite responses to ketanserin. Both systemic and intra-IL cortex injections of ketanserin exerted anxiolytic-like effects in CHF rats but anxiogenic-like effects in CLF rats. Microinjections of ketanserin in the PL cortex also exerted anxiolytic-like effects in CHF rats but had no effect in CLF rats. These results suggest that the behavioral effects of 5-HT2A receptor antagonism might depend on genetic variability associated with baseline reactions to threatening situations and 5-HT2A receptor expression in the IL and PL cortices.Highlights-CHF and CLF rats are two bidirectional lines that are based on contextual fear conditioning.-CHF rats have a more “anxious” phenotype than CLF rats in the EPM.-The 5-HT2A receptor antagonist ketanserin had opposite behavioral effects in CHF and CLF rats.-Systemic and IL injections either decreased (CHF or increased (CLF anxiety-like behavior.-PL injections either decreased (CHF anxiety

  14. Serotonin (5-HT affects expression of liver metabolic enzymes and mammary gland glucose transporters during the transition from pregnancy to lactation.

    Directory of Open Access Journals (Sweden)

    Jimena Laporta

    Full Text Available The aim of this experiment was to demonstrate the ability of feeding serotonin (5-HT; 5-hydroxytryptamine precursors to increase 5-HT production during the transition from pregnancy to lactation and the effects this has on maternal energy metabolism in the liver and mammary gland. Pregnant rats (n = 45 were fed one of three diets: I control (CON, II CON supplemented with 0.2% 5-hydroxytryptophan (5-HTP or III CON supplemented with 1.35% L-tryptophan (L-TRP, beginning on d13 of pregnancy through d9 of lactation (d9. Serum (pre and post-partum, milk (daily, liver and mammary gland tissue (d9 were collected. Serum 5-HT was increased in the 5-HTP fed dams beginning on d20 of gestation and remained elevated through d9, while it was only increased on d9 in the L-TRP fed dams. 5-HT levels were increased in mammary gland and liver of both groups. Additionally, 5-HTP fed dams had serum and milk glucose levels similar to the CON, while L-TRP had decreased serum (d9 and milk glucose (all dates evaluated. Feeding 5-HTP resulted in increased mRNA expression of key gluconeogenic and glycolytic enzymes in liver and glucose transporters 1 and 8 (GLUT-1, -8 in the mammary gland. We demonstrated the location of GLUT-8 in the mammary gland both in the epithelial and vascular endothelial cells. Finally, phosphorylated 5' AMP-activated protein kinase (pAMPK, a known regulator of intracellular energy status, was elevated in mammary glands of 5-HTP fed dams. Our results suggest that increasing 5-HT production during the transition from pregnancy to lactation increases mRNA expression of enzymes involved in energy metabolism in the liver, and mRNA abundance and distribution of glucose transporters within the mammary gland. This suggests the possibility that 5-HT may be involved in regulating energy metabolism during the transition from pregnancy to lactation.

  15. Prolonged reversal of the phencyclidine-induced impairment in novel object recognition by a serotonin (5-HT)1A-dependent mechanism.

    Science.gov (United States)

    Horiguchi, Masakuni; Miyauchi, Masanori; Neugebauer, Nichole M; Oyamada, Yoshihiro; Meltzer, Herbert Y

    2016-03-15

    Many acute treatments transiently reverse the deficit in novel object recognition (NOR) produced by subchronic treatment with the N-methyl-d-aspartate receptor non-competitive antagonist, phencyclidine (PCP), in rodents. Treatments which restore NOR for prolonged periods after subchronic PCP treatment may have greater relevance for treating the cognitive impairment in schizophrenia than those which restore NOR transiently. We examined the ability of post-PCP subchronic lurasidone, an atypical APD with potent serotonin (5-HT)1A partial agonism and subchronic tandospirone, a selective 5-HT1A partial agonist, to enable prolonged reversal of the subchronic PCP-induced NOR deficit. Rats treated with subchronic PCP (2mg/kg, twice daily for 7 days) or vehicle, followed by a 7day washout period were subsequently administered lurasidone or tandospirone twice daily for 7 days (day 15-21), and tested for NOR weekly for up to two additional weeks. Subchronic lurasidone (1, but not 0.1mg/kg) or tandospirone (5, but not 0.6mg/kg) significantly reversed the PCP-induced NOR deficit at 24h and 7days after the last injection, respectively. The effect of lurasidone persisted for one more week (day 36, 14 days after the last lurasidone dose), while tandospirone-treated rats were able to perform NOR at 7, but not 14, days after the last tandospirone dose. Co-administration of WAY100635 (0.6mg/kg), a 5-HT1A antagonist, with lurasidone, blocked the ability of lurasidone to restore NOR, suggesting that 5-HT1A receptor stimulation is necessary for lurasidone to reverse the effects of PCP. The role of dopamine, GABA and the MAPK/ERK signalling pathway in the persistent, but not indefinite, restoration of NOR is discussed.

  16. Polimorfismos dos genes do receptor de serotonina (5-HT2A e da catecol-O-metiltransferase (COMT: fatores desencadeantes da fibromialgia? Serotonin receptor (5-HT 2A and catechol-O-methyltransferase (COMT gene polymorphisms: Triggers of fibromyalgia?

    Directory of Open Access Journals (Sweden)

    Josie Budag Matsuda

    2010-04-01

    fatigue, sleep disorders, anxiety, depression, memory loss, and dizziness. Although the physiological mechanisms that control fibromyalgia have not been precisely established, neuroendocrine, genetic or molecular factors may be involved in fibromyalgia. OBJECTIVE: The aim of the present study was to characterize serotonin receptor (5-HT2A and catecholO-methyltransferase (COMT gene polymorphisms in Brazilian patients with fibromyalgia and to evaluate the participation of these polymorphisms in the etiology of the disease. MATERIAL AND METHODS: Genomic DNA extracted from 102 blood samples (51 patients, 51 controls was used for molecular characterization of the 5-HT2A and COMT gene polymorphisms by PCR-RFLP. RESULTS: Analysis of the 5-HT2A polymorphism revealed a frequency of 25.49% C/C, 49.02% T/C and 25.49% T/T in patients, and of 17.65% C/C, 62.74% T/C and 19.61% T/T in the control group, with no differences between the two groups.Analysis of the COMT polymorphism in patients showed a frequency of 17.65% and 45.10% for genotypes H/H and L/H, respectively. In the control group the frequency was 29.42% for H/H and 60.78% for L/H, also with no differences between the two groups. However, there was a significant difference in the frequency of the L/L genotype between patients (37.25% and controls (9.8%, which permitted differentiation between the two groups. CONCLUSION: The L/L genotype was more frequent among fibromyalgia patients. Though considering a polygenic situation and environmental factors, the molecular study of the rs4680 SNP of the COMT gene may be helpful to the identification of susceptible individuals.

  17. Mice lacking the serotonin transporter exhibit 5-HT(1A) receptor-mediated abnormalities in tests for anxiety-like behavior.

    Science.gov (United States)

    Holmes, Andrew; Yang, Rebecca J; Lesch, Klaus-Peter; Crawley, Jacqueline N; Murphy, Dennis L

    2003-12-01

    The serotonin transporter (5-HTT) regulates serotonergic neurotransmission via clearance of extracellular serotonin. Abnormalities in 5-HTT expression or function are found in mood and anxiety disorders, and the 5-HTT is a major target for antidepressants and anxiolytics. The 5-HTT is further implicated in the pathophysiology of these disorders by evidence that genetic variation in the promoter region of the HTT (SLC6A4) is associated with individual differences in anxiety and neural responses to fear. To further evaluate the role of the 5-HTT in anxiety, we employed a mouse model in which the 5-HTT gene (htt) was constitutively inactivated. 5-HTT -/- mice were characterized for anxiety-related behaviors using a battery of tests (elevated plus maze, lightdark exploration test, emergence test, and open field test). Male and female 5-HTT -/- mice showed robust phenotypic abnormalities as compared to +/+ littermates, suggestive of increased anxiety-like behavior and inhibited exploratory locomotion. The selective 5-HT(1A) receptor antagonist, WAY 100635 (0.05-0.3 mg/kg), produced a significant anxiolytic-like effect in the elevated plus maze in 5-HTT -/- mice, but not +/+ controls. The present findings demonstrate abnormal behavioral phenotypes in 5-HTT null mutant mice in tests for anxiety-like and exploratory behavior, and suggest a role for the 5-HT(1A) receptor in mediating these abnormalities. 5-HTT null mutant mice provide a model to investigate the role of the 5-HTT in mood and anxiety disorders.

  18. In vivo evaluation in rodents of [{sup 123}I]-3-I-CO as a potential SPECT tracer for the serotonin 5-HT{sub 2A} receptor

    Energy Technology Data Exchange (ETDEWEB)

    Blanckaert, Peter B.M. [Laboratory for Radiopharmacy, Ghent University, B-9000 Ghent (Belgium)], E-mail: peter.blanckaert@hotmail.com; Burvenich, Ingrid; Wyffels, Leonie; Bruyne, Sylvie de; Moerman, Lieselotte; Vos, Filip de [Laboratory for Radiopharmacy, Ghent University, B-9000 Ghent (Belgium)

    2008-11-15

    Introduction: [{sup 123}I]-(4-fluorophenyl)[1-(3-iodophenethyl)piperidin-4-yl]methanone ([{sup 123}I]-3-I-CO) is a potential single photon emission computed tomography tracer with high affinity for the serotonin 5-HT{sub 2A} receptor (K{sub i}=0.51 nM) and good selectivity over other receptor (sub)types. To determine the potential of the radioligand as a 5-HT{sub 2A} tracer, regional brain biodistribution and displacement studies will be performed. The influence of P-glycoprotein blocking on the brain uptake of the radioligand will also be investigated. Methods: A regional brain biodistribution study and a displacement study with ketanserin were performed with [{sup 123}I]-3-I-CO. Also, the influence of cyclosporin A (50 mg/kg) on the brain distribution of the radioligand was investigated. For the displacement study, ketanserin (1 mg/kg) was administered 30 min after injection of [{sup 123}I]-3-I-CO. Results: The initial brain uptake of [{sup 123}I]-3-I-CO was quite high, but a rapid wash-out of radioactivity was observed. Cortex-to-cerebellum binding index ratios were low (1.1 - 1.7), indicating considerable aspecific binding and a low specific 'signal' of the radioligand. Tracer uptake was reduced to the levels in cerebellum (a 60% reduction) after ketanserin displacement. Administration of cyclosporin A resulted in a doubling of the brain radioactivity concentration. Conclusions: Although [{sup 123}I]-3-I-CO showed adequate brain uptake and could be displaced by ketanserin, high aspecific binding to brain tissue was responsible for very low cortex-to-cerebellum binding index ratios, possibly limiting the potential of the radioligand as a serotonin 5-HT{sub 2A} receptor tracer. We also demonstrated that [{sup 123}I]-3-I-CO is probably a weak substrate for the P-glycoprotein efflux transporter.

  19. Acute iboga alkaloid effects on extracellular serotonin (5-HT) levels in nucleus accumbens and striatum in rats.

    Science.gov (United States)

    Wei, D; Maisonneuve, I M; Kuehne, M E; Glick, S D

    1998-08-03

    The iboga alkaloid, ibogaine, its metabolite, noribogaine, and the congener, 18-methoxycoronaridine (18-MC) have all been claimed to have anti-addictive properties in animal models, but the mechanisms underlying these effects are unclear. Ibogaine and noribogaine were shown to have affinity for the serotonin transporter, and inhibition of serotonin reuptake has been proposed to be involved in their anti-addictive actions. It is not known yet if 18-MC also has this property. In vivo microdialysis and HPLC (microbore) were used to determine acute changes in extracellular serotonin levels in nucleus accumbens (NAC) and striatum (STR) after both i.p. (40 mg/kg for all drugs) and i.v. (1-10 mg/kg for ibogaine and noribogaine) drug administration in awake freely moving female Sprague-Dawley rats (250-275 g). After i.p. administration, ibogaine, noribogaine and 18-MC had very different effects on extracellular serotonin levels in both NAC and STR: ibogaine elicited large increases (up to 25-fold in NAC and 10- fold in STR), noribogaine produced moderate increases (up to 8-fold in NAC and 5-fold in STR), and 18-MC had no effect in either brain region. These and other data suggest that (1) the serotonergic system may not be an essential factor in the anti-addictive actions of these drugs; (2) ibogaine (or an unidentified metabolite) may release serotonin as well as inhibit its reuptake; (3) stimulation of the ascending serotonergic system may mediate ibogaine's hallucinogenic effect; and (4) 18-MC probably has no affinity for the serotonin transporter, and is unlikely to be a hallucinogen.

  20. Expression of the 5-HT1A serotonin receptor in the hippocampus is required for social stress resilience and the antidepressant-like effects induced by the nicotinic partial agonist cytisine.

    Science.gov (United States)

    Mineur, Yann S; Einstein, Emily B; Bentham, Matthew P; Wigestrand, Mattis B; Blakeman, Sam; Newbold, Sylvia A; Picciotto, Marina R

    2015-03-01

    Nicotinic acetylcholine receptor (nAChR) blockers potentiate the effects of selective serotonin reuptake inhibitors (SSRIs) in some treatment-resistant patients; however, it is not known whether these effects are independent, or whether the two neurotransmitter systems act synergistically. We first determined that the SSRI fluoxetine and the nicotinic partial agonist cytisine have synergistic effects in a mouse model of antidepressant efficacy, whereas serotonin depletion blocked the effects of cytisine. Using a pharmacological approach, we found that the 5-HT1A agonist 8-OH-DPAT also potentiated the antidepressant-like effects of cytisine, suggesting that this subtype might mediate the interaction between the serotonergic and cholinergic systems. The 5-HT1A receptors are located both presynaptically and postsynaptically. We therefore knocked down 5-HT1A receptors in either the dorsal raphe (presynaptic autoreceptors) or the hippocampus (a brain area with high expression of 5-HT1A heteroreceptors sensitive to cholinergic effects on affective behaviors). Knockdown of 5-HT1A receptors in hippocampus, but not dorsal raphe, significantly decreased the antidepressant-like effect of cytisine. This study suggests that serotonin signaling through postsynaptic 5-HT1A receptors in the hippocampus is critical for the antidepressant-like effects of a cholinergic drug and begins to elucidate the molecular mechanisms underlying interactions between the serotonergic and cholinergic systems related to mood disorders.

  1. Expression of the 5-HT1A Serotonin Receptor in the Hippocampus Is Required for Social Stress Resilience and the Antidepressant-Like Effects Induced by the Nicotinic Partial Agonist Cytisine

    Science.gov (United States)

    Mineur, Yann S; Einstein, Emily B; Bentham, Matthew P; Wigestrand, Mattis B; Blakeman, Sam; Newbold, Sylvia A; Picciotto, Marina R

    2015-01-01

    Nicotinic acetylcholine receptor (nAChR) blockers potentiate the effects of selective serotonin reuptake inhibitors (SSRIs) in some treatment-resistant patients; however, it is not known whether these effects are independent, or whether the two neurotransmitter systems act synergistically. We first determined that the SSRI fluoxetine and the nicotinic partial agonist cytisine have synergistic effects in a mouse model of antidepressant efficacy, whereas serotonin depletion blocked the effects of cytisine. Using a pharmacological approach, we found that the 5-HT1A agonist 8-OH-DPAT also potentiated the antidepressant-like effects of cytisine, suggesting that this subtype might mediate the interaction between the serotonergic and cholinergic systems. The 5-HT1A receptors are located both presynaptically and postsynaptically. We therefore knocked down 5-HT1A receptors in either the dorsal raphe (presynaptic autoreceptors) or the hippocampus (a brain area with high expression of 5-HT1A heteroreceptors sensitive to cholinergic effects on affective behaviors). Knockdown of 5-HT1A receptors in hippocampus, but not dorsal raphe, significantly decreased the antidepressant-like effect of cytisine. This study suggests that serotonin signaling through postsynaptic 5-HT1A receptors in the hippocampus is critical for the antidepressant-like effects of a cholinergic drug and begins to elucidate the molecular mechanisms underlying interactions between the serotonergic and cholinergic systems related to mood disorders. PMID:25288485

  2. Antagonism of 5-HT1A receptors uncovers an excitatory effect of SSRIs on 5-HT neuronal activity, an action probably mediated by 5-HT7 receptors

    NARCIS (Netherlands)

    Bosker, Fokko J.; Folgering, Joost H. A.; Gladkevich, Anatoliy V.; Schmidt, Anne; van der Hart, Marieke C. G.; Sprouse, Jeffrey; den Boer, Johan A.; Westerink, Ben H. C.; Cremers, Thomas I. F. H.

    2009-01-01

    Both microdialysis and electrophysiology were used to investigate whether another serotonin (5-HT) receptor subtype next to the 5-HT1A autoreceptor is involved in the acute effects of a selective serotonin reuptake inhibitor on 5-HT neuronal activity. On the basis of a previous study, we decided to

  3. Pharmacokinetics and brain distribution in non human primate of R(-)[{sup 123}I]DOI, A 5HT{sub 2A/2C} serotonin agonist

    Energy Technology Data Exchange (ETDEWEB)

    Zea-Ponce, Yolanda E-mail: zea-ponce@univ-tours.fr; Kegeles, Lawrence S.; Guo, Ningning; Raskin, Leonid; Bakthavachalam, Venkatesalu; Laruelle, Marc

    2002-07-01

    Our goal was to synthesize with high specific activity R(-)-1-(2,5-Dimethoxy-4-[{sup 123}I]iodophenyl)-2-aminopropane [R(-)[{sup 123}I]DOI], an in vitro potent and selective 5-HT{sub 2A/2C} serotonin agonist, and study in vivo its plasma pharmacokinetics and brain distribution in baboon by SPECT. The purpose was to evaluate this radiotracer as a potential tool in discerning the role of the agonist high affinity state of 5-HT{sub 2} receptors in depression and other neurological disorders. The radiotracer was prepared by electrophilic radioiodination of the N-trifluoroacetyl precursor of R(-)-1-(2,5-Dimethoxyphenyl)-2-aminopropane [R(-)DMA-TFA] with high-purity sodium [{sup 123}I]iodide in the presence of chloramine-T, followed by amino deprotection with KOH in isopropanol (labeling yield: 73%, radiochemical yield: 62%, radiochemical purity: 99%). In vivo studies in baboon showed high accumulation of radioactivity in thalamus, the frontoparietal cortex, temporal, occipital and the striatum regions, with slightly lower accumulation in the midbrain and cerebellum. Ketanserin did not displaced the radioactivity in any of these brain regions. Plasma metabolite analysis was performed using methanol protein precipitation, the methanol fractions contained from 68% to 92% of the mixture of a labeled metabolite and parent compound. The recovery coefficient of unmetabolized R(-)[{sup 123}I]DOI was 68%. The percent parent compound present in the extracted fraction, measured by HPLC, decreased gradually with time from 99.8% to 0.3% still present after 4.7 hours post injection whereas the percentage of the only one detected metabolite increased conversely. Free fraction determination (f{sub 1}), was 31{+-}0.9% (n=3). For comparison purposes, ex-vivo brain distribution, displacement and metabolite analysis was also carried out in rodents. Although R(-)[{sup 123}I]DOI displayed good brain uptake and localized in serotonergic areas of the brain, its target to non target ratio and

  4. Food intake inhibition in rainbow trout induced by activation of serotonin 5-HT2C receptors is associated with increases in POMC, CART and CRF mRNA abundance in hypothalamus.

    Science.gov (United States)

    Pérez-Maceira, Jorge J; Otero-Rodiño, Cristina; Mancebo, María J; Soengas, José L; Aldegunde, Manuel

    2016-04-01

    In rainbow trout, the food intake inhibition induced by serotonin occurs through 5-HT2C and 5-HT1A receptors, though the mechanisms involved are still unknown. Therefore, we assessed if a direct stimulation of 5-HT2C and 5-HT1A serotonin receptors (resulting in decreased food intake in rainbow trout), affects gene expression of neuropeptides involved in the control of food intake, such as pro-opiomelanocortin (POMC), cocaine- and amphetamine-regulated transcript (CART), corticotrophin releasing factor (CRF), and agouti-related peptide (AgRP). In a first set of experiments, the injection of the 5-HT2C receptor agonists MK212 (60 μg kg(-1) icv) and WAY 161503 (1 mg kg(-1) ip), and of the 5-HT1A receptor agonist 8-OH-DPAT (1 mg kg(-1) ip and 30 μg kg(-1) icv) induced food intake inhibition. In a second set of experiments, we observed that the injection of MK212 or WAY 161503 (1 and 3 mg kg(-1)) significantly increased hypothalamic POMC mRNA abundance. CART mRNA abundance in hypothalamus was enhanced by treatment with MK212 and unaffected by WAY 161503. The administration of the 5-HT1A receptor agonist 8-OH-DPAT did not induce any significant variation in the hypothalamic POMC or CART mRNA levels. CRF mRNA abundance was only affected by MK212 that increased hypothalamic values. Finally, hypothalamic AgRP mRNA abundance was only evaluated with the agonist 5-HT2C MK212 resulting in no significant effects. The results show that the reduction in food intake mediated by 5-HT2C receptors is associated with increases in hypothalamic POMC, CART and CRF mRNA abundance.

  5. Effect of Jin-3-Needling Therapy on Plasma Corticosteroid, Adrenocorticotrophic Hormone and Platelet 5-HT Levels in Patients with Generalized Anxiety Disorder

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Objective:To observe the therapeutic efficacy of Jin-3-needling therapy(J3N)on generalized anxiety disorder(GAD)through clinical global impression scale(CGI),and to explore the mechanism by measuring the plasma levels of corticosteroid(CS),adrenocorticotrophic hormone (ACTH),and platelet 5-hydroxytryptamine(5-HT)before and after treatment.Methods:Eightysix GAD patients with the diagnosis agreeing with the inclusion criteria were assigned,according to the sequence of visiting time,to three groups.The 29 patients in the Western medicine group were treated mainly with fluoxetine or paroxetine,Alprazolam might be given additionally in severe conditions if necessary;the 29 patients in the needling group received J3N therapy with Sishenzhen,Dingshenzhen,Neiguan(PC6),Shenmen(HT7)and Sanyinjiao(SP6)as the chief acupoints selected;and the 28 patients in the combined treatment group were treated with both drugs and needling in the same way as applied in the above two groups.The therapeutic course for all was 6weeks.Conditions of patients were evaluated before and after treatment with CGI,and levels of CS,ACTH as well as 5-HT were measured by high performance liquid chromatography-electrochemistry.Results:By CGI scoring,the scores of severity index and the general index were not different significantly in the three groups,but the efficacy index proved to be the highest in the needling group,the second in the combined trentment group,and the lowest in the drug group.Plasma level of ACTH and platelet content of 5-HT were lowered in all the three groups after treatment,showing statistical significance(P<0.05),but no significant change was found in CS level(P>0.05).Conclusion:The therapeutic efficacy of J3N in treating GAD is equivalent to,but with the efficacy index significantly higher than,that of conventional treatment.Moreover,when combined with drugs,needling might effectively prevent the side effect of the routinely used Western drugs.The regulatory action of needling

  6. [5-HT1A/5-HT7 receptor interplay: Chronic activation of 5-HT7 receptors decreases the functional activity of 5-HT1A receptor and its сontent in the mouse brain].

    Science.gov (United States)

    Kondaurova, E M; Bazovkina, D V; Naumenko, V S

    2017-01-01

    Serotonin receptors 5-HT1A and 5-HT7 are involved in the development of various psychopathologies. Some data indicate that there is an interplay between 5-HT1A 5-HT7 receptors that could be implicated in the regulation of their function. This work analyzed the effects of chronic 5-HT7 activation on the functional activity of 5-HT7 and 5-HT1A receptors, on the corresponding protein levels, and on the expression of genes encoding 5-HT7 and 5-HT1A receptors in the mouse brain. Chronic administration of the 5-HT7 selective agonist LP44 (20.5 nmol, i.c.v., 14 days) produced considerable desensitization of both 5-HT7 and 5-HT1A receptors. In LP44-treated mice, the hypothermic responses mediated by both 5-HT7 and 5-HT1A receptors were attenuated. Moreover, the levels of 5-HT1A receptor protein in the midbrain and the frontal cortex of LP44-treated mice were significantly decreased. However, the brain levels of 5-HT7 receptor protein did not differ between LP44-treated and control mice. Chronic LP44 treatment did not alter the expression of the 5-HT7 and 5-HT1A receptor genes in all investigated brain structure. These data suggest that 5-HT7 receptors participate in the posttranscriptional regulation of the 5-HT1A receptors functioning.

  7. Evaluation of the abuse potential of lorcaserin, a serotonin 2C (5-HT2C) receptor agonist, in recreational polydrug users.

    Science.gov (United States)

    Shram, M J; Schoedel, K A; Bartlett, C; Shazer, R L; Anderson, C M; Sellers, E M

    2011-05-01

    Lorcaserin is a selective and potent serotonin 2C receptor subtype (5-HT(2C)) agonist under development for the treatment of obesity. This study assessed the drug's abuse potential on the basis of its pharmacological profile. For this purpose, a double-blind, double-dummy, placebo-controlled, randomized seven-way crossover study with single oral doses of lorcaserin (20, 40, and 60 mg), zolpidem (15 and 30 mg), ketamine (100 mg), and placebo was conducted in recreational polydrug users (N = 35). Subjective and objective measures were assessed up to 24 h after the dose. We found that zolpidem and ketamine had significantly higher peak scores relative to placebo on the primary measures as well as on most of the secondary measures. The subjective effects of a 20-mg dose of lorcaserin were similar to those of placebo, whereas supratherapeutic doses of lorcaserin were associated with significant levels of dislike by users as compared with placebo, zolpidem, and ketamine. Perceptual effects were minimal after administration of lorcaserin and significantly lower than after administration of either ketamine or zolpidem. The findings suggest that, at supratherapeutic doses, lorcaserin is associated with distinct, primarily negative, subjective effects and has low abuse potential.

  8. Control of Amygdala Circuits by 5-HT Neurons via 5-HT and Glutamate Cotransmission.

    Science.gov (United States)

    Sengupta, Ayesha; Bocchio, Marco; Bannerman, David M; Sharp, Trevor; Capogna, Marco

    2017-02-15

    The serotonin (5-HT) system and the amygdala are key regulators of emotional behavior. Several lines of evidence suggest that 5-HT transmission in the amygdala is implicated in the susceptibility and drug treatment of mood disorders. Therefore, elucidating the physiological mechanisms through which midbrain 5-HT neurons modulate amygdala circuits could be pivotal in understanding emotional regulation in health and disease. To shed light on these mechanisms, we performed patch-clamp recordings from basal amygdala (BA) neurons in brain slices from mice with channelrhodopsin genetically targeted to 5-HT neurons. Optical stimulation of 5-HT terminals at low frequencies (≤1 Hz) evoked a short-latency excitation of BA interneurons (INs) that was depressed at higher frequencies. Pharmacological analysis revealed that this effect was mediated by glutamate and not 5-HT because it was abolished by ionotropic glutamate receptor antagonists. Optical stimulation of 5-HT terminals at higher frequencies (10-20 Hz) evoked both slow excitation and slow inhibition of INs. These effects were mediated by 5-HT because they were blocked by antagonists of 5-HT2A and 5-HT1A receptors, respectively. These fast glutamate- and slow 5-HT-mediated responses often coexisted in the same neuron. Interestingly, fast-spiking and non-fast-spiking INs displayed differential modulation by glutamate and 5-HT. Furthermore, optical stimulation of 5-HT terminals did not evoke glutamate release onto BA principal neurons, but inhibited these cells directly via activation of 5-HT1A receptors and indirectly via enhanced GABA release. Collectively, these findings suggest that 5-HT neurons exert a frequency-dependent, cell-type-specific control over BA circuitry via 5-HT and glutamate co-release to inhibit the BA output.SIGNIFICANCE STATEMENT The modulation of the amygdala by serotonin (5-HT) is important for emotional regulation and is implicated in the pathogenesis and treatment of affective disorders

  9. Investigation of 5-HT3 receptor-triggered serotonin release from guinea-pig isolated colonic mucosa: a role of PYY-containing endocrine cell.

    Science.gov (United States)

    Kojima, Shu-Ichi; Kojima, Ken; Fujita, Tomoe

    2017-03-15

    The effect of a 5-HT3 receptor-selective agonist SR57227A was investigated on the outflow of 5-hydroxytryptamine (5-HT) from isolated muscle layer-free mucosal preparations of guinea-pig colon. The mucosal preparations were incubated in vitro and the outflow of 5-HT from these preparations was determined by high-performance liquid chromatography with electrochemical detection. SR57227A (100μM) produced a tetrodotoxin-resistant and sustained increase in the outflow of 5-HT from the mucosal preparations. The SR57227A-evoked sustained 5-HT outflow was completely inhibited by the 5-HT3 receptor antagonist ramosetron (1μM). The neuropeptide Y1 receptor antagonist BIBO3304 (100nM) partially inhibited the SR57227A-evoked sustained 5-HT outflow, but the Y2 receptor antagonist BIIE0246 (1μM) or the glucagon-like peptide-1 (GLP-1) receptor antagonist exendin-(9-39) (1μM), showed a minimal effect on the SR57227A-evoked sustained 5-HT outflow. In the presence of BIBO3304 (100nM) and exendin-(9-39) (1μM), SR57227A (100μM) failed to produce a sustained increase in the outflow of 5-HT. The Y1 receptor agonist [Leu(31), Pro(34)]-neuropeptide Y (10nM), but not GLP-1-(7-36) amide (100nM), produced a sustained increase in the outflow of 5-HT. We found that 5-HT3 receptor-triggered 5-HT release from guinea-pig colonic mucosa is mediated by the activation of 5-HT3 receptors located at endocrine cells (enterochromaffin cells and peptide YY (PYY)-containing endocrine cells). The activation of both Y1 and GLP-1 receptors appears to be required for the maintenance of 5-HT3 receptor-triggered 5-HT release. It is therefore considered that 5-HT3 receptors located at colonic mucosa play a crucial role in paracrine signaling between enterochromaffin cells and PYY-containing endocrine cells.

  10. Novel agonists for serotonin 5-HT7 receptors reverse metabotropic glutamate receptor-mediated long-term depression in the hippocampus of wild-type and Fmr1 KO mice, a model of Fragile X Syndrome

    Directory of Open Access Journals (Sweden)

    Lara eCosta

    2015-03-01

    Full Text Available Serotonin 5-HT7 receptors are expressed in the hippocampus and modulate the excitability of hippocampal neurons. We have previously shown that 5-HT7 receptors modulate glutamate-mediated hippocampal synaptic transmission and long-term synaptic plasticity. In particular, we have shown that activation of 5-HT7 receptors reversed metabotropic glutamate receptor-mediated long-term depression (mGluR-LTD in wild-type (wt and in Fmr1 KO mice, a mouse model of Fragile X syndrome in which mGluR-LTD is abnormally enhanced, suggesting that 5-HT7 receptor agonists might be envisaged as a novel therapeutic strategy for Fragile X syndrome. In this perspective, we have characterized the basic in vitro pharmacokinetic properties of novel molecules with high binding affinity and selectivity for 5-HT7 receptors and we have tested their effects on synaptic plasticity using patch clamp on acute hippocampal slices.Here we show that LP-211, a high affinity selective agonist of 5-HT7 receptors, reverses mGluR-LTD in wt and Fmr1 KO mice, correcting a synaptic malfunction in the mouse model of Fragile X syndrome. Among novel putative agonists of 5-HT7 receptors, the compound BA-10 displayed improved affinity and selectivity for 5-HT7 receptors and improved in vitro pharmacokinetic properties with respect to LP-211. BA-10 significantly reversed mGluR-LTD in the CA3-CA1 synapse in wt and Fmr1KO mice, indicating that BA-10 behaved as a highly effective agonist of 5-HT7 receptors and reduced exaggerated mGluR-LTD in a mouse model of Fragile X Syndrome. On the other side, the compounds RA-7 and PM-20, respectively arising from in vivo metabolism of LP-211 and BA-10, had no effect on mGluR-LTD thus did not behave as agonists of 5-HT7 receptors in our conditions.The present results provide information about the structure-activity relationship of novel 5-HT7 receptor agonists and indicate that LP-211 and BA-10 might be used as novel pharmacological tools for the therapy of

  11. Novel agonists for serotonin 5-HT7 receptors reverse metabotropic glutamate receptor-mediated long-term depression in the hippocampus of wild-type and Fmr1 KO mice, a model of Fragile X Syndrome.

    Science.gov (United States)

    Costa, Lara; Sardone, Lara M; Lacivita, Enza; Leopoldo, Marcello; Ciranna, Lucia

    2015-01-01

    Serotonin 5-HT7 receptors are expressed in the hippocampus and modulate the excitability of hippocampal neurons. We have previously shown that 5-HT7 receptors modulate glutamate-mediated hippocampal synaptic transmission and long-term synaptic plasticity. In particular, we have shown that activation of 5-HT7 receptors reversed metabotropic glutamate receptor-mediated long-term depression (mGluR-LTD) in wild-type (wt) and in Fmr1 KO mice, a mouse model of Fragile X Syndrome in which mGluR-LTD is abnormally enhanced, suggesting that 5-HT7 receptor agonists might be envisaged as a novel therapeutic strategy for Fragile X Syndrome. In this perspective, we have characterized the basic in vitro pharmacokinetic properties of novel molecules with high binding affinity and selectivity for 5-HT7 receptors and we have tested their effects on synaptic plasticity using patch clamp on acute hippocampal slices. Here we show that LP-211, a high affinity selective agonist of 5-HT7 receptors, reverses mGluR-LTD in wt and Fmr1 KO mice, correcting a synaptic malfunction in the mouse model of Fragile X Syndrome. Among novel putative agonists of 5-HT7 receptors, the compound BA-10 displayed improved affinity and selectivity for 5-HT7 receptors and improved in vitro pharmacokinetic properties with respect to LP-211. BA-10 significantly reversed mGluR-LTD in the CA3-CA1 synapse in wt and Fmr1KO mice, indicating that BA-10 behaved as a highly effective agonist of 5-HT7 receptors and reduced exaggerated mGluR-LTD in a mouse model of Fragile X Syndrome. On the other side, the compounds RA-7 and PM-20, respectively arising from in vivo metabolism of LP-211 and BA-10, had no effect on mGluR-LTD thus did not behave as agonists of 5-HT7 receptors in our conditions. The present results provide information about the structure-activity relationship of novel 5-HT7 receptor agonists and indicate that LP-211 and BA-10 might be used as novel pharmacological tools for the therapy of Fragile X Syndrome.

  12. Alpha-smooth muscle actin and serotonin receptors 2A and 2B in dogs with myxomatous mitral valve disease

    DEFF Research Database (Denmark)

    Cremer, Signe Emilie; Moesgaard, S. G.; Rasmussen, C. E.

    2015-01-01

    Canine Myxomatous mitral valve disease (MMVD) is an age-related disease. Serotonin (5-HT) is implicated in the pathogenesis as locally-produced or platelet-derived. Involvement of the 5-HT2A receptor (R) and 5-HT2BR in the induction of myxomatous-mediating valvular myofibroblasts (MF) has been su...... a functional relationship, perhaps perpetuation of clinical MMVD. 5-HT2AR-expression and serum 5-HT showed no differences between groups....

  13. Vortioxetine, but not escitalopram or duloxetine, reverses memory impairment induced by central 5-HT depletion in rats: evidence for direct 5-HT receptor modulation

    DEFF Research Database (Denmark)

    Jensen, Jesper Bornø; du Jardin, Kristian Gaarn; Song, Dekun

    2014-01-01

    Depressed patients suffer from cognitive dysfunction, including memory deficits. Acute serotonin (5-HT) depletion impairs memory and mood in vulnerable patients. The investigational multimodal acting antidepressant vortioxetine is a 5-HT3, 5-HT7 and 5-HT1D receptor antagonist, 5-HT1B receptor par...

  14. Plasma and platelet serotonin levels in patients with liver cirrhosis

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    AIM: To analyze the relationship between plasmaand platelet serotonin levels and the degree of liverinsufficiency.METHODS: The prospective study included 30 patients with liver cirrhosis and 30 healthy controls. The degree of liver failure was assessed according to the Child-Pugh classification. Platelet and platelet poor plasma serotonin levels were determined.RESULTS: The mean plasma serotonin level was higher in liver cirrhosis patients than in healthy subjects (215.0± 26.1 vs 63.1 ± 18.1 nmol/L; P < 0.0001). The mean platelet serotonin content was not significantly different in patients with liver cirrhosis compared with healthy individuals (4.8 ± 0.6; 4.2 ± 0.3 nmol/platelet; P > 0.05).Plasma serotonin levels were significantly higher in ChildPugh grade A/B than in grade C patients (246.8 ± 35.0vs132.3 ± 30.7 nmol/L; P < 0.05). However, platelet serotonin content was not significantly different between Child-Pugh grade C and grade A/B (4.6 ± 0.7 vs 5.2 ± 0.8nmol/platelet; P > 0.05).CONCLUSION: Plasma serotonin levels are significantly higher in patients with cirrhosis than in the controls and represent the degree of liver insufficiency. In addition,platelet poor plasma serotonin estimation is a better marker for liver insufficiency than platelet serotonin content.

  15. Structural modifications of the serotonin 5-HT7 receptor agonist N-(4-cyanophenylmethyl)-4-(2-biphenyl)-1-piperazinehexanamide (LP-211) to improve in vitro microsomal stability: A case study.

    Science.gov (United States)

    Lacivita, Enza; Podlewska, Sabina; Speranza, Luisa; Niso, Mauro; Satała, Grzegorz; Perrone, Roberto; Perrone-Capano, Carla; Bojarski, Andrzej J; Leopoldo, Marcello

    2016-09-14

    The 5-HT7 serotonin receptor is revealing a promising target for innovative therapeutic strategies of neurodevelopmental and neuropsychiatric disorders. Here, we report the synthesis of thirty long-chain arylpiperazine analogs of the selective and brain penetrant 5-HT7 receptor agonist LP-211 (1) designed to enhance stability towards microsomal oxidative metabolism. Commonly used medicinal chemistry strategies were used (i.e., reduction of overall lipophilicity, introduction of electron-withdrawing groups, blocking of potential vulnerable sites of metabolism), and in vitro microsomal stability was tested. The data showed that the adopted design strategy does not directly translate into improvements in stability. Instead, the metabolic stability of the compounds was related to the presence of specific substituents in well-defined regions of the molecule. The collected data allowed for the construction of a machine learning model that, in a given chemical space, is able to describe and quantitatively predict the metabolic stability of the compounds. The majority of the synthesized compounds maintained high affinity for 5-HT7 receptors and showed selectivity towards 5-HT6 and dopamine D2 receptors and different selectivity for 5-HT1A and α1 adrenergic receptors. Compound 50 showed 3-fold higher in vitro stability towards oxidative metabolism than 1 and was able to stimulate neurite outgrowth in neuronal primary cultures through the 5-HT7 receptor in a shorter time and at a lower concentration than the agonist 1. A preliminary disposition study in mice revealed that compound 50 was metabolically stable and was able to pass the blood-brain barrier, thus representing a new tool for studying the pharmacotherapeutic potential of 5-HT7 receptor in vivo.

  16. Linoleic acid derivative DCP-LA ameliorates stress-induced depression-related behavior by promoting cell surface 5-HT1A receptor translocation, stimulating serotonin release, and inactivating GSK-3β.

    Science.gov (United States)

    Kanno, Takeshi; Tanaka, Akito; Nishizaki, Tomoyuki

    2015-04-01

    Impairment of serotonergic neurotransmission is the major factor responsible for depression and glycogen synthase kinase 3β (GSK-3β) participates in serotonergic transmission-mediated signaling networks relevant to mental illnesses. In the forced-swim test to assess depression-like behavior, the immobility time for mice with restraint stress was significantly longer than that for nonstressed control mice. Postsynaptic cell surface localization of 5-HT1A receptor, but not 5-HT2A receptor, in the hypothalamus for mice with restraint stress was significantly reduced as compared with that for control mice, which highly correlated to prolonged immobility time, i.e., depression-like behavior. The linoleic acid derivative 8-[2-(2-pentyl-cyclopropylmethyl)-cyclopropyl]-octanoic acid (DCP-LA) restored restraint stress-induced reduction of cell surface 5-HT1A receptor and improved depression-like behavior in mice with restraint stress. Moreover, DCP-LA stimulated serotonin release from hypothalamic slices and cancelled restraint stress-induced reduction of GSK-3β phosphorylation at Ser9. Taken together, the results of the present study indicate that DCP-LA could ameliorate depression-like behavior by promoting translocation of 5-HT1A receptor to the plasma membrane on postsynaptic cells, stimulating serotonin release, and inactivating GSK-3β.

  17. Active cyamemazine metabolites in patients treated with cyamemazine (Tercian®): influence on cerebral dopamine D2 and serotonin 5-HT (2A) receptor occupancy as measured by positron emission tomography (PET).

    Science.gov (United States)

    Hodé, Yann; Benyamina, Amine; Arbus, Christophe; Reimold, Matthias

    2011-10-01

    Cyamemazine (Tercian®) is an antipsychotic agent blocking central dopamine D(2) receptors, which induces few extrapyramidal adverse effects, due to a potent antagonistic action at serotonin 5-HT(2A) receptors. In vitro studies showed that the desmethyl metabolite of cyamemazine (N-desmethyl cyamemazine) has similar affinity for 5-HT(2A) receptors as cyamemazine, whereas its D(2) receptor affinity is eight times lower (Benyamina et al. in Eur J Pharmacol 578(2-3):142-147, 2008). Moreover, cyamemazine sulfoxide showed modest affinity for 5-HT(2A) receptors. The objective of this study is to measure steady-state plasma levels of N-desmethyl cyamemazine and cyamemazine sulfoxide in patients treated with clinically relevant doses of cyamemazine and correlate them with dopamine D(2) and serotonin 5-HT(2A) receptor occupancies (RO) assessed by positron emission tomography (PET). Eight patients received Tercian® 37.5, 75, 150, or 300 mg/day according to their symptoms. Dopamine D(2) and serotonin 5-HT(2A) RO were assessed at steady-state cyamemazine plasma levels using [(11)C]raclopride and [(11)C]N-methyl-spiperone, respectively, for PET. Plasma levels of cyamemazine metabolites were determined using a validated high-performance liquid chromatography (PerkinElmer) associated with a mass spectrometry detection (API 365, PE SCIEX). The apparent equilibrium inhibition constant (K (i)) was estimated by fitting RO with plasma levels of cyamemazine metabolites at the time of the PET scan. After 6 days of cyamemazine administration, plasma N-desmethyl cyamemazine reached steady-state levels at 2 to 12 times higher than those previously found for cyamemazine (Hode et al. in Psychopharmacology (Berl) 180:377-384, 2005). Plasma levels of N-desmethyl cyamemazine were closely related to striatal D(2) RO (r (2) = 0.942) and extrastriatal 5-HT(2A) RO (r (2) = 0.901). The estimated K (i(app)) value of N-desmethyl cyamemazine for striatal D(2) receptors was about fivefold

  18. Downregulation of 5-HT7 Serotonin Receptors by the Atypical Antipsychotics Clozapine and Olanzapine. Role of Motifs in the C-Terminal Domain and Interaction with GASP-1

    DEFF Research Database (Denmark)

    Manfra, Ornella; Van Craenenbroeck, Kathleen; Skieterska, Kamila

    2015-01-01

    -mediated degradation of 5-HT7 receptors and also interfered with G protein activation. In addition, we tested whether receptor degradation was mediated by the GPCR-associated sorting protein-1 (GASP-1). We show that GASP-1 binds the 5-HT7 receptor and regulates the clozapine-mediated degradation. Mutations...... of the identified motifs and residues, located in or close to Helix-VIII of the 5-HT7 receptor, modified antipsychotic-stimulated binding of proteins (such as GASP-1), possibly by altering the flexibility of Helix-VIII, and also interfered with G protein activation. Taken together, our data demonstrate that binding...... of clozapine or olanzapine to the 5-HT7 receptor leads to antagonist-mediated lysosomal degradation by exposing key residues in the C-terminal tail that interact with GASP-1....

