WorldWideScience

Sample records for plate-type stirling engine

  1. Stirling Engine Heat Pump

    Science.gov (United States)

    Kagawa, Noboru

    Recent advances in the feasibility studies related to the Stirling engines and Stirling engine heat pumps which have been considered attractive due to their promising role in helping to solve the global environmental and energy problems,are reviewed. This article begins to describe the brief history of the Stirling engines and theoretical thermodynamic analysis of the Stirling cycle in order to understand several advantages on the Stirling engine. Furthermore,they could throw light on our question why the dream engines had not been promoted to practical applications during two hundred years. The present review shows that the Stirling engines with several unique advantages including 30 to 40% thermal efficiency and preferable exhaust characteristics,had been designed and constructed by recent tackling for the development of the advanced automobile and other applications using them. Based on the current state of art,it is being provided to push the Stirling engines combined with heat pumps based on the reversed Rankine cycle to the market. At present,however, many problems, especially for the durability, cost, and delicate engine parts must be enforced to solve. In addition,there are some possibilities which can increase the attractiveness of the Stirling engines and heat pumps. The review closes with suggestions for further research.

  2. Stirling engine application study

    Science.gov (United States)

    Teagan, W. P.; Cunningham, D.

    1983-01-01

    A range of potential applications for Stirling engines in the power range from 0.5 to 5000 hp is surveyed. Over one hundred such engine applications are grouped into a small number of classes (10), with the application in each class having a high degree of commonality in technical performance and cost requirements. A review of conventional engines (usually spark ignition or Diesel) was then undertaken to determine the degree to which commercial engine practice now serves the needs of the application classes and to detemine the nature of the competition faced by a new engine system. In each application class the Stirling engine was compared to the conventional engines, assuming that objectives of ongoing Stirling engine development programs are met. This ranking process indicated that Stirling engines showed potential for use in all application classes except very light duty applications (lawn mowers, etc.). However, this potential is contingent on demonstrating much greater operating life and reliability than has been demonstrated to date by developmental Stirling engine systems. This implies that future program initiatives in developing Stirling engine systems should give more emphasis to life and reliability issues than has been the case in ongoing programs.

  3. Rescue vehicle Stirling engine

    Energy Technology Data Exchange (ETDEWEB)

    David Hainsworth; Pete Nicolay [CSIRO Exploration & Mining (Australia)

    2001-03-15

    The aim of this project was to develop a proof-of-concept Stirling engine and heat cell for use in the mining industry, primarily for underground applications. In particular, the Stirling engine, being an external combustion engine, offers the potential to operate on stored heat in low-oxygen or inert underground atmospheres. This makes it attractive for rescue vehicles, which are required to operate in such environments. A prototype Stirling engine with power output in the 15kW range was constructed and tested. Experimental measurements showed that this output was not achieved. While the basic thermodynamic principles of the design were valid, achieved output was well below the required value. The conclusion is that, because of the lack of commercial Stirling cycle-based products and the difficulty experienced in this project in overcoming the problem of high temperature seal implementation to produce a working prototype, the short term potential of the Stirling engine for mine rescue applications is limited.

  4. Kinematic Stirling Engine Performance

    Science.gov (United States)

    Tew, J. R. C.

    1986-01-01

    Computer program developed for analyzing thermodynamic characteristics of kinematic Stirling engine. Computes time-varying piston positions, pressures, and gas temperatures in each of gas-control volumes into which engine working space is divided. Engine performance characterized by calculations of power and efficiency (both indicated and brake). Inputs to code are engine geometrical parameter, engine-operating conditions, and indexes that specify various options available.

  5. Stirling engine piston ring

    Science.gov (United States)

    Howarth, Roy B.

    1983-01-01

    A piston ring design for a Stirling engine wherein the contact pressure between the piston and the cylinder is maintained at a uniform level, independent of engine conditions through a balancing of the pressure exerted upon the ring's surface and thereby allowing the contact pressure on the ring to be predetermined through the use of a preloaded expander ring.

  6. Stirling Engine Controller

    Science.gov (United States)

    Blaze, Gina M.

    2004-01-01

    Stirling technology is being developed to replace RTG s (Radioisotope Thermoelectric Generators), more specifically a stirling convertor, which is a stirling engine coupled to a linear alternator. Over the past three decades, the stirling engine has been designed to perform different functions. Stirling convertors have been designed to decrease fuel consumption in automobiles. They have also been designed for terrestrial and space applications. Currently NASA Glenn is using the convertor for space based applications. A stiring converter is a better means of power for deep space mission and "dusty" mission, like the Mars Rovers, than solar panels because it is not affected by dust. Spirit and Opportunity, two Mars rovers currently navigating the planet, are losing their ability to generate electricity because dust is collecting on their solar panels. Opportunity is losing more energy because its robotic arm has a heater with a switch that can not be turned off. The heater is not needed at night, but yet still runs. This generates a greater loss of electricity and in turn diminishes the performance of the rover. The stirling cycle has the potential to provide very efficient conversion of heat energy to electric a1 energy, more so than RTG's. The stirling engine converts the thermal energy produced by the decaying radioisotope to mechanical energy; the linear alternator converts this into electricity. convertor. Since the early 1990's tests have been performed to maximize the efficiency of the stirling converter. Many months, even years, are dedicated to preparing and performing tests. Currently, two stirling convertors #'s 13 and 14, which were developed by Stirling Technology Company, are on an extended operation test. As of June 7th, the two convertors reached 7,500 hours each of operation. Before the convertors could run unattended, many safety precautions had to be examined. So, special instrumentation and circuits were developed to detect off nominal conditions

  7. Performance of Stirling Engines

    Science.gov (United States)

    Iwamoto, Shoichi; Hirata, Koichi; Toda, Fujio

    We have developed five kinds of high- and low-temperature differential Stirling engines and their engine performance was investigated experimentally. In order to determine the parameters that affect engine performance, experimental results were discussed and compared with results calculated using analytical methods. We show an arranging method for the experimental results, and consider the performance of general Stirling engines. After using the arranging method with nondimensional numbers obtained by a dimensional analysis, a prediction method, which is used at the early design stage, is formulated. One of the nondimensional numbers in this prediction method is calculated based on engine specifications, including the properties of the working gas. The prediction method can predict engine speed, output power, the effect of working gas and operating conditions.

  8. Stirling engine power control

    Science.gov (United States)

    Fraser, James P.

    1983-01-01

    A power control method and apparatus for a Stirling engine including a valved duct connected to the junction of the regenerator and the cooler and running to a bypass chamber connected between the heater and the cylinder. An oscillating zone of demarcation between the hot and cold portions of the working gas is established in the bypass chamber, and the engine pistons and cylinders can run cold.

  9. Optimum Stirling engine geometry

    Energy Technology Data Exchange (ETDEWEB)

    Senft, J.R. [University of Wisconsin, River Walls, WI (United States). Mathematics Dept.

    2002-07-01

    This paper combines the author's work on mechanical efficiency of reciprocating engines with the classic Schmidt thermodynamic model for Stirling engines and revisits the problem of identifying optimal engine geometry. All previous optimizations using the Schmidt theory focused on obtaining a maximal specific indicated cyclic work. This does not necessarily produce the highest shaft output. Indeed, some optima based upon indicated work would yield engines that cannot run at all due to excessive intrinsic mechanical losses. The analysis presented in this paper shows how to optimize for shaft or brake work output. Specifically, it presents solutions to the problem of finding the piston-to-displacer swept volume ratio and phase angle which will give the maximum brake output for a given total swept volume, given temperature extremes, a given mean operating pressure, and a given engine mechanism effectiveness. The paper covers the split-cylinder or gamma-type Stirling in detail, serving as a model for similar analysis of the other Stirling engine configurations. (author)

  10. Stirling cycle engine

    Science.gov (United States)

    Lundholm, Gunnar

    1983-01-01

    In a Stirling cycle engine having a plurality of working gas charges separated by pistons reciprocating in cylinders, the total gas content is minimized and the mean pressure equalization among the serial cylinders is improved by using two piston rings axially spaced at least as much as the piston stroke and by providing a duct in the cylinder wall opening in the space between the two piston rings and leading to a source of minimum or maximum working gas pressure.

  11. The optimization of Stirling refrigerator and Stirling heat engine

    Science.gov (United States)

    Zhu, Xin-Mei

    2007-03-01

    The optimization of an irreversible Stirling refrigerator or a Stirling heat engine is an important research subject for a long time. Taking into account of the influence of mixed thermal resistance and regeneration loss in the performance study, we have derived the optimal relation of both of them. For Stirling refrigerator, we have deduced the optimal relation between the thermal resistance coefficient and the efficiency. To the Stirling heat engine, we have deduced the optimal relation between the power output and the efficiency. The conclusions obtained mirror the observed performance of the Stirling refrigerator or the Stirling heat engine quite well. Thus, the results may provide a new theoretical guidance to the optimal design and the selection of optimal operating condition of the Stirling refrigerator or the Stirling heat engine.

  12. Stirling Engine Gets Revisited

    Science.gov (United States)

    Thompson, Frank

    2010-01-01

    One of the basic truths regarding energy conversion is that no thermodynamic cycle can be devised that is more efficient than a Carnot cycle operating between the same temperature limits. The efficiency of the Stirling cycle (patented by Rev. Robert Stirling in 1816) can approach that of the Carnot cycle and yet has not had the commercial success…

  13. Stirling Engine Gets Revisited

    Science.gov (United States)

    Thompson, Frank

    2010-01-01

    One of the basic truths regarding energy conversion is that no thermodynamic cycle can be devised that is more efficient than a Carnot cycle operating between the same temperature limits. The efficiency of the Stirling cycle (patented by Rev. Robert Stirling in 1816) can approach that of the Carnot cycle and yet has not had the commercial success…

  14. The Stirling engine accelerates.; Der Stirling-Motor gibt Gas.

    Energy Technology Data Exchange (ETDEWEB)

    Pfannstiel, Dieter [DiWiTech - Ingenieurpraxis fuer technische und wissenschaftliche Dienstleistungen, Breitenbach a.H. (Germany)

    2010-01-15

    At this moment, Stirling engines are the most outstanding micro technology of combined heat and power generation. The free piston machine combines the principle of the conventional Stirling engine with a modern linear generator for power generation utilizing waste heat for the heating of houses or hot water tanks. All large manufacturers concern themselves with this technology and develop devices based on the Stirling engine. The overview contribution under consideration describes the current level of development of the Stirling devices of different manufacturers. In nearly two years, these devices will serially be produced in the market.

  15. Automotive Stirling engine development program

    Science.gov (United States)

    Ernst, W.; Richey, A.; Farrell, R.; Riecke, G.; Smith, G.; Howarth, R.; Cronin, M.; Simetkosky, M.; Meacher, J.

    1986-01-01

    This is the ninth Semiannual Technical Progress Report prepared under the Automotive Stirling Engine Development Program. It covers the twenty-eighth and twenty-ninth quarters of activity after award of the contract. Quarterly Technical Progress Reports related program activities from the first through the thirteenth quarters; thereafter, reporting was changed to a Semiannual format. This report summarizes the study of higher-power kinematic Stirling engines for transportation use, development testing of Mod I Stirling engines, and component development activities. Component development testing included successful conical fuel nozzle testing and functional checkout of Mod II controls and auxiliaries on Mod I engine test beds. Overall program philosophy is outlined and data and test results are presented.

  16. Stirling engine with pressurized crankcase

    Science.gov (United States)

    Corey, John A.

    1988-01-01

    A two piston Stirling engine wherein the pistons are coupled to a common crankshaft via bearing means, the pistons include pad means to minimize friction between the pistons and the cylinders during reciprocation of the pistons, means for pressurizing the engine crankcase, and means for cooling the crankshaft and the bearing means eliminating the need for oil in the crankcase.

  17. Mod II Stirling engine overviews

    Science.gov (United States)

    Farrell, Roger A.

    1988-01-01

    The Mod II engine is a second-generation automotive Stirling engine (ASE) optimized for part-power operation. It has been designed specifically to meet the fuel economy and exhaust emissions objectives of the ASE development program. The design, test experience, performance, and comparison of data to analytical performance estimates of the Mod II engine to date are reviewed. Estimates of Mod II performance in its final configuration are also given.

  18. How Does Stirling Engine Work?

    Science.gov (United States)

    Biwa, Tetsushi; Tashiro, Yusuke; Yazaki, Taichi

    In this paper the working mechanism of Stirling engine is studied from the standpoint of thermoacoustic framework. The work flux measurement is performed in a glass tube equipped with/without a regenerator-heat exchanger assembly. An atmospheric pressure air confined in the tube is periodically perturbed by two speakers at the same frequency (=48Hz) but out of phase. It is experimentally demonstrated that the phasing of two pistons in the Stirling engine (alpha arrangement type) plays the role in creating a steady work flux from the compression piston to the expansion piston, whereas a differentially heated regenerator in the engine operates as a power amplifier for the traveling wave propagating up the temperature gradient.

  19. Automotive Stirling Engine Development Project

    Science.gov (United States)

    Ernst, William D.; Shaltens, Richard K.

    1997-01-01

    The development and verification of automotive Stirling engine (ASE) component and system technology is described as it evolved through two experimental engine designs: the Mod 1 and the Mod 2. Engine operation and performance and endurance test results for the Mod 1 are summarized. Mod 2 engine and component development progress is traced from the original design through hardware development, laboratory test, and vehicle installation. More than 21,000 hr of testing were accomplished, including 4800 hr with vehicles that were driven more dm 59,000 miles. Mod 2 engine dynamometer tests demonstrated that the engine system configuration had accomplished its performance goals for power (60 kW) and efficiency (38.5%) to within a few percent. Tests with the Mod 2 engine installed in a delivery van demonstrated combined metro-highway fuel economy improvements consistent with engine performance goals and the potential for low emission levels. A modified version of the Mod 2 has been identified as a manufacturable design for an ASE. As part of the ASE project, the Industry Test and Evaluation Program (ITEP), NASA Technology Utilization (TU) project, and the industry-funded Stirling Natural Gas Engine program were undertaken to transfer ASE technology to end users. The results of these technology transfer efforts are also summarized.

  20. The Stirling engine mechanism optimization

    Directory of Open Access Journals (Sweden)

    Jiří Podešva

    2016-03-01

    Full Text Available A special type of the gas engine with external combustion is called Stirling engine. The mechanism has two pistons with two volumes inside. The pistons are connected together through cooler, regenerator and warmer. The engine effectivity depends on the piston movement behaviour. The usual sinusoidal time curve leads to low effectiveness. The quick movement from lower to upper position with a certain delay in both top and bottom dead centres is more effective. The paper deals with three types of mechanisms, analyzing the piston movement, and their behavior. Special emphasize is taken to the piston movement regime.

  1. Automotive Stirling Engine Development Program Mod I Stirling engine development

    Science.gov (United States)

    Simetkosky, M. A.

    1983-01-01

    The development of the Mod I 4-cylinder automotive Stirling engine is discussed and illustrated with drawings, block diagrams, photographs, and graphs and tables of preliminary test data. The engine and its drive, cold-engine, hot-engine, external-heat, air/fuel, power-control, electronic-control, and auxiliary systems are characterized. Performance results from a total of 1900 h of tests on 4 prototype engines include average maximum efficiency (at 2000 rpm) 34.5 percent and maximum output power 54.4 kW. The modifications introduced in an upgraded version of the Mod I are explained; this engine has maximum efficiency 40.4 percent and maximum power output 69.2 kW.

  2. Downsizing assessment of automotive Stirling engines

    Science.gov (United States)

    Knoll, R. H.; Tew, R. C., Jr.; Klann, J. L.

    1983-01-01

    A 67 kW (90 hp) Stirling engine design, sized for use in a 1984 1440 kg (3170 lb) automobile was the focal point for developing automotive Stirling engine technology. Since recent trends are towards lighter vehicles, an assessment was made of the applicability of the Stirling technology being developed for smaller, lower power engines. Using both the Philips scaling laws and a Lewis Research Center (Lewis) Stirling engine performance code, dimensional and performance characteristics were determined for a 26 kW (35 hp) and a 37 kW (50 hp) engine for use in a nominal 907 kg (2000 lb) vehicle. Key engine elements were sized and stressed and mechanical layouts were made to ensure mechanical fit and integrity of the engines. Fuel economy estimates indicated that the Stirling engine would maintain a 30 to 45 percent fuel economy advantage comparable spark ignition and diesel powered vehicles in the 1984 period.

  3. A miniature thermoacoustic stirling engine

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Gang [Cryogenics Laboratory, Huazhong University of Science and Technology, Wuhan 430074 (China); Li, Qing; Li, Zheng Yu.; Li, Qiang [Cryogenics Laboratory, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, P.O. Box 2711, Beijing 100080 (China)

    2008-06-15

    A miniature thermoacoustic stirling engine was simulated and designed, having overall size of length 0.65 m and height of 0.22 m. The acoustic field generated in this miniature system has been described and analyzed. Some efforts had been paid to coupling and matching, and a miniature thermoacoustic engine and some extra experimental components have been constructed. Analysis and experimental results showed that to obtain better performance of the engine, the diameter of the resonance tube must be chosen appropriately according to the looped tube dimension and the input heating power. It provided an effective way to miniaturize the thermoacoustic stirling heat engine. The experimental results showed that the engine had low onset temperature and high pressure amplitude and ratio. With the filling helium gas of 2 MPa and heating power of 637 W, the maximal peak to peak pressure amplitude and pressure ratio reached 2.2 bar and 1.116, respectively, which was able to drive a refrigerator, a heat pump or a linear electrical generator. The operating frequency of the engine was steady at 282 Hz. (author)

  4. A miniature thermoacoustic stirling engine

    Energy Technology Data Exchange (ETDEWEB)

    Zhou Gang [Cryogenics Laboratory, Huazhong University of Science and Technology, Wuhan 430074 (China); Li Qing [Cryogenics Laboratory, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, P.O. Box 2711, Beijing 100080 (China)], E-mail: liqing@cl.cryo.ac.cn; Li Zhengyu; Li Qiang [Cryogenics Laboratory, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, P.O. Box 2711, Beijing 100080 (China)

    2008-06-15

    A miniature thermoacoustic stirling engine was simulated and designed, having overall size of length 0.65 m and height of 0.22 m. The acoustic field generated in this miniature system has been described and analyzed. Some efforts had been paid to coupling and matching, and a miniature thermoacoustic engine and some extra experimental components have been constructed. Analysis and experimental results showed that to obtain better performance of the engine, the diameter of the resonance tube must be chosen appropriately according to the looped tube dimension and the input heating power. It provided an effective way to miniaturize the thermoacoustic stirling heat engine. The experimental results showed that the engine had low onset temperature and high pressure amplitude and ratio. With the filling helium gas of 2 MPa and heating power of 637 W, the maximal peak to peak pressure amplitude and pressure ratio reached 2.2 bar and 1.116, respectively, which was able to drive a refrigerator, a heat pump or a linear electrical generator. The operating frequency of the engine was steady at 282 Hz.

  5. Demonstration Experiments with a Stirling Engine.

    Science.gov (United States)

    Deacon, Christopher G.; And Others

    1994-01-01

    Describes an investigation with the primary purpose of allowing students to generate and interpret a pressure/volume diagram of a Stirling engine. Explains how the Stirling engine can be used to demonstrate the principles of operation of a refrigerator and a heat pump. (DDR)

  6. Recent Stirling engine loss-understanding results

    Science.gov (United States)

    Tew, Roy C.; Thieme, Lanny G.; Dudenhoefer, James E.

    1990-01-01

    For several years, NASA and other U.S. government agencies have been funding experimental and analytical efforts to improve the understanding of Stirling thermodynamic losses. NASA's objective is to improve Stirling engine design capability to support the development of new engines for space power. An overview of these efforts was last given at the 1988 IECEC. Recent results of this research are reviewed.

  7. Demonstration Experiments with a Stirling Engine.

    Science.gov (United States)

    Deacon, Christopher G.; And Others

    1994-01-01

    Describes an investigation with the primary purpose of allowing students to generate and interpret a pressure/volume diagram of a Stirling engine. Explains how the Stirling engine can be used to demonstrate the principles of operation of a refrigerator and a heat pump. (DDR)

  8. Stirling Engine for Classroom Demonstration Purposes

    Science.gov (United States)

    Miller, Andrew

    2005-04-01

    In the study of Thermodynamics, the Carnot cycle is representative of an ideal engine. Such an engine has the maximum efficiency possible for a given temperature difference. The Stirling Cycle engine closely resembles the Carnot cycle in terms of efficiency. In order to demonstrate the Stirling Cycle in a classroom setting, a Stirling engine was built. Robert Stirling first patented the Stirling engine in 1816. The Stirling engine runs on the temperature differential between hot and cold air. As the air is cycled through the engine, the expansion and contraction of the air drives the piston. The work on the piston is transferred into mechanical work via a walking beam. There are no exhaust values that vent gases, because the gases inside the engine never leave. The power for the Stirling engine does not come from explosions like a combustion engine. Rather, the engine is powered by an external heat source. These engines also have practical purposes. They are used in very specialized applications where quiet operation is important. Examples of such uses are in submarines and auxiliary power generators.

  9. Self-pressurizing Stirling engine

    Science.gov (United States)

    Bennett, Charles L.

    2010-10-12

    A solar thermal powered aircraft powered by heat energy from the sun. A heat engine, such as a Stirling engine, is carried by the aircraft body for producing power for a propulsion mechanism, such as a propeller. The heat engine has a thermal battery in thermal contact with it so that heat is supplied from the thermal battery. A solar concentrator, such as reflective parabolic trough, is movably connected to an optically transparent section of the aircraft body for receiving and concentrating solar energy from within the aircraft. Concentrated solar energy is collected by a heat collection and transport conduit, and heat transported to the thermal battery. A solar tracker includes a heliostat for determining optimal alignment with the sun, and a drive motor actuating the solar concentrator into optimal alignment with the sun based on a determination by the heliostat.

  10. Self-pressurizing Stirling engine

    Energy Technology Data Exchange (ETDEWEB)

    Bennett, Charles L. (Livermore, CA)

    2010-10-12

    A solar thermal powered aircraft powered by heat energy from the sun. A heat engine, such as a Stirling engine, is carried by the aircraft body for producing power for a propulsion mechanism, such as a propeller. The heat engine has a thermal battery in thermal contact with it so that heat is supplied from the thermal battery. A solar concentrator, such as reflective parabolic trough, is movably connected to an optically transparent section of the aircraft body for receiving and concentrating solar energy from within the aircraft. Concentrated solar energy is collected by a heat collection and transport conduit, and heat transported to the thermal battery. A solar tracker includes a heliostat for determining optimal alignment with the sun, and a drive motor actuating the solar concentrator into optimal alignment with the sun based on a determination by the heliostat.

  11. CHP from Updraft Gasifier and Stirling Engine

    DEFF Research Database (Denmark)

    Jensen, N.; Werling, J.; Carlsen, Henrik

    2002-01-01

    The combination of thermal gasification with a Stirling engine is an interesting concept for use in small combined heat and power plants based on biomass. By combining the two technologies a synergism can potentially be achieved. Technical problems, e.g. gas cleaning and fouling of the Stirling e...

  12. Automotive Stirling engine: Mod 2 design report

    Science.gov (United States)

    Nightingale, Noel P.

    1986-01-01

    The design of an automotive Stirling engine that achieves the superior fuel economy potential of the Stirling cycle is described. As the culmination of a 9-yr development program, this engine, designated the Mod 2, also nullifies arguments that Stirling engines are heavy, expensive, unreliable, demonstrating poor performance. Installed in a General Motors Chevrolet Celebrity car, this engine has a predicted combined fuel economy on unleaded gasoline of 17.5 km/l (41 mpg)- a value 50% above the current vehicle fleet average. The Mod 2 Stirling engine is a four-cylinder V-drive design with a single crankshaft. The engine is also equipped with all the controls and auxiliaries necessary for automotive operation.

  13. Variable displacement alpha-type Stirling engine

    Science.gov (United States)

    Homutescu, V. M.; Bălănescu, D. T.; Panaite, C. E.; Atanasiu, M. V.

    2016-08-01

    The basic design and construction of an alpha-type Stirling engine with on load variable displacement is presented. The variable displacement is obtained through a planar quadrilateral linkage with one on load movable ground link. The physico-mathematical model used for analyzing the variable displacement alpha-type Stirling engine behavior is an isothermal model that takes into account the real movement of the pistons. Performances and power adjustment capabilities of such alpha-type Stirling engine are calculated and analyzed. An exemplification through the use of the numerical simulation was performed in this regard.

  14. Stirling Engine Dynamic System Modeling

    Science.gov (United States)

    Nakis, Christopher G.

    2004-01-01

    The Thermo-Mechanical systems branch at the Glenn Research Center focuses a large amount time on Stirling engines. These engines will be used on missions where solar power is inefficient, especially in deep space. I work with Tim Regan and Ed Lewandowski who are currently developing and validating a mathematical model for the Stirling engines. This model incorporates all aspects of the system including, mechanical, electrical and thermodynamic components. Modeling is done through Simplorer, a program capable of running simulations of the model. Once created and then proven to be accurate, a model is used for developing new ideas for engine design. My largest specific project involves varying key parameters in the model and quantifying the results. This can all be done relatively trouble-free with the help of Simplorer. Once the model is complete, Simplorer will do all the necessary calculations. The more complicated part of this project is determining which parameters to vary. Finding key parameters depends on the potential for a value to be independently altered in the design. For example, a change in one dimension may lead to a proportional change to the rest of the model, and no real progress is made. Also, the ability for a changed value to have a substantial impact on the outputs of the system is important. Results will be condensed into graphs and tables with the purpose of better communication and understanding of the data. With the changing of these parameters, a more optimal design can be created without having to purchase or build any models. Also, hours and hours of results can be simulated in minutes. In the long run, using mathematical models can save time and money. Along with this project, I have many other smaller assignments throughout the summer. My main goal is to assist in the processes of model development, validation and testing.

  15. Hydrogen Internal Combustion Stirling Engine

    Science.gov (United States)

    Takahashi, Sanyo; Morita, Hiroyuki; Kurata, Osamu; Yamashita, Iwao

    The hydrogen combustion Stirling engine utilizes internal combustion of a stoichiometric H2 and O2 mixture injected into the working gas as thermal input, and the cyclic operation is completed with the removal of water from the engine after condensation at the cooler. In the prototype engine, a catalytic combustor is substituted for the conventional heater, and the H2-O2 mixture is injected at a constant flow rate from the boundary between the regenerator and the cooler. The engine internal heating characteristics were compared to those on external heating to clarify the internal heating effect on the engine performance. The internal heating performance showed almost the same characteristics as those of external heating, except for the increase of expansion work due to the direct thermal input. The increase of expansion work improved the engine performance, particularly in the region of high engine speed. Furthermore, it was found that the steady injection method was able to suppress the mixture strength to a relatively low level.

  16. Biomass CHP based on a Stirling engine

    Energy Technology Data Exchange (ETDEWEB)

    Cowburn, D.A.; Dando, R.L.

    1997-12-31

    Combined heat and power (CHP) schemes offer a means of converting fuel to useful energy with much higher efficiencies (up to 80 percent) compared to electricity generating stations (efficiencies <36 percent). This has led to many EEC member states, including the UK, and other industrial countries encouraging the use of CHP. At the smaller scale (<500 kWe) steam based systems have generally proven too costly to provide solid fuel with an opportunity to exploit this potentially attractive CHP market sector. The Stirling engine offers a technology which can produce mechanical power from solid fuels without the need to raise steam. This project has been directed towards producing a Stirling engine design capable of producing an output of 150 kW{sub e} from solid fuel. The participants in the projects, CRE Group Ltd., Basys Marine Ltd. (formerly Cray Marine) and Gamos Ltd., brought together a wide range of experience in the areas of gasification, combustion, heat transfer, Stirling engine technology and high precision engineering. A novel form of low pressure nitrogen charged Stirling engine has been designed specifically for stationary applications. This avoided the drawbacks of high pressures with H{sub e} or H used as the working fluids and consequent requirement for exotic sealing arrangements, which have been associated with previous Stirling engine`s aimed primarily at the automotive market. (author)

  17. Stirling laboratory research engine survey report

    Science.gov (United States)

    Anderson, J. W.; Hoehn, F. W.

    1979-01-01

    As one step in expanding the knowledge relative to and accelerating the development of Stirling engines, NASA, through the Jet Propulsion Laboratory (JPL), is sponsoring a program which will lead to a versatile Stirling Laboratory Research Engine (SLRE). An objective of this program is to lay the groundwork for a commercial version of this engine. It is important to consider, at an early stage in the engine's development, the needs of the potential users so that the SLRE can support the requirements of educators and researchers in academic, industrial, and government laboratories. For this reason, a survey was performed, the results of which are described.

  18. Advanced radioisotope heat source for Stirling Engines

    Science.gov (United States)

    Dobry, T. J.; Walberg, G.

    2001-02-01

    The heat exchanger on a Stirling Engine requires a thermal energy transfer from a heat source to the engine through a very limited area on the heater head circumference. Designing an effective means to assure maximum transfer efficiency is challenging. A single General Purpose Heat Source (GPHS), which has been qualified for space operations, would satisfy thermal requirements for a single Stirling Engine that would produce 55 electrical watts. However, it is not efficient to transfer its thermal energy to the engine heat exchanger from its rectangular geometry. This paper describes a conceptual design of a heat source to improve energy transfer for Stirling Engines that may be deployed to power instrumentation on space missions. .

  19. Four-Cylinder Stirling Engine Control Simulation

    Science.gov (United States)

    Daniele, C. J.; Lorenzo, C. F.

    1986-01-01

    Four-cylinder, Stirling-engine, transient-engine-simulation computer program developed. Program intended for control analysis. Associated engine model simplified to shorten computer calculation time. Model includes engine mechanical-drive dynamics and vehicle-load effects. Computer program also includes subroutines that allow acceleration of engine by addition of hydrogen to system and braking of engine by short circuiting of working spaces.

  20. Improving Free-Piston Stirling Engine Specific Power

    Science.gov (United States)

    Briggs, Maxwell H.

    2015-01-01

    This work uses analytical methods to demonstrate the potential benefits of optimizing piston and/or displacer motion in a Stirling engine. Isothermal analysis was used to show the potential benefits of ideal motion in ideal Stirling engines. Nodal analysis is used to show that ideal piston and displacer waveforms are not optimal in real Stirling engines. Constrained optimization was used to identify piston and displacer waveforms that increase Stirling engine specific power.

  1. Fast Whole-Engine Stirling Analysis

    Science.gov (United States)

    Dyson, Rodger W.; Wilson, Scott D.; Tew, Roy C.; Demko, Rikako

    2007-01-01

    An experimentally validated approach is described for fast axisymmetric Stirling engine simulations. These simulations include the entire displacer interior and demonstrate it is possible to model a complete engine cycle in less than an hour. The focus of this effort was to demonstrate it is possible to produce useful Stirling engine performance results in a time-frame short enough to impact design decisions. The combination of utilizing the latest 64-bit Opteron computer processors, fiber-optical Myrinet communications, dynamic meshing, and across zone partitioning has enabled solution times at least 240 times faster than previous attempts at simulating the axisymmetric Stirling engine. A comparison of the multidimensional results, calibrated one-dimensional results, and known experimental results is shown. This preliminary comparison demonstrates that axisymmetric simulations can be very accurate, but more work remains to improve the simulations through such means as modifying the thermal equilibrium regenerator models, adding fluid-structure interactions, including radiation effects, and incorporating mechanodynamics.

  2. Double acting stirling engine piston ring

    Science.gov (United States)

    Howarth, Roy B.

    1986-01-01

    A piston ring design for a Stirling engine wherein the contact pressure between the piston and the cylinder is maintained at a uniform level, independent of engine conditions through a balancing of the pressure exerted upon the ring's surface and thereby allowing the contact pressure on the ring to be predetermined through the use of a preloaded expander ring.

  3. "Starfish" Heater Head For Stirling Engine

    Science.gov (United States)

    Vitale, N.

    1993-01-01

    Proposed "starfish" heater head for Stirling engine enables safe use of liquid sodium as heat-transfer fluid. Sodium makes direct contact with heater head but does not come in contact with any structural welds. Design concept minimizes number of, and simplifies nonstructural thermal welds and facilitates inspection of such welds.

  4. Two piston V-type Stirling engine

    Science.gov (United States)

    Corey, John A.

    1987-01-01

    A two piston Stirling engine which includes a heat exchanger arrangement placing the cooler and regenerator directly adjacent the compression space for minimal cold duct volume; a sealing arrangement which eliminates the need for piston seals, crossheads and piston rods; and a simplified power control system.

  5. Piston rod seal for a Stirling engine

    Science.gov (United States)

    Shapiro, Wilbur

    1984-01-01

    In a piston rod seal for a Stirling engine, a hydrostatic bearing and differential pressure regulating valve are utilized to provide for a low pressure differential across a rubbing seal between the hydrogen and oil so as to reduce wear on the seal.

  6. Modified SUNWATER prototype solar Stirling engine

    Energy Technology Data Exchange (ETDEWEB)

    Al-Towaie, H.; Alkaff, S.A. [Aden Univ., Aden (Yemen)

    2009-07-01

    The exhaust gases from internal combustion engines fueled by gasoline or diesel cause air pollution. Stirling engines, like other external combustion engines, could be fueled by combustible substances such as charcoal and wood. In addition, many non-fuel heat sources such as geothermal heat or solar heat can be used to power Stirling engines. This paper described a newly developed solar operated Stirling engine known as SUNWATER, which was built as part of a cooperative program between the University of Aden, Yemen and the Dresden University of Technology in Germany. The engine was used to run a water pump and was tested under realistic conditions at the solar park at the University of Aden. Several technical aspects had to be revised to address the many drawbacks that were encountered during the first test. This paper presented solutions to ensure better engine performance, simplicity in construction and cost reduction. The absorber was replaced with a simple and lighter aluminum concave type. The displacer mechanism was completely modified to ensure smooth operation and to minimize friction and starting torque. A preliminary test was conducted of the new modified engine, followed by additional work to achieve greater engine reliability. 8 tabs., 3 figs.

  7. Stirling Engine With Radial Flow Heat Exchangers

    Science.gov (United States)

    Vitale, N.; Yarr, George

    1993-01-01

    Conflict between thermodynamical and structural requirements resolved. In Stirling engine of new cylindrical configuration, regenerator and acceptor and rejector heat exchangers channel flow of working gas in radial direction. Isotherms in regenerator ideally concentric cylinders, and gradient of temperature across regenerator radial rather than axial. Acceptor and rejector heat exchangers located radially inward and outward of regenerator, respectively. Enables substantial increase in power of engine without corresponding increase in diameter of pressure vessel.

  8. Stirling engine with air working fluid

    Science.gov (United States)

    Corey, John A.

    1985-01-01

    A Stirling engine capable of utilizing air as a working fluid which includes a compact heat exchange module which includes heating tube units, regenerator and cooler positioned about the combustion chamber. This arrangement has the purpose and effect of allowing the construction of an efficient, high-speed, high power-density engine without the use of difficult to seal light gases as working fluids.

  9. Structural design of Stirling engine with free pistons

    Science.gov (United States)

    Matusov, Jozef; Gavlas, Stanislav; Malcho, Milan

    2014-08-01

    Stirling engine is a device that converts thermal energy to mechanical work, which is mostly used to drive a generator of electricity. Advantage of Stirling engine is that it works with closed-cycle, where working medium is regularly cooled and heated, which acts on the working piston. This engine can be made in three modifications - alpha, beta, gamma. This paper discusses the design of the gamma Stirling engine with free pistons.

  10. Stirling engines. (Latest citations from the Aerospace database). Published Search

    Energy Technology Data Exchange (ETDEWEB)

    1993-09-01

    The bibliography contains citations concerning fuel consumption, engine design and testing, computerized simulation, and lubrication systems relative to the Stirling cycle engine. Solar energy conversion research, thermodynamic efficiency, economics, and utilization for power generation and automobile engines are included. Materials used in Stirling engines are briefly evaluated. (Contains 250 citations and includes a subject term index and title list.)

  11. A high performance thermoacoustic Stirling-engine

    Energy Technology Data Exchange (ETDEWEB)

    Tijani, M.E.H.; Spoelstra, S. [Energy research Centre of the Netherlands (ECN), PO Box 1, 1755 ZG Petten (Netherlands)

    2011-11-10

    In thermoacoustic systems heat is converted into acoustic energy and vice versa. These systems use inert gases as working medium and have no moving parts which makes the thermoacoustic technology a serious alternative to produce mechanical or electrical power, cooling power, and heating in a sustainable and environmentally friendly way. A thermoacoustic Stirling heat engine is designed and built which achieves a record performance of 49% of the Carnot efficiency. The design and performance of the engine is presented. The engine has no moving parts and is made up of few simple components.

  12. Automotive Stirling engine system component review

    Science.gov (United States)

    Hindes, Chip; Stotts, Robert

    1987-01-01

    The design and testing of the power and combustion control system for the basic Stirling engine, Mod II, are examined. The power control system is concerned with transparent operation, and the Mod II uses engine working gas pressure variation to control the power output of the engine. The main components of the power control system, the power control valve, the pump-down system, and the hydrogen stable system, are described. The combustion control system consists of a combustion air supply system and an air/fuel ratio control system, and the system is to maintain constant heater head temperature, and to maximize combustion efficiency and to minimize exhaust emissions.

  13. Large eight.cylinder Stirling engine for biofuels

    DEFF Research Database (Denmark)

    Carlsen, Henrik; Biedermann, F.; Bovin, Jonas Kabell

    2003-01-01

    A large Stirling engine with an electric power output of 70 kW has been developed for small-scale CHP using wood chips and other sorts of biomass as fuel. The development of the engine is based on the results from the development of a four-cylinder Stirling engine with a power output of 35 kW, wh...

  14. Overheat Prevention in Solar-Powered Stirling Engines

    Science.gov (United States)

    Garrigus, W. E.; Pons, R. L.

    1982-01-01

    Proposed controller for solar-powered Stirling engine prevents engine from burning up when energy added by Sun exceeds that withdrawn by load. Head-temperature controller used existing electrical control unit of Stirling engine to regulate power output in response to head temperature. Power out-put is varied so keeps head temperature fairly constant.

  15. Composite Matrix Regenerator for Stirling Engines

    Science.gov (United States)

    Knowles, Timothy R.

    1997-01-01

    This project concerns the design, fabrication and testing of carbon regenerators for use in Stirling power convertors. Radial fiber design with nonmetallic components offers a number of potential advantages over conventional steel regenerators: reduced conduction and pressure drop losses, and the capability for higher temperature, higher frequency operation. Diverse composite fabrication methods are explored and lessons learned are summarized. A pulsed single-blow test rig has been developed that has been used for generating thermal effectiveness data for different flow velocities. Carbon regenerators have been fabricated by carbon vapor infiltration of electroflocked preforms. Performance data in a small Stirling engine are obtained. Prototype regenerators designed for the BP-1000 power convertor were fabricated and delivered to NASA-Lewis.

  16. Low temperature differential thermoacoustic Stirling engine

    Science.gov (United States)

    Biwa, Tetsushi; Hasegawa, Daichi; Yazaki, Taichi

    2010-07-01

    To what extent can we lower the critical temperature ratio (CTR) necessary to start a thermoacoustic engine? We present an experimental method for predicting the CTR before the temperature ratio arrives at it using quality factor measurements. Based on the experimental quality factors, we tried to decrease the CTR of a thermoacoustic Stirling engine consisting of a looped tube and a branch resonator. Installation of the multiple regenerators at suitable positions can markedly enhance acoustic power production while overcoming energy dissipation. Results show that the CTR is decreased from 1.76 to 1.19 using five differentially heated regenerators.

  17. Design of hydraulic output Stirling engine

    Science.gov (United States)

    Toscano, W. M.; Harvey, A. C.; Lee, K.

    1983-01-01

    A hydraulic output system for the RE-1000 free piston stirling engine (FPSE) was designed. The hydraulic output system can be readily integrated with the existing hot section of RE-1000 FPSE. The system has two simply supported diaphragms which separate the engine gas from the hydraulic fluid, a dynamic balance mechanism, and a novel, null center band hydraulic pump. The diaphragms are designed to endure more than 10 billion cycles, and to withstand the differential pressure load as high as 14 MPa. The projected thermodynamic performance of the hydraulic output version of RE-1000 FPSE is 1.87 kW at 29/7 percent brake efficiency.

  18. Double acting stirling engine phase control

    Science.gov (United States)

    Berchowitz, David M.

    1983-01-01

    A mechanical device for effecting a phase change between the expansion and compression volumes of a double-acting Stirling engine uses helical elements which produce opposite rotation of a pair of crankpins when a control rod is moved, so the phase between two pairs of pistons is changed by +.psi. and the phase between the other two pairs of pistons is changed by -.psi.. The phase can change beyond .psi.=90.degree. at which regenerative braking and then reversal of engine rotation occurs.

  19. Tests Of A Stirling-Engine Power Converter

    Science.gov (United States)

    Dochat, George

    1995-01-01

    Report describes acceptance tests of power converter consisting of pair of opposed free-piston Stirling engines driving linear alternators. Stirling engines offer potential for extremely long life, high reliability, high efficiency at low hot-to-cold temperature ratios, and relatively low heater-head temperatures.

  20. On-Board Hydrogen Gas Production System For Stirling Engines

    Science.gov (United States)

    Johansson, Lennart N.

    2004-06-29

    A hydrogen production system for use in connection with Stirling engines. The production system generates hydrogen working gas and periodically supplies it to the Stirling engine as its working fluid in instances where loss of such working fluid occurs through usage through operation of the associated Stirling engine. The hydrogen gas may be generated by various techniques including electrolysis and stored by various means including the use of a metal hydride absorbing material. By controlling the temperature of the absorbing material, the stored hydrogen gas may be provided to the Stirling engine as needed. A hydrogen production system for use in connection with Stirling engines. The production system generates hydrogen working gas and periodically supplies it to the Stirling engine as its working fluid in instances where loss of such working fluid occurs through usage through operation of the associated Stirling engine. The hydrogen gas may be generated by various techniques including electrolysis and stored by various means including the use of a metal hydride absorbing material. By controlling the temperature of the absorbing material, the stored hydrogen gas may be provided to the Stirling engine as needed.

  1. Initial testing of a variable-stroke Stirling engine

    Science.gov (United States)

    Thieme, L. G.

    1985-01-01

    In support of the U.S. Department of Energy's Stirling Engine Highway Vehicle Systems Program, NASA Lewis Research Center is evaluating variable-stroke control for Stirling engines. The engine being tested is the Advenco Stirling engine; this engine was manufactured by Philips Research Laboratories of the Netherlands and uses a variable-angle swash-plate drive to achieve variable stroke operation. The engine is described, initial steady-state test data taken at Lewis are presented, a major drive system failure and subsequent modifications are described. Computer simulation results are presented to show potential part-load efficiency gains with variable-stroke control.

  2. Mathematical model of the Amazon Stirling engine

    Energy Technology Data Exchange (ETDEWEB)

    Vidal Medina, Juan Ricardo [Universidad Autonoma de Occidente (Colombia)], e-mail: jrvidal@uao.edu.co; Cobasa, Vladimir Melian; Silva, Electo [Universidade Federal de Itajuba, MG (Brazil)], e-mail: vlad@unifei.edu.br

    2010-07-01

    The Excellency Group in Thermoelectric and Distributed Generation (NEST, for its acronym in Portuguese) at the Federal University of Itajuba, has designed a Stirling engine prototype to provide electricity to isolated regions of Brazil. The engine was designed to operate with residual biomass from timber process. This paper presents mathematical models of heat exchangers (hot, cold and regenerator) integrated into second order adiabatic models. The general model takes into account the pressure drop losses, hysteresis and internal losses. The results of power output, engine efficiency, optimal velocity of the exhaust gases and the influence of dead volume in engine efficiency are presented in this paper. The objective of this modeling is to propose improvements to the manufactured engine design. (author)

  3. Non-heat pipe receiver/p-40 Stirling engine

    Science.gov (United States)

    Haglund, R. A.

    1981-01-01

    The technology for a full-up hybrid dish-Stirling Solar Thermal Power system is discussed. Overall solar-to-electric efficiency for the dish-Stirling system demonstration is approximately 30%. Hybrid operation is provided by fossil fuel combustion augmentation, which enables the Stirling engine to operate continuously at constant speed and power, regardless of insolation level, thus providing the capability to operate on cloudy days and at night.

  4. Loss terms in free-piston Stirling engine models

    Science.gov (United States)

    Gordon, Lloyd B.

    1992-01-01

    Various models for free piston Stirling engines are reviewed. Initial models were developed primarily for design purposes and to predict operating parameters, especially efficiency. More recently, however, such models have been used to predict engine stability. Free piston Stirling engines have no kinematic constraints and stability may not only be sensitive to the load, but also to various nonlinear loss and spring constraints. The present understanding is reviewed of various loss mechanisms for free piston Stirling engines and how they have been incorporated into engine models is discussed.

  5. Stirling cycle engines inner workings and design

    CERN Document Server

    Organ, Allan J

    2013-01-01

    Some 200 years after the original invention, internal design of a Stirling engine has come to be considered a specialist task, calling for extensive experience and for access to sophisticated computer modelling. The low parts-count of the type is negated by the complexity of the gas processes by which heat is converted to work. Design is perceived as problematic largely because those interactions are neither intuitively evident, nor capable of being made visible by laboratory experiment. There can be little doubt that the situation stands in the way of wider application of this elegant concep

  6. Stability analysis of free piston Stirling engines

    Science.gov (United States)

    Bégot, Sylvie; Layes, Guillaume; Lanzetta, François; Nika, Philippe

    2013-03-01

    This paper presents a stability analysis of a free piston Stirling engine. The model and the detailed calculation of pressures losses are exposed. Stability of the machine is studied by the observation of the eigenvalues of the model matrix. Model validation based on the comparison with NASA experimental results is described. The influence of operational and construction parameters on performance and stability issues is exposed. The results show that most parameters that are beneficial for machine power seem to induce irregular mechanical characteristics with load, suggesting that self-sustained oscillations could be difficult to maintain and control.

  7. Stirling engines for biomass – what is the problem?

    DEFF Research Database (Denmark)

    Carlsen, Henrik

    2005-01-01

    The External combustion of the Stirling engine makes it very attractive for small-scale Combined Heat and Power (CHP) plants using bio-fuels. Especially wood chips are an attractive fuel because of the high melting point and the low content of ash. Unfortunately, it is more complicated than...... expected to use bio-fuels for a Stirling engine. The high temperature in the hot heat exchanger transferring heat from the combustion to the Stirling engine combined with the low heating value of the fuel reduce the obtainable efficiency of the plant. The limitations of the combustion temperature in order...... to avoid melted ash in the combustion chamber decrease the obtainable efficiency even further. If a Stirling engine, which has an efficiency of 28,5% using natural gas, is converted into utilization of bio-fuel, the efficiency will decrease to 17,5%. Another problem for utilization of bio-fuels in Stirling...

  8. Multidimensional computer simulation of Stirling cycle engines

    Science.gov (United States)

    Hall, C. A.; Porsching, T. A.; Medley, J.; Tew, R. C.

    1990-01-01

    The computer code ALGAE (algorithms for the gas equations) treats incompressible, thermally expandable, or locally compressible flows in complicated two-dimensional flow regions. The solution method, finite differencing schemes, and basic modeling of the field equations in ALGAE are applicable to engineering design settings of the type found in Stirling cycle engines. The use of ALGAE to model multiple components of the space power research engine (SPRE) is reported. Videotape computer simulations of the transient behavior of the working gas (helium) in the heater-regenerator-cooler complex of the SPRE demonstrate the usefulness of such a program in providing information on thermal and hydraulic phenomena in multiple component sections of the SPRE.

  9. Stirling cycle engine and refrigeration systems

    Science.gov (United States)

    Higa, W. H. (Inventor)

    1976-01-01

    A Stirling cycle heat engine is disclosed in which displacer motion is controlled as a function of the working fluid pressure P sub 1 and a substantially constant pressure P sub 0. The heat engine includes an auxiliary chamber at the constant pressure P sub 0. An end surface of a displacer piston is disposed in the auxiliary chamber. During the compression portion of the engine cycle when P sub 1 rises above P sub 0 the displacer forces the working fluid to pass from the cold chamber to the hot chamber of the engine. During the expansion portion of the engine cycle the heated working fluid in the hot chamber does work by pushing down on the engine's drive piston. As the working fluid pressure P sub 1 drops below P sub 0 the displacer forces most of the working fluid in the hot chamber to pass through the regenerator to the cold chamber. The engine is easily combinable with a refrigeration section to provide a refrigeration system in which the engine's single drive piston serves both the engine and the refrigeration section.

  10. Modeling for Control of a Wobble–Yoke Stirling Engine

    NARCIS (Netherlands)

    García–Canseco, Eloísa; Scherpen, Jacquelien M.A.; Kuindersma, Marnix

    2009-01-01

    In this paper we derive the dynamic model of a four–cylinder double–acting wobble–yoke Stirling engine. In contrast with the classical thermodynamics methods that dominate the literature of Stirling mechanisms, we present a control system perspective to obtain a useful model for the analysis and syn

  11. Modeling for Control of a Wobble–Yoke Stirling Engine

    NARCIS (Netherlands)

    García–Canseco, Eloísa; Scherpen, Jacquelien M.A.; Kuindersma, Marnix

    2009-01-01

    In this paper we derive the dynamic model of a four–cylinder double–acting wobble–yoke Stirling engine. In contrast with the classical thermodynamics methods that dominate the literature of Stirling mechanisms, we present a control system perspective to obtain a useful model for the analysis and syn

  12. Commissioning and Performance Analysis of WhisperGen Stirling Engine

    Science.gov (United States)

    Pradip, Prashant Kaliram

    Stirling engine based cogeneration systems have potential to reduce energy consumption and greenhouse gas emission, due to their high cogeneration efficiency and emission control due to steady external combustion. To date, most studies on this unit have focused on performance based on both experimentation and computer models, and lack experimental data for diversified operating ranges. This thesis starts with the commissioning of a WhisperGen Stirling engine with components and instrumentation to evaluate power and thermal performance of the system. Next, a parametric study on primary engine variables, including air, diesel, and coolant flowrate and temperature were carried out to further understand their effect on engine power and efficiency. Then, this trend was validated with the thermodynamic model developed for the energy analysis of a Stirling cycle. Finally, the energy balance of the Stirling engine was compared without and with heat recovery from the engine block and the combustion chamber exhaust.

  13. Mobile hydraulic power supply. Liquid piston Stirling engine pump

    Energy Technology Data Exchange (ETDEWEB)

    Ven, James D. van de [100 Institute Road, Department of Mechanical Engineering, Worcester Polytechnic Institute, Worcester, MA 01609 (United States)

    2009-11-15

    Conventional mobile hydraulic power supplies involve numerous kinematic connections and are limited by the efficiency, noise, and emissions of internal combustion engines. The Stirling cycle possesses numerous benefits such as the ability to operate from any heat source, quiet operation, and high theoretical efficiency. The Stirling engine has seen limited success due to poor heat transfer in the working chambers, difficulty sealing low-molecular weight gases at high pressure, and non-ideal piston displacement profiles. As a solution to these limitations, a liquid piston Stirling engine pump is proposed. The liquid pistons conform to irregular volumes, allowing increased heat transfer through geometry features on the interior of the working chambers. Creating near-isothermal operation eliminates the costly external heat exchangers and increases the engine efficiency through decreasing the engine dead space. The liquid pistons provide a positive gas seal and thermal transport to the working chambers. Controlling the flow of the liquid pistons with valves enables matching the ideal Stirling cycle and creates a direct hydraulic power supply. Using liquid hydrogen as a fuel source allows cooling the compression side of the engine before expanded the fuel into a gas and combusting it to heat the expansion side of the engine. Cooling the compression side not only increases the engine power, but also significantly increases the potential thermal efficiency of the engine. A high efficiency Stirling engine makes energy regeneration through reversing the Stirling cycle practical. When used for regeneration, the captured energy can be stored in thermal batteries, such as a molten salt. The liquid piston Stirling engine pump requires further research in numerous areas such as understanding the behavior of the liquid pistons, modeling and optimization of a full engine pump, and careful selection of materials for the extreme operating temperatures. Addressing these obtainable

  14. Linear hydraulic drive system for a Stirling engine

    Science.gov (United States)

    Walsh, Michael M.

    1984-02-21

    A hydraulic drive system operating from the periodic pressure wave produced by a Stirling engine along a first axis thereof and effecting transfer of power from the Stirling engine to a load apparatus therefor and wherein the movable, or working member of the load apparatus is reciprocatingly driven along an axis substantially at right angles to the first axis to achieve an arrangement of a Stirling engine and load apparatus assembly which is much shorter and the components of the load apparatus more readily accessible.

  15. Study of a thermoacoustic Stirling engine

    Energy Technology Data Exchange (ETDEWEB)

    Spoelstra, S.; Tijani, M.E.H.; Poignand, G.A. [ECN Energy Efficiency in the Industry, Petten (Netherlands)

    2008-12-15

    A Stirling cycle thennoacoustic engine is developed and performance measurements are performed. The engine uses thermal power to generate acoustic power. It consists mainly of three parts: a thermodynamic part consisting of a regenerator, two heat exchangers, and a thermal buffer tube; an acoustic network consisting of an acoustic compliance and an inertance; and a resonator. The thermodynamic part and the acoustic network are placed in a torus configuration. The hot heat exchanger is placed on the top of the torus so that the shape and size of the hot heat exchanger can be designed or chosen independently of the regenerator dimensions. Two different resonators types of about a 1/4-wave length have been tested during the study of the engine. The first resonator forms a too heavy load for the engine and could not be loaded with an RC-acoustic load. A second resonator is designed and built that has less loss than the first one. The performance measurements with the second resonator show that the engine at its most efficient operating point generates 190 watt of acoustic power with an efficiency of 22.5%, corresponding to 36% of Carnot.

  16. Stirling engine control mechanism and method

    Science.gov (United States)

    Dineen, John J.

    1983-01-01

    A reciprocating-to-rotating motion conversion and power control device for a Stirling engine includes a hub mounted on an offset portion of the output shaft for rotation relative to the shaft and for sliding motion therealong which causes the hub to tilt relative to the axis of rotation of the shaft. This changes the angle of inclination of the hub relative to the shaft axis and changes the axial stroke of a set of arms connected to the hub and nutating therewith. A hydraulic actuating mechanism is connected to the hub for moving its axial position along the shaft. A balancing wheel is linked to the hub and changes its angle of inclination as the angle of inclination of the hub changes to maintain the mechanism in perfect balance throughout its range of motion.

  17. Stirling engine technology. Fundamentals, concepts, developments, applications. 2. tot. new rev. ed.; Stirling-Maschinen-Technik. Grundlagen, Konzepte, Entwicklungen, Anwendungen

    Energy Technology Data Exchange (ETDEWEB)

    Steimle, F.; Lamprichs, J.; Beck, P.

    2007-07-01

    The book presents the technology of Stirling engines, their history, types, new trends and current and future applications. Commercially successful Stirling engines are presented. The second edition of this book focuses on decentral combined heat and power generation, utilisation of biomass and solar energy, heat pumps and refrigerators. Thermodynamic fundamentals of various types of Stirling engines are described, as well as requirements on engine components, and the ecological and economic advantages of the Stirling technology. A revised list of international suppliers, research institutions and individuals working in this field is contained in the appendix. (orig.)

  18. Linear moving magnet motor/generator for Stirling engines

    Science.gov (United States)

    Shtrikman, S.; Urieli, I.

    Free piston Stirling cycle machines have many inherent advantages, however suffer from the difficulties of extracting power output and controllability of the free displacer, which is usually driven by gas pressure forces. Modern rare earth samarium cobalt magnets allow the use of moving magnet linear electrical devices. This paper discusses the development and testing of moving magnet devices designed specifically for use with Stirling engines, both for generating electricity and for driving the displacer piston. The generator was used as an output stage of a free piston Stirling engine, and is capable of delivering a power of 500 watts at an estimated efficiency of about 90%. The motor was used to drive the displacer of the same Stirling engine. It was found to be completely controllable in amplitude, phase, and mean position. The relative merits of moving magnet linear motor/generators are discussed.

  19. The Stirling Engine: A Wave of the Future

    Science.gov (United States)

    1992-01-01

    This video describes the Stirling engine, an external combustion engine which creates heat energy to power the motor, and can use many types of fuel. It can be used for both stationary and propulsion purposes and has advantages of better fuel economy and cleaner exhaust than internal combustion engines. The engine is shown being road tested at Langley Air Force Base.

  20. Description of a Stirling engine; Defense et illustration du moteur stirling

    Energy Technology Data Exchange (ETDEWEB)

    Caillate, A. [Lycee Gustave Eiffel, 21 - Dijon (France)

    2004-05-01

    The Stirling cycle is made up of 2 isotherm transformations: compression and expansion, and 2 isochoric transformations: heating and cooling. This article presents the Stirling engine with the view of illustrating different notions of thermodynamics for a college audience. The starting point is a reduced-size Stirling engine that has been fitted with pressure, temperature and volume sensors. By connecting the outputs of the volume and pressure sensors to an oscilloscope operating in the xy mode, the cycle diagram in the Clapeyron frame has been obtained. It was verified that the cycle is always clockwise covered and that the surface of the cycle increases whenever the engine is slowed down. (A.C.)