  19. Cognitive Impairment Induced by Delta9-tetrahydrocannabinol Occurs through Heteromers between Cannabinoid CB1 and Serotonin 5-HT2A Receptors.

    Science.gov (United States)

    Viñals, Xavier; Moreno, Estefanía; Lanfumey, Laurence; Cordomí, Arnau; Pastor, Antoni; de La Torre, Rafael; Gasperini, Paola; Navarro, Gemma; Howell, Lesley A; Pardo, Leonardo; Lluís, Carmen; Canela, Enric I; McCormick, Peter J; Maldonado, Rafael; Robledo, Patricia

    2015-07-01

    Activation of cannabinoid CB1 receptors (CB1R) by delta9-tetrahydrocannabinol (THC) produces a variety of negative effects with major consequences in cannabis users that constitute important drawbacks for the use of cannabinoids as therapeutic agents. For this reason, there is a tremendous medical interest in harnessing the beneficial effects of THC. Behavioral studies carried out in mice lacking 5-HT2A receptors (5-HT2AR) revealed a remarkable 5-HT2AR-dependent dissociation in the beneficial antinociceptive effects of THC and its detrimental amnesic properties. We found that specific effects of THC such as memory deficits, anxiolytic-like effects, and social interaction are under the control of 5-HT2AR, but its acute hypolocomotor, hypothermic, anxiogenic, and antinociceptive effects are not. In biochemical studies, we show that CB1R and 5-HT2AR form heteromers that are expressed and functionally active in specific brain regions involved in memory impairment. Remarkably, our functional data shows that costimulation of both receptors by agonists reduces cell signaling, antagonist binding to one receptor blocks signaling of the interacting receptor, and heteromer formation leads to a switch in G-protein coupling for 5-HT2AR from Gq to Gi proteins. Synthetic peptides with the sequence of transmembrane helices 5 and 6 of CB1R, fused to a cell-penetrating peptide, were able to disrupt receptor heteromerization in vivo, leading to a selective abrogation of memory impairments caused by exposure to THC. These data reveal a novel molecular mechanism for the functional interaction between CB1R and 5-HT2AR mediating cognitive impairment. CB1R-5-HT2AR heteromers are thus good targets to dissociate the cognitive deficits induced by THC from its beneficial antinociceptive properties.

  20. Cognitive Impairment Induced by Delta9-tetrahydrocannabinol Occurs through Heteromers between Cannabinoid CB1 and Serotonin 5-HT2A Receptors.

    Directory of Open Access Journals (Sweden)

    Xavier Viñals

    2015-07-01

    Full Text Available Activation of cannabinoid CB1 receptors (CB1R by delta9-tetrahydrocannabinol (THC produces a variety of negative effects with major consequences in cannabis users that constitute important drawbacks for the use of cannabinoids as therapeutic agents. For this reason, there is a tremendous medical interest in harnessing the beneficial effects of THC. Behavioral studies carried out in mice lacking 5-HT2A receptors (5-HT2AR revealed a remarkable 5-HT2AR-dependent dissociation in the beneficial antinociceptive effects of THC and its detrimental amnesic properties. We found that specific effects of THC such as memory deficits, anxiolytic-like effects, and social interaction are under the control of 5-HT2AR, but its acute hypolocomotor, hypothermic, anxiogenic, and antinociceptive effects are not. In biochemical studies, we show that CB1R and 5-HT2AR form heteromers that are expressed and functionally active in specific brain regions involved in memory impairment. Remarkably, our functional data shows that costimulation of both receptors by agonists reduces cell signaling, antagonist binding to one receptor blocks signaling of the interacting receptor, and heteromer formation leads to a switch in G-protein coupling for 5-HT2AR from Gq to Gi proteins. Synthetic peptides with the sequence of transmembrane helices 5 and 6 of CB1R, fused to a cell-penetrating peptide, were able to disrupt receptor heteromerization in vivo, leading to a selective abrogation of memory impairments caused by exposure to THC. These data reveal a novel molecular mechanism for the functional interaction between CB1R and 5-HT2AR mediating cognitive impairment. CB1R-5-HT2AR heteromers are thus good targets to dissociate the cognitive deficits induced by THC from its beneficial antinociceptive properties.

  1. Effect on the uptake kinetics of serotonin (5-hydroxytryptamine) in platelets from workers with long-term exposure to organic solvents. A pilot study

    Energy Technology Data Exchange (ETDEWEB)

    Beving, H.; Kristensson, J.; Malmgren, R.; Olsson, P.; Unge, G.

    1984-08-01

    Six workers from a paint industry were examined concerning the concentration of solvents in the breathing zone, the platelet count and kinetic uptake of serotonin (5-hydroxytryptamine (5-HT)), the serum concentration of calcium, potassium and sodium, and pH. The degree of exposure was found to be moderate. The results showed a decrease in platelet count in whole blood and platelet-rich plasma. The maximum uptake rate for serotonin in platelets (Vmax) was significantly increased compared to that of nonexposed subjects. No changes in the ionic concentration and pH of serum were observed. One worker was reexamined after a six-week period of nonexposure. Though the measured platelet variables were still aberrant, the values approached normal.

  2. The contribution of serotonin 5-HT2C and melanocortin-4 receptors to the satiety signaling of glucagon-like peptide 1 and liraglutide, a glucagon-like peptide 1 receptor agonist, in mice.

    Science.gov (United States)

    Nonogaki, Katsunori; Suzuki, Marina; Sanuki, Marin; Wakameda, Mamoru; Tamari, Tomohiro

    2011-07-29

    Glucagon-like peptide 1 (GLP-1), an insulinotropic gastrointestinal peptide produced mainly from intestinal endocrine L-cells, and liraglutide, a GLP-1 receptor (GLP-1R) agonist, induce satiety. The serotonin 5-HT2C receptor (5-HT2CR) and melanoroctin-4 receptor (MC4R) are involved in the regulation of food intake. Here we show that systemic administration of GLP-1 (50 and 200μg/kg)-induced anorexia was blunted in mice with a 5HT2CR null mutation, and was attenuated in mice with a heterozygous MC4R mutation. On the other hand, systemic administration of liraglutide (50 and 100μg/kg) suppressed food intake in mice lacking 5-HT2CR, mice with a heterozygous mutation of MC4R and wild-type mice matched for age. Moreover, once-daily consecutive intraperitoneal administration of liraglutide (100μg/kg) over 3days significantly suppressed daily food intake and body weight in mice with a heterozygous mutation of MC4R as well as wild-type mice. These findings suggest that GLP-1 and liraglutide induce anorexia via different central pathways.

  3. The effects of selective serotonin reuptake inhibitors on platelet function in whole blood and platelet concentrates.

    Science.gov (United States)

    Reikvam, Anne-Grete; Hustad, Steinar; Reikvam, Håkon; Apelseth, Torunn Oveland; Nepstad, Ina; Hervig, Tor Audun

    2012-01-01

    Several studies report that patients who are treated with selective serotonin reuptake inhibitors (SSRIs) for depression may have increased risk of bleeding, particularly from the gastrointestinal tract. This may be related to low intraplatelet serotonin concentrations. Several blood banks do not store platelets from donors using SSRIs for transfusion, although the possible effects of SSRIs on platelet storage are not documented. We conducted a case-control pilot study of apheresis platelet concentrates prepared from donors using SSRIs (n=8) and from donors without medication (n=10). The platelet concentrates were stored for 5 days. Light transmission aggregometry (LTA), thrombelastography (TEG), and flow cytometric analyses were preformed for in vitro measurements of platelet function. Platelet function and platelet serotonin content were investigated in whole blood and in platelet concentrates stored for up to 5 days. LTA, TEG, and flow cytometric analysis of glycoprotein expression did not reveal any significant differences between the two groups. All 18 platelet concentrates performed well according to the standards set for platelet quality in relation to transfusion. Blood donors using SSRIs had significantly lower platelet serotonin compared to blood donors without medication. The results from our pilot study indicate that platelets from donors using SSRIs may be suitable for transfusion after storage for 5 days, but further laboratory and clinical studies are necessary to confirm this.

  4. Effects of olanzapine and betahistine co-treatment on serotonin transporter, 5-HT2A and dopamine D2 receptor binding density.

    Science.gov (United States)

    Lian, Jiamei; Huang, Xu-Feng; Pai, Nagesh; Deng, Chao

    2013-12-02

    Olanzapine is widely used in treating multiple domains of schizophrenia symptoms but induces serious metabolic side-effects. Recent evidence has showed that co-treatment of betahistine (a histaminergic H1 receptor agonist and H3 receptor antagonist) is effective for preventing olanzapine-induced weight gain/obesity, however it is not clear whether this co-treatment affects on the primary therapeutic receptor binding sites of olanzapine such as serotonergic 5-HT2A receptors (5-HT2AR) and dopaminergic D2 receptors (D2R). Therefore, this study investigated the effects of this co-treatment on 5-HT2AR, 5-HT transporter (5-HTT) and D2R bindings in various brain regions involved in antipsychotic efficacy. Female Sprague Dawley rats were administered orally (t.i.d.) with either olanzapine (1mg/kg), betahistine (2.7 mg/kg), olanzapine plus betahistine (O+B), or vehicle (control) for 2 weeks. Quantitative autoradiography was used to detect the density of [(3)H]ketanserin, [(3)H]paroxetine and [(3)H]raclopride binding site to 5-HT2AR, 5-HTT and D2R. Compared to the controls, olanzapine significantly decreased [(3)H]ketanserin bindings to 5-HT2AR in the prefrontal cortex, cingulate cortex, and nucleus accumbens. Similar changes in 5-HT2AR bindings in these nuclei were also observed in the O+B co-treatment group. Olanzapine also significantly decreased [(3)H]paroxetine binding to 5-HTT in the ventral tegmental area and substantia nigra, however, both olanzapine only and O+B co-treatment did not affect [(3)H]raclopride binding to D2R. The results confirmed the important role of 5-HT2AR in the efficacy of olanzapine, which is not influenced by the O+B co-treatment. Therefore, betahistine co-treatment would be an effective combination therapy to reduce olanzapine-induced weight gain side-effects without affecting olanzapine's actions on 5-HT2AR transmissions.

  5. Memory time-course: mRNA 5-HT1A and 5-HT7 receptors.

    Science.gov (United States)

    Perez-Garcia, Georgina; Meneses, Alfredo

    2009-08-24

    In an attempt to clarify conflicting results about serotonin (5-hydroxytryptamine, 5-HT) 5-HT(1A) and 5-HT(7) receptors in memory formation, their mRNA expression was determined by RT-PCR in key brain areas for explicit and implicit memory. The time-course (0-120 h) of autoshaped responses was progressive and mRNA 5-HT(1A) or 5-HT(7) receptors expression monotonically augmented or declined in prefrontal cortex, hippocampus and raphe nuclei, respectively. At 24-48 h acutely 8-OH-DPAT (0.062 mg/kg) administration enhanced memory and attenuated mRNA 5-HT(1A)memory; however both combinations suppressed or up-regulated mRNA expression 5-HT(1A) or 5-HT(7) receptors. In contrast, AS19 (5.0 mg/kg) facilitated memory consolidation, decreased or increased hippocampal 5-HT(7) and 5-HT(1A) receptors expression. Together these data revealed that, when both 5-HT(1A) and 5-HT(7) receptors were stimulated by 8-OHDPAT under memory consolidation, subtle changes emerged, not evident at behavioral level though detectable at genes expression. Notably, high levels of efficient memory were maintained even when serotonergic tone, via either 5-HT(1A) or 5-HT(7) receptor, was down- or up-regulated. Nevertheless, WAY100635 plus SB-269970 impaired memory consolidation and suppressed their expression. Considering that serotonergic changes are prominent in AD patients with an earlier onset of disease the present approach might be useful in the identification of functional changes associated to memory formation, memory deficits and reversing or even preventing these deficits.

  6. High trait aggression in men is associated with low 5-HT levels, as indexed by 5-HT4 receptor binding

    DEFF Research Database (Denmark)

    da Cunha-Bang, Sofi; Mc Mahon, Brenda; Fisher, Patrick MacDonald;

    2016-01-01

    Impulsive aggression has commonly been associated with a dysfunction of the serotonin (5-HT) system: many, but not all, studies point to an inverse relationship between 5-HT and aggression. As cerebral 5-HT4 receptor (5-HT4R) binding has recently been recognized as a proxy for stable brain levels...... of 5-HT, we here test the hypothesis in healthy men and women that brain 5-HT levels, as indexed by cerebral 5-HT4R, are inversely correlated with trait aggression and impulsivity. Sixty-one individuals (47 men) underwent positron emission tomography scanning with the radioligand [(11)C]SB207145...... for quantification of brain 5-HT4R binding. The Buss-Perry Aggression Questionnaire (BPAQ) and the Barratt Impulsiveness Scale were used for assessment of trait aggression and trait impulsivity. Among male subjects, there was a positive correlation between global 5-HT4R and BPAQ total score (P = 0.037) as well...

  7. 5-HT system and cognition.

    Science.gov (United States)

    Meneses, A

    1999-12-01

    The study of 5-hydroxytryptamine (5-HT) system has benefited from the identification, classification and cloning of multiple 5-HT receptors (5-HT1 to 5-HT7). Growing evidence suggests that 5-HT is important in learning and memory and all its receptors might be implicated in this. Actually, 5-HT pathways, 5-HT reuptake site/transporter complex and 5-HT receptors show regional distribution in brain areas implicated in learning and memory. Likewise, the stimulation or blockade of presynaptic 5-HT1A, 5-HT1B, 5-HT(2A/2C) and 5-HT3 receptors, postsynaptic 5-HT(2B/2C) and 5-HT4 receptors and 5-HT uptake/transporter sites modulate these processes. Available evidence strongly suggests that the 5-HT system may be important in normal function, the treatment and/or pathogenesis of cognitive disorders. Further investigation will help to specify the 5-HT system nature involvement in cognitive processes, pharmacotherapies, their mechanisms and action sites and to determine under which conditions they could operate. In this regard, it is probable that selective drugs with agonists, neutral antagonist, agonists or inverse agonist properties for 5-HT1A, 5-HT(1B/1D), 5-HT(2A/2B/2C), 5-HT4 and 5-HT7 receptors could constitute a new therapeutic opportunity for learning and memory alterations.

  8. Review: 5-Ht1, 5-Ht2, 5-Ht3, And 5-Ht7 Receptors And Their Role In The Modulation Of Pain Response In The Central Nervous System.

    Science.gov (United States)

    Cortes-Altamirano, José Luis; Olmos-Hernández, Adriana; Bonilla-Jaime, Herlinda; Carrillo-Mora, Paul; Bandala, Cindy; Reyes-Long, S; Alfaro-Rodríguez, Alfonso

    2017-09-11

    The aim of this review was to identify the mechanisms by which serotonin receptors involved at the central level are able to modulate the nociceptive response. Pain is a defense mechanism of the body that entails physiological, anatomical, neurochemical, and psychological changes, and is defined as an unpleasant sensory and emotional experience with potential risk of tissue damage, comprising the leading cause of appointments with Physicians worldwide. Treatment for this symptom has generated several neuropharmacological lines of research, due to the different types of pain and the various drugs employed to treat this condition. Serotonin [5-HydroxyTryptamine (5-HT)] is a neurotransmitter with seven families (5-HT1–5-HT7) and approximately 15 receptor subtypes. Serotonin modulates neuronal activity; however, this neurotransmitter is related with a number of physiological processes, such as cardiovascular function, gastric motility, renal function, etc. On the other hand, several researches reported that serotonin modulates nociceptive response through 5-HT1, 5-HT2, 5-HT3, and 5-HT7 receptors in the Central Nervous System (CNS). In this review, a search was conducted on PubMed, ProQuest, EBSCO, and the Science Citation Index for studies evaluating the effects of 5-HT1, 5-HT2, 5-HT3, and 5-HT7 receptors in the CNS on the modulation of different types of pain. Conclusions We concluded that 5-HT1, 5-HT2, 5-HT3, and 5-HT7 receptors in the CNS modulate the pain, but this depends on the distribution of the receptors, dose of agonists or antagonists, administration route, pain type and duration to order to inhibit, to excite, or even maintain the nociceptive response. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  9. Effects of clomipramine treatment on cerebrospinal fluid monoamine metabolites and platelet sup 3 H-imipramine binding and serotonin uptake and concentration in major depressive disorder

    Energy Technology Data Exchange (ETDEWEB)

    Maartensson, B.; Waegner, A.; Aasberg, M. (Department of Psychiatry and Psychology, Karolinska Hospital, Stockholm (Sweden)); Beck, O.; Brodin, K. (Department of Clinical Pharmacology, Karolinska Hospital, Stockholm (Sweden)); Monterio, D. (Department of Clinical Pharmacology, Huddinge Hospital, Karolinska Institute, Stockholm (Sweden))

    1991-01-01

    In an open study of 12 inpatients who met the DSM-III criteria for a major depressive episode, the effects of clomipramine (CI) on the monoamine metabolites 5-hydroxyindoleacetic acid (5-HIAA), homovanillic acid (HVA), 4-hydroxy-3-methoxyphenyl glycol (HMPG) in cerebrospinal fluid (CSF) were measured simultaneously with the effects on {sup 3}H-imipramine binding, serotonin (5-HT) uptake and 5-HT concentration in platelets after 3 and 6 weeks of treatment. Drug (CI and desmethylclomipramine) plasma concentrations were determined. The concentrations of 5-HIAA and HMPG decreased substantially, and the concentration of HVA remained unchanged. There was also a large and significant reduction of the number of imipramine binding sites (B{sub max}) and of the platelet 5-HT concentration. The 5-HT uptake was not measurable aftet 3 weeks of treatment. None of the parameters changed significantly between weeks 3 and 6. There were no significant correlations between antidepressant effect (measured by the Montgomery-Aasberg Depression Rating Scale) and plasma drug concentrations, although a tendency to a significant correlation between antidepressant effect and CI was observed at 3 weeks. There were no significant intercorrelations between the different 5-HT parameters and no other significant correlations between the biochemical measures and clinical outcome. (author).

  10. Dual histamine H3R/serotonin 5-HT4R ligands with antiamnesic properties: pharmacophore-based virtual screening and polypharmacology.

    Science.gov (United States)

    Lepailleur, Alban; Freret, Thomas; Lemaître, Stéphane; Boulouard, Michel; Dauphin, François; Hinschberger, Antoine; Dulin, Fabienne; Lesnard, Aurélien; Bureau, Ronan; Rault, Sylvain

    2014-06-23

    In recent years, preclinical and clinical studies have generated considerable interest in the development of histamine H3 receptor (H3R) antagonists as novel treatment for degenerative disorders associated with impaired cholinergic function. To identify novel scaffolds for H3R antagonism, a common feature-based pharmacophore model was developed and used to screen the 17,194 compounds of the CERMN (Centre d'Etudes et de Recherche sur le Médicament de Normandie) chemical library. Out of 268 virtual hits which have been gathered in 34 clusters, we were particularly interested in tricyclic derivatives also exhibiting a potent 5HT4R affinity. Benzo[h][1,6]naphthyridine derivatives showed the highest H3R affinity, and compound 17 (H3R Ki = 41.6 nM; 5-HT4R Ki = 208 nM) completely reversed the amnesiant effect of scopolamine at 3 mg/kg in a spatial working memory experiment. For the first time we demonstrated the feasibility to combine H3R and 5-HT4R activities in a single molecule, raising the exciting possibility that dual H3R antagonist/5HT4R agonist have potential for the treatment of neurodegenerative diseases such as Alzheimer's disease.

  11. The stimulatory adenosine receptor ADORA2B regulates serotonin (5-HT synthesis and release in oxygen-depleted EC cells in inflammatory bowel disease.

    Directory of Open Access Journals (Sweden)

    Rikard Dammen

    Full Text Available OBJECTIVE: We recently demonstrated that hypoxia, a key feature of IBD, increases enterochromaffin (EC cell 5-HT secretion, which is also physiologically regulated by the ADORA2B mechanoreceptor. Since hypoxia is associated with increased extracellular adenosine, we wanted to examine whether this nucleotide amplifies HIF-1α-mediated 5-HT secretion. DESIGN: The effects of hypoxia were studied on IBD mucosa, isolated IBD-EC cells, isolated normal EC cells and the EC cell tumor derived cell line KRJ-1. Hypoxia (0.5% O2 was compared to NECA (adenosine agonist, MRS1754 (ADORA2B receptor antagonist and SCH442146 (ADORA2A antagonist on HIF signaling and 5-HT secretion. Antisense approaches were used to mechanistically evaluate EC cells in vitro. PCR and western blot were used to analyze transcript and protein levels of HIF-1α signaling and neuroendocrine cell function. An animal model of colitis was evaluated to confirm hypoxia:adenosine signaling in vivo. RESULTS: HIF-1α is upregulated in IBD mucosa and IBD-EC cells, the majority (~90% of which express an activated phenotype in situ. Hypoxia stimulated 5-HT release maximally at 30 mins, an effect amplified by NECA and selectively inhibited by MRS1754, through phosphorylation of TPH-1 and activation of VMAT-1. Transient transfection with Renilla luciferase under hypoxia transcriptional response element (HRE control identified that ADORA2B activated HIF-1α signaling under hypoxic conditions. Additional signaling pathways associated with hypoxia:adenosine included MAP kinase and CREB. Antisense approaches mechanistically confirmed that ADORA2B signaling was linked to these pathways and 5-HT release under hypoxic conditions. Hypoxia:adenosine activation which could be reversed by 5'-ASA treatment was confirmed in a TNBS-model. CONCLUSION: Hypoxia induced 5-HT synthesis and secretion is amplified by ADORA2B signaling via MAPK/CREB and TPH-1 activation. Targeting ADORA2s may decrease EC cell 5-HT

  12. Identification of essential residues for binding and activation in the human 5-HT7(a) serotonin receptor by molecular modeling and site-directed mutagenesis.

    Science.gov (United States)

    Impellizzeri, Agata Antonina Rita; Pappalardo, Matteo; Basile, Livia; Manfra, Ornella; Andressen, Kjetil Wessel; Krobert, Kurt Allen; Messina, Angela; Levy, Finn Olav; Guccione, Salvatore

    2015-01-01

    The human 5-HT7 receptor is expressed in both the central nervous system and peripheral tissues and is a potential drug target in behavioral and psychiatric disorders. We examined molecular determinants of ligand binding and G protein activation by the human 5-HT7(a) receptor. The role of several key residues in the 7th transmembrane domain (TMD) and helix 8 were elucidated combining in silico and experimental mutagenesis. Several single and two double point mutations of the 5-HT7(a) wild type receptor were made (W7.33V, E7.35T, E7.35R, E7.35D, E7.35A, R7.36V, Y7.43A, Y7.43F, Y7.43T, R8.52D, D8.53K; E7.35T-R7.36V, R8.52D-D8.53K), and their effects upon ligand binding were assessed by radioligand binding using a potent agonist (5-CT) and a potent antagonist (SB269970). In addition, the ability of the mutated 5-HT7(a) receptors to activate G protein after 5-HT-stimulation was determined through activation of adenylyl cyclase. In silico investigation on mutated receptors substantiated the predicted importance of TM7 and showed critical roles of residues E7.35, W7.33, R7.36 and Y7.43 in agonist and antagonist binding and conformational changes of receptor structure affecting adenylyl cyclase activation. Experimental data showed that mutants E7.35T and E7.35R were incapable of ligand binding and adenylyl cyclase activation, consistent with a requirement for a negatively charged residue at this position. The mutant R8.52D was unable to activate adenylyl cyclase, despite unaffected ligand binding, consistent with the R8.52 residue playing an important role in the receptor-G protein interface. The mutants Y7.43A and Y7.43T displayed reduced agonist binding and AC agonist potency, not seen in Y7.43F, consistent with a requirement for an aromatic residue at this position. Knowledge of the molecular interactions important in h5-HT7 receptor ligand binding and G protein activation will aid the design of selective h5-HT7 receptor ligands for potential pharmacological use.

  13. Cellular mechanisms of the 5-HT7 receptor-mediated signaling

    OpenAIRE

    Guseva, Daria; Wirth, Alexander; Ponimaskin, Evgeni

    2014-01-01

    Serotonin (5-hydroxytryptamine or 5-HT) is an important neurotransmitter regulating a wide range of physiological and pathological functions via activation of heterogeneously expressed 5-HT receptors. The 5-HT7 receptor is one of the most recently described members of the 5-HT receptor family. Functionally, 5-HT7 receptor is associated with a number of physiological and pathological responses, including serotonin-induced phase shifting of the circadian rhythm, control of memory as well as loc...

  14. Memory formation and memory alterations: 5-HT6 and 5-HT7 receptors, novel alternative.

    Science.gov (United States)

    Meneses, Alfredo

    2014-01-01

    Agonists and antagonists of the 5-hydroxytryptamine (serotonin) receptor6 (5-HT6) or receptor7 (5-HT7) might improve memory and/or reverse amnesia, although the mechanisms involved are poorly understood. Hence, the current work summarizes recent reviews and findings involving these receptors. Evidence indicates that diverse 5-HT6 receptor antagonists produce promnesic and/or antiamnesic effect in conditions, such as memory formation, age-related cognitive impairments and memory deficit in preclinical studies, as well as in diseases such as schizophrenia, Parkinson's, and Alzheimer's disease (AD). Memory, aging, and AD modify 5-HT6 receptors and signaling cascades; likewise, the modulation of 5-HT6 drugs on memory seems to be accompanied with neural changes. Moreover, 5-HT7 receptors are localized in brain areas mediating memory, including the cortex, hippocampus (e.g., Zola-Morgan and Squire, 1993) and raphe nuclei; however, the role of these receptors on memory has yet to be fully explored. Hence, findings and reviews are summarized in this work. Evidence suggests that both 5-HT7 receptor agonists and antagonists might have promnesic and anti-amnesic effects. These effects seem to be dependent on the basal level of performance, i.e., normal or impaired. Available evidence suggests that a potential utility of 5-HT6 and 5-HT7 receptor in mild-to-moderate AD patients and other memory dysfunctions as therapeutic targets.

  15. Antidepressant-like effects of YL-0919, a novel dual-acting antidepressant with 5-HT1A receptor agonist and serotonin reuptake inhibitor%5-HT1A受体激动和5-HT重摄取抑制双靶标新药YL-0919抗抑郁作用的药效学评价

    Institute of Scientific and Technical Information of China (English)

    陈红霞; 徐晓丹; 薛瑞; 袁莉; 杨日芳; 李云峰

    2011-01-01

    目的 评价兼有5-HT1A受体激动和5-HT重摄取抑制双靶标化合物YL-0919的抗抑郁作用,并在靶标水平探讨其作用机制.方法和结果 在小鼠悬尾和小鼠强迫游泳实验中,YL-0919(1.25,2.5,5 mg/kg,ig)能够显著地缩短小鼠悬尾不动时间和游泳不动时间,5-HT1A受体拮抗剂WAY100635(0.3 mg/kg,sc)能够完全拮抗YL-0919(2.5 mg/kg,ig)在小鼠悬尾实验中的抗抑郁作用;在药物诱发抑郁模型上,YL-0919增强5-羟色氨酸(5-hydroxytryptophan,5-HTP,120 mg/kg,ip)诱导的小鼠甩头行为,但不能拮抗高剂量阿扑吗啡(16 mg/kg,sc)诱导的降温作用;YL-0919在抗抑郁有效剂量范围内对小鼠的自主活动性无显著性影响.结论 新型双靶标新药YL-0919具有明确的抗抑郁作用,此作用与激动5-HT1A受体,增强5-HT系统的功能有关.%Objective To investigate the antidepressant-like effect and possible mechanism of YL-0919, a novel dual-acting antidepressant with 5-HT1A receptor agonist and serotonin reuptake inhibitor. Methods and Results In the tail suspension test and forced swimming test in mice, YL-0919( 1. 25, 2. 5 and 5 mg/kg, ig )significantly decreased the immobility time. 5-HT1A receptor antagonist ( WAY100635 , 0. 3 mg/kg, sc ) could completely prevent the antidepressant-like effect in the tail suspension test. In the 5-hydroxytryptophan ( 5-HTP,120 mg/kg, ip ) potentiation test, YL-0919 significantly increased the symptom of head-twitches induced by 5-HTP. However, YL-0919 had no significant effect on the apomorphine (16 mg/kg,sc )induced hypothermia or the locomotor activity in mice. Conclusion YL-0919 produces reliable antidpres-sant-like effect, which may be attributed to the activation of 5-HT1A receptor and the potentiation of 5-HT system.

  16. Plaque deposition dependent decrease in 5-HT2A serotonin receptor in AbetaPPswe/PS1dE9 amyloid overexpressing mice

    DEFF Research Database (Denmark)

    Holm, Peter; Ettrup, Anders; Klein, Anders B

    2010-01-01

    -HT2A receptor regulation in double transgenic AbetaPPswe/PS1dE9 mice which display excess production of Abeta and age-dependent increase in amyloid plaques. Three different age-groups, 4-month-old, 8- month-old, and 11-month-old were included in the study. [3H]-MDL100907, [3H]-escitalopram, and [11C]-PIB...... in 5-HT2A receptor binding in mPFC in the 11-month-old group. The changes in 5-HT2A receptor binding correlated negatively with [11C]-PIB binding and were not accompanied by decreases in SERT binding. Correspondingly, 11-month-old transgenic mice showed diminished DOI-induced HTR and reduced increase...

  17. Modelo molecular teórico del receptor serotoninérgico 5HT2A acoplado a proteína G

    Directory of Open Access Journals (Sweden)

    Rafael Eduardo Malagón Bernal

    2012-08-01

    Full Text Available Theoretical molecular model of the G protein-coupled 5HT2A serotonergic receptor. Objective Build a theoretical molecularmodel of the tertiary structure of the Homo sapiens 5HT2A receptor from experimentally obtained structures as templates. Materialsand methods In the construction of the theoretical model we considered the protocol established by Ballesteros and Weinstein for theconstruction of the G-protein coupled receptor, by the alignment of the amino acid sequence, hydrophobicity profiles, refinement ofloops by spatial restrictions and energy minimization with the force field OPLS_2005. Results The resulting model was validated bythe Ramachandran plot with 91.7% of amino acids within the limits set for angles phi and psi and a RMSD of 0.95 Å with respect tobovine rhodopsin. Conclusions We obtained a validated theoretical model useful in studies of ligand-receptor docking.

  18. The serotonin 5-HT7 receptor agonist LP-44 microinjected into the dorsal raphe nucleus suppresses REM sleep in the rat.

    Science.gov (United States)

    Monti, Jaime M; Leopoldo, Marcello; Jantos, Héctor

    2008-08-22

    The effects of LP-44, a selective 5-HT7 receptor agonist, and of SB-269970, a selective 5-HT7 receptor antagonist, on spontaneous sleep were studied in adult rats implanted for chronic sleep recordings. The 5-HT7 receptor ligands were microinjected directly into the dorsal raphe nucleus (DRN) during the light period of the 12-h light/12-h dark cycle. Infusion of LP-44 (1.25-5.0 mM) into the DRN induced a significant reduction of rapid-eye-movement sleep (REMS) and of the number of REM periods. Similar effects were observed after the direct administration into the DRN of SB-269970 (0.5-1.0 mM). Pretreatment with a dose of SB-269970 (0.5 mM) that significantly affects sleep variables antagonized the LP-44 (2.5 mM)-induced suppression of REMS and of the number of REM periods. It is proposed that the suppression of REMS after microinjection of LP-44 into the DRN is related, at least in part, to the activation of GABAergic neurons in the DRN that contribute to long projections that reach, among others, the laterodorsal and pedunculopontine tegmental nuclei involved in the promotion of REMS.

  19. Serotonin 5-HT2C receptor-independent expression of hypothalamic NOR1, a novel modulator of food intake and energy balance, in mice

    Energy Technology Data Exchange (ETDEWEB)

    Nonogaki, Katsunori, E-mail: knonogaki-tky@umin.ac.jp [Center of Excellence, Division of Molecular Metabolism and Diabetes, Tohoku University Graduate School of Medicine (Japan); Department of Lifestyle Medicine, Biomedical Engineering Center, Tohoku University (Japan); Kaji, Takao [Department of Lifestyle Medicine, Biomedical Engineering Center, Tohoku University (Japan); Ohba, Yukie; Sumii, Makiko [Center of Excellence, Division of Molecular Metabolism and Diabetes, Tohoku University Graduate School of Medicine (Japan); Wakameda, Mamoru; Tamari, Tomohiro [Charles River Laboratories Japan, Inc. (Japan)

    2009-08-21

    NOR1, Nur77 and Nurr1 are orphan nuclear receptors and members of the NR4A subfamily. Here, we report that the expression of hypothalamic NOR1 was remarkably decreased in mildly obese {beta}-endorphin-deficient mice and obese db/db mice with the leptin receptor mutation, compared with age-matched wild-type mice, whereas there were no genotypic differences in the expression of hypothalamic Nur77 or Nurr1 in these animals. The injection of NOR1 siRNA oligonucleotide into the third cerebral ventricle significantly suppressed food intake and body weight in mice. On the other hand, the decreases in hypothalamic NOR1 expression were not found in non-obese 5-HT2C receptor-deficient mice. Moreover, systemic administration of m-chlorophenylpiperazine (mCPP), a 5-HT2C/1B receptor agonist, had no effect on hypothalamic NOR1 expression, while suppressing food intake in {beta}-endorphin-deficient mice. These findings suggest that 5-HT2C receptor-independent proopiomelanocortin-derived peptides regulate the expression of hypothalamic NOR1, which is a novel modulator of feeding behavior and energy balance.

  20. 5-HT1A and 5-HT7 receptors contribute to lurasidone-induced dopamine efflux.

    Science.gov (United States)

    Huang, Mei; Horiguchi, Masakuni; Felix, Anna R; Meltzer, Herbert Y

    2012-05-09

    Lurasidone is a novel, atypical antipsychotic drug with serotonin [5-hydroxytryptamine (5-HT)]2A, 5-HT7, dopamine (DA) D2 antagonist, and 5-HT1A receptor partial agonist properties. The ability of lurasidone to reverse the effects of subchronic administration phencyclidine, to impair novel object recognition in rats, an animal model of cognitive impairment in schizophrenia, is dependent, in part, on its 5-HT1A agonist and 5-HT7 receptor antagonist properties. We tested whether 5-HT1A partial agonism or 5-HT7 antagonism, or both, contributed to the ability of lurasidone to enhance cortical and hippocampal DA efflux, which may be related to its ability to improve cognition. Here, we report that lurasidone, 0.25 and 0.5, but not 0.1 mg/kg, subcutaneously, significantly increased DA efflux in the prefrontal cortex and hippocampus in a dose-dependent manner. Lurasidone, 0.5 mg/kg, also produced a smaller increase in DA efflux in the nucleus accumbens. Pretreatment with the 5-HT1A receptor antagonist, WAY100635 (0.2 mg/kg, subcutaneously), partially blocked the lurasidone-induced cortical and hippocampal DA efflux. Further, subeffective doses of the 5-HT1A receptor agonist, tandospirone (0.2 mg/kg), or the 5-HT7 antagonist, SB269970 (0.3 mg/kg), potentiated the ability of a subeffective dose of lurasidone (0.1 mg/kg) to increase DA efflux in the prefrontal cortex. These findings suggest that the effects of lurasidone on the prefrontal cortex and hippocampus, DA efflux are dependent, at least partially, on its 5-HT1A agonist and 5-HT7 antagonist properties and may contribute to its efficacy to reverse the effects of subchronic phencyclidine treatment and improve schizophrenia.

  1. High trait aggression in men is associated with low 5-HT levels, as indexed by 5-HT4 receptor binding.

    Science.gov (United States)

    da Cunha-Bang, Sofi; Mc Mahon, Brenda; Fisher, Patrick MacDonald; Jensen, Peter Steen; Svarer, Claus; Knudsen, Gitte Moos

    2016-04-01

    Impulsive aggression has commonly been associated with a dysfunction of the serotonin (5-HT) system: many, but not all, studies point to an inverse relationship between 5-HT and aggression. As cerebral 5-HT4 receptor (5-HT4R) binding has recently been recognized as a proxy for stable brain levels of 5-HT, we here test the hypothesis in healthy men and women that brain 5-HT levels, as indexed by cerebral 5-HT4R, are inversely correlated with trait aggression and impulsivity. Sixty-one individuals (47 men) underwent positron emission tomography scanning with the radioligand [(11)C]SB207145 for quantification of brain 5-HT4R binding. The Buss-Perry Aggression Questionnaire (BPAQ) and the Barratt Impulsiveness Scale were used for assessment of trait aggression and trait impulsivity. Among male subjects, there was a positive correlation between global 5-HT4R and BPAQ total score (P = 0.037) as well as BPAQ physical aggression (P = 0.025). No main effect of global 5-HT4R on trait aggression or impulsivity was found in the mixed gender sample, but there was evidence for sex interaction effects in the relationship between global 5-HT4R and BPAQ physical aggression. In conclusion we found that low cerebral 5-HT levels, as indexed by 5-HT4R binding were associated with high trait aggression in males, but not in females.

  2. Aggravation of viral hepatitis by platelet-derived serotonin.

    Science.gov (United States)

    Lang, Philipp A; Contaldo, Claudio; Georgiev, Panco; El-Badry, Ashraf Mohammad; Recher, Mike; Kurrer, Michael; Cervantes-Barragan, Luisa; Ludewig, Burkhard; Calzascia, Thomas; Bolinger, Beatrice; Merkler, Doron; Odermatt, Bernhard; Bader, Michael; Graf, Rolf; Clavien, Pierre-Alain; Hegazy, Ahmed N; Löhning, Max; Harris, Nicola L; Ohashi, Pamela S; Hengartner, Hans; Zinkernagel, Rolf M; Lang, Karl S

    2008-07-01

    More than 500 million people worldwide are persistently infected with hepatitis B virus or hepatitis C virus. Although both viruses are poorly cytopathic, persistence of either virus carries a risk of chronic liver inflammation, potentially resulting in liver steatosis, liver cirrhosis, end-stage liver failure or hepatocellular carcinoma. Virus-specific T cells are a major determinant of the outcome of hepatitis, as they contribute to the early control of chronic hepatitis viruses, but they also mediate immunopathology during persistent virus infection. We have analyzed the role of platelet-derived vasoactive serotonin during virus-induced CD8(+) T cell-dependent immunopathological hepatitis in mice infected with the noncytopathic lymphocytic choriomeningitis virus. After virus infection, platelets were recruited to the liver, and their activation correlated with severely reduced sinusoidal microcirculation, delayed virus elimination and increased immunopathological liver cell damage. Lack of platelet-derived serotonin in serotonin-deficient mice normalized hepatic microcirculatory dysfunction, accelerated virus clearance in the liver and reduced CD8(+) T cell-dependent liver cell damage. In keeping with these observations, serotonin treatment of infected mice delayed entry of activated CD8(+) T cells into the liver, delayed virus control and aggravated immunopathological hepatitis. Thus, vasoactive serotonin supports virus persistence in the liver and aggravates virus-induced immunopathology.

  3. The 5-HT(4) receptor levels in hippocampus correlates inversely with memory test performance in humans

    DEFF Research Database (Denmark)

    Haahr, Mette Ewers; Fisher, Patrick; Holst, Klaus Kähler

    2013-01-01

    The cerebral serotonin (5-HT) system is involved in cognitive functions such as memory and learning and animal studies have repeatedly shown that stimulation of the 5-HT type 4 receptor (5-HT(4) R) facilitates memory and learning and further that the 5-HT(4) R modulates cellular memory processes ...

  4. Research Progress in Food Intake Regulation of Serotonin%5-羟色胺(5-HT)摄食调节作用的研究进展

    Institute of Scientific and Technical Information of China (English)

    刘华珍; 彭克美

    2005-01-01

    摄食是一种复杂的行为活动,受多种神经递质和调质的调节.5-羟色胺(5-hydroxytryptamine, 5-HT)是一种经典的神经递质,具有广泛的生理功能,可抑制摄食等.本文对5-HT的生物合成、在中枢神经系统的定位分布、参与摄食调节的受体及摄食调节作用的机理进行了综述.

  5. The 5-HT hypothesis of schizophrenia.

    Science.gov (United States)

    Akhondzadeh, S

    2001-03-01

    Schizophrenia is a serious psychiatric illness that is responsible for a substantial proportion of mental illness worldwide. Symptoms include hallucination, delusions, thought disorder and negative symptoms, including poverty of thought and emotion, and social withdrawal. Early theories of schizophrenia implicated disturbed serotonin (5-HT) neurotransmission, but these were largely overshadowed by the dopamine theory of schizophrenia, which became established after the introduction of chlorpromazine. However, the importance of 5-HT in CNS function is once again being recognized. The ability of antipsychotic drugs to diminish positive symptoms has been correlated with their ability to block dopamine D(2) receptors, although negative symptoms are not as effectively treated by typical neuroleptics. There is increasing interest in the correlation between negative symptoms of schizophrenia and 5-HT(2) receptors. The rationale for these studies is the hypothesis that abnormal neurotransmission at 5-HT(2) receptors may be involved in the pathophysiology of schizophrenia. This review highlights recent pharmacological and clinical advances in the understanding of the potential use of serotonin 5-HT(2) receptor antagonists in the treatment of schizophrenia.

  6. Serotonergic 5-HT7 receptors and cognition.

    Science.gov (United States)

    Gasbarri, Antonella; Pompili, Assunta

    2014-01-01

    The abundant distribution of serotonin (5-HT) in different areas of the central nervous system can explain the involvement of this neurotransmitter in the regulation of several functions, such as sleep, pain, feeding, and sexual and emotional behaviors. Moreover, the serotonergic system is also involved in other more complex roles, such as cognition, including learning and memory processes. Recent studies led to the discovery of various types and subtypes of receptors differentially associated to cognitive mechanisms. 5-HT7 is the most recently discovered receptor for 5-HT; therefore, it is also one of the least well characterized. Studies exist hypothesizing the role of 5-HT7 on the modulation of learning and memory processes and other cognitive functions. Moreover, much attention has been devoted to the possible role of 5-HT7 receptors in psychiatric disorders. Therefore, the aim of this review is to clarify the behavioral role of the recently discovered 5-HT7 type receptor and highlight its involvement in the cognitive functions, with particular attention to the modulation of learning and memory processes, thus providing a basis to obtain new therapeutic agents and strategies for the treatment of cognitive disorders.