  1. Output characteristics of Stirling thermoacoustic engine

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Daming; Qiu, Limin; Wang, Bo; Xiao, Yong; Zhao, Liang [Institute of Refrigeration and Cryogenic Engineering, Zhejiang University, No. 38, Zheda Road, Hangzhou, Zhejiang 310027 (China)

    2008-05-15

    A thermoacoustic engine (TE), which converts thermal energy into acoustic power by the thermoacoustic effect, shows several advantages due to the absence of moving parts, such as high reliability and long lifetime associated with reduced manufacturing costs. Power output and efficiency are important criteria of the performance of a TE. In order to increase the acoustic power output and thermal efficiency of a Stirling TE, the acoustic power distribution in the engine is studied with the variable load method. It is found that the thermal efficiency is independent of the output locations along the engine under the same acoustic power output. Furthermore, when the pressure ratio is kept constant at one location along the TE, it is beneficial to increasing the thermal efficiency by exporting more acoustic power. With nitrogen of 2.5 MPa as working gas and the pressure ratio at the compliance of 1.20 in the experiments, the acoustic power is measured at the compliance and the resonator simultaneously. The maximum power output, thermal efficiency and exergy efficiency reach 390.0 W, 11.2% and 16.0%, which are increased by 51.4%, 24.4% and 19.4%, respectively, compared to those with a single R-C load with 750 ml reservoir at the compliance. This research will be instructive for increasing the efficiency and making full use of the acoustic energy of a TE. (author)

  2. Output characteristics of Stirling thermoacoustic engine

    Energy Technology Data Exchange (ETDEWEB)

    Sun Daming [Institute of Refrigeration and Cryogenic Engineering, Zhejiang University, No. 38, Zheda Road, Hangzhou, Zhejiang 310027 (China); Qiu Limin [Institute of Refrigeration and Cryogenic Engineering, Zhejiang University, No. 38, Zheda Road, Hangzhou, Zhejiang 310027 (China)], E-mail: limin.qiu@zju.edu.cn; Wang Bo; Xiao Yong; Zhao Liang [Institute of Refrigeration and Cryogenic Engineering, Zhejiang University, No. 38, Zheda Road, Hangzhou, Zhejiang 310027 (China)

    2008-05-15

    A thermoacoustic engine (TE), which converts thermal energy into acoustic power by the thermoacoustic effect, shows several advantages due to the absence of moving parts, such as high reliability and long lifetime associated with reduced manufacturing costs. Power output and efficiency are important criteria of the performance of a TE. In order to increase the acoustic power output and thermal efficiency of a Stirling TE, the acoustic power distribution in the engine is studied with the variable load method. It is found that the thermal efficiency is independent of the output locations along the engine under the same acoustic power output. Furthermore, when the pressure ratio is kept constant at one location along the TE, it is beneficial to increasing the thermal efficiency by exporting more acoustic power. With nitrogen of 2.5 MPa as working gas and the pressure ratio at the compliance of 1.20 in the experiments, the acoustic power is measured at the compliance and the resonator simultaneously. The maximum power output, thermal efficiency and exergy efficiency reach 390.0 W, 11.2% and 16.0%, which are increased by 51.4%, 24.4% and 19.4%, respectively, compared to those with a single R-C load with 750 ml reservoir at the compliance. This research will be instructive for increasing the efficiency and making full use of the acoustic energy of a TE.

  3. A Stirling engine for use with lower quality fuels

    Science.gov (United States)

    Paul, Christopher J.

    There is increasing interest in using renewable fuels from biomass or alternative fuels such as municipal waste to reduce the need for fossil based fuels. Due to the lower heating values and higher levels of impurities, small scale electricity generation is more problematic. Currently, there are not many technologically mature options for small scale electricity generation using lower quality fuels. Even though there are few manufacturers of Stirling engines, the history of their development for two centuries offers significant guidance in developing a viable small scale generator set using lower quality fuels. The history, development, and modeling of Stirling engines were reviewed to identify possible model and engine configurations. A Stirling engine model based on the finite volume, ideal adiabatic model was developed. Flow dissipation losses are shown to need correcting as they increase significantly at low mean engine pressure and high engine speed. The complete engine including external components was developed. A simple yet effective method of evaluating the external heat transfer to the Stirling engine was created that can be used with any second order Stirling engine model. A derivative of the General Motors Ground Power Unit 3 was designed. By significantly increasing heater, cooler and regenerator size at the expense of increased dead volume, and adding a combustion gas recirculation, a generator set with good efficiency was designed.

  4. Integrated two-cylinder liquid piston Stirling engine

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Ning; Rickard, Robert; Pluckter, Kevin; Sulchek, Todd, E-mail: todd.sulchek@me.gatech.edu [George W. Woodruff School of Mechanical Engineering and Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332 (United States)

    2014-10-06

    Heat engines utilizing the Stirling cycle may run on low temperature differentials with the capacity to function at high efficiency due to their near-reversible operation. However, current approaches to building Stirling engines are laborious and costly. Typically the components are assembled by hand and additional components require a corresponding increase in manufacturing complexity, akin to electronics before the integrated circuit. We present a simple and integrated approach to fabricating Stirling engines with precisely designed cylinders. We utilize computer aided design and one-step, planar machining to form all components of the engine. The engine utilizes liquid pistons and displacers to harness useful work from heat absorption and rejection. As a proof of principle of the integrated design, a two-cylinder engine is produced and characterized and liquid pumping is demonstrated.

  5. Integrated two-cylinder liquid piston Stirling engine

    Science.gov (United States)

    Yang, Ning; Rickard, Robert; Pluckter, Kevin; Sulchek, Todd

    2014-10-01

    Heat engines utilizing the Stirling cycle may run on low temperature differentials with the capacity to function at high efficiency due to their near-reversible operation. However, current approaches to building Stirling engines are laborious and costly. Typically the components are assembled by hand and additional components require a corresponding increase in manufacturing complexity, akin to electronics before the integrated circuit. We present a simple and integrated approach to fabricating Stirling engines with precisely designed cylinders. We utilize computer aided design and one-step, planar machining to form all components of the engine. The engine utilizes liquid pistons and displacers to harness useful work from heat absorption and rejection. As a proof of principle of the integrated design, a two-cylinder engine is produced and characterized and liquid pumping is demonstrated.

  6. Materials for a Stirling engine heater head

    Science.gov (United States)

    Noble, J. E.; Lehmann, G. A.; Emigh, S. G.

    1990-01-01

    Work done on the 25-kW advanced Stirling conversion system (ASCS) terrestrial solar program in establishing criteria and selecting materials for the engine heater head and heater tubes is described. Various mechanisms contributing to incompatibility between materials are identified and discussed. Large thermal gradients, coupled with requirements for long life (60,000 h at temperature) and a large number of heatup and cooldown cycles (20,000) drive the design from a structural standpoint. The pressurized cylinder is checked for creep rupture, localized yielding, reverse plasticity, creep and fatigue damage, and creep ratcheting, in addition to the basic requirements for bust and proof pressure. In general, creep rupture and creep and fatigue interaction are the dominant factors in the design. A wide range of materials for the heater head and tubes was evaluated. Factors involved in the assessment were strength and effect on engine efficiency, reliability, and cost. A preliminary selection of Inconel 713LC for the heater head is based on acceptable structural properties but driven mainly by low cost. The criteria for failure, the structural analysis, and the material characteristics with basis for selection are discussed.

  7. Mechanical Engineering Practice – using a simple Stirling engine as case

    DEFF Research Database (Denmark)

    Meyer, Knud Erik

    2011-01-01

    The first technical course that students in mechanical engineering take at the Technical University of Denmark is called “Mechanical Engineering Practice”. We have used a simple Stirling engine as a design-implement project. Students were asked to design and build a heat engine using materials....... The Stirling engine worked well in the drawing assignments. The Stirling engine also served as illustration of coming courses in mechanical engineering. The resulting engines had large variations in their design and most groups succeeded in building a functioning engine. However, achieved efficiencies were...

  8. Mechanical Engineering Practice – using a simple Stirling engine as case

    DEFF Research Database (Denmark)

    Meyer, Knud Erik

    2011-01-01

    The first technical course that students in mechanical engineering take at the Technical University of Denmark is called “Mechanical Engineering Practice”. We have used a simple Stirling engine as a design-implement project. Students were asked to design and build a heat engine using materials....... The Stirling engine worked well in the drawing assignments. The Stirling engine also served as illustration of coming courses in mechanical engineering. The resulting engines had large variations in their design and most groups succeeded in building a functioning engine. However, achieved efficiencies were...

  9. Automotive Stirling Engine Development Program. RESD summary report

    Science.gov (United States)

    1984-01-01

    The design of reference Stirling engine system as well as the engine auxiliaries and controls is described. Manufacturing costs in production quantity are also presented. Engine system performance predictions are discussed and vehicle integration is developed, along with projected fuel economy levels.

  10. Improving Free-Piston Stirling Engine Power Density

    Science.gov (United States)

    Briggs, Maxwell H.

    2016-01-01

    Analyses and experiments demonstrate the potential benefits of optimizing piston and displacer motion in a free piston Stirling Engine. Isothermal analysis shows the theoretical limits of power density improvement due to ideal motion in ideal Stirling engines. More realistic models based on nodal analysis show that ideal piston and displacer waveforms are not optimal, often producing less power than engines that use sinusoidal piston and displacer motion. Constrained optimization using nodal analysis predicts that Stirling engine power density can be increased by as much as 58% using optimized higher harmonic piston and displacer motion. An experiment is conducted in which an engine designed for sinusoidal motion is forced to operate with both second and third harmonics, resulting in a maximum piston power increase of 14%. Analytical predictions are compared to experimental data showing close agreement with indirect thermodynamic power calculations, but poor agreement with direct electrical power measurements.

  11. Improving Power Density of Free-Piston Stirling Engines

    Science.gov (United States)

    Briggs, Maxwell H.; Prahl, Joseph M.; Loparo, Kenneth A.

    2016-01-01

    Analyses and experiments demonstrate the potential benefits of optimizing piston and displacer motion in a free-piston Stirling Engine. Isothermal analysis shows the theoretical limits of power density improvement due to ideal motion in ideal Stirling engines. More realistic models based on nodal analysis show that ideal piston and displacer waveforms are not optimal, often producing less power than engines that use sinusoidal piston and displacer motion. Constrained optimization using nodal analysis predicts that Stirling engine power density can be increased by as much as 58 percent using optimized higher harmonic piston and displacer motion. An experiment is conducted in which an engine designed for sinusoidal motion is forced to operate with both second and third harmonics, resulting in a piston power increase of as much as 14 percent. Analytical predictions are compared to experimental data and show close agreement with indirect thermodynamic power calculations, but poor agreement with direct electrical power measurements.

  12. Micro-cogeneration units based on Stirling engine for heating and their real operation

    Science.gov (United States)

    Čierny, Jaroslav; Patsch, Marek

    2014-08-01

    This article was deal with micro-cogeneration units based on Stirling engine. We watched problematic of real working Stirling engine. The article also contain hookup of unit constructed at University of Zilina.

  13. Linear Dynamics and Control of a Kinematic Wobble–Yoke Stirling Engine

    NARCIS (Netherlands)

    Alvarez–Aguirre, Alejandro; García–Canseco, Eloísa; Scherpen, Jacquelien M.A.

    2010-01-01

    This paper presents a control systems approach for the modeling and control of a kinematic wobble–yoke Stirling engine. The linear dynamics of the Stirling engine are analyzed based on the dynamical model of the system, developed by these authors. We show that the Stirling engine can be viewed as a

  14. Linear Dynamics and Control of a Kinematic Wobble–Yoke Stirling Engine

    NARCIS (Netherlands)

    Alvarez–Aguirre, Alejandro; García–Canseco, Eloísa; Scherpen, Jacquelien M.A.

    2010-01-01

    This paper presents a control systems approach for the modeling and control of a kinematic wobble–yoke Stirling engine. The linear dynamics of the Stirling engine are analyzed based on the dynamical model of the system, developed by these authors. We show that the Stirling engine can be viewed as a

  15. Insoluble coatings for Stirling engine heat pipe condenser surfaces

    Science.gov (United States)

    Dussinger, Peter M.

    1993-01-01

    The work done by Thermacore, Inc., Lancaster, Pennsylvania, for the Phase 1, 1992 SBIR National Aeronautics and Space Administration Contract, 'Insoluble Coatings for Stirling Engine Heat Pipe Condenser Surfaces' is described. The work was performed between January 1992 and July 1992. Stirling heat engines are being developed for electrical power generation use on manned and unmanned earth orbital and planetary missions. Dish Stirling solar systems and nuclear reactor Stirling systems are two of the most promising applications of the Stirling engine electrical power generation technology. The sources of thermal energy used to drive the Stirling engine typically are non-uniform in temperature and heat flux. Liquid metal heat pipe receivers are used as thermal transformers and isothermalizers to deliver the thermal energy at a uniform high temperature to the heat input section of the Stirling engine. The use of a heat pipe receiver greatly enhances system efficiency and potential life span. One issue that is raised during the design phase of heat pipe receivers is the potential solubility corrosion of the Stirling engine heat input section by the liquid metal working fluid. This Phase 1 effort initiated a program to evaluate and demonstrate coatings, applied to nickel based Stirling engine heater head materials, that are practically 'insoluble' in sodium, potassium, and NaK. This program initiated a study of nickel aluminide as a coating and developed and demonstrated a heat pipe test vehicle that can be used to test candidate materials and coatings. Nickel 200 and nickel aluminide coated Nickel 200 were tested for 1000 hours at 800 C at a condensation heat flux of 25 W/sq cm. Subsequent analyses of the samples showed no visible sign of solubility corrosion of either coated or uncoated samples. The analysis technique, photomicrographs at 200X, has a resolution of better than 2.5 microns (.0001 in). The results indicate that the heat pipe environment is not directly

  16. Insoluble coatings for Stirling engine heat pipe condenser surfaces

    Science.gov (United States)

    Dussinger, Peter M.

    1993-09-01

    The work done by Thermacore, Inc., Lancaster, Pennsylvania, for the Phase 1, 1992 SBIR National Aeronautics and Space Administration Contract, 'Insoluble Coatings for Stirling Engine Heat Pipe Condenser Surfaces' is described. The work was performed between January 1992 and July 1992. Stirling heat engines are being developed for electrical power generation use on manned and unmanned earth orbital and planetary missions. Dish Stirling solar systems and nuclear reactor Stirling systems are two of the most promising applications of the Stirling engine electrical power generation technology. The sources of thermal energy used to drive the Stirling engine typically are non-uniform in temperature and heat flux. Liquid metal heat pipe receivers are used as thermal transformers and isothermalizers to deliver the thermal energy at a uniform high temperature to the heat input section of the Stirling engine. The use of a heat pipe receiver greatly enhances system efficiency and potential life span. One issue that is raised during the design phase of heat pipe receivers is the potential solubility corrosion of the Stirling engine heat input section by the liquid metal working fluid. This Phase 1 effort initiated a program to evaluate and demonstrate coatings, applied to nickel based Stirling engine heater head materials, that are practically 'insoluble' in sodium, potassium, and NaK. This program initiated a study of nickel aluminide as a coating and developed and demonstrated a heat pipe test vehicle that can be used to test candidate materials and coatings. Nickel 200 and nickel aluminide coated Nickel 200 were tested for 1000 hours at 800 C at a condensation heat flux of 25 W/sq cm. Subsequent analyses of the samples showed no visible sign of solubility corrosion of either coated or uncoated samples. The analysis technique, photomicrographs at 200X, has a resolution of better than 2.5 microns (.0001 in). The results indicate that the heat pipe environment is not directly

  17. Insoluble Coatings for Stirling Engine Heat Pipe Condenser Surfaces

    Science.gov (United States)

    Dussinger, Peter M.; Lindemuth, James E.

    1997-01-01

    The principal objective of this Phase 2 SBIR program was to develop and demonstrate a practically insoluble coating for nickel-based superalloys for Stirling engine heat pipe applications. Specific technical objectives of the program were: (1) Determine the solubility corrosion rates for Nickel 200, Inconel 718, and Udimet 72OLI in a simulated Stirling engine heat pipe environment, (2) Develop coating processes and techniques for capillary groove and screen wick structures, (3) Evaluate the durability and solubility corrosion rates for capillary groove and screen wick structures coated with an insoluble coating in cylindrical heat pipes operating under Stirling engine conditions, and (4) Design and fabricate a coated full-scale, partial segment of the current Stirling engine heat pipe for the Stirling Space Power Convertor program. The work effort successfully demonstrated a two-step nickel aluminide coating process for groove wick structures and interior wall surfaces in contact with liquid metals; demonstrated a one-step nickel aluminide coating process for nickel screen wick structures; and developed and demonstrated a two-step aluminum-to-nickel aluminide coating process for nickel screen wick structures. In addition, the full-scale, partial segment was fabricated and the interior surfaces and wick structures were coated. The heat pipe was charged with sodium, processed, and scheduled to be life tested for up to ten years as a Phase 3 effort.

  18. The characteristics of the V-type high temperature Stirling engine

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sang Won; Cho, Kyung Chul; Won, Min Young; Kim, Soo Yun; Jung, Pyung Suk [Yeungnam Univ., Gyeongsan (Korea, Republic of)

    2002-07-01

    V-type high temperature Stirling engine which is a kind of high temperature difference model Stirling engine is manufactured and its characteristics are measured at some temperature differences. Pressure, displacer position and rotation speed are measured. Displacer position and rotation speed are detected by photo-sensor. The hot side of V-type high temperature Stirling engine is heated by electric heater. The cold side of V-type high temperature Stirling engine is cooled by the air. This result may be useful for further design and manufacture of Ringbom Stirling engine. Also, it would be used as an educational material for mechanical engineering students.

  19. First phase testing of solar thermal engine at United Stirling

    Science.gov (United States)

    Percival, W.; Nelving, H. G.

    1981-01-01

    The objective of the program is to demonstrate that the Stirling engine is a practical efficient and reliable energy converter when integrated with a parabolic dish concentrator, and that it has the potential of being cost competitive with fossil fueled electric generating systems of today. The engine, with its receiver (solar heat exchanger), alternator and control system, is described.

  20. Stirling engines for biomass – what is the problem?

    DEFF Research Database (Denmark)

    Carlsen, Henrik

    2005-01-01

    engines is, that the combustion of bio-fuels and transfer of the heat from the combustion gases to the Stirling engine need much more space than for natural gas as fuel. Because of the large differences in specific heat transfer on the inside and the outside of the heater tubes, the specific power...

  1. Stirling engines. (Latest citations from the COMPENDEX database). Published Search

    Energy Technology Data Exchange (ETDEWEB)

    1992-12-01

    The bibliography contains citations concerning Stirling engine technology. Design, development, performance testing, and applications are discussed, including power generation, cryogenic cooling, solar power applications, and ground and marine vehicles. The citations also examine engine component design and material testing results. (Contains 250 citations and includes a subject term index and title list.)

  2. Linear Generator for a Free Piston Stirling Engine

    Directory of Open Access Journals (Sweden)

    OROS (POP Teodora Susana

    2014-05-01

    Full Text Available In this paper we present some aspects about the design of a Stirling engine driven linear generator. There are summarised the main steps of the magnetic and electric calculations with application to a particular case of a cogeneration plant bassed on Stirling engine. The designed linear generator is of fixed coil and moving magnets type. There are presented and a finite element method (FEM simulation of magnetic field. The linear generator design starts with the characteristics of the rare earth permanent magnets existing on the market.

  3. Four-Cylinder Stirling-Engine Computer Program

    Science.gov (United States)

    Daniele, C. J.; Lorenzo, C. F.

    1986-01-01

    Computer program developed for simulating steady-state and transient performance of four-cylinder Stirling engine. In model, four cylinders interconnected by four working spaces. Each working space contains seven volumes: one for expansion space, heater, cooler, and compression space and three for regenerator. Thermal time constant for regenerator mass associated with each regenator gas volume. Former code generates results very quickly, since it has only 14 state variables with no energy equation. Current code then used to study various aspects of Stirling engine in much more detail. Program written in FORTRAN IV for use on IBM 370 computer.

  4. Ecological optimisation of an irreversible Stirling heat engine

    Energy Technology Data Exchange (ETDEWEB)

    He, J.; Chen, J. [Xiamen Univ. (China). Dept. of Physics; Wu, C. [US Naval Academy, Annapolis, MD (United States). Dept. of Mechanical Engineering

    2001-10-01

    A general cycle model of an irreversible Stirling heat engine using an ideal or Van der Waals gas as the working substance is established. It includes three main sources of the irreversibility such as the heat transfer across finite-temperature differences in the isothermal processes, the regenerative loss resulting from the non-perfect regeneration in the regenerator, and the heat leak loss between the external heat reservoirs. The ecological function is taken as an objective function for optimisation. The performance characteristics of the Stirling heat engine at maximum ecological function are revealed. They are compared with other performance characteristics of the Stirling heat engine at maximum power output and efficiency in order to expound the significance of the ecological objective function. The results obtained here are of importance in the optimal design and operation of real Stirling heat engines. Finally, it is pointed out that the results obtained in this paper are very general, from which the optimal performance of the Ericsson heat engine using an ideal gas as the working substance and the Carnot heat engine can be derived directly. (author)

  5. Heat transfer measurements in the regenerator of a Stirling engine; Die Bestimmung des Waermeuebergangs im Regenerator einer Stirling-Maschine

    Energy Technology Data Exchange (ETDEWEB)

    Schikora, H.

    2002-07-01

    The F-CFC ban has stimulated research on new refrigerants and alternative technologies. The Stirling engine is one such option. Simulation programs commonly use empirical heat transfer relations. However, these are difficult to establish as Stirling engines have highly complex flow patterns. The author describes an experimental measurement of heat transfer in the regenerator of a Stirling engine. The results serve as a basis for calculating a new correlation for heat transfer in this important component, which will enable more realistic calculations of the Stirling engine process. [German] Wegen des weitgehenden Verbots der ozonzerstoerenden Fluor-Chlor-Kohlenwasserstoffe (FCKW) wird in der Kaeltetechnik seit Jahren nach Alternativen gesucht. Neben der Verwendung oekologisch vertraeglicher Kaeltemittel in Kaltdampf-Kaeltemaschinen kann auch der Einsatz alternativer Kaelteerzeugungsverfahren sinnvoll sein. In diesem Zusammenhang bieten sich vor allem Stirling-Kaeltemaschinen an, die mit dem umweltunschaedlichen Arbeitsgas Helium betrieben werden. Simulationsprogramme zur Berechnung dieser Maschinen verwenden u.a. empirische Beziehungen fuer den Waermeuebergang. Wegen der aeusserst komplexen Stroemungsformen in Stirling-Maschinen sind diese Beziehungen jedoch bisher relativ ungenau. In der vorliegenden Arbeit wird die experimentelle Bestimmung des Waermeuebergangs im Regenerator einer Stirling-Maschine beschrieben. Auf Basis dieser Ergebnisse wurde eine neue Korrelation fuer den Waermeuebergang in diesem wichtigen Bauteil ermittelt. Diese neue Beziehung ermoeglicht zukuenftig eine realitaetsnaehere Berechnung von Stirling-Maschinen. (orig.)

  6. Demonstration of a free piston Stirling engine driven linear alternator, phase I report

    Energy Technology Data Exchange (ETDEWEB)

    Goldwater, B.; Piller, S.; Rauch, J.; Cella, A.

    1977-03-30

    The results of the work performed under Phase I of the free piston Stirling engine demonstrator program are described. The objective of the program is to develop a 2 kW free piston Stirling engine/linear alternator energy conversion system, for an isotopic heat source, with a greater than 30% overall efficiency. Phase I was a 15-month effort to demonstrate the feasibility of the system through analysis and experimental testing of the individual components. An introduction to Stirling engines and the details of the tasks completed are presented in five major sections: (1) introduction to Stirling engine; (2) preliminary design of an advanced free piston Stirling demonstrator engine; (3) design and test of a 1 kWE output linear alternator; (4) test of a model free piston Stirling engine; and (5) development of a free piston Stirling engine computer simulation code.

  7. RE-1000 free-piston Stirling engine update

    Science.gov (United States)

    Schreiber, J.

    1985-01-01

    A free piston Stirling engine was tested. The tests performed over the past several years on the single cylinder engine were designed to investigate the dynamics of a free piston Stirling engine. The data are intended to be used primarily for computer code validation. The tests designed to investigate the sensitivity of the engine performance to variations in working space pressure, heater and cooler temperatures, regenerator porosity, power piston mass and displacer dynamics were completed. In addition, some data were recorded with alternate working fluids. A novel resonant balance system for the engine was also tested. Some preliminary test results of the tests performed are presented along with an outline of future tests to be run with the engine coupled to a hydraulic output unit. A description of the hydraulic output unit is given.

  8. RE-1000 free-piston Stirling engine update

    Science.gov (United States)

    Schreiber, J.

    1985-01-01

    A free piston Stirling engine was tested. The tests performed over the past several years on the single cylinder engine were designed to investigate the dynamics of a free piston Stirling engine. The data are intended to be used primarily for computer code validation. The tests designed to investigate the sensitivity of the engine performance to variations in working space pressure, heater and cooler temperatures, regenerator porosity, power piston mass and displacer dynamics were completed. In addition, some data were recorded with alternate working fluids. A novel resonant balance system for the engine was also tested. Some preliminary test results of the tests performed are presented along with an outline of future tests to be run with the engine coupled to a hydraulic output unit. A description of the hydraulic output unit is given.

  9. The kinematic Stirling engine as an energy conversion subsystem for paraboloidal dish solar thermal plants

    Science.gov (United States)

    Bowyer, J. M.

    1984-01-01

    The potential of a suitably designed and economically manufactured Stirling engine as the energy conversion subsystem of a paraboloidal dish-Stirling solar thermal power module was estimated. Results obtained by elementary cycle analyses were shown to match quite well the performance characteristics of an advanced kinematic Stirling engine, the United Stirling P-40, as established by current prototypes of the engine and by a more sophisticated analytic model of its advanced derivative. In addition to performance, brief consideration was given to other Stirling engine criteria such as durability, reliability, and serviceability. Production costs were not considered here.

  10. Thermal model of the Eurodish Solar Stirling Engine

    Energy Technology Data Exchange (ETDEWEB)

    Garcia Granados, F. J.; Silva Perez, M. a.; Ruiz-Hernandez, V.

    2006-07-01

    One parabolic dish Stirling engine system has been in operation at the Engineering School of Seville since March 2004. This system is one of the several Country Reference Units of the EnviroDish project, and is based on the Eurodish system. The system has achieved a maximum thermal efficiency (solar to electricity) close to 20% during operation. The analysis of the different parameters suggests a high potential for improvement. A thermal model of the main components of the engine package (cavity, receiver and Stirling engine) can help to evaluate possible modifications of the system and identify the most promising ones. The development of such thermal model and its comparison with experimental data gathered during this period, are reported in this work. Model results exhibit good qualitative agreement with the available measurements. However, the validation of the model will require measuring more parameters at the cavity, receiver and engine. (Author)

  11. A Self-Circulating Heat Exchanger for Use in Stirling and Thermoacoustic-Stirling Engines

    Science.gov (United States)

    Backhaus, Scott; Reid, Robert S.

    2005-02-01

    A major technical hurdle to the implementation of large Stirling engines or thermoacoustic engines is the reliability, performance, and manufacturability of the hot heat exchanger that brings high-temperature heat into the engine. Unlike power conversion devices that utilize steady flow, the oscillatory nature of the flow in Stirling and thermoacoustic engines restricts the length of a traditional hot heat exchanger to a peak-to-peak gas displacement, which is usually around 0.2 meters or less. To overcome this restriction, a new hot heat exchanger has been devised that uses a fluid diode in a looped pipe, which is resonantly driven by the oscillating gas pressure in the engine itself, to circulate the engine's working fluid around the loop. Instead of thousands of short, intricately interwoven passages that must be individually sealed, this new design consists of a few pipes that are typically 10 meters long. This revolutionary approach eliminates thousands of hermetic joints, pumps the engine's working fluid to and from a remote heat source without using moving parts, and does so without compromising on heat transfer surface area. Test data on a prototype loop integrated with a 1-kW thermoacoustic engine will be presented.

  12. A survey of oscillating flow in Stirling engine heat exchangers

    Science.gov (United States)

    Simon, Terrence W.; Seume, Jorge R.

    1988-01-01

    Similarity parameters for characterizing the effect of flow oscillation on wall shear stress, viscous dissipation, pressure drop and heat transfer rates are proposed. They are based on physical agruments and are derived by normalizing the governing equations. The literature on oscillating duct flows, regenerator and porous media flows is surveyed. The operating characteristics of the heat exchanger of eleven Stirling engines are discribed in terms of the similarity parameters. Previous experimental and analytical results are discussed in terms of these parameters and used to estimate the nature of the oscillating flow under engine operating conditions. The operating points for many of the modern Stirling engines are in or near the laminar to turbulent transition region. In several engines, working fluid does not pass entirely through heat exchangers during a cycle. Questions that need to be addressed by further research are identified.

  13. Thermodynamic analysis of a Stirling engine including regenerator dead volume

    Energy Technology Data Exchange (ETDEWEB)

    Puech, Pascal; Tishkova, Victoria [Universite de Toulouse, UPS, CNRS, CEMES, 29 rue Jeanne Marvig, F-31055 Toulouse (France)

    2011-02-15

    This paper provides a theoretical investigation on the thermodynamic analysis of a Stirling engine with linear and sinusoidal variations of the volume. The regenerator in a Stirling engine is an internal heat exchanger allowing to reach high efficiency. We used an isothermal model to analyse the net work and the heat stored in the regenerator during a complete cycle. We show that the engine efficiency with perfect regeneration doesn't depend on the regenerator dead volume but this dead volume strongly amplifies the imperfect regeneration effect. An analytical expression to estimate the improvement due to the regenerator has been proposed including the combined effects of dead volume and imperfect regeneration. This could be used at the very preliminary stage of the engine design process. (author)

  14. Optimal power and efficiency of quantum Stirling heat engines

    Science.gov (United States)

    Yin, Yong; Chen, Lingen; Wu, Feng

    2017-01-01

    A quantum Stirling heat engine model is established in this paper in which imperfect regeneration and heat leakage are considered. A single particle which contained in a one-dimensional infinite potential well is studied, and the system consists of countless replicas. Each particle is confined in its own potential well, whose occupation probabilities can be expressed by the thermal equilibrium Gibbs distributions. Based on the Schrödinger equation, the expressions of power output and efficiency for the engine are obtained. Effects of imperfect regeneration and heat leakage on the optimal performance are discussed. The optimal performance region and the optimal values of important parameters of the engine cycle are obtained. The results obtained can provide some guidelines for the design of a quantum Stirling heat engine.

  15. Manufacturing and testing of a gamma type Stirling engine

    Energy Technology Data Exchange (ETDEWEB)

    Can Cinar [Gazi University, Ankara (Turkey). Faculty of Technical Education; Halit Karabulut [Akdeniz University, Antalya (Turkey). Mechanical Engineering Dept.

    2005-01-01

    In this study, a gamma type Stirling engine with 276 cc swept volume was designed and manufactured. The engine was tested with air and helium by using an electrical furnace as heat source. Working characteristics of the engine were obtained within the range of heat source temperature 700-1000{sup o}C and range of charge pressure 1-4.5 bar. Maximum power output was obtained with helium at 1000{sup o}C heat source temperature and 4 bar charge pressure as 128.3 W. The maximum torque was obtained as 2 N m at 1000{sup o}C heat source temperature and 4 bar helium charge pressure. Results were found to be encouraging to initiate a Stirling engine project for 1 kW power output. (author)

  16. Army development of Stirling engine-generator sets

    Science.gov (United States)

    Dochat, G. R.; Vaughn, D.

    The development status of the 3-kW variable-fuel free-piston Stirling-engine/alternator units being built for the US Army is reviewed. The design, performance, repeatability, reliability, and transient response of the first engineering model are discussed and illustrated in drawings, tables, and graphs. Control-system, alternator, combustor, and auxiliary-system modifications are being incorporated in the advanced development models.

  17. Performance Analysis and Optimization of a Solar Powered Stirling Engine with Heat Transfer Considerations

    Directory of Open Access Journals (Sweden)

    Chia-En Ho

    2012-09-01

    Full Text Available This paper investigates the optimization of the performance of a solar powered Stirling engine based on finite-time thermodynamics. Heat transference in the heat exchangers between a concentrating solar collector and the Stirling engine is studied. The irreversibility of a Stirling engine is considered with the heat transfer following Newton's law. The power generated by a Stirling engine is used as an objective function for maximum power output design with the concentrating solar collector temperature and the engine thermal efficiency as the optimization parameters. The maximum output power of engine and its corresponding system parameters are determined using a genetic algorithm.

  18. The United Stirling P40 engine for solar dish concentrator application

    Science.gov (United States)

    Ortegren, L.; Sjostedt, L. E.

    1980-01-01

    The United Stirling P40 engine is a key component in a solar concentration based energy conversion system, to be demonstrated and tested during 1980-81. The inherent characteristics of modern Stirling engines is reviewed focusing on the baseline P40 double-acting engine. The extent of modifications required for the solar application is reviewed and performance data are predicted. Finally, the potential of an advanced solar Stirling engine is briefly considered.

  19. Characterization of the Advanced Stirling Radioisotope Generator Engineering Unit 2

    Science.gov (United States)

    Lewandowski, Edward J.; Oriti, Salvatore M.; Schifer, Niholas A.

    2016-01-01

    Significant progress was made developing the Advanced Stirling Radioisotope Generator (ASRG) 140-W radioisotope power system. While the ASRG flight development project has ended, the hardware that was designed and built under the project is continuing to be tested to support future Stirling-based power system development. NASA Glenn Research Center recently completed the assembly of the ASRG Engineering Unit 2 (EU2). The ASRG EU2 consists of the first pair of Sunpower's Advanced Stirling Convertor E3 (ASC-E3) Stirling convertors mounted in an aluminum housing, and Lockheed Martin's Engineering Development Unit (EDU) 4 controller (a fourth-generation controller). The ASC-E3 convertors and Generator Housing Assembly (GHA) closely match the intended ASRG Qualification Unit flight design. A series of tests were conducted to characterize the EU2, its controller, and the convertors in the flight-like GHA. The GHA contained an argon cover gas for these tests. The tests included measurement of convertor, controller, and generator performance and efficiency; quantification of control authority of the controller; disturbance force measurement with varying piston phase and piston amplitude; and measurement of the effect of spacecraft direct current (DC) bus voltage on EU2 performance. The results of these tests are discussed and summarized, providing a basic understanding of EU2 characteristics and the performance and capability of the EDU 4 controller.

  20. A Typical Simulation of a 3-KW Stirling Engine

    Directory of Open Access Journals (Sweden)

    Duan Chen

    2012-10-01

    Full Text Available Stirling engine is being received more and more attention with the development of renewable energy utility. The paper described the design and simulation of a 3-KW Stirling engine based on a testing V-type machine while in the process of manufactured at the Huazhong University of Science and Technology. The engine was driven by solar energy. Based on the testing machine, the heater model of variable heat source, regenerator model and complete appliance model were built, and the thermal performance was simulated and shown under a typical sunlight in the area of Wuhan. The results suggested that the output power curve of Stirling engine appeared as the shape of a saddle in consideration that the radiant energy density of solar energy was non-constant, and electrical heating was employed to serve as the auxiliary heat source. There was about 1.83 KW output work of the manufactured engine during the simulation, and the effective efficiency was about 25.4%.

  1. Development of biomass fueled stirling engine; Udvikling af biomassefyret stirlingmotor

    Energy Technology Data Exchange (ETDEWEB)

    Carlsen, H.; Bovin, J.

    2001-04-01

    The report treats the development of a stirling engine with an electric effect of 35 kW for small local cogeneration plants, which use wood chips as fuel. The development of the stirling engine, which is named SM3B, is based on the results from an earlier project, where a stirling engine (SM3A) with the same fundamental construction was developed and tested. The report treats the whole development with focus on the activities relating to the further development of the SM3A-engine to SM3B. The developed stirling engines have four double-acting cylinders. The four heat exchangers, to which the heat from the combustion of wood chips is supplied, make a quadratic combustion chamber above the engine. The heat exchangers are constructed in taking into account that solid fuels are used, and they are therefore made of strong pipes and narrow passages are avoided, so that particles in the flue gasses do not clog the heat exchangers. The stirling engine itself is constructed as a hermetic unity, where the generator is built into a pressurized crankcase in the same way as the electricity engine is built into a hermetic refrigeration compressor. Thus the leakage of work gas being helium these engines can be reduced to a minimum. The maximal electric effect for the first stirling engine, SM3A, was 28 kW, which was a little less than expected. The efficiency was about 18% depending on moisture content of the fuel. This engine has run for over 1400 hours with wood chip as fuel, but not without problems. In relation to the first stirling engine for biofuels (SM3A) the following have been obtained by the development of the new 35 kW-engine (SM3B): Electric-effect is improved from 28 kW to 34 kW by the same temperatures in heater and cooling water; The engine has ran satisfactorily for about 800 hours without mechanical problems; More noiseless; Better distribution of the thermic loading of the heater; Piston rods and crosshead connections are strengthened; The piston rod

  2. Maximum Work of Free-Piston Stirling Engine Generators

    Science.gov (United States)

    Kojima, Shinji

    2017-04-01

    Using the method of adjoint equations described in Ref. [1], we have calculated the maximum thermal efficiencies that are theoretically attainable by free-piston Stirling and Carnot engine generators by considering the work loss due to friction and Joule heat. The net work done by the Carnot cycle is negative even when the duration of heat addition is optimized to give the maximum amount of heat addition, which is the same situation for the Brayton cycle described in our previous paper. For the Stirling cycle, the net work done is positive, and the thermal efficiency is greater than that of the Otto cycle described in our previous paper by a factor of about 2.7-1.4 for compression ratios of 5-30. The Stirling cycle is much better than the Otto, Brayton, and Carnot cycles. We have found that the optimized piston trajectories of the isothermal, isobaric, and adiabatic processes are the same when the compression ratio and the maximum volume of the same working fluid of the three processes are the same, which has facilitated the present analysis because the optimized piston trajectories of the Carnot and Stirling cycles are the same as those of the Brayton and Otto cycles, respectively.

  3. Stirling engine - Approach for long-term durability assessment

    Science.gov (United States)

    Tong, Michael T.; Bartolotta, Paul A.; Halford, Gary R.; Freed, Alan D.

    1992-01-01

    The approach employed by NASA Lewis for the long-term durability assessment of the Stirling engine hot-section components is summarized. The approach consists of: preliminary structural assessment; development of a viscoplastic constitutive model to accurately determine material behavior under high-temperature thermomechanical loads; an experimental program to characterize material constants for the viscoplastic constitutive model; finite-element thermal analysis and structural analysis using a viscoplastic constitutive model to obtain stress/strain/temperature at the critical location of the hot-section components for life assessment; and development of a life prediction model applicable for long-term durability assessment at high temperatures. The approach should aid in the provision of long-term structural durability and reliability of Stirling engines.

  4. Simulational nanoengineering: Molecular dynamics implementation of an atomistic Stirling engine

    Science.gov (United States)

    Rapaport, D. C.

    2009-04-01

    A nanoscale-sized Stirling engine with an atomistic working fluid has been modeled using molecular dynamics simulation. The design includes heat exchangers based on thermostats, pistons attached to a flywheel under load, and a regenerator. Key aspects of the behavior, including the time-dependent flows, are described. The model is shown to be capable of stable operation while producing net work at a moderate level of efficiency.

  5. Testing of the United Stirling 4-95 solar Stirling engine on test bed concentrator

    Science.gov (United States)

    Nelving, H. G.

    1984-01-01

    The objectives with the testing, test set-ups, component designs, and the results of the testing of the solar Stirling engine in a parabolic dish system are presented. The most important tests are characterization of receivers, full day performance of complete system, cavity and aperture window test including influence from windeffects, control system tests, radiator system tests and special temperature measurements with infrared camera. The influence on performance of flux distribution depnding on concentrator alignment, and the optimum receiver operating criteria when balancing flux and temperatures on cooled receiver surface while avoiding flux on uncooled surfaces are also discussed.

  6. Testing of the United Stirling 4-95 solar Stirling engine on test bed concentrator

    Science.gov (United States)

    Nelving, H. G.

    1984-03-01

    The objectives with the testing, test set-ups, component designs, and the results of the testing of the solar Stirling engine in a parabolic dish system are presented. The most important tests are characterization of receivers, full day performance of complete system, cavity and aperture window test including influence from windeffects, control system tests, radiator system tests and special temperature measurements with infrared camera. The influence on performance of flux distribution depnding on concentrator alignment, and the optimum receiver operating criteria when balancing flux and temperatures on cooled receiver surface while avoiding flux on uncooled surfaces are also discussed.

  7. EXPERIMENTAL INVESTIGATION OF AN AIR CHARGED LOW POWERED STIRLING ENGINE

    Directory of Open Access Journals (Sweden)

    Can ÇINAR

    2004-01-01

    Full Text Available In this study, an air charged, low powered manufactured ? type Stirling engine was investigated experimentally. Tests were conducted at 800, 900 and 1000 °C hot source temperatures, 1, 1.5, 2, 2.5, 3, 3.5 bars air charge pressure. The variation of engine power depending on the charge pressure and hot source temperature for two different heat transfer area was investigated experimentally. Maximum output power was obtained at 1000 °C and 3 bars charge pressure as 58 W at 441 rpm. Engine speed was reached at 846 rpm without load.

  8. Recovery of Exhaust Waste Heat for ICE Using the Beta Type Stirling Engine

    Directory of Open Access Journals (Sweden)

    Wail Aladayleh

    2015-01-01

    Full Text Available This paper investigates the potential of utilizing the exhaust waste heat using an integrated mechanical device with internal combustion engine for the automobiles to increase the fuel economy, the useful power, and the environment safety. One of the ways of utilizing waste heat is to use a Stirling engine. A Stirling engine requires only an external heat source as wasted heat for its operation. Because the exhaust gas temperature may reach 200 to 700°C, Stirling engine will work effectively. The indication work, real shaft power and specific fuel consumption for Stirling engine, and the exhaust power losses for IC engine are calculated. The study shows the availability and possibility of recovery of the waste heat from internal combustion engine using Stirling engine.

  9. Thermal energy storage for the Stirling engine powered automobile

    Science.gov (United States)

    Morgan, D. T. (Editor)

    1979-01-01

    A thermal energy storage (TES) system developed for use with the Stirling engine as an automotive power system has gravimetric and volumetric storage densities which are competitive with electric battery storage systems, meets all operational requirements for a practical vehicle, and can be packaged in compact sized automobiles with minimum impact on passenger and freight volume. The TES/Stirling system is the only storage approach for direct use of combustion heat from fuel sources not suitable for direct transport and use on the vehicle. The particular concept described is also useful for a dual mode TES/liquid fuel system in which the TES (recharged from an external energy source) is used for short duration trips (approximately 10 miles or less) and liquid fuel carried on board the vehicle used for long duration trips. The dual mode approach offers the potential of 50 percent savings in the consumption of premium liquid fuels for automotive propulsion in the United States.

  10. The study, design and simulation of a free piston Stirling engine linear alternatorThe study, design and simulation of a free piston Stirling engine linear alternator

    Directory of Open Access Journals (Sweden)

    Teodora Susana Oros

    2014-12-01

    Full Text Available This paper presents a study, design and simulation of a Free Piston Stirling Engine Linear Alternator. There are presented the main steps of the magnetic and electric calculations for a permanent magnet linear alternator of fixed coil and moving magnets type. Finally, a detailed thermal, mechanical and electrical model for a Stirling engine linear alternator have been made in SIMULINK simulation program. The linear alternator simulation model uses a controllable DC voltage which simulates the linear alternator combined with a rectifier, a variable load and a DC-DC converter, which compensates for the variable nature of Stirling engine operation, and ensures a constant voltage output regardless of the load.

  11. Development of a Thermoacoustic Stirling Engine Technology Demonstrator

    Science.gov (United States)

    Reissner, Alexander; Gerger, Joachim; Hummel, Stefan; Reißig, Jannis; Pawelke, Roland

    2014-08-01

    Waste heat is a primary source of energy loss in many aerospace and terrestrial applications. FOTEC, an Austrian Research Company located in Wiener Neustadt, is presently developing a micro power converter, promising high efficiencies even for small- scale applications. The converter is based on an innovative thermoacoustic stirling engine concept without any moving parts. Such a maintenance-free engine system would be particularly suitable for advanced space power systems (radioisotope, waste heat) or even within the scope of terrestrial energy harvesting. This paper will summarizes the status of our ongoing efforts on this micro power converter technology.

  12. Stochastic Stirling Engine Operating in Contact with Active Baths

    Directory of Open Access Journals (Sweden)

    Ruben Zakine

    2017-04-01

    Full Text Available A Stirling engine made of a colloidal particle in contact with a nonequilibrium bath is considered and analyzed with the tools of stochastic energetics. We model the bath by non Gaussian persistent noise acting on the colloidal particle. Depending on the chosen definition of an isothermal transformation in this nonequilibrium setting, we find that either the energetics of the engine parallels that of its equilibrium counterpart or, in the simplest case, that it ends up being less efficient. Persistence, more than non-Gaussian effects, are responsible for this result.

  13. Stochastic Stirling Engine Operating in Contact with Active Baths

    Science.gov (United States)

    Zakine, Ruben; Solon, Alexandre; Gingrich, Todd; van Wijland, Frédéric

    2017-04-01

    A Stirling engine made of a colloidal particle in contact with a nonequilibrium bath is considered and analyzed with the tools of stochastic energetics. We model the bath by non Gaussian persistent noise acting on the colloidal particle. Depending on the chosen definition of an isothermal transformation in this nonequilibrium setting, we find that either the energetics of the engine parallels that of its equilibrium counterpart or, in the simplest case, that it ends up being less efficient. Persistence, more than non Gaussian effects, are responsible for this result.

  14. Dynamics and control of Stirling engines in a 15 kWe solar electric generation concept

    Science.gov (United States)

    Das, R. L.; Bahrami, K. A.

    1979-01-01

    This paper discusses the application of kinematic and free piston Stirling engines in a 15 kWe dish-electric approach for solar thermal electric generation. Initially, the principle of operation of Stirling engines in solar thermal electric generation is discussed. Then, under certain simplifying assumptions, mathematical models describing the dynamic operation of the kinematic and free piston Stirling engines are developed. It is found that the engine dynamics may be approximated by second order models. Control mechanisms for both types of Stirling engines are discussed. An approach based on the modulation of the working fluid mean pressure is presented. It is concluded that this approach offers a fast and effective means of control. The free piston Stirling engine, being a thermally driven mechanical oscillator, presents unique control requirements. These are discussed in this paper.

  15. Dynamics and control of Stirling engines in a 15 kWe solar electric generation concept

    Science.gov (United States)

    Das, R. L.; Bahrami, K. A.

    1979-01-01

    This paper discusses the application of kinematic and free piston Stirling engines in a 15 kWe dish-electric approach for solar thermal electric generation. Initially, the principle of operation of Stirling engines in solar thermal electric generation is discussed. Then, under certain simplifying assumptions, mathematical models describing the dynamic operation of the kinematic and free piston Stirling engines are developed. It is found that the engine dynamics may be approximated by second order models. Control mechanisms for both types of Stirling engines are discussed. An approach based on the modulation of the working fluid mean pressure is presented. It is concluded that this approach offers a fast and effective means of control. The free piston Stirling engine, being a thermally driven mechanical oscillator, presents unique control requirements. These are discussed in this paper.

  16. Modeling for control of a kinematic wobble-yoke Stirling engine

    NARCIS (Netherlands)

    Garcia-Canseco, Eloisa; Alvarez-Aguirre, Alejandro; Scherpen, Jacquelien M. A.

    2015-01-01

    In this paper we derive the dynamical model of a four-cylinder double-acting wobble-yoke Stirling engine. In addition to the classical thermodynamics methods that dominate the literature of Stirling mechanisms, we present a control systems viewpoint to analyze the dynamic properties of the engine. W

  17. Results from tests of a Stirling engine and wood chips gasifier plant

    DEFF Research Database (Denmark)

    Carlsen, Henrik; Bovin, Jonas Kabell; Werling, J.

    2002-01-01

    The combination of thermal gasification and a Stirling engine is an interesting concept for use in small Combined Heat and Power (CHP) plants based on biomass, because the need for gas cleaning is eliminated and problems with fouling of the Stirling engine heater are considerably reduced...

  18. Modeling for control of a kinematic wobble-yoke Stirling engine

    NARCIS (Netherlands)

    Garcia-Canseco, Eloisa; Alvarez-Aguirre, Alejandro; Scherpen, Jacquelien M. A.

    2015-01-01

    In this paper we derive the dynamical model of a four-cylinder double-acting wobble-yoke Stirling engine. In addition to the classical thermodynamics methods that dominate the literature of Stirling mechanisms, we present a control systems viewpoint to analyze the dynamic properties of the engine. W

  19. MANUFACTURING AND TESTING OF A V-TYPE STIRLING ENGINE

    Directory of Open Access Journals (Sweden)

    B. Demir

    2012-01-01

    Full Text Available In this study, a V-type Stirling engine with 163 cc total swept volume was designed and manufactured. Air was used as working fluid. Performance tests were conducted at the range of 1-3 bar charge pressure and within the range of hot source temperature 700-1050 °C. Experimental results are given. Variation of engine power and torque with hot source temperature at various air charge pressure are tested. Also variation of engine torque with engine speed for different air charge pressure are tested. According to experimental analysis, the maximum engine power was obtained as 21.334 W at 1050 ˚C hot source temperature and 1.5 bars charge pressure.

  20. Assessment of the potential of slow-running Stirling engine; Potentialabschaetzung eines langsam laufenden Stirlingmotors

    Energy Technology Data Exchange (ETDEWEB)

    Boeckh, P. von [Fachhochschule beider Basel, Muttenz (Switzerland); Zumsteg, H.; Gaegauf, Ch. [Oekozentrum Langenbruck, Langenbruck (Switzerland)

    2002-07-01

    This final report for the Swiss Federal Office of Energy (SFOE) assesses the potential of a slow-running Stirling engine developed by the BSR Solar Research company as the basis for a production model running as heat pump. A critical appraisal of the results provided by the manufacturer is made and their applicability to a planned series-production machine is examined. The data are also compared with those of a Stirling machine manufactured by the SIG company. The efficiency of the Stirling engine is discussed and various measures are proposed for its optimisation. Several points that are to be looked at critically during the further development of the machine are listed. According to the authors, the use of this Stirling machine as a heat pump can only be realised as two separate Stirlings (drive and heat pump) or as an electrically driven Stirling heat pump, whereby no advantages over the cold vapour process can be found.

  1. Automotive Stirling Engine Mod 1 Design Review, volume 2

    Science.gov (United States)

    1982-01-01

    The auxiliaries and the control system for the ASE MOD I: (1) provide the required fuel and air flows for a well controlled combustion process, generating heat to the Stirling cycle; (2) provide a driver acceptable method for controlling the power output of the engine; (3) provide adequate lubrication and cooling water circulation; (4) generate the electric energy required for engine and vehicle operation; (5) provide a driver acceptable method for starting, stopping and monitoring the engine; and (6) provide a guard system, that protects the engine at component or system malfunction. The control principles and the way the different components and sub-systems interact are described as well as the different auxiliaries, the air fuel system, the power control systems and the electronics. The arrangement and location of auxiliaries and other major components are also examined.

  2. The impact of heat exchanger fouling on the optimum operation and maintenance of the Stirling engine

    Energy Technology Data Exchange (ETDEWEB)

    Kuosa, M.; Kaikko, J.; Koskelainen, L. [Lappeenranta University of Technology, Department of Energy and Environmental Technology, P.O. Box 20, FI-53851 Lappeenranta (Finland)

    2007-07-15

    This paper focuses on the effect of heat exchanger fouling on the performance of the Stirling engine in combined heat and power (CHP) application. Fouling results from using biomass fuels and affects the heat exchanger that transfers heat into the engine. This heat exchanger is referred to as the heater. The heat exchanger that recovers heat from the flue gases is also affected by fouling. To determine the performance of the Stirling engine, a commercial Stirling analysis tool is applied together with models that have been developed for the heat transfer in the heater, regenerator and cooler of the engine. The Stirling engine model uses constant temperatures for the heat addition and rejection, with the theory of displacement engine as a basis. The fouling in the heat exchanger is taken into account by using a fouling factor that corresponds with the degradation in the total heat transfer coefficient. The Stirling engine model together with the model for heat exchanger fouling makes it possible to estimate the effect of fouling on the performance of the Stirling engine. A cost model is developed for the engine to translate changes in performance into economy in CHP operation. In the studied application, the Stirling engine is operated by the heat demand. Together with the selected control method, performance and cost models compose a tool for the simulation and optimization of the system. The use of the models to determine the optimal cleaning interval of the heat exchanger surfaces is considered. (author)

  3. Control of Stirling engine. Simplified, compressible model

    Science.gov (United States)

    Plotnikov, P. I.; Sokołowski, J.; Żochowski, A.

    2016-06-01

    A one-dimensional free boundary problem on a motion of a heavy piston in a tube filled with viscous gas is considered. The system of governing equations and boundary conditions is derived. The obtained system of differential equations can be regarded as a mathematical model of an exterior combustion engine. The existence of a weak solution to this model is proved. The problem of maximization of the total work of the engine is considered.

  4. Simulation of Temperature Fluctuations in Stirling Engine Regenerator Matrices

    DEFF Research Database (Denmark)

    Andersen, Stig Kildegaard; Carlsen, Henrik; Thomsen, Per Grove

    2003-01-01

    , and momentum and the ideal gas equation of state. ODEs that govern the dynamic behaviour of the regenerator matrix temperatures are included in the model. Known loss mechanisms are coupled directly into the governing equations instead of applying the losses as corrections to simulation results from...... and accurately calculated. Simulation results have been compared to experimental data for a 9 kW Stirling engine and reasonable agreement has been found over a wide range of operating conditions using Helium or Nitrogen as working gas. Simulation results indicate that fluctuations in the regenerator matrix...

  5. Integral finned heater and cooler for stirling engines

    Science.gov (United States)

    Corey, John A.

    1984-01-01

    A piston and cylinder for a Stirling engine and the like having top and bottom meshing or nesting finned conical surfaces to provide large surface areas in close proximity to the working gas for good thermal (addition and subtraction of heat) exchange to the working gas and elimination of the usual heater and cooler dead volume. The piston fins at the hot end of the cylinder are perforated to permit the gas to pass into the piston interior and through a regenerator contained therein.

  6. β Style Free-Piston Stirling Engine Control System Research

    Directory of Open Access Journals (Sweden)

    Xu Jian

    2016-01-01

    Full Text Available For the Free-Piston Stirling Engines (FPSE control system, a three -phase bridge circuit is reused as the system output about rectifier and start inverter. When FPSE system is in the power stage, the double closed loop control strategy and optimization algorithm of PI control parameters is adopted to ensure the highest system transmission efficiency under the requirements of the system output power and guarantee the stability of the running system. The simulation results prove the effectiveness of the above research content.

  7. Overview of the 1985 NASA Lewis Research Center SP-100 free-piston Stirling engine activities

    Science.gov (United States)

    Slaby, J. G.

    1985-01-01

    This effort is keyed on the design, fabrication, assembly, and testing of a 25 kWe Stirling space-power technology-feasibility demonstrator engine. Another facet of the SP-100 project covers the status of a 9000-hr endurance test conducted on a 2 kWe free-piston Stirling/linear alternator system employing hydrostatic gas bearings. Dynamic balancing of the RE-1000 engine (a 1 kWe free-piston Stirling engine) using a passive dynamic absorber will be discussed along with the results of a parametric study showing the relationships of Stirling power converter specific weight and efficiency as functions of Stirling engine heater to cooler temperature ratio. Planned tests will be described covering a hydrodynamic gas bearing concept for potential SP-100 application.

  8. Simulation of a Martini Displacer Free Piston Stirling Engine for Electric Power Generation

    National Research Council Canada - National Science Library

    Pascal Stouffs; Nasser Seraj Mehdizadeh

    2000-01-01

    .... A dynamic simulation of this engine has been developed using a decoupled analysis. The equation of motion of the free piston induces a strong coupling between the electrical load and the thermodynamics inside the free piston Stirling engine...

  9. Large eight.cylinder Stirling engine for biofuels

    DEFF Research Database (Denmark)

    Carlsen, Henrik; Biedermann, F.; Bovin, Jonas Kabell

    2003-01-01

    in the hot end connecting the expansion space with the hot end of the regenerator through the heater panel. However, this has resulted in comparably large dead volumes and flow losses in the connections between the heater and the regenerator/expansion volume. For the new eight-cylinder engine the design...... in the pressurised crankcase, has 6 poles corresponding to approximately 1000 rpm. Working gas is helium at a mean pressure of 45 bars. The eight heater panels, which form two separate square sections, are exposed directly to radiation from the combustion chamber. Each heater panel is divided in a section for heat...... transfer by radiation and heat transfer by convection. The convection part the heater has been optimised in order to obtain an equal distribution of heat transfer on each tube and at the same time maximise the heat transfer from the combustion products to the engine. In a double acting Stirling engine...

  10. A four-cylinder Stirling engine controls model

    Science.gov (United States)

    Lorenzo, C. F.; Daniele, C. J.

    1980-01-01

    A four working space, double acting piston, Stirling engine simulation was developed for controls studies. Two simulations, one for detailed fluid behavior, and a second model with simple fluid behavior but containing the four working space aspects and engine inertias, validate these models separately, then upgrade the four working space model by incorporating the detailed fluid behavior model for all four working spaces. The single working space model contains the detailed fluid dynamics. The four working space (FWS) model was built to observe the behavior of the whole engine. The drive dynamics and vehicle inertia effects are simulated. The capabilities of the model are exercised to look at working fluid supply transients, short circuit transients, and piston ring leakage effects.

  11. Palm Power Free-Piston Stirling Engine Control Electronics

    Science.gov (United States)

    Keiter, Douglas E.; Holliday, Ezekiel

    2007-01-01

    A prototype 35We, JP-8 fueled, soldier-wearable power system for the DARPA Palm Power program has been developed and tested by Sunpower. A hermetically-sealed 42We Sunpower Free-Piston Stirling Engine (FPSE) with integral linear alternator is the prime mover for this system. To maximize system efficiency over a broad range of output power, a non-dissipative, highly efficient electronic control system which modulates engine output power by varying piston stroke and converts the AC output voltage of the FPSE into 28Vdc for the Palm Power end user, has been designed and demonstrated as an integral component of the Palm Power system. This paper reviews the current status and progress made in developing the control electronics for the Palm Power system, in addition to describing the operation and demonstrated performance of the engine controller in the context of the current JP-8 fueled Palm Power system.

  12. United Stirling's solar engine development: The background for the Vanguard engine

    Science.gov (United States)

    Holgersson, S.

    1984-03-01

    The development and testing resulting in the Vanguard engine and some of the characteristics of the Stirling engine based power conversion unit are described. The major part of the solar engine development is concentrated to the three different areas, the receiver, the lubrication system and the control system. Five engines are on test within the solar project. The function of the components are validated in actual solar tests.