  7. Aryl biphenyl-3-ylmethylpiperazines as 5-HT7 receptor antagonists.

    Science.gov (United States)

    Kim, Jeeyeon; Kim, Youngjae; Tae, Jinsung; Yeom, Miyoung; Moon, Bongjin; Huang, Xi-Ping; Roth, Bryan L; Lee, Kangho; Rhim, Hyewhon; Choo, Il Han; Chong, Youhoon; Keum, Gyochang; Nam, Ghilsoo; Choo, Hyunah

    2013-11-01

    The 5-HT7 receptor (5-HT7 R) is a promising therapeutic target for the treatment of depression and neuropathic pain. The 5-HT7 R antagonist SB-269970 exhibited antidepressant-like activity, whereas systemic administration of the 5-HT7 R agonist AS-19 significantly inhibited mechanical hypersensitivity and thermal hyperalgesia. In our efforts to discover selective 5-HT7 R antagonists or agonists, aryl biphenyl-3-ylmethylpiperazines were designed, synthesized, and biologically evaluated against the 5-HT7 R. Among the synthesized compounds, 1-([2'-methoxy-(1,1'-biphenyl)-3-yl]methyl)-4-(2-methoxyphenyl)piperazine (28) was the best binder to the 5-HT7 R (pKi =7.83), and its antagonistic property was confirmed by functional assays. The selectivity profile of compound 28 was also recorded for the 5-HT7 R over other serotonin receptor subtypes, such as 5-HT1 R, 5-HT2 R, 5-HT3 R, and 5-HT6 R. In a molecular modeling study, the 2-methoxyphenyl moiety attached to the piperazine ring of compound 28 was proposed to be essential for the antagonistic function.

  8. Expression of mRNAs encoding for 5-HT2C,5-HT3,5-HT6 and 5-HT7 receptor subtypes in rat spinal cord%大鼠脊髓内5-HT2C,5-HT3,5-HT6和5-HT7受体亚型mRNAs的表达

    Institute of Scientific and Technical Information of China (English)

    武胜昔; 王亚云; 刘翔宇; 王文; 李云庆

    2003-01-01

    Objective:To examine the expression of mRNAs encoding for serotonin (5-HT) 5-HT2c, 5-HT3, 5-HT6and 5-HT7 receptor subtypes within different segments of the rat spinal cord. Methods: Reverse transcriptase-polymerasechain reaction (RT-PCR) technique was used. Results: Strong expression of 5-HT2C receptor mRNA was observed inboth dorsal horn (DH) and ventral horn (VH) of the cervical, thoracic, lumbar and sacral segments of the spinal cord.The 5-HT3 receptor mRNA was present at high expression level in the DH and at slightly lower expression level in the Vhof all spinal cord segments. In contrast, the VH generally contained higher expression level of 5-HT6 receptor subtype mR-NA when compared to the DH. Similar to 5-HT3 receptor, the 5-HT7 receptor mRNA was also found at high expressionlevel in the DH. The differences in the expression level among these 5-HT receptor subtypes at the same level of the spinalcord or the same receptor subtype in different segments of the spinal cord were also observed. Conclusion: Four serotoninreceptor subtypes show a distinct expression pattern in the spinal cord. The present results indicate that these 5-HT recep-tor subtypes might have different physiological roles at the spinal level and provide further evidence for 5-HT receptor un-derlying the mechanism of nociception and movement.%目的:观察5-HT2C,5-HT3,5-HT6和5-HT7受体亚型mRNAs在大鼠脊髓不同节段的表达.方法:反转录PCR方法.结果:5-HT2C受体亚型mRNA在颈、胸、腰、骶段脊髓的背角(DH)和前角(VH)均有较强的表达;5-HT3受体mRNA在各节段脊髓DH的表达水平较高,而在VH则较低;与5-HT3受体亚型相反,5-HT6受体亚型mR-NA在脊髓VH的表达水平高于DH;5-HT7受体mRNA在脊髓的表达则与5-HT3受体相似,在各节段的DH均有较高水平的表达.不同的受体亚型在脊髓同一节段以及同一受体亚型在不同脊髓节段的表达水平存在差异.结论:本研究结果表明,上述四种5-HT受体亚

  9. Stimulation of 5-HT1A, 5-HT1B, 5-HT2A/2C, 5-HT3 and 5-HT4 receptors or 5-HT uptake inhibition: short- and long-term memory.

    Science.gov (United States)

    Meneses, Alfredo

    2007-11-22

    In order to determine whether short- (STM) and long-term memory (LTM) function in serial or parallel manner, serotonin (5-hydroxtryptamine, 5-HT) receptor agonists were tested in autoshaping task. Results show that control-vehicle animals were modestly but significantly mastering the autoshaping task as illustrated by memory scores between STM and LTM. Thus, post-training administration of 8-OHDPAT (agonist for 5-HT(1A/7) receptors) only at 0.250 and 0.500 mg/kg impaired both STM and LTM. CGS12066 (agonist for 5-HT(1B)) produced biphasic affects, at 5.0 mg/kg impaired STM but at 1.0 and 10.0 mg/kg, respectively, improved or impaired LTM. DOI (agonist for 5-HT(2A/2C) receptors) dose-dependently impaired STM and, at 10.0 mg/kg only impaired LTM. Both, STM and LTM were impaired by either mCPP (mainly agonist for 5-HT(2C) receptors) or mesulergine (mainly antagonist for 5-HT(2C) receptors) lower dose. The 5-HT(3) agonist mCPBG at 1.0 impaired STM and its higher dose impaired both STM and LTM. RS67333 (partial agonist for 5-HT(4) receptors), at 5.0 and 10.0 mg/kg facilitated both STM and LTM. The higher dose of fluoxetine (a 5-HT uptake inhibitor) improved both STM and LTM. Using as head-pokes during CS as an indirect measure of food-intake showed that of 30 memory changes, 21 of these were unrelated to the former. While some STM or LTM impairments can be attributed to decrements in food-intake, but not memory changes (either increase or decreases) produced by 8-OHDPAT, CGS12066, RS67333 or fluoxetine. Except for animals treated with DOI, mCPBG or fluoxetine, other groups treated with 5-HT agonists 6 h following autoshaping training showed similar LTM and unmodified CS-head-pokes scores.

  10. Rat dams exposed repeatedly to a daily brief separation from the pups exhibit increased maternal behavior, decreased anxiety and altered levels of receptors for estrogens (ERα, ERβ), oxytocin and serotonin (5-HT1A) in their brain.

    Science.gov (United States)

    Stamatakis, Antonios; Kalpachidou, Theodora; Raftogianni, Androniki; Zografou, Efstratia; Tzanou, Athanasia; Pondiki, Stavroula; Stylianopoulou, Fotini

    2015-02-01

    In the present study we investigated the neurobiological mechanisms underlying expression of maternal behavior. Increased maternal behavior was experimentally induced by a brief 15-min separation between the mother and the pups during postnatal days 1 to 22. On postnatal days (PND) 12 and 22, we determined in experimental and control dams levels of anxiety in the elevated plus maze (EPM) as well as the levels of receptors for estrogens (ERα, ERβ), oxytocin (OTR) and serotonin (5-HT1AR) in areas of the limbic system (prefrontal cortex-PFC, hippocampus, lateral septum-SL, medial preoptic area-MPOA, shell of nucleus accumbens-nAc-Sh, central-CeA and basolateral-BLA amygdala), involved in the regulation of maternal behavior. Experimental dams, which showed increased maternal behavior towards their offspring, displayed reduced anxiety in the EPM on both PND12 and PND22. These behavioral differences could be attributed to neurochemical alterations in their brain: On both PND12 and PND22, experimental mothers had higher levels of ERα and OTRs in the PFC, hippocampus, CeA, SL, MPOA and nAc-Sh. The experimental manipulation-induced increase in ERβ levels was less widespread, being localized in PFC, the hippocampal CA2 area, MPOA and nAc-Sh. In addition, 5-HT1ARs were reduced in the PFC, hippocampus, CeA, MPOA and nAc-Sh of the experimental mothers. Our results show that the experience of the daily repeated brief separation from the pups results in increased brain ERs and OTRs, as well as decreased 5-HT1ARs in the dam's brain; these neurochemical changes could underlie the observed increase in maternal behavior and the reduction of anxiety.

  11. Peripheral 5-HT1A and 5-HT7 Serotonergic Receptors Modulate Parasympathetic Neurotransmission in Long-Term Diabetic Rats

    Science.gov (United States)

    Restrepo, Beatriz; Martín, María Luisa; San Román, Luis; Morán, Asunción

    2010-01-01

    We analyzed the modulation of serotonin on the bradycardia induced in vivo by vagal electrical stimulation in alloxan-induced long-term diabetic rats. Bolus intravenous administration of serotonin had a dual effect on the bradycardia induced either by vagal stimulation or exogenous Ach, increasing it at low doses and decreasing it at high doses of 5-hydroxytryptamine (5-HT), effect reproduced by 5-carboxamidotryptamine maleate (5-CT), a 5-HT1/7 agonist. The enhancement of the bradycardia at low doses of 5-CT was reproduced by 5-HT1A agonist 8-hydroxy-2-dipropylaminotetralin hydrobromide (8-OH-DPAT) and abolished by WAY-100,635, 5-HT1A antagonist. Pretreatment with 5-HT1 antagonist methiothepin blocked the stimulatory and inhibitory effect of 5-CT, whereas pimozide, 5-HT7 antagonist, only abolished 5-CT inhibitory action. In conclusion, long-term diabetes elicits changes in the subtype of the 5-HT receptor involved in modulation of vagally induced bradycardia. Activation of the 5-HT1A receptors induces enhancement, whereas attenuation is due to 5-HT7 receptor activation. This 5-HT dual effect occurs at pre- and postjunctional levels. PMID:21403818

  12. Peripheral 5-HT 1A and 5-HT 7 Serotonergic Receptors Modulate Parasympathetic Neurotransmission in Long-Term Diabetic Rats

    Directory of Open Access Journals (Sweden)

    Beatriz Restrepo

    2010-01-01

    Full Text Available We analyzed the modulation of serotonin on the bradycardia induced in vivo by vagal electrical stimulation in alloxan-induced long-term diabetic rats. Bolus intravenous administration of serotonin had a dual effect on the bradycardia induced either by vagal stimulation or exogenous Ach, increasing it at low doses and decreasing it at high doses of 5-hydroxytryptamine (5-HT, effect reproduced by 5-carboxamidotryptamine maleate (5-CT, a 5-HT1/7 agonist. The enhancement of the bradycardia at low doses of 5-CT was reproduced by 5-HT1A agonist 8-hydroxy-2-dipropylaminotetralin hydrobromide (8-OH-DPAT and abolished by WAY-100,635, 5-HT1A antagonist. Pretreatment with 5-HT1 antagonist methiothepin blocked the stimulatory and inhibitory effect of 5-CT, whereas pimozide, 5-HT7 antagonist, only abolished 5-CT inhibitory action. In conclusion, long-term diabetes elicits changes in the subtype of the 5-HT receptor involved in modulation of vagally induced bradycardia. Activation of the 5-HT1A receptors induces enhancement, whereas attenuation is due to 5-HT7 receptor activation. This 5-HT dual effect occurs at pre- and postjunctional levels.

  13. Central PGE2 exhibits anxiolytic-like activity via EP1 and EP4 receptors in a manner dependent on serotonin 5-HT1A, dopamine D1 and GABAA receptors.

    Science.gov (United States)

    Suzuki, Chihiro; Miyamoto, Chihiro; Furuyashiki, Tomoyuki; Narumiya, Shuh; Ohinata, Kousaku

    2011-07-21

    We found that centrally administered prostaglandin (PG) E(2) exhibited anxiolytic-like activity in the elevated plus-maze and open field test in mice. Agonists selective for EP(1) and EP(4) receptors, among four receptor subtypes for PGE(2), mimicked the anxiolytic-like activity of PGE(2). The anxiolytic-like activity of PGE(2) was blocked by an EP(1) or EP(4) antagonist, as well as in EP(4) but not EP(1) knockout mice. Central activation of either EP(1) or EP(4) receptors resulted in anxiolytic-like activity. The PGE(2)-induced anxiolytic-like activity was inhibited by antagonists for serotonin 5-HT(1A), dopamine D(1) and GABA(A) receptors. Taken together, PGE(2) exhibits anxiolytic-like activity via EP(1) and EP(4) receptors, with downstream involvement of 5-HT(1A), D(1) and GABA(A) receptor systems. Copyright © 2011 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  14. The arylpiperazine derivatives N-(4-cyanophenylmethyl)-4-(2-diphenyl)-1-piperazinehexanamide and N-benzyl-4-(2-diphenyl)-1-piperazinehexanamide exert a long-lasting inhibition of human serotonin 5-HT7 receptor binding and cAMP signaling.

    Science.gov (United States)

    Atanes, Patricio; Lacivita, Enza; Rodríguez, Javier; Brea, José; Burgueño, Javier; Vela, José Miguel; Cadavid, María Isabel; Loza, María Isabel; Leopoldo, Marcello; Castro, Marián

    2013-12-01

    We performed a detailed in vitro pharmacological characterization of two arylpiperazine derivatives, compound N-(4-cyanophenylmethyl)-4-(2-diphenyl)-1-piperazinehexanamide (LP-211) previously identified as a high-affinity brain penetrant ligand for 5-hydroxytryptamine (serotonin) type 7 (5-HT7) receptors, and its analog N-benzyl-4-(2-diphenyl)-1-piperazinehexanamide (MEL-9). Both ligands exhibited competitive displacement of [(3)H]-(2R)-1-[(3-hydroxyphenyl)sulfonyl]-2-[2-(4-methyl-1-piperidinyl)ethyl]pyrrolidine ([(3)H]-SB-269970) radioligand binding and insurmountable antagonism of 5-carboxamidotryptamine (5-CT)-stimulated cyclic adenosine monophosphate (cAMP) signaling in human embryonic kidney (HEK293) cells stably expressing human 5-HT7 receptors. They also inhibited forskolin-stimulated adenylate cyclase activity in 5-HT7-expressing HEK293 cells but not in the parental cell line. The compounds elicited long-lasting (at least 24 h) concentration-dependent inhibition of radioligand binding at 5-HT7-binding sites in whole-cell radioligand binding assays, after pretreatment of the cells with the compounds and subsequent compound removal. In cAMP assays, pretreatment of cells with the compounds rendered 5-HT7 receptors unresponsive to 5-CT and also rendered 5-HT7-expressing HEK293 cells unresponsive to forskolin. Compound 1-(2-biphenyl)piperazine (RA-7), a known active metabolite of LP-211 present in vivo, was able to partially inhibit 5-HT7 radioligand binding in a long-lasting irreversible manner. Hence, LP-211 and MEL-9 were identified as high-affinity long-acting inhibitors of human 5-HT7 receptor binding and function in cell lines. The detailed in vitro characterization of these two pharmacological tools targeting 5-HT7 receptors may benefit the study of 5-HT7 receptor function and it may lead to the development of novel selective pharmacological tools with defined functional properties at 5-HT7 receptors.

  15. Platelet 5-HT2A receptor binding and tryptophan availability in depression are not associated with recent history of suicide attempts but with personality traits characteristic for suicidal behavior.

    Science.gov (United States)

    Lauterbach, Erik; Brunner, Jürgen; Hawellek, Barbara; Lewitzka, Ute; Ising, Marcus; Bondy, Brigitta; Rao, Marie Luise; Frahnert, Christine; Rujescu, Dan; Müller-Oerlinghausen, Bruno; Schley, Jürgen; Heuser, Isabella; Maier, Wolfgang; Hohagen, Fritz; Felber, Werner; Bronisch, Thomas

    2006-03-01

    Abnormalities in the serotonergic (5-HT) system have been implicated in the pathogenesis of suicidal behavior. Studies on peripheral serotonergic parameters as a measure for central serotonergic function in suicidal patients appear to be promising, yet failed to show a clear association with suicidality. The objective of this study was to elucidate the role of serotonergic blood parameters in depressed suicidal patients and to examine their usefulness as a potential biological marker for suicidality. A number of personality traits were assessed in order to provide a basis for a psychobiological model of suicidal behavior. Depressed patients with a recent suicide attempt (SA; n = 59) were compared to those without history of suicide attempts (NSA; n = 28). 5-HT2A receptor binding in platelets and tryptophan/amino acid ratio in plasma were measured. Acute psychopathology and personality traits as well as characteristics of suicide attempts were assessed. There was no significant difference between SA and NSA in terms of peripheral serotonergic parameters as well as personality traits. However, the whole sample showed associations between certain personality traits and serotonergic platelet parameters. Furthermore, we observed a relation between suicidal ideation, lethality of suicide attempts and peripheral serotonergic markers. The number of cases with data on peripheral markers is relatively low. The potential influence of antidepressant medication previous to study inclusion has to be taken into account. The study focussed on depressed patients only. Low serotonergic function is involved in the pathogenesis of suicidality, whereas the use of platelet 5-HT2A receptor activity and tryptophan availability as biological markers for suicidality in depressed patients could not be proven an appropriate tool. Alterations in the serotonergic system are associated with trait aggression and other character dimensions.

  16. 5-HT is a potent relaxant in rat superior mesenteric veins

    OpenAIRE

    Watts, Stephanie W.; Darios, Emma S.; Seitz, Bridget M.; Janice M Thompson

    2015-01-01

    Serotonin (5-HT, 5-hydroxytryptamine) reduces blood pressure of the conscious rat when administered chronically (1 week). 5-HT does not directly relax isolated arteries, and microsphere experiments in 5-HT-infused rats suggested that 5-HT increased flow to the splanchnic bed. We hypothesized that 5-HT increased splanchnic flow because of direct venous relaxation; our focus was thus on the superior mesenteric vein (SMV) as an important vein in splanchnic circulation. Real-time RT-PCR, immunohi...

  17. Peripheral 5-HT 1A and 5-HT 7 Serotonergic Receptors Modulate Parasympathetic Neurotransmission in Long-Term Diabetic Rats

    OpenAIRE

    Beatriz Restrepo; María Luisa Martín; Luis San Román; Asunción Morán

    2010-01-01

    We analyzed the modulation of serotonin on the bradycardia induced in vivo by vagal electrical stimulation in alloxan-induced long-term diabetic rats. Bolus intravenous administration of serotonin had a dual effect on the bradycardia induced either by vagal stimulation or exogenous Ach, increasing it at low doses and decreasing it at high doses of 5-hydroxytryptamine (5-HT), effect reproduced by 5-carboxamidotryptamine maleate (5-CT), a 5-HT1/7 agonist. The enhancement of the bradycardia at l...

  18. [Interaction effect of serotonin transporter gene and brain-derived neurotrophic factor on the platelet serotonin content in stroke patients].

    Science.gov (United States)

    Golimbet, V E; Brusov, O S; Factor, M I; Zlobina, G P; Lezheĭko, T V; Lavrushina, O M; Petrova, E A; Savina, M A; Skvortsova, V I

    2010-01-01

    Platelet serotonin content in patients in the acute period of stroke is an important index of clinical changes during the post stroke period as well as a predictor of development of mental disorders. We studied the association between two polymorphisms (5-HTTLPR and Val66Met BDNF) and the platelet serotonin content in 47 patients with stroke. We also investigated the moderating effect of genetic variants on the association between platelet serotonin content and development of affective and anxiety disorders in stroke patients in the acute period of stroke. The interaction effect of two polymorphisms on levels of platelet serotonin was found. The lowest level was observed in patients with the diplotype LL*ValVal, the highest level--in the group of patients with the LL genotype and genotypes containing at least one copy of a Met allele. No moderating effect of genetic variants on the relationship between serotonin content and affective or anxiety disorder was found.

  19. 5-HT3 and 5-HT4 antagonists inhibit peristaltic contractions in guinea-pig distal colon by mechanisms independent of endogenous 5-HT

    Directory of Open Access Journals (Sweden)

    Tiong Cheng Sia

    2013-08-01

    Full Text Available Recent studies have shown that endogenous serotonin is not required for colonic peristalsis in vitro, nor gastrointestinal (GI transit in vivo. However, antagonists of 5-Hydroxytryptamine (5-HT receptors can inhibit peristalsis and GI-transit in mammals, including humans. This raises the question of how these antagonists inhibit GI-motility and transit, if depletion of endogenous 5-HT does not cause any significant inhibitory changes to either GI-motility or transit ? We investigated the mechanism by which 5-HT3 and 5-HT4 antagonists inhibit distension-evoked peristaltic contractions in guinea-pig distal colon. In control animals, repetitive peristaltic contractions of the circular muscle were evoked in response to fixed fecal pellet distension. Distension-evoked peristaltic contractions were unaffected in animals with mucosa and submucosal plexus removed, that were also treated with reserpine (to deplete neuronal 5-HT. In control animals, peristaltic contractions were blocked temporarily by ondansetron (1-10µM and SDZ-205-557 (1-10µM in many animals. Interestingly, after this temporary blockade, and whilst in the continued presence of these antagonists, peristaltic contractions recovered, with characteristics no different from controls. Surprisingly, similar effects were seen in mucosa-free preparations, which had no detectable 5-HT, as detected by mass spectrometry. In summary, distension-evoked peristaltic reflex contractions of the circular muscle layer of the guinea-pig colon can be inhibited temporarily, or permanently, in the same preparation by selective 5-HT3 and 5-HT4 antagonists, depending on the concentration of the antagonists applied. These effects also occur in preparations that lack any detectable 5-HT. We suggest caution should be exercised when interpreting the effects of 5-HT3 and 5-HT4 antagonists; and the role of endogenous 5-HT, in the generation of distension-evoked colonic peristalsis.

  20. Tianeptine: 5-HT uptake sites and 5-HT(1-7) receptors modulate memory formation in an autoshaping Pavlovian/instrumental task.

    Science.gov (United States)

    Meneses, Alfredo

    2002-05-01

    Recent studies using invertebrate and mammal species have revealed that, endogenous serotonin (5-hydroxytryptamine, 5-HT) modulates cognitive processes, particularly learning and memory, though, at present, it is unclear the manner, where, and how long 5-HT systems are involved. Hence in this work, an attempt was made to study the effects of 5-HT endogenous on memory formation, using a 5-HT uptake facilitator (tianeptine) and, selective 5-HT(1-7) receptor antagonists to determine whether 5-HT uptake sites and which 5-HT receptors are involved, respectively. Results showed that post-training tianeptine injection enhanced memory consolidation in an autoshaping Pavlovian/instrumental learning task, which has been useful to detect changes on memory formation elicited by drugs or aging. On interaction experiments, ketanserin (5-HT(1D/2A/2C) antagonist) slightly enhanced tianeptine effects, while WAY 100635 (5-HT(1A) antagonist), SB-224289 (5-HT(1B) inverse agonist), SB-200646 (5-HT(2B/2C) antagonist), ondansetron (5-HT(3) antagonist), GR 127487 (5-HT(4) antagonist), Ro 04-6790 (5-HT(6) antagonist), DR 4004 (5-HT(7) antagonist), or fluoxetine (an inhibitor of 5-HT reuptake) blocked the facilitatory tianeptine effect. Notably, together tianeptine and Ro 04-6790 impaired learning consolidation. Moreover, 5-HT depletion completely reversed the tianeptine effect. Tianeptine also normalized an impaired memory elicited by scopolamine (an antimuscarinic) or dizocilpine (non-competitive glutamatergic antagonist), while partially reversed that induced by TFMPP (5-HT(1B/1D/2A-2C/7) agonist/antagonist). Finally, tianeptine-fluoxetine coadministration had no effect on learning consolidation; nevertheless, administration of an acetylcholinesterase inhibitor, phenserine, potentiated subeffective tianeptine or fluoxetine doses. Collectively, these data confirmed that endogenously 5-HT modulates, via uptake sites and 5-HT(1-7) receptors, memory consolidation, and are consistent with the

  1. Effects of the 5-HT(4) receptor agonist RS67333 and paroxetine on hippocampal extracellular 5-HT levels

    DEFF Research Database (Denmark)

    Licht, Cecilie Löe; Knudsen, Gitte Moos; Sharp, Trevor

    2010-01-01

    The 5-HT(4) receptor modulates activity of serotonergic neurons and is a new potential target for antidepressant treatment. This microdialysis study evaluated the effect of the 5-HT(4) receptor agonist, RS67333, on extracellular serotonin (5-hydroxytryptamine, 5-HT) and 5-HIAA levels in rat ventral...... on extracellular 5-HT or 5-HIAA levels, while acute paroxetine (0.5mg/kg i.v.) increased 5-HT levels by 299+/-16% and decreased 5-HIAA levels by 25+/-4%. Administration of RS67333 80 min after paroxetine caused an additional transient increase in 5-HT levels (to 398+/-52% of baseline). Subchronic RS67333...... administration (1.5mg/kg i.p.) increased basal 5-HT levels by 73+/-15% and decreased 5-HIAA levels by 27+/-13%. In conclusion, the 5-HT(4) receptor agonist RS67333 augmented the acute effect of paroxetine on extracellular 5-HT levels in the ventral hippocampus, and after 3 days increased basal hippocampal 5-HT...

  2. On the role of brain 5-HT7 receptor in the mechanism of hypothermia: comparison with hypothermia mediated via 5-HT1A and 5-HT3 receptor.

    Science.gov (United States)

    Naumenko, Vladimir S; Kondaurova, Elena M; Popova, Nina K

    2011-12-01

    Intracerebroventricular administration of selective agonist of serotonin 5-HT(7) receptor LP44 (4-[2-(methylthio)phenyl]-N-(1,2,3,4-tetrahydro-1-naphthalenyl)-1-pyperasinehexanamide hydrochloride; 10.3, 20.5 or 41.0 nmol) produced considerable hypothermic response in CBA/Lac mice. LP44-induced (20.5 nmol) hypothermia was significantly attenuated by the selective 5-HT(7) receptor antagonist SB 269970 (16.1 fmol, i.c.v.) pretreatment. At the same time, intraperitoneal administration of LP44 in a wide range of doses 1.0, 2.0 or 10.0 mg/kg (2.0, 4.0, 20.0 μmol/kg) did not cause considerable hypothermic response. These findings indicate the implication of central, rather than peripheral 5-HT(7) receptors in the regulation of hypothermia. The comparison of LP44-induced (20.5 nmol) hypothermic reaction in eight inbred mouse strains (DBA/2J, CBA/Lac, C57BL/6, BALB/c, ICR, AKR/J, C3H and Asn) was performed and a significant effect of genotype was found. In the same eight mouse strains, functional activity of 5-HT(1A) and 5-HT(3) receptors was studied. The comparison of hypothermic responses produced by 5-HT(7) receptor agonist LP44 (20.5 nmol, i.c.v.) and 5-HT(1A) receptor agonist 8-OH-DPAT 1.0 mg/kg, i.p. (3.0 μmol/kg), 5-HT(3) receptor agonist m-CPBG (40.0 nmol, i.c.v.) did not reveal considerable interstrain correlations between 5-HT(7) and 5-HT(1A) or 5-HT(3) receptor-induced hypothermia. The selective 5-HT(7) receptor antagonist SB 269970 (16.1 fmol, i.c.v.) failed to attenuate the hypothermic effect of 8-OH-DPAT 1.0 mg/kg, i.p. (3.0 μmol/kg) and m-CPBG (40.0 nmol, i.c.v.) indicating that the brain 5-HT(7) receptor is not involved in the hypothermic effects of 8-OH-DPAT or m-CPBG. The obtained results suggest that the central 5-HT(7) receptor plays an essential role in the mediation of thermoregulation independent of 5-HT(1A) and 5-HT(3) receptors.

  3. The rapid recovery of 5-HT cell firing induced by the antidepressant vortioxetine involves 5-HT(3) receptor antagonism.

    Science.gov (United States)

    Bétry, Cécile; Pehrson, Alan L; Etiévant, Adeline; Ebert, Bjarke; Sánchez, Connie; Haddjeri, Nasser

    2013-06-01

    The therapeutic effect of current antidepressant drugs appears after several weeks of treatment and a significant number of patients do not respond to treatment. Here, we report the effects of the multi-modal antidepressant vortioxetine (Lu AA21004), a 5-HT(3) and 5-HT(7) receptor antagonist, 5-HT(1B) receptor partial agonist, 5-HT(1A) receptor agonist and 5-HT transporter (SERT) inhibitor, on rat 5-HT neurotransmission. Using in vivo electrophysiological recordings in the dorsal raphe nucleus of anaesthetized rats, we assessed the acute and subchronic effects of vortioxetine and/or the selective 5-HT(3) receptor agonist, SR57227 or the selective 5-HT(1A) receptor agonist flesinoxan, on 5-HT neuronal firing activity. Using ex-vivo autoradiography, we correlated SERT occupancy and presumed 5-HT firing activity. The selective serotonin reuptake inhibitor, fluoxetine, was used as comparator. Importantly, the recovery of 5-HT neuronal firing was achieved after 1 d with vortioxetine and 14 d with fluoxetine. SR57227 delayed this recovery. In contrast, vortioxetine failed to alter the reducing action of 3 d treatment of flesinoxan. Acute dosing of vortioxetine inhibited neuronal firing activity more potently than fluoxetine. SR57227 prevented the suppressant effect of vortioxetine, but not of fluoxetine. In contrast, flesinoxan failed to modify the suppressant effect of vortioxetine acutely administered. Differently to fluoxetine, vortioxetine suppressed neuronal firing without saturating occupancy at the SERT. Vortioxetine produced a markedly faster recovery of 5-HT neuronal firing than fluoxetine. This is at least partly due to 5-HT(3) receptor antagonism of vortioxetine in association with its reduced SERT occupancy.

  4. CALCINEURIN INHIBITS DESENSITIZATION OF CLONED RAT 5-HT(1C)RECEPTORS

    NARCIS (Netherlands)

    BODDEKE, HWGM; HOFFMAN, BJ; PALACIOS, JM; HOYER, D

    1993-01-01

    Functional responses to stimulation of rat 5-HT1C receptors expressed in A9 cells were studied using whole cell voltage clamp recording technique. Stimulation of 5-HT1C receptors with serotonin (5-HT) evoked calcium-dependent outward currents of 109 pA in cells clamped at -50 mV. Pretreatment with t

  5. 5-HT7 receptor activation promotes an increase in TrkB receptor expression and phosphorylation.

    Science.gov (United States)

    Samarajeewa, Anshula; Goldemann, Lolita; Vasefi, Maryam S; Ahmed, Nawaz; Gondora, Nyasha; Khanderia, Chandni; Mielke, John G; Beazely, Michael A

    2014-01-01

    The serotonin (5-HT) type 7 receptor is expressed throughout the CNS including the cortex and hippocampus. We have previously demonstrated that the application of 5-HT7 receptor agonists to primary hippocampal neurons and SH-SY5Y cells increases platelet-derived growth factor (PDGF) receptor expression and promotes neuroprotection against N-methyl-D-aspartate-(NMDA)-induced toxicity. The tropomyosin-related kinase B (TrkB) receptor is one of the receptors for brain-derived neurotrophic factor (BDNF) and is associated with neurodevelopmental and neuroprotective effects. Application of LP 12 to primary cerebral cortical cultures, SH-SY5Y cells, as well as the retinal ganglion cell line, RGC-5, increased both the expression of full length TrkB as well as its basal phosphorylation state at tyrosine 816. The increase in TrkB expression and phosphorylation was observed as early as 30 min after 5-HT7 receptor activation. In addition to full-length TrkB, kinase domain-deficient forms may be expressed and act as dominant-negative proteins toward the full length receptor. We have identified distinct patterns of TrkB isoform expression across our cell lines and cortical cultures. Although TrkB receptor expression is regulated by cyclic AMP and Gαs-coupled GPCRs in several systems, we demonstrate that, depending on the model system, pathways downstream of both Gαs and Gα12 are involved in the regulation of TrkB expression by 5-HT7 receptors. Given the number of psychiatric and degenerative diseases associated with TrkB/BDNF deficiency and the current interest in developing 5-HT7 receptor ligands as pharmaceuticals, identifying signaling relationships between these two receptors will aid in our understanding of the potential therapeutic effects of 5-HT7 receptor ligands.

  6. 5-HT7 receptor activation promotes an increase in TrkB receptor expression and phosphorylation

    Directory of Open Access Journals (Sweden)

    Anshula eSamarajeewa

    2014-11-01

    Full Text Available The serotonin (5-HT type 7 receptor is expressed throughout the CNS including cortical neurons. We have previously demonstrated that the application of 5-HT7 receptor agonists to primary hippocampal neurons and SH-SY5Y cells increases platelet-derived growth factor (PDGF receptor expression and promotes neuroprotection against N-methyl-D-aspartate-(NMDA-induced toxicity. The tropomyosin-related kinase B (TrkB receptor is one of the receptors for brain-derived neurotrophic factor (BDNF and is associated with neurodevelopmental and neuroprotective effects. Application of LP 12 to primary cerebral cortical cultures, SH-SY5Y cells, as well as the retinal ganglion cell line, RGC-5, increased both the expression of full length TrkB as well as its basal phosphorylation state at tyrosine 816. The increase in TrkB expression and phosphorylation was observed as early as 30 min after 5-HT7 receptor activation. In addition to full-length TrkB, kinase domain-deficient forms may be expressed and act as dominant-negative proteins towards the full length receptor. We have identified distinct patterns of TrkB isoform expression across our cell lines and cortical cultures. Although TrkB receptor expression is regulated by cyclic AMP and Gαs-coupled GPCRs in several systems, we demonstrate that, depending on the model system, pathways downstream of both Gαs and Gα12 are involved in the regulation of TrkB expression by 5-HT7 receptors. Given the number of psychiatric and degenerative diseases associated with TrkB/BDNF deficiency and the current interest in developing 5-HT7 receptor ligands as pharmaceuticals, identifying signaling relationships between these two receptors will aid in our understanding of the potential therapeutic effects of 5-HT7 receptor ligands.

  7. 5-HT7 receptor activation promotes an increase in TrkB receptor expression and phosphorylation

    Science.gov (United States)

    Samarajeewa, Anshula; Goldemann, Lolita; Vasefi, Maryam S.; Ahmed, Nawaz; Gondora, Nyasha; Khanderia, Chandni; Mielke, John G.; Beazely, Michael A.

    2014-01-01

    The serotonin (5-HT) type 7 receptor is expressed throughout the CNS including the cortex and hippocampus. We have previously demonstrated that the application of 5-HT7 receptor agonists to primary hippocampal neurons and SH-SY5Y cells increases platelet-derived growth factor (PDGF) receptor expression and promotes neuroprotection against N-methyl-D-aspartate-(NMDA)-induced toxicity. The tropomyosin-related kinase B (TrkB) receptor is one of the receptors for brain-derived neurotrophic factor (BDNF) and is associated with neurodevelopmental and neuroprotective effects. Application of LP 12 to primary cerebral cortical cultures, SH-SY5Y cells, as well as the retinal ganglion cell line, RGC-5, increased both the expression of full length TrkB as well as its basal phosphorylation state at tyrosine 816. The increase in TrkB expression and phosphorylation was observed as early as 30 min after 5-HT7 receptor activation. In addition to full-length TrkB, kinase domain-deficient forms may be expressed and act as dominant-negative proteins toward the full length receptor. We have identified distinct patterns of TrkB isoform expression across our cell lines and cortical cultures. Although TrkB receptor expression is regulated by cyclic AMP and Gαs-coupled GPCRs in several systems, we demonstrate that, depending on the model system, pathways downstream of both Gαs and Gα12 are involved in the regulation of TrkB expression by 5-HT7 receptors. Given the number of psychiatric and degenerative diseases associated with TrkB/BDNF deficiency and the current interest in developing 5-HT7 receptor ligands as pharmaceuticals, identifying signaling relationships between these two receptors will aid in our understanding of the potential therapeutic effects of 5-HT7 receptor ligands. PMID:25426041

  8. Comparison of 5-HT4 and 5-HT7 receptor expression and function in the circular muscle of the human colon.

    Science.gov (United States)

    Irving, Helen R; Tan, Yean Y; Tochon-Danguy, Nathalie; Liu, Haihuang; Chetty, Navinisha; Desmond, Paul V; Pouton, Colin W; Coupar, Ian M

    2007-03-06

    Serotonin receptors are potential targets for treating functional bowel disorders. This study investigated the functional roles and expression of the 5-HT4 and the 5-HT7 receptor, which coexist in human colon circular smooth muscle. 5-HT3 receptor expression was also investigated. Part of the relaxant response to 5-HT was due to activation of 5-HT4 receptors as the apparent pKB value of the selective 5-HT4 antagonist, GR 113808, was 9.36. 5-HT4 mRNA levels were low in five tissues and undetectable in four others, but all responded to 5-HT with an EC50 value of 102.54+/-19.32 nM. The contribution of 5-HT7 receptors to the response was not readily demonstrated using the selective 5-HT7 antagonist, SB-269970, as its apparent pKB value of 7.19 (5-HT4 block with 1 microM GR 113808) was lower than the value obtained using the 5-HT7 guinea pig ileum assay (8.62). Nevertheless, the 5-HT7 receptor was expressed more consistently than the 5-HT4, but at similar levels. The 5-HT(3Ashort) and 5-HT(3B) subunits were co-expressed at similar levels, but the 5-HT(3Along) subunit was detected in only five of the nine samples tested. The findings show that 5-HT4-induced relaxation occurs at low to undetectable levels of tissue mRNA, as measured by qPCR. Although 5-HT7 receptor mRNA is detected at low, but consistent levels, the functional activity of this receptor is not readily identified given the currently available drugs.

  9. Effects of halopemide, a new psychotropic agent, on the uptake of serotonin by blood platelets

    NARCIS (Netherlands)

    Loonen, A.J.M.; Soudijn, W.

    1979-01-01

    The influence of halopemide, a new psychotropic agent, and some putative metabolites on the uptake of14C-5-HT into blood platelets of rat and man were studied and compared to the effects of imipramine, sulpiride and clozapine. Halopemide, its putative metabolites R 38570 and R 29676 and sulpiride in

  10. Cellular resilience: 5-HT neurons in Tph2(-/-) mice retain normal firing behavior despite the lack of brain 5-HT.

    Science.gov (United States)

    Montalbano, Alberto; Waider, Jonas; Barbieri, Mario; Baytas, Ozan; Lesch, Klaus-Peter; Corradetti, Renato; Mlinar, Boris

    2015-11-01

    Considerable evidence links dysfunction of serotonin (5-hydroxytryptamine, 5-HT) transmission to neurodevelopmental and psychiatric disorders characterized by compromised "social" cognition and emotion regulation. It is well established that the brain 5-HT system is under autoregulatory control by its principal transmitter 5-HT via its effects on activity and expression of 5-HT system-related proteins. To examine whether 5-HT itself also has a crucial role in the acquisition and maintenance of characteristic rhythmic firing of 5-HT neurons, we compared their intrinsic electrophysiological properties in mice lacking brain 5-HT, i.e. tryptophan hydroxylase-2 null mice (Tph2(-/-)) and their littermates, Tph2(+/-) and Tph2(+/+), by using whole-cell patch-clamp recordings in a brainstem slice preparation and single unit recording in anesthetized animals. We report that the active properties of dorsal raphe nucleus (DRN) 5-HT neurons in vivo (firing rate magnitude and variability; the presence of spike doublets) and in vitro (firing in response to depolarizing current pulses; action potential shape) as well as the resting membrane potential remained essentially unchanged across Tph2 genotypes. However, there were subtle differences in subthreshold properties, most notably, an approximately 25% higher input conductance in Tph2(-/-) mice compared with Tph2(+/-) and Tph2(+/+) littermates (presilience to complete brain 5-HT deficiency.

  11. 抑郁症患者血小板五羟色胺浓度的研究%Blood platelet 5-HT concentration in patients with depression

    Institute of Scientific and Technical Information of China (English)

    潘桂花; 林治光; 李华芳; 徐韬园

    2005-01-01

    目的通过测定抑郁症患者血小板五羟色胺(5-HT)浓度,探讨抑郁症治疗前后5-HT变化及其与临床特征的关系.方法用高效液相色谱法(HPLC)及电化学探测仪测定60例抑郁症患者治疗前后血小板5-HT浓度,并与30名正常者对照比较,同时作相关分析.结果治疗前后抑郁症患者血小板5-HT浓度均显著低于正常对照组(t=5.38, P<0.001; t=3.63, P<0.001);治疗前血小板5-HT浓度与HAMD因子1(焦虑/躯体化)有显著相关性(r=-0.88, P=0.001).结论抑郁症患者血小板5-HT浓度明显降低,治疗前焦虑/躯体化症状与5-HT浓度呈负相关.

  12. Effects of the prototype serotonin 5-HT(1B/1D) receptor agonist sumatriptan and the calcitonin gene-related peptide (CGRP) receptor antagonist CGRP(8-37) on myocardial reactive hyperemic response in conscious dogs.

    Science.gov (United States)

    Lynch, Joseph J; Shen, You-Tang; Pittman, Tamara J; Anderson, Kenneth D; Koblan, Kenneth S; Gould, Robert J; Regan, Christopher P; Kane, Stefanie A

    2009-11-25

    The triptans, serotonin 5-HT(1B/1D) receptor agonists exemplified by sumatriptan, are a mainstay migraine therapy but have class labeling contraindicating their use in patients with coronary artery disease. Triptans constrict human coronary artery in vitro, and there are case reports of myocardial infarction in patients using sumatriptan. However, preclinical studies with sumatriptan in normal dogs have failed to demonstrate effects on resting coronary flow. Calcitonin gene-related peptide (CGRP) receptor antagonism, exemplified by the prototype CGRP receptor antagonist peptide CGRP(8-37), is a new antimigraine mechanism which also has been reported to have no effect on coronary flow in normal, non-stressed animals. The goal of the present studies was to compare the effects of sumatriptan (10microg/kg/min i.v.) and CGRP(8-37) (30microg/kg/min i.v.) on systemic and coronary hemodynamics in conscious dogs under resting conditions and during myocardial reactive hyperemia following a brief 15s of coronary artery occlusion. Neither CGRP(8-37) nor sumatriptan affected resting coronary flow. However, whereas CGRP(8-37) had no effect on myocardial reactive hyperemic response, sumatriptan reduced peak reactive hyperemic coronary artery blood flow (baseline vs treatment: 75.4+/-12.7 vs 60.0+/-10.3ml/min, Ptriptan effects on coronary vascular function.

  13. 5-HT7 receptor signaling: improved therapeutic strategy in gut disorders

    OpenAIRE

    Janice J Kim; Khan, Waliul I.

    2014-01-01

    Serotonin (5-hydroxytrytamine; 5-HT) is most commonly known for its role as a neurotransmitter in the central nervous system. However, the majority of the body’s 5-HT is produced in the gut by enterochromaffin (EC) cells. Alterations in 5-HT signaling have been associated with various gut disorders including inflammatory bowel disease (IBD), irritable bowel syndrome (IBS) and enteric infections. Recently, our studies have identified a key role for 5-HT in the pathogenesis of experimental coli...

  14. 5-HT7 receptor signaling: improved therapeutic strategy in gut disorders

    OpenAIRE

    Janice J Kim; Khan, Waliul I.

    2014-01-01

    Serotonin (5-hydroxytryptamine; 5-HT) is most commonly known for its role as a neurotransmitter in the central nervous system (CNS). However, the majority of the body’s 5-HT is produced in the gut by enterochromaffin (EC) cells. Alterations in 5-HT signaling have been associated with various gut disorders including inflammatory bowel disease (IBD), irritable bowel syndrome (IBS) and enteric infections. Recently, our studies have identified a key role for 5-HT in the pathogenesis of experiment...

  15. 背侧海马CA1区5-HT2 A受体超微分布以及对神经元电活动影响%Subcellular localization of serotonin 2 A receptor in dorsal hippocampal CA1 area and its effect on neuronal firing

    Institute of Scientific and Technical Information of China (English)

    庞刚; 章功良

    2014-01-01

    目的:探讨背侧海马CA1( dCA1)区5-HT2A受体的亚细胞定位及与谷氨酸NMDA受体空间关系,观测系统性激活5-HT2A受体对dCA1区主神经元和中间神经元放电频率的影响。方法采用包埋后免疫电镜技术,观测dCA1区神经元内5-HT2A受体和NMDA受体的分布,采用多通道记录技术,记录腹腔注射TCB-2激活5-HT2A受体后主神经元和中间神经元放电频率的变化。结果5-HT2A受体在海马dCA1区神经元的粗面内质网、线粒体等处广泛分布,并在突触、突触小泡和神经丝等处与 NMDA 受体共区域表达;激活5-HT2A受体可致dCA1区主神经元的放电频率明显升高,而对中间神经元的放电频率无明显影响。结论 dCA1区5-HT2A受体可能通过与NMDA受体的协同作用,以增加谷氨酸能神经元的兴奋性,从而达到促进学习和记忆的作用。%Aim To examine subcellular localization of serotonin 5-HT2A receptor (5-HT2AR) and glutamate NMDA receptor in dorsal hippocampal CA1 area ( dCA1 ) and further explore the effect of systemic acti-vation of 5-HT2A R on hippocampal neuronal firing rate. Methods The distribution of 5-HT2A R and NMDA re-ceptor in the dCA1 region was detected with immune e-lectron microscopy after embedding. The effect of acti-vation of 5-HT2A R on the principal neuron and inter-neuron firing rates was examined with multichannel re-cording. Results 5-HT2A R immunoreactivity was ob-served in the dCA1 neurons, including rough endoplas-mic reticula and mitochondria, and the 5-HT2A R and glutamate NMDA receptors were colocalized in the syn-aptic membrane, vesicle and neurofilament of the hipp-ocampal neuron. 5-HT2A R activation increased princi-pal neuronal firing rate and the interneuronal firing rate was not changed. Conclusion The 5-HT2A R and NM-DA receptor are colocalized in dCA1 neurons, and acti-vation of 5-HT2A R increases hippocampal principal neuronal firing rate.

  16. Effect of 5-HT7 receptor blockade on liver regeneration after 60-70% partial hepatectomy

    OpenAIRE

    Tzirogiannis, Konstantinos N; Kourentzi, Kalliopi T; Zyga, Sofia; Papalimneou, Vassiliki; Tsironi, Maria; Grypioti, Agni D; Protopsaltis, Ioannis; Panidis, Dimitrios; Panoutsopoulos, Georgios I

    2014-01-01

    Background Serotonin exhibits a vast repertoire of actions including cell proliferation and differentiation. The effect of serotonin, as an incomplete mitogen, on liver regeneration has recently been unveiled and is mediated through 5-HT2 receptor. The aim of the present study was to investigate the effect of 5-HT7 receptor blockade on liver regeneration after partial hepatectomy. Methods Male Wistar rats were subjected to 60-70% partial hepatectomy. 5-HT7 receptor blockade was applied by int...

  17. Deletion of Munc18-1 in 5-HT Neurons Results in Rapid Degeneration of the 5-HT System and Early Postnatal Lethality

    Science.gov (United States)

    Dudok, Jacobus J.; Groffen, Alexander J. A.; Toonen, Ruud F. T.; Verhage, Matthijs

    2011-01-01

    The serotonin (5-HT) system densely innervates many brain areas and is important for proper brain development. To specifically ablate the 5-HT system we generated mutant mice carrying a floxed Munc18-1 gene and Cre recombinase driven by the 5-HT-specific serotonin reuptake transporter (SERT) promoter. The majority of mutant mice died within a few days after birth. Immunohistochemical analysis of brains of these mice showed that initially 5-HT neurons are formed and the cortex is innervated with 5-HT projections. From embryonic day 16 onwards, however, 5-HT neurons started to degenerate and at postnatal day 2 hardly any 5-HT projections were present in the cortex. The 5-HT system of mice heterozygous for the floxed Munc18-1 allele was indistinguishable from control mice. These data show that deletion of Munc18-1 in 5-HT neurons results in rapid degeneration of the 5-HT system and suggests that the 5-HT system is important for postnatal survival. PMID:22140524

  18. Deletion of Munc18-1 in 5-HT neurons results in rapid degeneration of the 5-HT system and early postnatal lethality.

    Directory of Open Access Journals (Sweden)

    Jacobus J Dudok

    Full Text Available The serotonin (5-HT system densely innervates many brain areas and is important for proper brain development. To specifically ablate the 5-HT system we generated mutant mice carrying a floxed Munc18-1 gene and Cre recombinase driven by the 5-HT-specific serotonin reuptake transporter (SERT promoter. The majority of mutant mice died within a few days after birth. Immunohistochemical analysis of brains of these mice showed that initially 5-HT neurons are formed and the cortex is innervated with 5-HT projections. From embryonic day 16 onwards, however, 5-HT neurons started to degenerate and at postnatal day 2 hardly any 5-HT projections were present in the cortex. The 5-HT system of mice heterozygous for the floxed Munc18-1 allele was indistinguishable from control mice. These data show that deletion of Munc18-1 in 5-HT neurons results in rapid degeneration of the 5-HT system and suggests that the 5-HT system is important for postnatal survival.

  19. 5-HT(1A) and 5-HT(7) receptors differently modulate AMPA receptor-mediated hippocampal synaptic transmission.

    Science.gov (United States)

    Costa, L; Trovato, C; Musumeci, S A; Catania, M V; Ciranna, L

    2012-04-01

    We have studied the effects of 5-HT(1A) and 5-HT(7) serotonin receptor activation in hippocampal CA3-CA1 synaptic transmission using patch clamp on mouse brain slices. Application of either 5-HT or 8-OH DPAT, a mixed 5-HT(1A)/5-HT(7) receptor agonist, inhibited AMPA receptor-mediated excitatory post synaptic currents (EPSCs); this effect was mimicked by the 5-HT(1A) receptor agonist 8-OH PIPAT and blocked by the 5-HT(1A) antagonist NAN-190. 8-OH DPAT increased paired-pulse facilitation and reduced the frequency of mEPSCs, indicating a presynaptic reduction of glutamate release probability. In another group of neurons, 8-OH DPAT enhanced EPSC amplitude but did not alter paired-pulse facilitation, suggesting a postsynaptic action; this effect persisted in the presence of NAN-190 and was blocked by the 5-HT(7) receptor antagonist SB-269970. To confirm that EPSC enhancement was mediated by 5-HT(7) receptors, we used the compound LP-44, which is considered a selective 5-HT(7) agonist. However, LP-44 reduced EPSC amplitude in most cells and instead increased EPSC amplitude in a subset of neurons, similarly to 8-OH DPAT. These effects were respectively antagonized by NAN-190 and by SB-269970, indicating that under our experimental condition LP-44 behaved as a mixed agonist. 8-OH DPAT also modulated the current evoked by exogenously applied AMPA, inducing either a reduction or an increase of amplitude in distinct neurons; these effects were respectively blocked by 5-HT(1A) and 5-HT(7) receptor antagonists, indicating that both receptors exert a postsynaptic action. Our results show that 5-HT(1A) receptors inhibit CA3-CA1 synaptic transmission acting both pre- and postsynaptically, whereas 5-HT(7) receptors enhance CA3-CA1 synaptic transmission acting exclusively at a postsynaptic site. We suggest that a selective pharmacological targeting of either subtype may be envisaged in pathological loss of hippocampal-dependent cognitive functions. In this respect, we underline the

  20. Changes in 5-HT2A-mediated behavior and 5-HT2A- and 5-HT1A receptor binding and expression in conditional brain-derived neurotrophic factor knock-out mice

    DEFF Research Database (Denmark)

    Klein, A B; Santini, M A; Aznar, S;

    2010-01-01

    specific for the serotonin 2A receptor (5-HT(2A)R) in prefrontal cortex was described previously in these mice. This is of much interest, as 5-HT(2A)Rs have been linked to neuropsychiatric disorders and anxiety-related behavior. Here we further characterized the serotonin receptor alterations triggered...... by BDNF depletion. 5-HT(2A) ([(3)H]-MDL100907) and 5-HT(1A) ([(3)H]-WAY100635) receptor autoradiography revealed site-specific alterations in BDNF mutant mice. They exhibited lower 5-HT(2A) receptor binding in frontal cortex but increased binding in hippocampus. Additionally, 5-HT(1A) receptor binding...... was decreased in hippocampus of BDNF mutants, but unchanged in frontal cortex. Molecular analysis indicated corresponding changes in 5-HT(2A) and 5-HT(1A) mRNA expression but normal 5-HT(2C) content in these brain regions in BDNF(2L/2LCk-cre) mice. We investigated whether the reduction in frontal 5-HT(2A...

  1. A Pharmacological Analysis of an Associative Learning Task: 5-HT1 to 5-HT7 Receptor Subtypes Function on a Pavlovian/Instrumental Autoshaped Memory

    OpenAIRE

    Meneses, Alfredo

    2003-01-01

    Recent studies using both invertebrates and mammals have revealed that endogenous serotonin (5-hydroxytryptamine [5-HT]) modulates plasticity processes, including learning and memory. However, little is currently known about the mechanisms, loci, or time window of the actions of 5-HT. The aim of this review is to discuss some recent results on the effects of systemic administration of selective agonists and antagonists of 5-HT on associative learning in a Pavlovian/instrumental autoshaping (P...

  2. 5-HT systems: emergent targets for memory formation and memory alterations.

    Science.gov (United States)

    Meneses, Alfredo

    2013-01-01

    Drugs acting through 5-hydroxytryptamine (serotonin or 5-HT) systems modulate memory and its alterations, although the mechanisms involved are poorly understood. 5-HT drugs may present promnesic and/or antiamnesic (or even being amnesic) effects. Key questions regarding 5-HT markers include whether receptors directly or indirectly participate and/or contribute to the physiological and pharmacological basis of memory and its pathogenesis; hence, the major aim of this article was to examine recent advances in emergent targets of the 5-HT systems for memory formation and memory alterations. Recent reviews and findings are summarized, mainly in the context of the growing notion of memory deficits in brain disorders (e.g., posttraumatic stress disorder, mild cognitive impairment, consumption of drugs, poststroke cognitive dysfunctions, schizophrenia, Parkinson disease, and infection-induced memory impairments). Mainly, mammalian and (some) human data were the focus. At least agonists and antagonists for 5-HT1A/1B, 5-HT2A/2B/2C, 5-HT3, 5-HT4, 5-HT6, and 5-HT7 receptors as well as serotonin uptake inhibitors seem to have a promnesic and/or antiamnesic effect in different conditions and 5-HT markers seem to be associated to neural changes. Available evidence offers clues about the possibilities, but the exact mechanisms remain unclear. For instance, 5-HT transporter expression seems to be a reliable neural marker related to memory mechanisms and its alterations.

  3. IMPROVED DIAGNOSIS OF CARCINOID-TUMORS BY MEASUREMENT OF PLATELET SEROTONIN

    NARCIS (Netherlands)

    KEMA, IP; DEVRIES, EGE; SCHELLINGS, AMJ; POSTMUS, PE; MUSKIET, FAJ

    1992-01-01

    Carcinoid patients are diagnosed biochemically on the basis of increased urinary excretion of 5-hydroxyindoleacetic acid (5-HIAA); urinary and platelet serotonin concentrations are considered to provide complementary information. Using established HPLC methods with fluorometric detection, we evaluat

  4. Role of 5-HT3 Receptors in the Antidepressant Response

    Directory of Open Access Journals (Sweden)

    Connie Sanchez

    2011-04-01

    Full Text Available Serotonin (5-HT3 receptors are the only ligand-gated ion channel of the 5-HT receptors family. They are present both in the peripheral and central nervous system and are localized in several areas involved in mood regulation (e.g., hippocampus or prefrontal cortex. Moreover, they are involved in regulation of neurotransmitter systems implicated in the pathophysiology of major depression (e.g., dopamine or GABA. Clinical and preclinical studies have suggested that 5-HT3 receptors may be a relevant target in the treatment of affective disorders. 5-HT3 receptor agonists seem to counteract the effects of antidepressants in non-clinical models, whereas 5-HT3 receptor antagonists, such as ondansetron, present antidepressant-like activities. In addition, several antidepressants, such as mirtazapine, also target 5-HT3 receptors. In this review, we will report major advances in the research of 5-HT3 receptor’s roles in neuropsychiatric disorders, with special emphasis on mood and anxiety disorders.

  5. Central 5-HT Neurotransmission Modulates Weight Loss following Gastric Bypass Surgery in Obese Individuals

    DEFF Research Database (Denmark)

    Haahr, M. E.; Hansen, D. L.; Fisher, P. M.

    2015-01-01

    , it was confirmed that obese individuals have higher cerebral 5-HT2A receptor binding than lean individuals. Importantly, we found that higher presurgical 5-HT2A receptor binding predicted greater weight loss after RYGB and that the change in 5-HT2A receptor and 5-HT transporter binding correlated with weight loss......The cerebral serotonin (5-HT) system shows distinct differences in obesity compared with the lean state. Here, it was investigated whether serotonergic neurotransmission in obesity is a stable trait or changes in association with weight loss induced by Roux-in-Y gastric bypass (RYGB) surgery...... after RYGB. The changes in the 5-HT neurotransmission before and after RYGB are in accordance with a model wherein the cerebral extracellular 5-HT level modulates the regulation of body weight. Our findings support that the cerebral 5-HT system contributes both to establish the obese condition...

  6. BDNF downregulates 5-HT(2A) receptor protein levels in hippocampal cultures

    DEFF Research Database (Denmark)

    Trajkovska, V; Santini, M A; Marcussen, Anders Bue;

    2009-01-01

    Both brain-derived neurotrophic factor (BDNF) and the serotonin receptor 2A (5-HT(2A)) have been related to depression pathology. Specific 5-HT(2A) receptor changes seen in BDNF conditional mutant mice suggest that BDNF regulates the 5-HT(2A) receptor level. Here we show a direct effect of BDNF...... on 5-HT(2A) receptor protein levels in primary hippocampal neuronal and mature hippocampal organotypic cultures exposed to different BDNF concentrations for either 1, 3, 5 or 7 days. In vivo effects of BDNF on hippocampal 5-HT(2A) receptor levels were further corroborated in (BDNF +/-) mice...... with reduced BDNF levels. In primary neuronal cultures, 7 days exposure to 25 and 50ng/mL BDNF resulted in downregulation of 5-HT(2A), but not of 5-HT(1A), receptor protein levels. The BDNF-associated downregulation of 5-HT(2A) receptor levels was also observed in mature hippocampal organotypic cultures...

  7. 5-HT7 receptor signaling: improved therapeutic strategy in gut disorders.

    Science.gov (United States)

    Kim, Janice J; Khan, Waliul I

    2014-01-01

    Serotonin (5-hydroxytryptamine; 5-HT) is most commonly known for its role as a neurotransmitter in the central nervous system (CNS). However, the majority of the body's 5-HT is produced in the gut by enterochromaffin (EC) cells. Alterations in 5-HT signaling have been associated with various gut disorders including inflammatory bowel disease (IBD), irritable bowel syndrome (IBS) and enteric infections. Recently, our studies have identified a key role for 5-HT in the pathogenesis of experimental colitis. 5-HT7 receptors are expressed in the gut and very recently, we have shown evidence of 5-HT7 receptor expression on intestinal immune cells and demonstrated a key role for 5-HT7 receptors in generation of experimental colitis. This review summarizes the key findings of these studies and provides a comprehensive overview of our current knowledge of the 5-HT7 receptor in terms of its pathophysiological relevance and therapeutic potential in intestinal inflammatory conditions, such as IBD.

  8. Measuring endogenous 5-HT release by emission tomography: promises and pitfalls

    DEFF Research Database (Denmark)

    Paterson, Louise M; Tyacke, Robin J; Nutt, David J;

    2010-01-01

    emission tomography, but has not yet been adequately extended to other neurotransmitter systems. This review focuses on how the technique has been applied to the study of the 5-hydroxytryptamine (5-HT) system. The principles behind visualising fluctuations in neurotransmitters are introduced......, with reference to the dopaminergic system. Studies that aim to image acute, endogenous 5-HT release or depletion at 5-HT receptor targets are summarised, with particular attention to studies in humans. Radiotracers targeting the 5-HT(1A), 5-HT(2A), and 5-HT(4) receptors and the serotonin reuptake transporter...... have been explored for their sensitivity to 5-HT fluctuations, but with mixed outcomes; tracers for these targets cannot reliably image endogenous 5-HT in humans. Shortcomings in our basic knowledge of the mechanisms underlying changes in binding potential are addressed, and suggestions are made...

  9. DİFENİLHİDANTOİN İLE OLUŞAN HİPERPLASTÎK DİŞETLERİNDE SEROTONİN (5-HT) DÜZEYİ-THE LEVEL OF SEROTONIN (5-HT) IN DIPHENYLHYDANTOIN-INDUCED HYPERPLASTIC GINGIVA

    OpenAIRE

    2013-01-01

    ÖZETBu çalışmada difenilhidantoinic oluşan hiperplastik dişetlerinde serotonin düzeyleri incelendi.Hiperplastik dişçilerinden alınan ekstrelerin, sıçan mide fundusunda serotonin benzeri aktivite göstermedikleri belirlendi.Anahtar sözcükler: Difenilhidantoin, serotonin, hiperlastik dişeti.ABSTRACTIn this work, the level of serotonin (S-HT) was investigated in diphenylhydantoin-induced hyperplastic gingiva.The extracts from the hyperplastic gingiva didn't appear to exert rather a serotonin-like...

  10. Connections between 5-HT-containing terminals and 5-HT2A receptor and γ-aminobutyric acid or glycine co-existed neurons in the rat medullary dorsal horn

    Institute of Scientific and Technical Information of China (English)

    LI Hui; LI Yun-qing

    2001-01-01

    Objective: To investigate the connections between serotonin (5-HT)-containing terminals and 5-HT2A receptor (5-HT2AR)/γ-aminobutyric acid (GABA) or 5-HT2AR/glycine co-existed neurons in the rat medullary dorsal horn (MDH).Methods: Immunofluorescence histochemical triple-staining for 5-HT, 5-HT2AR, GABA or glycine. Results: 5-HT-immunoreaetive fibers and terminals were chiefly located in the superficial laminae (laminae Ⅰ and Ⅱ) of the MDH. Neurons exhibiting 5-HT2AR-, GABA- or glycine-immunoreactivities were mainly observed in the superficial laminae. Some 5-HT2AR-immunopositive neurons also exhibited GABA- or glycine-immunoreaetivities. 5-HT-containing terminals made close contacts with 5-HT2AR/GABA or 5-HT2AR/glycine co-existed neurons. Conclusion: 5-HT2AR/GABA or 5-HT2AR /glycine co-exist in some of the neurons in the superficial laminae of the MDH. 5-HT-immunoreactive terminals form close connections with 5-HT2AR/GABA or 5-HT2AR/glycine co-existed neurons.

  11. 颅脑创伤后强迫症患者血小板5-羟色胺水平的对照研究%A comparative study of platelet serotonin in patients after traumatic brain injury with obsessive compulsive disorder

    Institute of Scientific and Technical Information of China (English)

    杨永林; 庄须伟; 王兴强; 王善仕; 尹红霞

    2010-01-01

    目的 探讨颅脑创伤后强迫症患者血小板5-羟色胺(5-HT)水平.方法 测定符合诊断标准的27例颅脑创伤后强迫症患者(强迫症组)和27名颅脑创伤后非强迫症患者(对照组)的血小板5-HT水平.结果 颅脑创伤后强迫症组血小板5-HT水平[(139±172)μg/L]低于正常人组[(248±215)μg/L],差异具有显著性(P<0.05).结论 强迫症患者症状与5-HT浓度变化有相关性;单纯强迫思维者的5-HT浓度与单纯强迫动作患者的差异有显著性.%Objective To explore the role of serotonin(5-HT) in obsessive compulsive disorder(OCD) and the difference in platelet 5-HT content between OCD and healthy controls, the obsession and the compulsion subgroup. Methods The concentration of serotonin (5-HT) in twenty-seven patients with OCD and twenty-seven patients without OCD were detected in the study. Results Platelet serotonin level in patients with OCD ( ( 139 ±172 ) μg/L) was lower than that in patients without OCD ( ( 248 ± 215 ) μg/L), and the differences were significant (P<0.05). Conclusion The present results support the hypothesis that 5-HT hypofunctionality contribute to OCD. And the differences between the obsession and the compulsion subgroup in the role of 5-HT are significant.

  12. Cellular mechanisms of the 5-HT7 receptor-mediated signaling.

    Science.gov (United States)

    Guseva, Daria; Wirth, Alexander; Ponimaskin, Evgeni

    2014-01-01

    Serotonin (5-hydroxytryptamine or 5-HT) is an important neurotransmitter regulating a wide range of physiological and pathological functions via activation of heterogeneously expressed 5-HT receptors. The 5-HT7 receptor is one of the most recently described members of the 5-HT receptor family. Functionally, 5-HT7 receptor is associated with a number of physiological and pathological responses, including serotonin-induced phase shifting of the circadian rhythm, control of memory as well as locomotor and exploratory activity. A large body of evidence indicates involvement of the 5-HT7 receptor in anxiety and depression, and recent studies suggest that 5-HT7 receptor can be highly relevant for the treatment of major depressive disorders. The 5-HT7 receptor is coupled to the stimulatory Gs-protein, and receptor stimulation results in activation of adenylyl cyclase (AC) leading to a rise of cAMP concentration. In addition, this receptor is coupled to the G12-protein to activate small GTPases of the Rho family. This review focuses on molecular mechanisms responsible for the 5-HT7 receptor-mediated signaling. We provide detailed overview of signaling cascades controlled and regulated by the 5-HT7 receptor and discuss the functional impact of 5-HT7 receptor for the regulation of different cellular and subcellular processes.

  13. Cellular mechanisms of the 5-HT7 receptor-mediated signaling

    Directory of Open Access Journals (Sweden)

    Daria eGuseva

    2014-10-01

    Full Text Available Serotonin (5-hydroxytryptamine or 5-HT is an important neurotransmitter regulating a wide range of physiological and pathological functions via activation of heterogeneously expressed 5-HT receptors. The 5-HT7 receptor is one of the most recently described members of the 5-HT receptor family. Functionally, 5-HT7 receptor is associated with a number of physiological and pathological responses, including serotonin-induced phase shifting of the circadian rhythm, control of memory as well as locomotor and exploratory activity. A large body of evidence indicates involvement of the 5-HT7 receptor in anxiety and depression, and recent studies suggest that 5-HT7 receptor can be highly relevant for the treatment of major depressive disorders. The 5-HT7 receptor is coupled to the stimulatory Gs-protein, and receptor stimulation results in activation of adenylyl cyclase (AC leading to a rise of cAMP concentration. In addition, this receptor is coupled to the G12-protein to activate small GTPases of the Rho family. This review focuses on molecular mechanisms responsible for the 5-HT7 receptor-mediated signaling. We provide detailed overview of signaling cascades controlled and regulated by the 5-HT7 receptor and discuss the functional impact of 5-HT7 receptor for the regulation of different cellular and subcellular processes.

  14. Cartography of 5-HT1A and 5-HT2A Receptor Subtypes in Prefrontal Cortex and Its Projections.

    Science.gov (United States)

    Mengod, Guadalupe; Palacios, José M; Cortés, Roser

    2015-07-15

    Since the development of chemical neuroanatomical tools in the 1960s, a tremendous wealth of information has been generated on the anatomical components of the serotonergic system, at the microscopic level in the brain including the prefrontal cortex (PFC). The PFC receives a widespread distribution of serotonin (5-hydroxytryptamine, 5-HT) terminals from the median and dorsal raphe nuclei. 5-HT receptors were first visualized using radioligand autoradiography in the late 1980s and early 1990s and showed, in contrast to 5-HT innervation, a differential distribution of binding sites associated with different 5-HT receptor subtypes. Due to the cloning of the different 5-HT receptor subtype genes in the late 1980s and early 1990s, it was possible, using in situ hybridization histochemistry, to localize cells expressing mRNA for these receptors. Double in situ hybridization histochemistry and immunohistochemistry allowed for the chemical characterization of the phenotype of cells expressing 5-HT receptors. Tract tracing technology allowed a detailed cartography of the neuronal connections of PFC and other brain areas. Based on these data, maps have been constructed that reflect our current understanding of the different circuits where 5-HT receptors can modulate the electrophysiological, pharmacological, and behavioral functions of the PFC. We will review current knowledge regarding the cellular localization of 5-HT1A and 5-HT2A receptors in mammalian PFC and their possible functions in the neuronal circuits of the PFC. We will discuss data generated in our laboratory as well as in others, focusing on localization in the pyramidal and GABAergic neuronal cell populations in different mammalian species using molecular neuroanatomy and on the connections with other brain regions.

  15. 5-HT is a potent relaxant in rat superior mesenteric veins.

    Science.gov (United States)

    Watts, Stephanie W; Darios, Emma S; Seitz, Bridget M; Thompson, Janice M

    2015-02-01

    Serotonin (5-HT, 5-hydroxytryptamine) reduces blood pressure of the conscious rat when administered chronically (1 week). 5-HT does not directly relax isolated arteries, and microsphere experiments in 5-HT-infused rats suggested that 5-HT increased flow to the splanchnic bed. We hypothesized that 5-HT increased splanchnic flow because of direct venous relaxation; our focus was thus on the superior mesenteric vein (SMV) as an important vein in splanchnic circulation. Real-time RT-PCR, immunohistochemistry and Western analyses supported the predominant expression of the 5-HT2B and 5-HT7 receptor in the SMV. The SMV was mounted in tissue baths for measurement of isometric contraction. 5-HT caused a concentration-dependent relaxation of the endothelin-1 (ET-1)-contracted vein. The threshold of 5-HT-induced venous relaxation was significantly lower than for 5-HT-induced venous contraction (∼2 vs. 700 nmol/L, respectively). A series of serotonergic agonists established in their use of receptor characterization was tested, and the following rank order of potency found for agonist-induced relaxation (receptor selectivity): 5-CT (5-HT1/5-HT7)>5-HT = LP-44 (5-HT7)>PNU109291 (5-HT1D) = BW723C86 (5-HT2B). 8-OH-DPAT (5-HT1A/7), CP93129 (5-HT1B), mCPBG (5-HT3/4), AS19 (5-HT7) and TCB-2 (5-HT2A) did not relax the isolated vein. Consistent with these findings, two different 5-HT7 receptor antagonists SB 269970 and LY215840 but not the 5-HT2B receptor antagonist LY272015 nor the nitric oxide synthase inhibitor LNNA abolished 5-CT-induced relaxation of the isolated SMV. 5-CT (1 μg kg(-1) min(-1), sc) also reduced blood pressure over 7 days. These findings suggest that 5-HT directly relaxes the SMV primarily through activation of the 5-HT7 receptor.

  16. The effect of ondansetron, a 5-HT3 receptor antagonist, in chronic fatigue syndrome: a randomized controlled trial.

    NARCIS (Netherlands)

    The, G.K.H.; Bleijenberg, G.; Buitelaar, J.K.; Meer, J.W.M. van der

    2010-01-01

    BACKGROUND: Accumulating data support the involvement of the serotonin (5-hydroxytryptamine [5-HT]) system in the pathophysiology of chronic fatigue syndrome. Neuropharmacologic studies point to a hyperactive 5-HT system, and open-label treatment studies with 5-HT(3) receptor antagonists have shown

  17. Synthesis and In Vitro Evaluation of Oxindole Derivatives as Potential Radioligands for 5-HT7 Receptor Imaging with PET

    DEFF Research Database (Denmark)

    Herth, Matthias Manfred; Volk, Balázs; Pallagi, Katalin

    2012-01-01

    The most recently discovered serotonin (5-HT) receptor subtype, 5-HT(7), is considered to be associated with several CNS disorders. Noninvasive in vivo positron emission tomography (PET) studies of cerebral 5-HT(7) receptors could provide a significant advance in the understanding of the neurobio...

  18. Role of dorsal raphe nucleus 5-HT(1A) and 5-HT(2) receptors in tonic immobility modulation in guinea pigs.

    Science.gov (United States)

    Ferreira, Mateus Dalbem; Menescal-de-Oliveira, Leda

    2009-08-18

    Tonic immobility (TI) is an innate defensive behavior characterized by a state of physical inactivity and diminished responsiveness to environmental stimuli. Behavioral adaptations to changes in the external and internal milieu involve complex neuronal network activity and a large number of chemical neurotransmitters. The TI response is thought to be influenced by serotonin (5-HT) activity in the central nervous system (CNS) of vertebrates, but the neuronal groups involved in the mechanisms underlying this behavior are poorly understood. Owing to its extensive afferents and efferents, the dorsal raphe nucleus (DRN) has been implicated in a great variety of physiological and behavioral functions. In the current study, we investigated the influence of serotonergic 5-HT(1A) and 5-HT(2) receptor activity within the DRN on the modulation of TI behavior in the guinea pig. Microinjection of a 5-HT(1A) receptor agonist (8-OH-DPAT, 0.01 and 0.1 microg) decreased TI behavior, an effect blocked by pretreatment with WAY-100635 (0.033 microg), a 5-HT(1A) antagonist. In contrast, activation of 5-HT(2) receptors within the DRN (alpha-methyl-5-HT, 0.5 microg) increased the TI duration, and this effect could be reversed by pretreatment with an ineffective dose (0.01 microg) of ketanserine. Since the 5-HT(1A) and 5-HT(2) agonists decreased and increased, respectively, the duration of TI, different serotonin receptor subtypes may play distinct roles in the modulation of TI in the guinea pig.

  19. Estradiol increases the anorexia associated with increased 5-HT2C receptor activation in ovariectomized rats

    OpenAIRE

    Rivera, Heidi M.; Santollo, Jessica; Nikonova, Larissa V.; Eckel, Lisa A.

    2011-01-01

    Estradiol’s inhibitory effect on food intake is mediated, in part, by its ability to increase the activity of meal-related signals, including serotonin (5-HT), which hasten satiation. The important role that postsynaptic 5-HT2C receptors play in mediating 5-HT’s anorexigenic effect prompted us to investigate whether a regimen of acute estradiol treatment increases the anorexia associated with increased 5-HT2C receptor activation in ovariectomized (OVX) rats. We demonstrated that intraperitone...

  20. A Pharmacological Analysis of an Associative Learning Task: 5-HT1 to 5-HT7 Receptor Subtypes Function on a Pavlovian/Instrumental Autoshaped Memory

    Science.gov (United States)

    Meneses, Alfredo

    2003-01-01

    Recent studies using both invertebrates and mammals have revealed that endogenous serotonin (5-hydroxytryptamine [5-HT]) modulates plasticity processes, including learning and memory. However, little is currently known about the mechanisms, loci, or time window of the actions of 5-HT. The aim of this review is to discuss some recent results on the effects of systemic administration of selective agonists and antagonists of 5-HT on associative learning in a Pavlovian/instrumental autoshaping (P/I-A) task in rats. The results indicate that pharmacological manipulation of 5-HT1-7 receptors or 5-HT reuptake sites might modulate memory consolidation, which is consistent with the emerging notion that 5-HT plays a key role in memory formation. PMID:14557609

  1. A pharmacological analysis of an associative learning task: 5-HT(1) to 5-HT(7) receptor subtypes function on a pavlovian/instrumental autoshaped memory.

    Science.gov (United States)

    Meneses, Alfredo

    2003-01-01

    Recent studies using both invertebrates and mammals have revealed that endogenous serotonin (5-hydroxytryptamine [5-HT]) modulates plasticity processes, including learning and memory. However, little is currently known about the mechanisms, loci, or time window of the actions of 5-HT. The aim of this review is to discuss some recent results on the effects of systemic administration of selective agonists and antagonists of 5-HT on associative learning in a Pavlovian/instrumental autoshaping (P/I-A) task in rats. The results indicate that pharmacological manipulation of 5-HT1-7 receptors or 5-HT reuptake sites might modulate memory consolidation, which is consistent with the emerging notion that 5-HT plays a key role in memory formation.

  2. Serotonergic activation of 5HT1A and 5HT2 receptors modulates sexually dimorphic communication signals in the weakly electric fish Apteronotus leptorhynchus.

    Science.gov (United States)

    Smith, G Troy; Combs, Nicole

    2008-06-01

    Serotonin modulates agonistic and reproductive behavior across vertebrate species. 5HT(1A) and 5HT(1B) receptors mediate many serotonergic effects on social behavior, but other receptors, including 5HT(2) receptors, may also contribute. We investigated serotonergic regulation of electrocommunication signals in the weakly electric fish Apteronotus leptorhynchus. During social interactions, these fish modulate their electric organ discharges (EODs) to produce signals known as chirps. Males chirp more than females and produce two chirp types. Males produce high-frequency chirps as courtship signals; whereas both sexes produce low-frequency chirps during same-sex interactions. Serotonergic innervation of the prepacemaker nucleus, which controls chirping, is more robust in females than males. Serotonin inhibits chirping and may contribute to sexual dimorphism and individual variation in chirping. We elicited chirps with EOD playbacks and pharmacologically manipulated serotonin receptors to determine which receptors regulated chirping. We also asked whether serotonin receptor activation generally modulated chirping or more specifically targeted particular chirp types. Agonists and antagonists of 5HT(1B/1D) receptors (CP-94253 and GR-125743) did not affect chirping. The 5HT(1A) receptor agonist 8OH-DPAT specifically increased production of high-frequency chirps. The 5HT(2) receptor agonist DOI decreased chirping. Receptor antagonists (WAY-100635 and MDL-11939) opposed the effects of their corresponding agonists. These results suggest that serotonergic inhibition of chirping may be mediated by 5HT(2) receptors, but that serotonergic activation of 5HT(1A) receptors specifically increases the production of high-frequency chirps. The enhancement of chirping by 5HT(1A) receptors may result from interactions with cortisol and/or arginine vasotocin, which similarly enhance chirping and are influenced by 5HT(1A) activity in other systems.

  3. What do we really know about 5-HT1A receptor signaling in neuronal cells?

    Directory of Open Access Journals (Sweden)

    JENNY LUCY FIEDLER

    2016-11-01

    Full Text Available Serotonin (5-HT is a neurotransmitter that plays an important role in neuronal plasticity. Variations in the levels of 5-HT at the synaptic cleft, expression or dysfunction of serotonin receptors may alter brain development and predispose to various mental diseases. Here, we review the transduction pathways described in various cell types transfected with recombinant 5-HT1A receptor (5-HT1AR, specially contrasting with those findings obtained in neuronal cells. The 5-HT1AR is detected in early stages of neural development and is located in the soma, dendrites and spines of hippocampal neurons. The 5-HT1AR differs from other serotonin receptors because it is coupled to different pathways, depending on the targeted cell. The signaling pathway associated with this receptor is determined by Gα isoforms and some cascades involve βγ signaling. The activity of 5-HT1AR usually promotes a reduction in neuronal excitability and firing, provokes a variation in cAMP and Ca2+, levels which may be linked to specific types of behavior and cognition. Furthermore, evidence indicates that 5-HT1AR induces neuritogesis and synapse formation, probably by modulation of the neuronal cytoskeleton through MAPK and PI3K-Akt signaling pathways. Advances in understanding the actions of 5-HT1AR and its association with different signaling pathways in the central nervous system will reveal their pivotal role in health and disease.

  4. Gaddum and LSD: the birth and growth of experimental and clinical neuropharmacology research on 5-HT in the UK

    OpenAIRE

    Green, A. R.

    2008-01-01

    The vasoconstrictor substance named serotonin was identified as 5-hydroxytryptamine (5-HT) by Maurice Rapport in 1949. In 1951, Rapport gave Gaddum samples of 5-HT substance allowing him to develop a bioassay to both detect and measure the amine. Gaddum and colleagues rapidly identified 5-HT in brain and showed that lysergic acid diethylamide (LSD) antagonized its action in peripheral tissues. Gaddum accordingly postulated that 5-HT might have a role in mood regulation. This review examines t...

  5. Spinal 5-HT3 receptor activation induces behavioral hypersensitivity via a neuronal-glial-neuronal signaling cascade

    OpenAIRE

    Gu, Ming; Miyoshi, Kan; Dubner, Ronald; Guo, Wei; Zou, Shiping; Ren, Ke; Noguchi, Koichi; Wei, Feng

    2011-01-01

    Recent studies indicate that the descending serotonin (5-HT) system from the rostral ventromedial medulla (RVM) in brainstem and the 5-HT3 receptor subtype in the spinal dorsal horn are involved in enhanced descending pain facilitation after tissue and nerve injury. However, the mechanisms underlying the activation of the 5-HT3 receptor and its contribution to facilitation of pain remain unclear. In the present study, activation of spinal 5-HT3 receptor by intrathecal injection of a selective...

  6. The Stimulus Effects of 8-OH-DPAT: Evidence for a 5-HT2A Receptor-Mediated Component

    OpenAIRE

    Reissig, C.J.; Eckler, J.R.; Rabin, R. A.; Rice, K. C.; Winter, J. C.

    2007-01-01

    A previous investigation in our laboratory found that the stimulus effects of the 5-HT2A agonist, LSD, are potentiated by 5-HT1A receptor agonists including the prototypic agonist, 8-OH-DPAT. Also suggestive of behaviorally relevant interactions between 5-HT1A and 5-HT2A receptors are behavioral analyses of locomotor activity, head twitch response, forepaw treading and production of the serotonin syndrome; in some instances effects are augmented, in other, diminished. These observations led u...

  7. 5-HT1A receptors modulate small-conductance Ca2+-activated K+ channels

    DEFF Research Database (Denmark)

    Grunnet, Morten; Jespersen, Thomas; Perrier, Jean-François

    2004-01-01

    Small-conductance calcium-activated potassium channels (SK) are responsible for the medium afterhyperpolarisation (mAHP) following action potentials in neurons. Here we tested the ability of serotonin (5-HT) to modulate the activity of SK channels by coexpressing 5-HT1A receptors with different...

  8. Converging evidence for central 5-HT effects in acute tryptophan depletion

    DEFF Research Database (Denmark)

    Crockett, Molly; Clark, Luke; Roiser, Jonathan

    2012-01-01

    Acute tryptophan depletion (ATD), a dietary technique for manipulating brain serotonin (5-HT) function, has advanced our understanding of 5-HT mechanisms in the etiology and treatment of depression and other affective disorders.1 A recent review article in Molecular Psychiatry questioned the vali...

  9. Sumatriptan (5-HT1D receptor agonist) does not exacerbate symptoms in obsessive compulsive disorder

    NARCIS (Netherlands)

    Pian, KLH; Westerberg, HGM; van Megen, HJGM; den Boer, JA

    1998-01-01

    The non-selective serotonin (5-HT) receptor agonist meta-chlorophenylpiperazine (mCPP) has been reported to elicit symptoms in patients with obsessive compulsive disorder (OCD). MK-212, another nonselective 5-HT receptor agonist, does not seem to induce obsessive compulsive symptoms in OCD patients.

  10. The effects of systemic and local microinjection into the central nervous system of the selective serotonin 5-HT6 receptor agonist WAY-208466 on sleep and wakefulness in the rat.

    Science.gov (United States)

    Monti, Jaime M; Jantos, Héctor; Schechter, Lee E

    2013-07-15

    The effects of WAY-208466, a selective 5-HT6 receptor agonist on spontaneous sleep were studied in adult rats implanted for chronic sleep recordings. Systemic administration of WAY-208466 during the light phase of the light-dark cycle significantly increased wakefulness (W) and reduced slow wave sleep (SWS), REM sleep (REMS) and the number of REMS periods. Pretreatment with the selective 5-HT6 receptor antagonist RO-399885 prevented the effects of the 5-HT6 receptor agonist on W, SWS and REMS. Direct infusion of WAY-208466 into the dorsal raphe nucleus, locus coeruleus, basal forebrain (horizontal limb of the diagonal band of Broca) or laterodorsal tegmental nucleus specifically decreased REMS without significantly altering W or SWS. In all instances the REMS suppression was dependent upon the reduction of REMS periods. The finding that WAY-208466 increases extracellular γ-aminobutyric acid (GABA) levels in the rat frontal cortex tends to suggest that the neurotransmitter could be involved in the 5-HT6 receptor agonist-induced disruption of the sleep-wake cycle. However, further studies are needed to resolve this issue.

  11. 5-HT_(2c)受体基因Cys23Ser多态性与偏头痛关系的临床研究%SEROTONIN 2C RECEPTOR GENE Cys23Ser POLYMORPHISM AND MIGRAINE

    Institute of Scientific and Technical Information of China (English)

    刘艳; 于生元

    2010-01-01

    目的:探讨中国人群中5-HT_(2C)受体基因Cys23Ser多态性与偏头痛之间的关系.方法:选择84例无先兆偏头痛、37例有先兆偏头痛患者作研究,以120例健康人作对照.采用多聚酶链式反应-限制性片段长度多态性技术检测所研究对象的5-HT_(2C)受体基因Cys23Ser多态性.结果:偏头痛组患者中并未发现该多态性,仅在1个正常女性个体发现5-HT_(2C)受体基因Cys23Ser多态性,经检验差异无统计学意义(P=1.000).结论:本研究提示5-HT_(2C)受体基因Cys23Ser多态性可能与中国人的偏头痛关系不大.

  12. Effects of dominance status on conditioned defeat and expression of 5-HT1A and 5-HT2A receptors.

    Science.gov (United States)

    Morrison, Kathleen E; Swallows, Cody L; Cooper, Matthew A

    2011-08-01

    Past experience can alter how individuals respond to stressful events. The brain serotonin system is a key factor modulating stress-related behavior and may contribute to individual variation in coping styles. In this study we investigated whether dominant and subordinate hamsters respond differently to social defeat and whether their behavioral responses are associated with changes in 5-HT1A and 5-HT2A receptor immunoreactivity in several limbic brain regions. We paired weight-matched hamsters in daily aggressive encounters for two weeks so that they formed a stable dominance relationship. We also included controls that were exposed to an empty cage each day for two weeks. Twenty-four hours after the final pairing or empty cage exposure, subjects were socially defeated in 3, 5-min encounters with a more aggressive hamster. Twenty-four hours after social defeat, animals were tested for conditioned defeat in a 5-min social interaction test with a non-aggressive intruder. We collected brains following conditioned defeat testing and performed immunohistochemistry for 5-HT1A and 5-HT2A receptors. We found that dominants showed less submissive and defensive behavior at conditioned defeat testing compared to both subordinates and controls. Additionally, both dominants and subordinates had an increased number of 5-HT1A immunopositive cells in the basolateral amygdala compared to controls. Subordinates also had more 5-HT1A immunopositive cells in the dorsal medial amygdala than did controls. Finally, dominants had fewer 5-HT1A immunopositive cells in the paraventricular nucleus of the hypothalamus compared to controls. Our results indicate that dominant social status results in a blunted conditioned defeat response and a distinct pattern of 5-HT1A receptor expression, which may contribute to resistance to conditioned defeat.

  13. Role of serotonin in pathogenesis of analgesic induced headache

    Energy Technology Data Exchange (ETDEWEB)

    Srikiatkhachorn, A.