  13. Stirling Space Engine Program. Volume 1; Final Report

    Science.gov (United States)

    Dhar, Manmohan

    1999-01-01

    The objective of this program was to develop the technology necessary for operating Stirling power converters in a space environment and to demonstrate this technology in full-scale engine tests. Hardware development focused on the Component Test Power Converter (CTPC), a single cylinder, 12.5-kWe engine. Design parameters for the CTPC were 150 bar operating pressure, 70 Hz frequency, and hot-and cold-end temperatures of 1050 K and 525 K, respectively. The CTPC was also designed for integration with an annular sodium heat pipe at the hot end, which incorporated a unique "Starfish" heater head that eliminated highly stressed brazed or weld joints exposed to liquid metal and used a shaped-tubed electrochemical milling process to achieve precise positional tolerances. Selection of materials that could withstand high operating temperatures with long life were another focus. Significant progress was made in the heater head (Udimet 700 and Inconel 718 and a sodium-filled heat pipe); the alternator (polyimide-coated wire with polyimide adhesive between turns and a polyimide-impregnated fiberglass overwrap and samarium cobalt magnets); and the hydrostatic gas bearings (carbon graphite and aluminum oxide for wear couple surfaces). Tests on the CTPC were performed in three phases: cold end testing (525 K), engine testing with slot radiant heaters, and integrated heat pipe engine system testing. Each test phase was successful, with the integrated engine system demonstrating a power level of 12.5 kWe and an overall efficiency of 22 percent in its maiden test. A 1500-hour endurance test was then successfully completed. These results indicate the significant achievements made by this program that demonstrate the viability of Stirling engine technology for space applications.

  14. A Microfabricated Involute-Foil Regenerator for Stirling Engines

    Science.gov (United States)

    Tew, Roy; Ibrahim, Mounir; Danila, Daniel; Simon, Terrence; Mantell, Susan; Sun, Liyong; Gedeon, David; Kelly, Kevin; McLean, Jeffrey; Qiu, Songgang

    2007-01-01

    A segmented involute-foil regenerator has been designed, microfabricated and tested in an oscillating-flow rig with excellent results. During the Phase I effort, several approximations of parallel-plate regenerator geometry were chosen as potential candidates for a new microfabrication concept. Potential manufacturers and processes were surveyed. The selected concept consisted of stacked segmented-involute-foil disks (or annular portions of disks), originally to be microfabricated from stainless-steel via the LiGA (lithography, electroplating, and molding) process and EDM. During Phase II, re-planning of the effort led to test plans based on nickel disks, microfabricated via the LiGA process, only. A stack of nickel segmented-involute-foil disks was tested in an oscillating-flow test rig. These test results yielded a performance figure of merit (roughly the ratio of heat transfer to pressure drop) of about twice that of the 90 percent random fiber currently used in small approx.100 W Stirling space-power convertors-in the Reynolds Number range of interest (50 to 100). A Phase III effort is now underway to fabricate and test a segmented-involute-foil regenerator in a Stirling convertor. Though funding limitations prevent optimization of the Stirling engine geometry for use with this regenerator, the Sage computer code will be used to help evaluate the engine test results. Previous Sage Stirling model projections have indicated that a segmented-involute-foil regenerator is capable of improving the performance of an optimized involute-foil engine by 6 to 9 percent; it is also anticipated that such involute-foil geometries will be more reliable and easier to manufacture with tight-tolerance characteristics, than random-fiber or wire-screen regenerators. Beyond the near-term Phase III regenerator fabrication and engine testing, other goals are (1) fabrication from a material suitable for high temperature Stirling operation (up to 850 C for current engines; up to 1200 C

  15. The Experimental V4X Stirling Engine - A Pioneering Development

    Energy Technology Data Exchange (ETDEWEB)

    Lundholm, Gunnar

    2003-11-01

    A Swedish double-acting 35 kW V4 Stirling engine was developed in a pioneering effort with a number of simplified and novel design features. The overall design was made with the intention to fit a passenger car. The engine used standard automotive journal bearing technology, a new robust crosshead design, and sliding seals. A balancing shaft was used to remove first-order imbalances. Cooler, regenerator and heater geometry were first inherited from the Philips 4-65 swash-plate engine. Later a sequence of experimental heaters were designed and tested. Very little has until now been published on this engine, since its development was discontinued in favour of the double-crankshaft U4 engines 4-95 (P40), 4-275 (P75 Mk II and III) and 4-123 (MOD1). These designs were in turn later abandoned (with exception of the solar P40 engine) because of problems with for instance rattling gears. The V4 design concept was then revived in the automotive 60 kW MOD2 engine and the successful Kockums submarine 75 kW V4-275 engine. This paper describes the innovative design features, heater performance results and applications used for the development of fast power control.

  16. Microfabricated Segmented-Involute-Foil Regenerator for Stirling Engines

    Science.gov (United States)

    Ibrahim, Mounir; Danila, Daniel; Simon, Terrence; Mantell, Susan; Sun, Liyong; Gedeon, David; Qiu, Songgang; Wood, Gary; Kelly, Kevin; McLean, Jeffrey

    2010-01-01

    An involute-foil regenerator was designed, microfabricated, and tested in an oscillating-flow test rig. The concept consists of stacked involute-foil nickel disks (see figure) microfabricated via a lithographic process. Test results yielded a performance of about twice that of the 90-percent random-fiber currently used in small Stirling converters. The segmented nature of the involute- foil in both the axial and radial directions increases the strength of the structure relative to wrapped foils. In addition, relative to random-fiber regenerators, the involute-foil has a reduced pressure drop, and is expected to be less susceptible to the release of metal fragments into the working space, thus increasing reliability. The prototype nickel involute-foil regenerator was adequate for testing in an engine with a 650 C hot-end temperature. This is lower than that required by larger engines, and high-temperature alloys are not suited for the lithographic microfabrication approach.

  17. A study of the reliability of Stirling engines for distributed receiver systems

    Science.gov (United States)

    Holtz, R. E.; Uherka, K. L.

    1988-11-01

    The objective of this study was to examine the reliability of existing and improved Stirling engine concepts for dispersed solar dish/electric applications in the 25 to 50 kW sub e range. Five current kinematic Stirling engine designs have the capability to meet or exceed the 32 percent system efficiency goal of the DOE Solar Thermal Program. Experience with the Vanguard Solar-Dish/Stirling Engine module demonstrated that the 32 percent efficiency goal is realistic, but that improved Stirling engine reliability is necessary for successful implementation of dispersed solar power systems. A review of historical Stirling engine data illustrated that the three major reliability issues with kinematic Stirling engines are the piston-rod seals, engine hot parts and power control/drive systems. A specific kinematic engine concept that appears to have the potential for meeting the 50,000-hour operating lifetime requirement of solar power systems has a pressurized crankcase to reduce piston-rod seal problems, an indirectly heated hot-end section using heat pipes to smooth out temperature gradients in the heater tubes, and a variable-angle swashplate for power control. Further development efforts are required to establish reliability and validate performance goals of these engine concepts.

  18. Quantum Stirling heat engine and refrigerator with single and coupled spin systems

    Science.gov (United States)

    Huang, Xiao-Li; Niu, Xin-Ya; Xiu, Xiao-Ming; Yi, Xue-Xi

    2014-02-01

    We study the reversible quantum Stirling cycle with a single spin or two coupled spins as the working substance. With the single spin as the working substance, we find that under certain conditions the reversed cycle of a heat engine is NOT a refrigerator, this feature holds true for a Stirling heat engine with an ion trapped in a shallow potential as its working substance. The efficiency of quantum Stirling heat engine can be higher than the efficiency of the Carnot engine, but the performance coefficient of the quantum Stirling refrigerator is always lower than its classical counterpart. With two coupled spins as the working substance, we find that a heat engine can turn to a refrigerator due to the increasing of the coupling constant, this can be explained by the properties of the isothermal line in the magnetic field-entropy plane.

  19. Results from tests of a Stirling engine and wood chips gasifier plant

    DEFF Research Database (Denmark)

    Carlsen, Henrik; Bovin, Jonas Kabell; Werling, J.

    2002-01-01

    The combination of thermal gasification and a Stirling engine is an interesting concept for use in small Combined Heat and Power (CHP) plants based on biomass, because the need for gas cleaning is eliminated and problems with fouling of the Stirling engine heater are considerably reduced. Further......The combination of thermal gasification and a Stirling engine is an interesting concept for use in small Combined Heat and Power (CHP) plants based on biomass, because the need for gas cleaning is eliminated and problems with fouling of the Stirling engine heater are considerably reduced...... of particles in the gas is small. Furthermore, the updraft gasifier can utilise fuels with a high content of water. The disadvantage is that the gas has a large content of tar. Tar is a large problem for utilisation of gasification gas in an internal combustion engine, but the external combustion...

  20. 40 kW Stirling engine for solid fuel

    DEFF Research Database (Denmark)

    Carlsen, Henrik; Trærup, Jens; Ammundsen, Niels

    1996-01-01

    that dynamic seals are avoided. Grease lubricated bearings are used in a special designed crank mechanism, which eliminates guiding forces on the pistons. Helium is used as the working gas at 4 MPa mean pressure. The first test of the 40 kW engine with natural gas as fuel has been made in the laboratory...... been designed primarily for utilisation of wood chips. Maximum shaft power is 40 kW corresponding to an electric output of 36 kW. Biomass needs more space in the combustion chamber compared to gas and liquid fuels, and a large heat transfer area is necessary. The design of the new Stirling engine has...... been adapted to the special demands of combustion of wood chips, resulting in a large engine compared to engines for gas or liquid fuels. The engine has four-cylinders arranged in a square. The design is made as a hermetic unit, where the alternator is built into the pressurised crankcase so...

  1. High Specific Power Multiple-Cylinder Alpha Free-Piston Stirling Engine Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The proposed effort will result in a design of a 30 kWe dual opposed alpha free-piston Stirling engine power conversion system for space applications, and provide...

  2. Burning of the biomass in the furnace using a Stirling engine

    Energy Technology Data Exchange (ETDEWEB)

    Koffi, Maxime; Lora, Electo Eduardo Silva [Universidade Federal de Itajuba (UNIFEI), MG (Brazil)]. E-mails: mkf_j@yahoo.fr; electo@unifei.edu.br

    2008-07-01

    Today, advances in technology for combustion and to control emissions resulted in programs of research and development. Within these technologies used for generation of electricity from biomass has been the Stirling engine combustion which can be directly attached to a cycle of steam and gasification. The Stirling engine technology gained strength because of its great advantages you can use any source of heat, including solar. It is worth mentioning that the use of biomass as fuel in applied technology, energy conversion as a Stirling engine favors the generation of electricity distributed low-power, very viable in isolated communities, because of its low cost of acquisition and maintenance for synchronous generators. This paper aims to use the heat released during the burning of biomass (eucalyptus) to drive a Stirling engine. (author)

  3. Study of Stirling Engine Efficiency Coefficient under Conditions Being Close to Real Ones

    Directory of Open Access Journals (Sweden)

    R. Abramian

    2013-01-01

    Full Text Available An absolute internal efficiency coefficient of the Stirling engine has been obtained without regenerator and with regenerator under conditions when van der Waals gas serves as a working medium. The paper reveals that while taking into account own volume of molecules thermal efficiency coefficient of the Stirling engine depends on mole number of the working medium  and it is slightly increasing  in comparison with the case of an ideal gas. The paper gives consideration to heat losses while the Stirling machine operates with heat regeneration. Dependence of regeneration rate on time of heat transfer has been obtained in the paper. 

  4. Hydrogen/Oxygen Propellant Densifier Thermoacoustic Stirling Heat Engine

    Science.gov (United States)

    Nguyen, C. T.; Yeckley, A. J.; Schieb, D. J.; Haberbusch, M. S.

    2004-06-01

    A unique, patent pending, thermoacoustic propellant densifier for the simultaneous densification of hydrogen and oxygen propellants for aerospace vehicles is introduced. The densifier uses a high-pressure amplitude, low-frequency Thermoacoustic Stirling Heat Engine (TASHE) coupled with a uniquely designed half-wave-length resonator to drive a pulse tube cryocooler using a Gas Helium (GHe) working fluid. The extremely reliable TASHE has no moving parts, is water cooled, and is electrically powered. The helium-filled TASHE is designed to ASME piping codes, which enables the safe inspection of the system while in operation. The resonator is designed to eliminate higher-order harmonics with minimal acoustic losses. A system description will be presented, and experimental data on both the TASHE and the resonator will be compared with analytical results.

  5. A new mathematical approach to the Stirling engine analysis

    Science.gov (United States)

    de Cicco, A.

    A new approach to the theoretical analysis of Stirling machine is presented. The mathematical model takes into account the phenomena occurring into the all main parts of the engine such as the expansion space, the heater, the regenerator, the cooler and the compression space as well. Energy, mass and momentum conservation differential equations are applied to each control volume, with the assumption the working fluid being regarded as a perfect, compressible gas, while the flow is unsteady, one dimensional, with friction and heat transfer. A set of algebraic equations is introduced, in order to consider the boundary conditions which express the constancy of total enthalpy and mass flow, and total pressure drop of the fluid flowing through the boundary sections of the control volumes.

  6. Stirling engine power control and motion conversion mechanism

    Science.gov (United States)

    Marks, David T.

    1983-01-01

    A motion conversion device for converting between the reciprocating motion of the pistons in a Stirling engine and the rotating motion of its output shaft, and for changing the stroke and phase of the pistons, includes a lever pivoted at one end and having a cam follower at the other end. The piston rod engages the lever intermediate its ends and the cam follower engages a cam keyed to the output shaft. The lever pivot can be moved to change the length of the moment arm defined between the cam follower and the piston rod the change the piston stroke and force exerted on the cam, and the levers can be moved in opposite directions to change the phase between pistons.

  7. Low-temperature Stirling Engine for Geothermal Electricity Generation

    Energy Technology Data Exchange (ETDEWEB)

    Stillman, Greg [Cool Energy, Inc., Boulder, CO (United States); Weaver, Samuel P. [Cool Energy, Inc., Boulder, CO (United States)

    2013-03-27

    Up to 2700 terawatt-hours per year of geothermal electricity generation capacity has been shown to be available within North America, typically with wells drilled into geologically active regions of the earth's crust where this energy is concentrated (Huttrer, 2001). Of this potential, about half is considered to have temperatures high enough for conventional (steam-based) power production, while the other half requires unconventional power conversion approaches, such as organic Rankine cycle systems or Stirling engines. If captured and converted effectively, geothermal power generation could replace up to 100GW of fossil fuel electric power generation, leading to a significant reduction of US power sector emissions. In addition, with the rapid growth of hydro-fracking in oil and gas production, there are smaller-scale distributed power generation opportunities in heated liquids that are co-produced with the main products. Since 2006, Cool Energy, Inc. (CEI) has designed, fabricated and tested four generations of low-temperature (100°C to 300°C) Stirling engine power conversion equipment. The electric power output of these engines has been demonstrated at over 2kWe and over 16% thermal conversion efficiency for an input temperature of 215°C and a rejection temperature of 15°C. Initial pilot units have been shipped to development partners for further testing and validation, and significantly larger engines (20+ kWe) have been shown to be feasible and conceptually designed. Originally intended for waste heat recovery (WHR) applications, these engines are easily adaptable to geothermal heat sources, as the heat supply temperatures are similar. Both the current and the 20+ kWe designs use novel approaches of self-lubricating, low-wear-rate bearing surfaces, non-metallic regenerators, and high-effectiveness heat exchangers. By extending CEI's current 3 kWe SolarHeart® Engine into the tens of kWe range, many additional applications are possible, as one

  8. Assessment of a 40-kilowatt stirling engine for underground mining applications

    Science.gov (United States)

    Cairelli, J. E.; Kelm, G. G.; Slaby, J. G.

    1982-06-01

    An assessment of alternative power souces for underground mining applications was performed. A 40-kW Stirling research engine was tested to evaluate its performance and emission characteristics when operated with helium working gas and diesel fuel. The engine, the test facility, and the test procedures are described. Performance and emission data for the engine operating with helium working gas and diesel fuel are reported and compared with data obtained with hydrogen working gas and unleaded gasoline fuel. Helium diesel test results are compared with the characteristics of current diesel engines and other Stirling engines. External surface temperature data are also presented. Emission and temperature results are compared with the Federal requirements for diesel underground mine engines. The durability potential of Stirling engines is discussed on the basis of the experience gaind during the engine tests.

  9. Testing of Stirling engine solar reflux heat-pipe receivers

    Energy Technology Data Exchange (ETDEWEB)

    Rawlinson, S.; Cordeiro, P.; Dudley, V.; Moss, T.

    1993-07-01

    Alkali metal heat-pipe receivers have been identified as a desirable interface to couple a Stirling-cycle engine with a parabolic dish solar concentrator. The reflux receiver provides power nearly isothermally to the engine heater heads while de-coupling the heater head design from the solar absorber surface design. The independent design of the receiver and engine heater head leads to high system efficiency. Heat pipe reflux receivers have been demonstrated at approximately 30 kW{sub t} power throughput by others. This size is suitable fm engine output powers up to 10 kW{sub e}. Several 25-kW{sub e}, Stirling-cycle engines exist, as well as designs for 75-kW{sub t} parabolic dish solar concentrators. The extension of heat pipe technology from 30 kW{sub t} to 75 kW{sub t} is not trivial. Heat pipe designs are pushed to their limits, and it is critical to understand the flux profiles expected from the dish, and the local performance of the wick structure. Sandia has developed instrumentation to monitor and control the operation of heat pipe reflux receivers to test their throughput limits, and analytical models to evaluate receiver designs. In the past 1.5 years, several heat pipe receivers have been tested on Sandia`s test bed concentrators (TBC`s) and 60-kW{sub t} solar furnace. A screen-wick heat pipe developed by Dynatherm was tested to 27.5 kW{sub t} throughput. A Cummins Power Generation (CPG)/Thermacore 30-kW{sub t} heat pipe was pushed to a throughput of 41 kW{sub t} to verify design models. A Sandia-design screen-wick and artery 75-kW{sub t} heat pipe and a CPG/Thermacore 75-kW{sub t} sintered-wick heat pipe were also limit tested on the TBC. This report reviews the design of these receivers, and compares test results with model predictions.

  10. Application Model for a Stirling Engine Micro-Generation System in Caravans in Different European Locations

    Directory of Open Access Journals (Sweden)

    Carlos Ulloa

    2013-02-01

    Full Text Available This article describes a simple model obtained from a commercial Stirling engine and used for heating a caravan. The Stirling engine has been tested in the lab under different electrical load conditions, and the operating points obtained are presented. As an application of the model, a series of transient simulations was performed using TRNSYS. During these simulations, the caravan is traveling throughout the day and is stationary at night. Therefore, during the night-time hours, the heating system is turned on by means of the Stirling engine. The study was performed for each month of the year in different European cities. The different heating demand profiles for different cities induce variation in the electricity production, as it has been assumed that electricity is only generated when the thermal demand requires the operation of the Stirling system. As a result, a comparison of the expected power generation in different European cities is presented.

  11. 5-kWe Free-piston Stirling Engine Convertor

    Science.gov (United States)

    Chapman, Peter A.; Vitale, Nicholas A.; Walter, Thomas J.

    2008-01-01

    The high reliability, long life, and efficient operation of Free-Piston Stirling Engines (FPSEs) make them an attractive power system to meet future space power requirements with less mass, better efficiency, and less total heat exchanger area than other power convertor options. FPSEs are also flexible in configuration as they can be coupled with many potential heat sources and various heat input systems, heat rejection systems, and power management and distribution systems. Development of a 5-kWe Stirling Convertor Assembly (SCA) is underway to demonstrate the viability of an FPSE for space power. The design is a scaled-down version of the successful 12.5-kWe Component Test Power Converter (CTPC) developed under NAS3-25463. The ultimate efficiency target is 25% overall convertor efficiency (electrical power out over heat in). For the single cylinder prototype now in development, cost and time constraints required use of economical and readily available materials (steel versus beryllium) and components (a commercially available linear alternator) and thus lower efficiency. The working gas is helium at 150 bar mean pressure. The design consists of a displacer suspended on internally pumped gas bearings and a power piston/alternator supported on flexures. Non-contacting clearance seals are used between internal volumes. Heat to and from the prototype convertor is done via pumped liquid loops passing through shell and tube heat exchangers. The preliminary and detail designs of the convertor, controller, and support systems (heating loop, cooling loop, and helium supply system) are complete and all hardware is on order. Assembly and test of the prototype at Foster- Miller is planned for early 2008, when work will focus on characterizing convertor dynamics and steady-state operation to determine maximum power output and system efficiency. The device will then be delivered to Auburn University where assessments will include start-up and shutdown characterization and

  12. The Stirling engine. Simply explained, easily constructed. 9. rev. and enl. ed.; Der Stirlingmotor. Einfach erklaert und leicht gebaut

    Energy Technology Data Exchange (ETDEWEB)

    Viebach, Dieter

    2010-07-01

    Subsequently to a easily comprehensively description of the function and characteristics of Stirling engines, the author of the book under consideration describes the construction of a model Stirling engine on the basis of clear construction drawings. A delicacy for experienced modelers: The 'amazing model', a miniature Stirling engine consisting of beverage cans, has been running with the warmth of the human hand. Even in this technically demanding model, the construction will be described accurately by detailed construction drawings.

  13. Preliminary Modelling Results for an Otto Cycle/Stirling Cycle Hybrid-engine-based Power Generation System

    OpenAIRE

    Cullen, Barry; McGovern, Jim; Feidt, Michel; Petrescu, Stoian

    2009-01-01

    This paper presents preliminary data and results for a system mathematical model for a proposed Otto Cycle / Stirling Cycle hybrid-engine-based power generation system. The system is a combined cycle system with the Stirling cycle machine operating as a bottoming cycle on the Otto cycle exhaust. The application considered is that of a stationary power generation scenario wherein the Stirling cycle engine operates as a waste heat recovery device on the exhaust stream of the Otto cycle engine. ...

  14. Steam and Stirling vs. gasoline engine. Wood-fuelled boiler for heat and power generation; Dampf und Stirling kontra Otto. Holzkessel als stromerzeugende Heizung

    Energy Technology Data Exchange (ETDEWEB)

    Genath, B.

    2007-06-15

    The contribution describes new systems presented at the ISH, e.g. compact cogeneration systems with a stirling motor or steam engine for its electric section. An outline is given of what to expect in the future. (orig.)

  15. Dynamic model of Stirling engine crank mechanism with connected electric generator

    Directory of Open Access Journals (Sweden)

    Vlach R.

    2009-06-01

    Full Text Available This paper treats of a numerical dynamic model of Stirling engine crank mechanism. The model is included in the complex model of combined heat and power unit. The unit is composed of the Stirling engine and of attached three-phase synchronous generator. This generator should start the Stirling engine in motor mode as well. It is necessary to combine the crank shaft dynamic model and the complete thermal model of Stirling engine for simulations and analyses of engine run. Our aim is to create a dynamics model which takes into account the parameters of crankshaft, piston rods, pistons, and attached generator. For unit working, the electro-mechanical behaviour of generator is also important. That is why we experimentally verified the parameters of generator. The measured characteristics are used in a complex model of heat and power unit. Moreover, it is also possible to determine the Stirling engine torque by the help of these electro-mechanical characteristics. These values can be used e. g. for determination of optimal engine working point or for unit control.

  16. Analytical expression for an optimised link bar mechanism for a beta-type Stirling engine

    DEFF Research Database (Denmark)

    Carlsen, Henrik; Bovin, Jonas Kabell

    2007-01-01

    The design of a mechanism for kinematic beta-type Stirling engines, where the displacer piston and the working piston share the same cylinder, is complicated. A well-known solution is the rhombic drive, but this solution depends on oil lubrication because of the gear wheels connecting the two...... mechanism is a further development of the mechanism in a previous 9 kW engine. The crank mechanism for the beta-type Stirling engine is based on two four-link straight line mechanisms pointing up and down, respectively. The mechanism pointing upwards is connected to the working piston, while the mechanism...... counter rotating crank shafts. In a hermetically sealed Stirling engine it is an advantage to avoid oil in the crank case, making the application of the rhombic drive difficult. In this paper, another crank mechanism is presented, which has been developed for a 9 kW single cylinder engine. The new crank...

  17. Test results of a Stirling engine utilizing heat exchanger modules with an integral heat pipe

    Science.gov (United States)

    Skupinski, Robert C.; Tower, Leonard K.; Madi, Frank J.; Brusk, Kevin D.

    1993-01-01

    The Heat Pipe Stirling Engine (HP-1000), a free-piston Stirling engine incorporating three heat exchanger modules, each having a sodium filled heat pipe, has been tested at the NASA-Lewis Research Center as part of the Civil Space Technology Initiative (CSTI). The heat exchanger modules were designed to reduce the number of potential flow leak paths in the heat exchanger assembly and incorporate a heat pipe as the link between the heat source and the engine. An existing RE-1000 free-piston Stirling engine was modified to operate using the heat exchanger modules. This paper describes heat exchanger module and engine performance during baseline testing. Condenser temperature profiles, brake power, and efficiency are presented and discussed.

  18. Thermoacoustic refrigerators and engines comprising cascading stirling thermodynamic units

    Energy Technology Data Exchange (ETDEWEB)

    Backhaus, Scott; Swift, Greg

    2013-06-25

    The present invention includes a thermoacoustic assembly and method for improved efficiency. The assembly has a first stage Stirling thermal unit comprising a main ambient heat exchanger, a regenerator and at least one additional heat exchanger. The first stage Stirling thermal unit is serially coupled to a first end of a quarter wavelength long coupling tube. A second stage Stirling thermal unit comprising a main ambient heat exchanger, a regenerator, and at least one additional heat exchanger, is serially coupled to a second end of the quarter wavelength long coupling tube.

  19. Thermoacoustic refrigerators and engines comprising cascading stirling thermodynamic units

    Science.gov (United States)

    Backhaus, Scott; Swift, Greg

    2013-06-25

    The present invention includes a thermoacoustic assembly and method for improved efficiency. The assembly has a first stage Stirling thermal unit comprising a main ambient heat exchanger, a regenerator and at least one additional heat exchanger. The first stage Stirling thermal unit is serially coupled to a first end of a quarter wavelength long coupling tube. A second stage Stirling thermal unit comprising a main ambient heat exchanger, a regenerator, and at least one additional heat exchanger, is serially coupled to a second end of the quarter wavelength long coupling tube.

  20. Development of cast ferrous alloys for Stirling engine application

    Science.gov (United States)

    Lemkey, F. D.

    1982-01-01

    Low cost cast ferrous base alloys that can be used for cylinder and regenerator housing components of the Stirling engine were investigated. The alloys must meet the requirements of high strength and thermal fatigue resistance to approximately 1500 F, compatibility and low permeability with hydrogen, good elevated temperature oxidation/corrosion resistance, and contain a minimum of strategic elements. The phase constituents of over twenty alloy iterations were examined by X-ray diffraction. These alloy candidates were further screened for their tensile and stress rupture strength and surface stability in air at 1450 and 1600 F, respectively. Two alloys, NASAUT 1G (Fe-10Mn-20Cr-1.5C-1.0Si) and NASAUT 4G (Fe-15Mn-12Cr-3Mo-1.5C-1.0Si-1.0Nb), were chosen for more extensive elevated temperature testing. These alloys were found to exhibit nearly equivalent elevated temperature creep strength and oxidation resistance. Silicon present in these alloys at the 1 w/o level permitted the achievement of oxide scale adherence to 1600 F without loss of strength (or ductility) as was noted for equivalent additions of aluminum.

  1. Cascading Tesla Oscillating Flow Diode for Stirling Engine Gas Bearings

    Science.gov (United States)

    Dyson, Rodger

    2012-01-01

    Replacing the mechanical check-valve in a Stirling engine with a micromachined, non-moving-part flow diode eliminates moving parts and reduces the risk of microparticle clogging. At very small scales, helium gas has sufficient mass momentum that it can act as a flow controller in a similar way as a transistor can redirect electrical signals with a smaller bias signal. The innovation here forces helium gas to flow in predominantly one direction by offering a clear, straight-path microchannel in one direction of flow, but then through a sophisticated geometry, the reversed flow is forced through a tortuous path. This redirection is achieved by using microfluid channel flow to force the much larger main flow into this tortuous path. While microdiodes have been developed in the past, this innovation cascades Tesla diodes to create a much higher pressure in the gas bearing supply plenum. In addition, the special shape of the leaves captures loose particles that would otherwise clog the microchannel of the gas bearing pads.

  2. Stirling engine: Available tools for long-life assessment

    Science.gov (United States)

    Halford, Gary R.; Bartolotta, Paul A.

    1991-01-01

    A review is presented for the durability approaches applicable to long-time life assessment of Stirling engine hot-section components. The crucial elements are experimental techniques for generating long-time materials property data (both monotonic and cyclic flow and failure properties); analytic representations of slow strain rate material stress-strain response characteristics (monotonic and cyclic constitutive relations) at high temperatures and low stresses and strains; analytic creep-fatigue-environmental interaction life prediction methods applicable to long lifetimes at high temperatures and small stresses and strains; and experimental verification of life predictions. Long-lifetime design criteria for materials of interest are woefully lacking. Designing against failures due to creep, creep-rupture, fatigue, environmental attack, and creep-fatigue-environmental interaction will require considerable extrapolation. Viscoplastic constitutive models and time-temperature parameters will have to be calibrated for the hot-section materials of interest. Analysis combined with limited verification testing in a short-time regime will be required to build confidence in long-lifetime durability models.

  3. Stirling engine or heat pump having an improved seal

    Science.gov (United States)

    White, Maurice A.; Riggle, Peter; Emigh, Stuart G.

    1985-01-01

    A Stirling Engine or Heat Pump having two relatively movable machine elements for power transmission purposes includes a hermetic seal bellows interposed between the elements for separating a working gas from a pressure compensating liquid that balances pressure across the bellows to reduce bellows stress and to assure long bellows life. The volume of pressure compensating liquid displaced due to relative movement between the machine elements is minimized by enclosing the compensating liquid within a region exposed to portions of both machine elements at one axial end of a slidable interface presented between them by a clearance seal having an effective diameter of the seal bellows. Pressure equalization across the bellows is achieved by a separate hermetically sealed compensator including a movable enclosed bellows. The interior of the compensator bellows is in communication with one side of the seal bellows, and its exterior is in communication with the remaining side of the seal bellows. A buffer gas or additional liquid region can be provided at the remaining axial end of the clearnace seal, along with valved arrangements for makeup of liquid leakage through the clearance seal.

  4. Development of cast ferrous alloys for Stirling engine application

    Science.gov (United States)

    Lemkey, F. D.

    1982-01-01

    Low cost cast ferrous base alloys that can be used for cylinder and regenerator housing components of the Stirling engine were investigated. The alloys must meet the requirements of high strength and thermal fatigue resistance to approximately 1500 F, compatibility and low permeability with hydrogen, good elevated temperature oxidation/corrosion resistance, and contain a minimum of strategic elements. The phase constituents of over twenty alloy iterations were examined by X-ray diffraction. These alloy candidates were further screened for their tensile and stress rupture strength and surface stability in air at 1450 and 1600 F, respectively. Two alloys, NASAUT 1G (Fe-10Mn-20Cr-1.5C-1.0Si) and NASAUT 4G (Fe-15Mn-12Cr-3Mo-1.5C-1.0Si-1.0Nb), were chosen for more extensive elevated temperature testing. These alloys were found to exhibit nearly equivalent elevated temperature creep strength and oxidation resistance. Silicon present in these alloys at the 1 w/o level permitted the achievement of oxide scale adherence to 1600 F without loss of strength (or ductility) as was noted for equivalent additions of aluminum.

  5. An analysis of beta type Stirling engine with rhombic drive mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Shendage, D.J.; Kedare, S.B. [Department of Energy Science and Engineering, Indian Institute of Technology Bombay, Powai, Mumbai 400 076 (India); Bapat, S.L. [Department of Mechanical Engineering, Indian Institute of Technology Bombay, Powai, Mumbai 400 076 (India)

    2011-01-15

    Stirling engine system is one of the options for electrifying a remote community not serviceable by the grid, which can operate on energy input in the form of heat. Major hurdle for the wide-spread usage of rhombic drive beta type Stirling engine is complexity of the drive and requirement of tight tolerances for its proper functioning. However, if the operating and geometrical constraints of the system are accounted for, different feasible design options can be identified. In the present work, various aspects that need to be considered at different decision making stages of the design and development of a Stirling engine are addressed. The proposed design methodology can generate and evaluate a range of possible design alternatives which can speed up the decision making process and also provide a clear understanding of the system design considerations. The present work is mainly about the design methodology for beta type Stirling engine and the optimization of phase angle, considering the effect of overlapping volume between compression and expansion spaces. It is also noticed that variation of compression space volume with phase angle remains sinusoidal for any phase difference. The aim of the present work is to find a feasible solution which should lead to a design of a single cylinder, beta type Stirling engine of 1.5 kW{sub e} capacity for rural electrification. (author)

  6. Micro CHP module with Stirling engine: tests and market introduction; Mikro-KWK-Modul mit Stirlingmotor

    Energy Technology Data Exchange (ETDEWEB)

    Baumueller, A.

    2002-07-01

    This article describes a small combined heat and power (CHP) module based on a stationary Stirling engine with a 2 - 9 kW electrical and a 8 - 24 kW thermal rating. Its associated gas burner is also described. The article reviews the history of the development of this CHP module and describes how the Stirling engine works. The advantages offered by the Stirling engine in comparison with conventional engines in terms of low maintenance requirements and low emissions of pollutants are discussed. The design of the module and its integration into heating systems are examined. Tests with 30 units providing a total of 150,000 hours of operation are discussed. Production facilities and market introduction activities are briefly described.

  7. Integration of a free-piston Stirling engine and a moving grate incinerator

    Energy Technology Data Exchange (ETDEWEB)

    Hsieh, Y.C.; Hsu, T.C.; Chiou, J.S. [Department of Mechanical Engineering, National Cheng Kung University, Tainan 70101 (China)

    2008-01-15

    The feasibility of recovering the waste heat from a small-scale incinerator (designed by Industrial Technology Research Institute) and generating electric power by a linear free-piston Stirling engine is investigated in this study. A heat-transfer model is used to simulate the integration system of the Stirling engine and the incinerator. In this model, the external irreversibility is modeled by the finite temperature difference and by the actual heat transfer area, while the internal irreversibility is considered by an internal heat leakage. At a fixed source temperature and a fixed sink temperature, the optimal engine performance can be obtained by the method of Lagrange multipliers. From the energy and mass balances for the interesting incinerator with the feeding rate at 16 t/d, there is enough otherwise wasted energy for powering the Stirling engine and generate more than 50 kW of electricity. (author)

  8. Finite time thermodynamic analysis of endoreversible Stirling heat engine with regenerative losses

    Energy Technology Data Exchange (ETDEWEB)

    Kaushik, S.C.; Kumar, S. [Indian Inst. of Technology, Centre for Energy Studies, New Delhi (India)

    2000-10-01

    This communication presents an investigation of a finite time thermodynamic analysis of an endoreversible Stirling heat engine. Finite time thermodynamics has been applied to maximise the power output and the corresponding thermal efficiency of an endoreversible Stirling heat engine with internal heat loss in the regenerator and for the finite heat capacity of the external reservoirs. The effect of the effectiveness of the various heat exchangers, the inlet temperatures of external heat reservoirs on the power output and the corresponding thermal efficiency have been studied. It is seen that an endoreversible Stirling heat engine with an ideal regenerator ({epsilon}{sub R}=1.00) is as efficient as an endoreversible Carnot heat engine. It is also found that the maximum power output increases with the heat capacitance rates and effectiveness of the source/sink side heat exchangers while thermal efficiency increases with the effectiveness of the regenerator. (Author)

  9. Overview of Advanced Stirling and Gas Turbine Engine Development Programs and Implications for Solar Thermal Electrical Applications

    Science.gov (United States)

    Alger, D.

    1984-01-01

    The DOE automotive advanced engine development projects managed by the NASA Lewis Research Center were described. These included one Stirling cycle engine development and two air Brayton cycle development. Other engine research activities included: (1) an air Brayton engine development sponsored by the Gas Research Institute, and (2) plans for development of a Stirling cycle engine for space use. Current and potential use of these various engines with solar parabolic dishes were discussed.

  10. Analytical expression for an optimised link bar mechanism for a beta-type Stirling engine

    DEFF Research Database (Denmark)

    Carlsen, Henrik; Bovin, Jonas Kabell

    2007-01-01

    The design of a mechanism for kinematic beta-type Stirling engines, where the displacer piston and the working piston share the same cylinder, is complicated. A well-known solution is the rhombic drive, but this solution depends on oil lubrication because of the gear wheels connecting the two...... counter rotating crank shafts. In a hermetically sealed Stirling engine it is an advantage to avoid oil in the crank case, making the application of the rhombic drive difficult. In this paper, another crank mechanism is presented, which has been developed for a 9 kW single cylinder engine. The new crank...

  11. Stirling Stuff

    CERN Document Server

    Reid, John S

    2016-01-01

    Robert Stirling's patent for what was essentially a new type of engine to create work from heat was submitted in 1816. Its reception was underwhelming and although the idea was sporadically developed, it was eclipsed by the steam engine and, later, the internal combustion engine. Today, though, the environmentally favourable credentials of the Stirling engine principles are driving a resurgence of interest, with modern designs using modern materials. These themes are woven through a historically based narrative that introduces Robert Stirling and his background, a description of his patent and the principles behind his engine, and discusses the now popular model Stirling engines readily available. These topical models, or alternatives made 'in house', form a good platform for investigating some of the thermodynamics governing the performance of engines in general.

  12. Stirling engines. (Latest citations from the EI Compendex*plus database). Published Search

    Energy Technology Data Exchange (ETDEWEB)

    1994-04-01

    The bibliography contains citations concerning Stirling engine technology. Design, development, performance testing, and applications are discussed, including power generation, cryogenic cooling, solar power applications, and ground and marine vehicles. The citations also examine engine component design and material testing results. (Contains 250 citations and includes a subject term index and title list.)

  13. Stirling engines. (Latest citations from the EI Compendex*plus database). Published Search

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-05-01

    The bibliography contains citations concerning Stirling engine technology. Design, development, performance testing, and applications are discussed, including power generation, cryogenic cooling, solar power applications, and ground and marine vehicles. The citations also examine engine component design and material testing results. (Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  14. Stirling engines. (Latest citations from the EI Compendex*plus database). Published Search

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-02-01

    The bibliography contains citations concerning Stirling engine technology. Design, development, performance testing, and applications are discussed, including power generation, cryogenic cooling, solar power applications, and ground and marine vehicles. The citations also examine engine component design and material testing results. (Contains 250 citations and includes a subject term index and title list.)

  15. Liquid fueled external heating system for STM4-120 Stirling engine

    Science.gov (United States)

    Meijer, R. J.; Ziph, B.; Godett, T. M.

    1985-01-01

    The STM4-120 Stirling engine, currently under development at Stirling Thermal Motors, Inc., is a 40 kW variable stroke engine with indirect heating using a sodium heat pipe. The engine is functionally separated into an application independent Energy Conversion Unit (ECU) consisting of the Stirling cycle and drive heated by condensing sodium and the application dependent External Heating System (EHS), designed to supply the ECU with sodium vapor heated by the particular energy source, connected by tubes with mechanical couplings. This paper describes an External Heating System for the STM4-120 ECU designed for the combustion of liquid fuel, comprised of a recuperative preheater, a combustion chamber, and a heat exchanger/evaporator where heat is transferred from the flue gas to the sodium causing it to evaporate. The design concept and projected performance are described and discussed.

  16. Stirling Space Engine Program. Volume 2; Appendixes A, B, C and D

    Science.gov (United States)

    Dhar, Manmohan

    1999-01-01

    The objective of this program was to develop the technology necessary for operating Stirling power converters in a space environment and to demonstrate this technology in full-scale engine tests. Volume 2 of the report includes the following appendices: Appendix A: Heater Head Development (Starfish Heater Head Program, 1/10th Segment and Full-Scale Heat Pipes, and Sodium Filling and Processing); Appendix B: Component Test Power Converter (CTPC) Component Development (High-temperature Organic Materials, Heat Exchanger Fabrication, Beryllium Issues, Sodium Issues, Wear Couple Tests, Pressure Boundary Penetrations, Heating System Heaters, and Cooler Flow Test); Appendix C: Udimet Testing (Selection of the Reference Material for the Space Stirling Engine Heater Head, Udimet 720LI Creep Test Result Update, Final Summary of Space Stirling Endurance Engine Udimet 720L1 Fatigue Testing Results, Udimet 720l1 Weld Development Summary, and Udimet 720L1 Creep Test Final Results Summary), and Appendix D: CTPC Component Development Photos.

  17. Development of Small-Scale CHP Plant with a Wood Powder-Fueled Stirling Engine

    Science.gov (United States)

    Sato, Katsura; Ohiwa, Norio; Ishikawa, Akira; Shimojima, Hidetoshi; Nishiyama, Akio; Moriya, Yoichi

    Small-scale biomass CHP (combined heat and power) plants are in demand for environmental reasons - particularly systems fueled by wood waste, which are simple to operate and require no maintenance while having high thermal efficiency similar to oil-fired units. A 55kWe Stirling engine CHP system, combined with a simplified biomass combustion process that uses pulverized wood powder has been developed to meet these requirements. Wood powder of less than 500 μm was mainly used in these tests, and a combustion chamber length of 3 m was applied. Under these conditions, the air ratio can be reduced to 1.1 without increasing CO emissions by less than 10 ppm, and with combustion efficiency of 99.9%. Under the same conditions, NOx emissions are estimated to be less than 120 ppm (on the basis of 6% O2). Wood powder was confirmed to have excellent properties as a fuel for Stirling engines. The 55 kWe Stirling engine performance test was carried out to optimize the operating condition of wood powder burners. The status of Stirling engine operation at a full load with 55 kWe was stable, and start-up and shut -down operations were easy to perform. Operational status was evaluated as being excellent, except for an ash fouling problem in the Stirling engine heater tubes. Ash fouling characteristics were considered in the final stage of the demonstration test. This paper summarizes the wood powder combustion test and Stirling engine performance test. Furthermore, the ash fouling data is shown and the mechanism of ash fouling in heater tubes is discussed.

  18. Biomass gasification integrated with a solid oxide fuel cell and Stirling engine

    DEFF Research Database (Denmark)

    Rokni, Masoud

    2014-01-01

    An integrated gasification solid oxide fuel cell (SOFC) and Stirling engine for combined heat and power application is analyzed. The target for electricity production is 120 kW. Woodchips are used as gasification feedstock to produce syngas, which is then used to feed the SOFC stacks for electric......An integrated gasification solid oxide fuel cell (SOFC) and Stirling engine for combined heat and power application is analyzed. The target for electricity production is 120 kW. Woodchips are used as gasification feedstock to produce syngas, which is then used to feed the SOFC stacks...

  19. Using GMDH Neural Networks to Model the Power and Torque of a Stirling Engine

    Directory of Open Access Journals (Sweden)

    Mohammad Hossein Ahmadi

    2015-02-01

    Full Text Available Different variables affect the performance of the Stirling engine and are considered in optimization and designing activities. Among these factors, torque and power have the greatest effect on the robustness of the Stirling engine, so they need to be determined with low uncertainty and high precision. In this article, the distribution of torque and power are determined using experimental data. Specifically, a novel polynomial approach is proposed to specify torque and power, on the basis of previous experimental work. This research addresses the question of whether GMDH (group method of data handling-type neural networks can be utilized to predict the torque and power based on determined parameters.

  20. A Hemispherical-Involute Cavity Receiver for Stirling Engine Powered by a Xenon Arc Solar Simulator

    Science.gov (United States)

    Li, Zhi-Gang; Tang, Da-Wei; Li, Tie; Du, Jing-Long

    2011-05-01

    We develop a solar simulator composed of multiple xenon arc lamps combined with a faceted paraboloidal dish concentrator to drive a Stirling engine in our laboratory for all-weather indoor testing. Experiments and numerical analysis are performed to determine the radiation flux and temperature distributions on the solar receiver surface. Based on the theoretical results, we present a receiver design for a solar Stirling engine with involute tubes closely conforming to the imaginary hemisphere to obtain a substantially uniform temperature field and a high solar-thermal efficiency of 67.1%.

  1. Análisis de irreversibilidades en el comportamiento de un motor Stirling // Analysis of irreversibilities on performance of a Stirling engine

    Directory of Open Access Journals (Sweden)

    Juan José González-Bayón

    2011-05-01

    Full Text Available El objetivo de este estudio es determinar el efecto de las irreversibilidades (internas y externasdebidas a la transferencia de calor y las pérdidas de presión debidas a la fricción sobre elrendimiento de Segunda Ley de un motor Stirling de tipo considerando el volumen muerto. Elmotor Stirling es analizado usando un modelo matemático basado en las leyes de la termodinámicapara procesos con una velocidad finita. Se asume un modelo isotérmico de motor con volúmenes deespacio muerto en la zona caliente, zona fría y en el regenerador. Los resultados obtenidos muestranque a pesar de que teóricamente el motor Stirling posee un rendimiento igual al de Carnot, en lapráctica su rendimiento puede ser de 2 a 5 veces menor que éste, dependiendo de la eficiencia delregenerador, del volumen muerto, de la diferencia de temperatura entre fluido y focos térmicos y delas rpm a que se opere el motor.Palabras claves: motor Stirling, motor térmico regenerativo, análisis de irreversibilidades.____________________________________________________________________AbstractThe study aims to determine the effect of the internal and external irreversibilities caused by heattransfer and pressure losses due to friction on the Second Law performance of a Stirling engine tipewith death volume include. The Stirling engine is analyzed using a mathematical model based onthe laws of thermodynamics for processes with finite speed. It is assumed an isothermic model of themotor with death volume on hot zone, cold zone and regenerator. The results of this study show thatthe real cycle efficiency of the Sirling engine is approximately 2 to 5 times minor than the efficiency ofCarnot cycle as function of the regenerator efficiency, death volume, temperature difference betweenfluid and termic source and motor speed.Key words: stirling engine, regenerative heat engine, irreversibilities analysis.

  2. Conceptual design and cost analysis of hydraulic output unit for 15 kW free-piston Stirling engine

    Science.gov (United States)

    White, M. A.

    1982-01-01

    A long-life hydraulic converter with unique features was conceptually designed to interface with a specified 15 kW(e) free-piston Stirling engine in a solar thermal dish application. Hydraulic fluid at 34.5 MPa (5000 psi) is produced to drive a conventional hydraulic motor and rotary alternator. Efficiency of the low-maintenance converter design was calculated at 93.5% for a counterbalanced version and 97.0% without the counterbalance feature. If the converter were coupled to a Stirling engine with design parameters more typcial of high-technology Stirling engines, counterbalanced converter efficiency could be increased to 99.6%. Dynamic computer simulation studies were conducted to evaluate performance and system sensitivities. Production costs of the complete Stirling hydraulic/electric power system were evaluated at $6506 which compared with $8746 for an alternative Stirling engine/linear alternator system.

  3. May Stirling cogeneration plants revolutionize the heating market? The stirling engine - a new 'energy dwarf'; Koennen Stirling-BHKW den Heizungsmarkt revolutionieren? Der Stirlingmotor - ein neuer 'Energiezwerg'

    Energy Technology Data Exchange (ETDEWEB)

    Dany, Christian

    2009-07-01

    The operation of a Stirling engine is amazing: It has no internal combustion, but will work with heat supplied from outside. The new 'energy dwarfs' currently being developed are quiet and require a minimum space. The 'energy dwarfs' supply a house with electricity, hot water and space heating. Meanwhile some of the major international manufacturers of heating systems have joined in the Stirling technology.

  4. Performance analysis of dish solar stirling power system; Stirling engine wo mochiita taiyonetsu hatsuden system no seino yosoku

    Energy Technology Data Exchange (ETDEWEB)

    Tsuchiya, K.; Yamaguchi, I. [Meiji University, Tokyo (Japan); Naito, Y.; Momose, Y. [Aisin Seiki Co. Ltd., Aichi (Japan)

    1996-10-27

    In order to estimate the performance of the dish solar Stirling power system, matching and control of each component system were studied, and the performance of the 25kWe class power system was estimated on the basis of direct solar radiation measured in Miyako island, Okinawa. Application of a Stirling engine to solar heat power generation is highly effective in spite of its small scale. The total system is composed of a converging system, heat receiver, engine/generator system and control system. As the simulation result, the generator output is nearly proportional to direct solar radiation, and the system efficiency approaches to a certain constant value with an increase in direct solar radiation. As accumulated solar radiation is large, the influence of slope error of the converging mirror is comparatively small. The optimum aperture opening ratio of the heat receiver determined on the basis of mean direct solar radiation (accumulated solar radiation/{Delta}t (simulated operation time of the system)), corresponds to the primary approximation of the opening ratio for a maximum total generated output under variable direct solar radiation. 6 refs., 6 figs., 1 tab.

  5. Single Phase Passive Rectification Versus Active Rectification Applied to High Power Stirling Engines

    Science.gov (United States)

    Santiago, Walter; Birchenough, Arthur G.

    2006-01-01

    Stirling engine converters are being considered as potential candidates for high power energy conversion systems required by future NASA explorations missions. These types of engines typically contain two major moving parts, the displacer and the piston, in which a linear alternator is attached to the piston to produce a single phase sinusoidal waveform at a specific electric frequency. Since all Stirling engines perform at low electrical frequencies (less or equal to 100 Hz), space explorations missions that will employ these engines will be required to use DC power management and distribution (PMAD) system instead of an AC PMAD system to save on space and weight. Therefore, to supply such DC power an AC to DC converter is connected to the Stirling engine. There are two types of AC to DC converters that can be employed, a passive full bridge diode rectifier and an active switching full bridge rectifier. Due to the inherent line inductance of the Stirling Engine-Linear Alternator (SE-LA), their sinusoidal voltage and current will be phase shifted producing a power factor below 1. In order to keep power the factor close to unity, both AC to DC converters topologies will implement power factor correction. This paper discusses these power factor correction methods as well as their impact on overall mass for exploration applications. Simulation results on both AC to DC converters topologies with power factor correction as a function of output power and SE-LA line inductance impedance are presented and compared.

  6. Performance Analysis of Stirling Engine-Driven Vapor Compression Heat Pump System

    Science.gov (United States)

    Kagawa, Noboru

    Stirling engine-driven vapor compression systems have many unique advantages including higher thermal efficiencies, preferable exhaust gas characteristics, multi-fuel usage, and low noise and vibration which can play an important role in alleviating environmental and energy problems. This paper introduces a design method for the systems based on reliable mathematical methods for Stirling and Rankin cycles using reliable thermophysical information for refrigerants. The model deals with a combination of a kinematic Stirling engine and a scroll compressor. Some experimental coefficients are used to formulate the model. The obtained results show the performance behavior in detail. The measured performance of the actual system coincides with the calculated results. Furthermore, the calculated results clarify the performance using alternative refrigerants for R-22.

  7. Stirling engine electric hybrid vehicle propulsion system conceptual design study. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Dochat, G; Artiles, A; Killough, J; Ray, A; Chen, H S

    1978-08-01

    Results of a six-month study to characterize a series Stirling engine electric hybrid vehicle propulsion system are presented. The Stirling engine was selected as the heat conversion element to exploit the high efficiency (> .36), low pollution, multi-fuel and quiet operation of this machine. A free-piston Stirling engine driving a linear alternator in a hermatically sealed enclosure was chosen to gain the reliability, long life, and maintenance free characteristics of a sealed unit. The study performs trade off evaluations, selection of engine, battery, motor and inverter size, optimization of components, and develops a conceptual design and characterization of the total propulsion system. The conclusion of the study is that a Stirling engine electric hybrid propulsion system can be used successfully to augment the battery storage of a passenger vehicle and will result in significant savings of petroleum energy over present passenger vehicles. The performance and range augmentation of the hybrid design results in significant improvements over an all electric vehicle. The hybrid will be capable of performing 99% of the passenger vehicle annual trip distribution requirements with extremely low fuel usage. (TFD)

  8. Thermodynamic analysis of a Stirling engine including dead volumes of hot space, cold space and regenerator

    Energy Technology Data Exchange (ETDEWEB)

    Kongtragool, Bancha; Wongwises, Somchai [Fluid Mechanics, Thermal Engineering and Multiphase Flow Research Laboratory (FUTURE), Department of Mechanical Engineering, Faculty of Engineering, King Mongkut' s University of Technology Thonburi, 91 Suksawas 48, Bangmod, Bangkok 10140 (Thailand)

    2006-03-01

    This paper provides a theoretical investigation on the thermodynamic analysis of a Stirling engine. An isothermal model is developed for an imperfect regeneration Stirling engine with dead volumes of hot space, cold space and regenerator that the regenerator effective temperature is an arithmetic mean of the heater and cooler temperature. Numerical simulation is performed and the effects of the regenerator effectiveness and dead volumes are studied. Results from this study indicate that the engine net work is affected by only the dead volumes while the heat input and engine efficiency are affected by both the regenerator effectiveness and dead volumes. The engine net work decreases with increasing dead volume. The heat input increases with increasing dead volume and decreasing regenerator effectiveness. The engine efficiency decreases with increasing dead volume and decreasing regenerator effectiveness. (author)

  9. Thermodynamic and Thermoeconomic investigation of an Integrated Gasification SOFC and Stirling Engine

    DEFF Research Database (Denmark)

    Rokni, Masoud

    2013-01-01

    Thermodynamic and thermoeconomic investigation of a small scale Integrated Gasification Solid Oxide Fuel Cell (SOFC) and Stirling engine for combined heat and power (CHP) with a net electric capacity of 120kW have been performed. Woodchips are used as gasification feedstock to produce syngas which...

  10. The Amount of Regenerated Heat Inside the Regenerator of a Stirling Engine

    Directory of Open Access Journals (Sweden)

    J. Škorpík

    2008-01-01

    Full Text Available The paper deals with analytical computing of the regenerated heat inside the regenerator of a Stirling engine. The total sum of the regenerated heat is constructed as a function of the crank angle in the case of Schmidt’s idealization. 

  11. The Experimental Study of Atmospheric Stirling Engines Using Pin-Fin Arrays' Heat Exchangers

    Science.gov (United States)

    Isshiki, Seita; Sato, Hidekazu; Konno, Shoji; Shiraishi, Hiroaki; Isshiki, Naotsugu; Fujii, Iwane; Mizui, Hiroyuki

    This paper reports experimental results on two kinds of atmospheric Stirling engines that were designed and manufactured using a pin-fin array heat exchanger for the heater and cooler (abbreviated to “pin-fin Stirling engine” hereafter). The first one is a large β type pin-fin Stirling engine with a 1.7-liter displacement volume and power piston volume. The heater consists of an aluminum circular disk with a diameter of 270mm and with large-scale pin-fin arrays carved into the surface. The maximum output reached 91W at a temperature difference of 330K, which is 36% of the scheduled value and 68% of the Kolin's cubic power law. The maximum thermal efficiency was estimated 4.2%. The second engine is an α type pin-fin Stirling engine. Glass syringes were used for the piston-cylinder system and the Ross-yoke mechanism was used for the crank mechanism. By changing temperature difference, the characteristic of output torque in the large range was measured with a precision torque detector.

  12. Development and test of combustion chamber for Stirling engine heated by natural gas

    Science.gov (United States)

    Li, Tie; Song, Xiange; Gui, Xiaohong; Tang, Dawei; Li, Zhigang; Cao, Wenyu

    2014-04-01

    The combustion chamber is an important component for the Stirling engine heated by natural gas. In the paper, we develop a combustion chamber for the Stirling engine which aims to generate 3˜5 kWe electric power. The combustion chamber includes three main components: combustion module, heat exchange cavity and thermal head. Its feature is that the structure can divide "combustion" process and "heat transfer" process into two apparent individual steps and make them happen one by one. Since natural gas can mix with air fully before burning, the combustion process can be easily completed without the second wind. The flame can avoid contacting the thermal head of Stirling engine, and the temperature fields can be easily controlled. The designed combustion chamber is manufactured and its performance is tested by an experiment which includes two steps. The experimental result of the first step proves that the mixture of air and natural gas can be easily ignited and the flame burns stably. In the second step of experiment, the combustion heat flux can reach 20 kW, and the energy utilization efficiency of thermal head has exceeded 0.5. These test results show that the thermal performance of combustion chamber has reached the design goal. The designed combustion chamber can be applied to a real Stirling engine heated by natural gas which is to generate 3˜5 kWe electric power.

  13. Start-up and control method and apparatus for resonant free piston Stirling engine

    Science.gov (United States)

    Walsh, Michael M.

    1984-01-01

    A resonant free-piston Stirling engine having a new and improved start-up and control method and system. A displacer linear electrodynamic machine is provided having an armature secured to and movable with the displacer and having a stator supported by the Stirling engine housing in juxtaposition to the armature. A control excitation circuit is provided for electrically exciting the displacer linear electrodynamic machine with electrical excitation signals having substantially the same frequency as the desired frequency of operation of the Stirling engine. The excitation control circuit is designed so that it selectively and controllably causes the displacer electrodynamic machine to function either as a generator load to extract power from the displacer or the control circuit selectively can be operated to cause the displacer electrodynamic machine to operate as an electric drive motor to apply additional input power to the displacer in addition to the thermodynamic power feedback to the displacer whereby the displacer linear electrodynamic machine also is used in the electric drive motor mode as a means for initially starting the resonant free-piston Stirling engine.

  14. A Hemispherical-Involute Cavity Receiver for Stirling Engine Powered by a Xenon Arc Solar Simulator

    Institute of Scientific and Technical Information of China (English)

    LI Zhi-Gang; TANG Da-Wei; LI Tie; DU Jing-Long

    2011-01-01

    @@ We develop a solar simulator composed of multiple xenon arc lamps combined with a faceted paraboloidal dish concentrator to drive a Stirling engine in our laboratory for all-weather indoor testing.Experiments and numerical analysis are performed to determine the radiation flux and temperature distributions on the solar receiver surface.Based on the theoretical results,we present a receiver design for a solar Stirling engine with involute tubes closely conforming to the imaginary hemisphere to obtain a substantially uniform temperature field and a high solarthermal efficiency of 67.1%.%We develop a solar simulator composed of multiple xenon arc lamps combined with a faceted paraboloidal dish concentrator to drive a Stirling engine in our laboratory for all-weather indoor testing. Experiments and numerical analysis are performed to determine the radiation flux and temperature distributions on the solar receiver surface.Based on the theoretical results, we present a receiver design for a solar Stirling engine with involute tubes closely conforming to the imaginary hemisphere to obtain a substantially uniform temperature field and a high solarthermal efficiency of 67.1%.