    1999-12-16

    Analgesic abuse has recently been recognized as a cause of deterioration in primary headache patients. Although the pathogenesis of this headache transformation is still obscure, and alteration of central pain control system is one possible mechanism. A number of recent studies indicated that simple analgesics exert their effect by modulating the endogenous pain control system rather than the effect at the peripheral tissue, as previously suggested. Serotonin (5-hydroxytryptamine ; 5-HT) has long been known to play a pivotal role in the pain modulatory system in the brainstem. In the present study, we investigated the changes in 5-HT system in platelets and brain tissue. A significant decrease in platelet 5-HT concentration (221.8{+-}30.7, 445.3{+-}37.4 and 467.2{+-}38.5 ng/10{sup 9} platelets, for patients with analgesic-induced headache and migraine patients, respectively, p<0.02) were evident in patients with analgesic induced headache. Chronic paracetamol administration induced a decrease in 5-HT{sub 2} serotonin receptor in cortical and brain stem tissue in experimental animals (B{sub max}=0.93{+-}0.04 and 1.79{+-}0.61 pmol/mg protein for paracetamol treated rat and controls, respectively, p<0.05). Our preliminary results suggested that chronic administration of analgesics interferes with central and peripheral 5-HT system and therefore possibly alters the 5-HT dependent antinociceptive system. (author)

  14. Building a 5-HT3A Receptor Expression Map in the Mouse Brain

    Science.gov (United States)

    Koyama, Yoshihisa; Kondo, Makoto; Shimada, Shoichi

    2017-01-01

    Of the many serotonin receptors, the type 3 receptors (5-HT3R) are the only ionotropic ones, playing a key role in fast synaptic transmission and cognitive and emotional brain function through controlled neuronal excitation. To better understand the various functions of 5-HT3Rs, it is very important to know their expression pattern in the central nervous system (CNS). To date, many distributional studies have shown localized 5-HT3R expression in the brain and spinal cord. However, an accurate pattern of 5-HT3R expression in the CNS remains to be elucidated. To investigate the distribution of 5-HT3R in the mouse brain in detail, we performed immunofluorescent staining using 5-HT3AR-GFP transgenic mice. We found strong 5-HT3AR expression in the olfactory bulb, cerebral cortex, hippocampus, and amygdala; and partial expression in the pons, medulla, and spinal cord. Meanwhile, the thalamus, hypothalamus, and midbrain exhibited a few 5-HT3AR-expressing cells, and no expression was detected in the cerebellum. Further, double-immunostaining using neural markers confirmed that 5-HT3AR is expressed in GABAergic interneurons containing somatostatin or calretinin. In the present study, we built a 5-HT3AR expression map in the mouse brain. Our findings make significant contributions in elucidating the novel functions of 5-HT3R in the CNS. PMID:28276429

  15. What Do We Really Know About 5-HT1A Receptor Signaling in Neuronal Cells?

    Science.gov (United States)

    Rojas, Paulina S.; Fiedler, Jenny L.

    2016-01-01

    Serotonin (5-HT) is a neurotransmitter that plays an important role in neuronal plasticity. Variations in the levels of 5-HT at the synaptic cleft, expression or dysfunction of 5-HT receptors may alter brain development and predispose to various mental diseases. Here, we review the transduction pathways described in various cell types transfected with recombinant 5-HT1A receptor (5-HT1AR), specially contrasting with those findings obtained in neuronal cells. The 5-HT1AR is detected in early stages of neural development and is located in the soma, dendrites and spines of hippocampal neurons. The 5-HT1AR differs from other 5-HT receptors because it is coupled to different pathways, depending on the targeted cell. The signaling pathway associated with this receptor is determined by Gα isoforms and some cascades involve βγ signaling. The activity of 5-HT1AR usually promotes a reduction in neuronal excitability and firing, provokes a variation in cAMP and Ca2+, levels which may be linked to specific types of behavior and cognition. Furthermore, evidence indicates that 5-HT1AR induces neuritogesis and synapse formation, probably by modulation of the neuronal cytoskeleton through MAPK and phosphoinositide-3-kinase (PI3K)-Akt signaling pathways. Advances in understanding the actions of 5-HT1AR and its association with different signaling pathways in the central nervous system will reveal their pivotal role in health and disease. PMID:27932955

  16. Dynamic 5-HT2C receptor editing in a mouse model of obesity.

    Directory of Open Access Journals (Sweden)

    Harriët Schellekens

    Full Text Available The central serotonergic signalling system has been shown to play an important role in appetite control and the regulation of food intake. Serotonin exerts its anorectic effects mainly through the 5-HT(1B, 5-HT(2C and 5-HT(6 receptors and these are therefore receiving increasing attention as principal pharmacotherapeutic targets for the treatment of obesity. The 5-HT(2C receptor has the distinctive ability to be modified by posttranscriptional RNA editing on 5 nucleotide positions (A, B, C, D, E, having an overall decreased receptor function. Recently, it has been shown that feeding behaviour and fat mass are altered when the 5-HT(2C receptor RNA is fully edited, suggesting a potential role for 5-HT(2C editing in obesity. The present studies investigate the expression of serotonin receptors involved in central regulation of food intake, appetite and energy expenditure, with particular focus on the level of 5-HT(2C receptor editing. Using a leptin-deficient mouse model of obesity (ob/ob, we show increased hypothalamic 5-HT(1A receptor expression as well as increased hippocampal 5-HT(1A, 5-HT(1B, and 5-HT(6 receptor mRNA expression in obese mice compared to lean control mice. An increase in full-length 5-HT(2C expression, depending on time of day, as well as differences in 5-HT(2C receptor editing were found, independent of changes in total 5-HT(2C receptor mRNA expression. This suggests that a dynamic regulation exists of the appetite-suppressing effects of the 5-HT(2C receptor in both the hypothalamus and the hippocampus in the ob/ob mice model of obesity. The differential 5-HT(1A, 5-HT(1B and 5-HT(6 receptor expression and altered 5-HT(2C receptor editing profile reported here is poised to have important consequences for the development of novel anti-obesity therapies.

  17. Vortioxetine restores reversal learning impaired by 5-HT depletion or chronic intermittent cold stress in rats.

    Science.gov (United States)

    Wallace, Ashley; Pehrson, Alan L; Sánchez, Connie; Morilak, David A

    2014-10-01

    Current treatments for depression, including serotonin-specific reuptake inhibitors (SSRIs), are only partially effective, with a high incidence of residual symptoms, relapse, and treatment resistance. Loss of cognitive flexibility, a component of depression, is associated with dysregulation of the prefrontal cortex. Reversal learning, a form of cognitive flexibility, is impaired by chronic stress, a risk factor for depression, and the stress-induced impairment in reversal learning is sensitive to chronic SSRI treatment, and is mimicked by serotonin (5-HT) depletion. Vortioxetine, a novel, multimodal-acting antidepressant, is a 5-HT3, 5-HT7 and 5-HT1D receptor antagonist, a 5-HT1B receptor partial agonist, a 5-HT1A receptor agonist, and inhibits the 5-HT transporter. Using adult male rats, we first investigated the direct effects of vortioxetine, acting at post-synaptic 5-HT receptors, on reversal learning that was compromised by 5-HT depletion using 4-chloro-DL-phenylalanine methyl ester hydrochloride (PCPA), effectively eliminating any contribution of 5-HT reuptake blockade. PCPA induced a reversal learning impairment that was alleviated by acute or sub-chronic vortioxetine administration, suggesting that post-synaptic 5-HT receptor activation contributes to the effects of vortioxetine. We then investigated the effects of chronic dietary administration of vortioxetine on reversal learning that had been compromised in intact animals exposed to chronic intermittent cold (CIC) stress, to assess vortioxetine's total pharmacological effect. CIC stress impaired reversal learning, and chronic vortioxetine administration prevented the reversal-learning deficit. Together, these results suggest that the direct effect of vortioxetine at 5-HT receptors may contribute to positive effects on cognitive flexibility deficits, and may enhance the effect of 5-HT reuptake blockade.

  18. The 5-HT7 receptor is involved in allocentric spatial memory information processing

    OpenAIRE

    Sarkisyan, Gor; Hedlund, Peter B.

    2009-01-01

    The hippocampus has been implicated in aspects of spatial memory. Its ability to generate new neurons has been suggested to play a role in memory formation. Hippocampal serotonin (5-HT) neurotransmission has also been proposed as a contributor to memory processing. Studies have shown that the 5-HT7 receptor is present in the hippocampus in relatively high abundance. Thus the aim of the present study was to investigate the possible role of the 5-HT7 receptor in spatial memory using 5-HT7 recep...

  19. The discovery of diazepinone-based 5-HT3 receptor partial agonists.

    Science.gov (United States)

    Manning, David D; Guo, Cheng; Zhang, Zhenjun; Ryan, Kristen N; Naginskaya, Jennifer; Choo, Sok Hui; Masih, Liaqat; Earley, William G; Wierschke, Jonathan D; Newman, Amy S; Brady, Catherine A; Barnes, Nicholas M; Guzzo, Peter R

    2014-06-01

    Serotonin type 3 (5-HT3) receptor partial agonists have been targeted as potential new drugs for the symptomatic relief of irritable bowel syndrome (IBS). Multiple diazepinone-based compounds have been discovered, which exhibit nanomolar binding affinity for the h5-HT3A receptor and display a range of intrinsic activities (IA=7-87% of 5-HT Emax) in HEK cells heterologously expressing the h5-HT3A receptor. Favorable physicochemical properties and in vitro ADME profile coupled with oral activity in the murine von Bezold-Jarisch reflex model demonstrates the series has promise for producing low to moderate IA partial agonists suitable for an IBS indication.

  20. Synthesis, Docking Studies and Biological Evaluation of Benzo[b]thiophen-2-yl-3-(4-arylpiperazin-1-yl-propan-1-one Derivatives on 5-HT1A Serotonin Receptors

    Directory of Open Access Journals (Sweden)

    Ramiro Araya-Maturana

    2012-02-01

    Full Text Available A series of novel benzo[b]thiophen-2-yl-3-(4-arylpiperazin-1-yl-propan-1-one derivatives 6a–f, 7a–f and their corresponding alcohols 8a–f were synthesized and evaluated for their affinity towards 5-HT1A receptors. The influence of arylpiperazine moiety and benzo[b]thiophene ring substitutions on binding affinity was studied. The most promising analogue, 1-(benzo[b]thiophen-2-yl-3-(4-(pyridin-2-ylpiperazin-1-ylpropan-1-one (7e displayed micromolar affinity (Ki = 2.30 μM toward 5-HT1A sites. Docking studies shed light on the relevant electrostatic interactions which could explain the observed affinity for this compound.

  1. 5-HT receptors and reward-related behaviour: a review.

    Science.gov (United States)

    Hayes, Dave J; Greenshaw, Andrew J

    2011-05-01

    The brain's serotonin (5-HT) system is key in the regulation of reward-related behaviours, from eating and drinking to sexual activity. The complexity of studying this system is due, in part, to the fact that 5-HT acts at many receptor subtypes throughout the brain. The recent development of drugs with greater selectivity for individual receptor subtypes has allowed for rapid advancements in our understanding of this system. Use of these drugs in combination with animal models entailing selective reward measures (i.e. intracranial self-stimulation, drug self-administration, conditioned place preference) have resulted in a greater understanding of the pharmacology of reward-related processing and behaviour (particularly regarding drugs of abuse). The putative roles of each 5-HT receptor subtype in the pharmacology of reward are outlined and discussed here. It is concluded that the actions of 5-HT in reward are receptor subtype-dependent (and thus should not be generalized) and that all studied subtypes appear to have a unique profile which is determined by content (e.g. receptor function, localization - both throughout the brain and within the synapse) and context (e.g. type of behavioural paradigm, type of drug). Given evidence of altered reward-related processing and serotonergic function in numerous neuropsychiatric disorders, such as depression, schizophrenia, and addiction, a clearer understanding of the role of 5-HT receptor subtypes in this context may lead to improved drug development and therapeutic approaches.

  2. SB-649915-B, a novel 5-HT1A/B autoreceptor antagonist and serotonin reuptake inhibitor, is anxiolytic and displays fast onset activity in the rat high light social interaction test.

    Science.gov (United States)

    Starr, Kathryn R; Price, Gary W; Watson, Jeannette M; Atkinson, Peter J; Arban, Roberto; Melotto, Sergio; Dawson, Lee A; Hagan, Jim J; Upton, Neil; Duxon, Mark S

    2007-10-01

    Preclinically, the combination of an SSRI and 5-HT autoreceptor antagonist has been shown to reduce the time to onset of anxiolytic activity compared to an SSRI alone. In accordance with this, clinical data suggest the coadministration of an SSRI and (+/-) pindolol can decrease the time to onset of anxiolytic/antidepressant activity. Thus, the dual-acting novel SSRI and 5-HT(1A/B) receptor antagonist, SB-649915-B, has been assessed in acute and chronic preclinical models of anxiolysis. SB-649915-B (0.1-1.0 mg/kg, i.p.) significantly reduced ultrasonic vocalization in male rat pups separated from their mothers (ED(50) of 0.17 mg/kg). In the marmoset human threat test SB-649915-B (3.0 and 10 mg/kg, s.c.) significantly reduced the number of postures with no effect on locomotion. In the rat high light social interaction (SI), SB-649915-B (1.0-7.5 mg/kg, t.i.d.) and paroxetine (3.0 mg/kg, once daily) were orally administered for 4, 7, and 21 days. Ex vivo inhibition of [(3)H]5-HT uptake was also measured following SI. SB-649915-B and paroxetine had no effect on SI after 4 days. In contrast to paroxetine, SB-649915-B (1.0 and 3.0 mg/kg, p.o., t.i.d.) significantly (p<0.05) increased SI time with no effect on locomotion, indicative of an anxiolytic-like profile on day 7. Anxiolysis was maintained after chronic (21 days) administration by which time paroxetine also increased SI significantly. 5-HT uptake was inhibited by SB-649915-B at all time points to a similar magnitude as that seen with paroxetine. In conclusion, SB-649915-B is acutely anxiolytic and reduces the latency to onset of anxiolytic behavior compared to paroxetine in the SI model.

  3. The relationship between the plasma concentration of blonanserin, and its plasma anti-serotonin 5-HT(2A) activity/anti-dopamine D₂ activity ratio and drug-induced extrapyramidal symptoms.

    Science.gov (United States)

    Suzuki, Hidenobu; Gen, Keishi

    2012-03-01

     Blonanserin is a second-generation antipsychotic that was developed in Japan. We investigated the relationships between plasma concentration, the plasma anti-5-HT(2A) activity/anti-D₂ activity (S/D) ratio and extrapyramidal symptoms (EPS) in blonanserin dosing.  The subjects were 29 outpatients with schizophrenia. We assessed EPS using the Drug-Induced Extrapyramidal Symptoms Scale (DIEPSS). The plasma concentrations were measured by high performance liquid chromatography, and the plasma anti-D₂ and anti-5-HT(2A) activities were measured by [³H]-spiperone and [³H]-ketanserin radioreceptor assays. The results revealed that there were significant correlations between both the plasma concentration and the DIEPSS total score (Pblonanserin is mainly determined by plasma concentration, but the incidence of EPS may be inhibited when anti-5HT(2A) activity is predominant over anti-D₂ activity. © 2012 The Authors. Psychiatry and Clinical Neurosciences © 2012 Japanese Society of Psychiatry and Neurology.

  4. Kinetics of 3H-serotonin uptake by platelets in infantile autism and developmental language disorder (including five pairs of twins)

    Energy Technology Data Exchange (ETDEWEB)

    Katsui, T.; Okuda, M.; Usuda, S.; Koizumi, T.

    1986-03-01

    The kinetics of 5-HT uptake by platelets was studied in cases of infantile autism and developmental language disorder (DLD) and normal subjects. Two patients of the autism group were twins, and the seven patients of the DLD group were members of four pairs of twins. The Vmax values (means +/- SD) for autism and DLD were 6.46 +/- .90 pmol 5-HT/10(7) cells/min and 4.85 +/- 1.50 pmol 5-HT/10(7) cells/min, respectively. These values were both significantly higher than that of 2.25 +/- .97 pmole 5-HT/10(7) cells/min for normal children. The Km values of the three groups were not significantly different. Data on the five pairs of twins examined suggested that the elevated Vmax of 5-HT uptake by platelets was determined genetically.

  5. Activation of glucocorticoid receptors increases 5-HT2A receptor levels

    DEFF Research Database (Denmark)

    Trajkovska, Viktorija; Kirkegaard, Lisbeth; Krey, Gesa;

    2009-01-01

    Major depression is associated with both dysregulation of the hypothalamic pituitary adrenal axis and serotonergic deficiency, not the least of the 5-HT2A receptor. However, how these phenomena are linked to each other, and whether a low 5-HT2A receptor level is a state or a trait marker...... of depression is unknown. In mice with altered glucocorticoid receptor (GR) expression we investigated 5-HT2A receptor levels by Western blot and 3H-MDL100907 receptor binding. Serotonin fibre density was analyzed by stereological quantification of serotonin transporter immunopositive fibers. To establish...... an effect of GR activation on 5-HT2A levels, mature organotypic hippocampal cultures were exposed to corticosterone with or without GR antagonist mifepristone and mineralocorticoid receptor (MR) antagonist spironolactone. In GR under-expressing mice, hippocampal 5-HT2A receptor protein levels were decreased...

  6. Differential effects of hormone therapy on serotonin, vascular function and mood in the KEEPS.

    Science.gov (United States)

    Raz, L; Hunter, L V; Dowling, N M; Wharton, W; Gleason, C E; Jayachandran, M; Anderson, L; Asthana, S; Miller, V M

    2016-01-01

    Serotonin (5-hydroxytryptamine, 5-HT) is modulated by sex steroid hormones and affects vascular function and mood. In the Kronos Early Estrogen Prevention Cognitive and Affective Ancillary Study (KEEPS-Cog), women randomized to oral conjugated equine estrogens (oCEE) showed greater benefit on affective mood states than women randomized to transdermal 17β-estradiol (tE2) or placebo (PL). This study examined the effect of these treatments on the platelet content of 5-HT as a surrogate measure of 5-HT synthesis and uptake in the brain. The following were measured in a subset (n = 79) of women enrolled in KEEPS-Cog: 5-HT by ELISA, carotid intima-medial thickness (CIMT) by ultrasound, endothelial function by reactive hyperemic index (RHI), and self-reported symptoms of affective mood states by the Profile of Mood States (POMS) questionnaire. Mean platelet content of 5-HT increased by 107.0%, 84.5% and 39.8%, in tE2, oCEE and PL groups, respectively. Platelet 5-HT positively correlated with estrone in the oCEE group and with 17β- estradiol in the tE2 group. Platelet 5-HT showed a positive association with RHI, but not CIMT, in the PL and oCEE groups. Reduction in mood scores for depression-dejection and anger-hostility was associated with elevations in platelet 5-HT only in the oCEE group (r = -0.5, p = 0.02). Effects of oCEE compared to tE2 on RHI and mood may be related to mechanisms involving platelet, and perhaps neuronal, uptake and release of 5-HT and reflect conversion of estrone to bioavailable 17β-estradiol in platelets and the brain.

  7. Discovery of a Novel 5-HT2A Inhibitor by Pharmacophore-based Virtual Screening

    Institute of Scientific and Technical Information of China (English)

    XIONG Zi-jun; DU Peng; LI Bian; XU Li-li; ZHEN Xue-chu; FU Wei

    2011-01-01

    The serotonin 2A(5-HT2A) receptor has been implicated in several neurological conditions and potent 5-HT2A antagonists have therapeutic effects in the treatment of schizophrenia and depression.In this study,a potent novel 5-HT2A inhibitor 05245768 with a Ki value of (593.89±34.10) nmol/L was discovered by integrating a set of computational approaches and experiments(protein structure prediction,pharmacophore-based virtual screening,automated molecular docking and pharmacological bioassay).The 5-HT2A receptor showed a negatively charged binding pocket.The binding mode of compound 05245768 with 5-HT2A was obtained by GOLD docking procedure,which revealed the conserved interaction between protonated nitrogen in compound 05245768 and carboxylate group of D3.32 at the active site of 5-HT2A.

  8. Identification and functional characterisation of 5-HT4 receptor in sea cucumber Apostichopus japonicus (Selenka)

    Science.gov (United States)

    Wang, Tianming; Yang, Zhen; Zhou, Naiming; Sun, Lina; Lv, Zhenming; Wu, Changwen

    2017-01-01

    Serotonin (5-HT) is an important neurotransmitter and neuromodulator that controls a variety of sensory and motor functions through 5-HT receptors (5-HTRs). The 5-HT4R subfamily is linked to Gs proteins, which activate adenylyl cyclases (ACs), and is involved in many responses in peripheral organs. In this study, the 5-HT4R from Apostichopus japonicus (Aj5-HT4R) was identified and characterised. The cloned full-length Aj5-HT4R cDNA is 1,544 bp long and contains an open reading frame 1,011 bp in length encoding 336 amino acid proteins. Bioinformatics analysis of the Aj5-HT4R protein indicated this receptor was a member of class A G protein coupled receptor (GPCR) family. Further experiments using Aj5-HT4R-transfected HEK293 cells demonstrated that treatment with 5-HT triggered a significant increase in intracellular cAMP level in a dose-dependent manner and induced a rapid internalisation of Aj5-HT4R fused with enhanced green fluorescent protein (Aj5-HT4R-EGFP) from the cell surface into the cytoplasm. In addition, the transcriptional profiles of Aj5-HT4R in aestivating A. japonicas and phosphofructokinase (AjPFK) in 5-HT administrated A. japonicus have been analysed by real-time PCR assays. Results have led to a basic understanding of Aj5-HT4R in A. japonicus, and provide a foundation for further exploration of the cell signaling and regulatory functions of this receptor. PMID:28059140

  9. Development of the 5-HT2CR-Tango System Combined with an EGFP Reporter Gene.

    Science.gov (United States)

    Watanabe, Yoshihisa; Tsujimura, Atsushi; Aoki, Miku; Taguchi, Katsutoshi; Tanaka, Masaki

    2016-02-01

    The serotonin 2C receptor (5-HT2CR) is a G-protein-coupled receptor implicated in emotion, feeding, reward, and cognition. 5-HT2CRs are pharmacological targets for mental disorders and metabolic and reward system abnormalities, as alterations in 5-HT2CR expression, RNA editing, and SNPs are involved in these disturbances. To date, 5-HT2CR activity has mainly been measured by quantifying inositol phosphate production and intracellular Ca(2+) release, but these assays are not suitable for in vivo analysis. Here, we developed a 5-HT2CR-Tango assay system, a novel analysis tool of 5-HT2CR activity based on the G-protein-coupled receptor (GPCR)-arrestin interaction. With desensitization of activated 5-HT2CR by arrestin, this system converts the 5-HT2CR-arrestin interaction into EGFP reporter gene signal via the LexA transcriptional activation system. For validation of our system, we measured activity of two 5-HT2CR RNA-editing isoforms (INI and VGV) in HEK293 cells transfected with EGFP reporter gene. The INI isoform displayed both higher basal- and 5-HT-stimulated activities than the VGV isoform. Moreover, an inhibitory effect of 5-HT2CR antagonist SB242084 was also detected by 5-HT2CR-Tango system. This novel tool is useful for in vitro high-throughput targeted 5-HT2CR drug screening and can be applied to future in vivo brain function studies associated with 5-HT2CRs in transgenic animal models.

  10. 5-Hydroxytryptamine potentiates neurogenic contractions of rat isolated urinary bladder through both 5-HT(7) and 5-HT(2C) receptors.

    Science.gov (United States)

    Rekik, Moèz; Lluel, Philippe; Palea, Stefano

    2011-01-10

    Serotonin (5-HT) enhances the neurogenic contractile response induced by electrical field stimulation (EFS) in the rat isolated urinary bladder. The aim of this study was to functionally characterize the receptors involved in this effect by using a range of 5-HT receptor subtype selective agonists and antagonists. 5-HT produced a concentration-dependent potentiation of contractile responses to EFS with a pEC(50) value of 6.86±0.24. SB-269970 (0.01, 0.1 and 1μM), a selective 5-HT(7) receptor antagonist, caused a concentration-dependent rightward shift of the 5-HT-induced response. The pA(2) value was 8.16 with a slope of 0.46±0.08. Neither ketanserine nor SB-204741, 5-HT(2A) and 5-HT(2B) receptors antagonists, respectively, affected the concentration-response curve to 5-HT. However, 5-HT response was antagonized by the selective 5-HT(2C) receptor antagonist SB-242084 (0.1 and 1μM). In the presence of 1μM of both antagonists SB-269970 and SB-242084, 5-HT response was almost fully inhibited. 5-CT, a 5-HT(7) receptor agonist, induced a biphasic concentration-dependent potentiation of neurogenic contractions. SB-269970 concentration-dependently antagonized the first phase of 5-CT response with a pA(2) value of 8.77 and a slope not significantly different from unity (0.91±0.11) that suggests a competitive antagonism. WAY-161503, a 5-HT(2C) receptor agonist (0.01-10μM), induced a concentration-dependent potentiation of contractile response to EFS while DOI (a selective 5-HT(2A) agonist) had no effect. SB-242084 (0.1 and 1μM) antagonized the effect of WAY-161503 in a concentration-dependent manner. The current results demonstrate that 5-HT potentiates neurogenic contractions of rat isolated detrusor muscle through both 5-HT(7) and 5-HT(2c) receptors.

  11. Targeting to 5-HT1F Receptor Subtype for Migraine Treatment

    DEFF Research Database (Denmark)

    Mitsikostas, Dimos D; Tfelt-Hansen, Peer

    2012-01-01

    The effective anti-migraine drugs triptans, all bind with high affinity to three serotonin (5-HT) subtypes, the 5-HT1B, 5-HT1D and 5-HT1F. 5- HT1B mRNA is densely localized within smooth muscle, and less in the endothelium of cerebral blood vessels. This vascular distribution of 5-HT1B receptor has...... been shown to mediate the vasoconstrictive properties of the triptans, responsible for potential cardiac adverse events. Activation of 5-HT1D subtype, although effective in animal models of migraine, was not enough efficient to attenuate migraine attacks in clinical trials. Τhe 5- HT1F receptor...... is located both in vessels and within the trigeminal ganglion (TG) and the trigeminal nucleus caudalis (Sp5C), but with the difference that the 5-HT1F receptor lack vasoconstrictive properties, making it an attractive target for new anti-migraine drugs. Selective activation of 5-HT1F receptor potently...

  12. Modifying 5-HT1A receptor gene expression as a new target for antidepressant therapy

    Directory of Open Access Journals (Sweden)

    Paul R Albert

    2010-06-01

    Full Text Available Major depression is the most common form of mental illness, and is treated with antidepressant compounds that increase serotonin (5-HT neurotransmission. Increased 5-HT1A autoreceptor levels in the raphe nuclei act as a “brake” to inhibit the 5-HT system, leading to depression and resistance to antidepressants. Several 5-HT1A receptor agonists (buspirone, flesinoxan, ipsapirone that preferentially desensitize 5-HT1A autoreceptors have been tested for augmentation of antidepressant drugs with mixed results. One explanation could be the presence of the C(-1019G 5-HT1A promoter polymorphism that prevents gene repression of the 5-HT1A autoreceptor. Furthermore, down-regulation of 5-HT1A autoreceptor expression, not simply desensitization of receptor signaling, appears to be required to enhance and accelerate antidepressant action. The current review focuses on the transcriptional regulators of 5-HT1A autoreceptor expression, their roles in permitting response to 5-HT1A-targeted treatments and their potential as targets for new antidepressant compounds for treatment-resistant depression.

  13. Prelimbic cortex 5-HT1A and 5-HT2C receptors are involved in the hypophagic effects caused by fluoxetine in fasted rats.

    Science.gov (United States)

    Stanquini, Laura A; Resstel, Leonardo B M; Corrêa, Fernando M A; Joca, Sâmia R L; Scopinho, América A

    2015-09-01

    The regulation of food intake involves a complex interplay between the central nervous system and the activity of organs involved in energy homeostasis. Besides the hypothalamus, recognized as the center of this regulation, other structures are involved, especially limbic regions such as the ventral medial prefrontal cortex (vMPFC). Monoamines, such as serotonin (5-HT), play an important role in appetite regulation. However, the effect in the vMPFC of the selective serotonin reuptake inhibitor (SSRI), fluoxetine, on food intake has not been studied. The aim of the present study was to study the effects on food intake of fed and fasted rats evoked by fluoxetine injection into the prelimbic cortex (PL), a sub-region of the vMPFC, or given systemically, and which 5-HT receptors in the PL are involved in fluoxetine responses. Fluoxetine was injected into the PL or given systemically in male Wistar rats. Independent groups of rats were pretreated with intra-PL antagonists of 5-HT receptors: 5-HT1A (WAY100635), 5-HT2C (SB242084) or 5-HT1B (SB216641). Fluoxetine (0.1; 1; 3; 10nmol/200nL) injected into the PL induced a dose-dependent hypophagic effect in fasted rats. This effect was reversed by prior local treatment with WAY100635 (1; 10nmol) or SB242084 (1; 10nmol), but not with SB216641 (0.2; 2.5; 10nmol). Systemic fluoxetine induced a hypophagic effect, which was blocked by intra-PL 5-HT2C antagonist (10nmol) administration. Our findings suggest that PL 5-HT neurotransmission modulates the central control of food intake and 5-HT1A and 5-HT2C receptors in the PL could be potential targets for the action of fluoxetine.

  14. Propranolol modifies platelet serotonergic mechanisms in rats.

    Science.gov (United States)

    Zółtowski, R; Pawlak, R; Matys, T; Pietraszek, M; Buczko, W

    2002-06-01

    Though the mechanisms for the vascular actions of vasodilatory beta-blockers are mostly determined, some of their interactions with monoaminergic systems are not elucidated. Because there are evidences supporting a possible involvement of serotonin (5-HT) in the actions of beta-blockers, we studied the effect of propranolol on peripheral serotonergic mechanisms in normotensive and Goldblatt two-kidney - one clip (2K1C) hypertensive rats. In both groups of animals propranolol decreased systolic blood pressure, significantly increased whole blood serotonin concentration and at the same time it decreased platelet serotonin level. The uptake of the amine by platelets from hypertensive animals was lower than that of normotensive animals and it was decreased by propranolol only in the latter. In both groups propranolol inhibited potentiation of ADP-induced platelet aggregation by serotonin. In conclusion, this study provides evidence that propranolol modifies platelet serotonergic mechanisms in normotensive and renal hypertensive rats.

  15. Phosphoinositide system-linked serotonin receptor subtypes and their pharmacological properties and clinical correlates.

    OpenAIRE

    Pandey, S. C.; Davis, J M; PANDEY, G. N.

    1995-01-01

    Serotonergic neurotransmission represents a complex mechanism involving pre- and post-synaptic events and distinct 5-HT receptor subtypes. Serotonin (5-HT) receptors have been classified into several categories, and they are termed as 5-HT1, 5-HT2, 5-HT3, 5-HT4, 5-HT5, 5-HT6 and 5-HT7 type receptors. 5-HT1 receptors have been further subdivided into 5-HT1A, 5-HT1B, 5-HT1D, 5-HT1E and 5-HT1F. 5-HT2 receptors have been divided into 5-HT2A, 5-HT2B and 5-HT2C receptors. All 5-HT2 receptor subtype...

  16. 5-hydroxytryptamine (5-HT) reduces total peripheral resistance during chronic infusion: direct arterial mesenteric relaxation is not involved.

    Science.gov (United States)

    Davis, Robert Patrick; Pattison, Jill; Thompson, Janice M; Tiniakov, Ruslan; Scrogin, Karie E; Watts, Stephanie W

    2012-05-06

    Serotonin (5-hydroxytryptamine; 5-HT) delivered over 1 week results in a sustained fall in blood pressure in the sham and deoxycorticosterone acetate (DOCA)-salt rat. We hypothesized 5-HT lowers blood pressure through direct receptor-mediated vascular relaxation. In vivo, 5-HT reduced mean arterial pressure (MAP), increased heart rate, stroke volume, cardiac index, and reduced total peripheral resistance during a 1 week infusion of 5-HT (25 µg/kg/min) in the normotensive Sprague Dawley rat. The mesenteric vasculature was chosen as an ideal candidate for the site of 5-HT receptor mediated vascular relaxation given the high percentage of cardiac output the site receives. Real-time RT-PCR demonstrated that mRNA transcripts for the 5-HT2B, 5-HT1B, and 5-HT7 receptors are present in sham and DOCA-salt superior mesenteric arteries. Immunohistochemistry and Western blot validated the presence of the 5-HT2B, 5- HT1B and 5-HT7 receptor protein in sham and DOCA-salt superior mesenteric artery. Isometric contractile force was measured in endothelium-intact superior mesenteric artery and mesenteric resistance arteries in which the contractile 5- HT2A receptor was antagonized. Maximum concentrations of BW-723C86 (5- HT2B agonist), CP 93129 (5-HT1B agonist) or LP-44 (5-HT7 agonist) did not relax the superior mesenteric artery from DOCA-salt rats vs. vehicle. Additionally, 5-HT (10-9 M to 10-5 M) did not cause relaxation in either contracted mesenteric resistance arteries or superior mesenteric arteries from normotensive Sprague- Dawley rats. Thus, although 5-HT receptors known to mediate vascular relaxation are present in the superior mesenteric artery, they are not functional, and are therefore not likely involved in a 5-HT-induced fall in total peripheral resistance and MAP.

  17. Polysynaptic excitatory postsynaptic potentials that trigger spasms after spinal cord injury in rats are inhibited by 5-HT1B and 5-HT1F receptors.

    Science.gov (United States)

    Murray, Katherine C; Stephens, Marilee J; Rank, Michelle; D'Amico, Jessica; Gorassini, Monica A; Bennett, David J

    2011-08-01

    Sensory afferent transmission and associated spinal reflexes are normally inhibited by serotonin (5-HT) derived from the brain stem. Spinal cord injury (SCI) that eliminates this 5-HT innervation leads to a disinhibition of sensory transmission and a consequent emergence of unusually long polysynaptic excitatory postsynaptic potentials (EPSPs) in motoneurons. These EPSPs play a critical role in triggering long polysynaptic reflexes (LPRs) that initiate muscles spasms. In the present study we examined which 5-HT receptors modulate the EPSPs and whether these receptors adapt to a loss of 5-HT after chronic spinal transection in rats. The EPSPs and associated LPRs recorded in vitro in spinal cords from chronic spinal rats were consistently inhibited by 5-HT(1B) or 5-HT(1F) receptor agonists, including zolmitriptan (5-HT(1B/1D/1F)) and LY344864 (5-HT(1F)), with a sigmoidal dose-response relation, from which we computed the 50% inhibition (EC(50)) and potency (-log EC(50)). The potencies of 5-HT receptor agonists were highly correlated with their binding affinity to 5-HT(1B) and 5-HT(1F) receptors, and not to other 5-HT receptors. Zolmitriptan also inhibited the LPRs and general muscle spasms recorded in vivo in the awake chronic spinal rat. The 5-HT(1B) receptor antagonists SB216641 and GR127935 and the inverse agonist SB224289 reduced the inhibition of LPRs by 5-HT(1B) agonists (zolmitriptan). However, when applied alone, SB224289, SB216641, and GR127935 had no effect on the LPRs, indicating that 5-HT(1B) receptors do not adapt to chronic injury, remaining silent, without constitutive activity. The reduction in EPSPs with zolmitriptan unmasked a large glycine-mediated inhibitory postsynaptic current (IPSC) after SCI. This IPSC and associated chloride current reversed at -73 mV, slightly below the resting membrane potential. Zolmitriptan did not change motoneuron properties. Our results demonstrate that 5-HT(1B/1F) agonists, such as zolmitriptan, can restore inhibition

  18. Hallucinogenic 5-HT2AR agonists LSD and DOI enhance dopamine D2R protomer recognition and signaling of D2-5-HT2A heteroreceptor complexes.

    Science.gov (United States)

    Borroto-Escuela, Dasiel O; Romero-Fernandez, Wilber; Narvaez, Manuel; Oflijan, Julia; Agnati, Luigi F; Fuxe, Kjell

    2014-01-03

    Dopamine D2LR-serotonin 5-HT2AR heteromers were demonstrated in HEK293 cells after cotransfection of the two receptors and shown to have bidirectional receptor-receptor interactions. In the current study the existence of D2L-5-HT2A heteroreceptor complexes was demonstrated also in discrete regions of the ventral and dorsal striatum with in situ proximity ligation assays (PLA). The hallucinogenic 5-HT2AR agonists LSD and DOI but not the standard 5-HT2AR agonist TCB2 and 5-HT significantly increased the density of D2like antagonist (3)H-raclopride binding sites and significantly reduced the pKiH values of the high affinity D2R agonist binding sites in (3)H-raclopride/DA competition experiments. Similar results were obtained in HEK293 cells and in ventral striatum. The effects of the hallucinogenic 5-HT2AR agonists on D2R density and affinity were blocked by the 5-HT2A antagonist ketanserin. In a forskolin-induced CRE-luciferase reporter gene assay using cotransfected but not D2R singly transfected HEK293 cells DOI and LSD but not TCB2 significantly enhanced the D2LR agonist quinpirole induced inhibition of CRE-luciferase activity. Haloperidol blocked the effects of both quinpirole alone and the enhancing actions of DOI and LSD while ketanserin only blocked the enhancing actions of DOI and LSD. The mechanism for the allosteric enhancement of the D2R protomer recognition and signalling observed is likely mediated by a biased agonist action of the hallucinogenic 5-HT2AR agonists at the orthosteric site of the 5-HT2AR protomer. This mechanism may contribute to the psychotic actions of LSD and DOI and the D2-5-HT2A heteroreceptor complex may thus be a target for the psychotic actions of hallunicogenic 5-HT2A agonists. Copyright © 2013 Elsevier Inc. All rights reserved.

  19. In Vivo Effect of a 5-HT7 Receptor Agonist on 5-HT Neurons and GABA Interneurons in the Dorsal Raphe Nuclei of Sham and PD Rats.

    Science.gov (United States)

    Wang, Shuang; Zhao, Yan; Gao, Jie; Guo, Yufang; Wang, Xiang; Huo, Jian; Wei, Ping; Cao, Jian

    2017-03-01

    The 5-hydroxytryptamine (5-HT; serotonin) neurotransmission is severely affected by the degeneration of nigrostriatal dopaminergic neurons. Here, we report the effects of the systemic administration of the 5-HT7 receptor agonist AS-19. In sham rats, the mean response of the 5-HT neurons in the dorsal raphe nucleus (DRN) to systemic AS-19 was excitatory and the mean response of the γ-aminobutyric acid (GABA) interneurons was inhibitory. In Parkinson disease (PD) rats, the same dose did not affect the 5-HT neurons and only high doses (640 μg/kg intravenous) were able to the increase GABA interneuron activity. These results indicate that DRN 5-HT neurons and GABA interneurons are regulated by the activation of 5-HT7 receptors and that the degeneration of the nigrostriatal pathway leads to decreased responses of these neurons to AS-19, which in turn suggests that the 5-HT7 receptors on 5-HT neurons and GABA interneurons in PD rats are dysfunctional and downregulated.

  20. 5-HT7 receptor-mediated meningeal dilatation induced by 5-carboxamidotryptamine in rats is not altered by 5-HT depletion and chronic corticosterone treatment.

    Science.gov (United States)

    Martínez-García, E; Sánchez-Maldonado, C; Terrón, J A

    2011-01-01

    Low brain serotonin levels and high circulating levels of corticosterone are features of migraine. The 5-HT7 receptor was shown to mediate dilator responses to the 5-HT1B/1D and 5-HT7 receptor agonist, 5-carboxamidotryptamine in the middle meningeal artery of rats. Here we analyzed the effect of serotonin depletion and chronic corticosterone treatment on 5-HT7 receptor-mediated dilatation induced by 5-carboxamidotryptamine in the middle meningeal artery of anesthetized rats. Two weeks before experiments, male Wistar rats received i.c.v. injections of vehicle or the neurotoxin, 5,7-dihydroxytryptamine; upon recovery, animals received a chronic s.c. treatment (2 weeks) with vehicle (1 ml/kg/day) or corticosterone (20 mg/kg/day). At the end of treatments, animals were anesthetized and prepared for recording of blood pressure and blood flow in the middle meningeal artery, and i.v. drug administration. All animals received the 5-HT1B/1D receptor antagonist GR-127935 (1 mg/kg, i.v.) alone or combined with the 5-HT7 receptor antagonist, SB-269970 (1 mg/kg, i.v.). Topical 5-carboxamidotryptamine (0.01-1000 microM) to the exposed dura mater encephala produced decreases in diastolic blood pressure, variable changes in meningeal blood flow and increases in conductance (i.e. dilatation) in the middle meningeal artery. Meningeal dilator responses to 5-carboxamidotryptamine did not differ among treatment groups. In all cases, the combined treatment with GR-127935 + SB-269970 inhibited hypotensive and meningeal dilator responses to 5- carboxamidotryptamine. Together, these data do not support the notion that 5-HT7 receptors mediating dilatation in the middle meningeal artery are regulated by low brain serotonin levels and/or chronically high circulating levels of corticosterone. Further studies are required to elucidate the potential impact of these conditions and the role of 5-HT7 receptors in migraine.

  1. 5-HT(1A) receptors and memory.

    Science.gov (United States)

    Meneses, Alfredo; Perez-Garcia, Georgina

    2007-01-01

    The study of 5-hydroxytryptamine (5-HT) systems has benefited from the identification, classification and cloning of multiple 5-HT receptors (5-HT(1)-5-HT(7)). Increasing evidence suggests that 5-HT pathways, reuptake site/transporter complex and 5-HT receptors represent a strategic distribution for learning and memory. A key question still remaining is whether 5-HT markers (e.g., receptors) are directly or indirectly contributing to the physiological and pharmacological basis of memory and its pathogenesis or, rather, if they represent protective or adaptable mechanisms (at least in initial stages). In the current paper, the major aim is to revise recent advances regarding mammalian 5-HT(1A) receptors in light of their physiological, pathophysiological and therapeutic implications in memory. An attempt is made to identify and discuss sources of discrepancies by employing an analytic approach to examine the nature and degree of difficulty of behavioral tasks used, as well as implicating other factors (for example, brain areas, training time or duration, and drug administration) which might offer new insights into the understanding and interpretation of these data. In this context, 8-OH-DPAT deserves special attention since for many years it has been the more selective 5-HT drug and, hence, more frequently used. As 5-HT(1A) receptors are key components of serotonergic signaling, investigation of their memory mechanisms and action sites and the conditions under which they might operate, could yield valuable insights. Moreover, selective drugs with agonists, neutral antagonists or inverse agonist properties for 5-HT(1A) (and 5-HT(7)) receptors may constitute a new therapeutic opportunity for learning and memory disorders.

  2. Differential role of the 5-HT1A receptor in aggressive and non-aggressive mice : An across-strain comparison

    NARCIS (Netherlands)

    Caramaschi, Doretta; de Boer, Sietse F.; Koolhaas, Jaap M.

    2007-01-01

    Differential role of the 5-HT1A receptor in aggressive and non-aggressive mice: an across-strain comparison. PHYSIOL BEHAV 00(0) 000-000, 2006. According to the serotonin (5-HT)-deficiency hypothesis of aggression, highly aggressive individuals are characterized by low brain 5-HT neurotransmission.

  3. Locomotor-activated neurons of the cat. I. Serotonergic innervation and co-localization of 5-HT7, 5-HT2A, and 5-HT1A receptors in the thoraco-lumbar spinal cord.

    Science.gov (United States)

    Noga, Brian R; Johnson, Dawn M G; Riesgo, Mirta I; Pinzon, Alberto

    2009-09-01

    Monoamines are strong modulators and/or activators of spinal locomotor networks. Thus monoaminergic fibers likely contact neurons involved in generating locomotion. The aim of the present study was to investigate the serotonergic innervation of locomotor-activated neurons within the thoraco-lumbar spinal cord following induction of hindlimb locomotion. This was determined by immunohistochemical co-localization of serotonin (5-HT) fibers or 5-HT(7)/5-HT2A/5-HT1A receptors with cells expressing the activity-dependent marker c-fos. Experiments were performed on paralyzed, decerebrate cats in which locomotion was induced by electrical stimulation of the mesencephalic locomotor region. Abundant c-fos immunoreactive cells were observed in laminae VII and VIII throughout the thoraco-lumbar segments of locomotor animals. Control sections from the same segments showed significantly fewer labeled neurons, mostly within the dorsal horn. Multiple serotonergic boutons were found in close apposition to the majority (80-100%) of locomotor cells, which were most abundant in lumbar segments L3-7. 5-HT7 receptor immunoreactivity was observed on cells across the thoraco-lumbar segments (T7-L7), in a dorsoventral gradient. Most locomotor-activated cells co-localized with 5-HT7, 5-HT2A, and 5-HT1A receptors, with largest numbers in laminae VII and VIII. Co-localization of c-fos and 5-HT7 receptor was highest in the L5-L7 segments (>90%) and decreased rostrally (to approximately 50%) due to the absence of receptors on cells within the intermediolateral nucleus. In contrast, 60-80 and 35-80% of c-fos immunoreactive cells stained positive for 5-HT2A and 5-HT1A receptors, respectively, with no rostrocaudal gradient. These results indicate that serotonergic modulation of locomotion likely involves 5-HT(7)/5-HT2A/5-HT1A receptors located on the soma and proximal dendrites of serotonergic-innervated locomotor-activated neurons within laminae VII and VIII of thoraco-lumbar segments.