  15. Conversion of thermal energy into electricity via a water pump operating in Stirling engine cycle

    Energy Technology Data Exchange (ETDEWEB)

    Slavin, V.S. [Institute of Thermophysics SB RAS (Russian Federation); Bakos, G.C. [Democritus University of Thrace, Department of Electrical and Computer Engineering, Laboratory of Energy Economics, 67 100 Xanthi (Greece); Finnikov, K.A. [Siberian Federal University (Russian Federation)

    2009-07-15

    In this paper, the principle of heat energy conversion via Stirling pump into electricity is considered. New scheme of Stirling pump is proposed, that differs from known ones in application of offset heater and cooler and valves controlling the motion of liquid. The mathematical model is implemented to examine the liquid flow and gas heat exchange in cylinders and regenerator. The numerical simulation of engine's working cycle is conducted for the purpose of determining the characteristic parameters of its design. A possibility of achieving high thermal efficiency at acceptable power level is shown. (author)

  16. Study on Operating Performance of Stirling Engine-Driven Vapor Compression Heat Pump System

    Science.gov (United States)

    Kagawa, Noboru

    Stirling engines have many unique advantages including higher thermal efficiencies, preferable exhaust gas characteristics, multi-fuel usage, and low noise and vibration. On the other hand, heat pump systems are very attractive for space heating and cooling, and industrial usage. There are several environmental merits of Stirling driven vapor compression (SDVC) systems. A design method for the SDVC, which is based on mathematical methods for Stirling and Ranking cycles, has been developed. The attractive SDVC performance using conventional and alternative refrigerants was shown. From the calculated Total Equivalent Warming Impact (TEWI) and operating costs, it became clear that the SDVC system with the alternative refrigerant has a higher potential as the future air-conditioning system.

  17. Space Power Free-Piston Stirling Engine Scaling Study

    Science.gov (United States)

    Jones, D.

    1989-01-01

    The design feasibility study is documented of a single cylinder, free piston Stirling engine/linear alternator (FPSE/LA) power module generating 150 kW-electric (kW sub e), and the determination of the module's maximum feasible power level. The power module configuration was specified to be a single cylinder (single piston, single displacer) FPSE/LA, with tuning capacitors if required. The design requirements were as follows: (1) Maximum electrical power output; (2) Power module thermal efficiency equal to or greater than 20 percent at a specific mass of 5 to 8 kg/kW(sub e); (3) Heater wall temperature/cooler wall temperature = 1050 K/525 K; (4) Sodium heat-pipe heat transport system, pumped loop NaK (sodium-potassium eutectic mixture) rejection system; (5) Maximum power module vibration amplitude = 0.0038 cm; and (6) Design life = 7 years (60,000 hr). The results show that a single cylinder FPSE/LA is capable of meeting program goals and has attractive scaling attributes over the power range from 25 to 150 kW(sub e). Scaling beyond the 150 kW(sub e) power level, the power module efficiency falls and the power module specific mass reaches 10 kg/kW(sub e) at a power output of 500 kW(sub e). A discussion of scaling rules for the engine, alternator, and heat transport systems is presented, along with a detailed description of the conceptual design of a 150 kW(sub e) power module that meets the requirements. Included is a discussion of the design of a dynamic balance system. A parametric study of power module performance conducted over the power output range of 25 to 150 kW(sub e) for temperature ratios of 1.7, 2.0, 2.5, and 3.0 is presented and discussed. The results show that as the temperature ratio decreases, the efficiency falls and specific mass increases. At a temperature ratio of 1.7, the 150 kW(sub e) power module cannot satisfy both efficiency and specific mass goals. As the power level increases from 25 to 150 kW(sub e) at a fixed temperature ratio, power

  18. SPIKE-2: A practical Stirling engine for kilowatt level solar power

    Science.gov (United States)

    Beale, W. T.

    1984-03-01

    Recent advances in the art of free piston Stirling engine design make possible the production of 1-10kW free piston Stirling linear alternator engine, hermetically sealed, efficient, durable and simple in construction and operation. Power output is in the form of single or three phase 60 Hz. AC, or DC. The three phase capability is available from single machines without need of external conditioning. Engine voltage control regains set voltage within 5 cycles in response to any load change. The existing SPIKE-2 design has an engine alternator efficiency of 25% at 650 C heater wall temperature and a service life of over three years in solar service. The same system can be scaled over a range of at least 100 watts to 25kW.

  19. Study of Some Power Influencing Parameters of a Solar Low Temperature Stirling Engine

    Directory of Open Access Journals (Sweden)

    Hind El Hassani

    2014-06-01

    Full Text Available  The aim of this paper is to study experimentally and theoretically the effect of some geometrical parameters on low temperature differential Stirling engines (LT-SE performance. The studied parameters are: the phase angle, the compression ratio and the dead volume. Results show that for optimizing the performance of these engines, dead volume should be minimized, the compression ratio should be maximized and the optimal phase angle for the gamma type is 90°. For the adopted theoretical model, based on Schmidt theory, even if theoretical numerical results are different from those found experimentally, but it still remains a valid model for finding out some parameters effect on the LT-SE performance, and for calculating approximately the engine work and power. Key words: Stirling engine, low temperature, Solar, Phase angle, compression ratio, dead volume.

  20. Comparative survey of dynamic analyses of free-piston stirling engines

    Energy Technology Data Exchange (ETDEWEB)

    Kankam, M.D. [National Aeronautics and Space Administration, Cleveland, OH (United States). Lewis Research Center; Rauch, J.S. [Sverdrup Technology, Inc., Brook Park, OH (United States). Lewis Research Center Group

    1994-09-01

    This paper compares reported dynamic analyses for evaluating the steady-state response and stability of free-piston Stirling engine (FPSE) systems. Various analytical approaches are discussed to provide guidance on their salient features. Recommendations are made in the recommendations remarks for an approach which captures most of the inherent properties of the engine. Such an approach has the potential for yielding results which will closely match practical FPSE-load systems.

  1. No money printing machine. The market for cogeneration units with a Stirling engine begins to increase; Keine Gelddruckmaschinen. Markt fuer Stirling-KWK-Geraete kommt in Bewegung

    Energy Technology Data Exchange (ETDEWEB)

    Schmid, Wolfgang

    2012-10-15

    The serial production of micro combined heat and power units with a Stirling engine is started. However, it is becoming apparent, that from economic reasons units of the 1-kW{sub el.}-class designed for single-family houses and two-family houses are increasingly used as a base load unit in multi-family houses and small trades.

  2. Comparison of free-piston Stirling engine model predictions with RE1000 engine test data

    Science.gov (United States)

    Tew, R. C.

    1984-01-01

    Predictions of a free-piston Stirling engine model are compared with RE1000 engine test data taken at NASA-Lewis Research Center. The model validation and the engine testing are being done under a joint interagency agreement between the Department of Energy's Oak Ridge National Laboratory and NASA-Lewis. A kinematic code developed at Lewis was upgraded to permit simulation of free-piston engine performance; it was further upgraded and modified at Lewis and is currently being validated. The model predicts engine performance by numerical integration of equations for each control volume in the working space. Piston motions are determined by numerical integration of the force balance on each piston or can be specified as Fourier series. In addition, the model Fourier analyzes the various piston forces to permit the construction of phasor force diagrams. The paper compares predicted and experimental values of power and efficiency and shows phasor force diagrams for the RE1000 engine displacer and piston. Further development plans for the model are also discussed.

  3. Preliminary Results from Simulations of Temperature Oscillations in Stirling Engine Regenerator Matrices

    DEFF Research Database (Denmark)

    Andersen, Stig Kildegård; Carlsen, Henrik; Thomsen, Per Grove

    2006-01-01

    The objective of this study has been to create a Stirling engine model for studying the effects of regenerator matrix temperature oscillations on Stirling engine performance. A one-dimensional model with axial discretisation of engine components has been formulated using the control volume method....... The model contains a system of ordinary differential equations (ODEs) derived from mass and energy balances for gas filled control volumes and energy balances for regenerator matrix control masses. Interpolation methods with filtering properties are used for state variables at control volume interfaces...... shooting method. It has been found possible to accurately solve the stiff ODE system that describes the coupled thermodynamics of the gas and the regenerator matrix and to reliably find periodic steady state solutions to the model. Preliminary results indicate that the regenerator matrix temperature...

  4. Coupled thermodynamic-dynamic semi-analytical model of Free Piston Stirling engines

    CERN Document Server

    Formosa, Fabien

    2013-01-01

    The study of free piston Stirling engine (FPSE) requires both accurate thermodynamic and dynamic modelling to predict its performances. The steady state behaviour of the engine partly relies on non linear dissipative phenomena such as pressure drop loss within heat exchangers which is dependant on the temperature within the associated components. An analytical thermodynamic model which encompasses the effectiveness and the flaws of the heat exchangers and the regenerator has been previously developed and validated. A semi-analytical dynamic model of FPSE is developed and presented in this paper. The thermodynamic model is used to define the thermal variables that are used in the dynamic model which evaluates the kinematic results. Thus, a coupled iterative strategy has been used to perform a global simulation. The global modelling approach has been validated using the experimental data available from the NASA RE-1000 Stirling engine prototype. The resulting coupled thermodynamic-dynamic model using a standard...

  5. Municipal Solid Waste Gasification with Solid Oxide Fuel Cells and Stirling Engine

    DEFF Research Database (Denmark)

    Rokni, Masoud

    2014-01-01

    . The gasification process is usually based on an atmospheric - pressure circulating fluidized bed gasifier coupled to a tar - crac king vessel. Syngas can be used as fuel in different kind of power plant such as gas turbine cycle, steam cycle, combined cycle, internal and external combustion engine and Solid Oxide...... studied to optimize the plant efficiency in terms of operating conditions. Compared with modern waste incinerators with heat recovery, the gasification process integrated with SOFC and Stirling engine permits an increase in electricity output up of 50%, which means that the solid waste gasification...... Fuel Cell (SOFC). In the present study, a MSW gasification plant int egrated with SOFC is combined with a Stirling engine to recover the energy of the off - gases from the topping SOFC cycle. Detailed plant design is proposed and thermodynamic analysis is performed. Relevant parameters have been...

  6. Development of practical stirling engine for co-generation system using woody biomass fuels

    Energy Technology Data Exchange (ETDEWEB)

    Hoshi, Akira; Sasaki, Seizi [Ichinoseki National Coll. of Tech., Iwate (Japan); Tezuka, Nobutoshi [Stirling Engine Co., Ltd., Kawasaki-City (Japan); Fujimoto, Isao [Kansai Electric Power Co., Inc., Hyogo (Japan); Yamada, Noboru [Nagaoka Univ. of Technology (Japan)

    2008-07-01

    In recent years, fossil fuels such as petroleum, coal, and natural gas have become limited resources. In addition, global warming due to carbon dioxide (CO{sub 2}) emission has become a serious environmental issue. Since current living and economical standards depend strongly on fossil energy sources, it is necessary to realize a new society that utilizes biomass as a source of energy. With this background, in 2005, we manufactured a practical Stirling engine using biomass fuels. And we proposed a unique co-generation system using a practical Stirling engine that utilizes woody biomass fuel such as sawdust, firewood, and wood pellets. A burner uses the woody biomass fuel to heat the air in the expansion room to about 650 C and a water cooling system cools the air in the compression room to about 40 C. Under these operating conditions, the new engine generated about 3kW of electricity. (orig.)

  7. A numerical simulation method and analysis of a complete thermoacoustic-Stirling engine.

    Science.gov (United States)

    Ling, Hong; Luo, Ercang; Dai, Wei

    2006-12-22

    Thermoacoustic prime movers can generate pressure oscillation without any moving parts on self-excited thermoacoustic effect. The details of the numerical simulation methodology for thermoacoustic engines are presented in the paper. First, a four-port network method is used to build the transcendental equation of complex frequency as a criterion to judge if temperature distribution of the whole thermoacoustic system is correct for the case with given heating power. Then, the numerical simulation of a thermoacoustic-Stirling heat engine is carried out. It is proved that the numerical simulation code can run robustly and output what one is interested in. Finally, the calculated results are compared with the experiments of the thermoacoustic-Stirling heat engine (TASHE). It shows that the numerical simulation can agrees with the experimental results with acceptable accuracy.

  8. A thermodynamic study for the optimization of stable operation of free piston Stirling engines

    Energy Technology Data Exchange (ETDEWEB)

    Rogdakis, E.D.; Bormpilas, N.A.; Koniakos, I.K. [National Technical Univerisity, Athens (Greece). Dept. of Mechanical Engineering

    2004-03-01

    One of the most novel applications of the Stirling cycle is in the free piston configuration that was initially designed by W. Beale. In free piston Stirling engines (FPSEs), there are no mechanical linkages coupling the pistons or displacers, the motions of the reciprocating components follow the working gas pressure variations. Fillipo de Monte and G. Benvenuto have recently proposed a linearization technique of the dynamic balance equations. The aim of this paper is to predict the thermodynamic conditions for stable operation of FPSEs and their modeling. The equations of the angular velocity are solved analytically in terms of the working gas mass and the displacer-piston phase angle of the machine. Using the criterion of stable engine cyclic steady operation, a mathematically rigorous form is obtained for the main parameters of the engine. Furthermore, for simplicity reasons, thermodynamic magnitudes are obtained using the Schmidt analysis (isothermal model). (author)

  9. A numerical model on thermodynamic analysis of free piston Stirling engines

    Science.gov (United States)

    Mou, Jian; Hong, Guotong

    2017-02-01

    In this paper, a new numerical thermodynamic model which bases on the energy conservation law has been used to analyze the free piston Stirling engine. In the model all data was taken from a real free piston Stirling engine which has been built in our laboratory. The energy conservation equations have been applied to expansion space and compression space of the engine. The equation includes internal energy, input power, output power, enthalpy and the heat losses. The heat losses include regenerative heat conduction loss, shuttle heat loss, seal leakage loss and the cavity wall heat conduction loss. The numerical results show that the temperature of expansion space and the temperature of compression space vary with the time. The higher regeneration effectiveness, the higher efficiency and bigger output work. It is also found that under different initial pressures, the heat source temperature, phase angle and engine work frequency pose different effects on the engine’s efficiency and power. As a result, the model is expected to be a useful tool for simulation, design and optimization of Stirling engines.

  10. Development of a pellet boiler with Stirling engine for m-CHP domestic application

    Energy Technology Data Exchange (ETDEWEB)

    Crema, Luigi; Alberti, Fabrizio; Bertaso, Alberto; Bozzoli, Alessandro [Fondazione Bruno Kessler (FBK), Povo, Trento (IT). Renewable Energies and Environmental Technologies Unit (REET)

    2011-12-15

    A new sustainable technology has been designed by Fondazione Bruno Kessler through its unit Renewable Energies and Environmental Technologies. This technology is realized integrating in a single system (1) a Stirling engine (mRT-1K) from a pre-engineering design of Allan J. Organ; (2) a micro-heat exchanger technology, to reduce the net transfer unit deficit on the hot side of the heat engine; (3) a customized pellet boiler, able to extract electrical and thermal power; and (4) a customized hydraulic circuit, connecting the cool side of the Stirling engine and the heat generation on the second section of the pellet boiler. The objective of this paper was to present a new technology for the micro-cogeneration of energy at a distributed level able to be integrated in domestic dwellings. Most part of the available biomass is used in buildings for the generation of thermal power for indoor heating and, in minor cases, for hot sanitary water. In the Province of Trento, 88% of the biomass is used for this purpose. The full system is actually under integration for the test phase and not yet tested. The first tests on the single components have confirmed preliminary results on the Stirling engine with respect to the tolerances, pressurization, and proper integration of the electrical generator-driven control system. The pellet boiler has been tested separately, confirming an overall thermal efficiency of 90%. (orig.)

  11. Energy system feasibility study of an Otto cycle/Stirling cycle hybrid automotive engine

    Energy Technology Data Exchange (ETDEWEB)

    Cullen, Barry; McGovern, Jim [Department of Mechanical Engineering, Dublin Institute of Technology, Dublin (Ireland)

    2010-02-15

    The aim of this study was to investigate the feasibility of utilising a Stirling cycle engine as an exhaust gas waste heat recovery device for an Otto cycle internal combustion engine (ICE) in the context of an automotive power plant. The hybrid arrangement would produce increased brake power output for a given fuel consumption rate when compared to an ICE alone. The study was dealt with from an energy system perspective with design practicalities such as power train integration, location of auxiliaries, manufacture costs and other general plant design considerations neglected. The study necessitated work in two distinct areas: experimental assessment of the performance characteristics of an existing automotive Otto cycle ICE and mathematical modelling of the Stirling cycle engine based on the output parameters of the ICE. It was subsequently found to be feasible in principle to generate approximately further 30% useful power in addition to that created by the ICE by using a Stirling cycle engine to capture waste heat expelled from the ICE exhaust gases over the complete range of engine operating speeds. (author)

  12. Stirling engines for low-temperature solar-thermal-electric power generation

    Science.gov (United States)

    der Minassians, Artin

    This dissertation discusses the design and development of a distributed solar-thermal-electric power generation system that combines solar-thermal technology with a moderate-temperature Stirling engine to generate electricity. The conceived system incorporates low-cost materials and utilizes simple manufacturing processes. This technology is expected to achieve manufacturing cost of less than $1/W. Since solar-thermal technology is mature, the analysis, design, and experimental assessment of moderate-temperature Stirling engines is the main focus of this thesis. The design, fabrication, and test of a single-phase free-piston Stirling engine prototype is discussed. This low-power prototype is designed and fabricated as a test rig to provide a clear understanding of the Stirling cycle operation, to identify the key components and the major causes of irreversibility, and to verify corresponding theoretical models. As a component, the design of a very low-loss resonant displacer piston subsystem is discussed. The displacer piston is part of a magnetic circuit that provides both a required stiffness and actuation forces. The stillness is provided by a magnetic spring, which incorporates an array of permanent magnets and has a very linear stiffness characteristic that facilitates the frequency tuning. In this prototype, the power piston is not mechanically linked to the displacer piston and forms a mass-spring resonating subsystem with the engine chamber gas spring and has resonant frequency matched to that of the displacer. The fabricated engine prototype is successfully tested and the experimental results are presented and discussed. Extensive experimentation on individual component subsystems confirms the theoretical models and design considerations, providing a sound basis for higher power Stirling engine designs for residential or commercial deployments. Multi-phase Stirling engine systems are also considered and analyzed. The modal analysis of these machines proves

  13. Optimization of a 5 kW solar powered alpha stirling engine using Powell's method

    Energy Technology Data Exchange (ETDEWEB)

    Shamekhi, A. [Numeric Method Development Co., Shemiranat, Tehran (Iran, Islamic Republic of); Aliabadi, A. [MAPNA Group, Tehran (Iran, Islamic Republic of)

    2010-08-13

    Many types of Stirling engines have been built in a variety of forms and sizes since its invention in 1816. The Stirling engine offers maximum efficiency; maximum power; and minimum costs. In this study, a solar powered alpha Stirling engine was simulated using a second order method. The paper presented the governing equations, including conservation of mass; pressure losses inside the heat exchangers; pressure losses inside the regenerator; and heat transfer in the heat exchangers. Methods to optimize the parameters in order to improve engine efficiency were also discussed. The study showed that the geometric parameter of the engine influences engine performance considerably. After 20 iterations of Powell's method for engine optimization, the engine performance was optimized to the value of 25.4 percent. 18 refs., 2 tabs., 8 figs.

  14. Comparison of Stirling engines for use with a 25-kW disk-electric conversion system

    Science.gov (United States)

    Shaltens, Richard K.

    1987-01-01

    Heat engines were evaluated for terrestrial solar heat receivers. The Stirling Engine was identified as one of the most promising engines for terrestrial applications. The potential to meet the Department of Energy (DOE) goals for performance and cost can be met by the free-piston Stirling engine. NASA Lewis is providing technical management for an Advanced Stirling Conversion System (ASCS) through a cooperative interagency agreement with DOE. Parallel contracts were awarded for conceptual designs of an ASCS. Each design will feature a free-piston Stirling engine, a liquid-metal heat pipe receiver, and a means to provide about 25 kW of electric power to a utility grid while meeting long-term performance and goals. The Mechanical Technology, Ins. (MTI) design incorporates a linear alternator to directly convert the solar energy to electricity while the Stirling Technology Company (STC) generates electrical power indirectly by using a hydraulic output to a ground-bases hydraulic pump/motor coupled to a rotating alternator. Both designs use technology which can reasonably be expected to be available in the 1980's. The ASCS designs using a free-piston Stirling engine, a heat transport system, a receiver, and the methods of providing electricity to the utility grid will be discussed.

  15. The influence of thermodynamic losses on free-piston Stirling engine performance

    Energy Technology Data Exchange (ETDEWEB)

    Benvenuto, G. [Univ. of Genoa (Italy). Dipt. di Ingegneria Navale; Monte, F. de; Galli, G. [Univ. di L`Aquila (Italy). Dipt. di Energetica

    1995-12-31

    In order to improve the performance of a free-piston Stirling engine by means of a thermodynamic design optimization, it is important to quantify the entropy productions related to the different causes of irreversibility typical of these machines. This is done in the present paper, where the entropy generated in the various engine components is calculated applying the energy and entropy balance equations and assuming for the engine behavior description a mathematical model presented in past studies. The developed methodology is applied to the Sunpower RE-1000 engine for which it allows the most important causes of energy loss to be singled out.

  16. Micro power/heat cogeneration incorporating a stirling engine; microKraft-Waerme-Kopplung mit Stirlingmotor

    Energy Technology Data Exchange (ETDEWEB)

    Luft, S. [Solo Kleinmotoren GmbH, Sindelfingen (Germany)

    2003-05-01

    The Stirling-engine for CHP-purpose developed by SOLO is a trend-setting technology. It represents the most suspicious perspective apart from the fuel-cell technology in order to become suitable to the requirements of the future power supply in the focus of the sustainability and the decentralized energy supply. The charm of the Stirling technology is based on the external combustion: a so far not known variability with the primary energy choice as well as a life span substantially extending, wear-free operation are possible thereby. The external combustion reduces also the maintenance and the emissions in a measure not known with conventional engine technologies. The development steps are finished. The result is the world-wide first concept for the commercial, stationary application of decentralized micro-CHP on Stirling technology basis, which goes into series. (orig.) [German] Das von SOLO entwickelte STIRLING-Motorenkonzept zur Kraft-Waerme-Kopplung ist eine Technologie, die neben der Brennstoffzellen-Technologie die vielversprechende Perspektive darstellt, um den Anforderungen der zukuenftigen Energieversorgung im Fokus der Nachhaltigkeit und der dezentralen Energiebereitstellung gerecht zu werden. Der Charme der Stirlingtechnologie liegt in der aeusseren Verbrennung. Eine bisher nicht gekannte Variabilitaet bei der Primaerenergiewahl und ein die Lebensdauer erheblich verlaengernder, verschleissfreier Betrieb werden dadurch ermoeglicht. Die externe Verbrennung verringert auch die Wartungsaufwendungen und reduziert die Emissionen in einem bei konventionellen Motorentechnologien nicht gekannten Mass. Die Entwicklungsschritte sind abgeschlossen und das Ergebnis ist das weltweit erste Konzept zur kommerziellen, stationaeren Anwendung dezentraler Kraft-Waerme-Kopplung, auf Stirling-Technologie-Basis, das in Serie geht. (orig.)

  17. The 25 kWe solar thermal Stirling hydraulic engine system: Conceptual design

    Science.gov (United States)

    White, Maurice; Emigh, Grant; Noble, Jack; Riggle, Peter; Sorenson, Torvald

    1988-01-01

    The conceptual design and analysis of a solar thermal free-piston Stirling hydraulic engine system designed to deliver 25 kWe when coupled to a 11 meter test bed concentrator is documented. A manufacturing cost assessment for 10,000 units per year was made. The design meets all program objectives including a 60,000 hr design life, dynamic balancing, fully automated control, more than 33.3 percent overall system efficiency, properly conditioned power, maximum utilization of annualized insolation, and projected production costs. The system incorporates a simple, rugged, reliable pool boiler reflux heat pipe to transfer heat from the solar receiver to the Stirling engine. The free-piston engine produces high pressure hydraulic flow which powers a commercial hydraulic motor that, in turn, drives a commercial rotary induction generator. The Stirling hydraulic engine uses hermetic bellows seals to separate helium working gas from hydraulic fluid which provides hydrodynamic lubrication to all moving parts. Maximum utilization of highly refined, field proven commercial components for electric power generation minimizes development cost and risk.

  18. Biomass Power Generation through Direct Integration of Updraft Gasifier and Stirling Engine Combustion System

    Directory of Open Access Journals (Sweden)

    Jai-Houng Leu

    2010-01-01

    Full Text Available Biomass is the largest renewable energy source in the world. Its importance grows gradually in the future energy market. Since most biomass sources are low in energy density and are widespread in space, small-scale biomass conversion system is therefore more competitive than a large stand-alone conversion plant. The current study proposes a small-scale solid biomass power system to explore the viability of direct coupling of an updraft fixed bed gasifier with a Stirling engine. The modified updraft fixed bed gasifier employs an embedded combustor inside the gasifier to fully combust the synthetic gas generated by the gasifier. The flue gas produced by the synthetic gas combustion inside the combustion tube is piped directly to the heater head of the Stirling engine. The engine will then extract and convert the heat contained in the flue gas into electricity automatically. Output depends on heat input. And, the heat input is proportional to the flow rate and temperature of the flue gas. The preliminary study of the proposed direct coupling of an updraft gasifier with a 25 kW Stirling engine demonstrates that full power output could be produced by the current system. It could be found from the current investigation that no auxiliary fuel is required to operate the current system smoothly. The proposed technology and units could be considered as a viable solid biomass power system.

  19. Coupled thermodynamic-dynamic semi-analytical model of free piston Stirling engines

    Energy Technology Data Exchange (ETDEWEB)

    Formosa, F., E-mail: fabien.formosa@univ-savoie.f [Laboratoire SYMME, Universite de Savoie, BP 80439, 74944 Annecy le Vieux Cedex (France)

    2011-05-15

    Research highlights: {yields} The free piston Stirling behaviour relies on its thermal and dynamic features. {yields} A global semi-analytical model for preliminary design is developed. {yields} The model compared with NASA-RE1000 experimental data shows good correlations. -- Abstract: The study of free piston Stirling engine (FPSE) requires both accurate thermodynamic and dynamic modelling to predict its performances. The steady state behaviour of the engine partly relies on non linear dissipative phenomena such as pressure drop loss within heat exchangers which is dependant on the temperature within the associated components. An analytical thermodynamic model which encompasses the effectiveness and the flaws of the heat exchangers and the regenerator has been previously developed and validated. A semi-analytical dynamic model of FPSE is developed and presented in this paper. The thermodynamic model is used to define the thermal variables that are used in the dynamic model which evaluates the kinematic results. Thus, a coupled iterative strategy has been used to perform a global simulation. The global modelling approach has been validated using the experimental data available from the NASA RE-1000 Stirling engine prototype. The resulting coupled thermodynamic-dynamic model using a standardized description of the engine allows efficient and realistic preliminary design of FPSE.

  20. Free-piston Stirling hydraulic engine and drive system for automobiles

    Science.gov (United States)

    Beremand, D. G.; Slaby, J. G.; Nussle, R. C.; Miao, D.

    1982-01-01

    The calculated fuel economy for an automotive free piston Stirling hydraulic engine and drive system using a pneumatic accumulator with the fuel economy of both a conventional 1980 spark ignition engine in an X body class vehicle and the estimated fuel economy of a 1984 spark ignition vehicle system are compared. The results show that the free piston Stirling hydraulic system with a two speed transmission has a combined fuel economy nearly twice that of the 1980 spark ignition engine - 21.5 versus 10.9 km/liter (50.7 versus 25.6 mpg) under comparable conditions. The fuel economy improvement over the 1984 spark ignition engine was 81 percent. The fuel economy sensitivity of the Stirling hydraulic system to system weight, number of transmission shifts, accumulator pressure ratio and maximum pressure, auxiliary power requirements, braking energy recovery, and varying vehicle performance requirements are considered. An important finding is that a multispeed transmission is not required. The penalty for a single speed versus a two speed transmission is about a 12 percent drop in combined fuel economy to 19.0 km/liter (44.7 mpg). This is still a 60 percent improvement in combined fuel economy over the projected 1984 spark ignition vehicle.

  1. Nonlinear dynamics analysis of a membrane Stirling engine: Starting and stable operation

    Science.gov (United States)

    Formosa, Fabien

    2009-10-01

    This paper presents the work devoted to the study of the operation of a miniaturized membrane Stirling engine. Indeed, such an engine relies on the dynamic coupling of the motion of two membranes to achieve a prime mover Stirling thermodynamic cycle. The modelling of the system introduces the large vibration amplitudes of the membrane as well as the nonlinear dissipative effects associated to the fluid flow within the engine. The nonlinearities are expressed as polynomial functions with quadratic and cubic terms. This paper displays the stability analysis to predict the starting of the engine and the instability problem which leads to the steady-state behaviour. The centre manifold-normal form theory is used to obtain the simplest expression for the limit cycle amplitudes. The approach allows the reduction of the number of equations of the original system in order to obtain a simplified system, without loosing the dynamics of the original system as well as the contributions of nonlinear terms. The model intends to be used as a semi-analytical design tool for the optimization of miniaturized Stirling machines from the starting to the steady operation.

  2. Characteristics, finite element analysis, test description, and preliminary test results of the STM4-120 kinematic Stirling engine

    Science.gov (United States)

    Linker, K. L.; Rawlinson, K. S.; Smith, G.

    1991-10-01

    The Department of Energy's Solar Thermal Program has, as one of its program elements, the development and evaluation of conversion device technologies applicable to dish-electric systems. The primary research and development combines a conversion device (heat engine), solar receiver, and generator mounted at the focus of a parabolic dish concentrator. The Stirling-cycle heat engine was identified as the conversion device for dish-electric with the most potential for meeting the program's goals for efficiency, reliability, and installed cost. To advance the technology toward commercialization, Sandia National Laboratories has acquired a Stirling Thermal Motors, Inc. kinematic Stirling engine, STM4-120, for evaluation. The engine is being bench-tested at Sandia's Engine Test Facility and will be combined later with a solar receiver for on-sun evaluation. This report presents the engine characteristics, finite element analyses of critical engine components, test system layout, instrumentation, and preliminary performance results from the bench test.

  3. Solar power generation by use of Stirling engine and heat loss analysis of its cavity receiver

    Science.gov (United States)

    Hussain, Tassawar

    Since concentrated power generation by Stirling engine has the highest efficiency therefore efficient power generation by concentrated systems using a Stirling engine was a primary motive of this research. A 1 kW Stirling engine was used to generate solar power using a Fresnel lens as a concentrator. Before operating On-Sun test, engine's performance test was conducted by combustion test. Propane gas with air was used to provide input heat to the Stirling Engine and 350W power was generated with 14% efficiency of the engine. Two kinds of receivers were used for On-Sun test, first type was the Inconel tubes with trapped helium gas and the second one was the heat pipe. Heat pipe with sodium as a working fluid is considered the best approach to transfer the uniform heat from the receiver to the helium gas in the heater head of the engine. A Number of On-Sun experiments were performed to generate the power. A minimum 1kW input power was required to generate power from the Stirling engine but it was concluded that the available Fresnel lens was not enough to provide sufficient input to the Stirling engine and hence engine was lagged to generate the solar power. Later on, for a high energy input a Beam Down system was also used to concentrate the solar light on the heater head of the Stirling engine. Beam down solar system in Masdar City UAE, constructed in 2009 is a variation of central receiver plant with cassegrainian optics. Around 1.5kW heat input was achieved from the Beam Down System and it was predicted that the engine receiver at beam down has the significant heat losses of about 900W. These high heat losses were the major hurdles to get the operating temperature (973K) of the heat pipes; hence power could not be generated even during the Beam Down test. Experiments were also performed to find the most suitable Cavity Receiver configuration for maximum solar radiation utilizations by engine receiver. Dimensionless parameter aperture ration (AR=d/D) and aperture

  4. Thermodynamic analysis of a gamma type Stirling engine in non-ideal adiabatic conditions

    Energy Technology Data Exchange (ETDEWEB)

    Parlak, Nezaket [University of Sakarya, Engineering Faculty, Mechanical Engineering Department, Sakarya (Turkey); University of Applied Sciences Regensburg, Mechanical Engineering Department, PO 120327, Regensburg (Germany); Wagner, Andreas; Elsner, Michael [University of Applied Sciences Regensburg, Mechanical Engineering Department, PO 120327, Regensburg (Germany); Soyhan, Hakan S. [University of Sakarya, Engineering Faculty, Mechanical Engineering Department, Sakarya (Turkey)

    2009-01-15

    In this study, a thermodynamic analysis of a gamma type Stirling engine is performed by using a quasi steady flow model based on Urieli and Berchowitz's works. The Stirling engine analysis is performed for five principal fields: compression room, expansion room, cooler, heater and regenerator. The conservation law of the mass and the energy equations are derived for the related sections. A FORTRAN code is developed to solve the derived equations for all process parameters like pressure, temperature, mass flow, dissipation and convection losses for the different spaces (compression space, cooler, regenerator, heater and expansion space) as a function of the crank angle. The developed model gave more precise results for the pressure profile than the models available in the literature. (author)

  5. Preliminary results from a numerical study on the appendix gap losses in a Stirling engine

    DEFF Research Database (Denmark)

    Andersen, Stig Kildegård; Carlsen, Henrik; Thomsen, Per Grove

    2005-01-01

    with different algorithms for computing the heat transfer in the gap. The results showed higher losses for small gap sizes but smaller losses for large gap sizes when compared to analytical expressions for the appendix gap losses. The appendix gap losses were found to influence both the heat intake and work......Analytical expressions for the losses in the displacer clearance gap, a.k.a. the appendix gap, have been refined during the last decades. But most real life Stirling engines violate the assumptions behind these expressions and hence the expressions may not be applicable. In this study the gap has...... been included directly into a one dimensional Stirling engine model. Practical aspects of the method, such as handling the moving wall in the gap while achieving an energy conserving model formulation and handling discontinuous derivatives in the equations, are discussed. A study on the convergence...

  6. Influence of quantum degeneracy on the performance of a gas Stirling engine cycle

    Science.gov (United States)

    He, Ji-Zhou; Mao, Zhi-Yuan; Wang, Jian-Hui

    2006-09-01

    Based on the state equation of an ideal quantum gas, the regenerative loss of a Stirling engine cycle working with an ideal quantum gas is calculated. Thermal efficiency of the cycle is derived. Furthermore, under the condition of quantum degeneracy, several special thermal efficiencies are discussed. Ratios of thermal efficiencies versus the temperature ratio and volume ratio of the cycle are made. It is found that the thermal efficiency of the cycle not only depends on high and low temperatures but also on maximum and minimum volumes. In a classical gas state the thermal efficiency of the cycle is equal to that of the Carnot cycle. In an ideal quantum gas state the thermal efficiency of the cycle is smaller than that of the Carnot cycle. This will be significant for deeper understanding of the gas Stirling engine cycle.

  7. Free-piston Stirling Engine system considerations for various space power applications

    Science.gov (United States)

    Dochat, George R.; Dhar, Manmohan

    1991-01-01

    Free-Piston Stirling Engines (FPSE) have the potential to provide high reliability, long life, and efficient operation. Therefore, they are excellent candidates for the dynamic power conversion module of a space-based, power-generating system. FPSE can be coupled with many potential heat sources (radioisotope, solar, or nuclear reactor), various heat input systems (pumped loop, heat pipe), heat rejection (pumped loop or heat pipe), and various power management and distribution systems (ac, dc, high or low voltage, and fixed or variable load). This paper reviews potential space missions that can be met using free-piston Stirling engines and discusses options of various system integration approaches. This paper briefly outlines the program and recent progress.

  8. Energy efficiency and economic feasibility of CCHP driven by Stirling engine

    Energy Technology Data Exchange (ETDEWEB)

    Kong, X.Q.; Wang, R.Z.; Huang, X.H. [Shanghai Jiao Tong University (China). Institute of Refrigeration and Cryogenics

    2004-06-01

    This paper deals with the problem of energy efficiency evaluation and economic feasibility analysis of a small scale trigeneration system for combined cooling, heating and power generation (CCHP) with an available Stirling engine. Trigeneration systems have a large potential of energy saving and economical efficiency. The decisive values for energetic efficiency evaluation of such systems are the primary energy rate and comparative primary energy saving ({delta}q), while the economic feasibility analysis of such systems relates the avoided cost, the total annual saving and payback period. The investigation calculates and compares the energy saving and economic efficiency of trigeneration system with Stirling engine against contemporary conventional independent cooling, heating and power, showing that a CCHP system saves fuel resources and has the assurance of economic benefits. (author)

  9. Optimization of solar-powered Stirling heat engine with finite-time thermodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Yaqi, Li [School of Energy and Power Engineering, Xi' an Jiaotong University, Xi' an, Shaanxi 710049 (China); Xi' an Research Institute of Hi-Tech, Xi' an, Shaanxi 710025 (China); Yaling, He; Weiwei, Wang [School of Energy and Power Engineering, Xi' an Jiaotong University, Xi' an, Shaanxi 710049 (China)

    2011-01-15

    A mathematical model for the overall thermal efficiency of the solar-powered high temperature differential dish-Stirling engine with finite-rate heat transfer, regenerative heat losses, conductive thermal bridging losses and finite regeneration processes time is developed. The model takes into consideration the effect of the absorber temperature and the concentrating ratio on the thermal efficiency; radiation and convection heat transfer between the absorber and the working fluid as well as convection heat transfer between the heat sink and the working fluid. The results show that the optimized absorber temperature and concentrating ratio are at about 1100 K and 1300, respectively. The thermal efficiency at optimized condition is about 34%, which is not far away from the corresponding Carnot efficiency at about 50%. Hence, the present analysis provides a new theoretical guidance for designing dish collectors and operating the Stirling heat engine system. (author)

  10. Preliminary results from a numerical study on the appendix gap losses in a Stirling engine

    DEFF Research Database (Denmark)

    Andersen, Stig Kildegård; Carlsen, Henrik; Thomsen, Per Grove

    2005-01-01

    been included directly into a one dimensional Stirling engine model. Practical aspects of the method, such as handling the moving wall in the gap while achieving an energy conserving model formulation and handling discontinuous derivatives in the equations, are discussed. A study on the convergence......Analytical expressions for the losses in the displacer clearance gap, a.k.a. the appendix gap, have been refined during the last decades. But most real life Stirling engines violate the assumptions behind these expressions and hence the expressions may not be applicable. In this study the gap has...... of the spatial discretisation in the gap showed that a relatively coarse discretisation was adequate for studying the appendix gap losses and showed significant variations in the axial wall temperature gradients along the gap. A parameter study on the size of the displacer clearance gap was performed...

  11. Influence of quantum degeneracy on the performance of a gas Stirling engine cycle

    Institute of Scientific and Technical Information of China (English)

    He Ji-Zhou; Mao Zhi-Yuan; Wang Jian-Hui

    2006-01-01

    Based on the state equation of an ideal quantum gas, the regenerative loss of a Stirling engine cycle working with an ideal quantum gas is calculated. Thermal efficiency of the cycle is derived. Furthermore, under the condition of quantum degeneracy, several special thermal efficiencies are discussed. Ratios of thermal efficiencies versus the temperature ratio and volume ratio of the cycle are made. It is found that the thermal efficiency of the cycle not only depends on high and low temperatures but also on maximum and minimum volumes. In a classical gas state the thermal efficiency of the cycle is equal to that of the Carnot cycle. In an ideal quantum gas state the thermal efficiency of the cycle is smaller than that of the Carnot cycle. This will be significant for deeper understanding of the gas Stirling engine cycle.

  12. Fuel and emissions properties of Stirling engine operated with wood powder

    Energy Technology Data Exchange (ETDEWEB)

    Akio Nishiyama; Hidetoshi Shimojima; Akira Ishikawa; Yoshinori Itaya; Shinji Kambara; Hiroshi Moritomi; Shigekatsu Mori [C-Tech Corporation Ltd., Nagoya (Japan). Engineering Development Group

    2007-10-15

    From viewpoints of the environment and fuel cost reduction, small-scale biomass combined heat and power (CHP) plants are in demand, especially wood-waste fueled system, which are simple to operate and maintenance-free with high thermal efficiency similar to oil fired units. These are requested by wood and other industries located in mountainous region. To meet these requirements, a Stirling engine CHP system combined with simplified biomass combustion process with pulverized wood powder was developed. In an R&D project started in 2004 considering wood powder properties as a fuel, combustion performance and emissions in combustion flue gas were tested using combustion test apparatus with commercial size units. The wood powder combustion system was modified and optimized during the combustion test results, and the design of the demonstration plant combined with 55 kW{sub e} Stirling engine power unit was considered. The demonstration plant was finally completed in March of 2006, and test operation has been progressed for the future commercial CHP system. In the wood powder combustion test, wood powder of less than 500 {mu}m is mainly used, and a combustion chamber length of 3 m is applied. In these conditions, the air ratio can be reduced to 1.1 without increasing CO emission of less than 10 ppm and combustion efficiency of 99.9%. In the same conditions, NOx emission is estimated to be less than 120 ppm (6% O{sub 2} basis). Wood powder was confirmed to have excellent properties as a fuel for Stirling engine CHP system. This paper summarizes the wood powder combustion test, and presents the evaluation of the burner design parameters for the biomass Stirling engine system. 28 refs., 16 figs., 5 tabs.

  13. Control scheme for power modulation of a free piston Stirling engine

    Science.gov (United States)

    Dhar, Manmohan

    1989-01-01

    The present invention relates to a control scheme for power modulation of a free-piston Stirling engine-linear alternator power generator system. The present invention includes connecting an autotransformer in series with a tuning capacitance between a linear alternator and a utility grid to maintain a constant displacement to piston stroke ratio and their relative phase angle over a wide range of operating conditions.

  14. Optimal design of Stirling heat engine using an advanced optimization algorithm

    Indian Academy of Sciences (India)

    R V RAO; K C MORE; J TALER; P OCION

    2016-11-01

    The Stirling engine presents an excellent theoretical output equivalent to the output of Carnot engine and it is less pollutant and requires little maintenance. In this paper, Stirling heat engine is considered for optimization with multiple criteria. A recently developed advanced optimization algorithm namely ‘‘teaching–learning-based optimization (TLBO) algorithm’’ is used for maximization of output power, minimization ofpressure losses and maximization of the thermal efficiency of the entire solar Stirling system. The comparisons of the proposed algorithm are made with those obtained by using the decision-making methods like linear programming technique for multi-dimensional analysis of preference (LINMAP), technique for order of preference by similarity to ideal solution (TOPSIS) and fuzzy Bellman–Zadeh method that have used the Pareto frontier gained through non-dominated sorting genetic algorithm-II (NSGA-II). The comparisons were also made with those obtained by the experimental results. It is found that the TLBO algorithm has produced comparatively better results than those given by the decision-making methods and the experimental results presented by the previous researchers.

  15. Performance study of a Stirling engine in a combined heat and power system

    Energy Technology Data Exchange (ETDEWEB)

    Aliabadi, A.; Thomson, M.; Wallace, J.; Tzanetakis, T. [Toronto Univ., ON (Canada). Dept. of Mechanical and Industrial Engineering

    2007-07-01

    The use of biofuels in engines can result in poor ignition quality, long ignition delays, and long residence times. However, biofuels can be used efficiently in low power applications with Stirling engines. This study examined biofuels combustion in a retrofitted commercially-available combined heat and power (CHP) system. The system consisted of a burner, a Stirling engine, a generator and a controller. The Stirling cycle consisted of 4 processes: an isothermal expansion; a constant volume regeneration; an isothermal compression; and a constant volume regeneration. Tests were conducted to run the CHP unit in a heat-manage mode with coolant and combustion temperature set points of 70 and 460 degrees C for a period of 1 hour and 45 minutes. Air and fuel supply rates were regulated in order to control heat input into the system. A steady state energy balance analysis was then performed. Results of the experimental study showed that the system was capable of producing 0.8 kW of electrical and 5.5 kW of thermal power. An energy balance analysis was used to create an experimental benchmark performance of the unit. A revised fueling system is also being designed to combust the biomass pyrolysis oil. 7 refs., 2 tabs., 10 figs.

  16. Analysis and design consideration of mean temperature differential Stirling engine for solar application

    Energy Technology Data Exchange (ETDEWEB)

    Tlili, Iskander; Timoumi, Youssef; Nasrallah, Sassi Ben [Laboratoire d' Etude des Systemes Thermiques et Energetiques Ecole Nationale d' Ingenieurs de Monastir, Rue Ibn El Jazzar, 5019 Monastir (Tunisia)

    2008-08-15

    This article presents a technical innovation, study of solar power system based on the Stirling dish (SD) technology and design considerations to be taken in designing of a mean temperature differential Stirling engine for solar application. The target power source will be solar dish/Stirling with average concentration ratio, which will supply a constant source temperature of 320{sup o}C. Hence, the system design is based on a temperature difference of 300{sup o}C, assuming that the sink is kept at 20{sup o}C. During the preliminary design stage, the critical parameters of the engine design are determined according to the dynamic model with losses energy and pressure drop in heat exchangers was used during the design optimisation stage in order to establish a complete analytical model for the engine. The heat exchangers are designed to be of high effectiveness and low pressure-drop. Upon optimisation, for given value of difference temperature, operating frequency and dead volume there is a definite optimal value of swept volume at which the power is a maximum. The optimal swept volume of 75 cm{sup 3} for operating frequency 75 Hz with the power is 250 W and the dead volume is of 370 cm{sup 3}. (author)

  17. A free-piston Stirling engine/linear alternator controls and load interaction test facility

    Science.gov (United States)

    Rauch, Jeffrey S.; Kankam, M. David; Santiago, Walter; Madi, Frank J.

    1992-01-01

    A test facility at LeRC was assembled for evaluating free-piston Stirling engine/linear alternator control options, and interaction with various electrical loads. This facility is based on a 'SPIKE' engine/alternator. The engine/alternator, a multi-purpose load system, a digital computer based load and facility control, and a data acquisition system with both steady-periodic and transient capability are described. Preliminary steady-periodic results are included for several operating modes of a digital AC parasitic load control. Preliminary results on the transient response to switching a resistive AC user load are discussed.

  18. On the dynamical vs. thermodynamical performance of a β-type Stirling engine

    Science.gov (United States)

    Reséndiz-Antonio, Margarita; Santillán, Moisés

    2014-09-01

    In this work we present a simple mathematical model for a β-type Stirling engine. Despite its simplicity, the model considers all the engine’s relevant thermodynamic and mechanical aspects. The dynamic behavior of the model equation of motion is analyzed in order to obtain the sufficient conditions for engine cycling and to study the stability of the stationary regime. The performance of the engine’s thermodynamic part is also investigated. As a matter of fact, we found that it corresponds to a Carnot engine.

  19. A free-piston Stirling engine/linear alternator controls and load interaction test facility

    Science.gov (United States)

    Rauch, Jeffrey S.; Kankam, M. David; Santiago, Walter; Madi, Frank J.

    1992-08-01

    A test facility at LeRC was assembled for evaluating free-piston Stirling engine/linear alternator control options, and interaction with various electrical loads. This facility is based on a 'SPIKE' engine/alternator. The engine/alternator, a multi-purpose load system, a digital computer based load and facility control, and a data acquisition system with both steady-periodic and transient capability are described. Preliminary steady-periodic results are included for several operating modes of a digital AC parasitic load control. Preliminary results on the transient response to switching a resistive AC user load are discussed.

  20. Research on Stirling Engine in the System of Dish-Stirling Solar Power Generation%碟式太阳能热发电系统中斯特林发动机的研究

    Institute of Scientific and Technical Information of China (English)

    王译旋

    2015-01-01

    Based on the analysis of operating principle of dish-stirling solar power generation system, the article uses the stirling engine in the system of dish-stirling solar power generation as the object, analyzes the key technique of stirling cycle and engine, and combined the research status of stirling engine in dish-stirling solar power generation system, pointed out many research hot points of stirling engine, provides a reference for relative research of dish-stirling solar power generation system.%在分析碟式太阳能热发电系统工作原理的基础上,以碟式太阳能热发电系统中的斯特林发动机为研究对象,分析斯特林循环以及斯特林发动机的关键技术。结合碟式太阳能热发电系统中斯特林发动机的研究现状,指出斯特林发动机的诸多研究热点,为碟式太阳能热发电系统相关研究提供依据。

  1. Design and fabrication of a meso-scale stirling engine and combustor.

    Energy Technology Data Exchange (ETDEWEB)

    Echekki, Tarek (Sandia National Laboratories, Livermore, CA); Haroldsen, Brent L. (Sandia National Laboratories, Livermore, CA); Krafcik, Karen L. (Sandia National Laboratories, Livermore, CA); Morales, Alfredo Martin (Sandia National Laboratories, Livermore, CA); Mills, Bernice E. (Sandia National Laboratories, Livermore, CA); Liu, Shiling (Sandia National Laboratories, Livermore, CA); Lee, Jeremiah C. (Sandia National Laboratories, Livermore, CA); Karpetis, Adionos N. (Sandia National Laboratories, Livermore, CA); Chen, Jacqueline H. (Sandia National Laboratories, Livermore, CA); Ceremuga, Joseph T. (Sandia National Laboratories, Livermore, CA); Raber, Thomas N. (Sandia National Laboratories, Livermore, CA); Hekmuuaty, Michelle A. (Sandia National Laboratories, Livermore, CA)

    2005-05-01

    Power sources capable of supplying tens of watts are needed for a wide variety of applications including portable electronics, sensors, micro aerial vehicles, and mini-robotics systems. The utility of these devices is often limited by the energy and power density capabilities of batteries. A small combustion engine using liquid hydrocarbon fuel could potentially increase both power and energy density by an order of magnitude or more. This report describes initial development work on a meso-scale external combustion engine based on the Stirling cycle. Although other engine designs perform better at macro-scales, we believe the Stirling engine cycle is better suited to small-scale applications. The ideal Stirling cycle requires efficient heat transfer. Consequently, unlike other thermodynamic cycles, the high heat transfer rates that are inherent with miniature devices are an advantage for the Stirling cycle. Furthermore, since the Stirling engine uses external combustion, the combustor and engine can be scaled and optimized semi-independently. Continuous combustion minimizes issues with flame initiation and propagation. It also allows consideration of a variety of techniques to promote combustion that would be difficult in a miniature internal combustion engine. The project included design and fabrication of both the engine and the combustor. Two engine designs were developed. The first used a cylindrical piston design fabricated with conventional machining processes. The second design, based on the Wankel rotor geometry, was fabricated by through-mold electroforming of nickel in SU8 and LIGA micromolds. These technologies provided the requisite precision and tight tolerances needed for efficient micro-engine operation. Electroformed nickel is ideal for micro-engine applications because of its high strength and ductility. A rotary geometry was chosen because its planar geometry was more compatible with the fabrication process. SU8 lithography provided rapid

  2. Computer program for a four-cylinder-Stirling-engine controls simulation

    Science.gov (United States)

    Daniels, C. J.; Lorenzo, C. F.

    1982-06-01

    A four cylinder Stirling engine, transient engine simulation computer program is presented. The program is intended for controls analysis. The associated engine model was simplified to shorten computer calculation time. The model includes engine mechanical drive dynamics and vehicle load effects. The computer program also includes subroutines that allow: (1) acceleration of the engine by addition of hydrogen to the system, and (2) braking of the engine by short circuiting of the working spaces. Subroutines to calculate degraded engine performance (e.g., due to piston ring and piston rod leakage) are provided. Input data required to run the program are described and flow charts are provided. The program is modular to allow easy modification of individual routines. Examples of steady state and transient results are presented.

  3. Numerical study on optimal Stirling engine regenerator matrix designs taking into account the effects of matrix temperature oscillations

    DEFF Research Database (Denmark)

    Andersen, Stig Kildegård; Carlsen, Henrik; Thomsen, Per Grove

    2006-01-01

    A new regenerator matrix design that improves the efficiency of a Stirling engine has been developed in a numerical study of the existing SM5 Stirling engine. A new, detailed, one-dimensional Stirling engine model that delivers results in good agreement with experimental data was used for mapping...... the per- formance of the engine, for mapping the effects of regenerator matrix temperature oscillations, and for optimising the regenerator design. The regenerator matrix temperatures were found to oscillate in two modes. The first mode was oscillation of a nearly linear axial matrix temperature profile...... while the second mode bended the ends of the axial matrix temperature profile when gas flowed into the regenerator with a temperature significantly different from the matrix temperature. The first mode of oscillation improved the efficiency of the engine but the second mode reduced both the work output...

  4. Design, fabrication, and testing of a sodium evaporator for the STM4-120 kinematic Stirling engine

    Energy Technology Data Exchange (ETDEWEB)

    Rawlinson, K.S.; Adkins, D.R.

    1995-05-01

    This report describes the development and testing of a compact heat-pipe heat exchanger kW(e) designed to transfer thermal energy from hot combustion gases to the heater tubes of a 25-kW(e) Stirling engine. In this system, sodium evaporates from a surface that is heated by a stream of hot gases. The liquid metal then condenses on the heater tubes of a Stirling engine, where energy is transferred to the engine`s helium working fluid. Tests on a prototype unit illustrated that a compact (8 cm {times} 13 cm {times} 16 cm) sodium evaporator can routinely transfer 15 kW(t) of energy at an operating vapor temperature of 760 C. Four of these prototype units were eventually used to power a 25-kW(e) Stirling engine system. Design details and test results from the prototype unit are presented in this report.

  5. Experimental characterization of a small custom-built double-acting gamma-type stirling engine

    Science.gov (United States)

    Intsiful, Peter; Mensah, Francis; Thorpe, Arthur

    This paper investigates characterization of a small custom-built double-acting gamma-type stirling engine. Stirling-cycle engine is a reciprocating energy conversion machine with working spaces operating under conditions of oscillating pressure and flow. These conditions may be due to compressibility as wells as pressure and temperature fluctuations. In standard literature, research indicates that there is lack of basic physics to account for the transport phenomena that manifest themselves in the working spaces of reciprocating engines. Previous techniques involve governing equations: mass, momentum and energy. Some authors use engineering thermodynamics. None of these approaches addresses this particular engine. A technique for observing and analyzing the behavior of this engine via parametric spectral profiles has been developed, using laser beams. These profiles enabled the generation of pv-curves and other trajectories for investigating the thermos-physical and thermos-hydrodynamic phenomena that manifest in the exchangers. The engine's performance was examined. The results indicate that with current load of 35.78A, electric power of 0.505 kW was generated at a speed of 240 rpm and 29.50 percent efficiency was obtained. Nasa grants to Howard University NASA/HBCU-NHRETU & CSTEA.

  6. The Development of a Control System for a 5 Kilowatt Free Piston Stirling Engine Convertor

    Science.gov (United States)

    Kirby, Raymond L.; Vitale, Nick

    2008-01-01

    The new NASA Vision for Exploration, announced by President Bush in January 2004, proposes an ambitious program that plans to return astronauts to the moon by the 2018 time frame. A recent NASA study entitled "Affordable Fission Surface Power Study" recommended a 40 kWe, 900 K, NaK-cooled, Stirling convertors for 2020 launch. Use of two of the nominal 5 kW convertors allows the system to be dynamically balanced. A group of four dual-convertor combinations that would yield 40 kWe can be tested to validate the viability of Stirling technology for space fission surface power systems. The work described in this paper deals specifically with the control system for the 5 kW convertor described in the preceding paragraph. This control system is responsible for maintaining piston stroke to a setpoint in the presence of various disturbances including electrical load variations. Pulse starting of the Free Piston Stirling Engine (FPSE) convertor is also an inherent part of such a control system. Finally, the ability to throttle the engine to match the required output power is discussed in terms of setpoint control. Several novel ideas have been incorporated into the piston stroke control strategy that will engender a stable response to disturbances in the presence of midpoint drift while providing useful data regarding the position of both the power piston and displacer.

  7. Thermal energy storage for the Stirling engine powered automobile. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Morgan, D T [ed.

    1979-03-01

    A detailed design of a thermal energy storage (TES) system for use with the Stirling engine as an automotive power system has been developed. The gravimetric and volumetric storage densities are competitive with electric battery storage systems. The TES/Stirling engine system meets all operational requirements for a practical vehicle and can be packaged in compact-sized automobiles with minimum impact on passenger and freight volume. The TES/Stirling system is the only storage approach for direct use of combustion heat from fuel sources not suitable for direct transport and use on the vehicle. The particular concept developed in this study is also useful for a dual-mode TES/liquid fuel system in which the TES (recharged from an external energy source) is used for short-duration trips (approx. 10 miles or less) and liquid fuel carried onboard the vehicle used for long-duration trips (as in current automobiles). The dual-mode approach permits an automobile with the convenience and flexibility of current automobiles while offering the potential of 50% savings in the consumption of premium liquid fuels for automotive propulsion in the United States. Relative to the TES-only vehicle, the dual mode approach also reduces the TES cost significantly because of the much smaller TES capacity required.

  8. Testing of advanced ceramic fabric heat pipe for a Stirling engine

    Energy Technology Data Exchange (ETDEWEB)

    Antoniak, Z.I.; Webb, B.J.; Bates, J.M.

    1991-09-01

    The development and application of Stirling engines for space power production requires concomitant development of an advanced heat rejection system. We are currently involved in the design, development, and testing of advanced ceramic fabric (ACF) water heat pipes for optimal heat rejection from the Stirling cycle without the use of hazardous working fluids such as mercury. Our testing to-date has been with a 200-{mu}m thick titanium heat pipe utilizing Nextel {trademark} fabric as both the outer structural component and as a wick. This heat pipe has been successfully started up from a frozen condition against a negative 4 degree tilt (i.e., fluid return to evaporator was against gravity), with 75 W heat input, in ambient air. In a horizontal orientation, up to 100 W heat input was tolerated without experiencing dryout. 7 refs., 5 figs., 2 tabs.

  9. Alkali metal compatibility testing of candidate heater head materials for a Stirling engine heat transport system

    Science.gov (United States)

    Noble, Jack E.; Hickman, Gary L.; Grobstein, Toni

    The authors describe work performed as part of the 25-kWe advanced Stirling conversion system project. Liquid alkali metal compatibility is being assessed in an ongoing test program to evaluate candidate heater head materials and fabrication processes at the temperatures and operating conditions required for Stirling engines. Specific materials under evaluation are alloy 713LC, alloy 713LC coated with nickel aluminide, and Udimet 720, each in combination with Waspaloy. The tests were run at a constant 700 C. A eutectic alloy of sodium and potassium (NaK) was the working fluid. Titanium sheet in the system was shown to be an effective oxygen getter. Metallographic and microchemical examination of material surfaces, joints, and their interfaces revealed little or no corrosion after 1000 h. Tests are in progress, with up to 10,000 h exposure.

  10. Modifications and testing of a 4-95 Stirling engine for solar applications

    Science.gov (United States)

    Nelving, H. G.; Percival, W. H.

    1982-01-01

    The modifications and testing of a standard Stirling engine, required for connection to a 25 kW induction alternator, for use with a solar thermal parabolic dish electric module is described. Power was absorbed by a GE induction alternator connected to the utility grid. Also included are the results from recent testing of another solar engine at the DOE-Georgia Tech solar site. It was done in parallel with the testing at Edwards for the purpose of comparing performance of two solar-only receivers, which were based on the standard 4-95 involute heat exchanger.

  11. Further two-dimensional code development for Stirling space engine components

    Science.gov (United States)

    Ibrahim, Mounir; Tew, Roy C.; Dudenhoefer, James E.

    1990-01-01

    The development of multidimensional models of Stirling engine components is described. Two-dimensional parallel plate models of an engine regenerator and a cooler were used to study heat transfer under conditions of laminar, incompressible oscillating flow. Substantial differences in the nature of the temperature variations in time over the cycle were observed for the cooler as contrasted with the regenerator. When the two-dimensional cooler model was used to calculate a heat transfer coefficient, it yields a very different result from that calculated using steady-flow correlations. Simulation results for the regenerator and the cooler are presented.

  12. Design and manufacturing of a V-type Stirling engine with double heaters

    Energy Technology Data Exchange (ETDEWEB)

    Batmaz, Ihsan; Uestuen, Sueleyman [Gazi University, Faculty of Technical Education, 06500 Besevler, Ankara (Turkey)

    2008-11-15

    Under the consideration of the solar energy potential of Turkey, a V-type Stirling engine having two heaters was designed, optimized and then manufactured. The prototype engine was tested in laboratory condition using an electrical heating system. Tests were conducted within the temperature range of 650-1000 C with 50 C increments. The pressure ranged from the ambient value to 2 bar with 0.5 bar increments at each stage of temperature. The maximum power was obtained at 950 C and 1.0 bar charge pressure as 118 W. (author)

  13. A 4-cylinder Stirling engine computer program with dynamic energy equations

    Science.gov (United States)

    Daniele, C. J.; Lorenzo, C. F.

    1983-05-01

    A computer program for simulating the steady state and transient performance of a four cylinder Stirling engine is presented. The thermodynamic model includes both continuity and energy equations and linear momentum terms (flow resistance). Each working space between the pistons is broken into seven control volumes. Drive dynamics and vehicle load effects are included. The model contains 70 state variables. Also included in the model are piston rod seal leakage effects. The computer program includes a model of a hydrogen supply system, from which hydrogen may be added to the system to accelerate the engine. Flow charts are provided.

  14. Electrical performances of pyroelectric bimetallic strip heat engines describing a Stirling cycle

    Science.gov (United States)

    Arnaud, A.; Boughaleb, J.; Monfray, S.; Boeuf, F.; Cugat, O.; Skotnicki, T.

    2015-12-01

    This paper deals with the analytical modeling of pyroelectric bimetallic strip heat engines. These devices are designed to exploit the snap-through of a thermo-mechanically bistable membrane to transform a part of the heat flowing through the membrane into mechanical energy and to convert it into electric energy by means of a piezoelectric layer deposited on the surface of the bistable membrane. In this paper, we describe the properties of these heat engines in the case when they complete a Stirling cycle, and we evaluate the performances (available energy, Carnot efficiency...) of these harvesters at the macro- and micro-scale.

  15. Development of a non-linear mathematical model for Stirling engines

    Science.gov (United States)

    Serrate, O. A. G.; Parise, J. A. R.

    The development of a simulation model for Stirling engines is discussed. The model follows the control-volume method, in which the engine is divided into five volumes of control: the hot expansion and cold compression spaces, the heater and cooler, and the regenerator. The engine thermodynamic cycle is divided into a number of time-steps, and a system of nonlinear ordinary differential equations, which describe the energy balances over the gas control volumes, as well as in the regenerator material, is solved numerically. The model features some recent advances in the analysis of Stirling engines. Pressure drop equations for the gas flow passages are considered. These equations are solved simultaneously with the rest of the model. The power dependence of the pressure drop on the gas mass flow rate introduces non-linearities in the system of equations. These equations will provide the rate of variation with time of the dependent variables (pressure, temperature, velocity, and mass) at each control volume. Techniques to enhance convergence have been employed. Predicted results for a typical engine are compared with experimental data.

  16. Alloy chemistry and microstructural control to meet the demands of the automotive Stirling engine

    Science.gov (United States)

    Stephens, Joseph R.

    1988-01-01

    The automotive Stirling engine now under development by DOE/NASA as an alternative to the internal combustion engine, imposes severe materials requirements for the hot portion of the engine. Materials selected must be low cost and contain a minimum of strategic elements so that availability is not a problem. Heater head tubes contain high pressure hydrogen on the inside and are exposed to hot combustion gases on the outside surface. The cylinders and regenerator housings must be readily castable into complex shapes having varying wall thicknesses and be amenable to brazing and welding operations. Also, high strength, oxidation resistance, resistance to hydrogen permeation, cyclic operation, and long-life are required. A research program conducted by NASA Lewis focused on alloy chemistry and microstructural control to achieve the desired properties over the life of the engine. Results of alloy selection, characterization, evaluation, and actual engine testing of selected materials are presented.

  17. Development of a hot heat exchanger and a cleaning system for a 35 kW hermetic four cylinder Stirling engine for solid biomass fuels

    DEFF Research Database (Denmark)

    Carlsen, Henrik; Marinitsch, Gerald; Schöch, Martin

    2005-01-01

    Over the past few years, a small-scale CHP technology based on hermetic Stirling engines has been developed and two prototype plants with a 35 kWel four cylinder and a 70 kWel eight cylinder Stirling engine have been erected in Austria. The prototype plant with a 35 kWel Stirling engine has already......H, Austria. The new design of the Stirling hot gas heat exchanger has been developed in order to optimise the performance of the engine and simplify the geometry. In this respect, an equal distribution of the heat transfer across each tube in the hot gas heat exchanger, the reduction of the internal Helium...... of the hot gas heat exchanger by primary measures efficiently. Consequently, a new pneumatic cleaning system has been developed, in order to increase the intervals between manual cleaning and thus the availability of the Stirling engine. The system is integrated into the furnace and works fully automatically...

  18. Nonlinear dynamics analysis of a membrane Stirling engine: Starting and stable operation

    CERN Document Server

    Formosa, Fabien

    2013-01-01

    This paper presents the work devoted to the study of the operation of a miniaturized membrane Stirling engine. Indeed, such an engine relies on the dynamic coupling of the motion of two membranes to achieve a prime mover Stirling thermodynamic cycle. The modelling of the system introduces the large vibration amplitudes of the membrane as well as the nonlinear dissipative effects associated to the fluid flow within the engine. The nonlinearities are expressed as polynomial functions with quadratic and cubic terms. This paper displays the stability analysis to predict the starting of the engine and the instability problem which leads to the steady state behaviour. The centre manifold - normal form theory is used to obtain the simplest expression for the limit cycle amplitudes. The approach allows the reduction of the number of equations of the original system in order to obtain a simplified system, without loosing the dynamics of the original system as well as the contributions of non-linear terms. The model in...

  19. Advanced Stirling Radioisotope Generator Engineering Unit 2 (ASRG EU2) Final Assembly

    Science.gov (United States)

    Oriti, Salvatore M.

    2015-01-01

    NASA Glenn Research Center (GRC) has recently completed the assembly of a unique Stirling generator test article for laboratory experimentation. Under the Advanced Stirling Radioisotope Generator (ASRG) flight development contract, NASA GRC initiated a task to design and fabricate a flight-like generator for in-house testing. This test article was given the name ASRG Engineering Unit 2 (EU2) as it was effectively the second engineering unit to be built within the ASRG project. The intent of the test article was to duplicate Lockheed Martin's qualification unit ASRG design as much as possible to enable system-level tests not previously possible at GRC. After the cancellation of the ASRG flight development project, the decision was made to continue the EU2 build, and make use of a portion of the hardware from the flight development project. GRC and Lockheed Martin engineers collaborated to develop assembly procedures, leveraging the valuable knowledge gathered by Lockheed Martin during the ASRG development contract. The ASRG EU2 was then assembled per these procedures at GRC with Lockheed Martin engineers on site. The assembly was completed in August 2014. This paper details the components that were used for the assembly, and the assembly process itself.

  20. Controllability of Free-piston Stirling Engine/linear Alternator Driving a Dynamic Load

    Science.gov (United States)

    Kankam, M. David; Rauch, Jeffrey S.

    1994-01-01

    This paper presents the dynamic behavior of a Free-Piston Stirling Engine/linear alternator (FPSE/LA) driving a single-phase fractional horse-power induction motor. The controllability and dynamic stability of the system are discussed by means of sensitivity effects of variations in system parameters, engine controller, operating conditions, and mechanical loading on the induction motor. The approach used expands on a combined mechanical and thermodynamic formulation employed in a previous paper. The application of state-space technique and frequency domain analysis enhances understanding of the dynamic interactions. Engine-alternator parametric sensitivity studies, similar to those of the previous paper, are summarized. Detailed discussions are provided for parametric variations which relate to the engine controller and system operating conditions. The results suggest that the controllability of a FPSE-based power system is enhanced by proper operating conditions and built-in controls.

  1. Initial results of sensitivity tests - Performed on the RE-1000 free-piston Stirling engine

    Science.gov (United States)

    Schreiber, J. G.

    1984-01-01

    Tests have been performed over several years to investigate the dynamics of a free-piston Stirling engine for the purpose of computer code validation. Tests on the 1 kW (1.33 hp) single cylinder engine have involved the determination of the sensitivity of the engine performance to variations in working space pressure, heater and cooler temperatures, regenerator porosity, power piston mass, and displacer dynamics. Maps of engine performance have been recorded with the use of an 81.2 percent porosity regenerator. Both a high-efficiency displacer and a high-power displacer were tested; efficiencies up to 33 percent were recorded, and power output of approximately 1500 W was obtained. Preliminary results of the sensitivity tests are presented, and descriptions of future tests are given.

  2. The performance of a high-frequency thermoacoustic-Stirling engine

    Science.gov (United States)

    Bastyr, Kevin J.; Keolian, Robert M.

    2003-10-01

    A thermoacoustic-Stirling engine that operates at 400 Hz with a working fluid of 1-MPa helium is constructed. For proper acoustic phasing in this engine's regenerator, an acoustic power feedback path exists in the form of an annulus surrounding the regenerator. This feedback path is obtained by suspending an insulated, stainless steel sleeve containing a wire mesh regenerator, which is flanked by two heat exchangers, a short distance from one end of the larger diameter resonator. The ambient heat exchanger is a shell and tube exchanger, while the hot heater consists of nichrome ribbon wound on an aluminum silicate frame. Gedeon streaming is prevented by a diaphragm covering the end of the stainless steel sleeve adjacent to the ambient heat exchanger. A variable acoustic load provides a convenient means of testing this engine at various hot heater temperatures, while operating at different acoustic pressure amplitudes effects the acoustic power generated by the engine. [Work supported by ONR.

  3. Demonstration Stirling Engine based Micro-CHP with ultra-low emissions

    Energy Technology Data Exchange (ETDEWEB)

    Oeberg, Rolf; Olsson, Fredrik [Carl Bro Energikonsult AB (Sweden); Paalsson, Magnus [Lund Inst. of Technology (Sweden)

    2004-03-01

    This project has been initiated in order to develop a new type of natural gas fired low emission combustion system for a Stirling engine CHP-unit, and to demonstrate and evaluate the unit with the newly developed combustion system in a CHP application. The Stirling engine technology is well developed, but mostly used in special applications and CHP-applications are scarce. The very low exhaust emissions with the new combustion system would make the Stirling engine very suitable for installation in as a CHP-unit in domestic areas. The Stirling engine used in the project has been a V161 engine produced by Solo Kleinmotoren GmbH in Sindelfingen. The unit has a nominal output of 7,5 kW{sub el} and 20 kW{sub heat} (Hot water). The new combustion system was developed at Lund University and the very strict emission targets that were set up could be achieved, both in the laboratory tests and during the site-testing period. Typical performance and emission figures measured at the site installation are: Generator output (kW): 7,3; Hot water output (kW): 15; El. efficiency (%): 25,4; Total efficiency (%): 77,8; NO{sub x} (ppm): 14; CO (ppm): 112; HC (ppm): < 1; O{sub 2} (%): 8,0; Noise level 1 m from the unit (dBA): 83. The NO{sub x} emissions were reduced with almost 97 % as compared to a standard Stirling combustion system. The emission figures are considerably lower than what could be achieved in an internal combustion engine of similar size with an oxidation catalyst (report SGC 106), while the performance figures are similar for the two technologies. The site testing was carried out during a period of 1,5 year at a site owned by Goeteborg Energi. The site comprises a building structure with workshops, offices etc. covering a ground area of 2,500 m{sup 2}. A gas fired boiler with an output of 250 kW supplies hot water to a local grid for heating and tap water. The annual heat demand is typically 285 MWh and the hot water temperatures are normally 60-80 deg C. The site

  4. Thermodynamic Analysis of a Woodchips Gasification Integrated with Solid Oxide Fuel Cell and Stirling Engine

    DEFF Research Database (Denmark)

    Rokni, Masoud

    2013-01-01

    Integrated gasification Solid Oxide Fuel Cell (SOFC) and Stirling engine for combined heat and power application is analysed. The target for electricity production is 120 kW. Woodchips are used as gasification feedstock to produce syngas which is utilized for feeding the SOFC stacks for electricity...... and suggested. Thermodynamic analysis shows that a thermal efficiency of 42.4% based on LHV (lower heating value) can be achieved. Different parameter studies are performed to analysis system behaviour under different conditions. The analysis show that increasing fuel mass flow from the design point results...

  5. Design aspects of a Low-NOx burner for a Stirling engine

    Energy Technology Data Exchange (ETDEWEB)

    Zepter, Klaus

    2003-07-01

    The Stirling engine is a promising prime mover for micro-scale combined heat and power. For Stirling engines with heat supply by combustion, the external heating system is one of the most important parts. It has major influence on the overall performance. The central component of the external heating system is the burner. This thesis describes the theoretical and experimental studies in the development of a gas fired burner for the extemal heating system that have been carried out. The focus was on low emissions and high system efficiency. As a first step, a system analysis of the external heating system is presented based on fundamental considerations about the thermodynamics and practical aspects of the Stirling engine. The results of the analysis show that the expected NOx emissions are strongly determined by the system design. Without making any restrictions to the burner design, a span of the NOx emissions with a ratio of 1:800 was found. Modern design methodology is then introduced in order to analyze a large number of different low-NOx burner concepts that were found in literature. The concepts are evaluated and classified with help of the methodology in order to find possible new low-NOx concepts by favourable combinations of generic principles. Based on this, the concept of the porous inert media (PIM) burner is chosen for further development as a burner for the Stirling engine. The selection is confirmed by an experimental benchmark study in which the PIM burner shows low NOx emissions and the lowest pressure drop compared to three other low NOx burner concepts. The optimization of the design of the PIM burner is described. A favourable combination of materials was found, which enables stable operation with a turn-down ratio of 1:15 and a span of the excess-air ratio from 1.28 to 2.0 when methane is used as the fuel. Temperature and CO measurements inside the combustion region were made which enable conclusion about the stabilization of the combustion

  6. Design and testing of a second generation solar Stirling engine power conversion system

    Science.gov (United States)

    Nelving, H.-G.; Bratt, C.; Percival, W.; Wells, D.

    This paper discusses the design and testing of the improved, second generation 4-95 solar Stirling engine power conversion system. Design rationale and performance results are presented for the improved receiver design, improved concentrator alignment, integrated cooling unit, and improved control system. Flux patterns for the concentrator are presented along with calculated and measured data on the temperatures obtained in the solar heater tubes. Test results including maximum and average module performance are shown. The highlights from the testing include a maximum demonstrated power output of over 24.9 kilowatts electric output to the grid, and an overall module efficiency of 27 percent.

  7. Materials technology assessment for a 1050 K Stirling Space Engine design

    Energy Technology Data Exchange (ETDEWEB)

    Scheuermann, C.M.; Dreshfield, R.L.; Gaydosh, D.J.; Kiser, J.D.; MacKay, R.A.; McDanels, D.L.; Petrasek, D.W.; Vannucci, R.D.; Bowles, K.J.; Watson, G.K.

    1988-10-01

    An assessment of materials technology and proposed materials selection was made for the 1050 K (superalloy) Stirling Space Engine design. The objectives of this assessment were to evaluate previously proposed materials selections, evaluate the current state-of-the-art materials, propose potential alternate materials selections and identify research and development efforts needed to provide materials that can meet the stringent system requirements. This assessment generally reaffirmed the choices made by the contractor; however, in many cases alternative choices were described and suggestions for needed materials and fabrication research and development were made.

  8. Preliminary results from simulations of temperature oscillations in Stirling engine regenerator matrices

    Energy Technology Data Exchange (ETDEWEB)

    Andersen, Stig Kildegaard [Department of Mechanical Engineering, Technical University of Denmark, DK-2800 Lyngby (Denmark)]. E-mail: ska@mek.dtu.dk; Carlsen, Henrik [Department of Mechanical Engineering, Technical University of Denmark, DK-2800 Lyngby (Denmark); Thomsen, Per Grove [Informatics and Mathematical Modelling, Technical University of Denmark, DK-2800 Lyngby (Denmark)

    2006-08-15

    The objective of this study has been to create a Stirling engine model for studying the effects of regenerator matrix temperature oscillations on Stirling engine performance. A one-dimensional model with axial discretisation of engine components has been formulated using the control volume method. The model contains a system of ordinary differential equations (ODEs) derived from mass and energy balances for gas filled control volumes and energy balances for regenerator matrix control masses. Interpolation methods with filtering properties are used for state variables at control volume interfaces to reduce numerical diffusion and/or non-physical oscillations. Loss mechanisms are included directly in the governing equations as terms in the mass and energy balances. Steady state periodic solutions that satisfy cyclic boundary conditions and integral conditions are calculated using a custom built shooting method. It has been found possible to accurately solve the stiff ODE system that describes the coupled thermodynamics of the gas and the regenerator matrix and to reliably find periodic steady state solutions to the model. Preliminary results indicate that the regenerator matrix temperature oscillations do have significant impact on the regenerator loss, the cycle power output, and the cycle efficiency and thus deserve further study.

  9. Dynamically balanced, hydraulically driven compressor/pump apparatus for resonant free piston Stirling engines

    Science.gov (United States)

    Corey, John A.

    1984-05-29

    A compressor, pump, or alternator apparatus is designed for use with a resonant free piston Stirling engine so as to isolate apparatus fluid from the periodically pressurized working fluid of the Stirling engine. The apparatus housing has a first side closed by a power coupling flexible diaphragm (the engine working member) and a second side closed by a flexible diaphragm gas spring. A reciprocally movable piston is disposed in a transverse cylinder in the housing and moves substantially at right angles relative to the flexible diaphragms. An incompressible fluid fills the housing which is divided into two separate chambers by suitable ports. One chamber provides fluid coupling between the power diaphragm of the RFPSE and the piston and the second chamber provides fluid coupling between the gas spring diaphragm and the opposite side of the piston. The working members of a gas compressor, pump, or alternator are driven by the piston. Sealing and wearing parts of the apparatus are mounted at the external ends of the transverse cylinder in a double acting arrangement for accessibility. An annular counterweight is mounted externally of the reciprocally movable piston and is driven by incompressible fluid coupling in a direction opposite to the piston so as to damp out transverse vibrations.

  10. A hot air driven thermoacoustic-Stirling engine

    Energy Technology Data Exchange (ETDEWEB)

    Tijani, M.E.H.; Spoelstra, S. [ECN Biomass and Energy Efficiency, Petten (Netherlands)

    2012-09-15

    Significant energy savings can be obtained by implementing a thermally driven heat pump into industrial or domestic applications. Such a thermally driven heat pump uses heat from a high-temperature source to drive the system which upgrades an abundantly available heat source (industrial waste heat, air, water, geothermal). A way to do this is by coupling a thermoacoustic engine with a thermoacoustic heat pump. The engine is driven by a burner and produces acoustic power and heat at the required temperature. The acoustic power is used to pump heat in the heat pump to the required temperature. This system is attractive since it uses a noble gas as working medium and has no moving mechanical parts. This paper deals with the first part of this system: the engine. In this study, hot air is used to simulate the flue gases originating from a gas burner. This is in contrast with a lot of other studies of thermoacoustic engines that use an electrical heater as heat source. Using hot air resembles to a larger extent the real world application. The engine produces about 300W of acoustic power with a performance of 41% of the Carnot efficiency at a hot air temperature of 620C.

  11. Development and field test of a SOLO 161 Stirling engine based micro-CHP unit with ultra-low emissions

    Energy Technology Data Exchange (ETDEWEB)

    Paalsson, Magnus [Lund Univ. (Sweden). Dept. of Heat and Power Engineering

    2001-07-01

    For the last decade, work has been made at Lund University, Sweden, on developing a new sort of natural gas combustion chamber for the V160/SOLO 161 Stirling. It is a lean premix combustion chamber with internal combustion gas recirculation and a metallic flame holder for flame stabilisation, and it has produced extremely low emissions that are comparable to the emissions of catalytic combustion. The combustion chamber is considered ready for market introduction by the end of 2001. To combine the task of adapting this combustor for the market with the need to demonstrate small-scale Stirling engine CHP technology, a project has been started with the purpose to demonstrate and evaluate the operation of a Stirling engine unit based on the SOLO 161 Stirling engine equipped with the Lund combustion chamber. The evaluation program should give information regarding operation costs, efficiencies, emissions and running characteristics. In November 2000 the engine was transferred from the Lund University laboratory to its final location in Gothenburg. The engine is now installed and all necessary adaptation of engine, gas system and water heating system is made. The unit is running unattended in normal everyday operation. Current operating time is approx. 1200 hours, and delivered electric output is approx. 6000 kWh (July 2001)

  12. Design and construction of a Stirling engine prototype

    Energy Technology Data Exchange (ETDEWEB)

    Scollo, Leonardo; Valdez, Pablo; Baron, Jorge [CEDIAC Institute, Engineering Faculty, National University of Cuyo, Centro Universitario, Parque Gral. San Martin, CC 405, 5500, Mendoza (Argentina)

    2008-07-15

    In this work an external combustion engine is presented, which was designed through principles of energetic similarity and scaling, combined with adiabatic simulation, pressure loss and heat exchange characteristics analysis. These type of engines have the great advantage of having the heat source applied from outside, therefore resulting in very versatile machines which can be utilized with hydrogen, concentrated solar energy, biomass or fossil fuels. Details of the construction carried out mostly with conventional machine parts produced in Argentina are given. Finally, the results of the preliminary tests with the constructed prototype are shown. (author)

  13. Overview of NASA Lewis Research Center free-piston Stirling engine technology activities applicable to space power systems

    Science.gov (United States)

    Slaby, Jack G.

    1987-01-01

    A brief overview is presented of the development and technological activities of the free-piston Stirling engine. The engine started as a small scale fractional horsepower engine which demonstrated basic engine operating principles and the advantages of being hermetically sealed, highly efficient, and simple. It eventually developed into the free piston Stirling engine driven heat pump, and then into the SP-100 Space Reactor Power Program from which came the Space Power Demonstrator Engine (SPDE). The SPDE successfully operated for over 300 hr and delivered 20 kW of PV power to an alternator plunger. The SPDE demonstrated that a dynamic power conversion system can, with proper design, be balanced; and the engine performed well with externally pumped hydrostatic gas bearings.

  14. A New Method to Optimize Finite Dimensions Thermodynamic Models: application to an Irreversible Stirling Engine

    CERN Document Server

    Lanzetta, F; Baucour, P

    2016-01-01

    Different economical configurations, due for instance to the relative cost of the fuel it consumes, can push a heat engine into operating whether at maximum efficiency or at maximum power produced. Any relevant design of such system hence needs to be based, at least partly, on the knowledge of its specific "power vs. efficiency" characteristic curve. However, even when a simple model is used to describe the engine, obtained for example thanks to Finite Dimensions Thermodynamics, such characteristic curve is often difficult to obtain and takes an explicit form only for the simplest of these models. When more realistic models are considered, including complex internal subsystems or processes, an explicit expression for this curve is practically impossible to obtain. In this paper, we propose to use the called Graham's scan algorithm in order to directly obtain the power vs. efficiency curve of a realistic Stirling engine model, which includes heat leakage, regenerator effectiveness, as well as internal and exte...

  15. Preliminary Results from Simulations of Temperature Fluctuations in Stirling Engine Regenerator Matrices

    DEFF Research Database (Denmark)

    Andersen, Stig Kildegård; Carlsen, Henrik; Thomsen, Per Grove

    2003-01-01

    The objective of this study has been to create a model for studying effects of temperature fluctuations in regenerator matrices on Stirling engine performance. A one-dimensional model with axial discretisation of engine components has been formulated using a fixed Eulerian grid. The model contains...... a system of ordinary differential equations (ODEs) describing the mass and energy balances for the working gas in all control volumes and energy balances for the matrix material in the control volumes of the regenerator. Interpolation methods with filtering properties are used for state variables...... that adjusts solutions so that they satisfy the necessary cyclic boundary conditions as well as integral conditions for cyclic heat transfer for walls in the engine and for the mean cycle pressure. It has been found that it is possible to accurately solve the stiff ODE system that describes the coupled...

  16. The method used for justification of engineering solutions for multistage plate-type mufflers attached to gas-air ducts of thermal power plants

    Science.gov (United States)

    Tupov, V. B.

    2013-08-01

    This paper describes technical and economic problems associated with the selection of designs of mufflers attached to gas-air ducts of thermal power plants. A method is suggested that makes it possible to determine the dimensions of each stage of plate-type mufflers on the basis of achieving the lowest total discounted costs in order to provide the required acoustical performance at a permissible aerodynamic resistance of a muffler. The condition of the lowest total discounted costs for a multistage muffler, which is valid for different types of mufflers, has been obtained.

  17. Radioisotope Stirling Engine Powered Airship for Low Altitude Operation on Venus

    Science.gov (United States)

    Colozza, Anthony J.

    2012-01-01

    The feasibility of a Stirling engine powered airship for the near surface exploration of Venus was evaluated. The heat source for the Stirling engine was limited to 10 general purpose heat source (GPHS) blocks. The baseline airship utilized hydrogen as the lifting gas and the electronics and payload were enclosed in a cooled insulated pressure vessel to maintain the internal temperature at 320 K and 1 Bar pressure. The propulsion system consisted of an electric motor driving a propeller. An analysis was set up to size the airship that could operate near the Venus surface based on the available thermal power. The atmospheric conditions on Venus were modeled and used in the analysis. The analysis was an iterative process between sizing the airship to carry a specified payload and the power required to operate the electronics, payload and cooling system as well as provide power to the propulsion system to overcome the drag on the airship. A baseline configuration was determined that could meet the power requirements and operate near the Venus surface. From this baseline design additional trades were made to see how other factors affected the design such as the internal temperature of the payload chamber and the flight altitude. In addition other lifting methods were evaluated such as an evacuated chamber, heated atmospheric gas and augmented heated lifting gas. However none of these methods proved viable.

  18. A low temperature differential Stirling engine-based power generation research programme

    Energy Technology Data Exchange (ETDEWEB)

    Gaynor, P.; Webb, R.; Lloyd, C.; Bodger, P. [Canterbury Univ., Christchurch (New Zealand). Dept. of Electrical and Computer Engineering

    2008-07-01

    The use of low-grade or waste heat energy for electric power generation has been largely overlooked as a serious option due to their low conversion efficiency. This paper described a research program initiated to develop a commercially viable electric power generation system that used low-grade and waste heat. The system was designed using a low temperature differential Stirling engine technology. Stirling engines are closed system machines that cycle working gases through a regenerator and then back and forth between hot and cold heat exchanger surfaces. The first phase of the program aims to design, construct, and test small-scale prototypes capable of operating with a temperature differential of as low as 30 K with an output of approximately 1 kW of electric power. A final prototype will then be selected an upscaled. A research pilot power plant using waste from an existing commercial geothermal power plant will then be constructed. The program will also investigate the local and global market viability of the plant. 13 refs., 3 figs.

  19. Finite time thermodynamic analysis and optimization of solar-dish Stirling heat engine with regenerative losses

    Directory of Open Access Journals (Sweden)

    Sharma Arjun

    2011-01-01

    Full Text Available The present study investigates the performance of the solar-driven Stirling engine system to maximize the power output and thermal efficiency using the non-linearized heat loss model of the solar dish collector and the irreversible cycle model of the Stirling engine. Finite time thermodynamic analysis has been done for combined system to calculate the finite-rate heat transfer, internal heat losses in the regenerator, conductive thermal bridging losses and finite regeneration process time. The results indicate that exergy efficiency of dish system increases as the effectiveness of regenerator increases but decreases with increase in regenerative time coefficient. It is also found that optimal range of collector temperature and corresponding concentrating ratio are 1000 K~1400 K and 1100~1400, respectively in order to get maximum value of exergy efficiency. It is reported that the exergy efficiency of this dish system can reach the maximum value when operating temperature and concentrating ratio are 1150 K and 1300, respectively.

  20. Multi-objective optimization and design for free piston Stirling engines based on the dimensionless power

    Science.gov (United States)

    Mou, Jian; Hong, Guotong

    2017-02-01

    In this paper, the dimensionless power is used to optimize the free piston Stirling engines (FPSE). The dimensionless power is defined as a ratio of the heat power loss and the output work. The heat power losses include the losses of expansion space, heater, regenerator, cooler and the compression space and every kind of the heat loss calculated by empirical formula. The output work is calculated by the adiabatic model. The results show that 82.66% of the losses come from the expansion space and 54.59% heat losses of expansion space come from the shuttle loss. At different pressure the optimum bore-stroke ratio, heat source temperature, phase angle and the frequency have different values, the optimum phase angles increase with the increase of pressure, but optimum frequencies drop with the increase of pressure. However, no matter what the heat source temperature, initial pressure and frequency are, the optimum ratios of piston stroke and displacer stroke all about 0.8. The three-dimensional diagram is used to analyse Stirling engine. From the three-dimensional diagram the optimum phase angle, frequency and heat source temperature can be acquired at the same time. This study offers some guides for the design and optimization of FPSEs.

  1. Stirling convertor regenerators

    CERN Document Server

    Ibrahim, Mounir B

    2011-01-01

    Stirling Convertor Regenerators addresses the latest developments and future possibilities in the science and practical application of Stirling engine regenerators and technology. Written by experts in the vanguard of alternative energy, this invaluable resource presents integral scientific details and design concepts associated with Stirling converter regenerators. Content is reinforced with novel insights and remarkable firsthand experience that the authors and their colleagues acquired while working at the National Aeronautics and Space Administration (NASA) and other leading organizations.

  2. Thermodynamic and thermoeconomic analysis of a system with biomass gasification, solid oxide fuel cell (SOFC) and Stirling engine

    DEFF Research Database (Denmark)

    Rokni, Masoud

    2014-01-01

    Thermodynamic and thermoeconomic investigations of a small-scale integrated gasification solid oxide fuel cell (SOFC) and Stirling engine for combined heat and power (CHP) with a net electric capacity of 120kWe have been performed. Woodchips are used as gasification feedstock to produce syngas...

  3. Municipal Solid Waste Gasification with Solid Oxide Fuel Cells and Stirling Engine

    DEFF Research Database (Denmark)

    Rokni, Masoud

    2014-01-01

    studied to optimize the plant efficiency in terms of operating conditions. Compared with modern waste incinerators with heat recovery, the gasification process integrated with SOFC and Stirling engine permits an increase in electricity output up of 50%, which means that the solid waste gasification...... storage in landfills and devote these spaces to other human activities. It is also important to point out that this kind of renewable energy suffers significantly less availabilit y which characterizes other type o f renewable energy sources such as in wind and solar energy. In a gasification process....... The gasification process is usually based on an atmospheric - pressure circulating fluidized bed gasifier coupled to a tar - crac king vessel. Syngas can be used as fuel in different kind of power plant such as gas turbine cycle, steam cycle, combined cycle, internal and external combustion engine and Solid Oxide...

  4. Efficient protocols for Stirling heat engines at the micro-scale

    Science.gov (United States)

    Muratore-Ginanneschi, Paolo; Schwieger, Kay

    2015-10-01

    We investigate the thermodynamic efficiency of sub-micro-scale Stirling heat engines operating under the conditions described by overdamped stochastic thermodynamics. We show how to construct optimal protocols such that at maximum power the efficiency attains for constant isotropic mobility the universal law η=2 ηC/(4-ηC) , where ηC is the efficiency of an ideal Carnot cycle. We show that these protocols are specified by the solution of an optimal mass transport problem. Such solution can be determined explicitly using well-known Monge-Ampère-Kantorovich reconstruction algorithms. Furthermore, we show that the same law describes the efficiency of heat engines operating at maximum work over short time periods. Finally, we illustrate the straightforward extension of these results to cases when the mobility is anisotropic and temperature dependent.

  5. Multi-bottle, no compressor, mean pressure control system for a Stirling engine

    Science.gov (United States)

    Corey, John A.

    1990-01-01

    The invention relates to an apparatus for mean pressure control of a Stirling engine without the need for a compressor. The invention includes a multi-tank system in which there is at least one high pressure level tank and one low pressure level tank wherein gas flows through a maximum pressure and supply line from the engine to the high pressure tank when a first valve is opened until the maximum pressure of the engine drops below that of the high pressure tank opening an inlet regulator to permit gas flow from the engine to the low pressure tank. When gas flows toward the engine it flows through the minimum pressure supply line 2 when a second valve is opened from the low pressure tank until the tank reaches the engine's minimum pressure level at which time the outlet regulator opens permitting gas to be supplied from the high pressure tank to the engine. Check valves between the two tanks prevent any backflow of gas from occurring.

  6. Technical and economic study of Stirling and Rankine cycle bottoming systems for heavy truck diesel engines

    Science.gov (United States)

    Kubo, I.

    1987-01-01

    Bottoming cycle concepts for heavy duty transport engine applications were studied. In particular, the following tasks were performed: (1) conceptual design and cost data development for Stirling systems; (2) life-cycle cost evaluation of three bottoming systems - organic Rankine, steam Rankine, and Stirling cycles; and (3) assessment of future directions in waste heat utilization research. Variables considered for the second task were initial capital investments, fuel savings, depreciation tax benefits, salvage values, and service/maintenance costs. The study shows that none of the three bottoming systems studied are even marginally attractive. Manufacturing costs have to be reduced by at least 65%. As a new approach, an integrated Rankine/Diesel system was proposed. It utilizes one of the diesel cylinders as an expander and capitalizes on the in-cylinder heat energy. The concept eliminates the need for the power transmission device and a sophisticated control system, and reduces the size of the exhaust evaporator. Results of an economic evaluation indicate that the system has the potential to become an attractive package for end users.

  7. Hot air engines: Study of a Stirling engine and of an Ericsson engine; Moteurs thermiques a apport de chaleur externe: etude d'un moteur stirling et d'un moteur ericsson

    Energy Technology Data Exchange (ETDEWEB)

    Bonnet, S.

    2005-11-15

    In the current energy context, we attend the development of technologies of production of 'clean' energy. Thus, news prospects like thermodynamic solar energy conversion or waste energy conversion are offered to research on 'renewable energies'. Within this framework, we are interested in hot air engines: Stirling and Ericsson engines. First of all, this thesis concerns the study of a small Stirling engine on which we measured the fluid instantaneous temperature and pressure in various points. The original results obtained are compared to results from two different analyses. We conclude that these models are not suitable to explain the experimental results. Then, we study a micro-cogeneration system based on an Ericsson engine coupled with a system of natural gas combustion. An Ericsson engine is a reciprocating engine working on a JOULE cycle. The objective of this plant is to produce 11 kW of electric output as well as useful heat. In order to design this system, we carried out energetic, exergetic and exergo-economic studies. (author)

  8. Numerical study on optimal Stirling engine regenerator matrix designs taking into account the effects of matrix temperature oscillations

    Energy Technology Data Exchange (ETDEWEB)

    Andersen, Stig Kildegard [Department of Mechanical Engineering, Energy Engineering Section, Technical University of Denmark, Nils Koppels Alle bygning 402, DK-2800 Kgs. Lyngby (Denmark)]. E-mail: ska@mek.dtu.dk; Carlsen, Henrik [Department of Mechanical Engineering, Energy Engineering Section, Technical University of Denmark, Nils Koppels Alle bygning 402, DK-2800 Kgs. Lyngby (Denmark); Thomsen, Per Grove [Informatics and Mathematical Modelling, Technical University of Denmark, Richard Petersens Plads bygning, DK-2800 Kgs. Lyngby (Denmark)

    2006-05-15

    A new regenerator matrix design that improves the efficiency of a Stirling engine has been developed in a numerical study of the existing SM5 Stirling engine. A new, detailed, one-dimensional Stirling engine model that delivers results in good agreement with experimental data was used for mapping the performance of the engine, for mapping the effects of regenerator matrix temperature oscillations, and for optimising the regenerator design. The regenerator matrix temperatures were found to oscillate in two modes. The first mode was oscillation of a nearly linear axial matrix temperature profile while the second mode bended the ends of the axial matrix temperature profile when gas flowed into the regenerator with a temperature significantly different from the matrix temperature. The first mode of oscillation improved the efficiency of the engine but the second mode reduced both the work output and efficiency of the engine. A new regenerator with three differently designed matrix sections that amplified the first mode of oscillation and reduced the second improved the efficiency of the engine from the current 32.9 to 33.2% with a 3% decrease in power output. An efficiency of 33.0% was achievable with uniform regenerator matrix properties.

  9. The design and simulation investigation of a linear alternator dynamometer coupled to a free-piston Stirling engine

    Science.gov (United States)

    Goldberg, L. F.; Lee, K. P.

    1985-12-01

    The design of a linear alternator dynamometer and its control system intended for testing free-piston Stirling engines is described. The characteristics and performance of the dynamometer are demonstrated by a computer simulation in which the dynamometer is coupled to a Sunpower RE1000 free-piston engine. The simulation embodies algorithms which combine the gas dynamics of the engine working spaces with the dynamic behavior of the displacer and the piston/armature assembly. Over a variety of different loading conditions including inertial, gravitational and thermodynamic loads as well as linear, quadratic and Coulombic damping, the dynamometer exhibited a force error of 0.5 percent or 0.006 N at worst. The simulation investigation demonstrates that the dynamometer and its control system possess the necessary characteristics for it to be a practically useful loading device for testing and designing free-piston Stirling engines.

  10. 3 kW Stirling engine for power and heat production

    DEFF Research Database (Denmark)

    Thorsen, Jan Eric; Bovin, Jonas Kabell; Carlsen, Henrik

    1996-01-01

    A new 3 kW Beta-type Stirling engine has been developed. The engine uses natural gas as fuel and is designed for use as a small combined heat and power plant for single family houses. The electrical power is supplied to the grid. The engine is made as a hermetic device, where the crank mechanism...... and the alternator are built into a pressurized crank casing. The engine produces 3 kW of shaft power corresponding to 2.4 kW of electric power. The heat input is 10 kW representing a shaft efficiency of 30% and an electric efficiency of 24%. Helium at 8 MPa mean pressure is used as the working gas. The crank...... for X-heads. A grease-lubricated needle and ball bearings are used in the kinematic crank mechanism. The burner includes an air preheater and a water jacket which makes it possible to utilize nearly all of the heat from the combustion gases. The performance of the engine has been tested as a function...

  11. Ideal thermodynamic processes of oscillatory-flow regenerative engines will go to ideal stirling cycle?

    Science.gov (United States)

    Luo, Ercang

    2012-06-01

    This paper analyzes the thermodynamic cycle of oscillating-flow regenerative machines. Unlike the classical analysis of thermodynamic textbooks, the assumptions for pistons' movement limitations are not needed and only ideal flowing and heat transfer should be maintained in our present analysis. Under such simple assumptions, the meso-scale thermodynamic cycles of each gas parcel in typical locations of a regenerator are analyzed. It is observed that the gas parcels in the regenerator undergo Lorentz cycle in different temperature levels, whereas the locus of all gas parcels inside the regenerator is the Ericson-like thermodynamic cycle. Based on this new finding, the author argued that ideal oscillating-flow machines without heat transfer and flowing losses is not the Stirling cycle. However, this new thermodynamic cycle can still achieve the same efficiency of the Carnot heat engine and can be considered a new reversible thermodynamic cycle under two constant-temperature heat sinks.

  12. Comparison of ORC Turbine and Stirling Engine to Produce Electricity from Gasified Poultry Waste

    Directory of Open Access Journals (Sweden)

    Franco Cotana

    2014-08-01

    Full Text Available The Biomass Research Centre, section of CIRIAF, has recently developed a biomass boiler (300 kW thermal powered, fed by the poultry manure collected in a nearby livestock. All the thermal requirements of the livestock will be covered by the heat produced by gas combustion in the gasifier boiler. Within the activities carried out by the research project ENERPOLL (Energy Valorization of Poultry Manure in a Thermal Power Plant, funded by the Italian Ministry of Agriculture and Forestry, this paper aims at studying an upgrade version of the existing thermal plant, investigating and analyzing the possible applications for electricity production recovering the exceeding thermal energy. A comparison of Organic Rankine Cycle turbines and Stirling engines, to produce electricity from gasified poultry waste, is proposed, evaluating technical and economic parameters, considering actual incentives on renewable produced electricity.

  13. Free-piston Stirling engines - For space, earth and ocean applications

    Science.gov (United States)

    Goldwater, Bruce

    The current level of technology as it relates to the application of free-piston Stirling engines (FPSEs) in space, terrestrial, and undersea markets is discussed. Each application considered presents a unique set of requirements to the designer. The timetable for introduction to the market will vary depending on the level of commitment to commercialization of the needed technology. It is unfortunate that, in general, United States industry has taken a much less than proactive role in developing the technology. A commitment of resources to address the remaining development issues is mandatory before market introduction and acceptance. This market acceptance of the FPSE directly depends on the successful development and introduction of technologies associated with the specific application.

  14. A Microfabricated Segmented-Involute-Foil Regenerator for Enhancing Reliability and Performance of Stirling Engines

    Science.gov (United States)

    Ibrahim, Mounir; Danila, Daniel; Simon, Terrence; Mantell, Susan; Sun, Liyong; Gadeon, David; Qiu, Songgang; Wood, Gary; Kelly, Kevin; McLean, Jeffrey

    2007-01-01

    An actual-size microfabricated regenerator comprised of a stack of 42 disks, 19 mm diameter and 0.25 mm thick, with layers of microscopic, segmented, involute-shaped flow channels was fabricated and tested. The geometry resembles layers of uniformly-spaced segmented-parallel-plates, except the plates are curved. Each disk was made from electro-plated nickel using the LiGA process. This regenerator had feature sizes close to those required for an actual Stirling engine but the overall regenerator dimensions were sized for the NASA/Sunpower oscillating-flow regenerator test rig. Testing in the oscillating-flow test rig showed the regenerator performed extremely well, significantly better than currently used random-fiber material, producing the highest figures of merit ever recorded for any regenerator tested in that rig over its approximately 20 years of use.

  15. Independently variable phase and stroke control for a double acting Stirling engine

    Science.gov (United States)

    Berchowitz, David M.

    1983-01-01

    A phase and stroke control apparatus for the pistons of a Stirling engine includes a ring on the end of each piston rod in which a pair of eccentrics is arranged in series, torque transmitting relationship. The outer eccentric is rotatably mounted in the ring and is rotated by the orbiting ring; the inner eccentric is mounted on an output shaft. The two eccentrics are mounted for rotation together within the ring during normal operation. A device is provided for rotating one eccentric with respect to another to change the effective eccentricity of the pair of eccentrics. A separately controlled phase adjustment is provided to null the phase change introduced by the change in the orientation of the outer eccentric, and also to enable the phase of the pistons to be changed independently of the stroke change.

  16. Design for micro-combined cooling, heating and power systems stirling engines and renewable power systems

    CERN Document Server

    2015-01-01

    ‘Design for Micro-Combined Cooling, Heating & Power Systems’ provides a manual for the technical and structural design of systems for supplying decentralised energy in residential buildings. It presents the micro-combined cooling, heating & power systems Stirling engines & renewable energy sources (mCCHP-SE-RES) systems in an accessible manner both for the public at large, and for professionals who conceive, design or commercialise such systems or their components.  The high performance levels of these systems are demonstrated within the final chapter by the results of an experiment in which a house is equipped with a mCCHP-SE-RES system. The reader is also familiarized with the conceptual, technical and legal aspects of modern domestic energy systems; the components that constitute these systems; and advanced algorithms for achieving the structural and technical design of such systems. In residential buildings, satisfying demands of durable development has gradually evolved from necessity to...

  17. Techno-economic assessment and optimization of stirling engine micro-cogeneration systems in residential buildings

    Energy Technology Data Exchange (ETDEWEB)

    Alanne, Kari; Soederholm, Niklas; Siren, Kai [Dept. of Energy Technology, Helsinki University of Technology, P.O. Box 4100, 02015 TKK (Finland); Beausoleil-Morrison, Ian [Dept. of Mechanical and Aerospace Engineering, Carleton University, Ottawa (Canada)

    2010-12-15

    Micro-cogeneration offers numerous potential advantages for the supply of energy to residential buildings in the sense of improved energy efficiency and reduced environmental burdens. To realize these benefits, however, such systems must reduce energy costs, primary energy consumption, and CO{sub 2} emissions relative to conventional heating systems. In this paper, we search for optimized strategies for the integration of a Stirling engine-based micro-cogeneration system in residential buildings by comparing the performance of various system configurations and operational strategies with that of a reference system, i.e. hydronic heating and a low temperature gas boiler in standard and passive house constructions located in different climates. The IDA-ICE whole-building simulation program is employed with the Stirling engine micro-cogeneration model that was developed by IEA/ECBCS Annex 42. In this way the dynamic effects of micro-cogeneration devices, such as warm-ups and shutdowns, are accounted for. This study contributes to the research by addressing hourly changes in the fuel mix used for central electricity generation and the utilization of thermal exhaust through heat recovery. Our results suggest that an optimally operated micro-cogeneration system encompassing heat recovery and appropriate thermal storage would result in a 3-5% decrease in primary energy consumption and CO{sub 2} emissions when compared to a conventional hydronic heating system. Moreover, this configuration is capable of delivering annual savings in all the combinations of electricity and fuel price between 0.05 and 0.15 EUR kW h{sup -1}. As can be expected, these results are sensitive to the electrical energy supply mix, building type, and climate. (author)

  18. Comparison Based on Exergetic Analyses of Two Hot Air Engines: A Gamma Type Stirling Engine and an Open Joule Cycle Ericsson Engine

    Directory of Open Access Journals (Sweden)

    Houda Hachem

    2015-10-01

    Full Text Available In this paper, a comparison of exergetic models between two hot air engines (a Gamma type Stirling prototype having a maximum output mechanical power of 500 W and an Ericsson hot air engine with a maximum power of 300 W is made. Referring to previous energetic analyses, exergetic models are set up in order to quantify the exergy destruction and efficiencies in each type of engine. The repartition of the exergy fluxes in each part of the two engines are determined and represented in Sankey diagrams, using dimensionless exergy fluxes. The results show a similar proportion in both engines of destroyed exergy compared to the exergy flux from the hot source. The compression cylinders generate the highest exergy destruction, whereas the expansion cylinders generate the lowest one. The regenerator of the Stirling engine increases the exergy resource at the inlet of the expansion cylinder, which might be also set up in the Ericsson engine, using a preheater between the exhaust air and the compressed air transferred to the hot heat exchanger.

  19. 9 kW stirling engine for biogas and natural gas. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Carlsen, H.; Bovin, J.

    2001-07-01

    The need for a simple and robust engine for natural gas and low quality gas has resulted in the design of a single cylinder, hermetic Stirling engine, which has an electric power output of 9 kW. Two engines have been built. One engine is intended for natural gas as fuel and the other is intended for biogas. The crank mechanism and the alternator are built into a pressurised crank casing. The crank mechanism consists of an upper yoke linked to the working piston and a lower yoke linked to the displacer piston. The design of the yokes results in an approximately linear couple point curve, which eliminates guiding forces on the pistons and the need for X-heads. Grease lubricated needle and ball bearings are used in the kinematic crank mechanism in order to avoid oil penetrating into the cylinder volumes. Working gas is helium at 8 MPa mean pressure. The engine produce up to 11 kW of shaft power corresponding to approximately 10 kW of electric power. The design target was an efficiency of 26% based on lower heat content of the gas to electricity, but only 24% were obtained. The decrease of efficiency is caused by inhomogeneous capacity flows in the air preheater and insufficient insulation of the burner. The noise from the engines is low and the small vibrations from the partly balanced mechanism are absorbed by the rubber supports. Until now the engines have been tested for approximately 1000 hours each, but not without a few mechanical problems which have to be solved. (au)

  20. Preliminary test results from a free-piston Stirling engine technology demonstration program to support advanced radioisotope space power applications

    Science.gov (United States)

    White, Maurice A.; Qiu, Songgang; Augenblick, Jack E.

    2000-01-01

    Free-piston Stirling engines offer a relatively mature, proven, long-life technology that is well-suited for advanced, high-efficiency radioisotope space power systems. Contracts from DOE and NASA are being conducted by Stirling Technology Company (STC) for the purpose of demonstrating the Stirling technology in a configuration and power level that is representative of an eventual space power system. The long-term objective is to develop a power system with an efficiency exceeding 20% that can function with a high degree of reliability for up to 15 years on deep space missions. The current technology demonstration convertors (TDC's) are completing shakedown testing and have recently demonstrated performance levels that are virtually identical to projections made during the preliminary design phase. This paper describes preliminary test results for power output, efficiency, and vibration levels. These early results demonstrate the ability of the free-piston Stirling technology to exceed objectives by approximately quadrupling the efficiency of conventional radioisotope thermoelectric generators (RTG's). .

  1. Preliminary results from a four-working space, double-acting piston, Stirling engine controls model

    Science.gov (United States)

    Daniele, C. J.; Lorenzo, C. F.

    1980-01-01

    A four working space, double acting piston, Stirling engine simulation is being developed for controls studies. The development method is to construct two simulations, one for detailed fluid behavior, and a second model with simple fluid behaviour but containing the four working space aspects and engine inertias, validate these models separately, then upgrade the four working space model by incorporating the detailed fluid behaviour model for all four working spaces. The single working space (SWS) model contains the detailed fluid dynamics. It has seven control volumes in which continuity, energy, and pressure loss effects are simulated. Comparison of the SWS model with experimental data shows reasonable agreement in net power versus speed characteristics for various mean pressure levels in the working space. The four working space (FWS) model was built to observe the behaviour of the whole engine. The drive dynamics and vehicle inertia effects are simulated. To reduce calculation time, only three volumes are used in each working space and the gas temperature are fixed (no energy equation). Comparison of the FWS model predicted power with experimental data shows reasonable agreement. Since all four working spaces are simulated, the unique capabilities of the model are exercised to look at working fluid supply transients, short circuit transients, and piston ring leakage effects.

  2. A comparison of Stirling engines for use with a 25 kW dish-electric conversion system

    Science.gov (United States)

    Shaltens, Richard K.

    1987-01-01

    Two designs for an advanced Stirling conversion system (ASCS) are described. The objective of the ASCS is to generate about 25 kW of electric power to an electric utility grid at an engine/alternator target cost of $300.00/kW at the manufacturing rate of 10,000 unit/yr. Both designs contain a free-piston Stirling engine (FPSE), a heat transport system, solar receiver, a means to generate electric power, the necessary auxiliaries, and a control system. The major differences between the two concepts are: one uses a 25 kWe single-piston FPSE which incorporates a linear alternator to directly convert the energy to electricity on the utility grid; and in the second design, electrical power is generated indirectly using a hydraulic output to a ground based hydraulic motor coupled to a rotating alternator. Diagrams of the two designs are presented.

  3. ADielectric Multilayer Filter for Combining Photovoltaics with a Stirling Engine for Improvement of the Efficiency of Solar Electricity Generation

    Institute of Scientific and Technical Information of China (English)

    寿春晖; 骆仲泱; 王涛; 沈伟东; ROSENGARTEN Gary; 王诚; 倪明江; 岑可法

    2011-01-01

    In this Letter we outline a dielectric multilayer spectrally selective filter designed for solar energy applications. The optical performance of this 78-layer interference filter constructed by TiOx and SiO2 is presented. A hybrid system combining photovoltaic cells with a solar-powered Stirling engine using the designed filter is analyzed. The calculated results show the advantages of this spectrally selective method for solar power generation.%In this Letter we outline a dielectric multilayer spectrally selective filter designed for solar energy applications.The optical performance of this 78-layer interference filter constructed by TiOx and SiO2 is presented.A hybrid system combining photovoltaic cells with a solar-powered Stirling engine using the designed filter is analyzed.The calculated results show the advantages of this spectrally selective method for solar power generation.

  4. Development of an experimental apparatus for oscillating-flow pressure-drop measurements through a stirling engine regenerator

    Energy Technology Data Exchange (ETDEWEB)

    Gekas, V.; Ahladianakis, K.; Nikolos, I. K.

    2004-07-01

    In this work the development of an experimental apparatus is described, designed for oscillating-flow pressure-drop measurements through a Stirling engine regenerator. A literature survey was initially performed, in order to investigate the different experimental approaches to the measurement of oscillating flow through a Stirling engine regenerator. The test rig was designed to be modular, versatile and scalable, in order to provide the ability of introducing variable measuring devices, variable regenerator designs and variable operating conditions, without the need of building a new test rig for each different case. Adopting a modular design for the experimental apparatus, it is possible to introduce new features in the future, with a minimal cost and risk. (Author) 7 refs.

  5. Experimental Study of Non-Resonant Self Circulating Heat Transfer Loop Used in Thermoacoustic-Stirling Engines

    Science.gov (United States)

    Gao, B.; Luo, E. C.; Dai, W.; Chen, Y. Y.; Hu, J. Y.

    2010-04-01

    A novel heat transfer loop for thermoacoustic-Stirling engines which could substitute for a traditional heat exchanger was developed. This new heat transfer loop uses a pair of check valves to transform oscillating flow into steady flow that allows the oscillating flow system's own working gas to go through a physically remote high-temperature or cold-temperature heat source. Since the early principle experiment has achieved success, this paper explores the real operating performance of this heat transfer loop by coupling with thermoacoustic-Stirling engine. Furthermore, a new type water-cooled heat exchanger was developed in this paper to deduce the extra acoustic power dissipation. In addition, the influence of two kinds of check valves the heat transfer loop was discussed in this paper. The loop with 0.1 mm valve disc thickness shows that the heat transfer capacity is higher than the traditional heat exchanger. Our experiments have demonstrated its feasibility and flexibility for practical applications.

  6. A comparison of Stirling engines for use with a 25 kW dish-electric conversion system

    Science.gov (United States)

    Shaltens, Richard K.

    1987-01-01

    Two designs for an advanced Stirling conversion system (ASCS) are described. The objective of the ASCS is to generate about 25 kW of electric power to an electric utility grid at an engine/alternator target cost of $300.00/kW at the manufacturing rate of 10,000 unit/yr. Both designs contain a free-piston Stirling engine (FPSE), a heat transport system, solar receiver, a means to generate electric power, the necessary auxiliaries, and a control system. The major differences between the two concepts are: one uses a 25 kWe single-piston FPSE which incorporates a linear alternator to directly convert the energy to electricity on the utility grid; and in the second design, electrical power is generated indirectly using a hydraulic output to a ground based hydraulic motor coupled to a rotating alternator. Diagrams of the two designs are presented.

  7. Heat transfer from combustion gases to a single row of closely spaced tubes in a swirl crossflow Stirling engine heater

    Science.gov (United States)

    Bankston, C. P.; Back, L. H.

    1982-01-01

    This paper describes an experimental program to determine the heat-transfer characteristics of a combustor and heat-exchanger system in a hybrid solar receiver which utilizes a Stirling engine. The system consists of a swirl combustor with a crossflow heat exchanger composed of a single row of 48 closely spaced curved tubes. In the present study, heat-transfer characteristics of the combustor/heat-exchanger system without a Stirling engine have been studied over a range of operating conditions and output levels using water as the working fluid. Nondimensional heat-transfer coefficients based on total heat transfer have been obtained and are compared with available literature data. The results show significantly enhanced heat transfer for the present geometry and test conditions. Also, heat transfer along the length of the tubes is found to vary, the effect depending upon test condition.

  8. A Dielectric Multilayer Filter for Combining Photovoltaics with a Stirling Engine for Improvement of the Efficiency of Solar Electricity Generation

    Science.gov (United States)

    Shou, Chun-Hui; Luo, Zhong-Yang; Wang, Tao; Shen, Wei-Dong; Rosengarten, Gary; Wang, Cheng; Ni, Ming-Jiang; Cen, Ke-Fa

    2011-12-01

    In this Letter we outline a dielectric multilayer spectrally selective filter designed for solar energy applications. The optical performance of this 78-layer interference filter constructed by TiOx and SiO2 is presented. A hybrid system combining photovoltaic cells with a solar-powered Stirling engine using the designed filter is analyzed. The calculated results show the advantages of this spectrally selective method for solar power generation.