  4. The 5-HT3 receptor is essential for exercise-induced hippocampal neurogenesis and antidepressant effects.

    Science.gov (United States)

    Kondo, M; Nakamura, Y; Ishida, Y; Shimada, S

    2015-11-01

    Exercise has a variety of beneficial effects on brain structure and function, such as hippocampal neurogenesis, mood and memory. Previous studies have shown that exercise enhances hippocampal neurogenesis, induces antidepressant effects and improves learning behavior. Brain serotonin (5-hydroxytryptamine, 5-HT) levels increase following exercise, and the 5-HT system has been suggested to have an important role in these exercise-induced neuronal effects. However, the precise mechanism remains unclear. In this study, analysis of the 5-HT type 3A receptor subunit-deficient (htr3a(-/-)) mice revealed that lack of the 5-HT type 3 (5-HT3) receptor resulted in loss of exercise-induced hippocampal neurogenesis and antidepressant effects, but not of learning enhancement. Furthermore, stimulation of the 5-HT3 receptor promoted neurogenesis. These findings demonstrate that the 5-HT3 receptor is the critical target of 5-HT action in the brain following exercise, and is indispensable for hippocampal neurogenesis and antidepressant effects induced by exercise. This is the first report of a pivotal 5-HT receptor subtype that has a fundamental role in exercise-induced morphological changes and psychological effects.

  5. 5-HT Radioligands for Human Brain Imaging With PET and SPECT

    Science.gov (United States)

    Paterson, Louise M.; Kornum, Birgitte R.; Nutt, David J.; Pike, Victor W.; Knudsen, Gitte M.

    2014-01-01

    The serotonergic system plays a key modulatory role in the brain and is the target for many drug treatments for brain disorders either through reuptake blockade or via interactions at the 14 subtypes of 5-HT receptors. This review provides the history and current status of radioligands used for positron emission tomography (PET) and single photon emission computerized tomography (SPECT) imaging of human brain serotonin (5-HT) receptors, the 5-HT transporter (SERT), and 5-HT synthesis rate. Currently available radioligands for in vivo brain imaging of the 5-HT system in humans include antagonists for the 5-HT1A, 5-HT1B, 5-HT2A, and 5-HT4 receptors, and for SERT. Here we describe the evolution of these radioligands, along with the attempts made to develop radioligands for additional serotonergic targets. We describe the properties needed for a radioligand to become successful and the main caveats. The success of a PET or SPECT radioligand can ultimately be assessed by its frequency of use, its utility in humans, and the number of research sites using it relative to its invention date, and so these aspects are also covered. In conclusion, the development of PET and SPECT radioligands to image serotonergic targets is of high interest, and successful evaluation in humans is leading to invaluable insight into normal and abnormal brain function, emphasizing the need for continued development of both SPECT and PET radioligands for human brain imaging. PMID:21674551

  6. Human-derived gut microbiota modulates colonic secretion in mice by regulating 5-HT3 receptor expression via acetate production.

    Science.gov (United States)

    Bhattarai, Yogesh; Schmidt, Bradley A; Linden, David R; Larson, Eric D; Grover, Madhusudan; Beyder, Arthur; Farrugia, Gianrico; Kashyap, Purna C

    2017-07-01

    Serotonin [5-hydroxytryptamine (5-HT)], an important neurotransmitter and a paracrine messenger in the gastrointestinal tract, regulates intestinal secretion by its action primarily on 5-HT3 and 5-HT4 receptors. Recent studies highlight the role of gut microbiota in 5-HT biosynthesis. In this study, we determine whether human-derived gut microbiota affects host secretory response to 5-HT and 5-HT receptor expression. We used proximal colonic mucosa-submucosa preparation from age-matched Swiss Webster germ-free (GF) and humanized (HM; ex-GF colonized with human gut microbiota) mice. 5-HT evoked a significantly greater increase in short-circuit current (ΔIsc) in GF compared with HM mice. Additionally, 5-HT3 receptor mRNA and protein expression was significantly higher in GF compared with HM mice. Ondansetron, a 5-HT3 receptor antagonist, inhibited 5-HT-evoked ΔIsc in GF mice but not in HM mice. Furthermore, a 5-HT3 receptor-selective agonist, 2-methyl-5-hydroxytryptamine hydrochloride, evoked a significantly higher ΔIsc in GF compared with HM mice. Immunohistochemistry in 5-HT3A-green fluorescent protein mice localized 5-HT3 receptor expression to enterochromaffin cells in addition to nerve fibers. The significant difference in 5-HT-evoked ΔIsc between GF and HM mice persisted in the presence of tetrodotoxin (TTX) but was lost after ondansetron application in the presence of TTX. Application of acetate (10 mM) significantly lowered 5-HT3 receptor mRNA in GF mouse colonoids. We conclude that host secretory response to 5-HT may be modulated by gut microbiota regulation of 5-HT3 receptor expression via acetate production. Epithelial 5-HT3 receptor may function as a mediator of gut microbiota-driven change in intestinal secretion.NEW & NOTEWORTHY We found that gut microbiota alters serotonin (5-HT)-evoked intestinal secretion in a 5-HT3 receptor-dependent mechanism and gut microbiota metabolite acetate alters 5-HT3 receptor expression in colonoids.View this article

  7. 5-HT radioligands for human brain imaging with PET and SPECT

    DEFF Research Database (Denmark)

    Paterson, Louise M; Kornum, Birgitte R; Nutt, David J

    2013-01-01

    for positron emission tomography (PET) and single photon emission computerized tomography (SPECT) imaging of human brain serotonin (5-HT) receptors, the 5-HT transporter (SERT), and 5-HT synthesis rate. Currently available radioligands for in vivo brain imaging of the 5-HT system in humans include antagonists...... to image serotonergic targets is of high interest, and successful evaluation in humans is leading to invaluable insight into normal and abnormal brain function, emphasizing the need for continued development of both SPECT and PET radioligands for human brain imaging.......The serotonergic system plays a key modulatory role in the brain and is the target for many drug treatments for brain disorders either through reuptake blockade or via interactions at the 14 subtypes of 5-HT receptors. This review provides the history and current status of radioligands used...

  8. Reduced 5-HT2A receptor binding in patients with mild cognitive impairment

    DEFF Research Database (Denmark)

    Hasselbalch, S G; Madsen, K; Svarer, C;

    2008-01-01

    Previous studies of patients with Alzheimer's disease (AD) have described reduced brain serotonin 2A (5-HT(2A)) receptor density. It is unclear whether this abnormality sets in early in the course of the disease and whether it is related to early cognitive and neuropsychiatric symptoms. We assessed...... cerebral 5-HT(2A) receptor binding in patients with mild cognitive impairment (MCI) and related 5-HT(2A) receptor binding to clinical symptoms. Sixteen patients with MCI of the amnestic type (mean age 73, mean MMSE 26.1) and 17 age and sex matched control subjects were studied with MRI and [(18)F......]altanserin PET in a bolus-infusion approach. A significant global reduction of 20-30% in 5-HT(2A) binding (atrophy corrected) was found in most neocortical areas. Reduced 5-HT(2A) binding in the striatum correlated significantly with Neuropsychiatric Inventory depression and anxiety scores. We conclude...

  9. Impact of elevated plasma serotonin on global gene expression of murine megakaryocytes.

    Directory of Open Access Journals (Sweden)

    Charles P Mercado

    Full Text Available BACKGROUND: Serotonin (5-HT is a biogenic amine that also acts as a mitogen and a developmental signal early in rodent embryogenesis. Genetic and pharmacological disruption of 5-HT signaling causes various diseases and disorders via mediating central nervous system, cardiovascular system, and serious abnormalities on a growing embryo. Today, neither the effective modulators on 5-HT signaling pathways nor the genes affected by 5-HT signal are well known yet. METHODOLOGY/PRINCIPAL FINDINGS: In an attempt to identify the genes altered by 5-HT signaling pathways, we analyzed the global gene expression via the Illumina array platform using the mouse WG-6 v2.0 Expression BeadChip containing 45,281 probe sets representing 30,854 genes in megakaryocytes isolated from mice infused with 5-HT or saline. We identified 723 differentially expressed genes of which 706 were induced and 17 were repressed by elevated plasma 5-HT. CONCLUSIONS/SIGNIFICANCE: Hierarchical gene clustering analysis was utilized to represent relations between groups and clusters. Using gene ontology mining tools and canonical pathway analyses, we identified multiple biological pathways that are regulated by 5-HT: (i cytoskeletal remodeling, (ii G-protein signaling, (iii vesicular transport, and (iv apoptosis and survival. Our data encompass the first extensive genome-wide based profiling in the progenitors of platelets in response to 5-HT elevation in vivo.

  10. Depressed patients have decreased binding of tritiated imipramine to platelet serotonin ''transporter''

    Energy Technology Data Exchange (ETDEWEB)

    Paul, S.M.; Rehavi, M.; Skolnick, P.; Ballenger, J.C.; Goodwin, F.K.

    1981-12-01

    The high-affinity tritiated (3H) imipramine binding sites are functionally (and perhaps structurally) associated with the presynaptic neuronal and platelet uptake sites for serotonin. Since there is an excellent correlation between the relative potencies of a series of antidepressants in displacing 3H-imipramine from binding sites in human brain and platelet, we have examined the binding of 3H-imipramine to platelets from 14 depressed patients and 28 age- and sex-matched controls. A highly significant decrease in the number of 3H-imipramine binding sites, with no significant change in the apparent affinity constants, was observed in platelets from the depressed patients compared with the controls. These results, coupled with previous studies showing a significant decrease in the maximal uptake of serotonin in platelets from depressed patients, suggest that an inherited or acquired deficiency of the serotonin transport protein or proteins may be involved in the pathogenesis of depression.

  11. Down-regulation of 5-HT1B and 5-HT1D receptors inhibits proliferation, clonogenicity and invasion of human pancreatic cancer cells.

    Directory of Open Access Journals (Sweden)

    Nilgun Gurbuz

    Full Text Available Pancreatic ductal adenocarcinoma is characterized by extensive local tumor invasion, metastasis and early systemic dissemination. The vast majority of pancreatic cancer (PaCa patients already have metastatic complications at the time of diagnosis, and the death rate of this lethal type of cancer has increased over the past decades. Thus, efforts at identifying novel molecularly targeted therapies are priorities. Recent studies have suggested that serotonin (5-HT contributes to the tumor growth in a variety of cancers including prostate, colon, bladder and liver cancer. However, there is lack of evidence about the impact of 5-HT receptors on promoting pancreatic cancer. Having considered the role of 5-HT-1 receptors, especially 5-HT1B and 5-HT1D subtypes in different types of malignancies, the aim of this study was to investigate the role of 5-HT1B and 5-HT1D receptors in PaCa growth and progression and analyze their potential as cytotoxic targets. We found that knockdown of 5-HT1B and 5-HT1D receptors expression, using specific small interfering RNA (siRNA, induced significant inhibition of proliferation and clonogenicity of PaCa cells. Also, it significantly suppressed PaCa cells invasion and reduced the activity of uPAR/MMP-2 signaling and Integrin/Src/Fak-mediated signaling, as integral tumor cell pathways associated with invasion, migration, adhesion, and proliferation. Moreover, targeting 5-HT1B and 5-HT1D receptors down-regulates zinc finger ZEB1 and Snail proteins, the hallmarks transcription factors regulating epithelial-mesenchymal transition (EMT, concomitantly with up-regulating of claudin-1 and E-Cadherin. In conclusion, our data suggests that 5-HT1B- and 5-HT1D- mediated signaling play an important role in the regulation of the proliferative and invasive phenotype of PaCa. It also highlights the therapeutic potential of targeting of 5-HT1B/1D receptors in the treatment of PaCa, and opens a new avenue for biomarkers identification

  12. Differential involvement of 5-HT(1A) and 5-HT(1B/1D) receptors in human interferon-alpha-induced immobility in the mouse forced swimming test.

    Science.gov (United States)

    Zhang, Hongmei; Wang, Wei; Jiang, Zhenzhou; Shang, Jing; Zhang, Luyong

    2010-01-01

    Although Interferon-alpha (IFN-alpha, CAS 9008-11-1) is a powerful drug in treating several viral infections and certain tumors, a considerable amount of neuropsychiatric side-effects such as depression and anxiety are an unavoidable consequence. Combination with the selective serotonin (5-HT) reuptake inhibitor (SSRI) fluoxetine (CAS 56296-78-7) significantly improved the situation. However, the potential 5-HT(1A) receptor- and 5-HT(1B) receptor-signals involved in the antidepressant effects are still unclear. The effects of 5-HT(1A) receptor- and 5-HT(1B) receptor signals were analyzed by using the mouse forced swimming test (FST), a predictive test of antidepressant-like action. The present results indicated that (1) fluoxetine (administrated intragastrically, 30 mg/kg; not subactive dose: 15 mg/kg) significantly reduced IFN-alpha-induced increase of the immobility time in the forced swimming test; (2) 5-HT(1A) receptor- and 5-HT(1B) receptor ligands alone or in combination had no effects on IFN-alpha-induced increase of the immobility time in the FST; (3) surprisingly, WAY 100635 (5-HT(1A) receptor antagonist, 634908-75-1) and 8-OH-DPAT(5-HT(1A) receptor agonist, CAS 78950-78-4) markedly enhanced the antidepressant effect of fluoxetine at the subactive dose (15 mg/kg, i. g.) on the IFN-alpha-treated mice in the FST. Further investigations showed that fluoxetine combined with WAY 100635 and 8-OH-DPAT failed to produce antidepressant effects in the FST. (4) Co-application of CGS 12066A (5-HT(1B) receptor agonist, CAS 109028-09-3) or GR 127935 (5-HT(1B/1D) receptor antagonist, CAS 148642-42-6) with fluoxetine had no synergistic effects on the IFN-alpha-induced increase of immobility time in FST. (5) Interestingly, co-administration of GR 127935, WAY 100635 and fluoxetine significantly reduced the IFN-alpha-induced increase in immobility time of FST, being more effective than co-administration of WAY 100635 and fluoxetine. All results suggest that (1) compared to

  13. Down-regulation of 5-HT1B and 5-HT1D receptors inhibits proliferation, clonogenicity and invasion of human pancreatic cancer cells.

    Directory of Open Access Journals (Sweden)

    Nilgun Gurbuz

    Full Text Available Pancreatic ductal adenocarcinoma is characterized by extensive local tumor invasion, metastasis and early systemic dissemination. The vast majority of pancreatic cancer (PaCa patients already have metastatic complications at the time of diagnosis, and the death rate of this lethal type of cancer has increased over the past decades. Thus, efforts at identifying novel molecularly targeted therapies are priorities. Recent studies have suggested that serotonin (5-HT contributes to the tumor growth in a variety of cancers including prostate, colon, bladder and liver cancer. However, there is lack of evidence about the impact of 5-HT receptors on promoting pancreatic cancer. Having considered the role of 5-HT-1 receptors, especially 5-HT1B and 5-HT1D subtypes in different types of malignancies, the aim of this study was to investigate the role of 5-HT1B and 5-HT1D receptors in PaCa growth and progression and analyze their potential as cytotoxic targets. We found that knockdown of 5-HT1B and 5-HT1D receptors expression, using specific small interfering RNA (siRNA, induced significant inhibition of proliferation and clonogenicity of PaCa cells. Also, it significantly suppressed PaCa cells invasion and reduced the activity of uPAR/MMP-2 signaling and Integrin/Src/Fak-mediated signaling, as integral tumor cell pathways associated with invasion, migration, adhesion, and proliferation. Moreover, targeting 5-HT1B and 5-HT1D receptors down-regulates zinc finger ZEB1 and Snail proteins, the hallmarks transcription factors regulating epithelial-mesenchymal transition (EMT, concomitantly with up-regulating of claudin-1 and E-Cadherin. In conclusion, our data suggests that 5-HT1B- and 5-HT1D-mediated signaling play an important role in the regulation of the proliferative and invasive phenotype of PaCa. It also highlights the therapeutic potential of targeting of 5-HT1B/1D receptors in the treatment of PaCa, and opens a new avenue for biomarkers identification

  14. Spinal 5-HT7 receptors induce phrenic motor facilitation via EPAC-mTORC1 signaling.

    Science.gov (United States)

    Fields, D P; Springborn, S R; Mitchell, G S

    2015-09-01

    Spinal serotonin type 7 (5-HT7) receptors elicit complex effects on motor activity. Whereas 5-HT7 receptor activation gives rise to long-lasting phrenic motor facilitation (pMF), it also constrains 5-HT2 receptor-induced pMF via "cross-talk inhibition." We hypothesized that divergent cAMP-dependent signaling pathways give rise to these distinct 5-HT7 receptor actions. Specifically, we hypothesized that protein kinase A (PKA) mediates cross-talk inhibition of 5-HT2 receptor-induced pMF whereas 5-HT7 receptor-induced pMF results from exchange protein activated by cAMP (EPAC) signaling. Anesthetized, paralyzed, and ventilated rats receiving intrathecal (C4) 5-HT7 receptor agonist (AS-19) injections expressed pMF for >90 min, an effect abolished by pretreatment with a selective EPAC inhibitor (ESI-05) but not a selective PKA inhibitor (KT-5720). Furthermore, intrathecal injections of a selective EPAC activator (8-pCPT-2'-Me-cAMP) were sufficient to elicit pMF. Finally, spinal mammalian target of rapamycin complex-1 (mTORC1) inhibition via intrathecal rapamycin abolished 5-HT7 receptor- and EPAC-induced pMF, demonstrating that spinal 5-HT7 receptors elicit pMF by an EPAC-mTORC1 signaling pathway. Thus 5-HT7 receptors elicit and constrain spinal phrenic motor plasticity via distinct signaling mechanisms that diverge at cAMP (EPAC vs. PKA). Selective manipulation of these molecules may enable refined regulation of serotonin-dependent spinal motor plasticity for therapeutic advantage.

  15. Spinal 5-HT3 receptors mediate descending facilitation and contribute to behavioral hypersensitivity via a reciprocal neuron-glial signaling cascade

    OpenAIRE

    Guo, Wei; Miyoshi, Kan; Dubner, Ronald; Gu, Ming; Li, Man; Liu, Jian; Yang, Jiale; Zou, Shiping; Ren, Ke; Noguchi, Koichi; Wei, Feng

    2014-01-01

    Background It has been recently recognized that the descending serotonin (5-HT) system from the rostral ventromedial medulla (RVM) in the brainstem and the 5-HT3 receptor subtype in the spinal dorsal horn are involved in enhanced descending pain facilitation after tissue and nerve injury. However, the mechanisms underlying the activation of the 5-HT3 receptor and its contribution to facilitation of pain remain unclear. Results In the present study, activation of spinal 5-HT3 receptors by intr...

  16. Selective 5-HT7 receptor agonists LP 44 and LP 211 elicit an analgesic effect on formalin-induced orofacial pain in mice

    OpenAIRE

    DEMİRKAYA, Kadriye; Akgün, Özlem Martı; Buğra ŞENEL; ÖNCEL TORUN, Zeynep; SEYREK, Melik; LACİVİTA, Enza; Leopoldo, Marcello; Ahmet DOĞRUL

    2016-01-01

    ABSTRACT The most recently identified serotonin (5-HT) receptor is the 5-HT7 receptor. The antinociceptive effects of a 5-HT7 receptor agonist have been shown in neuropathic and inflammatory animal models of pain. A recent study demonstrated the functional expression of 5-HT7 receptors in the substantia gelatinosa (SG) of the trigeminal subnucleus caudalis, which receives and processes orofacial nociceptive inputs. Objective To investigate the antinociceptive effects of pharmacological acti...

  17. Differential role of the 5-HT1A receptor in aggressive and non-aggressive mice: An across-strain comparison

    OpenAIRE

    Caramaschi, Doretta; de Boer, Sietse F.; Koolhaas, Jaap M.

    2007-01-01

    Differential role of the 5-HT1A receptor in aggressive and non-aggressive mice: an across-strain comparison. PHYSIOL BEHAV 00(0) 000-000, 2006. According to the serotonin (5-HT)-deficiency hypothesis of aggression, highly aggressive individuals are characterized by low brain 5-HT neurotransmission. Key regulatory mechanisms acting on the serotonergic neuron involve the activation of the somatodendritic inhibitory 5-HT1A autoreceptor (short feedback loop) and/or the activation of postsynaptic ...

  18. Kinetic modeling of 11C-SB207145 binding to 5-HT4 receptors in the human brain in vivo

    DEFF Research Database (Denmark)

    Marner, Lisbeth; Gillings, Nic; Comley, Robert A;

    2009-01-01

    The serotonin 4 receptor (5-HT(4) receptor) is known to be involved in learning and memory. We evaluated for the first time the quantification of a novel 5-HT(4) receptor radioligand, (11)C-SB207145, for in vivo brain imaging with PET in humans. METHODS: For evaluation of reproducibility, 6 subje...

  19. Immunohistochemical colocalization of 7B2 and 5HT in the neuroepithelial bodies of the lung of Rana temporaria.

    Science.gov (United States)

    Bodegas, M E; Montuenga, L M; Polak, J M; Sesma, P

    1993-07-01

    The neuroendocrine cell population of the lung of Rana temporaria has been studied by means of immunocytochemistry. Serotonin (5HT)- and polypeptide 7B2-immunoreactive neuroepithelial bodies have been observed in the epithelial lining of the lung. 5HT- but not 7B2-immunoreactive isolated endocrine cells have also been observed.

  20. Behavioural consequences of selective activation of 5-HT receptor subtypes : Possible implications for the mode of action of antidepressants

    NARCIS (Netherlands)

    Berendsen, Hermanus Henricus Gerardus

    1991-01-01

    The neurotransmitter serotonin (5-HT) is involved in a number of mental disorders i.e. anxiety, depression, psychosis and hallucinogenic behaviour. Therefore by studying the functions of the 5-HT receptors we will obtain a better insight into the pathogenesis of these diseases.

  1. Synthesis and evaluation of 18F-labeled 5-HT2A receptor agonists as PET ligands

    DEFF Research Database (Denmark)

    Herth, Matthias M; Petersen, Ida Nymann; Hansen, Hanne Demant

    2016-01-01

    INTRODUCTION: The serotonin 2A receptor (5-HT2AR) is the most abundant excitatory 5-HT receptor in the human brain and implicated in various brain disorders such as schizophrenia, depression, and Alzheimer's disease. Positron emission tomography (PET) can be used to image specific proteins...

  2. 5-HT2B Receptor Antagonists Inhibit Fibrosis and Protect from RV Heart Failure

    OpenAIRE

    Wiebke Janssen; Yves Schymura; Tatyana Novoyatleva; Baktybek Kojonazarov; Mario Boehm; Astrid Wietelmann; Himal Luitel; Kirsten Murmann; Damian Richard Krompiec; Aleksandra Tretyn; Soni Savai Pullamsetti; Norbert Weissmann; Werner Seeger; Hossein Ardeschir Ghofrani; Ralph Theo Schermuly

    2015-01-01

    Objective. The serotonin (5-HT) pathway was shown to play a role in pulmonary hypertension (PH), but its functions in right ventricular failure (RVF) remain poorly understood. The aim of the current study was to investigate the effects of Terguride (5-HT2A and 2B receptor antagonist) or SB204741 (5-HT2B receptor antagonist) on right heart function and structure upon pulmonary artery banding (PAB) in mice. Methods. Seven days after PAB, mice were treated for 14 days with Terguride (0.2 mg/kg b...

  3. 5-HT6/7 receptor antagonists facilitate dopamine release in the cochlea via a GABAergic disinhibitory mechanism

    NARCIS (Netherlands)

    Doleviczenyi, Zoltan; Vizi, E. Sylvester; Gacsalyi, Istvan; Pallagi, Katalin; Volk, Balazs; Harsing, Laszlo G.; Halmos, Gyorgy; Lendvai, Balazs; Zelles, Tibor

    2008-01-01

    In humans, serotonin (5-HT) has been implicated in numerous physiological and pathological processes in the peripheral auditory system. Dopamine (DA), another transmitter of the lateral olivocochlear (LOC) efferents making synapses on cochlear nerve dendrites, controls auditory nerve activation and

  4. Effects of ethanol on aggregation, serotonin release, and amyloid precursor protein processing in rat and human platelets.

    Science.gov (United States)

    Ehrlich, Daniela; Humpel, Christian

    2014-01-01

    It is known that oxidative stress leads to amyloid precursor protein (APP) dysregulation in platelets. Ethanol (EtOH) is a vascular risk factor and induces oxidative stress. The aim of the present study was thus to investigate whether EtOH affects APP processing in rat and human platelets. Platelets were exposed to 50 mM EtOH with and without 2 mM calcium-chloride (CaCl₂) for 20 or 180 minutes at 37°C. Platelet aggregation, serotonin release and APP isoforms 130 and 106/110 kDa were analyzed. As a control, 100 mM H₂O₂ was tested in rat platelets. Our data show that EtOH alone did not affect any of the analyzed parameters, whereas CaCl₂ significantly increased aggregation of rat and human platelets. In addition, CaCl₂ alone enhanced serotonin release in rat platelets. EtOH counteracted CaCl₂-induced aggregation and serotonin release. In the presence of CaCl₂, EtOH reduced the 130 kDa APP isoform in rat and human platelets. In conclusion, this study shows that in the presence of CaCl₂, EtOH affects the platelet function and APP processing in rat and human platelets.

  5. Key role of 5-HT3 receptors in the nucleus tractus solitarii in cardiovagal stress reactivity.

    Science.gov (United States)

    Sévoz-Couche, Caroline; Brouillard, Charly

    2017-03-01

    Serotonin plays a modulatory role in central control of the autonomic nervous system (ANS). The nucleus tractus solitarii (NTS) in the medulla is an area of viscerosomatic integration innervated by both central and peripheral serotonergic fibers. Influences from different origins therefore trigger the release of serotonin into the NTS and exert multiple influences on the ANS. This major influence on the ANS is also mediated by activation of several receptors in the NTS. In particular, the NTS is the central zone with the highest density of serotonin3 (5-HT3) receptors. In this review, we present evidence that 5-HT3 receptors in the NTS play a key role in one of the crucial homeostatic responses to acute and chronic stress: inhibitory modulation of the parasympathetic component of the ANS. The possible functional interactions of 5-HT3 receptors with GABAA and NK1 receptors in the NTS are also discussed.

  6. Effect of flunarizine and calcium on serotonin uptake in human and rat blood platelets and rat synaptosomes

    DEFF Research Database (Denmark)

    Jensen, P N; Smith, D F; Poulsen, J H

    1994-01-01

    in blood platelets, whereas no effect was observed in synaptosomes. Flunarizine inhibited serotonin uptake in a concentration dependent manner with an IC50 value of 1 mumol/L in blood platelets and 5 mumol/L in synaptosomes. The inhibition did not depend on the presence of extracellular calcium indicating...

  7. 5-HT7 receptor signaling: improved therapeutic strategy in gut disorders

    Directory of Open Access Journals (Sweden)

    Janice J Kim

    2014-12-01

    Full Text Available Serotonin (5-hydroxytrytamine; 5-HT is most commonly known for its role as a neurotransmitter in the central nervous system. However, the majority of the body’s 5-HT is produced in the gut by enterochromaffin (EC cells. Alterations in 5-HT signaling have been associated with various gut disorders including inflammatory bowel disease (IBD, irritable bowel syndrome (IBS and enteric infections. Recently, our studies have identified a key role for 5-HT in the pathogenesis of experimental colitis. 5-HT7 receptors are expressed in the gut and very recently, we have shown evidence of 5-HT7 receptor expression on intestinal immune cells and demonstrated a key role for 5-HT7 receptors in generation of experimental colitis. This review summarizes the key findings of these studies and provides a comprehensive overview of our current knowledge of the 5-HT7 receptor in terms of its pathophysiological relevance and therapeutic potential in intestinal inflammatory conditions, such as IBD.

  8. The 5-HT7 receptor triggers cerebellar long-term synaptic depression via PKC-MAPK.

    Science.gov (United States)

    Lippiello, Pellegrino; Hoxha, Eriola; Speranza, Luisa; Volpicelli, Floriana; Ferraro, Angela; Leopoldo, Marcello; Lacivita, Enza; Perrone-Capano, Carla; Tempia, Filippo; Miniaci, Maria Concetta

    2016-02-01

    The 5-HT7 receptor (5-HT7R) mediates important physiological effects of serotonin, such as memory and emotion, and is emerging as a therapeutic target for the treatment of cognitive disorders and depression. Although previous studies have revealed an expression of 5-HT7R in cerebellum, particularly at Purkinje cells, its functional role and signaling mechanisms have never been described. Using patch-clamp recordings in cerebellar slices of adult mice, we investigated the effects of a selective 5-HT7R agonist, LP-211, on the main plastic site of the cerebellar cortex, the parallel fiber-Purkinje cell synapse. Here we show that 5-HT7R activation induces long-term depression of parallel fiber-Purkinje cell synapse via a postsynaptic mechanism that involves the PKC-MAPK signaling pathway. Moreover, a 5-HT7R antagonist abolished the expression of PF-LTD, produced by pairing parallel fiber stimulation with Purkinje cell depolarization; whereas, application of a 5-HT7R agonist impaired LTP induced by 1 Hz parallel fiber stimulation. Our results indicate for the first time that 5-HT7R exerts a fine regulation of cerebellar bidirectional synaptic plasticity that might be involved in cognitive processes and neuropsychiatric disorders involving the cerebellum.

  9. Expression of serotonin receptors in human lower esophageal sphincter

    OpenAIRE

    Li, He-Fei; Liu, Jun-Feng; Zhang, Ke; Feng, Yong

    2014-01-01

    Serotonin (5-HT) is a neurotransmitter and vasoactive amine that is involved in the regulation of a large number of physiological functions. The wide variety of 5-HT-mediated functions is due to the existence of different classes of serotonergic receptors in the mammalian gastrointestinal tract and nervous system. The aim of this study was to explore the expression of multiple types of 5-HT receptor (5-HT1AR, 5-HT2AR, 5-HT3AR, 5-HT4R, 5-HT5AR, 5-HT6R and 5-HT7R) in sling and clasp fibers from...

  10. Role of 5-HT(1A) and 5-HT(1B) receptors in the antidepressant-like effect of piperine in the forced swim test.

    Science.gov (United States)

    Mao, Qing-Qiu; Huang, Zhen; Ip, Siu-Po; Xian, Yan-Fang; Che, Chun-Tao

    2011-10-24

    Our previous studies have showed that treating mice with piperine significantly decreased the immobility time of the animals in the forced swim test and tail suspension test, which was related to up-regulation of serotonin (5-HT) level in the brain. The purpose of this study is to explore the contribution of 5-HT receptors in the antidepressant-like effect of piperine. The results showed that pre-treating mice with methiothepin (a non-selective 5-HT receptor antagonist, 0.1mg/kg, intraperitoneally), 4-(2'-methoxy-phenyl)-1-[2'-(n-2″-pyridinyl)-p-iodobenzamino-]ethyl-piperazine (a selective 5-HT(1A) receptor antagonist, 1mg/kg, subcutaneously) or 1-(2-(1-pyrrolyl)-phenoxy)-3-isopropylamino-2-propanol (a 5-HT(1B) receptor antagonist, 2.5mg/kg, intraperitoneally) was found to abolish the anti-immobility effect of piperine (10mg/kg, intraperitoneally) in the forced swim test. On the other hand, a sub-effective dose of piperine (1mg/kg, intraperitoneally) produced a synergistic antidepressant-like effect with (+)-8-hydroxy-2-(di-n-propylamino)tetralin (a 5-HT(1A) receptor agonist, 1mg/kg, intraperitoneally) or anpirtoline (a 5-HT(1B) receptor agonist, 0.25mg/kg, intraperitoneally). Taken together, these results suggest that the antidepressant-like effect of piperine in the mouse forced swim test may be mediated, at least in part, by the activation of 5-HT(1A) and 5-HT(1B) receptors.

  11. Effects of the 5-HT7 receptor antagonists SB-269970 and DR 4004 in autoshaping Pavlovian/instrumental learning task.

    Science.gov (United States)

    Meneses, Alfredo

    2004-12-06

    There is an important debate regarding the functional role of the 5-HT(1A) and 5-HT(7) receptor in memory systems. Hence, the objective of this paper is to investigate the function of serotonin (5-hydroxytryptamine, 5-HT) in memory consolidation, utilising an autoshaping Pavlovian/instrumental learning test. Specific antagonists at 5-HT(1A) (WAY 100635) and 5-HT(7) (SB-269970 or DR 4004) receptors administered i.p. or s.c.) after training, significantly decreased the improvement of performance produced by the 5-HT(1A/7) agonist 8-OH-DPAT to levels lower than controls'. These same antagonists attenuated the decreased level of performance produced by mCPP, although they decrease the performance levels after p-chloroamphetamine (PCA) lesion of the 5-HT system, which has no effect on its own on the conditioned response. Moreover, SB-269970 or DR 4004 reversed amnesia induced by scopolamine and dizocilpine. These data confirm a role for 5-HT(1A) and 5-HT(7) receptors in memory formation and support the hypothesis that serotonergic, cholinergic, and glutamatergic systems interact in cognitively impaired animals. These findings support a potential role for both 5-HT(1A) and 5-HT(7) receptors in the pathophysiology and/or treatment of schizophrenia, cognitive deficits and the mechanism of action of atypical antipsychotic drugs.

  12. Novel insights into the potential involvement of 5-HT7 receptors in endocrine dysregulation in stress-related disorders.

    Science.gov (United States)

    Terrón, José A

    2014-01-01

    A hyperactive hypothalamic-pituitary-adrenal (HPA) axis is a common feature of stress-related disorders, and the brain serotonin (5-HT) system plays a major role in HPA axis modulation. Glucocorticoids and stress profoundly affect the 5-HT system so it is possible that alterations of endocrine 5-HT mechanisms may underlie HPA axis overdrive in stress-related diseases. Available evidence suggests a role of 5-HT1A, 5-HT2A/2C and 5-HT7 receptors in HPA system activation, and pharmacological blockade of 5-HT7 receptors produces a fast-acting antidepressant-like action and shortens the onset of antidepressant-like effects of various classes of antidepressants. The mechanisms involved in this effect have not been elucidated, but recent findings suggest a role of 5-HT7 receptors in the development of HPA axis overdrive as a result of chronic stress. Remarkably, clinical findings have shown an association between corticosteroid-producing adenomas and expression of ectopic 5-HT7 receptors in corticosteroid-producing adrenocortical cells. These observations might therefore reveal an endocrine mechanism for the antidepressant-like action of 5-HT7 receptor blockers, possibly through normalization of HPA axis function. If such a preliminary hypothesis is confirmed, the potential therapeutic usefulness of 5-HT7 receptor antagonists could extend beyond depression to include other diseases, the pathophysiology of which has been associated with chronic stress and HPA axis dysregulation.

  13. Bidirectional regulation of emotional memory by 5-HT1B receptors involves hippocampal p11.

    Science.gov (United States)

    Eriksson, T M; Alvarsson, A; Stan, T L; Zhang, X; Hascup, K N; Hascup, E R; Kehr, J; Gerhardt, G A; Warner-Schmidt, J; Arango-Lievano, M; Kaplitt, M G; Ogren, S O; Greengard, P; Svenningsson, P

    2013-10-01

    Cognitive impairments are common in depression and involve dysfunctional serotonin neurotransmission. The 5-HT1B receptor (5-HT(1B)R) regulates serotonin transmission, via presynaptic receptors, but can also affect transmitter release at heterosynaptic sites. This study aimed at investigating the roles of the 5-HT(1B)R, and its adapter protein p11, in emotional memory and object recognition memory processes by the use of p11 knockout (p11KO) mice, a genetic model for aspects of depression-related states. 5-HT(1B)R agonist treatment induced an impairing effect on emotional memory in wild type (WT) mice. In comparison, p11KO mice displayed reduced long-term emotional memory performance. Unexpectedly, 5-HT(1B)R agonist stimulation enhanced memory in p11KO mice, and this atypical switch was reversed after hippocampal adeno-associated virus mediated gene transfer of p11. Notably, 5-HT(1B)R stimulation increased glutamatergic neurotransmission in the hippocampus in p11KO mice, but not in WT mice, as measured by both pre- and postsynaptic criteria. Magnetic resonance spectroscopy demonstrated global hippocampal reductions of inhibitory GABA, which may contribute to the memory enhancement and potentiation of pre- and post-synaptic measures of glutamate transmission by a 5-HT(1B)R agonist in p11KO mice. It is concluded that the level of hippocampal p11 determines the directionality of 5-HT(1B)R action on emotional memory processing and modulates hippocampal functionality. These results emphasize the importance of using relevant disease models when evaluating the role of serotonin neurotransmission in cognitive deficits related to psychiatric disorders.

  14. Sensitization of restraint-induced corticosterone secretion after chronic restraint in rats: Involvement of 5-HT7 receptors

    OpenAIRE

    García-Iglesias, Brenda B.; Mendoza-Garrido, María E; Gutiérrez-Ospina, Gabriel; Rangel-Barajas, Claudia; Noyola-Díaz, Martha; Terrón, José A.

    2013-01-01

    Serotonin (5-HT) modulates the hypothalamic-pituitary-adrenal (HPA) axis response to stress. We examined the effect of chronic restraint stress (CRS; 20 min/day) as compared to control (CTRL) conditions for 14 days, on: 1) restraint-induced ACTH and corticosterone (CORT) secretion in rats pretreated with vehicle or SB-656104 (a 5-HT7 receptor antagonist); 2) 5-HT7 receptor-like immunoreactivity (5-HT7-LI) and protein in the hypothalamic paraventricular nucleus (PVN) and adrenal glands (AG); 3...

  15. 5-hydroxytryptamine (5-HT) reduces total peripheral resistance during chronic infusion: direct arterial mesenteric relaxation is not involved

    OpenAIRE

    Davis, Robert Patrick; Pattison, Jill; Janice M Thompson; Tiniakov, Ruslan; Scrogin, Karie E.; Watts, Stephanie W.

    2012-01-01

    Serotonin (5-hydroxytryptamine; 5-HT) delivered over 1 week results in a sustained fall in blood pressure in the sham and deoxycorticosterone acetate (DOCA)-salt rat. We hypothesized 5-HT lowers blood pressure through direct receptor-mediated vascular relaxation. In vivo, 5-HT reduced mean arterial pressure (MAP), increased heart rate, stroke volume, cardiac index, and reduced total peripheral resistance during a 1 week infusion of 5-HT (25 µg/kg/min) in the normotensive Sprague Dawley rat. T...

  16. Mutational analysis of the promoter and the coding region of the 5-HT1A gene

    Energy Technology Data Exchange (ETDEWEB)

    Erdmann, J.; Noethen, M.M.; Shimron-Abarbanell, D. [Univ. of Bonn (Germany)] [and others

    1994-09-01

    Disturbances of serotonergic pathways have been implicated in many neuropsychiatric disorders. Serotonin (5HT) receptors can be subdivided into at least three major families (5HT1, 5HT2, and 5HT3). Five human 5HT1 receptor subtypes have been cloned, namely 1A, 1D{alpha}, 1D{beta}, 1E, and 1F. Of these, the 5HT1A receptor is the best characterized subtype. In the present study we sought to identify genetic variation in the 5HT1A receptor gene which through alteration of protein function or level of expression might contribute to the genetics of neuropsychiatric diseases. The coding region and the 5{prime} promoter region of the 5HT1A gene from 159 unrelated subjects (45 schizophrenic, 46 bipolar affective, and 43 patients with Tourette`s syndrome, as well as 25 controls) were analyzed using SSCA. SSCA revealed the presence of two mutations both located in the coding region of the 5HT1A receptor gene. The first mutation is a rare silent C{r_arrow}T substitution at nucleotide position 549. The second mutation is characterized by a base pair substitution (A{r_arrow}G) at the first position of codon 28 and results in an amino acid exchange (Ile{r_arrow}Val). Since Val28 was found only in a single schizophrenic patient and in none of the other patients or controls, we decided to extend our samples and to use a restriction assay for screening a further 74 schizophrenic, 95 bipolar affective, and 49 patients with Tourette`s syndrome, as well as 185 controls, for the presence of the mutation. In total, the mutation was found in 2 schizophrenic patients, in 3 bipolars, in 1 Tourette patient, and in 5 controls. To our knowledge the Ile-28-Val substitution reported here is the first natural occuring molecular variant which has been identified for a serotonin receptor so far.

  17. Locomotor and peripheral effects of sibutramine modulated by 5-HT2 receptors.

    Science.gov (United States)

    Frassetto, Silvana Soriano; Della Santa Rubio, Angela; Lopes, Janaína Jardim; Pereira, Patrícia; Brum, Clarice; Khazzaka, Márcia; Vinagre, Anapaula Sommer

    2006-12-01

    Sibutramine has been described as an anti-obesity drug with the ability to inhibit serotonin (5-HT), noradrenaline, and dopamine re-uptake, but without affinity to histamine and muscarinic receptors. On the other hand, cyproheptadine antagonizes serotonin 5-HT(2A), 5-HT(2B), and 5-HT(2C), histamine H1, and muscarinic (M) receptors. There are many reports concerning the influence of sibutramine on central serotoninergic pathways. In this study, we suggest that peripheral pathways may also be involved in the serotoninergic effects of sibutramine. In vivo experiments were undertaken to investigate the serotoninergic effects of sibutramine on body mass, the glycogen concentration in the diaphragm of rats, and locomotor behaviour. Rats were submitted to oral treatment with sibutramine, cyproheptadine, or sibutramine applied in combination with cyproheptadine, for a period of 2 months to investigate the 5-HT2 effects of sibutramine on these parameters. As the results demonstrated, the lower increase in body mass and the increased glycogen levels in the diaphragm muscle of rats treated with sibutramine seem to be modulated by 5-HT2 receptors, since these effects were completely antagonized by cyproheptadine in the group treated with the 2 drugs co-applied. Furthermore, the behavioural results also suggest that mechanisms modulated by 5-HT2 receptors are involved in the increase of locomotion in the rats treated with sibutramine, since the effect did not occur in the rats treated with sibutramine co-applied with the 5-HT2 receptor antagonist, cyproheptadine. The results suggest that sibutramine modifies energy-related parameters such as body mass, diaphragm glycogen, and locomotor behaviour in rats via 5-HT2 serotoninergic pathways.

  18. Support for 5-HT2C receptor functional selectivity in vivo utilizing structurally diverse, selective 5-HT2C receptor ligands and the 2,5-dimethoxy-4-iodoamphetamine elicited head-twitch response model.