  9. Performance assessment and optimization of an irreversible nano-scale Stirling engine cycle operating with Maxwell-Boltzmann gas

    Science.gov (United States)

    Ahmadi, Mohammad H.; Ahmadi, Mohammad-Ali; Pourfayaz, Fathollah

    2015-09-01

    Developing new technologies like nano-technology improves the performance of the energy industries. Consequently, emerging new groups of thermal cycles in nano-scale can revolutionize the energy systems' future. This paper presents a thermo-dynamical study of a nano-scale irreversible Stirling engine cycle with the aim of optimizing the performance of the Stirling engine cycle. In the Stirling engine cycle the working fluid is an Ideal Maxwell-Boltzmann gas. Moreover, two different strategies are proposed for a multi-objective optimization issue, and the outcomes of each strategy are evaluated separately. The first strategy is proposed to maximize the ecological coefficient of performance (ECOP), the dimensionless ecological function (ecf) and the dimensionless thermo-economic objective function ( F . Furthermore, the second strategy is suggested to maximize the thermal efficiency ( η), the dimensionless ecological function (ecf) and the dimensionless thermo-economic objective function ( F). All the strategies in the present work are executed via a multi-objective evolutionary algorithms based on NSGA∥ method. Finally, to achieve the final answer in each strategy, three well-known decision makers are executed. Lastly, deviations of the outcomes gained in each strategy and each decision maker are evaluated separately.

  10. Test results of a 40 kW Stirling engine and comparison with the NASA-Lewis computer code predictions

    Science.gov (United States)

    Allen, D.; Cairelli, J.

    1985-01-01

    A Stirling engine was tested without auxiliaries at NASA-Lewis. Three different regenerator configurations were tested with hydrogen. The test objectives were (1) to obtain steady-state and dynamic engine data, including indicated power, for validation of an existing computer model for this engine; and (2) to evaluate structurally the use of silicon carbide regenerators. This paper presents comparisons of the measured brake performance, indicated mean effective pressure, and cyclic pressure variations with those predicted by the code. The measured data tended to be lower than the computer code predictions. The silicon carbide foam regenerators appear to be structurally suitable, but the foam matrix tested severely reduced performance.

  11. Test results of a 40-kW Stirling engine and comparison with the NASA Lewis computer code predictions

    Science.gov (United States)

    Allen, David J.; Cairelli, James E.

    1988-01-01

    A Stirling engine was tested without auxiliaries at Nasa-Lewis. Three different regenerator configurations were tested with hydrogen. The test objectives were: (1) to obtain steady-state and dynamic engine data, including indicated power, for validation of an existing computer model for this engine; and (2) to evaluate structurally the use of silicon carbide regenerators. This paper presents comparisons of the measured brake performance, indicated mean effective pressure, and cyclic pressure variations from those predicted by the code. The silicon carbide foam generators appear to be structurally suitable, but the foam matrix showed severely reduced performance.

  12. Nodal analysis of a Stirling engine with concentric piston and displacer

    Energy Technology Data Exchange (ETDEWEB)

    Karabulut, H.; Yuecesu, H.S.; Cinar, C. [Department of Mechanical Technology, Faculty of Technical Education, Gazi University, Besevler, 06500 Ankara (Turkey)

    2006-10-15

    To reduce the external volume of Stirling engines and to increase the specific power per unit volume, a novel mechanical arrangement is used where the power cylinder is concentrically situated inside the displacer cylinder. The inner heat transfer surface requirement and the thermodynamic performance characteristics are predicted preparing a nodal analysis in FORTRAN, where the inner volume of the engine is divided into 103 cells. Variation of the temperature in cells is calculated using the first law of thermodynamics, given for unsteady open systems, after arranging the enthalpy inflow and outflow terms. Volumes of cells are calculated using kinematic relations devised for the driving mechanism. The analysis indicates that the heats received from and delivered to the regenerator are not equal to each other. Therefore, the ends of the regenerator should be coupled with a heater and a cooler. The maximum thermal efficiency appears at the minimum mass of working fluid as the minimum thermal efficiency appears at the maximum mass of working fluid. The work increases up to a certain value of working fluid and then decreases. The thermal efficiency increases until a certain value of regenerator area and then decreases as well. Fluid temperature in the hot volume and cooler differs from the wall temperature at significant rates. (author)

  13. A four power-piston low-temperature differential Stirling engine using simulated solar energy as a heat source

    Energy Technology Data Exchange (ETDEWEB)

    Kongtragool, Bancha; Wongwises, Somchai [Fluid Mechanics, Thermal Engineering and Multiphase Flow Research Laboratory (FUTURE), Department of Mechanical Engineering, Faculty of Engineering, King Mongkut' s University of Technology Thonburi, Bangmod, Bangkok 10140 (Thailand)

    2008-06-15

    In this paper, the performances of a four power-piston, gamma-configuration, low-temperature differential Stirling engine are presented. The engine is tested with air at atmospheric pressure by using a solar simulator with four different solar intensities as a heat source. Variations in engine torque, shaft power and brake thermal efficiency with engine speed and engine performance at various heat inputs are presented. The Beale number obtained from the testing of the engine is also investigated. The results indicate that at the maximum actual energy input of 1378 W and a heater temperature of 439 K, the engine approximately produces a maximum torque of 2.91 N m, a maximum shaft power of 6.1 W, and a maximum brake thermal efficiency of 0.44% at 20 rpm. (author)

  14. Review of applications and of extended power density of 4-cylinder, in-line and hermetic Stirling engine

    Science.gov (United States)

    Carlqvist, Stig G.; Gothberg, Yngve; Kullberg, Gunnar; Torstensson, Bo

    The four-cylinder, in-line and hermetic Stirling engine has been found to have great flexibility and thus to be suitable for various applications. For very long life internal, linear alternators are foreseen with bearings being considerably deloaded. The configuration has been adapted for use as a duplex machine with the four-cylinder, double-acting Stirling engine driving a four-cylinder, double-acting Stirling heat pump or cooling machine. Also in this case the bearings will be considerably deloaded with long life as a result. A simple and fast reaction control system has been invented, which acts by varying the pressure in the cycle, while keeping the crankcase pressure low and nearly constant. This principle is also applicable in a duplex machine with a heat pump or cooling machine, thus making it possible to arbitrarily vary the heating or the cooling power of the heat pump or the cooling machine on the one side and the amount of electricity generated on the other side. A super-alloy or ceramic high power density rating has been investigated. It is estimated that the superalloy or ceramic power rating can be combined with thermal efficiencies of well over 40 percent.

  15. Testing of a Stirling engine for heat + power cogeneration; Test eines Stirlingmotors zur Kraft-Waerme-Kopplung

    Energy Technology Data Exchange (ETDEWEB)

    Kramer, M.; Heinen, J. [RWE Energy AG, Essen (Germany)

    2007-01-15

    As part of a technology evaluation of distributed energy generators, RWE Energy AG extensively tested a micro combined heat and power appliance, powered by a Stirling engine developed by the British firm Microgen Energy Limited. Microgen Energy Limited is a specialist in micro combined heat and power (microCHP) based on unique Free-Piston Stirling generator technology Microgen is working with leading appliance manufacturers to integrate its core technology into a range of innovative microCHP products. The investigations concentrated on the determination of capacity, efficiency and emissions, the grid connection and behaviour at start-up and under varying loads. This article summarises the results of the tests and gives an overview of micro-CHP technologies (CHP=combined heat and power) and their possible significance to the market in the future. (orig.)

  16. Stirling Refrigerator

    Science.gov (United States)

    Kagawa, Noboru

    A Stirling cooler (refrigerator) was proposed in 1862 and the first Stirling cooler was put on market in 1955. Since then, many Stirling coolers have been developed and marketed as cryocoolers. Recently, Stirling cycle machines for heating and cooling at near-ambient temperatures between 173 and 400K, are recognized as promising candidates for alternative system which are more compatible with people and the Earth. The ideal cycles of Stirling cycle machine offer the highest thermal efficiencies and the working fluids do not cause serious environmental problems of ozone depletion and global warming. In this review, the basic thermodynamics of Stirling cycle are briefly described to quantify the attractive cycle performance. The fundamentals to realize actual Stirling coolers and heat pumps are introduced in detail. The current status of the Stirling cycle machine technologies is reviewed. Some machines have almost achieved the target performance. Also, duplex-Stirling-cycle and Vuilleumier-cycle machines and their performance are introduced.

  17. Fatigue failure of regenerator screens in a high frequency Stirling engine

    Science.gov (United States)

    Hull, David R.; Alger, Donald L.; Moore, Thomas J.; Scheuermann, Coulson M.

    1988-01-01

    Failure of Stirling Space Power Demonstrator Engine (SPDE) regenerator screens was investigated. After several hours of operation the SPDE was shut down for inspection and on removing the regenator screens, debris of unknown origin was discovered along with considerable cracking of the screens in localized areas. Metallurgical analysis of the debris determined it to be cracked-off-deformed pieces of the 41 micron thickness Type 304 stainless steel wire screen. Scanning electron microscopy of the cracked screens revealed failures occurring at wire crossovers and fatigue striations on the fracture surface of the wires. Thus, the screen failure can be characterized as a fatigue failure of the wires. The crossovers were determined to contain 30 percent reduction in wire thickness and a highly worked microstructure occurring from the manufacturing process of the wire screens. Later it was found that reduction in wire thickness occurred because the screen fabricator had subjected it to a light cold-roll process after weaving. Installation of this screen left a clearance in the regenerator allowing the screens to move. The combined effects of the reduction in wire thickness, stress concentration (caused by screen movement), and highly worked microstructure at the wire crossovers led to the fatigue failure of the screens.

  18. Stirling engine - Available tools for long-life assessment. [for space propulsion

    Science.gov (United States)

    Halford, Gary R.; Bartolotta, Paul A.

    1991-01-01

    A review is presented for the durability approaches applicable to long-time life assessment of Stirling engine hot-section components. The crucial elements are experimental techniques for generating long-time materials property data (both monotonic and cyclic flow and failure properties); analytic representations of slow strain rate material stress-strain response characteristics (monotonic and cyclic constitutive relations) at high temperatures and low stresses and strains; analytic creep-fatigue-environmental interaction life prediction methods applicable to long lifetimes at high temperatures and small stresses and strains; and experimental verification of life predictions. Long-lifetime design criteria for materials of interest are woefully lacking. Designing against failures due to creep, creep-rupture, fatigue, environmental attack, and creep-failure-environmental interaction will require considerable extrapolation. Viscoplastic constitutive models and time-temperature parameters will have to be calibrated for the hot-section materials of interest. Analysis combined with limited verification testing in a short-time regime will be required to build confidence in long-lifetime durability models.

  19. Numerical Prediction of Performance of Water Type Stirling Engine Considering Heat Exchange with Heat Sources

    Science.gov (United States)

    Yamaguchi, Yoshiyuki; Higuchi, Tetsuya

    Two different analytical models were developed on water type Stirling engine. One is the resonance model which qualitatively clarifies the relationship between performance and resonance tube length, and the other is the heat transfer model considering heat transfer between working gas and the tube walls of heating and cooling units. These analyses and experiments were carried out changing the resonance tube length variously, then it was confirmed that the resonance tube length which maximizes the water column amplitude of the power piston agrees well and the oscillations of water columns at that resonance tube length also agrees. In addition, a series of analysis using the heat transfer model was carried out with changing cross sectional area of the resonance tube, loss factors of the elbows, heat transfer area of heating and cooling unit, and pressure of working gas. By this numerical investigation, the effect on the resonance tube length and the work at the length in which these parameters maximize the amplitude of power piston water column was clarified.

  20. Thermodynamic analysis of onset characteristics in a miniature thermoacoustic Stirling engine

    Science.gov (United States)

    Huang, Xin; Zhou, Gang; Li, Qing

    2013-06-01

    This paper analyzes the onset characteristics of a miniature thermoacoustic Stirling heat engine using the thermodynamic analysis method. The governing equations of components are reduced from the basic thermodynamic relations and the linear thermoacoustic theory. By solving the governing equation group numerically, the oscillation frequencies and onset temperatures are obtained. The dependences of the kinds of working gas, the length of resonator tube, the diameter of resonator tube, on the oscillation frequency are calculated. Meanwhile, the influences of hydraulic radius and mean pressure on the onset temperature for different working gas are also presented. The calculation results indicate that there exists an optimal dimensionless hydraulic radius to obtain the lowest onset temperature, whose value lies in the range of 0.30-0.35 for different working gases. Furthermore, the amplitude and phase relationship of pressures and volume flows are analyzed in the time-domain. Some experiments have been performed to validate the calculations. The calculation results agree well with the experimental values. Finally, an error analysis is made, giving the reasons that cause the errors of theoretical calculations.

  1. Monitoring of the field-test of two wood log-boilers/stirling engine combinations

    Energy Technology Data Exchange (ETDEWEB)

    Bemmann, U.; Gross, B. [IZES gGmbH, Institut fuer ZukunftsEnergieSysteme, Saarbruecken (Germany)

    2006-07-01

    The energetic use of wood is limited to small-scale units and to the production of thermal energy for heating purposes. However, in principle it is possible to convert parts of the combustion heat into electricity, e.g. using Stirling engines. This kind of decentralised combined heat and power generation is very interesting for the future, especially because of its higher efficiency as much as the CO2-neutrality compared to conventional systems. In the forestry house Sulzbach, German Federal State Saarland (see figure above), one of the demonstration units is installed. Operator of the plant is the SaarForst, whose is interested primarily in animating the commercialisation of wood logs combined with efficient energetic use of wood in Saarland. The main reason for the realisation of this project is to demonstrate the advantages of the innovative hybrid technology regarding the energetically use of wood logs. With the own unit the SaarForst would like to win concrete experiences with this technology. (orig.)

  2. Experimental study of an integral catalytic combustor: Heat exchanger for Stirling engines

    Science.gov (United States)

    Bulzan, D. L.

    1982-02-01

    The feasibility of using catalytic combustion with heat removal for the Stirling engine to reduce exhaust emissions and also improve heat transfer to the working fluid was studied using spaced parallel plates. An internally air-cooled heat exchanger was placed between two noble metal catalytic plates. A preheated fuel-air mixture passed between the plates and reacted on the surface of the catalyzed plates. Heat was removed from the catalytic surface by radiation and convection to the aircooled heat exchangers to control temperature and minimize thermal nitrogen oxide emissions. Test conditions were inlet combustion air temperatures from 850 to 900 K, inlet velocities of about 10 m/s, equivalence ratios from 0.5 to 0.9, and pressures from 1.3x10 to the 5th power to 2.0x10 to the 5th power Pa. Propane fuel was used for all testing. Combustion efficiencies greater than 99.5 percent were measured. Nitrogen oxide emissions ranged from 1.7 to 3.3 g NO2/kg fuel. The results demonstrate the feasibility of the concept and indicate that further investigation of the concept is warranted.

  3. Large Parabolic Dish collectors with small gas-turbine, Stirling engine or photovoltaic power conversion systems

    Energy Technology Data Exchange (ETDEWEB)

    Gehlisch, K.; Heikal, H.; Mobarak, A.; Simon, M.

    1982-08-01

    A comparison for different solar thermal power plants is presented and demonstrates that the large parabolic dish in association with a gas turbine or a Sterling engine could be a competitive system design in the net power range of 50-1000KW. The important advantages of the Large Parabolic Dish concept compared to the Farm and Tower concept are discussed: concentration ratios up to 5000 and uniform heat flux distribution throughout the day which allow very high receiver temperatures and therefor high receiver efficiency to operate effectively Stirling motors or small gas turbines in the mentioned power range with an overall efficiency of 20 to 30%. The high focal plane concentration leads to the efficient use of ceramic materials for receivers of the next generation, applicable in temperature ranges up to 1,300 /sup 0/C for energy converters. Besides the production of electricity, the system can supply process heat in the temperature range of 100 to 400 /sup 0/C as waste heat from the gas turbo converter and heat at temperature levels from 500 to 900 /sup 0/C (1300 /sup 0/C) directly out of the receiver.

  4. To heat sound Stirling engine practical application without the moving part; Kodobu no nai netsuonkyo sutaringu enjin jutsuyoka e

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-08-05

    Scott of U.S.A. loss Alamos national laboratory which realized the principle of Stirling engine devised in the nineteenth century without the moving part The engine of N Backhaus et al. achieved the 30% efficiency which is equal to existing internal combustion engine. This heat sound Stirling engine is the hollow steel pipe structure of the form in which the handle of the ellipse system was attached to the grip of the butt of the baseball of the length as 4 meters, and there are multiple heat exchanger in the handle division, and 30 bar helium gas is being enclosed. This gas will pass through the thermodynamic cycle which is similar to Stirling cycle, when helium gas flows in handle division which completed temperature gradient, and when heat exchanger of high temperature and bass transmits a heat from the outside. The acoustic wave which arose this time resonates in the duct, and the region that it becomes 80 Hz standing wave and is low-pressure with the high pressure is completed, and the work is repeatedly produced on the gas in the form of the acoustic vibration in respect of compression and expansion in high pressure division and low pressure locality. It will be used in this engine is high-efficient, and can applying as a maintenance-free refrigerating machine, and making the associated gas burnt in the futility in oil field in the severe environment at present to be the fuel, liquefying this gas. And, it will become the influential technology which prevents the global warming with the application to all energy production. (translated by NEDO)

  5. Analysis and Design of a Dish/Stirling System for Solar Electric Generation with a 2.7 kW Air-Cooled Engine

    OpenAIRE

    Beltrán-Chacón R.; Velázquez-Limón N.; Sauceda-Carvajal D.

    2012-01-01

    This paper presents a mathematical modeling, simulation and design of a solar power system of a parabolic dish with an air-cooled Stirling engine of 2.7 kW. The model used for the solar concentrator, the cavity and the Stirling engine were successfully validated against experimental data. Based on a parametric study, the design of the components of the engine is carried out. The study shows that as system capacity increases, the overall efficiency is limited by the power required by the fan, ...

  6. Results of study of a 1 kWel free-piston Stirling engine; Ergebnisse aus der Untersuchung eines 1 kW{sub el} Freikolben-Stirling

    Energy Technology Data Exchange (ETDEWEB)

    Keller, H.W. [VSE AG, Saarbruecken (Germany)

    2007-01-15

    Great hopes are placed in the concept of cogeneration of heat and power (HPC), with HPC viewed as the key technology in the achievement of the climate-protection targets of Kyoto. EU Directive 2004/08/EC [1] demands an HPC concept orientated around effective heat output needs, and mini-HPC systems offer great potential in this respect. The prime aim is that of enhancing energy efficiency and improving assuredness of supply. Germany, with eighteen million households connected to the natural gas supply, possesses good pre-conditions for increase of energy efficiency via the use mini-HPC systems, and various appliances in the low output range (up to 18 kW{sub el}) are already available on the market. Lacking up to now have, however, been HPC systems which are primarily suitable for use with a low energy consumption throughout the year in detached houses. Developments are at present being pursued with great urgency precisely in this segment of the market, however. A range of different concepts are being followed for the achievement of the so-called ''power-generating heating system''. Diverse concepts employing both gasoline and Stirling engines, steam-expansion engines and fuel cells are under development. (orig.)

  7. A combined system comprising a biomass gasifier and a Stirling engine. Design and optimisation for continuous operation; Eine Anlagenkombination aus Biomassevergaser und Stirlingmotor. Anlagendesign und Auslegung fuer den Dauerbetrieb

    Energy Technology Data Exchange (ETDEWEB)

    Huelscher, Manfred [Qalovis Farmer Automatic Energy GmbH, Laer (Germany)

    2010-07-01

    Conventional wood gasifiers consist of a gasifier, gas filter, and internal combustion engine. The contribution presents a novel system comprising a gasifier, burner, and Stirling engine. To enhance the electric efficiency, the burner is operated with air preheated via reculperation. The Stirling characteristic is known, and the gasification/combustion system can be calculated and designed on the basis of the Stirling data. The dust problem of the Stirling heat exchanger is solved by an automatic filter system, so that low-maintenance long-term operation becomes possible.

  8. Experimental study on a co-axial pulse tube cryocooler driven by a small thermoacoustic stirling engine

    Science.gov (United States)

    Chen, M.; Ju, L. Y.; Hao, H. X.

    2014-01-01

    Small scale thermoacoustic heat engines have advantages in fields like space exploration and domestic applications considering small space occupation and ease of transport. In the present paper, the influence of resonator diameter on the general performance of a small thermoacoustic Stirling engine was experimentally investigated using helium as the working gas. Reducing the diameter of the resonator appropriately is beneficial for lower onset heating temperature, lower frequency and higher pressure amplitude. Based on the pressure distribution in the small thermoacoustic engine, an outlet for the acoustic work transmission was made to combine the engine and a miniature co-axial pulse tube cooler. The cooling performance of the whole refrigeration system without any moving part was tested. Experimental results showed that further efforts are required to optimize the engine performance and its match with the co-axial pulse tube cooler in order to obtain better cooling performance, compared with its original operating condition, driven by a traditional electrical linear compressor.

  9. Torque and power characteristics of a helium charged Stirling engine with a lever controlled displacer driving mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Karabulut, H.; Cinar, C.; Oztuerk, E.; Yuecesu, H.S. [Department of Mechanical Technology, Faculty of Technical Education, Gazi University, 06500 Teknikokullar, Ankara (Turkey)

    2010-01-15

    This study presents test results of a Stirling engine with a lever controlled displacer driving mechanism. Tests were conducted with helium and the working fluid was charged into the engine block. The engine was loaded by means of a prony type micro dynamometer. The heat was supplied by a liquefied petroleum gas (LPG) burner. The engine started to run at 118 C hot end temperature and the systematic tests of the engine were conducted at 180 C, 220 C and 260 C hot end external surface temperatures. During the test, cold end temperature was kept at 27 C by means of water circulation. Variation of the shaft torque and power with respect to the charge pressure and hot end temperature were examined. The maximum torque and power were measured as 3.99 Nm and 183 W at 4 bars charge pressure and 260 C hot end temperature. Maximum power corresponded to 600 rpm speed. (author)

  10. Future prospects of the Stirling engine. Good chances in the market provided that boundary conditions are o.k.; Kommt der Stirlingmotor? Gute Marktchancen bei vernuenftigen Rahmenbedingungen

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    2008-07-15

    The Stirling principle has many ecological advantages and is therefore considered an innovative technical model engine. By combustion in an external combustion chamber, it can generate heat and power from the most varied energy sources. Pollutant emissions and noise are much lower than with other internal combustion engines. On the other hand, its difficult technical integration has so far prevented its widespread use. (orig.)

  11. Design and analysis of linear oscillatory single-phase permanent magnet generator for free-piston stirling engine systems

    Directory of Open Access Journals (Sweden)

    Jeong-Man Kim

    2017-05-01

    Full Text Available This study focuses on the design and analysis of a linear oscillatory single-phase permanent magnet generator for free-piston stirling engine (FPSE systems. In order to implement the design of linear oscillatory generator (LOG for suitable FPSEs, we conducted electromagnetic analysis of LOGs with varying design parameters. Then, detent force analysis was conducted using assisted PM. Using the assisted PM gave us the advantage of using mechanical strength by detent force. To improve the efficiency, we conducted characteristic analysis of eddy-current loss with respect to the PM segment. Finally, the experimental result was analyzed to confirm the prediction of the FEA.

  12. A review of test results on solar thermal power modules with dish-mounted Stirling and Brayton cycle engines

    Science.gov (United States)

    Jaffe, Leonard D.

    1988-01-01

    This paper presents results of development tests of various solar thermal parabolic dish modules and assemblies that used dish-mounted Brayton or Stirling cycle engines for production of electric power. These tests indicate that early modules achieve net efficiencies up to 29 percent in converting sunlight to electricity, as delivered to the grid. Various equipment deficiencies were observed and a number of malfunctions occurred. The performance measurements, as well as the malfunctions and other test experience, provided information that should be of value in developing systems with improved performance and reduced maintenance.

  13. Design and analysis of linear oscillatory single-phase permanent magnet generator for free-piston stirling engine systems

    Science.gov (United States)

    Kim, Jeong-Man; Choi, Jang-Young; Lee, Kyu-Seok; Lee, Sung-Ho

    2017-05-01

    This study focuses on the design and analysis of a linear oscillatory single-phase permanent magnet generator for free-piston stirling engine (FPSE) systems. In order to implement the design of linear oscillatory generator (LOG) for suitable FPSEs, we conducted electromagnetic analysis of LOGs with varying design parameters. Then, detent force analysis was conducted using assisted PM. Using the assisted PM gave us the advantage of using mechanical strength by detent force. To improve the efficiency, we conducted characteristic analysis of eddy-current loss with respect to the PM segment. Finally, the experimental result was analyzed to confirm the prediction of the FEA.

  14. Recent advances in design of low cost film concentrator and low pressure free piston Stirling engines for solar power

    Science.gov (United States)

    Kleinwaechter, J.; Kleinwaechter, H.; Beale, W.

    1984-03-01

    The free piston Stirling-linear alternator was shown to be scalable to power levels of tens of kilowatts in a form which is simple, efficient, long lived and relatively inexpensive. It avoids entirely the vexing problem of high pressure shaft, and its control requirements are not severe nor do they represent a significant threat to durability. Linear alternators have demonstrated high efficiency and moderate weight, and are capable of delivering 3 phase power from single machines without great increases of cost or complexity. There remains no apparent impediments to the commercial exploitation of the free piston engine for solar electric power generation.

  15. Energy-state formulation of lumped volume dynamic equations with application to a simplified free piston Stirling engine

    Science.gov (United States)

    Daniele, C. J.; Lorenzo, C. F.

    1979-01-01

    Lumped volume dynamic equations are derived using an energy-state formulation. This technique requires that kinetic and potential energy state functions be written for the physical system being investigated. To account for losses in the system, a Rayleigh dissipation function is also formed. Using these functions, a Lagrangian is formed and using Lagrange's equation, the equations of motion for the system are derived. The results of the application of this technique to a lumped volume are used to derive a model for the free-piston Stirling engine. The model was simplified and programmed on an analog computer. Results are given comparing the model response with experimental data.

  16. Small-scale CHP Plant based on a 35 kWel Hermetic Four Cylinder Stirling Engine for Biomass Fuels- Development, Technology and Operating Experiences

    DEFF Research Database (Denmark)

    Obernberger, I.; Carlsen, Henrik; Biedermann, F.

    2003-01-01

    Within the scope of a comprehensive study and two development and demonstration projects, various technologies in the power range of up to 2 MWel for small-scale biomass-fired CHP plants have been investigated, evaluated and compared considering technical as well as economic aspects. Such plants...... in the biomass CHP plant Lienz (A) in the framework of an EU demonstration project. This plant was put in operation in February 2002. Stirling engines are a promising solution for installations with nominal electric capacities between 10 and 150 kW. A biomass CHP pilot plant based on a 35 kWel-Stirling engine...

  17. Performance mapping of the STM4-120 kinematic Stirling engine using a statistical design of experiments method

    Science.gov (United States)

    Powell, M. A.; Rawlinson, K. S.

    A kinetic Stirling cycle engine, the Stirling Thermal Motors (STM) STM4-120, was tested at the Sandia National Laboratories Engine Test Facility (ETF) from March 1989-August 1992. Sandia is interested in determining this engine's potential for solar-thermal-electric applications. The last round of testing was conducted from July-August 1992 using Sandia-designed gas-fired heat pipe evaporators as the heat input system to the engine. The STM4-120 was performance mapped over a range of sodium vapor temperatures, cooling water temperatures, and cycle pressures. The resulting shaft power output levels ranged from 5-9 kW. The engine demonstrated high conversion efficiency (24-31%) even though the power output level was less than 40% of the rated output of 25 kW. The engine had been previously derated from 25 kW to 10 kW shaft power due to mechanical limitations that were identified by STM during parallel testing at their facility in Ann Arbor, MI. A statistical method was used to design the experiment, to choose the experimental points, and to generate correlation equations describing the engine performance given the operating parameters. The testing was truncated due to a failure of the heat pipe system caused by entrainment of liquid sodium in the condenser section of the heat pipes. Enough data was gathered to generate the correlations and to demonstrate the experimental technique. The correlation is accurate in the experimental space and is simple enough for use in hand calculations and spreadsheet-based system models. Use of this method can simplify the construction of accurate performance and economic models of systems in which the engine is a component. The purpose of this paper is to present the method used to design the experiments and to analyze the performance data.

  18. Trade-Off Study for an STC 70 W Stirling Engine

    Science.gov (United States)

    Qiu, Songgang; Peterson, Allen A.; Augenblick, Jack E.

    2005-02-01

    A high-efficiency, low-weight free-piston Stirling generator, RG-70L, has been conceptually designed. This paper reports the detailed trade-off study of newly designed RG-70L. The trades of operating frequency and piston/displacer strokes on Stirling convertor mass and efficiency are discussed. This paper shows how the operating frequency and strokes were optimized based on the trades. Losses associated with increased frequency were fully investigated and the results are discussed in the paper. Various optional linear alternator configurations are also presented and the estimated masses are reported.

  19. Low-capacity systems on the march... Pt. 2. Cogeneration system consisting of a wood boiler and stirling engine; Jetzt kommen die Kleinen... T. 2. KWK-Anlage als Scheitholzkessel/-Stirling-Kombination

    Energy Technology Data Exchange (ETDEWEB)

    Gross, B.

    2008-08-15

    Energetic use of wood so far is usually limited to low-capacity systems and for thermal power generation for room heating purposes. In principle, however, it is also possible to convert part of the combustion heat into electric power by means of a Stirling engine. This strategy of combined heat and ower generation is an interesting alternative to conventional systems because of its higher efficiency and CO2 neutrality. While marketable systems are available in the range above 500 kWel, they are still lacking in the low-capacity sector. The HOVAL company successfully developed a low-capacity cogeneration system - comprising a wood boiler and stirling engine - for the range of 1 kWel and up to 50 kWth. (orig.)

  20. A Program for the Education of Creativity and Manufacturing Ability Through Designing and Making a Stirling Engine

    Science.gov (United States)

    Huang, Shuwei

    This paper presents a program and its results for the education of students' creativity and manufacturing ability in the graduation research. In this program, every two or three students working as a group are required to design and make a Stirling engine their selves, which has to be able to run at least 10 minutes continuously. This program has been designed to stimulate the students' creativity through the planning and designing of the engine as well as through solving almost all problems encountered, and to train their manufacturing ability by creating all the working drawings with 2D/3D-CAD, predicting the engine's performances using thermodynamics, and manufacturing most of the parts needed. Details and results of this program for the recent 7 years are reported.

  1. Experimental and Computational Analysis of Unidirectional Flow Through Stirling Engine Heater Head

    Science.gov (United States)

    Wilson, Scott D.; Dyson, Rodger W.; Tew, Roy C.; Demko, Rikako

    2006-01-01

    A high efficiency Stirling Radioisotope Generator (SRG) is being developed for possible use in long-duration space science missions. NASA s advanced technology goals for next generation Stirling convertors include increasing the Carnot efficiency and percent of Carnot efficiency. To help achieve these goals, a multi-dimensional Computational Fluid Dynamics (CFD) code is being developed to numerically model unsteady fluid flow and heat transfer phenomena of the oscillating working gas inside Stirling convertors. In the absence of transient pressure drop data for the zero mean oscillating multi-dimensional flows present in the Technology Demonstration Convertors on test at NASA Glenn Research Center, unidirectional flow pressure drop test data is used to compare against 2D and 3D computational solutions. This study focuses on tracking pressure drop and mass flow rate data for unidirectional flow though a Stirling heater head using a commercial CFD code (CFD-ACE). The commercial CFD code uses a porous-media model which is dependent on permeability and the inertial coefficient present in the linear and nonlinear terms of the Darcy-Forchheimer equation. Permeability and inertial coefficient were calculated from unidirectional flow test data. CFD simulations of the unidirectional flow test were validated using the porous-media model input parameters which increased simulation accuracy by 14 percent on average.

  2. Validation of published Stirling engine design methods using engine characteristics from the literature

    Science.gov (United States)

    Martini, W. R.

    1980-01-01

    Four fully disclosed reference engines and five design methods are discussed. So far, the agreement between theory and experiment is about as good for the simpler calculation methods as it is for the more complicated methods, that is, within 20%. For the simpler methods, a one number adjustable constant can be used to reduce the error in predicting power output and efficiency over the entire operating map to less than 10%.

  3. Operating Experiences with a Small-scale CHP Pilot Plant based on a 35 kWel Hermetic Four Cylinder Stirling Engine for Biomass Fuels

    DEFF Research Database (Denmark)

    Biedermann, F.; Carlsen, Henrik; Schoech, M.

    2003-01-01

    Within the scope of the RD&D project presented a small-scale CHP plant with a hermetic four cylinder Stirling engine for biomass fuels was developed and optimised in cooperation with the Technical University of Denmark, MAWERA Holzfeuerungsanlagen GesmbH, an Austrian biomass furnace and boiler...

  4. A conceptual study of the potential for automotive-derived and free-piston Stirling engines in 30- to 400-kilowatt stationary power applications

    Science.gov (United States)

    Vatsky, A.; Chen, H. S.; Dineen, J.

    1982-05-01

    The technical feasibility of applying automotive-derived kinematic and free-piston Stirling engine concepts for stationary applications was explored. Automotive-derived engines offer cost advantages by providing a mature and developd engine technology base with downrating and parts commonality options for specific applications. Two engine sizes (30 and 400 kW), two Stirling engine configurations (kinematic and free-piston), and two output systems (crankshaft and hydraulic pump) were studied. The study includes the influences of using either hydrogen or helium as the working gas. The first kinematic configuration selects an existing Stirling engine design from an automotive application and adapts it to stationary requirements. A 50,000-hour life requirement was established by downrating the engine to 40 kW and reducing auxiliary loads. Efficiency improvements were gained by selective material and geometric variations and peak brake efficiency of 36.8 percent using helium gas was achieved. The second design was a four-cylinder, 400 kW engine, utilizing a new output drive system known as the z-crank, which provides lower friction losses and variable stroke power control. Three different material and working gas combinations were considered. Brake efficiency levels varied from 40.5 percent to 45.6 percent. A 37.5 kW single-cycle, free-piston hydraulic output design was generated by scaling one cylinder of the original automotive engine and mating it to a counterbalanced reciprocal hydraulic pump. Metallic diaphragms were utilized to transmit power.

  5. Stirling Module Development Overview

    Science.gov (United States)

    Livingston, F. R.

    1984-01-01

    The solar parabolic dish Stirling engine electrically generating module consists of a solar collector coupled to a Stirling engine powered electrical generator. The module is designed to convert solar power to electrical power in parallel with numerous identical units coupled to an electrical utility power grid. The power conversion assembly generates up to 25 kilowatts at 480 volts potential/3 phase/alternating current. Piston rings and seals with gas leakage have not occurred, however, operator failures resulted in two burnt out receivers, while material fatigue resulted in a broken piston rod between the piston rod seal and cap seal.

  6. Evaluation of candidate Stirling engine heater tube alloys after 3500 hours exposure to high pressure doped hydrogen or helium

    Science.gov (United States)

    Misencik, J. A.; Titran, R. H.

    1984-01-01

    The heater head tubes of current prototype automotive Stirling engines are fabricated from alloy N-155, an alloy which contains 20 percent cobalt. Because the United States imports over 90 percent of the cobalt used in this country and resource supplies could not meet the demand imposed by automotive applications of cobalt in the heater head (tubes plus cylinders and regenerator housings), it is imperative that substitute alloys free of cobalt be identified. The research described herein focused on the heater head tubes. Sixteen alloys (15 potential substitutes plus the 20 percent Co N-155 alloy) were evaluated in the form of thin wall tubing in the NASA Lewis Research Center Stirling simulator materials diesel fuel fired test rigs. Tubes filled with either hydrogen doped with 1 percent CO2 or with helium at a gas pressure of 15 MPa and a temperature of 820 C were cyclic endurance tested for times up to 3500 hr. Results showed that two iron-nickel base superalloys, CG-27 and Pyromet 901 survived the 3500 hr endurance test. The remaining alloys failed by creep-rupture at times less than 3000 hr, however, several other alloys had superior lives to N-155. Results further showed that doping the hydrogen working fluid with 1 vol % CO2 is an effective means of reducing hydrogen permeability through all the alloy tubes investigated.

  7. System-Level Testing of the Advanced Stirling Radioisotope Generator Engineering Hardware

    Science.gov (United States)

    Chan, Jack; Wiser, Jack; Brown, Greg; Florin, Dominic; Oriti, Salvatore M.

    2014-01-01

    To support future NASA deep space missions, a radioisotope power system utilizing Stirling power conversion technology was under development. This development effort was performed under the joint sponsorship of the Department of Energy and NASA, until its termination at the end of 2013 due to budget constraints. The higher conversion efficiency of the Stirling cycle compared with that of the Radioisotope Thermoelectric Generators (RTGs) used in previous missions (Viking, Pioneer, Voyager, Galileo, Ulysses, Cassini, Pluto New Horizons and Mars Science Laboratory) offers the advantage of a four-fold reduction in Pu-238 fuel, thereby extending its limited domestic supply. As part of closeout activities, system-level testing of flight-like Advanced Stirling Convertors (ASCs) with a flight-like ASC Controller Unit (ACU) was performed in February 2014. This hardware is the most representative of the flight design tested to date. The test fully demonstrates the following ACU and system functionality: system startup; ASC control and operation at nominal and worst-case operating conditions; power rectification; DC output power management throughout nominal and out-of-range host voltage levels; ACU fault management, and system command / telemetry via MIL-STD 1553 bus. This testing shows the viability of such a system for future deep space missions and bolsters confidence in the maturity of the flight design.

  8. Thermodynamic analysis of a {beta} type Stirling engine with a displacer driving mechanism by means of a lever

    Energy Technology Data Exchange (ETDEWEB)

    Karabulut, Halit; Aksoy, Fatih; Oeztuerk, Erkan [Department of Mechanical Technology, Faculty of Technical Education, Gazi University, Besevler, 06500, Ankara (Turkey)

    2009-01-15

    In this study a novel configuration of {beta} type Stirling engine was described and studied from kinematic and thermodynamics points of view. Some aspects of the novel engine were compared to the crank driven and Rhombic-drive engines. By means of nodal analysis, the instantaneous temperature distribution of working fluid, through the heating-cooling passage, conducting the cold space to hot space, was studied. Variation of work generation due to leak of the working fluid was examined and an estimation of the clearance between piston and cylinder was made. By using three different practically possible values of convective heat transfer coefficient, which were 200, 300 and 400 W/m{sup 2} K, respectively, variation of work generation with working fluid mass was examined. For the same values of convective heat transfer coefficient, the variation of engine power with engine speed was examined. A simple prototype was built and tested with no pressurized ambient air. By applying 260 C temperature to the hot end and 20 C temperature to the cold end of displacer cylinder 14.72 Watts shaft power was measured. Results of theoretical study and experimental measurements were presented in diagrams. (author)

  9. Dynamic analysis of Free-Piston Stirling Engine/Linear Alternator-load system-experimentally validated

    Science.gov (United States)

    Kankam, M. David; Rauch, Jeffrey S.; Santiago, Walter

    1992-01-01

    This paper discusses the effects of variations in system parameters on the dynamic behavior of the Free-Piston Stirling Engine/Linear Alternator (FPSE/LA)-load system. The mathematical formulations incorporate both the mechanical and thermodynamic properties of the FPSE, as well as the electrical equations of the connected load. A state-space technique in the frequency domain is applied to the resulting system of equations to facilitate the evaluation of parametric impacts on the system dynamic stability. Also included is a discussion on the system transient stability as affected by sudden changes in some key operating conditions. Some representative results are correlated with experimental data to verify the model and analytic formulation accuracies. Guidelines are given for ranges of the system parameters which will ensure an overall stable operation.

  10. A novel single-phase flux-switching permanent magnet linear generator used for free-piston Stirling engine

    Science.gov (United States)

    Zheng, Ping; Sui, Yi; Tong, Chengde; Bai, Jingang; Yu, Bin; Lin, Fei

    2014-05-01

    This paper investigates a novel single-phase flux-switching permanent-magnet (PM) linear machine used for free-piston Stirling engines. The machine topology and operating principle are studied. A flux-switching PM linear machine is designed based on the quasi-sinusoidal speed characteristic of the resonant piston. Considering the performance of back electromotive force and thrust capability, some leading structural parameters, including the air gap length, the PM thickness, the ratio of the outer radius of mover to that of stator, the mover tooth width, the stator tooth width, etc., are optimized by finite element analysis. Compared with conventional three-phase moving-magnet linear machine, the proposed single-phase flux-switching topology shows advantages in less PM use, lighter mover, and higher volume power density.

  11. Simulation of a photo-solar generator for an optimal output by a parabolic photovoltaic concentrator of Stirling engine type

    Science.gov (United States)

    Kaddour, A.; Benyoucef, B.

    Solar energy is the source of the most promising energy and the powerful one among renewable energies. Photovoltaic electricity (statement) is obtained by direct transformation of the sunlight into electricity, by means of cells statement. Then, we study the operation of cells statement by the digital simulation with an aim of optimizing the output of the parabolic concentrator of Stirling engine type. The Greenius software makes it possible to carry out the digital simulation in 2D and 3D and to study the influence of the various parameters on the characteristic voltage under illumination of the cell. The results obtained enabled us to determine the extrinsic factors which depend on the environment and the intrinsic factors which result from the properties of materials used.

  12. Analysis and Design of a Dish/Stirling System for Solar Electric Generation with a 2.7 kW Air-Cooled Engine

    Directory of Open Access Journals (Sweden)

    Beltrán-Chacón R.

    2012-01-01

    Full Text Available This paper presents a mathematical modeling, simulation and design of a solar power system of a parabolic dish with an air-cooled Stirling engine of 2.7 kW. The model used for the solar concentrator, the cavity and the Stirling engine were successfully validated against experimental data. Based on a parametric study, the design of the components of the engine is carried out. The study shows that as system capacity increases, the overall efficiency is limited by the power required by the fan, since the design of the cooler needs greater amounts of heat removal by increasing the air flow without affecting the internal conditions of the process (mass flow of working gas and internal dimensions of the same. The system was optimized and achieves an overall efficiency of solar to electric energy conversion of 26.7%. This study shows that the use of an air-cooled Stirling engine is potentially attractive for power generation at low capacities.

  13. Study of nonlinear processes of a large experimental thermoacoustic-Stirling heat engine by using computational fluid dynamics

    Science.gov (United States)

    Yu, G. Y.; Luo, E. C.; Dai, W.; Hu, J. Y.

    2007-10-01

    This article focuses on using computational fluid dynamics (CFD) method to study several important nonlinear phenomenon and processes of a large experimental thermoacoustic-Stirling heat engine. First, the simulated physical model was introduced, and the suitable numerical scheme and algorithm for the time-dependent compressible thermoacoustic system was determined through extensive numerical tests. Then, the simulation results of the entire evolution process of self-excited thermoacoustic oscillation and the acoustical characteristics of pressure and velocity waves were presented and analyzed. Especially, the onset temperature and the saturation process of dynamic pressure were captured by the CFD simulation. In addition, another important nonlinear phenomenon accompanying the acoustic wave, which is the steady mass flow through the traveling-wave loop inside the thermoacoustic engine, was studied. To suppress the steady mass flow numerically, a fan model was adopted in the simulation. Finally, the multidimensional effects of vortex formation in the thermal buffer tube and other components were displayed numerically. Most importantly, a substantial comparison between the simulation and experiments was made, which demonstrated well the validity and powerfulness of the CFD simulation for characterizing several complicated nonlinear phenomenon involved in the self-excited thermoacoustic heat engine.

  14. Exergy analysis of the woody biomass Stirling engine and PEM-FC combined system with exhaust heat reforming

    Energy Technology Data Exchange (ETDEWEB)

    Obara, Shin' ya; Tanno, Itaru [Department of Mechanical Engineering, Tomakomai National College of Technology, 443 Nishikioka, Tomakomai, Hokkaido 0591275 (Japan); Kito, Shunsuke [Department of Mechanical Engineering, Toyota National College of Technology, Eisei-cho, 2-1 Toyota, Aichi 4718525 (Japan); Hoshi, Akira; Sasaki, Seizi [Department of Mechanical Engineering, Ichinoseki National College of Technology, Takanashi, Hagisho, Ichinoseki, Iwate 0218511 (Japan)

    2008-05-15

    The woody biomass Stirling engine (WB-SEG) is an external combustion engine that outputs high-temperature exhaust gases. It is necessary to improve the exergy efficiency of WB-SEG from the viewpoint of energy cascade utilization. So, a combined system that uses the exhaust heat of WB-SEG for the steam reforming of city gas and that supplies the produced reformed gas to a proton exchange membrane fuel cell (PEM-FC) is proposed. The energy flow and the exergy flow were analyzed for each WB-SEG, PEM-FC, and WB-SEG/PEM-FC combined system. Exhaust heat recovery to preheat fuel and combustion air was investigated in each system. As a result, (a) improvement of the heat exchange performance of the woody biomass combustion gas and engine is observed, (b) reduction in difference in the reaction temperature of each unit, and (c) removal of rapid temperature change of reformed gas are required in order to reduce exergy loss of the system. The exergy efficiency of the WB-SEG/PEM-FC combined system is superior to EM-FC. (author)

  15. Stirling to Flight Initiative

    Science.gov (United States)

    Hibbard, Kenneth E.; Mason, Lee S.; Ndu, Obi; Smith, Clayton; Withrow, James P.

    2016-01-01

    NASA has a consistent need for radioisotope power systems (RPS) to enable robotic scientific missions for planetary exploration that has been present for over four decades and will continue into the foreseeable future, as documented in the most recent Planetary Science Decadal Study Report. As RPS have evolved throughout the years, there has also grown a desire for more efficient power systems, allowing NASA to serve as good stewards of the limited plutonium-238 (238Pu), while also supporting the ever-present need to minimize mass and potential impacts to the desired science measurements. In fact, the recent Nuclear Power Assessment Study (NPAS) released in April 2015 resulted in several key conclusion regarding RPS, including affirmation that RPS will be necessary well into the 2030s (at least) and that 238Pu is indeed a precious resource requiring efficient utilization and preservation. Stirling Radioisotope Generators (SRGs) combine a Stirling cycle engine powered by a radioisotope heater unit into a single generator system. Stirling engine technology has been under development at NASA Glenn Research Center (GRC) in partnership with the Department of Energy (DOE) since the 1970's. The most recent design, the 238Pu-fueled Advanced Stirling Radioisotope Generator (ASRG), was offered as part of the NASA Discovery 2010 Announcement of Opportunity (AO). The Step-2 selections for this AO included two ASRG-enabled concepts, the Titan Mare Explorer (TiME) and the Comet Hopper (CHopper), although the only non-nuclear concept, InSight, was ultimately chosen. The DOE's ASRG contract was terminated in 2013. Given that SRGs utilize significantly less 238Pu than traditional Radioisotope Thermoelectric Generators (RTGs) - approximately one quarter of the nuclear fuel, to produce similar electrical power output - they provide a technology worthy of consideration for meeting the aforementioned NASA objectives. NASA's RPS Program Office has recently investigated a new Stirling to

  16. Simulation of a mini-cogeneration-plant with a hybrid solar stirling engine; Simulation einer Mikro-KWK-Anlage mit hybridem Solar-Stirlingmotor

    Energy Technology Data Exchange (ETDEWEB)

    Basta, Jiri [Czech Technical University in Prague (Czech Republic). Inst. fuer Umwelttechnik; Technische Gesellschaft fuer Umwelttechnik (REHVA) (Czech Republic). Sektion fuer Heizungstechnik; Nosek, Stepan [Czech Technical University in Prague (Czech Republic). Inst. fuer Umwelttechnik

    2010-03-15

    A particularly promising procedure for the transformation of solar power into mechanical energy and afterwards electricity presently is represented by the so-called solar stirling engine. At the beginning of the 1980ies, in the U.S.A. a project started under the name Dish/Stirling with the target of a decentralized solar thermal generation of electricity USA. Using the most effective technology, an efficiency of up to 31.2 % could be achieved. In Europe, the project Eurodish is developed at the beginning of the 1990ies under co-operation of several countries. In principle both projects are similar. They only differ by the execution of the individual components.

  17. Stirling machine operating experience

    Energy Technology Data Exchange (ETDEWEB)

    Ross, B. [Stirling Technology Co., Richland, WA (United States); Dudenhoefer, J.E. [Lewis Research Center, Cleveland, OH (United States)

    1994-09-01

    Numerous Stirling machines have been built and operated, but the operating experience of these machines is not well known. It is important to examine this operating experience in detail, because it largely substantiates the claim that stirling machines are capable of reliable and lengthy operating lives. The amount of data that exists is impressive, considering that many of the machines that have been built are developmental machines intended to show proof of concept, and are not expected to operate for lengthy periods of time. Some Stirling machines (typically free-piston machines) achieve long life through non-contact bearings, while other Stirling machines (typically kinematic) have achieved long operating lives through regular seal and bearing replacements. In addition to engine and system testing, life testing of critical components is also considered. The record in this paper is not complete, due to the reluctance of some organizations to release operational data and because several organizations were not contacted. The authors intend to repeat this assessment in three years, hoping for even greater participation.

  18. A compendium of solar dish/Stirling technology

    Energy Technology Data Exchange (ETDEWEB)

    Stine, W.B. [California State Polytechnic Univ., Pomona, CA (United States). Dept. of Mechanical Engineering; Diver, R.B. [Sandia National Labs., Albuquerque, NM (United States)

    1994-01-01

    This report surveys the emerging dish/Stirling technology. It documents -- using consistent terminology the design characteristics of dish concentrators, receivers, and Stirling engines applicable to solar electric power generation. Development status and operating experience for each system and an overview of dish/Stirling technology are also presented. This report enables comparisons of concentrator, receiver, and engine technologies. Specifications and performance data are presented on systems and on components that are in use or that could be used in dish/Stirling systems. This report is organized into two parts: The first part (Chapters 1 through 4) provides an overview of dish/Stirling technology -- the dish/ Stirling components (concentrator, receiver, and engine/alternator), current technology, basic theory, and technology development. The second part (Chapters 5 through 7) provides a detailed survey of the existing dish/Stirling concentrators, receivers, and engine/alternators.

  19. Radioisotope Stirling Engine Powered Airship for Atmospheric and Surface Exploration of Titan

    Science.gov (United States)

    Colozza, Anthony J.; Cataldo, Robert L.

    2014-01-01

    The feasibility of an advanced Stirling radioisotope generator (ASRG) powered airship for the near surface exploration of Titan was evaluated. The analysis did not consider the complete mission only the operation of the airship within the atmosphere of Titan. The baseline airship utilized two ASRG systems with a total of four general-purpose heat source (GPHS) blocks. Hydrogen gas was used to provide lift. The ASRG systems, airship electronics and controls and the science payload were contained in a payload enclosure. This enclosure was separated into two sections, one for the ASRG systems and the other for the electronics and payload. Each section operated at atmospheric pressure but at different temperatures. The propulsion system consisted of an electric motor driving a propeller. An analysis was set up to size the airship that could operate near the surface of Titan based on the available power from the ASRGs. The atmospheric conditions on Titan were modeled and used in the analysis. The analysis was an iterative process between sizing the airship to carry a specified payload and the power required to operate the electronics, payload and cooling system as well as provide power to the propulsion system to overcome the drag on the airship. A baseline configuration was determined that could meet the power requirements and operate near the Titan surface. From this baseline design additional trades were made to see how other factors affected the design such as the flight altitude and payload mass and volume.

  20. Initial test results with a single-cylinder rhombic-drive Stirling engine. [to be applied to automobile engine design to conserve energy

    Science.gov (United States)

    Cairelli, J. E.; Thieme, L. G.; Walter, R. J.

    1978-01-01

    A 6 kW (8 hp), single-cylinder, rhombic-drive Stirling engine was restored to operating condition, and preliminary characterization tests run with hydrogen and helium as the working gases. Initial tests show the engine brake specific fuel consumption (BSFC) with hydrogen working gas to be within the range of BSFC observed by the Army at Fort Belvoir, Virginia, in 1966. The minimum system specific fuel consumption (SFC) observed during the initial tests with hydrogen was 669 g/kW hr (1.1 lb/hpx hr), compared with 620 g/kWx hr (1.02 lb/hpx hr) for the Army tests. However, the engine output power for a given mean compression-space pressure was lower than for the Army tests. The observed output power at a working-space pressure of 5 MPa (725 psig) was 3.27 kW (4.39 hp) for the initial tests and 3.80 kW (5.09 hp) for the Army tests. As expected, the engine power with helium was substantially lower than with hydrogen.

  1. Solar Stirling system development

    Science.gov (United States)

    Stearns, J. W., Jr.; Won, Y. S.; Poon, P. T.; Das, R.; Chow, E. Y.

    1979-01-01

    A low-cost, high-efficiency dish-Stirling solar thermal-electric power system is being developed for test in 1981. System components are the solar concentrator, receiver, fossil fuel combustor, thermal energy storage (TES), engine-generator, and power processing. System conceptualization is completed and design is in progress. Two receiver alternatives are being evaluated, a direct-coupled receiver-engine configuration with no TES and a heat pipe receiver with TES. System cost projections are being made. Goals for the system development task are (1) to develop an advanced dish-Stirling technology, utilizing a team of industrial contractors, (2) to demonstrate that technology at the system level, and (3) to determine how to achieve low production cost.

  2. News from the stirling engine. Now also operating for power generation from Biomass in a small power range; Neues von der Stirlingmaschine. Jetzt auch zur Stromerzeugung aus Biomasse im kleinsten Leistungsbereich

    Energy Technology Data Exchange (ETDEWEB)

    Beck, Peter [Ecos GmbH, Osnabrueck (Germany)

    2008-07-01

    The future prospects for Stirling engines are better than ever before: the engine can be used efficiently as refrigerator and cogeneration system, as well as a driving unit or even for the direct conversion of solar energy into electrical energy. The report gives a short overview of the state of development, present and future applications as well as current tasks for the production of Stirling engines. Newest developments show, that besides fossil fuels as natural gas also biomass formed as wood pellets or wood wastes is utilized. (GL)

  3. The tribology of PS212 coatings and PM212 composites for the lubrication of titanium 6Al-4V components of a Stirling engine space power system

    Science.gov (United States)

    Sliney, Harold E.; Lukaszewicz, Victor; Dellacorte, Christopher

    1994-01-01

    The Stirling space power machine incorporates a linear alternator to generate electrical power. The alternator is a reciprocating device that is driven by a solar or nuclear-powered Stirling engine. The power piston and cylinder are made of titanium 6Al-4V (Ti6-4) alloy, and are designed to be lubricated by a hydrodynamically-generated gas film. Rubbing occurs during starts and stops and there is the possibility of an occasional high speed rub. Since titanium is known to have a severe galling tendency in sliding contacts, a 'back-up', self-lubricating coating on the cylinder and/or the piston is needed. This report describes the results of a research program to study the lubrication of Ti6-4 with the following chromium carbide based materials: plasma-sprayed PS212 coatings and sintered PM212 counterfaces. Program objectives are to achieve adherent coatings on Ti6-4 and to measure the friction and wear characteristics of the following sliding combinations under conditions simulative of the Stirling-driven space power linear alternator: Ti6-4/Ti6-4 baseline, Ti6-4/PS212-coated Ti6-4, and PS212-coated Ti6-4/PM212.

  4. Focus on compact systems. Pt. 1. Cogeneration unit comprising a wood boiler and Stirling engine; Jetzt kommen die Kleinen...T. 1. KWK-Anlage als Scheitholzkessel/-Stirling-Kombination

    Energy Technology Data Exchange (ETDEWEB)

    Gross, B.

    2008-07-15

    The energetic uses of wood are limited to compact systems and to thermal power generation for heating purposes. In principle, however, it is possible to convert part of the combustion heat into electric power by means of a Stirling engine. This combination is interesting because of its higher efficiency and CO2 neutrality as compared with conventional systems. While mature concepts are available in the range above 500 kW{sub el}, marketable products are still lacking in the field of compact systems. During the past few years, the HOVAL company worked on the development of a small plant of this type for up to 1 kW{sub el} and up to 50 kW{sub th}. (orig.)

  5. Solar powered Stirling cycle electrical generator

    Science.gov (United States)

    Shaltens, Richard K.

    1991-01-01

    Under NASA's Civil Space Technology Initiative (CSTI), the NASA Lewis Research Center is developing the technology needed for free-piston Stirling engines as a candidate power source for space systems in the late 1990's and into the next century. Space power requirements include high efficiency, very long life, high reliability, and low vibration. Furthermore, system weight and operating temperature are important. The free-piston Stirling engine has the potential for a highly reliable engine with long life because it has only a few moving parts, non-contacting gas bearings, and can be hermetically sealed. These attributes of the free-piston Stirling engine also make it a viable candidate for terrestrial applications. In cooperation with the Department of Energy, system designs are currently being completed that feature the free-piston Stirling engine for terrestrial applications. Industry teams were assembled and are currently completing designs for two Advanced Stirling Conversion Systems utilizing technology being developed under the NASA CSTI Program. These systems, when coupled with a parabolic mirror to collect the solar energy, are capable of producing about 25 kW of electricity to a utility grid. Industry has identified a niche market for dish Stirling systems for worldwide remote power application. They believe that these niche markets may play a major role in the introduction of Stirling products into the commercial market.

  6. Numerical investigation on nonlinear effect and vortex formation of oscillatory flow throughout a short tube in a thermoacoustic Stirling engine

    Science.gov (United States)

    Yang, Peng; Chen, Hui; Liu, Yingwen

    2017-06-01

    In this paper, a two-dimensional axisymmetric model of a thermoacoustic Stirling engine with a short tube where the cross section narrows has been developed. The transient streamlines and vortex formation through short tubes with different diameters in oscillatory flow have been investigated visually by computational fluid dynamics. Three dimensionless parameters, Reynolds number (Re), Keulegan-Carpenter number (KC), and Womersley number (Wo), are used to describe the flow regime and vortex characteristic throughout the short tube. High Re and Wo numbers indicate that the oscillatory flow develops into the turbulent flow through the short tube. The KC number has a direct effect on the transition of streamlines and the development of the vortex. For a small cross section where KC ≈ 1, streamlines rotate and the vortex forms at both sides of the short tube. The vortex stays in the main flow region, and intensity varies as streamlines are convected downstream. The velocity along the radius presents a Poiseuille profile within the influence of the vortex. For a large cross section where KC < 1, streamlines pass the short tube with little rotation and the vortex disappears in the main flow region and confines near the short tube. The velocity profile tends to be flat. The nonlinear effects including instantaneous pressure drop and power dissipation throughout the short tube are also discussed. It shows that the time averaged pressure drop is generated at the cost of power dissipation. Finally, the "effectiveness" is applied to evaluate the performance of the short tube. The results suggest that increasing the diameter of the short tube is in favor of reducing power dissipation, which is beneficial to improve "effectiveness."

  7. Status of several Stirling loss characterization efforts and their significance for Stirling space power development

    Science.gov (United States)

    Tew, Roy C., Jr.

    1988-01-01

    NASA-Lewis and other U.S. Government agencies have supported experimental and analytical programs for the characterization of Stirling cycle engines' thermodynamic losses, with a view to the improvement of Stirling engine design capabilities. The Space Power Demonstrator Engine is noted to have benefited from these efforts; test data and model predictions suggest that even greater performance improvements would be obtainable through additional modifications of engine regenerator and heater hardware.

  8. Design and development of Stirling engines for stationary power generation applications in the 500 to 3000 horsepower range. Volume 1. Technical report

    Energy Technology Data Exchange (ETDEWEB)

    ,

    1980-09-15

    This project was Phase I of a multiphased program for the design and development of Stirling engines for stationary power generation applications in the 500 to 3000 horsepower range. Phase I comprised the conceptual design and associated cost estimates of a stationary Stirling engine capable of being fueled by a variety of heat sources, with emphasis on coal firing, followed by the preparation of a plan for implementing the design, fabrication and testing of a demonstration engine by 1985. The development and evaluation of conceptual designs have been separated into two broad categories: the A designs which represent the present state-of-the-art and which are demonstrable by 1985 with minimum technical risk; and the B designs which involve advanced technology and therefore would require significant research and development prior to demonstration and commercialization, but which may ultimately offer advantages in terms of lower cost, better performance, or higher reliability. The majority of the effort in Phase I was devoted to the A designs.

  9. Engineering Application Comparison about Energy Saving in HVAC System Between the Rotary wheel Energy Exchange and the Plate Type Energy Exchange%转轮与板式热交换器在空调系统节能中的应用比较

    Institute of Scientific and Technical Information of China (English)

    王兴; 黄敏

    2011-01-01

    本文通过对空调系统新风节能中占主导地位的转轮与板式热交换器在结构、原理、热回收效率、成本及使用特点上的比较分析,说明了这两种热交换器应用当中的一般规律,对转轮与板式热交换器在空调系统中的应用提出了一些建议。%In this paper,the author makes the application comparison between the rotary wheel energy exchange and plate type energy exchange in configuration、working principle、energy recovery efficiency 、application cost and working specialty,and summarize the basic working rule of these two type energy recovery device.At last the author give some suggestion in the engineering application of the rotary wheel energy exchange and plate type energy exchange.

  10. Basic treatment of onset conditions and transient effects in thermoacoustic Stirling engines

    Science.gov (United States)

    de Waele, A. T. A. M.

    2009-09-01

    This paper treats the basics of thermoacoustic engines. The set of differential equations, which describes the dynamics of the individual components, is condensed in a single high-order differential equation which determines the time dependence of all dynamic variables. From this relation analytical expressions are obtained for the damping coefficient, the oscillation frequency, and the onset temperature that allows stable oscillations. Also transient effects are discussed based on numerical integration of the dynamic equations.

  11. Design of a Transverse-flux Permanent-magnet Linear Generator and Controller for Use with a Free-piston Stirling Engine

    Institute of Scientific and Technical Information of China (English)

    ZHENG Jigui; HUANG Yuping; WU Hongxing; ZHENG Ping

    2016-01-01

    Transverse-flux with high efficiency has been applied in Stirling engine and permanent magnet synchronous linear generator system, however it is restricted for large application because of low and complex process. A novel type of cylindrical, non-overlapping, transverse-flux, and permanent-magnet linear motor(TFPLM) is investigated, furthermore, a high power factor and less process complexity structure research is developed. The impact of magnetic leakage factor on power factor is discussed, by using the Finite Element Analysis(FEA) model of stirling engine and TFPLM, an optimization method for electro-magnetic design of TFPLM is proposed based on magnetic leakage factor. The relation between power factor and structure parameter is investigated, and a structure parameter optimization method is proposed taking power factor maximum as a goal. At last, the test bench is founded, starting experimental and generating experimental are performed, and a good agreement of simulation and experimental is achieved. The power factor is improved and the process complexity is decreased. This research provides the instruction to design high-power factor permanent-magnet linear generator.

  12. Design of a transverse-flux permanent-magnet linear generator and controller for use with a free-piston stirling engine

    Science.gov (United States)

    Zheng, Jigui; Huang, Yuping; Wu, Hongxing; Zheng, Ping

    2016-07-01

    Transverse-flux with high efficiency has been applied in Stirling engine and permanent magnet synchronous linear generator system, however it is restricted for large application because of low and complex process. A novel type of cylindrical, non-overlapping, transverse-flux, and permanent-magnet linear motor(TFPLM) is investigated, furthermore, a high power factor and less process complexity structure research is developed. The impact of magnetic leakage factor on power factor is discussed, by using the Finite Element Analysis(FEA) model of stirling engine and TFPLM, an optimization method for electro-magnetic design of TFPLM is proposed based on magnetic leakage factor. The relation between power factor and structure parameter is investigated, and a structure parameter optimization method is proposed taking power factor maximum as a goal. At last, the test bench is founded, starting experimental and generating experimental are performed, and a good agreement of simulation and experimental is achieved. The power factor is improved and the process complexity is decreased. This research provides the instruction to design high-power factor permanent-magnet linear generator.

  13. Development of a LPP CGR combustion system with ultra-low emissions for a SOLO 161 Stirling engine based micro-CHP unit

    Energy Technology Data Exchange (ETDEWEB)

    Paalsson, Magnus [Lund Univ. (Sweden). Dept. of Heat and Power Engineering

    2001-07-01

    During the last decade extensive research has been made at Lund University, Sweden, on a lean premix (prevaporize) combustion concept with burnt gas recirculation and a metallic flame holder. From this concept a new lean premixed natural gas combustion chamber with internal combustion gas recirculation (CGR) has been developed for the V160/SOLO 161 Stirling engines. This combustor has ultra-low emission levels, comparable to those of catalytic combustion. At the start of the current project the combustor was ready to be adapted for production, with expected market introduction in 2001. The Lund combustion chamber was modified to investigate the impact of air-fuel ratio and combustion gas recirculation rate on emissions and controllability of the combustion system, and on pressure losses in the combustion chamber. Different start-up strategies as well as different fuel-gas control valves were tried in order to find well-working control routines/parameters. The combustion chamber was redesigned using the gained knowledge, making it easy to manufacture while giving it maximum life expectancy and durability. The SOLO 161 Stirling engine's control system was adapted to the new combustion system. Emissions of the final combustion system were measured and found to be close to the design goal values. Combustor function and reliability has proved to be very good.

  14. Heat transfer in tube bundles - as the critical link - by taking over energy fro biomass furnace to drive a stirling engine

    Energy Technology Data Exchange (ETDEWEB)

    Bes, T. [Szczecin Univ. of Technology (Poland). Dept. of Heat Engineering

    2006-07-01

    The system consisting of a biomass-furnace and a Stirling engine as an electricity generator is analysed from thermal point of view. The analysis is focused on a selected element of such a system i.e. a block with a bundle of tubes located in the furnace in the way of combustion gases. The working fluid circulates between the cylinders of the Stirling engine and inside the tube bundle, in which the gas flow is arranged as a co-directed cross-flow. For any given number of tubes in the bundle other ways of switching between tubes are also analysed. The tube bundles have also been examined for various proportions of mass flows in the apparatus. Moreover a whole spectrum of NTU is taken into account. Due to low combustion heat of biomass the temperature of combustion gas is relatively low (below {proportional_to}800oC). This is not sufficient to achieve adequate thermal efficiency, which is significantly below the efficiency of a conventional power plant. Therefore by improving the conditions for heat transfer within the tube bundle it is possible to increase the gas temperature as much as possible and also efficiency of the system. Thus, proper operation of the bundle is the critical element for the examined device. (orig.)

  15. The effect of the overall heat transfer coefficient variation on the optimal distribution of the heat transfer surface conductance or area in a Stirling engine

    Energy Technology Data Exchange (ETDEWEB)

    Costea, M. [Polytechnic University of Bucharest (Romania). Dept. of Applied Thermodynamics; Feidt, M. [University H. Poincare of Nancy (France)

    1998-12-31

    This study aims to assess for a Stirling engine the influence of the overall heat transfer coefficient variation on the optimum state and on the optimum distribution of the heat transfer surface conductance or area among the machine heat exchangers. The analysis is based on a Stirling machine optimization method, previously elaborated, which is now applied to a cycle with total heat regeneration. The method was conceived for an irreversible cycle with heat transfer across temperature differences at the source and the sink, and heat losses between the hot-end and the cold-end of the engine. Source and sink of finite thermal capacity as well as thermostats are considered. The new approach considers a linear variation of the overall heat transfer coefficient of the machine heat exchangers with respect to the local temperature difference. A comparison of the optimum state and the optimum distribution of the heat transfer surface conductance or area among the heater and the cooler is made for several cases. (author)

  16. Final report on 9 kW Stirling Engine for biogas and natural gas

    DEFF Research Database (Denmark)

    Carlsen, Henrik; Bovin, Jonas Kabell

    2001-01-01

    eliminates guiding forces on the pistons and the need for X-heads. Grease lubricated needle and ball bearings are used in the kinematic crank mechanism in order to avoid oil penetrating into the cylinder volumes. Working gas is Helium at 8 MPa mean pressure. The engine produce up to 11 kW of shaft power...... corresponding to approximately 10 kW of electric power. The design target was an efficiency of 26 % based on lower heat content of the gas to electricity, but only 24% were obtained. The decrease of efficiency is caused by inhomogeneous capacity flows in the air preheater and insufficient insulation...

  17. High-power stirling-type pulse tube cooler for power engineering applications of high temperature superconductivity; Hochleistungspulsrohrkuehler vom Stirling-Typ fuer energietechnische Anwendungen der Hochtemperatursupraleitung

    Energy Technology Data Exchange (ETDEWEB)

    Dietrich, Marc

    2015-12-15

    For the cooling of high temperature superconducting 4 MVA machines (motors or generators), a single-stage Stirling-type pulse-tube cryocooler was built. The cooling power, which the cryocooler was aimed for, is 80 - 100 W at 30 K with an electrical input power of 10 kW (8 kW pV-power). The advantages of this cooler type compared to traditional cooling concepts are an increased reliability and long maintenance intervals. While single-stage Stirling-type pulse-tube cryocoolers for the temperature range of liquid nitrogen (77 K) are already commercially available, there exist currently no commercial systems for the temperature range near 30 K, which is the important range for applications of high-temperature superconductivity. The experimental setup consisted of a 10 kW linear compressor, type 2S297W, from CFIC Inc. which was used as the pressure wave generator. The compressor was operated by a Micromaster 440 frequency inverter from Siemens, which was controlled by a custom-made computer program. The cold head was made in inline configuration, in order to avoid deflection losses. During the first cool-downs tests a temperature inhomogeneity occurred in the regenerator at low temperature and high pV-power, which was attributed to a constant mass flow (circular dc-flow) within the regenerator. This firstly observed dc-flow, generates a net energy flow from the hot end to the cold end of the regenerator, which reduces the cooling capacity considerably and hence the minimum attainable temperature is severely increased. For the design and optimization of the cold-head, a cryocooler model was initially created using the commercial simulation software Sage, which did not include the regenerator inhomogeneity seen in the experiment. For the modeling of the observed streaming inhomogeneity caused by the dc-flow, the regenerator was replaced by two identical parallel regenerators with variable transverse thermal coupling. In the inhomogeneous case (without dc-flow) the

  18. Advanced Stirling Radioisotope Generator Life Certification Plan

    Science.gov (United States)

    Rusick, Jeffrey J.; Zampino, Edward

    2013-01-01

    An Advanced Stirling Radioisotope Generator (ASRG) power supply is being developed by the Department of Energy (DOE) in partnership with NASA for potential future deep space science missions. Unlike previous radioisotope power supplies for space exploration, such as the passive MMRTG used recently on the Mars Curiosity rover, the ASRG is an active dynamic power supply with moving Stirling engine mechanical components. Due to the long life requirement of 17 years and the dynamic nature of the Stirling engine, the ASRG project faced some unique challenges trying to establish full confidence that the power supply will function reliably over the mission life. These unique challenges resulted in the development of an overall life certification plan that emphasizes long-term Stirling engine test and inspection when analysis is not practical. The ASRG life certification plan developed is described.

  19. Update on the advanced Stirling conversion system project for 25 kW dish Stirling applications

    Science.gov (United States)

    Shaltens, Richard K.; Schreiber, Jeffrey G.; Wong, Wayne A.

    1992-01-01

    Technology development for Stirling convertors directed toward a dynamic power source for space applications is examined. The free-piston Stirling engine has the potential for both solar and nuclear space power applications. Two parallel design directions feature a solar receiver/liquid metal heat transport system, and a free-piston Stirling convertor which incorporates a linear alternator to directly provide the electrical output of about 25 kW to a utility grid. The Cummins Engine Company (CEC) free-piston Stirling convertor incorporates a linear alternator along with hydrodynamic gas bearings to provide noncontacting, wear-free support to the pistons. The Stirling Technology Company design incorporates linear alternator technology with flexures that provide noncontacting support while also supplying much of the spring stiffness needed to obtain proper resonance.

  20. Dish Stirling solar receiver program

    Science.gov (United States)

    Haglund, R. A.

    1980-01-01

    A technology demonstration of a Dish Stirling solar thermal electric system can be accomplished earlier and at a much lower cost than previous planning had indicated by employing technical solutions that allow already existing hardware, with minimum modifications, to be integrated into a total system with a minimum of development. The DSSR operates with a modified United Stirling p-40 engine/alternator and the JPL Test Bed Concentrator as a completely integrated solar thermal electric system having a design output of 25 kWe. The system is augmented by fossil fuel combustion which ensures a continuous electrical output under all environmental conditions. Technical and economic studies by government and industry in the United States and abroad identify the Dish Stirling solar electric system as the most appropriate, efficient and economical method for conversion of solar energy to electricity in applications when the electrical demand is 10 MWe and less.

  1. High performance solar Stirling system

    Science.gov (United States)

    Stearns, J. W.; Haglund, R.

    1981-01-01

    A full-scale Dish-Stirling system experiment, at a power level of 25 kWe, has been tested during 1981 on the Test Bed Concentrator No. 2 at the Parabolic Dish Test Site, Edwards, CA. Test components, designed and developed primarily by industrial contractors for the Department of Energy, include an advanced Stirling engine driving an induction alternator, a directly-coupled solar receiver with a natural gas combustor for hybrid operation and a breadboard control system based on a programmable controller and standard utility substation components. The experiment demonstrated practicality of the solar Stirling application and high system performance into a utility grid. This paper describes the design and its functions, and the test results obtained.

  2. High performance solar Stirling system

    Science.gov (United States)

    Stearns, J. W.; Haglund, R.

    1981-12-01

    A full-scale Dish-Stirling system experiment, at a power level of 25 kWe, has been tested during 1981 on the Test Bed Concentrator No. 2 at the Parabolic Dish Test Site, Edwards, CA. Test components, designed and developed primarily by industrial contractors for the Department of Energy, include an advanced Stirling engine driving an induction alternator, a directly-coupled solar receiver with a natural gas combustor for hybrid operation and a breadboard control system based on a programmable controller and standard utility substation components. The experiment demonstrated practicality of the solar Stirling application and high system performance into a utility grid. This paper describes the design and its functions, and the test results obtained.

  3. Feasibility Demonstration of a Multi-Cylinder Stirling Convertor with a Duplex Linear Alternator Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Stirling Technology Company (STC) proposes to integrate an existing Multi-Cylinder Free-Piston Stirling Engine (MPFPSE) with innovative compact linear alternators....

  4. Dynamic simulation of a beta-type Stirling engine with cam-drive mechanism via the combination of the thermodynamic and dynamic models

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Chin-Hsiang; Yu, Ying-Ju [Department of Aeronautics and Astronautics, National Cheng Kung University, No. 1, Ta-Shieh Road, Tainan, Taiwan (China)

    2011-02-15

    Dynamic simulation of a beta-type Stirling engine with cam-drive mechanism used in concentrating solar power system has been performed. A dynamic model of the mechanism is developed and then incorporated with the thermodynamic model so as to predict the transient behavior of the engine in the hot-start period. In this study, the engine is started from an initial rotational speed. The torques exerted by the flywheel of the engine at any time instant can be calculated by the dynamic model as long as the gas pressures in the chambers, the mass inertia, the friction force, and the external load have been evaluated. The instantaneous rotation speed of the engine is then determined by integration of the equation of rotational motion with respect to time, which in return affects the instantaneous variations in pressure and other thermodynamic properties of the gas inside the chambers. Therefore, the transient variations in gas properties inside the engine chambers and the dynamic behavior of the engine mechanism should be handled simultaneously via the coupling of the thermodynamic and dynamic models. An extensive parametric study of the effects of different operating and geometrical parameters has been performed, and results regarding the effects of mass moment of inertia of the flywheel, initial rotational speed, initial charged pressure, heat source temperature, phase angle, gap size, displacer length, and piston stroke on the engine transient behavior are investigated. (author)

  5. Serial production of micro KWK with Stirling engine has started. German distribution network in construction - public utilities are one of the crowds; Serienfertigung Mikro-KWK mit Stirlingmotor gestartet. Deutsches Vertriebsnetz im Aufbau - EVUs mit von der Partie

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    2009-06-15

    Small station in Zuidbroek at Groningen in the Dutch Westfriesland: In front of customers, suppliers and co-workers, the local company MagicBoiler presented the first serially manufactured Whispergen aggregate. It is a micro combined heat and power station with Stirling engine and an electrical performance of 1 kW as well as a thermal performance of 8 kW.

  6. Numerical thermal analyses of heat exchangers for the stirling engine application

    Science.gov (United States)

    Kannapareddy, Mohan Raj

    1995-01-01

    The Regenerator, Cooler and Heater for the NASA Space Power Research Engine (SPRE) have been analyzed in detail for laminar, incompressible and oscillatory flow conditions. Each component has been analyzed independently and in detail with the regenerator being modeled as two-parallel-plates channel with a solid wall. The ends of the channel are exposed to two reservoir maintained at different temperature thus providing an axial temperature gradient along the channel. The cooler and heater components have been modeled as circular pipes with isothermal walls. Two different types of thermal boundary conditions have been investigated for the cooler and heater, namely, symmetric and asymmetric temperature inflow. In symmetric temperature inflow the flow enters the channel with the same temperature in throughout the velocity cycle whereas, in asymmetric temperature inflow the flow enters with a different temperature in each half cycle. The study was conducted over a wide range of Maximum Reynolds number (RE(max) varying from 75 to 60000, Valensi number (Va) from 2.5 to 800, and relative amplitude of fluid displacement (A(sub r) from 0.357 to 1.34. A two dimensional Finite volume method based on the SIMPLE algorithm was used to solve the governing partial differential equations. Post processing programs were developed to effectively describe the heat transfer mechanism under oscillatory flows. The computer code was validated by comparing with existing analytical solutions for oscillating flows. The thermal field have been studied with the help of temperature contour and three dimensional plots. The instantaneous friction factor, wall heat flux and heat transfer coefficient have been examined. It has been concluded that in general, the frictional factor and heat transfer coefficient are higher under oscillatory flow conditions when the Valensi number is high. Also, the thermal efficiency decreases for lower A(r) values. Further, the usual steady state definition for the

  7. Idealization of The Real Stirling Cycle

    Directory of Open Access Journals (Sweden)

    Červenka Libor

    2016-12-01

    Full Text Available The paper presents a potential idealization of the real Stirling cycle. This idealization is performed by modifying the piston movement corresponding to the ideal Stirling cycle. The focus is on the cycle thermodynamics with respect to the indicated efficiency and indicated power. A detailed 1-D simulation model of a Stirling engine is used as a tool for this assessment. The model includes real non-zero volumes of heater, regenerator, cooler and connecting pipe. The model is created in the GT Power commercial simulation software.

  8. Performance Analysis of a Reciprocating Piston Expander and a Plate Type Exhaust Gas Recirculation Boiler in a Water-Based Rankine Cycle for Heat Recovery from a Heavy Duty Diesel Engine

    OpenAIRE

    Gunnar Latz; Olof Erlandsson; Thomas Skåre; Arnaud Contet; Sven Andersson; Karin Munch

    2016-01-01

    The exhaust gas in an internal combustion engine provides favorable conditions for a waste-heat recovery (WHR) system. The highest potential is achieved by the Rankine cycle as a heat recovery technology. There are only few experimental studies that investigate full-scale systems using water-based working fluids and their effects on the performance and operation of a Rankine cycle heat recovery system. This paper discusses experimental results and practical challenges with a WHR system when u...

  9. Analysis and design of a dish/Stirling system for solar electric generation with a 2.7 kW air-cooled engine; Analisis y diseno de un sistema de generacion electrica termosolar con concentrador de disco parabolico y motor Stirling de 2.7 kW enfriado por aire

    Energy Technology Data Exchange (ETDEWEB)

    Beltran-Chacon, R.; Velazquez-Limon, N. [Universidad Autonoma de Baja California, Baja California (Mexico)]. E-mails: rbeltran1@uabc.edu.mx; nicolas.velazquez@uabc.edu.mx; Sauceda-Carvajal, D. [Universidad Politecnica de Baja California, Baja California (Mexico)]. E-mail: dsaucedac@upbc.edu.mx

    2012-01-15

    This paper presents a mathematical modeling, simulation and design of a solar power system of a parabolic dish with an air-cooled Stirling engine of 2.7 kW. The model used for the solar concentrator, the cavity and the Stirling engine were successfully validated against experimental data. Based on a parametric study, the design of the components of the engine is carried out. The study shows that as system capacity increases, the overall efficiency is limited by the power required by the fan, since the design of the cooler needs greater amounts of heat removal by increasing the air flow without affecting the internal conditions of the process (mass flow of working gas and internal dimensions of the same). The system was optimized and achieves an overall efficiency of solar to electric energy conversion of 26.7%. This study shows that the use of an air-cooled Stirling engine is potentially attractive for power generation at low capacities. [Spanish] Este trabajo presenta un modelado matematico, la simulacion y diseno de un sistema de generacion electrica termosolar de disco parabolico con motor Stirling de 2.7 kW enfriado directamente por aire. El modelo utilizado para el concentrador, la cavidad y el motor Stirling, fueron validados satisfactoriamente con datos experimentales. Con base en un estudio parametrico se realizo el dimensionamiento de los componentes del motor. El estudio realizado muestra que conforme se incrementa la capacidad del sistema, la eficiencia global se ve limitada por la potencia requerida por el ventilador, dado que el diseno del enfriador necesita retirar mayores cantidades de calor aumentando el flujo de aire, sin afectar las condiciones internas del proceso (flujo masico del gas de trabajo y dimensiones internas del mismo). El sistema fue optimizado obteniendo una eficiencia global de conversion de energia solar a electrica de 26.7%. Este estudio muestra que el uso de un motor Stirling enfriado directamente por aire es potencialmente

  10. Performance Analysis of a Reciprocating Piston Expander and a Plate Type Exhaust Gas Recirculation Boiler in a Water-Based Rankine Cycle for Heat Recovery from a Heavy Duty Diesel Engine

    Directory of Open Access Journals (Sweden)

    Gunnar Latz

    2016-06-01

    Full Text Available The exhaust gas in an internal combustion engine provides favorable conditions for a waste-heat recovery (WHR system. The highest potential is achieved by the Rankine cycle as a heat recovery technology. There are only few experimental studies that investigate full-scale systems using water-based working fluids and their effects on the performance and operation of a Rankine cycle heat recovery system. This paper discusses experimental results and practical challenges with a WHR system when utilizing heat from the exhaust gas recirculation system of a truck engine. The results showed that the boiler’s pinch point necessitated trade-offs between maintaining adequate boiling pressure while achieving acceptable cooling of the EGR and superheating of the water. The expander used in the system had a geometric compression ratio of 21 together with a steam outlet timing that caused high re-compression. Inlet pressures of up to 30 bar were therefore required for a stable expander power output. Such high pressures increased the pump power, and reduced the EGR cooling in the boiler because of pinch-point effects. Simulations indicated that reducing the expander’s compression ratio from 21 to 13 would allow 30% lower steam supply pressures without adversely affecting the expander’s power output.

  11. Creep-rupture behavior of candidate Stirling engine alloys after long-term aging at 760 deg C in low-pressure hydrogen

    Science.gov (United States)

    Titran, R. H.

    1984-01-01

    Nine candidate Stirling automotive engine alloys were aged at 760 C for 3500 hr in low pressure hydrogen or argon to determine the resulting effects on mechanical behavior. Candidate heater head tube alloys were CG-27, W545, 12RN72, INCONEL-718, and HS-188 while candidate cast cylinder-regenerator housing alloys were SA-F11, CRM-6D, XF-818, and HS-31. Aging per se is detrimental to the creep rupture and tensile strengths of the iron base alloys. The presence of hydrogen does not significantly contribute to strength degradation. Based percent highway driving cycle; CG-27 has adequate 3500 hr - 870 C creep rupture strength and SA-Fll, CRM-6D, and XF-818 have adequate 3500 hr - 775 C creep rupture strength.

  12. Investigation of a 7-pole/6-slot Halbach-magnetized permanent-magnet linear alternator used for free-piston stirling engines

    Science.gov (United States)

    Zheng, Ping; Tong, Chengde; Zhao, Jing; Yu, Bin; Li, Lin; Bai, Jingang; Zhang, Lu

    2012-04-01

    This paper investigates a 7-pole/6-slot Halbach-magnetized permanent-magnet linear alternator used for free piston Stirling engines (FPSEs). Taking the advantages of Halbach array, a 1 kW prototype alternator is designed. Considering the rms value of electromotive force (EMF) and harmonic distortion, the optimal length ratio of the axial- and radial-magnetized permanent magnets and thicknesses of the permanent magnets are optimized by 2D finite element method. The alternator detent force, which is an important factor for smooth operation of FPSEs, is studied by optimizing slot tip and end tooth. The load and thermal performances of the final design are simulated. A prototype alternator was designed, built and tested. Experimental data indicated satisfactory design.

  13. Study on Cooling Performance of Stirling Cycle Machine wiht New Regenerator Matrix

    Science.gov (United States)

    Kagawa, Noboru; Kitahama, Dai; Takeuchi, Takuro; Matsuguchi, Atsushi; Tsuruno, Seizo

    In order to develop Stirling cycle machines with high efficiency, suitable regenerator for each machine must be designed. To realize the flexibility of design and to improve the performance of regenerator, a new matrix, mesh sheet was proposed. It is a plate type with electrically etched holes. Each small hole is connected with neighboring holes by grooves on the plate. The performance test of cooling mode was carried out with a 3-kW Stirling engine in order to measure its cooling performance. Three types of the mesh sheet were developed and two of them were respectively stacked to install in the machine. Also, the pressure and regenerator losses were compared with conventional stacked wire gauzes and the mesh sheets. From the results, it was clarified that the performance of the cooling mode was improved about 5 to 40 % by the mesh sheet. In this paper, the relation between the dimensions of the mesh sheet, the pressure and regenerator losses were also clarified.

  14. Solar-parabolic dish-Stirling-engine-system module. Task 1: Topical report, market assessment/conceptual design

    Energy Technology Data Exchange (ETDEWEB)

    1982-11-30

    The major activities reported are: a market study to identify an early market for a dish-Stirling module and assess its commercial potential; preparation of a conceptual system and subsystem design to address this market; and preparation of an early sales implementation plan. A study of the reliability of protection from the effects of walk-off, wherein the sun's image leaves the receiver if the dish is not tracking, is appended, along with an optical analysis and structural analysis. Also appended are the relationship between PURPA and solar thermal energy development and electric utility pricing rationale. (LEW)

  15. Solar-parabolic dish-Stirling-engine-system module. Task 1: Topical report, market assessment/conceptual design

    Energy Technology Data Exchange (ETDEWEB)

    1982-11-30

    The major activities reported are: a market study to identify an early market for a dish-Stirling module and assess its commercial potential; preparation of a conceptual system and subsystem design to address this market; and preparation of an early sales implementation plan. A study of the reliability of protection from the effects of walk-off, wherein the sun's image leaves the receiver if the dish is not tracking, is appended, along with an optical analysis and structural analysis. Also appended are the relationship between PURPA and solar thermal energy development and electric utility pricing rationale. (LEW)

  16. Simulation, construction and testing of a two-cylinder solar Stirling engine powered by a flat-plate solar collector without regenerator

    Energy Technology Data Exchange (ETDEWEB)

    Tavakolpour, Ali Reza; Zomorodian, Ali [Department of Mechanics of Farm Machinery Engineering, Shiraz University, Shiraz (Iran); Akbar Golneshan, Ali [Department of Mechanical Engineering, Shiraz University, Shiraz (Iran)

    2008-01-15

    In this research, a gamma-type, low-temperature differential (LTD) solar Stirling engine with two cylinders was modeled, constructed and primarily tested. A flat-plate solar collector was employed as an in-built heat source, thus the system design was based on a temperature difference of 80{sup o}C. The principles of thermodynamics as well as Schmidt theory were adapted to use for modeling the engine. To simulate the system some computer programs were written to analyze the models and the optimized parameters of the engine design were determined. The optimized compression ratio was computed to be 12.5 for solar application according to the mean collector temperature of 100{sup o}C and sink temperature of 20{sup o}C. The corresponding theoretical efficiency of the engine for the mentioned designed parameters was calculated to be 0.012 for zero regenerator efficiency. Proposed engine dimensions are as follows: power piston stroke 0.044 m, power piston diameter 0.13 m, displacer stroke 0.055 m and the displacer diameter 0.41 m. Finally, the engine was tested. The results indicated that at mean collector temperature of 110{sup o}C and sink temperature of 25{sup o}C, the engine produced a maximum brake power of 0.27 W at 14 rpm. The mean engine speed was about 30 rpm at solar radiation intensity of 900 W/m{sup 2} and without load. The indicated power was computed to be 1.2 W at 30 rpm. (author)

  17. Analytical model for Stirling cycle machine design

    Energy Technology Data Exchange (ETDEWEB)

    Formosa, F. [Laboratoire SYMME, Universite de Savoie, BP 80439, 74944 Annecy le Vieux Cedex (France); Despesse, G. [Laboratoire Capteurs Actionneurs et Recuperation d' Energie, CEA-LETI-MINATEC, Grenoble (France)

    2010-10-15

    In order to study further the promising free piston Stirling engine architecture, there is a need of an analytical thermodynamic model which could be used in a dynamical analysis for preliminary design. To aim at more realistic values, the models have to take into account the heat losses and irreversibilities on the engine. An analytical model which encompasses the critical flaws of the regenerator and furthermore the heat exchangers effectivenesses has been developed. This model has been validated using the whole range of the experimental data available from the General Motor GPU-3 Stirling engine prototype. The effects of the technological and operating parameters on Stirling engine performance have been investigated. In addition to the regenerator influence, the effect of the cooler effectiveness is underlined. (author)

  18. Analytical model for Stirling cycle machine design

    CERN Document Server

    Formosa, Fabien; 10.1016/j.enconman.2010.02.010

    2013-01-01

    In order to study further the promising free piston Stirling engine architecture, there is a need of an analytical thermodynamic model which could be used in a dynamical analysis for preliminary design. To aim at more realistic values, the models have to take into account the heat losses and irreversibilities on the engine. An analytical model which encompasses the critical flaws of the regenerator and furthermore the heat exchangers effectivenesses has been developed. This model has been validated using the whole range of the experimental data available from the General Motor GPU-3 Stirling engine prototype. The effects of the technological and operating parameters on Stirling engine performance have been investigated. In addition to the regenerator influence, the effect of the cooler effectiveness is underlined.

  19. Influence of the compression ratio on Stirling and Otto cycle

    Energy Technology Data Exchange (ETDEWEB)

    Koscak-Kolin, S.; Golub, M.; Kolin, I. [Zagreb Univ. (Croatia); Naso, V.; Lucentini, M. [Universita degli Studi La Sapienza, Rome (Italy)

    2000-07-01

    The Stirling engine (1815) is more than half a century older from the Otto engine (1867). Nevertheless, in spite of the considerably longer development period, compression ratio of Stirling engines remains nearly the same as it was in its very beginning. As a contrast to this, compression ratio of Otto engines progressively increases, always reaching higher and higher power. Finally, modern Otto engines are considerably stronger than contemporary Stirling engines of the same size. However, by means of thermodynamical analysis of the old indicator diagrams, the rate of growth could be mathematically expressed in the shape of polytropic equation. In such a way the proper direction for a significant improvement of the Stirling engine could be recognized. (orig.)

  20. Commercialization of dish-Stirling solar terrestrial systems

    Science.gov (United States)

    Ross, Brad; Penswick, Barry; White, Maury; Cooper, Martin; Farbman, Gerald

    1990-01-01

    The requirements for dish-Stirling commercialization are described. The requirements for practical terrestrial power systems, both technical and economic, are described. Solar energy availability, with seasonal and regional variations, is discussed. The advantages and disadvantages of hybrid operation are listed. The two systems described use either a 25-kW free-piston Stirling hydraulic engine or a 5-kW kinematic Stirling engine. Both engines feature long-life characteristics that result from the use of welded metal bellows as hermetic seals between the working gas and the crankcase fluid. The advantages of the systems, the state of the technology, and the challenges that remain are discussed. Technology transfer between solar terrestrial Stirling applications and other Stirling applications is predicted to be important and synergistic.

  1. Commercialization of dish-Stirling solar terrestrial systems

    Science.gov (United States)

    Ross, Brad; Penswick, Barry; White, Maury; Cooper, Martin; Farbman, Gerald

    1990-01-01

    The requirements for dish-Stirling commercialization are described. The requirements for practical terrestrial power systems, both technical and economic, are described. Solar energy availability, with seasonal and regional variations, is discussed. The advantages and disadvantages of hybrid operation are listed. The two systems described use either a 25-kW free-piston Stirling hydraulic engine or a 5-kW kinematic Stirling engine. Both engines feature long-life characteristics that result from the use of welded metal bellows as hermetic seals between the working gas and the crankcase fluid. The advantages of the systems, the state of the technology, and the challenges that remain are discussed. Technology transfer between solar terrestrial Stirling applications and other Stirling applications is predicted to be important and synergistic.

  2. Further development and field tests of a mini-cogeneration plant equipped with a stirling engine; Weiterentwicklung und Felderprobung eines Kleinst-BHKW auf Basis eines Stirlingmotor. Abschlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Baumueller, A.

    2001-06-01

    The results of 90,000 hours of operation achieved in the project with 16 small dual purpose power plants (2-9 kWe) with stirling motors are summarized here. The construction is described, as well as the integration at the locations of operation and the problems which had to be solved. The further development during the test phase and the results are shown. During operation, after overcoming the initial problems, a good reliability and characteristic values were achieved. After longer operational periods, there were still a number of individual problems which had to be solved, some of them needing considerable time. The development of a burner with low hazardous substances used for the second phase of the project needed significantly more time than expected. Thanks to a prolongation of the granting of funds by two years, the project could be finalized successfully. The project objective of improving rentability, maintenance efforts and the emission of hazardous substances and to become able to judge further potential of Stirling- dual purpose power plant techniques, was achieved. It is possible to lengthen the maintenance intervals and to reduce the emission of hazardous substances by using Stirling engines in small dual purpose power plant modules instead of gas Otto engines. Inn further steps it will be possible to use biogenic fuels like wood pellets to generate heat and power. The machine developed in this project will be produced in a pre-series of 40 units and sold in order to set up a sale and service network. [German] Die Ergebnisse von rund 90.000 Betriebsstunden, die mit 16 Kleinst-BHKW (2-9 kW{sub e}) mit Stirlingmotor im Vorhaben erreicht wurden, werden hier zusammengefasst. Es wird die erarbeitete Konstruktion beschrieben, die Einbindung an den Betriebsorten und die Probleme, die dabei zu loesen waren. Die Weiterentwicklung im Verlauf der Erprobung und die Ergebnisse werden aufgezeigt. Im Betrieb wurde nach Ueberwindung von Anfangsproblemen eine gute

  3. Solar Stirling receiver alternatives for the terrestrial solar application

    Science.gov (United States)

    Stearns, J.

    1986-01-01

    Concept studies have been completed for four dish-Stirling receivers, i.e., solar only and thermal storage receiver, each of which is either directly coupled or indirectly (heat pipe) coupled to the Stirling engine. The results of these studies are to be applied to systems benefit/cost analysis to determine the most desirable development approach.

  4. System design and performance prediction of a free-piston Stirling engine/magnetic coupling/compressor assembly in a gas residential heat pump

    Science.gov (United States)

    Chen, G.; Beale, W. T.

    Based on the previous evaluation of a magnetic coupling and the described system-design targets, a gas fired free piston Stirling engine/magnetic coupling/compressor (FPSE/MC/C) assembly as a power module for a residential heat pump application was designed and analyzed. A porous combustor/FPSE/magnetic coupling/variable gas control spring/reciprocating compressor assembly was the design selected. Based on the system characteristics, design efforts are described on the following issues: (1) design of a combustor allowing low pressure of natural gas supply; (2) the means to achieve engine power-load matching; (3) the method to maintain the assembly as a resonant system tuning over a wide range of operating conditions; (4) the design of an engine/coupling structure to minimize the magnet mass without sacrificing its mechanical properties; and (5) compressor load capacity modulation. The system analysis and the system performance, which is analytically predicted and described, indicate all the system design goals can be met leading to a strong recommendation for further development.

  5. Proposed improvements to a model for characterizing the electrical and thermal energy performance of stirling engine micro-cogeneration devices based upon experimental observations

    Energy Technology Data Exchange (ETDEWEB)

    Lombardi, K. [CanmetENERGY, 1 Haanel Drive, Ottawa, Ont. (Canada); Ugursal, V.I. [Dalhousie University, Halifax, NS (Canada); Beausoleil-Morrison, I. [Carleton University, 1125 Colonel By Drive, Ottawa, Ont. (Canada)

    2010-10-15

    Stirling engines (SE) are a market-ready technology suitable for residential cogeneration of heat and electricity to alleviate the increasing demand on central power grids. Advantages of this external combustion engine include high cogeneration efficiency, fuel flexibility, low noise and vibration, and low emissions. To explore and assess the feasibility of using SE based cogeneration systems in the residential sector, there is a need for an accurate and practical simulation model that can be used to conduct sensitivity and what-if analyses. A simulation model for SE based residential scale micro-cogeneration systems was recently developed; however the model is impractical due to its functional form and data requirements. Furthermore, the available experimental data lack adequate diversity to assess the model's suitability. In this paper, first the existing model is briefly presented, followed by a review of the design and implementation of a series of experiments conducted to study the performance and behaviour of the SE system and to develop extensive, and hitherto unavailable, operational data. The empirical observations are contrasted with the functional form of the existing simulation model, and improvements to the structure of the model are proposed based upon these observations. (author)

  6. Analytical Solutions and Optimization of the Exo-Irreversible Schmidt Cycle with Imperfect Regeneration for the 3 Classical Types of Stirling Engine Solutions analytiques et optimisation du cycle de Schmidt irréversible à régénération imparfaite appliquées aux 3 types classiques de moteur Stirling

    Directory of Open Access Journals (Sweden)

    Rochelle P.

    2011-11-01

    Full Text Available The “old” Stirling engine is one of the most promising multi-heat source engines for the future. Simple and realistic basic models are useful to aid in optimizing a preliminary engine configuration. In addition to new proper analytical solutions for regeneration that dramatically reduce computing time, this study of the Schmidt-Stirling engine cycle is carried out from an engineer-friendly viewpoint introducing exo-irreversible heat transfers. The reference parameters are the technological or physical constraints: the maximum pressure, the maximum volume, the extreme wall temperatures and the overall thermal conductance, while the adjustable optimization variables are the volumetric compression ratio, the dead volume ratios, the volume phase-lag, the gas characteristics, the hot-to-cold conductance ratio and the regenerator efficiency. The new normalized analytical expressions for the operating characteristics of the engine: power, work, efficiency, mean pressure, maximum speed of revolution are derived, and some dimensionless and dimensional reference numbers are presented as well as power optimization examples with respect to non-dimensional speed, volume ratio and volume phase-lag angle.analytical solutions. Le “vieux” moteur Stirling est l’un des moteurs a sources multiples d’energie les plus prometteurs pour le futur. Des modeles elementaires simples et realistes sont utiles pour faciliter l’optimisation de configurations preliminaires du moteur. En plus de nouvelles solutions analytiques qui reduisent fortement le temps de calcul, cette etude du cycle moteur de Schmidt-Stirling modifie est entreprise avec le point de vue de l’ingenieur en introduisant les exo-irreversibilites dues aux transferts thermiques. Les parametres de reference sont des contraintes technologiques ou physiques : la pression maximum, le volume maximum, les temperatures de paroi extremes et la conductance totale, alors que les parametres d

  7. Status of the advanced Stirling conversion system project for 25 kW dish Stirling applications

    Science.gov (United States)

    Shaltens, Richard K.; Schreiber, Jeffrey G.

    1991-01-01

    Technology development for Stirling convertors directed toward a dynamic power source for space applications is discussed. Space power requirements include high reliability with very long life, low vibration, and high system efficiency. The free-piston Stirling engine has the potential for future high power space conversion systems, either nuclear or solar powered. Although these applications appear to be quite different, their requirements complement each other. The advanced Stirling conversion system (ASCS) project at NASA Lewis Research Center is described. Each system design features a solar receiver/liquid metal heat transport system and a free-piston Stirling convertor with a means to provide nominally 25 kW of electric power to utility grid while meeting the US Department of Energy (DOE) performance and long term cost goals. The design is compared with other ASCS designs.

  8. Dish/Stirling for Department of Defense applications final report

    Energy Technology Data Exchange (ETDEWEB)

    Diver, R.B.; Menicucci, D.F. [Sandia National Labs., Albuquerque, NM (United States). Energy and Environment Div.

    1997-03-01

    This report describes a Strategic Environmental Research and Development Program (SERDP) project to field a dish/Stirling system at a southwestern US military facility. This project entitled ``Dish/Stirling for DoD Applications`` was started in August 1993 and was completed in September 1996. The project`s objective was to assist military facilities to field and evaluate emerging environmentally sound and potentially economical dish/Stirling technology. Dish/Stirling technology has the potential to produce electricity at competitive costs while at the same time providing a secure and environmentally benign source of power. In accordance with the SERDP charter, this project leveraged a US Department of Energy (DOE) cost-shared project between Sandia National Laboratories and Cummins Power Generation, Inc. (CPG). CPG is a wholly owned subsidiary of Cummins Engine Company, a leading manufacturer of diesel engines. To accomplish this objective, the project called for the installation of a dish/Stirling system at a military facility to establish first-hand experience in the operation of a dish/Stirling system. To scope the potential DoD market for dish/Stirling technology and to identify the site for the demonstration, a survey of southwestern US military facilities was also conducted. This report describes the project history, the Cummins dish/Stirling system, results from the military market survey, and the field test results.

  9. Activity and accomplishments of dish/Stirling electric power system development

    Science.gov (United States)

    Livingston, F. R.

    1985-01-01

    The development of the solar parabolic-dish/Stirling-engine electricity generating plant known as the dish/Stirling electric power system is described. The dish/Stirling electric power system converts sunlight to electricity more efficiently than any known existing solar electric power system. The fabrication and characterization of the test bed concentrators that were used for Stirling module testing and of the development of parabolic dish concentrator No. 2, an advanced solar concentrator unit considered for use with the Stirling power conversion unit is discussed.

  10. Performance Investigation of Plate Type Heat Exchanger (A Case Study

    Directory of Open Access Journals (Sweden)

    Simarpreet Singh

    2014-04-01

    Full Text Available Heat exchanger is a thermodynamic system which is most commonly used in the process industry for exchanging heat energy between the fluids. flowing in the same or opposite direction. It is desired that effectiveness of heat exchanger should remain as large as possible. Heat exchanger's performance may be improved by the addition of fins or corrugations. These investigations include design of plate type heat exchanger, heat transfer enhancement, flow phenomenon and cleanliness factor. In process plants, this type of heat exchange is generally used for recovering heat content of exhaust steam. However, with the flow of fluid for a long period, fouling occurs on the plate surface. Therefore, it is required to investigate the effect of fouling, wherever the heat exchanger is installed. An extensive experimental investigation has been carried out under clean and dirty condition of the said plate type heat exchanger. Heat transfer and flow data were collected in experiment. From collected data heat transfer rate, overall heat transfer coefficient, fouling factor and cleanliness factor were evaluated. Based upon the cleanliness factor data, next date of cleanliness for plate type heat exchanger was predicted. It is felt that the outcome of the present research work may be quite useful for efficient operation of plate type heat exchanger installed in Process plants.

  11. Numerical model for predicting thermodynamic cycle and thermal efficiency of a beta-type Stirling engine with rhombic-drive mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Chin-Hsiang; Yu, Ying-Ju [Department of Aeronautics and Astronautics, National Cheng Kung University, No. 1, Ta-Shieh Road, Tainan 70101, Taiwan (China)

    2010-11-15

    This study is aimed at development of a numerical model for a beta-type Stirling engine with rhombic-drive mechanism. By taking into account the non-isothermal effects, the effectiveness of the regenerative channel, and the thermal resistance of the heating head, the energy equations for the control volumes in the expansion chamber, the compression chamber, and the regenerative channel can be derived and solved. Meanwhile, a fully developed flow velocity profile in the regenerative channel, in terms of the reciprocating velocity of the displacer and the instantaneous pressure difference between the expansion and the compression chambers, is derived for calculation of the mass flow rate through the regenerative channel. In this manner, the internal irreversibility caused by pressure difference in the two chambers and the viscous shear effects due to the motion of the reciprocating displacer on the fluid flow in the regenerative channel gap are included. Periodic variation of pressures, volumes, temperatures, masses, and heat transfers in the expansion and the compression chambers are predicted. A parametric study of the dependence of the power output and thermal efficiency on the geometrical and physical parameters, involving regenerative gap, distance between two gears, offset distance from the crank to the center of gear, and the heat source temperature, has been performed. (author)

  12. Performance of the Southern California Edison Company Stirling dish

    Energy Technology Data Exchange (ETDEWEB)

    Lopez, C.W. [Southern California Edison Co., Rosemead, CA (United States); Stone, K.W. [Mako Enterprises, Huntington Beach, CA (United States)

    1993-10-01

    McDonnell Douglas Astronautics Company (MDAC) and United Stirling AB of Sweden (USAB) formed a joint venture in 1982 to develop and produce a Stirling dish solar generating system. In this report, the six year development and testing program continued by the Southern California Edison Company (SCE) is described. Each Stirling dish module consists of a sun tracking dish concentrator developed by the MDAC and a Stirling engine driven power conversion unit (PCU) developed by USAB. The Stirling dish system demonstrated twice the peak and daily solar-to-electric conversion efficiency of any other system then under development. This system continues to set the performance standard for solar to electric systems being developed in the early 1990`s. Test data are presented and used to estimate the performance of a commercial system.

  13. The tribology of PS212 coatings and PM212 composites for the lubrication of titanium 6A1-4V components of a Stirling engine space power system

    Science.gov (United States)

    Sliney, Harold E.; Dellacorte, Christopher; Lukaszewicz, Victor

    1995-01-01

    The Stirling space power machine incorporates a linear alternator to generate electrical power. The alternator is a reciprocating device that is driven by a solar or nuclear-powered Stirling engine. The power piston and cylinder are made of titanium 6A1-4V (Ti6-4) alloy, and are designed to be lubricated by a hydrodynamically-generated gas film. Rubbing occurs during starts and stops and there is a possibility of an occasional high speed rub. Since titanium is known to have a severe galling tendency in sliding contacts, a 'backup,' self-lubricating coating on the cylinder and/or the piston is needed. This report describes the results of a research program to study the lubrication of Ti6-4 with the following chromium carbide based materials: plasma-sprayed PS212 coatings and sintered PM212 counterfaces. Program objectives are to achieve adherent coatings on Ti6-4 and to measure the friction and wear characteristics of the following sliding combinations under conditions simulative of the Stirling-driven space power linear alternator: Ti6-4/Ti6-4 baseline, Ti6-4/PS212 coated Ti6-4, and Ps212 coated Ti6-4/PM212

  14. The tribology of PS212 coatings and PM212 composites for the lubrication of titanium 6A1-4V components of a Stirling engine space power system

    Science.gov (United States)

    Sliney, Harold E.; Dellacorte, Christopher; Lukaszewicz, Victor

    1995-01-01

    The Stirling space power machine incorporates a linear alternator to generate electrical power. The alternator is a reciprocating device that is driven by a solar or nuclear-powered Stirling engine. The power piston and cylinder are made of titanium 6A1-4V (Ti6-4) alloy, and are designed to be lubricated by a hydrodynamically-generated gas film. Rubbing occurs during starts and stops and there is a possibility of an occasional high speed rub. Since titanium is known to have a severe galling tendency in sliding contacts, a 'backup,' self-lubricating coating on the cylinder and/or the piston is needed. This report describes the results of a research program to study the lubrication of Ti6-4 with the following chromium carbide based materials: plasma-sprayed PS212 coatings and sintered PM212 counterfaces. Program objectives are to achieve adherent coatings on Ti6-4 and to measure the friction and wear characteristics of the following sliding combinations under conditions simulative of the Stirling-driven space power linear alternator: Ti6-4/Ti6-4 baseline, Ti6-4/PS212 coated Ti6-4, and Ps212 coated Ti6-4/PM212

  15. Component technology for Stirling power converters

    Science.gov (United States)

    Thieme, Lanny G.

    NASA Lewis Research Center has organized a component technology program as part of the efforts to develop Stirling converter technology for space power applications. The Stirling Space Power Program is part of the NASA High Capacity Power Project of the Civil Space Technology Initiative (CSTI). NASA Lewis is also providing technical management for the DOE/Sandia program to develop Stirling converters for solar terrestrial power producing electricity for the utility grid. The primary contractors for the space power and solar terrestrial programs develop component technologies directly related to their goals. This Lewis component technology effort, while coordinated with the main programs, aims at longer term issues, advanced technologies, and independent assessments. An overview of work on linear alternators, engine/alternator/load interactions and controls, heat exchangers, materials, life and reliability, and bearings is presented.

  16. The study of plate-type electrostatic precipitators electrical supplies

    Directory of Open Access Journals (Sweden)

    Gabriel N. Popa

    2005-10-01

    Full Text Available Stricter environmental legislation in many countries is producing standards governing the emission of fine particles to the atmosphere from all sources. The industrial separating particles from process streams have numerous methods with different principles. In electrostatic precipitators is used electrical charge of dust particles.There are many aspects of pollution control in both solid and liquid phase using electrostatic precipitators.The operation of plate-type electrostatic precipitators is closely related to its electrical energization, to obtain high collection efficiency with low electrical energization consumption. The paper analyze the traditional direct current energization, the intermittent energization, the pulse energization and the switched mode at high frequency power supplies of plate-type electrostatic precipitators sections.

  17. Use of biomass as fuel for Stirling motors; Uso de biomassa como combustivel para acionamento de motores Stirling

    Energy Technology Data Exchange (ETDEWEB)

    Barros, Robledo Wakin; Aradas, Maria Eugenia Coria; Cobas, Vladmir Rafael Melian; Lora, Electo Eduardo Silva [Universidade Federal de Itajuba (UNIFEI), MG (Brazil). Inst. de Engenharia Mecanica. Nucleo de Estudos em Sistemas Termicos], e-mail: robledo@unifei.edu.br

    2004-07-01

    The search to increase the electrical generation, together with the need to decrease the pollution emission, has encouraged the alternative energy sources. Nowadays around the world there are a lot of alternative energy sources incentive programs. In Brazil have PROINFA - Alternative Energy Sources Incentive Program. An example of alternative energy sources is the use of biomass as combustible. In the electrical generation, the biomass can be used directly, having it's directly combustion, and transforming the thermal energy liberated in electrical energy, or can be transformed in gas or liquid, and after use technology as internal combustion engine and gas turbine to generate electricity with these combustibles. Few technologies can be used to generate electricity burning directly to the biomass. Among these technologies, have the Stirling engine. It is possible to use this engine because the Stirling engines are external combustion engines, and it has not contact between the work gas and the flue gas. In this way, the Stirling engine needs a heat source, independent of the combustible type that will be used, including solar source. In this work will be present this technology, the different kinds of Stirling engines according to their configuration, moreover will be present the ST 05 G Stirling engine, which is a 500 W engine, acquired by University Federal of Itajuba. Also are present the tests results of this engine, and the installation to work with wood waste as combustible. (author)

  18. Advanced Stirling Convertor (ASC) Technology Maturation

    Science.gov (United States)

    Wong, Wayne A.; Wilson, Scott; Collins, Josh; Wilson, Kyle

    2016-01-01

    The Advanced Stirling Convertor (ASC) development effort was initiated by NASA Glenn Research Center with contractor Sunpower, Inc., to develop high-efficiency thermal-to-electric power conversion technology for NASA Radioisotope Power Systems (RPSs). Early successful performance demonstrations led to the expansion of the project as well as adoption of the technology by the Department of Energy (DOE) and system integration contractor Lockheed Martin Space Systems Company as part of the Advanced Stirling Radioisotope Generator (ASRG) flight project. The ASRG integrates a pair of ASCs to convert the heat from a pair of General Purpose Heat Source (GPHS) modules into electrical power. The expanded NASA ASC effort included development of several generations of ASC prototypes or engineering units to help prepare the ASC technology and Sunpower for flight implementation. Sunpower later had two parallel contracts allowing the last of the NASA engineering units called ASC-E3 to serve as pathfinders for the ASC-F flight convertors being built for DOE. The ASC-E3 convertors utilized the ASC-F flight specifications and were built using the ASC-F design and process documentation. Shortly after the first ASC-F pair achieved initial operation, due to budget constraints, the DOE ASRG flight development contract was terminated. NASA continues to invest in the development of Stirling RPS technology including continued production of the ASC-E3 convertors, seven of which have been delivered with one additional unit in production. Starting in fiscal year 2015, Stirling Convertor Technology Maturation has been reorganized as an element of the RPS Stirling Cycle Technology Development (SCTD) Project and long-term plans for continued Stirling technology advancement are in reformulation. This paper provides a status on the ASC project, an overview of advancements made in the design and production of the ASC at Sunpower, and a summary of acceptance tests, reliability tests, and tactical

  19. In-line stirling energy system

    Science.gov (United States)

    Backhaus, Scott N.; Keolian, Robert

    2011-03-22

    A high efficiency generator is provided using a Stirling engine to amplify an acoustic wave by heating the gas in the engine in a forward mode. The engine is coupled to an alternator to convert heat input to the engine into electricity. A plurality of the engines and respective alternators can be coupled to operate in a timed sequence to produce multi-phase electricity without the need for conversion. The engine system may be operated in a reverse mode as a refrigerator/heat pump.

  20. Stirling Converters For Solar Power

    Science.gov (United States)

    Shaltens, Richard K.; Schreiber, Jeffrey G.

    1993-01-01

    Two designs expected to meet long-term goals for performance and cost. Proposed for advanced systems to convert solar thermal power to electrical power. Each system, designed to operate with 11-m-diameter paraboloidal reflector, includes solar-energy receiver, liquid-metal heat-transport subsystem, free-piston Stirling engine, cooling subsystem, alternator or generator coupled directly or indirectly to commercial electric-power system, and control and power-conditioning circuitry. System converts approximately 75 kW of input solar thermal power falling on collector to about 25 kW of output electrical power.

  1. 基于斯特林发动机的冷热电联产系统分析%Analysis of Trigeneration System Based on Stirling Engine

    Institute of Scientific and Technical Information of China (English)

    任天宇; 陈曦; 张华; 冯丽娜; 王建中

    2012-01-01

    Trigeneration systems have a large potential of energy saving, the decisive values for thermodynamic evaluation of such systems are the primary energy rate( PER) and the primary energy saving rate( PESR) . Based on the first law of thermodynamics, the trigeneration system of Stirling engine is analyzedin detail. The results show that; in winter, PER and PESR have the same trend with the changing of x and 17,they increase with the increasing of x and rj, and the primary energy saving rate is up to 29. 7% on average; in summer, PER and PESR have the same trend with the changing of x and 77, they decrease with the increasing of x and increase with the increasing of 17, and the primary energy saving rate is up to 33. 15% on average.%三联产系统的节能性具有很大的潜力,对于该系统的热力学评价指标主要是一次能源利用率PER和一次能源节约率PESR.基于热力学第一定律,对以斯特林发动机为动力装置的三联产系统进行了热力学分析,结果表明:冬季工况,PER和PESR随x、η变化趋势相同,均随x、η增加而增大,一次能源节约率PESR平均可达29.7%;夏季工况,PER和PESR随x、η变化趋势相同,均随x增加而减小,随η增加而增大,一次能源节约率PESR平均可达33.15%.

  2. NASA Multidimensional Stirling Convertor Code Developed

    Science.gov (United States)

    Tew, Roy C.; Thieme, Lanny G.

    2004-01-01

    -dimensional model of the TDC at NASA Glenn. Validation of the multidimensional Stirling code is an important part of the grant effort. UMN has been generating data in an oscillating-flow test facility using two different test sections: a 90 turn and a cooler/regenerator/heater test section. CSU has created computational fluid dynamics models of both these test sections and has been making comparisons with the data, then improving their models to improve the agreement with the test data. CSU has also been using data available in the literature for code validation. UMN is now preparing to begin fabrication of a new 180 turn test section that will be more representative of certain portions of the Stirling engine geometry. Simulations to almost periodic steady state with the two-dimensional CSUmod model indicate that, to reach periodic steady state on a single 2-GHz desktop computer, 75 to 100 complete simulation cycles would be required and between 1 and 2 months of computer time. Therefore, Glenn has purchased the first 8 computers, of a 64-computer cluster, to be run in parallel to accelerate the simulation. On the basis of CFD Research Corp.'s experience with running the parallelized version of CFD-ACE on their clusters, we estimate that the complete 64-computer cluster will reduce simulation computing time by a factor of about 40. Plans are to continue development of these multidimensional Stirling codes and to use them to study the fluid-flow and heat-transfer phenomena that occur inside Stirling convertors. This is expected to lead to improved thermodynamic loss understanding, onedimensional design and performance codes, and engine performance.