    Science.gov (United States)

    Canal, Clinton E; Booth, Raymond G; Morgan, Drake

    2013-07-01

    There are seemingly conflicting data in the literature regarding the role of serotonin (5-HT) 5-HT2C receptors in the mouse head-twitch response (HTR) elicited by the hallucinogenic 5-HT2A/2B/2C receptor agonist 2,5-dimethoxy-4-iodoamphetamine (DOI). Namely, both 5-HT2C receptor agonists and antagonists, regarding 5-HT2C receptor-mediated Gq-phospholipase C (PLC) signaling, reportedly attenuate the HTR response. The present experiments tested the hypothesis that both classes of 5-HT2C receptor compounds could attenuate the DOI-elicited-HTR in a single strain of mice, C57Bl/6J. The expected results were considered in accordance with ligand functional selectivity. Commercially-available 5-HT2C agonists (CP 809101, Ro 60-0175, WAY 161503, mCPP, and 1-methylpsilocin), novel 4-phenyl-2-N,N-dimethyl-aminotetralin (PAT)-type 5-HT2C agonists (with 5-HT2A/2B antagonist activity), and antagonists selective for 5-HT2A (M100907), 5-HT2C (SB-242084), and 5-HT2B/2C (SB-206553) receptors attenuated the DOI-elicited-HTR. In contrast, there were differential effects on locomotion across classes of compounds. The 5-HT2C agonists and M100907 decreased locomotion, SB-242084 increased locomotion, SB-206553 resulted in dose-dependent biphasic effects on locomotion, and the PATs did not alter locomotion. In vitro molecular pharmacology studies showed that 5-HT2C agonists potent for attenuating the DOI-elicited-HTR also reduced the efficacy of DOI to activate mouse 5-HT2C receptor-mediated PLC signaling in HEK cells. Although there were differences in affinities of a few compounds at mouse compared to human 5-HT2A or 5-HT2C receptors, all compounds tested retained their selectivity for either receptor, regardless of receptor species. Results indicate that 5-HT2C receptor agonists and antagonists attenuate the DOI-elicited-HTR in C57Bl/6J mice, and suggest that structurally diverse 5-HT2C ligands result in different 5-HT2C receptor signaling outcomes compared to DOI.

  19. Study of Platelet Serotonin in Adolescents with Internet Addiction Disorder%青少年网络成瘾患者血小板5-羟色胺水平分析

    Institute of Scientific and Technical Information of China (English)

    罗江洪; 吴汉荣; 蒙衡; 杜亚松; 林治光

    2011-01-01

    Objective To explore the role of serotonin ( 5 - HT) in internet addiction disorder ( IAD), and to provide evidence for the behavioral intervention and medical treatment. Methods Thirty-three adolescents with lAD and 44 normal ones as control were included in the study.Platelet serotonin level was determined with high performance liquid chromatography. Emotional status was investigated with Self-rating Depression Scale ( SDS) and Self-rating Anxiety Scale (SAS). A t-test and correlation analysis were used by SPSS 14. 0. Results Platelet serotonin level of lAD was significantly lower than that of controls ( t = - 2. 135 ,P < 0.05 ). SDS and SAS scores of lAD group were significantly higher than that of control group ( P < 0. 05 ). Correlation analysis showed platelet serotonin level was related with the degree of lAD, SDS and SAS ( P < 0.05 ). Conclusion IAD is perhaps related to neurons' maladjustment.%目的 探索5-羟色胺(5-HT)在青少年网络成瘾发生中的作用,为心理疏导、行为干预和药物治疗提供依据.方法 应用高效液相色谱法,测定33例网络成瘾患者青少年和44例正常对照的血小板5-HT含量;采用抑郁自评量表(SDS)、焦虑自评量表(SAS),测评情绪状态.应用SPSS 14.0进行t检验和相关分析.结果 网络成瘾组血小板5-HT水平低于正常对照组,差异有统计学意义(t=-2.135,P<0.05);网络成瘾组抑郁评分高于对照组,差异有统计学意义(t=3.310,P<0.01);网络成瘾组焦虑评分高于对照组,差异有统计学意义(t=3.110,P<0.01).相关分析显示,血小板5-HT水平与网络成瘾、抑郁、焦虑程度均呈负相关(P值均<0.05).结论 网络成瘾发病可能与神经元功能失调有关.

  20. Role of spinal 5-HT receptors in cutaneous hypersensitivity induced by REM sleep deprivation.

    Science.gov (United States)

    Wei, Hong; Ma, Ainiu; Wang, Yong-Xiang; Pertovaara, Antti

    2008-06-01

    Previous studies indicate that rapid eye movement (REM) sleep deprivation facilitates pain sensitivity. Since serotoninergic raphe neurons are involved both in regulation of sleep and descending pain modulation, we studied whether spinal 5-HT receptors have a role in sleep deprivation-induced facilitation of pain-related behavior. REM sleep deprivation of 48h was induced by the flower pot method in the rat. The pain modulatory influence of various serotoninergic compounds administered intrathecally was assessed by determining limb withdrawal response to monofilaments. REM sleep deprivation produced a marked hypersensitivity. Sleep deprivation-induced hypersensitivity and normal sensitivity in controls were reduced both by a 5-HT(1A) receptor antagonist (WAY-100635) and a 5-HT(2C) receptor antagonist (RS-102221). An antagonist of the 5-HT(3) receptor (LY-278584) failed to modulate hypersensitivity in sleep-deprived or control animals. Paradoxically, sensitivity in sleep-deprived and control animals was reduced not only by a 5-HT(1A) receptor antagonist but also by a 5-HT(1A) receptor agonist (8-OHDPAT). The results indicate that serotoninergic receptors in the spinal cord have a complex role in the control of sleep-deprivation induced cutaneous hypersensitivity as well as baseline sensitivity in control conditions. While endogenous serotonin acting on 5-HT(1A) and 5-HT(2C) receptors may facilitate mechanical sensitivity in animals with a sleep deprivation-induced hypersensitivity as well as in controls, increased activation of spinal 5-HT(1A) receptors by an exogenous agonist leads to suppression of mechanical sensitivity in both conditions. Spinal 5-HT(3) receptors do not contribute to cutaneous hypersensitivity induced by sleep deprivation.

  1. Comparing the Expression of Genes Related to Serotonin (5-HT in C57BL/6J Mice and Humans Based on Data Available at the Allen Mouse Brain Atlas and Allen Human Brain Atlas

    Directory of Open Access Journals (Sweden)

    C. A. Acevedo-Triana

    2017-01-01

    Full Text Available Brain atlases are tools based on comprehensive studies used to locate biological characteristics (structures, connections, proteins, and gene expression in different regions of the brain. These atlases have been disseminated to the point where tools have been created to store, manage, and share the information they contain. This study used the data published by the Allen Mouse Brain Atlas (2004 for mice (C57BL/6J and Allen Human Brain Atlas (2010 for humans (6 donors to compare the expression of serotonin-related genes. Genes of interest were searched for manually in each case (in situ hybridization for mice and microarrays for humans, normalized expression data (z-scores were extracted, and the results were graphed. Despite the differences in methodology, quantification, and subjects used in the process, a high degree of similarity was found between expression data. Here we compare expression in a way that allows the use of translational research methods to infer and validate knowledge. This type of study allows part of the relationship between structures and functions to be identified, by examining expression patterns and comparing levels of expression in different states, anatomical correlations, and phenotypes between different species. The study concludes by discussing the importance of knowing, managing, and disseminating comprehensive, open-access studies in neuroscience.

  2. 5-HT6 receptor memory and amnesia: behavioral pharmacology--learning and memory processes.

    Science.gov (United States)

    Meneses, Alfredo; Pérez-García, Georgina; Ponce-Lopez, Teresa; Castillo, Carlos

    2011-01-01

    Growing evidence indicates that antagonists of the 5-hydroxytryptamine (serotonin) receptor6 (5-HT6) improve memory and reverse amnesia, although the mechanisms involved are poorly understood. Hence, in this paper an attempt was made to summarize recent findings. Available evidence indicates that diverse 5-HT6 receptor antagonists produce promnesic and/or antiamnesic effects in diverse conditions, including memory formation, age-related cognitive impairments, memory deficits in diseases such as schizophrenia, Parkinson, and Alzheimer's disease (AD). Notably, some 5-HT6 receptor agonists seem to have promnesic and/or antiamnesic effects. At the present, it is unclear why 5-HT6 receptor agonists and antagonists may facilitate memory or may reverse amnesia in some memory tasks. Certainly, 5-HT6 drugs modulate memory, which are accompanied with neural changes. Likewise, memory, aging, and AD modify 5-HT6 receptors and signaling cascades. Further investigation in different memory tasks, times, and amnesia models together with more complex control groups might provide further clues. Notably, human studies suggest a potential utility of 5-HT6 receptor antagonists in mild-to-moderate AD patients. Even individuals with mild cognitive impairment (MCI) offer a great opportunity to test them.

  3. Estradiol increases the anorexia associated with increased 5-HT(2C) receptor activation in ovariectomized rats.

    Science.gov (United States)

    Rivera, Heidi M; Santollo, Jessica; Nikonova, Larissa V; Eckel, Lisa A

    2012-01-18

    Estradiol's inhibitory effect on food intake is mediated, in part, by its ability to increase the activity of meal-related signals, including serotonin (5-HT), which hastens satiation. The important role that postsynaptic 5-HT(2C) receptors play in mediating 5-HT's anorexigenic effect prompted us to investigate whether a regimen of acute estradiol treatment increases the anorexia associated with increased 5-HT(2C) receptor activation in ovariectomized (OVX) rats. We demonstrated that intraperitoneal and intracerebroventricular (i.c.v.) administration of low doses of the 5-HT(2C) receptor agonist meta-chlorophenylpiperazine (mCPP) decreased 1-h dark-phase food intake in estradiol-treated, but not oil-treated, OVX rats. During a longer feeding test, we demonstrated that i.c.v. administration of mCPP decreased 22-h food intake in oil-treated and, to a greater extent, estradiol-treated OVX rats. In a second study, we demonstrated that estradiol increased 5-HT(2C) receptor protein content in the caudal brainstem, but not hypothalamus, of OVX rats. We conclude that a physiologically-relevant regimen of acute estradiol treatment increases sensitivity to mCPP's anorexigenic effect. Our demonstration that this same regimen of estradiol treatment increases 5-HT(2C) receptor protein content in the caudal hindbrain of OVX rats provides a possible mechanism to explain our behavioral findings.

  4. Desensitization of 5-HT(1A) autoreceptors induced by neonatal DSP-4 treatment.

    Science.gov (United States)

    Dabrowska, Joanna; Nowak, Przemysław; Brus, Ryszard

    2007-01-15

    To examine the effect of noradrenergic lesion on the reactivity of central 5-HT(1A) receptors, DSP-4 (50 mg/kg) was administered neonatally 30 min after zimelidine (10 mg/kg) administration. 5-HT(1A) autoreceptors are involved in the regulation of serotonin (5-HT) synthesis. In HPLC assay R-(+)-8-OH-DPAT (0.03 mg/kg) significantly decreased 5-HT synthesis rate in striatum, hypothalamus and frontal cortex of control, whilst nonsignificantly in DSP-4-lesioned adult rats (10-12 weeks old). To determine which type of receptor, pre- or postsynaptically located, is involved in the attenuated response to 5-HT(1A) receptors' agonist, behavioral tests were conducted. R-(+)-8-OH-DPAT (0.015 mg/kg) caused hyperphagia of control rats, but did not change feeding of DSP-4 treated rats. R-(+)-8-OH-DPAT (0.1 mg/kg) induced hypothermia and "5-HT(1A) syndrome" in both control and DSP-4-lesioned animals. The nature of this phenomenon is attributable to the presynaptic adaptive mechanism and suggests the desensitization of 5-HT(1A) autoreceptors of rats with neonatal lesion of the central noradrenergic system.

  5. Metabotropic glutamate mGlu2 receptor is necessary for the pharmacological and behavioral effects induced by hallucinogenic 5-HT2A receptor agonists

    OpenAIRE

    Moreno, José L.; Holloway, Terrell; Albizu, Laura; Sealfon, Stuart C.; González-Maeso, Javier

    2011-01-01

    Hallucinogenic drugs, including mescaline, psilocybin and lysergic acid diethylamide (LSD), act at serotonin 5-HT2A receptors (5-HT2ARs). Metabotropic glutamate receptor 2/3 (mGluR2/3) ligands show efficacy in modulating the responses induced by activation of 5-HT2ARs. The formation of a 5-HT2AR-mGluR2 complex suggests a functional interaction that affects the hallucinogen-regulated cellular signaling pathways. Here, we tested the cellular and behavioral effects of hallucinogenic 5-HT2AR agon...

  6. Imipramine treatment differentially affects platelet /sup 3/H-imipramine binding and serotonin uptake in depressed patients

    Energy Technology Data Exchange (ETDEWEB)

    Suranyi-Cadotte, B.E.; Quirion, R.; Nair, N.P.V.; Lafaille, F.; Schwartz, G.

    1985-02-25

    Uptake of serotonin and /sup 3/H-imipramine binding in platelets of depressed patients were investigated simultaneously with changes in clinical state. Both V/sub max/ for serotonin uptake and B/sub max/ for /sup 3/H-imipramine binding were significantly lower in unmedicated depressed patients with respect to normal subjects. Successful treatment with imipramine led to a significant increase in B/sub max/ for /sup 3/H-imipramine binding, without significant change in V/sub max/ for serotonin uptake. B/sub max/ values increased to the normal range following complete, rather than partial clinical improvement. These data indicate that successful antidepressant treatment may increase the density of /sup 3/H-imipramine binding sites on platelets by a process which is independent of the uptake of serotonin. 29 references, 1 table.

  7. Effect of spinal serotonin 2A receptors on the reaction of chronic visceral pain and electroacupuncture in rats%脊髓5-HT2A受体对大鼠慢性内脏痛敏反应及其电针治疗的影响

    Institute of Scientific and Technical Information of China (English)

    焦海霞; 刘庆; 林春; 陈瑜; 陈爱琴

    2011-01-01

    Aim To investigate the effect of spinal serotonin receptors ( 5-HT2A ) on the reaction of chronic visceral pain and electroacupuncture in rats. Method SD rats were divided into control group, chronic visceral pain model group, model with solvent group,model with ketanserin group, model with electroacupuncture group and model with electroacupuncture combining ketanserin group. The chronic visceral pain model was developed by colorectal distensions ( CRD )irritation in neonatal rats. Electroacupuncture ( " Shumi waves. 1 mA ) was applied to bilateral "Zusanli"and "Shangjuxu" for 30 min every other day for 4 times. Record the scores of abdominal withdrawal reflex( AWR ) and electromyogram of abdominal external oblique muscle on colorectal distensions irritation. Results ① When CRD at pressures of 20mmHg and 40 mmHg, the scores of AWR of model with ketanserin group were significantly higher than those of model group( P <0. 05 .P < 0. 01 ) and model with electroacupuncture combining ketanserin group ( P < 0. 05 , P < 0. 01 ). ②When CRD at three kinds pressures, the electromyogram of abdominal external oblique muscle of model with ketanserin group was significantly higher than that of model group and model with electroacupuncture combining ketanserin group( all P < 0. 05 ).Conclusions Spinal 5-HT2A receptors can inhibit the sensitivity of chronic visceral pain, but the central antinociceptive effects of electroacupuncture on chronic visceral pain rats are impossible mainly mediated through them.%目的 探讨脊髓5-羟色胺2A(5-HT2A)受体对大鼠慢性内脏痛敏反应及其电针治疗的影响.方法 SD大鼠分为正常对照组,慢性内脏痛模型组、模型加溶媒对照组、模型加酮色林组、模型加电针组、模型加针药合用组等6组.慢性内脏痛模型采用对新生幼鼠给予结直肠扩张刺激方法制备;电针选取双侧"足三里"和"上巨虚",疏密波,强度1 mA,持续30 min,隔日1次,持续4次.记录各组

  8. Characterization of the 5-HT7receptor : Synthesis and molecular modeling of ligands and the receptor

    NARCIS (Netherlands)

    Vermeulen, Erik Sander

    2005-01-01

    De serotonine-receptor 5-HT7 komt voor in bepaalde delen van de hersenen van de mens en is waarschijnlijk betrokken bij aandoeningen als migraine, depressiviteit en slaapstoornissen. In het proefschrift van Erik Vermeulen wordt het werkingsmechanisme van deze receptor onderzocht. Vermeulen synthetis

  9. Characterization of the 5-HT7 receptor : synthesis and molecular modeling of ligands and the receptor

    NARCIS (Netherlands)

    Vermeulen, Erik Sander

    2005-01-01

    De serotonine-receptor 5-HT7 komt voor in bepaalde delen van de hersenen van de mens en is waarschijnlijk betrokken bij aandoeningen als migraine, depressiviteit en slaapstoornissen. In het proefschrift van Erik Vermeulen wordt het werkingsmechanisme van deze receptor onderzocht. Vermeulen synthetis

  10. Gaddum and LSD: the birth and growth of experimental and clinical neuropharmacology research on 5-HT in the UK.

    Science.gov (United States)

    Green, A R

    2008-08-01

    The vasoconstrictor substance named serotonin was identified as 5-hydroxytryptamine (5-HT) by Maurice Rapport in 1949. In 1951, Rapport gave Gaddum samples of 5-HT substance allowing him to develop a bioassay to both detect and measure the amine. Gaddum and colleagues rapidly identified 5-HT in brain and showed that lysergic acid diethylamide (LSD) antagonized its action in peripheral tissues. Gaddum accordingly postulated that 5-HT might have a role in mood regulation. This review examines the role of UK scientists in the first 20 years following these major discoveries, discussing their role in developing assays for 5-HT in the CNS, identifying the enzymes involved in the synthesis and metabolism of 5-HT and investigating the effect of drugs on brain 5-HT. It reviews studies on the effects of LSD in humans, including Gaddum's self-administration experiments. It outlines investigations on the role of 5-HT in psychiatric disorders, including studies on the effect of antidepressant drugs on the 5-HT concentration in rodent and human brain, and the attempts to examine 5-HT biochemistry in the brains of patients with depressive illness. It is clear that a rather small group of both preclinical scientists and psychiatrists in the UK made major advances in our understanding of the role of 5-HT in the brain, paving the way for much of the knowledge now taken for granted when discussing ways that 5-HT might be involved in the control of mood and the idea that therapeutic drugs used to alleviate psychiatric illness might alter the function of cerebral 5-HT.

  11. Gaddum and LSD: the birth and growth of experimental and clinical neuropharmacology research on 5-HT in the UK

    Science.gov (United States)

    Green, A R

    2008-01-01

    The vasoconstrictor substance named serotonin was identified as 5-hydroxytryptamine (5-HT) by Maurice Rapport in 1949. In 1951, Rapport gave Gaddum samples of 5-HT substance allowing him to develop a bioassay to both detect and measure the amine. Gaddum and colleagues rapidly identified 5-HT in brain and showed that lysergic acid diethylamide (LSD) antagonized its action in peripheral tissues. Gaddum accordingly postulated that 5-HT might have a role in mood regulation. This review examines the role of UK scientists in the first 20 years following these major discoveries, discussing their role in developing assays for 5-HT in the CNS, identifying the enzymes involved in the synthesis and metabolism of 5-HT and investigating the effect of drugs on brain 5-HT. It reviews studies on the effects of LSD in humans, including Gaddum's self-administration experiments. It outlines investigations on the role of 5-HT in psychiatric disorders, including studies on the effect of antidepressant drugs on the 5-HT concentration in rodent and human brain, and the attempts to examine 5-HT biochemistry in the brains of patients with depressive illness. It is clear that a rather small group of both preclinical scientists and psychiatrists in the UK made major advances in our understanding of the role of 5-HT in the brain, paving the way for much of the knowledge now taken for granted when discussing ways that 5-HT might be involved in the control of mood and the idea that therapeutic drugs used to alleviate psychiatric illness might alter the function of cerebral 5-HT. PMID:18516072

  12. Brain 5-HT deficiency increases stress vulnerability and impairs antidepressant responses following psychosocial stress.

    Science.gov (United States)

    Sachs, Benjamin D; Ni, Jason R; Caron, Marc G

    2015-02-24

    Brain serotonin (5-HT) deficiency and exposure to psychosocial stress have both been implicated in the etiology of depression and anxiety disorders, but whether 5-HT deficiency influences susceptibility to depression- and anxiety-like phenotypes induced by psychosocial stress has not been formally established. Most clinically effective antidepressants increase the extracellular levels of 5-HT, and thus it has been hypothesized that antidepressant responses result from the reversal of endogenous 5-HT deficiency, but this hypothesis remains highly controversial. Here we evaluated the impact of brain 5-HT deficiency on stress susceptibility and antidepressant-like responses using tryptophan hydroxylase 2 knockin (Tph2KI) mice, which display 60-80% reductions in brain 5-HT. Our results demonstrate that 5-HT deficiency leads to increased susceptibility to social defeat stress (SDS), a model of psychosocial stress, and prevents the fluoxetine (FLX)-induced reversal of SDS-induced social avoidance, suggesting that 5-HT deficiency may impair antidepressant responses. In light of recent clinical and preclinical studies highlighting the potential of inhibiting the lateral habenula (LHb) to achieve antidepressant and antidepressant-like responses, we also examined whether LHb inhibition could achieve antidepressant-like responses in FLX-insensitive Tph2KI mice subjected to SDS. Our data reveal that using designer receptors exclusively activated by designer drugs (DREADDs) to inhibit LHb activity leads to reduced SDS-induced social avoidance behavior in both WT and Tph2KI mice. This observation provides additional preclinical evidence that inhibiting the LHb might represent a promising alternative therapeutic approach under conditions in which selective 5-HT reuptake inhibitors are ineffective.

  13. Potential role of cortical 5-HT(2A) receptors in the anxiolytic action of cyamemazine in benzodiazepine withdrawal.

    Science.gov (United States)

    Benyamina, Amine; Naassila, Mickaël; Bourin, Michel

    2012-07-30

    The antipsychotic cyamemazine is a potent serotonin 5-HT(2A) receptor (5-HT(2AR)) antagonist. A positron emission tomography (PET) study in human patients showed that therapeutic doses of cyamemazine produced near saturation of 5-HT(2AR) occupancy in the frontal cortex, whereas dopamine D(2) occupancy remained below the level for motor side effects observed with typical antipsychotics. Recently, numerous studies have revealed the involvement of 5-HT(2AR) in the pathophysiology of anxiety and a double-blind, randomized clinical trial showed similar efficacy of cyamemazine and bromazepam in reducing the anxiety associated with benzodiazepine withdrawal. Therefore, we reviewed the above articles about 5-HT(2AR) and anxiety in order to understand better the anxiolytic mechanisms of cyamemazine in benzodiazepine withdrawal. The 5-HT(2AR) is the most abundant serotonin receptor subtype in the cortex. Non-pharmacological studies with antisense oligodeoxynucleotides and genetically modified mice clearly showed that cortical 5-HT(2AR) signaling positively modulates anxiety-like behavior. With a few exceptions, most other studies reviewed here further support this view. Therefore, the anxiolytic efficacy of cyamemazine in benzodiazepine withdrawal can be due to a 5-HT(2AR) antagonistic activity at the cortical level. Copyright © 2012 Elsevier Ltd. All rights reserved.

  14. Deficits in LTP induction by 5-HT2A receptor antagonist in a mouse model for fragile X syndrome.

    Directory of Open Access Journals (Sweden)

    Zhao-hui Xu

    Full Text Available Fragile X syndrome is a common inherited form of mental retardation caused by the lack of fragile X mental retardation protein (FMRP because of Fmr1 gene silencing. Serotonin (5-HT is significantly increased in the null mutants of Drosophila Fmr1, and elevated 5-HT brain levels result in cognitive and behavioral deficits in human patients. The serotonin type 2A receptor (5-HT2AR is highly expressed in the cerebral cortex; it acts on pyramidal cells and GABAergic interneurons to modulate cortical functions. 5-HT2AR and FMRP both regulate synaptic plasticity. Therefore, the lack of FMRP may affect serotoninergic activity. In this study, we determined the involvement of FMRP in the 5-HT modulation of synaptic potentiation with the use of primary cortical neuron culture and brain slice recording. Pharmacological inhibition of 5-HT2AR by R-96544 or ketanserin facilitated long-term potentiation (LTP in the anterior cingulate cortex (ACC of WT mice. The prefrontal LTP induction was dependent on the activation of NMDARs and elevation of postsynaptic Ca(2+ concentrations. By contrast, inhibition of 5-HT2AR could not restore the induction of LTP in the ACC of Fmr1 knock-out mice. Furthermore, 5-HT2AR inhibition induced AMPA receptor GluR1 subtype surface insertion in the cultured ACC neurons of Fmr1 WT mice, however, GluR1 surface insertion by inhibition of 5-HT2AR was impaired in the neurons of Fmr1KO mice. These findings suggested that FMRP was involved in serotonin receptor signaling and contributed in GluR1 surface expression induced by 5-HT2AR inactivation.

  15. Design and synthesis of dual 5-HT1A and 5-HT7 receptor ligands.

    Science.gov (United States)

    Ofori, Edward; Zhu, Xue Y; Etukala, Jagan R; Peprah, Kwakye; Jordan, Kamanski R; Adkins, Adia A; Bricker, Barbara A; Kang, Hye J; Huang, Xi-Ping; Roth, Bryan L; Ablordeppey, Seth Y

    2016-08-15

    5-HT1A and 5-HT7 receptors have been at the center of discussions recently due in part to their major role in the etiology of major central nervous system diseases such as depression, sleep disorders, and schizophrenia. As part of our search to identify dual targeting ligands for these receptors, we have carried out a systematic modification of a selective 5HT7 receptor ligand culminating in the identification of several dual 5-HT1A and 5-HT7 receptor ligands. Compound 16, a butyrophenone derivative of tetrahydroisoquinoline (THIQ), was identified as the most potent agent with low nanomolar binding affinities to both receptors. Interestingly, compound 16 also displayed moderate affinity to other clinically relevant dopamine receptors. Thus, it is anticipated that compound 16 may serve as a lead for further exploitation in our quest to identify new ligands with the potential to treat diseases of CNS origin.

  16. Spinal 5-HT7 Receptors and Protein Kinase A Constrain Intermittent Hypoxia-Induced Phrenic Long-term Facilitation

    OpenAIRE

    Hoffman, M. S.; Mitchell, G. S.

    2013-01-01

    Phrenic long-term facilitation (pLTF) is a form of serotonin-dependent respiratory plasticity induced by acute intermittent hypoxia (AIH). pLTF requires spinal Gq protein-coupled serotonin-2 receptor (5-HT2) activation, new synthesis of brain-derived neurotrophic factor (BDNF) and activation of its high-affinity receptor, TrkB. Intrathecal injections of selective agonists for Gs protein-coupled receptors (adenosine 2A and serotonin-7; 5-HT7) also induce long-lasting phrenic motor facilitation...

  17. Spinal 5-HT7 receptors and protein kinase A constrain intermittent hypoxia-induced phrenic long-term facilitation.

    Science.gov (United States)

    Hoffman, M S; Mitchell, G S

    2013-10-10

    Phrenic long-term facilitation (pLTF) is a form of serotonin-dependent respiratory plasticity induced by acute intermittent hypoxia (AIH). pLTF requires spinal Gq protein-coupled serotonin-2 receptor (5-HT2) activation, new synthesis of brain-derived neurotrophic factor (BDNF) and activation of its high-affinity receptor, TrkB. Intrathecal injections of selective agonists for Gs protein-coupled receptors (adenosine 2A and serotonin-7; 5-HT7) also induce long-lasting phrenic motor facilitation via TrkB "trans-activation." Since serotonin released near phrenic motor neurons may activate multiple serotonin receptor subtypes, we tested the hypothesis that 5-HT7 receptor activation contributes to AIH-induced pLTF. A selective 5-HT7 receptor antagonist (SB-269970, 5mM, 12 μl) was administered intrathecally at C4 to anesthetized, vagotomized and ventilated rats prior to AIH (3, 5-min episodes, 11% O2). Contrary to predictions, pLTF was greater in SB-269970 treated versus control rats (80 ± 11% versus 45 ± 6% 60 min post-AIH; p5-HT7 receptor inhibition, suggesting that drug effects were localized to the spinal cord. Since 5-HT7 receptors are coupled to protein kinase A (PKA), we tested the hypothesis that PKA inhibits AIH-induced pLTF. Similar to 5-HT7 receptor inhibition, spinal PKA inhibition (KT-5720, 100 μM, 15 μl) enhanced pLTF (99 ± 15% 60 min post-AIH; p5-HT7 receptors constrain AIH-induced pLTF via PKA activity.

  18. Antidepressant activity: contribution of brain microdialysis in knock-out mice to the understanding of BDNF/5-HT transporter/5-HT autoreceptor interactions

    Directory of Open Access Journals (Sweden)

    Alain M Gardier

    2013-08-01

    Full Text Available Why antidepressants vary in terms of efficacy is currently unclear. Despite the leadership of Selective serotonin reuptake inhibitors (SSRIs in the treatment of depression, the precise neurobiological mechanisms involved in their therapeutic action are poorly understood. A better knowledge of molecular interactions between monoaminergic system, pre- and post-synaptic partners, brain neuronal circuits and regions involved may help to overcome limitations of current treatments and to identify new therapeutic targets. Intracerebral in vivo microdialysis (ICM already provided important information about the brain mechanism of action of antidepressants first in anesthetized rats in the early 90s, and since then in conscious wild-type or knockout mice. The principle of ICM is based on the balance between release of neurotransmitters (e.g., monoamines, and re-uptake by selective transporters (e.g., SERT for serotonin 5-HT. Complementary to electrophysiology, this technique reflects presynaptic monoamines release and intrasynaptic events corresponding to ≈ 80% of whole brain tissue content. The inhibitory role of serotonergic autoreceptors infers that they limit somatodendritic and nerve terminal 5-HT release. It has been proposed that activation of 5-HT1A and 5-HT1B receptor sub-types limit the antidepressant-like activity of Selective Serotonin Reuptake Inhibitors (SSRI. This hypothesis is based partially on results obtained in ICM experiments performed in naïve, non-stressed Rodents. The present review will first remind the principle and methodology of ICM performed in mice. The crucial need of developing animal models that display anxiety and depression-like behaviors, neurochemical and brain morphological phenotypes reminiscent of these mood disorders in Human, will be underlined. Recently developed genetic mouse models have been generated to independently manipulate 5-HT1A auto and hetero-receptors and ICM helped to clarify the role of the

  19. A brain microdialysis study on 5-HT release in freely moving rat lines selectively bred for differential 5-HT1A receptor function

    Directory of Open Access Journals (Sweden)

    L.E. Gonzalez

    2003-02-01

    Full Text Available Breeding for high and low hypothermic responses to systemic administration of a serotonin1A (5-HT1A receptor agonist (8-hydroxy-2-(di-n-propylaminotetralin, 8-OH-DPAT has resulted in high DPAT-sensitive (HDS and low DPAT-sensitive (LDS lines of rats, respectively. These lines also differ in several behavioral measures associated with stress. In the present microdialysis study we observed that basal 5-HT concentrations in the prefrontal cortex and dorsal hippocampus did not differ significantly between HDS and LDS rats. Thus, behavioral differences between the HDS and LDS lines might not be attributed to differences in basal 5-HT release. However, both lines had lower basal levels of 5-HT release than their randomly bred control group (random DPAT-sensitive, RDS in the prefrontal cortex (mean ± SEM, pg/20 µl, was 3.0 ± 0.4 for LDS, 3.8 ± 0.3 for HDS and 6.4 ± 0.6 for RDS; F(2,59 = 5.8, P<0.005. The administration of (±-fenfluramine (10 mg/kg induced a greater increase in hippocampal 5-HT levels in HDS rats (500% as compared with LDS (248% or RDS (243% rats (P<0.0001. There were no significant differences in the prefrontal cortex among lines, with a fenfluramine-induced 5-HT increase of about 900% in the three groups. This differential response to fenfluramine may be due to functional alterations of hippocampal 5-HT reuptake sites in the HDS line.

  20. Immunomodulatory Effects Mediated by Serotonin

    OpenAIRE

    Rodrigo Arreola; Enrique Becerril-Villanueva; Carlos Cruz-Fuentes; Marco Antonio Velasco-Velázquez; María Eugenia Garcés-Alvarez; Gabriela Hurtado-Alvarado; Saray Quintero-Fabian; Lenin Pavón

    2015-01-01

    Serotonin (5-HT) induces concentration-dependent metabolic effects in diverse cell types, including neurons, entherochromaffin cells, adipocytes, pancreatic beta-cells, fibroblasts, smooth muscle cells, epithelial cells, and leukocytes. Three classes of genes regulating 5-HT function are constitutively expressed or induced in these cells: (a) membrane proteins that regulate the response to 5-HT, such as SERT, 5HTR-GPCR, and the 5HT3-ion channels; (b) downstream signaling transduction proteins...

  1. [Role of brain 5-HT7 receptors as a functional molecule involved in the development of stress adaptation].

    Science.gov (United States)

    Tsuji, Minoru; Takeuchi, Tomoko; Miyagawa, Kazuya; Takeda, Hiroshi

    2012-08-01

    A growing body of evidence suggests that the brain serotonin (5-HT) nervous system is an important component related to the etiology as well as the treatment of stress-related psychiatric disorders. Molecular cloning studies have revealed the existence of 14 different genes, each encoding a distinct 5-HT receptor subtype. The 5-HT7 receptor is the most recently identified member of the 5-HT receptor subtypes, and the physiological role of this receptor is still unknown. Recently, either selective agonists or antagonists for 5-HT7 receptors, as well as 5-HT7 receptor knockout mice, have been developed, and these have recently been used as the experimental tools for determining the actual function of 5-HT7 receptors. The first half of the present article introduces the reports that have examined the role of the 5-HT7 receptor on emotional regulation. On the other hand, it has been indicated that the ability to adapt to stress is an important defensive function of a living body, and impairment of this ability may contribute to some stress-related disorders. Thus, the examination of brain mechanisms involved in stress adaptation could help to pave the way for new therapeutic strategies for stress-related psychiatric disorders. The second half of the present article introduces our recent studies focusing on the relationship between brain 5-HT7 receptors and the mechanisms of stress adaptation.

  2. Allosteric activation of the 5-HT3AB receptor by mCPBG.

    Science.gov (United States)

    Miles, Timothy F; Lester, Henry A; Dougherty, Dennis A

    2015-04-01

    The 5-HT3AB receptor contains three A and two B subunits in an A-A-B-A-B order. However, serotonin function at the 5-HT3AB receptor has been shown to depend solely on the A-A interface present in the homomeric receptor. Using mutations at sites on both the primary (E122) and complementary (Y146) faces of the B subunit, we demonstrate that meta-chlorophenyl biguanide (mCPBG), a 5-HT3 selective agonist, is capable of binding to and activating the 5-HT3AB receptor at all five subunit interfaces of the heteromer. Further, mCPBG is capable of allosterically modulating the activity of serotonin from these sites. While these five binding sites are similar enough that they conform to a monophasic dose - response relationship, we uncover subtle differences in the heteromeric binding sites. We also find that the A-A interface appears to contribute disproportionately to the efficacy of 5-HT3AB receptor activation.

  3. Mediation of ACTH and prolactin responses to 5-HTP by 5-HT2 receptors.

    Science.gov (United States)

    Gartside, S E; Cowen, P J

    1990-04-10

    Serotonin has a facilitatory role in the role of prolactin and adrenocorticotropin (ACTH) secretion. The serotonin precursor 5-hydroxy-L-tryptophan (5-HTP) dose dependently (30-100 mg/kg i.p.) increased plasma prolactin and ACTH in the male rat. Prolactin and ACTH responses to 5-HTP (100 mg/kg) were attenuated by pretreatment with the non-selective 5-HT receptor antagonist, metergoline (0.5 mg/kg), and by the selective 5-HT2 receptor antagonists, ritanserin (0.4 mg/kg), ketanserin (2.5 mg/kg), ICI (5.0 mg/kg) and spiperone (1.0 mg/kg). The 5-HT1 receptor antagonists, propranolol (40 mg/kg) and pindolol (4.0 mg/kg), failed to antagonize the prolactin and ACTH responses to 5-HTP (100 mg/kg), as did the selective 5-HT3 receptor antagonist, BRL 43694 (1.0 mg/kg). The results suggest that the prolactin and ACTH responses to 5-HTP in the male rat are mediated by 5-HT2 receptors.

  4. Reduced 5-HT2A receptor binding after recovery from anorexia nervosa.

    Science.gov (United States)

    Frank, Guido K; Kaye, Walter H; Meltzer, Carolyn C; Price, Julie C; Greer, Phil; McConaha, Claire; Skovira, Kelli

    2002-11-01

    Several lines of evidence suggest that a disturbance of serotonin neuronal pathways may contribute to the pathogenesis of anorexia nervosa (AN). This study applied positron emission tomography (PET) to investigate the brain serotonin 2A (5HT2A) receptor, which could contribute to disturbances of appetite and behavior in AN. To avoid the confounding effects of malnutrition, we studied 16 women recovered from AN (REC AN, >1 year normal weight, regular menstrual cycles, no bingeing or purging) compared with 23 healthy control women (CW) using [18F]altanserin, a specific 5-HT2A receptor antagonist on PET imaging. REC AN women had significantly reduced [18F]altanserin binding relative to CW in mesial temporal (amygdala and hippocampus), as well as cingulate cortical regions. In a subset of subjects (11 CW and 16 REC AN), statistical parametric mapping (SPM) confirmed reduced mesial temporal cortex 5HT2A receptor binding and, in addition, showed reduced occipital and parietal cortex binding. This study extends research suggesting that altered 5-HT neuronal system activity persists after recovery from AN and may be related to disturbances of mesial temporal lobe function. Altered 5-HT neurotransmission after recovery also supports the possibility that this may be a trait-related disturbance that contributes to the pathophysiology of AN.

  5. Impact of the 5-HT3 receptor channel system for insulin secretion and interaction of ginger extracts.

    Science.gov (United States)

    Heimes, Katharina; Feistel, Björn; Verspohl, Eugen J

    2009-12-10

    The relevance of serotonin and in particular that of 5-HT(3) receptors is unequivocal with respect to emetic/antiemetic effects, but it is controversial with respect to antidiabetic effects. The effects of tropisetron (5-HT(3) receptor antagonist) and various ginger (Zingiber officinale) extracts (known to interact with the 5-HT(3) receptor channel system) were investigated. Serotonin (32 to 500 microM) inhibits insulin release (RIA) from INS-1 cells which is reversed by tropisetron (10 to 100 microM) and two different ginger extracts (spissum and an oily extract). Their effects are obvious even in the absence of serotonin but are more pronounced in its presence (doubled to tripled). Specific 5-HT(3) binding sites are present in INS-1 cells using 0.4 nM [3H] GR65630 in displacement experiments. The in vitro data with respect to ginger are corroborated by in vivo data on glucose-loaded rats showing that blood glucose (Glucoquant) is decreased by approximately 35% and plasma insulin (RIA) is increased by approximately 10%. Both the spissum extract and the oily ginger extract are effective in two other models: they inhibit [(14)C] guanidinium uptake into N1E-115 cells (model of 5-HT(3) effects) and relax rat ileum both directly and as a serotonin antagonistic effect. Other receptors addressed by ginger are 5-HT(2) receptors as demonstrated by using methysergide and ketanserin. They weakly antagonize the serotonin effect as well. It may be concluded that serotonin and in particular the 5-HT(3) receptor channel system are involved in modulating insulin release and that tropisetron and various ginger extracts can be used to improve a diabetic situation.

  6. 5-HT and GABA modulate intrinsic excitability of type I interneurons in Hermissenda.

    Science.gov (United States)

    Jin, Nan Ge; Tian, Lian-Ming; Crow, Terry

    2009-11-01

    The sensory neurons (photoreceptors) in the visual system of Hermissenda are one site of plasticity produced by Pavlovian conditioning. A second site of plasticity produced by conditioning is the type I interneurons in the cerebropleural ganglia. Both photoreceptors and statocyst hair cells of the graviceptive system form monosynaptic connections with identified type I interneurons. Two proposed neurotransmitters in the graviceptive system, serotonin (5-HT) and gamma-aminobutyric acid (GABA), have been shown to modify synaptic strength and intrinsic neuronal excitability in identified photoreceptors. However, the potential role of 5-HT and GABA in plasticity of type I interneurons has not been investigated. Here we show that 5-HT increased the peak amplitude of light-evoked complex excitatory postsynaptic potentials (EPSPs), enhanced intrinsic excitability, and increased spike activity of identified type I(e(A)) interneurons. In contrast, 5-HT decreased spike activity and intrinsic excitability of type I(e(B)) interneurons. The classification of two categories of type I(e) interneurons was also supported by the observation that 5-HT produced opposite effects on whole cell steady-state outward currents in type I(e) interneurons. Serotonin produced a reduction in the amplitude of light-evoked complex inhibitory PSPs (IPSPs), increased spontaneous spike activity, decreased intrinsic excitability, and depolarized the resting membrane potential of identified type I(i) interneurons. In contrast to the effects of 5-HT, GABA produced inhibition in both types of I(e) interneurons and type I(i) interneurons. These results show that 5-HT and GABA can modulate the intrinsic excitability of type I interneurons independent of the presynaptic effects of the same transmitters on excitability and synaptic efficacy of photoreceptors.

  7. Seizure susceptibility alteration through 5-HT(3) receptor: modulation by nitric oxide.

    Science.gov (United States)

    Gholipour, Taha; Ghasemi, Mehdi; Riazi, Kiarash; Ghaffarpour, Majid; Dehpour, Ahmad Reza

    2010-01-01

    There is some evidence that epileptic seizures could be induced or increased by 5-hydroxytryptamine (5-HT) attenuation, while augmentation of serotonin functions within the brain (e.g. by SSRIs) has been reported to be anticonvulsant. This study was performed to determine the effect of selective 5-HT(3) channel/receptor antagonist granisetron and agonist SR57227 hydrochloride on the pentylenetetrazole (PTZ)-induced seizure threshold in mice. The possible interaction of this effect with nitrergic system was also examined using the nitric oxide (NO) synthase inhibitor N(G)-nitro-l-arginine methyl ester (l-NAME) and the NO precursor l-arginine. SR57227 (10mg/kg, i.p.) significantly increased the seizure threshold compared to control group, while high dose granisetron (10mg/kg, i.p.) proved proconvulsant. Co-administration of sub-effective doses of the 5-HT(3) agonist with l-NAME (5 and 60mg/kg, i.p., respectively) exerted a significant anticonvulsive effect, while sub-effective doses of granisetron (3mg/kg) was observed to have a proconvulsive action with the addition of l-arginine (75mg/kg, i.p.). Our data demonstrate that enhancement of 5-HT(3) receptor function results in as anticonvulsant effect in the PTZ-induced seizure model, and that selective antagonism at the 5-HT(3) receptor yields proconvulsive effects. Furthermore, the NO system may play a role in 5-HT(3) receptor function.

  8. 5-HT2B Receptor Antagonists Inhibit Fibrosis and Protect from RV Heart Failure

    Directory of Open Access Journals (Sweden)

    Wiebke Janssen

    2015-01-01

    Full Text Available Objective. The serotonin (5-HT pathway was shown to play a role in pulmonary hypertension (PH, but its functions in right ventricular failure (RVF remain poorly understood. The aim of the current study was to investigate the effects of Terguride (5-HT2A and 2B receptor antagonist or SB204741 (5-HT2B receptor antagonist on right heart function and structure upon pulmonary artery banding (PAB in mice. Methods. Seven days after PAB, mice were treated for 14 days with Terguride (0.2 mg/kg bid or SB204741 (5 mg/kg day. Right heart function and remodeling were assessed by right heart catheterization, magnetic resonance imaging (MRI, and histomorphometric methods. Total secreted collagen content was determined in mouse cardiac fibroblasts isolated from RV tissues. Results. Chronic treatment with Terguride or SB204741 reduced right ventricular fibrosis and showed improved heart function in mice after PAB. Moreover, 5-HT2B receptor antagonists diminished TGF-beta1 induced collagen synthesis of RV cardiac fibroblasts in vitro. Conclusion. 5-HT2B receptor antagonists reduce collagen deposition, thereby inhibiting right ventricular fibrosis. Chronic treatment prevented the development and progression of pressure overload-induced RVF in mice. Thus, 5-HT2B receptor antagonists represent a valuable novel therapeutic approach for RVF.

  9. 5-HT2B receptor antagonists inhibit fibrosis and protect from RV heart failure.

    Science.gov (United States)

    Janssen, Wiebke; Schymura, Yves; Novoyatleva, Tatyana; Kojonazarov, Baktybek; Boehm, Mario; Wietelmann, Astrid; Luitel, Himal; Murmann, Kirsten; Krompiec, Damian Richard; Tretyn, Aleksandra; Pullamsetti, Soni Savai; Weissmann, Norbert; Seeger, Werner; Ghofrani, Hossein Ardeschir; Schermuly, Ralph Theo

    2015-01-01

    The serotonin (5-HT) pathway was shown to play a role in pulmonary hypertension (PH), but its functions in right ventricular failure (RVF) remain poorly understood. The aim of the current study was to investigate the effects of Terguride (5-HT2A and 2B receptor antagonist) or SB204741 (5-HT2B receptor antagonist) on right heart function and structure upon pulmonary artery banding (PAB) in mice. Seven days after PAB, mice were treated for 14 days with Terguride (0.2 mg/kg bid) or SB204741 (5 mg/kg day). Right heart function and remodeling were assessed by right heart catheterization, magnetic resonance imaging (MRI), and histomorphometric methods. Total secreted collagen content was determined in mouse cardiac fibroblasts isolated from RV tissues. Chronic treatment with Terguride or SB204741 reduced right ventricular fibrosis and showed improved heart function in mice after PAB. Moreover, 5-HT2B receptor antagonists diminished TGF-beta1 induced collagen synthesis of RV cardiac fibroblasts in vitro. 5-HT2B receptor antagonists reduce collagen deposition, thereby inhibiting right ventricular fibrosis. Chronic treatment prevented the development and progression of pressure overload-induced RVF in mice. Thus, 5-HT2B receptor antagonists represent a valuable novel therapeutic approach for RVF.

  10. Functional expression of 5-HT{sub 2A} receptor in osteoblastic MC3T3-E1 cells

    Energy Technology Data Exchange (ETDEWEB)

    Hirai, Takao; Kaneshige, Kota; Kurosaki, Teruko [Department of Molecular Pharmacology, Faculty of Pharmacy and Pharmaceutical Sciences, Fukuyama University, 1 Gakuen-cho, Fukuyama, Hiroshima 729-0292 (Japan); Nishio, Hiroaki, E-mail: nishio@fupharm.fukuyama-u.ac.jp [Department of Molecular Pharmacology, Faculty of Pharmacy and Pharmaceutical Sciences, Fukuyama University, 1 Gakuen-cho, Fukuyama, Hiroshima 729-0292 (Japan)

    2010-05-28

    In the previous study, we reported the gene expression for proteins related to the function of 5-hydroxytryptamine (5-HT, serotonin) and elucidated the expression patterns of 5-HT{sub 2} receptor subtypes in mouse osteoblasts. In the present study, we evaluated the possible involvement of 5-HT receptor subtypes and its inactivation system in MC3T3-E1 cells, an osteoblast cell line. DOI, a 5-HT{sub 2A} and 5-HT{sub 2C} receptor selective agonist, as well as 5-HT concentration-dependently increased proliferative activities of MC3T3-E1 cells in their premature period. This effect of 5-HT on cell proliferation were inhibited by ketanserin, a 5-HT{sub 2A} receptor specific antagonist. Moreover, both DOI-induced cell proliferation and phosphorylation of ERK1 and 2 proteins were inhibited by PD98059 and U0126, selective inhibitors of MEK in a concentration-dependent manner. Furthermore, treatment with fluoxetine, a 5-HT specific re-uptake inhibitor which inactivate the function of extracellular 5-HT, significantly increased the proliferative activities of MC3T3-E1 cells in a concentration-dependent manner. Our data indicate that 5-HT fill the role for proliferation of osteoblast cells in their premature period. Notably, 5-HT{sub 2A} receptor may be functionally expressed to regulate mechanisms underlying osteoblast cell proliferation, at least in part, through activation of ERK/MAPK pathways in MC3T3-E1 cells.

  11. L-5-HTP facilitates the electrically stimulated flexor reflex in pithed rats: evidence for 5-HT2-receptor mediation.

    Science.gov (United States)

    Skarsfeldt, T; Arnt, J; Hyttel, J

    1990-02-06

    Different serotonin (5-HT) receptor agonists were tested on the electrically stimulated flexor reflex in pithed rats. The 5-HT2 receptor agonist, (1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane) [+/-)DOI), the mixed 5-HT1/5-HT2 receptor agonist, quipazine, and the 5-HT precursor, l-5-HTP, showed agonistic activity upon intravenous injection while 5-HT was without effect. A combination of the peripheral decarboxylase inhibitor, Ro 4-4602 (benzerazide), the specific 5-HT-uptake inhibitor, citalopram, and l-5-HTP induced a prolonged (greater than 3 h) increase of the flexor reflex in pithed rats. Different compounds were tested for an inhibitory effect against this l-5-HTP-induced flexor reflex. The 5-HT2 antagonists (ketanserin, methergoline and methiothepin) were potent antagonists. (-)Alprenolol (5-HT1A and 5-HT1B receptor antagonist) and the 5-HT3-receptor antagonist, ICS 205-930, were without an antagonistic effect. The inhibitory potencies in the reflex model (l-5-HTP, citalopram and Ro 4-4602) were significantly correlated (r = 0.83, P less than 0.01, r2 = 0.69) with the potencies to inhibit l-5-HTP-induced head twitches and quipazine-induced head twitches (r = 0.81, P less than 0.01, r2 = 0.66). There was less correlation (r = 0.75, P less than 0.01, r2 = 0.56) with the affinities for 5-HT2 receptors in vitro. There was no significant correlation between inhibitory potencies in the reflex model and affinities for dopamine (DA) D-2 receptors or alpha 1-adrenoceptors (r2 = 0.13 and 0.14, respectively).(ABSTRACT TRUNCATED AT 250 WORDS)

  12. Binding of lurasidone, a novel antipsychotic, to rat 5-HT7 receptor: analysis by [3H]SB-269970 autoradiography.

    Science.gov (United States)

    Horisawa, Tomoko; Ishiyama, Takeo; Ono, Michiko; Ishibashi, Tadashi; Taiji, Mutsuo

    2013-01-10

    Lurasidone is a novel antipsychotic agent with high affinity for dopamine D(2) and serotonin 5-HT(7), 5-HT(2A), and 5-HT(1A) receptors. We previously reported that in addition to its antipsychotic action, lurasidone shows beneficial effects on mood and cognition in rats, likely through 5-HT(7) receptor antagonistic actions. In this study, we evaluated binding of lurasidone to 5-HT(7) receptors in the rat brain by autoradiography using [(3)H]SB-269970, a specific radioligand for 5-HT(7) receptors. Brain slices were incubated with 4 nM [(3)H]SB-269970 at room temperature and exposed to imaging plates for 8 weeks before phosphorimager analysis. Using this method, we first investigated 5-HT(7) receptor distribution. We found that 5-HT(7) receptors are abundantly localized in brain limbic structures, including the lateral septum, thalamus, hypothalamus, hippocampus, and amygdala. On the other hand, its distribution was moderate in the cortex and low in the caudate putamen and cerebellum. Secondly, binding of lurasidone, a selective 5-HT(7) receptor antagonist SB-656104-A and an atypical antipsychotic olanzapine to this receptor was examined. Lurasidone, SB-656104-A (10–1000 nM), and olanzapine (100–10,000 nM) showed concentration-dependent inhibition of [(3)H]SB-269970 binding with IC(50) values of 90, 49, and 5200 nM, respectively. Similar inhibitory actions of these drugs were shown in in vitro [(3)H]SB-269970 binding to 5-HT(7) receptors expressed in Chinese hamster ovary cells. Since there was no marked species difference in rat and human 5-HT(7) receptor binding by lurasidone (K(i) = 1.55 and 2.10 nM, respectively), these findings suggest that binding to 5-HT(7) receptors might play some role in its beneficial pharmacological actions in schizophrenic patients.

  13. Role of 5-HT1B, 5-HT2A and 5-HT2C receptors in learning.

    Science.gov (United States)

    Meneses, A; Hong, E

    1997-08-01

    The effects of post-training (i.p.) injection of TFMPP, mCPP, DOI or 1-NP in the autoshaping learning task was explored. Furthermore, the post-training effects of these agonists after treatment with the antagonists (+/-)-pindolol, (+/-)-propranolol, NAN-190, ketanserin, ritanserin, mesulergine, MDL-72222 or p-chloroamphetamine (5-HT depleter) were studied. Rats were individually trained with a lever-press response (conditioned response; CR) on the autoshaping task and tested 24 h later. The results showed that the injection of TFMPP (1-10 mg/kg), mCPP (1-10 mg/kg), 1-NP (0.1-1.0 mg/kg) or mesulergine (0.4 mg/kg) decreased the rate of CR, while DOI (0.01-0.1 mg/kg) and ritanserin (0.5 mg/kg) and ketanserin (0.001-0.1 mg/kg) increased it. However, the effect induced by TFMPP was reversed by (+/-)-pindolol, ketanserin, ritanserin and PCA; the mCPP-induced effect was antagonized by (+/-)-propranolol, ketanserin, ritanserin and MDL-72222; and the effect produced by 1-NP was reversed by ketanserin, ritanserin and PCA. In addition, the increment in CR provoked by DOI was enhanced by ketanserin, and reversed by ritanserin, mesulergine and PCA. These findings suggest that TFMPP, 1-NP and DOI exerted their effects via stimulation of presynaptic 5-HT receptors. The effects of mCPP most probably reflect activation of postsynaptic receptors. The present data suggest that both 5-HT1B and 5-HT2A-2C receptors play a significant role in the consolidation of learning.

  14. 5-HT7 receptors as modulators of neuronal excitability, synaptic transmission and plasticity: physiological role and possible implications in autism spectrum disorders

    OpenAIRE

    Lucia eCiranna; Maria Vincenza Catania

    2014-01-01

    Serotonin type 7 receptors (5-HT7) are expressed in several brain areas, regulate brain development, synaptic transmission and plasticity, and therefore are involved in various brain functions such as learning and memory. A number of studies suggest that 5-HT7 receptors could be potential pharmacotherapeutic target for cognitive disorders. Several abnormalities of serotonergic system have been described in patients with autism spectrum disorder (ASD), including abnormal activity of 5-HT trans...

  15. Direct and Indirect 5-HT receptor agonists produce gender-specific effects on locomotor and vertical activity in C57 BL/6J mice

    OpenAIRE

    Brookshire, Bethany R.; Jones, Sara R.

    2009-01-01

    It is well established that the dopamine (DA) and serotonin (5-HT) systems have extensive and complex interactions. However, the effects of specific 5-HT receptor agonists on traditionally DA-related behaviors remain unclear. Our goal in these studies was to characterize the effects of 5-HT receptor agonists on measures of locomotor activity and vertical rearing. The SSRIs fluoxetine and citalopram produced significant decreases in locomotor activity and vertical rearing at the highest doses ...

  16. Differential role of the 5-HT1A receptor in aggressive and non-aggressive mice: an across-strain comparison.

    Science.gov (United States)

    Caramaschi, Doretta; de Boer, Sietse F; Koolhaas, Jaap M

    2007-03-16

    Differential role of the 5-HT(1A) receptor in aggressive and non-aggressive mice: an across-strain comparison. PHYSIOL BEHAV 00(0) 000-000, 2006. According to the serotonin (5-HT)-deficiency hypothesis of aggression, highly aggressive individuals are characterized by low brain 5-HT neurotransmission. Key regulatory mechanisms acting on the serotonergic neuron involve the activation of the somatodendritic inhibitory 5-HT(1A) autoreceptor (short feedback loop) and/or the activation of postsynaptic 5-HT(1A) receptors expressed on neurons in cortico-limbic areas (long feedback loop). In this study, we examined whether low serotonin neurotransmission is associated with enhanced 5-HT(1A) (auto)receptor activity in highly aggressive animals. Male mice (SAL-LAL, TA-TNA, NC900-NC100) obtained through different artificial-selection breeding programs for aggression were observed in a resident-intruder test. The prefrontal cortex level of 5-HT and its metabolite 5-HIAA were determined by means of HPLC. The activity of the 5-HT(1A) receptors was assessed by means of the hypothermic response to the selective 5-HT(1A) agonists S-15535 (preferential autoreceptor agonist) and 8-OHDPAT (full pre- and postsynaptic receptor agonist). Highly aggressive mice had lower serotonin levels in the prefrontal cortex and two out of three aggressive strains had higher 5-HT(1A) (auto)receptor sensitivity. The results strengthen the validity of the serotonin-deficiency hypothesis of aggression and suggest that chronic exaggerated activity of the 5-HT(1A) receptor may be a causative link in the neural cascade of events leading to 5-HT hypofunction in aggressive individuals.

  17. Radiosynthesis and in vivo evaluation of novel radioligands for PET imaging of cerebral 5-HT7 receptors

    DEFF Research Database (Denmark)

    Hansen, Hanne D; Herth, Matthias M; Ettrup, Anders;

    2014-01-01

    The serotonin (5-hydroxytryptamine [5-ΗΤ]) 7 receptor (5-HT7R) is the most recently discovered 5-HT receptor, and its physiologic and possible pathophysiologic roles are not fully elucidated. So far, no suitable 5-HT7R PET radioligand is available, thus limiting the investigation of this receptor...... in the living brain. Here, we present the radiosynthesis and in vivo evaluation of Cimbi-712 (3-{4-[4-(4-methylphenyl)piperazine-1-yl]butyl}p-1,3-dihydro-2H-indol-2-one) and Cimbi-717 (3-{4-[4-(3-methoxyphenyl)piperazine-1-yl]butyl}-1,3-dihydro-2H-indol-2-one) as selective 5-HT7R PET radioligands in the pig...... brain. The 5-HT7R distribution in the postmortem pig brain is also assessed....

  18. Current radiosynthesis strategies for 5-HT2A receptor PET tracers

    DEFF Research Database (Denmark)

    Herth, Matthias M; Knudsen, Gitte M

    2015-01-01

    Serotonin 2A receptors have been implicated in various psychophysiological functions and disorders such as depression, Alzheimer's disease, or schizophrenia. Therefore, neuroimaging of this specific receptor is of significant clinical interest, and it is not surprising that many attempts have been...... made to develop a suitable 5-HT2A R positron emission tomography-tracer. In this review, we give an overview on the precursor, reference compound synthesis, and the preparation of promising 5-HT2A R radiopharmaceuticals applied in positron emission tomography. We also highlight possible learning...

  19. Potentiation of 5-methoxy-N,N-dimethyltryptamine-induced hyperthermia by harmaline and the involvement of activation of 5-HT1A and 5-HT2A receptors.

    Science.gov (United States)

    Jiang, Xi-Ling; Shen, Hong-Wu; Yu, Ai-Ming

    2015-02-01

    5-Methoxy-N,N-dimethyltryptamine (5-MeO-DMT) and harmaline are serotonin (5-HT) analogs often abused together, which alters thermoregulation that may indicate the severity of serotonin toxicity. Our recent studies have revealed that co-administration of monoamine oxidase inhibitor harmaline leads to greater and prolonged exposure to 5-HT agonist 5-MeO-DMT that might be influenced by cytochrome P450 2D6 (CYP2D6) status. This study was to define the effects of harmaline and 5-MeO-DMT on thermoregulation in wild-type and CYP2D6-humanized (Tg-CYP2D6) mice, as well as the involvement of 5-HT receptors. Animal core body temperatures were monitored noninvasively in the home cages after implantation of telemetry transmitters and administration of drugs. Harmaline (5 and 15 mg/kg, i.p.) alone was shown to induce hypothermia that was significantly affected by CYP2D6 status. In contrast, higher doses of 5-MeO-DMT (10 and 20 mg/kg) alone caused hyperthermia. Co-administration of harmaline (2, 5 or 15 mg/kg) remarkably potentiated the hyperthermia elicited by 5-MeO-DMT (2 or 10 mg/kg), which might be influenced by CYP2D6 status at certain dose combination. Interestingly, harmaline-induced hypothermia was only attenuated by 5-HT1A receptor antagonist WAY-100635, whereas 5-MeO-DMT- and harmaline-5-MeO-DMT-induced hyperthermia could be suppressed by either WAY-100635 or 5-HT2A receptor antagonists (MDL-100907 and ketanserin). Moreover, stress-induced hyperthermia under home cage conditions was not affected by WAY-100635 but surprisingly attenuated by MDL-100907 and ketanserin. Our results indicate that co-administration of monoamine oxidase inhibitor largely potentiates 5-MeO-DMT-induced hyperthermia that involves the activation of both 5-HT1A and 5-HT2A receptors. These findings shall provide insights into development of anxiolytic drugs and new strategies to relieve the lethal hyperthermia in serotonin toxicity.

  20. Identification of critical residues in loop E in the 5-HT3ASR binding site

    Directory of Open Access Journals (Sweden)

    Muthalagi Mani

    2002-06-01

    Full Text Available Abstract Background The serotonin type 3 receptor (5-HT3R is a member of a superfamily of ligand gated ion channels. All members of this family share a large degree of sequence homology and presumably significant structural similarity. A large number of studies have explored the structure-function relationships of members of this family, particularly the nicotinic and GABA receptors. This information can be utilized to gain additional insights into specific structural and functional features of other receptors in this family. Results Thirteen amino acids in the mouse 5-HT3ASR that correspond to the putative E binding loop of the nicotinic α7 receptor were chosen for mutagenesis. Due to the presence of a highly conserved glycine in this region, it has been suggested that this binding loop is comprised of a hairpin turn and may form a portion of the ligand-binding site in this ion channel family. Mutation of the conserved glycine (G147 to alanine eliminated binding of the 5-HT3R antagonist [3H]granisetron. Three tyrosine residues (Y140, Y142 and Y152 also significantly altered the binding of 5-HT3R ligands. Mutations in neighboring residues had little or no effect on binding of these ligands to the 5-HT3ASR. Conclusion Our data supports a role for the putative E-loop region of the 5-HT3R in the binding of 5-HT, mCPBG, d-tc and lerisetron. 5-HT and mCPBG interact with Y142, d-tc with Y140 and lerisetron with both Y142 and Y152. Our data also provides support for the hypothesis that this region of the receptor is present in a loop structure.

  1. Memory formation, amnesia, improved memory and reversed amnesia: 5-HT role.

    Science.gov (United States)

    Perez-Garcia, G; Meneses, A

    2008-12-16

    Traditionally, the search for memory circuits has been focused on examinations of amnesic and AD patients, cerebral lesions and neuroimaging. A complementary alternative has become the use of autoradiography with radioligands, aiming to identify neurobiological markers associated with memory formation, amnesia states and (more recently) recovery from memory deficits. Indeed, ex vivo autoradiographic studies offer the advantage of detecting functionally active receptors altered by pharmacological tools during memory formation, amnesia states and memory recovery. Moreover, serotonin (5-hydroxytryptamine, 5-HT) systems have become a pharmacological and genetic target in the treatment of memory disorders. Herein evidence from studies involving expression of 5-HT(1A), 5-HT(2A), 5-HT(4), and 5-HT(6) receptors in memory formation, amnesia conditions (e.g., pharmacological models or aging) and recovery of memory is reviewed. Thus, specific 5-HT receptors were expressed in trained animals relative to untrained in brain areas such as cortex, hippocampus and amygdala. However, relative to the control group, rats showing amnesia or recovered memory, showed in the hippocampus, region where explicit memory is formed, a complex pattern of 5-HT receptor expression. An intermediate expression occurred in amygdala, septum and some cortical areas in charge of explicit memory storage. Even in brain areas thought to be in charge of procedural memory such as basal ganglia, animals showing recovered memory displayed an intermediate expression, while amnesic groups, depending on the pharmacological amnesia model, showed up- or down-regulation. In conclusion, evidence indicates that autoradiography, by using specific radioligands, offers excellent opportunities to map dynamic changes in brain areas engaged in these cognitive processes. The 5-HT modulatory role strengthens or suppresses memory is critically depend on the timing of the memory formation.

  2. Characterization of a genetically reconstituted high-affinity system for serotonin transport

    Energy Technology Data Exchange (ETDEWEB)

    Chang, A.S.S.; Lam, D.M.K. (Baylor College of Medicine, Woodlands, TX (USA) Baylor College of Medicine, Houston, TX (USA)); Frnka, J.V.; Chen, D. (Baylor College of Medicine, Woodlands, TX (USA))

    1989-12-01

    By transfecting mouse fibroblast L-M cells with human genomic DNA, the authors have established and identified several clonal cell lines that stably express a high-affinity serotonin (5-HT)-uptake mechanism absent in untransfected host cells. One such cell line, L-S1, possesses features of 5-({sup 3}H)HT uptake similar to those previously characterized in the central nervous system and blood platelets: (i) specificity for 5-HT; (ii) antagonism by imipramine, a known inhibitor of high-affinity 5-HT uptake; (iii) both Na{sup +} and temperature dependence; (iv) kinetic saturability; and (v) high affinity for 5-HT. This cell line can be used to compare the relative efficacies of known blockers of 5-HT uptake and thereby offers a rapid and reliable assay system for testing novel inhibitors of this system. Since L-S1 contains stably integrated human DNA in its genome, they postulate that the observed 5-HT-uptake system resulted from the expression of human gene(s) coding for the 5-HT transporter. Thus, cell lines such as L-S1 may represent novel means for screening and developing therapeutic agents specific for neutrotransmitter-uptake systems as well as substrate for the cloning and elucidation of the genes encoding the various neurotransmitter transporters.

  3. 5-HT7 receptor is coupled to G alpha subunits of heterotrimeric G12-protein to regulate gene transcription and neuronal morphology.

    Science.gov (United States)

    Kvachnina, Elena; Liu, Guoquan; Dityatev, Alexander; Renner, Ute; Dumuis, Aline; Richter, Diethelm W; Dityateva, Galina; Schachner, Melitta; Voyno-Yasenetskaya, Tatyana A; Ponimaskin, Evgeni G

    2005-08-24

    The neurotransmitter serotonin (5-HT) plays an important role in the regulation of multiple events in the CNS. We demonstrated recently a coupling between the 5-HT4 receptor and the heterotrimeric G13-protein resulting in RhoA-dependent neurite retraction and cell rounding (Ponimaskin et al., 2002). In the present study, we identified G12 as an additional G-protein that can be activated by another member of serotonin receptors, the 5-HT7 receptor. Expression of 5-HT7 receptor induced constitutive and agonist-dependent activation of a serum response element-mediated gene transcription through G12-mediated activation of small GTPases. In NIH3T3 cells, activation of the 5-HT7 receptor induced filopodia formation via a Cdc42-mediated pathway correlating with RhoA-dependent cell rounding. In mouse hippocampal neurons, activation of the endogenous 5-HT7 receptors significantly increased neurite length, whereas stimulation of 5-HT4 receptors led to a decrease in the length and number of neurites. These data demonstrate distinct roles for 5-HT7R/G12 and 5-HT4R/G13 signaling pathways in neurite outgrowth and retraction, suggesting that serotonin plays a prominent role in regulating the neuronal cytoarchitecture in addition to its classical role as neurotransmitter.

  4. Role of endothelial AADC in cardiac synthesis of serotonin and nitrates accumulation.

    Directory of Open Access Journals (Sweden)

    Charlotte Rouzaud-Laborde

    Full Text Available Serotonin (5-HT regulates different cardiac functions by acting directly on cardiomyocytes, fibroblasts and endothelial cells. Today, it is widely accepted that activated platelets represent a major source of 5-HT. In contrast, a supposed production of 5-HT in the heart is still controversial. To address this issue, we investigated the expression and localization of 5-HT synthesizing enzyme tryptophan hydroxylase (TPH and L-aromatic amino acid decarboxylase (AADC in the heart. We also evaluated their involvement in cardiac production of 5-HT. TPH1 was weakly expressed in mouse and rat heart and appeared restricted to mast cells. Degranulation of mast cells by compound 48/80 did not modify 5-HT cardiac content in mice. Western blots and immunolabelling experiments showed an abundant expression of AADC in the mouse and rat heart and its co-localization with endothelial cells. Incubation of cardiac homogenate with the AADC substrate (5-hydroxy-L-tryptophan 5-HTP or intraperitoneal injection of 5-HTP in mice significantly increased cardiac 5-HT. These effects were prevented by the AADC inhibitor benserazide. Finally, 5-HTP administration in mice increased phosphorylation of aortic nitric oxide synthase 3 at Ser (1177 as well as accumulation of nitrates in cardiac tissue. This suggests that the increase in 5-HT production by AADC leads to activation of endothelial and cardiac nitric oxide pathway. These data show that endothelial AADC plays an important role in cardiac synthesis of 5-HT and possibly in 5-HT-dependent regulation of nitric oxide generation.

  5. Statistical distribution of blood serotonin as a predictor of early autistic brain abnormalities

    Directory of Open Access Journals (Sweden)

    Janušonis Skirmantas

    2005-07-01

    Full Text Available Abstract Background A wide range of abnormalities has been reported in autistic brains, but these abnormalities may be the result of an earlier underlying developmental alteration that may no longer be evident by the time autism is diagnosed. The most consistent biological finding in autistic individuals has been their statistically elevated levels of 5-hydroxytryptamine (5-HT, serotonin in blood platelets (platelet hyperserotonemia. The early developmental alteration of the autistic brain and the autistic platelet hyperserotonemia may be caused by the same biological factor expressed in the brain and outside the brain, respectively. Unlike the brain, blood platelets are short-lived and continue to be produced throughout the life span, suggesting that this factor may continue to operate outside the brain years after the brain is formed. The statistical distributions of the platelet 5-HT levels in normal and autistic groups have characteristic features and may contain information about the nature of this yet unidentified factor. Results The identity of this factor was studied by using a novel, quantitative approach that was applied to published distributions of the platelet 5-HT levels in normal and autistic groups. It was shown that the published data are consistent with the hypothesis that a factor that interferes with brain development in autism may also regulate the release of 5-HT from gut enterochromaffin cells. Numerical analysis revealed that this factor may be non-functional in autistic individuals. Conclusion At least some biological factors, the abnormal function of which leads to the development of the autistic brain, may regulate the release of 5-HT from the gut years after birth. If the present model is correct, it will allow future efforts to be focused on a limited number of gene candidates, some of which have not been suspected to be involved in autism (such as the 5-HT4 receptor gene based on currently available clinical and

  6. Activation of 5-HT1B receptors suppresses low but not high frequency synaptic transmission in the rat subicular cortex in vitro

    NARCIS (Netherlands)

    Boeijinga, PH; Boddeke, HWGM

    1996-01-01

    We have shown previously that activation of 5-HT1B serotonin receptors mediates suppression of the amplitude of evoked potentials in the subiculum [2]. Here we show that after application of 5-HT (10 mu M), excitatory postsynaptic potentials of subicular neurons have reduced amplitudes with no chang

  7. Activation of 5-HT(1B) receptors suppresses low but not high frequency synaptic transmission in the rat subicular cortex in vitro

    NARCIS (Netherlands)

    Boeijinga, P.H.; Boddeke, H.W.G.M.

    1996-01-01

    We have shown previously that activation of 5-HT(1B) serotonin receptors mediates suppression of the amplitude of evoked potentials in the subiculum [2]. Here we show that after application of 5-HT (10 μM), excitatory postsynaptic potentials of subicular neurons have reduced amplitudes with no chang

  8. Zolmitriptan (a 5-HT1B/1D receptor agonist with central action) does not increase symptoms in obsessive compulsive disorder

    NARCIS (Netherlands)

    Boshuisen, ML; den Boer, JA

    2000-01-01

    Rationale: Non-selective serotonin (5-HT) receptor agonists like meta-chlorophenylpiperazine and MK-212 have been used to explore the role of 5-HT in obsessive compulsive disorder (OCD). The results of these studies and the findings of autoradiography and neuroimaging studies, pointed to a possible

  9. Towards metabolically stable 5-HT7 receptor ligands: a study on 1-arylpiperazine derivatives and related isosters.

    Science.gov (United States)

    Lacivita, Enza; De Giorgio, Paola; Patarnello, Daniela; Niso, Mauro; Colabufo, Nicola A; Berardi, Francesco; Perrone, Roberto; Satala, Grzegorz; Duszynska, Beata; Bojarski, Andrzej J; Leopoldo, Marcello

    2013-10-01

    Serotonin 7 (5-hydroxytryptamine7 or 5-HT7) is the most recently identified serotonin receptor. It is involved in mood disorders and is studied as a target for antidepressants. Here, we report on the structural manipulation of the 5-HT7 receptor ligand 4-[2-(3-methoxyphenyl)ethyl]-1-(2-methoxyphenyl)piperazine (1a) aimed at obtaining 5-HT7 receptor ligands endowed with good in vitro metabolic stability. A set of N-[3-methoxyphenyl)ethyl-substituted] 1-arylpiperazine, 4-arylpiperidine and 1-aryl-4-aminopiperidine was synthesized and tested in radioligand binding assays at human cloned 5-HT7 and 5-HT1A receptors. In vitro metabolic stability of the target compounds was assessed after incubation with rat hepatic S9 microsomal fraction. Among the new compounds, 1-(2-biphenyl)-4-[2-(3-methoxyphenyl)ethyl]piperazine (1d) and 4-(2-biphenyl)-1-[2-(3-methoxyphenyl)ethyl]piperidine (2d) showed a good compromise between affinity at 5-HT7 receptor (K i = 7.5 nM and 13 nM, respectively) and in vitro metabolic stability (26 and 65 % recovery of parent compound, respectively) but were poorly selective over 5-HT1A receptor.

  10. [On the role of selective silencer Freud-1 in the regulation of the brain 5-HT(1A) receptor gene expression].

    Science.gov (United States)

    Naumenko, V S; Osipova, D V; Tsybko, A S

    2010-01-01

    Selective 5-HT(1A) receptor silencer (Freud-1) is known to be one of the main factors for transcriptional regulation of brain serotonin 5-HT(1A) receptor. However, there is a lack of data on implication of Freud-1 in the mechanisms underlying genetically determined and experimentally altered 5-HT(1A) receptor system state in vivo. In the present study we have found a difference in the 5-HT(1A) gene expression in the midbrain of AKR and CBA inbred mouse strains. At the same time no distinction in Freud-1 expression was observed. We have revealed 90.3% of homology between mouse and rat 5-HT(1A) receptor DRE-element, whereas there was no difference in DRE-element sequence between AKR and CBA mice. This indicates the absence of differences in Freud-1 binding site in these mouse strains. In the model of 5-HT(1A) receptor desensitization produced by chronic 5-HT(1A) receptor agonist administration, a significant reduction of 5-HT(1A) receptor gene expression together with considerable increase of Freud-1 expression were found. These data allow us to conclude that the selective silencer of 5-HT(1A) receptor, Freud-1, is involved in the compensatory mechanisms that modulate the functional state of brain serotonin system, although it is not the only factor for 5-HT(1A) receptor transcriptional regulation.

  11. Modulatory effect of the 5-HT1A agonist buspirone and the mixed non-hallucinogenic 5-HT1A/2A agonist ergotamine on psilocybin-induced psychedelic experience.

    Science.gov (United States)

    Pokorny, Thomas; Preller, Katrin H; Kraehenmann, Rainer; Vollenweider, Franz X

    2016-04-01

    The mixed serotonin (5-HT) 1A/2A/2B/2C/6/7 receptor agonist psilocybin dose-dependently induces an altered state of consciousness (ASC) that is characterized by changes in sensory perception, mood, thought, and the sense of self. The psychological effects of psilocybin are primarily mediated by 5-HT2A receptor activation. However, accumulating evidence suggests that 5-HT1A or an interaction between 5-HT1A and 5-HT2A receptors may contribute to the overall effects of psilocybin. Therefore, we used a double-blind, counterbalanced, within-subject design to investigate the modulatory effects of the partial 5-HT1A agonist buspirone (20mg p.o.) and the non-hallucinogenic 5-HT2A/1A agonist ergotamine (3mg p.o.) on psilocybin-induced (170 µg/kg p.o.) psychological effects in two groups (n=19, n=17) of healthy human subjects. Psychological effects were assessed using the Altered State of Consciousness (5D-ASC) rating scale. Buspirone significantly reduced the 5D-ASC main scale score for Visionary Restructuralization (VR) (ppsilocybin-induced 5D-ASC main scale scores. The present finding demonstrates that buspirone exerts inhibitory effects on psilocybin-induced effects, presumably via 5-HT1A receptor activation, an interaction between 5-HT1A and 5-HT2A receptors, or both. The data suggest that the modulation of 5-HT1A receptor activity may be a useful target in the treatment of visual hallucinations in different psychiatric and neurological diseases.

  12. Sensitization of restraint-induced corticosterone secretion after chronic restraint in rats: Involvement of 5-HT7 receptors

    Science.gov (United States)

    García-Iglesias, Brenda B.; Mendoza-Garrido, María E.; Gutiérrez-Ospina, Gabriel; Rangel-Barajas, Claudia; Noyola-Díaz, Martha; Terrón, José A.

    2013-01-01

    Serotonin (5-HT) modulates the hypothalamic-pituitary-adrenal (HPA) axis response to stress. We examined the effect of chronic restraint stress (CRS; 20 min/day) as compared to control (CTRL) conditions for 14 days, on: 1) restraint-induced ACTH and corticosterone (CORT) secretion in rats pretreated with vehicle or SB-656104 (a 5-HT7 receptor antagonist); 2) 5-HT7 receptor-like immunoreactivity (5-HT7-LI) and protein in the hypothalamic paraventricular nucleus (PVN) and adrenal glands (AG); 3) baseline levels of 5-HT and 5-hydroxyindolacetic acid (5-HIAA), and 5-HIAA/5-HT ratio in PVN and AG; and 4) 5-HT-like immunoreactivity (5-HT-LI) in AG and tryptophan hydroxylase (TPH) protein in PVN and AG. On day 15, animals were subdivided into Treatment and No treatment groups. Treatment animals received an i.p. injection of vehicle or SB-656104; No Treatment animals received no injection. Sixty min later, Treatment animals were either decapitated with no further stress (0 min) or submitted to acute restraint (10, 30, 60 or 120 min); hormone serum levels were measured. No Treatment animals were employed for the rest of measurements. CRS decreased body weight gain and increased adrenal weight. In CTRL animals, acute restraint increased ACTH and CORT secretion in a time of restraint-dependent manner; both responses were inhibited by SB-656104. Exposure to CRS abolished ACTH but magnified CORT responses to restraint as compared to CTRL conditions; SB-656104 had no effect on ACTH levels but significantly inhibited sensitized CORT responses. In CTRL animals, 5-HT7-LI was detected in magnocellular and parvocellular subdivisions of PVN and sparsely in adrenal cortex. Exposure to CRS decreased 5-HT7-LI and protein in the PVN, but increased 5-HT7-LI in the adrenal cortex and protein in whole AG. Higher 5-HT and 5-HIAA levels were detected in PVN and AG from CRS animals but 5-HIAA/5-HT ratio increased in AG only. Finally, whereas 5-HT-LI was sparsely observed in the adrenal cortex

  13. Distinct effect of 5-HT1A and 5-HT2A receptors in the medial nucleus of the amygdala on tonic immobility behavior.

    Science.gov (United States)

    de Paula, Bruna Balbino; Leite-Panissi, Christie Ramos Andrade

    2016-07-15

    The tonic immobility (TI) response is an innate fear behavior associated with intensely dangerous situations, exhibited by many species of invertebrate and vertebrate animals. In humans, it is possible that TI predicts the severity of posttraumatic stress disorder symptoms. This behavioral response is initiated and sustained by the stimulation of various groups of neurons distributed in the telencephalon, diencephalon and brainstem. Previous research has found the highest Fos-IR in the posteroventral part of the medial nucleus of the amygdala (MEA) during TI behavior; however, the neurotransmission of this amygdaloid region involved in the modulation of this innate fear behavior still needs to be clarified. Considering that a major drug class used for the treatment of psychopathology is based on serotonin (5-HT) neurotransmission, we investigated the effects of serotonergic receptor activation in the MEA on the duration of TI. The results indicate that the activation of the 5HT1A receptors or the blocking of the 5HT2 receptors of the MEA can promote a reduction in fear and/or anxiety, consequently decreasing TI duration in guinea pigs. In contrast, blocking the 5HT1A receptors or activating the 5HT2 receptors in this amygdalar region increased the TI duration, suggesting an increase in fear and/or anxiety. These alterations do not appear to be due to a modification of spontaneous motor activity, which might non-specifically affect TI duration. Thus, these results suggest a distinct role of the 5HT receptors in the MEA in innate fear modulation.

  14. 5-HT7 receptors and tryptophan hydroxylase in lymphocytes of rats: mitogen activation, physical restraint or treatment with reserpine.

    Science.gov (United States)

    Urbina, Mary; Arroyo, Rubén; Lima, Lucimey

    2014-01-01

    Serotonin (5-HT)7 receptors in lymphocytes play a relevant role as modulators of T cell functions and might be modified by stress protocols. The aims of this work were to evaluate: (i) the presence of 5-HT7 receptors in specific lymphocyte populations, (ii) the probable modifications of them by inflammatory stress with mitogen and (iii) the effects of physical and pharmacological stress. Blood lymphocytes were isolated by density gradients and differential adhesion to plastic. Concanavalin A (Con A) was systemically administered (500 μg/kg) or added to lymphocyte cultures (2.5 μg/ml, final volume 200 μl). Physical restraint was performed in Plexiglass boxes for 5 h per day for 5 days. Reserpine administration was 2.5 mg/kg for 3 days. Immunocytochemical labeling of CD4+, CD8+ and 5-HT7 receptors, and also tryptophan hydroxylase cells was performed. mRNA of 5-HT7 receptors was evaluated by RT-PCR. Controls were included for each protocol. Con A treatment or culture exposure increased the number of lymphocytes expressing 5-HT7 receptors or tryptophan hydroxylase, as compared to absence of the mitogen. Receptors were present in 12-16% of total rat lymphocytes, in ∼10% of CD4+ and in ∼5% of CD8+ cells from control rats. CD4+ decreased, and CD8+ and 5-HT7 cells increased after physical restraint. Reserpine treatment elevated CD8+ and 5-HT7 cells. Con A and physical restraint, but not reserpine treatment, significantly augmented 5-HT7 receptor mRNA in lymphocytes. Rat lymphocytes, expressing tryptophan hydroxylase, could synthesize 5-HT, functioning as a direct autocrine modulator. The modifications of CD4+, CD8+ and 5-HT7 receptors in lymphocytes by three stress protocols could have an impact on immune responses. In addition, the differential distribution of 5-HT7 receptors indicates potential specific physiopathological roles. © 2014 S. Karger AG, Basel.

  15. Zatosetron, a potent, selective, and long-acting 5HT3 receptor antagonist: synthesis and structure-activity relationships.

    Science.gov (United States)

    Robertson, D W; Lacefield, W B; Bloomquist, W; Pfeifer, W; Simon, R L; Cohen, M L

    1992-01-24

    Antagonists of 5HT3 receptors are clinically effective in treating nausea and emesis associated with certain oncolytic drugs, including cisplatin. Moreover, these agents may be useful in pharmacological management of several central nervous system disorders, including anxiety, schizophrenia, dementia, and substance abuse. Our studies on aroyltropanamides led to the discovery that dihydrobenzofuranyl esters and amides are potent 5HT3 receptor antagonists. Simple benzoyl derivatives of tropine and 3 alpha-aminotropane possessed weak 5HT3 receptor antagonist activity, as judged by blockade of bradycardia produced by iv injection of serotonin (5HT) to anesthetized rats. Within this series, use of benzofuran-7-carboxamide as the aroyl moiety led to a substantial increase of 5HT3 receptor affinity. The optimal 5HT3 receptor antagonist identified via extensive SAR studies was endo-5-chloro-2,3-dihydro-2,2-dimethyl-N-(8-methyl-8-azabicyclo[3.2.1]oc t- 3-yl)-7-benzofurancarboxamide (Z)-2-butenedioate (zatosetron maleate). The 7-carbamyl regiochemistry, dimethyl substitution, chloro substituent, and endo stereochemistry were all crucial elements of the SAR. Zatosetron maleate was a potent antagonist of 5HT-induced bradycardia in rats (ED50 = 0.86 micrograms/kg i.v.). Low oral doses of zatosetron (30 micrograms/kg) produced long-lasting antagonism of 5HT3 receptors, as evidenced by blockade of 5HT-induced bradycardia for longer than 6 h in rats. Moreover, this compound did not produce hemodynamic effects after i.v. administration to rats, nor did it block carbamylcholine-induced bradycardia in doses that markedly blocked 5HT3 receptors. Thus, zatosetron is a potent, selective, orally effective 5HT3 receptor antagonist with a long duration of action in rats.

  16. Effects of 5-HT drugs in prefrontal cortex during memory formation and the ketamine amnesia-model.

    Science.gov (United States)

    Liy-Salmeron, Gustavo; Meneses, Alfredo

    2008-01-01

    This article describes a series of experiments investigating the effects of systemic or intraprefrontal administration of serotonergic agents on ketamine induced memory deficits in rats. First, rats were trained on an operant autoshaping task. Immediately after training, rats were injected with different doses of drug or saline. Following drug administration, rats were tested after 1.5 h for short-term memory (STM) and 24 h for long-term memory (LTM) of conditioned response. An increase or decrease in number of conditioned responses was an index of retention. The major results of this work show that ketamine impaired STM and this effect was reversed, by either systemic or intraprefrontal cortex administration of the agonist 5-HT(1A/7) 8-OH-DPAT, the 5-HT receptor antagonists MDL100907 (5-HT(2A)), SB-399885 (5-HT(6)), and SB-269970 (5-HT(7)). The ketamine STM-impairment effect was not altered by the 5-HT(1A) antagonist WAY 100635 or the 5-HT(1B) antagonist SB-224289. Notably, prefrontal cortex inhibition of translation or transcription interrupted STM without affecting LTM suggesting different signaling mechanisms. The interacting effect of NMDA and serotonin agents in memory function is an interesting and important area of study; both receptors are considered to be important targets for the development of antipsychotic medication. Particularly, 5-HT(1A/7), 5-HT(2A) 5-HT(6), and 5-HT(7) receptors present in prefrontal cortex, represent important targets for development of drugs for the treatment of SMT-deficits.

  17. Effect of 5-HT(7) antagonist SB-269970 in the modulation of working and reference memory in the rat.

    Science.gov (United States)

    Gasbarri, Antonella; Cifariello, Agata; Pompili, Assunta; Meneses, Alfredo

    2008-12-16

    It has been established that serotonergic pathways project to cerebral areas involved in learning and memory and that serotonin (5-HT) receptor agonists and antagonists modify these processes. Indeed, most of the 5-HT receptors characterized so far, i.e., 5-HT(1) through 5-HT(7), show a regional distribution in brain areas involved in learning and memory, such as hippocampal formation (HF), amygdala and cortex. Although 5-HT(7) receptor biological functions are still to