  3. Routine operation of a parabolic disc with motor Stirling connected to network, in the Technical School Superior of Engineers of Seville; Operacion rutinaria de un disco parabolico con motor stirling conectado a red, en la Escuela Tecnica Superior de Ingenieros de Sevilla

    Energy Technology Data Exchange (ETDEWEB)

    Silva Perez, M. A.; Gavilan Morales, A.; Larraneta Gomez-Caminero, C.; Gonalez Cuenca, I.; Lillo Bravo, I.; Ruiz Hernandez, V.

    2008-07-01

    A 10 kWe Parabolic dish- Stirling engine system was installed at the Seville Engineering School in early 2004. This system is one of the country Reference Units of the EnviroDish project, consisting in the installation and operation of several units, based on the EuroDish system, in different countries aimed to gathering reliable O and M data that help to improve and fine-tune the technology. The Seville Country Reference Unit is connected to the gird. The Seville country Reference Unit has been in operation since March 2004, accumulating 1915 operation hours and 9,7 MWh of electricity production until October 2007. This paper summarizes the results of 32 months of routine operation, with emphasis on O and M aspects and lessons learned during this period. (Author)

  4. Modular Stirling Radioisotope Generator

    Science.gov (United States)

    Schmitz, Paul C.; Mason, Lee S.; Schifer, Nicholas A.

    2016-01-01

    High-efficiency radioisotope power generators will play an important role in future NASA space exploration missions. Stirling Radioisotope Generators (SRGs) have been identified as a candidate generator technology capable of providing mission designers with an efficient, high-specific-power electrical generator. SRGs high conversion efficiency has the potential to extend the limited Pu-238 supply when compared with current Radioisotope Thermoelectric Generators (RTGs). Due to budgetary constraints, the Advanced Stirling Radioisotope Generator (ASRG) was canceled in the fall of 2013. Over the past year a joint study by NASA and the Department of Energy (DOE) called the Nuclear Power Assessment Study (NPAS) recommended that Stirling technologies continue to be explored. During the mission studies of the NPAS, spare SRGs were sometimes required to meet mission power system reliability requirements. This led to an additional mass penalty and increased isotope consumption levied on certain SRG-based missions. In an attempt to remove the spare power system, a new generator architecture is considered, which could increase the reliability of a Stirling generator and provide a more fault-tolerant power system. This new generator called the Modular Stirling Radioisotope Generator (MSRG) employs multiple parallel Stirling convertor/controller strings, all of which share the heat from the General Purpose Heat Source (GPHS) modules. For this design, generators utilizing one to eight GPHS modules were analyzed, which provided about 50 to 450 W of direct current (DC) to the spacecraft, respectively. Four Stirling convertors are arranged around each GPHS module resulting in from 4 to 32 Stirling/controller strings. The convertors are balanced either individually or in pairs, and are radiatively coupled to the GPHS modules. Heat is rejected through the housing/radiator, which is similar in construction to the ASRG. Mass and power analysis for these systems indicate that specific

  5. Small Stirling Cycle Convertors

    Science.gov (United States)

    Penswick, L. Barry; Schreiber, Jeffery

    2005-02-01

    The Stirling convertor concept continues to be a viable potential candidate for various space power applications at electrical power levels ranging from greater than 100 KW to on the order of 10+watts. Various development efforts, both in the past and currently underway, have clearly demonstrated the potential for long operating life of this concept, its high efficiency in comparison to alternative power systems (>50% of Carnot based on electric power out to heat in), and its excellent specific power characteristics. A truly unique attribute of the Stirling convertor is the ability to maintain many of these same advantages at significantly lower electrical power levels (on the order of 1 watt and below). This provides the opportunity for a wider range of potential space power applications and the use of alternative heat sources operating at dramatically lower hot-end temperatures (about 250 °C vs. current values of about 650 °C). An overview of low-power Stirling convertors and related Stirling cooler technology is provided with an emphasis on assessing the technical maturity of this concept's key components at the low power level of interest. A conceptual design of a small, 1-watt (electrical output) Stirling convertor utilizing multiple Low Weight Radioisotope Heater Unit heat sources will be described. Key technical issues in the development of this power level Stirling convertor are discussed.

  6. Evaluation of Requirements for Militarization of 3-kW Free-Piston Stirling Engine Generator Set

    Science.gov (United States)

    1982-01-01

    r ~ sient load changes. Therefore, no transient response tests were conducted. However, steady-state electrical tests were run on the TDE to determine...ance, safety and reliability. 3.3 Engine Worl -in. PuM- A specific working fluid is not opccieio.; hIw- ever, the selection ot the working fluid should

  7. Design, Analysis and Optimization of a Solar Dish/Stirling System

    OpenAIRE

    Seyyed Danial Nazemi; Mehrdad Boroushaki

    2016-01-01

    In this paper, a mathematical model by which the thermal and physical behavior of a solar dish/Stirling system was investigated, then the system was designed, analysed and optimized. In this regard, all of heat losses in a dish/Stirling system were calculated, then, the output net-work of the Stirling engine was computed, and accordingly, the system efficiency was worked out. These heat losses include convection and conduction heat losses, radiation heat losses by emission in the cavity recei...

  8. Micro-Stirling Active Cooling Module (MS/ACM) for DoD Electronics Systems

    Science.gov (United States)

    2012-03-01

    Micro- Stirling Active Cooling Module (MS/ACM) for DoD Electronics Systems Douglas S. Beck Beck Engineering, Inc. 1490 Lumsden Road, Port Orchard...refrigerator. We are developing for DARPA a cm-scale Micro- Stirling Active Cooling Module (MS/ACM) micro- refrigerator to benefit the DoD systems. Under...a DARPA contract, we are designing, building, and demonstrating a breadboard MS/ACM. Keywords: Stirling ; cooler; active cooling module; micro

  9. New 5 Kilowatt Free-piston Stirling Space Convertor Developments

    Science.gov (United States)

    Brandhorst, Henry W., Jr.; Chapman, Peter A., Jr.

    2007-01-01

    The NASA Vision for Exploration of the moon may someday require a nuclear reactor coupled with a free-piston Stirling convertor at a power level of 30-40 kW. In the 1990s, Mechanical Technology Inc. s Stirling Engine Systems Division (some of whose Stirling personnel are now at Foster-Miller, Inc.) developed a 25 kW free piston Stirling Space Power Demonstrator Engine under the SP-100 program. This system consisted of two 12.5 kW engines connected at their hot ends and mounted in tandem to cancel vibration. Recently, NASA and DoE have been developing dual 55 W and 80 W Stirling convertor systems for potential use with radioisotope heat sources. Total test times of all convertors in this effort exceed 120,000 hours. Recently, NASA began a new project with Auburn University to develop a 5 kW, single convertor for potential use in a lunar surface reactor power system. Goals of this development program include a specific power in excess of 140 W/kg at the convertor level, lifetime in excess of five years and a control system that will safely manage the convertors in case of an emergency. Auburn University awarded a subcontract to Foster-Miller, Inc. to undertake development of the 5 kW Stirling Convertor Assembly. The characteristics of the design along with progress in developing the system will be described.

  10. Stirling Convertor Technologies Being Developed for a Stirling Radioisotope Generator

    Science.gov (United States)

    Thieme, Lanny G.

    2003-01-01

    The Department of Energy, Lockheed Martin, Stirling Technology Company (STC), and the NASA Glenn Research Center are developing a high-efficiency Stirling Radioisotope Generator (SRG) for NASA space science missions. The SRG is being developed for multimission use, including providing electric power for unmanned Mars rovers and deep space missions. On Mars, rovers with SRGs would be used for missions that might not be able to use photovoltaic power systems, such as exploration at high Martian latitudes and missions of long duration. The projected SRG system efficiency of 23 percent will reduce the required amount of radioisotope by a factor of 4 or more in comparison to currently used Radioisotope Thermoelectric Generators. The Department of Energy recently named Lockheed Martin as the system integration contractor. Lockheed Martin has begun to develop the SRG engineering unit under contract to the Department of Energy, and has contract options to develop the qualification unit and the first flight units. The developers expect the SRG to produce about 114 Wdc at the beginning of mission, using two opposed Stirling convertors and two General Purpose Heat Source modules. STC previously developed the Stirling convertor under contract to the Department of Energy and is now providing further development as a subcontractor to Lockheed Martin. Glenn is conducting an in-house technology project to assist in developing the convertor for space qualification and mission implementation. A key milestone was recently reached with the accumulation of 12 000 hr of long-term aging on two types of neodymium-iron boron permanent magnets. These tests are characterizing any possible aging in the strength or demagnetization resistance of the magnets used in the linear alternator. Preparations are underway for a thermal/vacuum system demonstration and unattended operation during endurance testing of the 55-We Technology Demonstration Convertors. In addition, Glenn is developing a

  11. 3kW碟式太阳能斯特林发动机换热系统的研究%The Heat Transfer System on 3 kW Dish Solar Stirling Engine

    Institute of Scientific and Technical Information of China (English)

    邹城; 麦志豪; 李风; 张仁元

    2013-01-01

    换热系统是斯特林发动机的关键部件之一.以发电功率达到3 kW、效率大于20%的斯特林机为要求,设计了配套的换热系统,包括吸热器、回热器和冷却器,计算出其理论发电功率为4.2 kW,效率达到28.6%.此外,还做了针对冷却器的实验,结果显示冷却器的换热效率达93.6%,符合设计要求.%The heat transfer system is one of the key components of a Stirling engine .According to the designing requirements that the power generation reaches 3 kW and the efficiency is greater than 20%for the Stirling engines , it designed the supporting heat exchanger system with a heat receiver , a regenerator , and a cooler .The theoretical power generation was calculated at 4.2 kW, its efficiency reaching 28.6%. In addition , it conducted an experiment of the cooler .Experimental results show that the efficiency of the cooler heat exchanger is up to 93.6%, thus meeting the designing requirements .

  12. Accomplishments in free-piston stirling tests at NASA GRC

    Science.gov (United States)

    Schreiber, Jeffrey G.; Skupinski, Robert C.

    2002-01-01

    A power system based on the Stirling Radioisotope Generator (SRG) has been identified for potential use on deep space missions, as well as for Mars rovers that may benefit from extended operation. The Department of Energy (DOE) has responsibility for developing the generator and the NASA Glenn Research Center (GRC) is supporting DOE in this effort. The generator is based on a free-piston Stirling power convertor that has been developed by the Stirling Technology Company (STC) under contract to DOE. The generator would be used as a high-efficiency alternative to the Radioisotope Thermoelectric Generators (RTGs) that have been used on many previous missions. The increased efficiency leads to a factor of 3 to 4 reduction in the inventory of plutonium required to heat the generator. GRC has been involved in the development of Stirling power conversion technology for over 25 years. The support provided to this project by GRC has many facets and draws upon the lab's scientists and engineers that have gained experience in applying their skills to the previous Stirling projects. This has created a staff with an understanding of the subtleties involved in applying their expertise to Stirling systems. Areas include materials, structures, tribology, controls, electromagnetic interference, permanent magnets, alternator analysis, structural dynamics, and cycle performance. One of the key areas of support to the project is in the performance testing of the free-piston Stirling convertors. Since these power convertors are the smallest, lowest power Stirling machines that have been tested at GRC, a new laboratory was equipped for this project. Procedures and test plans have been created, instrumentation and data systems developed, and Stirling convertors have been tested. This paper will describe the GRC test facility, the test procedures that are used, present some of the test results and outline plans for the future. .

  13. Simulation and analysis on performances of dish solar thermal power system based on Stirling engine%基于斯特林机的碟式太阳能热发电系统性能仿真分析

    Institute of Scientific and Technical Information of China (English)

    丁生平; 王永征; 吕瑞杰; 武岳; 姜磊

    2014-01-01

    Through an analysis on concentrator, receiver and Stirling engine, the functional relationships among each modules were obtained, the energy tranfer model of dish solar thermal power system was built.The simulation and anal-ysis on the performances of dish Stirling system were carried out under different climates conditions by using energy transfer model.The results showed that the engine pressure exhibited linear relationship with the solar direct normal in-solation;when the hot-head temperature kept in setting range, the net output power of the system increased with the en-gine pressure increasing;while the ambient temperature decreased, the Stirling engine efficiency increased and the net output power increased slightly; while the wind speed increased, the receiver efficiency and the net output power in-creased.%通过对聚光器、接收器和斯特林机等模块进行分析,得到了各模块之间的函数关系,建立了碟式太阳能热发电系统的能量传递模型,运用该模型对碟式太阳能热发电系统在不同气候条件下的性能进行了仿真分析。结果表明,斯特林机压力与太阳直接辐射强度呈线性增大关系;当斯特林机热头温度保持在设定值范围内时,系统净输出功率随斯特林机压力的增大而升高;当环境温度降低时,斯特林机效率和系统净输出功率均有所升高,但系统净输出功率升高幅度不大;当风速增大时,接收器效率及系统净输出功率均降低。

  14. The 1-kW solar Stirling experiment

    Science.gov (United States)

    Giandomenico, A.

    1981-01-01

    The objective of this experiment was to demonstrate electrical power generation using a small free-piston Stirling engine and linear alternator in conjunction with a parabolic solar collector. A test bed collector, formerly used at the JPL Table Mountain Observatory, was renovated and used to obtain practical experience and to determine test receiver performance. The collector was mounted on a two-axis tracker, with a cold water calorimeter mounted on the collector to measure its efficiency, while a separate, independently tracking radiometer was used to measure solar insolation. The solar receiver was designed to absorb energy from the collector, then transfer the resulting thermal energy to the Stirling engine. Successful testing of receiver/collector assembly yielded valuable inputs for design of the Stirling engine heater head.

  15. A Stirling Idea

    Science.gov (United States)

    1998-01-01

    Stirling Technology Company developed the components for its BeCOOL line of Cryocoolers with the help of a series of NASA SBIRs (Small Business Innovative Research), through Goddard Space Flight Center and Marshall Space Flight Center. Features include a hermetically sealed design, compact size, and silent operation. The company has already placed several units with commercial customers for computer applications and laboratory use.

  16. Parabolic Dish Stirling Module

    Science.gov (United States)

    Washom, B.

    1984-01-01

    The design, manufacture, and assembly of a commercially designed parabolic dish Stirling 25 kWe module is examined. The cost, expected performance, design uniquenesses, and future commercial potential of this module, which is regarded as the most technically advanced in the parabolic dish industry is discussed.

  17. Stirling in Another Context.

    Science.gov (United States)

    Papademetriou, Peter

    1981-01-01

    An analysis and a critique of how remodeling and extension of the Rice University School of Architecture, by James Stirling, Michael Wilford, and Associates, fits into the campus plan and its eclectic style established early in this century. (Author/MLF)

  18. Dish Stirling system integration and test progress report

    Science.gov (United States)

    Haglund, R. A.

    1982-01-01

    The integration and check-out of a complete Dish Solar Stirling Thermal Power System is described. The preliminary results of the tests conducted thus far are presented. The results are very encouraging and show promise of high performance and efficiency. The outstanding performance and durability of the 4-95 Stirling engine was the highlight of this 6 month integration and test activity. Exposure to severe heat, dust, sand and wind during the summer months and heavy rains, high winds, including sand storms and freezing cold in recent months did affected the engine or the receiver in any noticable manner.

  19. Performance of plate type heat exchanger as ammonia condenser

    Science.gov (United States)

    Rivera, Andrew

    In this study, I experimentally analyzed the performance of a commercial semi-welded plate type heat exchanger (PHE) for use with ammonia systems. I determined performance parameters such as overall heat transfer coefficient, capacity, and pressure drop of the semi-welded PHE. This was analyzed by varying different parameters which demonstrated changes in overall heat transfer coefficient, capacity, and pressure drop. Both water and ammonia flow rates to the semi-welded PHE were varied independently, and analyzed in order to understand how changes in flow rates affected performance. Inlet water temperature was also varied, in order to understand how raising condenser water inlet temperature would affect performance. Finally, pressure drop was monitored to better understand the performance limitations of the semi-welded PHE. Testing of the semi-welded will give insight as to the performance of the semi-welded PHE in a potential ocean thermal energy conversion system, and whether the semi-welded PHE is a viable choice for use as an ammonia condenser.

  20. Heater head for stirling engine

    Science.gov (United States)

    Corey, John A.

    1985-07-09

    A monolithic heater head assembly which augments cast fins with ceramic inserts which narrow the flow of combustion gas and obtains high thermal effectiveness with the assembly including an improved flange design which gives greater durability and reduced conduction loss.

  1. Vibrations and instabilities of thin rectangular plates separated by fluid medium with applications to the plate type heat exchanger

    Energy Technology Data Exchange (ETDEWEB)

    Gi-Man, Kim [Kum-Oh National Univ., Taegu (Korea, Republic of)

    1994-12-31

    Due to the prohibition law for using preon gas, many items in engineering field, specially heat exchanger, should be redesigned. The newly designed heat exchanger such a plate type heat exchanger is known to have a good efficiency in exchanging heat. From view of structures of a plate type heat exchanger, thin tube are used instead of circular pipe and the path of the fluid is developed for the high efficiency of the heat exchange by varying the array of tubes. The principal problem in the design of the plate heat exchanger is the potentiality of structural instabilities due to the fluid loading effect during operations. Excessive plate deflections would eventually result in permanent deformation or collapse which would cause an obstruction of the fluid flow in the narrow channels. In this study, a fluid-structural interaction model was developed to investigate analytically the static and dynamic instabilities that have been observed in flat plate heat exchanger. The model consist of two flat plates separated by water. The effects of the internal fluid in the channel was studied. As results, the natural frequency coefficients were investigated for the plate aspect ratios, channel heights, and boundary conditions. For the design criteria in plate type heat exchanger, the critical flow velocities which cause the responses of a plate were defined for divergence, resonance and flutter phenomena. (author). 25 refs. 2 tabs. 48 figs.

  2. Development of Advanced Stirling Radioisotope Generator for Space Exploration

    Science.gov (United States)

    Chan, Jack; Wood, J. Gary; Schreiber, Jeffrey G.

    2007-01-01

    Under the joint sponsorship of the Department of Energy and NASA, a radioisotope power system utilizing Stirling power conversion technology is being developed for potential future space missions. The higher conversion efficiency of the Stirling cycle compared with that of Radioisotope Thermoelectric Generators (RTGs) used in previous missions (Viking, Pioneer, Voyager, Galileo, Ulysses, Cassini, and New Horizons) offers the advantage of a four-fold reduction in PuO2 fuel, thereby saving cost and reducing radiation exposure to support personnel. With the advancement of state-of-the-art Stirling technology development under the NASA Research Announcement (NRA) project, the Stirling Radioisotope Generator program has evolved to incorporate the advanced Stirling convertor (ASC), provided by Sunpower, into an engineering unit. Due to the reduced envelope and lighter mass of the ASC compared to the previous Stirling convertor, the specific power of the flight generator is projected to increase from 3.5 We/kg to 7 We/kg, along with a 25% reduction in generator length. Modifications are being made to the ASC design to incorporate features for thermal, mechanical, and electrical integration with the engineering unit. These include the heat collector for hot end interface, cold-side flange for waste heat removal and structural attachment, and piston position sensor for ASC control and power factor correction. A single-fault tolerant, active power factor correction controller is used to synchronize the Stirling convertors, condition the electrical power from AC to DC, and to control the ASCs to maintain operation within temperature and piston stroke limits. Development activities at Sunpower and NASA Glenn Research Center (GRC) are also being conducted on the ASC to demonstrate the capability for long life, high reliability, and flight qualification needed for use in future missions.

  3. A Microfabricated Segmented-Involute-Foil Regenerator for Enhancing Reliability and Performance of Stirling Engines. Phase III Final Report for the Radioisotope Power Conversion Technology NRA

    Science.gov (United States)

    Ibrahim, Mounir B.; Gedeon, David; Wood, Gary; McLean, Jeffrey

    2009-01-01

    Under Phase III of NASA Research Announcement contract NAS3-03124, a prototype nickel segmented-involute-foil regenerator was microfabricated and tested in a Sunpower Frequency-Test-Bed (FTB) Stirling convertor. The team for this effort consisted of Cleveland State University, Gedeon Associates, Sunpower Inc. and International Mezzo Technologies. Testing in the FTB convertor produced about the same efficiency as testing with the original random-fiber regenerator. But the high thermal conductivity of the prototype nickel regenerator was responsible for a significant performance degradation. An efficiency improvement (by a 1.04 factor, according to computer predictions) could have been achieved if the regenerator was made from a low-conductivity material. Also, the FTB convertor was not reoptimized to take full advantage of the microfabricated regenerator s low flow resistance; thus, the efficiency would likely have been even higher had the FTB been completely reoptimized. This report discusses the regenerator microfabrication process, testing of the regenerator in the Stirling FTB convertor, and the supporting analysis. Results of the pre-test computational fluid dynamics (CFD) modeling of the effects of the regenerator-test-configuration diffusers (located at each end of the regenerator) are included. The report also includes recommendations for further development of involute-foil regenerators from a higher-temperature material than nickel.

  4. Stirling Analysis Comparison of Commercial Versus High-Order Methods

    Science.gov (United States)

    Dyson, Rodger W.; Wilson, Scott D.; Tew, Roy C.; Demko, Rikako

    2005-01-01

    Recently, three-dimensional Stirling engine simulations have been accomplished utilizing commercial Computational Fluid Dynamics software. The validations reported can be somewhat inconclusive due to the lack of precise time accurate experimental results from engines, export control/proprietary concerns, and the lack of variation in the methods utilized. The last issue may be addressed by solving the same flow problem with alternate methods. In this work, a comprehensive examination of the methods utilized in the commercial codes is compared with more recently developed high-order methods. Specifically, Lele's compact scheme and Dyson's Ultra Hi-Fi method will be compared with the SIMPLE and PISO methods currently employed in CFD-ACE, FLUENT, CFX, and STAR-CD (all commercial codes which can in theory solve a three-dimensional Stirling model with sliding interfaces and their moving grids limit the effective time accuracy). We will initially look at one-dimensional flows since the current standard practice is to design and optimize Stirling engines with empirically corrected friction and heat transfer coefficients in an overall one-dimensional model. This comparison provides an idea of the range in which commercial CFD software for modeling Stirling engines may be expected to provide accurate results. In addition, this work provides a framework for improving current one-dimensional analysis codes.

  5. Stirling Analysis Comparison of Commercial vs. High-Order Methods

    Science.gov (United States)

    Dyson, Rodger W.; Wilson, Scott D.; Tew, Roy C.; Demko, Rikako

    2007-01-01

    Recently, three-dimensional Stirling engine simulations have been accomplished utilizing commercial Computational Fluid Dynamics software. The validations reported can be somewhat inconclusive due to the lack of precise time accurate experimental results from engines, export control/ proprietary concerns, and the lack of variation in the methods utilized. The last issue may be addressed by solving the same flow problem with alternate methods. In this work, a comprehensive examination of the methods utilized in the commercial codes is compared with more recently developed high-order methods. Specifically, Lele's Compact scheme and Dyson s Ultra Hi-Fi method will be compared with the SIMPLE and PISO methods currently employed in CFD-ACE, FLUENT, CFX, and STAR-CD (all commercial codes which can in theory solve a three-dimensional Stirling model although sliding interfaces and their moving grids limit the effective time accuracy). We will initially look at one-dimensional flows since the current standard practice is to design and optimize Stirling engines with empirically corrected friction and heat transfer coefficients in an overall one-dimensional model. This comparison provides an idea of the range in which commercial CFD software for modeling Stirling engines may be expected to provide accurate results. In addition, this work provides a framework for improving current one-dimensional analysis codes.

  6. Power characteristics of a Stirling radioisotope power system over the life of the mission

    Science.gov (United States)

    Schreiber, Jeffrey G.

    2001-02-01

    Stirling radioisotope power systems are presently being considered for use on long life deep space missions. Some applications that Stirling technology has been developed for in the past could control the heat input to the engine, as was the case in the Automotive Stirling Engine (ASE) program. The combustion system could change the rate at which fuel was burned in response to the Stirling heater head temperature and the desired set point. In other cases, heat input was not controlled. An example is the solar terrestrial Advanced Stirling Conversion System (ASCS), where the heat input was a function of solar intensity and the performance of the solar concentrator and receiver. The control system for this application would measure the Stirling heater head temperature and throttle the Stirling convertor to once again, maintain the Stirling heater head temperature at the desired set point. In both of these examples, the design was driven to be cost effective. In the Stirling radioisotope power system, the heat generated by the decay in plutonium is reduced with the half-life of the isotope, and the control system must be as simple as possible and still meet the mission requirements. The most simple control system would be one that allows the Stirling power convertor to autonomously change its operating conditions in direct response to the reduced heat input, with no intervention from the control system, merely seeking a new equilibrium point as the isotope decays. This paper presents an analysis of power system performance with this simple control system, which has no feedback and does not actively alter the operating point as the isotope decays. .

  7. Thermoacoustically driven refrigerator with double thermoacoustic-Stirling cycles

    Science.gov (United States)

    Luo, Ercang; Dai, Wei; Zhang, Yong; Ling, Hong

    2006-02-01

    Recently, considerable research efforts have been made to search substitution technologies for chlorofluorocarbon-based vapor compression cycles due to the concern over environmental issues. This letter introduces a helium-based thermoacoustic refrigeration system, which is a thermoacoustic-Stirling refrigerator driven by a thermoacoustic-Stirling heat engine, for domestic refrigeration purpose. In the regenerators of both the refrigerator and the prime mover, helium gas experiences near to reversible high efficiency Stirling process. At the operating point with 3.0MPa mean pressure, 57.7Hz frequency, and 2.2kW heat input, the experimental cooler provides a lowest temperature of -64.4°C and 250W cooling power at -22.1°C. These results show good potential of the system to be an alternative in near future for domestic refrigeration with advantages of environment-friendliness, no moving parts, and heat driven mechanism.

  8. Technical status of the Dish/Stirling Joint Venture Program

    Science.gov (United States)

    Bean, John R.; Diver, Richard B.

    Initiated in 1991; the Dish/Stirling Joint Venture Program (DSJVP) is a 5-year, $17.2 million joint venture which is funded by Cummins Power Generation, Inc. (CPG) of Columbus, Indiana and the United States Department of Energy's (DOE) Solar Thermal and Biomass Power Division. Sandia National Laboratories administers and provides technical management for this contract on the DOE's behalf. In January, 1995; CPG advanced to Phase 3 of this three-phase contract. The objective of the DSJVP is to develop and commercialize a 7-kW. Dish/Stirling System for remote power markets by 1997. In this paper, the technical status of the major subsystems which comprise the CPG 7-kW(sub e) Dish/Stirling System is presented. These subsystems include the solar concentrator, heat pipe receiver, engine/alternator, power conditioning, and automatic controls.

  9. First results of connected parabolic collector to the grid with Stirling motor in the Seville Engineering School; Primeros resultados de la conexion a red de un disco parabolico con motor stirling, en la escuela superior de ingenieros de Sevilla

    Energy Technology Data Exchange (ETDEWEB)

    Silva Perez, M. A.; Lilio Bravo, I.; Ruiz Hernandez, V.; Larraneta Gomez-Caminero, C.

    2004-07-01

    A Parabolic Dish System has been installed and is operating since March 2004 at the Seville Engineering School (Escuela Superior de Ingenieros). The system is integrated in a wider project, called EnviroDish, that includes the installation of several units in different countries with the aim to gather reliable data on system performance and installation and O and M costs. The system is connected to the grid and the electricity generated is sold to the regional utility with the benefits of the Special Regime. In the present paper we describe the installation and present an advance of the firs operating results. (Author)

  10. Basic dynamics of split Stirling refrigerators

    Science.gov (United States)

    de Waele, A. T. A. M.; Liang, W.

    2008-09-01

    The basic features of the split Stirling refrigerator, driven by a linear compressor, are described. Friction of the compressor piston and of the regenerator, and the viscous losses due to the gas flow through the regenerator matrix are taken into account. The temperature at the cold end is an input parameter. The general equations are derived which are subsequently treated in the harmonic approximation. Examples are given of application of the relations for describing optimum-performance conditions as well as the interrelationship between cooler and heat-engine operation.

  11. Diaphragm Stirling cryocooler developments

    Science.gov (United States)

    Stacy, W. D.

    1992-01-01

    This paper reports on the status of several ongoing development programs aimed at the demonstration of diaphragm Stirling cycle cryocooler performance. Key attributes of this technology focus on long reliable operating life and excellent efficiency, making it a candidate for cooling of satellite-borne long wavelength sensors for astrophysics and earth observing missions. Three programs are described, each leading to system or component test hardware: a 2 W 65 K single-stage Standard Spacecraft Cryocooler, a 300 mW 30 K two-stage cooler and a 200 mW 4-20 K single-stage cooler. Design features are described, and breadboard experimental data are presented.

  12. Assessment of 25 kW free-piston Stirling technology alternatives for solar applications

    Science.gov (United States)

    Erbeznik, Raymond M.; White, Maurice A.; Penswick, L. B.; Neely, Ronald E.; Ritter, Darren C.; Wallace, David A.

    The final design, construction, and testing of a 25-kW free-piston advanced Stirling conversion system (ASCS) are examined. The final design of the free-piston hydraulic ASCS consists of five subsystems: heat transport subsystem (solar receiver and pool boiler), free-piston hydraulic Stirling engine, hydraulic subsystem, cooling subsystem, and electrical and control subsystem. Advantages and disadvantages are identified for each technology alternative. Technology alternatives considered are gas bearings vs flexure bearings, stationary magnet linear alternator vs moving magnetic linear alternator, and seven different control options. Component designs are generated using available in-house procedures to meet the requirements of the free-piston Stirling convertor configurations.

  13. Advanced Stirling Convertor Update

    Science.gov (United States)

    Wood, J. Gary; Carroll, Cliff; Matejczyk, Dan; Penswick, L. B.; Soendker, E.

    2006-01-01

    This paper reports on the 88 We Advanced Stirling Convertor (ASC) currently being developed under Phase II of a NASA NRA program for possible use in advanced high specific power radioisotope space power systems. An early developmental unit, the Frequency Test Bed (FTB) which was built and tested in Phase I demonstrated 36% efficiency. The ASC-1 currently being developed under Phase II, uses a high temperature heater head to allow for operation at 850 °C and is expected to have an efficiency approaching 40% (based on AC electrical out) at a temperature ratio of 3.1. The final lightweight ASC-2 convertor to be developed in Phase III is expected to have a mass of approximately 1 kg. The implementation of the ASC would allow for much higher specific power radioisotope power systems, requiring significantly less radioisotope fuel than current systems. The first run of the ASC-1 occurred in September 2005, and full temperature operation was achieved in early October 2005. Presented is an update on progress on the ASC program as well as the plans for future development. Also presented are efforts being performed to ensure the ASC has the required long life already demonstrated in free-piston Stirling cryocoolers.

  14. Final design of a free-piston hydraulic advanced Stirling conversion system

    Science.gov (United States)

    Wallace, D. A.; Noble, J. E.; Emigh, S. G.; Ross, B. A.; Lehmann, G. A.

    1991-01-01

    Under the US Department of Energy's (DOEs) Solar Thermal Technology Program, Sandia National Laboratories is evaluating heat engines for solar distributed receiver systems. The final design is described of an engineering prototype advanced Stirling conversion system (ASCS) with a free-piston hydraulic engine output capable of delivering about 25 kW of electric power to a utility grid. The free-piston Stirling engine has the potential for a highly reliable engine with long life because it has only a few moving parts, has noncontacting bearings, and can be hermetically sealed. The ASCS is designed to deliver maximum power per year over a range of solar input with a design life of 30 years (60,000 h). The system includes a liquid Nak pool boiler heat transport system and a free-piston Stirling engine with high-pressure hydraulic output, coupled with a bent axis variable displacement hydraulic motor and a rotary induction generator.

  15. 1987 overview of free-piston Stirling technology for space power application

    Science.gov (United States)

    Slaby, Jack G.; Alger, Donald L.

    1987-01-01

    The Lewis Research Center program concerned with the development of a free-piston Stirling engine for space-power applications is examined. The system mass of a Stirling system is compared to that of a Brayton system for the same peak temperature and output power; the advantages of the Stirling system are discussed. The predicted and experimental performances of the 25 kWe opposed-piston space power demonstrator engine are evaluated. It is determined that in order to enhance performance the regenerator needs to be modified, and the gas bearing flow between the displacer and power piston needs to be isolated in order to increase the operating stroke. Identification and correction of the energy losses, the design and operation of the linear alternator, and heat exchange concepts are considered. The design parameters and conceptual design characteristics for a 25 kWe single-cylinder free-piston Stirling space-power converter are described.

  16. 78 FR 33132 - Quality Verification for Plate-Type Uranium-Aluminum Fuel Elements for Use in Research and Test...

    Science.gov (United States)

    2013-06-03

    ... COMMISSION Quality Verification for Plate-Type Uranium-Aluminum Fuel Elements for Use in Research and Test... Verification for Plate-Type Uranium-Aluminum Fuel Elements for Use in Research and Test Reactors.'' This guide... plate-type uranium-aluminum fuel elements used in research and test reactors (RTRs). ADDRESSES: Please...

  17. Milliwatt Radioisotope Stirling Convertor Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Sest, Inc. proposes to perform a detailed evaluation at the both convertor and component levels of a small, low electrical output power (50 to 500 mW) Stirling cycle...

  18. MEMS Stirling Cooler Development Update

    Science.gov (United States)

    Moran, Matthew E.; Wesolek, Danielle

    2003-01-01

    This presentation provides an update on the effort to build and test a prototype unit of the patented MEMS Stirling cooler concept. A micro-scale regenerator has been fabricated by Polar Thermal Technologies and is currently being integrated into a Stirling cycle simulator at Johns Hopkins University Applied Physics Laboratory. A discussion of the analysis, design, assembly, and test plans for the prototype will be presented.

  19. Variable Conductance Heat Pipes for Radioisotope Stirling Systems

    Science.gov (United States)

    Anderson, William G.; Tarau, Calin

    2008-01-01

    In a Stirling radioisotope system, heat must continually be removed from the GPHS modules, to maintain the GPHS modules and surrounding insulation at acceptable temperatures. Normally, the Stirling convertor provides this cooling. If the Stirling engine stops in the current system, the insulation is designed to spoil, preventing damage to the GPHS, but also ending the mission. An alkali-metal Variable Conductance Heat Pipe (VCHP) was designed to allow multiple stops and restarts of the Stirling engine. A VCHP turns on with a delta T of 30 C, which is high enough to not risk standard ASRG operation but low enough to save most heater head life. This VCHP has a low mass, and low thermal losses for normal operation. In addition to the design, a proof-of-concept NaK VCHP was fabricated and tested. While NaK is normally not used in heat pipes, it has an advantage in that it is liquid at the reservoir operating temperature, while Na or K alone would freeze. The VCHP had two condensers, one simulating the heater head, and the other simulating the radiator. The experiments successfully demonstrated operation with the simulated heater head condenser off and on, while allowing the reservoir temperature to vary over 40 to 120 C, the maximum range expected. In agreement with previous NaK heat pipe tests, the evaporator delta T was roughly 70 C, due to distillation of the NaK in the evaporator.

  20. Preliminary designs for 25 kWe advanced Stirling conversion systems for dish electric applications

    Science.gov (United States)

    Shaltens, Richard K.; Schreiber, Jeffrey G.

    1990-01-01

    Under the Department of Energy's (DOE) Solar Thermal Technology Program, Sandia National Laboratories is evaluating heat engines for terrestrial Solar Distributed Heat Receivers. The Stirling engine has been identified by Sandia as one of the most promising engines for terrestrial applications. The Stirling engine also has the potential to meet DOE's performance and cost goals. The NASA Lewis Research Center is conducting Stirling engine technology development activities directed toward a dynamic power source for space applications. Space power systems requirements include high reliability, very long life, low vibration and high efficiency. The free-piston Stirling engine has the potential for future high power space conversion systems, either nuclear or solar powered. Although both applications appear to be quite different, their requirements complement each other. Preliminary designs feature a free-piston Stirling engine, a liquid metal heat transport system, and a means to provide nominally 25 kW electric power to a utility grid while meeting DOE's performance and long term cost goals. The Cummins design incorporates a linear alternator to provide the electrical output, while the STC design generates electrical power indirectly through a hydraulic pump/motor coupled to an induction generator. Both designs for the ASCS's will use technology which can reasonably be expected to be available in the early 1990's.

  1. A simple free-piston Sterling engine for combined heat and power generation (CHP) in the residential sector; Einfacher Stirling-Freikolben-Motor fuer die Kraft-Waerme-Kopplung (KWK) im Wohnbereich

    Energy Technology Data Exchange (ETDEWEB)

    Budliger, J.P.

    2001-07-01

    A completely static resonance tube is used in the Stirling cycle, as a substitute for a displacer piston. The Sterling system described works with only one, elastically suspended piston. The simple, cost-effective and maintenance-free basic design concept is explained in full detail, as well as some possible design types of resonance tube-charged, one-piston Stirling systems and their major advantages and performance characterisitcs. (orig./CB) [German] Anstelle eines Schwingkolbens kann auch ein voellig statisches Resonanzrohr eingesetzt werden: das resultierende Stirling-System umfasst nur noch einen einzigen, elastisch aufgehaengten Kolben. Dieses einfache, kostenguenstige und unterhaltsfreie Konzept stellt eine erwartungsvolle Loesung fuer dezentrale KWK-Anlagen dar. Im Vortrag werden einige moegliche Auslegungen solcher, mit Resonanzrohren aufgeladenen 1-Kolben-Stirling-Aggregate diskutiert, ihre wesentlichsten Eigenschaften und Leistungscharakteristiken beschrieben. (orig./CB)

  2. Modular Stirling Power System (MSPS) Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Infinia Technology Corporation's (ITC) proposed Modular Stirling Power System (MSPS) is a free-piston Stirling system that addresses NASA needs in 12-kW increments....

  3. Solar Stirling power generation - Systems analysis and preliminary tests

    Science.gov (United States)

    Selcuk, M. K.; Wu, Y.-C.; Moynihan, P. I.; Day, F. D., III

    1977-01-01

    The feasibility of an electric power generation system utilizing a sun-tracking parabolic concentrator and a Stirling engine/linear alternator is being evaluated. Performance predictions and cost analysis of a proposed large distributed system are discussed. Design details and preliminary test results are presented for a 9.5 ft diameter parabolic dish at the Jet Propulsion Laboratory (Caltech) Table Mountain Test Facility. Low temperature calorimetric measurements were conducted to evaluate the concentrator performance, and a helium flow system is being used to test the solar receiver at anticipated working fluid temperatures (up to 650 or 1200 C) to evaluate the receiver thermal performance. The receiver body is designed to adapt to a free-piston Stirling engine which powers a linear alternator assembly for direct electric power generation. During the next phase of the program, experiments with an engine and receiver integrated into the concentrator assembly are planned.

  4. A dish-Stirling solar-thermal power system

    Science.gov (United States)

    Pons, R. L.; Clark, T. B.

    1980-01-01

    This paper presents results of a preliminary design/economic study of a first-generation point focusing distributed receiver solar-thermal electric system optimized for application to industrial and small community power plants at power levels up to 10 MWe. Power conversion is provided by small Stirling cycle engines mounted at the focus of paraboloidal solar concentrators. The output of multiple power modules (concentrator, receiver, engine, and electric generator) is collected by means of a conventional electrical system and interfaced with a utility grid. Based on the United Stirling P-75 engine, a 1 MWe system employing mass-produced components (100,000 modules/year) could produce electricity at costs competitive with those projected for electricity generated by more conventional means, e.g. with fossil fuels.

  5. New 5 kW free-piston Stirling space convertor developments

    Science.gov (United States)

    Brandhorst, Henry W., Jr.; Chapman, Peter A., Jr.

    2008-07-01

    The NASA Vision for Exploration of the moon may someday require a nuclear reactor coupled with a free-piston Stirling convertor at a power level of 30-40 kW. In the 1990s, Mechanical Technology Inc.'s Stirling Engine Systems Division (some of whose Stirling personnel are now at Foster-Miller, Inc.) developed a 25 kW free-piston Stirling Space Power Demonstrator Engine under the SP-100 program. This system consisted of two 12.5 kW engines connected at their hot ends and mounted in tandem to cancel vibration. Recently, NASA and DoE have been developing dual 55 and 80 W Stirling convertor systems for potential use with radioisotope heat sources. Total test times of all convertors in this effort exceed 120,000 h. Recently, NASA began a new project with Auburn University to develop a 5 kW, single convertor for potential use in a lunar surface reactor power system. Goals of this development program include a specific power in excess of 140 W/kg at the convertor level, lifetime in excess of five years and a control system that will safely manage the convertors in case of an emergency. Auburn University awarded a subcontract to Foster-Miller, Inc. to undertake development of the 5 kW Stirling convertor assembly. The characteristics of the design along with progress in developing the system will be described.

  6. Modification of Neutron Kinetic Code for Plate Type Fuel Nuclear Reactor

    Directory of Open Access Journals (Sweden)

    Salah Ud-Din Khan

    2013-01-01

    Full Text Available The research is conducted on the modification of neutron kinetic code for the plate type fuel nuclear reactor. REMARK is a neutron kinetic code that works only for the cylindrical type fuel nuclear reactor. In this research, our main emphasis is on the modification of this code in order to be applicable for the plate type fuel nuclear reactor. For this purpose, detailed mathematical studies have been performed and are subjected to write the program in Fortran language. Since REMARK code is written in Fortran language, so we have developed the program in Fortran and then inserted it into the source library of the code. The main emphasis is on the modification of subroutine in the source library of the code for hexagonal fuel assemblies with plate type fuel elements in it. The number of steps involved in the modification of the code has been included in the paper. The verification studies were performed by considering the small modular reactor with hexagonal assemblies and plate type fuel in it to find out the power distribution of the reactor core. The purpose of the research is to make the code work for the hexagonal fuel assemblies with plate type fuel element.

  7. Variable Conductance Heat Pipes for Radioisotope Stirling Systems

    Science.gov (United States)

    Anderson, William G.; Tarau, Calin

    2008-01-01

    In a Stirling radioisotope system, heat must continually be removed from the GPHS modules, to maintain the GPHS modules and surrounding insulation at acceptable temperatures. Normally, the Stirling convertor provides this cooling. If the Stirling engine stops in the current system, the insulation is designed to spoil, preventing damage to the GPHS, but also ending the mission. An alkali-metal Variable Conductance Heat Pipe (VCHP) was designed to allow multiple stops and restarts of the Stirling engine. A VCHP was designed for the Advanced Stirling Radioisotope Generator, with a 850 °C heater head temperature. The VCHP turns on with a ΔT of 30 °C, which is high enough to not risk standard ASRG operation but low enough to save most heater head life. This VCHP has a low mass, and low thermal losses for normal operation. In addition to the design, a proof-of-concept NaK VCHP was fabricated and tested. While NaK is normally not used in heat pipes, it has an advantage in that it is liquid at the reservoir operating temperature, while Na or K alone would freeze. The VCHP had two condensers, one simulating the heater head, and the other simulating the radiator. The experiments successfully demonstrated operation with the simulated heater head condenser off and on, while allowing the reservoir temperature to vary over 40 to 120 °C, the maximum range expected. In agreement with previous NaK heat pipe tests, the evaporator ΔT was roughly 70 °C, due to distillation of the NaK in the evaporator.

  8. Extended Operation of Stirling Convertors at NASA Glenn Research Center

    Science.gov (United States)

    Oriti, Salvatore, M.

    2012-01-01

    NASA Glenn Research Center (GRC) has been supporting development of free-piston Stirling conversion technology for spaceflight electrical power generation since 1999. GRC has also been supporting the development of the Advanced Stirling Radioisotope Generator (ASRG) since 2006. A key element of the ASRG project is providing life, reliability, and performance data for the Advanced Stirling Convertor (ASC). The Thermal Energy Conversion branch at GRC is conducting extended operation of several free-piston Stirling convertors. The goal of this effort is to generate long-term performance data (tens of thousands of hours) on multiple units to build a life and reliability database. Currently, GRC is operating 18 convertors. This hardware set includes Technology Demonstration Convertors (TDCs) from Infinia Corporation, of which one pair (TDCs #13 and #14) has accumulated over 60,000 hr (6.8 years) of operation. Also under test are various Sunpower, Inc. convertors that were fabricated during the ASC development activity, including ASC-0, ASC-E (including those in the ASRG engineering unit), and ASC-E2. The ASC-E2s also completed, or are in progress of completing workmanship vibration testing, performance mapping, and extended operation. Two ASC-E2 units will also be used for durability testing, during which components will be stressed to levels above nominal mission usage. Extended operation data analyses from these tests are covered in this paper.

  9. Advanced Controller for the Free-Piston Stirling Convertor

    Science.gov (United States)

    Gerber, Scott S.; Jamison, Mike; Roth, Mary Ellen; Regan, Timothy F.

    2004-01-01

    The free-piston Stirling power convertor is being considered as an advanced power conversion technology to be used for future NASA deep space missions requiring long life radioisotope power systems. This technology has a conversion efficiency of over 25%, which is significantly higher than the efficiency of the Radioisotope Thermal-electric Generators (RTG) now in use. The NASA Glenn Research Center has long been recognized as a leader in Stirling technology and is responsible for the development of advanced technologies that are intended to significantly improve key characteristics of the Stirling convertor. The advanced technologies identified for development also consider the requirements of potential future missions and the new capabilities that have become available in the associated technical areas. One of the key areas identified for technology development is the engine controller. To support this activity, an advanced controller is being developed for the Stirling power convertor. This controller utilizes active power factor correction electronics and microcontroller-based controls. The object of this paper is to present an overview of the advanced controller concept with modeling, simulation and hardware test data.

  10. Advanced Controller Developed for the Free-Piston Stirling Convertor

    Science.gov (United States)

    Gerber, Scott S.

    2005-01-01

    A free-piston Stirling power convertor is being considered as an advanced power-conversion technology for future NASA deep-space missions requiring long-life radioisotope power systems. The NASA Glenn Research Center has identified key areas where advanced technologies can enhance the capability of Stirling energy-conversion systems. One of these is power electronic controls. Current power-conversion technology for Glenn-tested Stirling systems consists of an engine-driven linear alternator generating an alternating-current voltage controlled by a tuning-capacitor-based alternating-current peak voltage load controller. The tuning capacitor keeps the internal alternator electromotive force (EMF) in phase with its respective current (i.e., passive power factor correction). The alternator EMF is related to the piston velocity, which must be kept in phase with the alternator current in order to achieve stable operation. This tuning capacitor, which adds volume and mass to the overall Stirling convertor, can be eliminated if the controller can actively drive the magnitude and phase of the alternator current.

  11. A Unified Approach to Generalized Stirling Functions

    Institute of Scientific and Technical Information of China (English)

    Tianxiao HE

    2012-01-01

    Here presented is a unified approach to generalized Stirling functions by using generalized factorial functions,k-Gamma functions,generalized divided difference,and the unified expression of Stirling numbers defined in[16].Previous well-known Stirling functions introduced by Butzer and Hauss[4],Butzer,Kilbas,and Trujilloet[6]and others are included as particular cases of our generalization.Some basic properties related to our general pattern such as their recursive relations,generating functions,and asymptotic properties are discussed,which extend the corresponding results about the Stirling numbers shown in[21]to the defined Stirling functions.

  12. Dish stirling solar receiver combustor test program

    Science.gov (United States)

    Bankston, C. P.; Back, L. H.

    1981-01-01

    The operational and energy transfer characteristics of the Dish Stirling Solar Receiver (DSSR) combustor/heat exchanger system was evaluated. The DSSR is designed to operate with fossil fuel augmentation utilizing a swirl combustor and cross flow heat exchanger consisting of a single row of 4 closely spaced tubes that are curved into a conical shape. The performance of the combustor/heat exchanger system without a Stirling engine was studied over a range of operating conditions and output levels using water as the working fluid. Results show that the combustor may be started under cold conditions, controlled safety, and operated at a constant air/fuel ratio (10 percent excess air) over the required range of firing rates. Furthermore, nondimensional heat transfer coefficients based on total heat transfer are plotted versus Reynolds number and compared with literature data taken for single rows of closely spaced tubes perpendicular to cross flow. The data show enhanced heat transfer for the present geometry and test conditions. Analysis of the results shows that the present system meets specified thermal requirements, thus verifying the feasibility of the DSSR combustor design for final prototype fabrication.

  13. Some heat engine cycles in which liquids can work

    Science.gov (United States)

    Allen, P. C.; Paulson, D. N.; Wheatley, J. C.

    1981-01-01

    Liquids can work in heat engine cycles that employ regeneration. Four such cycles are discussed: Stirling, Malone, Stirling-Malone, and Brayton. Both regeneration and the role of the second thermodynamic medium are treated, and the principles are verified by quantitative measurements with propylene in a Stirling-Malone cycle. PMID:16592952

  14. Novel diaphragm based Stirling cryocooler

    Science.gov (United States)

    Caughley, Alan; Tucker, Alan; Gschwendtner, Michael; Sellier, Mathieu

    2012-06-01

    Industrial Research Ltd has developed a unique diaphragm-based pressure wave generator technology for employment in pulse tube and Stirling cryocoolers. The system uses a pair of metal diaphragms to separate the clean cryocooler gas circuit from a conventionally lubricated mechanical driver, thus producing a clean pressure wave with a long-life drive. We have now extended the same diaphragm concept to support and seal the displacer in a free piston Stirling expander. The diaphragms allow displacer movement without rubbing or clearance gap seals, hence allowing for the development of costeffective long-life and efficient Stirling cryocoolers. Initial modeling, operating in conjunction with a 200 cc swept volume pressure wave generator, predicted in excess of 300 W cooling at 77 K with a Carnot efficiency of over 25%. A proof-of-concept prototype has achieved cryogenic temperatures. Details of the concept, modeling, and testing will be presented.

  15. Stirling Microregenerators Fabricated and Tested

    Science.gov (United States)

    Moran, Matthew E.

    2004-01-01

    A mesoscale Stirling refrigerator patented by the NASA Glenn Research Center is currently under development. This refrigerator has a predicted efficiency of 30 percent of Carnot and potential uses in electronics, sensors, optical and radiofrequency systems, microarrays, and microsystems. The mesoscale Stirling refrigerator is most suited to volume-limited applications that require cooling below the ambient or sink temperature. Primary components of the planar device include two diaphragm actuators that replace the pistons found in traditional-scale Stirling machines and a microregenerator that stores and releases thermal energy to the working gas during the Stirling cycle. Diaphragms are used to eliminate frictional losses and bypass leakage concerns associated with pistons, while permitting reversal of the hot and cold sides of the device during operation to allow precise temperature control. Three candidate microregenerators were fabricated under NASA grants for initial evaluation: two constructed of porous ceramic, which were fabricated by Johns Hopkins Applied Physics Laboratory, and one made of multiple layers of nickel and photoresist, which was fabricated by Polar Thermal Technologies. The candidate regenerators are being tested by Johns Hopkins Applied Physics in a custom piezoelectric-actuated test apparatus designed to produce the Stirling refrigeration cycle. In parallel with the regenerator testing, Johns Hopkins is using deep reactive ion etching to fabricate electrostatically driven, comb-drive diaphragm actuators. These actuators will drive the Stirling cycle in the prototype device. The top photograph shows the porous ceramic microregenerators. Two microregenerators were fabricated with coarse pores and two with fine pores. The bottom photograph shows the test apparatus parts for evaluating the microregenerators, including the layered nickel-and-photoresist regenerator fabricated using LIGA techniques.

  16. Small Stirling dynamic isotope power system for robotic space missions

    Science.gov (United States)

    Bents, D. J.

    1992-08-01

    The design of a multihundred-watt Dynamic Isotope Power System (DIPS), based on the U.S. Department of Energy (DOE) General Purpose Heat Source (GPHS) and small (multihundred-watt) free-piston Stirling engine (FPSE), is being pursued as a potential lower cost alternative to radioisotope thermoelectric generators (RTG's). The design is targeted at the power needs of future unmanned deep space and planetary surface exploration missions ranging from scientific probes to Space Exploration Initiative precursor missions. Power level for these missions is less than a kilowatt. The incentive for any dynamic system is that it can save fuel and reduce costs and radiological hazard. Unlike DIPS based on turbomachinery conversion (e.g. Brayton), this small Stirling DIPS can be advantageously scaled to multihundred-watt unit size while preserving size and mass competitiveness with RTG's. Stirling conversion extends the competitive range for dynamic systems down to a few hundred watts--a power level not previously considered for dynamic systems. The challenge for Stirling conversion will be to demonstrate reliability and life similar to RTG experience. Since the competitive potential of FPSE as an isotope converter was first identified, work has focused on feasibility of directly integrating GPHS with the Stirling heater head. Thermal modeling of various radiatively coupled heat source/heater head geometries has been performed using data furnished by the developers of FPSE and GPHS. The analysis indicates that, for the 1050 K heater head configurations considered, GPHS fuel clad temperatures remain within acceptable operating limits. Based on these results, preliminary characterizations of multihundred-watt units have been established.

  17. Development of a Wood Powder Fuelled 35 kW Stirling CHP Unit

    DEFF Research Database (Denmark)

    Pålsson, M.; Carlsen, Henrik

    2003-01-01

    For biomass fuelled CHP in sizes below 100 kW, Stirling engines are the only feasible alternative today. Using wood powder as fuel, the Stirling engine can be heated directly by the flame like when using a gaseous or liquid fuel burner. However, the combustion chamber will have to be much larger...... recirculation (CGR) a smaller air preheater can be used, while system efficiency will increase compared with using excess air for flame cooling. In a three-year project, a wood powder fuelled Stirling engine CHP unit will be developed and run in field test. The project will use the double-acting four......, using wood powder as fuel will be developed at Lund University, Sweden, in cooperation with the Technical University of Denmark and with the wood powder boiler manufacturer VTS AB. The unit is to be run in CHP operation by Vattenfall - the largest electric power company in Sweden - in a one-year field...

  18. Stirling Convertor Extended Operation Testing and Data Analysis at Glenn Research Center

    Science.gov (United States)

    Cornell, Peggy A.; Lewandowski, Edward J.; Oriti, Salvatore M.; Wilson, Scott D.

    2010-01-01

    Extended operation of Stirling convertors is essential to the development of radioisotope power systems and their potential use for longduration missions. To document the reliability of the convertors, regular monitoring and analysis of the extended operation data is particularly valuable, allowing us to better understand and quantify long-life characteristics of the convertors. Furthermore, investigation and comparison of the extended operation data to baseline performance data provides an opportunity to understand system behavior should any off-nominal performance occur. Glenn Research Center (GRC) has tested 16 Stirling convertors under 24-hr unattended extended operation, including four that have operated in a thermal vacuum environment and two that are operating in the Advanced Stirling Radioisotope Generator Engineering Unit. Ten of the sixteen convertors are the Advanced Stirling Convertors (ASC) developed by Sunpower, Inc. with GRC. These are highly efficient (conversion efficiency of up to 38 percent for the ASC-1), low-mass convertors that have evolved through technologically progressive convertor builds. Six convertors at GRC are Technology Demonstration Convertors from Infinia Corporation. They have achieved greater than 27 percent conversion efficiency and have accumulated over 185,000 of the total 265,000 hr of extended operation at GRC. This paper presents the extended operation testing and data analysis of free-piston Stirling convertors at NASA GRC as well as how these tests have contributed to the Stirling convertor s progression toward flight.

  19. Innovation at Stirling

    Science.gov (United States)

    1998-11-01

    The 24th Stirling Meeting of the Scottish Branch of the Institute of Physics was held on 21 May 1998. It was, for the first time, coupled to a Physics Update Course, which then continued in the Heriot-Watt University over the following two days. This encouraged many more exhibitors to come to Stirling where some 220 physics teachers were present. Ten manufacturers, five publishers and, of course, the ASE and the Institute of Physics exhibited materials during the conference. Morning In his introductory remarks Jack Woolsey reminded teachers that a great deal of information about the Scottish Qualifications Authority was available on the web (http://www.sqa.org.uk). Lorna Neill chaired the morning session, which was devoted to teaching chips and assessing pupils! Tony Joyce (Motorola) emphasized the need to invest in the skills required by the electronics industry. There has been an explosion in the demand for microchips and Motorola, together with Edinburgh University, Compugraphics and Scottish Enterprise, have produced a number of `teaching chips' which are being used throughout Britain and abroad. Les Haworth (Edinburgh University) discussed the construction, operating principles and educational relevance of MOS devices. MOSFETs, he claimed, are the best vehicle for early teaching of device physics. Andrew Moore (Balerno High School) gave an entertaining presentation in which he suggested ways of using the `teaching chips' in practice. Although there were many good information sheets with suggested experiments and investigations, teachers often found it difficult to tailor them to specific courses. To reduce hassle Andrew recommended using the Teaching Chip Project Board which was now available. It was particularly useful for practical investigations at Standard Grade. For the question session Jim Jamieson (SSERC) and Walter Whitelaw (Edinburgh Council) joined the three speakers. Ian Kennedy (Kilwinning Academy) described a fascinating system, developed in his

  20. Comparison of conceptual designs for 25 kWe advanced Stirling conversion systems for dish electric applications

    Science.gov (United States)

    Shaltens, Richard K.; Schreiber, Jeffrey G.

    1989-01-01

    The Advanced Stirling Conversion System (ASCS) Project is managed by NASA Lewis Research Center through a cooperative interagency agreement with DOE. Conceptual designs for the ASCS's were completed under parallel contracts in 1987 by Mechanical Technology Inc. (MTI) of Latham, NY, and Stirling Technology Company (STC) of Richland, WA. Each design features a free-piston Stirling engine, a liquid metal heat pipe receiver, and a means to provide about 25 kW of electric power to a utility grid while meeting DOE's long term performance and cost goals. An independent assessment showed that both designs are manufacturable and have the potential to easily meet DOE's long term cost goals.